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Integer multiplication in time O(n logn)

By David Harvey and Joris van der Hoeven

Abstract

We present an algorithm that computes the product of two n-bit integers

in O(n logn) bit operations, thus confirming a conjecture of Schönhage and

Strassen from 1971. Our complexity analysis takes place in the multitape

Turing machine model, with integers encoded in the usual binary repre-

sentation. Central to the new algorithm is a novel “Gaussian resampling”

technique that enables us to reduce the integer multiplication problem to

a collection of multidimensional discrete Fourier transforms over the com-

plex numbers, whose dimensions are all powers of two. These transforms

may then be evaluated rapidly by means of Nussbaumer’s fast polynomial

transforms.

1. Introduction

Let M(n) denote the time required to multiply two n-bit integers. We work

in the multitape Turing model, in which the time complexity of an algorithm

refers to the number of steps performed by a deterministic Turing machine

with a fixed, finite number of linear tapes [35]. The main results of this paper

also hold in the Boolean circuit model [41, §9.3], with essentially the same

proofs.

For functions f(n1, . . . , nk) and g(n1, . . . , nk), we write f(n) = O(g(n))

to indicate that there exists a constant C > 0 such that f(n) 6 Cg(n) for all

tuples n = (n1, . . . , nk) in the domain of f . Similarly, we write f(n) = Ω(g(n))

to mean that f(n) > Cg(n) for all n in the domain of f , and f(n) = Θ(g(n))

to indicate that both f(n) = O(g(n)) and f(n) = Ω(g(n)) hold. From Sec-

tion 2 onwards we will always explicitly restrict the domain of f to ensure that

g(n)>0 throughout this domain. However, in this introduction we will slightly

abuse this notation: when writing for instance f(n) = O(n log n log logn), we

tacitly assume that the domain of f has been restricted to [n0,∞) for some

sufficiently large threshold n0.
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Schönhage and Strassen conjectured in 1971 that the true complexity of

integer multiplication is given by M(n) = Θ(n log n) [40], and in the same

paper established their famous upper bound M(n) = O(n log n log logn). In

2007 their result was sharpened by Fürer to M(n) = O(n log nK log∗ n) [12],

[13] for some unspecified constant K > 1, where log∗ n denotes the iterated

logarithm, i.e., log∗ x := min{k > 0 : log◦k x 6 1}. Prior to the present work,

the record stood at M(n) = O(n log n 4log
∗ n) [22].

The main result of this paper is a verification of the upper bound in

Schönhage and Strassen’s conjecture, thus closing the remaining 4log
∗ n gap:

Theorem 1.1. There is an integer multiplication algorithm achieving

M(n) = O(n log n).

If the Schönhage–Strassen conjecture is correct, Theorem 1.1 is asymptot-

ically optimal. Unfortunately, no super-linear lower bound for M(n) is known.

Perhaps the best available evidence in favour of the conjecture is the Ω(n log n)

lower bound [6], [36] that has been proved for the “on-line” variant of the

problem, in which the k-th bit of the product must be written before the

(k + 1)-th bits of the multiplicands are read. Again, the true complexity of

on-line multiplication is not known: currently, the best known upper bound is

O(n log n exp(C
√

log log n)) for C =
√

2 log 2 + o(1) [29].

Theorem 1.1 has many immediate consequences, as many computational

problems may be reduced to integer multiplication. For example, the theorem

implies that quotients and k-th roots of real numbers may be computed to

a precision of n significant bits in time O(n log n), that transcendental func-

tions and constants such as ex and π may be computed to precision n in time

O(n log2 n), and that the greatest common divisor of two n-bit integers may

be found in time O(n log2 n) [5].

Another interesting application is to the problem of computing DFTs

(discrete Fourier transforms) over C. Given a transform length m > 2 and a

target accuracy of p = Ω(logm) bits, it was pointed out in [20], [25] that one

may use Bluestein’s trick [2] followed by Kronecker substitution [14, Cor. 8.27]

to reduce a given DFT of length m to an integer multiplication problem of

size O(mp). Theorem 1.1 then implies that the DFT may be evaluated in

time O(mp log(mp)). This compares favourably with the traditional FFT (fast

Fourier transform) approach, which requires O(m logm) operations in C, and

thus time O(m logm M(p)) = O(mp logm log p) in the Turing model.

This faster method for computing DFTs over C leads to various fur-

ther applications. One such application is the conversion of an n-digit in-

teger from one base to another, for example from binary to decimal, in time

O(n log2 n/ log log n) [30]. Alternatively, if one wishes to multiply two n-digit

integers in a fixed base β 6= 2, then it is possible to adapt the new algorithm to
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obtain a direct O(n log n)-time multiplication algorithm that works in base β

throughout. This is asymptotically faster than reducing the problem to binary

via the above-mentioned base conversion algorithms.

All of the algorithms presented in this paper can be made completely

explicit, and all implied big-O constants are in principle effectively computable.

On the other hand, we make no attempt to minimise these constants or to

otherwise exhibit a practical multiplication algorithm. Our aim is to establish

the theoretical O(n log n) bound as directly as possible.

We will actually describe two new multiplication algorithms. The first one

depends on an unproved hypothesis concerning the least prime in an arithmetic

progression. This hypothesis is weaker than standard conjectures in this area,

but stronger than the best unconditional results currently available. We give

only a brief sketch of this algorithm (see Section 1.2.1); a detailed treatment is

given in the companion paper [24], which also presents an analogue of this algo-

rithm for multiplication in Fq[x]. The bulk of the present paper (Sections 2–5)

concentrates on working out the details of the second algorithm, which is tech-

nically more involved, but has the virtue of reaching the O(n log n) bound

unconditionally.

In the remainder of Section 1, we review the literature on integer multipli-

cation (Section 1.1), and give an overview of the new algorithms (Section 1.2).

1.1. Survey of integer multiplication algorithms. The first improvement on

the classical M(n) = O(n2) bound was found by Karatsuba in 1962. Significant

progress was made during the 1960s by Toom, Cook, Schönhage and Knuth;

see [25, §1.1] for further historical details and references for this period. FFTs

were brought into the picture by Schönhage and Strassen [40] soon after the

publication of the FFT by Cooley and Tukey [7]; see [28] for more on the

history of the FFT. The multiplication algorithms published since [40] may be

roughly classified into four families:

(1) Schönhage–Strassen’s first algorithm [40] is, in retrospect, the most

straightforward FFT-based integer multiplication algorithm imaginable. By

splitting the n-bit multiplicands into chunks of size Θ(log n), they reduce to the

problem of multiplying polynomials in Z[x] of degree Θ(n/ log n) and coefficient

size Θ(log n). The product in Z[x] is handled by means of FFTs over C, i.e.,

evaluating the polynomials at suitable complex roots of unity, multiplying their

values pointwise in C, and then interpolating to obtain the product polynomial.

Elements of C are represented approximately, with a precision of Θ(log n) bits.

Arithmetic operations in C (such as multiplication) are reduced to arithmetic

in Z by scaling by a suitable power of two. This leads to the recursive estimate

M(n) = O(nM(n′)) +O(n log n), n′ = O(log n),
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whose explicit solution is

M(n) = O(K log∗ n n log n log log n · · · log◦((log
∗ n)−1) n)

for some constant K > 0. The algorithm achieves an exponential size reduc-

tion at each recursion level, from n to O(log n), and the number of levels is

log∗ n+O(1).

Pollard suggested a similar algorithm at around the same time [37], work-

ing over a finite field rather than C. He did not analyse the bit complexity,

but with some care one can prove essentially the same complexity bound as for

the complex case. (Some technical difficulties arise due to the cost of finding

suitable primes; these may be resolved by techniques similar to those discussed

in [25, §8.2].)

(2) Schönhage–Strassen’s second algorithm is the more famous and ar-

guably the more ingenious of the two algorithms presented in [40]. It is prob-

ably the most widely used large-integer multiplication algorithm in the world

today, due to the highly optimised implementation included in the free GNU

Multiple Precision Arithmetic Library (GMP) [17], [15], which underlies the

large-integer capabilities of all of the major contemporary computer algebra

systems.

The basic recursive problem is taken to be multiplication in Z/(2n + 1)Z,

where n is a power of two. Let n′ := 2d(log2 2n)/2e = Θ(n1/2) and T := 2n/n′ =

Θ(n1/2), so that (n′)2 ∈ {2n, 4n} and T | n′; then by splitting the inputs into

chunks of size n′/2, the problem is reduced to multiplication in R[x]/(xT + 1)

where R := Z/(2n′ + 1)Z. The powers of 2 in R are sometimes called “syn-

thetic” roots of unity, as they have been synthesised algebraically, or “fast”

roots of unity, as one can multiply an element of R by an arbitrary power

of 2 in linear time, i.e., in time O(n′). Consequently, for ω := 2n
′/T , one may

evaluate a polynomial at ω, ω3, . . . , ω2T−1 (the roots of xT + 1) via the FFT

in time O((n′ log n′)n′) = O(n log n). The original multiplication problem is

thus reduced to T pointwise multiplications in R, which are handled recur-

sively. Writing M1(n) for the cost of a product in Z/(2n+ 1)Z, one obtains the

recurrence

(1.1) M1(n) <
2n

n′
M1(n

′) +O(n log n), n′ = O(n1/2).

Unlike the first Schönhage–Strassen algorithm, this algorithm performs only a

geometric size reduction, from n to O(n1/2), at each recursion level, and the

number of recursion levels is log2 log n+O(1) = O(log log n).

The constant 2 in (1.1), which arises from zero-padding in the initial

splitting stage, plays a crucial role in the complexity analysis: it ensures that

at each recursion level, the total cost of the “fast” FFTs remains O(n log n),
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with the same implied constant at each level. The overall cost is thus M1(n) =

O(n log n log log n).

(3) Fürer’s algorithm [12], [13] combines the best features of the two

Schönhage–Strassen algorithms: the exponential size reduction from the first

algorithm, and the fast roots of unity from the second one. The overall strat-

egy is similar to the first algorithm, but instead of working over C, one uses

a bivariate splitting to reduce to a polynomial multiplication problem over

R := C[y]/(yr + 1), where r = Θ(log n) is a power of two. This ring contains

a synthetic root of unity y of order 2r, but also inherits higher-order roots of

unity from C. Elements of C are represented approximately, with a precision

of O(log n) bits; thus an element of R occupies O((log n)2) bits.

Fürer’s key insight is to apply the Cooley–Tukey FFT decomposition in

radix 2r instead of radix two. He decomposes each “long” transform of length

Θ(n/(log n)2) into many “short” transforms of length 2r, with one round of

expensive “twiddle factor” multiplications interposed between each layer of

short transforms. The short transforms take advantage of the synthetic roots

of unity, and the twiddle factor multiplications are handled recursively (via

Kronecker substitution). This leads to the recurrence

M(n) = O

Å
n log n

n′ log n′
M(n′)

ã
+O(n log n), n′ = O((log n)2),

and then to the explicit bound M(n) = O(n log nK log∗ n) for some constant

K > 1. Fürer did not give a specific value for K, but it is argued in [25, §7]

that careful optimisation of his algorithm leads to the value K = 16.

Several authors have given variants of Fürer’s algorithm that also achieve

M(n) = O(n log nK log∗ n), using essentially the same idea but working over

different rings. De, Kurur, Saha and Saptharishi [10] replace C by a p-adic

ring Qp; this has the benefit of avoiding numerical analysis over C, but the value

of K becomes somewhat larger. Covanov and Thomé give another variant that

achieves K = 4, conditional on a conjecture on the distribution of generalised

Fermat primes [8].

(4) The Harvey–van der Hoeven–Lecerf algorithm [25] follows Fürer in de-

composing a “long” transform into many “short” transforms of exponentially

smaller length. However, instead of working over a ring containing fast roots

of unity, one works directly over C (as in the first Schönhage–Strassen algo-

rithm), and converts the short transforms back to multiplication problems via

Bluestein’s trick [2]. These short products are then handled recursively.

The first version given in [25] achieved M(n) = O(n log nK log∗ n) with

K = 8. The value of K was improved gradually over a sequence of papers [18],

[19], [21], reaching K = 4 in [22]. All of these algorithms perform exponential

size reduction, and the number of recursion levels is log∗ n+O(1).
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An interesting feature of these algorithms — related to the fact that they

dispense with the need for fast roots of unity — is that they can be adapted

to prove bounds of the form O(n log nK log∗ n) for the cost of multiplying poly-

nomials in Fq[x] of degree n (for fixed q). This was first established with

the constant K = 8 in [26], and improved to K = 4 in [23]. As mentioned

previously, the first of the two new algorithms presented in this paper may be

adapted to obtain an O(n log n) bound for the Fq[x] case [24], but unfortunately

this result is still conditional and so does not yet supersede the unconditional

O(n log n 4log
∗ n) bound given in [23].

1.2. Overview of new algorithms. Our new algorithms are motivated by

the observation that certain multivariate polynomial rings admit particularly

efficient multiplication algorithms. Let r be a power of two, and for d > 2

consider the ring

(1.2) R[x1, . . . , xd−1]/(x
t1
1 − 1, . . . , x

td−1

d−1 − 1), R := C[y]/(yr + 1),

where ti | 2r for all i. One may multiply in this ring by first using FFTs to

evaluate each xi at the synthetic ti-th roots of unity (the powers of y2r/ti),

then multiplying pointwise in R, and finally performing inverse FFTs. Such

transforms were studied extensively by Nussbaumer in the late 1970s (see for

example [32]), and are sometimes known as fast polynomial transforms. They

consist entirely of additions and subtractions in C, and require no multiplica-

tions in C whatsoever.

In Sections 1.2.1 and 1.2.2 below, we outline two different ways of fash-

ioning an integer multiplication algorithm from the polynomial multiplication

algorithm just described. The key issue is to show how to transport an integer

multiplication problem, which is intrinsically one-dimensional, to a ring of the

type (1.2).

In both cases, we begin with the following setup. Suppose that we wish

to multiply two n-bit integers. We choose a dimension parameter d > 2 and

distinct primes s1, . . . , sd ≈ (n/ log n)1/d, subject to certain conditions that

will be explained in Sections 1.2.1 and 1.2.2. Just as in the first Schönhage–

Strassen algorithm, we split the inputs into around n/ log n chunks of roughly

log n bits, thereby reducing the problem to multiplication in Z[x]/(xs1···sd−1).

Now, following a technique described by Agarwal and Cooley [1] (which is

closely related to the Good–Thomas FFT algorithm [16], [42]), we observe

that the Chinese remainder theorem induces an isomorphism Z[x]/(xs1···sd−1)
∼= Z[x1, . . . , xd]/(x

s1
1 − 1, . . . , xsdd − 1), so the problem amounts to computing

a product in the latter ring. For this, it suffices to show how to efficiently

compute a multidimensional complex DFT of size s1 × · · · × sd, i.e., with

respect to the complex si-th roots of unity, to an accuracy of O(log n) bits.
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1.2.1. A conditional algorithm — Rader’s trick. Suppose that we are able

to choose the primes s1, . . . , sd so that si = 1 (mod r), where r > 2 is a

power of two, and where the si are not much larger than r. We may then

deploy a multidimensional generalisation of Rader’s algorithm [38] to reduce

the given DFT of size s1 × · · · × sd to a multiplication problem in the ring

C[x1, . . . , xd]/(x
s1−1
1 −1, . . . , xsd−1d −1) (together with some lower-dimensional

multiplication problems of negligible cost). Crucially, the convolution lengths

have been reduced from si to si − 1. Writing si − 1 = qir, where the qi
are “small”, we may further reduce this product to a collection of complex

DFTs of size q1 × · · · × qd, plus a collection of multiplication problems in

C[x1, . . . , xd]/(x
r
1 − 1, . . . , xrd − 1). After replacing xd with eπi/ry, we see that

the latter products are exactly of the type (1.2). As discussed previously, we

may use synthetic FFTs to reduce such a product to a collection of pointwise

products in R = C[y]/(yr + 1). These in turn are converted to integer multi-

plication problems via Kronecker substitution, and then handled recursively.

The main sticking point in the above algorithm is the cost of the auxiliary

DFTs of size q1 × · · · × qd. There are various options available for evaluating

these DFTs, but to ensure that this step does not dominate the complexity,

the key issue is to keep the size of the qi under control. What we are able to

prove is the following. For positive, relatively prime integers r and a, define

P (a, r) := min{s > 0 : s prime and s = a mod r},

and put P (r) := maxa P (a, r). Linnik’s theorem states that there is an absolute

constant L > 1 such that P (r) = O(rL). (In our application, we are interested

in bounding P (1, r) when r is a power of two.) The best published value for

L is currently L = 5.18 [43], and under the Generalised Riemann Hypothesis

one may take L = 2 + ε for any ε > 0 [27]. In the companion paper [24], we

present an integer multiplication algorithm following the plan just described,

but working over a finite field instead of C. We prove that if Linnik’s theorem

holds for some L < 1 + 1
303 , and if we take d near 106, then the cost of the

auxiliary DFTs can be controlled and one does in fact obtain an overall M(n) =

O(n log n) bound. We expect that the same argument works over C, with a

possibly different threshold for L, but we have not worked out the details.

On the other hand, it is widely expected that the bound P (r) = O(rL)

should hold for any L > 1. For this reason, we strongly suspect that the

algorithm sketched above does run in time O(n log n), despite us being unable

to supply a proof. For further discussion, and examples of even stronger bounds

for P (r) that are expected to hold, see [24].

Remark 1.2. The idea of evaluating a multidimensional transform via a

combination of Rader’s algorithm and polynomial transforms was previously

suggested in a different context by Nussbaumer and Quandalle [33, p. 141].
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Figure 1. Torus (R/Z)2 with 13×11 source array (white circles)

superimposed over 16× 16 target array (black circles)

1.2.2. An unconditional algorithm — Gaussian resampling. The rest of

the paper is devoted to the second method. Here we choose the primes

s1, . . . , sd in such a way that each si is slightly smaller than a power of two ti,

and so that t1 · · · td = O(s1 · · · sd). Finding such primes is easily accomplished

using Eratosthenes’ sieve and the prime number theorem with a suitable error

term (see Lemma 5.1).

