

Introduction to Continuous Control Systems

EEME E3601

Week 4

Homayoon Beigi

Homayoon.Beigi@columbia.edu

<https://www.RecoTechnologies.com/beigi>

Mechanical Engineering dept.
&
Electrical Engineering dept.

Columbia University, NYC, NY, U.S.A.

Continuity

Definition 24.12 (Continuity of Functions). *If $\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0$ such that $0 < |t - t_0| < \delta \implies |h(t) - h(t_0)| < \varepsilon$, then, $h(t)$ is continuous at $t = t_0$, or,*

$$\lim_{t \rightarrow t_0} h(t) = h(t_0)$$

The function $h(t)$ is a continuous function if it is continuous for all t_0 .

Used later for defining Analytic Functions

Definition 24.13 (Discontinuous Functions). *A function $h(t)$ is discontinuous if for some t_0 ,*

$$\lim_{t \rightarrow t_0} h(t) \neq h(t_0)$$

A function may be discontinuous at a point t_0 for two main reasons:

1. $h(t)$ may not approach any limit as $t \rightarrow t_0$.
2. $h(t)$ may approach a limit different from $h(t_0)$.

Let us classify the different points of discontinuity.

Removable Discontinuity

Definition 24.14 (Removable Discontinuity). When $\lim_{t \rightarrow t_0} h(t)$ exists, i.e.,

$$\lim_{t \rightarrow t_0} h(t) = \lim_{t \rightarrow t_0+} h(t) = \lim_{t \rightarrow t_0-} h(t) \quad (24.35)$$

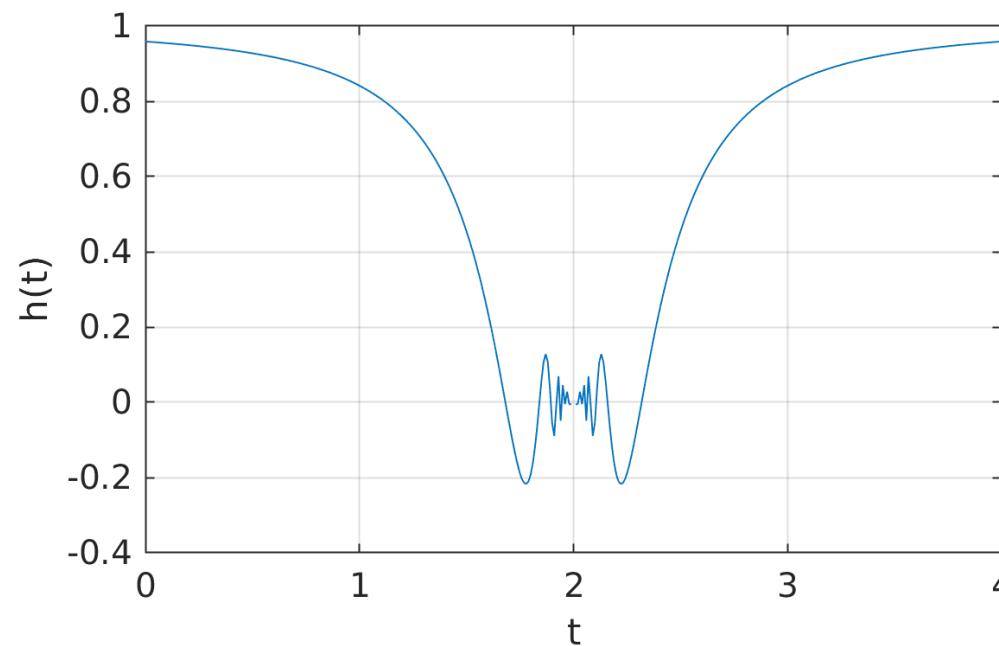
but is not equal to $h(t_0)$ or $h(t_0)$ is not defined, then t_0 is a point of removable discontinuity. ie, It may be defined such that the discontinuity is removed.

Sample Application: Sampling Theorem allows for a finite number of Removable Discontinuities

Removable Discontinuity (Example)

$$h(t) = (t - t_0) \sin\left(\frac{1}{t - t_0}\right) \quad h(t_{0+}) = h(t_{0-}), \text{ but } h(t_0) \text{ is not defined.}$$

Here, we may postulate that $h(t_0) = 0$ and then $h(t)$ becomes continuous.

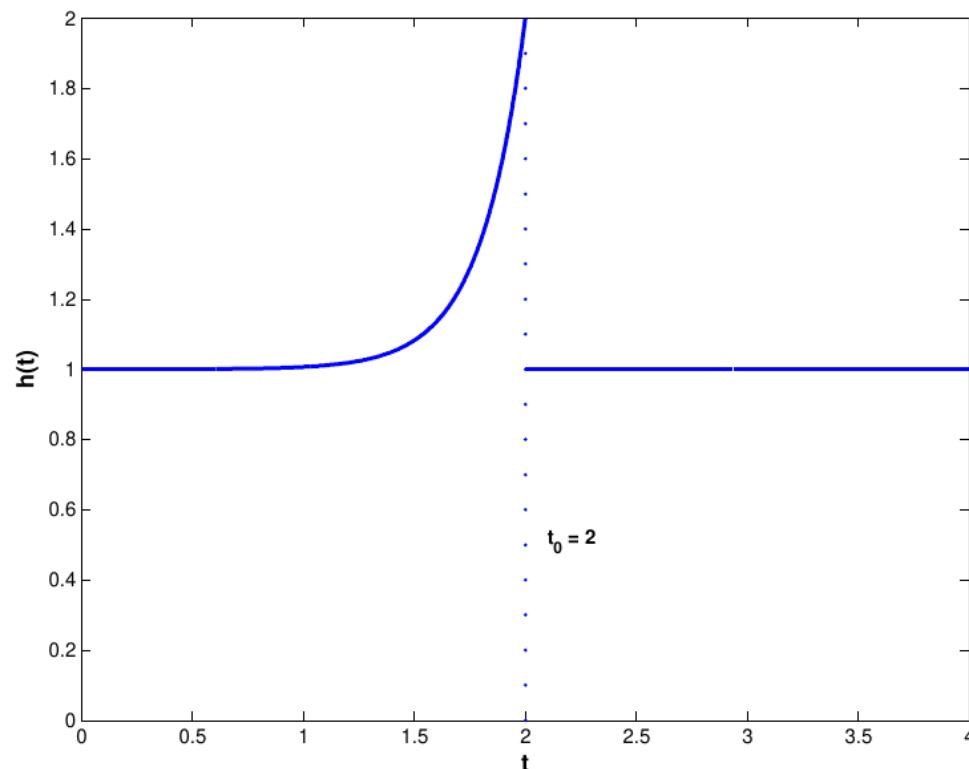


Point of ordinary discontinuity at $t = t_0 = 2$



Ordinary Discontinuity (Example)

Definition 24.15 (Ordinary Discontinuity). *In cases where $h(t_{0+}) \neq h(t_{0-})$, regardless of the definition of $h(t_0)$, t_0 becomes a point of ordinary discontinuity.*



Point of ordinary discontinuity at $t = t_0 = 2$

Ordinary Discontinuity (Example)

The following function has an ordinary discontinuity at $t = 0$, $h(t) = \frac{\sin(t)}{|t|}$

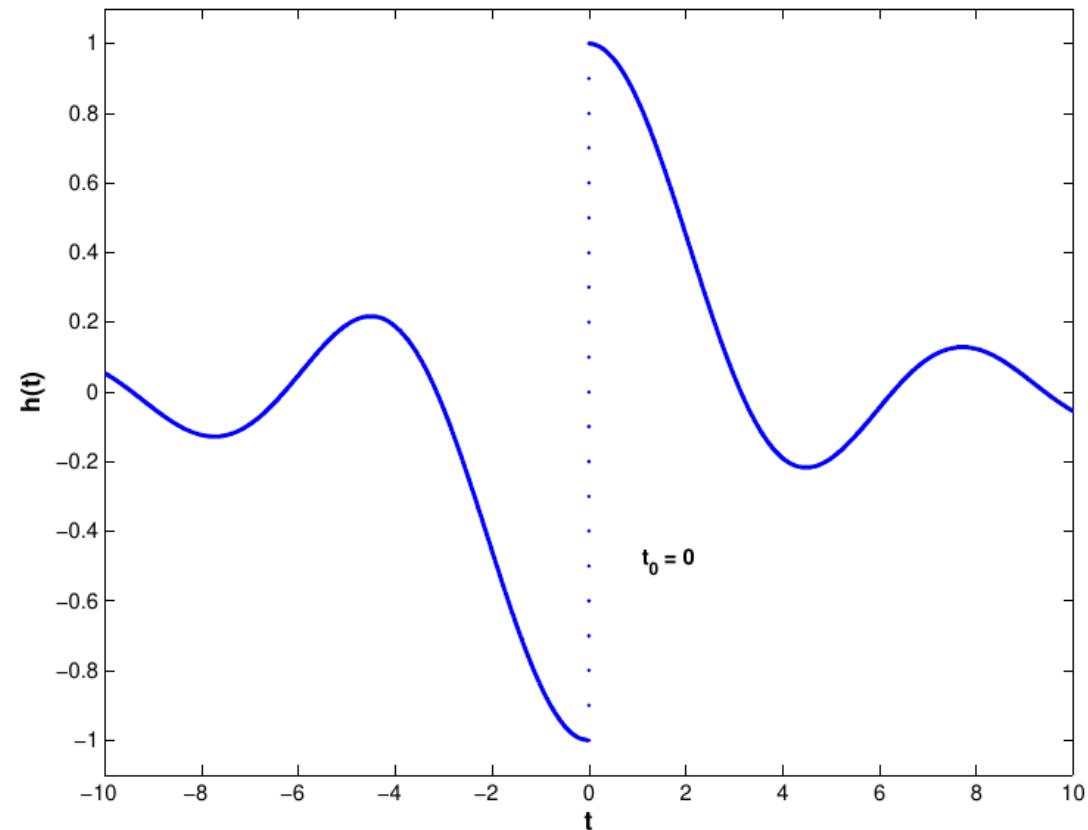
Using l'Hôpital's rule and replacing $|t|$ with $+t$ and $-t$ respectively.

$$\lim_{t \rightarrow 0^+} \frac{\sin(t)}{|t|} = \lim_{t \rightarrow 0^+} \frac{\sin(t)}{t} = 1$$

$$\lim_{t \rightarrow 0^-} \frac{\sin(t)}{|t|} = \lim_{t \rightarrow 0^-} \frac{\sin(t)}{-t} = -1$$

$$\therefore \lim_{t \rightarrow 0^+} \frac{\sin(t)}{|t|} \neq \lim_{t \rightarrow 0^-} \frac{\sin(t)}{|t|}$$

Namely, the limit does not exist.



