CUHK STAT6050: Statistical Learning Theory Spring 2022

Lecture 1: Introduction to Statistical Learning Theory

Lecturer: Ben Dai

“There is Nothing More Practical Than A Good Theory.” — Kurt Lewin

1 Overview

In [Von Luxburg and Scholkopf, 2011]: “Statistical learning theory is regarded as one of the most
beautifully developed branches of artificial intelligence. It provides the theoretical basis for many
of today’s machine learning algorithms. The theory helps to explore what permits to draw valid
conclusions from empirical data.”

This course mainly focuses on the subset of statistical learning theory which is highly related
to supervised statistical methodologies. Following are some specific purposes:

* (Justification). Theoretical analysis of machine learning methods with a large-scale dataset.
The methods can be arbitrary, ranging from parametric models to deep neural networks.
For example, to asymptotically show that Method A is better than Method B; to find con-
ditions under which Method A is better; or to determine whether a method is the best one.
(Asymptotics; excess risk bound; Consistency; Convergence rate; Minimax rate.)

* (Explore new methods). Most machine learning methods are motivated by { intuition |
numerical studies | theory }. Statistical learning theory is one of the most important ways
to motivate a useful method. For example, SVM (VC-dimension), new surrogate losses
in classification (Fisher/excess risk consistency), random forest (bias-variance trade-off),
local smoothing (nonparametric statistics), ...

2 Framework
The content of this section is:
* Define a risk function to measure the performance of a decision function.
* Define the Bayes rule and an excess risk to measure “efficiency” of a decision function.

A risk function is introduced to measure predictive performance. Given a decision function f,
its predictive performance is computed as

R(f) =E(1(Y. £(X))).
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Table 1: Notations in supervised learning

Dataset
Dp=(X;,Yi)i=1..n = Training set with n samples, where (X;,Y;) 4 (X,Y)(i=
l,---,n) are i.i.d. random samples on a probability space
with the probability measure P.
X £ Features or inputs of a sample. X € 2" C R is a d-length
(random) vector.
Y £ Response or outcome of a sample. Y € # C RX is a K-
length vector.
Learning paradigm
f(-) = Adecision function. f: 2" — RX;x — f(x) maps the input

(feature) space to the outcome space, say the decision func-
tion is f(x) given a sample X = x.

A loss function. [: % x RK — R;(y, f(x)) — I(y, f(x))
measure the discrepancy between the true outcome and the
decision function.

~
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R(f) %= The risk of the decision function.
R(f) 2 E(1(Y. £(X)))
Note that the expectation is taken w.r.t. both X and Y. Given a testing dataset .7, = (Xte Y‘e) 1o

the risk function is empirically evaluated as an averaged loss:
1 m
= E ; y] )

The risk function can be used to check the performance of a decision function, yet we want to
further investigate its “efficiency”. To this end, we first introduce the best decision function, namely
Bayes decision function (rule), then compute the discrepancy to measure “efficiency”.

Definition 2.1 (Bayes decision rule). A Bayes (decision) rule is defined as the smallest risk achiev-
able by any measurable decision function, that is,

f* = argminR(f),
f

where the minimum is taken over all possible measurable functions.
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We illustrate the risk function and its Bayes rule by following two examples.

Lemma 2.2 (Mis-classification error). The misclassification error (MCE) in binary classification
(Y € {—1,+1}) is defined as:

R(f) =P(¥ #sen(£(X))) =E(1(Y #sen(£(X))) ) = E(1(¥ £(X) <0)),
and f* is a Bayes rule iff

sgn (f*(x)) =sgn (Pyx (¥ = 1|X=x)—1/2).
Remark 2.3. f* in binary classification is non-identifiable.

Lemma 2.4 (Mean squared error). The mean squared error (MSE) in (multi-outcome) regression
(Y € RX) is defined as:

R(F) =E( (Y- £(X))*),

and the Bayes rule is defined as:
ff(x) =E(YX=x).

Once the Bayes rule is obtained, we can define the best risk as R* = R(f*), which is the best
performance you can achieve. To measure “efficiency”, the excess risk is introduced:

E(f) =R(f) ~R".