Assume as before that we wish to compute a complex multidimensional

DFT of size s1×· · ·×sd, to an accuracy of O(log n) bits. Our key innovation is

to show that this problem may be reduced directly to the problem of computing

a complex multidimensional DFT of size t1 × · · · × td.
The idea of the reduction is as follows. Suppose that we are given as

input an s1 × · · · × sd array of complex numbers u = (uj1,...,jd)06ji<si . We

may regard this array as lying inside the d-dimensional unit torus (R/Z)d: we

imagine the coefficient uj1,...,jd to be plotted at coordinates (j1/s1, . . . , jd/sd)

in the torus (see Figure 1). We construct from u an intermediate t1 × · · · × td
array v = (vk1,...,kd)06ki<ti . Again, we think of vk1,...,kd as being plotted at

coordinates (k1/t1, . . . , kd/td) in the torus. The coefficients of v are defined

to be certain linear combinations of the coefficients of u. The weights are

essentially d-dimensional Gaussians, so each coefficient of v depends mainly on

the “nearby” coefficients of u within the torus.

This construction has two crucial properties. First, the rapid decay of the

Gaussians allows us to compute (i.e., approximate) the coefficients of v very

quickly from those of u; indeed, the cost of this step is asymptotically negligible

compared to the cost of the DFTs themselves. Second, using the fact that the

Fourier transform of a Gaussian is a Gaussian, we will show that û and v̂ (the

DFTs of u and v) are related by a fairly simple system of linear equations. In

fact, the matrix of this system is of the same type as the matrix relating u
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and v. The system is somewhat overdetermined, because t1 · · · td > s1 · · · sd.
Provided that the ratios ti/si are not too close to 1, we will show that this

system may be solved in an efficient and numerically stable manner, and that

we may therefore recover û from v̂. This procedure forms the core of our

“Gaussian resampling” method and is developed in detail in Section 4. It is

closely related to the Dutt–Rokhlin algorithm for non-equispaced FFTs [11];

see Section 4.4.3 for a discussion of the similarities and differences.

We have therefore reduced to the problem of computing v̂ from v, and we

are free to do this by any convenient method. Note that this is a DFT of size

t1 × · · · × td rather than s1 × · · · × sd. In Section 3 we will show how to use a

multivariate generalisation of Bluestein’s algorithm [2] to reduce this DFT to

a multiplication problem in a ring of the form (1.2). As already pointed out,

such a product may be handled efficiently via synthetic FFTs; the details of

this step are also discussed in Section 3.

Analysis of this algorithm leads to a recurrence inequality of the form

(1.3) M(n) <
Kn

n′
M(n′) +O(n log n), n′ = n

1
d
+o(1),

where K is an absolute constant, and in particular does not depend on d.

(In Section 5 we establish (1.3) with the explicit constant K = 1728, and in

Section 5.4 we list some optimisations that improve it to K = 8.) The first term

arises from pointwise multiplications in a ring of the typeR = C[y]/(yr+1), and

the second term from the fast FFTs and other auxiliary operations, including

computing v from u and recovering û from v̂.

We stress here the similarity with the corresponding bound (1.1) for the

second Schönhage–Strassen algorithm; the difference is that we are now free

to choose d. In Section 5, we will simply take d := 1729 (any constant larger

than K would do), and then it is easy to see that (1.3) implies that M(n) =

O(n log n). (A similar analysis holds for the conditional algorithm sketched in

Section 1.2.1, for different values of K and d.)

It is striking that for fixed d, the new algorithm performs only a geometric

size reduction at each recursion level, just like the second Schönhage–Strassen

algorithm, and unlike the first Schönhage–Strassen algorithm or any of the

post-Fürer algorithms. In the new algorithm, the total cost of the FFTs ac-

tually decreases by the constant factor d/K > 1 at each subsequent recursion

level, unlike in the second Schönhage–Strassen algorithm, where it remains

constant at each level, or any of the other algorithms mentioned, where it

increases by a constant factor at each level.

Actually, it is possible to allow d to grow with n, so as to achieve size

reduction faster than geometric. With some care, this leads to a better con-

stant in the main O(n log n) bound, by shifting more work from the pointwise
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multiplications into the fast FFTs. We will not carry out the details of this

analysis.

Finally, we mention that our reduction from a DFT of size s1 × · · · × sd
to one of size t1 × · · · × td is highly non-algebraic, and depends heavily on the

archimedean property of R. Consequently, we do not know how to give an

analogue of this algorithm for multiplication in Fq[x].

Acknowledgments. The authors would like to thank the anonymous refer-

ees, whose thoughtful comments helped to improve the presentation of these

results.

2. DFTs, convolutions and fixed-point arithmetic

In the Turing model we cannot compute with elements of C exactly. In this

section we introduce a technical framework for systematic discussion of DFTs

and convolutions in the setting of fixed-point arithmetic. This framework is

loosely based on the presentation in [25, §3], and will be used throughout the

rest of the paper. The impatient reader may skip most of the section and use

it as a reference in case of doubt. To this effect, Table 1 contains a summary

of the notation introduced in this section.

2.1. Integer arithmetic. Integers are assumed to be stored in the standard

binary representation. We briefly recall several well-known results concerning

integer arithmetic; see [5, Ch. 1] for further details and literature references.

Let n > 1, and assume that we are given as input x, y ∈ Z such that

|x| , |y| 6 2n. We may compute x+y and x−y in time O(n). For multiplication,

we will often use the crude estimate M(n) = O(n1+δ), where for the rest of the

paper δ denotes a small, fixed positive quantity; for definiteness, we assume

that δ < 1
8 . If y > 0, then we may compute the quotients bx/yc and dx/ye in

time O(n1+δ). More generally, for a fixed positive rational number a/b, and

assuming x, y > 0, we may compute b(x/y)a/bc and d(x/y)a/be in time O(n1+δ).

2.2. Fixed-point coordinate vectors. Fix a precision parameter p > 100.

Let C◦ := {u ∈ C : |u| 6 1} denote the complex unit disc, and set

C̃◦ := (2−pZ[i]) ∩ C◦ = {2−p(x+ iy) : x, y ∈ Z and x2 + y2 6 22p}.

In the Turing model, we represent an element z = 2−p(x + iy) ∈ C̃◦ by the

pair of integers (x, y). It occupies O(p) bits of storage, as |x| , |y| 6 2p. The

precision p is always known from context and does not need to be stored

alongside z.

We define a round-towards-zero function ρ : C → C as follows. First,

define ρ0 : R→ Z by ρ0(x) := bxc for x > 0, and ρ0(x) := dxe for x < 0. Then

define ρ0 : C→ Z[i] by setting ρ0(x+iy) := ρ0(x)+iρ0(y) for x, y ∈ R. Observe
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δ ∈ (0, 18) a constant such that M(n) = O(n1+δ) (§2.1)

p > 100 working precision in bits (§2.2)

‖·‖ supremum norm on V (a finite-dimensional vector

space over C) with respect to a specified basis BV

(§2.2)

V◦ closed unit ball in V under the supremum norm (§2.2)

Ṽ◦ set of vectors in V◦ whose coordinates are fixed-

point complex numbers with p bits of accuracy

(§2.2)

ρ : V◦ → Ṽ◦ round-towards-zero function (§2.2)

ṽ ∈ Ṽ◦ a fixed-point approximation to a vector v ∈ V◦ (§2.2)

ε(ṽ) (scaled) error incurred in approximating v by ṽ (§2.2)

Fn : Cn → Cn complex DFT of length n (§2.4)

Fn1,...,nd
multidimensional complex DFT of size n1×· · ·×nd (§2.4)

R the ring C[y]/(yr + 1), for a power of two r > 2 (§2.3)

Gn : Rn → Rn synthetic DFT of length n, where n | 2r (§2.4)

Gn1,...,nd
multidimensional synthetic DFT of size n1×· · ·×nd (§2.4)

u · v pointwise product of vectors/tensors (§2.4)

u ∗ v convolution product of vectors/tensors (§2.4)

A a linear (or bilinear) map between finite-

dimensional complex vector spaces

(§2.6)

‖A‖ operator norm of A (§2.6)

Ã a “numerical approximation” for A (assuming

‖A‖ 6 1), i.e., a computable function intended to

approximate A on fixed-point inputs

(§2.6)

ε(Ã) worst-case error incurred in approximating A by Ã (§2.6)

C(Ã) worst-case cost of evaluating Ã on a single vector (§2.6)

Table 1. Glossary of notation introduced in Section 2

that |ρ0(u)| 6 |u| and |ρ0(u)− u| <
√

2 for any u ∈ C. Finally, set

ρ(u) := 2−pρ0(2
pu), u ∈ C.

Thus |ρ(u)| 6 |u| and |ρ(u)− u| <
√

2 ·2−p for any u ∈ C. Clearly ρ(C◦) ⊂ C̃◦.
Now let V be a nonzero, finite-dimensional vector space over C. In this

paper, every such V is understood to come equipped with a privileged choice

of ordered basis BV = {b0, . . . , bm−1}, where m = dimC V > 1. For the special

case V = Cm, we always take the standard basis; in particular, for V = C the

basis is simply {1}.
We define a norm ‖·‖ : V → [0,∞) in terms of the basis BV by setting

‖λ0b0 + · · ·+ λm−1bm−1‖ := max
j
|λj | , λj ∈ C.
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This norm satisfies ‖u+ v‖ 6 ‖u‖+ ‖v‖ and ‖λu‖ = |λ| ‖u‖ for any u, v ∈ V ,

λ ∈ C. The unit ball in V is defined to be

V◦ := {u ∈ V : ‖u‖ 6 1} = {λ0b0 + · · ·+ λm−1bm−1 : λj ∈ C◦},

and we also define

Ṽ◦ := {λ0b0 + · · ·+ λm−1bm−1 : λj ∈ C̃◦}.

We extend ρ to a function ρ : V → V by acting componentwise, i.e., we put

ρ(λ0b0 + · · ·+ λm−1bm−1) :=
∑
j

ρ(λj)bj , λj ∈ C.

Then ‖ρ(u)‖6‖u‖ and ‖ρ(u)− u‖<
√

2 ·2−p for any u ∈ V . Clearly ρ(V◦)⊂ Ṽ◦.
In the special case V = C we have simply ‖u‖ = |u| for any u ∈ C, and

the notations C◦, C̃◦ and ρ : C→ C all agree with their previous definitions.

In the Turing model, an element u ∈ Ṽ◦ is represented by its coordinate

vector with respect to BV , i.e., as a list of m elements of C̃◦, so u occupies

O(mp) bits of storage.

For u ∈ V◦, we systematically use the notation ũ ∈ Ṽ◦ to indicate a fixed-

point approximation for u that has been computed by some algorithm. We

write

ε(ũ) := 2p ‖ũ− u‖
for the associated error, measured as a multiple of 2−p (the “unit in the last

place”). For example, we have the following result for addition and subtraction

in V .

Lemma 2.1 (Addition/subtraction). Recall that m = dimC V > 1. Given

as input u, v ∈ Ṽ◦, in time O(mp) we may compute an approximation w̃ ∈ Ṽ◦
for w := 1

2(u± v) ∈ V◦ such that ε(w̃) < 1.

Proof. Consider first the case m = 1, i.e., assume that V = C. Let

u = 2−pa and v = 2−pb where a, b ∈ Z[i] and |a| , |b| 6 2p. Since the denomina-

tors of the real and imaginary parts of 2pw = 1
2(a± b) are at most 2, we have

|ρ0(2pw)− 2pw| 6 ((12)2 + (12)2)1/2 = 1√
2
. Define w̃ := ρ(w) = 2−pρ0(2

pw).

We may clearly compute w̃ in time O(p), and ε(w̃)=2p ‖ρ(w)− w‖6 1√
2
< 1.

The general case (m > 1) follows by applying the same argument in each

coordinate. �

Occasionally we will encounter a situation in which we have computed an

approximation ũ ∈ Ṽ◦ for some u ∈ V , and we wish to compute an approx-

imation for cu, where c > 1 is a fixed integer scaling factor for which it is

known that cu ∈ V◦. A typical example is the final scaling step in an inverse

FFT. Unfortunately, the obvious approximation cũ might lie just outside V◦.

To simplify subsequent estimates, it will be technically convenient to adjust
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cũ slightly to obtain a vector that is guaranteed to lie in V◦. This adjustment

may be carried out as follows.

Lemma 2.2 (Scaling). Recall that m = dimC V > 1. Let u ∈ V and let c be

an integer such that 1 6 c 6 2p. Assume that ‖u‖ 6 c−1, and let v := cu ∈ V◦.
Given as input c and an approximation ũ ∈ Ṽ◦, in time O(mp1+δ) we may

compute an approximation ṽ ∈ Ṽ◦ such that ε(ṽ) < 2c · ε(ũ) + 3.

Proof. Again it suffices to handle the case m = 1, V = C.

We first compute 2−p(x+ iy) := cũ in time O(p1+δ). Note that cũ might

not lie in C̃◦, but x and y are certainly integers with O(p) bits.

Next we compute a := x2 + y2 in time O(p1+δ), so that a1/2 = 2p |cũ|.
If a 6 22p, then already cũ ∈ C̃◦, so we may simply take ṽ := cũ, and then

ε(ṽ) = 2p |ṽ − v| = 2p |cũ− cu| = c · ε(ũ) < 2c · ε(ũ) + 3.

Suppose instead that a > 22p (i.e., cũ /∈ C̃◦). We then compute b :=

da1/2e > 2p, again in time O(p1+δ). Let z := 2pcũ/b = (x+iy)/b and ṽ := ρ(z).

Note that ṽ = 2−p(x′+iy′) where x′ = ρ0(2
px/b) and y′ = ρ0(2

py/b), so we may

compute ṽ in time O(p1+δ). We have |ṽ| 6 |z| = 2p |cũ| /b 6 2p |cũ| /a1/2 = 1,

so indeed ṽ ∈ C̃◦. Moreover,

|ṽ − v| 6 |ṽ − z|+ |z − cũ|+ |cũ− v| = |ρ(z)− z|+ |z| |1− b
2p |+ c |ũ− u| ,

so ε(ṽ) <
√

2+ |2p − b|+c ·ε(ũ). We also have 2p < b < a1/2+1 = 2p |cũ|+1, so

0 < b− 2p < 2p |cũ| − 2p + 1 6 2p |cu| − 2p + 2p |cũ− cu|+ 1 6 c · ε(ũ) + 1.

We conclude that |2p − b| < c ·ε(ũ)+1, and thus ε(ṽ) < 2c ·ε(ũ)+(1+
√

2). �

2.3. Coefficient rings. By a coefficient ring we mean a finite-dimensional

commutative C-algebra R with identity (together with a privileged basis BR).

We are chiefly interested in the following two examples:

(1) Complex case: C itself, with the basis {1}.
(2) Synthetic case: for a power of two r > 2, the ring R := C[y]/(yr + 1), with

the basis {1, y, . . . , yr−1}, so that ‖λ0 + λ1y + · · ·+ λr−1y
r−1‖ = maxj |λj |.

Let R be a coefficient ring of dimension r > 1 with basis BR, and let

n > 1. Then Rn is a vector space of dimension nr over C. We associate to Rn

the “nested” basis formed by concatenating n copies of BR. In particular, we

have ‖u‖ = maxj ‖uj‖ for u = (u0, . . . , un−1) ∈ Rn. In place of the awkward

expressions (Rn)◦ and ˜(Rn)◦, we write more compactly Rn◦ and R̃n◦ . In the

Turing model, an element of R̃n◦ occupies O(nrp) bits of storage.

Now let d > 1 and n1, . . . , nd > 1. We write ⊗di=1R
ni , or just ⊗iRni

when d is understood, for the tensor product Rn1 ⊗R · · · ⊗R Rnd . It is a

free R-module of rank n1 · · ·nd, and also a vector space over C of dimension

n1 · · ·ndr. An element u ∈ ⊗iRni may be regarded as a d-dimensional array
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of elements of R of size n1 × · · · × nd. For indices j1, . . . , jd where 0 6 ji < ni,

we write uj1,...,jd ∈ R for the (j1, . . . , jd)-th component of u.

We associate to ⊗iRni the nested basis consisting of n1 · · ·nd copies of BR
arranged in lexicographical order, i.e., listing the coordinates of u in the order

(u0,...,0, u0,...,1, . . . , un1−1,...,nd−1). Observe then that ‖u‖=maxj1,...,jd ‖uj1,...,jd‖.
Instead of (⊗iRni)◦ and (⊗i R̃ni)◦, we write ⊗iRni◦ and ⊗i R̃ni◦ . In the Turing

model, an element of ⊗i R̃ni◦ occupies O(n1 · · ·ndrp) bits of storage.

Let u ∈ ⊗iRni . By an i-slice of u we mean a one-dimensional sub-

array of u, consisting of the entries uj1,...,jd where j1, . . . , ji−1, ji+1, . . . , jd are

held fixed and ji varies over {0, . . . , ni − 1}. We will occasionally wish to

apply a given algorithm separately to each of the n1 · · ·ni−1ni+1 · · ·nd distinct

i-slices of some u ∈ ⊗i R̃ni◦ . To accomplish this in the Turing model, we must

first rearrange the data so that each i-slice is stored contiguously. In the

lexicographical order specified above, this amounts to performing n1 · · ·ni−1
matrix transpositions of size ni×(ni+1 · · ·nd). This data rearrangement may be

performed in time O(n1 · · ·ndrp log ni) (assuming ni > 2) using a fast matrix

transposition algorithm [4, Appendix].

2.4. DFTs and convolutions. Let R be a coefficient ring and let

n > 1. Throughout the paper we adopt the convention that for a vector

u = (u0, . . . , un−1) ∈ Rn and an integer j, the expression uj always means

uj mod n. For u, v ∈ Rn, we define the pointwise product u · v ∈ Rn and the

convolution product u ∗ v ∈ Rn by

(u · v)j := ujvj , (u ∗ v)j :=
n−1∑
k=0

ukvj−k, 0 6 j < n.

