
University of Central Florida

UCF Checkmate
Aga Calkowska, Brian Grana, Nic Washbourne

2025-10-10

Contents

1 Contest 1

2 Mathematics 1

3 Data Structures 2

4 Geometry 5

5 Graphs 10

6 Numerical 16

7 Number Theory 20

8 Combinatorial 21

9 Strings 22

10 Bullshit 24

Contest (1)
Makefile

1 lines

CXXFLAGS=-std=c++20 -g -O2 -Wall -Wextra -Wshadow

hash.sh
3 lines

Hashes a file, ignoring all whitespace and comments. Use for
verifying that code was correctly typed.
cpp -dD -P -fpreprocessed | tr -d ’[:space:]’| md5sum |cut -c-6

terminal.txt
3 lines

&> - redirect both standard out and standard error
> - overwrite
>> - append

Mathematics (2)

2.1 Equations

ax2 + bx+ c = 0 ⇒ x =
−b±

√
b2 − 4ac

2a

The extremum is given by x = −b/2a.

ax+ by = e

cx+ dy = f
⇒

x =
ed− bf

ad− bc

y =
af − ec

ad− bc

In general, given an equation Ax = b, the solution to a variable
xi is given by

xi =
detA′

i

detA
where A′

i is A with the i’th column replaced by b.

2.2 Recurrences
If an = c1an−1 + · · ·+ ckan−k, and r1, . . . , rk are distinct roots of
xk − c1x

k−1 − · · · − ck, there are d1, . . . , dk s.t.

an = d1r
n
1 + · · ·+ dkr

n
k .

Non-distinct roots r become polynomial factors, e.g.
an = (d1n+ d2)r

n.

2.3 Trigonometry

sin(v + w) = sin v cosw + cos v sinw

cos(v + w) = cos v cosw − sin v sinw

tan(v + w) =
tan v + tanw

1− tan v tanw

sin v + sinw = 2 sin
v + w

2
cos

v − w

2

cos v + cosw = 2 cos
v + w

2
cos

v − w

2

(V +W) tan(v − w)/2 = (V −W) tan(v + w)/2

where V,W are lengths of sides opposite angles v, w.

a cosx+ b sinx = r cos(x− ϕ)

a sinx+ b cosx = r sin(x+ ϕ)

where r =
√
a2 + b2, ϕ = atan2(b, a).

2.4 Derivatives/Integrals

d

dx
arcsinx =

1√
1− x2

d

dx
arccosx = − 1√

1− x2

d

dx
tanx = 1 + tan2 x

d

dx
arctanx =

1

1 + x2∫
tan ax = − ln | cos ax|

a

∫
x sin ax =

sin ax− ax cos ax

a2∫
e−x2

=

√
π

2
erf(x)

∫
xeaxdx =

eax

a2
(ax− 1)

Integration by parts:

∫ b

a

f(x)g(x)dx = [F (x)g(x)]ba −
∫ b

a

F (x)g′(x)dx

2.5 Sums

ca + ca+1 + · · ·+ cb =
cb+1 − ca

c− 1
, c ̸= 1

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

12 + 22 + 32 + · · ·+ n2 =
n(2n+ 1)(n+ 1)

6

13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4

14 + 24 + 34 + · · ·+ n4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30

2.6 Series

ex = 1 + x+
x2

2!
+

x3

3!
+ . . . , (−∞ < x < ∞)

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . . , (−1 < x ≤ 1)

√
1 + x = 1 +

x

2
− x2

8
+

2x3

32
− 5x4

128
+ . . . , (−1 ≤ x ≤ 1)

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . , (−∞ < x < ∞)

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . . , (−∞ < x < ∞)

2.7 Probability theory
Let X be a discrete random variable with probability pX(x) of
assuming the value x. It will then have an expected value (mean)
µ = E(X) =

∑
x xpX(x) and variance

σ2 = V (X) = E(X2)− (E(X))2 =
∑

x(x− E(X))2pX(x) where σ
is the standard deviation. If X is instead continuous it will have
a probability density function fX(x) and the sums above will
instead be integrals with pX(x) replaced by fX(x).

Expectation is linear:

E(aX + bY) = aE(X) + bE(Y)

For independent X and Y ,

V (aX + bY) = a2V (X) + b2V (Y).

2.7.1 Discrete distributions

Binomial distribution

The number of successes in n independent yes/no experiments,
each which yields success with probability p is
Bin(n, p), n = 1, 2, . . . , 0 ≤ p ≤ 1.

p(k) =

(
n

k

)
pk(1− p)n−k

µ = np, σ2 = np(1− p)

Bin(n, p) is approximately Po(np) for small p.

1

UCF Makefile hash terminal OrderStatisticTree HashMap RMQ LazySegmentTree 2

First success distribution

The number of trials needed to get the first success in
independent yes/no experiments, each which yields success with
probability p is Fs(p), 0 ≤ p ≤ 1.

p(k) = p(1− p)k−1, k = 1, 2, . . .

µ =
1

p
, σ2 =

1− p

p2

Poisson distribution

The number of events occurring in a fixed period of time t if these
events occur with a known average rate κ and independently of
the time since the last event is Po(λ), λ = tκ.

p(k) = e−λ λ
k

k!
, k = 0, 1, 2, . . .

µ = λ, σ2 = λ

2.7.2 Continuous distributions

Uniform distribution

If the probability density function is constant between a and b
and 0 elsewhere it is U(a, b), a < b.

f(x) =

{
1

b−a
a < x < b

0 otherwise

µ =
a+ b

2
, σ2 =

(b− a)2

12

Exponential distribution

The time between events in a Poisson process is
Exp(λ), λ > 0.

f(x) =

{
λe−λx x ≥ 0

0 x < 0

µ =
1

λ
, σ2 =

1

λ2

Normal distribution

Most real random values with mean µ and variance σ2 are well
described by N (µ, σ2), σ > 0.

f(x) =
1√
2πσ2

e
− (x−µ)2

2σ2

If X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) then

aX1 + bX2 + c ∼ N (µ1 + µ2 + c, a2σ2
1 + b2σ2

2)

2.8 Geometry
2.8.1 Triangles
Side lengths: a, b, c

Semiperimeter: p =
a+ b+ c

2
Area: A =

√
p(p− a)(p− b)(p− c)

Circumradius: R =
abc

4A

Inradius: r =
A

p
Length of median (divides triangle into two equal-area triangles):
ma = 1

2

√
2b2 + 2c2 − a2

Length of bisector (divides angles in two):

sa =

√√√√bc

[
1−

(
a

b+ c

)2
]

Law of sines:
sinα

a
=

sinβ

b
=

sin γ

c
=

1

2R
Law of cosines: a2 = b2 + c2 − 2bc cosα

Law of tangents:
a+ b

a− b
=

tan
α+ β

2

tan
α− β

2

2.8.2 Quadrilaterals
With side lengths a, b, c, d, diagonals e, f , diagonals angle θ, area
A and magic flux F = b2 + d2 − a2 − c2:

4A = 2ef · sin θ = F tan θ =
√

4e2f2 − F 2

For cyclic quadrilaterals the sum of opposite angles is 180◦,
ef = ac+ bd, and A =

√
(p− a)(p− b)(p− c)(p− d).

2.8.3 Spherical coordinates

r

x

y

z

x = r sin θ cosϕ r =
√

x2 + y2 + z2

y = r sin θ sinϕ θ = acos(z/
√

x2 + y2 + z2)
z = r cos θ ϕ = atan2(y, x)

Data Structures (3)
OrderStatisticTree.h
Description: A set (not multiset!) with support for finding the n’th ele-
ment, and finding the index of an element. To get a map, change null type.
Time: O (logN)

cd2981, 16 lines

#include <bits/extc++.h>
using namespace __gnu_pbds;

template<class T>
using Tree = tree<T, null_type, less<T>, rb_tree_tag,

tree_order_statistics_node_update>;

/*
Tree<int> t , t2 ; t . insert (8) ;
auto i t = t . insert(10) . f i r s t ;
assert (i t == t . lower bound(9)) ;
assert (t . order of key(10) == 1) ;
assert(t . order of key(11) == 2) ;
assert(* t . find by order(0) == 8) ;
t . join(t2) ; // assuming T < T2 or T > T2, merge t2 into t
*/

HashMap.h
Description: Hash map with mostly the same API as unordered map, but
∼3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if
provided).

d77092, 7 lines

#include <bits/extc++.h>
// To use most bits rather than just the lowest ones :
struct chash { // large odd number for C
const uint64_t C = ll(4e18 * acos(0)) | 71;
ll operator()(ll x) const { return __builtin_bswap64(x*C); }

};
__gnu_pbds::gp_hash_table<ll,int,chash> h({},{},{},{},{1<<16});

RMQ.h
Description: Range Minimum Queries on an array. Returns min(V[a], V[a
+ 1], ... V[b - 1]) in constant time.
Usage: RMQ rmq(values);
rmq.query(inclusive, exclusive);
Time: O (|V | log |V | + Q)

510c32, 16 lines

template<class T>
struct RMQ {

vector<vector<T>> jmp;
RMQ(const vector<T>& V) : jmp(1, V) {
for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
jmp.emplace_back(sz(V) - pw * 2 + 1);
rep(j,0,sz(jmp[k]))

jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
}

}
T query(int a, int b) {
assert(a < b); // or return inf i f a == b
int dep = 31 - __builtin_clz(b - a);
return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);

}
};

LazySegmentTree.h
Description: S: base datatype. S op(S, S): merge S. S ego(): default S,
identity for op. F: lazy prop type. S mapping(F, s): apply F to S. F composi-
tion(F, F): merge F. F id(): default F, identity for mapping and composition.
Time: O (logN).

af06ca, 56 lines

// WATCHFOROUTOF BOUNDS
// template<class S, auto op, auto ego ,
// class F, auto mapping, auto composition , auto id>
struct Tree {

int n, size, log;
vector<S> d;
vector<F> lz;
Tree(size_t m) {
n = m; size = bit_ceil(m); log = __lg(size);
d = vector(2*size, ego());
lz = vector(size, id());

}

UCF MaxRight MinLeft PST LiChao UnionFindRollback LinearCHT 3

void update(int k) { d[k] = op(d[2*k], d[2*k + 1]); }
void fid(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);

}
void push(int k) {
fid(2 * k, lz[k]);
fid(2 * k + 1, lz[k]);
lz[k] = id();

}
#define tip for (int i = 1; i <= log; i++)
#define dip for (int i = log; i >= 1; i--)
#define check(p) { if (((1<<i)-1) & l) p(l >> i);\

if (((1<<i)-1) & r) p((r-1) >> i); }
void set(int p, S x) {
p += size;
dip push(p >> i);
d[p] = x;
tip update(p >> i);

}
S prod(int l, int r) {
l += size; r += size;
dip check(push);
S sml = ego(); S smr = ego();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l /= 2; r /= 2;

}
return op(sml, smr);

}
void apply(int l, int r, F f) {
l += size; r += size;
int l2 = l, r2 = r;
dip check(push);
while (l < r) {
if (l & 1) fid(l++, f);
if (r & 1) fid(--r, f);
l /= 2; r /= 2;

}
l = l2; r = r2;
tip check(update);

}
};

MaxRight.h
Description: Maximum r such that g(prod(l, r)). Goes in LazySegment-
Tree.
Time: O (logN).

f1b0be, 18 lines

int max_right(int l, auto g) {
assert(g(ego()));
l += size;
dip push(l >> i);
S sm = ego();
do {
while (l % 2 == 0) l /= 2;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
if (g(op(sm, d[l *= 2]))) sm = op(sm, d[l++]);

}
return l - size;

}
sm = op(sm, d[l++]);

} while ((l & -l) != l);
return n;

}

MinLeft.h
Description: Minimum l such that g(prod(l, r)). Goes in LazySegmentTree.
Time: O (logN).

fc630a, 18 lines

int min_left(int r, auto g) {
assert(g(ego()));
r += size;
dip push((r - 1) >> i);
S sm = ego();
do {
for (r--; r > 1 && (r % 2);) r /= 2;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
if (g(op(d[r = 2*r+1], sm))) sm = op(d[r--], sm);

}
return r + 1 - size;

}
sm = op(d[r], sm);

} while ((r & -r) != r);
return 0;

}

PST.h
Description: Persistent segment tree with laziness
Time: O (logN) per query, O ((n + q) logn) memory

6e8af5, 39 lines

struct PST {
PST *l = 0, *r = 0;
int lo, hi;
ll val = 0, lzadd = 0;
PST(vl& v, int lo, int hi) : lo(lo), hi(hi) {
if (lo + 1 < hi) {
int mid = lo + (hi - lo)/2;
l = new PST(v, lo, mid); r = new PST(v, mid, hi);
val = l->val + r->val;

}
else val = v[lo];

}
ll query(int L, int R) {
if (R <= lo || hi <= L) return 0; // idempotent
if (L <= lo && hi <= R) return val;
push();
return l->query(L, R) + r->query(L, R);

}
PST* add(int L, int R, ll v) {
if (R <= lo || hi <= L) return this;
PST *n = new PST(*this);
if (L <= lo && hi <= R) {
n->val += v * (hi - lo);
n->lzadd += v;

} else {
n->push();
n->l = n->l->add(L, R, v);
n->r = n->r->add(L, R, v);
n->val = n->l->val + n->r->val;

}
return n;

}
void push() {
if(lzadd == 0) return;
l = l->add(lo, hi, lzadd);
r = r->add(lo, hi, lzadd);
lzadd = 0;

}
};

LiChao.h
Description: Creates a segment tree style data structure that supports
adding a function to the set and query the min value at a given x. For any
two added functions, they must intersect at most once. If queries can be
floating point, consider line container instead.
Time: Both operations are O (logN).

bdebe2, 27 lines

struct line {
ll m, b;
line(ll m = 0, ll b = LLONG_MAX): m(m), b(b) {}
ll operator() (ll x) { return m * x + b; }

};

struct node {
int lo, md, hi;
line f;
node *left, *right;
node(int L, int R): lo(L), md((L+R)>>1), hi(R) {
if(lo == hi) return;
left = new node(lo, md);
right = new node(md+1, hi);

}
void update(line g) {
if(g(md) < f(md)) swap(f, g);
if(lo == hi) return;
if(f(lo) <= g(lo) && f(hi) <= g(hi)) return;
if(f(lo) > g(lo)) left->update(g);
else right->update(g);

}
ll query(ll x) {
if(lo == hi) return f(x);
return min(f(x), (x <= md ? left : right)->query(x));

}
};

UnionFindRollback.h
Description: Disjoint-set data structure with undo. If undo is not needed,
skip st, time() and rollback().
Usage: int t = uf.time(); ...; uf.rollback(t);
Time: O (log(N))

de4ad0, 21 lines

struct RollbackUF {
vi e; vector<pii> st;
RollbackUF(int n) : e(n, -1) {}
int size(int x) { return -e[find(x)]; }
int find(int x) { return e[x] < 0 ? x : find(e[x]); }
int time() { return sz(st); }
void rollback(int t) {
for (int i = time(); i --> t;)
e[st[i].first] = st[i].second;

st.resize(t);
}
bool join(int a, int b) {
a = find(a), b = find(b);
if (a == b) return false;
if (e[a] > e[b]) swap(a, b);
st.push_back({a, e[a]});
st.push_back({b, e[b]});
e[a] += e[b]; e[b] = a;
return true;

}
};

LinearCHT.h
Description: Computes min/max at point for a set of linear functions.
Lines must be inserted in monotonic order of slopes, with increasing giving
max value and decreasing giving min value. Try to avoid inserting two lines
with the same slope. Queries must also be done in order of non-decreasing
x.

UCF LineContainer Treap FenwickTree FenwickTree2d MoQueries 4

Time: O (1) per query
fa6997, 26 lines

template<class T>
struct Line {

T m, b;
Line(T m, T b) : m(m), b(b) {}
T isect(const Line<T>& o) {

return (o.b-b) / (m-o.m);
}

};

template<class T>
struct CHT {

deque<Line<T>> q;
void insert(T m, T b) {

Line<T> v(m, b);
while (sz(q) > 1 && v.isect(q[0]) <= q[0].isect(q[1]))

q.pop_front();
q.push_front(v);

}
T query(T x) {

int s = sz(q)-1;
while (s > 0 && q[s].isect(q[--s]) < x)

q.pop_back();
auto [m, b] = q.back();
return m * x + b;

}
};

LineContainer.h
Description: Container where you can add lines of the form kx+b, and
query maximum values at points x. Useful for dynamic programming (“con-
vex hull trick”).
Time: O (logN)

d2fbe7, 30 lines

struct Line {
mutable ll m, b, p;
bool operator<(const Line& o) const { return m < o.m; }
bool operator<(ll x) const { return p < x; }

};

struct LineContainer : multiset<Line, less<>> {
// (for doubles , use inf = 1/.0, div(a,b) = a/b)
static const ll inf = LLONG_MAX;
ll div(ll a, ll b) { // floored division

return a / b - ((a ^ b) < 0 && a % b); }
bool isect(iterator x, iterator y) {
if (y == end()) return x->p = inf, 0;
if (x->m == y->m) x->p = x->b > y->b ? inf : -inf;
else x->p = div(y->b - x->b, x->m - y->m);
return x->p >= y->p;

}
void add(ll m, ll b) {
auto z = insert({m, b, 0}), y = z++, x = y;
while (isect(y, z)) z = erase(z);
if (x != begin() && isect(--x, y)) isect(x, y = erase(y));
while ((y = x) != begin() && (--x)->p >= y->p)
isect(x, erase(y));

}
ll query(ll x) {
assert(!empty());
auto l = *lower_bound(x);
return l.m * x + l.b;

}
};

Treap.h
Description: A short self-balancing tree. It acts as a sequential container
with log-time splits/joins, and is easy to augment with additional data.

