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1 Proof of Proposition 1

Following Dai and Gluzman (2022), the average cost gap between the two policies can be
written as
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For a given vector ω ∈ Sh, define two types of V-norm as
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, ∥ω∥1,V =
∑
s∈Sh

|ω(s)|V(s). (1)

Note that slightly different from the definition given in Dai and Gluzman (2022), we focus
on each given h and the summation is taken over the states in the subspace Sh. Similarly,
we slightly adapt the V-norm for a given matrix Ω ∈ Sh × Sh as
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which is an Sh-dimensional vector. Following Dai and Gluzman (2022), we can bound the
absolute value of the two scalars Nh

1 and Nh
2 as

|Nh
1 (θ, η)| ≤(µh

η)
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For the bound of Nh
1 , only the term ∥Ñh(θ, η)∥∞,V relates to the new parameter θ, while

for Nh
2 , it contains an additional term ∥µh
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have action-independent cost. Also note that they characterize the decay rates of Nh(θ, η)
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Then, to bound the term ∥P̃h
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h

η∥V , we recall that the one-day transition matrices are
specified as:
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We denote the elements of these one-day transition matrices as {p̃hη(s′|s), s, s′ ∈ Sh} and
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where {pℓ,ℓ+1
η (s′|s), s ∈ Sℓ, s′ ∈ Sℓ+1} is the set of elements of one-epoch transition matrix

Pℓ,ℓ+1
η , and ph,h+1(sh+1|s, f) is the one-epoch transition probability from state s ∈ Sh to

sh+1 ∈ Sh+1 given action f . Here we use the fact that, after the action f is fixed, the
transition only depends on the arrivals and departures during this epoch and no longer
depends on the action or policy. We denote

p̃hη(s
′|s, f) =

∑
sh+1∈Sh+1,··· ,sh−1∈Sh−1

ph,h+1(sh+1|s, f)ph+1,h+2
η (sh+2|sh+1) · · · ph−1,h

η (s′|sh−1),

which was also used in Equation (23) and introduced there. This term is independent of the
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where the second inequality holds because of the drift condition in Assumption 1, and the
last inequality holds since we assume that V ≥ 1.

By plugging this upper bound into Equation (6), we have
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We denote the elements of the one-day cost vector g̃h
η and g̃h

θ as {g̃hη (s), s ∈ Sh} and
{g̃hθ (s), s ∈ Sh}, respectively. Moreover, we denote
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which was also used in Equation (23). Following the same argument as for the transition
probabilities, this term is independent of the new policy parameter θ, which implies that
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which implies ∥g̃h
θ − g̃h

η∥∞,V = O(∥rhθ,η − 1∥∞) as well. The second-to-last inequality holds

since in our setting g̃hη (s, f) ≥ 0,∀(s, f), and the last inequality holds because V ≥ g̃h
η implies

that ∥g̃h
η∥∞,V ≤ 1.

By far, we have shown that both terms in the bound for ∥Ñh(θ, η)∥∞,V has the same
order O(∥rhθ,η − 1∥∞), so we also have ∥Ñh(θ, η)∥ = O(∥rhθ,η − 1∥∞). As a result, according

to (3) and the fact that ∥µh
θ − µh

η∥1,V = O(∥P̃h

θ − P̃
h

η∥V∥Zη∥V) = O(∥rhθ,η − 1∥∞), we have

N1(θ, η) = O(∥rhθ,η − 1∥∞), and N2(θ, η) = O(∥rhθ,η − 1∥2∞), which completes the proof. □

2 Illustration of PPO in Two-pool Setting

In this section, we present an illustration of the mechanism behind PPO in our specific
context – the overflow assignment for inpatients. For illustration purpose, we focus on a
simple two-pool midnight model with randomized atomic action. Furthermore, we focus on
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illustrating the updates for one given state s and assume the policy at other states remain
unchanged. That is, the objective in this showcase example is to minimize

N̂1(θ, s) := E
f∼πη(·|s)

[rθ,η(f |s)Âη(s, f)] = E
f∼πθ(·|s)

[Âη(s, f)] (10)

for the given state s. The clipping function can be easily added to this. By analyzing the
gradient of N̂1(θ, s), we showcase how the overflow policy will change with different model
parameters (B,C, µ, λ), providing some explainability of the mechanism behind PPO.

