

Technical Companion for “Inpatient Overflow Management with Proximal Policy Optimization”

1 Proof of Proposition 1

Following Dai and Gluzman (2022), the average cost gap between the two policies can be written as

$$\begin{aligned}
& (\mu_\theta^h)^T \tilde{\mathbf{g}}_\theta^h - (\mu_\eta^h)^T \tilde{\mathbf{g}}_\eta^h \\
&= (\mu_\theta^h)^T (\tilde{\mathbf{g}}_\theta^h + (\tilde{\mathbf{P}}_\theta^h - I) \mathbf{v}_\eta^h) - (\mu_\eta^h)^T \tilde{\mathbf{g}}_\eta^h \\
&= (\mu_\eta^h)^T (\tilde{\mathbf{g}}_\theta^h - (\mu_\eta^h)^T \tilde{\mathbf{g}}_\eta^h \mathbf{e} + (\tilde{\mathbf{P}}_\theta^h - I) \mathbf{v}_\eta^h) + (\mu_\theta^h - \mu_\eta^h)^T (\tilde{\mathbf{g}}_\theta^h + (\tilde{\mathbf{P}}_\theta^h - I) \mathbf{v}_\eta^h) \\
&= N_1^h(\theta, \eta) + N_2^h(\theta, \eta),
\end{aligned}$$

where the first equation holds since the stationary distribution μ_θ^h satisfying $(\mu_\theta^h)^T (\tilde{\mathbf{P}}_\theta^h - I) = 0$. The third equation holds since for any constant α , $(\mu_\theta^h - \mu_\eta^h)^T \alpha \mathbf{e} = \alpha (\mu_\theta^h)^T \mathbf{e} - \alpha (\mu_\eta^h)^T \mathbf{e} = 0$, and we choose $\alpha = (\mu_\eta^h)^T \tilde{\mathbf{g}}_\eta^h$. Next, we characterize the decay rate of N_1^h and N_2^h .

For a given vector $\omega \in \mathcal{S}^h$, define two types of \mathcal{V} -norm as

$$\|\omega\|_{\infty, \mathcal{V}} = \sum_{s \in \mathcal{S}^h} \frac{|\omega(s)|}{\mathcal{V}(s)}, \quad \|\omega\|_{1, \mathcal{V}} = \sum_{s \in \mathcal{S}^h} |\omega(s)| \mathcal{V}(s). \quad (1)$$

Note that slightly different from the definition given in Dai and Gluzman (2022), we focus on each given h and the summation is taken over the states in the subspace \mathcal{S}^h . Similarly, we slightly adapt the \mathcal{V} -norm for a given matrix $\Omega \in \mathcal{S}^h \times \mathcal{S}^h$ as

$$\|\Omega\|_{\mathcal{V}} = \sup_{s \in \mathcal{S}^h} \frac{1}{\mathcal{V}(s)} \sum_{s' \in \mathcal{S}^h} |\Omega(s, s')| \mathcal{V}(s'). \quad (2)$$

We further denote

$$\tilde{N}^h(\theta, \eta) = \tilde{\mathbf{g}}_\theta^h - (\mu_\eta^h)^T \tilde{\mathbf{g}}_\eta^h \mathbf{e} + (\tilde{\mathbf{P}}_\theta^h - I) \mathbf{v}_\eta^h,$$

which is an \mathcal{S}^h -dimensional vector. Following Dai and Gluzman (2022), we can bound the absolute value of the two scalars N_1^h and N_2^h as

$$\begin{aligned}
|N_1^h(\theta, \eta)| &\leq (\mu_\eta^h)^T \mathcal{V} \cdot \|\tilde{N}^h(\theta, \eta)\|_{\infty, \mathcal{V}}, \\
|N_2^h(\theta, \eta)| &\leq \|\mu_\theta^h - \mu_\eta^h\|_{1, \mathcal{V}} \cdot \|\tilde{N}^h(\theta, \eta)\|_{\infty, \mathcal{V}}.
\end{aligned} \quad (3)$$

For the bound of N_1^h , only the term $\|\tilde{N}^h(\theta, \eta)\|_{\infty, \mathcal{V}}$ relates to the new parameter θ , while for N_2^h , it contains an additional term $\|\mu_\theta^h - \mu_\eta^h\|_{1, \mathcal{V}}$ which also relates to θ . According to Theorem 1 and Lemma 5 in Dai and Gluzman (2022), we have $\|\mu_\theta^h - \mu_\eta^h\|_{1, \mathcal{V}} = O(\|(\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h)Z_\eta\|_{\mathcal{V}})$ and $\|(\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h)Z_\eta\|_{\mathcal{V}} \rightarrow 0$ as $\theta \rightarrow \eta$, where the matrix Z_η is defined as

$$Z_\eta := \sum_{n=0}^{\infty} (\tilde{\mathbf{P}}_\eta^h - \Pi_\eta^h)^n. \quad (4)$$

To get the exact order of N_1^h, N_2^h with respect to $\|r_{\theta, \eta}^h - 1\|$, we need to further check the order of $\|\tilde{N}^h(\theta, \eta)\|_{\infty, \mathcal{V}}$ and $\|(\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h)Z_\eta\|_{\mathcal{V}}$.

