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Continuity

Definition 24.12 (Continuity of Functions). IfV € > 0 36(€&) > 0 such that
0 < |t—1to] <& = |h(t)— h(to)| < &, then, h(t) is continuous at t = to, or

lim A(t) = h(ty)

I—rlp

The function h(t) is a continuous function if it is continuous for all t,.

Used later for defining Analytic Functions

Definition 24.13 (Discontinuous Functions). A function h(t) is discontinuous if
for some ty,

lim A(t) # h(ty)

I—lpy

A function may be discontinuous at a point ty for two main reasons:

1. h(t) may not approach any limit as t — t.
2. h(t) may approach a limit different from h(ty).

Let us classify the different points of discontinuity.

Copyright: Homayoon Beigi Sep 24, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Removable Discontinuity

Definition 24.14 (Removable Discontinuity). When lim h(t) exists, i.e.,

I—p

limh(1) = lim A(t) = lim h(z) (24.35)

f—tp =y =y,

but is not equal to h(ty) or h(ty) is not defined, then ty is a point of removable dis-
continuity. ie, It may be deifned such that the discontinuity is removed.

Sample Application: Sampling Theorem allows for a finite number of
Removable Discontinuities
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Removable Discontinuity (Example)

h(f) = (f —1‘{]) sin (ﬁ) h[:f[}I } = h{f{} ), but h{!{}:] is not defined.

Here, we may postulate that h(tg) = 0 and then h(t) becomes continuous.

0.4

Point of ordinary discontinuity at =1, =2
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Ordinary Discontinuity (Example)
Definition 24.15 (Ordinary Discontinuity). In cases where h(ty: ) # hity- ), re-

gardless of the definition of h(ty), to becomes a point of ordinary discontinuity.

1.8+
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Point of ordinary discontinuity att =1y =2
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Ordinary Discontinuity (Example)
sin(f)

The following function has an ordinary discontinuity att =0, h(t) =

Using [’Hopital’s rule and replacing
|f| with +t and -t respectively.

sin(t sin(t
lim () = lim ) =
t—0+ |f| t—0t 1
sin(t sin(¢
lim ()=lim ()=—1 -
t—0- |f| t—0- —t =
. sin(t . sin(t
lim ) lim )
t—0+ |t t—0- |t
Namely, the limit does not exist. _
-10 -8 -6 —Jli -2 (IJ é 4I' E'I3 8 10
t
Point of ordinary discontinuity att =1y =0 (h(t) = 1|“T[|LJ)
Sep 24, 2025
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Infinite Discontinuity

Definition 24.15 (A Point of Infinite Discontinuity). The following are the differ-
ent cases of infinite discontinuities,

1. h(tg+) = h(t- ) = too

2. h(ty+) = +ooand h(ty-) = —eo
3. h(ty+) = too and h(ty- ) exists
4. h(ty+)

ty+ ) exists and h(ty-) = too
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Point of Oscillatory Discontinuity

Definition 24.17 (A Point of Oscillatory Discontinuity). An oscillatory disconti-
nuity sy is one where no matter how small the € neighborhood of so {s: |s —so| < €}
is made, the value of s oscillates to different values with function H(s) not being de-
fined at the exact value of sy, but it may be defined in its neighborhood (it is defined
for the Finite Amplitude version — see below).

The following are the different kinds of oscillatory discontinuities,

1
r—1Ip

1. Finite Amplitude: h(t) = sin (
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Point of Oscillatory Discontinuity at r = g = 0 for h(t) = sin (
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Point of Oscillatory Discontinuity

2. Infinite Amplitude:
In this case, in addition to the oscillatory nature of the discontinuity sq, the value

of the function will approach infinity in the neighborhood of the singularity. An
example is,

)= Gy o (ﬁ)
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Continuity in an Interval

Definition 24.17 (Continuity of a Function in an Interval). A function h(t) is said
to be continuous in an interval |a,b] if

\

: - [.] means closed interval
fllﬂh{f) h(.tg) b (.) means open interval
lim h(r) = h(a)
t—a™
lim h(t) = h(b)

t—b—
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Boundedness

Definition 24.18 (Boundedness). A function h(t) is bounded in an interval [a, b, if
IM : |h(t)] < MYte€la,b].