We consider a simple two-pool midnight MDP with one decision epoch each day (m = 1).
The state is simplified as s = (x1, x2) ∈ R2, since we do not need to track the to-be-discharged
counts whenm = 1. Correspondingly, the transition dynamics from current state to the state
of the next day given overflow action f = {fi,j} can be specified as

x′
j = xj + aj − dj +

2∑
i=1,i ̸=j

fi,j −
2∑

ℓ=1,ℓ ̸=j

fj,ℓ, j = 1, 2.

where aj, dj denote the number of new arrivals and departures within a day. Here, aj is a
realization of the random variable Aj which follows Pisson(Λj), and dj is a realization of
the random variable Dj which follows Bin(qj, µj).

2.1 Policy Gradient

To facilitate the gradient analysis, we make additional assumptions.

Assumption 1. (Symmetric Two-pool Midnight MDP) The two pools have (Nj, λj, µj) =
(N, λ, µ) for j = 1, 2; C1 = C2 = C, B12 = B21 = B.

Under Assumption 2, we can define two state subspaces according to the feasible actions:

S1 = {(x1, x2) ∈ S : x1 > N, x2 < N}; S2 = {(x1, x2) ∈ S : x1 < N, x2 > N}.

Recall that the system-level action takes the form f = {fi,j, i, j = 1, 2}, where fi,j represents
the number of assignments from class i to pool j. According to the definition of feasible
action defined in Equation (1), for s ∈ S1, the feasible action space is {{q1 − f1,2, f1,2, 0, 0} :
f1,2 = 0, 1, . . . ,min{q1, N − x2}}, where q1 = (x1 − N) ∨ 0 denotes the queue length of
class 1. Similarly, for s ∈ S2, the feasible action space is {{0, 0, f2,1, q2 − f2,1} : f2,1 =
0, 1, . . . ,min{q2, N − x1}}, where q2 = (x2 − N) ∨ 0 denotes the queue length of class 2.
For any state s ∈ S \ (S1 ∪ S2), the only feasible action is no-overflow (action {0, 0, 0, 0}).
Without loss of generality, we focus on S1 in the following analysis, as the results can be
easily extend to S2 due to symmetry in Assumption 1.

Assumption 2. (Parametric Randomized Atomic Action)

(i) Batched setting: For a given pre-action state s, each atomic action an depends on s,
i.e., not affected by the previous atomic assignment.
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(ii) Parametric logistic model: The routing probability for the atomic action of a class 1
customer is parameterized as

κθ(1|s, 1) =
1

1 + exp(θ1x1 + θ2x2 + θ0)
, κθ(2|s, 1) = 1− κθ(1|s, 1).

Under a randomized policy πθ satisfying Assumption 2, for a given pre-action state s ∈ S1

and an associated feasible action f = (q1 − f1,2, f1,2, 0, 0), the overflow quantity f1,2 follows
a binomial distribution Bin(q1, κθ(2|s, 1)) (note that we allow overflow assignments to a full
server here). Therefore, the aim of PPO is to update the parameters θ = (θ0, θ1, θ2)

′ ∈ R3

to minimize N̂1(θ, s) = Ef∼πθ(·|s)[Âη(s, f)] in (10) through the policy gradient approach.

Assumption 3. (Advantage function approximation)

(i) Linear approximation: The value function vη is approximated with linear combinations
of a set of linear and quadratic basis functions, i.e.,

v̂η(s) = β̂1x1 + β̂2x2 + β̂3x
2
1 + β̂4x

2
2,

where β̂k, k = 1, 2, 3, 4 are the coefficient parameters.

