Neural Networks

STAT3009 Recommender Systems

by Ben Dai (CUHK)
On Department of Statistics and Data Science

» Today's Roadmap

- 1. What are neural networks? (Architecture)
 - * Model structure, parameters vs. hyperparameters
- 2. How do we train them? (Gradient Descent + SGD)
 - * Optimization, backpropagation
- 3. How do we implement them? (Keras)
 - * Code examples, connecting math to implementation
- 4. How do we prevent overfitting? (Early Stopping)
 - * Cross-validation, monitoring validation loss
- 5. Practical guidelines (Rules of Thumb)
 - * Choosing hyperparameters, best practices

» Recall SVD Models

Recall the basic Latent Factor Model:

$$\min_{P,Q} \frac{1}{|\Omega|} \sum_{(u,i)\in\Omega} (r_{ui} - \mu - a_u - b_i - \boldsymbol{p}_u^{\mathsf{T}} \boldsymbol{q}_i)^2 + \lambda \left(\sum_{u=1}^n \|\boldsymbol{p}_u\|_2^2 + \sum_{i=1}^m \|\boldsymbol{q}_i\|_2^2 \right)$$
(1)

- * The **interaction** between users and items is formulated as an inner product.
- It can be extended to model high-order nonlinear interactions.

» Nonlinear interaction: Neural networks

- * For a general nonlinear function f, the predicted rating can be formulated as $\hat{r}_{ui} = f(\mathbf{p}_u, \mathbf{q}_i)$.
- * Examples of nonlinear methods include polynomials, B-splines, and kernel methods.
- * Alternatively, $f(\cdot,\cdot)$ can be a neural network.

Before applying **neural networks** into recommender systems, we shall have a quick overview of **machine learning** models and neural networks.

» Recall ML overview

- Data A pair of input features and its corresponding outcome, denoted as (feat, label).
- ightarrowModel $f_{ heta}$: a parameterized function that maps features to labels.
 - Loss $L(\cdot,\cdot)$: a measure of the difference between the predicted outcome and the true outcome.
 - \rightarrow Opt The algorithm used to solve the problem.
 - \rightarrow : data and loss remain the same; we design our model as a neural network and find an opt algorithm to solve it.

- » Recall ML Overview
- \rightarrow Step 1 Design your model, including parameters and hyperparameters
- \rightarrow Step 2 Train parameters based on the training set with different hyperparameters
 - Step 3 Compute validation loss for each hyperparameter using a validation set or *k*-fold cross-validation; and select the optimal hyperparameters
 - Step 4 Refit the model with the optimal hyperparameters based on all data
 - Step 5 Make predictions for the test set

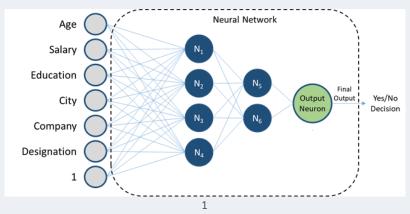
» Recall ML Overview

- \rightarrow Step 1 Design your model, including parameters and hyperparameters
- →Step 2 Train parameters based on the training set with different hyperparameters
 - Step 3 Compute validation loss for each hyperparameter using a validation set or *k*-fold cross-validation; and select the optimal hyperparameters
 - Step 4 Refit the model with the optimal hyperparameters based on all data
 - Step 5 Make predictions for the test set
 - Q1 What are the parameters and hyperparameters for a neural network?
 - 02 How do we train a neural network?