Time: O (logN)
635edf, 41 lines

struct node {
int val, prior, sz = 1;
node *left = nullptr, *right = nullptr;
node(int val = 0): val(val), prior(rand()) {}

};

int getSz(node *cur) { return cur ? cur->sz : 0; }
void recalc(node *cur) { cur->sz = getSz(cur->left) + getSz(cur

->right) + 1; }

pair<node*, node*> split(node *cur, int v) {
if(!cur) return {nullptr, nullptr};
node *left, *right;
if(getSz(cur->left) >= v) {

right = cur;
auto [L, R] = split(cur->left, v);
left = L, right->left = R;
recalc(right);

}
else {
left = cur;
auto [L, R] = split(cur->right, v - getSz(cur->left) - 1);
left->right = L, right = R;
recalc(left);

}
return {left, right};

}

node* merge(node *t1, node *t2) {
if(!t1 || !t2) return t1 ? t1 : t2;
node *res;
if(t1->prior > t2->prior) {
res = t1;
res->right = merge(t1->right, t2);

}
else {
res = t2;
res->left = merge(t1, t2->left);

}
recalc(res);
return res;

}

FenwickTree.h
Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and
updates single elements a[i], taking the difference between the old and new
value.
Time: Both operations are O (logN).

e62fac, 22 lines

struct FT {
vector<ll> s;
FT(int n) : s(n) {}
void update(int pos, ll dif) { // a[pos] += dif
for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;

}
ll query(int pos) { // sum of values in [0 , pos)
ll res = 0;
for (; pos > 0; pos &= pos - 1) res += s[pos-1];
return res;

}
int lower_bound(ll sum) {// min pos st sum of [0 , pos] >= sum

// Returns n i f no sum is >= sum, or =1 i f empty sum is .
if (sum <= 0) return -1;
int pos = 0;
for (int pw = 1 << 25; pw; pw >>= 1) {
if (pos + pw <= sz(s) && s[pos + pw-1] < sum)
pos += pw, sum -= s[pos-1];

}

return pos;
}

};

FenwickTree2d.h
Description: Computes sums a[i,j] for all i<I, j<J, and increases single ele-
ments a[i,j]. Requires that the elements to be updated are known in advance
(call fakeUpdate() before init()).
Time: O

(
log2 N

)
. (Use persistent segment trees for O (logN).)

"FenwickTree.h" 157f07, 22 lines

struct FT2 {
vector<vi> ys; vector<FT> ft;
FT2(int limx) : ys(limx) {}
void fakeUpdate(int x, int y) {
for (; x < sz(ys); x |= x + 1) ys[x].push_back(y);

}
void init() {
for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v));

}
int ind(int x, int y) {
return (int)(lower_bound(all(ys[x]), y) - ys[x].begin()); }

void update(int x, int y, ll dif) {
for (; x < sz(ys); x |= x + 1)
ft[x].update(ind(x, y), dif);

}
ll query(int x, int y) {
ll sum = 0;
for (; x; x &= x - 1)
sum += ft[x-1].query(ind(x-1, y));

return sum;
}

};

MoQueries.h
Description: Answer interval or tree path queries by finding an approxi-
mate TSP through the queries, and moving from one query to the next by
adding/removing points at the ends. If values are on tree edges, change step
to add/remove the edge (a, c) and remove the initial add call (but keep in).
Time: O

(
N

√
Q
)

a12ef4, 49 lines

void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a[ind]
int calc() { ... } // compute current answer

vi mo(vector<pii> Q) {
int L = 0, R = 0, blk = 350; // ∼N/sqrt (Q)
vi s(sz(Q)), res = s;

#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
iota(all(s), 0);
sort(all(s), [&](int s, int t){ return K(Q[s]) < K(Q[t]); });
for (int qi : s) {

pii q = Q[qi];
while (L > q.first) add(--L, 0);
while (R < q.second) add(R++, 1);
while (L < q.first) del(L++, 0);
while (R > q.second) del(--R, 1);
res[qi] = calc();

}
return res;

}

vi moTree(vector<array<int, 2>> Q, vector<vi>& ed, int root=0){
int N = sz(ed), pos[2] = {}, blk = 350; // ∼N/sqrt (Q)
vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
add(0, 0), in[0] = 1;
auto dfs = [&](int x, int p, int dep, auto& f) -> void {

par[x] = p;
L[x] = N;
if (dep) I[x] = N++;

UCF SqrtDecomp PQUpdate XorBasis WaveletTree BitVector lineIntersection 5

for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
if (!dep) I[x] = N++;
R[x] = N;

};
dfs(root, -1, 0, dfs);

#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
iota(all(s), 0);
sort(all(s), [&](int s, int t){ return K(Q[s]) < K(Q[t]); });
for (int qi : s) rep(end,0,2) {
int &a = pos[end], b = Q[qi][end], i = 0;

#define step(c) { if (in[c]) { del(a, end); in[a] = 0; } \
else { add(c, end); in[c] = 1; } a = c; }

while (!(L[b] <= L[a] && R[a] <= R[b]))
I[i++] = b, b = par[b];

while (a != b) step(par[a]);
while (i--) step(I[i]);
if (end) res[qi] = calc();

}
return res;

}

SqrtDecomp.h
Description: decomposes (l, r) range into pair of (list of fully covered blocks,
list of partially covered blocks)
Time: O (B + (r − l)/B)

799a5b, 16 lines

template<int B>
pair<vi, vector<array<int, 3>>> decomp(int l, int r) {
if (l/B == (r-1)/B) return {{}, {{l/B, l, r}}};

vi full;
vector<array<int, 3>> subs;
if (l%B != 0) {
subs.push_back({l/B, l, (l/B+1)*B});
l = subs.back()[2];

}
if (r%B != 0) {
subs.push_back({r/B, r/B*B, r});
r = subs.back()[1];

}
rep(i, l/B, r/B) full.push_back(i);
return {full, subs};

}

PQUpdate.h
Description: T: value/update type. DS: Stores T. Same semantics as
std::priority queue. Allows applying update with priority p, undoing low-
est priority update, querying DS.
Time: O (U logN).

35a7d2, 36 lines

template<class T, class DS, class Compare = less<T>>
struct PQUpdate {
DS inner;
multimap<T, int, Compare> rev_upd;
using iter = decltype(rev_upd)::iterator;
vector<iter> st;
PQUpdate(DS inner, Compare comp={}):

inner(inner), rev_upd(comp) {}

bool empty() { return st.empty(); }
const T& top() { return rev_upd.rbegin()->first; }
void push(T value) {
inner.push(value);
st.push_back(rev_upd.insert({value, sz(st)}));

}
void pop() {
vector<iter> extra;
iter curr = rev_upd.end();
int min_ind = sz(st);
do {

extra.push_back(--curr);
min_ind = min(min_ind, curr->second);

} while (2*sz(extra) < sz(st) - min_ind);
while (sz(st) > min_ind) {
if (rev_upd.value_comp()(*st.back(), *curr))
extra.push_back(st.back());

inner.pop(); st.pop_back();
}
rev_upd.erase(extra[0]);
for (auto it : extra | views::drop(1) | views::reverse) {
it->second = sz(st);
inner.push(it->first);
st.push_back(it);

}
}

};

XorBasis.h
Description: Forms a basis of binary vectors, with buildback.
Time: O

(
MAXBIT 2/32

)
455aa1, 31 lines

const int MAXBIT = 64;
using B = bitset<MAXBIT>;

template<class T> struct Basis {
B basis[MAXBIT], which[MAXBIT];
optional<T> vals[MAXBIT];
Basis() { memset(vals, 0, sizeof(vals)); }

bool put(B v, T x) {
if (v.none()) return false;
B cur; int ind = -1;
for (int i = 0; i < MAXBIT; i++) if (v[i]) {

if(vals[i].has_value())
v ^= basis[i], cur ^= which[i];

else if (ind < 0) ind = i;
}
if (ind < 0) return false;
basis[ind] = v, vals[ind] = x;
which[ind] = cur, which[ind][ind] = 1;
return true;

}

B get(B v) {
if (v.none()) return v;
B res;
for (int i = 0; i < MAXBIT; i++) if (v[i]) {

v ^= basis[i], res ^= which[i];
}
return res;

}
};

WaveletTree.h
Description: kth: finds k+1th smallest number in [l,r), count: rank of k
(how many < k) in [l,r). Doesn’t support negative numbers, and requires a[i]
<= maxval. Use BitVector to make 1.6x faster and 4x less memory.
Time: O (logMAX)

11aee1, 38 lines

struct WaveletTree {
int n; vvi bv; // vector<BitVector> bv ;
WaveletTree(vl a, ll max_val):
n(sz(a)), bv(1+__lg(max_val), {{}}) {
vl nxt(n);
for (int h = sz(bv); h--;) {
vector<bool> b(n);
rep(i, 0, n) b[i] = ((a[i] >> h) & 1);
bv[h] = vi(n+1); // bv [h] = b;
rep(i, 0, n) bv[h][i+1] = bv[h][i] + !b[i]; // delete

array it{begin(nxt), begin(nxt) + bv[h][n]};
rep(i, 0, n) *it[b[i]]++ = a[i];
swap(a, nxt);

}
}
ll kth(int l, int r, int k) {
ll res = 0;
for (int h = sz(bv); h--;) {
int l0 = bv[h][l], r0 = bv[h][r];
if (k < r0 - l0) l = l0, r = r0;
else

k -= r0 - l0, res |= 1ULL << h,
l += bv[h][n] - l0, r += bv[h][n] - r0;

}
return res;

}
int count(int l, int r, ll ub) {
int res = 0;
for (int h = sz(bv); h--;) {
int l0 = bv[h][l], r0 = bv[h][r];
if ((∼ub >> h) & 1) l = l0, r = r0;
else

res += r0 - l0, l += bv[h][n] - l0,
r += bv[h][n] - r0;

}
return res;

}
};

BitVector.h
Description: Given vector of bits, counts number of 0’s in [0, r). Use with
WaveletTree.h by using modifications in comments in that file and replacing
bv[h][x] with bv[h].cnt0(x)
Time: O (1) time

afd9d2, 15 lines

struct BitVector {
vector<pair<ll, int>> b;
BitVector(vector<bool> a): b(sz(a) / 64 + 1) {
rep(i, 0, sz(a))
b[i >> 6].first |= ll(a[i]) << (i & 63);

rep(i, 0, sz(b)-1)
b[i + 1].second = __builtin_popcountll(b[i].first)

+ b[i].second;
}
int cnt0(int r) {
auto [x, y] = b[r >> 6];
return r - y
- __builtin_popcountll(x & ((1ULL << (r & 63)) - 1));

}
};

Geometry (4)

4.1 Lines and Segments
lineIntersection.h
Description:
If a unique intersection point of the lines going through s1,e1
and s2,e2 exists {1, point} is returned. If no intersection point
exists {0, (0,0)} is returned and if infinitely many exists {-1,
(0,0)} is returned. The wrong position will be returned if P
is Point<ll> and the intersection point does not have integer
coordinates. Products of three coordinates are used in inter-
mediate steps so watch out for overflow if using int or ll.

e1
s1

e2

s2
r

Usage: auto res = lineInter(s1,e1,s2,e2);
if (res.first == 1)
cout << "intersection point at " << res.second << endl;
"Point.h" a01f81, 8 lines

UCF linearTransformation SegmentDistance SegmentIntersection InsidePolygon PolygonCenter PolygonCut PolygonUnion HalfplaneIntersection 6

template<class P>
pair<int, P> lineInter(P s1, P e1, P s2, P e2) {
auto d = (e1 - s1).cross(e2 - s2);
if (d == 0) // i f paral lel
return {-(s1.cross(e1, s2) == 0), P(0, 0)};

auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
return {1, (s1 * p + e1 * q) / d};

}

linearTransformation.h
Description:

Apply the linear transformation (translation, rotation and
scaling) which takes line p0-p1 to line q0-q1 to point r.

p0

p1

q0

r

q1

res

"Point.h" 03a306, 6 lines

typedef Point<double> P;
P linearTransformation(const P& p0, const P& p1,

const P& q0, const P& q1, const P& r) {
P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();

}

SegmentDistance.h
Description:
Returns the shortest distance between point p and the line
segment from point s to e.

e

s

res
p

Usage: Point<double> a, b(2,2), p(1,1);
bool onSegment = segDist(a,b,p) < 1e-10;
"Point.h" 5c88f4, 6 lines

typedef Point<double> P;
double segDist(P& s, P& e, P& p) {
if (s==e) return (p-s).dist();
auto d = (e-s).dist2(), t = min(d,max(.0,(p-s).dot(e-s)));
return ((p-s)*d-(e-s)*t).dist()/d;

}

SegmentIntersection.h
Description:
If a unique intersection point between the line segments going
from s1 to e1 and from s2 to e2 exists then it is returned.
If no intersection point exists an empty vector is returned.
If infinitely many exist a vector with 2 elements is returned,
containing the endpoints of the common line segment. The
wrong position will be returned if P is Point<ll> and the in-
tersection point does not have integer coordinates. Products
of three coordinates are used in intermediate steps so watch
out for overflow if using int or long long.

e1

s1

e2

s2
r1

Usage: vector<P> inter = segInter(s1,e1,s2,e2);
if (sz(inter)==1)
cout << "segments intersect at " << inter[0] << endl;
"Point.h", "OnSegment.h" 9d57f2, 13 lines

template<class P> vector<P> segInter(P a, P b, P c, P d) {
auto oa = c.cross(d, a), ob = c.cross(d, b),

oc = a.cross(b, c), od = a.cross(b, d);
// Checks i f intersection is single non=endpoint point .
if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)

return {(a * ob - b * oa) / (ob - oa)};
set<P> s;
if (onSegment(c, d, a)) s.insert(a);
if (onSegment(c, d, b)) s.insert(b);
if (onSegment(a, b, c)) s.insert(c);
if (onSegment(a, b, d)) s.insert(d);
return {all(s)};

}

4.2 Polygons
InsidePolygon.h
Description: Returns true if p lies within the polygon. If strict is true, it
returns false for points on the boundary. The algorithm uses products in
intermediate steps so watch out for overflow.
Usage: vector<P> v = {P{4,4}, P{1,2}, P{2,1}};
bool in = inPolygon(v, P{3, 3}, false);
Time: O (n)
"Point.h", "OnSegment.h", "SegmentDistance.h" 2bf504, 11 lines

template<class P>
bool inPolygon(vector<P> &p, P a, bool strict = true) {

int cnt = 0, n = sz(p);
rep(i,0,n) {
P q = p[(i + 1) % n];
if (onSegment(p[i], q, a)) return !strict;
//or : i f (segDist(p[i] , q , a) <= eps) return ! str ict ;
cnt ^= ((a.y<p[i].y) - (a.y<q.y)) * a.cross(p[i], q) > 0;

}
return cnt;

}

PolygonCenter.h
Description: Returns the center of mass for a polygon.
Time: O (n)
"Point.h" 9706dc, 9 lines

typedef Point<double> P;
P polygonCenter(const vector<P>& v) {

P res(0, 0); double A = 0;
for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
res = res + (v[i] + v[j]) * v[j].cross(v[i]);
A += v[j].cross(v[i]);

}
return res / A / 3;

}

PolygonCut.h
Description:
Returns a vector with the vertices of a polygon with every-
thing to the left of the line going from s to e cut away.

s

e

Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
"Point.h", "lineIntersection.h" f2b7d4, 13 lines

typedef Point<double> P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {

vector<P> res;
rep(i,0,sz(poly)) {
P cur = poly[i], prev = i ? poly[i-1] : poly.back();
bool side = s.cross(e, cur) < 0;
if (side != (s.cross(e, prev) < 0))
res.push_back(lineInter(s, e, cur, prev).second);

if (side)
res.push_back(cur);

}
return res;

}

PolygonUnion.h
Description: Calculates the area of the union of n polygons (not necessar-
ily convex). The points within each polygon must be given in CCW order.
(Epsilon checks may optionally be added to sideOf/sgn, but shouldn’t be
needed.)
Time: O