Point of ordinary discontinuity at $t = t_0 = 0$ ($h(t) = \frac{\sin(t)}{|t|}$)

Infinite Discontinuity

Definition 24.15 (A Point of Infinite Discontinuity). *The following are the different cases of infinite discontinuities,*

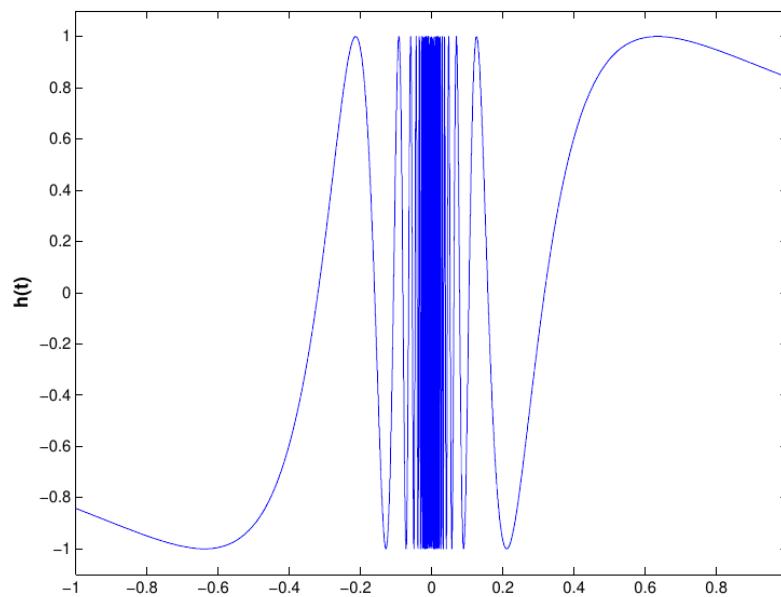
1. $h(t_{0+}) = h(t_{0-}) = \pm\infty$
2. $h(t_{0+}) = +\infty$ and $h(t_{0-}) = -\infty$
3. $h(t_{0+}) = \pm\infty$ and $h(t_{0-})$ exists
4. $h(t_{0+})$ exists and $h(t_{0-}) = \pm\infty$

Point of Oscillatory Discontinuity

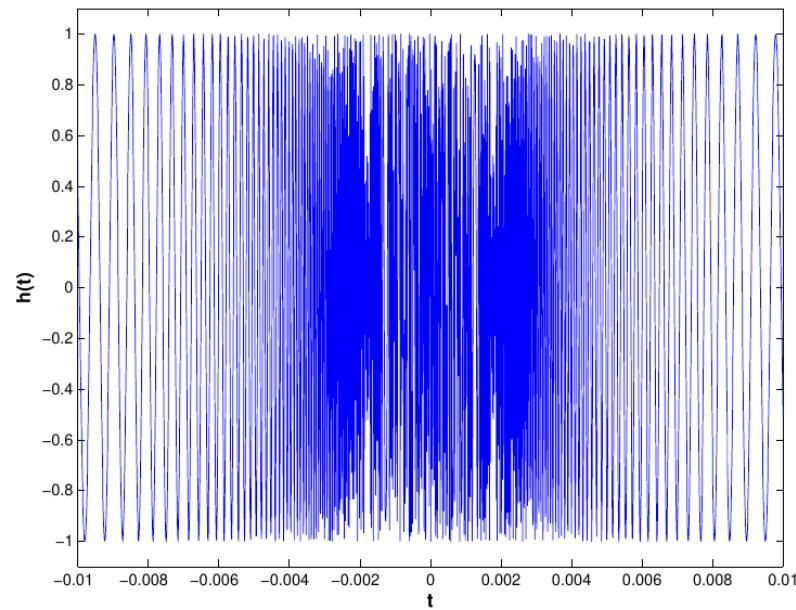
Definition 24.17 (A Point of Oscillatory Discontinuity). An oscillatory discontinuity s_0 is one where no matter how small the ϵ neighborhood of s_0 $\{s : |s - s_0| < \epsilon\}$ is made, the value of s oscillates to different values with function $H(s)$ not being defined at the exact value of s_0 , but it may be defined in its neighborhood (it is defined for the Finite Amplitude version – see below).

The following are the different kinds of oscillatory discontinuities,

1. Finite Amplitude: $h(t) = \sin\left(\frac{1}{t - t_0}\right)$



Point of Oscillatory Discontinuity at $t = t_0 = 0$ for $h(t) = \sin\left(\frac{1}{t - t_0}\right)$



More Detailed Viewpoint of the Oscillatory Discontinuity at $t = t_0 = 0$

Point of Oscillatory Discontinuity

2. *Infinite Amplitude:*

In this case, in addition to the oscillatory nature of the discontinuity s_0 , the value of the function will approach infinity in the neighborhood of the singularity. An example is,

$$h(t) = \frac{1}{(t - t_0)} \sin\left(\frac{1}{t - t_0}\right)$$

Continuity in an Interval

Definition 24.17 (Continuity of a Function in an Interval). A function $h(t)$ is said to be continuous in an interval $[a, b]$ if

$$\lim_{t \rightarrow t_0} h(t) = h(t_0) \quad a < t < b$$

[.] means closed interval
(.) means open interval

$$\lim_{t \rightarrow a^+} h(t) = h(a)$$

$$\lim_{t \rightarrow b^-} h(t) = h(b)$$

Boundedness

Definition 24.18 (Boundedness). *A function $h(t)$ is bounded in an interval $[a, b]$, if $\exists M : |h(t)| \leq M \forall t \in [a, b]$.*

Property 24.6 (Boundedness of a Continuous Function). *A function $h(t)$ which is continuous in an interval $[a, b]$, is bounded.*

Proof.

If a function is continuous in an interval $[a, b]$, then by definition of continuity, a small change, δ , in t can only cause a small change, ε in $h(t)$, therefore, in the finite interval $[a, b]$ where

$$\max_{\substack{a \leq t \leq b \\ a \leq t_0 \leq b}} |t - t_0| = b - a$$

$$|t - t_0| \text{ is bounded, so } \exists M : M < \infty \text{ so that } \max_{\substack{a \leq t \leq b \\ a \leq t_0 \leq b}} |h(t) - h(t_0)| < M$$

Therefore, based on Definition, $h(t)$ is bounded in interval $[a, b]$. □

Degree of Continuity

Definition 24.19 (Continuity Class (Degree of Continuity)). A function $h(t)$ is continuous with degree 1 if it is continuous and its first derivative is continuous. First degree continuity is denoted as \mathfrak{C}^1 .

If function $h(t)$ is continuous and all its derivatives up to the n^{th} derivative are continuous, then the function is a \mathfrak{C}^n continuous function. N.B., If a function has up to n derivatives, then it is at least of continuity class \mathfrak{C}^{n-1} , namely all the derivatives up to and including degree $n - 1$ are also continuous.

Sample Application: Fogel's Sampling Theorem

A class \mathfrak{C}^0 function is simply continuous.

Degree of Continuity

Definition 24.20 (Smoothness). A function $h(t)$ is smooth if it is continuous and it has up to order ∞ continuous derivatives, namely it is of class \mathfrak{C}^∞ continuous. N.B. All analytic functions are smooth, but since there is a requirement that analytic functions be determined completely by a power series, not all smooth functions are analytic.

*An Analytic
function will be
defined soon.*

Definition 24.21 (Piecewise Continuity). A function $h(t)$ is piecewise continuous if it is continuous at all points in an interval except a finite number of discontinuities in that interval. Sample Application: Proof of Reconstruction of Sampling Theorem

Definition 24.22 (Piecewise Smoothness). A function $h(t)$ is piecewise smooth if it is piecewise continuous and its derivatives are piecewise continuous.