(ii) Transition probability approximation: The waiting customers in buffers can be served
with the same service time distribution as in server pools, and leave the system after
service.

In Section 5.2 of the main paper, we approximate the relative value function with the
linear combinations of a set linear/quadratic basis as well as some queueing-based basis.
Here for simplicity, in Assumption 3(i), we focus on the simpler linear and quadratic basis.
Assumption 3(ii) is made to simplify the evaluation of the advantage function Âη, which can
be computed according to

Âη(s, f) = g(s, f)− γη + Es′∼p(·|s,f)[v̂η(s
′)]− v̂η(s). (11)

2.2 Policy gradient

We state the policy gradient result in the following lemma, with its detailed proof in Sec-
tion 2.3.

Lemma 1. Under Assumptions 1-3, for any s = (x1, x2) ∈ S1 and f = (q1 − f1,2, f1,2, 0, 0),

∂N̂1(θ, s)

∂θ0
= ∇0N̂1(θ, s),

∂N̂1(θ)

∂θk
= ∇0N̂1(θ, s) · xk, k = 1, 2.
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Here,

∇0N̂1(θ, s) =

q1∑
f1,2=0

πθ(f |s)
(
f1,2 − q1κθ(2|s, 1)

)
Âη(s, f)

= q1κθ(2|s, 1)
(
1− κθ(2|s, 1)

)(
2β̂3(1− µ)2

(
2(q1 − 1)κθ(2|s, 1) + x2 − x1 + 1

)
+B − C

)
.

(12)

This closed form for policy gradient allows us to examine the optimal action that mini-
mizes N̂1(θ, s). Through this examination, we generate insights into how the policy gradient
approach is guiding us to find a good action under different model and cost parameters
(λ, µ,B,C).

We start by analyzing the monotonicity of ∇0N̂1(θ, s) w.r.t. κθ(2|s, 1), which depends
on the sign of β̂3. In the rest of the analysis, we focus on the case where β̂3 > 0 since it
leads to non-trivial policy updates. In this case, the new overflow probability obtained by
minimizing N̂1(θ, s) should either equals to 0 or 1, or make ∇0N̂1(θ

∗, s) = 0 hold. The latter
first-order condition gives us κθ∗(2|s, 1) = max

(
0,min(1, κ∗(s))

)
, where

κ∗(s) =
N − x2 − (B − C)/2β̂3(1− µ)2

2(q1 − 1)
+

1

2
.

We discuss the property of κ∗(s) separately when B ≤ C or B > C.
When B ≤ C, κ∗(s) ≥ N−x2+q1−1

2(q1−1)
≥ N−x2

q1
. If κθ(2|s, 1) = N−x2

q1
, the expected number

of overflow assignments equals to the number of idle servers in pool 2. This essentially
corresponds to the complete-overflow policy, which is expected to be optimal when the
overflow cost is cheap.

When B > C, κ∗(s) decreases in x2, which follows the intuition about a “good” policy,
i.e., the more crowded pool 2 gets, the less overflow should be assigned from class 1 t pool 2.
For how this action changes with x1, we focus on examining the mean of overflow assignment,
i.e., q1κ

∗(s). We have

q1κ
∗(s) =

N − x2 − (B − C)/2β̂3(1− µ)2 + 1

2
+

N − x2 − (B − C)/2β̂3(1− µ)2

q1 − 1
+

1

2
(q1− 1),

which increase with q1 when q1 ≥ 2(N − x2) − B−C

β̂3(1−µ2)
, but decrease with q1 otherwise.