(
N2

)
, where N is the total number of points

"Point.h", "sideOf.h" 3931c6, 33 lines

typedef Point<double> P;
double rat(P a, P b) { return sgn(b.x) ? a.x/b.x : a.y/b.y; }
double polyUnion(vector<vector<P>>& poly) {

double ret = 0;

rep(i,0,sz(poly)) rep(v,0,sz(poly[i])) {
P A = poly[i][v], B = poly[i][(v + 1) % sz(poly[i])];
vector<pair<double, int>> segs = {{0, 0}, {1, 0}};
rep(j,0,sz(poly)) if (i != j) {
rep(u,0,sz(poly[j])) {
P C = poly[j][u], D = poly[j][(u + 1) % sz(poly[j])];
int sc = sideOf(A, B, C), sd = sideOf(A, B, D);
if (sc != sd) {

double sa = C.cross(D, A), sb = C.cross(D, B);
if (min(sc, sd) < 0)
segs.emplace_back(sa / (sa - sb), sgn(sc - sd));

} else if (!sc && !sd && j<i && sgn((B-A).dot(D-C))>0){
segs.emplace_back(rat(C - A, B - A), 1);
segs.emplace_back(rat(D - A, B - A), -1);

}
}

}
sort(all(segs));
for (auto& s : segs) s.first = min(max(s.first, 0.0), 1.0);
double sum = 0;
int cnt = segs[0].second;
rep(j,1,sz(segs)) {
if (!cnt) sum += segs[j].first - segs[j - 1].first;
cnt += segs[j].second;

}
ret += A.cross(B) * sum;

}
return ret / 2;

}

HalfplaneIntersection.h
Description: Returns the intersection of halfplanes as a polygon
Time: O (n logn)

b9fb0f, 38 lines

const double eps = 1e-8;
typedef Point<double> P;
struct HalfPlane {

P s, e, d;
HalfPlane(P s = P(), P e = P()): s(s), e(e), d(e - s) {}
bool contains(P p) { return d.cross(p - s) > -eps; }
bool side() { return d.x<-eps || (abs(d.x)<=eps && d.y>0); }
bool operator<(HalfPlane hp) {
if(side() != hp.side()) return side();
return d.cross(hp.d) > 0;

}
P inter(HalfPlane hp) {
auto p = hp.s.cross(e, hp.e), q = hp.s.cross(hp.e, s);
return (s * p + e * q) / d.cross(hp.d);

}
};

vector<P> hpIntersection(vector<HalfPlane> hps) {
sort(all(hps));
int n = sz(hps), l = 1, r = 0;
vector<HalfPlane> dq(n+1);
rep(i, 0, n) {
while(l<r && !hps[i].contains(dq[r].inter(dq[r-1]))) r--;
while(l<r && !hps[i].contains(dq[l].inter(dq[l+1]))) l++;
dq[++r] = hps[i];
if(l < r && abs(dq[r].d.cross(dq[r-1].d)) < eps) {
if(dq[r].d.dot(dq[r-1].d) < 0) return {};
if(dq[--r].contains(hps[i].s)) dq[r] = hps[i];

}
}
while(l<r-1 && !dq[l].contains(dq[r].inter(dq[r-1]))) r--;
while(l<r-1 && !dq[r].contains(dq[l].inter(dq[l+1]))) l++;
if(l > r-2) return {};
vector<P> poly;
rep(i, l, r) poly.push_back(dq[i].inter(dq[i+1]));

UCF ConvexHull HullDiameter PointInsideHull ExtremeVertex LineHullIntersection HullTangents MinkowskiSum CircleIntersection CircleTangents 7

poly.push_back(dq[r].inter(dq[l]));
return poly;

}

ConvexHull.h
Description:
Returns a vector of the points of the convex hull in counter-
clockwise order. Points on the edge of the hull between two
other points are not considered part of the hull. Be careful of
duplicate points when working with degenerate hulls.
Time: O (n logn)
"Point.h" 456306, 16 lines

template<class P> vector<P> convex_hull(vector<P> pts){
if(sz(pts) == 1) return pts;
stable_sort(all(pts));
vector<P> hull(sz(pts)+1);
int k = 0, t = 2;
rep(_, 0, 2) {
for(P p: pts){
while(k >= t && hull[k-2].cross(hull[k-1], p) <= 0) k--;
hull[k++] = p;

}
reverse(all(pts));
t = k+1;

}
hull.resize(k-1);
return hull;

}

HullDiameter.h
Description: Returns the two points with max distance on a convex hull
(ccw, no duplicate/collinear points).
Time: O (n)
"Point.h" c571b8, 12 lines

typedef Point<ll> P;
array<P, 2> hullDiameter(vector<P> S) {
int n = sz(S), j = n < 2 ? 0 : 1;
pair<ll, array<P, 2>> res({0, {S[0], S[0]}});
rep(i,0,j)
for (;; j = (j + 1) % n) {
res = max(res, {(S[i] - S[j]).dist2(), {S[i], S[j]}});
if ((S[(j + 1) % n] - S[j]).cross(S[i + 1] - S[i]) >= 0)
break;

}
return res.second;

}

PointInsideHull.h
Description: Determine whether a point t lies inside a convex hull (CCW
order, with no collinear points). Returns true if point lies within the hull. If
strict is true, points on the boundary aren’t included.
Time: O (logN)
"Point.h", "sideOf.h", "OnSegment.h" 71446b, 14 lines

typedef Point<ll> P;

bool inHull(const vector<P>& l, P p, bool strict = true) {
int a = 1, b = sz(l) - 1, r = !strict;
if (sz(l) < 3) return r && onSegment(l[0], l.back(), p);
if (sideOf(l[0], l[a], l[b]) > 0) swap(a, b);
if (sideOf(l[0], l[a], p) >= r || sideOf(l[0], l[b], p)<= -r)
return false;

while (abs(a - b) > 1) {
int c = (a + b) / 2;
(sideOf(l[0], l[c], p) > 0 ? b : a) = c;

}
return sgn(l[a].cross(l[b], p)) < r;

}

ExtremeVertex.h
Description: returns the point of a hull with the max projection onto a
line.
Time: O (logn)
"Point.h" ba41ca, 13 lines

#define cmp(i,j) sgn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {

int n = sz(poly), lo = 0, hi = n;
if (extr(0)) return 0;
while (lo + 1 < hi) {
int m = (lo + hi) / 2;
if (extr(m)) return m;
int ls = cmp(lo + 1, lo), ms = cmp(m + 1, m);
(ls < ms || (ls == ms && ls == cmp(lo, m)) ? hi : lo) = m;

}
return lo;

}

LineHullIntersection.h
Description: Line-convex polygon intersection. The polygon must be ccw
and have no collinear points. lineHull(line, poly) returns a pair describing
the intersection of a line with the polygon: � (−1,−1) if no collision, � (i,−1)
if touching the corner i, � (i, i) if along side (i, i+1), � (i, j) if crossing sides
(i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated
as happening on side (i, i+1). The points are returned in the same order as
the line hits the polygon. extrVertex returns the point of a hull with the
max projection onto a line.
Time: O (logn)
"Point.h", "ExtremeVertex.h" 49e334, 25 lines

#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {

int endA = extrVertex(poly, (a - b).perp());
int endB = extrVertex(poly, (b - a).perp());
if (cmpL(endA) < 0 || cmpL(endB) > 0)
return {-1, -1};

array<int, 2> res;
rep(i,0,2) {
int lo = endB, hi = endA, n = sz(poly);
while ((lo + 1) % n != hi) {
int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
(cmpL(m) == cmpL(endB) ? lo : hi) = m;

}
res[i] = (lo + !cmpL(hi)) % n;
swap(endA, endB);

}
if (res[0] == res[1]) return {res[0], -1};
if (!cmpL(res[0]) && !cmpL(res[1]))
switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
case 0: return {res[0], res[0]};
case 2: return {res[1], res[1]};

}
return res;

}

HullTangents.h
Description: Finds the left and right, respectively, tangent points on con-
vex hull from a point. If the point is colinear to side(s) of the polygon, the
point further away is returned. Requires ccw, n ≥ 3, and the point be on or
outside the polygon. Can be used to check if a point is inside of a convex
hull. Will return -1 if it is strictly inside. If the point is on the hull, the two
adjacent points will be returned
Time: O (logn)
"Point.h" 53d067, 16 lines

#define cmp(i, j) p.cross(h[i], h[j == n ? 0 : j]) * (R ? 1 :
-1)

template<bool R, class P> int getTangent(vector<P>& h, P p) {

int n = sz(h), lo = 0, hi = n - 1, md;
if (cmp(0, 1) >= R && cmp(0, n - 1) >= !R) return 0;
while (md = (lo + hi + 1) / 2, lo < hi) {
auto a = cmp(md, md + 1), b = cmp(md, lo);
if (a >= R && cmp(md, md - 1) >= !R) return md;
if (cmp(lo, lo + 1) < R)
a < R&& b >= 0 ? lo = md : hi = md - 1;

else a < R || b <= 0 ? lo = md : hi = md - 1;
}
return -1; // point s tr ic t ly inside hull

}
template<class P> pii hullTangents(vector<P>& h, P p) {

return {getTangent<0>(h, p), getTangent<1>(h, p)};
}

MinkowskiSum.h
Description: Returns the minkowski sum of a set of convex polygons
Time: O (n logn)

6a76f5, 20 lines

#define side(p) (p.x > 0 || (p.x == 0 && p.y > 0))
template<class P>
vector<P> convolve(vector<vector<P>> &polys){

P init; vector<P> dir;
for(auto poly: polys) {
int n = sz(poly);
if(n) init = init + poly[0];
if(n < 2) continue;
rep(i, 0, n) dir.push_back(poly[(i+1)%n] - poly[i]);

}
if(size(dir) == 0) return { init };
stable_sort(all(dir), [&](P a, P b)->bool {
if(side(a) != side(b)) return side(a);
return a.cross(b) > 0;

});
vector<P> sum; P cur = init;
rep(i, 0, sz(dir))

sum.push_back(cur), cur = cur + dir[i];
return sum;

}

4.3 Circles
CircleIntersection.h
Description: Computes the pair of points at which two circles intersect.
Returns false in case of no intersection.
"Point.h" 84d6d3, 11 lines

typedef Point<double> P;
bool circleInter(P a,P b,double r1,double r2,pair<P, P>* out) {

if (a == b) { assert(r1 != r2); return false; }
P vec = b - a;
double d2 = vec.dist2(), sum = r1+r2, dif = r1-r2,

p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 = r1*r1 - p*p*d2;
if (sum*sum < d2 || dif*dif > d2) return false;
P mid = a + vec*p, per = vec.perp() * sqrt(fmax(0, h2) / d2);

*out = {mid + per, mid - per};
return true;

}

CircleTangents.h
Description: Finds the external tangents of two circles, or internal if r2 is
negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or
overlaps it, in the internal case, or if the circles are the same); 1 if the circles
are tangent to each other (in which case .first = .second and the tangent line
is perpendicular to the line between the centers). .first and .second give the
tangency points at circle 1 and 2 respectively. To find the tangents of a circle
with a point set r2 to 0.
"Point.h" b0153d, 13 lines

template<class P>
vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) {

UCF CircleLine CirclePolygonIntersection circumcircle MinimumEnclosingCircle Point3D 3dHull sphericalDistance ClosestPair 8

P d = c2 - c1;
double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
if (d2 == 0 || h2 < 0) return {};
vector<pair<P, P>> out;
for (double sign : {-1, 1}) {
P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
out.push_back({c1 + v * r1, c2 + v * r2});

}
if (h2 == 0) out.pop_back();
return out;

}

CircleLine.h
Description: Finds the intersection between a circle and a line. Re-
turns a vector of either 0, 1, or 2 intersection points. P is intended to be
Point<double>.
"Point.h" e0cfba, 9 lines

template<class P>
vector<P> circleLine(P c, double r, P a, P b) {
P ab = b - a, p = a + ab * (c-a).dot(ab) / ab.dist2();
double s = a.cross(b, c), h2 = r*r - s*s / ab.dist2();
if (h2 < 0) return {};
if (h2 == 0) return {p};
P h = ab.unit() * sqrt(h2);
return {p - h, p + h};

}

CirclePolygonIntersection.h
Description: Returns the area of the intersection of a circle with a ccw
polygon.
Time: O (n)
"../../content/geometry/Point.h" a1ee63, 19 lines

typedef Point<double> P;
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
auto tri = [&](P p, P q) {
auto r2 = r * r / 2;
P d = q - p;
auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
auto det = a * a - b;
if (det <= 0) return arg(p, q) * r2;
auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
if (t < 0 || 1 <= s) return arg(p, q) * r2;
P u = p + d * s, v = p + d * t;
return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;

};
auto sum = 0.0;
rep(i,0,sz(ps))
sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);

return sum;
}

circumcircle.h
Description:

The circumcirle of a triangle is the circle intersecting all
three vertices. ccRadius returns the radius of the circle going
through points A, B and C and ccCenter returns the center
of the same circle.

B

C
A

r c

"Point.h" 1caa3a, 9 lines

typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
return (B-A).dist()*(C-B).dist()*(A-C).dist()/

abs((B-A).cross(C-A))/2;
}
P ccCenter(const P& A, const P& B, const P& C) {
P b = C-A, c = B-A;
return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;

}

MinimumEnclosingCircle.h
Description: Computes the minimum circle that encloses a set of points.
Time: expected O (n)
"circumcircle.h" 09dd0a, 17 lines

pair<P, double> mec(vector<P> ps) {
shuffle(all(ps), mt19937(time(0)));
P o = ps[0];
double r = 0, EPS = 1 + 1e-8;
rep(i,0,sz(ps)) if ((o - ps[i]).dist() > r * EPS) {
o = ps[i], r = 0;
rep(j,0,i) if ((o - ps[j]).dist() > r * EPS) {
o = (ps[i] + ps[j]) / 2;
r = (o - ps[i]).dist();
rep(k,0,j) if ((o - ps[k]).dist() > r * EPS) {
o = ccCenter(ps[i], ps[j], ps[k]);
r = (o - ps[i]).dist();

}
}

}
return {o, r};

}

4.4 3D
Point3D.h
Description: Class to handle points in 3D space. T can be e.g. double or
long long.

8058ae, 32 lines

template<class T> struct Point3D {
typedef Point3D P;
typedef const P& R;
T x, y, z;
explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
bool operator<(R p) const {
return tie(x, y, z) < tie(p.x, p.y, p.z); }

bool operator==(R p) const {
return tie(x, y, z) == tie(p.x, p.y, p.z); }

P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
P operator*(T d) const { return P(x*d, y*d, z*d); }
P operator/(T d) const { return P(x/d, y/d, z/d); }
T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
P cross(R p) const {
return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);

}
T dist2() const { return x*x + y*y + z*z; }
double dist() const { return sqrt((double)dist2()); }
//Azimuthal angle (longitude) to x=axis in interval [=pi , pi]
double phi() const { return atan2(y, x); }
//Zenith angle (latitude) to the z=axis in interval [0 , pi]
double theta() const { return atan2(sqrt(x*x+y*y),z); }
P unit() const { return *this/(T)dist(); } //makes dist ()=1
//returns unit vector normal to *this and p
P normal(P p) const { return cross(p).unit(); }
//returns point rotated ’angle ’ radians ccw around axis
P rotate(double angle, P axis) const {
double s = sin(angle), c = cos(angle); P u = axis.unit();
return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;

}
};

3dHull.h
Description: Computes all faces of the 3-dimension hull of a point set. *No
four points must be coplanar*, or else random results will be returned. All
faces will point outwards.
Time: O

(
n2

)
"Point3D.h" 928b1f, 33 lines

typedef Point3D<double> P;
const double eps = 1e-6;

vector<array<int, 3>> convex_shell(vector<P> &p) {
int n = sz(p);
if(n < 3) return {};
vector<array<int, 3>> faces;

vvi active(n, vi(n, false));

auto add_face = [&](int a, int b, int c) -> void {
faces.push_back({a, b, c});
active[a][b] = active[b][c] = active[c][a] = true;

};

add_face(0, 1, 2);
add_face(0, 2, 1);

rep(i, 3, n) {
vector<array<int, 3>> new_faces;
for(auto [a, b, c]: faces)
if((p[i] - p[a]).dot(p[a].cross(p[b], p[c])) > eps)

active[a][b] = active[b][c] = active[c][a] = false;
else new_faces.push_back({a, b, c});

faces.clear();
for(array<int, 3> f: new_faces)
rep(j, 0, 3) if(!active[f[(j+1)%3]][f[j]])

add_face(f[(j+1)%3], f[j], i);
faces.insert(end(faces), all(new_faces));

}

return faces;
}

sphericalDistance.h
Description: Returns the shortest distance on the sphere with radius ra-
dius between the points with azimuthal angles (longitude) f1 (ϕ1) and f2 (ϕ2)
from x axis and zenith angles (latitude) t1 (θ1) and t2 (θ2) from z axis (0 =
north pole). All angles measured in radians. The algorithm starts by con-
verting the spherical coordinates to cartesian coordinates so if that is what
you have you can use only the two last rows. dx*radius is then the difference
between the two points in the x direction and d*radius is the total distance
between the points.

