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“There is Nothing More Practical Than A Good Theory.” — Kurt Lewin

1 A fundamental decomposition
Recall the example in Lecture 1.

Example 1.1 (Toy example). Data. Suppose (Y1, · · · ,Yn) is a sequence of i.i.d. random variables
with E(Yi) = µ = 0 and Var(Yi) = σ = 1. Risk. R(θ) = El(Y,θ) = E

(
(Y −θ)2).

• Bayes decision function: θ ∗ = E(Y ) = µ .

• ERM-estimator:

θ̂ = argmin
θ∈R

1
n

n

∑
i=1

(Yi −θ)2,

which yields θ̂ = Ȳ = 1
n ∑

n
i=1Yi, a function of (Y1, · · · ,Yn).

Then, the excess risk is

E (θ̂) = R(θ̂)−R∗ = E
(
(Y − θ̂)2)−E

(
(Y −µ)2)= E(θ̂ 2) = θ̂

2.

Note that the expectation is taken with respect to Y , which is independent of (Y1, · · · ,Yn).

1. Probabilistic bound. For any δ > 0,

P
(
E (θ̂)≥ δ

2)= P
(
θ̂

2 ≥ δ
2)= P

(
|θ̂ | ≥ δ

)
≤ 1√

nδ
.

The provided toy example is a very special case.

• A1. The empirical minimizer f̂n and Bayes decision function f ∗ share the same functional
space. Specifically, f̂n = θ̂ ∈ R and f ∗ = µ ∈ R.

• A2. The ERM minimizer f̂n = θ̂ ∈ R has an analytic expression, that is, θ̂ = Ȳ .

In practice, both A1 and A2 are invalid.

• D1. Misspecified model. f̂n ∈ F but f ∗ /∈ F .
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• D2. f̂n can be obtained by some numerical algorithms, but no analytical solution.

The question is: can we provide a general theoretical framework to compute the bound?
A triangle inequality is widely used to address D1. Consider the following decomposition:

R( f̂n)−R∗ = R( f̂n)− inf
f∈F

R( f )︸ ︷︷ ︸
Estimation Error

+ inf
f∈F

R( f )−R( f ∗)︸ ︷︷ ︸
Approximation Error

. (1)

For simplicity, assume that the infimum is achievable: there exists a function f̄ ∈ F , such that
R( f̄ ) = inf f∈F R( f ). If f ∗ ∈ F , then we just set f̄ = f ∗, then the second term (approximation
error) is zero. If f ∗ /∈ F , the idea for the decomposition is to “project” (in terms of the risk
function) f ∗ to the given functional space F , which can be interpreted as the best we can do under
F . Then, the estimation error and approximation error are treated separately.

Remark 1.2 (Estimation-approximation trade-off). From (1), when we enlarge the candidate class
F , then the estimation error will increase, since we have more “parameters” to estimate; yet the
approximation error will decrease, since we have more candidates to approximate f ∗. The idea
is similar to bias-variance trade-off and under-/over-fitting. As a by-product, we would consider
a data-dependent candidate class F = Fn, yielding the method of sieves and the method of
penalization.

1.1 Approximation error
Recall the definition of approximation error:

inf
f∈F

R( f )−R( f ∗),
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which is only related to f ∗ and F , neither of which is random. Hence, the approximation error
is more likely a math problem, which is highly related to approximation theory and functional
analysis. The results are usually provided as “complexity of F ” and the “regularity of f ∗” (such
as smoothness).

Example 1.3 (RKHS). Let HK be a reproducing kernel Hilbert space (RKHS) with a Gaussian
kernel

K(x,x′) = exp
(
−

∥x−x′∥2
2

σ2

)
, X = [0,1]d.

Then, there exist positive constants c0 and c1, such that, for any f ∗ ∈W s,2(X ) and U ≥ c0∥ f ∗∥L2 ,
we have

inf
∥ f∥HK≤U

∥ f − f ∗∥L2 ≤ c1 log(U)−s/4, (2)

where W s,2 is the Sobolev space as a subset of L2(X ) with s-order weak derivatives.