Note that &(f) > 0, since R(f) > R*. Now, we want to check the performance and efficiency of
our finite-sample estimator via ERM.

Before that, we would like to point out a probabilistic perspective of ERM. Note that our final
goal is to find a minimizer of the risk function at the population level

minR(f) = minE(/(¥. f(X)).
Two issues are likely to stand out. (i) We have no idea about calculating the expectation, since
we don’t want to make any assumption on data distribution. (ii) The minimum is taken over all
measurable functions, which is infeasible to optimize.

To address (i), the strategy of ERM is to replace the population mean by the empirical average
on a training dataset. This is the key to “learning from data’: good performance in training set
yields good performance in testing set or in population. The assumption of this framework is that
the training set and testing set are i.i.d. samples!. To address (ii), we introduce a candidate class
#, usually a function space index by some parameters, yet it can be a general functional space as
in nonparametric methods.

Now, the formulation of ERM is given as:

—~ 12
fo=argmin=Y " I(y;, f(x:)), (1)

fez N5

!One may check “transfer learning” when training set and testing set have different distributions.
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where ﬁl is the final estimator we obtained from the training set. Then, we aim to quantify the
performance of f,:

&(fa) = R(fu) —R".
Remark 2.5. & (fn) is random, and its randomness is caused by ]?n, which is estimated from random
samples in the training set &,.

To measure the performance based on the random criteria, we introduce three concepts:
« Consistency. f, is consistent w.r.t. the risk R(-) if
~ P
R(fy) = R*, as n— co.

* Convergence rate. Suppose that 6, — 0, and fn satisfies that
&(fn) = R(Ja) — R* = 0p(8,),
then &, is the convergence rate of &(f,,).
* Probabilistic bounds. For any € > 0, there exists Ny(€), for n > Ny(€)
P(6(7) > 8)(e)) <,
provided that some &, (€) — 0, as n — oo.

Remark 2.6. Probabilistic bound = Convergence rate =—> Consistency,
where each step provides progressively coarser information.

Example 2.7 (Toy example). Data. Suppose (Y1,---,Y,) is a sequence of i.i.d. random samples
with E(Y;) = i = 0 and Var(Y;) = ¢ = 1. Risk. R(0) =El(Y,0) =E((Y —6)?).

Bayes decision function: 6* =E(Y) = u.
Empirical estimator: @ =Y = %Z?:l Y; is a function of (Y1,---,Y,).
Then, the excess risk is

£(8) =R(8) ~R* =E((¥ —8)2) —E((Y — u)?) = E(8?) = 6.
Note that the expectation is taken w.r.t. Y, which is independent of (Yy,---,Y,).

* Probabilistic bound. For any 6 > 0,

P(£(8)> 5%) =P(8” > 6%) =P(16] > 6) <

né?’
where the last inequality follows from Chebyshev’s inequality. Alternatively, we can say, for
any € > 0,
~ 1
P(&(0) > —) <e.
(60)> ) <

» Convergence rate and excess risk consistency.

-~

&(8) = 0p(1/n).
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A Op and op notations

Definition A.1 (Op notation). For a set of random variables {X,},cn and a set of constants
{an}nen, we say X, = Op(ay) as n — oo, if for any € > 0, there exists a finite constant 6(€) > 0
and No(&) € N such that P(|X,/a,| > 8(€)) < &, for any n > Ny(e).

Definition A.2 (op notation). For a set of random variables {X,, },<n and a set of constant {a, },en,
we say X, = op(ay) as n — oo, if for any €, 8 > 0, there exists No(g,8) € N such that P(|X,/a,| >
8) < ¢, for any n > Ny(e, §).

Equivalently, we can say X,, = op(ay,) as n — o if X,;/a,, — 0 in probability, that is,
Tim P(|X, /a| > 8) =0,

for any 0 > 0.

Intuition: The sequence {X,/a,} is stochastically bounded (or a reasonable random variable)—
it does not diverge to infinity in probability.

Example A.3. 1. IfX, =X ~N(0,1) for all n, then X, = Op(1).

2. If X, = X, is the sample mean of {X;}_,, under the conditions of CLT, then X,, = Op(1//n)
and X,, = op(1).
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