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Нулевая глава

Предисловие
Общее описание
Этот текст представляет собой набор математических и околоматема-
тических заметок, предназначенный в основном для меня, но, быть мо-
жет, интересный и для других. Он в крайней степени сырой и постоянно
переписывается и дописывается. Содержание, как правило, не выходит
за рамки базовых университетских и школьных учебников.

Форматирование
Для вёрстки использовался XƎLATEX. Это версия файла с обрезанными
полями, предназначенная для отображения на экране, а не печати на
бумаге.

Номера страниц в оглавлении кликабельны. Номера страниц в верх-
них колонтитулах кликабельны и ссылаются на оглавление. Ссылки на
бибиографию кликабельны, и библиография снабжена кликабельными
обратными ссылками.

В каждом разделе нумерация теорем, лемм и тому подобного на-
чинается заново. Это сделано для того, чтобы разделы можно было с
минимумом изменений копировать и вставлять в разные места текста.

Копирайт
Формально данное произведение лицензировано с помощью лицензии
Creative Commons «CC0 1.0 Universal», текст которой доступен по
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ссылке [13]. Вот соответствующие значки: cz. Иначе говоря, оно объ-
является общественным достоянием.

Обратная связь
Связаться с автором можно по электронной почте yymath@yandex.ru.

Буквы в математических формулах
Греческие буквы
Для справки приведём таблицу из греческих букв, используемых в ма-
тематическом режиме TEX-а. Вместо некоторых прописных греческих
букв используются соответствующие латинские.

Aα B β Γ γ ∆ δ E ε ε Z ζ H η Θ θ ϑ
I ι K κκ Λλ M µ N ν Ξ ξ O o Ππ$
P ρ % Σσ ς T τ Υ υ Φφϕ X χ Ψψ Ωω

Заметим, что строчная дзета (ζ) чем-то похожа на латинскую «z», что
позволяет отличать её от кси (ξ), а строчная мю (μ) — на кириллическую
«м», что позволяет отличать её от эта (η). Есть ещё «архаичные» буквы
типа дигаммы (𝟋) или коппы.

Готические буквы
Для справки приведём таблицу из английских букв, набранных мате-
матической фрактурой.

A B C D E F G H I J K L M
a b c d e f g h i j k l m

N O P Q R S T U V W X Y Z
n o p q r s t u v w x y z

Обратите внимание на то, что в таблице много пар похожих глифов,
например, I и J, B и P, r и x.

mailto:yymath@yandex.ru
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Глобальные обозначения, соглашения и
определения
Теория множеств
Обозначение 1 (НАТУРАЛЬНЫЕ ЧИСЛА). Вопрос о том, стоит ли начи-
нать натуральные числа с нуля или с единицы, решается радикально:
вводятся обозначения N0 := N ∪ {0} = Z⩾0 и N1 := N \ {0} = Z>0, а обо-
значение N, как правило, не используется. Однако в случае, когда оно
используется, N обозначает N0, то есть {0, 1, 2, 3, 4, . . . }, как у Бурбаки.

Замечание 1. Символ Z происходит от первой буквы немецкого слова
«zahlen», означающего «числа».

Обозначение 2 (ВКЛЮЧЕНИЕ ПОДМНОЖЕСТВА). Обозначение X ⊂ Y
означает, что X является подмножеством Y , не обязательно собствен-
ным.

Обозначение 3 (МНОЖЕСТВО КОНЕЧНЫХ ПОДМНОЖЕСТВ). Множе-
ство конечных подмножеств множества I иногда будет обозначаться
символом Λ(I).

Соглашение 1 (ОТОБРАЖЕНИЕ). Отображение — это тройка, состоя-
щая из области, кообласти и графика. Графика недостаточно, чтобы
задать отображение, необходимо ещё указать кообласть.

Обозначение 4 (СЕМЕЙСТВО). Символы (ai)i∈I и (ai | i ∈ I) обознача-
ют семейство, индексированное множеством I, которое теоретико-мно-
жественно представляет из себя множество упорядоченных пар (i, ai),
по одной для каждого i ∈ I, то есть график отображения из I, тако-
го что i 7→ ai для всех i ∈ I. Если (Xi)i∈I — семейство множеств, то
элементы

∏
i∈I Xi — это семейства (ai)i∈I , где ai ∈ Xi для всех i ∈ I.

Замечание 2. Символ «∈» происходит от повёрнутой на 180◦ кирил-
лической буквы «э», первой буквы слова «это»: «x ∈ R» — «x — это
вещественное число». Шутка. На самом деле это стилизованная грече-
ская буква ε, первая буква слова «ἐστί» — «ѥстъ»/«єстъ»/«есть».
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Обозначение 5 (ОБРАЗ КАК ПОДМНОЖЕСТВО). Образ подмножества
X ⊂ Y под действием отображения f : Y → Z иногда будет обозна-
чаться через {f(x) ∈ Z | x ∈ X} или {f(x) | x ∈ X}.

Обозначение 6 (ОБРАЗ В ЭКСПОНЕНЦИАЛЬНОМ ОБОЗНАЧЕНИИ). Об-
раз подмножества X ⊂ Y под действием отображения y 7→ yλ : Y → Z
или y 7→ yλ : Y → Z будем обозначать через X :λ := {xλ ∈ Z | x ∈ X}
или Xλ: := { xλ ∈ Z | x ∈ X} соответственно.

Пример 1. Множество квадратов обратимых элементов ассоциативно-
го унитального кольца R обозначается символом (R×):2. Если H ⊂ G
— подгруппа группы G, а g ∈ G, то Hg: = gHg−1, где мы используем
экспоненциальное обозначение для сопряжения.

Обозначение 7 (КЛАСС ЭКВИВАЛЕНТНОСТИ). Класс эквивалентности
элемента x иногда будет обозначаться через [x].

Аксиоматическая алгебра
Соглашение 2 (КОЛЬЦО). Будем называть кольцом аддитивно запи-
сываемую абелеву группу, снабжённую биаддитивной, то есть двусто-
ронне дистрибутивной, внутренней бинарной операцией умножения.

Соглашение 3 (УНИТАЛЬНОЕ КОЛЬЦО). Кольцо с единицей называет-
ся унитальным кольцом. Если противное не указано явно, то гомомор-
физмы между унитальными кольцами подразумеваются унитальными,
то есть переводящими единицу в единицу, и подкольца унитальных ко-
лец подразумеваются унитальными с унитальными вложениями.

Обозначение 8 (ЕДИНИЦЫ МУЛЬТИПЛИКАТИВНОГО МОНОИДА). Сим-
вол M× обозначает группу единиц, то есть двусторонне мультиплика-
тивно обратимых элементов, мультипликативного моноида M .

Соглашение 4 (ЛЕВОЕ И ПРАВОЕ). По умолчанию все действия, в част-
ности, модули, считаются «левыми». Морфизмы в категориях компо-
нуются справа налево.

Обозначение 9 (ДВОЙСТВЕННЫЙ МОДУЛЬ). Если M — модуль над
ассоциативным унитальным кольцом R, то символ M∨, как правило,
будет обозначать абелеву группу HomR-mod(M,R).



ГЛОБАЛЬНЫЕ ОБОЗНАЧЕНИЯ, СОГЛАШЕНИЯ И ОПРЕДЕЛЕНИЯ 11

Обозначение 10 (СИММЕТРИЧЕСКАЯ И ВНЕШНЯЯ СТЕПЕНИ). Если M
— модуль над ассоциативным коммутативным унитальным кольцом A,
а I — конечное множество, то I-индексированные внешняя и симмет-
рическая степени M как A-модуля будут обозначаться через ΛIA(M) и
SIA(M) соответственно, или просто через ΛI(M) и SI(M).

Обозначение 11 (МАТРИЦЫ). Пусть I, J и X — три множества. То-
гда множество матриц, индексированных I×J , с элементами/записями
(англ. entries) из X будет обозначаться через MI,J(X). Вместо MI,I(X)
может писаться MI(X).

Замечание 3. Пара цитат о происхождении термина «матрица»:

The term “matrix” (Latin for “womb”, “dam” (non-human female
animal kept for breeding), “source”, “origin”, “list”, and “register”,
are derived from mater—mother) was coined by James Joseph
Sylvester in 1850, who understood a matrix as an object giving
rise to several determinants today called minors, that is to say,
determinants of smaller matrices that derive from the original
one by removing columns and rows [30].

I have in previous papers defined a “Matrix” as a rectangular ar-
ray of terms, out of which different systems of determinants may
be engendered from the womb of a common parent; these cog-
nate determinants being by no means isolated in their relations
to one another, but subject to certain simple laws of mutual
dependence and simultaneous deperition [1, с. 247].

Соглашение 5 (ВЕКТОРЫ-СТОЛБЦЫ). Пусть I иX — множества. Тогда
произвольное семейство (xi)i∈I ∈ X×I отождествляется с соответству-
ющей матрицей (xi)i∈I,j∈pt ∈ MI,pt(X).

Обозначение 12 (ТРАНСПОНИРОВАННАЯ МАТРИЦА). Пусть I, J и X
— три множества, а x = (xi,j)i∈I,j∈J ∈ MI,J(X) — матрица. Тогда опре-
делена транспонированная матрица xt := xt := (xi,j)j∈J,i∈I ∈ MJ,I(X).

Определение 1 (КОЛЬЦО ДИАГОНАЛЬНЫХ МАТРИЦ). Пусть R — ассо-
циативное унитальное кольцо, I — конечное множество, а (ei,j)i,j∈I —
стандартный базис MI(R) как R-модуля. Тогда определим кольцо диа-
гональных матриц следующим образом: DI(R) :=

⊕
i∈I Rei,i ⊂ MI(R).
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Определение 2 (ЭЛЕМЕНТАРНАЯ ПОДГРУППА). Пусть R — ассоциа-
тивное унитальное кольцо, I — конечное множество, а (ei,j)i,j∈I — стан-
дартный базис MI(R) как R-модуля. Тогда определим элементарную
подгруппу EI(R) ⊂ GLI(R) как подгруппу, порождённую элементар-
ными трансвекциями, то есть элементами вида tj,k(λ) := e + λej,k, где
e =

∑
i∈I ei,i, λ ∈ R, j, k ∈ I и j 6= k.

Определение 3 (АЛГЕБРА). Пусть A — коммутативное ассоциативное
унитальное кольцо. Тогда алгеброй над A или A-алгеброй называется
кольцо R, снабжённое структурой A-модуля, такой что действия эле-
ментов A на аддитивной абелевой группе R коммутируют с эндомор-
физмами левого и правого умножения на элементы R.

Наблюдение 1. Пусть A и R — ассоциативные унитальные кольца,
причём A коммутативно. Тогда задание на R структуры алгебры над
A — это задание гомоморфизма колец A→ EndR⊗ZRo-mod(R) ∼= Z(R).

Наблюдение 2. Пусть R— модуль над ассоциативным коммутативным
унитальным кольцом A. Тогда задание на R структуры алгебры над A
— это задание гомоморфизма A-модулей R⊗A R→ R.

Соглашение 6 (УНИТАЛЬНАЯ АЛГЕБРА). Соглашение 3 применимо и
к алгебрам.

Соглашение 7 (УНИТАЛЬНЫЙ МНОГОЧЛЕН). Многочлены со старшим
коэффициентом один мы будем называть унитальными многочленами.
Иногда их ещё называют приведёнными многочленами, но эта практи-
ка, на мой вкус, плохо согласована с использованием фразы «неприво-
димый многочлен» в её обычном значении.1

Обозначение 13 (ПОЛЕ ЧАСТНЫХ). Поле частных ассоциативного ком-
мутативного унитального целостного кольца A обозначается Frac(A).

Теория категорий
Обозначение 14 (ПРОТИВОПОЛОЖНАЯ КАТЕГОРИЯ). Если C — кате-
гория, то противоположная категория обозначается символом Co, где

1Троица приведённый, неприводимый и приводимый возникает и в теории схем.
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верхний индекс o — это не цифра 0 и не знак композиции ◦, а первая
буква английского слова «opposite». Такое же обозначение применяется
для колец, групп и тому подобного.

Соглашение 8 (КАТЕГОРИЯ РЕФЛЕКСИВНОГО ТРАНЗИТИВНОГО ОТНО-
ШЕНИЯ). Множество X с рефлексивным транзитивным отношением
R ⊂ X ×X канонически реализуется как категория с множеством объ-
ектов X и множеством морфизмов R. Произвольное множество часто
по умолчанию будет считаться реализованным как категория тожде-
ственного отношения на нём.

Обозначение 15 (КАТЕГОРИЯ ДЕЛЬТА). Категория непустых конеч-
ных ординалов фон Неймана как упорядоченных множеств будет обо-
значаться символом ∆ и называться категорией Дельта. Объект в ∆,
соответствующий {0, 1, . . . , n}, где n ∈ N0, обозначается через [n].

Соглашение 9 (КОММА-КАТЕГОРИЯ). Построенная по паре функторов
π : C → B →E : ρ «комма-категория» (C{0} × E{1})×B{0}×B{1} B[1] будет
обозначаться через C cdπ ρ

B E и иногда называться категорией стрелок,
причём часть индексов у символа полусвастики cd может быть опущена.

Замечание 4. Символ cd получен склеиванием символа c (\rfloor) и
символа d (\lceil).
Замечание 5. Название «комма-категория», очевидно, происходит от
английского «comma category». Вот что по поводу этого названия пишет
Уильям Ловер:

The ( , ) operation then turned out to be fundamental in com-
puting Kan extensions (i.e. adjoints of induced functors). Unfor-
tunately, I did not suggest a name for the operation, so due to
the need for reading it somehow or other, it rather distressingly
came to be known by the subjective name “comma category”,
even when it came to be also denoted by a vertical arrow in
place of the comma. Originally, it had been common to write
(A,B) for the set of maps in a given category C from an object A
to an object B; since objects are just functors from the category
1 to C, the notation was extended to the case where A and B are
arbitrary functors whose domain categories are not necessarily
1 and may also be different [10, с. 13].
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Тем не менее, название стандартное, и будет использоваться в данном
тексте.

Соглашение 10 (КАТЕГОРИЯ ОБЪЕКТОВ НАД/ПОД ДАННЫМ). Если C
— категория, а C ∈ Ob(C) — её объект, то категории C cdC {C} и {C} cdC C
часто будут обозначаться через C cd C и C cd C и называться категорией
объектов над C и категорией объектов под C соответственно. Тем не
менее, иногда категория объектов под C будет называться категори-
ей объектов над C. Что конкретно имеется в виду в рассматриваемом
случае считается ясным из контекста или оговаривается заранее.

Обозначение 16 (ИЗОМОРФНОСТЬ). Выражение типа A ' B, как пра-
вило, означает, что A и B изоморфны, а выражение типа A ∼= B, как
правило, означает, что между A и B есть единственный или однозначно
определённый контекстом изоморфизм.

Обозначение 17 (ПРОИЗВЕДЕНИЕ И КОПРОИЗВЕДЕНИЕ МОРФИЗМОВ).
Морфизм Y → X1 ×X2, индуцированный морфизмами f1 : Y → X1 и
f2 : Y → X2, обозначается через f1 ×̄ f2, а g1 × g2 : Y1 × Y2 → X1 ×X2
обозначает морфизм (g1 ◦ π1) ×̄ (g2 ◦ π2), где g1 : Y1 → X1 и g2 : Y2 → X2
— произвольные морфизмы, а π1 и π2 — структурные проекции Y1×Y2.
С другой стороны, f1 ×̄ f2 = (f1× f2) ◦∆, где ∆ := IdY ×̄ IdY . Операции
t̄ и t очевидным образом определяются как двойственные к ×̄ и ×.

Пример 2. Вот, например, забавный способ изображать квадратную
диаграмму: A h×̄v−−→ B × C →→ B t C v′t̄h′

−−−→ D.

Обозначение 18 ((КО)ЯДРО И (КО)ОБРАЗ). Ядро морфизма ϕ : X → Y
обозначается ker(ϕ) : Ker(ϕ) → X, коядро — coker(ϕ) : Y → Coker(ϕ),
образ — im(ϕ) : Im(ϕ)→ Y , кообраз — coim(ϕ) : X → Coim(ϕ).

Обозначение 19 (HOM-Ы И ОБЪЕКТЫ). Пусть C — категория. Тогда
если X,Y ∈ Ob(C), то совокупность морфизмов из X в Y в категории
C в общем случае будет обозначаться через HomC(X,Y ) или C(X,Y ).
Вместо записи X ∈ Ob(C) может использоваться запись X ∈ C.

Обозначение 20 (СТАНДАРТНЫЕ КАТЕГОРИИ). Категория множеств
обозначается Sets, абелевых групп — Ab, модулей над ассоциативным
унитальным кольцом R — R-mod, унитальных колец — Ring, просто
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колец — Rng, кольцоидов — Rngd, алгебр над коммутативным ассо-
циативным унитальным кольцом A — A-alg. Если R ∈ Ob(Rng), то
R-rng := R cdRng Rng, а если R ∈ Ob(Ring), то R-ring := R cdRing Ring.

Наблюдение 3. Функтор (ρ : R → Z) 7→ Ker(ρ) : Ring cdRing Z → Rng
является эквивалентностью категорий, так как любой такой ρ является
левым обратным к каноническому гомоморфизму Z → R, а потому
задаёт изоморфизм R ∼= Z⊕Ker(ρ) между R и унитализацией Ker(ρ).

Обозначение 21 (ГРУППОИД ИЗОМОРФИЗМОВ). Пусть C — категория.
Тогда через C× обозначается подкатегория C, морфизмами которой яв-
ляются в точности все изоморфизмы в C.

Замечание 6. Обозначение 21 согласовано с обозначением 8.

Метрическая геометрия и топология
Обозначение 22 (МНОЖЕСТВО ОТКРЫТЫХ ПОДМНОЖЕСТВ). Пусть X
— топологическое пространство. Тогда множество всех открытых под-
множеств X обозначается через Open(X).

Соглашение 11 (КОМПАКТНОСТЬ И ХАУСДОРФОВОСТЬ). Мы не вклю-
чаем требование хаусдорфовости в определение компактного топологи-
ческого пространства.

Обозначение 23 (КАТЕГОРИЯ ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВ). Ка-
тегория топологических пространств и непрерывных отображений обо-
значается Top.

Обозначение 24 (ФУНКЦИЯ РАССТОЯНИЯ). Расстояние между точка-
ми x′ и x′′ в метрическом пространстве X часто будет обозначаться
через dX(x′, x′′) или просто через d(x′, x′′).

Замечание 7. Буква «d» — это первая буква английского слова «dis-
tance».





Часть I

Не сгруппированные тексты





Глава 1

Почти не
подкорректированные
старые тексты

1.1. Китайская теорема об остатках
Лемма 1. Пусть R — ассоциативное унитальное кольцо, I, J ⊂ R
— двусторонние идеалы. Канонический гомоморфизм R → R/I × R/J
сюръективен тогда и только тогда, когда I + J = R.

Доказательство. Следующий короткий комплекс абелевых групп

R/(I ∩ J) R/I⊕R/J R/(I + J)x+I∩J 7→(x+I,x+J) (x+I,y+J)7→x−y+(I+J)

точен согласно теореме о факторквадрате суммы-пересечения (теоре-
ма 12.2.1), то есть по универсальному свойству факторизации.

Замечание 1. Идеалы I, J ⊂ R, такие что I + J = R, называются вза-
имно простыми, или копростыми, или комаксимальными.

Теорема 1. Пусть R — ассоциативное унитальное кольцо, (Ii)i∈I —
семейство двусторонних идеалов R, card(I) < ∞. Тогда следующие
условия эквивалентны: (i) Если i, j ∈ I, i 6= j, то канонический гомо-
морфизм R → R/Ii × R/Ij сюръективен; (ii) Канонический гомомор-
физм R→

∏
i∈I R/Ii сюръективен.
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Доказательство. Очевидно, что (ii) =⇒ (i). Докажем обратное. Рас-
смотрим N := Im(R→

∏
i∈I R/Ii). Для любых i, j ∈ I, i 6= j мы можем

найти ai,j ∈ N , такой что i-ая координата ai,j равна 1, а j-ая — 0. Тогда
ai :=

∏
j∈I\{i} ai,j ∈ N (произведение в произвольном порядке) име-

ет i-ую координату 1 и остальные координаты 0. Такие ai порождают∏
i∈I R/Ii как R-модуль, поэтому N =

∏
i∈I R/Ii.

Следствие 1. В предположениях теоремы 1 следующие условия эк-
вивалентны: (i) Если i, j ∈ I, i 6= j, то Ii + Ij = R; (ii) R-кольца
R/

⋂
i∈I Ii и

∏
i∈I R/Ii изоморфны.

Доказательство. Условие (ii) эквивалентно сюръективности канониче-
ского гомоморфизма R →

∏
i∈I R/Ii, что, по теореме 1, эквивалентно

сюръективности гомоморфизма R → R/Ii × R/Ij для любых i, j ∈ I,
i 6= j, что, по лемме 1, эквивалентно условию (i).

Определение 1. Пусть (Ii)i∈I — это семейство подмножеств ассоциа-
тивного кольца, где card(I) = n < ∞. Симметрическое произведение∏sym
i∈I Ii — это сумма произведений Iσ(1)Iσ(2) . . . Iσ(n) по всем биекциям

σ : {1, 2, . . . , n} ∼−→ I, то есть
∏sym
i∈I Ii :=

∑
σ:{1,...,n}

∼−→S
Iσ(1) . . . Iσ(n).

Теорема 2. Пусть R — ассоциативное унитальное кольцо, (Ii)i∈I —
семейство двусторонних идеалов R, card(I) < ∞, причём Ii + Ij = R
при i, j ∈ I, i 6= j. Тогда

∏sym
i∈I Ii =

⋂
i∈I Ii.

Доказательство. Равенство
∏

(i,j)∈(I×I)\∆(Ii+Ij) = R (произведение в
произвольном порядке) получается перемножением равенств Ii + Ij =
R. Если раскрыть скобки в этом произведении, то в каждый моном не
войдёт максимум один из Ii (два идеала Ii и Ij не могут не войти, так
как нам нужно забрать что-то из скобки (Ii + Ij)). Отсюда получаем:⋂
i∈I Ii = (

⋂
i∈I Ii)

∏
(i,j)∈(I×I)\∆(Ii + Ij) ⊂

∏sym
i∈I Ii ⊂

⋂
i∈I Ii.

Пример 1. Пусть M — ненулевой модуль над ассоциативным униталь-
ным кольцом R. Тогда собственный подмодуль {(a, b, c) ∈M ⊕M ⊕M |
a+ b+ c = 0} ⊊M ⊕M ⊕M сюръективно проецируется на каждый из
трёх подмодулейM⊕M⊕{0},M⊕{0}⊕M, {0}⊕M⊕M ⊂M⊕M⊕M —
китайская теорема об остатках для семейств не работает для модулей.
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1.2. Системы корней классических алгебр Ли
Матричное описание классических алгебр Ли
Пусть V — n-мерное векторное пространство над полем K. Пусть sort —
квадратная перъединичная матрица, задающая невырожденную сим-
метрическую билинейную форму на V . Если n чётно, то определена
квадратная матрица ssp := sorts±, где s± :=

(−1 0
0 1

)
— блочная матри-

ца, состоящая из квадратных блоков одинакового размера. Матрица ssp
задаёт невырожденную симплектическую билинейную форму на V .

Решения уравнения sortx+xtsort = 0, то есть (sortxs
−1
ort)t = −x, легко

описать, заметив, что сопряжение матрицей sort заменяет матрицу на
«центрально симметричную», что в композиции с транспонированием
даёт отражение матрицы относительно побочной диагонали. Отсюда,
в частности, становится ясно, что размерность ортогональной алгебры
Ли при char(K) 6= 2 равна (1/2)(n2 − n).

Решения уравнения (sspxs
−1
sp )t = −x легко описать, заметив, что(−1 0

0 1
)(

a b
c d

)(−1 0
0 1

)−1 =
(

a −b
−c d

)
, а (sspxs

−1
sp )t = (sort(s±xs

−1
± )s−1

ort)t. От-
сюда, в частности, становится ясно, что размерность симплектической
алгебры Ли при char(K) 6= 2 равна (1/2)(n2 + n).

Описание систем корней классических алгебр Ли
Пусть K — поле характеристики 0, I — конечное множество мощности
n ⩾ 2, V = KI — векторное пространство над K, (ei,j)i,j∈I — стандарт-
ный базис в EndK-mod(V ) относительно стандартного базиса вKI . Пусть
〈−,−〉Kil обозначает форму Киллинга на gl(V ) или её ограничение на
sl(V ), совпадающее с формой Киллинга на sl(V ).

Преобразование [ei,i,−] умножает все матричные единицы ei,j , где
j ∈ I \ {i}, на 1, матричные единицы ej,i, где j ∈ I \ {i}, — на −1, а
остальные матричные единицы — на 0. Отсюда ясно, что 〈ei,i, ej,j〉Kil =
2nδi,j − 2 для всех i, j ∈ I.

Введём новое скалярное произведение на пространстве диагональ-
ных матриц: 〈ei,i, ej,j〉Euc := 2nδi,j , где i, j ∈ I. Тогда для любых i, j ∈ I,
таких что i 6= j, линейная функция 〈ei,i−ej,j ,−〉Kil на пространстве диа-
гональных матриц совпадает с линейной функцией 〈ei,i−ej,j ,−〉Euc, ко-
торая совпадает с корнем, соответствующим собственному вектору ei,j ,



22 ГЛАВА 1. ПОЧТИ НЕ ПОДКОРРЕКТИРОВАННЫЕ СТАРЫЕ ТЕКСТЫ

умноженным на 2n. В частности, получаем, что 〈ei,i−ej,j , ek,k−el,l〉Kil =
〈ei,i − ej,j , ek,k − el,l〉Euc для любых i, j, k, l ∈ I.

Рис. 1.1. Системы корней A2, B2, C2 и D2, соответствующие классиче-
ским алгебрам Ли sl(3), o(5), sp(4) и o(4) соответственно

Аналогичным образом проверяется, что в ортогональной и симплек-
тической алгебрах Ли очевидный базис в пространстве диагональных
матриц является ортогональным базисом относительно формы Киллин-
га, откуда становятся ясными картинки соответствующих систем кор-
ней (см. рис. 1.1).

1.3. Определитель и след
Наблюдение 1. Внешние степени задаются соотношениями полили-
нейности и вырождения. Иллюстрация для второй внешней степени:

a ∧ (b+ c) = a ∧ b+ a ∧ c, (a+ b) ∧ c = a ∧ c+ b ∧ c, a ∧ a = 0.

Это соответствует объёму, так как объём полилинеен и вырождается.

Наблюдение 2. Определитель линейного преобразования g задаётся
мультипликативным действием g на старшей внешней степени. Иллю-
страция для случая, когда старшая внешняя степень третья:

g(a ∧ b ∧ c) = g(a) ∧ g(b) ∧ g(c) = det(g)(a ∧ b ∧ c).

Это соответствует изменению объёма под действием линейного преоб-
разования.
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Наблюдение 3. След линейного преобразования d задаётся аддитив-
ным действием d на старшей внешней степени. Иллюстрация для слу-
чая, когда старшая внешняя степень третья:

d(a ∧ b ∧ c) = d(a) ∧ b ∧ c+ a ∧ d(b) ∧ c+ a ∧ b ∧ d(c) = tr(d)(a ∧ b ∧ c).

Это соответствует скорости изменения объёма под действием соответ-
ствующего линейному преобразованию линейного векторного поля.

Наблюдение 4. Экспонента задаёт связь между определителем и сле-
дом:

det(ex) = etr(x).

Это соответствует получению линейного преобразования экспоненци-
рованием линейного векторного поля.

1.4. Векторы Витта и p-адические числа
Соглашения и обозначения
Соглашение 1. В этом разделе p ∈ N1 — фиксированное простое чис-
ло, кольца и алгебры считаются коммутативными, ассоциативными и
унитальными.

Обозначение 1. В этом разделе [n]0 := {i ∈ N0 | 0 ⩽ i < n}, где n ∈ N0.

Представители Тейхмюллера
Существование и единственность представителей Тейхмюллера

Определение 1 (ПРЕДСТАВИТЕЛЬ ТЕЙХМЮЛЛЕРА). Пусть отображе-
ние π : R → Z/pZ, где R = Zp или R = Z/pnZ, n ⩾ 1, — это очевидная
редукция, пусть a ∈ R. Если ap = a, то a называется представителем
Тейхмюллера для π(a) ∈ Z/pZ.

Лемма 1 (ЛЕММА ГЕНЗЕЛЯ). Пусть s ∈ Z и f(s) ≡ 0 (mod pn), где
f ∈ Z[X] и n ⩾ 1, причём f ′(s) 6≡ 0 (mod p). Тогда существует един-
ственное по модулю pn+1 число s̃ ∈ Z, такое что s̃ ≡ s (mod pn) и
f(s̃) ≡ 0 (mod pn+1).
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Доказательство. Пусть s̃ = s+ bpn, а f(s) = apn. Тогда

f(s+ bpn) ≡ 0 (mod pn+1)
f(s) + f ′(s)bpn ≡ 0 (mod pn+1)
apn + f ′(s)bpn ≡ 0 (mod pn+1)
(a+ f ′(s)b)pn ≡ 0 (mod pn+1)

a+ f ′(s)b ≡ 0 (mod p).

Если f ′(s) 6≡ 0 (mod p), то последнее уравнение однозначным по моду-
лю p образом определяет b, так как Z/pZ — поле.

Следствие 1. Для любого α ∈ Z/pZ существуют единственные пред-
ставители Тейхмюллера ατ ∈ Zp и ατn ∈ Z/pnZ, где n ⩾ 1.

Доказательство. Возьмём f(X) = Xp −X.

Замечание 1. Существование и единственность представителей Тейх-
мюллера можно доказать и другим способом.

Для любого n ⩾ 1 имеем индуцированный очевидным гомоморфиз-
мом ρ : Z/pnZ→ Z/pZ гомоморфизм ρ× : (Z/pnZ)× → (Z/pZ)×, причём
|Ker(ρ×)| = pn−1, так как |(Z/pnZ)×| = pn− pn−1 (класс l ∈ Z обратим в
Z/kZ тогда и только тогда, когда l и k взаимно просты).

Пусть α ∈ (Z/pZ)×, пусть a1, a2 ∈ Z/pnZ и ρ(a1) = ρ(a2) = α. Тогда
a1, a2 ∈ (Z/pnZ)× и ap

n−1

1 = ap
n−1

2 , так как a1/a2 ∈ Ker(ρ×). Взяв a =
ap

n−1

1 и a2 = ap1, получаем, что ap = a.
Если a ∈ Z/pnZ и ρ(a) = 0, то a ∈ pZ/pnZ, откуда an ∈ pnZ/pnZ = 0.

Разложение в ряды по представителям Тейхмюллера

Наблюдение 1. Очевидно, что для любого a ∈ Zp существует един-
ственное семейство (αi)i∈N0 ∈ (Z/pZ)N0 , такое что a =

∑∞
i=0 α

τ
i p
i. Ана-

логичное разложение a =
∑n

i=0 α
τn+1
i pi есть для a ∈ Z/pn+1Z.

Наблюдение 2. Для любого кольца A и любого a ∈ A выполняются
следующие вложения: p(a+pnA) ⊂ pa+pn+1A, где n ⩾ 0, и (a+pnA)p ⊂
ap + pn+1A, где n ⩾ 1. Другими словами, если f̃(x) = px или f̃(x) = xp,
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то существует единственное f , такое что следующая диаграмма комму-
тативна:

A A

A/pnA A/pn+1A.

f̃

f

(1)

Злоупотребляя обозначениями, будем писать f(x) = px и f(x) = xp.

Замечание 2. В верхней строчке диаграммы (1) кольцо A, очевидно,
можно заменить на A/pmA, где m ⩾ n+ 1.

Наблюдение 3. Разложение в ряды по представителям Тейхмюллера
можно описать следующей биекцией:

(Z/pZ)[n+1]0 ∼−→ Z/pn+1Z, (xi)i∈[n+1]0 7→
n∑
i=0

pixp
n−i

i =
n∑
i=0

pix
τn+1
i . (2)

Это можно увидеть, например, подняв xi ∈ Z/pZ до xτn+1
i ∈ Z/pn+1Z и

вычислив:
∑n

i=0 p
i(xτn+1

i )pn−i =
∑n

i=0 p
ix
τn+1
i .

Что мы хотим построить

Пусть для каждого кольца R на множестве RN0 определена согласован-
ная со структурой функтора от R структура кольца W (R), такая что
проекции RN0 → R[n]0 индуцируют структуры колец Wn(R) на R[n]0 и
отображения Wn+1(R)→ R, (xi)i∈[n+1]0 7→

∑n
i=0 p

ixp
n−i

i являются гомо-
морфизмами колец.

Wn+1(Z) Z

Wn+1(Z/pZ) Z/pn+1Z

(xi)i∈[n+1]0 7→
∑n

i=0 p
ixpn−i

i

(xi)i∈[n+1]0 7→
∑n

i=0 p
ix

τn+1
i

(3)

Тогда биекция (2): Wn+1(Z/pZ) ∼−→ Z/pn+1Z является гомоморфизмом
колец, в чём можно убедиться, посмотрев на коммутативную диаграм-
му (3), где вертикальные стрелки — стандартные редукции, откуда по-
лучаем изоморфизм W (Z/pZ) ∼= limnWn(Z/pZ) ∼−→ Zp ∼= limn Z/pnZ.
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Векторы Витта
Формулировка утверждения

Утверждение 1. Для каждого кольца R на множестве W(R) := RN1,
называемом множеством векторов Витта, существует единственная
согласованная со структурой функтора от R структура кольца, та-
кая что для каждого m ⩾ 1 отображение W(R) → R, (xn)n∈N1 7→
x(m) :=

∑
e|m ex

m/e
e , называемое m-ой призрачной/фантомной компо-

нентой, является гомоморфизмом колец.

Доказательство единственности

Универсальный случай. Чтобы доказать утвеждение 1 вычислим
сумму и произведение векторов (Xi)i∈N1 , (Yi)i∈N1 ∈W

(
Z
[
Xi, Yi | i ∈ N1

])
.

Это задаст сумму и произведение любых (xi)i∈N1 , (yi)i∈N1 ∈ W(R) для
любого кольца R применением гомоморфизма Z

[
Xi, Yi | i ∈ N1

]
→ R,

Xi 7→ xi, Yi 7→ yi для всех i ∈ N1. Для вычисления также будет исполь-
зоваться вложение ι : Z

[
Xi, Yi | i ∈ N1

]
↪→ Q

[
Xi, Yi | i ∈ N1

]
.

Единственность и свойства. Применив ι и заметив, что в Q-алге-
брах xn восстанавливается по индукции из x(n) =

∑
e|n ex

n/e
e , сразу

получаем единственность сложения и умножения и свойства кольца:
для проверки ассоциативности и дистрибутивности используем векто-
ры (Xi)i∈N1 , (Yi)i∈N1 , (Zi)i∈N1 ∈W

(
Z
[
Xi, Yi, Zi | i ∈ N1

])
.

Доказательство существования

Формальные ряды. Для произвольного кольца R построим биекцию

W(R) ∼−→ 1 + tR[[t]] ⊂ R[[t]], (xn)n∈N1 7→
∏
n⩾1

(1− xntn).

Коэффициенты ряда
∏
n⩾1(1−xntn) и xn, где n ⩾ 1, восстанавливаются

друг из друга по индукции как многочлены с коэффициентами в Z.

Логарифмическое дифференцирование. Выполняется равенство

−t d
dt

log
∏
n⩾1

(1−Xnt
n) =

∑
m⩾1

X(m)tm.



1.4. ВЕКТОРЫ ВИТТА И p-АДИЧЕСКИЕ ЧИСЛА 27

Это легко увидеть, зная, что логарифмическая производная геометри-
ческой прогрессии равна ей самой:

d

df
log

∞∑
i=0

f i =
∞∑
i=0

f i или f
d

df
log

∞∑
i=0

f i =
∞∑
i=1

f i, (4)

взяв f := Xnt
n и заметив, что тогда выполняется равенство f d

df = 1
n t

d
dt .

Замечание 3. Формула (4) является легко запоминаемой формой «ряда
Меркатора», то есть ряда для логарифма:

d

df
log 1

1− f
= 1 + f + f2 + · · · , − log(1− f) = f + f2

2
+ f3

3
+ · · · .

Сложение и умножение. Теперь очевидно, что сложению векторов
Витта соответствует умножение соответствующих рядов. Описать ум-
ножение векторов Витта тоже не очень трудно:∑

m⩾1
e,r|m

eXm/e
e rY m/r

r tm =
∑

n,e,r⩾1
er
(
X lcm(e,r)/e
e Y lcm(e,r)/r

r tlcm(e,r))n =

= −t d
dt

log
∏
e,r⩾1

(
1−X lcm(e,r)/e

e Y lcm(e,r)/r
r tlcm(e,r))er/lcm(e,r)

.

Первое равенство — тавтология. Чтобы получить второе равенство,
возьмём f := X

lcm(e,r)/e
e Y

lcm(e,r)/r
r tlcm(e,r), заметим, что тогда выполня-

ется равенство f d
df = 1

lcm(e,r) t
d
dt и применим формулу (4).

p-Типические векторы Витта

Определение 2 (p-ТИПИЧЕСКИЕ ВЕКТОРЫ ВИТТА). Пусть R — кольцо.
Из формулы x(n) =

∑
e|n ex

n/e
e нетрудно убедится, что если применить

проекцию забывания всех координат, кроме степеней фиксированного
простого: R{1,2,3,...} → R{p0,p1,p2,...}, то кольцевая структураW(R) на RN1

индуцирует кольцевую структуру W (R) на R{p0,p1,p2,...} ↔ RN0 . Кольцо
W (R) называется кольцом p-типических векторов Витта.

Замечание 4. Операции на W (R) задаются функториальностью по R
и условием аддитивности и мультипликативности для любого k ⩾ 0
следующих отображений: W (R)→ R, (xn)n∈N0 7→ x(k)p :=

∑k
l=0 p

lxp
k−l

l .
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Замечание 5. Имеем изоморфизмW (Z/pZ) ∼−→ Zp, (xi)i∈N0 7→
∑∞

i=0 p
ixτi .

1.5. Теорема, разложение и кольцо Витта
Теорема Витта
Определение 1 (ОРТОГОНАЛЬНОЕ ПРОСТРАНСТВО). Определим орто-
гональное пространство как линейное пространство, снабжённое сим-
метрической билинейной формой.

Определение 2 (ИЗОТРОПНОЕ ПРОСТРАНСТВО). Ортогональное про-
странство, структурная билинейная форма которого нулевая, называ-
ется изотропным пространством.

Определение 3 (СОВЕРШЕННОЕ СПАРИВАНИЕ). Назовём спаривание
v⊗w 7→ 〈v, w〉 : P ⊗K Q→ K, где P и Q — это векторные пространства
над полемK, совершенным, если индуцированные отображения λ : P →
Q∨, v 7→ 〈v,−〉 и ρ : Q→ P∨, w 7→ 〈−, w〉 биективны.

Наблюдение 1. Отображения λ и ρ из определения 3 выражаются друг
через друга с помощью канонических гомоморфизмов εP : P → (P∨)∨

и εQ : Q→ (Q∨)∨ следующим образом: λ = ρ∨ ◦ εP и ρ = λ∨ ◦ εQ.

Определение 4 (ГИПЕРБОЛИЧЕСКОЕ ДОПОЛНЕНИЕ). Два изотропных
подпространства ортогонального пространства называются гиперболи-
ческими дополнениями друг друга, если ограничение билинейной фор-
мы определяет совершенное спаривание между ними.

Наблюдение 2. Пусть V — векторное пространство над полемK, снаб-
жённое сюръективным гомоморфизмом V → V ∨, а P и Q — его подпро-
странства. Так как отображение ограничения V ∨ → P∨ сюръективно,
то сквозное отображение Q→ V → V ∨ → P∨ биективно тогда и только
тогда, когда Q является дополнением к P⊥ := Ker(V → P∨) в V .

Теорема 1. Пусть V — невырожденное конечномерное ортогональное
пространство над полем K, где char(K) 6= 2, а P ⊂ V — его изотропное
подпространство. Тогда у P есть гиперболическое дополнение.
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Доказательство. Пусть Q ⊂ V — произвольное дополнение к P⊥ в V ,
то есть V = P⊥ ⊕Q = P ⊕Q⊥. Пусть T : Q→ Q⊥, v 7→ vT — проекция
вдоль P . Определим подпространство M := {(1/2)(v+vT ) ∈ V | v ∈ Q}.
Тогда M , как и Q, является дополнением к P⊥ в V , потому что для
любого v ∈ Q соответствующий вектор (1/2)(v + vT ) ∈ M отличается
от вектора v на вектор из P ⊂ P⊥. С другой стороны, пространство
M изотропно: для любых векторов v, w ∈ Q выполняются равенства
〈v + vT , w +wT 〉 = 〈v − vT , w −wT 〉 = 0, так как 〈v, wT 〉 = 〈vT , w〉 = 0, а
векторы v − vT и w − wT лежат в изотропном пространстве P .

Наблюдение 3. В ортогональном пространстве V дополнения к V ⊥, то
есть к ядру формы, — это в точности максимальные элементы множе-
ства подпространств в V с тривиальным ядром индуцированной фор-
мы. Проектирования вдоль V ⊥ задают изометрии между ними.

Лемма 1. Пусть U ′ ⊂ V ′ и U ′′ ⊂ V ′′ — две пары вложенных конеч-
номерных ортогональных пространств над полем K, где char(K) 6= 2,
причём V ′ — это минимальное невырожденное подпространство в V ′,
содержащее U ′, и аналогично для пары U ′′ ⊂ V ′′. Тогда любая изомет-
рия ϕ : U ′ ∼−→ U ′′ продолжается до изометрии V ′ ∼−→ V ′′.

Доказательство. Пусть P ′ ⊂ U ′ — это ядро формы на U ′, и аналогично
P ′′ = ϕ(P ′) ⊂ U ′′. Пусть L′ ⊂ U ′ — это дополнение к P ′ в U ′, и аналогич-
но L′′ := ϕ(L′) ⊂ U ′′. Пусть Q′ ⊂ V ′ — это гиперболическое дополнение
к P ′ в ортогональном дополнении к L′ в V ′, и аналогично для Q′′ ⊂ V ′′.
Тогда мы имеем разложения V ′ = P ′ ⊕Q′ ⊕ L′ и V ′′ = P ′′ ⊕Q′′ ⊕ L′′, и
утверждение леммы становится очевидным.

Обозначение 1 (ОРТОГОНАЛ). Если V — ортогональное пространство,
а U ⊂ V — его подпространство, то ортогонал к U в V обозначим через
⊥V (U) := {v ∈ V | 〈v, u〉 = 0 для всех u ∈ U}.

Теорема 2 (ТЕОРЕМА ВИТТА). Пусть U ′ ⊂ V ′ и U ′′ ⊂ V ′′ — две пары
вложенных конечномерных ортогональных пространств над полем K,
где char(K) 6= 2, причём V ′ изометрично V ′′. Тогда любая изометрия
ϕ : U ′ ∼−→ U ′′ продолжается до изометрии V ′ ∼−→ V ′′.
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Доказательство (из трёх частей).

Часть 1. Сначала рассмотрим случай одномерных невырожденных U ′

и U ′′. Без ограничения общности можно предположить, что V := V ′ =
V ′′. Изометрия ϕ может быть продолжена до автоизометрии простран-
ства U ′ + U ′′ ⊂ V , которая может быть продолжена до автоизометрии
произвольного минимального невырожденного подпространства U ⊂
V , содержащего U ′ + U ′′, которая может быть продолжена до автоизо-
метрии V , фиксирующей ортогональное дополнение к U .

Часть 2. Теперь рассмотрим случай произвольных невырожденных U ′

и U ′′. Нам нужно доказать, что ⊥V ′(U ′) и ⊥V ′′(U ′′) изометричны. Пред-
положим, что dim(U ′) = dim(U ′′) > 1. Пусть S′ ⊂ U ′ и S′′ ⊂ U ′′ — изо-
метричные собственные нетривиальные невырожденные подпростран-
ства. Тогда, по индукции, ⊥U ′(S′) изометрично ⊥U ′′(S′′) и ⊥V ′(S′) изо-
метрично ⊥V ′′(S′′), а потому, по индукции, ⊥⊥V ′ (S′)(⊥U ′(S′)) = ⊥V ′(U ′)
изометрично ⊥⊥V ′′ (S′′)(⊥U ′′(S′′)) = ⊥V ′′(U ′′).

Часть 3. Случай произвольных U ′ и U ′′ сводится к случаю невырож-
денных U ′ и U ′′ рассмотрением минимального невырожденного под-
пространства в V ′, содержащего U ′, и минимального невырожденного
подпространства в V ′′, содержащего U ′′.

Разложение Витта
Определение 5 (ГИПЕРБОЛИЧНОСТЬ И АНИЗОТРОПНОСТЬ). Ортого-
нальное пространство называется гиперболическим, если оно являет-
ся суммой двух изотропных подпространств, являющихся гиперболи-
ческими дополнениями друг друга, и анизотропным, если в нём нет
нетривиальных изотропных подпространств.

Лемма 2. Пусть V — невырожденное конечномерное ортогональное
пространство над полем K, где char(K) 6= 2. Тогда все максимальные
изотропные подпространства пространства V изоморфны.

Доказательство. Следствие теоремы 2 (теоремы Витта).

Лемма 3. Пусть V — невырожденное конечномерное ортогональное
пространство над полем K, где char(K) 6= 2, а P,Q,L ⊂ V — его под-
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пространства, причём P и Q — изотропные гиперболические дополне-
ния друг друга, а L — ортогональное дополнение к P ⊕Q в V . Тогда P
является максимальным изотропным подпространством простран-
ства V тогда и только тогда, когда пространство L анизотропно.

Доказательство. Так как P ⊕ L ⊂ P⊥ и P⊥ ∩ Q = 0, то P⊥ = P ⊕ L.
Все изотропные подпространства пространства V , содержащие P , со-
держатся в P⊥ = P ⊕ L. Подпространства пространства P ⊕ L, содер-
жащие P , очевидным образом взаимно однозначно соответствуют под-
пространствам пространства L, причём это соответствие сопоставляет
изотропным подпространствам изотропные подпространства.

Теорема 3 (РАЗЛОЖЕНИЕ ВИТТА). Пусть V — конечномерное ортого-
нальное пространство над полем K, где char(K) 6= 2. Тогда существу-
ет тройка (Viso, Vhyp, Vani) подпространств V , таких что Viso изотроп-
но, Vhyp гиперболично, Vani анизотропно, а V является их попарно ор-
тогональной прямой суммой. Группа автоизометрий V транзитивно
действует на таких упорядоченных тройках.

Доказательство. Из наблюдения 3 сразу видно, что Viso определяется
однозначно как ядро билинейной формы на V , а Vhyp ⊕ Vani — это одно
из его изометричных невырожденных дополнений. Остальное следует
из теоремы 1, леммы 2, леммы 3 и теоремы 2 (теоремы Витта).

Кольцо Витта
Обозначение 2 (ОРТОГОНАЛЬНАЯ ПРЯМАЯ СУММА). Ортогональную
прямую сумму ортогональных пространств V ′ и V ′′ над полем K будем
обозначать символом V ′ ⊕⊥ V ′′.

Теорема 4 (ТЕОРЕМА ВИТТА О СОКРАЩЕНИИ). Пусть K — поле, та-
кое что char(K) 6= 2, а V , V ′ и V ′′ — три невырожденных конеч-
номерных ортогональных пространства над K. Тогда если V ⊕⊥ V ′

изометрично V ⊕⊥ V ′′, то V ′ изометрично V ′′.

Доказательство. Следствие теоремы 2 (теоремы Витта).

Определение 6 (ПРОИЗВЕДЕНИЕ КРОНЕКЕРА ОРТОГОНАЛЬНЫХ ПРО-
СТРАНСТВ). Если V ′ и V ′′ — два ортогональных пространства над по-
лем K, то определено ортогональное пространство V ′ ⊗K V ′′ с формой
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V ′ ⊗K V ′′ → V ′∨ ⊗K V ′′∨ → (V ′ ⊗K V ′′)∨, индуцированной формамами
V ′ → V ′∨ и V ′′ → V ′′∨ пространств V ′ и V ′′ соответственно, называемое
произведением Кронекера ортогональных пространств V ′ и V ′′.

Определение 7 (КОЛЬЦО/ГРУППА ВИТТА–ГРОТЕНДИКА). Пусть K —
поле, такое что char(K) 6= 2. Тогда кольцо формальных разностей по-
лукольца классов изометричности невырожденных конечномерных ор-
тогональных пространств над K с операциями ортогональной прямой
суммы и произведения Кронекера называется кольцом Витта–Гро-
тендика поля K и обозначается GW(K).

Определение 8 (КОЛЬЦО/ГРУППА ВИТТА). Пусть K — поле, такое
что char(K) 6= 2. Тогда фактор GW(K) по идеалу, состоящему из це-
лочисленных кратных класса гиперболической плоскости, называется
кольцом Витта поля K и обозначается W(K).

Наблюдение 4. Пусть K — поле, такое что char(K) 6= 2. Тогда для
любого невырожденного конечномерного ортогонального пространства
над K аддитивное обращение его билинейной формы отвечает аддитив-
ному обращению соответствующего элемента W(K).

Наблюдение 5. Пусть K — поле, такое что char(K) 6= 2. Тогда элемен-
ты W(K) биективно соответствуют классам изометричности конечно-
мерных анизотропных ортогональных пространств над K.

Пример 1. Кольцо Витта поля R изоморфно кольцу Z.

1.6. Жорданова нормальная форма
Наблюдение 1 (ЖОРДАНОВО РАЗЛОЖЕНИЕ ПРОСТРАНСТВА). Пусть
K — поле, Φ — конечное подмножество K, а (nα)α∈Φ ∈ (N1)×Φ. То-
гда K-модуль, снабжённый эндоморфизмом, зануляемым многочленом∏
α∈Φ(X − α)nα ∈ K[X], — это то же самое, что модуль над кольцом

K[X]/
∏
α∈Φ(X−α)nα ∼=

∏
α∈Φ(K[X]/(X−α)nα), а это то же самое, что

индексированная α ∈ Φ прямая сумма K[X]/(X − α)nα-модулей.

Замечание 1. В наблюдении 1 говорится об эквивалентности категорий
K[X]∏

α∈Φ(X − α)nα
-mod,

(∏
α∈Φ

K[X]
(X − α)nα

)
-mod, и

∏
α∈Φ

(
K[X]

(X − α)nα
-mod

)
.
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Замечание 2. В условиях наблюдения 1 для каждого α ∈ Φ имеем изо-
морфизм колец K[X]/(X − α)nα

∼−→ K[Y ]/Y nα , X 7→ Y + α.

Теорема 1 (ЖОРДАНОВА ФОРМА НИЛЬПОТЕНТА). Пусть D — тело, а
V — D[X]/Xn-модуль, где n ∈ N1. Тогда V изоморфен прямой сумме
D[X]/Xn-модулей вида D[X]/Xm, где m ∈ N1 и m ⩽ n.

Доказательство (из двух частей).

Часть 1. Пусть ϕ обозначает D-эндоморфизм v 7→ Xv : V → V . Снача-
ла докажем, что D[X]/Xn-модуль V изоморфен

⊕n
i=1 ϕ

−i(0)/ϕ−i+1(0).
Пусть Vn — это дополнение к ϕ−n+1(0) в ϕ−n(0), Vn−1 — дополнение к
ϕ−n+2(0) в ϕ−n+1(0), содержащее ϕ(Vn), Vn−2 — дополнение к ϕ−n+3(0)
в ϕ−n+2(0), содержащее ϕ(Vn−1), и так далее. Тогда получаем изомор-
физм V =

⊕n
i=1 Vi

∼−→
⊕n

i=1 ϕ
−i(0)/ϕ−i+1(0), (vi)ni=1 7→ (vi+ϕ−i+1(0))ni=1.

Часть 2. Пусть ∆n — это D-базис Vn, ∆n−1 — это D-базис дополнения
к ϕ(Vn) в Vn−1, ∆n−2 — это D-базис дополнения к ϕ(Vn−1) в Vn−2 и так
далее. Тогда V =

⊕n
k=1

⊕
v∈∆k

⊕k−1
i=0 D·ϕi(v) — нужное разложение.

Наблюдение 2 (ЖОРДАНОВО РАЗЛОЖЕНИЕ И АРТИНОВЫ КОЛЬЦА). В
условиях наблюдения 1 кольцо A := K[X]/

∏
α∈Φ(X − α)nα артиново и

для любого A-модуля V и α ∈ Φ имеем канонический изоморфизм V ∼=
Vf×V(f), где f := X−α, индуцированный изоморфизмом A ∼= Af×A(f).

1.7. Изображение конфигурации Дезарга

Рис. 1.2. Конфигурация Дезарга — пятиугольники
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Рис. 1.3. Конфигурация Дезарга — чертежи

На рисунке 1.2 изображена конфигурация Дезарга, на которой выде-
лены два взаимно вписанных пятиугольника. Посмотрим, как такую
картинку можно нарисовать. Применив растяжения вдоль осей x и y
(рис. 1.3), можно считать, что точки A, B и D фиксированы. Тогда вы-
бор точки C задаёт рисунок: проводятся линии CD, C ′D, CA (до E′),
C ′A (до E), CB (до F ′), C ′B′ (до F ). Точки B, E и F всегда лежат на
одной линии, что можно проверить, например, координатным методом.

1.8. Элемент Казимира
Определение 1 (ЭЛЕМЕНТ КАЗИМИРА ПРЕДСТАВЛЕНИЯ). Пусть K —
поле, L — конечномерная алгебра Ли над K, а ρ : L → EndK-mod(V ),
где V — конечномерный K-модуль, — представление L, такое что би-
линейная форма b : L ⊗K L → K, x ⊗ y 7→ tr(ρ(x)ρ(y)) невырождена.
Тогда определена следующая диаграмма:

EndK-mod(L) α←−−
∼

L⊗K L∨ β←−−
∼

L⊗K L
γ−−→ EndK-mod(V ), (1)

где α — стандартное отождествление, изоморфизм β индуцирован изо-
морфизмом x 7→ b(x,−) : L ∼−→ L∨, а отображение γ переводит x ⊗ y в
ρ(x)ρ(y) для любых x, y ∈ L. Элемент Ωρ := γ(β−1(α−1(IdL))) называ-
ется элементом Казимира представления ρ.