Property 24.6 (Boundedness of a Continuous Function). A function h(t) which
is continuous in an interval |a,b|, is bounded.
Proof.

If a function is continuous in an interval [a, b|, then by definition of continuity,
a small change, 0, in ¢t can only cause a small change, € in h(t),

therefore, in the finite interval |a, b] where
max |t —tg| =b—a

a=r=h
L!“i:.rﬂ <h

|t —to| is bounded, so M : M < o so that max \h(t) —h(ty)| <M
ﬂ"'—f_};%b

Therefore, based on Definition, /(¢) is bounded in interval [a, b).
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Degree of Continuity
Definition 24.19 (Continuity Class (Degree of Continuity)). A function h(t) is

continuous with degree 1 if it is continuous and its first derivative is continuous.
First degree continuity is denoted as €',

If function h(t) is continuous and all its derivatives up to the n'"* derivative are

continuous, then the function is a €" continuous function. N.B., If a function has up
to n derivatives, then it is at least of continuity class "', namely all the derivatives

up to and including degree n — 1 are also continuous. ~ Sample Application: Fogel’s
Sampling Theorem

A class €° function is simply continuous.
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Degree of Continuity

Definition 24.20 (Smoothness). A function h(t) is smooth if it is continuous and
it has up to order o continuous derivatives, namely it is of class € continuous.
N.B. All analytic functions are smooth, but since there is a requirement that analytic
functions be determined completely by a power series, not all smooth functions are

analytic. An Analytic
function will be
defined soon.

Definition 24.21 (Piecewise Continuity). A function h(t) is piecewise continuous
if it is continuous at all points in an interval except a finite number of discontinuities

in that interval. Sample Application: Proof of Reconstruction of Sampling Theorem

Definition 24.22 (Piecewise Smoothness). A function h(t) is piecewise smooth if it
is piecewise continuous and its derivatives are piecewise continuous.
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Convexity and Concavity of Functions

Definition 24.23 (Convex Function). A real-valued function, h(t), which is contin-
uous in the closed interval {t : t € |a,b|}, is said to be convex if

h(aty+(1—a)r) < ah(ty)+ (1 —o)h(t2) Vi, 0 € [t:.!j b] and Vo € [0} 1] (24.46)
Note that a function which has a non-negative second derivative over the whole
interval, [a,b], is convex in that interval.

7

Applications: 6f i
Optimization Theory t, = atg + (1-a)ty
Probability Theory

f(t1) = ah(ty) + (1-a)h(t2)

Convex function = f(t1) > h(ty)

i I 1 1 I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C ight: H. Beigi
opyrig omayoon Beigi 0 t=01 1,204 t,=0.6 t b
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Convexity and Concavity of Functions

Definition 24.23 (Convex Function). A real-valued function, h(t), which is contin-
uous in the closed interval {t : t € |a,b|}, is said to be convex if

h(ato+(1—a)t) < oh(ty)+ (1 —a)h(r2) Vio,t2 € [a,b] and Va € [0,1] (24.46)

Repeated for
convenience

Definition 24.24 (Strictly Convex Function). A strictly convex function is defined
by Definition 24.23, such that the inequality in Equation 24.46 is changed to a strict
inequality, not allowing equality, except when {oc =0V o = 1}.

Note that a function which has a positive second derivative over the whole inter-
val, [a,b], is strictly convex in that interval.

Theorem 24.3 (Convex Function). A real-valued function, h(t), which is € I con-
tinuous in the closed interval {t : t € [a,b|}, is said to be convex if it has a non-

negative second derivative,
d*h(t
(t) > ()

dt>  —
Proof: See the textbook
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Convexity and Concavity of Functions
Definition 24.25 (Concave Function). A real-valued function, h(t), which is con-
tinuous in the closed interval {t : t € [a,b|}, is said to be concave if
h(&:f{] -+ (1 — (I)Ig) = &Ih(f{)) —I—(l — (I)h(fg) Vito,th € [a: b] and Vo € [U} 1] (24.63)

Note that a function, which has a non-positive second derivative over the whole
interval, [a,b], is concave in that interval.