611f07, 8 lines

double sphericalDistance(double f1, double t1,
double f2, double t2, double radius) {

double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
double dz = cos(t2) - cos(t1);
double d = sqrt(dx*dx + dy*dy + dz*dz);
return radius*2*asin(d/2);

}

4.5 Misc. Point Set Problems
ClosestPair.h
Description: Finds the closest pair of points.
Time: O (n logn)
"Point.h" ac41a6, 17 lines

typedef Point<ll> P;
pair<P, P> closest(vector<P> v) {

assert(sz(v) > 1);
set<P> S;
sort(all(v), [](P a, P b) { return a.y < b.y; });
pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
int j = 0;
for (P p : v) {
P d{1 + (ll)sqrt(ret.first), 0};

UCF ManhattanMST kdTree FastDelaunay PlanarFaceExtraction 9

while (v[j].y <= p.y - d.x) S.erase(v[j++]);
auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
for (; lo != hi; ++lo)
ret = min(ret, {(*lo - p).dist2(), {*lo, p}});

S.insert(p);
}
return ret.second;

}

ManhattanMST.h
Description: Given N points, returns up to 4*N edges, which are guaran-
teed to contain a minimum spanning tree for the graph with edge weights
w(p, q) = —p.x - q.x— + —p.y - q.y—. Edges are in the form (distance,
src, dst). Use a standard MST algorithm on the result to find the final MST.
Time: O (N logN)
"Point.h" df6f59, 23 lines

typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
vi id(sz(ps));
iota(all(id), 0);
vector<array<int, 3>> edges;
rep(k,0,4) {
sort(all(id), [&](int i, int j) {

return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});
map<int, int> sweep;
for (int i : id) {
for (auto it = sweep.lower_bound(-ps[i].y);

it != sweep.end(); sweep.erase(it++)) {
int j = it->second;
P d = ps[i] - ps[j];
if (d.y > d.x) break;
edges.push_back({d.y + d.x, i, j});

}
sweep[-ps[i].y] = i;

}
for (P& p : ps) if (k & 1) p.x = -p.x; else swap(p.x, p.y);

}
return edges;

}

kdTree.h
Description: KD-tree (2d, can be extended to 3d)
"Point.h" bac5b0, 63 lines

typedef long long T;
typedef Point<T> P;
const T INF = numeric_limits<T>::max();

bool on_x(const P& a, const P& b) { return a.x < b.x; }
bool on_y(const P& a, const P& b) { return a.y < b.y; }

struct Node {
P pt; // i f this is a leaf , the single point in i t
T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
Node *first = 0, *second = 0;

T distance(const P& p) { // min squared distance to a point
T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
return (P(x,y) - p).dist2();

}

Node(vector<P>&& vp) : pt(vp[0]) {
for (P p : vp) {
x0 = min(x0, p.x); x1 = max(x1, p.x);
y0 = min(y0, p.y); y1 = max(y1, p.y);

}
if (vp.size() > 1) {

// sp l i t on x i f width >= height (not ideal . . .)

sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
// divide by taking half the array for each child (not
// best performance with many duplicates in the middle)
int half = sz(vp)/2;
first = new Node({vp.begin(), vp.begin() + half});
second = new Node({vp.begin() + half, vp.end()});

}
}

};

struct KDTree {
Node* root;
KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}

pair<T, P> search(Node *node, const P& p) {
if (!node->first) {

// uncomment i f we should not find the point i t s e l f :
// i f (p == node=>pt) return {INF, P()};
return make_pair((p - node->pt).dist2(), node->pt);

}

Node *f = node->first, *s = node->second;
T bfirst = f->distance(p), bsec = s->distance(p);
if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);

// search closest side f irst , other side i f needed
auto best = search(f, p);
if (bsec < best.first)
best = min(best, search(s, p));

return best;
}

// find nearest point to a point , and i ts squared distance
// (requires an arbitrary operator< for Point)
pair<T, P> nearest(const P& p) {
return search(root, p);

}
};

FastDelaunay.h
Description: Fast Delaunay triangulation. Each circumcircle contains none
of the input points. There must be no duplicate points. If all points are on a
line, no triangles will be returned. Should work for doubles as well, though
there may be precision issues in ’circ’. Returns triangles in order {t[0][0],
t[0][1], t[0][2], t[1][0], . . . }, all counter-clockwise.
Time: O (n logn)
"Point.h" eefdf5, 88 lines

typedef Point<ll> P;
typedef struct Quad* Q;
typedef __int128_t lll; // (can be l l i f coords are < 2e4)
P arb(LLONG_MAX,LLONG_MAX); // not equal to any other point

struct Quad {
Q rot, o; P p = arb; bool mark;
P& F() { return r()->p; }
Q& r() { return rot->rot; }
Q prev() { return rot->o->rot; }
Q next() { return r()->prev(); }

} *H;

bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
lll p2 = p.dist2(), A = a.dist2()-p2,

B = b.dist2()-p2, C = c.dist2()-p2;
return p.cross(a,b)*C + p.cross(b,c)*A + p.cross(c,a)*B > 0;

}
Q makeEdge(P orig, P dest) {

Q r = H ? H : new Quad{new Quad{new Quad{new Quad{0}}}};
H = r->o; r->r()->r() = r;
rep(i,0,4) r = r->rot, r->p = arb, r->o = i & 1 ? r : r->r();

r->p = orig; r->F() = dest;
return r;

}
void splice(Q a, Q b) {

swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
}
Q connect(Q a, Q b) {

Q q = makeEdge(a->F(), b->p);
splice(q, a->next());
splice(q->r(), b);
return q;

}

pair<Q,Q> rec(const vector<P>& s) {
if (sz(s) <= 3) {
Q a = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
if (sz(s) == 2) return { a, a->r() };
splice(a->r(), b);
auto side = s[0].cross(s[1], s[2]);
Q c = side ? connect(b, a) : 0;
return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };

}

#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)

Q A, B, ra, rb;
int half = sz(s) / 2;
tie(ra, A) = rec({all(s) - half});
tie(B, rb) = rec({sz(s) - half + all(s)});
while ((B->p.cross(H(A)) < 0 && (A = A->next())) ||

(A->p.cross(H(B)) > 0 && (B = B->r()->o)));
Q base = connect(B->r(), A);
if (A->p == ra->p) ra = base->r();
if (B->p == rb->p) rb = base;

#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
while (circ(e->dir->F(), H(base), e->F())) { \
Q t = e->dir; \
splice(e, e->prev()); \
splice(e->r(), e->r()->prev()); \
e->o = H; H = e; e = t; \

}
for (;;) {
DEL(LC, base->r(), o); DEL(RC, base, prev());
if (!valid(LC) && !valid(RC)) break;
if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
base = connect(RC, base->r());

else
base = connect(base->r(), LC->r());

}
return { ra, rb };

}

vector<P> triangulate(vector<P> pts) {
sort(all(pts)); assert(unique(all(pts)) == pts.end());
if (sz(pts) < 2) return {};
Q e = rec(pts).first;
vector<Q> q = {e};
int qi = 0;
while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;

#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
q.push_back(c->r()); c = c->next(); } while (c != e); }
ADD; pts.clear();
while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
return pts;

}

UCF Dinic MinCostMaxFlow MCMFdijkstra GlobalMinCut 10

PlanarFaceExtraction.h
Description: Given a planar graph and where the points are, extract the set
of faces that the graph makes. The inner faces will be returned in counter-
clockwise order, and the outermost face will be returned in clockwise order.
Time: O (ElogE)

63f230, 39 lines

template<class P>
vector<vector<P>> extract_faces(vvi adj, vector<P> pts) {
int n = sz(pts);
#define cmp(i) [&](int pi, int qi) -> bool { \
P p = pts[pi] - pts[i], q = pts[qi] - pts[i]; \
bool sideP = p.y < 0 || (p.y == 0 && p.x < 0); \
bool sideQ = q.y < 0 || (q.y == 0 && q.x < 0); \
if(sideP != sideQ) return sideP; \
return p.cross(q) > 0; }

rep(i, 0, n)
sort(all(adj[i]), cmp(i));

vii ed;
rep(i, 0, n) for(int j: adj[i])
ed.emplace_back(i, j);

sort(all(ed));
auto get_idx = [&](int i, int j) -> int {
return lower_bound(all(ed), pii(i, j))-begin(ed);

};
vector<vector<P>> faces;
vi used(sz(ed));
rep(i, 0, n) for(int j: adj[i]) {
if(used[get_idx(i, j)])
continue;

used[get_idx(i, j)] = true;
vector<P> face = {pts[i]};
int prv = i, cur = j;
while(cur != i) {
face.push_back(pts[cur]);
auto it = lower_bound(all(adj[cur]), prv, cmp(cur));
if(it == begin(adj[cur]))
it = end(adj[cur]);

prv = cur, cur = *prev(it);
used[get_idx(prv, cur)] = true;

}
faces.push_back(face);

}
#undef cmp
return faces;

}

Graphs (5)

5.1 Network flow
Dinic.h
Description: Flow algorithm with complexity O(V E logU) where U =

max |cap|. O(min(E1/2, V 2/3)E) if U = 1; O(
√
V E) for bipartite match-

ing.
d7f0f1, 42 lines

struct Dinic {
struct Edge {
int to, rev;
ll c, oc;
ll flow() { return max(oc - c, 0LL); } // i f you need flows

};
vi lvl, ptr, q;
vector<vector<Edge>> adj;
Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
void addEdge(int a, int b, ll c, ll rcap = 0) {
adj[a].push_back({b, sz(adj[b]), c, c});
adj[b].push_back({a, sz(adj[a]) - 1, rcap, rcap});

}

ll dfs(int v, int t, ll f) {
if (v == t || !f) return f;
for (int& i = ptr[v]; i < sz(adj[v]); i++) {
Edge& e = adj[v][i];
if (lvl[e.to] == lvl[v] + 1)
if (ll p = dfs(e.to, t, min(f, e.c))) {

e.c -= p, adj[e.to][e.rev].c += p;
return p;

}
}
return 0;

}
ll calc(int s, int t) {
ll flow = 0; q[0] = s;
rep(L,0,31) do { // ’ int L=30’ maybe faster for random data
lvl = ptr = vi(sz(q));
int qi = 0, qe = lvl[s] = 1;
while (qi < qe && !lvl[t]) {
int v = q[qi++];
for (Edge e : adj[v])
if (!lvl[e.to] && e.c >> (30 - L))
q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;

}
while (ll p = dfs(s, t, LLONG_MAX)) flow += p;

} while (lvl[t]);
return flow;

}
bool leftOfMinCut(int a) { return lvl[a] != 0; }

};

MinCostMaxFlow.h
Description: Min-cost max-flow. Negative cost cycles not supported. To
obtain the actual flow, look at positive values only.
Time: Approximately O

(
E2

)
, actually O (FS) where S is the time com-

plexity of the SSSP alg used in find path (in this case SPFA)
27fafb, 55 lines

struct mcmf {
const ll inf = LLONG_MAX >> 2;
struct edge {
int v;
ll cap, flow, cost;

};
int n;
vector<edge> edges;
vvi adj; vii par; vi in_q;
vector<ll> dist, pi;
mcmf(int n): n(n), adj(n), par(n), in_q(n), dist(n), pi(n) {}
void add_edge(int u, int v, ll cap, ll cost) {
int idx = sz(edges);
edges.push_back({v, cap, 0, cost});
edges.push_back({u, cap, cap, -cost});
adj[u].push_back(idx);
adj[v].push_back(idx ^ 1);

}
bool find_path(int s, int t) {
fill(all(dist), inf);
fill(all(in_q), 0);
queue<int> q; q.push(s);
dist[s] = 0, in_q[s] = 1;
while(!q.empty()) {
int cur = q.front(); q.pop();
in_q[cur] = 0;
for(int idx: adj[cur]) {
auto [nxt, cap, fl, wt] = edges[idx];
ll nxtD = dist[cur] + wt;
if(fl >= cap || nxtD >= dist[nxt]) continue;
dist[nxt] = nxtD;
par[nxt] = {cur, idx};
if(in_q[nxt]) continue;

q.push(nxt); in_q[nxt] = 1;
}

}

return dist[t] < inf;
}
pair<ll, ll> calc(int s, int t) {
ll flow = 0, cost = 0;
while(find_path(s, t)) {
ll f = inf;
for(int i, u, v = t; tie(u, i) = par[v], v != s; v = u)

f = min(f, edges[i].cap - edges[i].flow);
flow += f;
for(int i, u, v = t; tie(u, i) = par[v], v != s; v = u)

edges[i].flow += f, edges[i^1].flow -= f;
}
rep(i, 0, sz(edges)>>1)
cost += edges[i<<1].cost * edges[i<<1].flow;

return {flow, cost};
}

};

MCMFdijkstra.h
Description: If SPFA TLEs, swap the find path function in MCMF with the
one below and in q with seen. If negative edge weights can occur, initialize
pi with the shortest path from the source to each node using Bellman-Ford.
Negative weight cycles not supported.

7aee8f, 24 lines

bool find_path(int s, int t) {
fill(all(dist), inf);
fill(all(seen), 0);
dist[s] = 0;
__gnu_pbds::priority_queue<pair<ll, int>> pq;
vector<decltype(pq)::point_iterator> its(n);
pq.push({0, s});
while(!pq.empty()) {
auto [d, cur] = pq.top(); pq.pop(); d *= -1;
seen[cur] = 1;
if(dist[cur] < d) continue;
for(int idx: adj[cur]) {
auto [nxt, cap, f, wt] = edges[idx];
ll nxtD = d + wt + pi[cur] - pi[nxt];
if(f >= cap || nxtD >= dist[nxt] || seen[nxt]) continue;
dist[nxt] = nxtD;
par[nxt] = {cur, idx};
if(its[nxt] == pq.end()) its[nxt] = pq.push({-nxtD, nxt})

;
else pq.modify(its[nxt], {-nxtD, nxt});

}
}
rep(i, 0, n) pi[i] = min(pi[i] + dist[i], inf);
return seen[t];

}

GlobalMinCut.h
Description: Find a global minimum cut in an undirected graph, as repre-
sented by an adjacency matrix.
Time: O

(
V 3

)
8b0e19, 21 lines

pair<int, vi> globalMinCut(vector<vi> mat) {
pair<int, vi> best = {INT_MAX, {}};
int n = sz(mat);
vector<vi> co(n);
rep(i,0,n) co[i] = {i};
rep(ph,1,n) {
vi w = mat[0];
size_t s = 0, t = 0;
rep(it,0,n-ph) { // O(V̂ 2) => O(E log V) with prio . queue

UCF GomoryHu MatroidIntersection hopcroftKarp DFSMatching MinimumVertexCover 11

w[t] = INT_MIN;
s = t, t = max_element(all(w)) - w.begin();
rep(i,0,n) w[i] += mat[t][i];

}
best = min(best, {w[t] - mat[t][t], co[t]});
co[s].insert(co[s].end(), all(co[t]));
rep(i,0,n) mat[s][i] += mat[t][i];
rep(i,0,n) mat[i][s] = mat[s][i];
mat[0][t] = INT_MIN;

}
return best;

}

GomoryHu.h
Description: Given a list of edges representing an undirected flow graph,
returns edges of the Gomory-Hu tree. The max flow between any pair of
vertices is given by minimum edge weight along the Gomory-Hu tree path.
Time: O (V) Flow Computations
"Dinic.h" e2b333, 13 lines

typedef array<ll, 3> Edge;
vector<Edge> gomoryHu(int N, vector<Edge> ed) {
vector<Edge> tree;
vi par(N);
rep(i,1,N) {
Dinic D(N);
for (Edge t : ed) D.addEdge(t[0], t[1], t[2], t[2]);
tree.push_back({i, par[i], D.calc(i, par[i])});
rep(j,i+1,N)
if (par[j] == par[i] && D.leftOfMinCut(j)) par[j] = i;

}
return tree;

}

MatroidIntersection.h
Description: Given two matroids, finds the largest common independent
set. For the color and graph matroids, this would be the largest forest where
no two edges are the same color. A matroid has 3 functions
- check(int x): returns if current matroid can add x without becoming
dependent
- add(int x): adds an element to the matroid (guaranteed to never make it
dependent)
- clear(): sets the matroid to the empty matroid
The matroid is given an int representing the element, and is expected to
convert it (e.g: the color or the endpoints) Pass the matroid with more ex-
pensive add/clear operations to M1.
Time: R2N(M2.add+M1.check+M2.check)+R3M1.add+R2M1.clear+
RNM2.clear
"../data-structures/UnionFind.h" 9812a7, 60 lines

struct ColorMat {
vi cnt, clr;
ColorMat(int n, vector<int> clr) : cnt(n), clr(clr) {}
bool check(int x) { return !cnt[clr[x]]; }
void add(int x) { cnt[clr[x]]++; }
void clear() { fill(all(cnt), 0); }

};
struct GraphMat {
UF uf;
vector<array<int, 2>> e;
GraphMat(int n, vector<array<int, 2>> e) : uf(n), e(e) {}
bool check(int x) { return !uf.sameSet(e[x][0], e[x][1]); }
void add(int x) { uf.join(e[x][0], e[x][1]); }
void clear() { uf = UF(sz(uf.e)); }

};
template <class M1, class M2> struct MatroidIsect {
int n;
vector<char> iset;
M1 m1; M2 m2;