Therefore, when x2 is close to N , the critical point 2(N − x2) − B−C

β̂3(1−µ2)
≤ 1, so q1κ

∗(s)

increase with q1, which also follows the intuition about a “good” policy since we need to
overflow more to balance the load when there are more waiting patients. However, when x2

is small, which means there are enough idle beds, the mean value of overflow assignments
firstly decrease then increase with x1. This policy is desired since when x1 is very large, load
balancing is the first-order issue, so we overflow more when x1 is large; in contrast, when
x1 is relatively small, we need to trade-off between holding cost and undesirable overflow
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assignments, so when x1 is larger, even with the same mean value of overflow assignments,
there is a larger possibility that it will conduct a large number of overflow assignments and
occupy too much class 2 servers in that case, causing a very large future cost according to
“snowball effect”. Therefore, mean value of overflow assignments should decrease.

In addition, a critical term in q1κ
∗(s) is the term (B−C)

2β̂3(1−µ)2
. Through some argument,

we can show that when B > C, α in with B − C and µ. It implies that the willingness of
overflow decrease with B − C and µ. These results also follow our intuition because when
overflow cost is closer to holding cost (the gap (B − C) is smaller), we prefer to overflow
more to help balance the system; when the busy servers completes jobs faster (larger µ), we
prefer to let customers wait since they can be admitted into primary ward within a shorter
time.

2.3 Proof of Lemma 1

For a given s = (x1, x2) ∈ S1, a feasible action f takes the form of (q1 − f1,2, f1,2, 0, 0).

Under the assumptions in Section 2.1, we get from (10) that N1(θ, s) = Ef∼πθ(·|s)[Âη(s, f)] =∑q1
f1,2=0 πθ(f |s)Âη(s, f). Therefore, taking derivative of N̂1(θ, s) w.r.t. θk, k = 0, 1, 2, respec-

tively, we get

∂

∂θk
N̂1(θ, s) =

q1∑
f1,2=0

∂πθ(f |s)
∂θk

Âη(s, f). (13)

From Assumption 2(i), the number of overflow quantity from class 1 to pool 2, f12 follows
Bin(q1, κθ(2|s, 1)) under policy πθ, we can rewrite πθ(f |s) as

πθ(f |s) =
(

q1
f1,2

)
κθ(2|s, 1)f1,2(1− κθ(2|s, 1))q1−f1,2 . (14)

Then, by using some algebra, we have

∂

∂θk
πθ(f |s) =πθ(f |s)

(
f1,2

κθ(2|s, 1)
− q1 − f1,2

1− κθ(2|s, 1)

)
∂κθ(2|s, 1)

∂θk
, k = 0, 1, 2. (15)

Furthermore, recall that from Assumption 2(ii), κθ(2|s, 1) is parameterized as a logistic
function. Therefore, we can further write out the following form for the gradients of κθ(2|s, 1).
For the gradient w.r.t. θ0, we have

∂κθ(2|s, 1)
∂θ0

=− exp(−(θ1x1 + θ2x2 + θ0)) · (−1)

(1 + exp(−(θ1x1 + θ2x2 + θ0)))2

=κθ(2|s, 1)(1− κθ(2|s, 1)).
(16)

Similarly, for θ1, θ2, we get

∂κθ(2|s, 1)
∂θk

= κθ(2|s, 1)(1− κθ(2|s, 1))xk. (17)
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Combining Equations (15) through (17) and plugging them back to (13), we get the final
results of policy gradient as follows.

∂N̂1(θ, s)

∂θ0
=

q1∑
f1,2=0

πθ(f |s) (f1,2 − q1κθ(2|s, 1)) Âη(s, f),

∂N̂1(θ, s)

∂θk
=

q1∑
f1,2=0

πθ(f |s) (f1,2 − q1κθ(2|s, 1))xkÂη(s, f), k = 1, 2.

For simplicity, we use ∇0N̂1(θ, s) to denote

q1∑
f1,2=0

πθ(f |s) (f1,2 − q1κθ(2|s, 1))xkÂη(s, f). (18)

As a result, the policy gradient can be rewritten as

∂N̂1(θ, s)

∂θ0
= ∇0N̂1(θ, s),

∂N̂1(θ)

∂θk
= ∇0N̂1(θ, s) · xk, k = 1, 2.