Then (Rn, ·) and (Rn, ∗) are both commutative rings, isomorphic respectively

to the direct sum of n copies of R, and the polynomial ring R[x]/(xn − 1).

A principal n-th root of unity in R is an element ω ∈ R such that ωn = 1,∑n−1
k=0(ωj)k = 0 for every integer j 6= 0 (mod n), and ‖ωu‖ = ‖u‖ for all u ∈ R.

(The last condition is not part of the standard definition, but it is natural in

our setting where R carries a norm, and essential for error estimates.) We

define an associated R-linear DFT map Fω : Rn → Rn by the formula

(Fωu)j :=
1

n

n−1∑
k=0

ω−jkuk, u ∈ Rn, 0 6 j < n.

It is immediate that ω−1 (= ωn−1) is also a principal n-th root of unity in R,

and that ‖Fωu‖ 6 ‖u‖ for all u ∈ Rn.

Lemma 2.3 (Convolution formula). For any u, v ∈ Rn, we have

1

n
u ∗ v = nFω−1(Fωu · Fωv).
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Proof. For each j, the product (Fωu)j(Fωv)j is equal to

1

n2

n−1∑
s=0

n−1∑
t=0

ω−j(s+t)usvt =
1

n2

n−1∑
k=0

ω−jk
∑

s+t=k (mod n)

usvt =
1

n
Fω(u ∗ v)j ,

so Fω(u ∗ v) = nFωu · Fωv. On the other hand, for any w ∈ Rn, we have

(Fω−1(Fωw))j =
1

n2

n−1∑
s=0

ωsj
n−1∑
t=0

ω−stwt =
1

n2

n−1∑
t=0

Å n−1∑
s=0

ωs(j−t)
ã
wt =

1

n
wj ,

so Fω−1Fωw = 1
nw. Taking w := u ∗ v, we obtain the desired result. �

For the two coefficient rings mentioned earlier, we choose ω as follows:

(1) Complex case. For R = C, let n > 1 be any positive integer, and put

ω := e2πi/n. We denote Fω in this case by Fn : Cn → Cn. Explicitly,

(Fnu)j =
1

n

n−1∑
k=0

e−2πijk/nuk, u ∈ Cn, 0 6 j < n.

We also write F∗n : Cn → Cn for Fω−1 .

(2) Synthetic case. For R = R = C[y]/(yr + 1) where r > 2 is a power of two,

let n be any positive divisor of 2r. Then ω := y2r/n is a principal n-th root

of unity in R. We denote Fω in this case by Gn : Rn → Rn. Explicitly,

(Gnu)j =
1

n

n−1∑
k=0

y−2rjk/nuk, u ∈ Rn, 0 6 j < n.

We also write G∗n : Rn → Rn for Fω−1 .

All of the concepts introduced above may be generalised to the multidi-

mensional setting as follows. For u, v ∈ ⊗iRni , we define the pointwise product

u · v ∈ ⊗iRni and the convolution product u ∗ v ∈ ⊗iRni by

(u · v)j1,...,jd := uj1,...,jdvj1,...,jd ,

(u ∗ v)j1,...,jd :=

n1−1∑
k1=0

· · ·
nd−1∑
kd=0

uk1,...,kdvj1−k1,...,jd−kd .

Then (⊗iRni , ·) is isomorphic to the direct sum of n1 · · ·nd copies of R, and

(⊗iRni , ∗) is isomorphic to R[x1, . . . , xd]/(x
n1
1 − 1, . . . , xnd

d − 1).

Let ω1, . . . , ωd ∈ R be principal roots of unity of orders n1, . . . , nd. We

define an associated R-linear d-dimensional DFT map by taking the tensor

product (over R) of the corresponding one-dimensional DFTs, that is,

Fω1,...,ωd
:= ⊗i Fωi : ⊗iRni → ⊗iRni .
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Explicitly, for u ∈ ⊗iRni we have

(Fω1,...,ωd
u)j1,...,jd =

1

n1 · · ·nd

n1−1∑
k1=0

· · ·
nd−1∑
kd=0

ω−j1k11 · · ·ω−jdkdd uk1,...,kd .

The multidimensional analogue of Lemma 2.3 is

(2.1)
1

n1 · · ·nd
u ∗ v = n1 · · ·ndFω−1

1 ,...,ω−1
d

(Fω1,...,ωd
u · Fω1,...,ωd

v)

and is proved in exactly the same way.

In particular, in the “complex case” we obtain the d-dimensional transform

Fn1,...,nd
:= ⊗iFni : ⊗iCni → ⊗iCni

(take ωi := e2πi/ni), and in the “synthetic case” the d-dimensional transform

Gn1,...,nd
:= ⊗i Gni : ⊗i Rni → ⊗i Rni

(where each ni is a divisor of 2r, and ωi := y2r/ni). We define similarly

F∗n1,...,nd
:= ⊗iF∗ni

and G∗n1,...,nd
:= ⊗i G∗ni

.

Any algorithm for computing Fn may easily be adapted to obtain an al-

gorithm for computing F∗n, by adjusting signs appropriately. A similar remark

applies to Gn, and to the multidimensional generalisations of these maps. For

the rest of the paper, we make use of these observations without further com-

ment.

2.5. Fixed-point multiplication. We now consider the complexity of mul-

tiplication in the coefficient rings R = C and R = R. In both cases we reduce

the problem to integer multiplication. For the case R = R (Lemma 2.5), we

will express the complexity in terms of M(·) itself, as this eventually feeds into

the main recurrence inequality for M(·) that we prove in Section 5.3. For the

case R = C (Lemma 2.4), we do not need the best possible bound; to sim-

plify the subsequent complexity analysis, we prefer to use the crude estimate

M(p) = O(p1+δ).

Lemma 2.4 (Multiplication in C). Given as input u, v ∈ C̃◦, in time

O(p1+δ) we may compute an approximation w̃ ∈ C̃◦ for w := uv ∈ C◦ such

that ε(w̃) < 2.

Proof. We take w̃ := ρ(w), so that ε(w̃) = 2p ‖ρ(w)− w‖ <
√

2 < 2.

Writing u = 2−pa and v = 2−pb where a, b ∈ Z[i] and |a| , |b| 6 2p, we have

w̃ = 2−pρ0(2
−pab). Thus w̃ may be computed in time O(p1+δ) by multiplying

out the real and imaginary parts of a and b, and then summing and rounding

appropriately. �
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For the case R = R, observe first that for any u, v ∈ R we have ‖uv‖ 6
r ‖u‖ ‖v‖, as each coefficient of

uv = (u0 + · · ·+ ur−1y
r−1)(v0 + · · ·+ vr−1y

r−1) mod yr + 1

is a sum of exactly r terms of the form ±uivj . In particular, if u, v ∈ R◦, then

uv/r ∈ R◦.

Lemma 2.5 (Multiplication in R). Assume that r > 2 is a power of two

and that r < 2p−1. Given as input u, v ∈ R̃◦, in time 4M(3rp)+O(rp) we may

compute an approximation w̃ ∈ R̃◦ for w := uv/r ∈ R◦ such that ε(w̃) < 2.

Proof. Write 2pu = U0(y) + iU1(y) and 2pv = V0(y) + iV1(y) where Uj
and Vj are polynomials in Z[y] of degree less than r and whose coefficients lie

in the interval [−2p, 2p]. Then 22prw = W0(y) + iW1(y) where

W0 := (U0V0 − U1V1) mod yr + 1, W1 := (U0V1 + U1V0) mod yr + 1.

We use the following algorithm, which is based on the well-known Kronecker

substitution technique [14, Cor. 8.27].

(1) Pack coefficients. Evaluate Uj(2
3p), Vj(2

3p) ∈ Z for j = 0, 1. As the

input coefficients have at most p bits, this amounts to concatenating the coef-

ficients with appropriate zero-padding (or one-padding in the case of negative

coefficients), plus some carry and sign handling. The cost of this step is O(rp).

(2) Multiply in Z. Let Wj,k := UjVk ∈ Z[y] for j, k ∈ {0, 1}. Compute

the four integer products Wj,k(2
3p) = Uj(2

3p)Vk(2
3p). The cost of this step is

4M(3rp).

(3) Unpack coefficients. For each pair (j, k), the coefficients of Wj,k ∈ Z[y]

are bounded in absolute value by r(2p)2 < 23p−1, so Wj,k may be recovered

from the integer Wj,k(2
3p) in time O(rp). (In more detail, the constant term

of Wj,k lies in the interval (−23p−1, 23p−1), so it is easily read off the last 3p

bits of Wj,k(2
3p). After stripping off this term, one proceeds to the linear term,

and so on.) We then deduce the polynomials W0 = (W0,0 −W1,1) mod yr + 1

and W1 = (W0,1 +W1,0) mod yr + 1 in time O(rp).

(4) Scale and round. Let c` := (W0)`+i(W1)` ∈ Z[i] for ` ∈ {0, . . . , r − 1}.
Then w = (22pr)−1(c0 + · · ·+ cr−1y

r−1), so, recalling that ‖w‖ = ‖uv‖ /r 6 1,

we have |c`| 6 22pr for each `. In time O(rp) we may compute w̃ := ρ(w) =

2−p
∑r−1

`=0 ρ0((2
pr)−1c`)y

`. (Each division by 2pr amounts to a bit shift.) Since

‖w‖ 6 1, we have w̃ ∈ R̃◦, and as usual, ε(w̃) = 2p ‖ρ(w)− w‖ <
√

2 < 2. �

2.6. Linear and bilinear maps. Let A : V →W be a C-linear map between

finite-dimensional vector spaces V and W . We define the operator norm of A
to be

‖A‖ := sup
v∈V◦
‖Av‖ .
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Example 2.6. For the normalised DFT map Fω defined in Section 2.4, we

have ‖Fω‖ 6 1. The same therefore holds for Fn, F∗n, Gn, G∗n, and for the

multivariate generalisations of these maps. (In fact, all of these maps have

norm exactly 1.)

Assume now that ‖A‖ 6 1. By a numerical approximation for A we mean

a function Ã : Ṽ◦ → W̃◦ that is computed by some algorithm, typically via

fixed-point arithmetic. The error of the approximation is defined to be

ε(Ã) := max
v∈Ṽ◦

2p ‖Ãv −Av‖ .

We write C(Ã) for the time required to compute Ãv from v (taking the maxi-

mum over all possible inputs v ∈ Ṽ◦).

Lemma 2.7 (Error propagation). Let A : V →W be a C-linear map such

that ‖A‖ 6 1, and let v ∈ V◦. Let Ã : Ṽ◦ → W̃◦ be a numerical approximation

for A, and let ṽ ∈ Ṽ◦ be an approximation for v. Then w̃ := Ãṽ ∈ W̃◦ is an

approximation for w := Av ∈W◦ such that ε(w̃) 6 ε(Ã) + ε(ṽ).

Proof. We have

ε(w̃) = 2p ‖Ãṽ −Av‖ 6 2p ‖Ãṽ −Aṽ‖+ 2p ‖Aṽ −Av‖

6 ε(Ã) + 2p ‖A‖ ‖ṽ − v‖ 6 ε(Ã) + ε(ṽ). �

Lemma 2.7 yields the following estimate for compositions of linear maps.

Corollary 2.8 (Composition). Let A : U → V and B : V → W be

C-linear maps such that ‖A‖ , ‖B‖ 6 1. Let Ã : Ũ◦ → Ṽ◦ and B̃ : Ṽ◦ → W̃◦
be numerical approximations. Then C̃ := B̃Ã : Ũ◦ → W̃◦ is a numerical ap-

proximation for C := BA : U →W such that ε(C̃) 6 ε(B̃) + ε(Ã).

Proof. For any u ∈ Ũ◦, if we set v := Au ∈ V◦ and ṽ := Ãu ∈ Ṽ◦, then

2p ‖B̃Ãu− BAu‖ = 2p ‖B̃ṽ − Bv‖ 6 ε(B̃) + ε(ṽ) 6 ε(B̃) + ε(Ã). �

The above definitions and results may be adapted to the case of a C-

bilinear map A : U × V →W as follows. We define

‖A‖ := sup
u∈U◦, v∈V◦

‖A(u, v)‖ .

If ‖A‖ 6 1, a numerical approximation for A is a function Ã : Ũ◦ × Ṽ◦ → W̃◦
that is computed by some algorithm. The error of the approximation is

ε(Ã) := max
u∈Ũ◦, v∈Ṽ◦

2p ‖Ã(u, v)−A(u, v)‖ ,

and C(Ã) denotes the time required to compute Ã(u, v) from u and v. In the

bilinear case, Lemma 2.7 has the following analogue.
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Lemma 2.9 (Bilinear error propagation). Let A : U × V → W be a C-

bilinear map with ‖A‖ 6 1, and let u ∈ U◦, v ∈ V◦. Let Ã : Ũ◦× Ṽ◦ → W̃◦, ũ ∈
Ũ◦, ṽ ∈ Ṽ◦ be approximations. Then w̃ := Ã(ũ, ṽ) ∈ W̃◦ is an approximation

for w := A(u, v) ∈W◦ such that ε(w̃) 6 ε(Ã) + ε(ũ) + ε(ṽ).

Proof. We have

ε(w̃) 6 2p(‖Ã(ũ, ṽ)−A(ũ, ṽ)‖+ ‖A(ũ, ṽ)−A(u, ṽ)‖+ ‖A(u, ṽ)−A(u, v)‖)

= 2p(‖Ã(ũ, ṽ)−A(ũ, ṽ)‖+ ‖A(ũ− u, ṽ)‖+ ‖A(u, ṽ − v)‖)

6 ε(Ã) + 2p ‖A‖ ‖ũ− u‖ ‖ṽ‖+ 2p ‖A‖ ‖u‖ ‖ṽ − v‖

6 ε(Ã) + ε(ũ) + ε(ṽ). �

The following application of Lemma 2.9 will frequently be useful.

Corollary 2.10. Let u, v ∈ C◦, and let w := uv ∈ C◦. Given as input

approximations ũ, ṽ ∈ C̃◦, in time O(p1+δ) we may compute an approximation

w̃ ∈ C̃◦ such that ε(w̃) < ε(ũ) + ε(ṽ) + 2.

Proof. Define a bilinear map A : C × C → C by A(u, v) := uv. Then

‖A‖ 6 1, and Lemma 2.4 yields an approximation Ã : C̃◦× C̃◦ → C̃◦ such that

ε(Ã) < 2 and C(Ã) = O(p1+δ). Applying Lemma 2.9 to A and Ã yields the

desired result. �

2.7. Tensor products. The following result shows how to construct nu-

merical approximations for tensor products of linear maps over a coefficient

ring.

Lemma 2.11 (Tensor products). Let R be a coefficient ring of dimension

r > 1. Let d > 1, let m1, . . . ,md, n1, . . . , nd > 2, and put M :=
∏
i max(mi, ni).

For i ∈ {1, . . . , d}, let Ai : Rmi → Rni be an R-linear map with ‖Ai‖ 6 1, and

let Ãi : R̃mi◦ → R̃ni◦ be a numerical approximation. Let A := ⊗iAi : ⊗iRmi →
⊗iRni . (Note that automatically ‖A‖ 6 1.)

Then we may construct a numerical approximation Ã : ⊗i R̃mi◦ → ⊗i R̃ni◦
such that ε(Ã) 6

∑
i ε(Ãi) and

C(Ã) 6M
∑
i

C(Ãi)
max(mi, ni)

+O(Mrp logM).

Proof. For i ∈ {0, 1, . . . , d}, let

U i := Rn1 ⊗ · · · ⊗Rni−1 ⊗Rni ⊗Rmi+1 ⊗ · · · ⊗Rmd .

In particular, U0 = ⊗iRmi and Ud = ⊗iRni . The map A : U0 → Ud admits a

decomposition A = Bd · · · B1 where Bi : U i−1 → U i is given by

Bi := In1 ⊗ · · · ⊗ Ini−1 ⊗Ai ⊗ Imi+1 ⊗ · · · ⊗ Imd
.
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(Here Ik denotes the identity map on Rk.) In other words, Bi acts by ap-

plying Ai separately on each i-slice. Explicitly, for any u ∈ U i−1 we have

(Biu)j1,...,jd = (Aiv)ji , where v ∈ Rmi is defined by vk := uj1,...,ji−1,k,ji+1,...,jd .

In particular, ‖vk‖ 6 1 whenever ‖u‖ 6 1, whence ‖Bi‖ 6 1.

We may define an approximation B̃i : Ũ i−1◦ → Ũ i◦ by mimicking the above

formula for Bi; i.e., for u ∈ Ũ i−1◦ we define (B̃iu)j1,...,jd := (Ãiv)ji , where

v ∈ R̃mi◦ is given by vk := uj1,...,ji−1,k,ji+1,...,jd . We may evaluate B̃i by first

rearranging the data so that each i-slice is stored contiguously (see Section 2.3),

then applying Ãi to each i-slice, and finally rearranging the data back into the

correct order. We then define Ã := B̃d · · · B̃1.
We clearly have ε(B̃i) = ε(Ãi) for all i, so by Corollary 2.8 we obtain

ε(Ã) 6
∑

i ε(B̃i) =
∑

i ε(Ãi). The cost of the data rearrangement at stage i is

O(n1 · · ·ni−1nimi+1 · · ·mdrp log ni) +O(n1 · · ·ni−1mimi+1 · · ·mdrp logmi)

= O(Mrp (log ni + logmi)),

so the total over all i is O(Mrp logM). The total cost of the invocations of Ãi is∑
i

n1 · · ·ni−1mi+1 · · ·md C(Ãi) 6
∑
i

M

max(mi, ni)
C(Ãi). �

2.8. Exponential functions. The next three results concern the approxi-

mation of real and complex exponentials. We use the following facts:

• We may compute an n-bit approximation for π, i.e., an integer u such that

|2−nu− π| 6 2−n, in time O(n1+δ). Similarly for log 2.

• For z lying in a fixed bounded subset of C, we may compute an n-bit

approximation for ez in time O(n1+δ). More precisely, for any constant

C > 0, given integers x and y such that |2−n(x+iy)| 6 C, we may compute

integers u and v such that |2−n(u + iv) − exp(2−n(x + iy))| 6 2−n in time

O(n1+δ).