MatroidIsect(M1 m1, M2 m2, int n) : n(n), iset(n + 1), m1(m1)
, m2(m2) {}

vi solve() {
rep(i,0,n) if (m1.check(i) && m2.check(i))
iset[i] = true, m1.add(i), m2.add(i);

while (augment());
vi ans;
rep(i,0,n) if (iset[i]) ans.push_back(i);
return ans;

}
bool augment() {
vector<int> frm(n, -1);
queue<int> q({n}); // starts at dummy node
auto fwdE = [&](int a) {
vi ans;
m1.clear();
rep(v, 0, n) if (iset[v] && v != a) m1.add(v);
rep(b, 0, n) if (!iset[b] && frm[b] == -1 && m1.check(b))
ans.push_back(b), frm[b] = a;

return ans;
};
auto backE = [&](int b) {
m2.clear();
rep(cas, 0, 2) rep(v, 0, n)
if ((v == b || iset[v]) && (frm[v] == -1) == cas) {
if (!m2.check(v))
return cas ? q.push(v), frm[v] = b, v : -1;

m2.add(v);
}

return n;
};
while (!q.empty()) {
int a = q.front(), c; q.pop();
for (int b : fwdE(a))
while((c = backE(b)) >= 0) if (c == n) {

while (b != n) iset[b] ^= 1, b = frm[b];
return true;

}
}
return false;

}
};

5.2 Matching
hopcroftKarp.h
Description: Fast bipartite matching algorithm. Graph g should be a list
of neighbors of the left partition, and btoa should be a vector full of -1’s of
the same size as the right partition. Returns the size of the matching. btoa[i]
will be the match for vertex i on the right side, or −1 if it’s not matched.
Usage: vi btoa(m, -1); hopcroftKarp(g, btoa);

Time: O
(√

V E
)

f612e4, 42 lines

bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vi& B) {
if (A[a] != L) return 0;
A[a] = -1;
for (int b : g[a]) if (B[b] == L + 1) {
B[b] = 0;
if (btoa[b] == -1 || dfs(btoa[b], L + 1, g, btoa, A, B))
return btoa[b] = a, 1;

}
return 0;

}

int hopcroftKarp(vector<vi>& g, vi& btoa) {
int res = 0;
vi A(g.size()), B(btoa.size()), cur, next;
for (;;) {
fill(all(A), 0);

fill(all(B), 0);
cur.clear();
for (int a : btoa) if(a != -1) A[a] = -1;
rep(a,0,sz(g)) if(A[a] == 0) cur.push_back(a);
for (int lay = 1;; lay++) {
bool islast = 0;
next.clear();
for (int a : cur) for (int b : g[a]) {
if (btoa[b] == -1) {

B[b] = lay;
islast = 1;

}
else if (btoa[b] != a && !B[b]) {

B[b] = lay;
next.push_back(btoa[b]);

}
}
if (islast) break;
if (next.empty()) return res;
for (int a : next) A[a] = lay;
cur.swap(next);

}
rep(a,0,sz(g))
res += dfs(a, 0, g, btoa, A, B);

}
}

DFSMatching.h
Description: Simple bipartite matching algorithm. Graph g should be a list
of neighbors of the left partition, and btoa should be a vector full of -1’s of
the same size as the right partition. Returns the size of the matching. btoa[i]
will be the match for vertex i on the right side, or −1 if it’s not matched.
Usage: vi btoa(m, -1); dfsMatching(g, btoa);
Time: O (V E)

522b98, 22 lines

bool find(int j, vector<vi>& g, vi& btoa, vi& vis) {
if (btoa[j] == -1) return 1;
vis[j] = 1; int di = btoa[j];
for (int e : g[di])

if (!vis[e] && find(e, g, btoa, vis)) {
btoa[e] = di;
return 1;

}
return 0;

}
int dfsMatching(vector<vi>& g, vi& btoa) {

vi vis;
rep(i,0,sz(g)) {
vis.assign(sz(btoa), 0);
for (int j : g[i])
if (find(j, g, btoa, vis)) {

btoa[j] = i;
break;

}
}
return sz(btoa) - (int)count(all(btoa), -1);

}

MinimumVertexCover.h
Description: Finds a minimum vertex cover in a bipartite graph. The size
is the same as the size of a maximum matching, and the complement is a
maximum independent set.
"DFSMatching.h" da4196, 20 lines

vi cover(vector<vi>& g, int n, int m) {
vi match(m, -1);
int res = dfsMatching(g, match);
vector<bool> lfound(n, true), seen(m);
for (int it : match) if (it != -1) lfound[it] = false;
vi q, cover;

UCF WeightedMatching GeneralMatching SCC BiconnectedComponents 2sat 12

rep(i,0,n) if (lfound[i]) q.push_back(i);
while (!q.empty()) {

int i = q.back(); q.pop_back();
lfound[i] = 1;
for (int e : g[i]) if (!seen[e] && match[e] != -1) {
seen[e] = true;
q.push_back(match[e]);

}
}
rep(i,0,n) if (!lfound[i]) cover.push_back(i);
rep(i,0,m) if (seen[i]) cover.push_back(n+i);
assert(sz(cover) == res);
return cover;

}

WeightedMatching.h
Description: Given a weighted bipartite graph, matches every node on the
left with a node on the right such that no nodes are in two matchings and the
sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost
for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is
matched with R[match[i]]. Negate costs for max cost. Requires N ≤ M .
Time: O

(
N2M

)
1e0fe9, 31 lines

pair<int, vi> hungarian(const vector<vi> &a) {
if (a.empty()) return {0, {}};
int n = sz(a) + 1, m = sz(a[0]) + 1;
vi u(n), v(m), p(m), ans(n - 1);
rep(i,1,n) {
p[0] = i;
int j0 = 0; // add ”dummy” worker 0
vi dist(m, INT_MAX), pre(m, -1);
vector<bool> done(m + 1);
do { // dijkstra
done[j0] = true;
int i0 = p[j0], j1, delta = INT_MAX;
rep(j,1,m) if (!done[j]) {
auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
if (dist[j] < delta) delta = dist[j], j1 = j;

}
rep(j,0,m) {
if (done[j]) u[p[j]] += delta, v[j] -= delta;
else dist[j] -= delta;

}
j0 = j1;

} while (p[j0]);
while (j0) { // update alternating path
int j1 = pre[j0];
p[j0] = p[j1], j0 = j1;

}
}
rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
return {-v[0], ans}; // min cost

}

GeneralMatching.h
Description: Given a graph, finds a set of edges such that no node is inci-
dent to more than one edge in the set.
Time: O (V E)

1fa809, 46 lines

vi Blossom(vector<vi>& adj) {
int n = adj.size(), T = -1;
vi mate(n, -1), label(n), par(n), orig(n), aux(n, -1), q;
auto lca = [&](int x, int y) {
for (T++;; swap(x, y)) {
if (x == -1) continue;
if (aux[x] == T) return x;
aux[x] = T;
x = (mate[x] == -1 ? -1 : orig[par[mate[x]]]);

}
};
auto blossom = [&](int v, int w, int a) {
while (orig[v] != a) {
par[v] = w;
w = mate[v];
if (label[w] == 1) label[w] = 0, q.push_back(w);
orig[v] = orig[w] = a, v = par[w];

}
};
auto augment = [&](int v) {
while (v != -1) {
int pv = par[v], nv = mate[pv];
mate[v] = pv, mate[pv] = v, v = nv;

}
};
auto bfs = [&](int root) {
fill(all(label), -1), iota(all(orig), 0);
q.clear(), q.push_back(root), label[root] = 0;
for (int i = 0; i < sz(q); i++) {
int v = q[i];
for (auto x : adj[v])
if (label[x] == -1) {

label[x] = 1, par[x] = v;
if (mate[x] == -1) return augment(x);
label[mate[x]] = 0, q.push_back(mate[x]);

} else if (label[x] == 0 && orig[v] != orig[x]) {
int a = lca(orig[v], orig[x]);
blossom(x, v, a), blossom(v, x, a);

}
}

};
// Time halves i f you start with (any) maximal matching.
for (int i = 0; i < n; i++)
if (mate[i] == -1) bfs(i);

return mate;
}

5.3 DFS algorithms
SCC.h
Description: Finds strongly connected components in a directed graph. If
vertices u, v belong to the same component, we can reach u from v and vice
versa.
Usage: scc(graph, [&](vi& v) { ... }) visits all components
in reverse topological order. comp[i] holds the component
index of a node (a component only has edges to components with
lower index). ncomps will contain the number of components.
Time: O (E + V)

18dad5, 24 lines

vi tin, comp, z, cont;
int Time, ncomps;
template<class G, class F> int dfs(int cur, G& g, F& f) {
int low = tin[cur] = ++Time, x; z.push_back(cur);
for (auto nxt : g[cur]) if (comp[nxt] < 0)
low = min(low, tin[nxt] ?: dfs(nxt,g,f));

if (low == tin[cur]) {
do {
x = z.back(); z.pop_back();
comp[x] = ncomps;
cont.push_back(x);

} while (x != cur);
f(cont); cont.clear();
ncomps++;

}
return tin[cur] = low;

}
template<class G, class F> void scc(G& g, F f) {

int n = sz(g);

tin.assign(n, 0); comp.assign(n, -1);
Time = ncomps = 0;
rep(i,0,n) if (comp[i] < 0) dfs(i, g, f);

}

BiconnectedComponents.h
Description: Finds all biconnected components in an undirected graph, and
runs a callback for the edges in each. In a biconnected component there are
at least two distinct paths between any two nodes. Note that a node can be
in several components. An edge which is not in a component is a bridge, i.e.,
not part of any cycle.
Usage: int eid = 0; ed.resize(N);
for each edge (a,b) {
ed[a].emplace back(b, eid);
ed[b].emplace back(a, eid++); }
bicomps([&](const vi& edgelist) {...});
Time: O (E + V)

442ea5, 31 lines

vi tin, st;
vector<vector<pii>> ed;
int Time;
template<class F>
int dfs(int cur, int par, F& f) {

int me = tin[cur] = ++Time, low = me;
for (auto [nxt, e] : ed[cur]) if (e != par) {
if (tin[nxt]) {
low = min(low, tin[nxt]);
if (tin[nxt] < me)

st.push_back(e);
} else {

int si = sz(st);
int up = dfs(nxt, e, f);
low = min(low, up);
if (up >= me) { // e is a bridge i f up > me

st.push_back(e);
f(vi(st.begin() + si, st.end()));
st.resize(si);

}
else st.push_back(e);

}
}
return low;

}

template<class F>
void bicomps(F f) {

tin.assign(sz(ed), 0);
rep(i,0,sz(ed)) if (!tin[i]) dfs(i, -1, f);

}

2sat.h
Description: Calculates a valid assignment to boolean variables a,
b, c,... to a 2-SAT problem, so that an expression of the type
(a||b)&&(!a||c)&&(d||!b)&&... becomes true, or reports that it is unsatis-
fiable. Negated variables are represented by bit-inversions (∼x).
Usage: TwoSat ts(number of boolean variables);
ts.either(0, ∼3); // Var 0 is true or var 3 is false
ts.setValue(2); // Var 2 is true
ts.atMostOne({0,∼1,2}); // <= 1 of vars 0, ∼1 and 2 are true
ts.solve(); // Returns true iff it is solvable
ts.values[0..N-1] holds the assigned values to the vars
Time: O (N + E), where N is the number of boolean variables, and E is the
number of clauses.

5f9706, 56 lines

struct TwoSat {
int N;
vector<vi> gr;
vi values; // 0 = false , 1 = true

UCF EulerWalk DominatorTree EdgeColoring EnumerateTriangles MaximalCliques 13

TwoSat(int n = 0) : N(n), gr(2*n) {}

int addVar() { // (optional)
gr.emplace_back();
gr.emplace_back();
return N++;

}

void either(int f, int j) {
f = max(2*f, -1-2*f);
j = max(2*j, -1-2*j);
gr[f].push_back(j^1);
gr[j].push_back(f^1);

}
void setValue(int x) { either(x, x); }

void atMostOne(const vi& li) { // (optional)
if (sz(li) <= 1) return;
int cur = ∼li[0];
rep(i,2,sz(li)) {
int next = addVar();
either(cur, ∼li[i]);
either(cur, next);
either(∼li[i], next);
cur = ∼next;

}
either(cur, ∼li[1]);

}

vi val, comp, z; int time = 0;
int dfs(int i) {
int low = val[i] = ++time, x; z.push_back(i);
for(int e : gr[i]) if (!comp[e])
low = min(low, val[e] ?: dfs(e));

if (low == val[i]) do {
x = z.back(); z.pop_back();
comp[x] = low;
if (values[x>>1] == -1)
values[x>>1] = x&1;

} while (x != i);
return val[i] = low;

}

bool solve() {
values.assign(N, -1);
val.assign(2*N, 0); comp = val;
rep(i,0,2*N) if (!comp[i]) dfs(i);
rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
return 1;

}
};

EulerWalk.h
Description: Eulerian undirected/directed path/cycle algorithm. Input
should be a vector of (dest, global edge index), where for undirected graphs,
forward/backward edges have the same index. Returns a list of nodes in
the Eulerian path/cycle with src at both start and end, or empty list if no
cycle/path exists. To get edge indices back, add .second to s and ret.
Time: O (V + E)

780b64, 15 lines

vi eulerWalk(vector<vector<pii>>& gr, int nedges, int src=0) {
int n = sz(gr);
vi D(n), its(n), eu(nedges), ret, s = {src};
D[src]++; // to allow Euler paths , not just cycles
while (!s.empty()) {

int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
if (it == end){ ret.push_back(x); s.pop_back(); continue; }
tie(y, e) = gr[x][it++];
if (!eu[e]) {

D[x]--, D[y]++;
eu[e] = 1; s.push_back(y);

}}
for (int x : D) if (x < 0 || sz(ret) != nedges+1) return {};
return {ret.rbegin(), ret.rend()};

}

DominatorTree.h
Description: Builds a dominator tree on a directed graph. Output tree is
a parent array with src as the root.
Time: O (V + E)

1d35d2, 46 lines

vi getDomTree(vvi &adj, int src) {
int n = sz(adj), t = 0;
vvi revAdj(n), child(n), sdomChild(n);
vi label(n, -1), revLabel(n), sdom(n), idom(n), par(n), best(

n);

auto dfs = [&](int cur, auto &dfs) -> void {
label[cur] = t, revLabel[t] = cur;
sdom[t] = par[t] = best[t] = t; t++;
for(int nxt: adj[cur]) {
if(label[nxt] == -1) {
dfs(nxt, dfs);
child[label[cur]].push_back(label[nxt]);

}
revAdj[label[nxt]].push_back(label[cur]);

}
};
dfs(src, dfs);

auto get = [&](int x, auto &get) -> int {
if(par[x] != x) {
int t = get(par[x], get);
par[x] = par[par[x]];
if(sdom[t] < sdom[best[x]]) best[x] = t;

}
return best[x];

};

for(int i = t-1; i >= 0; i--) {
for(int j: revAdj[i]) sdom[i] = min(sdom[i], sdom[get(j,

get)]);
if(i > 0) sdomChild[sdom[i]].push_back(i);
for(int j: sdomChild[i]) {
int k = get(j, get);
if(sdom[j] == sdom[k]) idom[j] = sdom[j];
else idom[j] = k;

}
for(int j: child[i]) par[j] = i;

}

vi dom(n);
rep(i, 1, t) {
if(idom[i] != sdom[i]) idom[i] = idom[idom[i]];
dom[revLabel[i]] = revLabel[idom[i]];

}

return dom;
}

5.4 Coloring
EdgeColoring.h
Description: Given a simple, undirected graph with max degree D, com-
putes a (D + 1)-coloring of the edges such that no neighboring edges share
a color. (D-coloring is NP-hard, but can be done for bipartite graphs by
repeated matchings of max-degree nodes.)
Time: O (NM)

e210e2, 31 lines

vi edgeColoring(int N, vector<pii> eds) {
vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
for (pii e : eds) ++cc[e.first], ++cc[e.second];
int u, v, ncols = *max_element(all(cc)) + 1;
vector<vi> adj(N, vi(ncols, -1));
for (pii e : eds) {
tie(u, v) = e;
fan[0] = v;
loc.assign(ncols, 0);
int at = u, end = u, d, c = free[u], ind = 0, i = 0;
while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
loc[d] = ++ind, cc[ind] = d, fan[ind] = v;

cc[loc[d]] = c;
for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);

while (adj[fan[i]][d] != -1) {
int left = fan[i], right = fan[++i], e = cc[i];
adj[u][e] = left;
adj[left][e] = u;
adj[right][e] = -1;
free[right] = e;

}
adj[u][d] = fan[i];
adj[fan[i]][d] = u;
for (int y : {fan[0], u, end})
for (int& z = free[y] = 0; adj[y][z] != -1; z++);

}
rep(i,0,sz(eds))

for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
return ret;

}

5.5 Miscellaneous
EnumerateTriangles.h
Description: Runs a callback on all triangles in an undirected graph.
Usage: enumerate triangles(edges, n, [&](int u, int v, int w) {
...
});
Time: O

(
V + E(3/2)

)
dc108f, 17 lines

void enumerate_triangles(
const vector<pair<int, int>>& edges, int n, auto f) {
vector<int> deg(n);
for (auto [u, v] : edges) deg[u]++, deg[v]++;
vector<vector<int>> adj(n);
for (auto [u, v] : edges) {
if (tie(deg[u], u) > tie(deg[v], v)) swap(u, v);
adj[u].push_back(v);

}
vector<bool> seen(n);
for (auto [u, v] : edges) {
for (int w : adj[u]) seen[w] = 1;
for (int w : adj[v])
if (seen[w]) f(u, v, w);

for (int w : adj[u]) seen[w] = 0;
}

}

MaximalCliques.h
Description: Runs a callback for all maximal cliques in a graph (given as a
symmetric bitset matrix; self-edges not allowed). Callback is given a bitset
representing the maximal clique.