» Neural networks

Model architecture:

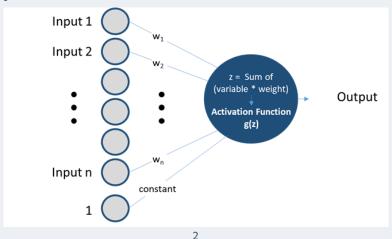
Input \rightarrow Hidden Layer 1 $\rightarrow \cdots \rightarrow$ Hidden Layer L \rightarrow Output



¹https:
//towardsdatascience.com/deep-learning-101-neural-networks-explained-9fee25e8ccd3

» Neural networks

Neuron diagram: Examining a single neuron in a subsequent layer



^{2&}lt;sub>https:</sub>

» Neural networks

⚠ Mathematical formulation:

- Nonlinear activation function combined with a linear combination of outputs from the previous layer
- * From input $f_0 = x$ to output $f_L(x)$:

$$\mathbf{f}_l(\mathbf{x}) = A(\mathbf{W}_l \mathbf{f}_{l-1}(\mathbf{x}) + \mathbf{b}_l), \quad l = 1, \dots, L.$$

- * $\mathbf{W}_{l} \in \mathbb{R}^{d_{l} \times d_{l-1}}$ weight matrix for the l-th layer
- * $\mathbf{b}_l \in \mathbb{R}^{d_l}$ bias terms in the *l*-th layer
- * L number of layers or depth of the neural network
- * $A(\cdot)$ activation function
 - * Examples of activation functions: logistic (sigmoid), ReLU, tanh, and others³;
- * $\mathbf{f}_l(\mathbf{x}) \in \mathbb{R}^{d_l}$ number of neurons in the *l*-th layer

³https://en.wikipedia.org/wiki/Activation_function

» Neural networks: Parameters and Hyperparameters

A1. Distinguishing between parameters and hyperparameters

Params The collection of all weights and biases,

$$\boldsymbol{\theta} = \{ \boldsymbol{W}_0, \boldsymbol{b}_0, \cdots, \boldsymbol{W}_{L-1}, \boldsymbol{b}_{L-1} \}$$

* Weight matrices: $W_l \in \mathbb{R}^{d_l \times d_{l-1}}$, bias vectors: $b_l \in \mathbb{R}^{d_l}$

» Neural networks: Parameters and Hyperparameters

A1. Distinguishing between parameters and hyperparameters

Params The collection of all weights and biases,

$$\boldsymbol{\theta} = \{ \boldsymbol{W}_0, \boldsymbol{b}_0, \cdots, \boldsymbol{W}_{L-1}, \boldsymbol{b}_{L-1} \}$$

- * Weight matrices: $W_l \in \mathbb{R}^{d_l \times d_{l-1}}$, bias vectors: $\boldsymbol{b}_l \in \mathbb{R}^{d_l}$
- hp The architectural design of a neural network
 - * L number of layers or depth of the neural network
 - * d_l number of neurons in the l-th layer; $l = 1, \dots, L$

Tradeoff As L and d_l increase, the model becomes more complex model complexity increases training error decreases

» Neural networks: Training

A2. Training a neural network using Stochastic Gradient Descent (SGD) and backpropagation

General optimization problem:

$$\min_{\theta} \mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \mathbf{f}_L(\mathbf{x}_i; \theta))$$

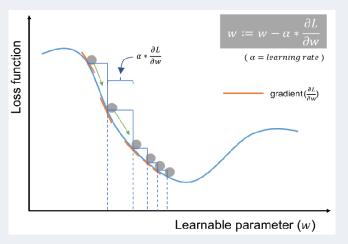
* Gradient Descent: an iterative optimization method

$$heta^{(t+1)} = heta^{(t)} - \eta
abla_{ heta} \mathfrak{L}(heta^{(t)})$$

where $\eta > 0$ is the learning rate (step size)

- * Challenge: Computing the full gradient $\nabla_{\theta} \mathcal{L}(\theta)$ requires evaluating *all* n training samples \rightarrow expensive!
- * Solution: Use Stochastic Gradient Descent instead

» Gradient Descent: Visual Illustration



- Starting from an initial point
- * At each step: $w := w \alpha \frac{\partial L}{\partial w}$ (move opposite to gradient)
- * Gradient (orange): slope of the loss at current point
- * Step size controlled by learning rate lpha

» Example: Gradient Descent in Action

Problem: Minimize $L(\theta_1, \theta_2) = \theta_1^2 + 4\theta_2^2$ (2D quadratic)

Setup:

