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“There is Nothing More Practical Than A Good Theory.” — Kurt Lewin

1 Introduction

As indicated in Lecture 2, we will focus on the asymptotics of the empirical process of the estima-
tion error; specifically, we aim to find a &, — 0 for any small € > 0,

P(sup |R.(f) —R(f)| > &) <5,
feF

Motivated by concentration, how a random variable deviates from its expectation, rewrite the
probability as:

P( sup |R,(f) = R(f)| —E sup [Ru(f) = R(f)| > € —E sup [Ru(f) = R(f)[) < &
fez fesz feF

To investigate this bound, we itemize two aims:
* Al. The asymptotics of R
E sup [Ru(f) — R(f)]-

fez

* A2. The concentration inequality of

P( sup |R,(f) —R(f)| —E sup [R.(f) = R(f)| > €).
fez feF

For A1, the minimum requirement is that

E sup |Ru(f) —R(f)| = o(1),

feF

to ensure the asymptotic vanishing of (the upper bound of) the estimation error. For A2, we can
regard it as a uniform version of concentration inequalities.



2 From pointwise to uniform

Before diving into uniform concentration inequalities, let’s have a brief review of the fundamental
pointwise concentration inequalities.

Theorem 2.1 (Markov’s inequality). Let Z be a non-negative random variable. Then for any t > 0,

E(Z
P(Z>1) < ¥
Theorem 2.2 (Chebyshev’s inequality). Let Z be a random variable with mean | and variance
o2. Then for anyt > 0,
)

IP)(|Z_.u| Zt) < 12

Lemma 2.3 (Hoeffding’s Lemma). Let Z be a random variable such that a < Z < b almost surely,
and E(Z) = 0. Then for any A € R,

AZ(b—a)Z)

E(e*?) < exp ( 3

The above inequalities are fundamental for "pointwise" concentration, where we consider a
fixed random variable. In learning theory, we often need "uniform" concentration to bound the
error over a class of functions.

2.1 From Hoeffding’s inequality to McDiarmid’s inequality

Theorem 2.4 (Hoeffding’s Inequality (1963)). Suppose Z,,--- ,Z, are independent random vari-
ables such that a; < Z; < b; almost surely, then for any € > 0:

1 & 1 & —2n?e?
P(;;Zi - EE(Zi) >¢€) <exp (W

—1 i —a,')

).

Note that we cannot use Hoeffding’s inequality to bound A2, since there is a supremum on the
average. McDiarmid’s inequality is a generalization of Hoeffding’s inequality, which enables us to
directly bound the probabilistic bound in A2.

Theorem 2.5 (McDiarmid’s inequality (1989)). Suppose Z,- - ,Z, are independent random vari-
ables, and there is a function g : R" — R such that the variation on i-th coordinate is upper

bounded, that is, foralli=1,--- ;nand all (z;,- - ,zi,zﬁ, e Zn),
g(z1, 2y zn) — 821,y 2 )| < e
Then,
2¢?
P(g(Z1,--- , Zn) —Bg(Z1,-- -, Zn) > €) SGXP(—W)-
i=16;



McDiarmid’s inequality shares the same spirit as Hoeffding’s inequality but applies to general
functions g(Zy,--- ,Z,) satisfying the bounded difference property. We demonstrate McDiarmid’s
inequality for our Aim A2.

Let Z; = I(Y;, f(X;)), and

~ 1&

8(Z1,+++,Zn) = sup (Ru(f) —R(f)) = sup — ) (Z: —EI(Y, f(X))).
fez fez iZy

Assume that 0 < [(Y;, f(X;)) < U, we have

1
gz, 325 2n) =821, 52y 2)| < | sup = (zi—27) | = U /n.

Then, McDiarmid’s inequality yields that

P( sup [Ru(f) = R(f)| —E sup [Ru(f) = R(f)| > €) <exp(— o7 )
fez fez

We summarize the result as the following corollary.

Corollary 2.6. Suppose the loss function l(-,-) is uniformly bounded by a constant U. Then for
any € >0,

P((sup [Ro(f) ~ RO~ E sup [Ral ) — R(f)| > €) < exp(— o).
fes fez

Remark 2.7 (Boundedness). Both Hoeffding’s and McDiarmid’s inequalities rely solely on the
boundedness assumption. McDiarmid’s inequality can be regarded as the uniform counterpart
to Hoeffding’s inequality, extending the concentration of sums to general functions, including
suprema.

2.2 From Bernstein’s inequality to Talagrand’s inequality

Hoeftding’s inequality is robust but often loose, as it does not exploit the variance information.
Bernstein’s inequality offers a refinement by incorporating the variance, yielding tighter bounds
when the variance is small.

Theorem 2.8 (Bernstein’s inequality (1920s)). Let Zy,--- ,Z, be independent random variables
with |Z;| < U almost surely, for alli=1,--- ,n. Then, for all € >0,

1 L 1 ne?

— -) E(Z) > e‘ < _

n; n; P 257 2063
where 6> = 1Y Var(Z;).



Establishing a uniform Bernstein’s inequality is a much harder problem, which was solved by
Talagrand | ) 1.

Theorem 2.9 (Talagrand’s inequality (1996)). Suppose the loss function (-, -) is uniformly bounded
by a constant U. Then, for any € > 0,

~ ~ 1 ¢ ey
P(;g; Ralf) =R =B sup [Ru() = R()| 2 £) < Kexp(— - log(1+ 7)),

where K > 0 is a universal constant and V is any constant satisfying

n

V > E sup 12 (l(Yi,f(Xi)) —El(Yi,f(Xi))>2-

feF i
Talagrand’s inequality can be viewed as the uniform counterpart to Bernstein’s inequality. The
constant V (often referred to as the wimpy variance) is analogous to the variance 62, capturing the
complexity of the function class. Just as Bernstein improves upon Hoeffding, Talagrand improves
upon McDiarmid by exploiting the variance structure of the empirical process. However, finding

a tight constant V is challenging. Now, given the results of Talagrand’s inequality, we slightly
modify our aims:

* Al. The asymptotics of R
E sup [Ra(f) —R(f)|

fesz

¢ A2’. Find a tight constant V such that

n

V > E sup 12 (l(Yi,f(Xi)) —El(Yi,f(Xi))>2-

feF i

In the sequel, we will show that A1 and A2’ are closely related.
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