In fact these tasks may be performed in time O(M(n) log n); see [3, Chs. 6–7]

or [5, Ch. 4]).

Lemma 2.12 (Complex exponentials). Let k > 1 and j be integers such

that 0 6 j < k, and let w := e2πij/k ∈ C◦. Given j and k as input, we may com-

pute an approximation w̃ ∈ C̃◦ such that ε(w̃) < 2 in time O(max(p, log k)1+δ).

Proof. Let p′ := p + 3. We first compute a p′-bit approximation r̃ for

r := 2πj/k ∈ [0, 2π], i.e., so that |r̃−r| 6 2−p
′
, in time O(max(p, log k)1+δ). We

then compute a p′-bit approximation ũ for u := exp(−2 ·2−p′+ r̃i) ∈ C◦, i.e., so

that |ũ−u| 6 2−p
′
, in time O(p1+δ). (The 2·2−p′ term ensures that ũ lies within

the unit circle.) Let η := (−2 ·2−p′+ r̃i)−ri; then |η| 6
√

5 ·2−p′ and |u− w| =
|exp(−2 · 2−p′ + r̃i)− exp(ri)| = |exp(η)− 1| 6 3 · 2−p′ , so |ũ − w| 6 4 · 2−p′ .
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We finally round ũ towards zero to obtain the desired approximation w̃ ∈ C̃◦
for w at the original precision p. This yields ε(w̃) 6 4 · 2p−p′ +

√
2 < 2. �

Lemma 2.13 (Real exponentials, negative case). Let k > 1 and j > 0 be

integers, and let w :=e−πj/k∈C◦. Given j and k as input, we may compute an

approximation w̃∈ C̃◦ such that ε(w̃)<2 in time O(max(p, log(j+1), log k)1+δ).

Proof. We first check if j > kp in time O(max(log p, log(j + 1), log k)1+δ).

If so, then e−πj/k < e−πp < 2−p, so we may simply take w̃ := 0.

Otherwise, we may assume that 0 6 j/k 6 p. In this case, we first compute

an integer τ > 0 such that τ 6 π
log 2 j/k 6 τ+2 in time O(max(log p, log k)1+δ).

(Note that τ = O(p).) Let p′ := p + 2 and z := τ log 2 − πj/k ∈ [−2 log 2, 0].

We next compute a p′-bit approximation z̃ 6 0 for z, i.e., so that |z̃−z| 6 2−p
′
,

in time O(max(p, log k)1+δ). We then compute a p′-bit approximation ũ 6 1

for u := ez̃ 6 1, i.e., so that |ũ − u| 6 2−p
′
, in time O(p1+δ). Observe that

|ez̃−ez| 6 2−p
′
, so |ũ−ez| 6 2 ·2−p′ . We finally divide ũ by 2τ (a bit shift) and

round the result towards zero to obtain the desired approximation w̃ ∈ C̃◦ for

w at the original precision p. Since |2−τ ũ−w| = |2−τ ũ− 2−τez| 6 2 · 2−τ−p′ 6
2 · 2−p′ , we obtain ε(w̃) 6 2 · 2p−p′ + 1 < 2. �

Lemma 2.14 (Real exponentials, positive case). Let k> 1, j> 0 and σ> 0

be integers, and assume that eπj/k 6 2σ and σ 6 2p. Let w := 2−σeπj/k ∈ C◦.
Given j, k and σ as input, we may compute an approximation w̃ ∈ C̃◦ such

that ε(w̃) < 2 in time O(max(p, log k)1+δ).

Proof. The hypotheses automatically ensure that j < kp. We now pro-

ceed along similar lines to the proof of Lemma 2.13: we first compute an

integer τ > 0 near σ − π
log 2j/k (again with τ = O(p)), and then at suitably

increased precision we approximate successively z := (τ − σ) log 2 + πj/k and

ez = 2τ−σeπj/k, and finally divide by 2τ and round towards zero to obtain an

approximation for 2−σeπj/k at the original precision p. We omit the details,

which are similar to the proof of Lemma 2.13. �

3. Complex transforms for power-of-two sizes

Let p > 100 be the working precision as defined in Section 2. The goal

of this section is to construct an efficiently computable approximation for the

d-dimensional complex transform Ft1,...,td : ⊗iCti → ⊗iCti (see Section 2.4) in

the special case that the ti are powers of two. The following theorem is proved

at the end of the section.

Theorem 3.1 (Power-of-two complex transforms). Let d > 2, and let

t1, . . . , td be powers of two such that td > · · · > t1 > 2. Let T := t1 · · · td
and assume that T < 2p. Then we may construct a numerical approximation
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F̃t1,...,td : ⊗i C̃ti◦ → ⊗i C̃ti◦ for Ft1,...,td such that ε(F̃t1,...,td) < 8T log2 T and

C(F̃t1,...,td) <
4T

td
M(3tdp) +O(Tp log T + Tp1+δ).

Throughout this section we set

r := td, R := C[y]/(yr + 1).

The basic idea of the proof of Theorem 3.1 is to use Bluestein’s method [2]

to reduce the DFT to the problem of computing a (d − 1)-dimensional cyclic

convolution of size t1 × · · · × td−1 over R, and then to perform that convo-

lution by taking advantage of the synthetic roots of unity in R. The M(·)
term in the complexity bound arises from the pointwise multiplications in R.

The O(Tp log T ) term covers the cost of the synthetic FFTs over R, and the

O(Tp1+δ) term covers various auxiliary operations.

For the rest of this section, ⊗i Rti always means ⊗d−1i=1 Rti (with d − 1

factors), and ⊗iCti always means ⊗di=1Cti (with d factors). These are both

vector spaces of dimension T = t1 · · · td over C.

3.1. Transforms and convolutions over R. We begin with the one-dimen-

sional case. Recall that we have defined a synthetic transform Gt : Rt → Rt

(see Section 2.4) for each positive divisor t of 2r, i.e., for t ∈ {1, 2, 4, 8, . . . , 2r}.

Lemma 3.2 (FFT over R). For t ∈ {2, 4, 8, . . . , 2r}, we may construct

a numerical approximation G̃t : R̃t
◦ → R̃t

◦ for Gt such that ε(G̃t) 6 log2 t and

C(G̃t) = O(trp log t).

Proof. First observe that G1 : R → R is the identity map, and admits the

trivial approximation G̃1 : R̃◦ → R̃◦ given by G̃1u := u. This satisfies ε(G̃1) = 0

and C(G̃1) = O(rp).

Now let t ∈ {2, 4, 8, . . . , 2r}, and assume that we have already constructed

G̃t/2 : R̃
t/2
◦ → R̃

t/2
◦ such that ε(G̃t/2) 6 log2(t/2). Given as input u ∈ R̃t

◦, we

will use the well-known Cooley–Tukey algorithm [7] to approximate Gtu ∈ Rt
◦.

For any j ∈ {0, . . . , t− 1}, observe that

(Gtu)j =
1

t

t−1∑
k=0

y−2rjk/tuk =
1

t

t
2
−1∑
k=0

y−2rjk/tuk +
1

t

t
2
−1∑
k=0

y−2rj(k+
t
2
)/tuk+ t

2

=
1

t/2

t
2
−1∑
k=0

y−2rjk/t
uk + (−1)juk+ t

2

2
,

where we have used the fact that yr = −1. For ` ∈ {0, . . . , t2 − 1}, this implies

that (Gtu)2` = (Gt/2v)` and (Gtu)2`+1 = (Gt/2w)`, where v, w ∈ R
t/2
◦ are given



INTEGER MULTIPLICATION IN TIME O(n logn) 585

by

vk := 1
2(uk + uk+ t

2
), wk := 1

2y
−2rk/t(uk − uk+ t

2
), 0 6 k < t/2.

We may therefore use the following algorithm.

(1) Butterflies. For k ∈ {0, . . . , t2 − 1}, we use Lemma 2.1 to com-

pute approximations ṽk, w̃
′
k ∈ R̃◦ for vk and w′k := 1

2(uk − uk+ t
2
) such that

ε(ṽk), ε(w̃
′
k) < 1. We then compute an approximation w̃k ∈ R̃◦ for wk =

y−2rk/tw′k; as yr = −1, this amounts to cyclically permuting the coefficients of

w̃′k (and adjusting signs), and clearly ε(w̃k) = ε(w̃′k) < 1. The cost of this step

is O(trp).

(2) Recurse. We compute G̃t/2ṽ and G̃t/2w̃ using the previously constructed

map G̃t/2, and interleave the results (at a further cost of O(trp)) to obtain

the output vector G̃tu ∈ R̃t
◦ defined by (G̃tu)2` := (G̃t/2ṽ)` and (G̃tu)2`+1 :=

(G̃t/2w̃)` for ` ∈ {0, . . . , t2 − 1}.
Recall from Example 2.6 that ‖Gn‖ 6 1 for all n. Applying Lemma 2.7

for A = Gt/2 and using the induction hypothesis, we obtain

2p ‖(G̃tu)2` − (Gtu)2`‖ = 2p ‖(G̃t/2ṽ)` − (Gt/2v)`‖

6 ε(G̃t/2) + ε(ṽ) 6 log2(t/2) + 1 = log2 t.

A similar argument applies for (G̃tu)2`+1. Therefore ε(G̃t) 6 log2 t.

As for the complexity, the above discussion shows that C(G̃t) < 2C(G̃t/2)+

O(trp). Together with the base case C(G̃1) = O(rp), this immediately yields

the bound C(G̃t) = O(trp log t) for t > 2. �

Combining Lemmas 3.2 and 2.11, we obtain the following approximation

for the multidimensional transform Gt1,...,td−1
: ⊗i Rti → ⊗i Rti (defined in

Section 2.4).

Proposition 3.3 (Multivariate FFT over R). Let t1, . . . , td and T be as

in the hypotheses of Theorem 3.1. We may construct a numerical approxima-

tion G̃t1,...,td−1
: ⊗i R̃ti◦ → ⊗i R̃ti◦ for Gt1,...,td−1

such that ε(G̃t1,...,td−1
) < log2 T

and C(G̃t1,...,td−1
) = O(Tp log T ).

Proof. Since ti>2, Lemma 3.2 yields approximations G̃ti for i=1, . . . , d−1.

We apply Lemma 2.11 (with d replaced by d − 1), taking R := R, mi := ti,

ni := ti and Ai := Gti for i ∈ {1, . . . , d − 1}. The quantity M defined in

Lemma 2.11 is given by M = t1 · · · td−1 = T/r. (Recall that r = td throughout

Section 3.) We obtain

ε(G̃t1,...,td−1
) 6

d−1∑
i=1

ε(G̃ti) 6
d−1∑
i=1

log2 ti = log2(T/r) < log2 T
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and

C(G̃t1,...,td−1
) 6

T

r

d−1∑
i=1

C(G̃ti)
ti

+O

Å
T

r
rp log

T

r

ã
6
T

r

d−1∑
i=1

O(rp log ti) +O(Tp log T )

= O

Å
T

r
rp log

T

r

ã
+O(Tp log T ) = O(Tp log T ). �

Next we will use the above result to approximate the normalised (d− 1)-

dimensional convolution map MR : ⊗i Rti ×⊗i Rti → ⊗i Rti defined by

MR(u, v) :=
1

T
u ∗ v, u, v ∈ ⊗i Rti ,

where ∗ is the convolution operator from Section 2.4. Note that ‖MR‖ 6 1;

indeed, each component of u ∗ v is a sum of t1 · · · td−1 = T/r terms of the form

uj1,...,jd−1
vk1,...,kd−1

, and we saw just before Lemma 2.5 that ‖ab‖ 6 r ‖a‖ ‖b‖
for all a, b ∈ R.

Proposition 3.4 (Convolution over R). Let t1, . . . , td and T be as in

Theorem 3.1. We may construct a numerical approximation M̃R : ⊗i R̃ti◦ ×
⊗i R̃ti◦ → ⊗i R̃ti◦ for MR such that ε(M̃R) < 3T log2 T + 2T + 3 and

C(M̃R) <
4T

r
M(3rp) +O(Tp log T + Tp1+δ).

Proof. We are given as input u, v ∈ ⊗i R̃ti◦ . Let w :=MR(u, v) = 1
T u∗v ∈

⊗i Rti◦ be the exact (normalised) convolution. According to (2.1) we have

rw =
1

t1 · · · td−1
u ∗ v = (t1 · · · td−1)G∗t1,...,td−1

((Gt1,...,td−1
u) · (Gt1,...,td−1

v)).

Dividing both sides by r = td, we obtain w = (T/r)w′ where

w′ := G∗t1,...,td−1

Å
1

r
(Gt1,...,td−1

u) · (Gt1,...,td−1
v)

ã
∈ ⊗i Rti

◦ .

We now use the following algorithm to approximate w.

(1) Forward transforms. We invoke Proposition 3.3 to compute approx-

imations ũ′, ṽ′ ∈ ⊗i R̃ti◦ for u′ := Gt1,...,td−1
u ∈ ⊗i Rti◦ and v′ := Gt1,...,td−1

v ∈
⊗i Rti◦ , with ε(ũ′), ε(ṽ′) < log2 T . The cost of this step (and step (3) below) is

O(Tp log T ).

(2) Pointwise multiplications. Let A : R × R → R be the normalised

multiplication map defined by A(a, b) := ab/r; the bound ‖ab‖ 6 r ‖a‖ ‖b‖
implies that ‖A‖ 6 1. Lemma 2.5 yields an approximation Ã : R̃◦ × R̃◦ → R̃◦
such that ε(Ã) < 2. (Note that r = td 6 T/2 < 2p−1.) Applying Ã to
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each component of ũ′ and ṽ′, we obtain an approximation z̃ ∈ ⊗i R̃ti◦ for

z := 1
ru
′ · v′ ∈ ⊗i Rti◦ . This step requires time

T

r
(4M(3rp) +O(rp)) =

4T

r
M(3rp) +O(Tp),

and by Lemma 2.9 we have

ε(z̃) 6 ε(Ã) + ε(ũ′) + ε(ṽ′) < 2 + log2 T + log2 T = 2 log2 T + 2.

(3) Inverse transform. We use Proposition 3.3 again to compute an ap-

proximation w̃′ ∈ ⊗i R̃ti◦ for w′ = G∗t1,...,td−1
z ∈ ⊗i Rti◦ . Recall from Exam-

ple 2.6 that ‖G∗t1,...,td−1
‖ 6 1. By Lemma 2.7, we obtain

ε(w̃′) 6 ε(G̃∗t1,...,td−1
) + ε(z̃) < log2 T + (2 log2 T + 2) = 3 log2 T + 2.

(4) Scaling. Recall that w = (T/r)w′ and that ‖w‖ 6 1. We may therefore

apply Lemma 2.2 (with c := T/r 6 2p) to compute an approximation w̃ ∈
⊗i R̃ti◦ such that

ε(w̃) < 2(T/r)ε(w̃′) + 3 6 T (3 log2 T + 2) + 3.

(Here we have used the hypothesis that r = td > 2.) The cost of this scaling

step is O(Tp1+δ). Finally we take M̃R(u, v) := w̃. �

3.2. Transforms and convolutions over C. We now transfer the results of

the previous section from R to C. Consider the normalised d-dimensional

convolution map MC : ⊗iCti ×⊗iCti → ⊗iCti defined by

MC(u, v) :=
1

T
u ∗ v, u, v ∈ ⊗iCti .

As before we have ‖MC‖ 6 1.

Proposition 3.5 (Convolution over C). Let t1, . . . , td and T be as in

Theorem 3.1. We may construct a numerical approximation M̃C : ⊗i C̃ti◦ ×
⊗i C̃ti◦ → ⊗i C̃ti◦ for MC such that ε(M̃C) < 3T log2 T + 2T + 15 and

C(M̃C) <
4T

r
M(3rp) +O(Tp log T + Tp1+δ).

Proof. Let ζ := eπi/r, and consider the C-linear map S : Cr → R defined

by

S(w0, . . . , wr−1) := w0 + ζw1y + · · ·+ ζr−1wr−1y
r−1.

Then S is an isomorphism of rings between (Cr, ∗) and R = C[y]/(yr + 1);

in fact, recalling that (Cr, ∗) ∼= C[x]/(xr − 1), we may regard S as the map

sending x to ζy. Moreover, S induces an isomorphism of rings

T : (⊗di=1Cti , ∗)→ (⊗d−1i=1 Rti , ∗).

Indeed, identifying these rings respectively as C[x1, . . . , xd]/(x
t1
1 −1, . . . , xtdd −1)

and C[x1, . . . , xd−1, y]/(xt11 − 1, . . . , x
td−1

d−1 − 1, yr + 1), the isomorphism T sends
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u(x1, . . . , xd−1, xd) to u(x1, . . . , xd−1, ζy). Writing U := T −1 for the inverse

isomorphism, we obtain

MC(u, v) = U(MR(T u, T v)), u, v ∈ ⊗iCti .

Now we construct numerical approximations for the maps just introduced.

We may construct an approximation S̃ : C̃r◦ → R̃◦ by first using Lemma 2.12

to compute an approximation ζ̃j ∈ C̃◦ for each ζj := ζj = eπij/r ∈ C◦, and then

using Corollary 2.10 to compute an approximation w̃′j ∈ C̃◦ for each product

w′j := ζjwj ∈ C◦. We obtain ε(ζ̃j) < 2 and then ε(w̃′j) < ε(ζ̃j) + 2 < 4,

whence ε(S̃) < 4. We also have C(S̃) = O(rmax(p, log r)1+δ) = O(rp1+δ),

since log r = O(p). (Recall from the proof of Proposition 3.4 that r < 2p−1.)

Then, applying S̃ separately to the coefficient of each xj11 · · ·x
jd−1

d−1 , we ob-

tain an approximation T̃ : ⊗di=1 C̃ti◦ → ⊗d−1i=1 R̃ti◦ such that ε(T̃ ) < 4 and

C(T̃ ) = O((T/r)rp1+δ) = O(Tp1+δ). The inverse is handled similarly; we

obtain an approximation Ũ : ⊗d−1i=1 R̃ti◦ → ⊗di=1 C̃ti◦ such that ε(Ũ) < 4 and

C(Ũ) = O(Tp1+δ).

