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Lecture 5: Rademacher complexity 11
Examples, covering number, and entropy bounds

Lecturer: Ben Dai

“There is Nothing More Practical Than A Good Theory.” — Kurt Lewin

1 Introduction

According to the Bousquet bound of Talagrand’s inequality, it suffices to bound the Rademacher
complexity of an empirical process. Let’s recall the definition.

To bound the concentration of a general empirical process on i.i.d. samples (Z;);=1.... , indexed
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we consider its corresponding Rademacher process and Rademacher complexity:
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For example, suppose ¢ is a finite class of functions, we can compute the Rademacher com-
plexity.

Lemma 1.1 (Massart finite lemma). Suppose ¢ is a finite class of functions uniformly bounded
by U, then
2log (|.7#])

E|Rad, (k)| ,, <U —

where || is the cardinality of .

In more general cases, we will try to bound Rademacher complexity of uncountable classes.

Recall Remark 3.1 in Lecture 4, the Rademacher complexity is a criterion to measure the com-
plexity of a function space. Yet, directly computing the Rademacher complexity for a general class
is not easy, and we tend to bound it in two steps. Step 1: we introduce covering numbers to quan-
tify the complexity of the function space; the reason is that covering numbers are usually easier
to understand and compute; Step 2: we introduce some entropy bounds to bridge the covering
numbers and Rademacher complexity.



2 Covering numbers

To measure the complexity of the function class, we introduce covering numbers and packing
numbers.

Definition 2.1 (Covering numbers). Given a function class .77 with a pseudo metric u, and € > 0,
€ C A is an g-cover of (I, ), if for any h € JZ, there exists g € € such that u(h,g) < €.
Moreover, the covering number of (€, 1) is defined as:

N(A,u,€) =inf{|€|: € is an e-cover}.

Definition 2.2 (Packing numbers). Given a function class .7¢ with a pseudo metric i, and € > 0,
P C A is an e-packing of (A, ), if for any g,g' € &2, such that u(g,g’) > €. Moreover, the
packing number of (¢, 1) is defined as:

P(A,u,€) =sup{|P|: P is an e-packing } .

Note that covering numbers are the minimal number of balls of radius € needed to cover .77,
and the packing numbers are the maximal number of balls of radius € packed inside 7.

Lemma 2.3 (Covering-packing duality). Given a function class 7¢ with a pseudo metric |, and
e>0
N(H,u,€) < P(A,pu,€) <N(H,1,€/2).

In practice, the pseudo metric p(h,h’) is often replaced by a norm |2 — #||. On this ground,
N(A,||-||,€) denotes the covering number on a normed space (77, || - ||).

Lemma 2.4. Given a function class 7 with pseudo metrics W and W', such that
w(h,/') <cu'(h, '), forany h,h' € H#.

Then
N(H,p,€) <N(HA 1 €/c).

Based on the definition of a norm, we have the following properties of covering numbers.

Lemma 2.5. Given a normed space (¢, || - ||), for any hy € 7 and ¢ > 0, then

N(C%+h07u78) :N(C%,‘LL,S) :N(%7“78/C)'
One typical example is a finite dimensional parameter space.

Lemma 2.6 (Euclidean balls). Consider 5 =R with a norm || -
ball in d dimension, then for € < 1,

, denote X as a unit Euclidean

CF <N |-l <P ) -l < ()
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Lemma 2.7 (Lipschitz parametrization). Consider the following function class parametrized by
0cO:

A= {hg(-): 6 €O}
Denote || - ||@ as the norm for 0 € ®©, and || - || ,» as the norm for h € €, if
e —her| ,, < cll0—6]]e.

Then,
N(A, |- ||r,e) <N(O, |- |lo,€/c).

This result is useful for the function class with Lipschitz parametrization, where the Lipschitz
constant is c.



A Sub-gaussian random variables

Definition A.1 (Sub-gaussian random variable). A random variable Y is said to be sub-gaussian
with parameters (i, 62), denoted Y € SGy (02), if its moment generating function satisfies for all
teR:

o’t?
Efexp(1(Y — 11))] < exp (T) .
When u = 0, we simply denote ¥ € SG(c?).
Lemma A.2. The following random variables are sub-gaussian:
* Gaussian random variables with mean 0 and variance 6> are in SG(c?)
* Rademacher random variables (taking values +1 with probability 1/2) are in SG(1)

Lemma A.3. Suppose Y; € SG(GJZ) for j=1,...,n > 2 are independent random variables, then
we have the following properties of sub-gaussian random variables:

« Y1, Y, €SG(X), 07).

. Emaxlgjgn\Yﬂ < 2max1§j§n Cjy/ 1 +10g(21’l)/3.
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