a=0 lo=01 t1=0.4 t2=06 1 b=1
0 i T T T I
h(t,)
1E
ft,)
oL
S o
£
o t1 = atp + (1—(]{)1@2
T 4

f(t1) = ah(ty) + (1-a)h(ts)

-5

Concave function = f(t1) < h(t1)

-7 1 1 1 1 1 1 1 1 1
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Convexity and Concavity of Functions
Definition 24.25 (Concave Function). A real-valued function, h(t), which is con-
tinuous in the closed interval {t : t € [a,b|}, is said to be concave if

h(&:f{] -+ (1 — (I)Ig) = &Ih(f{)) —I—(l — (I)h(fg) Vito,th € [a: b] and Vo € [U} 1] (24.63)

Definition 24.26 (Strictly Concave Function). A strictly concave function is de-
fined by Definition 24.25, such that the inequality in Equation 24.63 is changed to a
strict inequality, not allowing equality, except when {00 =0V a = 1}.

Note that a function, which has a negative second derivative over the whole in-
terval, [a, b], is strictly concave in that interval.

These definition also work for gradients (vector) and
Hessians (second gradient matrix) in higher dimensions

Hessian (G) can be positive definite, negative definite, and positive/negative semi-definite
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Odd, Even, and Periodic Functions

Definition 24.27 (Odd Functions). A function h(t) is odd if h(—t) = —h(t) V t.
If h(t) is periodic with period 27, then oddness implies that,

'/'E h(t)dt =0

-

Some examples of odd functions are, h(t) = sin(t) and h(t) = t3

1 %10°
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Odd, Even, and Periodic Functions
Definition 24.28 (Even Functions). A function h(t) is even if h(—t) = h(t) V t.
If h(t) is periodic with period 2T, then evenness implies that,

/_Zh(r)d: = 2'/:}:(1)&

Some examples of even functions are, h(t) = cos(t) and h(t) = 1.
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Odd, Even, and Periodic Functions

Property 24.7 (Odd and Even Functions). Here are some properties related to
odd and even functions,

* odd function x odd function = even function
* odd function x even function = odd function
* even function X even function = even function

Copyright: Homayoon Beigi
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Odd, Even, and Periodic Functions

Property 24.7 (Odd and Even Functions). Here are some properties related to
odd and even functions,

* odd function x odd function = even function
* odd function x even function = odd function
* even function X even function = even function

1 ] T - ~ T T 1 0‘5 . .
0.8 \ | - | o4l \
'\I‘ I.
0-6 il 0.6 B 0.3+ \ \
\ ‘»
\ \
0.4+ \ 0.4 | 02t / I“.‘ \“
\ \ \ f \
L \ \ ‘
0.2 \ 0.2 \\ . 0.1} ] \ “.‘
\ \
0r \ B X 0 \\\ —_ ok / ‘.“ ‘.“
\ — \ \
0.2 ) \ "“ “‘
< \ 1 N 1 -0.1r \ \
\ 02 \
o4y 0.4 ] 202} \\ -\
L L '\‘ \
0.6 06+ 1 03 \ \
\ \
\
-0.8 08} 041 \ \\\
1 . S . 05 ‘ ‘ s ‘ ‘ ‘ ‘
-4 3 2 -1 0 1 2 3 4 1, 1 5 3 4 -4 3 2 -1 0 1 2 3 4

Copyright: Homayoon Beigi Sep 24, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Odd, Even, and Periodic Functions

Property 24.7 (Odd and Even Functions). Here are some properties related to
odd and even functions,

* odd function x odd function = even function
* odd function x even function = odd function
* even function X even function = even function
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Odd, Even, and Periodic Functions

Definition 24.29 (Periodic Function). Let s be a variable in the Domain & C C.
Also, let A be a constant where A # 0 and such that s+ A € 2. A function H(s) is
said to be periodic with period A if H(s) = H(s+A)Vs € 2.