For $\|\tilde{N}^h(\theta, \eta)\|_{\infty, \mathcal{V}}$, we can rewrite and bound it as follows:

$$\|\tilde{N}^h(\theta, \eta)\|_{\infty, \mathcal{V}} \leq \|(\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h)\mathbf{v}_\eta^h\|_{\infty, \mathcal{V}} + \|\tilde{\mathbf{g}}_\theta^h - \tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}}. \quad (5)$$

Our remaining task is to analyze the order of $\|(\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h)\mathbf{v}_\eta^h\|_{\infty, \mathcal{V}}$ and $\|\tilde{\mathbf{g}}_\theta^h - \tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}}$. Note that the second term on the right-hand side does not exist in Dai and Gluzman (2022) since they have action-independent cost. Also note that they characterize the decay rates of $N^h(\theta, \eta)$ in terms of $D_{\theta, \eta}^h := \|(\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h)Z_\eta\|_{\mathcal{V}}$. However, since we cannot directly bound $\|\tilde{\mathbf{g}}_\theta^h - \tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}}$ with respect to $D_{\theta, \eta}^h$, we need to take one step further to bound N_1, N_2 directly to $\|r_{\theta, \eta}^h - 1\|_\infty$ instead of $D_{\theta, \eta}^h$.

First, we consider $\|(\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h)\mathbf{v}_\eta^h\|_{\infty, \mathcal{V}}$. According to Lemma 3 of Dai and Gluzman (2022), the relative value function \mathbf{v}_η^h can be rewritten as

$$\mathbf{v}_\eta^h = Z_\eta(\tilde{\mathbf{g}}_\eta^h - (\mu_\eta^h)^T \tilde{\mathbf{g}}_\eta^h \mathbf{e}).$$

Therefore, we can bound

$$\|(\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h)\mathbf{v}_\eta^h\|_{\infty, \mathcal{V}} \leq \|\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h\|_{\mathcal{V}} \|Z_\eta\|_{\mathcal{V}} \cdot \left(\|\tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}} + (\mu_\eta^h)^T \tilde{\mathbf{g}}_\eta^h \right). \quad (6)$$

Then, to bound the term $\|\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h\|_{\mathcal{V}}$, we recall that the one-day transition matrices are specified as:

$$\begin{aligned} \tilde{\mathbf{P}}_\eta^h &= \mathbf{P}_\eta^{h, h+1} \mathbf{P}_\eta^{h+1, h+2} \dots \mathbf{P}_\eta^{h-1, h}, \\ \tilde{\mathbf{P}}_\theta^h &= \mathbf{P}_\theta^{h, h+1} \mathbf{P}_\eta^{h+1, h+2} \dots \mathbf{P}_\eta^{h-1, h}. \end{aligned} \quad (7)$$

We denote the elements of these one-day transition matrices as $\{\tilde{p}_\eta^h(s'|s), s, s' \in \mathcal{S}^h\}$ and $\{\tilde{p}_\theta^h(s'|s), s, s' \in \mathcal{S}^h\}$, respectively. The probability $\tilde{p}_\theta^h(s'|s)$ follows

$$\begin{aligned} \tilde{p}_\theta^h(s'|s) &= \sum_{s^{h+1} \in \mathcal{S}^{h+1}, \dots, s^{h-1} \in \mathcal{S}^{h-1}} p_\theta^{h, h+1}(s^{h+1}|s) p_\eta^{h+1, h+2}(s^{h+2}|s^{h+1}) \dots p_\eta^{h-1, h}(s'|s^{h-1}) \\ &= \sum_{f \in \mathcal{A}(s)} \pi_\theta(f|s) \sum_{s^{h+1} \in \mathcal{S}^{h+1}, \dots, s^{h-1} \in \mathcal{S}^{h-1}} p^{h, h+1}(s^{h+1}|s, f) p_\eta^{h+1, h+2}(s^{h+2}|s^{h+1}) \dots p_\eta^{h-1, h}(s'|s^{h-1}), \end{aligned}$$

where $\{p_\eta^{\ell, \ell+1}(s'|s), s \in \mathcal{S}^\ell, s' \in \mathcal{S}^{\ell+1}\}$ is the set of elements of one-epoch transition matrix $\mathbf{P}_\eta^{\ell, \ell+1}$, and $p^{h, h+1}(s^{h+1}|s, f)$ is the one-epoch transition probability from state $s \in \mathcal{S}^h$ to $s^{h+1} \in \mathcal{S}^{h+1}$ given action f . Here we use the fact that, after the action f is fixed, the transition only depends on the arrivals and departures during this epoch and no longer depends on the action or policy. We denote

$$\tilde{p}_\eta^h(s'|s, f) = \sum_{s^{h+1} \in \mathcal{S}^{h+1}, \dots, s^{h-1} \in \mathcal{S}^{h-1}} p^{h, h+1}(s^{h+1}|s, f) p_\eta^{h+1, h+2}(s^{h+2}|s^{h+1}) \dots p_\eta^{h-1, h}(s'|s^{h-1}),$$

which was also used in Equation (23) and introduced there. This term is independent of the new policy parameter θ . Using this term, we can write that $\tilde{p}_\theta^h(s'|s) = \sum_{f \in \mathcal{A}(s)} \pi_\theta(f|s) \tilde{p}_\eta^h(s'|s, f)$. Similarly, we have $\tilde{p}_\eta^h(s'|s) = \sum_{f \in \mathcal{A}(s)} \pi_\eta(f|s) \tilde{p}_\eta^h(s'|s, f)$.