Наблюдение 1 (ИНВАРИАНТНОСТЬ ЭЛЕМЕНТА КАЗИМИРА). В обозна-
чениях определения 1 отображения α, β и γ являются гомоморфизмами
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L-модулей, а потому, так как элемент IdL ∈ EndK-mod(L) является L-ин-
вариантным, то элемент Казимира Ωρ тоже является L-инвариантным.

Наблюдение 2 (СЛЕД ЭЛЕМЕНТА КАЗИМИРА). В обозначениях опре-
деления 1 след любого элемента EndK-mod(L) совпадает со следом его
образа в EndK-mod(V ). Это абстрактная тавтология — надо восполь-
зоваться тем, что след элемента EndK-mod(L) задаётся спариванием в
L⊗K L∨. В частности, tr(Ωρ) = dimK(L).

1.9. Целые в квадратичных полях
Теорема 1. Пусть d ∈ Z — бесквадратное целое число, а OQ[

√
d] :=

{a + b
√
d ∈ Q[

√
d] | a, b ∈ Q, 2a ∈ Z, a2 − b2d ∈ Z}. Тогда если d ≡ 2, 3

(mod 4), то OQ[
√
d] = Z[

√
d], а если d ≡ 1 (mod 4), то OQ[

√
d] = Z[1+

√
d

2 ].

Доказательство. Пусть a, b ∈ Q — числа, такие что 2a, a2−b2d ∈ Z. Так
как a2− b2d ∈ Z, то 4a2− 4b2d ∈ Z, откуда, так как 2a ∈ Z, следует, что
4b2d ∈ Z, откуда следует, что 2b ∈ Z, так как d бесквадратное. Осталось
рассмотреть условие 4(a2 − b2d) = (2a)2 − (2b)2d ≡ 0 (mod 4).

1.10. Обратный Мура–Пенроуза
Пусть V и U — абелевы группы, а x : V →← U : y — гомоморфизмы,
такие что xyx = x и yxy = y. Тогда yxyx = yx и xyxy = xy, то есть xy
и yx — идемпотенты. При этом, так как xyx = x, то Ker(yx) ⊂ Ker(x),
а потому Ker(yx) = Ker(x). Аналогично, Im(yx) = Im(y), и всё то же с
одновременной заменой x на y и y на x. Отсюда получаем разложения
V = Ker(x) ⊕ Im(y) и U = Ker(y) ⊕ Im(x), вместе с парой взаимно
обратных изоморфизмов v 7→ x(v) : Im(y)→← Im(x) : y(u) 7→u.

Если V и U — это векторные пространства над R или C с невырож-
денными скалярными произведениями, то x однозначно определяет y,
для которого описанные разложения ортогональны. Такой y называется
«обратным Мура –Пенроуза» к линейному преобразованию x.
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1.11. Теорема Эйленберга–Уоттса
Наблюдение 1 ((КО)ЯДРО КАК (КО)ПРЕДЕЛ). Пусть f : U → V — мор-
физм в аддитивной категории. Тогда Coker(f) по определению отож-
дествляется с 0 tfU V , а Ker(f) — с 0×fV U , где 0 — нулевой объект.

Теорема 1 (ТЕОРЕМА ЭЙЛЕНБЕРГА –УОТТСА). Пусть R и S — ассоци-
ативные унитальные кольца, M(S,R) := (S ⊗Z Ro)-mod, а F(S,R) :=
FunRngd(R-mod, S-mod). Тогда определена сопряжённая пара

MS R 7→ MS R ⊗R (−) :M(S,R)→← F(S,R) : FS ( RR R) 7→F,
η(M) : MS R

∼−→ MS R ⊗R RR R, (ε(F ))(V ) : FS ( RR R)⊗R VR → FS ( VR ),

где правое действие R на F (R) по функториальности индуцировано
правым действием R на себе, единица η — это изоморфизм унитально-
сти, а коединица ε по ⊗-Hom сопряжению индуцирована композицией
изоморфизма унитальности и действия F на Hom-ах:

VR
∼−→ HomRR ( RR R, VR ) f 7→F (f)−−−−−→ HomSR ( FS ( RR R), FS ( VR )).

Если функтор F сохраняет малые прямые суммы и сохраняет коядра,
то есть сохраняет малые копределы, то ε(F ) — это изоморфизм.

Доказательство (из трёх частей).

Часть 1. Заметим, что гомоморфизм (ε(F ))(R) : F (R)⊗RR→ F (R) —
это просто изоморфизм унитальности.

Часть 2. Если функтор F сохраняет малые прямые суммы, то из ча-
сти 1 этого доказательства следует, что ε(F ) является изоморфизмом
и для малых прямых сумм копий R, то есть для свободных модулей.

Часть 3. Если функтор F сохраняет ещё и коядра, то из части 2 этого
доказательства следует, что ε(F ) является изоморфизмом и для коядер
гомоморфизмов свободных модулей, то есть для всех модулей.
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1.12. Удвоение Кэли–Диксона
Определение 1 (УДВОЕНИЕ КЭЛИ–ДИКСОНА). Пусть R — кольцо с
инволюцией x 7→ x̄ : R → Ro, а α ∈ Z(R) — центральный элемент R.
Тогда удвоением Кэли –Диксона R относительно α называется кольцо
над R, заданное над R образующей i и соотношениями i2 = α, xi = ix̄,
x(yi) = (yx)i, (iy)x = i(xy) и (xi)(iy) = yαx, где x, y ∈ R, снабжённое
продолжающей x 7→ x̄ : R→ Ro инволюцией, переводящей i в −i.

Наблюдение 1. Классические кольца комплексных чисел C, кватерни-
оновH и октонионовO получаются из действительных чисел R последо-
вательными применениями удвоения Кэли –Диксона относительно −1.





Глава 2

Подкорректированные
старые тексты

2.1. Теорема Гамильтона–Кэли
Формулировка и доказательство
Теорема 1 (ТЕОРЕМА ГАМИЛЬТОНА–КЭЛИ). Если x — эндоморфизм
свободного конечно порождённого модуля V над ассоциативным ком-
мутативным унитальным кольцом A, то x является корнем своего
характеристического многочлена.

Доказательство. Эндоморфизм ϕ 7→ ϕx : EndA-mod(V )→ EndA-mod(V )
превращает EndA-mod(V )-модуль EndA-mod(V ) в модуль над кольцом
EndA-mod(V )[X] ∼= EndA-mod(V ) ⊗A A[X] ∼= EndA[X]-mod(V ⊗A A[X]),
при этом IdV зануляется элементом c := x −X, а потому и элементом
adj(c)c = det(c) ∈ A[X] ⊂ EndA[X]-mod(V ⊗A A[X]).

Замечание 1. Приведённое доказательство теоремы Гамильтона –Кэли
изложено в статье Алексея Муранова [27].

Наблюдение 1. Пусть A — ассоциативное коммутативное унитальное
кольцо, V — конечно порождённый A-модуль, а ϕ ∈ EndA-mod(V ). По
определению V существует сюръективный гомоморфизм π : AI → V ,
где I — какое-то конечное множество. По проективности AI существует
эндоморфизм ϕ̃ ∈ EndA-mod(AI), такой что ϕ ◦ π = π ◦ ϕ̃, называемый
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поднятием ϕ. Для любого такого ϕ̃ любой многочлен из A[X], зануля-
ющий ϕ̃, например, характеристический многочлен ϕ̃, зануляет и ϕ.

Дополнение
Теорема 2. Пусть ϕ ∈ EndA-mod(An), где n ∈ N0, а A — ассоциатив-
ное коммутативное унитальное кольцо. Тогда характеристический
многочлен ϕ равен

∑n
i=0(−1)i tr(

∧i ϕ)Xn−i ∈ A[X].

Идея доказательства. Двойной счёт по множеству пар, состоящих из
перестановки n-элементного множества и подмножества в множестве её
фиксированных точек.

Наблюдение 2. Пусть B := A[X]/(P (X)), где A — ассоциативное ком-
мутативное унитальное кольцо, а P (X) ∈ A[X] — унитальный много-
член. Пусть x ∈ B — это образ X ∈ A[X]. Очевидно, что множество
{xi ∈ B | 0 ⩽ i < deg(P (X))} является A-базисом B. Идеал многочле-
нов в A[X], зануляющих оператор x : B → B, f 7→ xf , равен (P (X)), как
сразу видно прямо из определения B. В частности, характеристический
многочлен x равен P (X).

Наблюдение 3. Присоединённую матрицу к матрице (xi,j)i,j∈I можно
определить формулой (

∑
σ∈Aut(I)|σ(j)=i sgn(σ)

∏
k∈I\{j} xk,σ(k))i,j∈I .

Некоторые следствия
Теорема 3. Пусть M — конечно порождённый модуль над комму-
тативным ассоциативным унитальным кольцом A, а ι — ненулевой
инъективный эндоморфизм M . Тогда AnnA(Coker(ι)) 6= 0.

Доказательство. Из теоремы Гамильтона –Кэли следует, что суще-
ствует унитальный многочлен P (X) =

∑n
i=0 aiX

i ∈ A[X] минимальной
степени n ∈ N1, такой что P (ι) = 0. Так как на ι можно сокращать
слева, то a0 6= 0. Тогда a0v = −

∑n
i=1 aiι

i(v) ∈ ι(M) для любого v ∈ M ,
то есть a0 ∈ AnnA(Coker(ι)).

Следствие 1. Пусть A — ненулевое коммутативное ассоциативное
унитальное кольцо, а n,m ∈ N1 — числа, такие что n > m. Тогда не
существует инъективного гомоморфизма A-модулей ι : An → Am.
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Доказательство. Пусть ι′ : Am → An — какое-то координатное вложе-
ние. Тогда ι′ ◦ ι — ненулевой инъективный эндоморфизм An, такой что
AnnA(Coker(ι′ ◦ ι)) = 0, что противоречит теореме 3.

2.2. Тензорное произведение
Тензорное произведение абелевых групп
Обозначение 1. В этом разделе Hom без индексов обозначает Hom как
абелевых групп. То же верно насчёт ⊗ и End.

Определение 1 (ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ). Определим тензорное
произведение конечного семейства абелевых групп (Vi)i∈I как абелеву
группу

⊗
i∈I Vi, заданную образующими — формальными произведе-

ниями
⊗

i∈I vi, биективными семействам (vi)i∈I ∈
∏
i∈I Vi, — и соот-

ношениями — (v′ + v′′)⊗e ⊗ (
⊗

i∈I\{e} vi) = v′
⊗e ⊗ (

⊗
i∈I\{e} vi) + v′′

⊗e ⊗
(
⊗

i∈I\{e} vi), где e ∈ I, v′, v′′ ∈ Ve, vi ∈ Vi для любого i ∈ I \ {e}.

Замечание 1. Индекс ⊗e в выражениях v′
⊗e, v′′

⊗e и (v′ + v′′)⊗e из опре-
деления 1, называемый позиционным индексом, указывает на место со-
ответствующих элементов в формальном произведении. Группировка
тензорных мономов считается ясной из контекста.

Замечание 2. Пусть (Vi)i∈I — конечное семейство абелевых групп. Тогда
для любого семейства (vi)i∈I ∈

∏
i∈I Vi запись

⊗
i∈I vi является сокра-

щённой формой записи
⊗

i∈I vi,⊗i. То же касается записи
⊗

i∈I Vi.

Замечание 3. Если (Vi)i∈I — конечное семейство абелевых групп, то
отображение (vi)i∈I 7→

⊗
i∈I vi :

∏
i∈I Vi →

⊗
i∈I Vi является универ-

сальным полиаддитивным отображением из
∏
i∈I Vi в абелеву группу

— это определение 1, сказанное другими словами.

Наблюдение 1. Пусть (Vi)i∈I — пустое семейство абелевых групп, то
есть I = ∅. Тогда

⊗
i∈I Vi

∼= Z.

Наблюдение 2. Пусть (Vi)i∈I — конечное семейство абелевых групп, а⊗
i∈I vi ∈

⊗
i∈I Vi. Тогда если ve = 0 для какого-то e ∈ I, то

⊗
i∈I vi = 0.
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Определение 2 (ФУНКТОРИАЛЬНОСТЬ ⊗). Пусть (ϕi : Vi → Ui)i∈I —
конечное семейство гомоморфизмов абелевых групп. Тогда гомомор-
физм

⊗
i∈I ϕi :

⊗
i∈I Vi →

⊗
i∈I Ui,

⊗
i∈I vi 7→

⊗
i∈I ϕi(vi) называется

тензорным произведением семейства (ϕi)i∈I .

Утверждение 1 (СОПРЯЖЁННОСТЬ ⊗ И Hom). Пусть V , U и M —
абелевы группы. Тогда имеем следующий естественный изоморфизм:

Hom(M ⊗ V,U) Hom(V,Hom(M,U)).
ϕ7→(v 7→(m 7→ϕ(m⊗v)))

((ψ(v))(m) 7→m⊗v) 7→ψ
(1)

Утверждение 2 (УНИТАЛЬНОСТЬ ⊗). Пусть V — абелева группа. То-
гда имеем естественный изоморфизм a⊗v 7→ av : Z⊗V →← V : 1⊗v 7→v.

Утверждение 3 (ДИСТРИБУТИВНОСТЬ ⊗). Пусть π : I → J — отоб-
ражение множеств, J конечно, (Vi)i∈I — семейство абелевых групп.
Пусть Sec(π) := {σ : J → I | π ◦ σ = IdJ}. Тогда проекции на слагае-
мые и вложения слагаемых прямых сумм индуцируют пару взаимно
обратных гомоморфизмов:

⊗
j∈J

⊕
i∈π−1(j) Vi

→←
⊕

σ∈Sec(π)
⊗

j∈J Vσ(j).

Утверждение 4 (ТОЧНОСТЬ СПРАВА ⊗). Пусть I — конечное множе-
ство, (Vi)i∈I и (Ui)i∈I — семейства абелевых групп, причём Ui явля-
ется подгруппой Vi для любого i ∈ I. Тогда следующая последователь-
ность с очевидным образом определёнными гомоморфизмами точна:⊕

e∈I((Ue)⊗e ⊗ (
⊗

i∈I\{e} Vi))→
⊗

i∈I Vi →
⊗

i∈I(Vi/Ui)→ 0.

Доказательство. Пусть U ⊂
⊗

i∈I Vi — это образ первого гомомор-
физма. Тогда обратный к гомоморфизму (

⊗
i∈I Vi)/U →

⊗
i∈I(Vi/Ui)

определяется на образующих так:
⊗

i∈I(vi +Ui) 7→ (
⊗

i∈I vi) +U . Опре-
деление корректно — образ формального произведения

⊗
i∈I(vi + Ui)

зависит только от классов vi + Ui ∈ Vi/Ui, где i ∈ I.

Пример 1 (ФАКТОРИЗАЦИЯ ПО ДВУСТОРОННЕМУ ИДЕАЛУ). Пусть R
— кольцо, а I ⊂ R — аддитивная подгруппа, такая что RI + IR ⊂ I,
то есть двусторонний идеал. Тогда отображение умножения R⊗R→ R
индуцирует отображение (R/I)⊗(R/I) ∼= (R⊗R)/(R⊗I+I⊗R)→ R/I.
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Утверждение 5 (АССОЦИАТИВНОСТЬ ⊗). Пусть π : I → J — отоб-
ражение конечных множеств, (Vi)i∈I — семейство абелевых групп.
Тогда имеем следующий изоморфизм:⊗

i∈I Vi ↔
⊗

j∈J
⊗

i∈π−1(j) Vi,
⊗

i∈I vi ↔
⊗

j∈J
⊗

i∈π−1(j) vi. (2)

Набросок доказательства. Согласно определению 1 представим каж-
дый из

⊗
i∈π−1(j) Vi как фактор свободной абелевой группы, порождён-

ной формальными тензорными мономами, после чего воспользуемся
точностью справа

⊗
j∈J(−) в смысле утверждения 4, ну и дистрибу-

тивностью
⊗

относительно
⊕

, то есть утверждением 3.

Определение 3 (ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ КОЛЕЦ). Пусть (Ri)i∈I
— конечное семейство колец. Определим на абелевой группе

⊗
i∈I Ri

умножение следующим образом:

(
⊗

i∈I Ri)⊗ (
⊗

i∈I Ri)
∼−→

⊗
i∈I(Ri ⊗Ri)→

⊗
i∈I Ri,

(
⊗

i∈I r
′
i)⊗ (

⊗
i∈I r

′′
i ) 7→

⊗
i∈I(r′

i ⊗ r′′
i ) 7→

⊗
i∈I(r′

ir
′′
i ).

Первое отображение — это изоморфизм ассоциативности, а второе —
это тензорное произведение отображений умножения в индивидуаль-
ных кольцах.

Утверждение 6 (УНИВЕРСАЛЬНОЕ СВОЙСТВО ТЕНЗОРНОГО ПРОИЗВЕ-
ДЕНИЯ КОЛЕЦ). Пусть (Ri)i∈I — конечное семейство ассоциативных
унитальных колец. Тогда кольцо

⊗
i∈I Ri снабжено семейством го-

моморфизмов ιe : Re →
⊗

i∈I Ri, r 7→ r⊗e ⊗
⊗

i∈I\{e} 1⊗i, где e ∈ I,
причём образы ιe и ιe′ при e 6= e′ поэлементно коммутируют. Пусть
S — ассоциативное унитальное кольцо, а (εe : Re → S)e∈I — семей-
ство гомоморфизмов, такое что образы εe и εe′ при e 6= e′ поэле-
ментно коммутируют. Тогда существует единственный гомомор-
физм ϕ :

⊗
i∈I Ri → S, такой что ϕ ◦ ιe = εe для любого e ∈ I.

Тензорное произведение с коэффициентами
Бинарное тензорное произведение с коэффициентами

Определение 4 ((КО)ИНВАРИАНТЫ ХОХШИЛЬДА). Пусть M — бимо-
дуль над ассоциативным унитальным кольцом R. Определим его инва-
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рианты и коинварианты Хохшильда следующим образом:

HH0(R,M) := Mh(R) = {m ∈M | rm = mr для всех r ∈ R},
HH0(R,M) := Mh(R) = M/(rm = mr | r ∈ R, m ∈M),

где факторизация в определении HH0(R,M) — это факторизация абе-
левой группы по соотношениям, а h(R) — это кольцо Ли ассоциатив-
ного кольца R, действующее на абелевой группе M через композицию
гомоморфизма r 7→ r ⊗ 1 − 1 ⊗ r : h(R) → R ⊗ Ro со структурным
гомоморфизмом R⊗Ro → End(M).

Пример 2. Пусть R — ассоциативное унитальное кольцо, V = VR и
U = UR — левые R-модули. Тогда HomR( VR , UR ) ∼= (Hom(V,U))h(R).

Определение 5 (БИНАРНОЕ ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ С КОЭФФИ-
ЦИЕНТАМИ). Пусть R — ассоциативное унитальное кольцо, V = VR —
правый R-модуль, U = UR — левый R-модуль. Определим тензорное
произведение V и U над R следующим образом: VR ⊗R UR := (V ⊗U)h(R).

Наблюдение 3. Пусть S, R и T — ассоциативные унитальные кольца,
M = MS R — S-R-бимодуль, V = VR — левый R-модуль, U = US —
левый S-модуль. Тогда изоморфизм (1) индуцирует изоморфизм

HomS( MS R ⊗R VR , US ) ∼= (Hom((M ⊗ V )h(R), U))h(S) ∼=
∼= ((Hom(M ⊗ V,U))h(R))h(S) ∼= ((Hom(V,Hom(M,U)))h(S))h(R) ∼=
∼= (Hom(V, (Hom(M,U))h(S)))h(R) ∼= HomR( VR ,HomS( MS R , US )).

Наблюдение 4 (ФУНКТОРЫ ЗАМЕНЫ КОЛЬЦА). Пусть S → R — гомо-
морфизм ассоциативных унитальных колец. Такой гомоморфизм инду-
цирует функтор ограничения скаляров: resRS : R-Mod→ S-Mod, наделя-
ющий R-модуль VR структурой S-модуля с помощью сквозного гомо-
морфизма S → R → End(V ), а также индуцирует на R = RR S = RS R

структуры R-S-бимодуля и S-R-бимодуля. Естественные изоморфизмы
унитальности HomR( RR S , VR ) ↔ resRS ( VR ) ↔ RS R ⊗R VR переводят
изоморфизмы сопряжённости между ⊗ и Hom в изоморфизмы следую-
щих сопряжённостей: RR S ⊗S (−) a resRS (−) a HomS( RS R,−). Функтор
RR S ⊗S (−) называется расширением скаляров, HomS( RS R,−) — корас-
ширением скаляров, а все три вместе — функторами замены кольца.
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Тензорное произведение с коэффициентами для семейств

Определение 6 (СИСТЕМА КОЭФФИЦИЕНТОВ). Пусть I — конечное
множество. Тогда будем называть системой коэффициентов семейство
ассоциативных унитальных колец (Ri,i′)(i,i′)∈I×2\∆, такое что Ri,i′ = Roi′,i
для всех (i, i′) ∈ I×2 \∆, где ∆ := {(i, i) ∈ I×2 | i ∈ I} — диагональ I×2.

Определение 7 (ДЕЙСТВИЕ СИСТЕМЫ КОЭФФИЦИЕНТОВ). Будем го-
ворить, что на конечном семействе абелевых групп (Vi)i∈I действует
система коэффициентов (Ri,i′)(i,i′)∈I×2\∆, если для каждого i′ ∈ I абе-
лева группа Vi′ снабжена структурой модуля над

⊗
i∈I\{i′}Ri,i′ .

Определение 8 (ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ С КОЭФФИЦИЕНТАМИ).
Пусть система коэффициентов (Ri,i′)(i,i′)∈I×2\∆ действует на конечном
семействе абелевых групп (Vi)i∈I . Тогда тензорное произведение семей-
ства (Vi)i∈I над (Ri,i′)(i,i′)∈I×2\∆, обозначаемое

⊗Ri,i′
i∈I Vi, — это фактор

абелевой группы
⊗

i∈I Vi по соотношениям типа

(viri,i′)⊗i ⊗ (
⊗

k∈I\{i} vk) = (ri,i′vi′)⊗i′ ⊗ (
⊗

k∈I\{i′} vk),

где (i, i′) ∈ I×2 \∆, ri,i′ ∈ Ri,i′ , (vk)k∈I ∈
∏
k∈I Vk.

Утверждение 7 (АССОЦИАТИВНОСТЬ). Пусть π : I → J — отоб-
ражение конечных множеств. Пусть на семействе абелевых групп
(Vi)i∈I действует система коэффициентов (Ri,i′)(i,i′)∈I×2\∆. Тогда изо-
морфизм ассоциативности (2) индуцирует изоморфизм фактор-групп

⊗Ri,i′
i∈I Vi ↔

⊗Rj,j′
j∈J

⊗Ri,i′

i∈π−1(j) Vi, где Rj,j′ :=
⊗

(i,i′)∈π−1(j)×π−1(j′)Ri,i′ .

Набросок доказательства. Утверждение 7 можно получить из утвер-
ждения 5 с помощью утверждения 4.

Замечание 4. Определения 6, 7, 8 и утверждение 7 добавлены с ил-
люстративными целями, чтобы показать, что определение тензорного
произведения не зависит от порядка на множестве индексов.
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2.3. Коммутативная локализация
Определение и задание локализации
Соглашение 1. В этом разделе категория моноидов под заданным мо-
ноидом называется категорией моноидов над заданным моноидом.

Определение 1 (ЛОКАЛИЗАЦИЯ МОНОИДА ИЛИ КОЛЬЦА). Пусть дано
отображение множества S в мультипликативный моноид или ассоци-
ативное унитальное кольцо R. Определим локализацию R по S, обо-
значаемую S−1R, как начальный объект в категории моноидов над R
или ассоциативных унитальных колец над R соответственно, в которых
образы элементов S мультипликативно обратимы.

Наблюдение 1 (ЗАДАНИЕ ЛОКАЛИЗАЦИИ). Пусть дано отображение
множества S в мультипликативный моноид или ассоциативное униталь-
ное кольцо R. Тогда соответствующая локализация S−1R может быть
задана добавлением к R семейства переменных (Xs)s∈S и факториза-
цией по семейству соотношений (Xss = sXs = 1)s∈S .

Определение 2 (МУЛЬТИПЛИКАТИВНОЕ МНОЖЕСТВО). Подмоноид в
мультипликативном моноиде иногда называется мультипликативным
множеством.

Наблюдение 2. Очевидно, что локализация мультипликативного мо-
ноида или ассоциативного унитального кольца R по множеству S сов-
падает с локализацией R по свободному моноиду, порождённому S, и
совпадает с локализацией R по образу S в R.

Определение 3 (R-ОБЪЕКТ). Пусть C — категория или кольцоид, а R
— моноид или ассоциативное унитальное кольцо соответственно. Тогда
объект X ∈ Ob(C), снабжённый действием R, то есть гомоморфизмом
R→ EndC(X), называется R-объектом. Категория R-объектов в C обо-
значается CR, где R — это R как однообъектная категория/кольцоид.

Определение 4 (ЛОКАЛИЗАЦИЯ ОБЪЕКТА С ДЕЙСТВИЕМ). Пусть C —
категория или кольцоид, R — моноид или ассоциативное унитальное
кольцо соответственно,X — R-объект в C, а S — множество, снабжённое
отображением S → R. Определим локализацию X по S как расширение
скаляров вдоль канонического гомоморфизма R→ S−1R для X.
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Обозначение 1. Локализация объекта X по S обычно обозначается че-
рез S−1X, XS или X[S−1]. Если S = A \ p — теоретико-множественное
дополнение простого идеала p в ассоциативном коммутативном уни-
тальном кольце A, а M — A-модуль, то вместо MS часто пишут Mp.

Наблюдение 3 (СОГЛАСОВАННОСТЬ). Пусть R — моноид или ассоци-
ативное унитальное кольцо, а S ⊂ R — мультипликативное множество.
Тогда локализация R по S как R-множества или R-модуля соответ-
ственно канонически отождествляется с локализацией R по S как мо-
ноида или ассоциативного унитального кольца соответственно.

Коммутативная локализация как фильтрованный
копредел
Наблюдение 4 (ЛОКАЛИЗАЦИЯ ПО ЦЕНТРАЛЬНОМУ ПОДМНОЖЕСТВУ).
Пусть C и R — две категории или два кольцоида, такие что R однообъ-
ектна, X — R-объект в C, где R := Ar(R), а S ⊂ Z(R) — центральное
мультипликативное множество. Тогда локализация X по S как S-объ-
екта в CR является локализацией X по S как R-объекта в C.

Определение 5 (КАТЕГОРИЯ КЭЛИ МОНОИДА). Пусть S — моноид,
а S — это S как однообъектная категория. Тогда определён функтор
S → Sets, переводящий s ∈ Ar(S) = S в x 7→ sx : S → S. Категория эле-
ментов этого функтора называется категорией Кэли моноида S и обо-
значается Cay(S). Она снабжена каноническим функтором Cay(S)→ S.

Наблюдение 5. Для любого коммутативного моноида его категория
Кэли является фильтрованной категорией.

Наблюдение 6 (ЛОКАЛИЗАЦИЯ КАК КОПРЕДЕЛ). Пусть S — коммута-
тивный моноид, S — это S как однообъектная категория, C — категория,
P : Cay(S)→ S — канонический функтор, а F : S → C — функтор дей-
ствия на S-объект X. Тогда если (γs : X → colim(F ◦ P ))s∈S∼=Ob(Cay(S))
— копредельный коконус F ◦ P , то S действует на colim(F ◦ P ) через
действие на F , и морфизм γ1 — это локализация X по S.

Замечание 1. В обозначениях наблюдения 6 для любого r ∈ S морфизм
r−1 : colim(F ◦ P )→ colim(F ◦ P ) индуцирован коконусом (γrs)s∈S .
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Вопрос 1. Существуют ли категория C, коммутативный моноид S и
S-объект X в C, такие что локализация X по S существует, но филь-
трованный копредел colim(F ◦ P ) из наблюдения 6 не существует?

Обозначение 2 (ДРОБИ). В обозначениях наблюдения 6, если C = Sets,
то элементами colim(F ◦ P ) являются классы пар (x, s) ∈ X × S, рас-
сматриваемых по модулю отношения эквивалентности, порождённого
соотношениями (x, s) ∼ (rx, rs), где r, s ∈ S и x ∈ X, которые мы будем
обозначать через x/s или x

s и называть дробями. При этом axs = ax
s для

всех a ∈ R, s ∈ S и x ∈ X, а γ1 : X → colim(F ◦ P ), x 7→ x
1 .

Наблюдение 7. Пусть R — моноид, S ⊂ Z(R) — центральный подмоно-
ид, X — R-множество, а x и y — элементы X. Тогда равенство образов
x и y в S−1X эквивалентно существованию s ∈ S, такого что sx = sy.

Определение 6 (САТУРАЦИЯ ЦЕНТРАЛЬНОГО ПОДМОНОИДА). Пусть
R — моноид, а S ⊂ Z(R) — центральный подмоноид. Определим насы-
щение или сатурацию S в R как Ssat := {a ∈ R | Ra ∩ S ∩ aR 6= ∅}.
Множество Ssat мультипликативно. Если S = Ssat, то S называется
насыщенным или сатурированным мультипликативным множеством.

Наблюдение 8. Пусть R — моноид, а S ⊂ Z(R) — центральный под-
моноид. Тогда Ssat = {a ∈ R | a/1 ∈ (S−1R)×}.

Аддитивная локализация полукольца
Обозначение 3 (ФОРМАЛЬНЫЕ РАЗНОСТИ). Если R — аддитивно за-
писываемый коммутативный моноид, а S ⊂ R — его подмоноид, то
элементы локализации R по S, обозначаемой R − S, называются фор-
мальными разностями и записываются в виде a− s, где a ∈ R, s ∈ S.

Определение 7 (АДДИТИВНАЯ ЛОКАЛИЗАЦИЯ ПОЛУКОЛЬЦА). Пусть
дано отображение множества S в полукольцо с нулём R. Определим
аддитивную локализацию R по S, обозначаемую R − S, как началь-
ный объект в категории полуколец с нулём под R, в которых образы
элементов S аддитивно обратимы.

Определение 8 (ДВУСТОРОННИЙ ПОЛУИДЕАЛ). Пусть R — полуколь-
цо с нулём. Тогда подмножество S ⊂ R называется двусторонним полу-
идеалом, если S является аддитивным подмоноидом R и RS + SR ⊂ R.
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Наблюдение 9. Ясно, что аддитивная локализация полукольца с ну-
лём R по подмножеству S ⊂ R совпадает с аддитивной локализацией
R по двустороннему полуидеалу в R, порождённому S.

Теорема 1. Пусть R — полукольцо с нулём, S ⊂ R — двусторон-
ний полуидеал, а R−S — соответствующая локализация аддитивных
моноидов. Тогда на R− S существует единственное дистрибутивное
умножение, относительно которого канонический аддитивный сохра-
няющий ноль гомоморфизм R→ R− S мультипликативен.

Набросок доказательства. Произведение двух формальных разностей
определяется формулой (a1− s1)(a2− s2) = (a1a2 + s1s2)− (a1s2 + s1a2).
Сразу видно, что это определение корректно.

Наблюдение 10. В обозначениях теоремы 1 полукольцо с нулём R−S
является аддитивной локализацией полукольца с нулём R по S.

2.4. Избегание простых (prime avoidance)
Соглашение 1. В этом разделе кольца не подразумеваются униталь-
ными, а простым идеалом называется собственный двусторонний идеал,
дополнение которого замкнуто относительно умножения.

Теорема 1. Пусть G — группа, а H,K ⊊ G — её собственные под-
группы. Тогда H ∪K ⊊ G.

Доказательство. Мы можем предположить, что H 6⊂ K и K 6⊂ H, то
есть существуют h ∈ H \K и k ∈ K \H. Тогда hk /∈ H ∪K.

Следствие 1. Пусть G — группа, а G′,H,K ⊂ G — её подгруппы. Если
G′ ⊂ H ∪K, то G′ ⊂ H или G′ ⊂ K.

Доказательство. Применим теорему 1 к покрытию G′ группами H ′ :=
G′ ∩H и K ′ := G′ ∩K.

Теорема 2. Пусть (Ii)i∈I — конечное семейство двусторонних идеалов
ассоциативного кольца R, такое что R =

⋃
i∈I Ii 6=

⋃
j∈J Ij для любого

J ⊊ I. Тогда для любого i ∈ I идеал Ii не простой.
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Доказательство. Для каждого i ∈ I выберем ai ∈ Ii\
⋃
j∈I\{i} Ij . Пусть

идеал Ie, где e ∈ I, простой. Выберем биекцию ρ : {1, 2, . . . , n} ∼−→ I\{e},
где n ∈ N1. Тогда ae +

∏n
k=1 aρ(k) /∈

⋃
i∈I Ii = R — противоречие.

Замечание 1. Теорема 2 утверждает, что если ассоциативное кольцо
представлено в виде объединения конечного семейства двусторонних
идеалов, то из этого семейства можно выкинуть все простые идеалы.

Следствие 2 (ИЗБЕГАНИЕ ПРОСТЫХ). Пусть R — ассоциативное уни-
тальное кольцо, S ⊂ R — его подкольцо, а (Ii)i∈I — конечное се-
мейство двусторонних идеалов в R, такое что S ⊂

⋃
i∈I Ii. Пусть

I ′ := {i ∈ I | идеал Ii простой и S 6⊂ Ii}. Тогда S ⊂
⋃
i∈I\I′ Ii.

Доказательство. Примерим теорему 2 к семейству (S ∩ Ii)i∈I двусто-
ронних идеалов кольца S.

2.5. Цепной комплекс ω-градуированной
диаграммы абелевых групп

В этом разделе изложена моя попытка придать смысл стандартному ви-
зуальному образу, связанному с понятием ориентированного симплек-
са, изображённому на рисунке 2.1.

−1 +1
−1

+1−1

+1−1 +1

Рис. 2.1. Ориентированные симплексы

Обозначение 1 (ОМЕГА). Первый бесконечный ординал, как обычно,
обозначается символом ω.

Определение 1 (НЕРАЗЛОЖИМЫЙ МОРФИЗМ). Морфизм называется
неразложимым, если он не является тождественным морфизмом и не
представляется в виде композиции двух не тождественных морфизмов.
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Определение 2 (ω-ГРАДУИРОВАННАЯ КАТЕГОРИЯ). Категория S на-
зывается ω-градуированной, если в S есть начальный объект, любой
морфизм в S представляется в виде композиции неразложимых мор-
физмов и существует с необходимостью единственный функтор S → ω,
переводящий неразложимые морфизмы в неразложимые морфизмы и
начальный объект в начальный объект, называемый ω-градуировкой.

Пример 1. Пусть ∆<
f — это категория конечных ординалов фон Ней-

мана и сохраняющих порядок инъективных отображений между ними.
Тогда ∆<

f — это ω-градуированная категория в смысле определения 2.

Пример 2. Пусть K< — это упорядоченное по включению множество
множеств, все элементы которого конечны, содержащее в качестве эле-
ментов все подмножества своих элементов, то есть K< — это абстракт-
ный симплициальный комплекс с добавленным пустым симплексом. То-
гда K< — это ω-градуированная категория в смысле определения 2.

Определение 3 (ЭЛЕМЕНТАРНЫЕ ЦЕПИ). Пусть S — малая ω-граду-
ированная категория, а Q — множество её неразложимых морфизмов.
Тогда для любого s ∈ Ob(S) определим абелеву группу элементарных
цепей Cs и гомоморфизм границы ∂s : Cs →

⊕
ϕ∈Q| Cod(ϕ)=sCDom(ϕ) по

индукции как ядро сквозного гомоморфизма⊕
ϕ∈Q

Cod(ϕ)=s

CDom(ϕ) →
⊕
ϕ∈Q

Cod(ϕ)=s

⊕
ψ∈Q

Cod(ψ)=Dom(ϕ)

CDom(ψ) →
⊕
θ∈Q◦Q

Cod(θ)=s

CDom(θ),

где Q ◦ Q := {ϕ ◦ ψ ∈ Ar(S) | ϕ,ψ ∈ Q, Cod(ψ) = Dom(ϕ)}, первая
стрелка — это

⊕
ϕ∈Q| Cod(ϕ)=s ∂Dom(ϕ), а вторая стрелка — это свёртка,

то есть суммирование по слоям отображения композиции

{(ϕ,ψ) ∈ Q ×Dom CodQ | Cod(ϕ) = s} (ϕ,ψ)7→ϕ◦ψ−−−−−−−→ {θ ∈ Q◦Q | Cod(θ) = s}.

В качестве базы индукции Co := Z, где o ∈ Ob(S) — начальный объект.

Замечание 1. Рисунок 2.1 является иллюстрацией к определению 3 для
примеров 1 и 2.

Определение 4 (ЭЛЕМЕНТАРНЫЕ ЦЕПИ С КОЭФФИЦИЕНТАМИ). Пусть
S — малая ω-градуированная категория с множеством неразложимых
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морфизмов Q, а F : So → Ab — функтор в категорию абелевых групп.
Тогда для любого s ∈ Ob(S) определим группу CFs элементарных цепей
с коэффициентами в F как F (s) ⊗Z Cs, а гомоморфизм границы ∂Fs :
CFs →

⊕
ϕ∈Q| Cod(ϕ)=sC

F
Dom(ϕ) как композицию IdF (s)⊗∂s, изоморфизма

дистрибутивности и
⊕

ϕ∈Q| Cod(ϕ)=s(F (ϕo)⊗ IdCDom(ϕ)).

Определение 5 (ЦЕПНОЙ КОМПЛЕКС ω-ГРАДУИРОВАННОЙ ДИАГРАМ-
МЫ АБЕЛЕВЫХ ГРУПП). Пусть S — малая ω-градуированная категория
с ω-градуировкой r : S → Z⩾−1 ∼= ω и множеством неразложимых мор-
физмов Q, а F : So → Ab — функтор в категорию абелевых групп.
Тогда определим цепной комплекс S с коэффициентами в F как ком-
плекс с группами n-цепей Cn :=

⊕
s∈Ob(S)|r(s)=nC

F
s и дифференциалами

∂n : Cn → Cn−1, где n ∈ Z, определёнными как сквозные отображения⊕
s∈Ob(S)
r(s)=n

CFs →
⊕

s∈Ob(S)
r(s)=n

⊕
ϕ∈Q

Cod(ϕ)=s

CFDom(ϕ) →
⊕

s∈Ob(S)
r(s)=n−1

CFs ,

где первая стрелка — это
⊕

s∈Ob(S)|r(s)=n ∂
F
s , а вторая стрелка — это

гомоморфизм суммирования по слоям отображения (s, ϕ) 7→ Dom(ϕ) :
{(s, ϕ) ∈ Ob(S)×Q | r(s) = n, Cod(ϕ) = s} → {s ∈ Ob(S) | r(s) = n−1}.



Глава 3

Относительно новые тексты

3.1. Теорема Островского
Теорема 1 (ТЕОРЕМА ОСТРОВСКОГО). Любая нетривиальная муль-
типликативная норма ‖−‖ на Q эквивалентна либо обычному абсо-
лютному значению, либо какой-то из p-адических норм.

Доказательство (из трёх пунктов).

Общее неравенство. Пусть m,n ∈ Z, причём m,n ⩾ 2. Тогда мы можем
записать n-ичное разложение m:

m = a0 + a1n+ · · ·+ ab ln(m)
ln(n) cn

b ln(m)
ln(n) c

.

Заметив, что для любого a ∈ N0 выполняется неравенство ‖a‖ ⩽ a,
получаем:

‖m‖ ⩽ ‖a0‖+ ‖a1‖‖n‖+ · · ·+ ‖ab ln(m)
ln(n) c‖‖n‖

b ln(m)
ln(n) c ⩽

⩽ n · (1 + ‖n‖+ · · ·+ ‖n‖b
ln(m)
ln(n) c).

Подставив вместо m элемент mt, где t ∈ N1, возведя в степень 1/t и
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устремив t к +∞, получаем:

‖m‖ ⩽ lim
t→+∞

(1 + ‖n‖+ · · ·+ ‖n‖bt·
ln(m)
ln(n) c)

1
t =при ‖n‖6=1

= lim
t→+∞

(
‖n‖bt·

ln(m)
ln(n) c+1 − 1
‖n‖ − 1

) 1
t

= lim
t→+∞

(
‖n‖t·

ln(m)
ln(n) +1±1 − 1
‖n‖ − 1

) 1
t

.

(1)

Неархимедов случай. Пусть существует число n ∈ Z, такое что n ⩾ 2
и ‖n‖ ⩽ 1. Тогда, согласно неравенству (1), для любого m ∈ Z выпол-
няется неравенство ‖m‖ ⩽ 1. Пусть p, l ∈ N1 — два различных про-
стых числа, таких что ‖p‖, ‖l‖ 6= 1. Выберем числа N,M ∈ N1, та-
кие что ‖p‖N , ‖l‖M < 1/2. Тогда норма любого элемента множества
ZpN + ZlM = Z строго меньше 1, но ‖1‖ = 1 — противоречие.

Архимедов случай. Пусть для всех n ∈ Z, таких что n ⩾ 2, выпол-
няется неравенство ‖n‖ > 1. Тогда из неравенства (1) получаем, что
‖m‖ ⩽ ‖n‖

ln(m)
ln(n) для всех m,n ∈ Z, таких что m,n ⩾ 2. По симметрии

существует число c ∈ R>1, такое что c = ‖m‖1/ ln(m) = ‖n‖1/ ln(n) для
всех m,n ∈ Z, таких что m,n ⩾ 2. Отсюда получаем, что ‖n‖ = cln(n) =
eln(c) ln(n) = nln(c) для всех n ∈ Z, таких что n ⩾ 2.

3.2. Разложения Брюа и Гаусса
Стандартные подгруппы в общей линейной группе
Определение 1 (ГРУППА ДИАГОНАЛЬНЫХ МАТРИЦ). Пусть R — ассо-
циативное унитальное кольцо, а I — конечное множество. Тогда группой
диагональных матриц порядка I с коэффициентами в R называется
группа TI(R) := DI(R)× = DI(R) ∩MI(R)× ⊂ GLI(R).

Определение 2 (ГРУППА МАТРИЦ ПЕРЕСТАНОВОК). Пусть R — ассоци-
ативное унитальное кольцо, а I — конечное множество. Тогда группой
матриц перестановок порядка I с коэффициентами в R называется
группа WI(R) := Im(σ 7→

∑
i∈I eσ(i),i : Sym(I)→ MI(R)) ⊂ GLI(R).

Определение 3 (ГРУППА МОНОМИАЛЬНЫХ МАТРИЦ). Пусть R — ассо-
циативное унитальное кольцо, а I — конечное множество. Тогда группой
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мономиальных матриц порядка I с коэффициентами в R называется
группа NI(R) := WI(R)⋉ TI(R) ⊂ GLI(R).
Определение 4 (КОЛЬЦО ВЕРХНИХ/НИЖНИХ ТРЕУГОЛЬНЫХ МАТРИЦ).
Пусть R — ассоциативное унитальное кольцо, а I — конечное линейно
упорядоченное множество. Тогда кольцом верхних треугольных мат-
риц подрядка I над R называется кольцо B̂I(R) := {(xi,j)i,j∈I ∈ MI(R) |
xi,j = 0 при i > j} ⊂ MI(R), а кольцом нижних треугольных матриц
подрядка I над R — кольцо B̂

−
I (R) := B̂Io(R) ⊂ MI(R).

Определение 5 (ГРУППА ВЕРХНИХ/НИЖНИХ ТРЕУГОЛЬНЫХ МАТРИЦ).
Пусть R — ассоциативное унитальное кольцо, а I — конечное линейно
упорядоченное множество. Тогда группой верхних треугольных мат-
риц порядка I над R называется группа BI(R) := B̂I(R)×, то есть груп-
па обратимых элементов кольца B̂I(R), а группой нижних треугольных
матриц порядка I над R — группа B−

I (R) := B̂
−
I (R)×.

Наблюдение 1. Пусть A — ассоциативное коммутативное униталь-
ное кольцо, I — конечное линейно упорядоченное множество, а x =
(xi,j)i,j∈I ∈ B̂I(A) ∩MI(A)× — обратимая верхнетреугольная матрица.
Тогда det(x) =

∏
i∈I xi,i ∈ A×, а потому xi,i ∈ A× для любого i ∈ I, отку-

да выводится, что x−1 ∈ B̂I(A). Иначе говоря, B̂I(A)∩MI(A)× = BI(A).
Пример 1. Пусть I — бесконечное множество. Очевидно, что существу-
ет перестановка множества I t I, такая что соответствующая матрица
x ∈ GL2(EndZ-mod(Z⊕I)) верхнетреугольна и не диагональна. Тогда мат-
рица x−1 нижнетреугольна и не диагональна.
Замечание 1. Я узнал о примере 1 из статьи [8].
Определение 6 (ГРУППА ВЕРХНИХ/НИЖНИХ УНИТРЕУГОЛЬНЫХ МАТ-
РИЦ). Пусть R — ассоциативное унитальное кольцо, а I — конечное ли-
нейно упорядоченное множество. Тогда группой верхних унитреуголь-
ных матриц порядка I над R называется группа UI(R) := {((xi,j)i,j∈I ∈
BI(R) | xi,i = 1 для всех i ∈ I)}, а группой нижних унитреугольных
матриц порядка I над R — группа U−

I (R) := UIo(R) ⊂ B−
I (R).

Наблюдение 2 (РАЗЛОЖЕНИЕ ЛЕВИ). Пусть R — ассоциативное уни-
тальное кольцо, а I — конечное линейно упорядоченное множество. То-
гда BI(R) = TI(R)⋉UI(R).



56 ГЛАВА 3. ОТНОСИТЕЛЬНО НОВЫЕ ТЕКСТЫ

Разложение Брюа
Теорема 1 (РАЗЛОЖЕНИЕ БРЮА). Пусть K — поле, n ∈ N1 — нату-
ральное число, G := GLn(K), U := Un(K), N := Nn(K). Тогда выполня-
ется равенство G = UNU .

Набросок доказательства. Пусть x = (xi,j)ni,j=1 ∈ GLn(K) — невырож-
денная матрица. Пусть h — это наибольший индекс, такой что xh,1 6= 0.
Тогда, очевидно, существуют матрицы u1, u2 ∈ U , такие что у матри-
цы x′ = u1xu2 только один ненулевой элемент в h-ой строке и первом
столбце. Осталось по индукции применить разложение Брюа к матри-
це, полученной из x′ вычёркиванием h-ой строки и первого столбца.

Разложение Гаусса
Теорема 2 (РАЗЛОЖЕНИЕ ГАУССА). Пусть K — поле, n ∈ N1 — нату-
ральное число, G := GLn(K), U := Un(K), U− := U−

n (K), N := Nn(K).
Тогда выполняется равенство G = NU−U .

Набросок доказательства. Пусть x ∈ GLn(K) — невырожденная мат-
рица. Пусть y — матрица, полученная вычёркиванием из x последнего
столбца. Тогда какая-то из строчек матрицы y, скажем, i-ая, содержит-
ся в линейной оболочке остальных строчек. Вычеркнув i-ую строчку из
y мы получим невырожденную квадратную матрицу x′, к которой мож-
но применить то же рассуждение, что и к x. Если задуматься, то мы
доказали, что существуют матрицы w ∈W := Wn(K) и u− ∈ U−, такие
что u−wx ∈ B := Bn(K). Иначе говоря, G = WU−B. Осталось, вос-
пользовавшись наблюдением 2, перенести диагональную компоненту B
налево: WU−B = WU−TU = WTU−U = NU−U , где T := Tn(K).

3.3. Задача Кеплера
Соглашение 1 (ТРАЕКТОРИИ И ОРБИТЫ). В этом разделе когда идёт
речь о движении точки, то имеется в виду точка единичной массы, ес-
ли противное не указано явно. Траектории параметризованные, но рас-
сматриваются с точностью до перепараметризации диффеоморфизмом
R. Орбита — это множество значений траектории.
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Теорема 1. Для любого λ ∈ C отображение z 7→ z2 : C→ C переводит
эллипсы и ветви гипербол с фокусами ±λ в эллипсы и ветви гипербол
соответственно с фокусами 0 и λ2.

Доказательство (из трёх частей).

Часть 1. Заметим, что отображение z 7→ z+ z−1 : C\{0} → C, называ-
емое отображением Жуковского, переводит окружности с центром в 0
в эллипсы с фокусами ±2, а лучи, выходящие из 0, в ветви гипербол с
фокусами ±2, в чём легко убедиться, воспользовавшись тригонометри-
ческой формой записи комплексных чисел: если z = r cos(ω) + r sin(ω)i,
где ω ∈ R, r ∈ R>0, то z + z−1 = (r + r−1) cos(ω) + (r − r−1) sin(ω)i.

Часть 2. Отображение z 7→ z2 : C → C переводит эллипсы и ветви
гипербол с фокусами ±2 в эллипсы и ветви гипербол соответственно с
фокусами 0 и 4, в чём легко убедиться с помощью первой части дока-
зательства и формулы квадрата суммы: (z + z−1)2 = (z2 + z−2) + 2.

Часть 3. Чтобы завершить доказательство осталось воспользоваться
тем, что если C ⊂ C и α ∈ C, то (α · C):2 = α2 · C :2.

Замечание 1. В контексте теоремы 1 стоит отметить, что для любого
непустого C ⊂ C выполняется соотношение infw∈C:2 |w| = (infz∈C |z|)2.

Наблюдение 1. Пусть C ⊂ C — орбита точки единичной массы в цен-
тральном поле с потенциалом U(r) = ±r2/2, энергией E и кинетическим
моментом M . Тогда полуоси коники C :2 ⊂ C равны |E| и |M |.

Наблюдение 2 (СКОРОСТЬ В ЦЕНТРАЛЬНОМ ПОЛЕ). При движении
точки в центральном поле с потенциалом U(r) её скорость, согласно
закону сохранения энергии, равна

√
2(E − U(r)), где E — константа, а

тангенциальная компонента скорости, согласно закону сохранения ки-
нетического момента, равна M/r, где M — константа.

Наблюдение 3. Для любого α ∈ R× траектория точки в централь-
ном поле с потенциалом U(r), энергией E и кинетическим моментом M
является также траекторией точки в центральном поле с потенциалом
α2U(r), энергией α2E и кинетическим моментом αM .
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Теорема 2. Для любого s ∈ R× многозначная функция w(z) = zs на
C \ {0} в понятном смысле переводит траектории точек в централь-
ном поле с потенциалом U(r) = kr2s−2, энергией E и кинетическим
моментомM в траектории точек в центральном поле с потенциалом
U(r) = −Er2/s−2, энергией −k и кинетическим моментом M .

Доказательство. Заметим, что многозначная функция w(z) на C \ {0}
переводит в себя множество лучей, исходящих из нуля, и конформ-
на, то есть сохраняет углы, а синус угла наклона вектора скорости к
радиус-вектору при движении в центральном поле, согласно наблюде-
нию 2, задаётся формулой (M/r)/

√
2(E − U(r)). Осталось проверить

равенство (M/r)/
√

2(E − kr2s−2) = (M/rs)/
√

2(−k + E(rs)2/s−2).

Замечание 2. Если s = 2, то 2s− 2 = 2 и 2/s− 2 = −1.

Наблюдение 4. Для эллиптической или гиперболической орбиты точ-
ки единичной массы в центральном поле с потенциалом U(r) = ±r−1

согласно теореме 2 и наблюдениям 1 и 3 выполняются следующие со-
отношения: 2a = |E|−1 и p = M2, где E — энергия, M — кинетический
момент, a — большая полуось, а p — фокальный параметр.

Теорема 3. Пусть точка единичной массы движется в центральном
поле с потенциалом U(r) = −r−1 по эллиптической орбите с большой
полуосью a. Тогда период её обращения равен 2πa3/2.

Доказательство. Пусть b — малая полуось эллиптической орбиты, M
— кинетический момент точки, а T — период обращения. Тогда, соглас-
но второму закону Кеплера, то есть закону сохранения кинетического
момента, T = πab/(|M |/2). С другой стороны, |M | = a−1/2b согласно
наблюдению 4. Поэтому T = πab/(a−1/2b/2) = 2πa3/2.

Замечание 3. Почти весь материал этого раздела взят из книг В. И. Ар-
нольда [6, с. 42], [14, с. 29] и [5, с. 75].

3.4. Алгоритм RSA
Теорема 1. Пусть n ∈ N1 — бесквадратное число, λ(n) — экспонента
группы (Z/nZ)×, а s ∈ N0 — число, такое что s ≡ 1 (mod λ(n)). Тогда
xs = x для любого x ∈ Z/nZ.
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Доказательство. Практически очевидно из канонического изоморфиз-
ма Z/nZ ∼=

∏
p∈P Z/pZ, где P — множество простых делителей n.

Замечание 1. Если, в обозначениях теоремы 1, выбрать числа e, d ∈ N0,
взаимно обратные по модулю λ(n), то соответствующие отображения
x 7→ xe : Z/nZ →← Z/nZ : xd 7→x будут взаимно обратными биекциями,
причём по n и e в общем случае довольно трудно вычислить класс [d] ∈
Z/λ(n)Z. Это обстоятельство лежит в основе алгоритма RSA: первое
отображение зашифровывает сообщения, а второе их расшифровывает.

3.5. Некоторые практичные аппроксимации
Наблюдение 1 (МЕТР). Один метр — это примерно одна десятимил-
лионная расстояния между полюсом и экватором по поверхности сфе-
рического приближения к Земле. Десять — это количество пальцев на
обеих руках человека, а семь нулей нужны для того, чтобы метр был
максимально близок к росту человека.

Замечание 1. По идеальной твёрдой сферической Земле идеальный пе-
шеход, 12 часов каждые сутки движущийся со скоростью 5 км/ч, мог
бы за год перейти из любой точки в любую точку.

Наблюдение 2 (ЧЕЛОВЕК, КЛЕТКА, АТОМ И ПРОТОН). Размер челове-
ка — примерно 1 метр. Размер атома — примерно 1 ангстрем, то есть
10−10 метра. Размер клетки составляет примерно 1 «сотку», то есть
одну сотую миллиметра, то есть 10−5 метра — ровно посередине меж-
ду метром и ангстремом.1 Сотка приблизительно совпадает с толщиной
стандартной бытовой алюминиевой фольги. Размер протона составляет
примерно 10−15 метра и тоже укладывается в эту схему.