Time: O
(
3n/3

)
, much faster for sparse graphs

b0d5b1, 12 lines

typedef bitset<128> B;
template<class F>
void cliques(vector& eds, F f, B P = ∼B(), B X={}, B R={}) {

UCF MaximumClique MaximumIndependentSet BinaryLifting KthPath LCA CompressTree 14

if (!P.any()) { if (!X.any()) f(R); return; }
auto q = (P | X)._Find_first();
auto cands = P & ∼eds[q];
rep(i,0,sz(eds)) if (cands[i]) {
R[i] = 1;
cliques(eds, f, P & eds[i], X & eds[i], R);
R[i] = P[i] = 0; X[i] = 1;

}
}

MaximumClique.h
Description: Quickly finds a maximum clique of a graph (given as symmet-
ric bitset matrix; self-edges not allowed). Can be used to find a maximum
independent set by finding a clique of the complement graph.
Time: Runs in about 1s for n=155 and worst case random graphs (p=.90).
Runs faster for sparse graphs.

f7c0bc, 49 lines

typedef vector<bitset<200>> vb;
struct Maxclique {
double limit=0.025, pk=0;
struct Vertex { int i, d=0; };
typedef vector<Vertex> vv;
vb e;
vv V;
vector<vi> C;
vi qmax, q, S, old;
void init(vv& r) {
for (auto& v : r) v.d = 0;
for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
sort(all(r), [](auto a, auto b) { return a.d > b.d; });
int mxD = r[0].d;
rep(i,0,sz(r)) r[i].d = min(i, mxD) + 1;

}
void expand(vv& R, int lev = 1) {
S[lev] += S[lev - 1] - old[lev];
old[lev] = S[lev - 1];
while (sz(R)) {
if (sz(q) + R.back().d <= sz(qmax)) return;
q.push_back(R.back().i);
vv T;
for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
if (sz(T)) {
if (S[lev]++ / ++pk < limit) init(T);
int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
C[1].clear(), C[2].clear();
for (auto v : T) {
int k = 1;
auto f = [&](int i) { return e[v.i][i]; };
while (any_of(all(C[k]), f)) k++;
if (k > mxk) mxk = k, C[mxk + 1].clear();
if (k < mnk) T[j++].i = v.i;
C[k].push_back(v.i);

}
if (j > 0) T[j - 1].d = 0;
rep(k,mnk,mxk + 1) for (int i : C[k])
T[j].i = i, T[j++].d = k;

expand(T, lev + 1);
} else if (sz(q) > sz(qmax)) qmax = q;
q.pop_back(), R.pop_back();

}
}
vi maxClique() { init(V), expand(V); return qmax; }
Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S) {
rep(i,0,sz(e)) V.push_back({i});

}
};

MaximumIndependentSet.h
Description: To obtain a maximum independent set of a graph, find a max
clique of the complement. If the graph is bipartite, see MinimumVertex-
Cover.

5.6 Trees
5.6.1 Number of Spanning Trees
Create an N ×N matrix mat, and for each edge a → b ∈ G, do
mat[a][b]--, mat[b][b]++ (and mat[b][a]--,
mat[a][a]++ if G is undirected). Remove the ith row and
column and take the determinant; this yields the number of
directed spanning trees rooted at i (if G is undirected, remove
any row/column).

5.6.2 Erdős-Gallai theorem
A simple graph with node degrees d1 ≥ · · · ≥ dn exists iff
d1 + · · ·+ dn is even and for every k = 1 . . . n,

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min(di, k).

BinaryLifting.h
Description: lca and kth parent queries
Time: construction O (N), queries O (logN)

46c67a, 37 lines

struct tree_lift {
struct node {
int d, p = -1, j = -1;

};
vector<node> t;
tree_lift(const auto& adj): t(ssize(adj)) {
auto dfs = [&](auto&& self, int v) -> void {
int jump =
(t[v].d + t[t[t[v].j].j].d == 2 * t[t[v].j].d)
? t[t[v].j].j
: v;

for (int u : adj[v])
if (u != t[v].p)
t[u].d = t[t[u].p = v].d + 1, t[u].j = jump,
self(self, u);

};
for (int i = 0; i < ssize(t); i++)
if (t[i].j == -1) t[i].j = i, dfs(dfs, i);

}
int kth_par(int v, int k) {
int anc_d = t[v].d - k;
while (t[v].d > anc_d)
v = t[t[v].j].d >= anc_d ? t[v].j : t[v].p;

return v;
}
int lca(int u, int v) {
if (t[u].d < t[v].d) swap(u, v);
u = kth_par(u, t[u].d - t[v].d);
while (u != v)
if (t[u].j != t[v].j) u = t[u].j, v = t[v].j;
else u = t[u].p, v = t[v].p;

return u;
}
int dist_edges(int u, int v) {
return t[u].d + t[v].d - 2 * t[lca(u, v)].d;

}
};

KthPath.h
Description: kth on path, goes in tree lift
Time: O (logN)

080dbc, 9 lines

int kth_path(int u, int v, int k) {
int lca_d = t[lca(u, v)].d;
int u_lca = t[u].d - lca_d;
int v_lca = t[v].d - lca_d;
if (k <= u_lca) return kth_par(u, k);
if (k <= u_lca + v_lca)

return kth_par(v, u_lca + v_lca - k);
return -1;

}

LCA.h
Description: Data structure for computing lowest common ancestors in a
tree (with 0 as root). C should be an adjacency list of the tree, either di-
rected or undirected.
Time: O (N logN + Q)
"../data-structures/RMQ.h" 3a5045, 21 lines

struct LCA {
int T = 0;
vi time, path, ret;
RMQ<int> rmq;

LCA(vector<vi>& C) : time(sz(C)), rmq((dfs(C,0,-1), ret)) {}
void dfs(vector<vi>& C, int cur, int par) {
time[cur] = T++;
for (int nxt : C[cur]) if (nxt != par) {
path.push_back(cur), ret.push_back(time[cur]);
dfs(C, nxt, cur);

}
}

int lca(int a, int b) {
if (a == b) return a;
tie(a, b) = minmax(time[a], time[b]);
return path[rmq.query(a, b)];

}
//dist (a,b){return depth [a] + depth [b] = 2*depth [lca(a,b)] ;}

};

CompressTree.h
Description: Given a rooted tree and a subset S of nodes, compute the
minimal subtree that contains all the nodes by adding all (at most |S| − 1)
pairwise LCA’s and compressing edges. Returns a list of (par, orig index)
representing a tree rooted at 0. The root points to itself.
Time: O (|S| log |S|)
"LCA.h" 9775a0, 21 lines

typedef vector<pair<int, int>> vpi;
vpi compressTree(LCA& lca, const vi& subset) {

static vi rev; rev.resize(sz(lca.time));
vi li = subset, &T = lca.time;
auto cmp = [&](int a, int b) { return T[a] < T[b]; };
sort(all(li), cmp);
int m = sz(li)-1;
rep(i,0,m) {
int a = li[i], b = li[i+1];
li.push_back(lca.lca(a, b));

}
sort(all(li), cmp);
li.erase(unique(all(li)), li.end());
rep(i,0,sz(li)) rev[li[i]] = i;
vpi ret = {pii(0, li[0])};
rep(i,0,sz(li)-1) {
int a = li[i], b = li[i+1];
ret.emplace_back(rev[lca.lca(a, b)], b);

}

UCF CentroidDecomp EdgeCD HLD LinkCutTree 15

return ret;
}

CentroidDecomp.h
Description: Calls callback function on undirected forest for each centroid
Usage: centroid(adj, [&](const vector<vector<int>>& adj, int
cent) { ... });
Time: O (n logn)

d2787e, 32 lines

template <class F, class G> struct centroid {
G adj;
F f;
vi sub_sz, par;
centroid(const G& adj, F f)
: adj(adj), f(f), sub_sz(sz(adj), -1), par(sz(adj), -1) {
rep(i, 0, sz(adj))
if (sub_sz[i] == -1) dfs(i);

}
void calc_sz(int u, int p) {
sub_sz[u] = 1;
for (int v : adj[u])
if (v != p) calc_sz(v, u), sub_sz[u] += sub_sz[v];

}
int dfs(int u) {
calc_sz(u, -1);
for (int p = -1, sz_root = sub_sz[u];;) {
auto big_ch = find_if(all(adj[u]), [&](int v) {
return v != p && 2 * sub_sz[v] > sz_root;

});
if (big_ch == end(adj[u])) break;
p = u, u = *big_ch;

}
f(adj, u);
for (int v : adj[u]) {
iter_swap(find(all(adj[v]), u), rbegin(adj[v]));
adj[v].pop_back();
par[dfs(v)] = u;

}
return u;

}
};

EdgeCD.h
Description: Recursively splits a tree into two edge sets that share a cen-
troid. Consider all paths that pass through the centroid and use at least
one edge from each set. A node can be a centroid multiple times. Consider
all length 1 paths separately. Callback takes the graph, centroid, and split,
where edges [0, split) from adj[centroid] are in the first set and the rest are
in the second set.
Usage: edge cd(adj, [&](const vector<vector<int>>& adj, int
cent, int split) { ... });
Time: O (n logn)

436f41, 34 lines

template <class F> struct edge_cd {
vvi adj;
F f;
vi sub_sz;
edge_cd(const vvi& adj, F f) : adj(adj), f(f),
sub_sz(sz(adj)) {
dfs(0, sz(adj) - 1);

}
int find_cent(int u, int p, int siz) {
sub_sz[u] = 1;
for (int v : adj[u]) if (v != p) {
int cent = find_cent(v, u, siz);
if (cent != -1) return cent;
sub_sz[u] += sub_sz[v];

}
return 2 * sub_sz[u] > siz ?

p >= 0 && (sub_sz[p] = siz + 1 - sub_sz[u]), u : -1;
}
void dfs(int u, int siz) {
if (siz < 2) return;
u = find_cent(u, -1, siz);
int sum = 0;
auto it = partition(all(adj[u]), [&](int v) {
ll x = sum + sub_sz[v];
return x * x < siz * (siz - x) ? sum += sub_sz[v], 1 : 0;

});
f(adj, u, it - begin(adj[u]));
vi oth(it, end(adj[u]));
adj[u].erase(it, end(adj[u]));
dfs(u, sum);
swap(adj[u], oth);
dfs(u, siz - sum);

}
};

HLD.h
Description: Decomposes a tree into vertex disjoint heavy paths and light
edges such that the path from any leaf to the root contains at most log(n)
light edges. Code does additive modifications and max queries, but can
support commutative segtree modifications/queries on paths and subtrees.
Takes as input the full adjacency list. VALS EDGES being true means that
values are stored in the edges, as opposed to the nodes. All values initialized
to the segtree default. Root must be 0.
Time: O

(
(logN)2

)
"../data-structures/LazySegmentTree.h" 9547af, 46 lines

template <bool VALS_EDGES> struct HLD {
int N, tim = 0;
vector<vi> adj;
vi par, siz, rt, pos;
Node *tree;
HLD(vector<vi> adj_)
: N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1),
rt(N),pos(N),tree(new Node(0, N)){ dfsSz(0); dfsHld(0); }

void dfsSz(int v) {
for (int& u : adj[v]) {
adj[u].erase(find(all(adj[u]), v));
par[u] = v;
dfsSz(u);
siz[v] += siz[u];
if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);

}
}
void dfsHld(int v) {
pos[v] = tim++;
for (int u : adj[v]) {
rt[u] = (u == adj[v][0] ? rt[v] : u);
dfsHld(u);

}
}
template <class B> void process(int u, int v, B op) {
for (;; v = par[rt[v]]) {
if (pos[u] > pos[v]) swap(u, v);
if (rt[u] == rt[v]) break;
op(pos[rt[v]], pos[v] + 1);

}
op(pos[u] + VALS_EDGES, pos[v] + 1);

}
void modifyPath(int u, int v, int val) {
process(u, v, [&](int l, int r) { tree->add(l, r, val); });

}
int queryPath(int u, int v) { // Modify depending on problem
int res = -1e9;
process(u, v, [&](int l, int r) {

res = max(res, tree->query(l, r));
});

return res;
}
int querySubtree(int v) { // modifySubtree is similar
return tree->query(pos[v] + VALS_EDGES, pos[v] + siz[v]);

}
};

LinkCutTree.h
Description: Represents a forest of unrooted trees. Nodes are 1-indexed.
You can add and remove edges (as long as the result is still a forest). You
can also do path sum, subtree sum, and LCA queries, which depend on the
current root.
Time: All operations take amortized O (logN).

9aa6da, 105 lines

struct SplayTree {
struct Node {
int ch[2] = {0, 0}, p = 0;
ll self = 0, path = 0; // Path aggregates
ll sub = 0, vir = 0; // Subtree aggregates
bool flip = 0; // Lazy tags

};
vector<Node> T;

SplayTree(int n) : T(n + 1) {}

void push(int x) {
if (!x || !T[x].flip) return;
int l = T[x].ch[0], r = T[x].ch[1];

T[l].flip ^= 1, T[r].flip ^= 1;
swap(T[x].ch[0], T[x].ch[1]);
T[x].flip = 0;

}

void pull(int x) {
int l = T[x].ch[0], r = T[x].ch[1]; push(l); push(r);

T[x].path = T[l].path + T[x].self + T[r].path;
T[x].sub = T[x].vir + T[l].sub + T[r].sub + T[x].self;

}

void set(int x, int d, int y) {
T[x].ch[d] = y; T[y].p = x; pull(x);

}

void splay(int x) {
auto dir = [&](int x) {
int p = T[x].p; if (!p) return -1;
return T[p].ch[0] == x ? 0 : T[p].ch[1] == x ? 1 : -1;

};
auto rotate = [&](int x) {
int y = T[x].p, z = T[y].p, dx = dir(x), dy = dir(y);
set(y, dx, T[x].ch[!dx]);
set(x, !dx, y);
if (∼dy) set(z, dy, x);
T[x].p = z;

};
for (push(x); ∼dir(x);) {
int y = T[x].p, z = T[y].p;
push(z); push(y); push(x);
int dx = dir(x), dy = dir(y);
if (∼dy) rotate(dx != dy ? x : y);
rotate(x);

}
}

};

struct LinkCut : SplayTree {
LinkCut(int n) : SplayTree(n) {}

UCF DirectedMST Polynomial PolyRoots PolyInterpolate BerlekampMassey 16

int access(int x) {
int u = x, v = 0;
for (; u; v = u, u = T[u].p) {
splay(u);
int& ov = T[u].ch[1];
T[u].vir += T[ov].sub;
T[u].vir -= T[v].sub;
ov = v; pull(u);

}
return splay(x), v;

}

void reroot(int x) {
access(x); T[x].flip ^= 1; push(x);

}

void Link(int u, int v) {
reroot(u); access(v);
T[v].vir += T[u].sub;
T[u].p = v; pull(v);

}

void Cut(int u, int v) {
reroot(u); access(v);
T[v].ch[0] = T[u].p = 0; pull(v);

}

// Rooted tree LCA. Returns 0 i f u and v arent connected .
int LCA(int u, int v) {
if (u == v) return u;
access(u); int ret = access(v);
return T[u].p ? ret : 0;

}

// Query subtree of u where v is outside the subtree .
ll Subtree(int u, int v) {
reroot(v); access(u); return T[u].vir + T[u].self;

}

// Query path [u . . v]
ll Path(int u, int v) {
reroot(u); access(v); return T[v].path;

}

// Update vertex u with value v
void Update(int u, ll v) {
access(u); T[u].self = v; pull(u);

}
};

DirectedMST.h
Description: Finds a minimum spanning tree/arborescence of a directed
graph, given a root node. If no MST exists, returns -1.
Time: O (E log V)
"../data-structures/UnionFindRollback.h" 39e620, 60 lines

struct Edge { int a, b; ll w; };
struct Node {
Edge key;
Node *l, *r;
ll delta;
void prop() {
key.w += delta;
if (l) l->delta += delta;
if (r) r->delta += delta;
delta = 0;

}
Edge top() { prop(); return key; }

};

Node *merge(Node *a, Node *b) {
if (!a || !b) return a ?: b;
a->prop(), b->prop();
if (a->key.w > b->key.w) swap(a, b);
swap(a->l, (a->r = merge(b, a->r)));
return a;