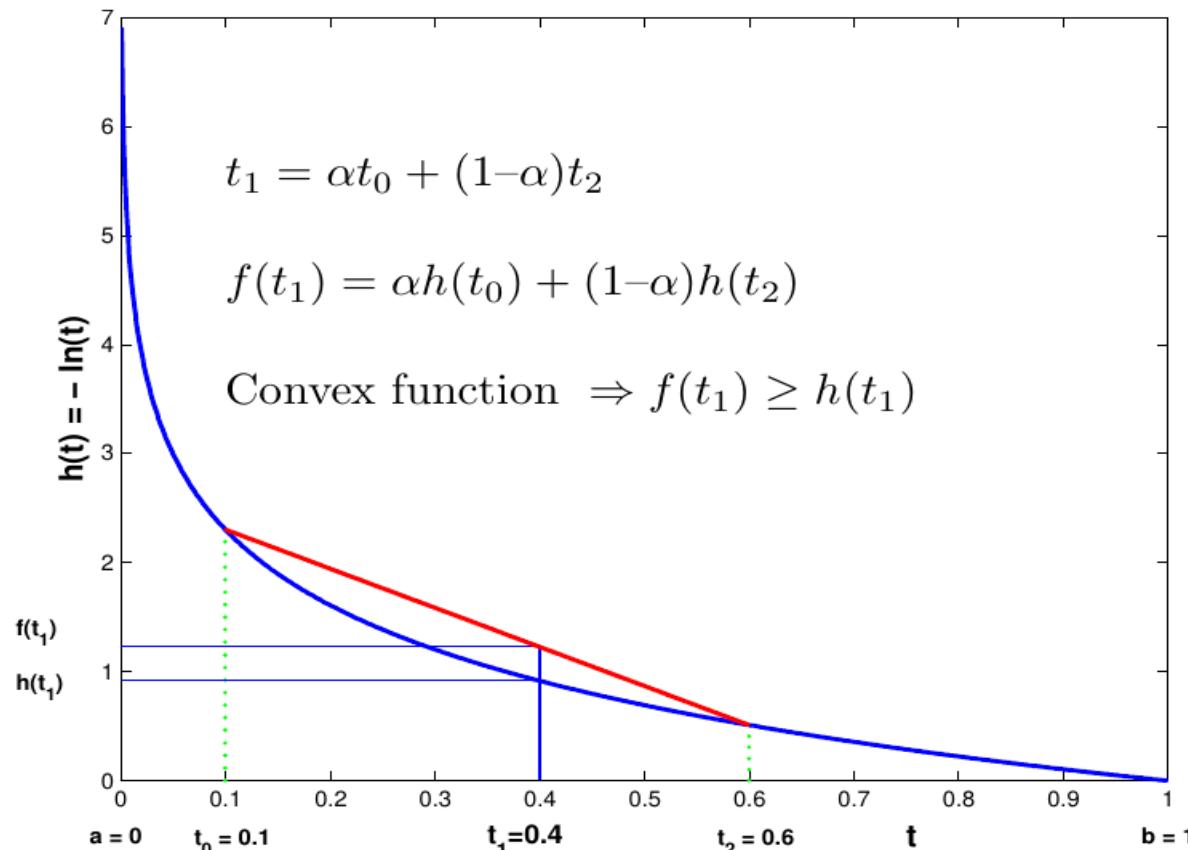
Convexity and Concavity of Functions

Definition 24.23 (Convex Function). A real-valued function, $h(t)$, which is continuous in the closed interval $\{t : t \in [a, b]\}$, is said to be convex if

$$h(\alpha t_0 + (1 - \alpha)t_2) \leq \alpha h(t_0) + (1 - \alpha)h(t_2) \quad \forall t_0, t_2 \in [a, b] \text{ and } \forall \alpha \in [0, 1] \quad (24.46)$$

Note that a function which has a *non-negative second derivative* over the whole interval, $[a, b]$, is *convex* in that interval.

Applications:
Optimization Theory
Probability Theory



Convexity and Concavity of Functions

Definition 24.23 (Convex Function). A *real-valued function, $h(t)$, which is continuous in the closed interval $\{t : t \in [a, b]\}$, is said to be convex if*

$$h(\alpha t_0 + (1 - \alpha)t_2) \leq \alpha h(t_0) + (1 - \alpha)h(t_2) \quad \forall t_0, t_2 \in [a, b] \text{ and } \forall \alpha \in [0, 1] \quad (24.46)$$

Definition 24.24 (Strictly Convex Function). A *strictly convex function is defined by Definition 24.23, such that the inequality in Equation 24.46 is changed to a strict inequality, not allowing equality, except when $\{\alpha = 0 \vee \alpha = 1\}$.*

Note that a function which has a *positive second derivative* over the whole interval, $[a, b]$, is *strictly convex* in that interval.

Theorem 24.3 (Convex Function). A *real-valued function, $h(t)$, which is \mathcal{C}^1 continuous in the closed interval $\{t : t \in [a, b]\}$, is said to be convex if it has a non-negative second derivative,*

$$\frac{d^2 h(t)}{dt^2} \geq 0$$

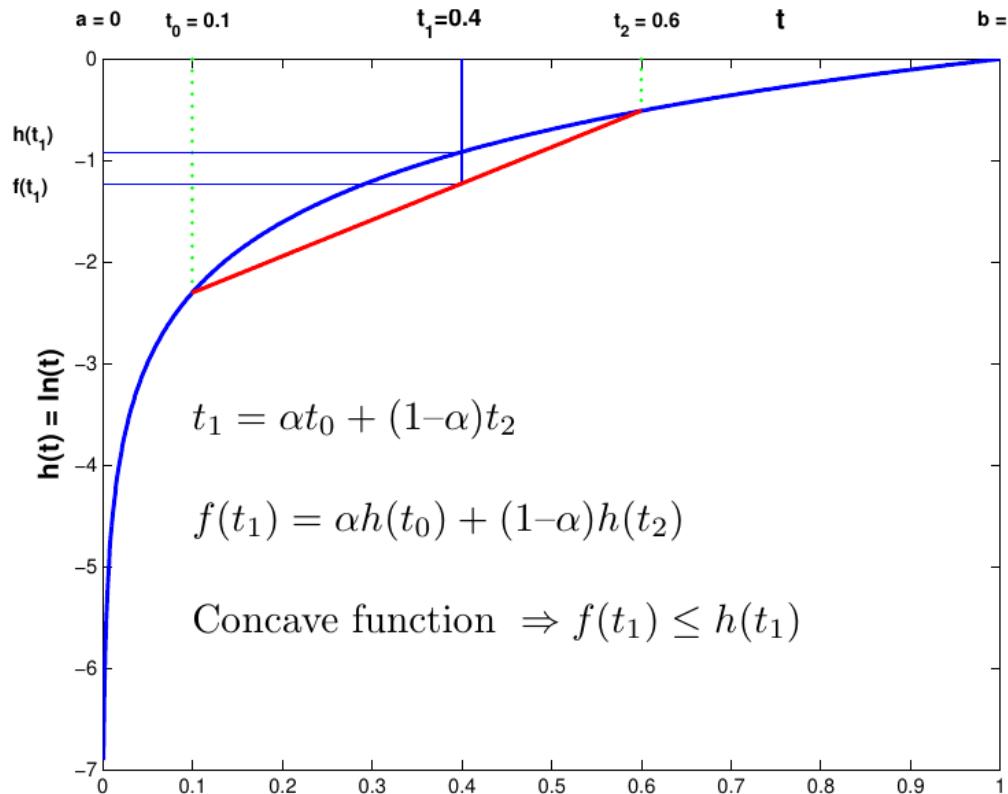
Proof: See the textbook

Convexity and Concavity of Functions

Definition 24.25 (Concave Function). A real-valued function, $h(t)$, which is continuous in the closed interval $\{t : t \in [a, b]\}$, is said to be concave if

$$h(\alpha t_0 + (1 - \alpha)t_2) \geq \alpha h(t_0) + (1 - \alpha)h(t_2) \quad \forall t_0, t_2 \in [a, b] \text{ and } \forall \alpha \in [0, 1] \quad (24.63)$$

Note that a function, which has a *non-positive second derivative* over the whole interval, $[a, b]$, is *concave* in that interval.



$$t_1 = \alpha t_0 + (1 - \alpha)t_2$$

$$f(t_1) = \alpha h(t_0) + (1 - \alpha)h(t_2)$$

$$\text{Concave function} \Rightarrow f(t_1) \leq h(t_1)$$

Convexity and Concavity of Functions

Definition 24.25 (Concave Function). A real-valued function, $h(t)$, which is continuous in the closed interval $\{t : t \in [a, b]\}$, is said to be concave if

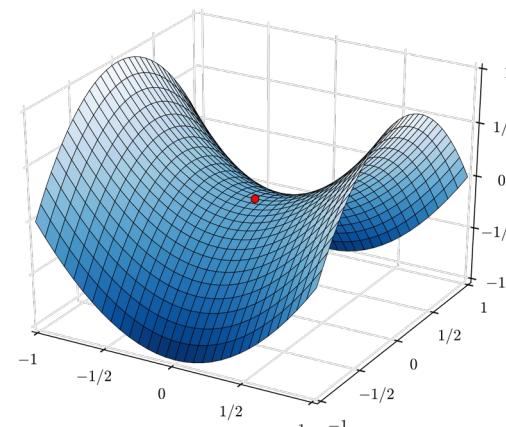
$$h(\alpha t_0 + (1 - \alpha)t_2) \geq \alpha h(t_0) + (1 - \alpha)h(t_2) \quad \forall t_0, t_2 \in [a, b] \text{ and } \forall \alpha \in [0, 1] \quad (24.63)$$

Definition 24.26 (Strictly Concave Function). A strictly concave function is defined by Definition 24.25, such that the inequality in Equation 24.63 is changed to a strict inequality, not allowing equality, except when $\{\alpha = 0 \vee \alpha = 1\}$.

Note that a function, which has a *negative second derivative* over the whole interval, $[a, b]$, is *strictly concave* in that interval.

These definition also work for gradients (vector) and Hessians (second gradient matrix) in higher dimensions

Hessian (G) can be positive definite, negative definite, and positive/negative semi-definite



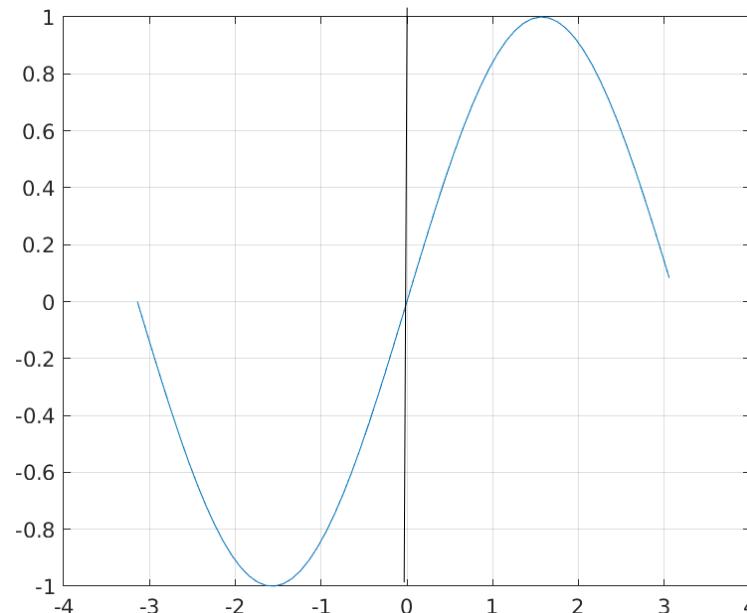
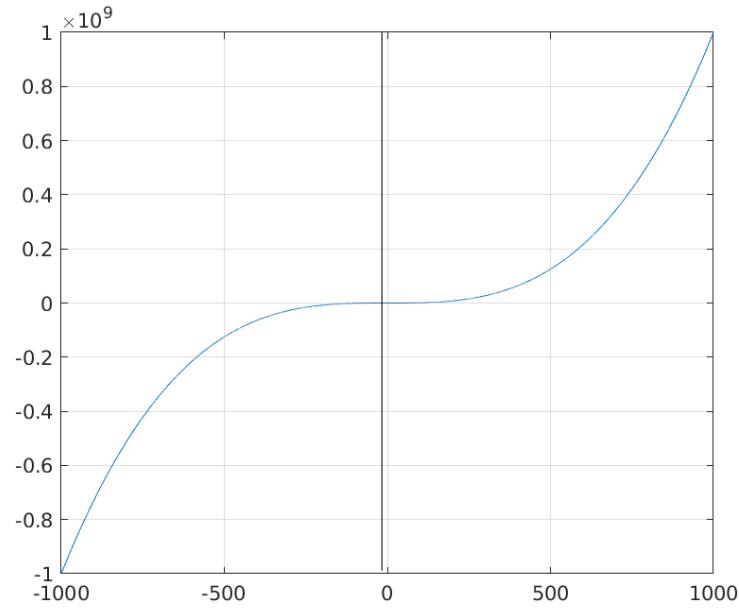
Odd, Even, and Periodic Functions

Definition 24.27 (Odd Functions). A function $h(t)$ is odd if $h(-t) = -h(t) \ \forall t$.