Therefore, the term $\|\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h\|_{\mathcal{V}}$ can be bounded as

$$\begin{aligned} \|\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h\|_{\mathcal{V}} &= \sup_{s \in \mathcal{S}^h} \frac{1}{\mathcal{V}(s)} \sum_{s' \in \mathcal{S}^h} |\tilde{p}_\theta^h(s'|s) - \tilde{p}_\eta^h(s'|s)| \mathcal{V}(s') \\ &= \sup_{s \in \mathcal{S}^h} \frac{1}{\mathcal{V}(s)} \sum_{s' \in \mathcal{S}^h} \left| \sum_{f \in \mathcal{A}(s)} \pi_\theta(f|s) \tilde{p}_\eta^h(s'|s, f) - \sum_{f \in \mathcal{A}(s)} \pi_\eta(f|s) \tilde{p}_\eta^h(s'|s, f) \right| \mathcal{V}(s') \\ &= \sup_{s \in \mathcal{S}^h} \frac{1}{\mathcal{V}(s)} \sum_{s' \in \mathcal{S}^h} \left| \sum_{f \in \mathcal{A}(s)} (r_{\theta, \eta}(f|s) - 1) \pi_\eta(f|s) \tilde{p}_\eta^h(s'|s, f) \right| \mathcal{V}(s') \\ &\leq \|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty \sup_{s \in \mathcal{S}^h} \frac{1}{\mathcal{V}(s)} \sum_{s' \in \mathcal{S}^h} \tilde{p}_\eta^h(s'|s) \mathcal{V}(s') \\ &< \|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty \sup_{s \in \mathcal{S}^h} \frac{1}{\mathcal{V}(s)} (b \mathcal{V}(s) + d \mathbf{1}_C(s)) \\ &\leq \|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty \sup_{s \in \mathcal{S}^h} (b + \frac{d}{\mathcal{V}(s)}) \\ &\leq \|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty (b + d), \end{aligned}$$

where the second inequality holds because of the drift condition in Assumption 1, and the last inequality holds since we assume that $\mathcal{V} \geq 1$.

By plugging this upper bound into Equation (6), we have

$$\|(\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h) \mathbf{v}_\eta^h\|_{\infty, \mathcal{V}} \leq \|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty (b + d) \|Z_\eta\|_{\mathcal{V}} \cdot (\|\tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}} + (\mu_\eta^h)^T \tilde{\mathbf{g}}_\eta^h),$$

where $\|Z_\eta\|_{\mathcal{V}} < \infty$ from Theorem 16.1.2 in Meyn and Tweedie (2012), $\|\tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}} \leq 1$ since $\mathcal{V} \geq \tilde{\mathbf{g}}_\eta^h$ according to Assumption 1, and $(\mu_\eta^h)^T \tilde{\mathbf{g}}_\eta^h < \infty$ according to Lemma 1 of Dai and Gluzman (2022). As a result, we have $\|(\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h) \mathbf{v}_\eta^h\|_{\infty, \mathcal{V}} = O(\|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty)$.

Next, we try to bound $\|\tilde{\mathbf{g}}_\theta^h - \tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}}$. Recall that the expected one-day cost vectors are:

$$\begin{aligned} \tilde{\mathbf{g}}_\theta^h &= \mathbf{g}_\theta^h + \mathbf{P}_\theta^{h, h+1} \mathbf{g}_\eta^{h+1} + (\mathbf{P}_\theta^{h, h+1} \mathbf{P}_\eta^{h+1, h+2}) \mathbf{g}_\eta^{h+2} + \dots + (\mathbf{P}_\theta^{h, h+1} \mathbf{P}_\eta^{h+1, h+2} \dots \mathbf{P}_\eta^{h-2, h-1}) \mathbf{g}_\eta^{h-1} \\ \tilde{\mathbf{g}}_\eta^h &= \mathbf{g}_\eta^h + \mathbf{P}_\eta^{h, h+1} \mathbf{g}_\eta^{h+1} + (\mathbf{P}_\eta^{h, h+1} \mathbf{P}_\eta^{h+1, h+2}) \mathbf{g}_\eta^{h+2} + \dots + (\mathbf{P}_\eta^{h, h+1} \mathbf{P}_\eta^{h+1, h+2} \dots \mathbf{P}_\eta^{h-2, h-1}) \mathbf{g}_\eta^{h-1}. \end{aligned} \tag{8}$$