Finally, given as input u,v∈⊗i C̃ti◦ , we define M̃C(u, v) := Ũ(M̃R(T̃ u,T̃v)).

We already observed that ‖MR‖ 6 1, and clearly ‖T ‖ , ‖U‖ 6 1, so Lemma 2.7,

Lemma 2.9 and Proposition 3.4 together imply that

ε(M̃C) 6 ε(Ũ) + ε(M̃R) + ε(T̃ ) + ε(T̃ ) < (3T log2 T + 2T + 3) + 4 + 4 + 4.

The estimate for C(M̃C) follows immediately from Proposition 3.4. �

Finally we use Bluestein’s trick [2] to prove the main result of this section.

Proof of Theorem 3.1. We are given as input u ∈ ⊗i C̃ti◦ . We wish to

approximate its transform v := Ft1,...,tdu ∈ ⊗iCti◦ , which is given explicitly by

vj1,...,jd =
1

T

t1−1∑
k1=0

· · ·
td−1∑
kd=0

e−2πi(j1k1/t1+···+jdkd/td)uk1,...,kd , 0 6 ji < ti.

For any j1, . . . , jd ∈ Z, set

(3.1) aj1,...,jd := eπi(j
2
1/t1+···+j2d/td) ∈ C◦.

The identity −2jk = (j − k)2 − j2 − k2 implies that

(3.2) vj1,...,jd = āj1,...,jd
1

T

t1−1∑
k1=0

· · ·
td−1∑
kd=0

aj1−k1,...,jd−kd(āk1,...,kduk1,...,kd),

where ·̄ denotes complex conjugation. Moreover, we observe that aj1,...,jd is

periodic in each ji with period ti, as eπi(ji+ti)
2/ti = eπij

2
i /ti(eπi)2ji+ti = eπij

2
i /ti

(using the fact that ti is even). Therefore, regarding (3.1) as defining a vector

a ∈ ⊗iCti◦ , we may rewrite (3.2) in the form

v = ā · ( 1
T a ∗ (ā · u)).



INTEGER MULTIPLICATION IN TIME O(n logn) 589

We now use the following algorithm.

(1) Compute a. Recalling that each ti divides r = td, we may write

aj1,...,jd = e2πiηj1,...,jd/2r, ηj1,...,jd :=
r

t1
j21 + · · ·+ r

td
j2d (mod 2r).

Iterating over the tuples (j1, . . . , jd) in lexicographical order, we may compute

ηj1,...,jd in amortised time O(log r) = O(p) per tuple (for example by repeatedly

using the identity (j+1)2 = j2+(2j+1), and the fact that each multiplication

by r/ti is a bit shift), and then use Lemma 2.12 to compute an approximation

ãj1,...,jd ∈ C̃◦ such that ε(ãj1,...,jd) < 2 in time O(p1+δ). We thus obtain ã ∈
⊗i C̃ti◦ with ε(ã) < 2 in time O(Tp1+δ).

(2) Pre-multiply. We use Corollary 2.10 to compute an approximation

b̃ ∈ ⊗i C̃ti◦ for b := ā · u with ε(b̃) < ε(ã) + 2 < 4 in time O(Tp1+δ).

(3) Convolution. We use Proposition 3.5 to compute an approximation c̃ ∈
⊗i C̃ti◦ for c := 1

T a∗b. This requires time (4T/r)M(3rp)+O(Tp log T +Tp1+δ),

and by Lemma 2.9 we have

ε(c̃) 6 ε(M̃C) + ε(ã) + ε(b̃) < 3T log2 T + 2T + 21.

(4) Post-multiply. We invoke Corollary 2.10 again to compute an approx-

imation ṽ ∈ ⊗i C̃ti◦ for v = ā · c such that

ε(ṽ) 6 ε(ã) + ε(c̃) + 2 < 3T log2 T + 2T + 25

in time O(Tp1+δ). We have 2T + 25 < 5T log2 T (because T > t1t2 > 4), so

ε(ṽ) < 8T log2 T . Finally we take F̃t1,...,tdu := ṽ. �

Remark 3.6. In the algorithm developed in this section, it is essential that

the multidimensional complex transform be performed “all at once”. If instead

we decompose it into one-dimensional transforms in the usual way, and then use

Bluestein’s method to convert each of these to a one-dimensional convolution,

this would lead to an extraneous factor of O(d) on the right-hand side of (1.3).

Remark 3.7. An alternative method for reducing multidimensional com-

plex transforms to synthetic transforms was described in [34]. Briefly, given

as input u ∈ C[x1, . . . , xd−1, y]/(xt11 − 1, . . . , x
td−1

d−1 − 1, yr + 1), assume that

we wish to evaluate each xi at the complex ti-th roots of unity, and y at the

“odd” complex 2r-th roots of unity (i.e., roots of yr + 1). We first use (d− 1)-

dimensional synthetic transforms to compute the polynomials ui1,...,id−1
(y) :=

u(y2ri1/t1 , . . . , y2rid−1/td−1 , y) ∈ C[y]/(yr+1) for all ik ∈ {0, . . . , tk−1}. It then

suffices to compute the one-dimensional complex DFT of each ui1,...,id−1
(y),

which could be done for example by Bluestein’s method. This alternative

method has the same complexity (up to a constant factor) as the method

presented in this section.
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4. Gaussian resampling

Let p > 100 be the working precision as defined in Section 2. The aim

of this section is to show how to reduce the problem of approximating a mul-

tidimensional complex transform Fs1,...,sd : ⊗iCsi → ⊗iCsi (defined in Sec-

tion 2.4), for a given “source” size s1×· · ·× sd, to the problem of approximat-

ing another transform Ft1,...,td : ⊗iCti → ⊗iCti for a somewhat larger “target”

size t1 × · · · × td. (In Section 5 we will specialise to the case that the si are

primes and the ti are powers of two.) The following theorem is proved at the

end of Section 4.3. It may be strengthened in various ways; see the discussion

in Section 4.4.

Theorem 4.1 (Gaussian resampling). Let d > 1, let s1, . . . , sd and

t1, . . . , td be integers such that 2 6 si < ti < 2p and gcd(si, ti) = 1, and

let T := t1 · · · td. Let α be an integer in the interval 2 6 α < p1/2. For each i,

let θi := ti/si − 1, and assume that θi > p/α4.

Then there exist linear maps A : ⊗iCsi → ⊗iCti and B : ⊗iCti → ⊗iCsi ,
with ‖A‖ , ‖B‖ 6 1, such that

Fs1,...,sd = 2γBFt1,...,tdA, γ := 2dα2.

Moreover, we may construct numerical approximations Ã : ⊗i C̃si◦ → ⊗i C̃ti◦
and B̃ : ⊗i C̃ti◦ → ⊗i C̃si◦ such that ε(Ã), ε(B̃) < dp2 and

C(Ã),C(B̃) = O(dTp3/2+δα+ Tp log T ).

This theorem shows that to approximate a transform of size s1× · · · × sd,
one may first apply Ã, then compute a transform of size t1 × · · · × td, then

apply B̃, and finally multiply by 2γ . The dTp3/2+δα term in the complexity

bound arises from the numerical computations at the heart of the “Gaussian

resampling” method. The Tp log T term covers the cost of various data rear-

rangements in the Turing model. (This term would not appear if we worked

in the Boolean circuit model.) In the application in Section 5, the parameters

will be chosen so that the first term is negligible compared to the O(Tp log T )

cost of evaluating F̃t1,...,td .

Throughout this section we use the notation

[x] := bx+ 1
2c, 〈x〉 := x− [x], x ∈ R.

Thus [x] is the nearest integer to x, rounding upwards in case of a tie, and 〈x〉
is the corresponding fractional part with −1

2 6 〈x〉 <
1
2 . For convenience of

the reader, we provide in Table 2 a list of the linear maps appearing in this

section and where they are defined.

4.1. The resampling identity. Throughout Sections 4.1 and 4.2, let s and

t > s be positive integers such that gcd(s, t) = 1, and let α ∈ (0,∞). Recall
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Fn complex DFT of length n (§2.4)

Fn1,...,nd
complex multidimensional DFT of size n1×· · ·×nd (§2.4)

A, B the main maps we want to construct in Theorem 4.1

S, T resampling maps (§4.1)

Ps, Pt permutation maps (§4.1)

C row-deleting map (§4.2)

T ′ CT (a certain square submatrix of T ) (§4.2)

D a diagonal map (§4.2)

N normalised version of T (§4.2)

E N − I (a map with small norm) (§4.2)

J inverse of N (§4.3)

S ′, J ′, D′ normalised versions of S, J , D (§4.3)

Table 2. Glossary of linear maps appearing in Section 4

from Section 2.4 that uj always means uj mod s if u ∈ Cs, whereas uk always

means uk mod t if u ∈ Ct.
Define “resampling maps” S : Cs → Ct and T : Cs → Ct by

(Su)k := α−1
∑
j∈Z

e−πα
−2s2

(
k
t −

j
s

)2
uj , u ∈ Cs, 0 6 k < t,

(T u)k :=
∑
j∈Z

e−πα
2t2
(
k
t −

j
s

)2
uj , u ∈ Cs, 0 6 k < t.

These sums certainly converge due to the rapid decay of the function e−x
2
.

Each entry (Su)k and (T u)k is a weighted linear combination of u0, . . . , us−1,

with the largest weightings given to those uj for which j/s is closest to k/t

modulo 1. Figure 2 shows examples of the matrices of S and T . They have

relatively large entries near the “diagonal” of slope t/s, and the entries decay

rapidly away from the diagonal according to a Gaussian law. The parameter

α controls the rate of decay.

We also define permutation maps Ps : Cs → Cs and Pt : Ct → Ct by

(Psu)j := utj , u ∈ Cs, 0 6 j < s,

(Ptu)k := u−sk, u ∈ Ct, 0 6 k < t.

Then we have the following fundamental identity, which uses S and T to

transform Fs into Ft.
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

0.5000 0.2280 0.0216 4.3e-4 1.7e-6 3.0e-9 1.7e-6 4.3e-4 0.0216 0.2280

0.3142 0.4795 0.1522 0.0100 1.4e-4 3.9e-7 9.0e-9 7.1e-6 0.0012 0.0428

0.0779 0.3982 0.4230 0.0934 0.0043 4.1e-5 8.1e-8 4.7e-8 2.7e-5 0.0032

0.0076 0.1305 0.4642 0.3432 0.0527 0.0017 1.1e-5 1.6e-8 2.3e-7 9.3e-5

2.9e-4 0.0169 0.2011 0.4977 0.2561 0.0274 6.1e-4 2.8e-6 3.5e-9 1.1e-6

4.5e-6 8.6e-4 0.0344 0.2849 0.4908 0.1757 0.0131 2.0e-4 6.5e-7 5.3e-9

2.7e-8 1.7e-5 0.0023 0.0644 0.3714 0.4452 0.1109 0.0057 6.2e-5 1.4e-7

2.7e-8 1.4e-7 6.2e-5 0.0057 0.1109 0.4452 0.3714 0.0644 0.0023 1.7e-5

4.5e-6 5.3e-9 6.5e-7 2.0e-4 0.0131 0.1757 0.4908 0.2849 0.0344 8.6e-4

2.9e-4 1.1e-6 3.5e-9 2.8e-6 6.1e-4 0.0274 0.2561 0.4977 0.2011 0.0169

0.0076 9.3e-5 2.3e-7 1.6e-8 1.1e-5 0.0017 0.0527 0.3432 0.4642 0.1305

0.0779 0.0032 2.7e-5 4.7e-8 8.1e-8 4.1e-5 0.0043 0.0934 0.4230 0.3982

0.3142 0.0428 0.0012 7.1e-6 9.0e-9 3.9e-7 1.4e-4 0.0100 0.1522 0.4795




1.0000 6.0e-10 1.3e-37 9.8e-84 2.7e-148 5.3e-231 2.7e-148 9.8e-84 1.3e-37 6.0e-10

3.5e-6 0.3227 1.1e-14 1.3e-46 5.4e-97 8.1e-166 1.6e-210 9.2e-132 1.9e-71 1.3e-29

1.5e-22 0.0021 0.0108 2.0e-20 1.3e-56 3.1e-111 2.6e-184 1.1e-190 3.3e-116 3.7e-60

7.6e-50 1.7e-16 0.1339 3.8e-5 3.9e-27 1.4e-67 1.8e-126 8.4e-204 7.1e-172 1.2e-101

4.8e-88 1.6e-40 2.0e-11 0.8819 1.4e-8 7.8e-35 1.6e-79 1.1e-142 2.9e-224 5.0e-154

3.7e-137 1.9e-75 3.7e-32 2.5e-7 0.6049 5.3e-13 1.6e-43 1.8e-92 7.2e-160 2.5e-217

3.4e-197 2.8e-121 8.2e-64 8.6e-25 3.2e-4 0.0432 2.1e-18 3.6e-53 2.2e-106 4.8e-178

3.4e-197 4.8e-178 2.2e-106 3.6e-53 2.1e-18 0.0432 3.2e-4 8.6e-25 8.2e-64 2.8e-121

3.7e-137 2.5e-217 7.2e-160 1.8e-92 1.6e-43 5.3e-13 0.6049 2.5e-7 3.7e-32 1.9e-75

4.8e-88 5.0e-154 2.9e-224 1.1e-142 1.6e-79 7.8e-35 1.4e-8 0.8819 2.0e-11 1.6e-40

7.6e-50 1.2e-101 7.1e-172 8.4e-204 1.8e-126 1.4e-67 3.9e-27 3.8e-5 0.1339 1.7e-16

1.5e-22 3.7e-60 3.3e-116 1.1e-190 2.6e-184 3.1e-111 1.3e-56 2.0e-20 0.0108 0.0021

3.5e-6 1.3e-29 1.9e-71 9.2e-132 1.6e-210 8.1e-166 5.4e-97 1.3e-46 1.1e-14 0.3227



Figure 2. Matrices of S and T for s = 10, t = 13, α = 2.

Maximal entries in each column are shown in bold. All entries

are rounded to the number of significant figures shown.

Theorem 4.2 (Resampling identity). We have T PsFs = PtFtS . In other

words, the following diagram commutes :

Cs Cs Cs

Ct Ct Ct.

S T

Fs Ps

Ft Pt

Proof. Given u ∈ Cs, define a smooth, 1-periodic function fu : R→ C by

fu(x) :=
∑
m∈Z

umg(x− m
s ), g(x) := e−πα

−2s2x2 .

It has an absolutely and uniformly convergent Fourier expansion

fu(x) =
∑
r∈Z

f̂u(r)e2πirx,
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where the Fourier coefficients are given by

f̂u(r) =

∫ 1

0

e−2πirxfu(x) dx

=

∫ 1

0

∑
m∈Z

ume
−2πirxg(x− m

s ) dx

=

∫ 1

0

s−1∑
j=0

∑
q∈Z

uje
−2πirxg(x− q − j

s) dx

=
s−1∑
j=0

uj

∫ ∞
−∞

e−2πirxg(x− j
s) dx

=
s−1∑
j=0

uje
−2πirj/s

∫ ∞
−∞

e−2πirxg(x) dx.

Using the well-known fact that the Fourier transform of g(x) on R is given by∫ ∞
−∞

e−2πiyxg(x) dx = αs−1e−πα
2s−2y2 , y ∈ R,

we obtain

f̂u(r) = αe−πα
2s−2r2(Fsu)r, r ∈ Z.

By definition (Su)` = α−1fu(`/t) for any ` ∈ Z, so for any k ∈ {0, . . . , t− 1},
we have

(PtFtSu)k = (FtSu)−sk

= α−1t−1
t−1∑
`=0

e2πisk`/tfu(`/t)

= α−1t−1
t−1∑
`=0

e2πisk`/t
∑
r∈Z

f̂u(r)e2πir`/t

= α−1
∑

r=−sk mod t

f̂u(r)

=
∑

r=−sk mod t

e−πα
2s−2r2(Fsu)r

=
∑
j∈Z

e−πα
2s−2(tj−sk)2(Fsu)tj−sk

=
∑
j∈Z

e−πα
2t2
( j
s−

k
t

)2
(PsFsu)j

= (T PsFsu)k. �
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Remark 4.3. Another interpretation of the above proof is that the measure

fu(x) dx is the convolution of the measures
∑s−1

j=0 ujδj/s and
∑

j∈Z g(x− j) dx
on R/Z, where δx means a unit mass concentrated at x. The key point is that

the Fourier transform maps convolution of measures to pointwise multiplication

of their Fourier coefficients.

Remark 4.4. If the hypothesis gcd(s, t) = 1 is not satisfied, then the results

of Sections 4.1–4.2 still hold as stated. However, in this situation Theorem 4.2

is of no use, as the map Ps fails to be invertible. For further discussion, see

Section 4.4.1.

We conclude this section with a straightforward bound for ‖S‖.

Lemma 4.5. We have ‖S‖ < 1 + α−1.

Proof. For any u ∈ Cs◦ and k ∈ {0, . . . , t− 1}, we have

|(Su)k|6α−1
∑
j∈Z

e−πα
−2s2

(
k
t −

j
s

)2
=α−1

∑
j∈Z

e−πα
−2
(
j− skt

)2
=α−1

∑
j∈Z

G(η + j),

where η := 〈−skt 〉 ∈ [−1
2 ,

1
2 ] and G(x) := e−πα

−2x2 .

First suppose that η ∈ [−1
2 , 0]. Then G(x) is increasing on (−∞, η) and

decreasing on (η + 1,∞), so∫ η

−∞
G(x) dx >

−1∑
j=−∞

G(η + j),

∫ ∞
η+1

G(x) dx >
∞∑
j=2

G(η + j).

For the remaining interval (η, η + 1), we observe that G(x) > G(η + 1) for

x ∈ (0, η + 1) and G(x) > G(η) for x ∈ (η, 0); but we have additionally

G(η) > G(η + 1) because |η| 6 1
2 6 |η + 1|, so in fact G(x) > G(η + 1) on

the whole interval (η, η + 1). This implies that
∫ η+1
η G(x) dx > G(η + 1), and

adding the three integrals yields∑
j∈Z

G(η + j) = G(η) +
∑
j 6=0

G(η + j) < 1 +

∫ ∞
−∞

G(x) dx = 1 + α.