If $h(t)$ is periodic with period 2π , then oddness implies that,

$$\int_{-\pi}^{\pi} h(t)dt = 0$$

Some examples of odd functions are, $h(t) = \sin(t)$ and $h(t) = t^3$



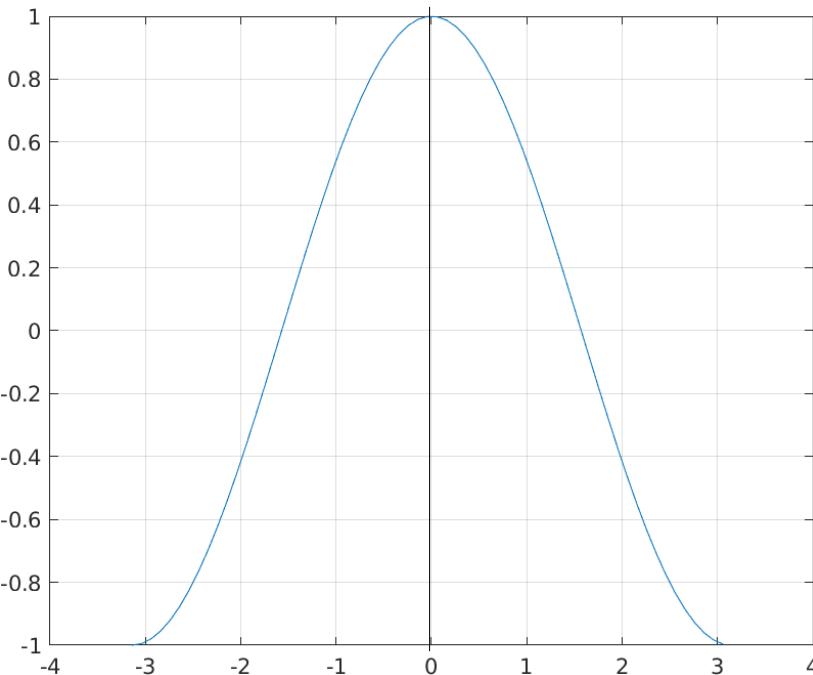
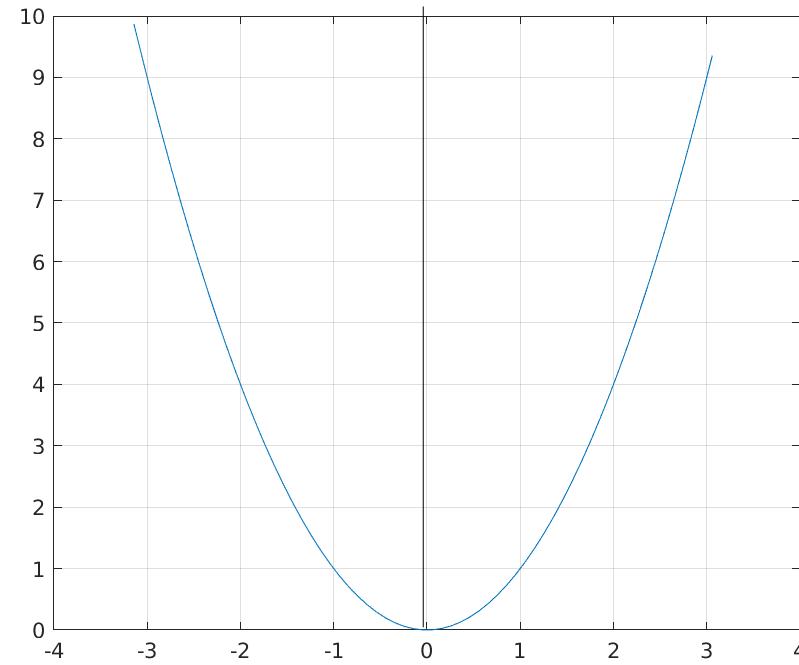
Odd, Even, and Periodic Functions

Definition 24.28 (Even Functions). A function $h(t)$ is even if $h(-t) = h(t) \ \forall t$.

If $h(t)$ is periodic with period 2π , then evenness implies that,

$$\int_{-\pi}^{\pi} h(t)dt = 2 \int_0^{\pi} h(t)dt$$

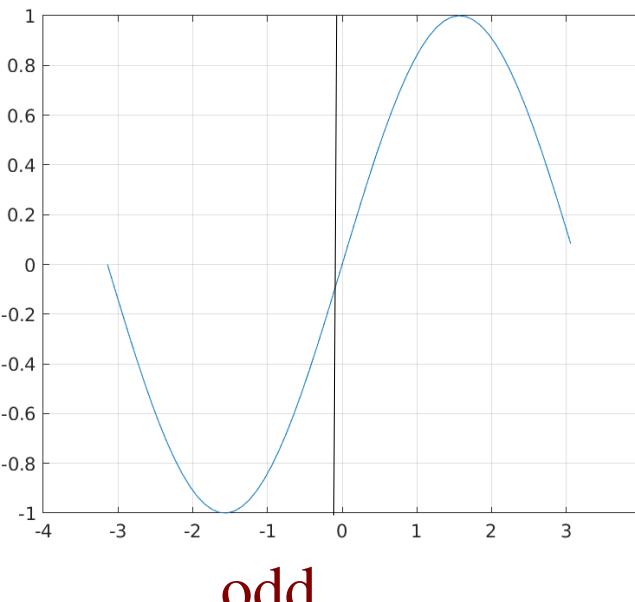
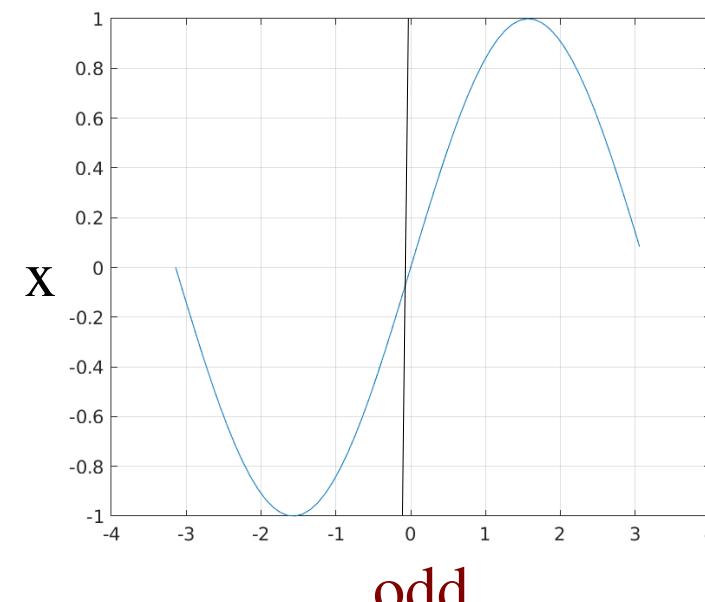
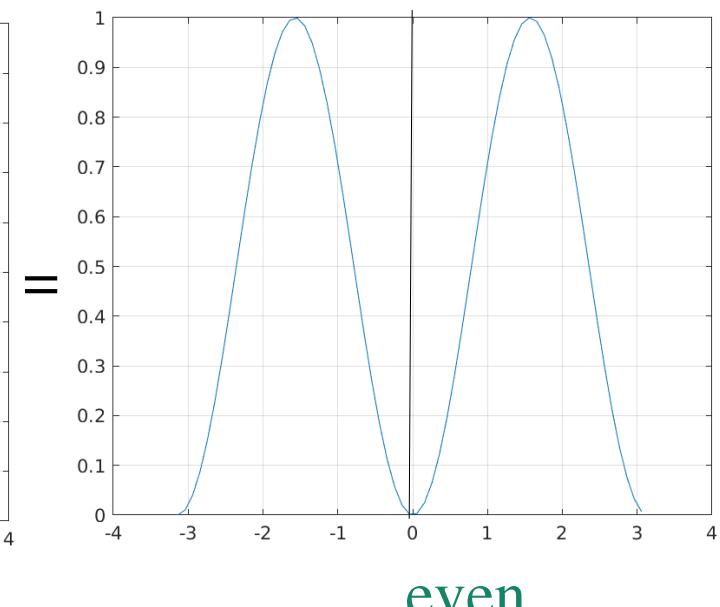
Some examples of even functions are, $h(t) = \cos(t)$ and $h(t) = t^2$.