We denote the elements of the one-day cost vector $\tilde{\mathbf{g}}_\eta^h$ and $\tilde{\mathbf{g}}_\theta^h$ as $\{\tilde{g}_\eta^h(s), s \in \mathcal{S}^h\}$ and $\{\tilde{g}_\theta^h(s), s \in \mathcal{S}^h\}$, respectively. Moreover, we denote

$$\begin{aligned}\tilde{g}^h(s, f) = & g^h(s, f) + \sum_{s^{h+1} \in \mathcal{S}^{h+1}} p^{h, h+1}(s^{h+1} | s, f) \left(g_\eta^{h+1}(s^{h+1}) + \sum_{s^{h+1} \in \mathcal{S}^{h+1}, s^{h+2} \in \mathcal{S}^{h+2}} p_\eta^{h+1, h+2}(s^{h+2} | s^{h+1}) g_\eta^{h+2}(s^{h+2}) \right. \\ & + \cdots + \left. \sum_{s^{h+1} \in \mathcal{S}^{h+1}, \dots, s^{h-1} \in \mathcal{S}^{h-1}} p_\eta^{h+1, h+2}(s^{h+2} | s^{h+1}) \cdots p_\eta^{h-2, h-1}(s^{h-1} | s^{h-2}) g_\eta^{h-1}(s^{h-1}) \right)\end{aligned}$$

which was also used in Equation (23). Following the same argument as for the transition probabilities, this term is independent of the new policy parameter θ , which implies that

$$\tilde{g}_\theta^h(s) = \sum_{f \in \mathcal{A}(s)} \pi_\theta(f | s) \tilde{g}_\eta^h(s, f), \quad \tilde{g}_\eta^h(s) = \sum_{f \in \mathcal{A}(s)} \pi_\eta(f | s) \tilde{g}_\eta^h(s, f).$$

Then, the term $\|\tilde{\mathbf{g}}_\theta^h - \tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}}$ can be bounded as

$$\begin{aligned}\|\tilde{\mathbf{g}}_\theta^h - \tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}} &= \sup_{s \in \mathcal{S}^h} \frac{|\tilde{g}_\theta^h(s) - \tilde{g}_\eta^h(s)|}{\mathcal{V}(s)} \\ &= \sup_{s \in \mathcal{S}^h} \frac{|\sum_{f \in \mathcal{A}(s)} \pi_\theta(f | s) \tilde{g}_\eta^h(s, f) - \sum_{f \in \mathcal{A}(s)} \pi_\eta(f | s) \tilde{g}_\eta^h(s, f)|}{\mathcal{V}(s)} \\ &= \sup_{s \in \mathcal{S}^h} \frac{|\sum_{f \in \mathcal{A}(s)} (r_{\theta, \eta}(f | s) - 1) \pi_\eta(f | s) \tilde{g}_\eta^h(s, f)|}{\mathcal{V}(s)} \\ &\leq \sup_{s \in \mathcal{S}^h} \frac{\|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty |\sum_{f \in \mathcal{A}(s)} \pi_\eta(f | s) \tilde{g}_\eta^h(s, f)|}{\mathcal{V}(s)} \\ &= \|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty \|\tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}} \\ &\leq \|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty,\end{aligned}\tag{9}$$

which implies $\|\tilde{\mathbf{g}}_\theta^h - \tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}} = O(\|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty)$ as well. The second-to-last inequality holds since in our setting $\tilde{g}_\eta^h(s, f) \geq 0, \forall (s, f)$, and the last inequality holds because $\mathcal{V} \geq \tilde{\mathbf{g}}_\eta^h$ implies that $\|\tilde{\mathbf{g}}_\eta^h\|_{\infty, \mathcal{V}} \leq 1$.

By far, we have shown that both terms in the bound for $\|\tilde{N}^h(\theta, \eta)\|_{\infty, \mathcal{V}}$ has the same order $O(\|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty)$, so we also have $\|\tilde{N}^h(\theta, \eta)\| = O(\|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty)$. As a result, according to (3) and the fact that $\|\mu_\theta^h - \mu_\eta^h\|_{1, \mathcal{V}} = O(\|\tilde{\mathbf{P}}_\theta^h - \tilde{\mathbf{P}}_\eta^h\|_\mathcal{V} \|Z_\eta\|_\mathcal{V}) = O(\|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty)$, we have $N_1(\theta, \eta) = O(\|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty)$, and $N_2(\theta, \eta) = O(\|\mathbf{r}_{\theta, \eta}^h - 1\|_\infty^2)$, which completes the proof. \square

2 Illustration of PPO in Two-pool Setting

In this section, we present an illustration of the mechanism behind PPO in our specific context – the overflow assignment for inpatients. For illustration purpose, we focus on a simple two-pool midnight model with randomized atomic action. Furthermore, we focus on

illustrating the updates for one given state s and assume the policy at other states remain unchanged. That is, the objective in this showcase example is to minimize

$$\hat{N}_1(\theta, s) := \mathbb{E}_{f \sim \pi_\eta(\cdot|s)} [r_{\theta, \eta}(f|s) \hat{A}_\eta(s, f)] = \mathbb{E}_{f \sim \pi_\theta(\cdot|s)} [\hat{A}_\eta(s, f)] \quad (10)$$

for the given state s . The clipping function can be easily added to this. By analyzing the gradient of $\hat{N}_1(\theta, s)$, we showcase how the overflow policy will change with different model parameters (B, C, μ, λ) , providing some *explainability* of the mechanism behind PPO.