A symmetrical argument yields the same bound for the case η ∈ [0, 12 ]. We

conclude that |(Su)k| < α−1(1 + α) = 1 + α−1, and hence ‖S‖ < 1 + α−1. �

4.2. Solving the system. We wish to use Theorem 4.2 to express Fs in

terms of Ft. To do this, we must show how to solve a system of the form

T x = y. This system is overdetermined, as t > s. For fixed α, it turns out

that the system is numerically unstable if t/s is too close to 1, or in other

words, if the quantity θ := t/s− 1 is too close to zero. On the other hand, we

will show that imposing the condition θ > 1/α2 is enough to ensure that the
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system becomes numerically tractable, and in this case we may even construct

an explicit left inverse for T .

We begin by reducing from a rectangular to a square system. Consider the

function ` 7→ [t`/s], which maps {0, . . . , s− 1} (injectively) into {0, . . . , t− 1}.
We use this to define a map C : Ct → Cs by the formula

(Cu)` := u[t`/s], u ∈ Ct, 0 6 ` < s.

We then set

T ′ := CT : Cs → Cs.
Note that the matrix of T ′ is obtained by deleting t− s rows from the matrix

of T . If we can show that T ′ is invertible, then a left inverse for T is given by

(T ′)−1C.
The entries of T ′u are given explicitly by

(T ′u)` = (T u)[t`/s] =
∑
j∈Z

e−πα
2t2
(
1
t

[
t`
s

]
− js
)2
uj =

∑
j∈Z

e−πα
2
( tj
s −
[
t`
s

])2
uj

=
∑
h∈Z

e−πα
2
(
th
s +β`

)2
u`+h,

where

β` := t`
s −

[
t`
s

]
=
〈
t`
s

〉
, ` ∈ Z.

Observe that β` is periodic in `, i.e., β` = β`′ if ` ≡ `′ (mod s), and that

|β`| 6 1
2 for all `.

We normalise T ′ as follows. Let D : Cs → Cs be the diagonal map defined

by (Du)` := d`u`, where d` := eπα
2β2

` for ` ∈ Z. Since β2` 6
1
4 , we have

1 6 d` 6 eπα
2/4, and in particular

(4.1) ‖D‖ 6 eπα2/4.

Define

N := T ′D : Cs → Cs.
In other words, the matrix of N is obtained by multiplying the `-th column of

the matrix of T ′ by d`. Explicitly,

(Nu)` =
∑
h∈Z

e−πα
2
(
th
s +β`

)2
d`+hu`+h =

∑
h∈Z

e−πα
2
((

th
s +β`

)2
−β2

`+h

)
u`+h.

In this last expression, the h = 0 term is simply u`. Therefore, setting E :=

N − I, where I : Cs → Cs is the identity map, we have

(Eu)` =
∑

h∈Z\{0}

e−πα
2
((

th
s +β`

)2
−β2

`+h

)
u`+h, u ∈ Cs, 0 6 ` < s.

An example of the matrix of E is shown in Figure 3.
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

9.6e-923 1.9e-9 9.6e-37 1.1e-83 4.4e-148 1.2e-229 4.4e-148 1.1e-83 9.6e-37 1.9e-9

3.5e-6 1.8e-880 8.0e-14 1.4e-46 8.9e-97 1.9e-164 2.7e-210 1.0e-131 1.4e-70 4.2e-29

7.6e-50 5.2e-16 2.8e-866 4.3e-5 6.4e-27 3.2e-66 3.0e-126 9.6e-204 5.3e-171 3.8e-101

4.8e-88 5.1e-40 1.5e-10 7.4e-909 2.3e-8 1.8e-33 2.6e-79 1.3e-142 2.2e-223 1.5e-153

3.7e-137 6.0e-75 2.7e-31 2.8e-7 1.1e-894 1.2e-11 2.7e-43 2.1e-92 5.4e-159 7.6e-217

3.4e-197 1.5e-177 1.6e-105 4.1e-53 3.4e-18 4.3e-852 5.3e-4 9.7e-25 6.1e-63 8.6e-121

3.7e-137 7.6e-217 5.4e-159 2.1e-92 2.7e-43 1.2e-11 1.1e-894 2.8e-7 2.7e-31 6.0e-75

4.8e-88 1.5e-153 2.2e-223 1.3e-142 2.6e-79 1.8e-33 2.3e-8 7.4e-909 1.5e-10 5.1e-40

7.6e-50 3.8e-101 5.3e-171 9.6e-204 3.0e-126 3.2e-66 6.4e-27 4.3e-5 2.8e-866 5.2e-16

3.5e-6 4.2e-29 1.4e-70 1.0e-131 2.7e-210 1.9e-164 8.9e-97 1.4e-46 8.0e-14 1.8e-880



Figure 3. Matrix of E for s = 10, t = 13, α = 2.

The following estimate is crucial for establishing left-invertibility of T and

for obtaining a fast algorithm for solving the system T x = y.

Lemma 4.6. Assume that α2θ > 1. Then

‖E‖ < 2.01 · e−πα2θ/2 < 2−α
2θ.

Proof. For any u ∈ Cs◦, the above formula for (Eu)` implies that

|(Eu)`| 6
∑

h∈Z\{0}

e−πα
2
((

th
s +β`

)2
−β2

`+h

)
, 0 6 ` < s.

Since |β`| 6 1
2 <

t
2s , we have | ths + β`| > | ths | − |β`| >

t
s(|h| −

1
2). For h 6= 0, we

have |h| − 1
2 >

1
2 > 0, so

( ths + β`)
2 − β2`+h > (t/s)2(|h| − 1

2)2 − 1
4

= (1 + θ)2(|h| − 1
2)2 − 1

4

> (1 + 2θ)(|h| − 1
2)2 − 1

4

= (|h| − 1
2)2 − 1

4 + 2θ(|h| − 1
2)2

> 2θ(|h| − 1
2)2.

Therefore

|(Eu)`| <
∑

h∈Z\{0}

e−2πα
2θ(|h|− 1

2
)2 = 2(w1/4 + w9/4 + w25/4 + · · · ),

where w := e−2πα
2θ. Since α2θ > 1, we have w 6 e−2π < 0.002, so

|(Eu)`| < 2w1/4(1 + w2 + w6 + · · · ) < 2.01 · w1/4 = 2.01 · e−πα2θ/2 < 2−α
2θ,

where we have used the fact that 2.01 · e−πx/2 < 2−x for all x > 1. �

Under the hypothesis of Lemma 4.6, we see that ‖E‖ < 1
2 , so N = I + E

is invertible, with inverse given by N−1 = I −E +E2−· · · . Moreover, DN−1C
is the promised left inverse for T , as

(4.2) (DN−1C)T = DN−1T ′ = D(T ′D)−1T ′ = I.
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4.3. Proof of the theorem. We may now prove the following special case

of Theorem 4.1.

Proposition 4.7 (Gaussian resampling in one dimension). Let s and t

be integers such that 2 6 s < t < 2p and gcd(s, t) = 1. Let α be an integer in

the interval 2 6 α < p1/2. Let θ := t/s − 1 > 0, and assume that θ > p/α4.

Then

(i) There exist linear maps A : Cs → Ct and B : Ct → Cs with ‖A‖ , ‖B‖ 6 1

such that Fs = 22α
2BFtA.

(ii) We may construct numerical approximations Ã : C̃s◦→ C̃t◦ and B̃ : C̃t◦→ C̃s◦
such that ε(Ã), ε(B̃) < p2 and C(Ã),C(B̃) = O(tp3/2+δα+ tp log t).

Proof of (i). We apply the results of Sections 4.1–4.2 with the given s,

t and α. Lemma 4.5 implies that ‖S‖ < 3
2 . The hypotheses α < p1/2 and

θ > p/α4 imply that α2θ > 1, so Lemma 4.6 yields ‖E‖ < 2.01 · e−π/2 < 0.42.

In particular, N = I+E is invertible and ‖N−1‖ < 1+0.42+(0.42)2+ · · · < 7
4 .

Let J := N−1, and define normalised maps

S ′ := S/2, J ′ := J /2, D′ := D/22α2−2.

Then ‖S ′‖ < 3
4 < 1 and ‖J ′‖ < 7

8 < 1. By (4.1) we have ‖D‖ 6 eπα
2/4 <

21.14α
2
< 22α

2−2, as 1.14x < 2x− 2 for all x > 4; hence also ‖D′‖ < 1.

Now define

A := S ′, B := P−1s D′J ′CPt,

where Ps and Pt are as in Theorem 4.2, and C is as in Section 4.2. Note

that Ps is invertible thanks to the hypothesis gcd(s, t) = 1. It is clear that

‖Pt‖ = ‖P−1s ‖ = ‖C‖ = 1, so ‖A‖ < 1 and ‖B‖ < 1. Moreover, by (4.2) and

Theorem 4.2 we have

22α
2BFtA = P−1s (22α

2−2D′)(2J ′)CPtFt(2S ′)

= P−1s (DN−1C)(PtFtS)

= P−1s (DN−1C)(T PsFs) = P−1s PsFs = Fs. �

We break up the proof of (ii) into several lemmas. We begin with a

straightforward algorithm for approximating D′ (Lemma 4.8). Next we give

algorithms for approximating S ′ = S/2 and E (Lemmas 4.9 and 4.11); these

amount to merely evaluating sufficiently many terms of the defining series,

which converge quickly thanks to the rapid decay of the Gaussian weights.

We then give an algorithm for approximating J ′ = N−1/2, using the series

N−1 = I −E+E2−· · · (Lemma 4.12); here the fast convergence is guaranteed

by the bound on ‖E‖ given in Lemma 4.6.
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Lemma 4.8. Assume the hypotheses of Proposition 4.7. We may con-

struct a numerical approximation D̃′ : C̃s◦ → C̃s◦ for D′ such that ε(D̃′) < 4 and

C(D̃′) = O(tp1+δ).

Proof. We are given as input u ∈ C̃s◦. For each ` ∈ {0, . . . , s − 1}, by

definition (D′u)` = d′`u`, where

d′` := d`/2
2α2−2 = eπα

2β2
` /22α

2−2 < 1.

(The last inequality follows from the estimate ‖D′‖ < 1 in the proof of part

(i) of Proposition 4.7.) We may rewrite the rational part of the exponent of

d′` as α2β2` = α2〈 t`s 〉
2 = α2k`/s

2 for some non-negative integer k` 6 s2/4. As

α, s, t and ` are all integers with O(p) bits (here we have used the hypotheses

s, t < 2p and α < p1/2), we may compute α2k` and s2 in O(p1+δ) bit operations.

Feeding this as input to Lemma 2.14 (with σ := 2α2 − 2 < 2p), we obtain an

approximation d̃′` ∈ C̃◦ such that ε(d̃′`) < 2 in time O(p1+δ). We then use

Corollary 2.10 to compute an approximation z̃` ∈ C̃◦ for z` := d′`u` such that

ε(z̃`) < ε(d̃′`) + 2 < 4 in time O(p1+δ). Finally we set (D̃′u)` := z̃`. The total

cost over all ` is O(sp1+δ) = O(tp1+δ). �

Lemma 4.9. Assume the hypotheses of Proposition 4.7. We may con-

struct a numerical approximation S̃ ′ : C̃s◦ → C̃t◦ for S ′ such that ε(S̃ ′) < 16p

and C(S̃ ′) = O(tp3/2+δα).

Proof. We are given as input u ∈ C̃s◦. For each k = 0, . . . , t − 1 in turn,

we approximate (S ′u)k as follows. By definition,

(S ′u)k = (12Su)k =
∑
j∈Z

1

2
α−1e−πα

−2
(
j− skt

)2
uj .

Let m := dp1/2eα, and consider the truncated sum

(4.3) Tk :=
∑∣∣j− skt ∣∣<m

1

2
α−1e−πα

−2
(
j− skt

)2
uj .

Since ‖u‖ 6 1 and α > 2, we have

|(S ′u)k − Tk| 6
∑∣∣j− skt ∣∣>m

1

2
α−1e−πα

−2
(
j− skt

)2
|uj | 6

1

4

∑∣∣j− skt ∣∣>m
e−πα

−2
(
j− skt

)2
.

Let w := e−πα
−2
< 1; then

|(S ′u)k − Tk| 6 1
2(wm

2
+ w(m+1)2 + w(m+2)2 + · · · )

= 1
2w

m2
(1 + w2m+1 + w4m+4 + · · · ).
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Since α < p1/2, we have

wm = e−πdp
1/2e/α 6 e−πp

1/2/α < e−π < 0.05,

so certainly 1 + w2m+1 + w4m+4 + · · · < 2. We conclude that

|(S ′u)k − Tk| < wm
2
6 e−πdp

1/2e2 6 e−πp < 2−p.

Now we explain how to compute a suitable fixed-point approximation

for Tk. There are at most 2m terms in the sum (4.3). Let β := 1
2α
−1, and for

each j appearing in (4.3), let xj := e−πα
−2(j−sk/t)2 , yj := βxj , zj := yjuj , so

that Tk =
∑

j zj . We first compute β̃ := ρ(β) = 2−pρ0(2
p−1/α) ∈ C̃◦ in time

O(p1+δ); clearly ε(β̃) = 2p |ρ(β)− β| < 1 (as β is real). Then for each j, we

perform the following steps. As s, t, j, k and α are all integers with O(p) bits,

the same holds for the numerator and the denominator of the rational number

α−2(j − sk/t)2, so we may use Lemma 2.13 to compute an approximation

x̃j ∈ C̃◦ with ε(x̃j) < 2 in time O(p1+δ). We then use Corollary 2.10 to

compute an approximation ỹj ∈ C̃◦ such that ε(ỹj) < ε(β̃) + ε(x̃j) + 2 < 5,

and again to obtain z̃j ∈ C̃◦ such that ε(z̃j) < ε(ỹj) + 2 < 7, in time O(p1+δ).

Finally, we form the sum T̃k :=
∑

j z̃j ; that is, writing z̃j = 2−paj for integers

aj , we compute
∑

j aj and set T̃k := 2−p
∑

j aj . Defining (S̃ ′u)k := T̃k, we

must check that |T̃k| 6 1 (so that T̃k ∈ C̃◦) and that 2p |T̃k − (S ′u)k| < 16p.

For the latter, observe that

2p |T̃k − (S ′u)k| 6 2p |T̃k − Tk|+ 2p |Tk − (S ′u)k|
< (
∑

j 2p |z̃j − zj |) + 1 < (2m) · 7 + 1 = 14m+ 1.

As m < dp1/2ep1/2 6 p+ p1/2 and p > 100, we find that

2p |T̃k − (S ′u)k| 6 14p+ 14p1/2 + 1 < 16p,

as desired. Recalling from the proof of Proposition 4.7(i) that ‖S ′‖ < 3
4 , we

also have

|T̃k| 6 |T̃k − (S ′u)k|+ |(S ′u)k| < 16p · 2−p + ‖S ′‖ ‖u‖ 6 10−26 + 3
4 · 1 < 1.

The cost of the above procedure for each k is O(mp1+δ) = O(p3/2+δα), so

the total over all k is O(tp3/2+δα). �

Remark 4.10. The algorithm in the proof of Lemma 4.9 amounts to multi-

plying a vector by a matrix of the type shown in Figure 2, including only those

entries that are numerically significant, which form a strip of width roughly

2m around the diagonal. In the Turing model we must account for the cost

of moving the tape head to access the input data needed to process each row;

i.e., for row k, we must access those uj mod s such that |j − sk
t | < m. For most

rows this is straightforward, as the relevant uj ’s lie in a contiguous interval,

and the (k + 1)-th interval is obtained by shifting the k-th interval O(1) cells
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to the right. However, for the rows near the top and bottom of the matrix,

namely for k < (t/s)(m − 1) and k > (t/s)(s − m), the relevant uj actually

lie in two intervals separated by a gap of about s − 2m cells. For example,

when k = 0, the relevant values are u0, . . . , um−1 and us−m+1, . . . , us−1. As

there are O(mt/s) exceptional rows, the extra cost of jumping over these gaps

is O(mtp) = O(tp3/2α), which still fits within the target time bound. Similar

remarks apply to the proof of Lemma 4.11 below.

Lemma 4.11. Assume the hypotheses of Proposition 4.7. We may con-

struct a numerical approximation Ẽ : C̃s◦ → C̃s◦ for E such that ε(Ẽ) < 1
3p and

C(Ẽ) = O(tp3/2+δα−1).

Proof. The argument is similar to the proof of Lemma 4.9. Given as input

u ∈ C̃s◦, for each ` = 0, . . . , s−1 we approximate (Eu)` as follows. By definition

(Eu)` =
∑

h∈Z\{0}

e−πα
2
((

th
s +β`

)2
−β2

`+h

)
u`+h.

As in the proof of Lemma 4.6, for h 6= 0 we have

( ths + β`)
2 − β2`+h > (t/s)2(|h| − 1

2)2 − 1
4

> (|h| − 1
2)2 − 1

4 = |h| (|h| − 1) > (|h| − 1)2.

Let m := d(p/4α2)1/2e = dp1/2/2αe > 1, and consider the truncated sum

(4.4) T` :=
∑

h∈Z\{0}
|h|6m

e−πα
2
((

th
s +β`

)2
−β2

`+h

)
u`+h.

As ‖u‖ 6 1, we have

|(Eu)` − T`| 6
∑
|h|>m

e−πα
2
((

th
s +β`

)2
−β2

`+h

)
|u`+h| <

∑
|h|>m

e−πα
2(|h|−1)2 .

Let w := e−πα
2
6 e−4π < 10−5; then wm < 10−5 and

|(Eu)` − T`| 6 2(wm
2

+ w(m+1)2 + w(m+2)2 + · · · )

= 2wm
2
(1 + w2m+1 + w4m+4 + · · · )

< 3wm
2
6 3e−πα

2(p/4α2) = 3e−πp/4 < 3 · 2−p.