Odd, Even, and Periodic Functions

Property 24.7 (Odd and Even Functions). *Here are some properties related to odd and even functions,*

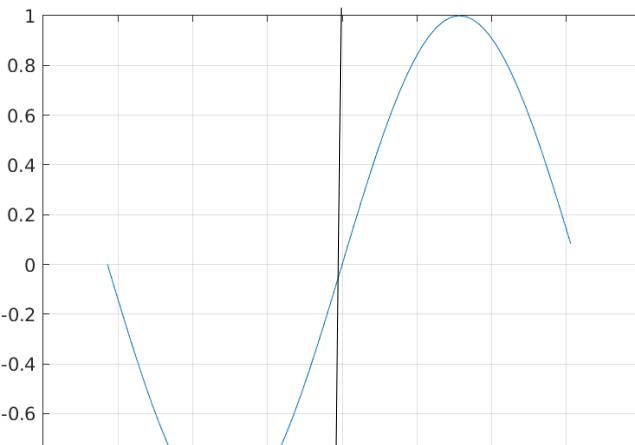
- *odd function \times odd function = even function*
- *odd function \times even function = odd function*
- *even function \times even function = even function*



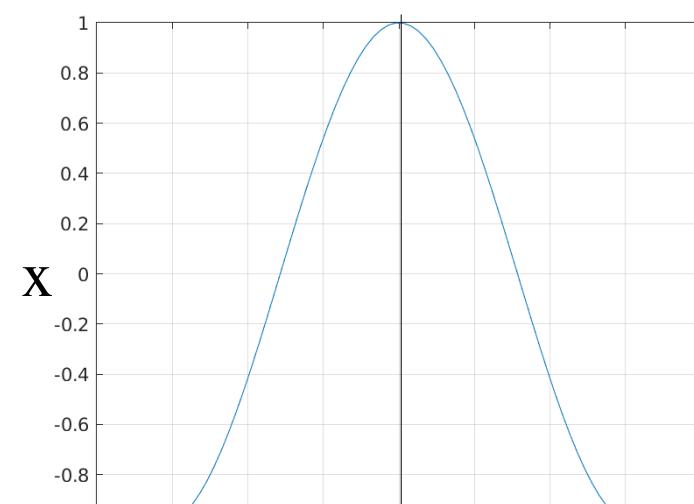
Odd, Even, and Periodic Functions

Property 24.7 (Odd and Even Functions). *Here are some properties related to odd and even functions,*

- *odd function \times odd function = even function*
- *odd function \times even function = odd function*
- *even function \times even function = even function*

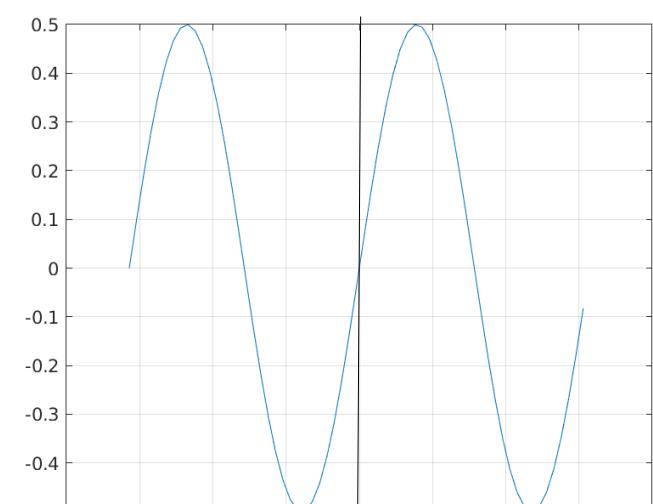


odd



even

=

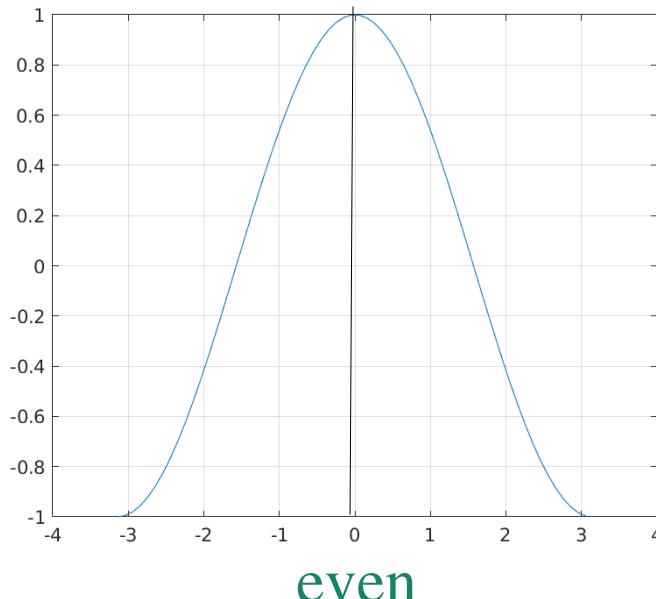
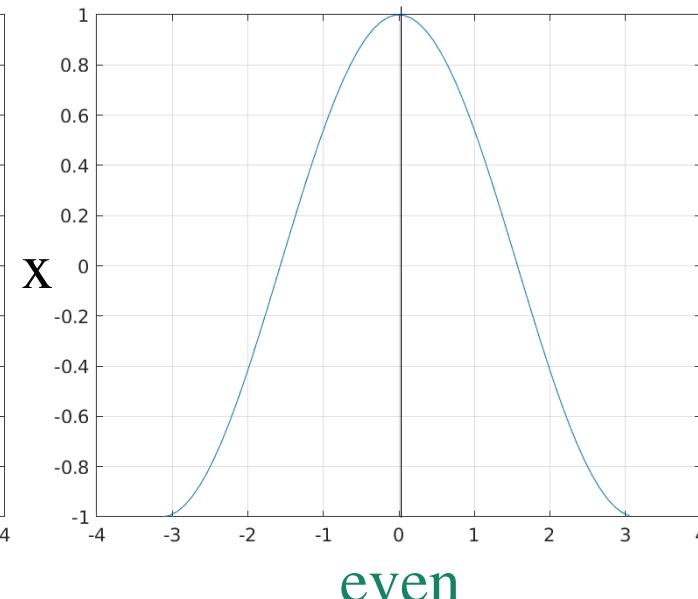
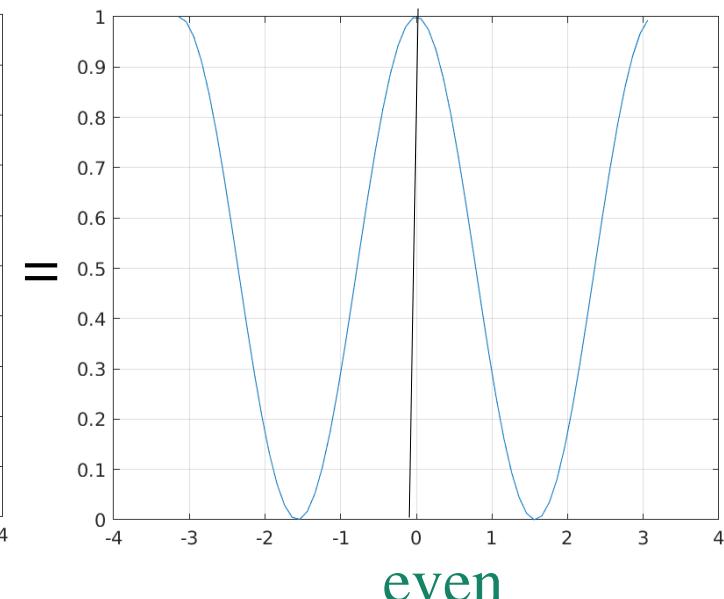


odd

Odd, Even, and Periodic Functions

Property 24.7 (Odd and Even Functions). *Here are some properties related to odd and even functions,*

- *odd function \times odd function = even function*
- *odd function \times even function = odd function*
- *even function \times even function = even function*



Odd, Even, and Periodic Functions

Definition 24.29 (Periodic Function). *Let s be a variable in the Domain $\mathcal{D} \subset \mathbb{C}$. Also, let $\tilde{\lambda}$ be a constant where $\tilde{\lambda} \neq 0$ and such that $s + \tilde{\lambda} \in \mathcal{D}$. A function $H(s)$ is said to be periodic with period $\tilde{\lambda}$ if $H(s) = H(s + \tilde{\lambda}) \forall s \in \mathcal{D}$.*

Definition 24.30 (Periodic Extension of a Function). *Let $h(t), t \in \mathbb{R}$ be defined in an interval $t_0 \leq t < t_0 + \tilde{\lambda}$, then the periodic extension of $h(t)$, $\tilde{h}(\tau)$ is defined as a function defined in $-\infty < \tau < \infty$ where $\tilde{h}(t + n\tilde{\lambda}) = h(t), t_0 \leq t < t_0 + \tilde{\lambda}; -\infty < n < \infty$.*

This is essentially the collection of $h(t)$ and its copies which have been shifted by $n\tilde{\lambda}, n = 1, 2, \dots$ to the right and to the left. The periodic extension is a useful notion for doing manipulations on functions where the function is expected to be periodic, such as the Fourier Series expansion

Complex Variables: Differentiation

Definition 24.31 (Differentiation of Functions of Complex Variables). *Let $H(s)$ be a single-valued function of $s : s \in \mathcal{D} \subset \mathbb{C}$. Let s_0 be any fixed point in domain \mathcal{D} . Then, $H(s)$ is said to have a derivative at point s_0 if the limit in Equation 24.70 exists.*

$$\frac{dH(s)}{ds} \Big|_{s=s_0} = \lim_{s \rightarrow s_0} \frac{H(s) - H(s_0)}{s - s_0} \quad (24.70)$$

Complex Variables: Differentiation

Property 24.8 (Differentiation of Functions of Complex Variables). *The formal rules for the differentiation of functions of complex variables are similar to those for functions of real variables. If $s \in \mathbb{C}$, c is a constant such that $c \in \mathbb{C}$, and $G(s)$ and $H(s)$ are functions of s defined in \mathbb{C} , then,*

$$\frac{dc}{ds} = 0 \quad \frac{ds}{ds} = 1$$

$$\frac{d[H(s) \pm G(s)]}{ds} = \frac{dH(s)}{ds} \pm \frac{dG(s)}{ds} \quad \frac{d[H(s).G(s)]}{ds} = H(s) \frac{dG(s)}{ds} + G(s) \frac{dH(s)}{ds}$$

and assuming $G(s) \neq 0$,

$$\frac{d \left[\frac{H(s)}{G(s)} \right]}{ds} = \frac{G(s) \frac{dH(s)}{ds} - H(s) \frac{dG(s)}{ds}}{G(s)^2}$$

Also, the chain rule still holds in the complex domain, namely,

$$\begin{aligned} w &\stackrel{\Delta}{=} H(\eta) \\ &= H(G(s)) \end{aligned} \implies \frac{dw}{ds} = \frac{dw}{d\eta} \frac{d\eta}{ds}$$

Complex Variables: Partial Differentiation

Definition 24.32 (Partial Differentiation Notation). *If $u(\xi_1, \xi_2, \dots, \xi_n)$ is a function of n variables, then the following shorthand derivative notation is used,*

$$\text{Partial Derivatives, } u_{\xi_i} \triangleq \frac{\partial u(\xi_1, \xi_2, \dots, \xi_n)}{\partial \xi_i}$$

$$\text{Partial Second Derivatives, } u_{\xi_i \xi_j} \triangleq \frac{\partial^2 u(\xi_1, \xi_2, \dots, \xi_n)}{\partial \xi_i \partial \xi_j}$$

$$\begin{aligned} \text{Laplacian, } \nabla^2 u &\triangleq \sum_{i=1}^n u_{\xi_i \xi_i} \\ &= \sum_{i=1}^n \frac{\partial^2 u(\xi_1, \xi_2, \dots, \xi_n)}{\partial \xi_i^2} \end{aligned}$$

Complex Variables: Laplace's Equation

Definition 24.33 (Laplace's Equation). *Laplace's equation states that*

$$\nabla^2 u(\xi_1, \xi_2, \dots, \xi_n) = 0$$

It describes many states of nature including steady-state heat conduction and potentials such as gravitation and electric potential.