We consider a simple two-pool midnight MDP with one decision epoch each day ($m = 1$). The state is simplified as $s = (x_1, x_2) \in \mathbb{R}^2$, since we do not need to track the to-be-discharged counts when $m = 1$. Correspondingly, the transition dynamics from current state to the state of the next day given overflow action $f = \{f_{i,j}\}$ can be specified as

$$x'_j = x_j + a_j - d_j + \sum_{i=1, i \neq j}^2 f_{i,j} - \sum_{\ell=1, \ell \neq j}^2 f_{j,\ell}, \quad j = 1, 2.$$

where a_j, d_j denote the number of new arrivals and departures within a day. Here, a_j is a realization of the random variable A_j which follows $\text{Pisson}(\Lambda_j)$, and d_j is a realization of the random variable D_j which follows $\text{Bin}(q_j, \mu_j)$.

2.1 Policy Gradient

To facilitate the gradient analysis, we make additional assumptions.

Assumption 1. (*Symmetric Two-pool Midnight MDP*) *The two pools have $(N_j, \lambda_j, \mu_j) = (N, \lambda, \mu)$ for $j = 1, 2$; $C_1 = C_2 = C$, $B_{12} = B_{21} = B$.*

Under Assumption 2, we can define two state subspaces according to the feasible actions:

$$\mathcal{S}_1 = \{(x_1, x_2) \in \mathcal{S} : x_1 > N, x_2 < N\}; \quad \mathcal{S}_2 = \{(x_1, x_2) \in \mathcal{S} : x_1 < N, x_2 > N\}.$$

Recall that the system-level action takes the form $f = \{f_{i,j}, i, j = 1, 2\}$, where $f_{i,j}$ represents the number of assignments from class i to pool j . According to the definition of feasible action defined in Equation (1), for $s \in \mathcal{S}_1$, the feasible action space is $\{\{q_1 - f_{1,2}, f_{1,2}, 0, 0\} : f_{1,2} = 0, 1, \dots, \min\{q_1, N - x_2\}\}$, where $q_1 = (x_1 - N) \vee 0$ denotes the queue length of class 1. Similarly, for $s \in \mathcal{S}_2$, the feasible action space is $\{\{0, 0, f_{2,1}, q_2 - f_{2,1}\} : f_{2,1} = 0, 1, \dots, \min\{q_2, N - x_1\}\}$, where $q_2 = (x_2 - N) \vee 0$ denotes the queue length of class 2. For any state $s \in \mathcal{S} \setminus (\mathcal{S}_1 \cup \mathcal{S}_2)$, the only feasible action is no-overflow (action $\{0, 0, 0, 0\}$). Without loss of generality, we focus on \mathcal{S}_1 in the following analysis, as the results can be easily extend to \mathcal{S}_2 due to symmetry in Assumption 1.

Assumption 2. (*Parametric Randomized Atomic Action*)

(i) *Batched setting: For a given pre-action state s , each atomic action a^n depends on s , i.e., not affected by the previous atomic assignment.*

(ii) *Parametric logistic model: The routing probability for the atomic action of a class 1 customer is parameterized as*

$$\kappa_\theta(1|s, 1) = \frac{1}{1 + \exp(\theta_1 x_1 + \theta_2 x_2 + \theta_0)}, \quad \kappa_\theta(2|s, 1) = 1 - \kappa_\theta(1|s, 1).$$

Under a randomized policy π_θ satisfying Assumption 2, for a given pre-action state $s \in \mathcal{S}_1$ and an associated feasible action $f = (q_1 - f_{1,2}, f_{1,2}, 0, 0)$, the overflow quantity $f_{1,2}$ follows a binomial distribution $\text{Bin}(q_1, \kappa_\theta(2|s, 1))$ (note that we allow overflow assignments to a full server here). Therefore, the aim of PPO is to update the parameters $\theta = (\theta_0, \theta_1, \theta_2)' \in \mathbb{R}^3$ to minimize $\hat{N}_1(\theta, s) = \mathbb{E}_{f \sim \pi_\theta(\cdot|s)}[\hat{A}_\eta(s, f)]$ in (10) through the policy gradient approach.

Assumption 3. *(Advantage function approximation)*

(i) *Linear approximation: The value function v_η is approximated with linear combinations of a set of linear and quadratic basis functions, i.e.,*

$$\hat{v}_\eta(s) = \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_1^2 + \hat{\beta}_4 x_2^2,$$

where $\hat{\beta}_k, k = 1, 2, 3, 4$ are the coefficient parameters.

(ii) *Transition probability approximation: The waiting customers in buffers can be served with the same service time distribution as in server pools, and leave the system after service.*

In Section 5.2 of the main paper, we approximate the relative value function with the linear combinations of a set linear/quadratic basis as well as some queueing-based basis. Here for simplicity, in Assumption 3(i), we focus on the simpler linear and quadratic basis. Assumption 3(ii) is made to simplify the evaluation of the advantage function \hat{A}_η , which can be computed according to

$$\hat{A}_\eta(s, f) = g(s, f) - \gamma_\eta + \mathbb{E}_{s' \sim p(\cdot|s, f)}[\hat{v}_\eta(s')] - \hat{v}_\eta(s). \quad (11)$$

2.2 Policy gradient

We state the policy gradient result in the following lemma, with its detailed proof in Section 2.3.