Наблюдение 3 (КОЛИЧЕСТВО СЕКУНД В СУТКАХ). В сутках 60·60·24 =
360·240 = 300·(1+ 2

10)·300·(1− 2
10) = 3002 ·(1− 4

100) = 105 ·(1− 1
10)·(1− 4

100),
то есть примерно 100000, секунд.

1Разумеется, у разных клеток разный размер. Например, человеческая яйцеклетка
имеет диаметр примерно в одну десятую миллиметра и видна невооружённым глазом
как маленькая песчинка.
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Наблюдение 4 (АППРОКСИМАЦИЯ 99/70 ≈
√

2). Так как 72 = 49 ≈ 50,
то имеем очевидную пару приближений 7/5 <

√
2 < 10/7 к

√
2, та-

кую что (7/5)(10/7) = 2. По формуле (a − b)(a + b) = a2 − b2 квад-
рат среднего арифметического двух чисел больше квадрата их среднего
геометрического на квадрат полуразности, в частности, квадрат числа
(7/5 + 10/7)/2 = 99/70 больше 2 на ((10/7− 7/5)/2)2 = 1/702 = 1/4900.

Наблюдение 5 (ПАРАМЕТРЫ ЛИСТА A4). Стороны листа бумаги A4
имеют длину 297 мм и 210 мм, а 297/210 = 99/70. Умноженная на 24

площадь листа A4 в квадратных миллиметрах равна 24 · 300 · (1− 1
100) ·

200·(1+ 5
100) = 96·104 ·(1− 1

100)·(1+ 5
100) = 106 ·(1− 4

100)·(1− 1
100)·(1+ 5

100).

Наблюдение 6 (ЗВЁЗДНАЯ ВЕЛИЧИНА). Существует очень полезная
аппроксимация 210 = 103 · (1 + 24

1000). В частности, увеличение звёзд-
ной величины на единицу соответствует увеличению освещённости в
1001/5 = 10 · 2−2 · (1 + 24

1000)1/5 раз. То есть 2.52.5 = 10 · (1 + 24
1000)−1/2.

3.6. Теоремы о поднятии гомотопий
Соглашение 1 (РАССЛОЕНИЯ И СЕЧЕНИЯ). В этом разделе расслоени-
ями называются непрерывные отображения и все сечения расслоений
считаются непрерывными.

Наблюдение 1. Пусть X0 и X1 — топологические пространства, а X01
— их общее замкнутое подмножество. Тогда стандартные вложения
X0 → X0 tX01 X1 →X1 замкнуты, то есть X0 и X1 отождествляют-
ся со своими замкнутыми образами в X0 tX01 X1.

Наблюдение 2. Пусть X — топологическое пространство, а X0 и X1
— его замкнутые подмножества, такие что X = X0 ∪X1. Тогда канони-
ческое отображение X0 tX0∩X1 X1 → X является гомеоморфизмом.

Пример 1. Пусть X — топологическое пространство. Тогда X× [0, 2] =
(X × [0, 1]) tX×{1} (X × [1, 2]).

Пример 2. Пусть X := R \ (1/(Z \ {0})) = R \ {±1,±1
2 ,±

1
3 , . . . }. Тогда

каноническая непрерывная биекция

Y ′ := (R×X) tZ×X (pt×X)→ Y ′′ := (R tZ pt)×X
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не является гомеоморфизмом, потому что если Y := R × X, а Γ :=
{(t, x) ∈ Y | tx = 1} ⊂ Y , то образ Γ в Y ′ замкнут, а образ Γ в Y ′′ не
замкнут, так как его замыкание содержит образ множества Z×{0} ⊂ Y .

Наблюдение 3. Пример 2 показывает, что функтор декартова произ-
ведения −×X : Top→ Top, где X := R \ { 1

n | n ∈ Z \ {0}}, не сохраняет
пушауты, откуда следует, что он не имеет правого сопряжённого.

Замечание 1. Наблюдение 3 не понадобится в этом разделе.

Лемма 1. Пусть E и X — два топологических пространства, а p :
E → X × [0, 1] — расслоение, такое что ограничения p на X × [0, 1

2 ] и
X × [1

2 , 1] тривиализуемы. Тогда p тривиализуемо.

Доказательство. Во-первых, заметим, что из наблюдения 2 следует,
что E = E0 tE01 E1, где E0, E1 и E01 — это ограничения E на X × [0, 1

2 ],
X × [1

2 , 1] и X × {1
2} соответственно. Во-вторых, заметим, что если

r : X × [1
2 , 1] → X × {1

2} — произвольная ретракция, то E1 ' r∗(E01),
потому что E1 тривиализуемо. Отсюда получаем, что ограничение три-
виализации E0 на E01 продолжается до тривиализации E1. Вместе эти
тривиализации индуцируют тривиализацию E = E0 tE01 E1.

Лемма 2. Пусть E и X — два топологических пространства, а p :
E → X × [0, 1] — локально тривиальное расслоение. Тогда множество
открытых подмножеств U ⊂ X, таких что ограничение p на U×[0, 1]
тривиализуемо, образует покрытие X.

Доказательство. Пусть x ∈ X. Тогда для любого t ∈ [0, 1] существует
базовая открытая окрестность Ut × It точки (x, t) ∈ X × [0, 1], такая
что ограничение p на Ut× It тривиализуемо. Применив лемму Лебега о
покрытии (теорема 6.1.1) к покрытию (It)t∈[0,1] отрезка [0, 1] получаем,
что существуют последовательность чисел 0 = t0 ⩽ t1 ⩽ · · · ⩽ tn = 1 и
открытая окрестность U ⊂ X точки x ∈ X, такие что для любого i от
1 до n ограничение p на U × [ti−1, ti] тривиализуемо. Воспользовавшись
леммой 1 получаем, что ограничение p на U × [0, 1] тривиализуемо.

Теорема 1. Пусть E и X — два топологических пространства, а
p : E → X× [0, 1] — локально тривиальное расслоение с вполне линейно
несвязными слоями. Тогда любое сечение s0 : X × {0} → E расслоения
p на X × {0} однозначно продолжается до сечения s : X × [0, 1]→ E.
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Доказательство. Предположим, что p тривиализуемо, а F — слой p.
Тогда утверждение теоремы сводится к очевидному утверждению, что
любое непрерывное отображение X × {0} → F однозначно продолжа-
ется до непрерывного отображения X × [0, 1] → F . Общий случай сво-
дится к рассмотренному с помощью леммы 2 — для каждого открытого
U ⊂ X, такого что ограничение p на U × [0, 1] тривиализуемо, сечение
s0|U×{0} однозначно продолжается до сечения U × [0, 1] → E, причём
эти сечения согласованы на пересечениях своих областей, а потому од-
нозначно задают сечение s : X × [0, 1]→ E.

Теорема 2 (ТЕОРЕМА О НАКРЫВАЮЩЕЙ ГОМОТОПИИ). Пусть E, B и
X — топологические пространства, а (1) — коммутативная диаграм-
ма непрерывных отображений, такая что p — локально тривиальное
расслоение с вполне линейно несвязными слоями, а ι — вложение под-
множества. Тогда существует единственное непрерывное отображе-
ние h̃ : X × [0, 1]→ E, такое что p ◦ h̃ = h и h̃ ◦ ι = h̃0.

X × {0} E

X × [0, 1] B

h̃0

ι p

h

(1)

Доказательство. Теорема 2 получается применением теоремы 1 к рас-
слоению h∗(E) = E×B(X×[0, 1])→ X×[0, 1] и сечениюX×{0} → h∗(E),
индуцированному h̃0 и ι. С другой стороны, теорема 1 — это частный
случай теоремы 2 при B = X × [0, 1] и h = Id.

Лемма 3 (ТЕОРЕМА ФЕЛЬДБАУ). Пусть E — топологическое про-
странство, а p : E → [0, 1]×q, где q ∈ N0, — локально тривиальное
расслоение. Тогда p тривиализуемо.

Доказательство. Воспользовавшись леммой Лебега о покрытии, полу-
чаем, что существует число n ∈ N1, такое что p тривиализуемо на каж-
дом кубике вида

∏q
i=1[mi

n ,
mi+1
n ] ⊂ [0, 1]×q, где mi ∈ Z и 0 ⩽ mi < n для

каждого i от 1 до q. Осталось много раз воспользоваться леммой 1.

Теорема 3 (ТЕОРЕМА О ПОДНЯТИИ ГОМОТОПИИ). Пусть E и B —
топологические пространства, Dq := [0, 1]×q, где q ∈ N0, — q-диск, а (2)
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— коммутативная диаграмма непрерывных отображений, такая что
p — локально тривиальное расслоение, а ι — вложение подмножества.
Тогда существует непрерывное отображение h̃ : Dq× [0, 1]→ E, такое
что p ◦ h̃ = h и h̃ ◦ ι = h̃0.

Dq × {0} E

Dq × [0, 1] B

h̃0

ι p

h

(2)

Доказательство. Заменив p : E → B на h∗(E) = E ×B (Dq × [0, 1]) →
Dq × [0, 1], а h̃0 — на сечение Dq × {0} → h∗(E), индуцированное h̃0 и
ι, сводим теорему к случаю B = Dq × [0, 1] и h = Id. В этом случае
расслоение p тривиализуемо по лемме 3 (теореме Фельдбау) и теорема
сводится к очевидному утверждению, что вложение ι обратимо слева,
то есть Dq × {0} является ретрактом Dq × [0, 1].





Часть II

Сгруппированные тексты





Глава 4

Теория множеств

В ЭТОЙ ГЛАВЕ изложены 3 стандартнейших результата теории мно-
жеств. В разделе 4.1 парадокс Рассела рассматривается как пря-

мое следствие теоремы Кантора о несуществовании сюръекции из мно-
жества в множество его подмножеств.

4.1. Диагональный аргумент Кантора
Обозначение 1 (МНОЖЕСТВО ПОДМНОЖЕСТВ). Множество подмно-
жеств множества X, иногда называемое булеаном X, будем обозначать
символом 2X — так же, как множество отображений из X в 2 = {0, 1}.

Теорема 1 (ТЕОРЕМА КАНТОРА). Если X — множество, а ϕ : X → 2X
— отображение, то ϕ не сюръективно.

Доказательство. Пусть C := {x ∈ X | x /∈ ϕ(x)}. Тогда если c ∈ X и
ϕ(c) = C, то утверждение «c ∈ C» эквивалентно утверждению «c /∈ C»
— противоречие.

Замечание 1. В обозначениях формулировки и доказательства теоремы
1 характеристическая функция X → {0, 1} подмножества X \ C ⊂ X
разлагается в композицию диагонального отображения X → X × X и
отображения X ×X → {0, 1}, соответствующего ϕ : X → 2X , поэтому
рассуждение из приведённого доказательства теоремы 1 часто называ-
ют диагональным аргументом Кантора.
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Наблюдение 1 (ПАРАДОКС РАССЕЛА). Предположим, что существу-
ет множество всех множеств, которое мы обозначим буквой X. Тогда
отображение x 7→ x ∩X : X → 2X сюръективно, так как обратно слева
вложению x 7→ x : 2X → X, что противоречит теореме Кантора.

Наблюдение 2 (НЕСЧЁТНОСТЬ МНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ).
По теореме Кантора множество вещественных чисел из интервала [0, 1],
у которых существует троичное разложение, в котором не участвует
цифра 1, биективное 2N1 и называемое множеством Кантора, несчёт-
но. Как следствие, множество вещественных чисел несчётно.

4.2. Теорема Кантора–Бернштейна–Шрёдера
Теорема 1 (ТЕОРЕМА КАНТОРА –БЕРНШТЕЙНА–ШРЁДЕРА). Пусть ι :
X → X — вложение множества X в себя, а Y ⊂ X — подмножество
X, такое что ι(X) ⊂ Y . Тогда существует биекция ρ : X ∼−→ Y .

Доказательство. Для любого i ∈ N1 множества X \ Y и ιi(X \ Y ) ⊂ Y
дизъюнктны, а потому, по инъективности ι, для любых i, j ∈ N0, таких
что i < j, множества ιi(X \ Y ) и ιj(X \ Y ) тоже дизъюнктны. Пусть
Z :=

⊔∞
i=0 ι

i(X \Y ) ⊂ X. Ясно, что X = Z t (X \Z) и Y = ι(Z)t (X \Z).
Определим биекцию (ρ : X ∼−→ Y ) := (x 7→ ι(x) : Z ∼−→ ι(Z))t(IdX\Z).

Замечание 1. Теорему 1 можно переформулировать следующим обра-
зом: «Если два множества вкладываются друг в друга, то они равно-
мощны».

4.3. Лемма Цорна
Определение 1 (ЗАМКНУТОЕ ВЛЕВО ПОДМНОЖЕСТВО). Подмноже-
ство Y частично упорядоченного множества X называется замкнутым
влево, если

⋃
y∈Y X⩽y ⊂ Y . Множество замкнутых влево подмножеств

частично упорядоченного множества X будет обозначаться через [1]Xo .

Определение 2 (ПОСЛЕДУЮЩИЕ ЭЛЕМЕНТЫ). Пусть X — частично
упорядоченное множество, а x ∈ X — его элемент. Тогда минимальные
элементы X>x будут называться последующими к x элементами.
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Определение 3 (ФУНДИРОВАННОСТЬ). Частично упорядоченное мно-
жество X называется фундированным, если в множестве [1]Xo у любого
не максимального элемента есть последующий.

Определение 4 (ОРДИНАЛ). Фундированное линейно упорядоченное
множество называется ординалом.

Определение 5 (ПОДОРДИНАЛ). Ординал B называется подординалом
ординала A, что записываетсяB ≼ A, еслиB является замкнутым влево
подмножеством A с индуцированным порядком.

Определение 6 (ОТОБРАЖЕНИЕ ПОСЛЕДОВАНИЯ). Пусть A — орди-
нал. Тогда отображение последования rA : [1]Ao \{A} → [1]Ao переводит
любой не максимальный элемент [1]Ao в последующий элемент [1]Ao .

Лемма 1 (ЛЕММА О СРАВНЕНИИ). Пусть A и B — два ординала, та-
кие что отображения последования rA и rB принимают одинаковые
значения на пересечении их областей определения. Тогда какой-то из
ординалов A и B является подординалом другого.

Доказательство. Пусть C — это объединение общих подординалов A
и B, которое является наибольшим общим подординалом A и B. Если
C 6= A и C 6= B, то определён ординал rA(C) = rB(C), который строго
больше C и является подординалом A и B — противоречие.

Теорема 1 (ЛЕММА КУРАТОВСКОГО –ЦОРНА). Пусть U — частично
упорядоченное множество, аM — множество цепей в U , являющихся
ординалами, упорядоченное отношением «быть подординалом». Тогда,
в предположении аксиомы выбора, в M есть максимальный элемент.

Доказательство. Предположим, что это не так. Тогда для каждого
A ∈M , существует A′ ∈M , такой что A — максимальный собственный
подординал в A′. Воспользовавшись аксиомой выбора, выберем отоб-
ражение rU : M → M , сопоставляющее каждому A ∈ M такой A′.
Пусть L := {A ∈ M | rA(B) = rU (B) для всех B ≺ A}. Тогда, вос-
пользовавшись леммой о сравнении, легко увидеть, что

⋃
A∈LA ∈ L.

Но
⋃
A∈LA ≺ rU (

⋃
A∈LA) ∈ L — противоречие.
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Наблюдение 1 (ПРИНЦИП МАКСИМУМА ХАУСДОРФА). Теорема 1 до-
пускает следующую эквивалентную переформулировку, которую назы-
вают принципом максимума Хаусдорфа: «В любом частично упорядо-
ченном множестве существует максимальная по включению цепь».

Замечание 1. Ещё одна стандартная переформулировка теоремы 1 зву-
чит так: «Частично упорядоченное множество, в котором любая цепь
имеет верхнюю грань, содержит максимальный элемент».

Пример 1. Частично упорядоченное множество счётных подмножеств
несчётного множества удовлетворяет условию наличия верхних граней
у счётных цепей, но не содержит максимальных элементов.



Глава 5

Вещественные числа

В ЭТОЙ ГЛАВЕ изложена конструкция действительных чисел с помо-
щью сечений Дедекинда. Основной посыл главы состоит в том, что

использование кольца формальных разностей позволяет избавиться от
занудных разборов случаев, часто присутствующих в изложениях этой
конструкции, и делает её не менее привлекательной, чем конструкцию
через последовательности Коши. Помимо этого в разделе 5.2 изложена
ключевая теорема о компактности и связности отрезка [0, 1] ⊂ R.

5.1. Сечения Дедекинда
Пара слов о целых и рациональных числах
Кольцо целых чисел, обозначаемое Z, — это кольцо формальных раз-
ностей, то есть кольцо Гротендика, полукольца N0. Поле рациональных
чисел, обозначаемое Q, — это поле частных кольца Z. Структура по-
ля на Q единственным образом продолжается до структуры линейно
упорядоченного поля.

Дедекиндовы пары и леммы об обратимости
Обозначение 1. Пусть X — частично упорядоченное множество, а y ∈
X — его элемент. Тогда X⩽y := {x ∈ X | x ⩽ y}, X⩾y := {x ∈ X | x ⩾ y},
X<y := {x ∈ X | x < y}, X>y := {x ∈ X | x > y}.
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Определение 1 (ЛЕВЫЕ И ПРАВЫЕ СЕЧЕНИЯ ДЕДЕКИНДА). Назовём
подмножество Y линейно упорядоченного множества X левым/правым
сечением Дедекинда, если Y 6= ∅, X и для любого y ∈ Y выполняется
строгое включение X⩽y ⊊ Y или, соответственно, X⩾y ⊊ Y .

Определение 2 (ДЕДЕКИНДОВЫ ДОПОЛНЕНИЯ И ПАРЫ). Пусть X —
это Q или Q>0. Левое сечение Дедекинда L ⊂ X и правое сечение Де-
декинда R ⊂ X называются дедекиндовыми дополнениями друг друга,
а пара (L,R) — дедекиндовой парой, если L ∩ R = ∅, и для любого
рационального ε > 0 существуют l ∈ L и r ∈ R, такие что r − l ⩽ ε.

Наблюдение 1 (ХАРАКТЕРИЗАЦИИ ДЕДЕКИНДОВЫХ ПАР). Пусть X —
это Q или Q>0, а L,R ⊂ X — дизъюнктные левое и правое соответ-
ственно сечения Дедекинда. Тогда следующие условия эквивалентны:

а) Пара (L,R) является дедекиндовой парой;

б) Для любого ε ∈ Q>0 открытая ε-окрестность L имеет непустое
пересечение с R, то есть {x ∈ X | ∃l ∈ L : |x− l| < ε} ∩R 6= ∅;

в) Для любого ε ∈ Q>0 открытая ε-окрестность R имеет непустое
пересечение с L, то есть L ∩ {x ∈ X | ∃r ∈ R : |x− r| < ε} 6= ∅;

г) Множество L — это максимальное по включению левое сечение
Дедекинда, дизъюнктное с R;

д) Множество R — это максимальное по включению правое сечение
Дедекинда, дизъюнктное с L.

Из условий (г) и (д) следует, что у любого левого/правого сечения Де-
декинда в X существует единственное дедекиндово дополнение.

Определение 3 («ПОЭЛЕМЕНТНОЕ» СЛОЖЕНИЕ, УМНОЖЕНИЕ И ОБ-
РАЩЕНИЕ ПОДМНОЖЕСТВ). Для подмножеств M,M ′,M ′′ ⊂ Q, в част-
ности, левых или правых сечений Дедекинда, определим множества
−M := {−x ∈ Q | x ∈M},M ′ +M ′′ := {x′ +x′′ ∈ Q | x′ ∈M ′, x′′ ∈M ′′} и
M ′ ·M ′′ := {x′ ·x′′ ∈ Q | x′ ∈M ′, x′′ ∈M ′′}. Если M ⊂ Q×, то определим
множество M :(−1) := {x−1 ∈ Q | x ∈M}.
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Определение 4 (СЛОЖЕНИЕ ДЕДЕКИНДОВЫХ ПАР В Q). Пусть (L′, R′)
и (L′′, R′′) — дедекиндовы пары в Q. Определим их сумму как дедекин-
дову пару (L′ + L′′, R′ +R′′).

Наблюдение 2. Дедекиндовы пары в Q образуют абелеву группу от-
носительно сложения. Нулём в этой группе является пара (Q<0,Q>0),
а аддитивно обратной к паре (L,R) является пара (−R,−L).

Лемма 1. Пусть (L,R) — дедекиндова пара в Q>0. Тогда (R:(−1), L:(−1))
— это дедекиндова пара в Q>0.

Набросок доказательства. Заметим, что существует C ∈ Q>0, такое
что если l ∈ L и r ∈ R достаточно близки, то C ⩽ l ⩽ r, после чего
воспользуемся тождеством 1/l − 1/r = (r − l)/(lr).

Лемма 2. Пусть (L′, R′) и (L′′, R′′) — дедекиндовы пары в Q>0. Тогда
(L′ · L′′, R′ ·R′′) — это дедекиндова пара в Q>0.

Набросок доказательства. Заметим, что существует C ′ ∈ Q>0, такое
что если l′ ∈ L′ и r′ ∈ R′ достаточно близки, то l′ ⩽ r′ ⩽ C ′, и аналогично
для пары (L′′, R′′), после чего воспользуемся тождеством r′r′′ − l′l′′ =
r′(r′′ − l′′) + (r′ − l′)l′′.

Определение 5 (УМНОЖЕНИЕ ДЕДЕКИНДОВЫХ ПАР В Q>0). Пусть
(L′, R′) и (L′′, R′′) — дедекиндовы пары в Q>0. Определим их произ-
ведение как дедекиндову пару (L′ · L′′, R′ ·R′′).

Наблюдение 3. Дедекиндовы пары в Q>0 образуют коммутативную
группу относительно умножения. Единицей в этой группе является па-
ра ({x ∈ Q>0 | x < 1}, {x ∈ Q>0 | 1 < x}), а мультипликативно обратной
к паре (L,R) является пара (R:(−1), L:(−1)).

Конструкция поля дедекиндовых сечений
Определение 6 (СЕЧЕНИЕ ДЕДЕКИНДА). Правые сечения Дедекинда
в Q будем называть просто сечениями Дедекинда.

Определение 7 (ОТНОШЕНИЕ ПОРЯДКА НА СЕЧЕНИЯХ ДЕДЕКИНДА).
Стандартным порядком на множестве сечений Дедекинда будем счи-
тать порядок, противоположный порядку, заданному вложенностью се-
чений друг в друга как множеств.
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Наблюдение 4. Порядок на множестве сечений Дедекинда линейный
и ограниченно полный: инфимумам соответствуют объединения.

Определение 8 (СЛОЖЕНИЕ СЕЧЕНИЙ ДЕДЕКИНДА). Суммой сечений
Дедекинда R′ и R′′ назовём сечение Дедекинда R′ +R′′.

Наблюдение 5. Сечения Дедекинда образуют упорядоченную адди-
тивную абелеву группу. Аддитивная обратимость любого сечения Де-
декинда следует из наблюдения 2.

Определение 9 (УМНОЖЕНИЕ НЕОТРИЦАТЕЛЬНЫХ СЕЧЕНИЙ ДЕДЕ-
КИНДА). Пусть R′ и R′′ — неотрицательные, то есть такие, что R′ ⩾ 0
и R′′ ⩾ 0, сечения Дедекинда. Определим их произведение как неотри-
цательное сечение Дедекинда R′ ·R′′.

Наблюдение 6. Множество неотрицательных сечений Дедекинда об-
разует полукольцо с нулём. Если мы отождествим множество всех се-
чений Дедекинда с кольцом Гротендика, то есть кольцом формальных
разностей, этого полукольца, то увидим, что операция умножения неот-
рицательных сечений Дедекинда однозначно двусторонне дистрибутив-
но продолжается на множество всех сечений Дедекинда, превращая его
в упорядоченное кольцо.

Наблюдение 7. По наблюдению 3 строго положительные, то есть стро-
го большие нуля, сечения Дедекинда мультипликативно обратимы, от-
куда следует, что кольцо сечений Дедекинда является полем. Часто
оно отождествляется с полем вещественных чисел, также называемых
действительными числами, и обозначается символом R.

Единственность полного по Дедекинду линейно
упорядоченного поля
Наблюдение 8. Любое линейно упорядоченное поле имеет характери-
стику ноль.

Определение 10 (АРХИМЕДОВО ПОЛЕ). Линейно упорядоченное поле
R называется архимедовым, если множество Z ⊂ R не ограничено в R.

Наблюдение 9. Пусть R — архимедово линейно упорядоченное поле.
Тогда для любого a ∈ R× множество aZ ⊂ R не ограничено.
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Теорема 1. Пусть R — архимедово линейно упорядоченное поле. Тогда
для любых a, b ∈ R, таких что a < b, существует рациональное число
r ∈ Q, такое что a < r < b.

Доказательство. По наблюдению 9 существует число m ∈ N1, такое
что m(b − a) > 1. Пусть n ∈ Z — минимальный элемент Z, такой что
ma < n. Тогда ma < n < mb и a < n/m < b.

Определение 11 (ПОЛНОТА ПО ДЕДЕКИНДУ). Линейно упорядоченное
поле называется полным по Дедекинду, если оно является ограничен-
но полным как частично упорядоченное множество, то есть содержит
супремумы ограниченных сверху подмножеств или, эквивалентно, со-
держит инфимумы ограниченных снизу подмножеств.

Теорема 2. Пусть R — полное по Дедекинду линейно упорядоченное
поле. Тогда R архимедово.

Доказательство. Пусть s ∈ R — супремум Z ⊂ R. Так как s − 1 < s,
то существует число n ∈ Z, такое что s − 1 < n, откуда следует, что
s < n+ 1 — противоречие.

Теорема 3. Пусть R — произвольное полное по Дедекинду линейно
упорядоченное поле, а D — поле сечений Дедекинда. Тогда существует
единственный изоморфизм R ∼−→ D линейно упорядоченных полей.

Набросок доказательства. Во-первых, воспользовавшись теоремами 1
и 2, легко убедиться, что Q ∩ R>a ∈ D для любого a ∈ R, а отображе-
ние a 7→ Q∩R>a : R→ D биективно и является сохраняющим порядок
кольцевым гомоморфизмом. Во-вторых, у поля R нет сохраняющих по-
рядок нетривиальных автоморфизмов, так как их нет у Q.

Замечание 1. Отметим, что любой автоморфизм поля R сохраняет по-
рядок, так как переводит квадраты в квадраты.

5.2. Компактность и связность отрезка
Определение 1 (ИНТЕРВАЛ). Назовём подмножество I ⊂ X частично
упорядоченного множества X интервалом, если для любых x, y ∈ I и
z ∈ X, таких что x ⩽ z ⩽ y, выполняется включение z ∈ I.
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Теорема 1 (КОМПАКТНОСТЬ И СВЯЗНОСТЬ ОТРЕЗКА). Пусть U ⊂
Open([0, 1]) — множество открытых подмножеств отрезка [0, 1] ⊂ R,
такое что

⋃
U∈U U замкнуто в [0, 1] и не пусто. Тогда [0, 1] является

конечным объединением элементов U .

Доказательство. Для произвольного подмножества X ⊂ [0, 1] обозна-
чим через IX множество открытых в [0, 1] интервалов, содержащихся
в конечных объединениях элементов U и содержащих X.

По условию существует непустой I ∈ I∅. Пусть Imax — это объедине-
ние элементов II , Cinf := inf(Imax), Csup := sup(Imax). Тогда Cinf , Csup ∈
Cl(Imax) ⊂ Cl(

⋃
U∈U U) =

⋃
U∈U U , поэтому существуют Iinf ∈ I{Cinf} и

Isup ∈ I{Csup}. Так как Iinf ∩ Imax 6= ∅ и Isup ∩ Imax 6= ∅, то существуют
Ileft, Iright ∈ II , такие что Iinf ∩ Ileft 6= ∅ и Isup ∩ Iright 6= ∅. Тогда Ibig :=
Iinf ∪ Ileft ∪ Iright ∪ Isup ∈ II . Если Cinf 6= 0 или Csup 6= 1, то Ibig 6⊂ Imax,
что противоречит определению Imax. Поэтому Ibig = Imax = [0, 1].

Замечание 1. Теорема 1 допускает следующую эквивалентную пере-
формулировку: единичный вещественный отрезок компактен и связен.



Глава 6

Базовые свойства
метрических пространств

6.1. Лемма Лебега о покрытии
Теорема 1 (ЛЕММА ЛЕБЕГА О ПОКРЫТИИ). Если M — компактное
метрическое пространство, а U ⊂ Open(M) — его открытое покры-
тие, то существует число R ∈ R>0 такое что любой открытый шар
в M радиуса меньше R содержится в каком-то элементе U .

Доказательство. Рассмотрим функцию f : M → R, сопоставляющую
точке x ∈ M супремум радиусов открытых шаров с центром в x, со-
держащихся в каком-то элементе U . Так как функция f непрерывна, а
пространство M компактно, то в какой-то точке M функция f прини-
мает своё наименьшее значение, которое не может быть нулевым.

Теорема 2 (ТЕОРЕМА КАНТОРА –ГЕЙНЕ). Пусть ϕ : M →M ′ — непре-
рывное отображение из компактного метрического пространства M
в метрическое пространство M ′. Тогда ϕ равномерно непрерывно.

Первое доказательство. Рассмотрим покрытие пространства M про-
образами всех открытых шаров в M ′ и применим к нему лемму Лебега
о покрытии (теорему 1).

Второе доказательство. Для любого числа ε ∈ R>0 множество X :=
{(x, y) ∈ M ×M | dM ′(ϕ(x), ϕ(y)) ⩾ ε} = (dM ′ ◦ (ϕ × ϕ))−1([ε,∞)) ком-
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пактно как замкнутое подмножество компактного пространстваM×M ,
а потому непрерывная функция dM |X принимает на X своё наименьшее
значение, которое не может быть нулевым.

6.2. Полные метрические пространства
Наблюдение 1. Пусть X — метрическое пространство, (ai)i∈I и (bj)j∈J
— две сходящиеся последовательности в X. Тогда выполняется равен-
ство d(lim(ai | i ∈ I), lim(bj | j ∈ J)) = lim(d(ai, bj) | (i, j) ∈ I × J).

Теорема 1 (ХАРАКТЕРИЗАЦИИ МЕТРИЧЕСКОЙ ПОЛНОТЫ). Пусть X —
метрическое пространство. Тогда следующие условия эквивалентны:

а) Любая последовательность Коши в X сходится;

б) Для любой пары (Y, Y ′) из метрического пространства Y и его
плотного подмножества Y ′ ⊂ Y любое равномерно непрерывное
отображение f ′ : Y ′ → X продолжается до непрерывного отоб-
ражения f : Y → X.

Доказательство (из двух частей).

Часть (а) ⇒ (б). Пусть y ∈ Y . Выберем сходящуюся к y в Y последо-
вательность s : I → Y ′. Заметим, что s является последовательностью
Коши, а потому f ′ ◦ s — тоже. Определим f(y) как предел f ′ ◦ s. Пусть
r : J → Y ′ — другая сходящаяся к y в Y последовательность. Тогда
s t̄ r : I t J → Y ′ — последовательность Коши, а потому f ′ ◦ (s t̄ r) —
тоже, а потому пределы f ′◦s и f ′◦r равны и отображение f определено
корректно. Непрерывность f следует из наблюдения 1.

Часть (б) ⇒ (а). Обозначим образ вложения n 7→ 2−n : N0 → [0, 1]
через N ′, а замыкание N ′ в [0, 1] — через N . Тогда последовательно-
сти N0 → X естественно биективны отображениям N ′ → X, а преде-
лы последовательностей задаются непрерывными продолжениями этих
отображений наN . Осталось заметить, что последовательность N0 → X
является последовательностью Коши тогда и только тогда, когда соот-
ветствующее отображение N ′ → X равномерно непрерывно.
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Определение 1 (ПОЛНОЕ МЕТРИЧЕСКОЕ ПРОСТРАНСТВО). Метриче-
ское пространство X называется метрически полным или просто пол-
ным, если оно удовлетворяет эквивалентным условиям теоремы 1.

Определение 2 (ПОПОЛНЕНИЕ МЕТРИЧЕСКОГО ПРОСТРАНСТВА). По-
полнением метрического пространства X называется полное метриче-
ское пространство Y , снабжённое изометрическим вложением X → Y
с плотным образом.

Замечание 1. Из теоремы 1 следует, что между любыми двумя попол-
нениями метрического пространства X существует единственная изо-
метрия, тождественная на X.

Определение 3 (ВЛОЖЕНИЕ КУРАТОВСКОГО). Пусть X — метриче-
ское пространство, а F — пространство непрерывных функций из X в
R с sup-расстоянием. Тогда вложением Куратовского называется изо-
метрическое вложение

x 7→ dX(x,−) : X → {f ∈ F | dF (f, dX(y,−)) <∞ для всех y ∈ X}.

Наблюдение 2. Замыкание образа вложения Куратовского метриче-
ского пространства является его метрическим пополнением.

6.3. Теорема Банаха о фиксированной точке
Определение 1 (РАСТЯЖЕНИЕ И ЛИПШИЦЕВОСТЬ). Пусть X и Y —
метрические пространства, а ϕ : X → Y — отображение. Инфимум
λ ∈ R, таких что dY (ϕ(x′), ϕ(x′′)) ⩽ λ · dX(x′, x′′) для всех x′, x′′ ∈ X,
называется растяжением или липшицевой нормой ϕ. Если липшицева
норма ϕ не равна +∞, то ϕ называется липшицевым.

Определение 2 (РАВНОМЕРНО СЖИМАЮЩЕЕ ОТОБРАЖЕНИЕ). Отоб-
ражение между метрическими пространствами называется равномерно
сжимающим, если его растяжение строго меньше единицы.

Теорема 1 (ТЕОРЕМА БАНАХА О ФИКСИРОВАННОЙ ТОЧКЕ). Пусть X
— непустое полное метрическое пространство, а ϕ : X → X — равно-
мерно сжимающее отображение. Тогда у ϕ существует единственная
фиксированная точка.
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Доказательство. Единственность очевидна — остальные точки обяза-
ны приближаться к фиксированной. Теперь докажем существование.
Обозначим растяжение ϕ через λ и выберем произвольную точку x ∈ X.
Из неравенств d(ϕ◦(n+1)(x), ϕ◦(n+2)(x)) ⩽ λ · d(ϕ◦n(x), ϕ◦(n+1)(x)), где
n ∈ N0, следует, что расстояния между членами последовательности
(ϕ◦n(x))∞

n=0 не больше расстояний между соответствующими членами
последовательности (c · sn)∞

n=0, где c := d(x, ϕ(x)), sn :=
∑n

i=1 λ
i−1. Так

как последовательность (sn)∞
n=0 сходится, то она является последова-

тельностью Коши, откуда следует, что последовательность (ϕ◦n(x))∞
n=0

является последовательностью Коши, и, как следствие, сходится. Пре-
дел и будет фиксированной точкой, так как из непрерывности ϕ следу-
ет, что ϕ(limn→∞ ϕ◦n(x)) = limn→∞ ϕ(ϕ◦n(x)) = limn→∞ ϕ◦n(x).



Глава 7

Дифференциальное
исчисление

В ЭТОЙ ГЛАВЕ изложены базовые теоремы дифференциального ис-
числения, при этом сделана попытка изложить лемму Адамара без

использования понятия интеграла, а лемму Морса — без использования
теоремы об обратной функции, что, возможно, удлинило и несколько
«утяжелило» соответствующие разделы 7.4 и 7.5.

7.1. Теорема о среднем значении
Теорема 1 (ТЕОРЕМА РОЛЛЯ О СРЕДНЕМ). Пусть f : [0, 1] → R —
непрерывная функция, дифференцируемая на интервале (0, 1). Тогда
если f(0) = f(1), то существует точка x ∈ (0, 1), такая что f ′(x) = 0.

Набросок доказательства. Случай постоянной f тривиален, рассмот-
рим случай не постоянной f . Так как отрезок [0, 1] компактен, то на
нём существует точка, в которой f принимает наибольшее значение,
и точка, в которой f принимает наименьшее значение. Так как f не
постоянна, то по крайней мере одна из этих точек лежит в интервале
(0, 1). Нетрудно убедиться, что её можно взять в качестве x.

Теорема 2 (ТЕОРЕМА КОШИ О СРЕДНЕМ). Пусть γ : [0, 1] → R2 —
непрерывное отображение, дифференцируемое на интервале (0, 1), та-
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кое что γ′(t) 6= 0 для любого t ∈ (0, 1). Тогда существует точка
x ∈ (0, 1), такая что вектор γ(1)− γ(0) является кратным γ′(x).

Доказательство. Применим теорему Ролля о среднем (теорема 1) к
композиции отображения γ с ортогональной проекцией R2 на прямую,
ортогональную вектору γ(1)− γ(0).

Теорема 3 (ТЕОРЕМА ЛАГРАНЖА О СРЕДНЕМ). Пусть f : [0, 1] → R
— непрерывная функция, дифференцируемая на интервале (0, 1). Тогда
существует точка x ∈ (0, 1), такая что f ′(x) = f(1)− f(0).

Доказательство. Применим теорему Коши о среднем (теорема 2) к
отображению t 7→ (t, f(t)) : [0, 1]→ R2.

Теорема 4 (МНОГОМЕРНАЯ ТЕОРЕМА ЛАГРАНЖА). Пусть E — ев-
клидово пространство, а γ : [0, 1] → E — непрерывное отображение,
дифференцируемое на интервале (0, 1), такое что u := γ(1)− γ(0) 6= 0.
Тогда существует точка x ∈ (0, 1), такая что |u| = γ′(x) · u|u| ⩽ |γ′(x)|.

Доказательство. Применим классическую теорему Лагранжа о сред-
нем (теорема 3) к функции t 7→ (γ(t)− γ(0)) · u|u| : [0, 1]→ R.

7.2. Теорема об обратной функции
Теорема 1. Пусть E — евклидово линейное пространство, а ϕ : E → E
— дифференцируемое отображение, такое что ϕ(0) = 0, отображение
D(ϕ)0 биективно, а отображение x 7→ D(ϕ)x : E → HomR-mod(E,E)
непрерывно в нуле. Тогда существует открытая окрестность нуля
U ⊂ E, такая что ϕ(U) открыто, а x 7→ ϕ(x) : U → ϕ(U) биективно.

Доказательство (из шести частей).

1. Во-первых, заметим, что для любого y ∈ E множество ϕ−1(y) совпа-
дает с множеством фиксированных точек отображения T−y ◦ϕ̂ : E → E,
где T−y : E → E, x 7→ x− y, а ϕ̂ := ϕ+ IdE .

2. Во-вторых, заметим, что без потери общности можно предположить,
что D(ϕ)0 = −Id, то есть D(ϕ̂)0 = 0, заменив ϕ на композицию ϕ и
линейного автоморфизма E.
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3. Теперь зафиксируем два числа ε, ρ ∈ R>0, таких что ε + ρ = 1. Так
как отображение x 7→ D(ϕ̂)x 7→ ‖D(ϕ̂)x‖ : E → HomR-mod(E,E) → R
непрерывно в нуле и ‖D(ϕ̂)0‖ = ‖0‖ = 0, то существует R ∈ R>0, такое
что ‖D(ϕ̂)x‖ ⩽ ε для любого x ∈ BR(0).

4. Согласно многомерной теореме Лагранжа (теорема 7.1.4) растяже-
ние отображения ϕ̂|BR(0) не превосходит ε. В частности, ϕ̂(BR(0)) ⊂
BεR(0) и T−y(ϕ̂(BR(0))) ⊂ BR(0) для всех y ∈ BρR(x).

5. Зафиксируем произвольный y ∈ BρR(x) и применим теорему Банаха
о фиксированной точке к отображению x 7→ T−y(ϕ̂(x)) : BR(0)→ BR(0).
Мы получим, что существует единственная точка x ∈ BR(0) такая что
ϕ(x) = y, причём x = T−y(ϕ̂(x)) ∈ BR(0).

6. Множество U := BR(0) ∩ ϕ−1(BρR(0)), для которого ϕ(U) = BρR(0),
удовлетворяет условию теоремы.

Наблюдение 1. Пусть ϕ : U → U ′ — дифференцируемая в нуле биек-
ция между открытыми окрестностями нуля в Rn, где n ∈ N1, такая что
ϕ(0) = 0 и D(ϕ)0 ∈ GLn(R). Тогда D(ϕ−1)0 существует и равен D(ϕ)−1

0 .

Следствие 1. Пусть ϕ : U → U ′ — биекция класса Cr, где r ∈ N1,
между открытыми подмножествами Rn, где n ∈ N1, с невырожден-
ными дифференциалами. Тогда ϕ−1 — тоже биекция класса Cr.

Доказательство. Утверждение по индукции следует из наблюдения 1.
Во-первых, ϕ−1 имеет класс C0. Во-вторых, если ϕ−1 имеет класс Cs,
где s < r, то отображение D(ϕ−1)(−) : U ′ → GLn(R) представляется в
виде композиции отображения ϕ−1 класса Cs, отображения D(ϕ)(−) :
U → GLn(R) класса Cr−1 и отображения (−)−1 : GLn(R) → GLn(R)
класса C∞, а потому имеет класс Cs, то есть ϕ−1 имеет класс Cs+1.

7.3. Равенство смешанных производных
Теорема 1 (РАВЕНСТВО СМЕШАННЫХ ПРОИЗВОДНЫХ). Пусть U =
U ′×U ′′ ⊂ R2 — открытая окрестность нуля, а f : U → R — функция,
такая что f(0) = 0, смешанная производная ∂2∂1f существует во всех
точках U и непрерывна в нуле. Пусть g : U → R, (x1, x2) 7→ f(x1, x2)−
(f(x1, 0) + f(0, x2)). Тогда ∂2∂1f(0) = limx1,x2→0(g(x1, x2)/(x1x2)).
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Доказательство. Зафиксируем точку (x1, x2) ∈ U . Применив теорему
Лагранжа о среднем к функции α 7→ g(αx1, x2) : [0, 1] → R, получаем,
что g(x1, x2) = x1∂1g(α1x1, x2) для какого-то α1 ∈ (0, 1). Применив тео-
рему Лагранжа о среднем к функции α 7→ x1∂1g(α1x1, αx2) : [0, 1]→ R,
получаем, что g(x1, x2) = x1x2∂2∂1g(α1x1, α2x2) для какого-то α2 ∈
(0, 1). Заметив, что ∂2∂1g = ∂2∂1f как функции на U , и устремив x1
и x2 к нулю, получаем, что ∂2∂1f(0) = limx1,x2→0(g(x1, x2)/(x1x2)).

7.4. Лемма Адамара
Обозначение 1 (БИНОМИНАЛЬНЫЙ КОЭФФИЦИЕНТ). Пусть r ⩾ i ⩾ 0 —
целые числа. Тогда введём обозначение Cir := r!

i!(r−i)! = r·(r−1)·...·(r−(i−1))
i·(i−1)·...·1 .

Наблюдение 1. Пусть r ∈ N1. Тогда, согласно формуле бинома Нью-
тона, выполняется равенство C0

r −C1
r +C2

r −· · · +(−1)rCrr = (1−1)r = 0.

Лемма 1. Пусть r ∈ N1, а f : R→ R — функция класса Cr, такая что
f(0) = 0. Определим функцию g : R\{0} → R, x 7→ f(x)/x и зафиксиру-
ем число t ∈ R\{0}. Тогда существует семейство вещественных чисел
(αi)ri=1 ∈ (0, 1)×r, такое что выполняется равенство (1). Помимо это-
го, если f класса Cr+1, то существует семейство вещественных чисел
(βi)ri=1 ∈ (0, 1)×r, такое что выполняется равенство (2).

g(r−1)(t) = 1
r

(
C1
r f

(r)(α1t)−C2
r f

(r)(α2t)+ · · · +(−1)r−1Crrf
(r)(αrt)

)
(1)

g(r−1)(t)− 1
r
f (r)(0) = t

r(r + 1)
(
C2
r+1f

(r+1)(β1t)− C3
r+1f

(r+1)(β2t) + · · ·

· · · + (−1)r−1Cr+1
r+1f

(r+1)(βrt)
)

(2)

Доказательство (из трёх частей).

Часть 1. Дифференцируя функцию g по правилу Лейбница, получаем
следующее равенство:

g(r−1)(t) = C0
r−1 · 0! · f

(r−1)(t)
t1

− C1
r−1 · 1! · f

(r−2)(t)
t2

+ · · ·

· · · + (−1)r−1 · Cr−1
r−1 · (r − 1)! · f

(0)(t)
tr

. (3)
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Часть 2. Сначала докажем формулу (1). Заметим, что если заменить
функцию f на функцию

f̃ : R→ R, x 7→ f(x)−
(f ′(0)

1!
x+ f ′′(0)

2!
x2 + · · · + f (r−1)(0)

(r − 1)!
xr−1),

а g, соответственно, на g̃ : R→ R, x 7→ f̃(x)/x, то левая и правая части
формулы (1) не изменятся. Поэтому без ограничения общности можно
предположить, что f ′(0) = f ′′(0) = · · · = f (r−1)(0) = 0.
Осталось заметить, что, согласно теореме Тейлора с остаточным членом
в форме Лагранжа, существует семейство вещественных чисел (αi)ri=1 ∈
(0, 1)×r, такое что выполняются следующие равенства:

f (r−1)(t) = 1
1!
f (r)(α1t)t1, . . . , f (0)(t) = 1

r!
f (r)(αrt)tr, (4)

а потом подставить выражения (4) в формулу (3).

Часть 3. Теперь докажем формулу (2). Точно так же как в части 2
этого доказательства без ограничения общности можно предположить,
что f ′(0) = f ′′(0) = · · · = f (r)(0) = 0.
Снова воспользовавшись теоремой Тейлора с остаточным членом в фор-
ме Лагранжа найдём семейство вещественных чисел (βi)ri=1 ∈ (0, 1)×r,
такое что выполняются следующие равенства:

f (r−1)(t) = 1
2!
f (r+1)(β1t)t2, . . . , f (0)(t) = 1

(r + 1)!
f (r+1)(βrt)tr+1, (5)

после чего подставим выражения (5) в формулу (3).

Замечание 1. По формуле (1) сразу вычисляется предел

lim
t→0

g(r−1)(t) = 1
r

r∑
i=1

(−1)i−1Cirf
(r)(0) = 1

r
f (r)(0).

Замечание 2. По формуле (2) сразу вычисляется предел

lim
t→0

g(r−1)(t)− 1
rf

(r)(0)
t

= 1
r(r + 1)

r∑
i=1

(−1)i−1Ci+1
r+1f

(r+1)(0) =

= 1
r(r + 1)

(C1
r+1 − C0

r+1)f (r+1)(0) = 1
r + 1

f (r+1)(0).
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Теорема 1 (ПАРАМЕТРИЧЕСКАЯ ЛЕММА АДАМАРА). Пусть n, r ∈ N1 —
натуральные числа, l : Rn → R, (xi)ni=1 7→ x1 — проекция, а f : Rn → R
— функция класса Cr, такая что l−1(0) ⊂ f−1(0). Тогда существует
единственная функция g : Rn → R класса Cr−1, такая что f = g · l.

Доказательство (из трёх частей).

Часть 1. Сначала рассмотрим случай r = 1. Пусть (x1, x2, . . . , xn) ∈
Rn, причём x1 6= 0. Тогда f(x1, x2, . . . , xn)/x1 = ∂1f(αx1, x2, . . . , xn) для
какого-то α ∈ (0, 1). Это показывает, что функция

(x 7→ f(x)/l(x) : Rn \ l−1(0)→ R) t̄ (x 7→ ∂1f(x) : l−1(0)→ R)

подходит в качестве g. Единственность g очевидна, так как замыкание
Rn \ l−1(0) в Rn совпадает с Rn.

Часть 2. Теперь рассмотрим случай r ⩾ 2. Пусть (ki)ni=1 — семейство
элементов N0, такое что

∑n
i=1 ki ⩽ r−1. Нам нужно доказать, что функ-

ция ∂k1
1 · · · ∂kn

n g : Rn → R существует и непрерывна. Непосредственная
проверка показывает, что функция ĝ := ∂k2

2 · · · ∂kn
n g : Rn → R существу-

ет и является в точности единственной непрерывной функцией на Rn,
удовлетворяющей равенству f̂ = ĝ · l, где f̂ := ∂k2

2 · · · ∂kn
n f .

Часть 3. Доказательство существования и непрерывности ∂k1
1 ĝ полу-

чается последовательным применением двух формул леммы 1 к огра-
ничениям f̂ на слои проекции (xi)ni=1 7→ (xi)ni=2 : Rn → Rn−1.

Следствие 1 (МНОГОМЕРНАЯ ПАРАМЕТРИЧЕСКАЯ ЛЕММА АДАМАРА).
Пусть I и J ⊂ I — конечные множества, lj : RI → R{j} ∼= R, где
j ∈ J , — координатные проекции, а f : RI → R — функция класса Cr,
где r ∈ N1 ∪ {∞}, такая что

⋂
j∈J l

−1
j (0) ⊂ f−1(0). Тогда существуют

функции gj : Rn → R, где j ∈ J , класса Cr−1, такие что f =
∑

j∈J gj ·lj.

Доказательство. Докажем следствие 1 индукцией по card(J). Зафик-
сируем e ∈ J и введём обозначение H := l−1

e (0). По предположению ин-
дукции f |H =

∑
j∈J\{e} ĝj ·(lj |H), где ĝj имеют класс Cr−1. Для каждого

j ∈ J \ {e} возьмём gj := ĝj ◦ π, где π : RI → H ∼= RI\{e} — координат-
ная проекция. По теореме 1 функция f − (f |H ◦ π) = f −

∑
j∈J\{e} gj · lj

представляется в виде ge · le, где ge имеет класс Cr−1.
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7.5. Лемма Морса
Теорема 1. Пусть (A,m, k) — ассоциативное коммутативное уни-
тальное локальное кольцо, такое что 2 ∈ A×, а M — конечно по-
рождённый A-модуль, снабжённый формой b : S2

A(M)→ A такой что
индуцированная форма b : S2

k(M)→ k, где M := M/mM , невырождена.
Тогда модуль M свободен, а форма b невырождена и диагонализуема.

Доказательство. Докажем теорему индукцией по m := dimk(M). Если
m = 0, то M = 0 по лемме Накаямы. Теперь рассмотрим случай m ⩾ 1.
Пусть v ∈M — вектор, такой что b(v, v) ∈ k×, а v ∈M — его поднятие.
Тогда b(v, v) ∈ A×, откуда, в частности, следует, что A-гомоморфизм
α 7→ αv : A → Av биективен, так как его ядро лежит в ядре индуци-
рованной на A формы, которое тривиально. Так как индуцированные
формы на Av и kv невырождены, то M = Av⊕ (Av)⊥ и M = kv⊕ (kv)⊥,
причём отображение редукции M →M переводит (Av)⊥ в (kv)⊥ сюръ-
ективно, что позволяет завершить доказательство по индукции.

Следствие 1. Если в условиях теоремы 1 кольцо A — это кольцо
ростков в точке 0 функций класса Cr, где r ∈ N0 ∪{∞}, из Rn в R, то
форма b приводится к диагональному виду с ±1 на диагонали.

Доказательство. Это следствие того, что группа A×/(A×):2 состоит из
двух элементов — классов ±1 ∈ A×.

Замечание 1. Очевидно, что при условиях следствия 1 «сигнатура» b в
понятном смысле определена однозначно и совпадает с сигнатурой b.

Теорема 2 (ЛЕММА МОРСА). Пусть f — росток в точке 0 функ-
ции класса Cr+2, где r ∈ N1 ∪ {∞}, из Rn в R, такой что f(0) = 0,
(∂if(0))ni=1 = 0, а матрица (∂i∂jf(0))ni,j=1 невырождена. Пусть веще-
ственная квадратичная форма, заданная матрицей (∂i∂jf(0))ni,j=1, эк-
вивалентна квадратичной форме

∑n
i=1 aiX

2
i , где ai ∈ {±1} для всех

1 ⩽ i ⩽ n. Тогда существует семейство (ui)ni=1 ростков в точке 0
функций класса Cr из Rn в R, таких что ui(0) = 0 для всех 1 ⩽ i ⩽ n,
матрица (∂iuj(0))ni,j=1 невырождена, а f =

∑n
i=1 aiu

2
i .
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Доказательство (из двух частей).

Часть 1. Применив лемму Адамара к f , получаем разложение f =∑n
i=1 gili, где li обозначает росток i-ой координатной функции, а gi для

1 ⩽ i ⩽ n — это ростки функций класса Cr+1. Прямое вычисление
по правилу Лейбница показывает, что для любого 1 ⩽ i ⩽ n выпол-
няется равенство ∂if(0) = gi(0). Применив лемму Адамара к функци-
ям gi, где 1 ⩽ i ⩽ n, получаем разложение f =

∑n
i,j=1 hi,jlilj , где hi,j

для 1 ⩽ i, j ⩽ n — это ростки функций класса Cr. Заменив hi,j на
(hi,j + hj,i)/2 для каждой пары 1 ⩽ i, j ⩽ n, можно предположить, что
hi,j = hj,i для любых 1 ⩽ i, j ⩽ n. Прямое вычисление по правилу Лейб-
ница показывает, что для любых 1 ⩽ i, j ⩽ n выполняется равенство
∂i∂jf(0) = 2 · hi,j(0), в частности, матрица (hi,j(0))ni,j=1 невырождена.

Часть 2. Пусть A — это кольцо ростков в точке 0 функций класса Cr
из Rn в R. Тогда по следствию 1 существует матрица (si,j)ni,j=1 ∈ GLn(A)
такая что

∑n
i=1 ai(

∑n
j=1 si,jXj)2 =

∑n
i,j=1 hi,jXiXj . Для каждого индек-

са 1 ⩽ i ⩽ n возьмём ui :=
∑n

j=1 si,jlj . Прямое вычисление по правилу
Лейбница показывает, что ∂iuj(0) = sj,i(0) для любых 1 ⩽ i, j ⩽ n, в
частности, матрица (∂iuj(0))ni,j=1 невырождена.



Глава 8

Общая топология и теория
меры

8.1. Собственные отображения в топологии
Лемма о трубке
Определение 1 (ЗАМКНУТОЕ ОТОБРАЖЕНИЕ). Пусть X и Y — топо-
логические пространства. Тогда отображение f : X → Y называется
замкнутым, если для любого замкнутого подмножества C ⊂ X мно-
жество f(C) ⊂ Y замкнуто.