Complex Variables: Analyticity (shows up in the Residue Theorem)

Definition 24.34 (Analytic Function). A function of a complex variable, $H(s)$ where $s \in \mathcal{D} \subset \mathbb{C}$, is said to be analytic in an interval $[a, b]$ if it is single valued in that domain (only has one value for each point in the domain) and if all its derivatives, $\frac{d^n H(s)}{ds^n} : n \geq 0$, exist at every point of the domain. In addition, an analytic function may be completely described in terms of power series in a Domain $\mathcal{D} \subset \mathbb{C}$.

If the function satisfies the *Cauchy-Riemann conditions* at each point in the domain, then the existence of the derivatives may be relaxed to only the existence of the first derivative.

An *Analytic function* is also known as a *Holomorphic or Regular function*.

Complex Variables: Analyticity

Definition 24.35 (Pointwise Analyticity of Functions). *A function $H(s)$ is said to be analytic at point s_0 if $H(s)$ is analytic in neighborhood of s_0 .*

Complex Variables: Analyticity

Theorem 24.4 (Relation between existence of derivative and continuity). *If a function of a complex variable, $H(s)$ where $s \in \mathbb{C}$, has a derivative at $s_0 \in \mathbb{C}$, then it is continuous at s_0 . All analytic functions are continuous.*

Proof:

$$\begin{aligned}\lim_{s \rightarrow s_0} [H(s) - H(s_0)] &= \lim_{s \rightarrow s_0} (s - s_0) \lim_{s \rightarrow s_0} \left[\frac{H(s) - H(s_0)}{(s - s_0)} \right] \\ &= 0 \times \frac{dH(s)}{ds} \Big|_{s=s_0} \\ &= 0\end{aligned}$$

Hence,

$$\begin{aligned}\lim_{s \rightarrow s_0} H(s) &= \lim_{s \rightarrow s_0} [H(s_0) + (H(s) - H(s_0))] \\ &= H(s_0)\end{aligned}$$

which is just the definition of continuity (see Definition 24.12)

$$\lim_{t \rightarrow t_0} h(t) = h(t_0)$$

□

Continuity does not imply Analyticity

Example: $H(s) = |s|^2 \quad \forall s \in \mathbb{C}$

$$\begin{aligned} G(s) &\triangleq \frac{H(s) - H(s_0)}{s - s_0} \\ &= \frac{|s|^2 - |s_0|^2}{s - s_0} \quad \forall (s \neq s_0) \\ &= \frac{s\bar{s} - s_0\bar{s}_0}{s - s_0} \\ &= \bar{s} + s_0 \left[\frac{\bar{s} - \bar{s}_0}{s - s_0} \right] \end{aligned}$$

$$\begin{aligned} \rho e^{i\theta} &\equiv s - s_0 \\ &= \rho(\cos(\theta) + i\sin(\theta)) \\ G(s) &= \bar{s} + \frac{s_0 \rho e^{-i\theta}}{\rho e^{i\theta}} \\ &= \bar{s} + s_0 e^{-i(2\theta)} \\ G(s) &= \frac{H(s) - H(s_0)}{s - s_0} \\ &= \bar{s} + s_0 [\cos(2\theta) - i\sin(2\theta)] \end{aligned}$$

Polar Coordinates

Consider two different ways $s \rightarrow s_0$ in the complex plane \mathbb{C} ,

1. $s \rightarrow s_0$ along $\theta = 0 \implies G(s) = \bar{s}_0 + s_0$
2. $s \rightarrow s_0$ along $\theta = \frac{\pi}{4}$ rad. $\implies G(s) = \bar{s}_0 - s_0$

Therefore, in general the limit, hence the derivative, does not exist unless $s_0 = 0$ where $G(s) = \bar{s}_0 = 0$. This implies that although $H(s) = |s|^2$ exists everywhere and hence is continuous, it is not analytic since its derivative does not exist except at $s = 0$.

Cauchy-Riemann Conditions

Definition 24.36 (Cauchy-Riemann Conditions). *If $H(s)$ may be written in its real and imaginary components, namely,*

$$H(s) \equiv U(\sigma, \omega) + iV(\sigma, \omega)$$

Then, the Cauchy-Riemann conditions dictate that,

$$U_\sigma = V_\omega$$

$$U_\omega = -V_\sigma$$

Cauchy-Riemann Theorem

Theorem 24.5 (Cauchy-Riemann Theorem). *A necessary condition for a function, $H(s) = U(\sigma, \omega) + iV(\sigma, \omega)$ to be analytic in a domain $\mathcal{D} \subset \mathbb{C}$ is that the four partial derivatives, $U_\sigma, U_\omega, V_\sigma$, and V_ω exist and satisfy the Cauchy-Riemann conditions at each point in \mathcal{D} .*

Proof:

Let $s_0 = \sigma_0 + i\omega_0$ be any fixed point in domain \mathcal{D} . Then,

$$\begin{aligned}\left. \frac{dH(s)}{ds} \right|_{s=s_0} &= \lim_{s \rightarrow s_0} \frac{H(s) - H(s_0)}{s - s_0} \\ &= \lim_{s \rightarrow s_0} \frac{\Delta H(s)}{\Delta s}\end{aligned}$$

Cauchy-Riemann Theorem

Proof (Continued): Consider two paths along which $s \rightarrow s_0$,

1. Let $s \rightarrow s_0$ along a line parallel to the \mathbb{R} -axis, i.e. along $\omega = \omega_0$. Therefore,

$$\begin{aligned}s - s_0 &= \sigma + i\omega_0 - \sigma_0 - i\omega_0 \\&= \sigma - \sigma_0 \\&= \Delta\sigma\end{aligned}$$

$$\begin{aligned}\frac{dH(s)}{ds} \Bigg|_{\substack{s \rightarrow s_0 \\ \omega = \omega_0}} &= \lim_{\Delta\sigma \rightarrow 0} \frac{U(\sigma_0 + \Delta\sigma, \omega_0) - U(\sigma_0, \omega_0)}{\Delta\sigma} + \\&\quad i \lim_{\Delta\sigma \rightarrow 0} \frac{V(\sigma_0 + \Delta\sigma, \omega_0) - V(\sigma_0, \omega_0)}{\Delta\sigma} \\&= U_\sigma(\sigma_0, \omega_0) + iV_\sigma(\sigma_0, \omega_0)\end{aligned}$$

Cauchy-Riemann Theorem

Proof (Continued): Consider two paths along which $s \rightarrow s_0$,

2. Let $s \rightarrow s_0$ along a line parallel to the \mathbb{I} -axis, i.e. along $\sigma = \sigma_0$. Therefore,

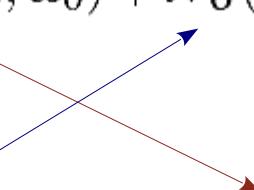
$$\begin{aligned}s - s_0 &= \sigma_0 + i\omega - \sigma_0 - i\omega_0 \\&= i(\omega - \omega_0) \\&= i\Delta\omega\end{aligned}$$

$$\begin{aligned}\left. \frac{dH(s)}{ds} \right|_{\substack{s \rightarrow s_0 \\ \sigma = \sigma_0}} &= \lim_{\Delta\omega \rightarrow 0} \frac{U(\sigma_0, \omega_0 + \Delta\omega) - U(\sigma_0, \omega_0)}{i\Delta\omega} + \\&\quad i \lim_{\Delta\omega \rightarrow 0} \frac{V(\sigma_0, \omega_0 + \Delta\omega) - V(\sigma_0, \omega_0)}{i\Delta\omega} \\&= \frac{U_\omega(\sigma_0, \omega_0)}{i} + V_\omega(\sigma_0, \omega_0) \\&= -iU_\omega(\sigma_0, \omega_0) + V_\omega(\sigma_0, \omega_0)\end{aligned}$$

Cauchy-Riemann Theorem

Proof (Continued):

Consider two paths along which $s \rightarrow s_0$,

$$\begin{aligned}\frac{dH(s)}{ds} \Bigg|_{\substack{s \rightarrow s_0 \\ \omega = \omega_0}} &= U_\sigma(\sigma_0, \omega_0) + iV_\sigma(\sigma_0, \omega_0) \\ \frac{dH(s)}{ds} \Bigg|_{\substack{s \rightarrow s_0 \\ \sigma = \sigma_0}} &= -iU_\omega(\sigma_0, \omega_0) + V_\omega(\sigma_0, \omega_0)\end{aligned}$$


If $\frac{dH(s)}{ds}|_{s \rightarrow s_0}$ exists, the expressions should be identical.

