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Lecture 5: Rademacher complexity II
Examples, covering number, and entropy bounds
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“There is Nothing More Practical Than A Good Theory.” — Kurt Lewin

1 Introduction
According to the Bousquet bound of Talagrand’s inequality, it suffices to bound the Rademacher
complexity of an empirical process. Let’s recall the definition.

To bound the concentration of a general empirical process on i.i.d. samples (Zi)i=1,...,n indexed
by h ∈ H : ∥∥Pn −P

∥∥
H

= sup
h∈H

1
n

n

∑
i=1

(
h(Zi)−Eh(Zi)

)
, (1)

we consider its corresponding Rademacher process and Rademacher complexity:

Radn(h) =
1
n

n

∑
i=1

ρih(Zi), h ∈ H , E
∥∥Radn(h)

∥∥
H

= E sup
h∈H

∣∣Radn(h)
∣∣. (2)

For example, suppose H is a finite class of functions, we can compute the Rademacher com-
plexity.

Lemma 1.1 (Massart finite lemma). Suppose H is a finite class of functions uniformly bounded
by U, then

E
∥∥Radn(h)

∥∥
H

≤U

√
2log

(
|H |

)
n

,

where |H | is the cardinality of H .

In more general cases, we will try to bound Rademacher complexity of uncountable classes.
Recall Remark 3.1 in Lecture 4, the Rademacher complexity is a criterion to measure the com-

plexity of a function space. Yet, directly computing the Rademacher complexity for a general class
is not easy, and we tend to bound it in two steps. Step 1: we introduce covering numbers to quan-
tify the complexity of the function space; the reason is that covering numbers are usually easier
to understand and compute; Step 2: we introduce some entropy bounds to bridge the covering
numbers and Rademacher complexity.
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2 Covering numbers
To measure the complexity of the function class, we introduce covering numbers and packing
numbers.

Definition 2.1 (Covering numbers). Given a function class H with a pseudo metric µ , and ε > 0,
C ⊆ H is an ε-cover of (H ,µ), if for any h ∈ H , there exists g ∈ C such that µ(h,g) ≤ ε .
Moreover, the covering number of (H ,µ) is defined as:

N(H ,µ,ε) = inf
{
|C | : C is an ε-cover

}
.

Definition 2.2 (Packing numbers). Given a function class H with a pseudo metric µ , and ε > 0,
P ⊆ H is an ε-packing of (H ,µ), if for any g,g′ ∈ P , such that µ(g,g′) > ε . Moreover, the
packing number of (H ,µ) is defined as:

P(H ,µ,ε) = sup
{
|P| : P is an ε-packing

}
.

Note that covering numbers are the minimal number of balls of radius ε needed to cover H ,
and the packing numbers are the maximal number of balls of radius ε packed inside H .

Lemma 2.3 (Covering-packing duality). Given a function class H with a pseudo metric µ , and
ε > 0

N(H ,µ,ε)≤ P(H ,µ,ε)≤ N(H ,µ,ε/2).

In practice, the pseudo metric µ(h,h′) is often replaced by a norm ∥h− h′∥. On this ground,
N(H ,∥ · ∥,ε) denotes the covering number on a normed space (H ,∥ · ∥).

Lemma 2.4. Given a function class H with pseudo metrics µ and µ ′, such that

µ(h,h′)≤ cµ
′(h,h′), for any h,h′ ∈ H .

Then
N(H ,µ,ε)≤ N(H ,µ ′,ε/c).

Based on the definition of a norm, we have the following properties of covering numbers.

Lemma 2.5. Given a normed space (H ,∥ · ∥), for any h0 ∈ H and c > 0, then

N(cH +h0,µ,ε) = N(cH ,µ,ε) = N(H ,µ,ε/c).

One typical example is a finite dimensional parameter space.

Lemma 2.6 (Euclidean balls). Consider H =Rd with a norm ∥ ·∥, denote B as a unit Euclidean
ball in d dimension, then for ε ≤ 1,

(
1
ε
)d ≤ N(B,∥ · ∥,ε)≤ P(B,∥ · ∥,ε)≤

(3
ε

)d
.
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Lemma 2.7 (Lipschitz parametrization). Consider the following function class parametrized by
θ ∈ Θ:

H :=
{

hθ(·) : θ ∈ Θ
}
.

Denote ∥ · ∥Θ as the norm for θ ∈ Θ, and ∥ · ∥H as the norm for h ∈ H , if∥∥hθ−hθ′
∥∥

H
≤ c∥θ−θ′∥Θ.

Then,
N(H ,∥ · ∥H ,ε)≤ N(Θ,∥ · ∥Θ,ε/c).

This result is useful for the function class with Lipschitz parametrization, where the Lipschitz
constant is c.
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A Sub-gaussian random variables
Definition A.1 (Sub-gaussian random variable). A random variable Y is said to be sub-gaussian
with parameters (µ,σ2), denoted Y ∈ SGµ(σ

2), if its moment generating function satisfies for all
t ∈ R:

E[exp(t(Y −µ))]≤ exp
(

σ2t2

2

)
.

When µ = 0, we simply denote Y ∈ SG(σ2).

Lemma A.2. The following random variables are sub-gaussian:

• Gaussian random variables with mean 0 and variance σ2 are in SG(σ2)

• Rademacher random variables (taking values ±1 with probability 1/2) are in SG(1)

Lemma A.3. Suppose Yj ∈ SG(σ2
j ) for j = 1, . . . ,n ≥ 2 are independent random variables, then

we have the following properties of sub-gaussian random variables:

• ∑
n
j=1Yj ∈ SG(∑n

j=1 σ2
j ).

• Emax1≤ j≤n |Y j| ≤ 2max1≤ j≤n σ j
√

1+ log(2n)/3.
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