Наблюдение 1 (ПРООБРАЗ И ОБРАЗЫ). Пусть f : X → Y — отображе-
ние множеств. Оно индуцирует тройку отображений между решётками
подмножеств: f∃, f∀ : 2X →←→ 2Y : f−1, таких что f∃ a f−1 a f∀. Для
S ⊂ X множество f∀(S) будем называть строгим образом S.

Замечание 1. Пусть f : X → Y — отображение множеств, а S ⊂ X.
Тогда f∃(S) = f(S), а f∀(S) =

⋃
E∈2Y |f−1(E)⊂S E = {y ∈ Y | f−1(y) ⊂ S}.

Наблюдение 2. Отображение замкнуто тогда и только тогда, когда
строгие образы открытых множеств открыты.

Наблюдение 3 (ЗАМЫКАНИЕ ПРОИЗВЕДЕНИЯ). Пусть I — конечное
множество, (Xi)i∈I — семейство топологических пространств, а (Yi)i∈I ∈∏
i∈I 2Xi . Тогда Cl∏

i∈I Xi
(
∏
i∈I Yi) =

∏
i∈I ClXi(Yi).
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Замечание 2. В наблюдении 3 без ограничения общности можно заме-
нить (Xi)i∈I на постоянное семейство (X)i∈I , где X :=

∐
i∈I Xi.

Замечание 3. Пусть I — множество, X — пространство П. Александро-
ва, (Yi)i∈I ∈ (2X)×I — семейство подмножеств X, а X×I — декартова
степень X в категории пространств П. Александрова. Тогда выполня-
ется следующее соотношение: ClX×I (

∏
i∈I Yi) =

∏
i∈I ClX(Yi).

Теорема 1 (ОБОБЩЁННАЯ ЛЕММА О ТРУБКЕ). Пусть X и X ′ — то-
пологические пространства, а K ⊂ X и K ′ ⊂ X ′ — подмножества,
такие что K × K ′ компактно. Тогда любая открытая окрестность
K ×K ′ в X ×X ′ содержит базовую открытую окрестность K ×K ′.

Доказательство. Пусть O — открытая окрестность K ×K ′ в X ×X ′.
Представим O как объединение семейства базовых открытых подмно-
жеств X ×X ′, выберем из этого семейства конечное подпокрытие B ⊂
Open(X ×X ′) множества K ×K ′, расмотрим на X топологию, порож-
дённую семейством (X \π(B))B∈B, а на X ′ — порождённую семейством
(X ′ \ π′(B))B∈B, где π : X ×X ′ → X и π′ : X ×X ′ → X ′ — стандартные
проекции, после чего применим к K ×K ′ ⊂ X ×X ′ наблюдение 3.

Замечание 4. Теорема 1 позволяет свести теорему 3.5.6 из книги Ро-
нальда Брауна [21, с. 84] к теореме о компактности произведения двух
компактных пространств (лемма 3).

Лемма 1. Пусть K и X — топологические пространства, причём K
компактно. Тогда каноническая проекция π : K × X → X является
замкнутым отображением.

Доказательство. Пусть O ⊂ K × X — открытое множество, а x ∈
π∀(O). Применив теорему 1 к π−1(x) ⊂ O, получаем базовую открытую
окрестность π−1(x) ⊂ K × U ⊂ O. Тогда U — открытая окрестность
точки x, содержащаяся в π∀(O). Мы доказали, что π∀(O) открыто.

Лемма 2. Пусть X и Y — топологические пространства, причём Y
компактно. Пусть f : X → Y — сюръективное замкнутое отображе-
ние с компактными слоями. Тогда X компактно.
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Доказательство. Пусть U ⊂ Open(X) — открытое покрытие X. Для
каждого y ∈ Y выберем конечное подпокрытие Uy ⊂ U слоя f−1(y), по-
сле чего выберем из открытого покрытия (f∀(

⋃
U∈Uy

U))y∈Y множества
Y конечное подпокрытие (f∀(

⋃
U∈Uy

U))y∈F , где F ⊂ Y . Тогда
⋃
y∈F Uy

— конечное подпокрытие покрытия U .

Лемма 3. Пусть K и K ′ — два компактных топологических про-
странства. Тогда топологическое пространство K ×K ′ компактно.

Доказательство. Согласно лемме 1 проекция K × K ′ → K ′ является
замкнутым отображением с компактными слоями и компактным обра-
зом, а потому, согласно лемме 2, пространство K ×K ′ компактно.

Лемма 4. Пусть X — компактное топологическое пространство, а
Y ⊂ X — замкнутое подмножество. Тогда Y компактно.

Доказательство. Пусть U ⊂ Open(X) — открытое покрытие Y , а U :=
X \ Y . Тогда U ∪ {U} — открытое покрытие X, и мы можем выбрать
конечное подпокрытие U ′ ⊂ U ∪ {U}. Тогда U ′ \ {U} — конечное под-
множество U , являющееся покрытием Y .

Наблюдение 4. Пусть X и Y — топологические пространства, S ⊂
Y — подмножество, а f : X → Y — замкнутое отображение. Тогда
отображение x 7→ f(x) : f−1(S) → S, где топологии на множествах
f−1(S) и S индуцированы вложениями f−1(S) ⊂ X и S ⊂ Y , замкнуто.

Теорема 2. Пусть X, Y и Z — топологические пространства, а f :
X → Y и g : Y → Z — два замкнутых отображения с компактными
слоями. Тогда g ◦ f : X → Z является замкнутым отображением с
компактными слоями.

Доказательство. Композиция замкнутых отображений, очевидно, за-
мкнута. Нам нужно доказать, что слои g ◦ f компактны. Отображение
f разлагается в композицию сюръективного замкнутого отображения
и вложения замкнутого подмножества, поэтому достаточно доказать
теорему для случая, когда f сюръективно, и для случая, когда f —
вложение замкнутого подмножества. В первом случае, с учётом наблю-
дения 4, теорема следует из леммы 2, а во втором — из леммы 4.
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Теорема 3. Пусть X, X ′, Y , Y ′ — топологические пространства, а
f : X → Y и f ′ : X ′ → Y ′ — два замкнутых отображения с компакт-
ными слоями. Тогда f × f ′ : X × X ′ → Y × Y ′ является замкнутым
отображением с компактными слоями.

Доказательство (из двух частей).

Часть 1. Разложение отображений f и f ′ в композиции сюръективных
отображений и вложений замкнутых подмножеств индуцирует анало-
гичное разложение их произведения: X×X ′ → f(X)×f ′(X ′)→ Y ×Y ′,
так что мы можем предположить, что f и f ′ сюръективны.

Часть 2. Пусть O ⊂ X × X ′ — открытое подмножество, а (x, x′) ∈
(f×f ′)∀(O). Применив теорему 1 к (f×f ′)−1(x, x′) = f−1(x)×f ′−1(x′) ⊂
O, получаем базовую открытую окрестность U × U ′ ⊂ O множества
f−1(x)×f ′−1(x′). Тогда f∀(U)×f ′

∀(U ′) = (f ×f ′)∀(U ×U ′) ⊂ (f ×f ′)∀(O)
— открытая окрестность точки (x, x′), содержащаяся в (f×f ′)∀(O). Мы
доказали, что множество (f × f ′)∀(O) открыто.

Теорема 4. Если K и K ′ — дизъюнктные компактные подмножества
хаусдорфова топологического пространства X, то у них есть дизъ-
юнктные открытые окрестности.

Доказательство. Пространство X хаусдорфово тогда и только тогда,
когда диагональ ∆ ⊂ X×X замкнута. Применим теорему 1 к компакт-
ному множеству K ×K ′ с открытой окрестностью (X ×X) \∆.

Замечание 5. Теорема 4 не понадобится в этом разделе.

Собственные отображения
Определение 2 (СОБСТВЕННОЕ ОТОБРАЖЕНИЕ). Пусть X и Y — то-
пологические пространства. Отображение f : X → Y называется соб-
ственным, если если для любого топологического пространства Z отоб-
ражение IdZ × f : Z ×X → Z × Y замкнуто.

Наблюдение 5. Композиция собственных отображений является соб-
ственным отображением.
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Наблюдение 6. Пусть X, X ′, Y , Y ′ — топологические пространства.
Пусть f : X → Y и f ′ : X ′ → Y ′ — два собственных отображения. Тогда
отображение f × f ′ : X ×X ′ → Y × Y ′ собственно, так как для любого
топологического пространства Z отображение IdZ × f × f ′ является
композицией замкнутых отображений IdZ × IdX × f ′ и IdZ × f × IdY ′ .

Наблюдение 7. Пусть X и Y — топологические пространства, S ⊂
Y — подмножество, а f : X → Y — собственное отображение. Тогда
отображение x 7→ f(x) : f−1(S) → S, где топологии на множествах
f−1(S) и S индуцированы вложениями f−1(S) ⊂ X и S ⊂ Y , собственно.

Определение 3 (ФИЛЬТР НА МНОЖЕСТВЕ). Пусть X — множество.
Непустое собственное подмножество множества всех подмножеств в X,
замкнутое относительно конечных пересечений и перехода к надмно-
жествам, называется фильтром на множестве X.

Определение 4 (ПРОСТРАНСТВО ФИЛЬТРОВ). Пусть X — множество.
Множество всех фильтров на X, которое в этом разделе будет обо-
значаться F(X), снабжено топологией, заданной базой открытых мно-
жеств ({F ∈ F(X) | S ∈ F} | S ∈ 2X).

Наблюдение 8. Пусть X — множество. Тогда каноническое вложение
ι : X → F(X), x 7→ {S ∈ 2X | x ∈ S} обладает плотным образом.

Определение 5 (ПРЕДЕЛЬНЫЕ ТОЧКИ ФИЛЬТРА). Пусть X — топо-
логическое пространство, а F ∈ F(X). Тогда элементы пересечения
замыканий всех элементов F называются предельными точками F .

Наблюдение 9. Топологическое пространство X компактно тогда и
только тогда, когда у любого фильтра на X есть предельные точки.

Обозначение 1. Символом pt обозначается одноточечное топологиче-
ское пространство.

Теорема 5. Пусть X — топологическое пространство. Если отоб-
ражение X → pt собственно, то есть для любого топологического
пространства Z проекция π : Z×X → Z замкнута, то X компактно.

Доказательство. Пусть Z := F(X), а Γ ⊂ Z ×X — график канониче-
ского вложения ι : X → Z. С одной стороны, Γ := ClZ×X(Γ) состоит
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из пар (F, x) ∈ Z × X, таких что x — предельная точка F . С другой
стороны, π(Γ) ⊃ π(Γ) = ι(X), а потому, по условию, π(Γ) = Z.

Определение 6 (СЛАБО СОБСТВЕННОЕ ОТОБРАЖЕНИЕ). Пусть X и Y
— топологические пространства. Тогда отображение f : X → Y на-
зывается слабо собственным, если для любого компактного K ⊂ Y
множество f−1(K) ⊂ X компактно.

Теорема 6 (ХАРАКТЕРИЗАЦИИ СОБСТВЕННОСТИ). Пусть X и Y — то-
пологические пространства, f : X → Y — отображение. Тогда следую-
щие три условия на f эквивалентны: (а) f собственно; (б) f замкнуто
и слабо собственно; (в) f замкнуто с компактными слоями.

Доказательство. Докажем импликацию (а) =⇒ (б). Пусть K ⊂ Y
— компактное подмножество. Композиция соответствующего ограниче-
ния f−1(K)→ K и K → pt собственна как композиция двух собствен-
ных отображений, поэтому f−1(K) компактно. Импликация (б) =⇒ (в)
очевидна, а импликация (в) =⇒ (а) следует из теоремы 3.

Определение 7 (УНИВЕРСАЛЬНО ЗАМКНУТОЕ ОТОБРАЖЕНИЕ). Пусть
X и Y — топологические пространства. Отображение f : X → Y на-
зывается универсально замкнутым, если оно непрерывно, и если для
любого непрерывного отображения Y ′ → Y индуцированное отображе-
ние X ′ := Y ′ ×Y X → Y ′ замкнуто.

Теорема 7 (СОБСТВЕННОСТЬ И УНИВЕРСАЛЬНАЯ ЗАМКНУТОСТЬ). Не-
прерывное отображение f : X → Y между топологическими про-
странствами универсально замкнуто тогда и только тогда, когда
оно собственно, то есть для любого топологического пространства
Z отображение IdZ × f : Z ×X → Z × Y замкнуто.

Доказательство. Часть «только тогда» следует из того, что отображе-
ние IdZ × f является пуллбэком f вдоль проекции Z × Y → Y . Часть
«тогда» следует из того, что любое непрерывное отображение Z → Y
разлагается в композицию гомеоморфизма со своим графиком, вложен-
ным в произведение, и проекции произведения: Z → Z × Y → Y .
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Теорема Тихонова
Наблюдение 10. Пусть X и Y — топологические пространства, а f :
X → Y — отображение. Отображение f непрерывно тогда и только
тогда, когда f(Cl(S)) ⊂ Cl(f(S)) для любого S ⊂ X, и замкнуто тогда
и только тогда, когда f(Cl(S)) ⊃ Cl(f(S)) для любого S ⊂ X.

Наблюдение 11. Если (Xi | i ∈ I) — семейство топологических про-
странств, S ⊂

∏
i∈I Xi — подмножество, а a ∈

∏
i∈I Xi — элемент, то

a ∈ Cl(S) тогда и только тогда, когда πIF (a) ∈ Cl(πIF (S)) для любого
конечного F ⊂ I, где πIF :

∏
i∈I Xi →

∏
i∈F Xi — стандартная проекция.

Теорема 8 (ОТНОСИТЕЛЬНАЯ ТЕОРЕМА ТИХОНОВА). Пусть I — мно-
жество, (Xi)i∈I и (Yi)i∈I — семейства топологических пространств,
(fi : Xi → Yi)i∈I — семейство собственных отображений. Тогда отоб-
ражение

∏
i∈I fi :

∏
i∈I Xi →

∏
i∈I Yi собственно.

Доказательство (из четырёх частей).

Часть 1. Зафиксируем обозначения. Пусть Z — топологическое про-
странство. Пусть XJ := Z × (

∏
i∈J Xi) × (

∏
i∈I\J Yi), где J ⊂ I. Пусть

fJK := IdZ × (
∏
i∈K IdXi) × (

∏
i∈J\K fi) × (

∏
i∈I\J IdYi) : XJ → XK , где

K ⊂ J ⊂ I. Пусть S = SI ⊂ XI — подмножество, а SJ := f IJ (SI), где
J ⊂ I. Согласно наблюдению 10 нам нужно доказать, что любой эле-
мент множества Cl(S∅) можно поднять до элемента множества Cl(SI).

Часть 2. Построим частично упорядоченное множество O. Элемента-
миO являются пары (J, a), где J ⊂ I, а a ∈ Cl(SJ), причём (K, b) ≼ (J, a)
тогда и только тогда, когда K ⊂ J и fJK(a) = b.

Часть 3. Пусть ((K, aK))K∈K, где K ⊂ 2I , — цепь в O. Докажем, что
она имеет верхнюю грань. Пусть J :=

⋃
K∈K K. Существует единствен-

ный aJ ∈ XJ , такой что fJK(aJ) = aK для любого K ∈ K. Дока-
жем, что aJ ∈ Cl(SJ). По наблюдению 11 нам нужно проверить, что
π(aJ) ∈ Cl(π(SJ)) для любой проекции на конечное подпроизведение
π : XJ → T . Такая проекция разлагается в композицию XJ → XK → T
для какого-то K ∈ K, где XJ → XK — это fJK , а XK → T — это про-
екция на конечное подпроизведение. Поэтому из того, что aK ∈ Cl(SK)
для любого K ∈ K следует, что aJ ∈ Cl(SJ).



96 ГЛАВА 8. ОБЩАЯ ТОПОЛОГИЯ И ТЕОРИЯ МЕРЫ

Часть 4. Теперь мы можем применить к O лемму Цорна. Для любо-
го (∅, a) ∈ O существует максимальный элемент (J, b) ∈ O, больший
(∅, a). Предположим, что J 6= I. Для любого индекса e ∈ I \ J отобра-
жение fJ∪{e}

J замкнуто, так как отображение fe собственно, а потому
элемент b ∈ Cl(SJ) можно поднять до элемента множества Cl(SJ∪{e}) —
противоречие.

Замечание 6. Приведённое доказательство относительной теоремы Ти-
хонова (теоремы 8) основано на доказательстве теоремы Тихонова, при-
ведённом на странице nLab [33], которая ссылается на статью [7].

8.2. Дуальность Стоуна для булевых колец
Теорема Стоуна
Целью этого подраздела является построение контравариантной экви-
валентности (то есть дуальности) между категорией пространств Сто-
уна и категорией булевых колец.

Базовые определения и конструкция функторов

Соглашение 1. В этом разделе все кольца считаются коммутативны-
ми, ассоциативными и унитальными.

Определение 1 (ТОТАЛЬНО СЕПАРИРОВАННОЕ ПРОСТРАНСТВО). То-
пологическое пространство T называется тотально сепарированным
(англ. totally separated), если для любых двух различных точек x, y ∈ T
существует непрерывное отображение f : T → D в дискретное двухто-
чечное топологическое пространство D, такое что f(x) 6= f(y).

Определение 2 (ПРОСТРАНСТВО СТОУНА). Топологическое простран-
ство называется пространством Стоуна, если оно компактно и тоталь-
но сепарированно. Обозначим через Stone категорию пространств Сто-
уна и непрерывных отображений между ними.

Определение 3 (БУЛЕВО КОЛЬЦО). Кольцо называется булевым коль-
цом, если в нём любой элемент является идемпотентом, то есть удовле-
творяет уравнению x2 = x. Обозначим через Boole категорию булевых
колец и гомоморфизмов между ними.
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Определение 4 (СПЕКТР КОЛЬЦА). Для кольца R его спектр, обо-
значаемый Spec(R), — это множество простых идеалов в R, снабжён-
ное топологией Зарисского, заданной базой открытых множеств вида
Af := {p ∈ Spec(R) | f /∈ p}, где f ∈ R.

Замечание 1. В обозначениях определения 4 множества Af , где f ∈ R,
образуют базу топологии, так как Af ∩Ag = Afg для любых f, g ∈ R.

Определение 5 (КОЛЬЦО ОТКРЫТО-ЗАМКНУТЫХ ПОДМНОЖЕСТВ ТО-
ПОЛОГИЧЕСКОГО ПРОСТРАНСТВА). Для топологического пространства
T определим Clop(T ) ∈ Boole — булево кольцо открыто-замкнутых
(clopen) подмножеств T — как кольцо непрерывных функций T → F2,
где F2 взято с дискретной топологией.

Теорема 1 (КОМПАКТНОСТЬ СПЕКТРА). Для любого кольца R топо-
логическое пространство Spec(R) компактно.

Доказательство. Очевидно, что замкнутые подмножества спектра R
— это множества V (I) := {p ∈ Spec(R) | I ⊂ p}, соответствующие идеа-
лам I ⊂ R. При этом

⋂
i∈I V (Ii) = V (

∑
i∈I Ii), где (Ii)i∈I — произволь-

ное семейство идеалов в R, а условие V (I) = ∅ эквивалентно условию
I = R, где I — идеал в R. Компактность Spec(R) эквивалентна следу-
ющему утверждению: если (Ii)i∈I — произвольное семейство идеалов
в R, такое что

⋂
i∈I V (Ii) = ∅ то существует конечное подмножество

F ⊂ I, такое что
⋂
i∈F V (Ii) = ∅. Так как условие

⋂
i∈I V (Ii) = ∅

эквивалентно условию 1 ∈
∑

i∈I Ii, то утверждение очевидно.

Замечание 2. Для R ∈ Boole и p ∈ Spec(R) кольцо R/p изоморфно F2,
так как это целостное булево кольцо. В частности, идеал p максимален.

Лемма 1 (СПЕКТР БУЛЕВА КОЛЬЦА). Если R — булево кольцо, то
Spec(R) — пространство Стоуна.

Доказательство. Если p, q ∈ Spec(R), p 6= q, то существует f ∈ p, такое
что f /∈ q (или наоборот). Тогда Spec(R) = Af t Ag, где f + g = 1, —
нужное разложение.

Определение 6 (ФУНКТОР СПЕКТРА). Гомоморфизм колец ψ : R1 →
R2 индуцирует непрерывное отображение: Spec(R2) → Spec(R1), p 7→
ψ−1(p). Отсюда получаем функтор Spec : Boole→ Stoneo.



98 ГЛАВА 8. ОБЩАЯ ТОПОЛОГИЯ И ТЕОРИЯ МЕРЫ

Определение 7 (ФУНКТОР ОТКРЫТО-ЗАМКНУТЫХ ПОДМНОЖЕСТВ).
Непрерывное отображение ϕ : T1 → T2 индуцирует гомоморфизм ко-
лец: Clop(T2) → Clop(T1), f 7→ f ◦ ϕ. Отсюда получаем функтор Clop :
Stoneo → Boole.

Замечание 3. Для R ∈ Boole и p ∈ Spec(R) уникальный изоморфизм
R/p ∼= F2 определяет изоморфизм функторов из Boole в категорию
множеств: p 7→ (R→ R/p ∼= F2) : Spec(R)↔ Hom(R,F2) : Ker(f) 7→f .
Замечание 4. Аналогично, функтор T 7→ Clop(T ) изоморфен функ-
тору, переводящему топологическое пространство T в множество его
открыто-замкнутых подмножеств с операциями симметрической раз-
ности (сложение) и пересечения (умножение): изоморфизм переводит
f ∈ Clop(T ) в f−1(1) ⊂ T , а открыто-замкнутое O ⊂ T в его характери-
стическую функцию χ(O) ∈ Clop(T ).

Конструкция естественных изоморфизмов

Определение 8 (ЭЛЕМЕНТ КОЛЬЦА КАК ФУНКЦИЯ НА СПЕКТРЕ). Для
каждого R ∈ Boole определим гомоморфизм ρR : R → Clop(Spec(R)),
где ρR(f) : Spec(R)→ F2, p 7→ f (mod p) (непрерывность ρR(f) следует
из разложения Spec(R) = Af tAg, где f + g = 1).

Определение 9 (ТОЧКА ПРОСТРАНСТВА КАК ИДЕАЛ КОЛЬЦА ФУНК-
ЦИЙ). Для каждого T ∈ Stone определим непрерывное отображение
θT : T → Spec(Clop(T )), x 7→ Ker(evx), где evx : Clop(T )→ F2, f 7→ f(x).

Замечание 5. Изоморфизм Spec(R) ∼= Hom(R,F2), где R ∈ Boole, пе-
реводит отображения ρR и θT в стандартные отображения в дважды
двойственное пространство: X → Hom(Hom(X,F2),F2), x 7→ evx.

Теорема 2 (ТЕОРЕМА СТОУНА). Семейства (ρR)R∈Boole и (θT )T∈Stone,
определённые ранее, задают пару естественных изоморфизмов:

ρ : IdBoole
∼−−→ Clop ◦ Spec, θ : Spec ◦Clop ∼−−→ IdStoneo .

Доказательство (из шести частей).

Общий план. Естественность ρ и θ доказывается прямо. Докажем, что
все ρR и θT — изоморфизмы, доказав биективность всех ρR и θT и за-
мкнутость всех θT .
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Инъективность ρR. Имеем: ρR(f) = 0 ⇐⇒ ρR(g) = 1, где f+g = 1, то
есть g не содержится ни в одном максимальном идеале кольца R, то есть
g обратимо, а обратимый идемпотент равен 1. Другое доказательство:
R не содержит ненулевых нильпотентов.

Сюръективность ρR. Открыто-замкнутое множество O ⊂ Spec(R) яв-
ляется объединением открытых множеств вида Af , так как O открыто,
причём конечным объединением, так как O компактно как замкнутое
подмножество компактного пространства Spec(R). Воспользовавшись
формулой включений-исключений, получаем желаемое.

Инъективность θT . Эквивалентна тотальной сепарированности T .

Сюръективность θT . Достаточно доказать, что произвольный идеал
p ∈ Spec(Clop(T )) имеет общий ноль x ∈ T , так как если p ⊂ Ker(evx),
то p = Ker(evx) из-за максимальности. Докажем от противного. Отсут-
ствие общего нуля у p означает, что f ∈ p задают покрытие T открыто-
замкнутыми множествами. Так как T компактно, то из него можно
выбрать конечное подпокрытие, и, воспользовавшись формулой вклю-
чений-исключений, получить, что 1 ∈ p — противоречие.

Замкнутость θT . Следует из того, что θT — непрерывное отображение
из компактного пространства в хаусдорфово.

Замечание 6. Естественные преобразования ρ и θ удовлетворяют тре-
угольным тождествам (упражнение). То есть мы построили не просто
эквивалентность, а adjoint equivalence.

Лемма Шуры-Буры
В этом подразделе доказывается лемма Шуры-Буры и, как следствие,
эквивалентность двух определений пространств Стоуна: как компакт-
ных тотально сепарированных топологических пространств и как ком-
пактных хаусдорфовых вполне несвязных топологических пространств.

Компоненты связности и квазикомпоненты

Соглашение 2 (ДВОЕТОЧИЕ). В этом подразделе F2 будет рассматри-
ваться как двухточечное дискретное топологическое пространство.
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Определение 10 (СВЯЗНОСТЬ). Топологическое пространство X на-
зывается связным, если образ любого непрерывного отображения из X
в F2 одноточечный.

Наблюдение 1. Топологическое пространство X связно тогда и только
тогда, когда оно непустое и не представляется в виде копроизведения
двух непустых топологических пространств.

Определение 11 (СВЯЗНЫЕ КОМПОНЕНТЫ). Пусть X — топологиче-
ское пространство. Тогда максимальные по включению связные под-
множества пространства X называются связными компонентами X.

Наблюдение 2. Пусть X — топологическое пространство, а x ∈ X —
его элемент. Тогда объединение связных подмножеств X, содержащих
x, связно, и связные компоненты X образуют разбиение X.

Определение 12 (КВАЗИКОМПОНЕНТЫ). Пусть X — топологическое
пространство. Тогда квазикомпонентами X называются слои отобра-
жения x 7→ (f(x))f∈X∨ : X → F×X∨

2 , где X∨ := HomTop(X,F2).

Наблюдение 3. Пусть X — топологическое пространство. Тогда любая
компонента X содержится в какой-то квазикомпоненте X.

Наблюдение 4. Пусть X — топологическое пространство, а V — ква-
зикомпонента X. Тогда V совпадает с пересечением всех открыто-за-
мкнутых подмножеств X, содержащих V . В частности, V замкнуто.

Определение 13 (ВПОЛНЕ НЕСВЯЗНОСТЬ). Топологическое простран-
ство называется вполне несвязным (англ. totally disconnected), если все
его компоненты связности одноточечные.

Определение 14 (ТОТАЛЬНАЯ СЕПАРИРОВАННОСТЬ). Топологическое
пространство называется тотально сепарированным (англ. totally sep-
arated), если все его квазикомпоненты одноточечные.

Наблюдение 5. Тотальная сепарированность влечёт хаусдорфовость.
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Квазикомпоненты компактного хаусдорфова пространства

Теорема 3 (ЛЕММА ШУРЫ-БУРЫ). Если X — компактное хаусдорфово
топологическое пространство, то квазикомпоненты X связны.

Доказательство. Докажем от противного. Пусть C — квазикомпонен-
та. Пусть она не связна. Так как C — замкнутое множество, то это
означает, что C представляется в виде дизъюнктного объединения двух
непустых замкнутых в X множеств C ′ и C ′′. Так как компактное хау-
сдорфово пространство нормально, то C ′ и C ′′ отделяются дизъюнкт-
ными открытыми множествами U ′ ⊃ C ′ и U ′′ ⊃ C ′′. Множество C, как
квазикомпонента, является пересечением некоего семейства открыто-
замкнутых множеств (Oα)α∈Ω: C =

⋂
α∈ΩOα ⊂ U , где U := U ′ ∪ U ′′.

Переходя к дополнениям, получаем покрытие
⋃
α∈ΩO

c
α ⊃ U c. Так как

U c — замкнутое подмножество компактного пространства, то оно ком-
пактно, и мы можем выбрать конечное подпокрытие и снова перейти
к дополнениям: C ⊂

⋂
i∈I Oi ⊂ U , где I ⊂ Ω — конечное подмноже-

ство. Тогда O :=
⋂
i∈I Oi открыто-замкнуто, а U ′ ∩ O и U ′′ ∩ O — два

дизъюнктных открыто-замкнутых множества, содержащих C ′ и C ′′ со-
ответственно, что невозможно, так как C — квазикомпонента.

Следствие 1. Для компактных хаусдорфовых топологических про-
странств компоненты совпадают с квазикомпонентами.

Следствие 2. Компактное топологическое пространство тотально
сепарировано тогда и только тогда, когда оно вполне несвязно.

Булевы кольца и булевы алгебры
В этом подразделе мы опишем изоморфизм между категорией булевых
колец и категорией булевых алгебр.

Определение 15 (БУЛЕВА АЛГЕБРА). Ограниченная дистрибутивная
решётка с дополнениями называется булевой алгеброй.

Определение 16 (СИММЕТРИЧЕСКАЯ РАЗНОСТЬ). Пусть B — булева
алгебра с митом (−) ∧ (−), джойном (−) ∨ (−) и дополнением (−)c.
Тогда определим на B операцию симметрической разности следующей
формулой: (a, b) 7→ a4 b := (ac ∧ b) ∨ (a ∧ bc) : B × B → B.
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Наблюдение 6 (СВОБОДНОЕ БУЛЕВО КОЛЬЦО). Пусть I — множество.
Тогда F2[Xi | i ∈ I]/(X2

i −Xi)i∈I — это свободное булево кольцо на I.
Наблюдение 7 (СВОБОДНАЯ БУЛЕВА АЛГЕБРА). Пусть I — множе-
ство. Тогда булева подалгебра в HomSets(F×I

2 ,F2), то есть в множестве
подмножеств F×I

2 , порождённая образом канонического отображения
I → HomSets(F×I

2 ,F2), является свободной булевой алгеброй на I. Она
будет обозначаться HomTop(F×I

2 ,F2), так как это и есть HomTop(F×I
2 ,F2).

Теорема 4 (БУЛЕВО КОЛЬЦО БУЛЕВОЙ АЛГЕБРЫ). Пусть B — булева
алгебра. Тогда B с операциями сложения (a, b) 7→ a4 b : B × B → B и
умножения (a, b) 7→ a ∧ b : B × B → B является булевым кольцом.

Доказательство. Так как в записях стандартных аксиом булева кольца
участвуют не более 3 элементов, то достаточно проверить их для B вида
HomTop(F×n

2 ,F2), где n ⩽ 3, а для такого B они очевидны.
Теорема 5 (БУЛЕВО КОЛЬЦО СВОБОДНОЙ БУЛЕВОЙ АЛГЕБРЫ). Пусть
I — множество, RI — свободное булево кольцо на I, а BI — свободная
булева алгебра на I. Тогда канонический гомоморфизм булевых колец
ϕI : (RI ,+, ·)→ (BI ,4,∩) под множеством I биективен.

Доказательство. Так как RI = colimJ∈Λ(I)RJ и BI = colimJ∈Λ(I) BJ ,
где Λ(I) = {J ∈ 2I | card(J) < ∞}, то достаточно доказать теорему
для конечного I. Если I конечно, то card(RI) = card(BI) <∞, а потому
биективность ϕI следует из сюръективности ϕI , которая очевидна.
Теорема 6 (БУЛЕВА АЛГЕБРА БУЛЕВА КОЛЬЦА). Пусть R — булево
кольцо. Тогда R с операциями мита (a, b) 7→ ab : R × R → R, джойна
(a, b) 7→ a+ ab+ b : R×R→ R, дополнения a 7→ 1− a : R→ R, нулём 0
и единицей 1 является булевой алгеброй.

Доказательство. Так как в записях стандартных аксиом булевой ал-
гебры участвуют не более 3 элементов, то достаточно проверить их для
R вида F2[X1, . . . , Xn]/(X2

1 −X1, . . . , X
2
n −Xn), где n ⩽ 3, а для такого

R всё следует из теоремы 5.
Наблюдение 8 (БУЛЕВЫ КОЛЬЦА И БУЛЕВЫ АЛГЕБРЫ). Конструкции
из теорем 4 и 6 задают взаимно обратные изоморфизмы между катего-
рией булевых колец и категорией булевых алгебр, что можно проверить
с помощью канонической биекции из теоремы 5.
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8.3. Измеримость по Каратеодори
Общие определения
Определение 1 (ПОРОЖДЕНИЕ ВНЕШНЕЙ МЕРЫ). Пусть X — множе-
ство, а f : S → [0,+∞], где S ⊂ 2X , — функция. Тогда внешняя мера
E 7→ infC∈2S |(E⊂

∪
C∈C C)∧(card(C)⩽ℵ0)

∑
C∈C f(C) : 2X → [0,+∞] называет-

ся внешней мерой, порождённой функцией f .

Наблюдение 1. Пусть X — множество, f : S → [0,+∞], где S ⊂ 2X , —
функция, а µ∗ : 2X → [0,+∞] — внешняя мера, порождённая f . Тогда
функция µ∗|S тоже порождает внешнюю меру µ∗.

Определение 2 (ОГРАНИЧЕНИЕ ВНЕШНЕЙ МЕРЫ). Пусть X — множе-
ство, µ∗ : 2X → [0,+∞] — внешняя мера на X, а S ⊂ X — подмножество
X. Тогда функция µ∗|2S : 2S → [0,+∞] является внешней мерой на S,
которая называется ограничением внешней меры µ∗ на S.

Определение 3 (ОГРАНИЧЕНИЕ σ-АЛГЕБРЫ). Пусть X — множество,
A ⊂ 2X — σ-алгебра на X, а S ⊂ X — подмножество X. Тогда множе-
ство A|S := Im(A 7→ A∩S : A → 2S) является σ-алгеброй на S, которая
называется ограничением σ-алгебры A на S.

Наблюдение 2. Пусть (X,µ∗) — множество с внешней мерой, а A —
σ-алгебра на X. Тогда если функция µ∗ аддитивна на A, то функция
µ∗ счётно-аддитивна на A.

Конструкция Каратеодори
Определение 4 (ИЗМЕРИМОСТЬ ПО КАРАТЕОДОРИ). Пусть (X,µ∗) —
множество с внешней мерой. Тогда множество подмножеств X, измери-
мых по Каратеодори относительно µ∗, определяется следующим обра-
зом: K(µ∗) := {A ∈ 2X | µ∗(S) = µ∗(S ∩A) + µ∗(S \A) для всех S ∈ 2X}.

Наблюдение 3 (ХАРАКТЕРИЗАЦИЯ ИЗМЕРИМОСТИ ПО КАРАТЕОДОРИ).
Пусть (X,µ∗) — множество с внешней мерой, а A := K(µ∗). Тогда A
является σ-алгеброй наX, такой что µ∗|2S аддитивна на A|S для любого
S ⊂ X, и A содержит любую σ-алгебру на X с таким свойством.
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Замечание 1. Замкнутость σ-алгебры относительно дополнений суще-
ственна для наблюдения 3.

Наблюдение 4. Пусть (X,µ∗) — множество с внешней мерой, а S ⊂ 2X
— множество подмножеств X, такое что функция µ∗|S порождает µ∗.
Тогда K(µ∗) = {A ∈ 2X | µ∗(S) = µ∗(S ∩A) + µ∗(S \A) для всех S ∈ S}.



Глава 9

Группы перестановок

9.1. Группы и их действия
Теорема об орбитах и стабилизаторах
Определение 1 (ТРАНЗИТИВНОСТЬ). Действие группы на множестве
называется транзитивным действием или орбитой, если фактор мно-
жества по этому действию одноточечный.

Наблюдение 1 (РАЗЛОЖЕНИЕ НА ОРБИТЫ). Множество, снабжённое
действием группы, однозначно представляется в виде дизъюнктного
объединения орбит этой группы.

Теорема 1 (ТЕОРЕМА ОБ ОРБИТАХ И СТАБИЛИЗАТОРАХ). Пусть G —
группа,H — частично упорядоченное множество подгрупп группы G, а
X — категория пунктированных орбит группы G. Тогда стандартные
функторы H 7→ (G/H,H) : H →← X : StabG(x) 7→(X,x) — функторы
множества правых смежных классов и стабилизатора отмеченной
точки — являются квазиобратными эквивалентностями категорий.

Доказательство. Единственная относительно нетривиальная часть до-
казательства — это построение с необходимостью единственного есте-
ственного изоморфизма ((G/StabG(x),StabG(x)) ∼−→ (X,x))(X,x)∈Ob(X ).
Пусть (X,x) ∈ Ob(X ), а H := StabG(x). Для любого g ∈ G отобразим
смежный класс gH ∈ G/H в точку gHx = gx ∈ X. Корректность опре-
деления этого отображения и его G-эквивариантность очевидны.
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Следствие 1. Пусть G — группа, а H ⊂ G — её подгруппа. Тогда
действие G на G/H левым умножением примитивно тогда и только
тогда, когда H — максимальная собственная подгруппа в G.

Наблюдение 2. В обозначениях теоремы 1 группа G действует на X
эндофункторами замены точки — g ∈ G переводит (X,x) ∈ Ob(X ) в
(X, gx) ∈ Ob(X ) — и действует на H сопряжением — g ∈ G переводит
H ∈ Ob(H) в gHg−1 ∈ Ob(H). Функтор (X,x) 7→ StabG(x) : X → H
является G-эквивариантным относительно этих действий.

Замечание 1. Группа автоморфизмов плоскости, скажем, аффинных
или метрических, — это прекрасный пример для иллюстрации базовых
понятий теории групп.

Приложения теоремы об орбитах и стабилизаторах
Наблюдение 3 (РАЗЛОЖЕНИЕ ГРУППЫ НА ДВОЙНЫЕ СМЕЖНЫЕ КЛАС-
СЫ). Пусть G — группа, а K,H ⊂ G — её подгруппы. Рассмотрев дей-
ствие группы K ×Ho на множестве G двусторонним умножением, по-
лучаем разложение G на двойные смежные классы KgH, где g ∈ G.

Наблюдение 4 (ФОРМУЛА ФРОБЕНИУСА ДЛЯ ИНДЕКСА). В услови-
ях наблюдения 3 каждый KgH является дизъюнктным объединением
|K : K ∩ gHg−1| элементов G/H, поскольку KgH — это объединение
элементов орбиты точки gH ∈ G/H под действием K на G/H левым
умножением, при этом StabK(gH) = K ∩ StabG(gH) = K ∩ gHg−1.

Следствие 2 (ФОРМУЛА ПРОИЗВЕДЕНИЯ). В условиях наблюдения 3,
если K и H конечны, то |KH| = |H||K : K ∩H| = |H||K|/|K ∩H|.

Теорема 2. Пусть G — группа, а H,K ⊂ G — её подгруппы. Тогда
выполняется неравенство |G : H ∩K| ⩽ |G : H||G : K|.

Доказательство. Стабилизатор точки (H,K) ∈ (G/H) × (G/K) отно-
сительно очевидного действия G на (G/H)× (G/K) левым умножением
равен H ∩K, при этом |(G/H)× (G/K)| = |G : H||G : K|.

Теорема 3. Пусть G — конечная группа, а H ⊂ G — её подгруппа,
такая что простые делители порядка H не меньше индекса H. Тогда
H нормальна.



9.1. ГРУППЫ И ИХ ДЕЙСТВИЯ 107

Доказательство. Подгруппа H нормальна тогда и только тогда, ко-
гда все орбиты действия H левым умножением на правых смежных
классах G по H одноточечные. Теперь воспользуемся тем, что сумма
порядков орбит, одна из которых одноточечная, равна индексу H, а
порядок каждой орбиты делит порядок H.

Теорема 4 (ТЕОРЕМЫ СИЛОВА).

а) В конечной группе порядка pnm, где m не делится на простое p,
существует подгруппа порядка pn, называемая силовской p-под-
группой.

б) Все подгруппы порядка pk для какого-то k, называемые p-подгруп-
пами, лежат в силовских p-подгруппах, которые все сопряжены.

в) Если np — количество силовских p-подгрупп, то np ≡ 1 (mod p).

Доказательство.

а) В нашей группе количество подмножеств мощности pn не делится
на p: (1 + x)pnm ≡ (1 + xp

n)m ≡ 1 + mxp
n + . . . (mod p). Группа

действует умножением на множестве таких подмножеств, причём
порядок по крайней мере одной орбиты не делится на p. Стабили-
затор точки из этой орбиты имеет порядок pn.

б) Если мы посмотрим на действие произвольной p-подгруппы на
этой орбите, то порядок какой-то из её орбит не будет делится на
p, то есть она будет одноточечной.

в) Рассмотрим действие силовской p-подгруппы P сопряжением на
множестве силовских p-подгрупп. У неё только одна одноточеч-
ная орбита: сама P , так как если P фиксирует другую силов-
скую p-подгруппу H, то PH — p-подгруппа, строго большая P ,
что невозможно.

Замечание 2. Формулировка и доказательство теорем Силова в прак-
тически неизменном виде скопированы из старых версий этих записок.

Лемма 1. Пусть I — конечное множество, а λ ∈ Q. Тогда у уравнения∑
i∈I 1/Xi = λ конечное число нулей в NI1.
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Доказательство. Случаи I = ∅ или λ ⩽ 0 очевидны. Пусть I 6= ∅,
λ > 0, а (xi)i∈I ∈ NI1 — ноль уравнения. Минимальный из xi не мо-
жет быть строго больше |I|/|λ|. Подстановка целых чисел из интервала
(0, |I|/|λ|] в уравнение

∑
i∈I 1/Xi = λ вместо одной из переменных даёт

конечное число уравнений того же типа на остальные переменные, и
лемма доказывается индукцией по |I|.

Теорема 5 (ТЕОРЕМА Э. ЛАНДАУ). Порядок конечной группы с фикси-
рованным числом классов сопряжённости элементов ограничен.

Доказательство. Порядок группы равен сумме порядков классов со-
пряжённости, при этом класс сопряжённости единицы одноточечный.
Поделив соответствующее уравнение на порядок группы, мы выразим
число один в виде суммы обратных к натуральным числам, одно из
которых равно порядку группы. Теперь воспользуемся леммой 1.

Теорема 6 («ЛЕММА БЕРНСАЙДА»). Пусть G — конечная группа,
транзитивно действующая на множестве X. Тогда среднее число
фиксированных точек элементов G равно единице: 1

|G|
∑

g∈G|Xg| = 1.

Доказательство. Множество {(g, x) ∈ G × X | gx = x}, очевидно, би-
ективно и

⊔
g∈G{x ∈ X | gx = x}, и

⊔
x∈X{g ∈ G | gx = x}, а второе из

этих множеств равномощно G.

Следствие 3 (ТЕОРЕМА ЖОРДАНА). Пусть G — группа, транзитив-
но и нетривиально действующая на конечном множестве X. Тогда
существует g ∈ G, который не фиксирует ни одной точки X.

Доказательство. Пусть G′ — это образ G в конечной группе Sym(X).
Так как 1 ∈ G′ фиксирует |X| ⩾ 2 точек X, то, согласно «лемме Берн-
сайда», существует g′ ∈ G′, который не фиксирует ни одной точки X.
Возьмём в качестве g ∈ G любой прообраз g′.

Замечание 3. Теорему Жордана можно количественно усилить, см. тео-
рему 5 в статье [9].
Замечание 4. Теорему Жордана можно переформулировать так: вло-
жение собственной подгруппы конечного индекса не может быть сюръ-
ективным на классах сопряжённости.
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Пример 1. Не биективное вложение бесконечных множеств J → I
индуцирует не биективное вложение групп финитарных перестановок
FSym(J)→ FSym(I), которое биективно на классах сопряжённости.

9.2. Простота больших знакопеременных групп
Наблюдение 1. Если умножить перестановку на транспозицию, соеди-
няющую элементы разных циклов, то эти циклы сольются, а если на
соединяющую элементы одного цикла, то этот цикл разложится на два.
Это рассуждение сразу даёт разложение перестановки в произведение
транспозиций, определение знака и его корректность.

Наблюдение 2. Ограничим действие конечной нетривиальной симмет-
рической группы на себе сопряжением до действия знакопеременной
группы. Тогда орбиты перестановок, у которых в цикленном разложе-
нии присутствует цикл чётной длины или два цикла одинаковой нечёт-
ной длины, не изменятся, так как их стабилизаторы содержат нечётные
перестановки, а орбиты перестановок, состоящих из циклов попарно
различной нечётной длины, распадутся на две равномощные.

Лемма 1. Группа Alt(5) проста.

Доказательство. В Alt(5) содержатся перестановки цикленных типов
(5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1). Соответствующие классы сопряжён-
ности имеют порядки 12, 12, 20, 15, 1. Никакая нетривиальная сумма
записей этого списка, включающая 1, не делит |Alt(5)| = 60.

Наблюдение 3 (ГРУППА ВРАЩЕНИЙ ДОДЕКАЭДРА). Пусть G — это
группа вращений додекаэдра. Визуально очевидно, что порядки классов
сопряжённости вG равны 12, 12, 20, 15, 1. Отсюда следует, что группаG
простая, откуда, в свою очередь, следует, что гомоморфизмG→ Sym(5)
действия G на своих силовских 2-подгруппах инъективен. Его образ
имеет индекс 2, а потому совпадает с Alt(5) ⊂ Sym(5).

Теорема 1. Группа G := Alt(Ω), где 5 ⩽ |Ω| <∞, проста.

Доказательство. Докажем теорему индукцией по |Ω|. Случай |Ω| = 5
— это лемма 1. Пусть |Ω| ⩾ 6, а σ ∈ G \ {1}. Нам нужно доказать,
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что сопряжённые к σ в G порождают G. Так как центр G тривиален и
G порождена 3-циклами, то существует 3-цикл τ ∈ G, такой что γ :=
[σ, τ ] = σ(τσ−1τ−1) 6= 1. Заметим, что γ является произведением 3-цик-
лов τ ′ := στσ−1 и τ−1. Если τ ′ и τ−1 не независимы, то γ лежит в
стабилизаторе точки из Ω, и мы победили. Если τ ′ и τ−1 независимы,
то, согласно наблюдению 2, перестановка γ′ := τ ′τ сопряжена γ в G.
Тогда γγ′ = τ ′τ−1τ ′τ = (τ ′)2 — 3-цикл, и мы снова победили.

9.3. Автоморфизмы симметрических групп
Автоморфизмы группы Sym(Ω) при |Ω| 6= 6

Определение 1 (СИММЕТРИЧЕСКАЯ ГРУППА). Пусть Ω — множество.
Тогда группа автоморфизмов Ω как множества называется симметри-
ческой группой и обозначается через Sym(Ω).

Определение 2 (ГРУППА ФИНИТАРНЫХ ПЕРЕСТАНОВОК). Пусть Ω —
множество. Тогда подгруппа в группе Sym(Ω), которая состоит из всех
перестановок σ ∈ Sym(Ω), таких что множество фиксированых точек σ
имеет конечное дополнение, обозначается через FSym(Ω) и называется
группой финитарных перестановок.

Обозначение 1. Если n ∈ N0, то Sym(n) := Sym({1, 2, . . . , n}).

Соглашение 1 (ИНВОЛЮЦИЯ). В этом разделе инволюцией называется
нетривиальная перестановка, которая обратна сама себе.

Соглашение 2 (ЗВЕЗДА). В этом подразделе звездой называется про-
извольное множество попарно не коммутирующих транспозиций в ка-
кой-то фиксированной симметрической группе.

Наблюдение 1. Если k ⩾ 2 и k 6= 3, то у элементов k-элементной
звезды всегда есть ровно одна общая подвижная точка (см. рис. 9.2a).

Наблюдение 2. Максимальные звёзды в Sym(4) делятся на две орбиты
относительно действия Sym(4), индуцированного сопряжением. Звёзды
из одной орбиты порождают Sym(4), а из другой — нет.
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Теорема 1. Если автоморфизм Φ′ ∈ Aut(FSym(Ω)), где Ω — произ-
вольное множество, переводит транспозиции в транспозиции, то Φ′

индуцирован каким-то элементом ϕ ∈ Sym(Ω).

Доказательство. Пусть |Ω| ⩾ 3. Тогда Φ′ задаёт перестановку ϕ ∈
Sym(Ω) через действие Φ′ на порождающих звёздах, эквивариантно би-
ективных элементам Ω. При этом, так как транспозиции — это в точно-
сти пересечения пар различных порождающих звёзд, то Φ′ и ϕ одина-
ково действуют на транспозиции, а потому и на все элементы FSym(Ω).
Случаи |Ω| = 0, 1, 2 разбираются отдельно.

Наблюдение 3. Пусть Ω — множество, такое что |Ω| 6= 2. Тогда цен-
трализатор FSym(Ω) в Sym(Ω) тривиален.

Лемма 1. Если Ω — множество, а Ψ ∈ Aut(Sym(Ω)) — автоморфизм,
продолжающий автоморфизм Ψ′ := Id ∈ Aut(FSym(Ω)), то Ψ = Id.

Доказательство. Можно предположить, что |Ω| 6= 2. Тогда, согласно
наблюдению 3, имеем вложение ι : Sym(Ω)→ Aut(FSym(Ω)), σ 7→ (−)σ ,
такое что ι(Ψ(σ)) = Ψ′ ◦ ι(σ) ◦Ψ′−1 = ι(σ) для любого σ ∈ Sym(Ω).

Теорема 2. Если автоморфизм Φ ∈ Aut(Sym(Ω)), где Ω — произволь-
ное множество, переводит транспозиции в транспозиции, то Φ ин-
дуцирован каким-то элементом ϕ ∈ Sym(Ω).

Доказательство. Следует из теоремы 1 и леммы 1, так как, очевидно,
Φ(FSym(Ω)) = FSym(Ω).

a. С фиксированными точками b. Без фиксированных точек

Рис. 9.1. Примеры пар сопряжённых инволюций

Теорема 3. Пусть Ω — множество, такое что |Ω| 6= 6. Тогда любой
автоморфизм группы Sym(Ω) является внутренним автоморфизмом.
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Доказательство. Согласно теореме 2 достаточно доказать, что любой
автоморфизм группы Sym(Ω) переводит транспозиции в транспозиции.
Если Ω конечно, то в классе сопряжённости инволюций, элементы ко-
торого имеют фиксированные точки, есть пара элементов, расположен-
ных как на рис. 9.1a, а в классе, элементы которого не имеют фиксиро-
ванных точек, — как на рис. 9.1b. Отсюда ясно, что если |Ω| 6= 4, 6, то
в любом классе инволюций, кроме класса транспозиций, есть пара эле-
ментов, порядок произведения которых строго больше 3. А в Sym(4) все
инволюции без фиксированных точек попарно коммутируют, в отличие
от транспозиций.

Автоморфизмы группы Sym(6)

Соглашение 3 (ДЛИННАЯ ИНВОЛЮЦИЯ). В этом подразделе длинной
инволюцией называется инволюция без фиксированных точек.

Соглашение 4 (ПЯТЁРКА). В этом подразделе пятёрки попарно не
коммутирующих длинных инволюций в Sym(6) называются просто пя-
тёрками.

Наблюдение 4. Длинные инволюции в Sym(6) коммутируют тогда и
только тогда, когда у них есть общий цикл.

Наблюдение 5. Группа Sym(6) транзитивно действует на множестве
упорядоченных пар не коммутирующих длинных инволюций в Sym(6).

a. Цикленного типа (2, 1,4) b. Цикленного типа (2,3)

Рис. 9.2. Пятёрки попарно не коммутирующих инволюций в Sym(6)

Наблюдение 6. Любая пара не коммутирующих длинных инволюций
в Sym(6) однозначно достраивается до пятёрки (см. рис. 9.2b).
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Лемма 2. Группа элементов Sym(6), переводящих фиксированную пя-
тёрку в себя, имеет порядок 120 и реализует в точности все пере-
становки элементов пятёрки.

Доказательство. Согласно наблюдению 5 любую упорядоченную па-
ру различных элементов пятёрки можно перевести в любую другую
упорядоченную пару различных элементов пятёрки действием элемен-
та Sym(6), при этом, согласно наблюдению 6, пятёрка автоматически
перейдёт в себя. Стабилизатор в Sym(6) упорядоченной пары элемен-
тов пятёрки имеет порядок 6 и реализует в точности все перестановки
оставшихся трёх элементов пятёрки (см. рис. 9.2b).

Наблюдение 7. Согласно наблюдениям 5 и 6 группа Sym(6) транзи-
тивно действует на пятёрках. С учётом леммы 2 количество пятёрок
равно 6.

Наблюдение 8. Канонический гомоморфизм из Sym(6) в группу пере-
становок шести пятёрок инъективен, так как в Sym(6) нет нетривиаль-
ной нормальной подгруппы индекса, кратного шести.

Замечание 1. Проверить, что в Sym(6) нет нетривиальной нормальной
подгруппы индекса, кратного шести, можно посмотрев на список 1, 15,
15, 40, 40, 45, 90, 90, 120, 120, 144 порядков классов сопряжённости в
Sym(6) и заметив, что включающая 1 нетривиальная сумма записей
списка не может принадлежать списку 120, 60, 40, 30, … делителей чис-
ла |Sym(6)|/6.

Наблюдение 9. Действие транспозиции из Sym(6) на пятёрку никогда
не переводит её в себя (см. рис. 9.2b), а потому транспозиции переходят
в перестановки шести пятёрок, не имеющие фиксированной точки.

Теорема 4. Группа внешних автоморфизмов группы Sym(6) имеет
порядок 2.

Доказательство. Мы уже построили нетривиальный элемент в группе
внешних автоморфизмов Sym(6). Осталось заметить, что любой внеш-
ний автоморфизм Sym(6) обязан переводить инволюции цикленного ти-
па (2, 1,4) в инволюции цикленного типа (2,3), и наоборот, откуда, со-
гласно теореме 2, следует, что произведение любых двух внешних авто-
морфизмов Sym(6) является внутренним автоморфизмом Sym(6).
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Наблюдение 10. Пятёрки попарно не коммутирующих инволюций без
фиксированных точек на множестве пятёрок попарно не коммутирую-
щих инволюций без фиксированных точек на шестиэлементном множе-
стве эквивариантно биективны элементам исходного множества.