$$U_\sigma(\sigma_0, \omega_0) = V_\omega(\sigma_0, \omega_0)$$

$$U_\omega(\sigma_0, \omega_0) = -V_\sigma(\sigma_0, \omega_0)$$

which are the Cauchy-Riemann conditions

□

Alternative Cauchy-Riemann Theorem

Theorem 24.6 (Alternate Cauchy-Riemann Theorem). *Another way of stating Theorem 24.5 is that a necessary condition for a function, $H(s) = U(\sigma, \omega) + iV(\sigma, \omega)$ to be analytic in a domain $\mathcal{D} \subset \mathbb{C}$ is that the Laplace's Equation (see Equation 24.81) be satisfied for both Real and Imaginary parts of $H(s)$, namely,*

$$\nabla^2 U(\sigma, \omega) = 0$$

$$\nabla^2 V(\sigma, \omega) = 0$$

Proof:

Let us consider the Cauchy-Riemann conditions. If we take $\frac{\partial}{\partial \sigma}$ and $\frac{\partial}{\partial \omega}$ of

$$U_\sigma = V_\omega$$

$$U_\omega = -V_\sigma$$

and add the two resulting Equations together we get,

$$U_{\sigma\sigma} + U_{\omega\omega} = \underbrace{V_{\omega\sigma} - V_{\sigma\omega}}_0 \quad \text{or} \quad \nabla^2 U(\sigma, \omega) = 0$$

Alternative Cauchy-Riemann Theorem

Proof (Continued):

Similarly, if we take $\frac{\partial}{\partial\omega}$ and $\frac{\partial}{\partial\sigma}$ of

$$U_\sigma = V_\omega$$

$$U_\omega = -V_\sigma$$

and add the two resulting Equations together we get,

$$\underbrace{U_{\sigma\omega} - U_{\omega\sigma}}_0 = V_{\sigma\sigma} + V_{\omega\omega} \quad \text{or} \quad \nabla^2 V(\sigma, \omega) = 0$$

Cauchy-Riemann Theorem

Theorem 24.7 (Necessary and Sufficient Cauchy-Riemann Theorem (General Analyticity)). *A necessary and sufficient condition for a function, $H(s) = U(\sigma, \omega) + iV(\sigma, \omega)$ to be analytic in a domain $\mathcal{D} \subset \mathbb{C}$ is that the four partial derivatives, $U_\sigma, U_\omega, V_\sigma$, and V_ω exist, be continuous in domain \mathcal{D} , and satisfy the Cauchy-Riemann conditions (see Definition 24.36) at each point in \mathcal{D} .*

See the book for the proof.

Analyticity of the Exponential Function

Theorem 24.8 (Analyticity of the Exponential Function). *The Exponential function, e^s is analytic.*

Proof:

$$H(s) = e^s = \underbrace{e^\sigma \cos(\omega)}_U + i \underbrace{e^\sigma \sin(\omega)}_V$$

Let us write the four partial derivatives of $H(s)$,

$$U_\sigma = e^\sigma \cos(\omega)$$

$$U_\omega = -e^\sigma \sin(\omega)$$

$$V_\sigma = e^\sigma \sin(\omega)$$

$$V_\omega = e^\sigma \cos(\omega)$$

All four partial derivatives are continuous and are defined in the \mathbb{C} plane. Also, the Cauchy-Riemann conditions are satisfied. Therefore, $H(s) = e^s$ is analytic everywhere. \square

Analyticity of the Trigonometric Functions

$$\sin(s) \triangleq \frac{e^{is} - e^{-is}}{2i}$$

$$\cos(s) \triangleq \frac{e^{is} + e^{-is}}{2}$$

$$\csc(s) \triangleq \frac{1}{\sin(s)}$$

$$\sec(s) \triangleq \frac{1}{\cos(s)}$$

$$\tan(s) \triangleq \frac{\sin(s)}{\cos(s)}$$

$$\cot(s) \triangleq \frac{\cos(s)}{\sin(s)}$$

All these functions are analytic everywhere in the \mathbb{C} plane. $\sin(s)$ and $\cos(s)$ are periodic with period 2π . Except for a finite point in the domain in some cases.

Prove for Homework

Cauchy Integral Theorem

Theorem 24.11 (Cauchy Integral Theorem).

- *Simply Connected Domains:*

Let $H(s)$ be analytic in a simply connected Domain $\mathcal{D} \subset \mathbb{C}$ and let Γ be any closed contour in \mathcal{D} . Then,

$$\oint_{\Gamma} H(s) ds = 0 \quad (24.134)$$

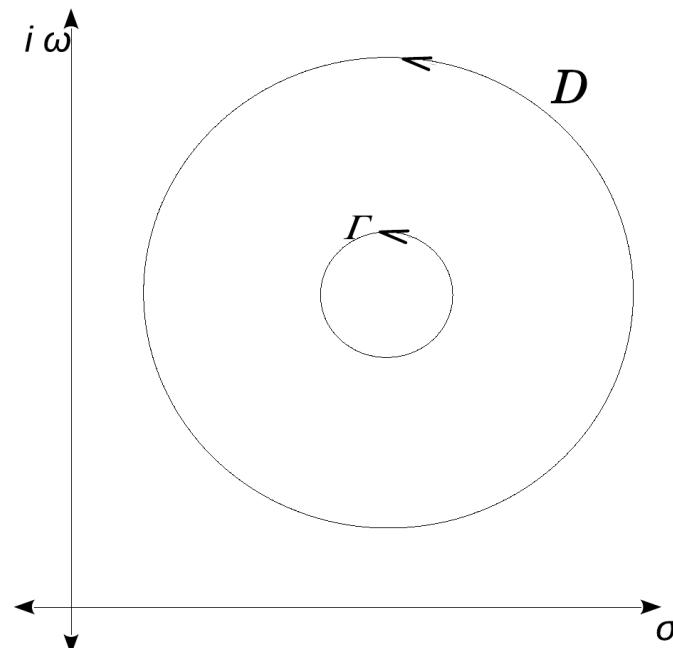


Fig. 24.10: Simply Connected Domain

Cauchy Integral Theorem

Theorem 24.11 (Cauchy Integral Theorem).

- *Multiply Connected Domains:*

Let $\Gamma, \Gamma_1, \Gamma_2, \dots, \Gamma_n$ be simple closed contours, each described in the positive (counter clockwise) direction and such that each Γ_j is inside Γ and outside $\Gamma_k \forall j \neq k; j, k = \{1, 2, \dots, n\}$. See Figure 24.12.

Let $H(s)$ be analytic on each of the contours Γ and $\Gamma_j, j = \{1, 2, \dots, n\}$ and at each point interior to Γ and exterior to all the $\Gamma_j, j = \{1, 2, \dots, n\}$. Then, the contour integral which contains all the said analytic points of $H(s)$ is zero, namely,

$$\oint_{\Gamma} H(s)ds + \oint_{\Gamma_1} H(s)ds + \oint_{\Gamma_2} H(s)ds + \oint_{\Gamma_3} H(s)ds + \dots + \oint_{\Gamma_n} H(s)ds = 0$$

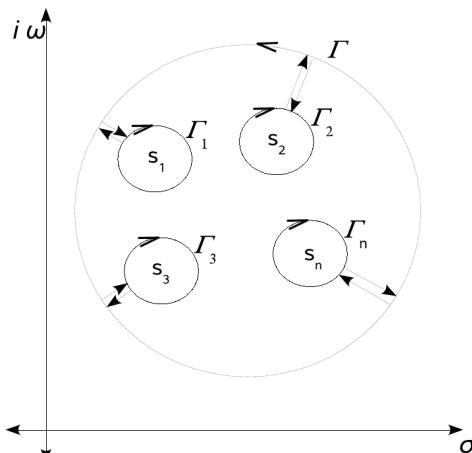


Fig. 24.11: Integration Path of Multiply Connected Contours

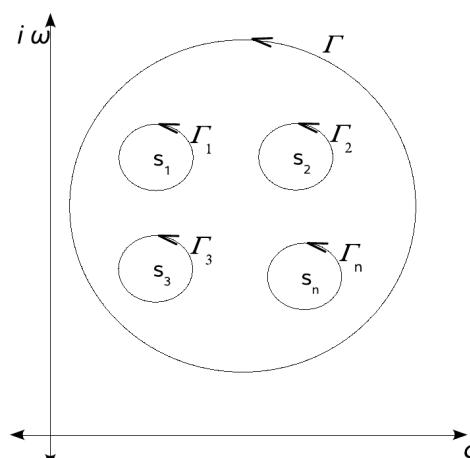


Fig. 24.12: Individual Contour Paths Used by the Cauchy Integral Theorem

Cauchy Integral Theorem

Theorem 24.11 (Cauchy Integral Theorem).

$$\oint_{\Gamma} H(s)ds + \oint_{\Gamma_1} H(s)ds + \oint_{\Gamma_2} H(s)ds + \oint_{\Gamma_3} H(s)ds + \cdots + \oint_{\Gamma_n} H(s)ds = 0$$

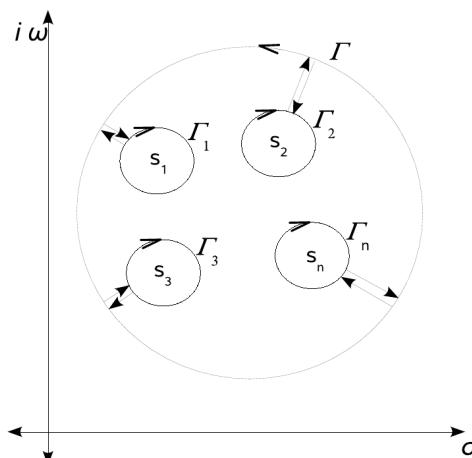


Fig. 24.11: Integration Path of Multiply Connected Contours

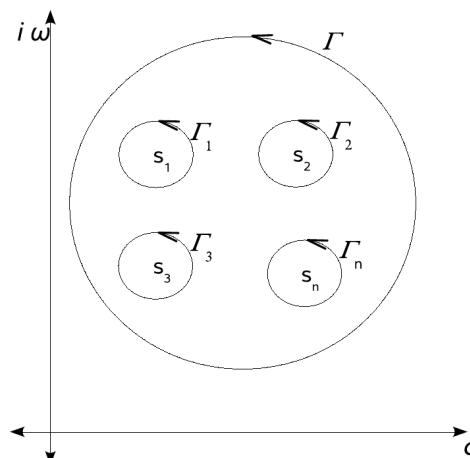


Fig. 24.12: Individual Contour Paths Used by the Cauchy Integral Theorem

Changing the direction of integration for contours $\Gamma_j, j = \{1, 2, \dots, n\}$,

$$\begin{aligned} \oint_{\Gamma} H(s)ds &= \oint_{\Gamma_1} H(s)ds + \oint_{\Gamma_2} H(s)ds + \oint_{\Gamma_3} H(s)ds + \cdots + \oint_{\Gamma_n} H(s)ds \\ &= \sum_{j=1}^n \oint_{\Gamma_j} H(s)ds \end{aligned}$$

Morera's Theorem

Theorem 24.14 (Morera's Theorem (Converse of Cauchy's Integral Theorem)).
If $H(s)$ is continuous in a Domain $\mathcal{D} \subset \mathbb{C}$ and if, $\oint_{\Gamma} H(s)ds$ is zero for every closed contour, Γ , then $H(s)$ is analytic.