* Gradient:

$$\nabla \textit{L} = \begin{pmatrix} 2\theta_1 \\ 8\theta_2 \end{pmatrix}$$

* Update:

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla L(\theta^{(t)})$$

* Settings: $\eta = 0.2$, $\theta^{(0)} = (2, 1)$

Iterations:

$$t = 0$$
: $\theta = (2.00, 1.00)$,
 $L = 8.00$
 $t = 1$: $\theta = (1.20, 0.20)$,
 $L = 1.60$
 $t = 2$: $\theta = (0.72, 0.04)$,
 $L = 0.52$
 $t = 3$: $\theta = (0.43, 0.01)$,
 $L = 0.19$
 $t = 4$: $\theta = (0.26, 0.00)$,
 $L = 0.07$
 \vdots
 $t \to \infty$: $\theta \to (0.0)$, $L \to 0$

» Neural networks: Training

A2. Training a neural network using Stochastic Gradient Descent (SGD) and backpropagation

- SGD Recall. Compute stochastic gradients for all model parameters
 - * Gradient:

$$\frac{\partial \mathsf{Loss}}{\partial \theta} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial L(y_i, \mathbf{f}_L(\mathbf{x}_i))}{\partial \theta}$$

* Approximation using one sample:

$$\frac{\partial \mathsf{Loss}}{\partial \theta} \leftarrow \frac{\partial \mathit{L} \big(y_i, \mathbf{f}_\mathit{L} (\mathbf{x}_i) \big)}{\partial \theta}$$

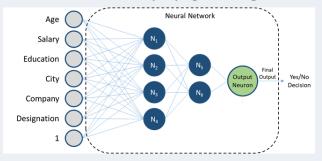
* Approximation using a mini-batch of samples

$$\frac{\partial \mathsf{Loss}}{\partial \theta} \leftarrow \frac{1}{|\mathit{Batch}|} \sum_{i \in \mathit{Batch}} \frac{\partial L(y_i, \mathbf{f}_L(\mathbf{x}_i))}{\partial \theta}$$

» Neural networks: Training (Optional)

A2. Training a neural network using Stochastic Gradient Descent (SGD) and backpropagation

- SGD Computing the stochastic gradient of $L(y_i, \mathbf{f}_L(\mathbf{x}_i))$ with respect to all model parameters
 - Proceeding from the output layer (easiest) to the input layer (hardest)
 - * This process is known as backpropagation
 - * Reference: How the backpropagation algorithm works



» Backpropagation: Chain Rule (Optional)

Computing gradients for model parameters in different layers

Last layer
$$\frac{\partial L(y_i, \mathbf{f}_L(\mathbf{x}_i))}{\partial \mathbf{W}_L} = \frac{\partial L(y_i, \mathbf{f}_L(\mathbf{x}_i))}{\partial \mathbf{f}_L(\mathbf{x}_i)} \frac{\partial \mathbf{f}_L(\mathbf{x}_i)}{\partial \mathbf{W}_L}$$
Layer L-1
$$\frac{\partial L(y_i, \mathbf{f}_L(\mathbf{x}_i))}{\partial \mathbf{W}_{L-1}} = \frac{\partial L(y_i, \mathbf{f}_L(\mathbf{x}_i))}{\partial \mathbf{f}_L(\mathbf{x}_i)} \frac{\partial \mathbf{f}_L(\mathbf{x}_i)}{\partial \mathbf{f}_{L-1}(\mathbf{x}_i)} \frac{\partial \mathbf{f}_{L-1}(\mathbf{x}_i)}{\partial \mathbf{W}_{L-1}}$$
Layer L-2
$$\frac{\partial L(y_i, \mathbf{f}_L(\mathbf{x}_i))}{\partial \mathbf{W}_{L-2}} = \frac{\partial L(y_i, \mathbf{f}_L(\mathbf{x}_i))}{\partial \mathbf{f}_L(\mathbf{x}_i)} \frac{\partial \mathbf{f}_L(\mathbf{x}_i)}{\partial \mathbf{f}_{L-1}(\mathbf{x}_i)} \frac{\partial \mathbf{f}_{L-1}(\mathbf{x}_i)}{\partial \mathbf{f}_{L-2}(\mathbf{x}_i)} \frac{\partial \mathbf{f}_{L-2}(\mathbf{x}_i)}{\partial \mathbf{W}_{L-2}}$$

Application of the chain rule!

