

Lecture 5: Rademacher complexity II

Examples, covering number, and entropy bounds

Lecturer: Ben Dai

“*There is Nothing More Practical Than A Good Theory.*”

— Kurt Lewin

1 Introduction

According to the Bousquet bound of Talagrand’s inequality, it suffices to bound the Rademacher complexity of an empirical process. Let’s recall the definition.

To bound the concentration of a general empirical process on i.i.d. samples $(\mathbf{Z}_i)_{i=1,\dots,n}$ indexed by $h \in \mathcal{H}$:

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{H}} = \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n (h(\mathbf{Z}_i) - \mathbb{E}h(\mathbf{Z}_i)), \quad (1)$$

we consider its corresponding Rademacher process and Rademacher complexity:

$$\mathbf{Rad}_n(h) = \frac{1}{n} \sum_{i=1}^n \rho_i h(\mathbf{Z}_i), \quad h \in \mathcal{H}, \quad \mathbb{E}\|\mathbf{Rad}_n(h)\|_{\mathcal{H}} = \mathbb{E} \sup_{h \in \mathcal{H}} |\mathbf{Rad}_n(h)|. \quad (2)$$

For example, suppose \mathcal{H} is a finite class of functions, we can compute the Rademacher complexity.

Lemma 1.1 (Massart finite lemma). *Suppose \mathcal{H} is a finite class of functions uniformly bounded by U , then*

$$\mathbb{E}\|\mathbf{Rad}_n(h)\|_{\mathcal{H}} \leq U \sqrt{\frac{2 \log(|\mathcal{H}|)}{n}},$$

where $|\mathcal{H}|$ is the cardinality of \mathcal{H} .

In more general cases, we will try to bound Rademacher complexity of uncountable classes.

Recall Remark 3.1 in Lecture 4, the Rademacher complexity is a criterion to measure the complexity of a function space. Yet, directly computing the Rademacher complexity for a general class is not easy, and we tend to bound it in two steps. **Step 1:** we introduce **covering numbers** to quantify the complexity of the function space; the reason is that **covering numbers** are usually easier to understand and compute; **Step 2:** we introduce some entropy bounds to bridge the **covering numbers** and Rademacher complexity.

2 Covering numbers

To measure the complexity of the function class, we introduce covering numbers and packing numbers.

Definition 2.1 (Covering numbers). Given a function class \mathcal{H} with a pseudo metric μ , and $\varepsilon > 0$, $\mathcal{C} \subseteq \mathcal{H}$ is an ε -cover of (\mathcal{H}, μ) , if for any $h \in \mathcal{H}$, there exists $g \in \mathcal{C}$ such that $\mu(h, g) \leq \varepsilon$. Moreover, the *covering number* of (\mathcal{H}, μ) is defined as:

$$N(\mathcal{H}, \mu, \varepsilon) = \inf \{|\mathcal{C}| : \mathcal{C} \text{ is an } \varepsilon\text{-cover}\}.$$

Definition 2.2 (Packing numbers). Given a function class \mathcal{H} with a pseudo metric μ , and $\varepsilon > 0$, $\mathcal{P} \subseteq \mathcal{H}$ is an ε -packing of (\mathcal{H}, μ) , if for any $g, g' \in \mathcal{P}$, such that $\mu(g, g') > \varepsilon$. Moreover, the *packing number* of (\mathcal{H}, μ) is defined as:

$$P(\mathcal{H}, \mu, \varepsilon) = \sup \{|\mathcal{P}| : \mathcal{P} \text{ is an } \varepsilon\text{-packing}\}.$$

Note that covering numbers are the minimal number of balls of radius ε needed to cover \mathcal{H} , and the packing numbers are the maximal number of balls of radius ε packed inside \mathcal{H} .