Lemma 1. *Under Assumptions 1-3, for any $s = (x_1, x_2) \in \mathcal{S}_1$ and $f = (q_1 - f_{1,2}, f_{1,2}, 0, 0)$,*

$$\begin{aligned} \frac{\partial \hat{N}_1(\theta, s)}{\partial \theta_0} &= \nabla_0 \hat{N}_1(\theta, s), \\ \frac{\partial \hat{N}_1(\theta)}{\partial \theta_k} &= \nabla_0 \hat{N}_1(\theta, s) \cdot x_k, \quad k = 1, 2. \end{aligned}$$

Here,

$$\begin{aligned}
\nabla_0 \hat{N}_1(\theta, s) &= \sum_{f_{1,2}=0}^{q_1} \pi_\theta(f|s) (f_{1,2} - q_1 \kappa_\theta(2|s, 1)) \hat{A}_\eta(s, f) \\
&= q_1 \kappa_\theta(2|s, 1) (1 - \kappa_\theta(2|s, 1)) \left(2\hat{\beta}_3(1 - \mu)^2 (2(q_1 - 1) \kappa_\theta(2|s, 1) + x_2 - x_1 + 1) + B - C \right).
\end{aligned} \tag{12}$$

This closed form for policy gradient allows us to examine the optimal action that minimizes $\hat{N}_1(\theta, s)$. Through this examination, we generate insights into how the policy gradient approach is guiding us to find a good action under different model and cost parameters (λ, μ, B, C) .

We start by analyzing the monotonicity of $\nabla_0 \hat{N}_1(\theta, s)$ w.r.t. $\kappa_\theta(2|s, 1)$, which depends on the sign of $\hat{\beta}_3$. In the rest of the analysis, we focus on the case where $\hat{\beta}_3 > 0$ since it leads to non-trivial policy updates. In this case, the new overflow probability obtained by minimizing $\hat{N}_1(\theta, s)$ should either equals to 0 or 1, or make $\nabla_0 \hat{N}_1(\theta^*, s) = 0$ hold. The latter first-order condition gives us $\kappa_{\theta^*}(2|s, 1) = \max(0, \min(1, \kappa^*(s)))$, where

$$\kappa^*(s) = \frac{N - x_2 - (B - C)/2\hat{\beta}_3(1 - \mu)^2}{2(q_1 - 1)} + \frac{1}{2}.$$

We discuss the property of $\kappa^*(s)$ separately when $B \leq C$ or $B > C$.

When $B \leq C$, $\kappa^*(s) \geq \frac{N - x_2 + q_1 - 1}{2(q_1 - 1)} \geq \frac{N - x_2}{q_1}$. If $\kappa_\theta(2|s, 1) = \frac{N - x_2}{q_1}$, the expected number of overflow assignments equals to the number of idle servers in pool 2. This essentially corresponds to the complete-overflow policy, which is expected to be optimal when the overflow cost is cheap.

When $B > C$, $\kappa^*(s)$ decreases in x_2 , which follows the intuition about a “good” policy, i.e., the more crowded pool 2 gets, the less overflow should be assigned from class 1 to pool 2. For how this action changes with x_1 , we focus on examining the mean of overflow assignment, i.e., $q_1 \kappa^*(s)$. We have

$$q_1 \kappa^*(s) = \frac{N - x_2 - (B - C)/2\hat{\beta}_3(1 - \mu)^2 + 1}{2} + \frac{N - x_2 - (B - C)/2\hat{\beta}_3(1 - \mu)^2}{q_1 - 1} + \frac{1}{2}(q_1 - 1),$$

which increase with q_1 when $q_1 \geq 2(N - x_2) - \frac{B - C}{\hat{\beta}_3(1 - \mu)^2}$, but decrease with q_1 otherwise. Therefore, when x_2 is close to N , the critical point $2(N - x_2) - \frac{B - C}{\hat{\beta}_3(1 - \mu)^2} \leq 1$, so $q_1 \kappa^*(s)$ increase with q_1 , which also follows the intuition about a “good” policy since we need to overflow more to balance the load when there are more waiting patients. However, when x_2 is small, which means there are enough idle beds, the mean value of overflow assignments firstly decrease then increase with x_1 . This policy is desired since when x_1 is very large, load balancing is the first-order issue, so we overflow more when x_1 is large; in contrast, when x_1 is relatively small, we need to trade-off between holding cost and undesirable overflow

assignments, so when x_1 is larger, even with the same mean value of overflow assignments, there is a larger possibility that it will conduct a large number of overflow assignments and occupy too much class 2 servers in that case, causing a very large future cost according to “snowball effect”. Therefore, mean value of overflow assignments should decrease.

In addition, a critical term in $q_1 \kappa^*(s)$ is the term $\frac{(B-C)}{2\hat{\beta}_3(1-\mu)^2}$. Through some argument, we can show that when $B > C$, α in with $B - C$ and μ . It implies that the willingness of overflow decrease with $B - C$ and μ . These results also follow our intuition because when overflow cost is closer to holding cost (the gap $(B - C)$ is smaller), we prefer to overflow more to help balance the system; when the busy servers completes jobs faster (larger μ), we prefer to let customers wait since they can be admitted into primary ward within a shorter time.

