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More Complex Feedback Control

v(s)

+ e(s +
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Typical Simple Control Laws
e(t) = yq(0) - y(©)

P: Proportional Controller m(t) = K e(t)
D: Derivative Controller m(t) = K dgt(t)
t
I: Integral Controller m(t) =K J‘e(r) drt
0 t
PI: Proportional-Integral Controller m(t) =K, C(t) + Kzf@('l?) dt
0
. . =K K d e(t)
PD: Proportional-Derivative Controller m(t) = K, e(t) + ZT
{
PID: Proportional-Integral-Derivative Controller m(t) = K, e(t) + Kzfe(r) dr +K; dg(t)
t
0

. 1 1
Recall RLC: Ld:;i(;) +Rj(t) + c f j(r)dt+v(0) = v(¢)
0
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Add Discretization
v(s)
yals) " o Computer D/A N y(s)
) »_(%}—» AD | » (Contrc?l Lo —> 7 O0H. » Actuator :®\> Plant >
Measurement |
Device ‘

We will look at this in detail when we speak about discretized
systems, difference equations, and the z-Transform
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Dynamic System Response

« The Transient Response and the Steady State Response

Response
A Overshoot
[ =N %
fffffffffffffffffff .o I
] Y.
100%
A e T -
0% |
» L
Delay Settling
Time Time
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Linear Differential Equations
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Linear Differential Equations

X(1) = Ax(t) + bu(t)
y(t) = ¢ x(r) + du(r)

Set of coupled 1+ order linear
differential equations

Let us consider the homogeneous part of the above equations:
X(1) = Ax(1)

For simplicity consider the 1-dimensional version with a generic initial condition:

X(r) = ax(r)
X0 = &4
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x(1)
x(0)

Linear Differential Equations

ax(r) (72)
X0 (73)

Let us assume that the solution is analytic almost everywhere,
then we can write it in the form of a Taylor series:

x(t) = i 0 (t —1o)"
n=>0

In the above problem 7y = 0,

I(I) — Z Cﬂni‘n
n=0

Therefore, using the given first order differential equation,

x(t)
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n=1
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Linear Differential Equations

i(t) = Y nop"! (76)
n=1
= 4 (77)
n=0
Equating the similar power coefficients between Equations 76 and 77,
o = a0y
2
o a0y
oL = a— =
? 2 2
o v da  ado
= a— = =
3 3 3x2 3!
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Linear Differential Equations

(04] = ad =
o _ aﬂ _ a0 n=I()
4 2 2
. v adta o
= a— — —
. 3 3x2 3
In general,
1
{x” — a ao
n!

Writing Equation 735 for the initial condition,

x(0) =x9 = o
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Linear Differential Equations

I(f) —_ Z {Iﬂfn
n=0
Iy
an —_ a ao
n!
x(0) =x0 =
oo aﬂrn
t) = —
x(t) (n;] P ke
h - e_":;; -
x(2)=¢%Fxg
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Linear Differential Equations

i) = ax(r)

0§ = m i) —e%xg

Apply solution to the original linear scalar differential equation:
t

(1) = ae“xo x(0) = e“xg
= ax(f) = x(0)
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Linear Differential Equations

X(1) = Ax(r)
x(0) = xg

Let us assume that the solution 1s analytic almost everywhere,
then we can write it in the form of a Taylor series:

X(I) — i an(r _Iﬂ)n
n=0

In the above problem 7y = 0,

X(1) = ) a,t"
n=0
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Linear Differential Equations

€0 = A0 o
0 = % = b

Therefore, using the given first order differential equation,

O

x(1) = not,t" ! (89)
n=1
= A i a,t" (90)
Equating the simii;ﬂpower coefficients between Equations 89 and 90,
a; = Aq
a, = A% _ A22a°

o, Ao Aay
3 3x2 3!
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Linear Differential Equations

A"

In general, a, =
n!

X(f) = Z anf” (88)
n=>0
Writing Equation 88 for the initial condition,

x(0) =x¢ = Q@

'.X(I) _ i Al

!
g n.:

X0

b -

Resembles the exponential
function, so we define

A
= oAt

x(t) = eMxg
\ﬁ[—j

Be careful of the
order multiplication
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Linear Differential Equations

Definition (The Matrix Exponential). Given a constant matrix, A : BN s N

A o ACET
EAI —

Z_ n!

n=(0

is the Matrix Exponential, also known as the Fundamental Matrix

or the Transition Matrix.

The Matrix Exponential converges absolutely and uniformly for any time interval.
This may be shown by the fact that each term of the series is bounded, namely,

fn (r) é Aﬂrﬁ

n!

)| <M, Vit:tg<t<t; and n={0,1,2,.--}

Therefore, if Z M, converges,
n=0

A

then, ¢?' converges absolutely and uniformly in that interval.
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r'a(-x)-:, —PRE) walx) N>o = Stable
pe> =
T a1 \ g
3Gr) = j uu:)o(t >/<"’) - T U
-2
MW~ 2 k7o Unit impulse response
“M

R = _li_ - —‘%—-a A >0 Unit step response

steady state value L% as L — o0
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First Order

l'a(t-) - ‘abﬁ') - wik)

Bt =300 = A Sl

impulse response: ww«)-T®) = Ulx- |

rYG)-o = —~ P v x)

¥(a) (4 +2) =\

P
o) = —=
- ¢

e w T
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First Order

/.L-Y(A‘] .-%w) i 1 F L) A U (~)

\
unit step regsponse; 4¥)=4® = Uly= —

AY) = =NV -

/-

Y () (4.-+%) — —h.:_;

4
) e e AR R
g - 46,44-}\) g
\ . =t
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First Order

,‘60;)—, —Py) walx) b stable

L‘ls
A
Y
AAx)= e
100 1 impulse response ); >
\ v037 -
0.5+ NV o\ o
—F ?"5 _;_’/“{,0.007
| [ I | g =
o l 2 ) 3 X
M= -\ -¢ a3
. — J;—-‘?:time constant
settling time -~ -
A | Lo s time to drop by —-
2 unit step response
|2 3 4

| | ] | >
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Second Order

. e v,
x(t) =~ x (&) + w ()
W -0 \

Az -0 LA A o >o —» stability
~(e)z © at rest
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Second Order

g =O\‘ Imaginary A ylt)= e Tsinct
== "TW, \
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N \\
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~ 4
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Second Order

‘y(t)
2 (=0 S = undamped
2 ocg \ = underdamped
N § = => critically damped
L2
: 6 8 10 12 14 16 18 ?w"t g > \ j Overdamped
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imaginary

% A Aimaginary
0

—
stability margin o damping margin & = <> 1

%imaglnary
0

stability margin 19 damping margin 0.7 = WU“A)
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Linear Differential Equations

Apply solution to the original linear system of differential equations:
X(I) =  AeM X( X(U) = EAOX{]

Since this system of equations is time-invariant, then, 7y may
be non-zero with the same results. Namley, for x(7y) = x,

X(I ) — € < X( Transition Matrix Takes the state from t, to t
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Homework 6

See Assignments on Courseworks
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