Глава 10

Модули над
некоммутативными
кольцами

10.1. Разложения и идемпотенты
Наблюдение 1. Пусть R ∼=

⊕
i∈I Ri, где |I| < ∞, — ассоциативное

унитальное кольцо, разложенное в конечное произведение колец, а M
— R-модуль. Тогда M ∼= R ⊗RM ∼= (

⊕
i∈I Ri)⊗RM ∼=

⊕
i∈I(Ri ⊗RM).

Так как для любого i ∈ I образ Ri ⊗R M в M равен RiM , то M ∼=⊕
i∈I RiM . Иначе говоря, модуль над конечным произведением колец

является прямой суммой образов действий координатных единиц.

Наблюдение 2. Унитальное кольцо Z×I , где I — конечное множество,
можно задать образующими ei, где i ∈ I, соответствующими коорди-
натным единицам, и соотношениями e2

i = ei для любого i ∈ I, eiej = 0
для любых i, j ∈ I, таких что i 6= j, и

∑
i∈I ei = 1. При этом один

из ei и последнее соотношение можно убрать. В частности, существует
очевидный изоморфизм Z[X]/(X2 −X) ∼−→ Z× Z, X 7→ (1, 0).

Пример 1. Пусть M — модуль над ассоциативным унитальным коль-
цом R, а x : M →M — его идемпотентный эндоморфизм. Тогда, соглас-
но наблюдению 2, x индуцирует на M структуру модуля над кольцом
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(Z× Z)⊗Z R ∼= R×R, а потому, согласно наблюдению 1, и разложение
M в прямую сумму двух R-подмодулей.

Пример 2. Пусть R — ассоциативное унитальное кольцо, рассматри-
ваемое как бимодуль над собой, а x ∈ EndR⊗ZRo-mod(R) ∼= Z(R) — его
идемпотентный эндоморфизм. Тогда, согласно примеру 1, x индуцирует
разложение R в прямую сумму двух двусторонних идеалов.

Наблюдение 3. Пусть R — ассоциативное унитальное кольцо, M —
R-модуль, I и J — конечные множества, а E := EndR-mod(M). Тогда
пара гомоморфизмов колец ZI → E и ZJ → E, образы которых поэле-
ментно коммутируют, соответствующих разложениям M =

⊕
i∈I Vi и

M =
⊕

j∈J Uj , индуцирует гомоморфизм колец ZI ⊗Z ZJ ∼= ZI×J → E,
соответствующий разложению M =

⊕
i∈I,j∈J(Vi ∩ Uj).

Следствие 1. Если M — модуль над ассоциативным унитальным
кольцом R, такой что кольцо EndR-mod(M) коммутативно, то раз-
ложение M в конечную внутреннюю прямую сумму неразложимых
подмодулей определено однозначно, если существует.

Следствие 2. Разложение ассоциативного унитального кольца в ко-
нечную внутреннюю прямую сумму неразложимых двусторонних иде-
алов определено однозначно, если существует.

10.2. Модули над кольцом матриц
Эквивалентность категорий
Теорема 1. Пусть R — ассоциативное унитальное кольцо, а I, J и
K — три конечных непустых множества. Тогда гомоморфизм ρI,J,K :
MI,J(R)⊗MJ (R) MJ,K(R)→ MI,K(R), x⊗ y 7→ xy биективен.

Доказательство. Стандартные разложения MI,J(R) ∼=
⊕

i∈I M{i},J(R),
MJ,K(R) ∼=

⊕
k∈K MJ,{k}(R) и MI,K(R) ∼=

⊕
i∈I,k∈K M{i},{k}(R) индуци-

руют разложение ρI,J,K =
⊕

i∈I,k∈K ρ{i},J,{k}. Гомоморфизм ρJ,J,J биек-
тивен, а потому ρpt,J,pt — тоже, а потому ρI,J,K — тоже.

Наблюдение 1. Пусть R — ассоциативное унитальное кольцо, а I —
конечное непустое множество. Тогда из теоремы 1 ясно, что функторы
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V 7→ MI,pt(R) ⊗R V : R-mod →← MI(R)-mod : Mpt,I(R) ⊗MI(R) U 7→U
задают эквивалентность категорий R-mod и MI(R)-mod.

Наблюдение 2. Пусть R — ассоциативное унитальное кольцо, I — ко-
нечное непустое множество, U — MI(R)-модуль, а (ei,j)i,j∈I — стандарт-
ный базис MI(R) как R-модуля. Тогда подкольцо

⊕
i∈I Rei,i ⊂ MI(R)

задаёт разложение U =
⊕

i∈I ei,iU , причём для любых i, j ∈ I действие
ei,j изоморфно переводит ej,jU в ei,iU . Это ещё один способ увидеть
эквивалентность категорий R-mod и MI(R)-mod.

Некоторые централизаторы в кольце матриц
Следствие 1. Пусть R — ассоциативное унитальное кольцо, а I —
конечное непустое множество. Тогда очевидное вложение кольца Ro
в EndS(RI), где S := EndR-mod(RI), биективно.

Доказательство. Заметим, что EndR(R) ∼= Ro, и применим эквива-
лентность из наблюдений 1 и 2.

Следствие 2. Пусть R — ассоциативное унитальное кольцо, а I —
конечное непустое множество. Тогда очевидное вложение кольца R в
ZMI(R)(MI(Z)) биективно.

Доказательство. Пусть S := Ro. Согласно следствию 1 централизатор
MI(S) в E := EndZ-mod(SI) равен R. С другой стороны, он равен цен-
трализатору MI(Z) в ZE(S) ∼= MI(R). Иначе говоря, следствие 2 — это
переформулировка следствия 1.

Следствие 3. Пусть R — ассоциативное унитальное кольцо, а I — ко-
нечное непустое множество. Тогда Z(MI(R)) ∼= Z(R), ZMI(R)(EI(Z)) ∼=
R. Если card(I) > 1, то Z(GLI(R)) ∼= Z(R)×, а Z(GL1(R)) ∼= Z(R×).

Доказательство. Равенство Z(MI(R)) = Z(R) очевидным образом сле-
дует из следствия 2. Централизатор EI(Z) в MI(R) совпадает с цен-
трализатором Z-подалгебры в MI(R), порождённой образом EI(Z), ко-
торая равна образу MI(Z). Равенство Z(GL1(R)) = Z(R×) — тавтоло-
гия, а если card(I) > 1, то Z(GLI(R)) = ZMI(R)(Z〈x |x ∈ GLI(R)〉)× =
ZMI(R)(Z〈x |x ∈ EI(R)〉)× = ZMI(R)(MI(R))× = Z(R)×.
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Замечание 1. Для любого ассоциативного унитального кольца R вы-
полняется вложение Z(R)× = R× ∩ Z(R) ⊂ Z(R×).

Пример 1. Пусть R := C[⋊X] — это фактор копроизведения ассоци-
ативных унитальных колец C и Z[X] по соотношениям Xa = āX, где
a ∈ C. Тогда Z(R)× = R× ⊊ Z(R×) = C×.

Замечание 2. Я узнал о примере 1 из ответа [15] на «Mathematics Stack
Exchange».

Наблюдение 3. Пусть R — ассоциативное унитальное кольцо, I —
конечное множество, а S := R×I . Тогда EndSo-mod(S) ∼= S, а потому
ZMI(R)(DI(Z)) = DI(R).

Идеалы в кольце матриц
Следствие 4. Пусть R — ассоциативное унитальное кольцо, а I —
конечное непустое множество. Тогда любой левый идеал в MI(R) ∼=
RI ⊗R RI имеет вид RI ⊗R U , где U ⊂ RI — R-подмодуль.

Доказательство. Заметим, что эквивалентность категорий переводит
подобъекты в подобъекты, и воспользуемся наблюдением 1 или 2.

Следствие 5. Пусть R — ассоциативное унитальное кольцо, а I — ко-
нечное непустое множество. Тогда любой двусторонний идеал вMI(R)
имеет вид MI(I), где I ⊂ R — двусторонний идеал в R.

Доказательство. Пусть S := R ⊗Z Ro и T := MI(R) ⊗Z MI(R)o ∼=
MI×I(S). Заметим, что эквивалентность из наблюдений 1 и 2 перево-
дит S-модуль R в T -модуль SI×I ⊗S R ∼= RI×I ∼= MI(R).

Замечание 3. Следствия 4 и 5 можно получить и напрямую, элемен-
тарными методами.

Следствие 6. Пусть R — простое ассоциативное унитальное кольцо,
а I — конечное непустое множество. Тогда кольцо MI(R) простое.

https://math.stackexchange.com
https://math.stackexchange.com
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10.3. Нётеровы и артиновы модули
Основные определения и теорема Гильберта о базисе
Соглашение 1 (О ГРАДУИРОВКАХ И ФИЛЬТРАЦИЯХ). В этом разделе
градуировки и фильтрации абелевых групп — это N0-градуировки и
исчерпывающие N0-фильтрации соответственно.

Наблюдение 1. Для любого частично упорядоченного множества Θ
следующие два условия эквивалентны: а) Все возрастающие последо-
вательности элементов Θ стабилизируются; б) В любом непустом под-
множестве Θ существует максимальный элемент.

Определение 1 (НЁТЕРОВ/АРТИНОВ МОДУЛЬ). МодульM над ассоци-
ативным унитальным кольцом R называется нётеровым/артиновым,
если множество подмодулей M удовлетворяет условию стабилизации
возрастающих/убывающих соответственно цепочек.

Наблюдение 2. Модуль M над ассоциативным унитальным кольцом
R нётеров тогда и только тогда, когда любой подмодуль M конечно
порождён.

Наблюдение 3. Пусть M — абелева группа с фильтрацией (Mi)∞
i=0,

а N ⊊ M — её собственная подгруппа с индуцированной фильтраци-
ей (Ni)∞

i=0 := (N ∩ Mi)∞
i=0. Тогда индуцированное вложение gr(N) =⊕∞

i=0Ni/Ni−1 → gr(M) =
⊕∞

i=0Mi/Mi−1 не биективно.

Определение 2. Будем называть градуированный модуль M над гра-
дуированным ассоциативным унитальным кольцом R градуированно-
нётеровым/градуированно-артиновым, если частично упорядоченное
множество градуированных подмодулей M удовлетворяет условию ста-
билизации возрастающих/убывающих соответственно цепочек.

Теорема 1. Пусть R — градуированное ассоциативное унитальное
кольцо, а M — фильтрованный R-модуль, такой что присоединённый
градуированный R-модуль gr(M) градуированно-нётеров/градуирован-
но-артинов. Тогда R-модуль M нётеров/артинов соответственно.

Доказательство. Если N ⊂ N ′ ⊂ N ′′ ⊂ N ′′′ ⊂ · · · — строго возраста-
ющая цепочка подмодулей M с индуцированными фильтрациями, то,
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согласно наблюдению 3, индуцированная цепочка gr(N) → gr(N ′) →
gr(N ′′)→ gr(N ′′′)→ · · · градуированных подмодулей gr(M) тоже стро-
го возрастающая, и аналогично для убывающих цепочек.
Теорема 2. Пусть M — градуированный модуль над градуированным
ассоциативным унитальным кольцом R. Тогда R-модуль M нёте-
ров/артинов тогда и только тогда, когда R-модуль M градуированно-
нётеров/градуированно-артинов соответственно.

Доказательство. Часть «только тогда» очевидна, докажем часть «то-
гда». Градуировка на M индуцирует фильтрацию на M , такую что
присоединённый градуированный R-модуль gr(M) градуированно изо-
морфен M . Осталось применить теорему 1.
Наблюдение 4. Пусть Θ — частично упорядоченное множество, удо-
влетворяющее условию стабилизации возрастающих цепочек. Тогда ча-
стично упорядоченное множество монотонных отображений N0 → Θ
тоже удовлетворяет условию стабилизации возрастающих цепочек.
Теорема 3 (ТЕОРЕМА ГИЛЬБЕРТА О БАЗИСЕ). Пусть R — ассоциа-
тивное унитальное нётерово слева кольцо. Тогда кольцо R[X] тоже
нётерово слева.

Доказательство. На кольце R[X] имеется стандартная градуировка,
такая что градуированные левые идеалы в R[X] имеют вид

⊕∞
i=0 IiX

i,
где I0 ⊂ I1 ⊂ I2 ⊂ · · · — цепочка левых идеалов в R. Осталось восполь-
зоваться теоремой 2 и наблюдением 4.
Теорема 4. Пусть M — модуль над ассоциативным унитальным
кольцом R, а N — подмодуль в M . Тогда если модули N и M/N арти-
новы/нётеровы, то модуль M артинов/нётеров соответственно.

Доказательство. Рассмотрим R как градуированное кольцо, полно-
стью сидящее в градуировке ноль, а M — как модуль с фильтрацией
N ⊂M , после чего применим теорему 1.

Прямые суммы и условия конечности
Теорема 5. Пусть M — модуль над ассоциативным унитальным
кольцом R, а ϕ ∈ EndR-mod(M). Тогда если M артинов/нётеров, а
ϕ инъективен/сюръективен соответственно, то ϕ биективен.
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Доказательство. Если ϕ инъективен, но не биективен, то Im(ϕ) ⊋
Im(ϕ2) ⊋ Im(ϕ3) ⊋ · · · — бесконечная строго убывающая последова-
тельность подмодулей в M , а если ϕ сюръективен, но не биективен, то
Ker(ϕ) ⊊ Ker(ϕ2) ⊊ Ker(ϕ3) ⊊ · · · — бесконечная строго возрастающая
последовательность подмодулей в M .

Замечание 1. Теорема 5 утверждает, что артинов модуль не может быть
изоморфен своему собственному подмодулю, а нётеров — своему фак-
тормодулю по нетривиальной подгруппе.

Следствие 1. Пусть M — ненулевой артинов или нётеров модуль
над ассоциативным унитальным кольцом R, а I и J — множества,
хотя бы одно из которых конечно. Тогда если R-модули M⊕I и M⊕J

изоморфны, то множества I и J равномощны.

Пример 1. Пусть I — бесконечное множество, R — ассоциативное уни-
тальное кольцо, V := R⊕I , а E := EndRo-mod(V ). Тогда левый E-модуль
E изоморфен V ×I , а потому левые E-модули E и E⊕2 изоморфны.

Наблюдение 5. Пусть (Mi)i∈I — семейство ненулевых конечно порож-
дённых модулей над ассоциативным унитальным кольцом R. Пусть κ
— наименьшая мощность множества образующих R-модуля

⊕
i∈IMi.

Тогда если I бесконечно, то κ = card(I), а если I конечно, то κ — тоже.

Следствие 2. Пусть (Mi)i∈I и (Nj)j∈J — два семейства ненулевых
конечно порождённых модулей над ассоциативным унитальным коль-
цом R, причём множества I и J не равномощны и хотя бы одно из
них бесконечно. Тогда R-модули

⊕
i∈IMi и

⊕
j∈J Nj не изоморфны.

Вопрос 1. Пусть M — ненулевой артинов модуль над ассоциативным
унитальным кольцом R, а I и J — два не равномощных бесконечных
множества. Верно ли, что R-модули M⊕I и M⊕J не изоморфны?

Длина модуля и теорема Жордана–Гёльдера
Определение 3 (КОМПОЗИЦИОННЫЙ РЯД МОДУЛЯ). Пусть M — мо-
дуль над ассоциативным унитальным кольцом R. Тогда конечная после-
довательность 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M подмодулей M ,
такая что для любого i = 1, . . . , n присоединённый R-модуль Mi/Mi−1
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прост, называется композиционным рядом модуля M , а число n ∈ N0
называется длиной этого композиционного ряда.

Определение 4 (КОМПОЗИЦИОННАЯ ДЛИНА МОДУЛЯ). ПустьM — мо-
дуль над ассоциативным унитальным кольцом R. Тогда композицион-
ная длина или просто длина M , обозначаемая l(M), определяется как
минимальная длина композиционного ряда M , если у M существует
композиционный ряд, и ∞ в противном случае.

Теорема 6. Модуль M над ассоциативным унитальным кольцом R
является модулем конечной длины тогда и только тогда, когда он
одновременно нётеров и артинов.

Доказательство. Часть «только тогда» очевидна, докажем часть «то-
гда». ЕслиM 6= 0, то, по нётеровостиM , вM существует максимальный
собственный подмодуль M ′ ⊊ M . Если M ′ 6= 0, то, по нётеровости M ′,
в M ′ существует максимальный собственный подмодуль M ′′ ⊊M ′. Так
как M артинов, то продолжая таким образом, мы за конечное число
шагов дойдём до нулевого модуля и получим композиционный ряд.

Теорема 7. Пусть M — модуль над ассоциативным унитальным
кольцом R. Тогда длина M совпадает с супремумом длин конечных
строго возрастающих цепочек подмодулей в M .

Доказательство (из двух частей).

Часть 1. Заметим, что достаточно доказать, что если l(M) < ∞, а
N ⊊ M — собственный подмодуль, то l(N) < l(M), потому что из это-
го утверждения выводится, что длины конечных строго возрастающих
цепочек подмодулей не превосходят длины модуля.

Часть 2. Пусть 0 = M0 ⊊ M1 ⊊ · · · ⊊ Mn = M , где n ∈ N0, — ком-
позиционный ряд. Тогда на N индуцирована фильтрация (Ni)ni=0 :=
(N ∩Mi)ni=0, причём индуцированное вложение gr(N) → gr(M) не би-
ективно по наблюдению 3, но биективно на ненулевых градуирован-
ных компонентах по лемме Шура. Это значит, что если выкинуть из
фильтрации (Ni)ni=0 повторяющиеся элементы, которые там обязатель-
но есть, то получится композиционный ряд для N .
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Теорема 8 (ТЕОРЕМА ЖОРДАНА–ГЁЛЬДЕРА). Пусть M — модуль
над ассоциативным унитальным кольцом R, а (Ai)ni=0 и (Bi)ni=0, где
n ∈ N0, — два композиционных ряда для M . Тогда набор классов изо-
морфизма присоединённых факторов фильтрации (Ai)ni=0 совпадает с
соответствующим набором для (Bi)ni=0.

A1 · · · An−2 A := An−1

0 C1 · · · C := A ∩B M

B1 · · · Bn−2 B := Bn−1

(1)

Доказательство. Докажем теорему индукцией по l(M). Введём обо-
значения A := An−1, B := Bn−1 и C := A∩B. Если A = B, то достаточно
применить индукционное предположение к A = B. Пусть A 6= B. Тогда
A 6= C 6= B и канонические вложения A/C → M/B и B/C → M/A
биективны по лемме Шура. Осталось выбрать произвольный компози-
ционный ряд (Ci)n−2

i=0 для C, посмотреть на диаграмму (1) и применить
индукционное предположение к A и B.

10.4. Полупростые модули
Простые модули и лемма Шура
Определение 1 (ПРОСТОЙ МОДУЛЬ). Модуль над ассоциативным уни-
тальным кольцом называется простым, если у него ровно один соб-
ственный подмодуль — нулевой.

Лемма 1 (ЛЕММА ШУРА). Ненулевой гомоморфизм из простого мо-
дуля инъективен, ненулевой гомоморфизм в простой модуль сюръек-
тивен. Как следствие, ненулевой гомоморфизм из простого модуля в
простой модуль является изоморфизмом.

Доказательство. Следует из рассмотрения ядра и образа гомоморфиз-
ма соответственно.

Следствие 1. В кольце эндоморфизмов простого модуля ненулевые
элементы двусторонне обратимы, то есть оно является телом.
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Определение и основные свойства полупростоты
Определение 2 (ПОЛУПРОСТОЙ МОДУЛЬ). Пусть M — модуль над ас-
социативным унитальным кольцом R. Тогда M называется полупро-
стым, если у любого подмодуля в M есть дополнение в M .

Теорема 1 (ПОЛУПРОСТОТА ПОДФАКТОРОВ). Пусть M — полупро-
стой модуль над ассоциативным унитальным кольцом R. Тогда под-
модули и фактормодули M являются полупростыми модулями.

Доказательство (из двух частей).

Полупростота подмодулей. Пусть ιMN : N →M и ιNL : L→ N — инъек-
тивные гомоморфизмы. Так как модуль M полупрост, то у ιMN ◦ ιNL есть
левый обратный, а потому у ιNL — тоже.

Полупростота фактормодулей. Пусть πUM : M → U и πVU : U → V
— сюръективные гомоморфизмы. Так как модуль M полупрост, то у
πVU ◦ πUM есть правый обратный, а потому у πVU — тоже.

Лемма 2. Пусть M — ненулевой полупростой модуль над ассоциа-
тивным унитальным кольцом R. Тогда в M есть простой подмодуль.

Доказательство. Так как M 6= 0, то M содержит ненулевой цикличе-
ский подмодуль C ⊂M , который полупрост по теореме 1. В ненулевых
циклических модулях есть максимальные собственные подмодули по
теореме о существовании максимальных идеалов. Дополнение в C к
максимальному собственному подмодулю в C и будет минимальным
ненулевым, то есть простым, подмодулем в C ⊂M .

Теорема 2 (КРИТЕРИЙ ПОЛУПРОСТОТЫ). Модуль M над ассоциатив-
ным унитальным кольцом R полупрост тогда и только тогда, когда
является прямой суммой семейства простых модулей.

Доказательство (из двух частей).

Часть «тогда». Пусть M =
⊕

i∈IMi — прямая сумма простых моду-
лей, а N ⊂M — подмодуль вM . Воспользовавшись леммой Цорна, рас-
смотрим максимальное подмножество J ⊂ I, такое что N ∩

⊕
j∈JMj =

0. Пусть e ∈ I. Если Me 6⊂ N ⊕ (
⊕

j∈JMj), то Me∩ (N ⊕ (
⊕

j∈JMj)) = 0,
так как это подмодуль в Me, откуда e ∈ J — противоречие.
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Часть «только тогда». Пусть модуль M полупрост, а (Mi)i∈I — се-
мейство всех простых подмодулей вM . Воспользовавшись леммой Цор-
на, рассмотрим максимальное подмножество J ⊂ I, для которого сумма∑

j∈JMj прямая. Если дополнение к
∑

j∈JMj в M ненулевое, то в нём,
согласно лемме 2, есть простой подмодуль — противоречие.

Наблюдение 1. Пусть M — модуль над ассоциативным унитальным
кольцом R, а (Mi)i∈I — семейство простых подмодулей в M , такое что
M =

∑
i∈IMi. Тогда, согласно теореме 1, модуль M полупрост как

гомоморфный образ полупростого, согласно теореме 2, модуля
⊕

i∈IMi.

Разложение на изотипические компоненты

Определение 3 (ИЗОТИПИЧЕСКИЕ КОМПОНЕНТЫ). Пусть R — ассоци-
ативное унитальное кольцо,M — полупростой R-модуль, а N — простой
R-модуль. Тогда сумма всех подмодулей в M , изоморфных N , называ-
ется N -изотипической компонентой модуля M .

Определение 4 (ИЗОТИПИЧЕСКИЙ МОДУЛЬ). Полупростой модуль M
над ассоциативным унитальным кольцом R, совпадающий с какой-то
из своих изотипических компонент, называется изотипическим.

Теорема 3 (РАЗЛОЖЕНИЕ НА ИЗОТИПИЧЕСКИЕ КОМПОНЕНТЫ). Если
M — полупростой модуль над ассоциативным унитальным кольцом
R, то M является прямой суммой своих изотипических компонент.

Доказательство. ПустьM =
⊕

i∈IMi — разложениеM в прямую сум-
му простых подмодулей, а N ⊂M — произвольный простой подмодуль
в M . Тогда, согласно лемме Шура, ограничение стандартной проекции
πe :

⊕
i∈IMi → Me, где e ∈ I, на N равно нулю, если N 6' Me. Иначе

говоря, N ⊂
⊕

i∈I|Mi'N Mi ⊂
⊕

i∈IMi.

Наблюдение 2. Пусть N — простой модуль над ассоциативным уни-
тальным кольцом R. Тогда гомоморфизмы полупростых R-модулей пе-
реводят N -изотипические компоненты в N -изотипические компоненты.
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Полупростота и условия конечности
Наблюдение 3. Для полупростых модулей свойства артиновости, нё-
теровости и конечной порождённости совпадают. В частности, ассоци-
ативное унитальное кольцо, полупростое как левый модуль над собой,
артиново и нётерово как левый модуль над собой.

Теорема 4. Пусть N — простой модуль над ассоциативным униталь-
ным кольцом R, а I и J — два не равномощных множества. Тогда
модули N⊕I и N⊕J не изоморфны.

Доказательство. Если I или J бесконечно, то утверждение теоремы
следует из рассмотрения минимальных мощностей порождающих мно-
жеств (следствие 10.3.2), а если I и J конечны — то из нётеровости или
артиновости N (следствие 10.3.1), либо, в качестве альтернативы, мож-
но воспользоваться теоремой Крулля –Шмидта (теорема 10.6.1).

Простые кольца и полупростота
Определение 5 (ЦОКОЛЬ МОДУЛЯ). Пусть M — модуль над ассоциа-
тивным унитальным кольцом R. Тогда сумма всех простых подмодулей
в M называется цоколем M .

Теорема 5. Пусть M — модуль над ассоциативным унитальным
кольцом R, такой что у M нетривиальный цоколь и M прост как
модуль над R⊗Z E, где E := EndR-mod(M). Тогда M — изотипический
полупростой R-модуль.

Доказательство. Цоколь и его изотипические компоненты являются
(R⊗Z E)-подмодулями в M .

Замечание 1. Обратное к теореме 5 тоже верно: ненулевой изотипиче-
ский полупростой модуль M над ассоциативным унитальным кольцом
R является простым модулем над R⊗Z E, где E := EndR-mod(M).

Следствие 2. Пусть R — простое ассоциативное унитальное кольцо,
в котором существует минимальный ненулевой левый идеал. Тогда
кольцо R полупросто как левый модуль над собой.
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Доказательство. Кольцо R просто тогда и только тогда, когда оно
просто как модуль над R⊗ZRo, а Ro ∼= EndR-mod(R). Осталось восполь-
зоваться теоремой 5.

Пример 1. Пусть R := Q〈X, ∂X〉 ⊂ EndQ-mod(Q[X]) — алгебра Вей-
ля. Тогда [∂X , X] = 1 и R =

⊕
n,m∈N0

Q · Xn∂mX — разложение на
собственные подпространства с различными собственными значения-
ми для операторов (X∗) ◦ [∂X ,−] и (∗∂X) ◦ [−, X]. Кольцо R простое,
так как из любого ненулевого элемента R несколько раз применив опе-
раторы [X,−] и [∂X ,−] можно получить ненулевой элемент Q. Так как
R ⊋ R∂X ⊋ R∂2

X ⊋ · · · и R ⊋ XR ⊋ X2R ⊋ · · · — бесконечные строго
убывающие последовательности левых/правых соответственно идеалов
в R, то кольцо R не артиново слева/справа.

Теорема Джекобсона о плотности
Наблюдение 4 (ТЕОРЕМА ДЖЕКОБСОНА О ПЛОТНОСТИ). Пусть R —
ассоциативное унитальное кольцо, N — простой R-модуль, а I — мно-
жество. Тогда для любого собственного подмодуля L ⊂ N⊕I существует
ненулевой R-гомоморфизм ϕ : N⊕I → N , такой что ϕ(L) = 0.

Замечание 2. Классическая теорема Джекобсона о плотности — это
наблюдение 4, применённое к случаю циклического L и конечного I.

Центральные простые алгебры
Тензорное произведение простых алгебр

Теорема 6. Пусть N — простой модуль над ассоциативным униталь-
ным кольцом R, а D := EndR-mod(N)o. Тогда функтор N ⊗D (−) :
D-mod → R-mod строгий и полный, а его существенный образ за-
мкнут относительно перехода к подмодулям и фактормодулям.

Доказательство. То, что функтор строгий и полный, следует из то-
го, что все модули над D свободные, а R-модуль N конечно порож-
дён — морфизмы в D-mod и его существенном образе, то есть кате-
гории N -изотипических полупростых R-модулей, задаются столбцово-
финитарными матрицами с элементами в Do.
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Следствие 3. Пусть R — ассоциативное унитальное кольцо, N —
простой R-модуль, а V — модуль над D := EndR-mod(N)o. Тогда любой
R-подмодуль в N ⊗D V имеет вид N ⊗D U , где U — D-подмодуль в V .

Теорема 7. Пусть k — поле, R — центральная простая ассоциатив-
ная унитальная алгебра над k, а R′ — простая ассоциативная уни-
тальная алгебра над k. Тогда кольцо R⊗k R′ простое.

Доказательство. Введём обозначения S := R⊗ZRo и S′ := R′⊗Z (R′)o.
Тогда R является простым S-модулем и EndS-mod(R) ∼= Z(R) ∼= k. Со-
гласно следствию 3 произвольный S-подмодуль M ⊂ R⊗kR′ имеет вид
R ⊗k U для какого-то k-подмодуля U ⊂ R′. Если M является ещё и
S′-подмодулем, то U ⊂ R′ — тоже S′-подмодуль. Так как R′ — простой
S′-модуль, то M либо тривиальный, либо несобственный.

Пример 2. Пусть K — поле, k ⊊ K — его собственное подполе, а R
и R′ — две простые ассоциативные унитальные алгебры над K. То-
гда очевидный сюръективный гомоморфизм R ⊗k R′ → R ⊗K R′ имеет
нетривиальное ядро. Это показывает, что тензорное произведение двух
простых алгебр над полем не обязано быть простой алгеброй.

Теорема 8. Пусть R и R′ — ассоциативные унитальные алгебры над
ассоциативным коммутативным унитальным кольцом A, причём R′

свободен как A-модуль. Тогда если кольцо R⊗A R′ простое, то кольцо
R тоже простое.

Доказательство. Пусть I ⊂ R — нетривиальный собственный двусто-
ронний идеал. Тогда I ⊗A R′ ⊂ R ⊗A R′ — тоже нетривиальный соб-
ственный двусторонний идеал.

Централизаторы в тензорном произведении алгебр

Теорема 9. Пусть R и R′ — ассоциативные унитальные алгебры над
ассоциативным коммутативным унитальным кольцом A, а S ⊂ R
— A-подалгебра, причём R′ свободна как A-модуль. Тогда ZR⊗AR′(S)
совпадает с ZR(S)⊗A R′.

Доказательство. Заметим, что ZR(S) совпадает с инвариантами дей-
ствия S как алгебры Ли на R коммутированием, ZR⊗AR′(S) совпадает с
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инвариантами индуцированного действия S как алгебры Ли на R⊗AR′,
а функтор (−)⊗A A⊕I ∼= (−)⊕I , где I — множество, сохраняет инвари-
анты действий.

Следствие 4. Пусть R и R′ — ассоциативные унитальные алгебры
над полем k, а S ⊂ R и S′ ⊂ R′ — их k-подалгебры. Тогда ZR⊗kR′(S⊗kS′)
совпадает с ZR(S)⊗k ZR′(S′).

Пример 3. Пусть R := Z〈X,Y 〉/([X,Y ] − 1) — алгебра Вейля. Тогда
очевидный гомоморфизм Z(R) ⊗Z (Z/pZ) → Z(R ⊗Z (Z/pZ)), где p —
простое число, не сюръективен.

Группа Брауэра поля

Обозначение 1 (ЦПА). Сокращение «ЦПА» означает «центральная
простая ассоциативная унитальная алгебра».

Теорема 10. Пусть R — конечномерная ЦПА над полем k. Тогда стан-
дартный гомоморфизм R⊗k Ro → Endk-mod(R) биективен.

Доказательство. Гомоморфизм инъективен, так как кольцо R ⊗k Ro
простое, и сюръективен по соображениям размерности.

Определение 6 (ГРУППА БРАУЭРА ПОЛЯ). Пусть k — поле. Тогда моно-
ид, заданный образующими — классами изоморфизма конечномерных
ЦПА над k — и соотношениями — [R ⊗k R′] = [R][R′] для любых ко-
нечномерных ЦПА R и R′ над k и [Mn(k)] = 1 для любого n ∈ N1 —
называется группой Брауэра поля k и обозначается Br(k).

Замечание 3. Группа Брауэра названа так в честь Ричарда/Рихарда
Дагоберта Брауэра (Richard Dagobert Brauer) (10.02.1901–17.04.1977).

Теорема Артина–Веддербёрна
Теорема 11. Унитальное ассоциативное кольцо, полупростое как ле-
вый модуль над собой, изоморфно конечному произведению колец типа
Mn(D), где D — тело, а n ∈ N1. И наоборот, кольца Mn(D) полупросты
как левые модули над собой.
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Доказательство. Пусть унитальное ассоциативное кольцо A полупро-
сто как левый A-модуль: A ∼=

⊕
i∈IM

⊕Si
i , где I конечно, все Si ко-

нечные непустые, модули Mi простые, Mi 6' Mj при i 6= j. В прямой
сумме конечное число слагаемых, так как A-модуль A конечно порож-
дён единицей, а нетривиальная бесконечная прямая сумма — нет. То-
гда A ∼= EndA-mod(A)o ∼= (

∏
i∈I MSi(Di))o ∼=

∏
i∈I MSi(Do

i ), где Di :=
EndA-mod(Mi), по лемме Шура. Обратно, если S — конечное множе-
ство, а D — тело, то MS(D) ∼=

⊕
s∈S MS,{s}(D) — разложение в прямую

сумму изоморфных простых MS(D)-подмодулей.

Наблюдение 5. Пусть D — тело, а n ∈ N1. Тогда композиционная
длина Mn(D) как левого модуля над собой равна n, а кольцо эндомор-
физмов любого простого Mn(D)-модуля изоморфно Do.

Наблюдение 6. Согласно следствию 10.1.2 и наблюдению 5, с учётом
простоты кольца матриц над телом, разложение теоремы 11 определено
однозначно в понятном смысле.

Теорема Нётер–Сколема

Теорема 12 (ТЕОРЕМА НЁТЕР –СКОЛЕМА). Пусть R и S — две ко-
нечномерные простые ассоциативные унитальные алгебры над полем
k, причём k-алгебра R центральна. Тогда для любых двух гомомор-
физмов k-алгебр f, g : S → R существует внутренний автоморфизм
h : R ∼−→ R, такой что h ◦ f = g.

Доказательство. Пусть Rf — это R, рассмотренная как модуль над
S ⊗k Ro путём ограничения скаляров вдоль f ⊗ Id : S ⊗k Ro → R⊗k Ro,
а Rg — вдоль g ⊗ Id : S ⊗k Ro → R⊗k Ro.

Тогда HomS⊗kRo-mod( Rf , Rg ), вложенное в HomRo-mod( Rf , Rg ) ∼= R,
отождествляется с {a ∈ R | af(s) = g(s)a для всех s ∈ S}. В частности,
HomS⊗kRo-mod×( Rf , Rg ) ∼= {a ∈ R× | af(s)a−1 = g(s) для всех s ∈ S}.

Осталось заметить, что так как конечномерная k-алгебра S ⊗k Ro
простая по теореме 7, то все S⊗kRo-модули одинаковой k-размерности
изоморфны, а dimk( Rf ) = dimk(R) = dimk( Rg ).
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10.5. Радикал Джекобсона
Определение и эквивалентные характеризации
Определение 1 (АННУЛЯТОР МОДУЛЯ). Пусть R — ассоциативное уни-
тальное кольцо, а M — R-модуль. Ядро структурного гомоморфизма
R → EndZ-mod(M) называется аннулятором M в R и обозначается
AnnR(M).

Определение 2 (РАДИКАЛ ДЖЕКОБСОНА КОЛЬЦА). Пусть R — ассо-
циативное унитальное кольцо. Пересечение аннуляторов простых R-мо-
дулей называется радикалом Джекобсона кольца R.

Определение 3 (АННУЛЯТОР ЭЛЕМЕНТА). Пусть R — ассоциативное
унитальное кольцо, M — R-модуль, а x ∈M — элемент M . Ядро гомо-
морфизма a 7→ ax : R → Rx ⊂ M модулей над R называется аннуля-
тором x в R и обозначается AnnR(x).

Теорема 1 (ХАРАКТЕРИЗАЦИИ РАДИКАЛА ДЖЕКОБСОНА). Пусть J —
радикал Джекобсона ассоциативного унитального кольца R. Тогда J
можно охарактеризовать следующими эквивалентными способами:

а) J совпадает с пересечением всех максимальных левых идеалов R;

б) J совпадает с множеством всех x ∈ R, таких что для любого
a ∈ R элемент 1− ax ∈ R обратим слева;

в) J совпадает с множеством всех x ∈ R, таких что для любого
a ∈ R элемент 1− ax ∈ R двусторонне обратим;

г) J совпадает с множеством всех x ∈ R, таких что для любых
a, b ∈ R элемент 1− axb ∈ R двусторонне обратим;

д) J как множество совпадает с радикалом Джекобсона кольца Ro.

Доказательство.

а) Пересечение аннуляторов простых R-модулей совпадает с пересе-
чением аннуляторов ненулевых элементов простых R-модулей, а
это в точности максимальные левые идеалы R.
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б) Пусть x ∈ R. Тогда условие «x /∈ J» эквивалентно условию «су-
ществует максимальный левый идеал m ⊂ R, такой что x /∈ m»,
которое эквивалентно условию «существует максимальный левый
идеал m ⊂ R, такой что образ x в R/m не равен нулю», которое
эквивалентно условию «существует максимальный левый идеал
m ⊂ R, такой что существует a ∈ R, такой что ax ≡ 1 (mod m)»,
которое эквивалентно отрицанию условия из пункта (б).

в) Условие из пункта (в), очевидно, сильнее условия из пункта (б).
Докажем обратное. Пусть x ∈ J. Левые обратные к элементам
множества 1 + Rx ⊂ R фиксируют класс 1 + Rx ∈ R/(Rx), а по-
тому и сами ему принадлежат, а потому обратимы слева. Отсюда
следует, что элементы множества 1 +Rx двусторонне обратимы.

г) С одной стороны, условие из пункта (г), очевидно, сильнее условия
из пункта (в), так как можно взять b = 1. С другой стороны, J
является двусторонним идеалом, поэтому если x ∈ J, то xb ∈ J
для любого b ∈ R, откуда следует условие из пункта (г).

д) Пункт (д) является прямым следствием характеризации (г).

Лемма Накаямы
Теорема 2 (ЛЕММА НАКАЯМЫ). Пусть M — ненулевой конечно по-
рождённый модуль над ассоциативным унитальным кольцом R, а J
— радикал Джекобсона кольца R. Тогда JM 6= M .

Доказательство. У M есть ненулевой циклический фактор-модуль,
например, факторM по подмодулю, порождённому максимальным соб-
ственным подмножеством минимального порождающегоM множества,
а у ненулевого циклического фактор-модуля есть простой фактор-мо-
дуль, который зануляется радикалом Джекобсона.

Радикал Джекобсона и полупростота
Наблюдение 1. В артиновом модуле пересечение любого семейства
подмодулей совпадает с пересечением какого-то конечного подсемей-
ства этого семейства.
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Наблюдение 2. Для полупростого модуля над ассоциативным уни-
тальным кольцом артиновость эквивалентна нётеровости, которая эк-
вивалентна конечной порождённости.

Определение 4 (РАДИКАЛ ДЖЕКОБСОНА МОДУЛЯ). Пусть M — мо-
дуль над ассоциативным унитальным кольцом R. Пересечение макси-
мальных собственных подмодулей в M называется радикалом Джекоб-
сона или просто радикалом модуля M .

Наблюдение 3. Пусть M — полупростой модуль над ассоциативным
унитальным кольцом R, а JM — радикал Джекобсона M . Тогда, так
как M является прямой суммой простых модулей, то JM = 0.

Теорема 3. Пусть M — артинов модуль над ассоциативным уни-
тальным кольцом R, такой что JM = 0, где JM — это радикал Дже-
кобсона M . Тогда M полупрост.

Доказательство. Согласно наблюдению 1 существует конечное семей-
ство (Mi)i∈I максимальных собственных подмодулейM , такое что JM =⋂
i∈IMi. Тогда канонический гомоморфизм M →

∏
i∈I(M/Mi) в полу-

простой модуль
∏
i∈I(M/Mi) ∼=

⊕
i∈I(M/Mi) инъективен и M полу-

прост, так как подмодуль полупростого модуля полупрост.

Следствие 1 (КРИТЕРИЙ ПОЛУПРОСТОТЫ КОЛЬЦА). Ассоциативное
унитальное кольцо полупросто тогда и только тогда, когда оно ар-
тиново слева и его радикал Джекобсона равен нулю.

Доказательство. Заметим, что полупростое кольцо автоматически ар-
тиново слева по наблюдению 2, так как оно является циклическим
модулем над собой, после чего воспользуемся наблюдением 3 и тео-
ремой 3.

Теорема Акидзуки–Хопкинса–Левицкого
Определение 5 (АННУЛЯТОР ИДЕАЛА). Пусть R — ассоциативное уни-
тальное кольцо, a — правый идеал в R, а M — R-модуль. Тогда ан-
нулятором a в M , обозначаемым AnnM (a), называется R-подмодуль
{m ∈M | am = 0 для всех a ∈ a} модуля M .
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Лемма 1. Пусть R — ассоциативное унитальное кольцо, a — правый
идеал в R, J — радикал Джекобсона R, а M — артинов R-модуль.
Тогда если AnnM (a) ⊊M , то AnnM (a) ⊊ AnnM (aJ).

Доказательство. Пусть N ⊂M — минимальный подмодуль M , строго
содержащий AnnM (a). Тогда JN ⊂ AnnM (a), то есть aJN = 0, так как
N/AnnM (a) — простой R-модуль.

Лемма 2. Пусть R — ассоциативное унитальное артиново слева
кольцо, а J — радикал Джекобсона R. Тогда J нильпотентен, то есть
Jn = 0 для какого-то n ∈ N1.

Доказательство. Так как R артиново слева, то ряд J ⊃ J2 ⊃ J3 ⊃ · · ·
стабилизируется на некотором Jn, где n ∈ N1. По лемме 1 идеал Jn

зануляет все артиновы R-модули, в частности, само R, откуда следует,
что Jn = 0.

Теорема 4 (ТЕОРЕМА АКИДЗУКИ–ХОПКИНСА–ЛЕВИЦКОГО). Пусть
R — ассоциативное унитальное артиново слева кольцо, а M — R-мо-
дуль. Тогда M нётеров тогда и только тогда, когда M артинов.

Доказательство. Пусть J ⊂ R — радикал Джекобсона R. По лемме 2
существует n ∈ N1, такое что Jn = 0. Тогда нётеровость/артиновость
M эквивалентна нётеровости/артиновости каждого из присоединённых
факторов фильтрации M = J0M ⊃ J1M ⊃ J2M ⊃ · · · ⊃ JnM = 0, а
эти факторы являются модулями над полупростым кольцом R/J, для
которого нётеровость и артиновость модулей эквивалентна.

Следствие 2. Пусть R — ассоциативное унитальное артиново слева
кольцо. Тогда R нётерово слева.

10.6. Теорема Крулля–Шмидта для модулей
Наблюдение 1. Пусть ψ — эндоморфизм абелевой группы V . Тогда
утверждение Ker(ψ) ∩ Im(ψ) = 0 эквивалентно утверждению Ker(ψ) =
Ker(ψ◦2), а утверждение Ker(ψ) + Im(ψ) = V эквивалентно утвержде-
нию Im(ψ) = Im(ψ◦2).
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Лемма 1 (ЛЕММА ФИТТИНГА). Пусть M — нётеров и артинов мо-
дуль над ассоциативным унитальным кольцом R, а ϕ ∈ EndR-mod(M).
Тогда существует n ∈ N1, такое что M = Ker(ϕ◦n)⊕Im(ϕ◦n). В част-
ности, если модуль M неразложим, то эндоморфизм ϕ либо является
изоморфизмом, либо нильпотентен.

Доказательство. Заметим, что так как модуль M нётеров и артинов,
то ряды Ker(ϕ) ⊂ Ker(ϕ◦2) ⊂ · · · и Im(ϕ) ⊃ Im(ϕ◦2) ⊃ · · · стабилизиру-
ются, после чего применим наблюдение 1.

Замечание 1. Если M — модуль над ассоциативным унитальным коль-
цом R, такой что все его эндоморфизмы либо нильпотентны, либо яв-
ляются изоморфизмами, то M неразложим, так как у него не может
быть нетривиального идемпотентного эндоморфизма.

Лемма 2. Если все элементы ассоциативного унитального кольца R,
которые не являются двусторонне обратимыми, являются нильпо-
тентными, то они все лежат в радикале Джекобсона R. В частно-
сти, в этом случае суммы нильпотентов из R нильпотентны.

Доказательство. Пусть x ∈ R — нильпотент, а a ∈ R — произвольный
элемент. Так как x не обратим слева, то ax — тоже, откуда следует, что
ax — нильпотент, откуда следует, что 1− ax двусторонне обратим.

Теорема 1 (ТЕОРЕМА КРУЛЛЯ–ШМИДТА). Пусть M — нётеров и ар-
тинов модуль над ассоциативным унитальным кольцом R, а (Vi)i∈I и
(Uj)j∈J — два конечных семейства неразложимых подмодулей модуля
M , такие что M =

⊕
i∈I Vi =

⊕
j∈J Uj. Тогда для любого e ∈ I суще-

ствует r ∈ J , такой что M = Ve ⊕ (
⊕

j∈J\{r} Uj) = Ur ⊕ (
⊕

i∈I\{e} Vi).

Доказательство. Для любых e ∈ I и r ∈ J через ρr,e : Ve → Ur обо-
значим отображение, проецирующее Ve в Ur вдоль

⊕
j∈J\{r} Uj , а через

πe,r : Ur → Ve — отображение, проецирующее Ur в Ve вдоль
⊕

i∈I\{e} Vi.
Для произвольного e ∈ I выполняется равенство IdVe =

∑
j∈J πe,j ◦ ρj,e,

из которого, согласно леммам 1 и 2, следует, что для какого-то r ∈ J
эндоморфизм πe,r◦ρr,e является изоморфизмом, откуда, с учётом нераз-
ложимости Ur, следует, что отображения ρr,e и πe,r являются изомор-
физмами, а это утверждение эквивалентно утверждению, которое тре-
буется доказать.
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Замечание 2. Помимо Вольфганга Крулля (1899–1971) и Отто Шмидта
(1891–1956) в формулировке и доказательстве теоремы Крулля –Шмид-
та и её вариантов участвовали много математиков, в частности, Джозеф
Веддербёрн (1882–1948) и Роберт Ремак (1888–1942).
Замечание 3. Между прочим, заметим, что доказательство теоремы 1
становится особенно простым, если предположить, что модуль M по-
лупрост — отпадает необходимость в леммах 1 и 2.

10.7. Теорема Эрдёша–Капланского
Теорема 1 (ТЕОРЕМА ЭРДЁША–КАПЛАНСКОГО). Пусть D — тело, а
I — бесконечное множество. Тогда dimD(D×I) = card(D×I).

Доказательство (из трёх частей).

Часть 1. Во-первых, заметим, что dimD(D×I) ⩾ dimD(D⊕I) = card(I).
Во-вторых, заметим, что card(D×I) = card(D) · dimD(D×I), а потому
достаточно доказать, что dimD(D×I) ⩾ card(D). В-третьих, заметим,
что можно предположить, что D бесконечно, а I счётно.

Часть 2. Предположим, что B ⊂ D×I — это D-базис D×I , такой что
card(B) < card(D), и придём к противоречию. Пусть T ⊂ D — это
наименьшее подтело в D, такое что B ⊂ T×I . Тогда card(T ) < card(D).
Отсюда следует, что существует семейство (xi)i∈I ∈ D×I , линейно неза-
висимое относительно действия T o на D правым умножением.

Часть 3. Пусть ((ts,i)i∈I)s∈S ∈ (T×I)×S — конечное семейство элемен-
тов T×I . Тогда существует ненулевое семейство (ri)i∈I ∈ T⊕I , такое что
(ts,i)s∈S,i∈I ◦(ri)i∈I = (

∑
i∈I ts,iri)s∈S = 0. Поэтому для любого семейства

(as)s∈S ∈ D×S линейная комбинация (bi)i∈It := (as)s∈St ◦ (ts,i)s∈S,i∈I =
(
∑

s∈S asts,i)i∈It не может совпадать с (xi)i∈It , так как удовлетворяет
соотношению (bi)i∈It ◦ (ri)i∈I =

∑
i∈I biri = 0.

Замечание 1. Я узнал о приведённом доказательстве теоремы 1 из от-
вета [19] на «MathOverflow».

https://mathoverflow.net


Глава 11

Некоторые
некоммутативные
тождества

11.1. Тождества с мультипликативными
коммутаторами

Данный раздел представляет собой небольшую «шпаргалку», содер-
жащую стандартные тождества с сопряжением и мультипликативны-
ми коммутаторами и их выводы. Мы используем правонормированные
коммутаторы. В тождествах с левонормированными коммутаторами
надо использовать сопряжение слева, а не справа, а также группиро-
вать кратные коммутаторы влево: [[−,−],−], а не вправо: [−, [−,−]].

ab := b−1ab, [a, b] := a−1b−1ab, ab = bab, a[a, b] = ab, ba[a, b] = ab,

abc = (ab)c, (ab)c = acbc, [a, b]−1 = [b, a], [a, b]g = [ag, bg].

a[a, bc] = abc = (ab)c = (a[a, b])c = ac[a, b]c = a[a, c][a, b]c =⇒
=⇒ [a, bc] = [a, c][a, b]c.

Обращением получаем: [bc, a] = [b, a]c[c, a].
Подставив b = c−1, получаем: [c, a] = [a, c−1]c.
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a(bc)[bc, a] = (bc)a (цикл (a, b, c)) =⇒
=⇒ abc[bc, a][ca, b][ab, c] = abc =⇒ [bc, a][ca, b][ab, c] = 1.

ab[ab, [b, c]] = (ab)[b,c] = ab[b,c] = ab
c
,

X := [ab, [b, c]] = [ab, [c, b−1]b] = [a, [c, b−1]]b,
bcabX = bcab

c = cbcab
c = cabc (цикл (a, b, c))
⇓

[ab, [b, c]][bc, [c, a]][ca, [a, b]] = 1 (тождество Холла),
[a, [c, b−1]]b[b, [a, c−1]]c[c, [b, a−1]]a = 1 (тождество Холла –Витта).

11.2. Тождества в алгебрах Ли и Йордана
Обозначение 1. Пусть R — кольцо. Введём обозначения a∗ : R → R,
x 7→ ax и ∗a : R→ R, x 7→ xa, где a ∈ R.

Наблюдение 1. Пусть R — кольцо. Заметим, что d ∈ EndZ-mod(R) яв-
ляется дифференцированием R тогда и только тогда, когда диаграм-
ма (1), где mult — это отображение умножения в R, коммутативна.

R⊗Z R R

R⊗Z R R

mult

d⊗1+1⊗d d

mult

(1)

Введём обозначения λ(a) := a ⊗ 1 и ρ(a) := 1 ⊗ a, где a ∈ EndZ-mod(R).
Тогда (2) — это, по сути, проверка того, что коммутатор дифференци-
рований является дифференцированием.

[λ(a)+ρ(a), λ(b)+ρ(b)] = [λ(a), λ(b)]+[ρ(a), ρ(b)] = λ([a, b])+ρ([a, b]) (2)

Наблюдение 2. Пусть R — ассоциативное кольцо. Введём обозначения
λ(a) := a∗ и ρ(a) := ∗(−a), где a ∈ R. Тогда (2) — это проверка того,
что коммутатор в R удовлетворяет тождеству Якоби –Лейбница.

Наблюдение 3. Пусть R — ассоциативное кольцо. Тогда антикоммута-
тор в R, то есть йорданово умножение (a, b) 7→ a◦b := ab+ba : R×R→ R,
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удовлетворяет йорданову тождеству, потому что если a ∈ R и b ∈ R
коммутируют, то a ∗+ ∗ a и b ∗+ ∗ b тоже коммутируют.

Наблюдение 4. Пусть R — кольцо. То, что d ∈ EndZ-mod(R) является
дифференцированием R, эквивалентно тому, что [d, a∗] = (da)∗ для
любого a ∈ R.

Замечание 1. Например, в алгебре Вейля, то есть алгебре дифференци-
альных операторов с полиномиальными коэффициентами, выполняется
соотношение [∂/∂x, x] = 1, невозможное для конечных матриц в харак-
теристике 0, в чём можно убедиться, взяв след.

Наблюдение 5. Обычно ea⊗1+1⊗a = ea⊗ea и ea∗−∗a = ea ∗◦∗e−a, когда
эти выражения имеют смысл.

Наблюдение 6. Форма Киллинга — это след произведения. Взяв след
от тождества [a, bc] = [a, b]c+ b[a, c], получаем её инвариантность.

Наблюдение 7. Если (3, слева) — коммутативная диаграмма моду-
лей над ассоциативным коммутативным унитальным кольцом A, то
(3, справа) — тоже.

V V V ⊗A V V ⊗A V

V V V ⊗A V V ⊗A V

d′

g g

d′⊗1+1⊗d′

g⊗g g⊗g

d d⊗1+1⊗d

(3)

Наблюдение 8. Пусть R — алгебра над ассоциативным коммутатив-
ным унитальным кольцом A, отображение d : R→ R — дифференциро-
вание R над A, а a и b — элементы A. Тогда мы имеем коммутативную
диаграмму (4), где mult — это отображение умножения в R, которая
делает очевидной формулу (5), где x, y ∈ R, а n ∈ N0.

R⊗A R R⊗A R

R R

mult

(d−a)⊗1+1⊗(d−b)

mult
d−(a+b)

(4)

(d− (a+ b))n(xy) =
n∑
i=0

(
n

i

)
((d− a)n−i(x))((d− b)i(y)) (5)
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Пример 1. Пусть A := K[X]/(Xp − 1), где K — поле характеристики
p 6= 0, а x ∈ A — образ X ∈ K[X]. Тогда у нас есть два K-линей-
ных отображения: x : A → A, f 7→ xf и ∂/∂x : A → A, f 7→ ∂f/∂x.
Так как [∂/∂x, x] = 1, то [x∂/∂x, x] = [x, x]∂/∂x + x[∂/∂x, x] = x, по-
этому x и x∂/∂x порождают двумерную разрешимую подалгебру Ли в
EndK-mod(A). Множество {xn | 0 ⩽ n < p} ⊂ A — является собственным
базисом для x∂/∂x с попарно различными собственными значениями,
но в нём нет собственных векторов для x : A → A. Следовательно, у
эндоморфизмов x и x∂/∂x нет общего собственного вектора.