» Neural Networks: Training

Stochastic Gradient Descent (SGD) involves additional hyperparameters

$$heta^{\mathsf{new}} \leftarrow heta^{\mathsf{old}} - \mathsf{learning} \; \mathsf{rate} \times \sum_{i \in \mathit{Batch}} rac{\partial Lig(y_i, \mathbf{f}_L(\mathbf{x}_i)ig)}{\partial heta} \Big|_{\theta^{\mathsf{old}}}$$

- * Learning rate the step size for each gradient update
- Batch size the number of samples used for each gradient update
- * Number of epochs the number of times the model is trained on the entire training dataset

» TensorFlow and Keras: Neural Networks

- * Advantages: flexible computing platforms, such as TensorFlow + Keras, are available for implementing custom neural networks.
- * What we will do in practice?
 - * Model definition. Specify your custom model f(x)
 - Loss and metrics. Define the loss function and evaluation metrics for the problem.
 - Optimization. Utilize tf.keras.optimizer.SGD, which will automatically compute the gradient via backpropagation⁴
 - * Feed the training data to the defined model.

⁴http://neuralnetworksanddeeplearning.com/chap2.html

- » Example: Data, Loss, Algorithm, and Metric
 - InClass demo: Implementation using tf.keras in Colab
 - * Housing price dataset

$$\underset{\theta}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} L(y_i, \mathbf{f}(\mathbf{x}_i))$$

- * **Data**. Input features: $x_i \in \mathbb{R}^d$; Output: $y_i \in \mathbb{R}$;
- * Model. Predicting the house price: $f(x) \rightarrow y$;
- * Loss function. RMSE or MSE;

$$L(y_i, f(\mathbf{x}_i)) = (y_i - f(\mathbf{x}_i))^2.$$

* Evaluation metric. MSE and RMSE

» Keras Implementation

Connecting mathematics to code:

- * Step 1: Define the model $f_L(x;\theta)$
 - * model = tf.keras.Sequential([...])
 - st Specify layers, activation functions o architecture of $extbf{\emph{f}}_{ extit{\textit{L}}}$
- * Step 2: Compile the model setup optimization
 - * model.compile(optimizer, loss, metrics)
 - * optimizer: SGD, Adam, etc. ightarrow algo to minimize $\mathfrak{L}(heta)$
 - * loss: 'mse', etc. $\rightarrow L(y_i, \mathbf{f}_L(\mathbf{x}_i))$
 - * metrics: 'accuracy', 'rmse', etc. \rightarrow eval measures
- * Step 3: Fit the model solve optimization problem
 - * model.fit(X, y, epochs, batch_size, validation_data)
 - * epochs: number of passes through entire dataset
 - * batch_size: size of mini-batch for SGD update
 - * Solves: $\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L(y_i, \mathbf{f}_L(\mathbf{x}_i; \theta))$

- » Neural Networks: Cross-Validation
- Step 1 Design your neural network with candidate hyperparameters

param : weight matrix, intercept vector

hps: depth, number of neurons, types of layers

Step 2 Train model parameters based on the training set with different hyperparameters

$$\widehat{\theta} = \underset{\theta}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} L(y_i, \mathbf{f}_L(\mathbf{x}_i))$$

- Step 3 Compute validation loss for each hyperparameter setting using a validation set or *k*-fold cross-validation, and select the optimal architecture
- Step 4 Refit the model with the optimal hps using all data
- Step 5 Make predictions on the test set

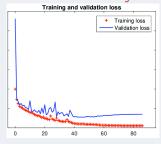
» Neural Networks: Cross-Validation

- * Cross-validation (CV) in the [Previous Page] is entirely correct, but rarely used in practice for neural networks
- * Training a neural network is not easy...
 - * There are too many hyperparameters (hp)
 - For example, training a CNN on 16 vCPUs: 200 epochs took us 5 days to run. [Source]
- Solution: Monitor the model's performance on a validation set and use early-stopping: stop training when a monitored validation metric has stopped improving