}
void pop(Node*& a) { a->prop(); a = merge(a->l, a->r); }

pair<ll, vi> dmst(int n, int r, vector<Edge>& g) {
RollbackUF uf(n);
vector<Node*> heap(n);
for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e});
ll res = 0;
vi seen(n, -1), path(n), par(n);
seen[r] = r;
vector<Edge> Q(n), in(n, {-1,-1}), comp;
deque<tuple<int, int, vector<Edge>>> cycs;
rep(s,0,n) {
int u = s, qi = 0, w;
while (seen[u] < 0) {
if (!heap[u]) return {-1,{}};
Edge e = heap[u]->top();
heap[u]->delta -= e.w, pop(heap[u]);
Q[qi] = e, path[qi++] = u, seen[u] = s;
res += e.w, u = uf.find(e.a);
if (seen[u] == s) {
Node* cyc = 0;
int end = qi, time = uf.time();
do cyc = merge(cyc, heap[w = path[--qi]]);
while (uf.join(u, w));
u = uf.find(u), heap[u] = cyc, seen[u] = -1;
cycs.push_front({u, time, {&Q[qi], &Q[end]}});

}
}
rep(i,0,qi) in[uf.find(Q[i].b)] = Q[i];

}

for (auto& [u,t,comp] : cycs) { // restore sol (optional)
uf.rollback(t);
Edge inEdge = in[u];
for (auto& e : comp) in[uf.find(e.b)] = e;
in[uf.find(inEdge.b)] = inEdge;

}
rep(i,0,n) par[i] = in[i].a;
return {res, par};

}

Numerical (6)

6.1 Polynomials and recurrences
Polynomial.h

c9b7b0, 17 lines

struct Poly {
vector<double> a;
double operator()(double x) const {
double val = 0;
for (int i = sz(a); i--;) (val *= x) += a[i];
return val;

}
void diff() {
rep(i,1,sz(a)) a[i-1] = i*a[i];
a.pop_back();

}
void divroot(double x0) {
double b = a.back(), c; a.back() = 0;
for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;

a.pop_back();
}

};

PolyRoots.h
Description: Finds the real roots to a polynomial.
Usage: polyRoots({{2,-3,1}},-1e9,1e9) // solve x̂ 2-3x+2 = 0
Time: O

(
n2 log(1/ϵ)

)
"Polynomial.h" b00bfe, 23 lines

vector<double> polyRoots(Poly p, double xmin, double xmax) {
if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
vector<double> ret;
Poly der = p;
der.diff();
auto dr = polyRoots(der, xmin, xmax);
dr.push_back(xmin-1);
dr.push_back(xmax+1);
sort(all(dr));
rep(i,0,sz(dr)-1) {
double l = dr[i], h = dr[i+1];
bool sign = p(l) > 0;
if (sign ^ (p(h) > 0)) {
rep(it,0,60) { // while (h = l > 1e=8)
double m = (l + h) / 2, f = p(m);
if ((f <= 0) ^ sign) l = m;
else h = m;

}
ret.push_back((l + h) / 2);

}
}
return ret;

}

PolyInterpolate.h
Description: Given n points (x[i], y[i]), computes an n-1-degree polynomial

p that passes through them: p(x) = a[0] ∗ x0 + ... + a[n − 1] ∗ xn−1. For
numerical precision, pick x[k] = c ∗ cos(k/(n − 1) ∗ π), k = 0 . . . n − 1.
Time: O

(
n2

)
08bf48, 13 lines

typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {

vd res(n), temp(n);
rep(k,0,n-1) rep(i,k+1,n)

y[i] = (y[i] - y[k]) / (x[i] - x[k]);
double last = 0; temp[0] = 1;
rep(k,0,n) rep(i,0,n) {
res[i] += y[k] * temp[i];
swap(last, temp[i]);
temp[i] -= last * x[k];

}
return res;

}

BerlekampMassey.h
Description: Recovers any n-order linear recurrence relation from the first
2n terms of the recurrence. Useful for guessing linear recurrences after brute-
forcing the first terms. Should work on any field, but numerical stability for
floats is not guaranteed. Output will have size ≤ n.
Usage: berlekampMassey({0, 1, 1, 3, 5, 11}) // {1, 2}
Time: O

(
N2

)
"../number-theory/ModPow.h" 96548b, 20 lines

vector<ll> berlekampMassey(vector<ll> s) {
int n = sz(s), L = 0, m = 0;
vector<ll> C(n), B(n), T;
C[0] = B[0] = 1;

ll b = 1;
rep(i,0,n) { ++m;

UCF LinearRecurrence GoldenSectionSearch HillClimbing IntegrateAdaptive RungeKutta Simplex 17

ll d = s[i] % mod;
rep(j,1,L+1) d = (d + C[j] * s[i - j]) % mod;
if (!d) continue;
T = C; ll coef = d * modpow(b, mod-2) % mod;
rep(j,m,n) C[j] = (C[j] - coef * B[j - m]) % mod;
if (2 * L > i) continue;
L = i + 1 - L; B = T; b = d; m = 0;

}

C.resize(L + 1); C.erase(C.begin());
for (ll& x : C) x = (mod - x) % mod;
return C;

}

LinearRecurrence.h
Description: Generates the k’th term of an n-order linear recurrence
S[i] =

∑
j S[i − j − 1]tr[j], given S[0 . . . ≥ n − 1] and tr[0 . . . n − 1]. Faster

than matrix multiplication. Useful together with Berlekamp–Massey.
Usage: linearRec({0, 1}, {1, 1}, k) // k’th Fibonacci number
Time: O

(
n2 log k

)
f4e444, 26 lines

typedef vector<ll> Poly;
ll linearRec(Poly S, Poly tr, ll k) {
int n = sz(tr);

auto combine = [&](Poly a, Poly b) {
Poly res(n * 2 + 1);
rep(i,0,n+1) rep(j,0,n+1)
res[i + j] = (res[i + j] + a[i] * b[j]) % mod;

for (int i = 2 * n; i > n; --i) rep(j,0,n)
res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;

res.resize(n + 1);
return res;

};

Poly pol(n + 1), e(pol);
pol[0] = e[1] = 1;

for (++k; k; k /= 2) {
if (k % 2) pol = combine(pol, e);
e = combine(e, e);

}

ll res = 0;
rep(i,0,n) res = (res + pol[i + 1] * S[i]) % mod;
return res;

}

6.2 Optimization
GoldenSectionSearch.h
Description: Finds the argument minimizing the function f in the interval
[a, b] assuming f is unimodal on the interval, i.e. has only one local mini-
mum and no local maximum. The maximum error in the result is eps. Works
equally well for maximization with a small change in the code. See Ternary-
Search.h in the Various chapter for a discrete version.
Usage: double func(double x) { return 4+x+.3*x*x; }
double xmin = gss(-1000,1000,func);
Time: O (log((b − a)/ϵ))

31d45b, 14 lines

double gss(double a, double b, double (*f)(double)) {
double r = (sqrt(5)-1)/2, eps = 1e-7;
double x1 = b - r*(b-a), x2 = a + r*(b-a);
double f1 = f(x1), f2 = f(x2);
while (b-a > eps)
if (f1 < f2) { //change to > to find maximum
b = x2; x2 = x1; f2 = f1;
x1 = b - r*(b-a); f1 = f(x1);

} else {
a = x1; x1 = x2; f1 = f2;

x2 = a + r*(b-a); f2 = f(x2);
}

return a;
}

HillClimbing.h
Description: Poor man’s optimization for unimodal functions.

8eeeaf, 14 lines

typedef array<double, 2> P;

template<class F> pair<double, P> hillClimb(P start, F f) {
pair<double, P> cur(f(start), start);
for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
P p = cur.second;
p[0] += dx*jmp;
p[1] += dy*jmp;
cur = min(cur, make_pair(f(p), p));

}
}
return cur;

}

IntegrateAdaptive.h
Description: Gets area under a curve

e7beba, 17 lines

#define approx(a, b) (b-a) / 6 * (f(a) + 4 * f((a+b) / 2) + f(b
))

template<class F>
ld adapt (F &f, ld a, ld b, ld A, int iters) {

ld m = (a+b) / 2;
ld A1 = approx(a, m), A2 = approx(m, b);
if(!iters && (abs(A1 + A2 - A) < eps || b-a < eps))
return A;

ld left = adapt(f, a, m, A1, max(iters-1, 0));
ld right = adapt(f, m, b, A2, max(iters-1, 0));
return left + right;

}

template<class F>
ld integrate(F f, ld a, ld b, int iters = 0) {

return adapt(f, a, b, approx(a, b), iters);
}

RungeKutta.h
Description: Numerically approximates the solution to a system of Differ-
ential Equations

b068fd, 12 lines

template<class F, class T>
T solveSystem(F f, T x, double time, int iters) {

double h = time / iters;
for(int iter = 0; iter < iters; iter++) {
T k1 = f(x);
A k2 = f(x + 0.5 * h * k1);
A k3 = f(x + 0.5 * h * k2);
A k4 = f(x + h * k3);
x = x + h / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4);

}
return x;

}

Simplex.h
Description: Solves a general linear maximization problem: maximize cT x
subject to Ax ≤ b, x ≥ 0. Returns -inf if there is no solution, inf if there
are arbitrarily good solutions, or the maximum value of cT x otherwise. The
input vector is set to an optimal x (or in the unbounded case, an arbitrary
solution fulfilling the constraints). Numerical stability is not guaranteed. For
better performance, define variables such that x = 0 is viable.

Usage: vvd A = {{1,-1}, {-1,1}, {-1,-2}};
vd b = {1,1,-4}, c = {-1,-1}, x;
T val = LPSolver(A, b, c).solve(x);
Time: O (NM ∗ #pivots), where a pivot may be e.g. an edge relaxation.
O (2n) in the general case.

aa8530, 68 lines

typedef double T; // long double , Rational , double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;

const T eps = 1e-8, inf = 1/.0;
#define MP make_pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s])) s=j

struct LPSolver {
int m, n;
vi N, B;
vvd D;

LPSolver(const vvd& A, const vd& b, const vd& c) :
m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2, vd(n+2)) {
rep(i,0,m) rep(j,0,n) D[i][j] = A[i][j];
rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
rep(j,0,n) { N[j] = j; D[m][j] = -c[j]; }
N[n] = -1; D[m+1][n] = 1;

}

void pivot(int r, int s) {
T *a = D[r].data(), inv = 1 / a[s];
rep(i,0,m+2) if (i != r && abs(D[i][s]) > eps) {
T *b = D[i].data(), inv2 = b[s] * inv;
rep(j,0,n+2) b[j] -= a[j] * inv2;
b[s] = a[s] * inv2;

}
rep(j,0,n+2) if (j != s) D[r][j] *= inv;
rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
D[r][s] = inv;
swap(B[r], N[s]);

}

bool simplex(int phase) {
int x = m + phase - 1;
for (;;) {
int s = -1;
rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
if (D[x][s] >= -eps) return true;
int r = -1;
rep(i,0,m) {
if (D[i][s] <= eps) continue;
if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])

< MP(D[r][n+1] / D[r][s], B[r])) r = i;
}
if (r == -1) return false;
pivot(r, s);

}
}

T solve(vd &x) {
int r = 0;
rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
if (D[r][n+1] < -eps) {
pivot(r, n);
if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;
rep(i,0,m) if (B[i] == -1) {
int s = 0;
rep(j,1,n+1) ltj(D[i]);
pivot(i, s);

}
}

UCF Determinant DeterminantMod SolveLinear SolveLinear2 SolveLinearBinary MatrixInverse Tridiagonal 18

bool ok = simplex(1); x = vd(n);
rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
return ok ? D[m][n+1] : inf;

}
};

6.3 Matrices
Determinant.h
Description: Calculates determinant of a matrix. Destroys the matrix.
Time: O

(
N3

)
bd5cec, 15 lines

double det(vector<vector<double>>& a) {
int n = sz(a); double res = 1;
rep(i,0,n) {
int b = i;
rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
if (i != b) swap(a[i], a[b]), res *= -1;
res *= a[i][i];
if (res == 0) return 0;
rep(j,i+1,n) {
double v = a[j][i] / a[i][i];
if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];

}
}
return res;

}

DeterminantMod.h
Description: Calculates determinant using modular arithmetics. Modulos
can also be removed to get a pure-integer version.
Time: O

(
N3

)
3313dc, 18 lines

const ll mod = 12345;
ll det(vector<vector<ll>>& a) {

int n = sz(a); ll ans = 1;
rep(i,0,n) {
rep(j,i+1,n) {
while (a[j][i] != 0) { // gcd step

ll t = a[i][i] / a[j][i];
if (t) rep(k,i,n)
a[i][k] = (a[i][k] - a[j][k] * t) % mod;

swap(a[i], a[j]);
ans *= -1;

}
}
ans = ans * a[i][i] % mod;
if (!ans) return 0;

}
return (ans + mod) % mod;

}

SolveLinear.h
Description: Solves A ∗ x = b. If there are multiple solutions, an arbitrary
one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost.
Time: O

(
n2m

)
44c9ab, 38 lines

typedef vector<double> vd;
const double eps = 1e-12;

int solveLinear(vector<vd>& A, vd& b, vd& x) {
int n = sz(A), m = sz(x), rank = 0, br, bc;
if (n) assert(sz(A[0]) == m);
vi col(m); iota(all(col), 0);

rep(i,0,n) {
double v, bv = 0;
rep(r,i,n) rep(c,i,m)
if ((v = fabs(A[r][c])) > bv)
br = r, bc = c, bv = v;

if (bv <= eps) {
rep(j,i,n) if (fabs(b[j]) > eps) return -1;
break;

}
swap(A[i], A[br]);
swap(b[i], b[br]);
swap(col[i], col[bc]);
rep(j,0,n) swap(A[j][i], A[j][bc]);
bv = 1/A[i][i];
rep(j,i+1,n) {
double fac = A[j][i] * bv;
b[j] -= fac * b[i];
rep(k,i+1,m) A[j][k] -= fac*A[i][k];

}
rank++;

}

x.assign(m, 0);
for (int i = rank; i--;) {
b[i] /= A[i][i];
x[col[i]] = b[i];
rep(j,0,i) b[j] -= A[j][i] * b[i];

}
return rank; // (multiple solutions i f rank < m)

}

SolveLinear2.h
Description: To get all uniquely determined values of x back from Solve-
Linear, make the following changes:
"SolveLinear.h" 08e495, 7 lines

rep(j,0,n) if (j != i) // instead of rep(j , i+1,n)
// . . . then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
x[col[i]] = b[i] / A[i][i];

fail:; }

SolveLinearBinary.h
Description: Solves Ax = b over F2. If there are multiple solutions, one is
returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b.
Time: O

(
n2m

)
fa2d7a, 34 lines

typedef bitset<1000> bs;

int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
int n = sz(A), rank = 0, br;
assert(m <= sz(x));
vi col(m); iota(all(col), 0);
rep(i,0,n) {
for (br=i; br<n; ++br) if (A[br].any()) break;
if (br == n) {
rep(j,i,n) if(b[j]) return -1;
break;

}
int bc = (int)A[br]._Find_next(i-1);
swap(A[i], A[br]);
swap(b[i], b[br]);
swap(col[i], col[bc]);
rep(j,0,n) if (A[j][i] != A[j][bc]) {
A[j].flip(i); A[j].flip(bc);

}
rep(j,i+1,n) if (A[j][i]) {
b[j] ^= b[i];
A[j] ^= A[i];

}
rank++;

}

x = bs();
for (int i = rank; i--;) {
if (!b[i]) continue;
x[col[i]] = 1;
rep(j,0,i) b[j] ^= A[j][i];

}
return rank; // (multiple solutions i f rank < m)

}

MatrixInverse.h
Description: Invert matrix A. Returns rank; result is stored in A unless
singular (rank < n). Can easily be extended to prime moduli; for prime

powers, repeatedly set A−1 = A−1(2I −AA−1) (mod pk) where A−1 starts
as the inverse of A mod p, and k is doubled in each step.
Time: O

(
n3

)
ebfff6, 35 lines

int matInv(vector<vector<double>>& A) {
int n = sz(A); vi col(n);
vector<vector<double>> tmp(n, vector<double>(n));
rep(i,0,n) tmp[i][i] = 1, col[i] = i;

rep(i,0,n) {
int r = i, c = i;
rep(j,i,n) rep(k,i,n)
if (fabs(A[j][k]) > fabs(A[r][c]))

r = j, c = k;
if (fabs(A[r][c]) < 1e-12) return i;
A[i].swap(A[r]); tmp[i].swap(tmp[r]);
rep(j,0,n)
swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);

swap(col[i], col[c]);
double v = A[i][i];
rep(j,i+1,n) {
double f = A[j][i] / v;
A[j][i] = 0;
rep(k,i+1,n) A[j][k] -= f*A[i][k];
rep(k,0,n) tmp[j][k] -= f*tmp[i][k];

}
rep(j,i+1,n) A[i][j] /= v;
rep(j,0,n) tmp[i][j] /= v;
A[i][i] = 1;

}

for (int i = n-1; i > 0; --i) rep(j,0,i) {
double v = A[j][i];
rep(k,0,n) tmp[j][k] -= v*tmp[i][k];

}

rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
return n;

}

Tridiagonal.h
Description: x = tridiagonal(d, p, q, b) solves the equation system

b0
b1
b2
b3
.
.
.

bn−1


=



d0 p0 0 0 · · · 0
q0 d1 p1 0 · · · 0
0 q1 d2 p2 · · · 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

0 0 · · · qn−3 dn−2 pn−2

0 0 · · · 0 qn−2 dn−1





x0

x1

x2

x3

.