Next, to derive the closed form of the policy gradient, we need to derive the closed form of
Âη and plug it into (18). Recall that given a pre-action state s ∈ S1 and a feasible action

f = (f1,2, q1 − f1,2, 0, 0) with 0 ≤ f1,2 ≤ q1, the advantage function Â(s, f) can be computed
via

Âη(s, f) = g(s, f) + Es′∼p(·|s,f)[v̂η(s
′)], (19)

where the current cost follows

g(s, f) = C(q1 − f1,2) +Bf1,2,

and according to Assumption 3, the estimated value function follows

v̂η(s) = β̂1x1 + β̂2x2 + β̂3x
2
1 + β̂4x

2
2.

According to Assumption 1(i), the two-pool system is symmetric, so the parameters {β̂i, i =
1, ..., 4} for estimating v̂η should also be symmetric, i.e.,

v̂η = β̂1(x1 + x2) + β̂3(x
2
1 + x2

2).

To compute the closed form of cost-to-go Es′ [v̂η(s
′)], we need to specify the transition dy-

namics in our simplified two-pool setting. That is, given (s, f), the next state s′ = (x′
1, x

′
2)

follows
x′
1 = x1 − f1,2 + A1 −D1, x′

2 = x2 + f1,2 + A2 −D2, (20)
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where from Assumption 1(i)(ii), the number of new arrivals A1, A2 both follow Poisson
distribution with parameter λ, and the number of new departures D1, D2 follow distributions
Bin(x1 − f1,2, µ) and Bin(x2 + f1,2, µ), respectively. Therefore, we have

Es′∼p(·|s,f)[v̂η(s
′)]

=Es′∼p(·|s,f)[β̂1(x
′
1 + x′

2) + β̂3((x
′
1)

2 + (x′
2)

2)]

=β̂1

(
x1 + x2 + 2λ− (x1 + x2)µ

)
+ β̂3E

[
(x1 − f1,2 + A1 −D1)

2 + (x2 + f1,2 + A2 −D2)
2
]
.

(21)
Via some algebra to evaluate the expectation term in (21), we have

Es′∼p(·|s,f)[v̂η(s
′)] =β̂3(1− µ)2[(x1 − f1,2)

2 + (x2 + f1,2)
2] + (β̂1 + β̂3(2λ− µ))(1− µ)(x1 + x2) + 2β̂1λ+ 2β̂3(λ+ λ2)

Plugging the formulas of g(s, f) and E[v̂η(s′)] back into (19), we get

Âη(s, f) =g(s, f)− γ + Es′∼p(·|s,f)[v̂η(s
′)]− v̂η(s)

=(B − C)f1,2 + β̂3(1− µ)2[2f 2
1,2 − 2(x1 − x2)f1,2] + Const(s), (22)

where Const(s) is a constant that depends on s but is independent of f . Finally, by plug-
ging (22) into (18), we can rewrite the policy gradient ∇0N̂1(θ, s) as

∇0N̂1(θ, s) =

q1∑
f1,2=1

πθ(f |s) (f1,2 − q1κθ(2|s, 1)) Âη(s, f̃)

=

q1∑
f1,2=1

πθ(f |s) (f1,2 − q1κθ(2|s, 1))
(
(B − C)f1,2 + β̂3(1− µ)2[2f 2

1,2 − 2(x1 − x2)f1,2] + Const(s)
)

=q1κθ(2|s, 1)
(
1− κθ(2|s, 1)

)(
2β̂3(1− µ)2

(
2(q1 − 1)κθ(2|s, 1) + x2 − x1 + 1

)
+B − C

)
.

Here, we have used the binomial distribution property for f1,2 and we are able to elimiate
the Const(s) since

q1∑
f1,2=1

πθ(f |s) (f1,2 − q1κθ(2|s, 1))Const(s) = (E[f1,2]− q1κθ(2|s, 1)) · Const(s) = 0.

□
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