Наблюдение 9. Пусть R := Q〈X,Y 〉/(P ∈ Q〈X,Y 〉 | deg(P ) ⩾ 3) —
алгебра усечённых многочленов от двух не коммутирующих перемен-
ных, а x, y ∈ R — образы X,Y ∈ Q〈X,Y 〉. Тогда, в понятном смысле,
выполняются равенства exey = ex+y+(1/2)(xy−yx) и exeye−xe−y = exy−yx.

Замечание 2. Первая формула наблюдения 9 — это усечённая форма
формулы Бейкера –Кэмпбелла –Хаусдорфа –Дынкина, полная версия
которой формулируется и доказывается в разделе 11.3.

Следствие 1. Пусть R — ассоциативное унитальное кольцо, а x, y ∈
R — его элементы, такие что x2 = y2 = xyx = yxy = 0. Тогда, в
понятном смысле, выполняется равенство exeye−xe−y = exy−yx.

Пример 2. Пусть R — ассоциативное унитальное кольцо, a1, a2 ∈ R,
а ε1, ε2 ∈ R[E1, E2]/(E2

1 , E
2
2) — образы E1 и E2 соответственно. Тогда

ex1ex2e−x1e−x2 = ex1x2−x2x1 , где x1 := a1ε1, x2 := a2ε2.

Пример 3. Пусть R — ассоциативное унитальное кольцо, I — конеч-
ное множество, u1, u2 ∈ Mpt,I(R) — две строки, а v1, v2 ∈ MI,pt(R) —
два столбца, причём u1v1 = u2v2 = u1v2 = 0. Тогда ex1ex2e−x1e−x2 =
ex1x2−x2x1 , где x1 := v1u1, x2 := v2u2.

Замечание 3. Формула из примера 3 называется коммутационной фор-
мулой для трансвекций.

Наблюдение 10. Пусть V — конечномерное векторное пространство
над полем K. Пусть s : V ∼−→ V ∨ — невырожденная билинейная форма,
x : V → V — линейное отображение, x∨ : V ∨ → V ∨ — двойственное
отображение. Форма s ли-инварантна относительно x тогда и только
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тогда, когда sx + x∨s = 0, то есть sxs−1 = −x∨. Взяв след, получаем
равенство tr(x) = tr(sxs−1) = tr(−x∨) = − tr(x), то есть 2 tr(x) = 0.

Наблюдение 11. Пусть p ∈ N1 — простое число, а X,Y ∈ Fp[X,Y ] —
коммутирующие переменные. Тогда (X − Y )(X − Y )p−1 = (X − Y )p =
Xp−Y p = (X−Y )(Xp−1 +Xp−2Y + · · · +XY p−2 +Y p−1), откуда следует,
что (X − Y )p−1 = Xp−1 +Xp−2Y + · · · +XY p−2 + Y p−1.

Наблюдение 12. Пусть p ∈ N1 — простое число, R — ассоциативная
унитальная Fp-алгебра, x — элемент R, а D : R → R — дифференци-
рование кольца R. Тогда, применив наблюдение 11, получаем формулу
ad(x)p−1(D(x)) = (x ∗ − ∗ x)p−1(D(x)) = D(xp), где ad(x) = [x,−].

Наблюдение 13. Пусть p ∈ N1 — простое число, а X,Y, T ∈ Fp〈X,Y 〉[T ]
— переменные. Тогда, продифференцировав тождество (6) по T , соглас-
но наблюдению 12, получаем тождество (7).

(XT + Y )p = XpT p + sp−1(X,Y )T p−1 + · · · + s1(X,Y )T + Y p (6)

[XT + Y, [XT + Y, [XT + Y, . . . , [XT + Y︸ ︷︷ ︸
p−1

, X]]] . . . ] =

= (p− 1)sp−1(X,Y )T p−2 + · · · + 2s2(X,Y )T + s1(X,Y ) (7)

11.3. Формула Бейкера–Кэмпбелла–
Хаусдорфа–Дынкина

Предисловие
Практически весь материал этого раздела позаимствован из раздела 6
текста [22], который содержит несколько доказательств теоремы Бейке-
ра –Кэмпбелла –Хаусдорфа и её уточнений. Я узнал об этом тексте из
учебника по алгебрам Ли и группам Ли П. Этингофа [31, Remark 14.8].

Критерии Фридрихса и Дынкина–Шпехта–Уивера
Определение 1. Пусть K — поле, а X — множество. Определим K-ли-
нейные отображения D,R : K〈X 〉 →→ K〈X 〉 на мономах следующим
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образом: D(X1 · · ·Xn) = nX1 · · ·Xn для любых X1, . . . , Xn ∈ X , где
n ⩾ 0, R(1) = 0, R(X) = X для любого X ∈ X , R(X1 · · ·Xn) =
[X1, [X2, . . . , [Xn−1, Xn]] . . . ] для любых X1, . . . , Xn ∈ X , где n ⩾ 2.

Лемма 1. Пусть K — поле, X — множество, а (K〈X 〉, µ, η, δ, ε, S) —
это K〈X 〉 со стандартной структурой алгебры Хопфа. Тогда

µ ◦ (D ⊗ S) ◦ δ = R. (1)

Доказательство. Достаточно проверить формулу (1) на мономах. Ра-
венство (µ ◦ (D⊗ S) ◦ δ)(1) = R(1) проверяется непосредственно. Пусть
X1, . . . , Xn ∈ X , где n ⩾ 1. Тогда

(µ ◦ (D ⊗ S) ◦ δ)(X1 · · ·Xn) =

=
∑

(c1,...,cn)∈{0,1}n

(−1)
∑n

i=1(1−ci)(
n∑
i=1

ci)Xc1
1 · · ·X

cn
n X

1−cn
n · · ·X1−c1

1 =

=
∑

(c1,...,cn)∈{0,1}n

(−1)
∑n

i=1(1−ci)(
n∑
i=1

ci)Xc1
1 · · ·X

cn−1
n−1 XnX

1−cn−1
n−1 · · ·X1−c1

1 =

=
∑

(c1,...,cn−1)∈{0,1}n−1

(−1)
∑n−1

i=1 (1−ci)Xc1
1 · · ·X

cn−1
n−1 XnX

1−cn−1
n−1 · · ·X1−c1

1 =

= R(X1 · · ·Xn).

Теорема 1 (КРИТЕРИИ ФРИДРИХСА И ДЫНКИНА–ШПЕХТА–УИВЕРА).
Пусть K — поле, характеристика которого равна нулю, X — мно-
жество, (K〈X 〉, µ, η, δ, ε, S) — это K〈X 〉 со стандартной структурой
алгебры Хопфа, а f — элемент K〈X 〉. Тогда следующие условия экви-
валентны:

а) Многочлен f является K-линейной комбинацией кратных ком-
мутаторов элементов X ;

б) Выполняется равенство δ(f) = f⊗1+1⊗f (критерий Фридрихса);

в) Выполняются равенства ε(f) = 0 и R(f) = D(f) (критерий Дын-
кина –Шпехта –Уивера).
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Доказательство. Импликация (в) =⇒ (а) очевидна, а импликация
(а) =⇒ (б) следует из классической формулы [g⊗1+1⊗g, h⊗1+1⊗h] =
[g, h] ⊗ 1 + 1 ⊗ [g, h], где g, h ∈ K〈X 〉, — множество {d ∈ K〈X 〉 | δ(d) =
d⊗ 1 + 1⊗ d} является подалгеброй Ли в K〈X 〉. Осталось доказать им-
пликацию (б) =⇒ (в). Пусть f удовлетворяет условию (б). Применяя
отображение ε ⊗ Id к обеим сторонам равенства δ(f) = f ⊗ 1 + 1 ⊗ f
получаем равенство f = ε(f)1 + ε(1)f = ε(f) + f , откуда следует, что
ε(f) = 0. Подставив выражение δ(f) = f ⊗ 1 + 1 ⊗ f в формулу (1),
получаем, что D(f) = D(f)S(1) +D(1)S(F ) = R(f).

Теорема Бейкера–Кэмпбелла–Хаусдорфа
Определение 2 (РЯД БЕЙКЕРА –КЭМПБЕЛЛА–ХАУСДОРФА). Следу-
ющий формальный ряд называется рядом Бейкера –Кэмпбелла –Хау-
сдорфа:

log(eXeY ) =
∞∑
k=1

(−1)k−1

k

( ∞∑
m,n=0

XmY n

m!n!
− 1

)k
=

=
∞∑
k=1

∑
m1+n1>0

· · ·
∑

mk+nk>0

(−1)k−1

k

Xm1Y n1 · · ·XmkY nk

m1!n1! · · ·mk!nk!
∈ Q〈〈X,Y 〉〉.

(2)

Теорема 2 (ТЕОРЕМА БЕЙКЕРА –КЭМПБЕЛЛА–ХАУСДОРФА). Все од-
нородные компоненты ряда Бейкера –Кэмпбелла –Хаусдорфа, то есть
ряда log(eXeY ) ∈ Q〈〈X,Y 〉〉, представляются в виде Q-линейных ком-
бинаций кратных коммутаторов переменных X и Y .

Набросок доказательства. Гомоморфизм δ : Q〈X,Y 〉 → Q〈X,Y 〉⊗Q2 ∼=
Q〈X1, Y1〉〈X2, Y2〉, переводящий X в X ⊗ 1 + 1 ⊗ X, а Y в Y ⊗ 1 +
1 ⊗ Y , имеет единственное продолжение до непрерывного в стандарт-
ной топологии на формальных рядах отображения δ : Q〈〈X,Y 〉〉 →
Q〈〈X1, Y1〉〉〈〈X2, Y2〉〉 ∼=

∏∞
m,n=0(Q〈X,Y 〉m ⊗Q Q〈X,Y 〉n) ⊃ Q〈〈X,Y 〉〉⊗Q2.

Осталось заметить, что экспонента задаёт биекцию между элемента-
ми f ∈ Q〈〈X,Y 〉〉 с постоянным членом 0, удовлетворяющими условию
δ(f) = f ⊗ 1 + 1 ⊗ f , и элементами g ∈ Q〈〈X,Y 〉〉 с постоянным чле-
ном 1, удовлетворяющими условию δ(g) = g ⊗ g, а потом использовать
теорему 1, а точнее, критерий Фридрихса.
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Формула Дынкина для ряда БКХ
Определение 3 (ИДЕМПОТЕНТ ДЫНКИНА). Пусть K — поле характе-
ристики ноль, а X — конечное множество. Тогда идемпотентом Дын-
кина называется K-линейное и непрерывное в стандартной топологии
на K〈〈X 〉〉 отображение P : K〈〈X 〉〉 → K〈〈X 〉〉, такое что P (X1 · · ·Xn) =
1
nR(X1 · · ·Xn) для любых X1, . . . , Xn ∈ X , где n ⩾ 1, а P (1) = 0.

Наблюдение 1. Пусть K — поле характеристики ноль, а X — конечное
множество. Тогда идемпотент Дынкина P : K〈〈X 〉〉 → K〈〈X 〉〉 идемпо-
тентен, то есть P ◦P = P , а образ P совпадает с рядами, все однородные
компоненты которых представляются в виде K-линейных комбинаций
кратных коммутаторов элементов X .

Теорема 3 (ФОРМУЛА ДЫНКИНА). В кольце Q〈〈X,Y 〉〉 выполняется
следующее соотношение, которое называется формулой Дынкина для
ряда Бейкера –Кэмпбелла –Хаусдорфа, или же формулой Бейкера –
Кэмпбелла –Хаусдорфа –Дынкина:

log(eXeY ) =
∞∑
k=1

∑
m1+n1>0

· · ·
∑

mk+nk>0

(−1)k−1

k
∑k

i=1(mi + ni)
∏k
j=1mj !nj !

×

×[X, [X, . . . , [X︸ ︷︷ ︸
m1

, [Y, [Y, . . . , [Y︸ ︷︷ ︸
n1

, . . . , [X, [X, . . . , [X︸ ︷︷ ︸
mk

, [Y, [Y, . . . , Y︸ ︷︷ ︸
nk

]] . . . ]].
(3)

Доказательство. Применим идемпотент Дынкина к формуле (2).



Глава 12

Леммы из гомологической
алгебры

12.1. Лемма о четырёх гомоморфизмах
Наблюдение 1. Пусть R — ассоциативное унитальное кольцо, M —
R-модуль с подмодулем M ′ ⊂ M и фактормодулем M ′′ := M/M ′, а
N ⊂ M — подмодуль M , такой что N ∩M ′ = M ′, то есть M ′ ⊂ N , и
образ N в M ′′ равен M ′′, то есть N +M ′ = M . Тогда N = M .

Теорема 1 (4-ЛЕММА). Пусть R — ассоциативное унитальное кольцо,
(1) — коммутативный квадрат R-модулей, а ρ : Ker(α) → Ker(α′)
и ρ′ : Coker(α) → Coker(α′) — индуцированные гомоморфизмы. Тогда
одновременная сюръективность ρ и инъективность ρ′ эквивалентна
точности тотального комплекса (2) квадрата (1) в среднем члене.

A B

C D

α

β β′

α′

(1) 0→ A
α×̄β−−−→ B ⊕ C (−β′)t̄α′

−−−−−−→ D → 0 (2)

Доказательство. Пусть ι : C → B⊕C и π : B⊕C → B — стандартные
вложение и проекция, а B ⊂ Z ⊂ B ⊕ C — границы и циклы комплек-
са (2) в среднем члене. Тогда условие сюръективности ρ эквивалентно
условию ι−1(B) = ι−1(Z), а инъективности ρ′ — условию π(B) = π(Z).
Эти два условия вместе эквивалентны условию B = Z.
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Наблюдение 2. В обозначениях теоремы 1 инъективность ρ эквива-
лентна точности (2) в A, а сюръективность ρ′ — точности (2) в D.

Наблюдение 3. В обозначениях теоремы 1 декартовость/кодекарто-
вость квадрата (1) эквивалентны точности слева/справа соответственно
его тотального комплекса (2).

12.2. Квадрат суммы-пересечения
Теорема 1 (КВАДРАТ СУММЫ-ПЕРЕСЕЧЕНИЯ). Пусть V0, V1 ⊂ V — мо-
дули над ассоцативным унитальным кольцом R. Тогда имеем два сле-
дующих бидекартовых коммутативных квадрата, называемых «квад-
рат суммы-пересечения» и «факторквадрат суммы-пересечения»:

V0 ∩ V1 V1 V/(V0 ∩ V1) V/V1

V0 V0 + V1, V/V0 V/(V0 + V1).

Доказательство (из двух частей).

Часть 1. По универсальному свойству гомоморфизма включения пер-
вый квадрат декартов, помимо этого гомоморфизм V0 ⊕ V1 → V0 + V1
из его тотального комплекса сюръективен.

Часть 2. По универсальному свойству гомоморфизма факторизации
второй квадрат кодекартов, помимо этого гомоморфизм V/(V0 ∩ V1)→
(V/V0)⊕ (V/V1) из его тотального комплекса инъективен.

Следствие 1 (ИЗОМОРФИЗМ СУММЫ-ПЕРЕСЕЧЕНИЯ). В обозначениях
теоремы 1 квадрат суммы-пересечения индуцирует следующий изо-
морфизм между коядрами: V0/(V0 ∩ V1) ∼−→ (V0 + V1)/V1.

Наблюдение 1 (АМАЛЬГАМИРОВАННАЯ СУММА НАД ОБЩИМ ПОДМО-
ДУЛЕМ). Пусть R — ассоциативное унитальное кольцо, а V0 и V1 —
R-модули с общим подмодулем V01. Тогда индуцированные гомомор-
физмы V0 → V0 tV01 V1 →V1 инъективны и V01 = V0 ×V0tV01V1 V1.
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Наблюдение 2 (РАССЛОЕННОЕ ПРОИЗВЕДЕНИЕ НАД ОБЩИМ ФАКТОР-
МОДУЛЕМ). Пусть R — ассоциативное унитальное кольцо, а V ′

0 и V ′
1

— R-модули с общим фактормодулем V ′. Тогда индуцированные гомо-
морфизмы V ′

0 →V ′
0 ×V ′ V ′

1 → V ′
1 сюръективны и V ′ = V ′

0 tV ′
0×V ′V ′

1
V ′

1 .

12.3. Критерий Бэра инъективности модуля
Теорема 1 (КРИТЕРИЙ БЭРА). Модуль Q над ассоциативным униталь-
ным кольцом R является инъективным тогда и только тогда, когда
для любого левого идеала I ⊂ R любой гомоморфизм R-модулей I→ Q
продолжается до гомоморфизма R-модулей R→ Q.

Доказательство. Часть «только тогда» напрямую следует из опреде-
ления инъективности. Докажем часть «тогда». Пусть M — R-модуль.
Пусть S — это множество гомоморфизмов из подмодулей модуля M
в Q, упорядоченных так, что быть меньше значит быть ограничением.
К S можно применить лемму Цорна, и получить, что каждый элемент
S мажорируется максимальным. Пусть f : N → Q, где N ⊂ M , —
максимальный элемент S. Пусть N 6= M . Пусть C — циклический под-
модуль вM , порождённый некоторым a ∈M \N . По теореме о квадрате
суммы-пересечения (теорема 12.2.1) сумма двух подмодулей является
их абстрактной амальгамированной суммой над их пересечением, по-
этому чтобы продолжить f : N → Q до гомоморфизма N + C → Q,
и, тем самым, прийти к противоречию, нам нужно найти гомоморфизм
C → Q, совпадающий с f наN∩C. То есть нам достаточно доказать, что
гомоморфизмы в Q продолжаются с подмодулей циклических модулей
на сами циклические модули. Так как циклические модули изоморфны
фактормодулям R, то нам достаточно доказать, что гомоморфизмы в
Q продолжаются с подмодулей R на само R.





Глава 13

Теория полей

13.1. Теория Галуа
Большинство материала этого раздела основано на курсе по теории Га-
луа М. Вербицкого [16]. Помимо этого использовался учебник Джеймса
Милна [26].

Диагонализуемые алгебры и расширения Галуа

Определение 1 (ДИАГОНАЛИЗУЕМАЯ АЛГЕБРА). Конечномерная ассо-
циативная коммутативная унитальная алгебра A над полем k называет-
ся диагонализуемой над полем K/k, если K-алгебра K⊗kA изоморфна
K-алгебре K×I для какого-то конечного множества I.

Замечание 1. В ситуации определения 1 изоморфизм K ⊗k A
∼−→ K×I

называется диагонализацией.

Определение 2 (РАСШИРЕНИЕ ГАЛУА). Конечное расширение полей
K/k называется расширением Галуа, если k-алгебра K диагонализуема
над K.

Определение 3 (ГРУППА ГАЛУА). Пусть K/k — конечное расширение
Галуа. Тогда его группой Галуа называется группа Autk-ring(K).
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Скрученное групповое кольцо
Определение 4 (СКРУЧЕННОЕ ГРУППОВОЕ КОЛЬЦО). Пусть R — ас-
социативное унитальное кольцо, G — группа, а ρ : G → AutRing(R),
g 7→ (λ 7→ λg ) — действие G на R. Определим скрученное групповое
кольцо R[⋊ρG] как фактор копроизведения ассоциативных унитальных
колец R и Z[G] по соотношениям gλ = λg g, где g ∈ G, λ ∈ R.

Замечание 2. Из определения 4 сразу следует, что модуль над скру-
ченным групповым кольцом R[⋊ρG] — это R-модуль с ρ-полулинейным
действием G. Примером является само R с действием G.

Наблюдение 1. Если в условиях определения 4 кольцо R коммута-
тивно, то антиавтоморфизмы g 7→ g−1 : G ∼−→ Go и λ 7→ λ : R ∼−→ Ro

порядка два индуцируют антиавтоморфизм R[⋊G] ∼−→ R[⋊G]o порядка
два, который переводит R[⋊G]o-модули в R[⋊G]-модули, и наоборот.

Наблюдение 2. В обозначениях определения 4 гомоморфизм R-моду-
лей (αg)g∈G 7→ αgg : R⊕G → R[⋊ρG] биективен.

Изоморфизм диагонализации
Наблюдение 3. Пусть K — поле, а I — конечное множество. Тогда
гомоморфизмы K-алгебр K×I → K — это в точности проекции на со-
множители.

Теорема 1. Пусть A — конечномерная ассоциативная коммутатив-
ная унитальная алгебра над полем k, а θ : K⊗kA

∼−→ K×I — её диагона-
лизация над расширением полей K/k. Тогда существует единственная
перенумерация I ∼−→ S := Homk-ring(A,K), которая переводит в θ гомо-
морфизм K-алгебр α⊗ a 7→ (αϕ(a))ϕ∈S : K ⊗k A

∼−→ K×S.

Доказательство. Нужной перенумерацией является сквозная биекция
I

∼−→ HomK-ring(K×I ,K) ∼−→ HomK-ring(K ⊗k A,K) ∼−→ Homk-ring(A,K).
Первая из этих трёх биекций взята из наблюдения 3, а последняя сле-
дует из универсального свойства тензорного произведения.

Наблюдение 4. В обозначениях теоремы 1 группа G := Autk-ring(K)
действует на K ⊗k A через левый сомножитель. Помимо этого, дей-
ствия G на S и K индуцируют действие G на K×S = Map(S,K) сопря-
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жением. Изоморфизм диагонализации K ⊗k A
∼−→ K×S эквивариантен

относительно этих действий.

Теорема 2. Пусть K/k — конечное расширение Галуа, G — его группа
Галуа, а K[⋊G] — скрученное групповое кольцо. Тогда гомоморфизм
K[⋊G]-бимодулей α⊗ β 7→ α(

∑
g∈G g)β : K ⊗k K → K[⋊G] биективен.

Доказательство. Отображение из формулировки теоремы 2 получает-
ся композицией отображения из формулировки теоремы 1 для A = K
и биективного отображения (αg)g∈G 7→

∑
g∈G αgg : K×G → K[⋊G].

Замечание 3. Изоморфизм теоремы 2 тоже иногда будет называться
изоморфизмом диагонализации.

Основная теорема теории Галуа
Обозначение 1 (ИНВАРИАНТЫ ДЕЙСТВИЯ). Если G — группа, действу-
ющая на множестве X, то XG := {x ∈ X | g(x) = x для любого g ∈ G}.

Лемма 1. Пусть K/k — конечное расширение Галуа, G — его группа
Галуа, а H ⊂ G — её подгруппа. Тогда KH = k тогда и только тогда,
когда H = G.

Доказательство. Практически очевидно из следующей цепочки изо-
морфизмов: K⊗k (KH) ∼= (K⊗kK){1}×H ∼= (K×G){1}×H ∼= K×(G/H).

Соглашение 1. ПустьK/k — расширение полей. Условимся, что струк-
тура K-алгебры на кольце K ⊗k K по умолчанию будет задаваться го-
моморфизмом α 7→ α⊗ 1 : K → K ⊗k K.

Теорема 3. Пусть k ⊂ E ⊂ K — последовательность вложенных по-
лей, причём K/k — конечное расширение Галуа. Тогда K/E — конечное
расширение Галуа.

Доказательство. Очевидная сюръекция K×I ∼= K ⊗k K → K ⊗E K
алгебр над K индуцирует изоморфизм K×J ∼= K ⊗E K алгебр над K
для какого-то подмножества J ⊂ I.
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Теорема 4 (ОСНОВНАЯ ТЕОРЕМА ТЕОРИИ ГАЛУА). Пусть K/k — ко-
нечное расширение Галуа, G — его группа Галуа, G — множество под-
групп группы G, а K — множество подполей поля K, содержащих поле
k. Тогда отображения H 7→ KH : G →← K : AutE-ring(K) 7→E являются
взаимно обратными биекциями.

Набросок доказательства. Утверждение тривиальным образом следу-
ет из теоремы 3 и леммы 1.

Эквивалентность категорий
Теорема 5. Пусть K/k — конечное расширение Галуа, G — его группа
Галуа, S — категория конечных G-множеств, A — категория конечно-
мерных ассоциативных коммутативных унитальных k-алгебр, диаго-
нализуемых над K. Тогда функторы S : A → So, A 7→ Homk-ring(A,K)
и A : So → A, S 7→ HomG-sets(S,K) корректно определены и вместе
с очевидными естественными преобразованиями η : IdA → A ◦ S и
ε : S ◦ A→ IdSo задают эквивалентность категорий.

Доказательство. Во-первых, так как кольцо K целостно, то функтор
Homk-ring(−,K) : k-ring → G-setso сохраняет конечные произведения, а
HomG-sets(−,K) : G-setso → k-ring сохраняет их тавтологически.

Во-вторых, для любого G-множества вида G/H, где H ⊂ G — под-
группа, выполняются изоморфизмы ϕ 7→ ϕ([1]) : HomG-sets(G/H,K) ∼−→
KH и K ⊗k (KH) ∼= (K ⊗k K){1}×H ∼= (K×G){1}×H ∼= K×(G/H).

В-третьих, для любого A ∈ Ob(A) выполняются изоморфизмы A ∼=
(K ⊗k A)G×{1} ∼= (K× Homk-ring(A,K))G×{1} ∼= Map(Homk-ring(A,K),K)G ∼=
HomG-sets(Homk-ring(A,K),K).

Расширения Галуа как максимально симметричные
расширения
Теорема 6. ПустьK/k и E/k — два конечных расширения полей. Тогда
если |Homk-ring(E,K)| = [E : k], то k-алгебра E диагонализуема над K.

Доказательство (из пяти частей).

Часть 1. Сначала предположим, что расширение E/k примитивно и
зафиксируем изоморфизм E ∼−→ k[X]/P (X). Так как |Homk-ring(E,K)| =
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[E : k], то (P (X)) = (
∏
α∈S(X − α)) в K[X], где S ⊂ K. Получаем

цепочку изоморфизмов K⊗kE ∼−→ K⊗k (k[X]/P (X)) ∼−→ K[X]/P (X) ∼−→
K[X]/

∏
α∈S(X − α) ∼−→

∏
α∈S(K[X]/(X − α)) ∼−→

∏
α∈SK.

Часть 2. Теперь рассмотрим общий случай. Выберем башню полей k =
E0 ⊂ E1 ⊂ · · · ⊂ En = E, такую что для любого i = 1, . . . , n расширение
Ei/Ei−1 примитивно.

Часть 3. Из условия следует, что |HomE0-ring(E1,K)| = [E1 : E0], по-
этому, согласно части 1, имеем следующий изоморфизм алгебр над K:
K⊗E0 E1

∼−→
⊕

ϕ∈HomE0-ring(E1,K)Kϕ, где Kϕ — это копия K, рассмотрен-
ная как E1-алгебра с помощью ϕ : E1 → K.

Часть 4. Естественно, из условия также следует, что для произвольно-
го ϕ ∈ HomE0-ring(E1,K) выполняется равенство |HomE1-ring(E2,Kϕ)| =
[E2 : E1], поэтому, согласно части 1, имеем следующий изоморфизм ал-
гебр над K: Kϕ ⊗E1 E2

∼−→
⊕

ψ∈HomE1-ring(E2,Kϕ)Kψ, где Kψ — это копия
K, рассмотренная как E2-алгебра с помощью ψ : E2 → K.

Часть 5. Продолжая таким образом, мы с помощью полученных изо-
морфизмов и изоморфизмов дистрибутивности тензорного произведе-
ния диагонализуем K-алгебру K⊗k E ∼= K⊗E0 E1⊗E1 · · · ⊗En−1 En.

Следствие 1. Пусть K/k — конечное расширение полей, такое что
|Autk-ring(K)| = [K : k]. Тогда K/k — расширение Галуа.

Расширения Галуа и сепарабельные многочлены
Теорема 7. Пусть k — поле, P (X) ∈ k[X] — многочлен, E/k — поле
над k, порождённое как k-алгебра корнями P (X) в E, а K/k — поле
над k, такое что P (X) разлагается на линейные множители в K[X].
Тогда N := |Homk-ring(E,K)| ⩾ 1 и N = [E : k], если P (X) сепарабелен.

Доказательство (из двух частей).

Часть 1. Выберем башню полей k = E0 ⊂ E1 ⊂ · · · ⊂ En = E, такую
что Ei := Ei−1[xi]

∼←− Ei−1[Xi]/Pi(Xi) : xi 7→Xi и P (xi) = 0 для любого
индекса i = 1, . . . , n.
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Часть 2. Теперь заметим, что для любого i = 1, . . . , n и любого k-го-
моморфизма ϕ : Ei−1 → K многочлен Pi

ϕ (X) делит P (X) = Pϕ (X) в
Ei−1
ϕ [X] ⊂ K[X], а потому Pi

ϕ (X) разлагается на линейные множи-
тели в K[X] и сепарабелен, если P (X) сепарабелен, откуда следует,
что ϕ имеет продолжение до Ei → K и имеет [Ei : Ei−1] = deg(Pi(X))
продолжений до Ei → K, если P (X) сепарабелен.

Теорема 8. Пусть G — конечная группа, действующая на поле K, а
α ∈ K — элемент K. Тогда многочлен P (X) :=

∏
β∈O(X − β) ∈ K[X],

где O — это орбита α под действием G, является минимальным
многочленом α над k := KG.

Доказательство. С одной стороны, очевидно, что все коэффициенты
P (X) инвариантны относительно действия G, а потому лежат в k. С
другой стороны, очевидно, что любой многочлен из k[X] с корнем α
имеет в качестве корней все β ∈ O, а потому делится на P (X).

Теорема 9. Пусть E/k — конечное расширение полей, порождённое
сепарабельными элементами. Тогда существует конечное расширение
полей K/k, такое что k-алгебра E диагонализуема над K, вкладываю-
щееся в любое расширение полей K ′/k, обладающее тем же свойством.
Более того, такое K/k — расширение Галуа.

Набросок доказательства. Пусть B ⊂ E — конечное множество сепа-
рабельных элементов расширения E/k, такое что E = k[β |β ∈ B], а
P ⊂ k[X] — это множество унитальных минимальных многочленов над
k элементов B. Тогда в качестве K/k можно взять поле разложения
над k сепарабельного многочлена

∏
P (X)∈P P (X) ∈ k[X].

Следствие 2. Конечное расширение полей, порождённое сепарабельны-
ми элементами, является сепарабельным расширением. Иначе говоря,
сепарабельные элементы расширения полей образуют его подполе.

13.2. Некоторые утверждения из теории полей
Существование алгебраического замыкания
Теорема 1. Пусть k — поле. Тогда существует алгебраическое рас-
ширение полей kalg/k, такое что kalg алгебраически замкнуто.
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Доказательство. Заметим, что мощность любого алгебраического рас-
ширения k ограничена сверху мощностью k[X]. Пусть Ω — множество,
такое что k ⊂ Ω и мощность Ω строго больше мощности любого ал-
гебраического расширения k. Пусть S — это множество алгебраиче-
ских расширений k, являющихся подмножествами Ω, упорядоченное
так, что быть меньше значит быть подрасширением. Тогда к S можно
применить лемму Цорна и получить, что в S существует максимальный
элемент. Этот максимальный элемент можно взять в качестве kalg.

Цикличность конечных подгрупп мультипликативной
группы поля
Теорема 2. Пусть G — конечная группа порядка n, такая что для лю-
бого ненулевого натурального делителя d числа n выполняется нера-
венство |{g ∈ G | gd = 1}| ⩽ d. Тогда группа G циклическая.

Доказательство. Пусть d — ненулевой натуральный делитель n. Тогда
если существует h ∈ G, такой что |h:Z| = d, то, согласно условию, h:Z =
{g ∈ G | gd = 1}, а потому {g ∈ G | |g:Z| = d} = {g ∈ h:Z | |g:Z| = d} =
{x ∈ Z/nZ | |Zx| = d}. Воспользовавшись равенствами∑

d|n

|{g ∈ G | |g:Z| = d}| = |G| = |Z/nZ| =
∑
d|n

|{x ∈ Z/nZ | |Zx| = d}|

получаем, что |{g ∈ G | |g:Z| = d}| = |{x ∈ Z/nZ | |Zx| = d}| для любого
d ∈ N1, такого что d | n, в частности, для d = n.

Замечание 1. В записи доказательства теоремы 2 вертикальная черта
используется в трёх разных смыслах, что забавно.

Следствие 1. Пусть K — поле, а G := K× — его мультипликативная
группа. Тогда любая конечная подгруппа в G циклична.

Пример 1. Множество {±1,±i,±j,±k} является не циклической ко-
нечной подгруппой в мультипликативной группе тела кватернионов.
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Теорема о примитивном элементе
Теорема 3 (ТЕОРЕМА О ПРИМИТИВНОМ ЭЛЕМЕНТЕ). Пусть E/k —
конечное сепарабельное расширение полей. Тогда существует α ∈ E,
такой что E = k[α].

Доказательство. Если k конечно, а α — образующая группы E×, то
E = k[α]. Предположим, что k бесконечно. Так как поле E сепарабель-
но, то существует расширение полей K/k, такое что |Homk-ring(E,K)| =
[E : k], например, минимальное расширение Галуа поля k, содержа-
щее E, или алгебраическое замыкание k. Выберем конечное подмноже-
ство B ⊂ E, такое что E = k[β |β ∈ B], и с помощью леммы 14.3.1
найдём элемент α ∈

∑
β∈B kβ, такой что отображение ограничения

ϕ 7→ ϕ|k[α] : Homk-ring(E,K) → Homk-ring(k[α],K) инъективно. Тогда
[k[α] : k] ⩾ |Homk-ring(k[α],K)| ⩾ |Homk-ring(E,K)| = [E : k] ⩾ [k[α] : k],
откуда следует, что [k[α] : k] = [E : k] и k[α] = E.

Теорема о нормальном базисе
Наблюдение 1. Пусть M и N — артиновы и нётеровы модули над
ассоциативным унитальным кольцом R. Тогда если M⊗n ' N⊗n для
какого-то n ∈ N1, то M ' N по теореме Крулля –Шмидта.

Теорема 4 (ТЕОРЕМА О НОРМАЛЬНОМ БАЗИСЕ). Пусть K/k — конеч-
ное расширение Галуа с группой Галуа G. Тогда K изоморфно k[G] как
k[G]-модуль.

Доказательство. Кольцо k[G] действует на K ⊗k K через действие на
левый сомножитель и действует на K[⋊G] левым умножением, при-
чём эти действия согласованы с изоморфизмом диагонализации тео-
ремы 13.1.2. Осталось заметить, что K ⊗k K ' K⊕[K:k] и K[⋊G] '
k[G]⊕[K:k] как определённые выше k[G]-модули, а потому K ' k[G] как
k[G]-модуль по наблюдению 1.

Замечание 2. Приведённое доказательство теоремы 4 следует доказа-
тельству из учебника [26, с. 70].
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Теорема Дедекинда о независимости характеров
Теорема 5 (ТЕОРЕМА ДЕДЕКИНДА О НЕЗАВИСИМОСТИ ХАРАКТЕРОВ).
Пусть S — мультипликативная полугруппа, а K — поле. Тогда мно-
жество характеров S → K, то есть мультипликативных гомомор-
физмов из S в K, линейно независимо над K.

Доказательство. Полугруппа S действует на множестве S слева ле-
выми умножениями. Это действие индуцирует правое действие S на
K-модуле V := K×S . Любой характер χ : S → K как элемент V яв-
ляется общим собственным вектором для S относительно собственного
значения χ. Осталось применить теорему о том, что сумма собственных
подпространств для различных собственных значений прямая.

Замечание 3. Я узнал об этом подходе к доказательству теоремы 5 из
видеозаписи [28, лекция 5, 1:06:40].

Теорема Артина
Лемма 1. Пусть K — поле, а G — группа, действующая на K авто-
морфизмами. Пусть Ω — класс K[⋊G]-модулей, у которых все ненуле-
вые подмодули содержат ненулевые G-инвариантные элементы. Тогда
K⊕I ∈ Ω для любого конечного множества I.

Доказательство. Очевидно, что K ∈ Ω и Ω замкнуто относительно
расширений: подмодуль расширения V с помощьюW либо имеет нетри-
виальное пересечение с W , либо изоморфен подмодулю V .

Теорема 6 (ТЕОРЕМА АРТИНА). Пусть K — поле, а G — конечная
группа, действующая на K автоморфизмами. Тогда [K : KG] ⩽ |G|.

Доказательство. Нам нужно доказать, что любое семейство (αi)i∈I ∈
K⊕I , где I — конечное множество, такое что |I| > |G|, линейно зави-
симо над KG. Иначе говоря, уравнение

∑
i∈I αiXi = 0 имеет нетриви-

альный G-инвариантный ноль в K⊕I . Заметим, что такой ноль должен
являться нулём системы уравнений (

∑
i∈I αi

g Xi = 0)g∈G. Множество
нулей этой системы G-инвариантно, то есть является K[⋊G]-подмоду-
лем K⊕I , причём ненулевым, так как число уравнений строго меньше
числа переменных. Применение леммы 1 завершает доказательство.
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13.3. Базисы трансцендентности
Теорема 1. Пусть K — поле, k ⊂ K — его подполе, а (xi)i∈I и (yj)j∈J —
два конечных семейства элементов K, такие что K алгебраично над
k(xi | i ∈ I) и (yj)j∈J алгебраически независимо над k. Тогда |J | ⩽ |I|.

Доказательство. Докажем теорему индукцией по |J |. Случай |J | = 0
тривиален. Пусть |J | > 0. Выберем произвольный e ∈ J . Введём обо-
значение k′ := k(ye). Так как ye алгебраичен над k(xi | i ∈ I), то меж-
ду ye и (xi)i∈I существует соотношение P ∈ k[Ye, Xi | i ∈ I], такое что
degYe

(P ) > 0. Так как ye не алгебраичен над k, то существует индекс
r ∈ I, такой что degXr

(P ) > 0, откуда следует, что xr алгебраичен над
k′(xi | i ∈ I \{r}), а потому всё поле K алгебраично над k′(xi | i ∈ I \{r}),
и мы можем по индукции применить теорему к семействам (xi)i∈I\{r}
и (yj)j∈J\{e} элементов расширения полей K/k′.

Определение 1 (БАЗИС ТРАНСЦЕНДЕНТНОСТИ). Если K — поле, а k ⊂
K — его подполе, то максимальное алгебраически независимое над k
подмножество K называется базисом трансцендентности K над k.

Наблюдение 1. Пусть K — поле, а k ⊂ K — его подполе. Тогда базисы
трансцендентности K над k — это в точности минимальные подмноже-
ства S ⊂ K, такие что K алгебраично над k(s | s ∈ S).

Теорема 2. Пусть K — поле, а k ⊂ K — его подполе. Тогда все конеч-
ные базисы трансцендентности K над k равномощны.

Доказательство. Теорема 2 следует из теоремы 1, точнее, даже экви-
валентна ей.

Пример 1. Пусть k — поле, A := k[X,Y, Z]/(XY,XZ), а x, y и z —
это образы X, Y и Z соответственно в A. Тогда {x} и {y, z} — два
максимальных алгебраически независимых над k подмножества A.

Замечание 1. Я узнал о примере 1 из ответа [17] на «Mathematics Stack
Exchange».

https://math.stackexchange.com
https://math.stackexchange.com


Глава 14

Коммутативная алгебра

14.1. Базовые свойства локализации
Локализация и идеалы кольца
Обозначение 1. Пусть дано отображение множества S в ассоциатив-
ное унитальное кольцо R. Двусторонний идеал в S−1R, порождённый
образом двустороннего идеала I ⊂ R, будем обозначать через S−1I.

Обозначение 2. Если f : R → E — гомоморфизм ассоциативных уни-
тальных колец, а I ⊂ E — двусторонний идеал, то идеал f−1(I) иногда
будем обозначать через R ∩ I.

Наблюдение 1 (ЛОКАЛИЗАЦИЯ КОММУТИРУЕТ С ФАКТОРИЗАЦИЕЙ).
Пусть R — ассоциативное унитальное кольцо, S ⊂ R — множество,
а I ⊂ R — двусторонний идеал. Тогда, по универсальным свойствам
факторизации и локализации, существует единственный изоморфизм
(S−1R)/(S−1I) ∼= S−1(R/I) колец над R.

Наблюдение 2. Пусть A — ассоциативное коммутативное унитальное
кольцо, S ⊂ A — мультипликативное множество, а a ⊂ A и b ⊂ S−1A
— идеалы. Тогда S−1a = {a/s ∈ S−1A | a ∈ a, s ∈ S}, и выполняются
следующие равенства:

S−1(A ∩ b) = b, так как a

s
= a

1
· 1
s
∈ b ⇔ a

1
= a

s
· s

1
∈ b ⇔ a ∈ A ∩ b;
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A ∩ (S−1a) = Ker(A→ S−1A→ (S−1A)/(S−1a)) =
= Ker(A→ A/a→ S−1(A/a)) = {a ∈ A | ∃s ∈ S : sa ∈ a}.

Локализация и спектр кольца
Наблюдение 3. Пусть A — ассоциативное коммутативное униталь-
ное кольцо, а S ⊂ A — мультипликативное множество. Тогда условия
Ker(A → S−1A) 6= 0 и Ker(A → S−1A) = A эквивалентны наличию в S
делителя нуля из A и нуля из A соответственно. Все делители нуля в
A нильпотентны тогда и только тогда, когда для любого мультиплика-
тивного множества S ⊂ A идеал Ker(A→ S−1A) равен 0 или A.

Теорема 1. Пусть A — ассоциативное коммутативное унитальное
кольцо, а S ⊂ A — мультипликативное множество. Тогда если в A
все делители нуля нильпотентны, то то же верно и для S−1A.

Доказательство. Любая локализация S−1A имеет вид T−1A, где T ⊂ A
— мультипликативное множество, такое что S ⊂ T . Пусть T — такое
множество, а b := Ker(S−1A → T−1A). Если b = S−1(A ∩ b) 6= (0), (1),
то Ker(A→ T−1A) = A ∩ b 6= (0), (1), что противоречит условию.

Теорема 2. Пусть A — ассоциативное коммутативное унитальное
кольцо, а S ⊂ A — мультипликативное множество. Тогда если в A
все делители нуля равны нулю, то то же верно и для S−1A.

Доказательство. Предположим, что S−1A 6= 0, то есть 0 /∈ S. Пусть
T = A \ {0} — мультипликативное множество не делителей нуля в A, а
b := Ker(S−1A → T−1A). Тогда Ker(A → T−1A) = A ∩ b = 0, а потому
b = S−1(A ∩ b) = 0 и S−1A целостно как подкольцо поля T−1A.

Следствие 1. Пусть A — ассоциативное коммутативное унитальное
кольцо, а S ⊂ A — мультипликативное множество. Тогда соответ-
ствие Галуа между идеалами кольца A и идеалами кольца S−1A, ин-
дуцированное каноническим гомоморфизмом A → S−1A, индуцирует
биекцию между простыми/примарными идеалами A, дизъюнктными
с S, и простыми/примарными соответственно идеалами S−1A.

Наблюдение 4. Насыщенные мультипликативные множества в ассо-
циативном коммутативном унитальном кольце — это в точности допол-
нения объединений семейств простых идеалов.
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Покрытия спектра локализациями
Теорема 3. Пусть A — ассоциативное коммутативное унитальное
кольцо, а (Si)i∈I — семейство мультипликативных подмножеств A.
Тогда следующие условия эквивалентны:

а) Естественное отображение
⊔
i∈I Spec(ASi) → Spec(A) сюръек-

тивно, то есть семейство (Spec(ASi))i∈I покрывает Spec(A);

б) Для любого A-модуляM канонический гомоморфизмm 7→ (m1 )i∈I :
M →

∏
i∈IMSi инъективен;

в) Для любого A-модуля M если MSi = 0 для любого i ∈ I, то есть
выполняется равенство

∏
i∈IMSi = 0, то M = 0;

г) Для любого коцепного комплекса A-модулейM • если выполняется
равенство

∏
i∈I(H

0(M •))Si
∼=

∏
i∈I H0(M •

Si
) = 0, то H0(M •) = 0.

Доказательство (из трёх частей).

Импликация (а) =⇒ (б). Пусть m ∈ M переходит в 0 во всех MSi . То-
гда аннулятор m в A не дизъюнктен ни с каким из Si, а потому не
содержится ни в каком простом идеале кольца A, а потому равен A.

Импликация (в) =⇒ (а). Пусть p — простой идеал кольца A, такой что
p ∩ Si 6= ∅ для любого i ∈ I. Тогда

∏
i∈I(A/p)Si = 0, но A/p 6= 0.

Импликации (б) =⇒ (в)⇐⇒ (г). Эти импликации очевидны.

Следствие 2. Пусть A — область целостности, a ⊂ A — идеал, а
(Si)i∈I — семейство мультипликативных подмножеств A\{0}, такое
что Spec(A) =

⋃
i∈I Spec(ASi). Тогда a =

⋂
i∈I aSi ⊂ Frac(A).

Доказательство. Пусть b :=
⋂
i∈I aSi . Тогда для любого e ∈ S вложе-

ние aSe → bSe
∼= aSe , индуцированное вложением a → b, биективно, а

потому, согласно теореме 3, вложение a→ b тоже биективно.

Наблюдение 5. Пусть A — ассоциативное коммутативное унитальное
кольцо, S1, S2 ⊂ A — мультипликативные множества, M — A-модуль,
а (m1, s1) ∈ M × S1 и (m2, s2) ∈ M × S2 — две пары, такие что m1

s1
=

m2
s2

в MS1S2 . Тогда существуют r1 ∈ S1 и r2 ∈ S2, такие что для пар
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(m′
1, s

′
1) := r1 ·(m1, s1) = (r1m1, r1s1) ∈M×S1 и (m′

2, s
′
2) := r2 ·(m2, s2) =

(r2m2, r2s2) ∈M × S2 выполняется равенство s′
2m

′
1 = s′

1m
′
2.

Теорема 4. ПустьM — модуль над ассоциативным коммутативным
унитальным кольцом A, а (Si)i∈I — конечное семейство мультипли-
кативных подмножеств A, такое что семейство (Spec(ASi))i∈I по-
крывает Spec(A). Тогда последовательность (1) точна.

0→M
m7→( m

1 )i∈I−−−−−−−→
ι

⊕
i∈I

MSi

( mi
si

)i∈I 7→( mi
si

−
mj
sj

)(i,j)∈I×I

−−−−−−−−−−−−−−−−−−→
α

⊕
(i,j)∈I×I

MSiSj . (1)

Первое доказательство. Для любого e ∈ I после применения функтора
локализации по Se последовательность (1) станет точной по тривиаль-
ным причинам. Осталось применить теорему 3.

Второе доказательство. Инъективность ι следует из теоремы 3. До-
кажем, что Im(ι) = Ker(α). Пусть (mi

si
)i∈I ∈ Ker(α). Тогда, согласно на-

блюдению 5, можно предположить, что simj = sjmi для любых i, j ∈ I.
Выберем семейство (ai)i∈I элементов A, такое что

∑
i∈I siai = 1. Возь-

мём m :=
∑

i∈I aimi ∈M . Тогда sim =
∑

j∈I siajmj =
∑

j∈I sjajmi = mi

для любого i ∈ I, откуда следует, что ι(m) = (mi
si

)i∈I .

Замечание 1. Первое доказательство теоремы 4 основано на доказа-
тельстве леммы 7.13 из [11, лекция 7].

14.2. Целое замыкание
Определение и базовые свойства целых элементов
Соглашение 1 (КОЛЬЦА И АЛГЕБРЫ). В этом разделе все кольца и
алгебры считаются ассоциативными, коммутативными и унитальными.

Обозначение 1 (РАЗМЕРНОСТЬ КРУЛЛЯ). Пусть A — кольцо. Тогда в
этом разделе через dim(A) будет обозначаться размерность Крулля A.

Определение 1 (КОНЕЧНАЯ АЛГЕБРА). Алгебра над кольцом A назы-
вается конечной над A, если она конечно порождена как A-модуль.
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Теорема 1 (ДЖОЙН ДВУХ КОНЕЧНЫХ ПОДАЛГЕБР КОНЕЧЕН). Пусть
B — алгебра над кольцом A, а C и D — две её конечные подалгебры.
Тогда джойн C и D в решётке подалгебр алгебры B конечен над A.

Доказательство. Джойн C и D является образом индуцированного го-
моморфизма C ⊗A D → B, а тензорное произведение конечно порож-
дённых модулей является конечно порождённым модулем.

Определение 2 (ЦЕЛОЕ ЗАМЫКАНИЕ). Пусть B — алгебра над кольцом
A. Тогда объединение всех конечных A-подалгебр алгебры B называ-
ется целым замыканием A в B и обозначается IntB(A).

Замечание 1. Пусть B — алгебра над кольцом A. Тогда из теоремы 1
следует, что IntB(A) является A-подалгеброй в B.

Определение 3 (ЦЕЛЫЙ ЭЛЕМЕНТ). Пусть B — алгебра над кольцом
A. Элемент b ∈ B называется целым над A, если порождённая им по-
далгебра A[b] ⊂ B конечна над A, или, эквивалентно, b является корнем
унитального многочлена с коэффициентами в A, то есть bn =

∑n−1
i=0 aib

i

для какого-то n ∈ N1 и каких-то ai ∈ A, где 0 ⩽ i ⩽ n− 1.

Теорема 2 (ВСЕ ЭЛЕМЕНТЫ КОНЕЧНОЙ АЛГЕБРЫ ЦЕЛЫЕ). Пусть B —
конечная алгебра над кольцом A. Тогда любой элемент b ∈ B является
целым над A.

Первое доказательство. Применим теорему Гамильтона –Кэли к эндо-
морфизму x 7→ bx : B → B конечно порождённого A-модуля B.

Второе доказательство (из двух частей).

Часть 1. Если кольцо A нётерово, например, является полем или коль-
цом Z, то теорема верна автоматически. Сведём общий случай к этому.

Часть 2. Пусть (bi)i∈I — конечное семейство образующих A-модуля B,
содержащее b, а (ci,j,k)i,j,k∈I — семейство элементов A, такое что bibj =∑

k∈I ci,j,kbk для всех i, j ∈ I. Тогда кольцо A′ := Z[ci,j,k | i, j, k ∈ I] ⊂ A
нётерово, и b лежит в конечной A′-алгебре

∑
i∈I A

′bi ⊂ B. По предыду-
щему рассуждению элемент b целый над A′, а потому и над A.

Следствие 1. Пусть B — алгебра над кольцом A. Тогда целое замы-
кание A в B состоит в точности из элементов B, целых над A.
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Замечание 2. Теорему 2 можно переформулировать следующим обра-
зом: «Конечно порождённая подалгебра конечной алгебры конечна».

Целое замыкание и локализация
Определение 4 (ЦЕЛОЗАМКНУТАЯ ОБЛАСТЬ). Область целостности A
называется целозамкнутой, если IntFrac(A)(A) = A.

Теорема 3 (ЦЕЛОЕ ЗАМЫКАНИЕ ЛОКАЛИЗАЦИИ). Пусть B — алгебра
над кольцом A, а S ⊂ A — мультипликативное множество. Тогда
выполняется равенство IntS−1B(S−1A) = S−1 IntB(A).

Доказательство (из двух частей).

Часть 1. Пусть b ∈ IntB(A), а s ∈ S. Тогда

bn + a1b
n−1 + · · · + an = 0 (1)

для какого-то семейства (ai)ni=1 ∈ A×n, где n ∈ N1. Разделив уравне-
ние (1) на sn, получаем уравнение( b

s

)n
+ a1

s

( b
s

)n−1
+ · · ·+ an

sn
= 0,

откуда следует, что b
s ∈ IntS−1B(S−1A).

Часть 2. Пусть b
s ∈ IntS−1B(S−1A), где (b, s) ∈ B × S. Тогда( b

s

)n
+ a1
s1

( b
s

)n−1
+ · · ·+ an

sn
= 0 (2)

для какого-то семейства (ai, si)ni=1 ∈ (A × S)×n, где n ∈ N1. Приведя
дроби b

s ,
a1
s1
, . . . , an

sn
к общему знаменателю, можно считать, что s = s1 =

· · · = sn. Домножив уравнение (2) на sn, получаем уравнение

bn + a1b
n−1 + · · ·+ ans

n−1 = 0,

откуда следует, что b ∈ IntB(A) и b
s ∈ S

−1 IntB(A).

Следствие 2 (ЦЕЛОЗАМКНУТОСТЬ НАСЛЕДУЕТСЯ ЛОКАЛИЗАЦИЯМИ).
Пусть A — целозамкнутая область целостности, а S ⊂ A \ {0} —
мультипликативное множество. Тогда кольцо S−1A целозамкнуто.
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Наблюдение 1 (ЛОКАЛЬНОСТЬ ЦЕЛОЗАМКНУТОСТИ). Пусть A — об-
ласть целостности, а (Si)i∈I — семейство мультипликативных подмно-
жеств A\{0}, такое что A =

⋂
i∈I S

−1
i A и для любого i ∈ I кольцо S−1

i A
целозамкнуто. Тогда A тоже целозамкнуто.

Теорема 4 (ЦЕЛОЗАМКНУТОСТЬ ФАКТОРИАЛЬНЫХ КОЛЕЦ). Пусть A
— факториальное кольцо. Тогда A целозамкнуто.

Доказательство. Пусть x ∈ IntFrac(A)(A). Тогда xn =
∑n

i=1 aix
n−i, для

какого-то семейства (ai)ni=1 ∈ A×n, где n ∈ N1. Помимо этого существу-
ют a, b ∈ A, такие что x = a

b и Aa + Ab = A. Предположим, что x /∈ A.
Тогда b /∈ A×, а потому существует простой элемент π ∈ A, такой что
π | b, но π ∤ a, что противоречит соотношению an =

∑n
i=1 aia

n−ibi.

Теорема о несравнимости и теорема о подъёме
Теорема 5. Пусть A — целостное кольцо, такое что Frac(A) цело над
A. Тогда выполняется равенство A = Frac(A).

Доказательство. Пусть a ∈ A \ {0}. Так как элемент a−1 ∈ Frac(A)
целый над A, то a−n ∈

∑n−1
i=0 Aa

−i для какого-то n ∈ N1. Умножив это
соотношение на an−1, получаем, что a−1 ∈ A.

Теорема 6. Пусть B — целостное кольцо, целое над своим подкольцом
A. Тогда A = Frac(A) тогда и только тогда, когда B = Frac(B).

Доказательство. Если B — поле, то Frac(A) ⊂ B цело над A, а потому
совпадает с A. Если A — поле, то, Frac(B) алгебраично над A, а потому
цело над B, а потому совпадает с B.

Замечание 3. Теорема 6 — это частный случай того факта, что размер-
ность Крулля не меняется при целых расширениях (теорема 10).

Следствие 3. Пусть B — целая алгебра над кольцом A. Тогда простой
идеал q кольца B является максимальным тогда и только тогда, когда
простой идеал p := q ∩A кольца A является максимальным.