Power Series Expansion of Functions

Definition 24.42 (Taylor Series (Expansion of an analytic function into a Power Series)). Let $H(s)$ be analytic within the interior of a circular Domain $\mathcal{D} \subset \mathbb{C}$ with center s_0 and radius ρ , i.e. $\mathcal{D} = \{s : |s - s_0| \leq \rho\}$. Then, at each point s interior to \mathcal{D} , the function $H(s)$ may be written in terms of the following power series,

$$H(s) = \sum_{n=0}^{\infty} a_n (s - s_0)^n \quad \text{where, } a_n = \frac{1}{2\pi i} \oint_C \frac{H(\zeta)}{(\zeta - s_0)^{n+1}} d\zeta \quad n = \{0, 1, 2, \dots\}$$

Recall,

$$H(s) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n H(s)}{ds^n} \bigg|_{s=s_0} (s - s_0)^n$$

*Taylor series expansion of
 $H(s)$ about $s=s_0$*

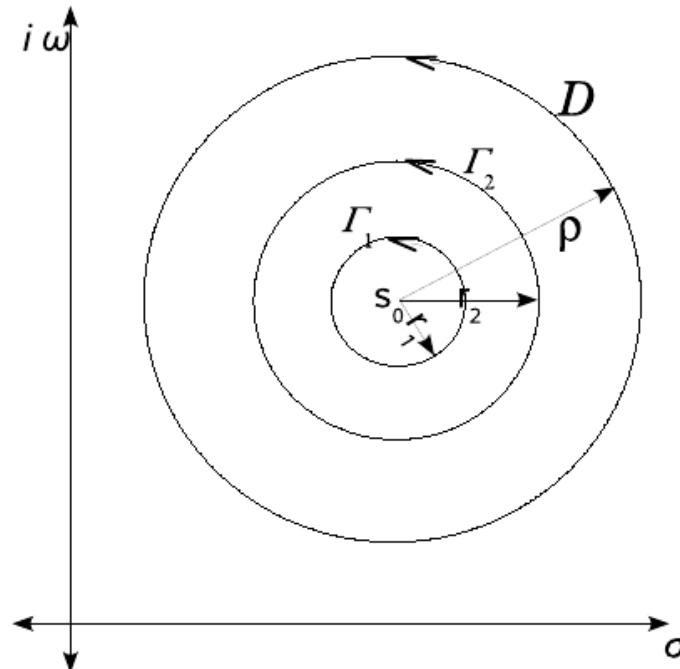
*Consequence of Cauchy Integral
Formula for the n^{th} derivative*

$$\left. \frac{d^n H(s)}{ds^n} \right|_{s=s_0} = \frac{n!}{2\pi i} \oint_{\Gamma} \frac{H(\zeta)}{(\zeta - s_0)^{n+1}} d\zeta$$

Taylor Series Expansion – Continued

$$H(s) = \sum_{n=0}^{\infty} a_n (s - s_0)^n \quad \text{where, } a_n = \frac{1}{2\pi i} \oint_C \frac{H(\zeta)}{(\zeta - s_0)^{n+1}} d\zeta \quad n = \{0, 1, 2, \dots\}$$

Moreover, the series converges uniformly (Definition 24.69) for points within and on any circle Γ with center at s_0 and radius $r < \rho$ where ρ is the radius of convergence. Given any center s_0 , the radius of convergence, ρ , is the distance from s_0 to the nearest singularity of the function.



N.B. When $s_0 = 0$, the Taylor Series is known as the McLauren series.

Radius of Convergence of Taylor Series (*Examples*)

Infinite Radius of Convergence

The radius of convergence of $H(s) = e^s$ is $\rho = \infty$ for any center s_0 .

Radius of Convergence

If the center of the domain Γ is taken to be $s_0 = 0$, then the radius of convergence of

$$H(s) = \frac{e^s}{s-1} \text{ will be } \rho = 1.$$

Laurent Series

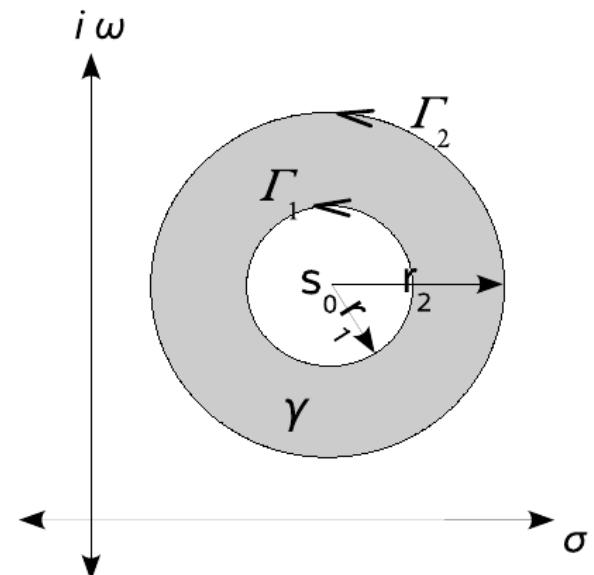
Definition 24.43 (Laurent Series (Expansion of analytic functions in an Annular Region)). Let Υ be an annular region bounded by two concentric circles, Γ_1 and Γ_2 (see Figure 24.14) with centers at s_0 and radii r_1 and r_2 where $r_1 < r_2$. Let $H(s)$ be analytic within Υ and on Γ_1 and Γ_2 . Then at each point in the interior of Υ , $H(s)$ can be represented by a convergent power series consisting of both positive and negative powers of $(s - s_0)$ as follows,

$$H(s) = \sum_{n=0}^{\infty} a_n (s - s_0)^n + \sum_{n=1}^{\infty} b_n (s - s_0)^{-n}$$

$$a_n = \frac{1}{2\pi i} \oint_{\Gamma_2} \frac{H(\zeta)}{(\zeta - s_0)^{n+1}} d\zeta \quad n = \{0, 1, 2, \dots\}$$

$$b_n = \frac{1}{2\pi i} \oint_{\Gamma_1} \frac{H(\zeta)}{(\zeta - s_0)^{-n+1}} d\zeta \quad n = \{1, 2, \dots\}$$

N.B. $b_1 = \frac{1}{2\pi i} \oint_{\Gamma_1} H(\zeta) d\zeta$ is the residue of $H(s)$ at $s = s_0$.



Taylor Series expansion is a special case of the Laurent Series where $r_1 \rightarrow 0$.

Uniqueness of Power Series

Property 24.10 (Uniqueness of Power Series). *If two power series, $\sum_{n=0}^{\infty} a_n(s - s_0)^n$ and $\sum_{n=0}^{\infty} b_n(s - s_0)^n$ both converge to the same function $H(s)$, in the same neighborhood of s_0 , $|s - s_0| < \rho$, then the two series are identical. i.e. $a_n = b_n \ \forall n = \{0, 1, 2, \dots\}$.*

Addition and Multiplication of Power Series

Property 24.11 (Addition and Multiplication of Power Series). *If two power series, $G(s) = \sum_{n=0}^{\infty} a_n(s - s_0)^n$ and $H(s) = \sum_{n=0}^{\infty} b_n(s - s_0)^n$ both converge with nonzero convergence radii r_1 and r_2 respectively, such that, $r_1 \leq r_2$, then,*

$$G(s) \pm H(s) = \sum_{n=0}^{\infty} (a_n \pm b_n)(s - s_0)^n \quad \text{where } |s - s_0| < r_1$$

and

$$G(s) \cdot H(s) = \sum_{n=0}^{\infty} (c_n)(s - s_0)^n \quad \text{where } c_n = \sum_{k=0}^n a_k b_{n-k}$$
$$|s - s_0| < r_1$$
$$n = \{0, 1, 2, \dots\}$$

Division of Power Series

Property 24.12 (Division of Power Series). Consider the two power series $G(s)$ and $H(s)$ of Property 24.11. If $H(s) \neq 0$, then there exists a power series $\sum_{n=0}^{\infty} c_n(s - s_0)^n$ and a number $\zeta > 0$ such that

$$\frac{G(s)}{H(s)} = \sum_{n=0}^{\infty} c_n(s - s_0)^n \quad \forall \quad |s - s_0| < \zeta$$

where the coefficients c_n satisfy the following equations

$$a_n = \sum_{k=0}^n c_k b_{n-k} \quad b_n = \sum_{k=0}^n c_k a_{n-k}$$

Zeros and Poles of a Function

Definition 24.44 (Zeros of a Function). A point s_0 is called a zero of order r of $H(s)$ if

$$\lim_{s \rightarrow s_0} [(s - s_0)^{-r} H(s)] = M \quad \text{where } M \neq 0 \wedge M < \infty$$

Definition 24.45 (Isolated Singularities and Poles of a Function). A point s_0 is called an isolated singularity or an isolated singular point of $H(s)$ if $H(s)$ is not analytic at s_0 , but it is analytic in a deleted neighborhood of s_0 . s_0 is also called a pole of order r of function $H(s)$ if,

$$\lim_{s \rightarrow s_0} [(s - s_0)^r H(s)] = M \quad \text{where } M \neq 0 \wedge M < \infty$$