Definition 24.30 (Periodic Extension of a Function). Let h(t),t € R be defined in
an interval t) <t <to+ A, then the periodic extension of h(t), E(T)ﬂi.{-‘ defined as a
function defined in —oo < T < cowhere h(t+nl) =h(t),tg <t <tg+A;—c0 <n < oo,

This is essentially the collection of h(t) and its copies which have been shifted by
ni n=1,2,.--to the right and to the left. The periodic extension is a useful notion
for doing manipulations on functions where the function is expected to be periodic,
such as the Fourier Series expansion
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Complex Variables: Differentiation

Definition 24.31 (Differentiation of Functions of Complex Variables). Let H (s)

be a single-valued function of s : s € & C C. Let so be any fixed point in domain
9. Then, H(s) is said to have a derivative at point s if the limit in Equation 24.70

exists.
dH (s H(s)—H(.
B 2 i H8) = H(s0) (24.70)
ds S8 s — 80

=430
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Complex Variables: Differentiation

Property 24.8 (Differentiation of Functions of Complex Variables). The formal
rules for the differentiation of functions of complex variables are similar to those

for functions of real variables. If s € C, c¢ is a constant such that ¢ € C, and G(s)
and H(s) are functions of s defined in C, then,

dc ds

R— — =1

ds . ds

d[H(s)£G(s)] dH(s) , dG(s) d[H(s).G(s)] . dG(s) L dH(s)
ds ds + ds ds = H(s) ds +G(s) ds

and assuming G(s) # 0,

d [%:H G(s) L),

dGls
_ o —H() d.E- :
ds G(s)*
Also, the chain rule still holds in the complex domain, namely,
w2 H(n) _ dw_awdn
= H (G(s)) ds dn ds
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Complex Variables: Partial Differentiation

Definition 24.32 (Partial Differentiation Notation). If u(&,&,--- .&,) is a func-
tion of n variables, then the following shorthand derivative notation is used,

A Qu(€1,62,--, &)

Partial Derivatives, g, = 5 é,

A d%u glﬁgh'”?gﬂ)
0Gid&;

Partial Second Derivatives, ugg, = j

Laplacian, v2, 4 3 "
&i&i
=
i *u(&1,8,-- &)
i=1 aéz
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Complex Variables: Laplace’s Equation
Definition 24.33 (Laplace’s Equation). Laplace’s equation states that

Vz”(élﬂgzr T :éll} =0

It describes many states of nature including steady-state heat conduction and

potentials such as gravitation and electric potential.
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Complex Variables: Analyticity
(shows up in the Residue Theorem)

Definition 24.34 (Analytic Function). A function of a complex variable, H(s)
where s € 9 C C, is said to be analytic in an interval [a,b| if it is single valued
in that domain (only has one value for each point in the domain) and if all its
derivatives, diﬁi‘?} :n > 0, exist at every point of the domain. In addition, an an-

alytic function may be completely described in terms of power series in a Domain

9 c (.

If the function satisfies the Cauchy-Riemann conditions at each point in the domain, then the
existence of the derivatives may be relaxed to only the existence of the first derivative.

An Analytic function is also known as a Holomorphic or Regular function.
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Complex Variables: Analyticity

Definition 24.35 (Pointwise Analyticity of Functions). A function H(s) is said to
be analytic at point so if H(s) is analytic in neighborhood of .
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Complex Variables: Analyticity

Theorem 24.4 (Relation between existence of derivative and continuity). If a
function of a complex variable, H(s) where s € C, has a derivative at so € C, then
it is continuous at sg. All analytic functions are continuous.

Proof:
. . .| H(s)—H(so)
lim [H(s)—H(sp)] = lim(s—sq) 1
Jim [H(9) = (o0 = Jims=so) Jim | =0
dH(s)
= 0
8 ds
§=5()
=0
Hence,
lim H(s) = lim [H(so) + (H(s) — H(s0))]
= H (sp)
which 1s just the definition of continuity (see Definition 24.12)
lim A(t) = h(ty) U
I—lyp
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Continuity does not imply Analyticity

Example: H(a) = ‘Slz v seC peie = §—50
G(s) A H(s)—H(sp) = p(cos(B)+isin(8))
| s — 50 o —if
PR L Gs) =5+ 22
_ |s|” — [s0| . pe'
— vV (s# 50 .
§ — 50 =5+ 6_1(26}
85— 38050
§— 50 AG(S) _ H(é’) _H(SU)
. [5-% o0
= S+ 50 L—Sf.l] = §+s50[cos(20) —isin(26)]

Consider two different ways s — s in the complex plane T,
1. s —spalong 8 =0 = G(s) =30+
2. s —spalong O = F rad. = G(s) =30 — o
Therefore, in general the limit, hence the derivative, does not exist unless so =0
where G(s) = 5o = 0. This implies that although H(s) = |s|* exists everywhere and
hence 1s continuous, 1t 1s not analytic since 1ts derivative does not exist except at
s = 0.