Доказательство. Применим теорему 6 к вложению A/p→ B/q.
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Теорема 7 (ТЕОРЕМА О НЕСРАВНИМОСТИ). Пусть B — целая алгебра
над своим подкольцом A, а q,Q ⊂ B — простые идеалы B, такие что
q ⊂ Q и q ∩A = Q ∩A. Тогда q = Q.

Доказательство. Пусть p := q ∩ A = Q ∩ A, а S := A \ p. Тогда BS
является целой алгеброй над своим подкольцом AS , а qBS и QBS — это
простые идеалы BS , такие что qBS ∩ AS = QBS ∩ AS = pAS . Так как
pAS ⊂ AS — максимальный идеал, то qBS = QBS согласно следствию 3.
Отсюда следует, что q = qBS ∩B = QBS ∩B = Q.

Теорема 8 (ТЕОРЕМА О ПОДНЯТИИ ПРОСТЫХ). Пусть B — целая ал-
гебра над своим подкольцом A, а p ⊂ A — простой идеал A. Тогда
существует простой идеал q ⊂ B, такой что p = q ∩A.

Доказательство. Пусть S := A \ p. Тогда BS является целой алгеброй
над своим подкольцом AS . Пусть m ⊂ BS — какой-то максимальный
идеал BS . Тогда, согласно следствию 3, идеал m ∩ AS ⊂ AS являет-
ся максимальным идеалом локального кольца AS ∼= Ap, а потому сов-
падает с pAS . Осталось воспользоваться каноническими вложениями
Spec(BS)→ Spec(B) и Spec(AS)→ Spec(A) и взять q := m ∩B.

Теорема 9 (ТЕОРЕМА О ПОДЪЁМЕ). Пусть B — целая алгебра над
кольцом A, а p,P ∈ Spec(A) и q ⊂ Spec(B) — простые идеалы, такие
что p ⊂ P и p = q∩A. Тогда существует простой идеал Q ∈ Spec(B),
такой что q ⊂ Q и P = Q ∩A.

Доказательство. Заметим, что кольцо B/q является целой алгеброй
над своим подкольцом A/p и применим теорему 8 к простому идеалу
P/p подкольца A/p кольца B/q.

Наблюдение 2. Пусть B — целая алгебра над своим подкольцом A, а
P ⊂ A — простой идеал A. Тогда

{q ∈ Spec(B) | q ∩A ⊂ P} = {q ∈ Spec(B) | q ∩ S = ∅} 6= ∅,

где S := A \P. Поэтому теорему 8 можно вывести из теоремы 9.

Теорема 10 (РАЗМЕРНОСТЬ КРУЛЛЯ И ЦЕЛЫЕ РАСШИРЕНИЯ). Пусть
B — целая алгебра над своим подкольцом A. Тогда dim(A) = dim(B).

Доказательство. Неравенство dim(A) ⩾ dim(B) следует из теоремы 7,
а неравенство dim(A) ⩽ dim(B) следует из теорем 8 и 9.
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Целое замыкание абстрактного идеала и теорема о спуске
Определение 5 (АБСТРАКТНЫЙ ИДЕАЛ). Аддитивная абелева группа
a, снабжённая биаддитивным умножением a ⊗ b 7→ ab : a ⊗Z a → a,
называется абстрактным идеалом.

Определение 6 (ЦЕЛОЕ ЗАМЫКАНИЕ АБСТРАКТНОГО ИДЕАЛА). Пусть
A — кольцо, а a ⊂ A — абстрактный идеал. Тогда множество IntA(a) :=⋃∞
n=1{a ∈ A | an ∈

∑n−1
i=0 aai} называется целым замыканием a в A.

Наблюдение 3. Пусть A — кольцо, а a ⊂ A — абстрактный идеал.
Тогда выполняется включение a ⊂ IntA(a).

Наблюдение 4. Пусть A — кольцо, а a ⊂ A — абстрактный идеал.
Тогда если a ∈ A и an ∈ IntA(a) для какого-то n ∈ N1, то a ∈ IntA(a).

Наблюдение 5. Пусть B — кольцо, a ⊂ B — абстрактный идеал, а A ⊂
B — подкольцо, такое что Aa ⊂ a. Тогда множество A+aX+aX2+· · · ⊂
B[X] является подкольцом B[X] и выполняются равенства (3) и (4).

IntB(A) = {b ∈ B | b ∈ IntB[X](A+ aX + aX2 + · · · )} (3)
IntB(a) = {b ∈ B | bX ∈ IntB[X](A+ aX + aX2 + · · · )} (4)

Теорема 11. Пусть B — кольцо, a ⊂ B — абстрактный идеал, а
A ⊂ B — подкольцо, такое что Aa ⊂ a. Тогда IntB(a) ⊂ B является
абстрактным идеалом и IntB(A) IntB(a) ⊂ IntB(a).

Доказательство. Из наблюдения 5 сразу следует, что IntB(a) является
IntB(A)-подмодулем B. Взяв в качестве A кольцо Z+ a ⊂ B, получаем,
что IntB(a) является абстрактным идеалом.

Теорема 12. Пусть B — кольцо, a ⊂ B — абстрактный идеал, A —
подкольцо B, содержащее a, такое что Aa ⊂ a, а A := IntB(A). Тогда
выполняется равенство IntB(a) = radA(aA).

Доказательство. Включение IntB(a) ⊂ radA(aA) очевидно, а включе-
ние radA(aA) ⊂ IntB(a) следует из теоремы 11 и наблюдений 3 и 4.

Теорема 13. Пусть E — поле, a ⊂ E — абстрактный идеал, а K —
подполе E, содержащее a. Тогда для любого a ∈ IntE(a) все не старшие
коэффициенты минимального многочлена a над K целые над a.
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Доказательство. Пусть P (X) ∈ K[X] — минимальный многочлен a
над K, а E′ — поле разложения P (X) над E. Тогда если b ∈ E′ —
корень P (X), то минимальные многочлены a и b над K совпадают, а
потому существует единственный изоморфизм K[a] ∼−→ K[b] алгебр над
K, переводящий a в b, а потому b тоже является целым над a. Не стар-
шие коэффициенты P (X) лежат в абстрактном идеале, порождённом
корнями P (X) в E′, а потому являются целыми над a.

Теорема 14. Пусть задан гомоморфизм колец A→ B и простой идеал
p ⊂ A. Тогда для существования простого идеала q ⊂ B, такого что
p = q ∩A, необходимо и достаточно выполнения условия p = pB ∩A.

Доказательство. Условие p = pB ∩ A эквивалентно условию инъек-
тивности A/p → B/pB ∼= A/p ⊗A B, которое эквивалентно условию
инъективности κ(p) → κ(p) ⊗A B, где κ(p) := Frac(A/p), которое экви-
валентно условию не пустоты множества Spec(κ(p) ⊗A B), естественно
биективного слою отображения Spec(B)→ Spec(A) над p ∈ Spec(A).

Теорема 15 (ТЕОРЕМА О СПУСКЕ). Пусть B — область целостности,
целая над целозамкнутым подкольцом A ⊂ B, а p,P ∈ Spec(A) и Q ∈
Spec(B) — простые идеалы, такие что p ⊂ P и Q ∩ A = P. Тогда
существует q ∈ Spec(B), такой что q ⊂ Q и p = q ∩A.

Доказательство. Нужно доказать, что p является сужением элемента
Spec(BQ). Согласно теореме 14, это равносильно условию p = pBQ ∩A.
Пусть a ∈ pBQ ∩A и a 6= 0. Тогда a = x/y, где x ∈ pB, а y ∈ B \Q. Так
как y цел над A, то минимальное уравнение y над K := Frac(A) имеет
вид yn + a1y

n−1 + · · · + any
0 = 0, где n ∈ N1, а a1, . . . , an ∈ A. С другой

стороны, так как a ∈ K×, то минимальное уравнение x = ay над K
имеет вид xn + a1a

1xn−1 + · · · + ana
nx0 = 0, причём a1a

1, . . . , ana
n ∈ p,

так как x ∈ pB цел над p. Если a /∈ p, то a1, . . . , an ∈ p, а потому
yn ∈ pB ⊂ Q, что противоречит тому, что y ∈ B \Q.

Замечание 4. Теорема 15 — это теорема о спуске для целостного це-
лого расширения целозамкнутой области. Существует также теорема о
спуске для плоского расширения колец.
Замечание 5. Изложение целых замыканий абстрактных идеалов в этом
подразделе основано на тексте Д. Гринберга [20]. Доказательство тео-
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ремы о спуске (теоремы 15) повторяет доказательства из книг Атьи –
Макдональда [2, с. 81] и Милна [23, с. 33].

14.3. Лемма Нётер о нормализации
Лемма 1. Пусть (Pj)j∈J — конечное семейство ненулевых полиномов
от конечного семейства переменных (Xi)i∈I с коэффициентами в бес-
конечном поле Q. Пусть Z ⊂ Q — бесконечное подмножество Q. Тогда
существует точка в ZI , не являющаяся нулём ни одного из Pj.

Доказательство. Зафиксируем e ∈ I. Для произвольного j ∈ J много-
член Pj , рассмотренный как многочлен от Xe с коэффициентами в поле
рациональных дробей Q((Xi)i∈I\{e}), имеет конечное число корней. По-
этому существует число c ∈ Z, такое что после подстановки Xe = c
во все многочлены семейства (Pj)j∈J они все останутся ненулевыми, и
лемма доказывается индукцией по мощности I.

Лемма 2. Пусть K — ассоциативное коммутативное унитальное
кольцо, I — конечное множество, а f ∈ K[(Xi)i∈I ] — многочлен. Тогда
для любого e ∈ I, такого что degXe

(f) > 0, существуют автоморфизм
ϕ ∈ AutK-ring(K[(Xi)i∈I ]) и элементы n ∈ N1 и c ∈ K \ {0}, такие что
выполняется равенство ϕ(f) = cXn

e + (члены меньшей степени по Xe).

Доказательство. Для любого семейства (mi)i∈I\{e} ∈ (N1)I\{e} опреде-
лён автоморфизм ϕ : K[(Xi)i∈I ] → K[(Xi)i∈I ], такой что ϕ(Xe) = Xe и
ϕ(Xi) = Xi + Xmi

e для любого i ∈ I \ {e}. Тогда для любого семейства
(ni)i∈I ∈ (N0)I выполняется равенство

ϕ(
∏
i∈I X

ni
i ) = X

ne+
∑

i∈I\{e} nimi

e + (члены меньшей степени по Xe).

По лемме 1, взяв Q = Q и Z = N1, мы можем выбрать (mi)i∈I\{e} таким
образом, чтобы степени по Xe образов различных мономов, входящих
в f , были попарно различными, так как для любых двух различных
семейств (n′

i)i∈I , (n′′
i )i∈I ∈ (N0)I соответствующий многочлен

(n′
e +

∑
i∈I\{e} n

′
iMi)− (n′′

e +
∑

i∈I\{e} n
′′
iMi) ∈ Q[(Mi)i∈I\{e}]

не равен нулю.
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Доказательство для бесконечного поля. Предположим, что K — бес-
конечное поле. Для любого семейства (λi)i∈I\{e} ∈ KI\{e} определён
автоморфизм ϕ : K[(Xi)i∈I ] → K[(Xi)i∈I ], такой что ϕ(Xe) = Xe и
ϕ(Xi) = Xi + λiXe для любого i ∈ I \ {e}. Тогда для любого семейства
(ni)i∈I ∈ (N0)I выполняется равенство

ϕ(
∏
i∈I X

ni
i ) = (

∏
i∈I\{e} λ

ni
i )X

∑
i∈I ni

e + (члены меньшей степени по Xe).

Отсюда видно, что старший по Xe коэффициент ϕ(f) является нену-
левым полиномом от (λi)i∈I\{e}. По лемме 1, взяв Q = K и Z = K,
мы можем выбрать (λi)i∈I\{e} таким образом, чтобы этот коэффициент
был ненулевым.

Теорема 1 (ЛЕММА НЁТЕР О НОРМАЛИЗАЦИИ). Пусть A — ненуле-
вая ассоциативная коммутативная унитальная конечно порождён-
ная алгебра над полем K. Тогда существует K-подалгебра алгебры A,
изоморфная алгебре многочленов от конечного числа переменных с ко-
эффициентами в K, над которой A конечна.

Доказательство. Пусть (xi)i∈I — это конечное семейство образующих
A как K-алгебры, то есть гомоморфизм π : K[(Xi)i∈I ] → A, такой что
π(Xi) = xi для любого i ∈ I, сюръективен. Пусть 0 6= f ∈ Ker(π).
Применив лемму 2, получаем цепочку гомоморфизмов

K[(Xi)i∈I\{e}] K[(Xi)i∈I ]/(ϕ(f)) K[(Xi)i∈I ]/(f) A,ῑ ϕ−1

∼
π̄

где гомоморфизм π̄ индуцирован π, а гомоморфизм ῑ индуцирован оче-
видным вложением ι : K[(Xi)i∈I\{e}] → K[(Xi)i∈I ]. Так как кольцо
K[(Xi)i∈I ]/(ϕ(f)) конечно над K[(Xi)i∈I\{e}], то A — тоже. Мы полу-
чили, что K-алгебра A конечна над K-алгеброй с меньшим числом об-
разующих. Доказательство завершается по индукции.

14.4. Теорема Гильберта о нулях
Обобщённая лемма Зарисского
Определение 1 (КОЛЬЦО ДЖЕКОБСОНА). Ассоциативное коммутатив-
ное унитальное кольцо A называется кольцом Гильберта или кольцом
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Джекобсона, если любой простой идеал в A является пересечением всех
содержащих его максимальных идеалов.

Наблюдение 1 (ОБ ОБЛАСТЯХ ГОЛДМАНА). Пусть A — ассоциативное
коммутативное унитальное целостное кольцо. Тогда A-алгебра Frac(A)
не является конечно порождённой тогда и только тогда, когда для лю-
бого f ∈ A \ {0} кольцо A[f−1] не является полем, то есть для любого
f ∈ A\{0} существует ненулевой простой идеал p ⊂ A, такой что f /∈ p.

Замечание 1. Для полноты отметим, что ассоциативное коммутативное
унитальное целостное кольцо A, такое что A-алгебра Frac(A) конечно
порождена, называется областью Голдмана или G-областью.

Теорема 1 (ЛЕММА ЗАРИССКОГО ДЛЯ ПРОСТЫХ РАСШИРЕНИЙ ПОЛЕЙ).
Пусть K — поле. Тогда K-алгебра Frac(K[X]) = K(X) не является
конечно порождённой.

Доказательство. Достаточно доказать, чтоK[X][f−1] 6= K(X) для лю-
бого f ∈ K[X] \ K. Из элементов K[X] обратимыми в K[X][f−1] ста-
новятся в точности делители степеней f , а, например, (f − 1) ∤ fn для
любого n ∈ N0, так как fn ≡ 1 6≡ 0 (mod (f − 1)).

Пример 1. Между прочим, K[[X]][X−1] = K((X)) для любого поля K.

Теорема 2 (ХАРАКТЕРИЗАЦИЯ КОЛЕЦ ГИЛЬБЕРТА). Ассоциативное
коммутативное унитальное кольцо A является кольцом Джекобсона
тогда и только тогда, когда для любого не максимального просто-
го идеала p ⊂ A соответствующая A-алгебра Frac(A/p) не является
конечно порождённой, то есть A/p не является областью Голдмана.

Доказательство. Часть «только тогда» выводится из наблюдения 1.
Докажем часть «тогда». Пусть p ⊂ A — простой идеал, A′ := A/p,
f ∈ A′ \{0}, а m ⊂ A′[f−1] — максимальный идеал. Так как A′[f−1]/m ∼=
(A′/(A′ ∩m))[f−1] — поле, то, по условию, A′/(A′ ∩m) — поле, а потому
A′ ∩m — максимальный идеал в A′, не содержащий f .

Теорема 3 (ОБОБЩЁННАЯ ЛЕММА ЗАРИССКОГО). Ассоциативное ком-
мутативное унитальное кольцо A является кольцом Джекобсона то-
гда и только тогда, когда любая конечно порождённая A-алгебра K,
которая является полем, конечна над A.
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Доказательство (из двух частей).

Часть «тогда». Пусть p ⊂ A — простой идеал. Тогда если A-алгебра
Frac(A/p) является конечно порождённой, то, согласно условию, она ко-
нечна над A. По теореме 14.2.6 из этого следует, что p — максимальный
идеал. Согласно теореме 2 мы доказали, что A — кольцо Джекобсона.

Часть «только тогда». Сначала заметим, что можно заменить коль-
цо A на его образ в K, и считать, что A ⊂ K. Пусть (xi)i∈I — конечное
семейство элементов алгебры K, такое что K = A[xi | i ∈ I], а (xj)j∈J ,
где J ⊂ I, — максимальное алгебраически независимое над A подсе-
мейство семейства (xi)i∈I . Для каждого индекса i ∈ I \ J пусть Pi ∈
A[xj | j ∈ J ][Xi] — какое-то нетривиальное алгебраическое соотношение
между xi и (xj)j∈J , а fi ∈ A[xj | j ∈ J ] — старший по Xi коэффициент
Pi. Тогда поле K цело над кольцом A′ := A[xj | j ∈ J ][f−1

i | i ∈ I \ J ],
откуда, по теореме 14.2.6, следует, что A′ = Frac(A)(xj | j ∈ J). Так как
A′ конечно порождено как A-алгебра, то A′ = Frac(A) согласно теоре-
ме 1 и Frac(A) = A согласно теореме 2. Мы доказали, что K — конечно
порождённая целая, то есть конечная, алгебра над A.

Классическая теорема о нулях
Теорема 4 (NULLSTELLENSATZ). Пусть k — поле, kalg — его алгебраиче-
ское замыкание, A — конечно порождённая ассоциативная коммута-
тивная унитальная алгебра над k. Тогда максимальные идеалы m ⊂ A
— это в точности ядра гомоморфизмов A→ kalg над k.

Доказательство (из двух частей).

Часть 1. Пусть m ⊂ A — максимальный идеал. Тогда поле A/m яв-
ляется конечным расширением поля k по лемме Зарисского, следова-
тельно, вкладывается в kalg над k. Идеал m является ядром сквозного
гомоморфизма A→ A/m→ kalg.

Часть 2. Пусть ϕ : A→ kalg — гомоморфизм над k. Так как k-алгебра
kalg целостная и целая над k, то её подалгебра ϕ(A) — тоже, поэтому
ϕ(A) является полем по теореме 14.2.6.
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Следствие 1 («СИЛЬНАЯ ТЕОРЕМА О НУЛЯХ»). Пусть k — поле, kalg —
его алгебраическое замыкание, A — конечно порождённая ассоциатив-
ная коммутативная унитальная алгебра над k, а f ∈ A — элемент
A. Если для любого гомоморфизма ϕ : A → kalg над k выполняется
равенство ϕ(f) = 0, то f — нильпотент.

Доказательство. Пусть Af — локализация A по f . Алгебра Af явля-
ется конечно порождённой алгеброй над k: в качестве её образующих
можно взять f−1 и образующие A, но k-гомоморфизмов Af → kalg не
существует. Следовательно, Af = 0, то есть f ∈ A — нильпотент.

Замечание 2. Приведённое доказательство следствия 1 иногда называ-
ют «трюком Рабиновича».
Замечание 3. Частным случаем следствия 1 в его же обозначениях яв-
ляется факт, что если k-гомоморфизмов A → kalg не существует, то
все элементы A нильпотентны, то есть A = 0. Это объясняет название
«сильная теорема о нулях».

14.5. Лемма Накаямы для коммутативных колец
Соглашение 1 (КОЛЬЦО). В этом разделе все кольца считаются ассо-
циативными, коммутативными и унитальными.

Теорема 1 (КОММУТАТИВНАЯ ЛЕММА НАКАЯМЫ I). ПустьM — нену-
левой конечно порождённый модуль над кольцом A, а J — радикал
Джекобсона A. Тогда JM 6= M .

Первое доказательство. Частный случай теоремы 10.5.2.

Второе доказательство. Если в условиях теоремы 2 взять в качестве
a радикал Джекобсона кольца A, то элемент x будет обратимым, и из
равенства xM = 0 будет следовать равенство M = 0.

Теорема 2 (КОММУТАТИВНАЯ ЛЕММА НАКАЯМЫ II). Пусть M — ко-
нечно порождённый модуль над кольцом A, а a — идеал в A, такой
что aM = M . Тогда существует x ∈ 1 + a, такой что xM = 0.
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Первое доказательство. Выбрав произвольное конечное семейство об-
разующих M , эндоморфизм IdM можно записать матрицей с элемента-
ми в a. Осталось применить к нему теорему Гамильтона –Кэли.

Второе доказательство. Пусть S := 1 + a ⊂ A. Тогда идеал aS = aAS
кольца AS содержится в его радикале Джекобсона, и выполняется ра-
венство aSMS = MS , а потому MS = 0 согласно теореме 1, что в пред-
положении конечной порождённости M эквивалентно существованию
x ∈ S, такого что xM = 0.

Замечание 1. Теорему 2 можно воспринимать как эквивалентную пе-
реформулировку теоремы 1.

Следствие 1 (ТЕОРЕМА ВАСКОНСЕЛОСА). Пусть M — конечно по-
рождённый модуль над кольцом A. Тогда любой сюръективный A-эн-
доморфизм ϕ : M →M является изоморфизмом.

Доказательство. Эндоморфизм ϕ задаёт на M структуру A[X]-моду-
ля, такого что XM = M . Тогда, по теореме 2, существует P (X) ∈ A[X],
такой что (1− P (X)X)M = 0, то есть IdM = P (ϕ) ◦ ϕ = ϕ ◦ P (ϕ).

Следствие 2. Пусть A — ненулевое кольцо, n,m ∈ N0, а ϕ : An → Am

— сюръективный гомоморфизм A-модулей. Тогда n ⩾ m.

Доказательство. Пусть n < m. Тогда композиция ϕ и координатной
проекции (ai)mi=1 7→ (ai)ni=1 : Am → An является не биективным, но
сюръективным эндоморфизмом An, что противоречит следствию 1.

14.6. Артиновы коммутативные кольца
Соглашение 1 (КОЛЬЦО). В этом разделе все кольца считаются ассо-
циативными, коммутативными и унитальными.

Теорема 1 (ХАРАКТЕРИЗАЦИЯ КОММУТАТИВНЫХ АРТИНОВЫХ КОЛЕЦ).
Кольцо A артиново тогда и только тогда, когда A нётерово и размер-
ность Крулля A равна нулю.
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Доказательство (из двух частей).

Часть «только тогда». Пусть J — радикал Джекобсона A. Согласно
наблюдению 10.5.1 существует конечное множество M максимальных
идеалов A, такое что J =

⋂
m∈M m. Из леммы 10.5.2 и китайской теоре-

мы об остатках следует, что Jn =
∏

m∈M mn = 0 для некоего n ∈ N1, и
канонический гомоморфизм A →

∏
m∈MA/mn биективен. Для любого

m ∈M в кольце A/mn один простой идеал — образ m. Факторы конеч-
ной фильтрации A-модуля A/mn образами степеней m — это векторные
пространства над полем A/m, для которых артиновость совпадает с нё-
теровостью. Учитывая, что артиновость и нётеровость стабильны от-
носительно перехода к расширениями, подмодулям и фактормодулям,
получаем, что A нётерово и нульмерно по Круллю.

Часть «тогда». В нётеровом кольце нильрадикал нильпотентен и яв-
ляется конечным пересечением простых идеалов в соответствии с раз-
ложением на неприводимые компоненты или наблюдением 14.11.6, что
в нульмерном случае позволяет применить рассуждение, аналогичное
рассуждению из первой части доказательства.

Наблюдение 1. Пусть A — артиново кольцо. Тогда топологическое
пространство Spec(A) дискретно, а потому A ∼=

∏
p∈Spec(A)Ap.

Наблюдение 2. Локальные кольца, очевидно, не разлагаются в нетри-
виальное произведение колец. Поэтому разложение артинова кольца A
в конечное произведение локальных колец является разложением на
неразложимые, и, согласно следствию 10.1.2, его слагаемые однозначно
определены как идеалы в A.

14.7. Коммутативные положительные конусы
Соглашение 1. В этом разделе для моноидов по умолчанию исполь-
зуется мультипликативная запись.

Определение 1 (КОММУТАТИВНЫЙ ПОЛОЖИТЕЛЬНЫЙ КОНУС). Ком-
мутативный моноид M называется коммутативным положительным
конусом, если M является моноидом с сокращением и M× = 1.
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Наблюдение 1. Пусть G — коммутативная группа. Тогда для любого
коммутативного положительного конуса M ⊂ G существует единствен-
ный согласованный с умножением частичный порядок на G, такой что
G⩾1 = M . И наоборот, если G — частично упорядоченная коммутатив-
ная группа, то G⩾1 — коммутативный положительный конус.

Определение 2 (ПОРЯДОК НА ПОЛОЖИТЕЛЬНОМ КОНУСЕ). Пусть M
— коммутативный положительный конус. Определим наM стандартное
отношение частичного порядка следующим образом: для любой пары
a, b ∈M условие a ⩾ b эквивалентно условию b | a, то есть a ∈ bM .

Наблюдение 2. Пусть G — частично упорядоченная коммутативная
группа. Тогда индуцированный с G частичный порядок на коммута-
тивном положительном конусе G⩾1 совпадает со стандартным.

Определение 3 (ПРОСТЫЕ ПОЛОЖИТЕЛЬНОГО КОНУСА). Пусть M —
коммутативный положительный конус. Тогда элемент p ∈M называет-
ся простым, если множество M \ pM является подмоноидом M .

Наблюдение 3. Пусть M — коммутативный положительный конус.
Тогда множество простых элементов M является подмножеством мно-
жества минимальных нетривиальных элементов M .

Теорема 1. Пусть M — коммутативный положительный конус. То-
гда простые элементы M являются свободными образующими подмо-
ноида M , который они порождают.

Доказательство. Пусть (pi)i∈I и (lj)j∈J — конечные семейства простых
элементов M , такие что

∏
i∈I pi =

∏
j∈J lj . Тогда, так как каждый эле-

мент P := {pi | i ∈ I} делит какой-то элемент L := {lj | j ∈ J}, и наобо-
рот, то P = L, а потому можно сократить равенство

∏
i∈I pi =

∏
j∈J lj

на
∏
p∈P p =

∏
l∈L l и доказать теорему по индукции.

Наблюдение 4. Пусть M — коммутативный положительный конус, в
котором нет бесконечных строго убывающих цепочек. Тогда M порож-
дается своими минимальными нетривиальными элементами.

Наблюдение 5 (ХАРАКТЕРИЗАЦИЯ СВОБОДНЫХ КОММУТАТИВНЫХ МО-
НОИДОВ). Коммутативный моноид является свободным тогда и только
тогда, когда он является коммутативным положительным конусом, в



14.8. ФАКТОРИАЛЬНЫЕ КОЛЬЦА 177

котором нет бесконечных строго убывающих цепочек и в котором все
минимальные нетривиальные элементы являются простыми.

Определение 4 (ДОПОЛНЕНИЕ ПОДМОНОИДА). Пусть M — коммута-
тивный моноид, а N и L — подмоноиды M . Тогда L называется допол-
нением к N в M , если M = N × L.

Наблюдение 6. Пусть M — коммутативный положительный конус, а
F — свободный коммутативный подмоноид M . Тогда у F есть дополне-
ние в M тогда и только тогда, когда у любого элемента M существует
наибольший делитель в F и все простые элементы F являются просты-
ми и в M . Если N — дополнение к F в M , то N = M \

⋃
a∈F\{1} aM .

14.8. Факториальные кольца
Соглашение 1 (КОЛЬЦО). В этом разделе все кольца считаются ассо-
циативными, коммутативными и унитальными.

Определение 1 (ФАКТОРИАЛЬНОЕ КОЛЬЦО). Пусть A — кольцо. Тогда
A называется факториальным кольцом (англ. factorial ring) или обла-
стью однозначного разложения на простые (англ. unique factorization
domain, UFD), если A целостно и коммутативный мультипликативный
моноид ненулевых главных идеалов A свободен.

Наблюдение 1 (ХАРАКТЕРИЗАЦИЯ ФАКТОРИАЛЬНЫХ КОЛЕЦ). Пусть
A — область целостности, а I — мультипликативный моноид ненулевых
главных идеалов A. Тогда из наблюдения 14.7.5 следует, что A является
областью однозначного разложения на простые тогда и только тогда,
когда все максимальные элементы I\{A} являются простыми идеалами
и в I нет бесконечных строго возрастающих цепочек.

Следствие 1 (ФАКТОРИАЛЬНОСТЬ ОГИ). Области главных идеалов
являются областями однозначного разложения на простые.

Теорема 1 (ЛЕММА ГАУССА). Пусть A — факториальная область це-
лостности, K := Frac(A), а IA, IA[X] и IK[X] — мультипликативные
моноиды ненулевых главных идеалов колец A, A[X] и K[X] ∼= A[X]A\{0}
соответственно. Тогда у образа IA в IA[X] существует единственное
дополнение и канонический гомоморфизм IA[X]/IA → IK[X] биективен.
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Доказательство (из двух частей).

Часть 1. Чтобы доказать существование и единственность дополнения
у образа IA в IA[X] заметим, что у любого элемента IA[X] существует
наибольший делитель в IA и для любого простого p ∈ IA идеал pA[X] ∈
IA[X] кольца A[X] является простым, так как кольцо A[X]/(pA[X]) ∼=
(A/p)[X] целостно, после чего воспользуемся наблюдением 14.7.6.

Часть 2. Докажем биективность IA[X]/IA → IK[X]. Пусть C — кано-
ническое дополнение к IA в IA[X], изоморфное IA[X]/IA, а c′, c′′ ∈ C —
его элементы, образы которых в IK[X] совпадают. Легко проверить, что
это означает, что c′ | a′′c′′ и c′′ | a′c′ для каких-то a′, a′′ ∈ IA. Так как
IA[X] = IA × C, то отсюда следует, что c′ = c′′.

Следствие 2 (ФАКТОРИАЛЬНОСТЬ МНОГОЧЛЕНОВ). Пусть A — фак-
ториальное кольцо. Тогда кольцо A[X] тоже факториально.

Определение 2 (ПРИМИТИВНАЯ ЧАСТЬ И СОДЕРЖАНИЕ). В обозначе-
ниях теоремы 1 для любого c ∈ IA[X] ∼= IA × IK[X] соответствующая
компонента в IA называется содержанием c, а соответствующая ком-
понента в IK[X] называется примитивной частью c.

14.9. Дедекиндовы кольца
Дробные идеалы
Соглашение 1 (КОЛЬЦО). В этом разделе все кольца считаются ассо-
циативными, коммутативными и унитальными.

Обозначение 1. Пусть A — область целостности, а a — A-подмодуль
Frac(A). Тогда введём обозначение (A : a) := {x ∈ Frac(A) | xa ⊂ A}.

Определение 1 (ДРОБНЫЙ ИДЕАЛ). Пусть A — область целостности.
Тогда дробным идеалом A называется A-подмодуль a ⊂ Frac(A), такой
что (A : a) 6= 0, то есть существует t ∈ A \ {0}, такой что ta ⊂ A.

Наблюдение 1. Пусть A — область целостности, а a, b ⊂ Frac(A) —
дробные идеалы A. Тогда их произведение ab =

∑
a∈a,b∈bAab ⊂ Frac(A)

как A-подмодулей Frac(A) тоже является дробным идеалом A.
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Наблюдение 2. Пусть A — область целостности, а a ⊂ Frac(A) — нену-
левой дробный идеал A. Тогда (A : a) — тоже дробный идеал A. Если
существует A-подмодуль b ⊂ Frac(A), такой что ab = A, то b = (A : a).

Теорема 1. Пусть A — локальная область целостности. Тогда все
обратимые дробные идеалы A главные.

Доказательство. Пусть a, b ⊂ Frac(A) — дробные идеалы A, такие что
ab =

∑
a∈a,b∈bAab = A. Тогда, так как в локальном кольце сумма соб-

ственных идеалов является собственным идеалом, то существуют a ∈ A
и b ∈ B, такие что Aab = A. Отсюда следует, что Aa ·b = A и a ·Ab = A,
а потому a = Aa и b = Ab по единственности обратного.

Теорема 2. Пусть A — область целостности. Тогда все обратимые
дробные идеалы A конечно порождены.

Доказательство. Пусть a, b ⊂ Frac(A) — дробные идеалы A, такие что
ab =

∑
a∈a,b∈bAab = A. Тогда существует конечное множество Φ ⊂ a×b,

такое что
∑

(a,b)∈ΦAab = A. Пусть Φa := {a ∈ a | ({a} × b) ∩ Φ 6= ∅} и
Φb := {b ∈ b | (a × {b}) ∩ Φ 6= ∅}. Тогда (

∑
a∈Φa

Aa)(
∑

b∈Φb
Ab) = A =

(
∑

a∈Φa
Aa)b = a(

∑
b∈Φb

Ab), а потому a =
∑

a∈Φa
Aa и b =

∑
b∈Φb

Ab по
единственности обратного.

Теорема 3. Пусть A — область целостности, S ⊂ A \ {0} — муль-
типликативное множество, а a ⊂ Frac(A) — конечно порождённый
дробный идеал A. Тогда (A : a)S = (AS : aS).

Доказательство. Пусть (ai)i∈I — конечное семейство ненулевых эле-
ментов a, такое что a =

∑
i∈I Aai. Тогда (A : a)S = (A :

∑
i∈I Aai)S =

(
⋂
i∈I(A : Aai))S = (

⋂
i∈I Aa

−1
i )S =

⋂
i∈I ASa

−1
i =

⋂
i∈I(AS : ASai) =

(AS :
∑

i∈I ASai) = (AS : aS), так как локализация коммутирует с сум-
мами и конечными пересечениями.

Кольца дискретного нормирования
Определение 2 (КОЛЬЦО ДИСКРЕТНОГО НОРМИРОВАНИЯ). Локальная
область главных идеалов, которая не является полем, называется коль-
цом дискретного нормирования (англ. discrete valuation ring, DVR).
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Теорема 4. Пусть A — одномерная по Круллю локальная целозамкну-
тая область с конечно порождённым максимальным идеалом m ⊂ A.
Тогда A является кольцом дискретного нормирования.

Доказательство (из трёх частей).

Часть 1. Сначала заметим, что если a ⊂ Frac(A) — дробный идеал,
такой что am ⊊ A, то выполняется включение a ⊂ A, потому что тогда
для любого a ∈ a выполняется включение am ⊂ m, из которого, согласно
теореме Гамильтона –Кэли, следует, что a является целым над A.

Часть 2. Пусть t ∈ m \ {0}. Тогда m является радикалом tA и, так
как m конечно порождён, то существует n ∈ N1, такой что mn ⊂ tA,
или, эквивалентно, 1

tm
n ⊂ A. Последовательно применяя утверждение

из части 1 данного доказательства и используя, что 1
tA 6⊂ A, получаем,

что 1
tm

r = A для какого-то 1 ⩽ r ⩽ n. Иначе говоря, идеал mr является
обратным к дробному идеалу 1

tA, а потому совпадает с tA.

Часть 3. Мы доказали, что любой ненулевой элемент A порождает
какую-то степень m. Отсюда следует, что множество ненулевых глав-
ных идеалов A, упорядоченное обратно включению, образует ординал,
откуда следует, что A — кольцо дискретного нормирования.

Теорема 5. Пусть A — локальная область целостности, которая не
является полем. Тогда следующие условия эквивалентны:

а) Кольцо A является кольцом дискретного нормирования;

б) Кольцо A нётерово, целозамкнуто и одномерно по Круллю;

в) Все ненулевые дробные идеалы области A обратимы.

Доказательство. Импликация (б) =⇒ (а) следует из теоремы 4, им-
пликация (в) =⇒ (а) следует из теоремы 1, а импликации (а) =⇒ (б) и
(а) =⇒ (в) тривиальны.

Дедекиндовы кольца
Определение 3 (ДЕДЕКИНДОВО КОЛЬЦО). Область целостности A, та-
кая что любой ненулевой дробный идеал A обратим, называется деде-
киндовым кольцом.
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Наблюдение 3. Согласно теореме 2 все дедекиндовы кольца нётеровы.

Теорема 6. Пусть A — дедекиндово кольцо. Тогда коммутативный
мультипликативный моноид ненулевых идеалов A свободно порожда-
ется максимальными идеалами A.

Доказательство. С учётом наблюдения 3, то есть нётеровости A, сле-
дует из наблюдения 14.7.5.

Теорема 7 (ЛОКАЛИЗАЦИЯ ДЕДЕКИНДОВА КОЛЬЦА ДЕДЕКИНДОВА).
Пусть A — дедекиндово кольцо, а S ⊂ A \ {0} — мультипликатив-
ное множество. Тогда кольцо AS тоже дедекиндово.

Доказательство. Заметим, что любой ненулевой дробный идеал об-
ласти AS имеет вид aS , где a — ненулевой дробный идеал области A.
Осталось воспользоваться теоремами 2 и 3 и записать цепочку равенств
AS = (a · (A : a))S = aS · (A : a)S = aS · (AS : aS).

Теорема 8 (ЛОКАЛЬНОСТЬ ДЕДЕКИНДОВОСТИ). Пусть A — нётеро-
ва область целостности, а (Si)i∈I — семейство мультипликативных
подмножеств A\{0}, такое что Spec(A) =

⋃
i∈I Spec(ASi) и для любого

i ∈ I кольцо ASi дедекиндово. Тогда кольцо A тоже дедекиндово.

Доказательство. Пусть a — ненулевой дробный идеал A. Тогда a ко-
нечно порождён и, согласно теореме 3, для любого i ∈ I выполняется
равенство (a · (A : a))Si = aSi · (A : a)Si = aSi · (ASi : aSi) = ASi . Оста-
лось, воспользовавшись следствием 14.1.2, записать цепочку равенств
a · (A : a) =

⋂
i∈I(a · (A : a))Si =

⋂
i∈I ASi = A.

Наблюдение 4. Целостное кольцо A целозамкнуто и одномерно по
Круллю тогда и только тогда, когда для любого максимального иде-
ала m ⊂ A кольцо Am целозамкнуто и одномерно по Круллю.

Теорема 9. Пусть A — область целостности, которая не является
полем. Тогда A является дедекиндовым кольцом тогда и только тогда,
когда A нётерово, целозамкнуто и одномерно по Круллю.

Доказательство. Пусть M — это множество всех максимальных иде-
алов A. Рассмотрим семейство (A \ m)m∈M мультипликативных под-
множеств A \ {0}, обладающее свойством Spec(A) =

⋃
m∈M Spec(AA\m),

после чего применим теоремы 7, 8, 5 и наблюдение 4.
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Дополнительная характеризация дедекиндовых колец
Наблюдение 5. В любой области целостности ненулевые главные иде-
алы обратимы и обратимость произведения идеалов эквивалентна об-
ратимости всех его сомножителей.

Наблюдение 6. Согласно теореме 14.7.1 в любой области целостности
разложение обратимого идеала в произведение простых идеалов опре-
делено однозначно, если существует.

Теорема 10. Пусть A — область целостности, в которой любой иде-
ал представляется в виде произведения простых идеалов. Тогда A —
дедекиндово кольцо.

Доказательство (из двух частей).

Часть 1. Заметим, что любой ненулевой простой идеал p ⊂ A содер-
жит обратимый простой идеал — какой-то из членов простого разложе-
ния ненулевого главного идеала, который содержится в p. Поэтому если
мы докажем, что любой обратимый простой идеал A является макси-
мальным идеалом, то мы докажем, что все ненулевые простые идеалы
A обратимы, а потому все ненулевые идеалы A обратимы.

Часть 2. Пусть p ⊂ A — обратимый простой идеал, а c ⊂ A — глав-
ный идеал, такой что c 6⊂ p. Нам нужно доказать, что p + c = A.
Пусть a 7→ a : A → A/p — канонический гомоморфизм, (r1, . . . , rn)
— конечное семейство простых идеалов, такое что p + c = r1 · · · rn, а
(s1, . . . , sm) — конечное семейство простых идеалов, такое что p + c2 =
s1 · · · sm. Тогда (r1 · · · rn)2 = c2 = s1 · · · sm, и из однозначности разло-
жения ненулевого главного идеала в произведение простых следует,
что (p + c)2 = (r1 · · · rn)2 = s1 · · · sm = p + c2. Отсюда получаем, что
p = (p+ c)2 ∩ p = (p2 + c)∩ p = p2 + (c∩ p) = p2 + cp = (p+ c)p. Умножив
это равенство на дробный идеал (A : p), получаем, что p + c = A.

14.10. Конечные модули над областями главных
идеалов

Этот раздел представляет собой краткий конспект стандартного дока-
зательства и добавлен для полноты.
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Соглашение 1. В этом разделе все кольца считаются коммутативны-
ми, ассоциативными и унитальными.

Наблюдение 1. Пусть A — кольцо главных идеалов. Тогда A нётеро-
во, а потому любой конечно порождённый A-модуль является конеч-
но представимым, то есть является коядром какого-то гомоморфизма
v 7→ xv : AJ → AI , где x ∈ MI,J(A), а I и J — конечные множества,
причём заменам базисов v 7→ gv : AJ ∼−→ AJ и v 7→ hv : AI ∼−→ AI , где
g ∈ GLJ(A) и h ∈ GLI(A), соответствует замена x на hxg−1.

Лемма 1. Пусть A — область целостности, a, b, c ∈ A и Aa + Ab =
Ac 6= 0, то есть существуют ca, ac, bc ∈ A, такие что caa+cbb = c 6= 0,
acc = a, bcc = b. Тогда ( ca cb

−bc ac
) ∈ GL2(A) и ( c0 ) = ( ca cb

−bc ac
)( ab ).

Доказательство. Подставив a = acc и b = bcc в c = caa+cbb и сократив
на c, получаем, что det( ca cb

−bc ac
) = caac + cbbc = 1.

Теорема 1. Пусть A — область главных идеалов, x ∈ MI,J(A), где I
и J — конечные множества. Тогда множество X := GLI(A)xGLJ(A)
содержит матрицу, у которой в каждой строке и в каждом столбце
максимум один ненулевой элемент.

Набросок доказательства. Можно предположить, что I, J 6= ∅. По нё-
теровости A cуществуют y = (yi,j)i∈I,j∈J ∈ X и (i1, j1) ∈ I×J , такие что
идеал Ayi1,j1 максимален среди идеалов вида Azi′,j′ для (zi,j)i∈I,j∈J ∈ X
и (i′, j′) ∈ I × J . Тогда yi1,j , yi,j1 ∈ Ayi1,j1 для всех i ∈ I и j ∈ J , так
как иначе мы могли бы применить лемму 1 и получить противоречие
с определением yi1,j1 . Отсюда следует, что множество EI(A)yEJ(A) со-
держит матрицу вида (yi,j)i∈{i1},j∈{j1} ⊕ y′, где y′ ∈ MI\{i1},J\{j1}(A), и
теорема доказывается по индукции, заменой x на y′.

Замечание 1. Между прочим, если кольцо A обладает свойством диаго-
нализуемости матриц из формулировки теоремы 1, то A является коль-
цом главных идеалов, что можно увидеть, рассмотрев случай |J | = 1.

Теорема 2 (ПРИМАРНОЕ РАЗЛОЖЕНИЕ). Пусть A — область главных
идеалов, а M — конечно порождённый A-модуль. Тогда существует
единственное с точностью до переиндексирования конечное семейство
примарных идеалов (qi)i∈I кольца A, такое что M '

⊕
i∈I A/qi.
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Доказательство (из двух частей).

Существование разложения. Из наблюдения 1 и теоремы 1 мы получа-
ем разложение M в конечную прямую сумму циклических слагаемых,
которые, по китайской теореме об остатках и разложению на простые
в областях главных идеалов, разлагаются в конечную прямую сумму
примарных циклических слагаемых.

Единственность разложения. Пусть M ' (
⊕

p∈P
⊕Np

i=1A/p
np,i) ⊕ Am,

где P — конечное множество ненулевых простых идеалов, Np ⩾ 1 и
np,1 ⩾ np,2 ⩾ · · · ⩾ np,Np ⩾ 1 для всех p ∈ P. Для любого p ∈ Spec(A)\{0}
пусть M tor

p :=
⋃∞
n=0{x ∈M | pnx = 0}, а M fr := M/(

∑
p∈Spec(A)\{0}M

tor
p ).

Тогда M tor
p '

⊕Np

i=1A/p
np,i если p ∈ P и M tor

p = 0 если p /∈ P ∪ {0},
а M fr ' Am. При этом dimK(K ⊗A M fr) = m, где K := Frac(A), а
dimA/p(pn−1M tor

p /pnM tor
p ) = max{k ∈ {1, . . . , Np} | np,k ⩾ n} для любых

p ∈ P и 1 ⩽ n ⩽ np,1. Это доказывает единственность.

Следствие 1 (РАЗЛОЖЕНИЕ ПО ИНВАРИАНТНЫМ ФАКТОРАМ). Пусть
A — область главных идеалов, а M — конечно порождённый A-мо-
дуль. Тогда существует единственная последовательность собствен-
ных идеалов d1 ⊃ d2 ⊃ · · · ⊃ dn кольца A, такая что M '

⊕n
i=1A/di.

Доказательство. По разложению M ' (
⊕

p∈P
⊕Np

i=1A/p
np,i) ⊕ Am, где

P — конечное множество ненулевых простых идеалов, Np ⩾ 1 и np,1 ⩾
np,2 ⩾ · · · ⩾ np,Np ⩾ 1 для всех p ∈ P, однозначно строятся/восстанавли-
ваются d1, . . . , dn: если N := maxp∈P(Np), то n := N+m, di := bN−i+1 для
1 ⩽ i ⩽ N , где bi :=

∏
p∈P|Np⩾i p

np,i , и di := 0 для N + 1 ⩽ i ⩽ N +m.

14.11. Ассоциированные простые идеалы
Определение и базовые свойства носителя модуля
Соглашение 1 (КОЛЬЦО). В этом разделе все кольца считаются ассо-
циативными, коммутативными и унитальными.

Определение 1 (НОСИТЕЛЬ МОДУЛЯ). Пусть A — кольцо, аM — A-мо-
дуль. Тогда множество SuppA(M) := {p ∈ Spec(A) |Mp 6= 0} называется
носителем M в Spec(A).
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Теорема 1. Пусть A — кольцо, S ⊂ A — мультипликативное мно-
жество, а M — A-модуль. Тогда если M конечно порождён, то вы-
полняется равенство S−1 AnnA(M) = AnnS−1A(S−1M).

Доказательство (из трёх частей).

Часть 1. Пусть M — циклический A-модуль. Тогда

AnnS−1A(S−1M) = AnnS−1A(S−1(A/AnnA(M))) =
= AnnS−1A((S−1A)/(S−1 AnnA(M))) = S−1 AnnA(M).

Часть 2. Пусть (Mi)i∈I — конечное семейство подмодулей M , такое
что M =

∑
i∈IMi и для любого индекса i ∈ I выполняется равенство

S−1 AnnA(Mi) = AnnS−1A(S−1Mi). Тогда, так как локализация комму-
тирует с суммами и конечными пересечениями, то

S−1 AnnA(M) = S−1 AnnA(
∑

i∈IMi) = S−1 ⋂
i∈I AnnA(Mi) =

=
⋂
i∈I S

−1 AnnA(Mi) =
⋂
i∈I AnnS−1A(S−1Mi) =

= AnnS−1A(
∑

i∈I S
−1Mi) = AnnS−1A(S−1 ∑

i∈IMi) = AnnS−1A(S−1M).

Часть 3. Осталось воспользоваться тем, что еслиM — конечно порож-
дённый модуль, то M представляется в виде конечной суммы цикличе-
ских подмодулей.

Следствие 1. Пусть A — кольцо, а M — конечно порождённый A-мо-
дуль. Тогда SuppA(M) = {p ∈ Spec(A) | AnnA(M) ⊂ p}.

Доказательство. Для любого p ∈ Spec(A) условие Mp 6= 0 эквивалент-
но условию Ap/AnnAp(Mp) ∼= Ap/AnnA(M)p 6= 0, которое эквивалентно
условию AnnA(M) ⊂ p.

Наблюдение 1 (АДДИТИВНОСТЬ НОСИТЕЛЯ). Пусть A — кольцо, а M
— A-модуль. Тогда выполняются следующие свойства аддитивности:

а) Условие M = 0 эквивалентно условию SuppA(M) = ∅;

б) Если 0→M ′ →M →M ′′ → 0 — короткая точная последователь-
ность A-модулей, то SuppA(M) = SuppA(M ′) ∪ SuppA(M ′′);

в) Если (Mi)i∈I — семейство подмодулейM , такое чтоM =
⊕

i∈IMi,
то SuppA(M) =

⋃
i∈I SuppA(Mi).
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Ассоциированные простые идеалы и носитель модуля
Определение 2 (АССОЦИИРОВАННЫЙ ПРОСТОЙ ИДЕАЛ). Пусть A —
кольцо, а M — A-модуль. Тогда множество простых идеалов A, ассоци-
ированных с M , определяется следующим образом:

AssA(M) := {p ∈ Spec(A) | p = AnnA(m) для какого-то m ∈M} =
= {p ∈ Spec(A) | A-модуль A/p вкладывается в M}.

Наблюдение 2. Пусть A— кольцо, а C — ненулевой циклический A-мо-
дуль. Тогда AnnA(C) ∈ Spec(A) тогда и только тогда, когда для любого
c ∈ C \ {0} выполняется равенство AnnA(c) = AnnA(C).

Наблюдение 3. Пусть A — кольцо, а M — ненулевой A-модуль. Тогда
если p — максимальный элемент множества {AnnA(m) | m ∈ M \ {0}},
то p ∈ AssA(M). В частности, если A нётерово, то AssA(M) 6= ∅.

Наблюдение 4. Пусть A — кольцо, S ⊂ A — мультипликативное мно-
жество,M — A-модуль, аm ∈M . Тогда AnnAS

(m1 ) = AnnA(m)S , потому
что вложение a + AnnA(m) 7→ am : A/AnnA(m) → M индуцирует вло-
жение a

s + AnnA(m)S 7→ am
s : AS/AnnA(m)S ∼= (A/AnnA(m))S →MS .

Наблюдение 5. В предположениях наблюдения 4 выполняются равен-
ства A ∩ AnnAS

(m1 ) = A ∩ AnnA(m)S =
⋃
s∈S{a ∈ A | sa ∈ AnnA(m)} =⋃

s∈S AnnA(sm). Помимо этого, если кольцо A нётерово, то в направлен-
ном множестве {AnnA(sm) | s ∈ S} существует максимальный элемент
AnnA(rm), где r ∈ S, и тогда

⋃
s∈S AnnA(sm) = AnnA(rm).

Теорема 2. Пусть A — кольцо, S ⊂ A — мультипликативное мно-
жество, а M — A-модуль. Тогда если отождествить Spec(AS) с его
образом в Spec(A), то AssA(M) ∩ Spec(AS) ⊂ AssA(MS) = AssAS

(MS),
причём если A нётерово, то AssA(M) ∩ Spec(AS) = AssA(MS).

Доказательство. Получается применением наблюдений 4 и 5.

Теорема 3. Пусть A — нётерово кольцо, а M — A-модуль. Тогда
выполняется равенство SuppA(M) =

⋃
p∈AssA(M) ClSpec(A)({p}).

Доказательство. Так как кольцо A нётерово, то, воспользовавшись
теоремой 2, получаем, что SuppA(M) = {q ∈ Spec(A) | AssA(Mq) 6= ∅} =
{q ∈ Spec(A) | AssA(M)∩Spec(Aq) 6= ∅} =

⋃
p∈AssA(M) ClSpec(A)({p}).
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Следствие 2. Пусть A — нётерово кольцо, а M — A-модуль, такой
что множество SuppA(M) замкнуто в Spec(A). Тогда выполняется
равенство SuppA(M) = ClSpec(A)(AssA(M)).

Замечание 1. Если M — конечно порождённый модуль над кольцом A,
то, согласно следствию 1, множество SuppA(M) замкнуто в Spec(A).

Теорема 4. Пусть A — кольцо, а 0→M ′ →M →M ′′ → 0 — короткая
точная последовательность A-модулей. Тогда выполняется свойство
субаддитивности AssA(M) ⊂ AssA(M ′) ∪AssA(M ′′).

Доказательство. Пусть p ∈ Spec(A) и M содержит A-подмодуль C,
изоморфный A/p. Тогда если C ∩ M ′ 6= 0, то p ∈ AssA(M ′) согласно
наблюдению 2, а если C ∩M ′ = 0, то отображение M →M ′′ изоморфно
вкладывает C в M ′′, откуда следует, что p ∈ AssA(M ′′).

Теорема 5. Пусть A — нётерово кольцо, а M — конечный A-модуль.
Тогда существует последовательность 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M
подмодулей M , где n ∈ N0, такая что AnnA(Mi/Mi−1) ∈ Spec(A) и
Mi/Mi−1 ' A/AnnA(Mi/Mi−1) для любого 0 < i ⩽ n.

Доказательство. Пусть M ′ — максимальный подмодуль M , для кото-
рого верно утверждение теоремы. Тогда если M/M ′ 6= 0, то существует
p ∈ AssA(M/M ′), а потому существует подмодуль M ′′ ⊂ M , такой что
M ′ ⊂M ′′ и M ′′/M ′ ' A/p, что противоречит максимальности M ′.

Следствие 3. Пусть A — нётерово кольцо, а M — конечно порож-
дённый A-модуль. Тогда множество AssA(M) конечно.

Доказательство. С учётом наблюдения 2 следует из теорем 4 и 5.

Наблюдение 6. Пусть A — нётерово кольцо. Тогда из теоремы 3 и
следствия 3 следует, что каждый элемент Spec(A) = SuppA(A) содер-
жит какой-то элемент конечного множества AssA(A) ⊂ Spec(A).





Глава 15

Теория категорий

15.1. Категории как полугруппы
Мультипликативные полугруппы с нулём
Определение 1 (БИНАР). Множество X, снабжённое отображением
(x, y) 7→ xy : X × X → X называется бинаром в мультипликативной
записи или мультипликативным бинаром.

Определение 2 (НУЛЕВОЙ ЭЛЕМЕНТ). Пусть X — мультипликатив-
ный бинар. Тогда элемент z ∈ X называется поглощающим элементом
(англ. absorbing element), нулевым элементом или просто нулём, если
xz = z = zx для любого x ∈ X.