2.3 Proof of Lemma 1

For a given $s = (x_1, x_2) \in \mathcal{S}_1$, a feasible action f takes the form of $(q_1 - f_{1,2}, f_{1,2}, 0, 0)$. Under the assumptions in Section 2.1, we get from (10) that $N_1(\theta, s) = \mathbb{E}_{f \sim \pi_\theta(\cdot|s)}[\hat{A}_\eta(s, f)] = \sum_{f_{1,2}=0}^{q_1} \pi_\theta(f|s) \hat{A}_\eta(s, f)$. Therefore, taking derivative of $\hat{N}_1(\theta, s)$ w.r.t. θ_k , $k = 0, 1, 2$, respectively, we get

$$\frac{\partial}{\partial \theta_k} \hat{N}_1(\theta, s) = \sum_{f_{1,2}=0}^{q_1} \frac{\partial \pi_\theta(f|s)}{\partial \theta_k} \hat{A}_\eta(s, f). \quad (13)$$

From Assumption 2(i), the number of overflow quantity from class 1 to pool 2, f_{12} follows $\text{Bin}(q_1, \kappa_\theta(2|s, 1))$ under policy π_θ , we can rewrite $\pi_\theta(f|s)$ as

$$\pi_\theta(f|s) = \binom{q_1}{f_{1,2}} \kappa_\theta(2|s, 1)^{f_{1,2}} (1 - \kappa_\theta(2|s, 1))^{q_1 - f_{1,2}}. \quad (14)$$

Then, by using some algebra, we have

$$\frac{\partial}{\partial \theta_k} \pi_\theta(f|s) = \pi_\theta(f|s) \left(\frac{f_{1,2}}{\kappa_\theta(2|s, 1)} - \frac{q_1 - f_{1,2}}{1 - \kappa_\theta(2|s, 1)} \right) \frac{\partial \kappa_\theta(2|s, 1)}{\partial \theta_k}, \quad k = 0, 1, 2. \quad (15)$$

Furthermore, recall that from Assumption 2(ii), $\kappa_\theta(2|s, 1)$ is parameterized as a logistic function. Therefore, we can further write out the following form for the gradients of $\kappa_\theta(2|s, 1)$. For the gradient w.r.t. θ_0 , we have

$$\begin{aligned} \frac{\partial \kappa_\theta(2|s, 1)}{\partial \theta_0} &= -\frac{\exp(-(\theta_1 x_1 + \theta_2 x_2 + \theta_0)) \cdot (-1)}{(1 + \exp(-(\theta_1 x_1 + \theta_2 x_2 + \theta_0)))^2} \\ &= \kappa_\theta(2|s, 1)(1 - \kappa_\theta(2|s, 1)). \end{aligned} \quad (16)$$

Similarly, for θ_1, θ_2 , we get

$$\frac{\partial \kappa_\theta(2|s, 1)}{\partial \theta_k} = \kappa_\theta(2|s, 1)(1 - \kappa_\theta(2|s, 1))x_k. \quad (17)$$

Combining Equations (15) through (17) and plugging them back to (13), we get the final results of policy gradient as follows.

$$\begin{aligned}\frac{\partial \hat{N}_1(\theta, s)}{\partial \theta_0} &= \sum_{f_{1,2}=0}^{q_1} \pi_\theta(f|s) (f_{1,2} - q_1 \kappa_\theta(2|s, 1)) \hat{A}_\eta(s, f), \\ \frac{\partial \hat{N}_1(\theta, s)}{\partial \theta_k} &= \sum_{f_{1,2}=0}^{q_1} \pi_\theta(f|s) (f_{1,2} - q_1 \kappa_\theta(2|s, 1)) x_k \hat{A}_\eta(s, f), \quad k = 1, 2.\end{aligned}$$

For simplicity, we use $\nabla_0 \hat{N}_1(\theta, s)$ to denote

$$\sum_{f_{1,2}=0}^{q_1} \pi_\theta(f|s) (f_{1,2} - q_1 \kappa_\theta(2|s, 1)) x_k \hat{A}_\eta(s, f). \quad (18)$$

As a result, the policy gradient can be rewritten as

$$\begin{aligned}\frac{\partial \hat{N}_1(\theta, s)}{\partial \theta_0} &= \nabla_0 \hat{N}_1(\theta, s), \\ \frac{\partial \hat{N}_1(\theta)}{\partial \theta_k} &= \nabla_0 \hat{N}_1(\theta, s) \cdot x_k, \quad k = 1, 2.\end{aligned}$$

Next, to derive the closed form of the policy gradient, we need to derive the closed form of \hat{A}_η and plug it into (18). Recall that given a pre-action state $s \in \mathcal{S}_1$ and a feasible action $f = (f_{1,2}, q_1 - f_{1,2}, 0, 0)$ with $0 \leq f_{1,2} \leq q_1$, the advantage function $\hat{A}(s, f)$ can be computed via

$$\hat{A}_\eta(s, f) = g(s, f) + \mathbb{E}_{s' \sim p(\cdot|s, f)}[\hat{v}_\eta(s')], \quad (19)$$

where the current cost follows

$$g(s, f) = C(q_1 - f_{1,2}) + Bf_{1,2},$$

and according to Assumption 3, the estimated value function follows

$$\hat{v}_\eta(s) = \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_1^2 + \hat{\beta}_4 x_2^2.$$