Copyright: Homayoon Beigi Sep 24, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

Cauchy-Riemann Conditions

homayoon.beigi @ columbia.edu

Definition 24.36 (Cauchy-Riemann Conditions). If H(s) may be written in its real
and imaginary components, namely,

H(s)=U(o,m)+iV(0o,m)
Then, the Cauchy-Riemann conditions dictate that,
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Cauchy-Riemann Theorem

Theorem 24.5 (Cauchy-Riemann Theorem). A necessary condition for a func-
tion, H(s) =U(0,0) +iV(0,®) to be analytic in a domain 7 C C is that the four
partial derivatives, Us, Uy, Vs, and Vi exist and satisfy the Cauchy-Riemann con-
ditions at each point in 7.

Proof:

Let sy = 0y + iy be any fixed point in domain Z. Then,

dH (s) . H(s)—H(s0)
= lim
ds S50 5§ — S0
=48
. AH(s)
o ,-;152] As
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Cauchy-Riemann Theorem

Proof (Continued): Consider two paths along which s — s,

l. Lets — sp along a line parallel to the
IR-axis, 1.e. along @ = @yp. Therefore,

§—8s0g = O+ —0p— ity

=0 —0p
— AC
dH (s Ulop+ A0, — U0y,
(s) — b (oo +A0,mp) —U( D,G]O)_I_
ds | Ac—0 AC
o a)
Vicp+AG. — V{0oyp,
. (6o +Ac,my) —V(op, o)

Ac—0 Ao
— U{F(Gﬂz CUO) _|_ ivﬁ(aﬂ: CUO)
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Cauchy-Riemann Theorem

Proof (Continued): Consider two paths along which s — s,

2. Let s — sg along a line parallel to the
[-axis, i.e. along 6 = 6. Therefore,

§—80 = Op+iw— Oy — ity

= i(w — wy)
= IA®
dH (s O Aw)—-Ulop.
ds | . by A0 IAW
=)
— V(Uﬂ,&]g—l—dﬂ})—V(ﬁ[}T&h)
I lim :
Aw—0 A @
Ufﬂ(ﬁﬂ}ah)

E. + Ve (00, p)
= —iUgy» (00, W) + Vi (0p, a)
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| Cauchy-Riemann Theorem
Proof (Continued): Consider two paths along which s — s,

dH(s) = Uq (00, 0p) + iV (00, o)

ds L ~ v
.‘I—HU
@ — () ><
. A

dH (s) — —ilUg (00, @) + Vo (00, @)
ds

S48
ET—UU

It dg—?} |55 €Xists, the expressions should be identical.

U(F(GU:' ﬂl}) — vﬂ}(ﬁﬂz« CUU)
Uﬂ}(aﬂs Cl][)) — _V(}'(G[): CU[))
which are the Cauchy-Riemann conditions

Copyright: Homayoon Beigi

Sep 24, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Alternative Cauchy-Riemann Theorem

Theorem 24.6 (Alternate Cauchy-Riemann Theorem). Another way of stating
Theorem 24.5 is that a necessary condition for a function, H(s) = U(o,®) +
iV(o.,®) to be analytic in a domain 2 C C is that the Laplace’s Equation (see
Equation 24.81) be satisfied for both Real and Imaginary parts of H(s), namely,

VU (o, w) =0
V¥V (c,0) =0
Proof:

Let us consider the Cauchy-Riemann conditions. If we take % and f—m of
Us = Vy
Up = Vs

and add the two resulting Equations together we get,

Uso +Upw = Voo — Voo or VEU(Ug GJ) =0
0)
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Alternative Cauchy-Riemann Theorem
Proof (Continued):
Similarly, if we take - and 5% of
Us = Vo
Up=—Vs
and add the two resulting Equations together we get,