Now we explain how to approximate T`. The sum (4.4) has exactly 2m

terms. For each h appearing in (4.4), let xh := e−πα
2((th/s+β`)

2−β2
`+h) and

zh := xhu`+h, so that T` =
∑

h zh. As in the proof of Lemma 4.9, we may

use Lemma 2.13 to compute an approximation x̃h ∈ C̃◦ such that ε(x̃h) < 2
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in time O(p1+δ). Using Corollary 2.10, we then compute z̃h ∈ C̃◦ such that

ε(z̃h) < ε(x̃h) + 2 < 4. Finally we set T̃` :=
∑

h z̃h. We have

2p |T̃` − (Eu)`| 6 2p |T̃` − T`|+ 2p |T` − (Eu)`|
< (
∑

h 2p |z̃h − zh|) + 3 < (2m) · 4 + 3 = 8m+ 3.

As m 6 (p1/2/2α) + 1 6 1
4p

1/2 + 1 and p > 100, we find that

2p |T̃` − (Eu)`| < 2p1/2 + 11 < 1
3p.

Recalling that ‖E‖ < 0.42 (see the proof of Proposition 4.7(i)), it follows that

|T̃`| 6 |T̃` − (Eu)`|+ |(Eu)`| < 1
3p · 2

−p + ‖E‖ ‖u‖ < 10−28 + 0.42 · 1 < 1,

so we may define (Ẽu)` := T̃` ∈ C̃◦. The cost of the above procedure for each

` is O(mp1+δ). The hypothesis α < p1/2 implies that m 6 1
2p

1/2α−1 + 1 =

O(p1/2α−1), so the total cost over all ` is O(tp3/2+δα−1). �

Lemma 4.12. Assume the hypotheses of Proposition 4.7. We may con-

struct a numerical approximation J̃ ′ : C̃s◦ → C̃s◦ for J ′ such that ε(J̃ ′) < 3
4p

2

and C(J̃ ′) = O(tp3/2+δα).

Proof. We are given as input u ∈ C̃s◦. Let v := u/2 ∈ Cs◦, and define

v(j) := Ejv ∈ Cs◦ for j > 0. (Recall that ‖E‖ < 0.42.) We wish to approximate

J ′u = (N−1/2)u = N−1v = v − Ev + E2v − · · · = v(0) − v(1) + v(2) − · · · .

Let n := dp/α2θe = dps/α2(t − s)e > 1. We compute a sequence of

approximations ṽ(0), . . . , ṽ(n−1) ∈ C̃s◦ as follows. First set ṽ(0) := ρ(v(0)) =

2−pρ0(2
p−1u) ∈ C̃s◦, so that ε(ṽ(0)) < 2. Then compute in sequence ṽ(j) :=

Ẽ ṽ(j−1) ∈ C̃s◦ for j = 1, . . . , n−1, using Lemma 4.11. We claim that ε(ṽ(j)) < 2
3p

for each j. This is clear for j = 0. For j > 1 it follows by induction, as

ε(ṽ(j)) = 2p ‖ṽ(j) − v(j)‖ = 2p ‖Ẽ ṽ(j−1) − Ev(j−1)‖

6 2p ‖Ẽ ṽ(j−1) − E ṽ(j−1)‖+ 2p ‖E ṽ(j−1) − Ev(j−1)‖

6 ε(Ẽ) + ‖E‖ ε(ṽ(j−1)) < 1
3p+ 1

2 ·
2
3p = 2

3p.

Finally, define J̃ ′u := ṽ(0) − ṽ(1) + · · · ± ṽ(n−1). Then, as ‖v(j)‖ 6 ‖Ej‖ ‖v‖ 6
1
2 ‖E‖

j for all j, we have

2p ‖J̃ ′u− J ′u‖ 6
n−1∑
j=0

2p ‖ṽ(j) − v(j)‖+ 2p
∞∑
j=n

‖v(j)‖ < 2
3np+

2p ‖E‖n

2(1− ‖E‖)

< 2
3np+ 2p ‖E‖n .

We already saw in the proof of Proposition 4.7(i) that α2θ > 1; this implies

that n 6 p, and also (via Lemma 4.6) that ‖E‖n < 2−α
2θn 6 2−p. Thus

2p ‖J̃ ′u− J ′u‖ < 2
3p

2 + 1 < 3
4p

2
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(since p > 100). This also shows that J̃ ′u ∈ C̃s◦, as

‖J̃ ′u‖ 6 ‖J ′u‖+ ‖J̃ ′u− J ′u‖ < ‖J ′‖ ‖u‖+ 3
4p

2 · 2−p < 7
8 · 1 + 10−26 < 1,

where the estimate ‖J ′‖ < 7
8 again comes from the proof of Proposition 4.7(i).

In the above algorithm, the bulk of the work consists of n− 1 invocations

of Ẽ . The hypothesis θ > p/α4 implies that

n 6
p

α2θ
+ 1 6 α2 + 1,

so the total cost is O(tnp3/2+δα−1) = O(tp3/2+δα). �

Now we may complete the proof of Proposition 4.7.

Proof of Proposition 4.7(ii). For Ã we simply take Ã := S̃ ′, where S̃ ′ is

as described in Lemma 4.9; then ε(Ã) < 16p < p2 (as p > 100), and C(Ã) =

O(tp3/2+δα).

For B̃ we take B̃ := P̃−1s D̃′J̃ ′C̃P̃t, where D̃′ and J̃ ′ are as described in

Lemmas 4.8 and 4.12, and where C̃ : C̃t◦ → C̃s◦, P̃−1s : C̃s◦ → C̃s◦ and P̃t : C̃t◦ → C̃t◦
are the maps performing the obvious data rearrangements corresponding to C,
P−1s and Pt, namely,

(C̃u)` := u[t`/s], u ∈ C̃t◦, 0 6 ` < s,

(P̃−1s u)j := u(t−1 mod s)j , u ∈ C̃s◦, 0 6 j < s,

(P̃tu)k := u−sk, u ∈ C̃t◦, 0 6 k < t.

These do not perform any arithmetic in C̃◦ so ε(C̃) = ε(P̃−1s ) = ε(P̃t) = 0. By

Corollary 2.8 we obtain ε(B̃) 6 ε(D̃′) + ε(J̃ ′) < 4 + 3
4p

2 < p2.

As for the complexity, first observe that C̃ simply copies its input in order,

skipping t−s unwanted entries, so C(C̃) = O(tp). To compute P̃−1s u for u ∈ C̃s◦,
we use a “label-and-sort” algorithm: we first construct the list of ordered pairs

(tj mod s, uj) for j = 0, . . . , s−1 in time O(tp) (each label occupies O(p) bits as

s < 2p), then sort the list by the first entry using merge sort in time O(tp log t)

[31], and finally extract the second entries to obtain the desired output in

time O(tp). Thus C(P̃−1s ) = O(tp log t), and similarly C(P̃t) = O(tp log t).

Altogether we have

C(B̃) = C(D̃′) + C(J̃ ′) +O(tp log t) = O(tp1+δ + tp3/2+δα+ tp log t). �

Finally we show how to deduce the general case from the one-dimensional

case.

Proof of Theorem 4.1. Let s1, . . . , sd and t1, . . . , td be as in the statement

of the theorem. Applying Proposition 4.7 for each i, we obtain maps Ai : Csi →
Cti and Bi : Cti → Csi with ‖Ai‖ , ‖Bi‖ 6 1 such that Fsi = 22α

2BiFtiAi, and
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approximations Ãi : C̃si◦ → C̃ti◦ and B̃i : C̃ti◦ → C̃si◦ such that ε(Ãi), ε(B̃i) < p2

and C(Ãi),C(B̃i) = O(tip
3/2+δα+ tip log ti).

Now observe that

Fs1,...,sd = ⊗iFsi = 22dα
2
(⊗i Bi)(⊗iFti)(⊗iAi) = 22dα

2BFt1,...,tdA,

where A := ⊗iAi : ⊗iCsi → ⊗iCti and B := ⊗i Bi : ⊗iCti → ⊗iCsi . Apply-

ing Lemma 2.11 (with R := C, r := 1, mi := si, ni := ti), we may construct an

approximation Ã : ⊗i C̃si◦ → ⊗i C̃ti◦ such that ε(Ã) 6
∑

i ε(Ãi) < dp2. More-

over, let M be as in Lemma 2.11; then M =
∏
i max(si, ti) = t1 · · · td = T , so

C(Ã) < T
∑
i

C(Ãi)
ti

+O(Tp log T )

< T
∑
i

O(p3/2+δα+ p log ti) +O(Tp log T )

= O(dTp3/2+δα+ Tp log T ).

We may similarly construct an approximation B̃ satisfying exactly the same

error and cost bounds, and this completes the proof. �

4.4. Further remarks. Our presentation of the Gaussian resampling tech-

nique has been optimised in favour of giving the simplest possible proof of

the main M(n) = O(n log n) bound. In this section we outline several ways

in which these results may be improved and generalised, with an eye towards

practical applications.

4.4.1. Minor technical issues. In our presentation we insisted that α be

an integer and that α > 2. Neither of these restrictions are essential; they were

made for technical reasons to simplify certain proofs.

Similarly, the assumption gcd(s, t) = 1 is not necessary. We briefly out-

line what modifications must be made to handle the case g := gcd(s, t) > 1. For

06h<g, define maps Ps,h : Cs→Cs/g, Pt,h : Ct→ Ct/g and Th : Cs/g→ Ct/g by

(Ps,hu)j := utj+h, u ∈ Cs, 0 6 j < s/g,

(Pt,hu)k := u−sk+h, u ∈ Ct, 0 6 k < t/g,

(Thu)k :=
∑
j∈Z

e−πα
2t2
(
k
t −

j
s−

h
st

)2
uj , u ∈ Cs/g, 0 6 k < t/g.

Then one may prove (analogously to Theorem 4.2) that ThPs,hFs = Pt,hFtS
for each h. In other words, for u ∈ Cs, the matrix Th gives a system of linear

equations that relate the coefficients (FtSu)j and (Fsu)j for those j congruent

to h modulo g. One may use this to prove an analogue of Theorem 4.1, by

first constructing a left inverse for each Th along the lines of Section 4.2.
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4.4.2. Faster system solving. The iterative method used in Lemma 4.12

to approximate J = N−1 (i.e., to solve the system T x = y) has complexity

O(tp5/2+δ/α3θ). To ensure that this step does not dominate the O(tp3/2+δα)

complexity of approximating S (Lemma 4.9), we were compelled to introduce

the hypothesis θ > p/α4. On the other hand, to make the target DFT of length

t as cheap as possible, it is desirable for θ to be as close to zero as possible.

Together, these considerations imply that we cannot take α smaller than about

p1/4. (Indeed, in Section 5, for fixed d, we do take α = Θ(p1/4) for this very

reason.) For the choice α = Θ(p1/4), the overall complexity in Proposition 4.7

is O(tp7/4+δ).

A better complexity bound may be obtained by precomputing an LU

decomposition for N , and then solving the system directly. The cost of the

precomputation is O(tp2+δ/α2) (assuming classical matrix arithmetic, while

exploiting the circular banded structure), and then the cost of each application

of J becomes O(tp3/2+δ/α). This allows us to relax the condition θ > p/α4 to

merely θ > 1/α2. Taking α = Θ(1), the overall complexity in Proposition 4.7

(discounting the precomputation) falls to O(tp3/2+δ). We did not use this

method in our presentation because the error analysis is considerably more

intricate than for the iterative method.

After making this modification, it would be interesting to investigate

whether this method is competitive for practical computations of complex

DFTs of length s when s is a large prime. One would choose a smooth

transform length t somewhat larger than s, say 1.25s < t < 1.5s, and use

the algorithm to reduce the desired DFT of length s to a DFT of length t;

the latter could be handled via existing software libraries implementing the

Cooley–Tukey algorithm. For large enough s, perhaps around 220 or 230, we

expect that the invocations of S̃ and J̃ would be quite cheap compared to the

FFT of length t. Indeed, S̃ can be computed in a single pass over the input

vector, and J̃ in two passes (one for each of the L and U matrices), so they

have excellent locality. It is conceivable that a highly optimised implementa-

tion could outperform existing software libraries, which handle transforms of

prime length by techniques such as Rader’s algorithm [38]. Such techniques

introduce a large constant factor overhead that does not arise in the method

just sketched.

4.4.3. Comparison with the Dutt–Rokhlin method. There is an enormous

literature on “non-uniform FFTs” (sometimes called “non-equispaced FFTs”),

going back to the seminal paper of Dutt and Rokhlin [11]. They consider

transforms of the type

(4.5) vj :=
t−1∑
k=0

e2πiωkyjuk, 0 6 j < t.
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The ordinary “uniform” DFT may be regarded as the special case where ωk :=

k and yj := j/t, but the Dutt–Rokhlin algorithms may be applied in cases

where the frequencies ωk are not necessarily integers, and/or the sample points

yj are not necessarily integer multiples of 1/t. In these cases the algorithms

reduce the problem to an ordinary FFT of length t (or in some variants, a

small multiple of t). The complexity, counting floating-point operations, is

O(t log t+ tp), where p is the desired precision in bits.

If we now take instead ωk := k and yj := j/s, where s is the “source”

transform length, we see that (4.5) is exactly a DFT of length s (apart from

some inconsequential zero-padding), so the Dutt–Rokhlin algorithms may be

used to compute a DFT of length s by means of an FFT of length t. Inspection

of their algorithms in this case reveals them to be essentially equivalent to our

method in the special case that α = Θ(p1/2).

For example, consider [11, Algorithm 2], which corresponds roughly to a

“transposed” version of our algorithm. Step 3 of that algorithm is analogous to

approximating S (see Lemma 4.9). For the choice α = Θ(p1/2), the complexity

for this step is O(tp2+δ) bit operations, corresponding to the O(tp) term in

their complexity bound. Step 2 corresponds to our Ft, and yields the O(t log t)

term. The most interesting point of comparison is Step 1, which corresponds

roughly to solving the system T x = y. The choice α = Θ(p1/2) implies that

this system is essentially diagonal, i.e., the off-diagonal entries of T decay so

rapidly that for numerical purposes, they may be discarded. Solving the system

is therefore trivial: their Step 1 consists of simply dividing each coefficient by

the corresponding diagonal entry of T . (In the literature these are often called

“scale factors”.) This step contributes only O(t) floating-point operations.

The reason that Dutt and Rokhlin are (in effect) unable to take α smaller

than about p1/2 is essentially due to the approximation error committed when

they truncate the Gaussian, for example in [11, Th. 2.7]. Our Theorem 4.1 may

be viewed as an “exact” replacement for that theorem. Rather than truncate

the Gaussian, we take into account the effect of the Gaussian tail, which man-

ifests as the off-diagonal entries of our T matrix. For α considerably smaller

than p1/2, these entries are numerically significant and cannot be ignored.

In our algorithm, assuming that we use the LU decomposition method

mentioned in Section 4.4.2, as α decreases from Θ(p1/2) to Θ(1) we see that the

complexity of approximating S decreases from O(tp) to O(tp1/2) floating-point

operations, and the complexity of approximating J (i.e., solving the T system)

increases from O(t) to O(tp1/2) floating-point operations. When α = Θ(1) they

are balanced, and the overall complexity drops to O(t log t + tp1/2); the last

term improves on the Dutt–Rokhlin bound by a factor of p1/2. Note that

the Dutt–Rokhlin bound is not strong enough for our application to integer

multiplication; using their bound, the error term in Proposition 5.2 would grow

to O(n(log n)1+δ), which is unacceptably large.
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Of course, our discussion has only considered the case corresponding to the

DFT of length s, i.e., the choice yj := j/s. An interesting question is whether

the bound O(t log t+ tp1/2) can be proved for the general non-equispaced case,

and if so, whether this method outperforms the Dutt–Rokhlin algorithm in

practice.

5. The main algorithm

In this section we present the main integer multiplication algorithm. We

actually give a family of algorithms, parameterised by a dimension parameter

d > 2. Let

n0 := 2d
12
> 24096,

and suppose that we wish to multiply integers with n bits. For n < n0, we may

use any convenient base-case multiplication algorithm, such as the classical

O(n2) algorithm. For n > n0, we will describe a recursive algorithm that

reduces the problem to a collection of multiplication problems of size roughly

n1/d. We will show that this algorithm achieves M(n) = O(n log n), provided

that d > 1729.

5.1. Parameter selection. Henceforth we assume that n > n0. We first

discuss the computation of several parameters depending on n that will be

needed later.

Let

(5.1) b := dlog2 ne > d12 > 4096

be the “chunk size”, and let the working precision be

(5.2) p := 6b = 6dlog2 ne > 6d12 > 24576 > 100.

Define

(5.3) α := d(12d2b)1/4e.

Clearly α > 2, and as d 6 b1/12 and b > 4096, we also have

(5.4) α 6 d121/4b7/24e 6 1.87 · b7/24 + 1 < 2b7/24 < p1/2.

As in Theorem 4.1, set

(5.5) γ := 2dα2 < 2b1/12 · 4b7/12 = 8b2/3.

Let T be the unique power of two lying in the interval

(5.6) 4n/b 6 T < 8n/b,

and let r be the unique power of two in the interval

(5.7) T 1/d 6 r < 2T 1/d.
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We certainly have b 6 4n1/2, so

(5.8) r > T 1/d > (4n/b)1/d > (n1/2)1/d > n1/d
2
> n1/d

2

0 > 2d
10
.

We now construct a factorisation T = t1 · · · td satisfying the hypotheses of

Theorem 3.1. Let d′ := log2(r
d/T ). As T 6 rd < 2dT , we have 1 6 rd/T < 2d

and hence 0 6 d′ < d. Define

t1, . . . , td′ :=
r

2
, td′+1, . . . , td := r.

Then td > · · · > t1 > 2 and

t1 · · · td = (r/2)d
′
rd−d

′
= rd/2d

′
= T.

Also

(5.9) T < 8n/b < n 6 2b < 2p,

so the hypotheses of Theorem 3.1 are indeed satisfied. The parameters b, p, α,

γ, T , r and t1, . . . , td may all be computed in time (log n)O(1).