According to Assumption 1(i), the two-pool system is symmetric, so the parameters $\{\hat{\beta}_i, i = 1, \dots, 4\}$ for estimating \hat{v}_η should also be symmetric, i.e.,

$$\hat{v}_\eta = \hat{\beta}_1(x_1 + x_2) + \hat{\beta}_3(x_1^2 + x_2^2).$$

To compute the closed form of cost-to-go $\mathbb{E}_{s'}[\hat{v}_\eta(s')]$, we need to specify the transition dynamics in our simplified two-pool setting. That is, given (s, f) , the next state $s' = (x'_1, x'_2)$ follows

$$x'_1 = x_1 - f_{1,2} + A_1 - D_1, \quad x'_2 = x_2 + f_{1,2} + A_2 - D_2, \quad (20)$$

where from Assumption 1(i)(ii), the number of new arrivals A_1, A_2 both follow Poisson distribution with parameter λ , and the number of new departures D_1, D_2 follow distributions $Bin(x_1 - f_{1,2}, \mu)$ and $Bin(x_2 + f_{1,2}, \mu)$, respectively. Therefore, we have

$$\begin{aligned} & \mathbb{E}_{s' \sim p(\cdot|s,f)}[\hat{v}_\eta(s')] \\ &= \mathbb{E}_{s' \sim p(\cdot|s,f)}[\hat{\beta}_1(x'_1 + x'_2) + \hat{\beta}_3((x'_1)^2 + (x'_2)^2)] \\ &= \hat{\beta}_1(x_1 + x_2 + 2\lambda - (x_1 + x_2)\mu) + \hat{\beta}_3 \mathbb{E}[(x_1 - f_{1,2} + A_1 - D_1)^2 + (x_2 + f_{1,2} + A_2 - D_2)^2]. \end{aligned} \quad (21)$$

Via some algebra to evaluate the expectation term in (21), we have

$$\mathbb{E}_{s' \sim p(\cdot|s,f)}[\hat{v}_\eta(s')] = \hat{\beta}^3(1 - \mu)^2[(x_1 - f_{1,2})^2 + (x_2 + f_{1,2})^2] + (\hat{\beta}_1 + \hat{\beta}_3(2\lambda - \mu))(1 - \mu)(x_1 + x_2) + 2\hat{\beta}_1\lambda + 2\hat{\beta}_3$$

Plugging the formulas of $g(s, f)$ and $\mathbb{E}[\hat{v}_\eta(s')]$ back into (19), we get

$$\begin{aligned} \hat{A}_\eta(s, f) &= g(s, f) - \gamma + \mathbb{E}_{s' \sim p(\cdot|s,f)}[\hat{v}_\eta(s')] - \hat{v}_\eta(s) \\ &= (B - C)f_{1,2} + \hat{\beta}_3(1 - \mu)^2[2f_{1,2}^2 - 2(x_1 - x_2)f_{1,2}] + Const(s), \end{aligned} \quad (22)$$

where $Const(s)$ is a constant that depends on s but is independent of f . Finally, by plugging (22) into (18), we can rewrite the policy gradient $\nabla_0 \hat{N}_1(\theta, s)$ as

$$\begin{aligned} \nabla_0 \hat{N}_1(\theta, s) &= \sum_{f_{1,2}=1}^{q_1} \pi_\theta(f|s) (f_{1,2} - q_1 \kappa_\theta(2|s, 1)) \hat{A}_\eta(s, \tilde{f}) \\ &= \sum_{f_{1,2}=1}^{q_1} \pi_\theta(f|s) (f_{1,2} - q_1 \kappa_\theta(2|s, 1)) \left((B - C)f_{1,2} + \hat{\beta}_3(1 - \mu)^2[2f_{1,2}^2 - 2(x_1 - x_2)f_{1,2}] + Const(s) \right) \\ &= q_1 \kappa_\theta(2|s, 1) (1 - \kappa_\theta(2|s, 1)) \left(2\hat{\beta}_3(1 - \mu)^2(2(q_1 - 1)\kappa_\theta(2|s, 1) + x_2 - x_1 + 1) + B - C \right). \end{aligned}$$

Here, we have used the binomial distribution property for $f_{1,2}$ and we are able to eliminate the $Const(s)$ since

$$\sum_{f_{1,2}=1}^{q_1} \pi_\theta(f|s) (f_{1,2} - q_1 \kappa_\theta(2|s, 1)) Const(s) = (\mathbb{E}[f_{1,2}] - q_1 \kappa_\theta(2|s, 1)) \cdot Const(s) = 0.$$

□

References

J. G. Dai and M. Gluzman. Queueing network controls via deep reinforcement learning. *Stochastic Systems*, 12(1):30–67, 2022.

S. P. Meyn and R. L. Tweedie. *Markov chains and stochastic stability*. Springer Science & Business Media, 2012.