Usw —Uno = Voo + Voo or V'ZV(O',GJ) =0

0
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Cauchy-Riemann Theorem

Theorem 24.7 (Necessary and Sufficient Cauchy-Riemann Theorem ((General
Analyticity)). A necessary and sufficient condition for a function, H(s) =U (0, o)+
iV(0,0) to be analytic in a domain 9 C C is that the four partial derivatives,
Us.Up, Vg, and Vg exist, be continuous in domain &, and satisfy the Cauchy-
Riemann conditions (see Definition 24.36) at each point in .

See the book for the proof.
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Analyticity of the Exponential Function

Theorem 24.8 (Analyticity of the Exponential Function). The Exponential func-
tion, €’ is analytic.

Proof:

H(s) =¢' = e cos(w) +ie® sin(w)

U Vv
Let us write the four partial derivatives of H(s),

Us = ¢°cos(m)
Up = —e” sin(®)
Ve = €% sin(w)
Vo = €° cos(m)

All four partial derivatives are continuous and are defined in the € plane. Also,

the Cauchy-Riemann conditions are satisfied. Therefore, H(s) = ¢° is analytic ev-
erywhere. O
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Analyticity of the Trigonometric Functions

_ A —eV a A sin(s)
sin(s) = cse(s) = — tan(s) =
sins) 2 92— 2 2
A e te ™ a1 A cos(s)
cos(s) = sec(s) = cot(s) =
(5) 2 (s) cos(s) (s) sin(s)

All these functions are analytic everywhere in the C plane. sin(s) and cos(s) are
periodic with period 21. Except for a finite point in the domain
in some cases.

Prove for Homework <&
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Cauchy Integral Theorem

Theorem 24.11 (Cauchy Integral Theorem).

» Simply Connected Domains:
Let H(s) be analytic in a simply connected Domain 2 C C and let I" be any
closed contour in 9. Then,

5£ H(s)ds =0 (24.134)
r

A
I w

A

Q"

Fig. 24.10: Simply Connected Domain
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Cauchy Integral Theorem

Theorem 24.11 (Cauchy Integral Theorem).

* Multiply Connected Domains:
Let I',11,I5,---,1I, be simple closed contours, each described in the positive

(counter clockwise) direction and such that each Ij is inside I' and outside
LONj#k;j,k={1,2,--- n}. See Figure 24.12.

Let H(s) be analytic on each of the contours I' and I}, j = {1,2,--- ,n} and

at each point interior to I' and exterior to all the I';,j = {1,2,--- ,n}. Then,
the contour integral which contains all the said analytic points of H(s) is zero,

namely,
Slg H(s)ds+«D H(s)ds+ <D H(s)ds+«p H(s)ds+--- +¢ H(s)ds =0
I’ I 5] I3 I
%) it
I
S < I
T &
r G
3
'O A
) \] o Ty o
Fig. 24.11: Integration Path of Multiply Fig. 24.12: Individual Contour Paths
Connected Contours Used by the Cauchy Integral Theorem
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Cauchy Integral Theorem

Theorem 24.11 (Cauchy Integral Theorem).

SlgH(s)ds—k H(s)ds+«D H(s)ds+ H(s)ds+~-+5l§ H(s)ds =0
I Ii I3 I

I3

. A .
I W Iw

s y F
T O
Il %
3
4 A

< -

A

I

v o Y

4

"o

Fig. 24.11: Integration Path of Multiply Fig. 24.12: Individual Contour Paths
Connected Contours Used by the Cauchy Integral Theorem

Changing the direction of integration for contours I';,j={1,2,--- ,n},

?gH(s)ds:%H(s)ds+ H(s)ds+ (b H(s)ds+-+ b H(s)ds
r n n I

=Y @ H(s)ds
=115
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Morera’s Theorem

Theorem 24.14 (Morera’s Theorem (Converse of Cauchy’s Integral Theorem)).
If H(s) is continuous in a Domain % C C and if, g% H(s)ds is zero for every closed
contour, I', then H(s) is analytic.
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Power Series Expansion of Functions