Теорема 1 (ЕДИНСТВЕННОСТЬ НУЛЯ). Пусть X — мультипликатив-
ный бинар, а z, z′ ∈ X — два нулевых элемента. Тогда z = z′.

Доказательство. Из определения 2 следует, что z = zz′ = z′.

Обозначение 1. Нулевой элемент в мультипликативном бинаре часто
обозначается символом 0.

Определение 3 (ПОЛУГРУППА). Мультипликативный бинар X назы-
вается мультипликативной полугруппой, если для любых x, y, z ∈ X
выполняется равенство x(yz) = (xy)z.
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Определение категории
Соглашение 1 (GRO). «Groß-полугруппа» — это „полугруппа“, со-
вокупность элементов которой не подразумевается малой, то есть не
подразумевается множеством. Записи «groß-отображение», «groß-кате-
гория» и «groß-множество» имеют аналогичный смысл.

Замечание 1. Соглашение 1 основано на терминологии, используемой в
лекциях Д. Терешкина по теории категорий в НМУ [32, 23:10 и 54:00].

Определение 4 (EiN). Пусть C — мультипликативная groß-полугруппа
с нулём. Тогда определим groß-множество

Ein(C) := {e ∈ C \ {0} | ex, xe ∈ {0, x} для любого x ∈ C}.

Замечание 2. Обозначение «Ein» в определении 4 происходит от немец-
кого слова «einheit». Оно не является общепринятым, но я не знаю об-
щепринятого обозначения.

Определение 5 (GRO-КАТЕГОРИЯ). Мультипликативная groß-полу-
группа с нулём C называется groß-категорией, если для всех x, y, z ∈ C
из того, что xy, yz 6= 0 следует, что xyz 6= 0, и для любого x ∈ C \ {0}
существуют e′, e′′ ∈ Ein(C), такие что e′x, xe′′ 6= 0.

Области и кообласти
Теорема 2 (ЕДИНСТВЕННОСТЬ (КО)ОБЛАСТИ). Пусть C — мульти-
пликативная groß-полугруппа с нулем, x ∈ C \ {0}, e, e′ ∈ Ein(C) и
ex, e′x 6= 0. Тогда e = e′.

Доказательство. Понятно, что раз ex, e′x 6= 0, то ex = e′x = x. Тогда
e′ex = e′x = x 6= 0. Отсюда следует, что e′e 6= 0, а из этого, в свою
очередь, следует, что e = e′e = e′.

Определение 6 (ОТОБРАЖЕНИЕ (КО)ОБЛАСТИ). Пусть C — groß-кате-
гория. Определим groß-отображения s, t : C \{0} →→ Ein(C) следующими
свойствами: xs(x), t(x)x 6= 0 для любого x ∈ C \ {0}.

Замечание 3. Корректность определения 6 следует из теоремы 2, при-
менённой к C и Co, и определения 5.
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Замечание 4. Буквы «s» и «t», которыми обозначаются groß-отображе-
ния области и кообласти в определении 6, — это первые буквы англий-
ских слов «source» и «target».

Теорема 3 ((КО)ОБЛАСТИ И КОМПОЗИЦИЯ). Пусть C — groß-кате-
гория, а x, y ∈ C \ {0}. Тогда условие xy 6= 0 эквивалентно условию
t(y) = s(x), причём если xy 6= 0, то s(xy) = s(y) и t(xy) = t(x).

Доказательство. Если xy 6= 0, то xy = xs(x)y 6= 0, поэтому s(x)y 6= 0,
то есть s(x) = t(y). Если e = s(x) = t(y), то x = xe 6= 0 и y = ey 6= 0,
откуда, по определению 5, следует, что xey 6= 0, а xey = xy. Равенства
s(xy) = s(y) и t(xy) = t(x) при xy 6= 0 совсем очевидны.

Наблюдение 1. Пусть C — groß-категория, а e ∈ Ein(C). Тогда выпол-
няются равенства e = es(e) = s(e) и e = t(e)e = t(e).

Общие замечания
Доказанного в этом разделе достаточно, чтобы заметить эквивалент-
ность определения 5 и стандартного определения категории через со-
вокупность объектов и совокупность морфизмов. Вне этого раздела,
как правило, будет использоваться стандартное определение категории.
Причём, несмотря на то, что определение 5 является, по сути, определе-
нием «метакатегории», которая не обязана быть локально малой, обыч-
но в этом тексте будет подразумеваться, что совокупность морфизмов
между любыми двумя объектами категории образует множество.

15.2. Категорные треугольные тождества
Пусть F : C →← E : G — пара сопряжённых функторов, таких что F
— левый сопряжённый, G — правый сопряжённый, а η : IdC → GF
и ε : FG → IdE — единица и коединица сопряжения. Тогда биекции
сопряжения в терминах единиц и коединиц описываются так:

(f : X → G(Y )) 7→ εY ◦ F (f), (g : F (X)→ Y ) 7→ G(g) ◦ ηX ,

где X ∈ Ob(C), Y ∈ Ob(E), f ∈ Ar(C), g ∈ Ar(E). Естественность
этих отображений эквивалентна естественности ε и η соответственно.
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На F (f) и G(g) биекции сопряжения действуют так:

F (f) 7→ G(F (f)) ◦ ηX = ηG(Y ) ◦ f, G(g) 7→ εY ◦ F (G(g)) = g ◦ εF (X),

где равенства являются следствиями естественности единицы и коеди-
ницы соответственно. Поэтому, записывая условие взаимной обратно-
сти полученных отображений, воспользовавшись естественностью би-
екций сопряжения, мы получаем два условия:

G(εY ) ◦ ηG(Y ) ◦ f = f, g ◦ εF (X) ◦ F (ηX) = g,

то есть Gε ◦ ηG = IdG и εF ◦ Fη = IdF . Эти условия типа «компози-
ция единицы и коединицы тождественная» называются треугольными
тождествами.

15.3. Финальные и инициальные функторы
Определение и характеризация
Обозначение 1 (КАТЕГОРИЯ (КО)КОНУСОВ ФУНКТОРА). Пусть C и E —
категории, а F : C → E —функтор. Тогда категории конусов и коконусов
функтора F обозначаются через Cone(F ) и Cocone(F ) соответственно.

Определение 1 (ФИНАЛЬНЫЕ И ИНИЦИАЛЬНЫЕ ФУНКТОРЫ). Функтор
F : J → I называется финальным, если для любого i ∈ I категория icdFJ
связна, и называется инициальным, если для любого i ∈ I категория
J cdF i связна, то есть функтор F o : Jo → Io финален.

Пример 1. Если C — произвольная категория, то финальные функто-
ры pt → C — это в точности конечные объекты в C, а инициальные
функторы pt→ C — это в точности начальные объекты в C.

Замечание 1. Некоторые называют финальные функторы из определе-
ния 1 кофинальными, следуя старомодному соглашению для направ-
ленных множеств, по которому «кофинальное» означает что-то вроде
«финальное в совокупности».

Теорема 1 (ХАРАКТЕРИЗАЦИИ ФИНАЛЬНЫХ ФУНКТОРОВ). Пусть J и
I — категории, а F : J → I — функтор. Тогда следующие три условия
эквивалентны:
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а) Функтор F является финальным;

б) Для любой категории C и любого функтора G : I → C функтор
ограничения Cocone(G)→ Cocone(GF ) является изоморфизмом;

в) Для любого представимого функтора G : I → Sets функтор огра-
ничения Cocone(G)→ Cocone(GF ) является изоморфизмом.

Доказательство (из трёх частей).

Если (а), то (б). Пусть (αj : GF (j)→ X)j∈J , гдеX ∈ Ob(C), — коконус
функтора GF . Тогда существует единственное продолжение (αj)j∈J до
коконуса функтора G: так как категория i cdF J связна, то для любого
i ∈ I существует пара из объекта j ∈ J и морфизма βi : i → F (j),
причём композиция αj ◦G(βi) : G(i)→ X не зависит от выбора j и βi.

Если (б), то (в). Очевидно.

Если (в), то (а). По условию colim(GF ) ∼= colim(G) ∼= pt.

Функторы со строгой и полной прекомпозицией
Определение 2 (ФУНКТОР СО СТРОГОЙ/ПОЛНОЙ ПРЕКОМПОЗИЦИЕЙ).
Пусть J и I — категории, а F : J → I — функтор. Тогда будем говорить,
что F — функтор со строгой/полной прекомпозицией, если для любой
категории C, любой пары функторов G1, G2 : I →→ C и любого естествен-
ного преобразования α : G1F → G2F существует максимум/минимум
одно естественное преобразование α̃ : G1 → G2, такое что α̃F = α.

Пример 2. Пусть C — категория, а L : C → W−1C — функтор лока-
лизации C по какому-то классу морфизмов W . Тогда L — функтор со
строгой и полной прекомпозицией.

Наблюдение 1. Пусть J и I — категории, а F : J → I — функтор со
строгой и полной прекомпозицией. Тогда функтор F является одновре-
менно и инициальным, и финальным.

Пример 3. Пусть C — категория. Тогда если функтор C → pt является
инициальным или финальным, то категория C связна, а если C связна,
то C → pt — функтор со строгой и полной прекомпозицией.
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Обозначение 2 (СВОБОДНАЯ КАТЕГОРИЯ). Пусть Q — колчан. Тогда
в этом подразделе через F (Q) обозначается свободная категория, по-
рождённая Q, а через Q — колчан Q, которому добавили по одной вы-
деленной стрелке IdX : X → X для каждого X ∈ Ob(Q).

Замечание 2. Колчан, порождающий свободную категорию, восстанав-
ливается по ней как колчан неразложимых морфизмов.

Определение 3 (КАТЕГОРНЫЙ ЦИЛИНДР). Определим цилиндр диа-
граммы категорий и функторов C $←− B %−→ E с помощью следующей
формулы: C \$ %

B E := ((C × {0}) t (E × {1})) t(B×{0})t(B×{1}) (B × [1]).

Замечание 3. Понятие категорного цилиндра в некотором смысле яв-
ляется двойственным понятию комма-категории.

Определение 4. Пусть Q — колчан, A := Ar(Q) и O := Ob(Q). Опре-
делим частично упорядоченную совокупность

Z(Q) := (A \Id Dom
A O) tA×{0} (A× [1]) tA×{1} (O \Cod Id

A A).

Определим канонический морфизм Z(Q)→ Q как морфизм, переводя-
щий стрелки из A × [1] в соответствующие стрелки из Q, а остальные
стрелки в тождественные.

Наблюдение 2. Пусть Q — колчан, такой что категория F (Q) суще-
ствует. Тогда сквозной канонический функтор Z(Q) → Q → F (Q) с
точностью до эквивалентности является локализацией Z(Q) по мор-
физмам, переходящим в изоморфизмы в F (Q).

Замечание 4. В обозначениях определения 4 локализация Z(Q) по мор-
физмам из O \Cod A эквивалентна V (Q) := (A \Dom O) tA (A \Cod O).
Помимо этого имеем канонический изоморфизм Z(Q) ∼−→ Z(Qo)o.
Замечание 5. Содержание этого подраздела основано на [29, раздел 1].

15.4. Фильтрованные категории
Определение и характеризация фильтрованных категорий
Определение 1 (κ-ОГРАНИЧЕННЫЙ КОЛЧАН). Пусть κ — бесконечный
кардинал. КолчанQ называется κ-ограниченным, если он малый и мощ-
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ность множества Ob(Q)tAr(Q) строго меньше κ. Категория называется
κ-ограниченной, если она κ-ограничена как колчан.

Определение 2 (κ-(КО)ФИЛЬТРОВАННАЯ КАТЕГОРИЯ). Пусть κ — бес-
конечный кардинал. Категория C называется κ-фильтрованной/κ-ко-
фильтрованной если у любого функтора из κ-ограниченной категории
в C есть коконус/конус соответственно.

Определение 3 ((КО)ФИЛЬТРОВАННАЯ КАТЕГОРИЯ). Категория на-
зывается (ко)фильтрованной если она является ℵ0-(ко)фильтрованной
соответственно.

Теорема 1. Если κ — бесконечный кардинал, C — κ-(ко)фильтрованная
категория, Q — κ-ограниченный колчан, а F : Q → C — морфизм, то
у F o есть (ко)конус соответственно.

Доказательство. Согласно наблюдению 15.3.2 в его же обозначениях
категория (ко)конусов над индуцированным F функтором F (Q) → C
изоморфна категории (ко)конусов соответственно над индуцированным
сквозным функтором Z(Q) → F (Q) → C, при этом, так как колчан Q
является κ-ограниченным, то категория Z(Q) тоже κ-ограничена.

Наблюдение 1. Пусть κ — бесконечный кардинал, C — κ-фильтрован-
ная категория, а F : C → Sets — функтор. Тогда категория элементов F ,
то есть категория pt cdF C, является копроизведением κ-фильтрованных
категорий. Иначе говоря, её связные компоненты κ-фильтрованы.

Теорема 2 (κ-ОГРАНИЧЕННЫЕ ПРЕДЕЛЫ КОММУТИРУЮТ С κ-ФИЛЬ-
ТРОВАННЫМИ КОПРЕДЕЛАМИ). Пусть κ — бесконечный кардинал, I —
малая κ-фильтрованная категория, Jo — κ-ограниченная категория,
а X : Jo × I → Sets — функтор. Тогда отображение перестановки
копредела и предела Θ : colimI limJo(X)→ limJo colimI(X) биективно.

Доказательство (из трёх частей).

Часть 1: Обозначения. Для любых αi′,i ∈ HomI(i, i′), xi,j ∈ X(j, i) и
βj,j′ ∈ HomJ(j′, j), где i, i′ ∈ I, а j, j′ ∈ J , введём обозначения αi′,ixi,j :=
X(Idj , αi′,i)(xi,j) и xi,jβj,j′ := X(βoj,j′ , Idi)(xi,j). Элементы кообласти Θ
— это согласованные семейства ([xi(j),j ])j∈J классов элементов X, где
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(i(j))j∈J ∈ I×J , а xi(j),j ∈ X(j, i(j)) для всех j ∈ J , а элементы области
Θ — это классы [(xi,j)j∈J ] согласованных семейств элементов X, где
i ∈ I, а xi,j ∈ X(j, i) для всех j ∈ J , причём Θ([(xi,j)j∈J ]) = ([xi,j ])j∈J .

Часть 2: Сюръективность Θ. Пусть ([xi(j),j ])j∈J — произвольный эле-
мент limJo colimI(X). Так как для любого β = βj,j′ ∈ HomJ(j′, j), где
j, j′ ∈ J , выполняется равенство [xi(j),jβj,j′ ] = [xi(j′),j′ ] ∈ colimi∈I X(j′, i),
то существуют i(β) ∈ I и пара стрелок αβ : i(j) → i(β) →i(j′) : α′

β, та-
кие что αβxi(j),jβj,j′ = α′

βxi(j′),j′ . Пусть (γi : i → e)i∈{i(σ)|σ∈Ob(J)tAr(J)},
где e ∈ I, — коконус над подкатегорией в I, порождённой стрелками αβ
и α′

β для всех β ∈ Ar(J). Тогда [(γi(j)xi(j),j)j∈J ] ∈ Θ−1(([xi(j),j ])j∈J).

Часть 3: Инъективность Θ. Пусть [(x′
i′,j)j∈J ] и [(x′′

i′′,j)j∈J ] — элемен-
ты colimI limJo(X), такие что Θ([(x′

i′,j)j∈J ]) = Θ([(x′′
i′′,j)j∈J ]). Тогда се-

мейство ([x′
i′,j ])j∈J t ([x′′

i′′,j ])j∈J можно интерпретировать как элемент
limJo×Do colimI(X◦P : Jo×Do×I → Jo×I → Sets), гдеDo — категория с
множеством объектов {0, 1}, эквивалентная pt, а P — стандартная про-
екция. Применив к этому элементу рассуждение из части 2 данного до-
казательства, получаем пару морфизмов γi′ : i′ → e →i′′ : γi′′ , где e ∈ I,
такую что [(x′

i′,j)j∈J ] = [(γi′x′
i′,j)j∈J ] = [(γi′′x′′

i′′,j)j∈J ] = [(x′′
i′′,j)j∈J ].

Замечание 1. Для визуализации приведённого доказательства теоре-
мы 2 может быть полезным рассмотрение категории, полученной до-
бавлением к J t I морфизмов Hom(j, i) ∼= X(j, i), где i ∈ I, а j ∈ J ,
и доопределением композиции морфизмов таким образом, чтобы она
была согласована с обозначениями в доказательстве теоремы 2.

Пример 1 (ЛОКАЛИЗАЦИЯ МОДУЛЯ). Пусть A — коммутативное ассо-
циативное унитальное кольцо, S ⊂ A — мультипликативное множество,
а M — A-модуль. Тогда MS функториально представляется как филь-
трованный копредел диаграммы A-модулей с вершинами Ms := M и
стрелками r · (−) : Ms →Mrs, где s, r ∈ S. Поэтому функтор M 7→MS :
A-mod→ A-mod сохраняет малые копределы и конечные пределы.

Теорема 3. Пусть κ — бесконечный кардинал, а I — малая категория,
такая что для любой κ-ограниченной категории Jo и для любого функ-
тора X : Jo×I → Sets отображение перестановки копредела и предела
colimI limJo(X)→ limJo colimI(X) биективно. Тогда I κ-фильтрована.
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Доказательство. Пусть F : J → I — функтор из κ-ограниченной кате-
гории J в I. Тогда

colim
i∈I

lim
j∈Jo

HomI(F (j), i) ∼= lim
j∈Jo

colim
i∈I

HomI(F (j), i) ∼= lim
j∈Jo

pt ∼= pt.

Но для любого i ∈ I элементы limj∈Jo HomI(F (j), i) в точности соответ-
ствуют коконусам функтора F с вершиной в i.

Общая теорема Фрейда о сопряжённом функторе
Определение 4 (СЛАБО НАЧАЛЬНАЯ/КОНЕЧНАЯ ПОЛНАЯ ПОДКАТЕ-
ГОРИЯ). Полная подкатегория S категории C, или соответствующая ей
совокупность объектов в C, называется слабо начальной, если для любо-
го X ∈ Ob(C) категория S cdC X не пустая, и называется слабо конечной,
если для любого X ∈ Ob(C) категория X cdC S не пустая.

Теорема 4. Если S — слабо начальная полная подкатегория кофиль-
трованной категории C, то S кофильтрованная и инициальная в C.

Доказательство. Кофильтрованность S легко проверяется. Докажем
инициальность. Пусть X ∈ Ob(C). Так как категория C кофильтрован-
ная, то категория C cdCX тоже кофильтрованная. Так как S — слабо на-
чальная полная подкатегория в C, то S cdC X — слабо начальная полная
подкатегория в C cdC X. Так как слабо начальная полная подкатегория
кофильтрованной категории является кофильтрованной, то категория
S cdC X является кофильтрованной, в частности, связной.

Наблюдение 2. Пусть C — категория. Тогда предел функтора IdC —
это то же самое, что начальный объект в C.

Следствие 1. В категории C существует начальный объект тогда
и только тогда, когда C кофильтрованная и в C существует слабо
начальная полная подкатегория S, у которой есть предел в C.

Доказательство. Часть «только тогда» очевидна, а часть «тогда» сле-
дует из теоремы 4: так как S — инициальная подкатегория в C, то её
предел в C является пределом IdC , то есть начальным объектом в C.
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Теорема 5 (ОБЩАЯ ТЕОРЕМА ФРЕЙДА О СОПРЯЖЁННОМ ФУНКТОРЕ).
Пусть G — сохраняющий малые пределы функтор из содержащей
малые пределы категории E в категорию C, такой что для любого
X ∈ Ob(C) существует множество S ⊂ Ob(X cdG E), такое что в
любой объект категории X cdG E есть стрелка из какого-то элемента
S. Тогда у функтора G есть левый сопряжённый.

Набросок доказательства. Заметим, что для любого X ∈ Ob(C) кате-
гория X cdG E содержит малые пределы, потому что категория E содер-
жит малые пределы, а функтор G их сохраняет, после чего применим
к X cdG E следствие 1.

Пример 2. Пусть C — частично упорядоченная по включению сово-
купность всех множеств. Тогда в C есть малые копределы и функтор
C → pt их сохраняет, но не имеет правого сопряжённого.



Часть III

Совсем сырые или мелкие
тексты





Глава 16

Сырые или мелкие тексты

16.1. Категория Лямбда Алена Конна
Определение категории Лямбда
Определение 1 (КОЛЧАН ЭЛЕМЕНТОВ). Если F : I → Sets — представ-
ление колчана I отображениями множеств, то его колчаном элементов
называется расслоенное произведение I ×F Sets (pt cd Sets) в категории
колчанов, где pt cd Sets — это категория множеств с отмеченной точкой.

Пример 1. Для представлений колчана-стрелки и колчана-петли отоб-
ражениями множеств изображение колчана элементов даёт традицион-
ные картинки, связанные с морфизмами и эндоморфизмами множеств.

Пример 2. Если мы рассмотрим вложение Кэли группы как представ-
ление соответствующего группе однообъектного группоида отображе-
ниями множеств, ограничим его на подколчан и рассмотрим колчан
элементов, то получится соответствующий граф Кэли.

Определение 2 (ЦИКЛИНАР). Категория, свободно порождённая кол-
чаном элементов стандартной циклической перестановки x 7→ x + 1
множества Z/nZ, где n ∈ N1, обозначается через [n]Λ и называется цик-
линаром порядка n.

Замечание 1. Термин «циклинар» не стандартный и придуман по ана-
логии с термином «ординал». Я не знаю стандартного термина.
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Наблюдение 1. Для категорий [n] и [n]Λ число n — это количество
стрелок в порождающем колчане. Порождающий колчан свободной ка-
тегории однозначно восстанавливается по ней.

Определение 3 (СТРОГОСТЬ/ПОЛНОТА НА ЭНДОМОРФИЗМАХ). Функ-
тор ϕ : C → E называется строгим/полным на эндоморфизмах, ес-
ли для любого C ∈ Ob(C) индуцированный гомоморфизм моноидов
ϕC : EndC(C)→ EndE(ϕ(C)) инъективен/сюръективен соответственно.

Определение 4 (КАТЕГОРИЯ ЛЯМБДА). Категория, объектами кото-
рой являются циклинары [n]Λ, где n ∈ N1, а морфизмами являются
функторы, строгие и полные на эндоморфизмах, обозначается симво-
лом Λ и называется категорией Лямбда.

Замечание 2. Категория Λ из определения 4, иногда называемая цик-
лической категорией Конна, была определена в статье [3, с. 3].

Свойства категории Лямбда

Обозначение 1 (ГРУППОИДОФИКАЦИЯ). В этом разделе локализацию
малой категории C по всем морфизмам будем обозначать через Cgrp.

Лемма 1. Пусть ϕ : [n]Λ → [m]Λ, где n,m ∈ N1, — функтор. Тогда
индуцированные гомоморфизмы свободных циклических моноидов ϕx :
End[n]Λ(x)→ End[m]Λ(ϕ(x)), где x ∈ Ob([n]Λ), изоморфны друг другу как
объекты категории стрелок категории моноидов.

Доказательство. Для индуцированного морфизма группоидов ϕgrp :
[n]grp

Λ → [m]grp
Λ индуцированные гомоморфизмы свободных цикличе-

ских групп ϕgrp
x : End[n]grp

Λ
(x) → End[m]grp

Λ
(ϕ(x)), где x ∈ Ob([n]Λ) =

Ob([n]grp
Λ ), изоморфны друг другу как объекты категории стрелок ка-

тегории моноидов, так как все объекты категории [n]grp
Λ изоморфны

друг другу. Теперь заметим, что не изоморфные гомоморфизмы сво-
бодных циклических моноидов индуцируют не изоморфные гомомор-
физмы свободных циклических групп.
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16.2. Топология Гротендика
Общее определение
Определение 1 (ЗАМКНУТАЯ СЛЕВА/СПРАВА ПОДКАТЕГОРИЯ). Под-
категория C категории E называется замкнутой слева или влево, если
она содержит все морфизмы из E , кообласти которых лежат в C, и за-
мкнутой справа или вправо, если Co замкнута слева в Eo.

Наблюдение 1. Замкнутая слева или справа подкатегория всегда яв-
ляется полной подкатегорией.

Наблюдение 2. Пусть F : C → E — функтор, а E ′ — замкнутая сле-
ва/справа подкатегория E . Тогда F−1(E ′) — замкнутая слева/справа
соответственно подкатегория C.

Определение 2 (СИТО/РЕШЕТО). Ситом или решетом на объекте
данной категории называется замкнутая слева подкатегория категории
объектов над ним.

Определение 3 (ГЛАВНОЕ СИТО). Сито всех объектов над данным объ-
ектом называется главным ситом на нём.

Определение 4 (ОГРАНИЧЕНИЕ СИТА). Любой морфизм определяет
функтор из категории объектов над своей областью в категорию объ-
ектов над своей кообластью. Соответствующий функтор прообраза для
сит называется функтором ограничения вдоль данного морфизма.

Определение 5 (ТОПОЛОГИЯ ГРОТЕНДИКА). Топология Гротендика
на данной категории задаётся классом сит на её объектах, называемых
покрывающими ситами, удовлетворяющим следующим свойствам:

а) Главные сита являются покрывающими;

б) Ограничения покрывающих сит являются покрывающими;

в) Если ограничения сита вдоль всех объектов какого-то покрываю-
щего сита являются покрывающими, то оно само является покры-
вающим.
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Определение 6 (САЙТ). Категория, снабжённая топологией Гротен-
дика, называется сайтом.

Определение 7 (КОАУГМЕНТАЦИЯ ФУНКТОРА). Назовём коаугмента-
цией функтора ко-конус над функтором, то есть его естественное пре-
образование в какой-то постоянный функтор.

Определение 8 (ПУЧОК НА САЙТЕ). Каждое сито на объекте данной
категории снабжено тавтологическим коаугментированным функтором
в эту категорию. Предпучок на сайте называется пучком, если он пере-
водит коаугментированые функторы, соответствующие покрывающим
ситам, в диаграммы пределов.

Случай топологического пространства
Определение 9 (ПУЧОК НА ТОПОЛОГИИ). Пусть T — топологическое
пространство, а C — категория. Функтор F : Open(T )o → C называется
пучком, если он сохраняет пределы замкнутых вправо подкатегорий.

Наблюдение 3. Пусть S — подмножество множества Open(T ), где T
— топологическое пространство. Тогда полная подкатегория в Open(T ),
заданная множеством объектов {U∩V ∈ Open(T ) | U, V ∈ S}, финальна
в замкнутой влево подкатегории в Open(T ), порождённой S.

16.3. Универсумы Гротендика
Соглашение 1. Пусть U — произвольная совокупность. Тогда множе-
ства, которые являются элементами U , иногда будут называться U-мно-
жествами.

Определение 1 (УНИВЕРСУМ ГРОТЕНДИКА). Множество U называется
универсумом Гротендика или просто универсумом, если выполняются
следующие три условия:

а) Объединение всех U-множеств совпадает с U ;

б) Для любого U-множества множество всех его подмножеств явля-
ется U-множеством;
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в) Объединение любого индексированного U-множеством семейства
U-множеств является U-множеством.

16.4. Спектральная последовательность
фильтрации

Соглашение 1 (КОЛЬЦО ДУАЛЬНЫХ ЧИСЕЛ). В этом разделе символ
R будет обозначать фиксированное ассоциативное унитальное кольцо,
R[∂] — кольцо R[X]/(X2), а ∂ — образ X ∈ R[X] в R[∂].

Замечание 1. Модули над кольцом дуальных чисел иногда называют-
ся дифференциальными модулями. В такой терминологии комплексы
соответствуют дифференциальным градуированным модулям, то есть
Z-градуированным модулям над N0-градуированным кольцом R[∂], где
N0-градуировка на R[∂] унаследована от R[X].

Наблюдение 1. Пусть · · · ⊂ Ci ⊂ Ci+1 ⊂ · · · , где i ∈ Z, — ряд R[∂]-мо-
дулей, Z̃ri := Ci ∩ ∂−1(Ci−r), B̃r

i := Ci ∩ ∂(Ci+r−1), Zri := Z̃ri /Z̃
r−1
i−1 ,

Br
i := B̃r

i /B̃
r+1
i−1 , где i, r ∈ Z. Тогда оператор ∂ индуцирует гомомор-

физмы d̃ri : Zri → Zri−r/B
r
i−r с ядром Zr+1

i и образом Br+1
i−r /B

r
i−r.

Замечание 2. Чтобы доказать утверждение наблюдения 1 достаточно
заметить, что ∂ индуцирует изоморфизмы Z̃ri /Z̃

r+1
i

∼−→ B̃r+1
i−r /B̃

r+2
i−r−1, пе-

реводящие классы элементов Z̃r−1
i−1 в классы элементов B̃r

i−r = ∂(Z̃r−1
i−1 ).

Определение 1 (СПЕКТРАЛЬНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ФИЛЬТРА-
ЦИИ). В обозначениях наблюдения 1 семейство (Eri , dri , ρri )i∈Z,r∈N0 , где
Eri := Zri /B

r
i , гомоморфизм dri : Eri → Eri−r индуцирован d̃ri , а ρri —

это очевидный изоморфизм Ker(dri )/ Im(dri+r)
∼−→ Er+1

i , называется спек-
тральной последовательностью фильтрации (Ci)i∈Z.

16.5. Категорные цилиндры и расслоения
Определение и основные свойства категорного цилиндра
Определение 1 (КАТЕГОРНЫЙ ЦИЛИНДР). Определим цилиндр диа-
граммы категорий и функторов C $←− B %−→ E с помощью следующей
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формулы: C \$ %
B E := ((C × {0}) t (E × {1})) t(B×{0})t(B×{1}) (B × [1]).

Замечание 1. Не для любой диаграммы категорий C $←− B %−→ E соот-
ветствующий цилиндр X := C \$ %

B E существует как категория в стан-
дартном смысле, а не groß-категория, потому что могут существовать
X,Y ∈ Ob(X ), такие что HomX (X,Y ) не образует множества.

Обозначение 1 (КАНОНИЧЕСКИЕ ВЛОЖЕНИЯ). Пусть C $←− B %−→ E —
диаграмма категорий. Тогда канонические вложения в соответствую-
щий цилиндр обычно будут обозначаться через s : C → C \$ %

B E →E : t.
Иногда C и E будут отождествляться со своими образами в C \$ %

B E .

Определение 2 (ОБРАЗУЮЩИЕ ЦИЛИНДРА). Пусть C $←− B %−→ E —
диаграмма категорий, а X := C \$ %

B E — её цилиндр. Тогда структур-
ный функтор B× [1]→ X соответствует естественному преобразованию
( #”

b$ % : s($(b)) → t(%(b)))b∈Ob(B) из функтора s ◦ $ в функтор t ◦ %.
Компоненты этого преобразования называются образующими X .

Замечание 2. Диаграмма (1) иллюстрирует цилиндр диаграммы кате-
горий C $←− B %−→ E вместе со структурными вложениями s, t и есте-
ственным преобразованием ( #”

b )b∈B.

B

C E

C \$ %
B E

$ %

s

( #”
b )b∈B

t

(1)

Наблюдение 1 (УНИВЕРСАЛЬНОЕ СВОЙСТВО КАТЕГОРНОГО ЦИЛИН-
ДРА). Пусть C $←− B %−→ E — диаграмма категорий, X := C \$ %

B E — её
цилиндр, а ω := ( #”

b )b∈B. Тогда для любой категории X ′, пары функторов
s′ : C → X ′ →E : t′ и естественного преобразования ω′ : s′$ → t′% суще-
ствует единственный функтор υ, такой что s′ = υs, t′ = υt и ω′ = υω.

Замечание 3. Наблюдение 1 показывает, что понятия категорного ци-
линдра и комма-категории в некотором роде двойственны друг другу.
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Наблюдение 2. Произвольная коммутативная диаграмма категорий,
функторов и естественных преобразований (2) индуцирует функтор
α \ζ ξ

γ β : C \$ %
B E → C′ \$′ %′

B′ E ′ между соответствующими цилиндрами.

C B E

C′ B′ E ′

α

$

γ

%

β

$′ %′

ζ ξ (2)

Определение 3 (СЛОЙ ФУНКТОРА). Пусть C и I — категории, π : C → I
— функтор, а i ∈ Ob(I) — объект I. Тогда слоем π над i, обычно обо-
значаемым через Ci, называется прообраз относительно π подкатегории
I, состоящей из одного объекта i и одного морфизма Idi : i→ i.

Наблюдение 3. Если C $←− B %−→ E — диаграмма категорий, то её ци-
линдр автоматически снабжён функтором C \$ %

BE → pt \ptpt ∼= [1], слои
которого отождествляются с C ∼= C × {0} и E ∼= E × {1} соответственно.

Наблюдение 4. Пусть X → [1] — функтор, а X0 и X1 — его слои над 0
и 1 соответственно. Тогда X ∼= X0 \X0cdX X1 X1.

Наблюдение 5. Пусть F : C → I — функтор. Тогда C \F I существует
и для любого c ∈ Ob(C) соответствующая образующая #”c F : c → F (c)
является начальным объектом в c cdC \F I I.

Наблюдение 6. Пусть C и E — категории, а ρ : C → E — функтор.
Тогда следующий квадрат категорий декартов:

C \ρC E C \C pt

E \E E E \E pt.

Id \Id(E→pt)

ρ \ρId ρ \ρId
Id \Id(E→pt)

Определение расслоения Гротендика
Определение 4 (ЗАМКНУТОСТЬ ОТНОСИТЕЛЬНО ПУЛЛБЭКОВ). Если C
— категория, а B и P — два класса морфизмов в C, то P называется
замкнутым относительно пуллбэков вдоль морфизмов из B, если любая
диаграмма вида β : c′ → c →c′′ : π, где π ∈ P, а β ∈ B, достраивается
до декартового квадрата, в котором морфизм c′ ×c c′′ → c′ лежит в P.
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Определение 5 ((КО)РАССЛОЕНИЕ КАТЕГОРИЙ). Пусть C и I — ка-
тегории, а F : C → I — функтор. Тогда F называется расслоением
категорий или расслоением Гротендика, если класс образующих ци-
линдра C \F I замкнут относительно пуллбэков вдоль морфизмов из I,
и называется корасслоением, если F o : Co → Io является расслоением.

Определение 6 (СИЛЬНО (КО)ДЕКАРТОВ МОРФИЗМ). Пусть C и I —
категории, F : C → I — функтор, а ϕ : c′ → c — морфизм в C. Тогда ϕ
называется сильно декартовым относительно F , если коммутативный
квадрат (3) в категории C \F I декартов, и сильно кодекартовым отно-
сительно F , если ϕo : c→ c′ сильно декартов относительно F o : Co → Io.

c′ c

F (c′) F (c)

ϕ

#”c ′F #”c F

F (ϕ)
(3)

Соглашение 1 ((КО)ДЕКАРТОВ МОРФИЗМ). В дальнейшем выражения
«декартов морфизм» и «кодекартов морфизм» означают «сильно де-
картов морфизм» и «сильно кодекартов морфизм» соответственно, ес-
ли противное не оговорено явно.

Наблюдение 7. Функтор F : C → I является расслоением Гротендика
тогда и только тогда, когда для любого c ∈ Ob(C) у любого морфизма
в I с кобластью F (c) существует сильно декартово поднятие в C.

Определение 7 (СУЩЕСТВЕННОЕ (КО)РАССЛОЕНИЕ). Пусть C и I —
категории, F : C → I — функтор, а X := C \F I. Тогда F называется
существенным расслоением или расслоением Стрита, если класс мор-
физмов ϕ ∈ Ob(C cdX I) ⊂ Ar(X ), таких что ϕ — начальный объект
в Dom(ϕ) cdX I, замкнут относительно пуллбэков вдоль морфизмов из
I, и называется существенным корасслоением, если противоположный
функтор F o : Co → Io является существенным расслоением.

Замечание 4. Термин «расслоение Стрита» или «слабое расслоение»
используется в nLab [34], а термин «существенное расслоение» (англ.
essential fibration) используется в тексте Алека Рея [24].

Пример 1. Забывающий функтор Top→ Sets является и расслоением
категорий, и корасслоением категорий.
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Замечание 5. Я узнал о примере 1 из статьи [12, с. 52, ex. 3.19].

Пример 2. Любой функтор из категории в группоид является суще-
ственным расслоением в смысле определения 7, но не обязательно яв-
ляется расслоением в смысле определения 5.

Пример 3. Для любого накрытия Y → X топологических пространств
индуцированный морфизм группоидов Пуанкаре π⩽1(Y ) → π⩽1(X) яв-
ляется расслоением Гротендика с дискретными слоями.

Транспонированное корасслоение Гротендика
Определение 8 (ВЕРТИКАЛЬНЫЙ МОРФИЗМ). Пусть C и I — катего-
рии, а π : C → I — функтор. Тогда морфизм ϕ ∈ Ar(C) называет-
ся вертикальным относительно π, если π(ϕ) является тождественным
морфизмом, то есть ϕ лежит в каком-то из слоёв π.

Определение 9 (ТРАНСПОНИРОВАННОЕ КОРАССЛОЕНИЕ). Пусть C и I
— категории, а π : C → I — расслоение Гротендика. Тогда определим
категорию Ct образующими и соотношениями над

⊔
i∈I Ci следующим

образом: для каждого декартова ϕ ∈ Ar(C) добавим к
⊔
i∈I Ci стрелку

ϕt : Cod(ϕ) → Dom(ϕ), для каждого коммутативного квадрата (4, сле-
ва) в C, такого что ϕ0 и ϕ1 декартовы, а v и v′ вертикальны, добавим
соотношение коммутативности квадрата (4, справа) и для каждой пары
декартовых морфизмов ϕ′, ϕ′′ ∈ Ar(C), такой что Dom(ϕ′) = Cod(ϕ′′),
добавим соотношение (ϕ′ ◦ϕ′′)t = ϕ′′t ◦ϕ′t. Определим транспонирован-
ное к π корасслоение πt : Ct → Io как функтор, совпадающий с π на⊔
i∈I Ci и для любого декартова ϕ ∈ Ar(C) переводящий ϕt в π(ϕ)o.

c′
0 c0 c′

0 c0

c′
1 c1 c′

1 c1

ϕ0

v′ v v′

ϕt
0

v

ϕ1 ϕt
1

(4)

Определение 10 (ТРАНСПОНИРОВАННОЕ РАССЛОЕНИЕ). Пусть C и I
— категории, а π : C → I — корасслоение Гротендика. Тогда опреде-
лим транспонированное к π расслоение πt : Ct → Io формулой πt :=
((πo)t)o. Для каждого кодекартова ϕ ∈ Ar(C) соответствующий мор-
физм ((ϕo)t)o ∈ Ar( Ct ) обозначается через ϕt .
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16.6. Абелевы категории
Определение 1 (ПОЛУАДДИТИВНАЯ КАТЕГОРИЯ). Категория, в кото-
рой конечные произведения и копроизведения существуют и коммути-
руют друг с другом, называется полуаддитивной категорией.

Замечание 1. В статье [25, раздел 1.3] полуаддитивные категории в
смысле определения 1 называются преаддитивными.

Определение 2 (НУЛЕВОЙ ОБЪЕКТ). Объект в категории, который од-
новременно является и начальным, и конечным, называется нулевым
объектом. Категория, в которой существует нулевой объект, называ-
ется пунктированной категорией, а морфизм, который пропускается
через нулевой объект, называется нулевым морфизмом.

Наблюдение 1. Пусть C — полуаддитивная категория с начальным
объектом 0 ∈ Ob(C) и конечным объектом 1 ∈ Ob(C). Тогда канониче-
ский морфизм 0 ∼−→ 1 является изоморфизмом и канонические морфиз-
мы (1) являются изоморфизмами для любых A,B ∈ Ob(C).

(A× 0) t (0×B) (A t 0)× (0 tB) A×B

A tB (A× 1) t (1×B) (A t 1)× (1 tB)

∼

∼ ∼

∼

∼∼

(1)

Другими словами, 0 ∼= 1 и стандартный морфизм (Id ×̄ 0) t̄ (0 ×̄ Id) :
A t B ∼−→ A× B является изоморфизмом для любых A,B ∈ Ob(C), где
нулями обозначаются нулевые морфизмы.

Определение 3 (АБЕЛЕВА КАТЕГОРИЯ). Аддитивная категория назы-
вается абелевой, если она конечно полна и кополна, и для любого мор-
физма X → Y индуцированный морфизм X tX×Y XX → Y ×Y tXY Y из
регулярного кообраза в регулярный образ является изоморфизмом.

16.7. Локально нильпотентные операторы
В этом разделе изложен набросок альтернативного доказательства тео-
ремы о жордановой нормальной форме для нильпотентных операторов.
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Определение 1 (РАСЩЕПИМОЕ СЕМЕЙСТВО ПОДМОДУЛЕЙ). Пусть V
— модуль над ассоциативным унитальным кольцом R. Тогда семейство
(Ui)i∈I подмодулей V называется расщепимым, если существует семей-
ство (Vj)j∈J подмодулей V , такое что V =

⊕
j∈J Vj и для любого i ∈ I

выполняется равенство Ui =
⊕

j∈J|Vj⊂Ui
Vj .

Пример 1. Пусть D — тело. Тогда стандартная убывающая фильтра-
ция (XkD[[X]])∞

k=0 на D[[X]] не расщепима, потому что иначе D-модули⊕∞
k=0X

kD[[X]]/Xk+1D[[X]] ∼= D[X] и D[[X]]/
⋂∞
k=0X

kD[[X]] ∼= D[[X]]
были бы изоморфны, а согласно теореме 10.7.1 это не так.

Замечание 1. Я узнал о примере 1 из ответа [18] на «Mathematics Stack
Exchange».

Теорема 1. Пусть D — тело. Тогда D-модуль V с оператором ϕ :
V → V изоморфен прямой сумме D-модулей с операторами вида

D ⊗Z
(
P 7→ ∂P

∂X
:

n∑
k=0

Z
Xk

k!
→

n∑
k=0

Z
Xk

k!

)
, где n = 1, 2, . . . ,∞, (1)

тогда и только тогда, когда выполняются следующие условия: V =⋃∞
k=0 ϕ

−k(0), ϕ(
⋂∞
k=0 ϕ

k(V )) =
⋂∞
k=0 ϕ

k(V ) и (ϕ−1(0) ∩ ϕk(V ))∞
k=0 явля-

ется расщепимым семейством подмодулей D-модуля ϕ−1(0).

Набросок доказательства (из двух частей).

Часть «только тогда». Рассматриваемые три условия выполняются
для модулей вида (1) и наследуются прямыми суммами.

Часть «тогда». По условию у D-модуля ϕ−1(0) существует базис E1

и разбиение E1 = E1
∞ t (

⊔∞
n=0E

1
n), такое что для каждого r ∈ N0 мно-

жество E1
∞ t (

⊔∞
n=r E

1
n) является базисом ϕ−1(0) ∩ ϕr(V ).

Для любых n, k ∈ N1, таких что k ⩽ n, по индукции возьмём в каче-
стве Ek+1

n какое-то подмножество ϕn−k(V ), такое что ϕ(Ek+1
n ) = Ekn и

отображение v 7→ ϕ(v) : Ek+1
n → Ekn биективно.

Похожим образом для любого k ∈ N1 по индукции возьмём в качестве
Ek+1

∞ какое-то подмножество
⋂∞
i=0 ϕ

i(V ), такое что ϕ(Ek+1
∞ ) = Ek∞ и

отображение v 7→ ϕ(v) : Ek+1
∞ → Ek∞ биективно.

https://math.stackexchange.com
https://math.stackexchange.com
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Тогда множество
⊔∞
k=1(Ek∞ t (

⊔∞
n=k−1E

k
n)) является базисом D-модуля

V , устанавливающим нужный изоморфизм.

Пример 2. Пусть VZ :=
∑∞

n=1
∑n

k=0 Z · Xk
n/k! ⊂ Q[Xn |n ∈ N1] и ϕZ :

VZ → VZ, P 7→
∑∞

n=1
∂

∂Xn
P . Тогда если R — ненулевое ассоциативное

унитальное кольцо, V := R ⊗Z VZ и ϕ := IdR ⊗Z ϕZ : V → V , то V =⋃∞
k=0 ϕ

−k(0), но ϕ(
⋂∞
k=0 ϕ

k(V )) 6=
⋂∞
k=0 ϕ

k(V ).



Глава 17

Совсем мелкие тексты

17.1. Раздел А
Наблюдение 1 (ПРЕДУПОРЯДОЧЕНИЯ И УПОРЯДОЧЕНИЯ). Если рас-
сматривать предупорядоченные множества как категории, то это в точ-
ности категории, экивалентные частично упорядоченным множествам.

Наблюдение 2 (РЕШЁТКА РАЗБИЕНИЙ). Разбиения данного множества
образуют полную решётку, так же, как и подмножества.

Соглашение 1 (КОЛЬЦОИДЫ). Категории, обогащённые структурой
абелевой группы/моноида на Hom-ах, стоит называть кольцоидами/по-
лукольцоидами, а не аддитивными/преаддитивными категориями.

Определение 1 (p-АДИЧЕСКАЯ НОРМА). Пусть p ∈ Z — простое число.
Норма x 7→ ‖x‖p : Q → R, такая что ‖p‖p = p−1 и ‖l‖p = 1 для любого
простого l ∈ Z, отличного от p, называется p-адической нормой.

Наблюдение 3 (БАЗИС ЛЕЖИТ В ПОЛУПРОСТРАНСТВЕ). Пусть (ei)i∈I
— произвольный базис в евклидовом пространстве E. Тогда существует
вектор v ∈ E, такой что 〈v, ei〉 = 1 > 0 для любого i ∈ I, потому что
структурная билинейная форма в E невырождена.

Наблюдение 4. Разложение конечномерной полупростой алгебры Ли
над алгебраически замкнутым полем характеристики ноль в прямую
сумму простых идеалов очень каноническое.
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Наблюдение 5. Дуальность Жуаяля можно иллюстрировать так:
• • • • • •

• • • •.

Факт 1. Гаусс обнаружил следующую формулу для 16 cos(2π/17):

√
17− 1 +

√
34− 2

√
17 + 2

√
17 + 3

√
17−

√
34− 2

√
17− 2

√
34 + 2

√
17.

Наблюдение 6. Выполняется следующая важная формула для эле-
ментарных трансвекций, где ab = ba = −1:(

1 a
0 1

)(
1 0
b 1

)(
1 a
0 1

)
=

(
1 0
b 1

)(
1 a
0 1

)(
1 0
b 1

)
=

(
0 a
b 0

)
.

Наблюдение 7 (ТОЖДЕСТВА НЬЮТОНА–ЖИРАРА). Зная, что лога-
рифмическая производная геометрической прогрессии равна ей самой,
получаем:

−t d
dt

log
∏
λ∈Λ

(1− λt) =
−t ddt

∏
λ∈Λ(1− λt)∏

λ∈Λ(1− λt)
=

∑
λ∈Λ

∑
n⩾1

λntn =⇒

=⇒ −kσk =
k∑
i=1

γiσk−i, где
∏
λ∈Λ

(1− λt) =
∑
n⩾0

σnt
n, γn :=

∑
λ∈Λ

λn.

Наблюдение 8. В обозначениях N⋊H и N⋋H активная группа тычет
вилками в пассивную.

Наблюдение 9. Закон инерции Сильвестра абсолютно тривиален: у по-
ложительного и отрицательного подпространства тривиальное пересе-
чение, поэтому сумма их размерностей меньше или равна размерности
всего пространства.

Наблюдение 10. Евклидово самосопряжённый оператор расширени-
ем скаляров даёт положительно эрмитово самосопряжённый оператор,
а у таких операторов все собственные числа вещественные. Для само-
сопряжённого оператора ортогонал к инвариантному подпространству
инвариантен. Эти два утверждения дают ортогональную диагонализа-
цию квадратичных форм на евклидовых пространствах.
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Соглашение 2. Для квадратичных форм, возможно, стоит говорить
«положительная», «отрицательная», «полуположительная», «полуот-
рицательная». Вместо «знакоопределённая» говорить «анизотропная».

Наблюдение 11 (ФРОБЕНИУС АБЕЛЕВОЙ ГРУППЫ). Пусть p ∈ Z —
простое число, а V — абелева группа. Тогда мы имеем гомоморфизм
абелевых групп a 7→ [a⊗[p]Λ ] : V → Coker(ΣCp : (V ⊗[p]Λ)Cp → (V ⊗[p]Λ)Cp),
где Cp := Aut([p]Λ), а ΣCp — отображение суммирования по действию
конечной группы Cp из её коинвариантов в инварианты.

Пример 1. Алгебра k[X,Y ]/(XY ), где k — ассоциативное коммута-
тивное унитальное кольцо, не является амальгамированной суммой в
категории ассоциативных коммутативных унитальных колец своих по-
далгебр k[X] и k[Y ] над их пересечением k[X] ∩ k[Y ] = k.

Замечание 1. Пример 1 был подсказан Дмитрием Калединым по ин-
тернету 20 июля 2023 года.

Теорема 1. Пусть α : S−1R →← T−1E : β — кольцевые гомоморфизмы
между локализациями ассоциативных унитальных колец R и E по
множествам S и T . Если β ◦ α : S−1R→ S−1R является эндоморфиз-
мом над R, а образ α содержит образ канонического гомоморфизма
E → T−1E, то β ◦ α = Id и α ◦ β = Id.

Доказательство. Так как все эндоморфизмы S−1R над R тождествен-
ные, то β ◦ α = Id. Так как β ◦ α = Id, то α ◦ β переводит образ α в
себя тождественно, в частности, является эндоморфизмом над E, отку-
да следует, что α ◦ β = Id.

Замечание 2. Теорема 1 является, по сути, переформулировкой теоре-
мы 4.3 из книги Матсумуры [4, с. 23] в чуть более общем контексте.

Определение 2 (КОНСЕРВАТИВНЫЙ ФУНКТОР). Функтор называется
консервативным, если он переводит морфизмы, не являющиеся изо-
морфизмами, в морфизмы, не являющиеся изоморфизмами.

Обозначение 1 (МУЛЬТИПЛИКАТИВНЫЙ МОНОИД КОЛЬЦА). Пусть R
— ассоциативное унитальное кольцо. Моноид всех элементов R с опе-
рацией умножения обозначается через Rmult.
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Определение 3 (ХАРАКТЕР ДИРИХЛЕ). Отображение χ : Z→ C назы-
вается характером Дирихле модуля m, где m ∈ N1, если оно разлагает-
ся в композицию стандартной редукции Z → Z/mZ и консервативного
гомоморфизма мультипликативных моноидов (Z/mZ)mult → Cmult.

Наблюдение 12 (ЛИСТ МЁБИУСА). Определим раздутие Rn в точке
0 ∈ Rn, где n ∈ N1, как множествоMn := {(x, l) ∈ Rn×Gr(1,Rn) | x ∈ l}
с индуцированной топологией, где Gr(1,Rn) — это грассманиан прямых
в Rn, проходящих через 0 ∈ Rn. Отображение π :Mn → Rn, (x, l) 7→ x
задаёт гомеоморфизм между дополнением особого слоя π−1(0) вMn и
Rn \ {0}. Инверсия относительно единичной сферы на Rn \ {0} одно-
значно продолжается до гомеоморфизмаMn ∼−→ RPn \ {0}. Проколотое
проективное пространство RPn\{0}, в свою очередь, гомеоморфно про-
странству аффинных гиперплоскостей в Rn по проективной двойствен-
ности. Топологическое пространствоM2 называется листом Мёбиуса.

Определение 4 (ВНЕШНИЕ СТЕПЕНИ СПАРИВАНИЯ). Пусть I — конеч-
ное множество, A — коммутативное ассоциативное унитальное кольцо,
v ⊗ w 7→ v · w : V ⊗A W → A — спаривание между двумя A-модуля-
ми. Спаривание ΛI(V ) ⊗A ΛI(W ) → A, индуцированное спариванием
(
⊗

i∈I vi)⊗ (
⊗

i∈I wi) 7→ det((vi ·wj)i,j∈I) : V ⊗I ⊗AW⊗I → A, называется
I-ой внешней степенью спаривания v ⊗ w 7→ v · w : V ⊗AW → A.

Определение 5 (ДИСКРИМИНАНТ БИЛИНЕЙНОЙ ФОРМЫ). В условиях
определения 4 при дополнительном предположении V = W ' AI спа-
ривание (

∧
i∈I vi) ⊗ (

∧
i∈I wi) 7→ det((vi · wj)i,j∈I) : ΛI(V ) ⊗A ΛI(V ) → A

называется дискриминантом спаривания v ⊗ w 7→ v · w : V ⊗A V → A.

Наблюдение 13 (ДВА ОПРЕДЕЛЕНИЯ ЭКСПОНЕНТЫ). Доказательства
сходимости ряда

∑∞
n=0

1
n!x

n и равенства limm→∞(1 + x
m)m =

∑∞
n=0

1
n!x

n

довольно простые.
Абсолютная сходимость ряда

∑∞
n=0

1
n!x

n доказывается через баналь-
ное сравнение с геометрической прогрессией, так как |xn

n! | ⩽ |
xn−1

(n−1)! ||
x
n |,

а при ограниченном x число |xn | стремится к 0 когда n стремится к ∞.
По биному Ньютона (1 + x

m)m =
∑∞

n=0
m(m−1)···(m−(n−1))

mn
1
n!x

n. Ко-
эффициенты этих рядов по модулю не больше соответствующих коэф-
фициентов абсолютно сходящегося ряда

∑∞
n=0

1
n!x

n и стремятся к ним
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когда m стремится к ∞, откуда и следует, что limm→∞(1 + x
m)m =∑∞

n=0
1
n!x

n.

17.2. Раздел Б
Наблюдение 1. Категория малых категорий содержит все малые пре-
делы и копределы.

Наблюдение 2. Пусть R — ассоциативное унитальное кольцо. Тогда
гомоморфизм (1) является изоморфизмом.

(ϕM )M∈R-mod 7→ ϕR : End(IdR-mod)→ EndR⊗ZRo-mod(R) ∼= Z(R) (1)

Определение 1 (ГРУППОВОЙ ОБЪЕКТ). Групповым объектом в катего-
рии C называется пара (G,µ) из объекта G ∈ Ob(C) и естественного пре-
образования (µX : HomC(X,G) × HomC(X,G) → HomC(X,G))X∈Ob(C),
которое превращает каждое из множеств HomC(X,G) в группу.
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