Let F = { f ∈HK : ∥ f∥HK ≤U}, according to the result in Example 1.2, for most losses, there
exist c3 > 0 and α > 0, such that

inf
f∈F

R( f )−R( f ∗)≤ c3 inf
f∈F

∥ f − f ∗∥α

L2 ≤ cα
1 c3 log(U)−sα/4, (3)

which yields an upper bound for the approximation error. A non-technical interpretation is that f ∗

belongs to a larger space (Sobolev space), and we tend to approximate it with a smaller functional
space (RKHS). Thus, the approximation error describes how well the ideal decision function f ∗ is
approximated. Recall s is a parameter quantifying the regularity of f ∗. Intuitively, a “smoother”
function is easier to be approximated. U is a tuning parameter to control the volume of the can-
didate RKHS: when U becomes large, then F will be enlarged, the approximation error becomes
smaller, which echoes the estimation-approximation error trade-off in Remark 1.2.

More results on different functional spaces, including RKHS, B-spline, and deep neural net-
works [Barron, 2002, Bauer and Kohler, 2019, Yarotsky, 2017], are extensively studied in the lit-
erature.

1.2 Estimation error
Next, we focus on the estimation error. Recall “what we have”:

• f̂n is the minimizer of ERM R̂n.

• f̂n and f̄ both belong to the candidate space F .

Consider the following decomposition:

R( f̂n)− inf
f∈F

R( f ) = R( f̂n)−R( f̄ ) = R( f̂n)− R̂n( f̂n)+ R̂n( f̂n)−R( f̄ )

= R( f̂n)− R̂n( f̂n)︸ ︷︷ ︸
T1

+ R̂n( f̂n)− R̂n( f̄ )︸ ︷︷ ︸
≤0: f̂n is a minimizer.

+ R̂n( f̄ )−R( f̄ )︸ ︷︷ ︸
T2

≤ T1 +T2. (4)

3



It suffices to look at T1 and T2. Since f̄ is a deterministic (non-random) function, T2 can be treated
by a concentration inequality. However, concentration does not work for T1, since f̂n is a random
estimator depending on the training samples Dn = (Xi,Yi)i=1,··· ,n. Consequently, T1 yields two
levels of nested randomness: (i) R̂n → R; and (ii) Dn → f̂n. One solution is to consider uniform
concentration:

T1 ≤ sup
f∈F

(
R( f )− R̂n( f )

)
.

The most important benefit of the provided upper bound is that we decouple the nested randomness,
yet the price is to consider the concentration uniformly over a set of candidate functions. Note that{

R( f )− R̂n( f ); f ∈F
}

is a so-called (non-scaled) empirical process indexed by F . Since f̄ ∈F ,
it suffices to consider a two-sided empirical process to control the estimation error, that is,

R( f̂n)− inf
f∈F

R( f )≤ T1 +T2 ≤ 2 sup
f∈F

∣∣R( f )− R̂n( f )
∣∣. (5)

The center of this course is to investigate the asymptotics of the empirical process

Gn( f ) =
√

n
∣∣R( f )− R̂n( f )

∣∣, f ∈ F .

Here, we use the scaled empirical process for consistency with the definition in the literature.
Before digging deeply into the technical details, let’s develop an overall insight of this measure.
Again, when we enlarge the candidate space F , it is clear that Gn increases. Back to the estimation
error, the interpretation is that it is more difficult to search a good estimator in a more complicated
candidate space.

1.3 Excess risk bounds
Combining the results of estimation error and approximation error, the excess risk is bounded by

R( f̂n)−R∗ = R( f̂n)− inf
f∈F

R( f )+ inf
f∈F

R( f )−R( f ∗)

≤ 2 sup
f∈F

|R̂n( f )−R( f )|+ inf
f∈F

R( f )−R( f ∗). (6)

It is clear that when U increases, the approximation error will decrease, and the estimation er-
ror will increase. Therefore, after bounding the estimation and approximation errors, we aim to
(theoretically) find optimal tuning parameters to improve the convergence rate of the excess risk
bound.

For example, in Example 1.3, according to (3),

R( f̂n)−R∗ ≤ 2 sup
f∈F

|R̂n( f )−R( f )|+ cα
1 c3 log(U)−sα/4.

Then, the probabilistic bound is given as

P
(
R( f̂n)−R∗ ≥ ε

)
≤ P

(
sup
f∈F

|R̂n( f )−R( f )| ≥ 1
2
(ε − cα

1 c3 log(U)−sα/4)
)
. (7)
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Therefore, it suffices to investigate the asymptotics of sup f∈F |R̂n( f )−R( f )|.
The approximation error is an important topic in learning theory, yet its tools and results are

likely “complementary” to asymptotic analysis in statistics. Partly for this reason, many works
would either omit the approximation error, or assume that f ∗ ∈ F , to highlight the statistical
properties of methods. In the sequel of this course, we will mainly focus on the estimation error.
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