Our next task is to choose distinct primes s1, . . . , sd that are slightly

smaller than the corresponding t1, . . . , td. In a moment we will use Theorem 4.1

to reduce a transform of size s1 × · · · × sd to a transform of size t1 × · · · × td;
to avoid excessive data expansion in this reduction, we must ensure that the

ratio t1 · · · td/s1 · · · sd is not too large. On the other hand, to satisfy the re-

quirements of the theorem, we must also ensure that the individual ratios ti/si
are not too close to 1. We will achieve this by means of the following result.

Lemma 5.1. Let η ∈ (0, 14) and let x > e2/η . Then there are at least
1
2ηx/ log x primes q in the interval (1− 2η)x < q 6 (1− η)x.

Proof. Let ϑ(y) :=
∑

q6y log q (sum taken over primes) denote the usual

Chebyshev function. According to [39, Th. 4], for all y > 563 we have

y − y

2 log y
< ϑ(y) < y +

y

2 log y
.

As the function y/ log y is increasing for y > 563, we see that

y − x

2 log x
< ϑ(y) < y +

x

2 log x
, 563 6 y 6 x.

Applying this result for y0 := (1 − 2η)x > x/2 > e8/2 > 563, and then again

for y1 := (1− η)x > 3x/4 > 563, we obtain

ϑ(y1)− ϑ(y0) > y1 −
x

2 log x
− y0 −

x

2 log x
= ηx− x

log x
> ηx− x

2/η
=
ηx

2

and hence ∑
y0<q6y1

1 >
1

log x

∑
y0<q6y1

log q =
ϑ(y1)− ϑ(y0)

log x
>

ηx

2 log x
. �
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Let us apply Lemma 5.1 with

(5.10) η :=
1

4d
6

1

8

and x := r/2, noting that (5.8) implies that r/2 > 2d
10−1 > e8d = e2/η. We

find that there are at least

1

8d
· r/2

log(r/2)
>

1

16d
· r

log r
>

1

16d
· 2d

10

log(2d10)
=

2d
10

(16 log 2)d11
> d > d′

primes q in the interval

(1− 2η)
r

2
< q 6 (1− η)

r

2
.

Using Eratosthenes’ sieve, we may find d′ such primes s1, . . . , sd′ in time

r1+o(1) = o(n). Applying Lemma 5.1 again, with the same η but now with

x := r > e2/η, we find that there are at least d > d−d′ primes q in the interval

(1− 2η)r < q 6 (1− η)r.

Again, we may find d − d′ such primes sd′+1, . . . , sd in time o(n). These two

collections of primes are disjoint, as

(1− η)
r

2
<
r

2
<

3r

4
6 (1− 2η)r.

In summary, we have found d distinct primes s1, . . . , sd such that

(5.11) (1− 2η)ti < si 6 (1− η)ti, i ∈ {1, . . . , d}.

Setting S := s1 · · · sd < T , we see that

(5.12)
S

T
> (1− 2η)d =

Å
1− 1

2d

ãd
>

1

2
,

as (1− x)d > 1− dx for all x ∈ (0, 1).

5.2. DFTs and convolutions for coprime sizes. The following result com-

bines Theorems 3.1 and 4.1 to obtain an approximation for the complex trans-

form Fs1,...,sd : ⊗iCsi → ⊗iCsi (defined in Section 2.4). Recall that the work-

ing precision was chosen to be p := 6b = 6dlog2 ne.

Proposition 5.2. We may construct a numerical approximation F̃s1,...,sd :

⊗i C̃si◦ → ⊗i C̃si◦ for Fs1,...,sd such that ε(F̃s1,...,sd) < 2γ+5T log2 T and

C(F̃s1,...,sd) <
4T

r
M(3rp) +O(n log n).

Proof. Let us verify the hypotheses of Theorem 4.1. We have already

shown that 2 6 si < ti < 2p for all i (see (5.9) and (5.11)) and that 2 6 α < p1/2

(see (5.4)). We certainly have gcd(si, ti) = 1, as si is an odd prime and ti is a

power of two. Let θi := ti/si − 1; then by (5.10) and (5.11) we have

θi >
1

1− η
− 1 =

η

1− η
> η =

1

4d
.
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From (5.3) and (5.2) we see that

α4θi >
12d2b

4d
= 3db =

d

2
· p > p,

so θi > p/α4 as required.

Theorem 4.1 thus produces maps A : ⊗iCsi → ⊗iCti and B : ⊗iCti →
⊗iCsi such that Fs1,...,sd = 2γBFt1,...,tdA (where γ is given by (5.5)), and

approximations Ã : ⊗i C̃si◦ → ⊗i C̃ti◦ and B̃ : ⊗i C̃ti◦ → ⊗i C̃si◦ . Applying Theo-

rem 3.1 (whose hypotheses were verified in Section 5.1), we obtain furthermore

an approximation F̃t1,...,td for Ft1,...,td . Now consider the scaled transform

F ′s1,...,sd := 2−γFs1,...,sd = BFt1,...,tdA,

and the approximation F̃ ′s1,...,sd := B̃F̃t1,...,tdÃ. The maps A, B and Ft1,...,td
all have norm at most 1 (by Theorem 4.1 and Example 2.6), so Corollary 2.8

implies that

ε(F̃ ′s1,...,sd) 6 ε(B̃) + ε(F̃t1,...,td) + ε(Ã) < 2dp2 + 8T log2 T.

As ‖Fs1,...,sd‖ 6 1, we obtain the desired approximation F̃s1,...,sd by applying

Lemma 2.2 with c := 2γ to the output of F̃ ′s1,...,sd . (The condition c 6 2p holds

as γ < 8b2/3 < p; see (5.5).) We therefore obtain

ε(F̃s1,...,sd) < 2γ+1ε(F̃ ′s1,...,sd) + 3

< 2γ+1(2dp2 + 8T log2 T ) + 3

< 2γ+1(3dp2 + 8T log2 T ).

Moreover, by (5.1), (5.2) and (5.6) we have

3dp2 6 108b1/12b2 = 108dlog2 ne25/12 < n1/2 < T < 8T log2 T,

so we conclude that ε(F̃s1,...,sd) < 2γ+5T log2 T .

The cost of the scaling step is O(Sp1+δ) = O(Tp1+δ), so by Theorems 3.1

and 4.1 the overall complexity is

C(F̃s1,...,sd) = C(Ã) + C(F̃t1,...,td) + C(B̃) +O(Tp1+δ)

=
4T

r
M(3rp) +O(dTp3/2+δα+ Tp log T + Tp1+δ).

Recalling (5.4) and the assumption δ < 1
8 from Section 2.1, we see that

dp3/2+δα = O(p1/12p3/2p1/8p7/24) = O(p2).

By definition, p = O(log n), and (5.6) yields T = O(n/ log n). The bound for

C(F̃s1,...,sd) thus simplifies to (4T/r)M(3rp) +O(n log n). �

Next we construct an approximation for the scaled convolution map

M : ⊗iCsi ×⊗iCsi → ⊗iCsi
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given by M(u, v) := 1
Su ∗ v, where ∗ is the convolution operator defined in

Section 2.4. Note that ‖M‖ 6 1.

Proposition 5.3. We may construct a numerical approximation

M̃ : ⊗i C̃si◦ ×⊗i C̃si◦ → ⊗i C̃si◦
for M such that ε(M̃) < 2γ+8T 2 log2 T and

(5.13) C(M̃) <
12T

r
M(3rp) +O(n log n).

Proof. We are given as input u, v ∈ ⊗i C̃si◦ . Let w :=M(u, v) = 1
Su ∗ v ∈

⊗iCsi . According to (2.1) we have w = Sw′, where w′ := F∗s1,...,sd(Fs1,...,sdu ·
Fs1,...,sdv). We use the following algorithm (essentially the same as in the proof

of Proposition 3.4, but working over C instead of R). We first compute an

approximation w̃′ ∈ ⊗i C̃si◦ by using Proposition 5.2 to handle the forward and

inverse transforms, and Corollary 2.10 to handle the pointwise multiplications.

Applying Lemma 2.7 in the usual way, we obtain

ε(w̃′) 6 ε(F̃s1,...,sd) + ε(F̃s1,...,sd) + ε(F̃∗s1,...,sd) + 2

< 3 · 2γ+5T log2 T + 2 < 7
2 · 2

γ+5T log2 T.

Then we apply Lemma 2.2 (with c := S 6 T 6 2p, thanks to (5.9)) to obtain

an approximation w̃ ∈ ⊗i C̃si◦ such that

ε(w̃) < 2Sε(w̃′) + 3 < 7S · 2γ+5T log2 T + 3 < 2γ+8T 2 log2 T.

The cost of the pointwise multiplications and scalings isO(Sp1+δ) = O(n log n),

and the constant 12 accounts for the three invocations of Proposition 5.2. �

5.3. Integer multiplication. We are now in a position to describe the re-

cursive step of the main integer multiplication algorithm.

Proposition 5.4. For n > n0, we have

(5.14) M(n) <
12T

r
M(3rp) +O(n log n).

Proof. We are given as input integers 0 6 f, g < 2n. The algorithm

consists of the following series of reductions.

(1) Reduce to one-dimensional convolution over Z. Let N := dn/be, where

b := dlog2 ne as in (5.1). We split f and g into N chunks of b bits; i.e., we

write f = F (2b) and g = G(2b) where

F (x) =
N−1∑
j=0

Fjx
j ∈ Z[x], G(x) =

N−1∑
j=0

Gjx
j ∈ Z[x], 0 6 Fj , Gj < 2b.

We have fg = (FG)(2b), so it suffices to compute the polynomial product

H(x) := F (x)G(x) and then evaluate at x = 2b. The coefficients of H(x)
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lie in the interval 0 6 Hj < 22bN < 23b; in particular, they have at most

3b = O(log n) bits, so the evaluation may be achieved via a straightforward

overlap-add algorithm in time O(N log n) = O(n). By (5.6) and (5.12) we have

degH 6 2N − 2 6
2n

b
6
T

2
< S,

so it suffices to compute F (x)G(x) (mod xS − 1).

(2) Reduce to d-dimensional convolution over Z. We now use the Agarwal–

Cooley method [1] to reduce to a multidimensional convolution. Consider the

ring

A := Z[x1, . . . , xd]/(x
s1
1 − 1, . . . , xsdd − 1).

As the integers s1, . . . , sd are pairwise relatively prime, there is an isomor-

phism of rings Z[x]/(xS − 1) ∼= A induced by the Chinese remainder the-

orem, namely by sending x to x1 · · ·xd. Let F ′, G′, H ′ ∈ A be the im-

ages of F , G and H, so that H ′ = F ′G′. In the Turing model, F ′, G′

and H ′ are represented as d-dimensional arrays of integers of 3b = O(log n)

bits, using a similar layout to the tensor products in Section 2.3. The iso-

morphism amounts to a data rearrangement, and may be computed by at-

taching labels and sorting, as in the proof of Proposition 4.7(ii). The label

(i1 mod s1, . . . , id mod sd) occupies O(
∑

i log si) = O(log n) bits, and may be

incremented to (i1 + 1 mod s1, . . . , id + 1 mod sd) in time O(log n). Therefore

the isomorphism may be computed in either direction in time

O(S log n logS) = O(T log2 n) = O(n log n).

(For an alternative algorithm that does not rely on sorting, see [23, §2.3].) We

have thus reduced to the problem of computing H ′ = F ′G′ in A .

(3) Reduce to approximate d-dimensional convolution over C. Regarding

A as a subring of

C[x1, . . . , xd]/(x
s1
1 − 1, . . . , xsdd − 1) ∼= (⊗iCsi , ∗),

let F ′′, G′′, H ′′ ∈ ⊗iCsi be the elements corresponding to F ′, G′ and H ′, so

that H ′′ = F ′′ ∗G′′. Let u := 2−bF ′′, v := 2−bG′′ and w :=M(u, v) = 1
Su ∗ v.

Then ‖u‖ , ‖v‖ , ‖w‖ 6 1, and H ′′ = 22bSw. Recalling our choice of working

precision p := 6b = 6dlog2 ne, we may use Proposition 5.3 to compute an

approximation w̃ := M̃(u, v) ∈ ⊗i C̃si◦ such that ε(w̃) < 2γ+8T 2 log2 T in time

(12T/r)M(3rp) +O(n log n).

Now observe that

‖H ′′ − 22bSw̃‖ = 22bS ‖w − w̃‖ 6 22bT · 2−pε(w̃) < 22b+γ+8−pT 3 log2 T.

Since T < n 6 2b and T log2 T 6 T log2 n 6 Tb < 8n 6 2b+3 (by (5.6)), this

yields

‖H ′′ − 22bSw̃‖ < 22b+γ+8−p · 22b · 2b+3 = 25b+γ+11−p = 2−b+γ+11.
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But (5.5) yields γ < 8b2/3 < b− 13 (as b > 4096), so

‖H ′′ − 22bSw̃‖ < 1
4 .

In particular, we may recover H ′′ in time O(Sp1+δ) = O(n log n) by multiplying

each coefficient of w̃ by 22bS and then rounding to the nearest integer. �

Corollary 5.5. Define T(n) := M(n)/(n log n) for n > 2. For n > n0,

we have

T(n) <
1728

d− 1
2

T(3rp) +O(1).

Proof. Dividing (5.14) by n log n yields

T(n) <
36Tp

n
· log(3rp)

log n
· T(3rp) +O(1).

By (5.2) and (5.6) we have 36Tp/n = 216Tb/n < 1728. Moreover, (5.7) implies

that r < 2T 1/d < 2n1/d, so

log(3rp)

log n
=

log(r/2) + log(36b)

log n
<

1

d
+

log(36b)

log n
=

1

d
+

log2(36b)

log2 n
6

1

d
+

log2(36b)

b− 1
.

Since b > 4096 and d 6 b1/12 (see (5.1)), we have

log2(36b)

b− 1
<

1

2b1/6
6

1

2d2
,

and the result follows from the observation that

1

d
+

1

2d2
<

1

d

Å
1− 1

2d

ã−1
=

1

d− 1
2

. �

Finally we may prove the main result of the paper.

Proof of Theorem 1.1. According to Corollary 5.5, there is an absolute

constant A > 0 such that

T(n) <
1728

d− 1
2

· T(3rp) +A

for all n > n0. We now take d := 1729. Then for all n > n0 = 21729
12

, we have

T(n) < 0.9998 · T(3rp) +A.

Define

B := max
26n<n0

T(n), C := max(B, 5000A).

(Recall that for n < n0, we use any convenient base-case multiplication algo-

rithm to define M(n), and hence T(n).)
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We prove by induction that T(n) 6 C for all n > 2. The choice of B

ensures that the statement holds for n < n0. Now assume that n > n0. By

(5.7), (5.1) and (5.6) we have

3rp < 6T 1/dp < 36n1/db = 36n1/1729dlog2 ne < n.

By induction,

T(n) < 0.9998C +A 6 0.9998C + 0.0002C = C.

Hence T(n) = O(1) and M(n) = O(n log n). �

5.4. Optimising the dimension threshold. It is possible to improve the fac-

tor K = 1728 appearing in Corollary 5.5, at the expense of introducing various

technical complications into the algorithm. In this section we outline a number

of such modifications that together reduce the constant to K = 8 + ε, so that

the modified algorithm achieves M(n) = O(n log n) for any d > 9 (rather than

d > 1729). The techniques described here are similar to those used in [25] to

optimise the value of K in the Fürer-type bound M(n) = O(n log nK log∗ n).

(1) We may increase the chunk size from b = Θ(log n) to b = Θ(log n log logn),

and then take the working precision to be p = 2b+O(log n) = (2 + o(1))b

rather than 6b. This improves K by a factor of 3. Note that the O(log n)

term must be chosen large enough to ensure correct rounding at the end

of the proof of Proposition 5.4. (We cannot take b as large as (log n)2,

as is done in [25], because then the Gaussian resampling becomes too

expensive.)

(2) The choice of b in the previous item allows us to improve the term 3rp

in Lemma 2.5 to (2 + o(1))rp, by packing the coefficients together more

tightly in the Kronecker substitution step (the hypothesis r < 2p−1 must

also be tightened somewhat). This improves K by a factor of 3/2.

(3) In Bluestein’s algorithm (see proof of Proposition 3.1), the multiplicand a

is invariant, i.e., does not depend on the input vector u. To take advantage

of this, we change the basic problem from multiplication of two arbitrary

integers to multiplication of an arbitrary integer by a fixed integer. Con-

sequently we save one forward transform in the proof of Proposition 5.3,

reducing the factor 12 in (5.13) to 8. This improves K by a factor of 3/2.

(4) We may choose the primes si closer to ti, so that instead of T < 2S (see

(5.12)) we have T < (1 + o(1))S. This improves K by a factor of 2. Some

care is needed to avoid excessive precision loss in the Gaussian resampling

step, due to the larger values of α and γ.

(5) By allowing T to contain small odd prime factors, or alternatively by in-

troducing flexibility into the choice of b, we may improve the choice of T

to (4 + o(1))n/b (see (5.6)). This improves K by a factor of 2.
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(6) We may change the basic problem from multiplication in Z to multiplica-

tion in Z[i]. In step (1) of the proof of Proposition 5.4, the chunks Fj and

Gj are taken in Z[i] instead of Z, and in step (1) of the proof of Lemma 2.5,

the evaluations lie in Z[i] instead of Z. This improves K by a factor of 4,

essentially by eliminating the factor 4 appearing in Lemma 2.5.

(7) We may change the basic problem from multiplication in Z[i] to multiplica-

tion in Z[i]/(2n+1)Z[i]. Note that the Kronecker substitution in Lemma 2.5

maps the multiplication modulo yr + 1 naturally onto this problem. This

improves K by a factor of 2, because it avoids the degree growth in step (1)

in the proof of Proposition 5.4. It also introduces a technical difficulty into

that step: to reduce a multiplication modulo 2n + 1 to a polynomial mul-

tiplication modulo xS − 1 (or xS + 1), we must split an n-bit integer into

S chunks, even though n will not in general be divisible by S. This may

be addressed by means of the Crandall–Fagin algorithm [9].
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