Lemma 2.3 (Covering-packing duality). *Given a function class \mathcal{H} with a pseudo metric μ , and $\varepsilon > 0$*

$$N(\mathcal{H}, \mu, \varepsilon) \leq P(\mathcal{H}, \mu, \varepsilon) \leq N(\mathcal{H}, \mu, \varepsilon/2).$$

In practice, the pseudo metric $\mu(h, h')$ is often replaced by a norm $\|h - h'\|$. On this ground, $N(\mathcal{H}, \|\cdot\|, \varepsilon)$ denotes the covering number on a normed space $(\mathcal{H}, \|\cdot\|)$.

Lemma 2.4. *Given a function class \mathcal{H} with pseudo metrics μ and μ' , such that*

$$\mu(h, h') \leq c\mu'(h, h'), \quad \text{for any } h, h' \in \mathcal{H}.$$

Then

$$N(\mathcal{H}, \mu, \varepsilon) \leq N(\mathcal{H}, \mu', \varepsilon/c).$$

Based on the definition of a norm, we have the following properties of covering numbers.

Lemma 2.5. *Given a normed space $(\mathcal{H}, \|\cdot\|)$, for any $h_0 \in \mathcal{H}$ and $c > 0$, then*

$$N(c\mathcal{H} + h_0, \mu, \varepsilon) = N(c\mathcal{H}, \mu, \varepsilon) = N(\mathcal{H}, \mu, \varepsilon/c).$$

One typical example is a finite dimensional parameter space.

Lemma 2.6 (Euclidean balls). *Consider $\mathcal{H} = \mathbb{R}^d$ with a norm $\|\cdot\|$, denote \mathcal{B} as a unit Euclidean ball in d dimension, then for $\varepsilon \leq 1$,*

$$\left(\frac{1}{\varepsilon}\right)^d \leq N(\mathcal{B}, \|\cdot\|, \varepsilon) \leq P(\mathcal{B}, \|\cdot\|, \varepsilon) \leq \left(\frac{3}{\varepsilon}\right)^d.$$

Lemma 2.7 (Lipschitz parametrization). *Consider the following function class parametrized by $\theta \in \Theta$:*

$$\mathcal{H} := \{h_\theta(\cdot) : \theta \in \Theta\}.$$

Denote $\|\cdot\|_\Theta$ as the norm for $\theta \in \Theta$, and $\|\cdot\|_{\mathcal{H}}$ as the norm for $h \in \mathcal{H}$, if

$$\|h_\theta - h_{\theta'}\|_{\mathcal{H}} \leq c\|\theta - \theta'\|_\Theta.$$

Then,

$$N(\mathcal{H}, \|\cdot\|_{\mathcal{H}}, \varepsilon) \leq N(\Theta, \|\cdot\|_\Theta, \varepsilon/c).$$

This result is useful for the function class with Lipschitz parametrization, where the Lipschitz constant is c .

A Sub-gaussian random variables

Definition A.1 (Sub-gaussian random variable). A random variable Y is said to be sub-gaussian with parameters (μ, σ^2) , denoted $Y \in \text{SG}_\mu(\sigma^2)$, if its moment generating function satisfies for all $t \in \mathbb{R}$:

$$\mathbb{E}[\exp(t(Y - \mu))] \leq \exp\left(\frac{\sigma^2 t^2}{2}\right).$$

When $\mu = 0$, we simply denote $Y \in \text{SG}(\sigma^2)$.

Lemma A.2. *The following random variables are sub-gaussian:*

- *Gaussian random variables with mean 0 and variance σ^2 are in $\text{SG}(\sigma^2)$*
- *Rademacher random variables (taking values ± 1 with probability $1/2$) are in $\text{SG}(1)$*

Lemma A.3. *Suppose $Y_j \in \text{SG}(\sigma_j^2)$ for $j = 1, \dots, n \geq 2$ are independent random variables, then we have the following properties of sub-gaussian random variables:*

- $\sum_{j=1}^n Y_j \in \text{SG}(\sum_{j=1}^n \sigma_j^2)$.
- $\mathbb{E} \max_{1 \leq j \leq n} |Y_j| \leq 2 \max_{1 \leq j \leq n} \sigma_j \sqrt{1 + \log(2n)}/3$.