» Neural networks: bias-variance trade-off

ML: x-axis: Model complexity VS y-axis: Error

DL: x-axis: #iteration VS y-axis: Error



If we can stop training before overfitting occurs ... Monitoring and Early Stopping can be employed:

```
Epoch 1/50
loss: 0.4521 - accuracy: 0.7834
- val loss: 0.3912 - val accuracy: 0.8245
Epoch 2/50
loss: 0.3156 - accuracy: 0.8567
- val loss: 0.2834 - val accuracy: 0.8912
. . .
Epoch 8/50
loss: 0.0821 - accuracy: 0.9723
- val loss: 0.1456 - val accuracy: 0.9534 <- Best validation
Epoch 9/50
loss: 0.0634 - accuracy: 0.9812
- val loss: 0.1523 - val accuracy: 0.9501
Epoch 10/50
loss: 0.0512 - accuracy: 0.9856
- val loss: 0.1689 - val accuracy: 0.9478
Epoch 11/50
Restoring model weights from the end of the best epoch: 8.
Epoch 11: early stopping
```

» Keras: Early Stopping Implementation

Key arguments in tf.keras.callbacks.EarlyStopping:

- * monitor: metric to track → typically 'val_loss' or 'val_accuracy'
 - * Monitors validation performance to detect overfitting
- * patience: number of epochs to wait before stopping
 - * If monitored metric doesn't improve for **patience** epochs \rightarrow stop
- restore_best_weights: whether to restore model weights from best epoch
 - * If True: restores weights from epoch with best monitored metric

» Common Pitfalls to Avoid

Watch out for these mistakes when training NNs:

- * Learning rate too high \rightarrow Loss explodes or oscillates wildly
 - * Symptoms: NaN losses, unstable training
- * Learning rate too low \rightarrow Training takes forever, gets stuck
 - * Symptoms: Loss barely decreases after many epochs
- Forgetting to normalize inputs → Slow/unstable convergence
 - * Solution: Standardize features to mean 0, std 1
- * No validation set \rightarrow Overfitting goes undetected
 - * Monitor validation performance!
- * Too many epochs without early stopping o Severe overfitting
- * Extreme batch sizes: Batch size = 1 (too noisy) or = all data (too slow)

Solution: Start with reasonable defaults, then tune systematically!

» Rules of Thumb: Neural Networks

Designing a NN can be overly flex, so here are some rules:

- * Determine the problem type, and select the corresponding output layer activation function, loss function, and evaluation metric.
- * Choose the number of nodes in hidden layers:
 - * First hidden layer: pprox half of input features
 - * Subsequent layers: halving in size (e.g., 128, 64, 32, ...)
- * Select an activation: ReLU is often a good choice.
- Determine the number of epochs: start with 20 to assess model convergence and accuracy. If minimal success is achieved, increase the number of epochs. Otherwise, consider 100 epochs and combine with CV techniques.
- * Choose a batch size: select from a geometric progression of 2, starting with 16. For imbalanced datasets, consider larger values, such as 128.

» Key Takeaways

What you should remember:

- 1. NNs = Universal approximators with layers of linear + nonlinear transforms
 - * Architecture: $f_l(\mathbf{x}) = A(\mathbf{W}_l f_{l-1}(\mathbf{x}) + \mathbf{b}_l)$
- 2. Training = Optimization via gradient descent
 - * Backpropagation computes gradients efficiently using chain rule
- 3. SGD trades accuracy for speed using mini-batches
 - * Faster updates, can escape local minima
- 4. Hyperparameters matter: learning rate, batch size, architecture, epochs
- 5. Early stopping prevents overfitting by monitoring validation loss
- 6. Keras makes it easy: define \rightarrow compile \rightarrow fit

Next: Apply NNs to recommender systems (Neural Collaborative Filtering)!