Definition 24.42 (Taylor Series (Expansion of an analytic function into a Power
Series)). Let H(s) be analytic within the interior of a circular Domain 2 C C with
center so and radius p, i.e. 7 = {s: |s—so| < p}. Then, at each point s interior to
9, the function H(s) may be written in terms of the following power series,

= l H({)
=V a,(s—s9)" where, a,= 9(;; d¢ n=1{0,1,2,---}
:;) ( ﬂ) 2z (g )n—l—]

2T — 50
Recall,
= 1 d"H(s) Consequence of Cauchy Integral
= c o L Formula for the n" derivative
n=0 5—50
d"H (s) n! H(() p
Taylor series expansion of ds" —2mi Jr (& — )] ¢

H(s) about s=s, '

§=58y)
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Taylor Series Expansion — Continued

=2 | H({)
|.1= 1.1_4.1 n ! ?I= ) d = {)?].1,21,"'
His)= 2 aala—so)  where, @ 2mé(c e B

— 50

Moreover, the series converges uniformly (Definition 24.69) for points within and
on any circle I' with center at so and radius v < p where p is the radius of conver-
gence. Given any center s, the radius of convergence, p, is the distance from sg to

the nearest singularity of the function.

1w

il
-

T
v

ag
Y
N.B. When sq = 0, the Taylor Series is known as the McLauren series.
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Radius of Convergence of Taylor Series
(Examples)

Infinite Radius of Convergence
The radius of convergence of H(s) = €’ is p = oo for any center s.

Radius of Convergence

If the center of the domain I' is taken to be so = 0, then the radius of convergence of

H(s) = will be p = 1.

LT T 0 ].
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Laurent Series
Definition 24.43 (Laurent Series (Expansion of analytic functions in an Annular
Region)). Let I be an annular region bounded by two concentric circles, I and I
(see Figure 24.14) with centers at so and radii ry and r, where ry < ry. Let H(s) be
analytic within Y and on I and I,. Then at each point in the interior of Y', H(s) can
be represented by a convergent power series consisting of both positive and negative
powers of (s — sg) as follows,

UL HO
e o i w2y ,

N.B. by = L H(L)d( is the residue of H(s) at s = so.
2mi J

Taylor Series expansion is a special case of the Laurent Series where ri — 0.
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Uniqueness of Power Series

Property 24.10 (Uniqueness of Power Series). If two power series, ¥, _dn(s —
s0)" and Y.>_oby(s — s0)" both converge to the same function H(s), in the same

neighborhood of sy, |s — so| < p, then the two series are identical. i.e. a, = b,, ¥ n =
{0,1,2,---}.
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Addition and Multiplication of Power Series

Property 24.11 (Addition and Multiplication of Power Series). If two power
series, G(s) = Y gan(s —s0)" and H(s) = Y.~ obu(s —s0)" both converge with
nonzero convergence radii ry and ry respectively, such that, r; < r, then,

O

Giy) HH ) = z (antby)(s—50)" wherel|s—so| <rl

n=0
and i
G(s)-H(s) = Y (ca)(s—so)" wherecyn=} arbyy
n=0 k=0
s — sp| < rl
n=40,1,2,.--}
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Division of Power Series

Property 24.12 (Division of Power Series). Consider the two power series G(s)
and H (s) of Property 24.11. If H(s) # 0, then there exists a power series ), _oCn(Ss—
so)" and a number § > 0 such that

gEj - Z ca(s—s0)" YV [s—s0| <&

n=>0

where the coefficients c, satisfy the following equations

n n
an = Z Ckbn—x b= Z CrLQy—r
k=0 k=0
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Zeros and Poles of a Function

Definition 24.44 (Zeros of a Function). A point s is called a zero of order r of
H(s) if
lim [(s—s0) "H(s)| =M where M #0ANM < oo

§—8)

Definition 24.45 (Isolated Singularities and Poles of a Function). A point s is
called an isolated singularity or an isolated singular point of H(s) if H(s) is not
analytic at so, but it is analytic in a deleted neighborhood of sy. sq is also called a
pole of order r of function H(s) if,

lim [(s —s0)"H(s)] =M where M #0AM < oo

§—8p
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