.

.
xn−1


.

This is useful for solving problems on the type

ai = biai−1 + ciai+1 + di, 1 ≤ i ≤ n,

where a0, an+1, bi, ci and di are known. a can then be obtained from

{ai} = tridiagonal({1,−1,−1, ...,−1, 1}, {0, c1, c2, . . . , cn},
{b1, b2, . . . , bn, 0}, {a0, d1, d2, . . . , dn, an+1}).

Fails if the solution is not unique.

UCF JacobianMatrix NewtonsMethod FastFourierTransform FastFourierTransformMod NumberTheoreticTransform FastSubsetTransform 19

If |di| > |pi|+ |qi−1| for all i, or |di| > |pi−1|+ |qi|, or the matrix is positive
definite, the algorithm is numerically stable and neither tr nor the check for
diag[i] == 0 is needed.
Time: O (N)

8f9fa8, 26 lines

typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,

const vector<T>& sub, vector<T> b) {
int n = sz(b); vi tr(n);
rep(i,0,n-1) {
if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag [i] == 0
b[i+1] -= b[i] * diag[i+1] / super[i];
if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];
diag[i+1] = sub[i]; tr[++i] = 1;

} else {
diag[i+1] -= super[i]*sub[i]/diag[i];
b[i+1] -= b[i]*sub[i]/diag[i];

}
}
for (int i = n; i--;) {

if (tr[i]) {
swap(b[i], b[i-1]);
diag[i-1] = diag[i];
b[i] /= super[i-1];

} else {
b[i] /= diag[i];
if (i) b[i-1] -= b[i]*super[i-1];

}
}
return b;

}

JacobianMatrix.h
Description: Makes Jacobian Matrix using finite differences

75dc90, 15 lines

template<class F, class T>
vector<vector<T>> makeJacobian(F &f, vector<T> &x) {

int n = sz(x);
vector<vector<T>> J(n, vector<T>(n));
vector<T> fX0 = f(x);
rep(i, 0, n) {
x[i] += eps;
vector<T> fX1 = f(x);
rep(j, 0, n){
J[j][i] = (fX1[j] - fX0[j]) / eps;

}
x[i] -= eps;

}
return J;

}

NewtonsMethod.h
Description: Solves a system on non-linear equations
jacobianMatrix.h 6af945, 10 lines

template<class F, class T>
void solveNonlinear(F f, vector<T> &x){
int n = sz(x);
rep(iter, 0, 100) {
vector<vector<T>> J = makeJacobian(f, x);
matInv(J);
vector<T> dx = J * f(x);
x = x - dx;

}
}

6.4 Fourier transforms
FastFourierTransform.h
Description: fft(a) computes f̂(k) =

∑
x a[x] exp(2πi · kx/N) for all k.

N must be a power of 2. Useful for convolution: conv(a, b) = c, where
c[x] =

∑
a[i]b[x− i]. For convolution of complex numbers or more than two

vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT
back. Rounding is safe if (

∑
a2
i +

∑
b2i) log2 N < 9 · 1014 (in practice 1016;

higher for random inputs). Otherwise, use NTT/FFTMod.
Time: O (N logN) with N = |A| + |B| (∼1s for N = 222)

00ced6, 35 lines

typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {

int n = sz(a), L = 31 - __builtin_clz(n);
static vector<complex<long double>> R(2, 1);
static vector<C> rt(2, 1); // (^ 10% faster i f double)
for (static int k = 2; k < n; k *= 2) {
R.resize(n); rt.resize(n);
auto x = polar(1.0L, acos(-1.0L) / k);
rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];

}
vi rev(n);
rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int k = 1; k < n; k *= 2)
for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
C z = rt[j+k] * a[i+j+k]; // (25% faster i f hand=rolled)
a[i + j + k] = a[i + j] - z;
a[i + j] += z;

}
}
vd conv(const vd& a, const vd& b) {

if (a.empty() || b.empty()) return {};
vd res(sz(a) + sz(b) - 1);
int L = 32 - __builtin_clz(sz(res)), n = 1 << L;
vector<C> in(n), out(n);
copy(all(a), begin(in));
rep(i,0,sz(b)) in[i].imag(b[i]);
fft(in);
for (C& x : in) x *= x;
rep(i,0,n) out[i] = in[-i & (n - 1)] - conj(in[i]);
fft(out);
rep(i,0,sz(res)) res[i] = imag(out[i]) / (4 * n);
return res;

}

FastFourierTransformMod.h
Description: Higher precision FFT, can be used for convolutions modulo
arbitrary integers as long as N log2 N ·mod < 8.6 · 1014 (in practice 1016 or
higher). Inputs must be in [0,mod).
Time: O (N logN), where N = |A| + |B| (twice as slow as NTT or FFT)
"FastFourierTransform.h" b82773, 22 lines

typedef vector<ll> vl;
template<int M> vl convMod(const vl &a, const vl &b) {

if (a.empty() || b.empty()) return {};
vl res(sz(a) + sz(b) - 1);
int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));
vector<C> L(n), R(n), outs(n), outl(n);
rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
fft(L), fft(R);
rep(i,0,n) {
int j = -i & (n - 1);
outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;

}
fft(outl), fft(outs);
rep(i,0,sz(res)) {

ll av = ll(real(outl[i])+.5), cv = ll(imag(outs[i])+.5);
ll bv = ll(imag(outl[i])+.5) + ll(real(outs[i])+.5);
res[i] = ((av % M * cut + bv) % M * cut + cv) % M;

}
return res;

}

NumberTheoreticTransform.h
Description: ntt(a) computes f̂(k) =

∑
x a[x]gxk for all k, where g =

root(mod−1)/N . N must be a power of 2. Useful for convolution modulo spe-
cific nice primes of the form 2ab + 1, where the convolution result has size
at most 2a. For arbitrary modulo, see FFTMod. conv(a, b) = c, where
c[x] =

∑
a[i]b[x − i]. For manual convolution: NTT the inputs, multiply

pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in
[0, mod).
Time: O (N logN)
"../number-theory/ModPow.h" ced03d, 35 lines

const ll mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e .g . 5 << 25, 7 << 26, 479 << 21
// and 483 << 21 (same root) . The last two are > 10^9.
typedef vector<ll> vl;
void ntt(vl &a) {

int n = sz(a), L = 31 - __builtin_clz(n);
static vl rt(2, 1);
for (static int k = 2, s = 2; k < n; k *= 2, s++) {
rt.resize(n);
ll z[] = {1, modpow(root, mod >> s)};
rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;

}
vi rev(n);
rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int k = 1; k < n; k *= 2)

for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
ll z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
a[i + j + k] = ai - z + (z > ai ? mod : 0);
ai += (ai + z >= mod ? z - mod : z);

}
}
vl conv(const vl &a, const vl &b) {

if (a.empty() || b.empty()) return {};
int s = sz(a) + sz(b) - 1, B = 32 - __builtin_clz(s),

n = 1 << B;
int inv = modpow(n, mod - 2);
vl L(a), R(b), out(n);
L.resize(n), R.resize(n);
ntt(L), ntt(R);
rep(i,0,n)

out[-i & (n - 1)] = (ll)L[i] * R[i] % mod * inv % mod;
ntt(out);
return {out.begin(), out.begin() + s};

}

FastSubsetTransform.h
Description: Transform to a basis with fast convolutions of the form

c[z] =
∑

z=x⊕y
a[x] · b[y], where ⊕ is one of AND, OR, XOR. The size

of a must be a power of two.
Time: O (N logN)

464cf3, 16 lines

void FST(vi& a, bool inv) {
for (int n = sz(a), step = 1; step < n; step *= 2) {
for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {
int &u = a[j], &v = a[j + step]; tie(u, v) =

inv ? pii(v - u, u) : pii(v, u + v); // AND
inv ? pii(v, u - v) : pii(u + v, u); // OR
pii(u + v, u - v); // XOR

}
}

UCF GcdConvolution LcmConvolution ModInverse ModLog ModSum ModMulLL ModSqrt FastEratosthenes LinearSieve MillerRabin 20

if (inv) for (int& x : a) x /= sz(a); // XOR only
}
vi conv(vi a, vi b) {
FST(a, 0); FST(b, 0);
rep(i,0,sz(a)) a[i] *= b[i];
FST(a, 1); return a;

}

GcdConvolution.h
Description: Returns c[k] =

∑
gcd(i,j)=k

a[i] · b[j].

Time: O (n logn)
2dfb20, 16 lines

const int mod = 998’244’353;
vector<int> gcd_convolution(const vector<int>& a,
const vector<int>& b) {
int n = ssize(a);
vector<int> c(n);
for (int g = n - 1; g >= 1; g--) {
int64_t sum_a = 0, sum_b = 0;
for (int i = g; i < n; i += g) {
sum_a += a[i], sum_b += b[i];
if ((c[g] -= c[i]) < 0) c[g] += mod;

}
sum_a %= mod, sum_b %= mod;
c[g] = (c[g] + sum_a * sum_b) % mod;

}
return c;

}

LcmConvolution.h
Description: Returns c[k] =

∑
lcm(i,j)=k

a[i] · b[j].

Time: O (n logn)
ee1440, 16 lines

const int mod = 998’244’353;
vector<int> lcm_convolution(const vector<int>& a,
const vector<int>& b) {
int n = ssize(a);
vector<int64_t> sum_a(n), sum_b(n);
vector<int> c(n);
for (int i = 1; i < n; i++) {
for (int j = i; j < n; j += i)
sum_a[j] += a[i], sum_b[j] += b[i];

sum_a[i] %= mod, sum_b[i] %= mod;
c[i] = (c[i] + sum_a[i] * sum_b[i]) % mod;
for (int j = i + i; j < n; j += i)
if ((c[j] -= c[i]) < 0) c[j] += mod;

}
return c;

}

Number Theory (7)

7.1 Modular arithmetic
ModInverse.h
Description: Pre-computation of modular inverses. Assumes LIM ≤ mod
and that mod is a prime.

6f684f, 3 lines

const ll mod = 1000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;

ModLog.h
Description: Returns the smallest x > 0 s.t. ax = b (mod m), or −1 if no
such x exists. modLog(a,1,m) can be used to calculate the order of a.

Time: O
(√

m
)

c040b8, 11 lines

ll modLog(ll a, ll b, ll m) {
ll n = (ll) sqrt(m) + 1, e = 1, f = 1, j = 1;
unordered_map<ll, ll> A;
while (j <= n && (e = f = e * a % m) != b % m)
A[e * b % m] = j++;

if (e == b % m) return j;
if (__gcd(m, e) == __gcd(m, b))
rep(i,2,n+2) if (A.count(e = e * f % m))
return n * i - A[e];

return -1;
}

ModSum.h
Description: Sums of mod’ed arithmetic progressions.
modsum(to, c, k, m) =

∑to−1
i=0 (ki + c)%m. divsum is similar but for

floored division.
Time: log(m), with a large constant.

5c5bc5, 16 lines

typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }

ull divsum(ull to, ull c, ull k, ull m) {
ull res = k / m * sumsq(to) + c / m * to;
k %= m; c %= m;
if (!k) return res;
ull to2 = (to * k + c) / m;
return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);

}

ll modsum(ull to, ll c, ll k, ll m) {
c = ((c % m) + m) % m;
k = ((k % m) + m) % m;
return to * c + k * sumsq(to) - m * divsum(to, c, k, m);

}

ModMulLL.h
Description: Calculate a·b mod c (or ab mod c) for 0 ≤ a, b ≤ c ≤ 7.2·1018.
Time: O (1) for modmul, O (log b) for modpow

bbbd8f, 11 lines

typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {

ll ret = a * b - M * ull(1.L / M * a * b);
return ret + M * (ret < 0) - M * (ret >= (ll)M);

}
ull modpow(ull b, ull e, ull mod) {

ull ans = 1;
for (; e; b = modmul(b, b, mod), e /= 2)
if (e & 1) ans = modmul(ans, b, mod);

return ans;
}

ModSqrt.h
Description: Tonelli-Shanks algorithm for modular square roots. Finds x
s.t. x2 = a (mod p) (−x gives the other solution).
Time: O

(
log2 p

)
worst case, O (log p) for most p

"ModPow.h" 19a793, 24 lines

ll sqrt(ll a, ll p) {
a %= p; if (a < 0) a += p;
if (a == 0) return 0;
assert(modpow(a, (p-1)/2, p) == 1); // else no solution
if (p % 4 == 3) return modpow(a, (p+1)/4, p);
// a^(n+3)/8 or 2^(n+3)/8 * 2^(n=1)/4 works i f p % 8 == 5
ll s = p - 1, n = 2;
int r = 0, m;
while (s % 2 == 0)
++r, s /= 2;

while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;

ll x = modpow(a, (s + 1) / 2, p);
ll b = modpow(a, s, p), g = modpow(n, s, p);
for (;; r = m) {
ll t = b;
for (m = 0; m < r && t != 1; ++m)
t = t * t % p;

if (m == 0) return x;
ll gs = modpow(g, 1LL << (r - m - 1), p);
g = gs * gs % p;
x = x * gs % p;
b = b * g % p;

}
}

7.2 Primality
FastEratosthenes.h
Description: Prime sieve for generating all primes smaller than LIM.
Time: LIM=1e9 ≈ 1.5s

6b2912, 20 lines

const int LIM = 1e6;
bitset<LIM> isPrime;
vi eratosthenes() {

const int S = (int)round(sqrt(LIM)), R = LIM / 2;
vi pr = {2}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
vector<pii> cp;
for (int i = 3; i <= S; i += 2) if (!sieve[i]) {

cp.push_back({i, i * i / 2});
for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;

}
for (int L = 1; L <= R; L += S) {
array<bool, S> block{};
for (auto &[p, idx] : cp)
for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;

rep(i,0,min(S, R - L))
if (!block[i]) pr.push_back((L + i) * 2 + 1);

}
for (int i : pr) isPrime[i] = 1;
return pr;

}

LinearSieve.h
Description: Finds smallest prime factor of each integer
Time: O (N)

32eeca, 8 lines

const int LIM = 1000000;
vi lp(LIM+1), primes;

rep(i, 2, LIM + 1) {
if (lp[i] == 0) primes.push_back(lp[i] = i);
for (int j = 0; j < sz(primes) && i * primes[j] <= LIM &&

primes[j] <= lp[i]; ++j)
lp[i * primes[j]] = primes[j];

}

MillerRabin.h
Description: Deterministic Miller-Rabin primality test. Guaranteed to
work for numbers up to 7 · 1018; for larger numbers, use Python and ex-
tend A randomly.
Time: 7 times the complexity of ab mod c.
"ModMulLL.h" 60dcd1, 12 lines

bool isPrime(ull n) {
if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},

s = __builtin_ctzll(n-1), d = n >> s;
for (ull a : A) { // ^ count trai l ing zeroes

ull p = modpow(a%n, d, n), i = s;
while (p != 1 && p != n - 1 && a % n && i--)
p = modmul(p, p, n);

UCF PrimeFactors euclid CRT phiFunction ContinuedFractions FracBinarySearch 21

if (p != n-1 && i != s) return 0;
}
return 1;

}

PrimeFactors.h
Description: Pollard-rho randomized factorization algorithm. Returns
prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).
Time: O

(
n1/4

)
, less for numbers with small factors.

"ModMulLL.h", "MillerRabin.h" d8d98d, 18 lines

ull pollard(ull n) {
ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
auto f = [&](ull x) { return modmul(x, x, n) + i; };
while (t++ % 40 || __gcd(prd, n) == 1) {
if (x == y) x = ++i, y = f(x);
if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
x = f(x), y = f(f(y));

}
return __gcd(prd, n);

}
vector<ull> factor(ull n) {
if (n == 1) return {};
if (isPrime(n)) return {n};
ull x = pollard(n);
auto l = factor(x), r = factor(n / x);
l.insert(l.end(), all(r));
return l;

}

7.3 Divisibility
euclid.h
Description: Finds two integers x and y, such that ax + by = gcd(a, b). If
you just need gcd, use the built in gcd instead. If a and b are coprime, then
x is the inverse of a (mod b).

33ba8f, 5 lines

ll euclid(ll a, ll b, ll &x, ll &y) {
if (!b) return x = 1, y = 0, a;
ll d = euclid(b, a % b, y, x);
return y -= a/b * x, d;

}

CRT.h
Description: Chinese Remainder Theorem.
crt(a, m, b, n) computes x such that x ≡ a (mod m), x ≡ b (mod n). If
|a| < m and |b| < n, x will obey 0 ≤ x < lcm(m,n). Assumes mn < 262.
Time: log(n)
"euclid.h" 04d93a, 7 lines

ll crt(ll a, ll m, ll b, ll n) {
if (n > m) swap(a, b), swap(m, n);
ll x, y, g = euclid(m, n, x, y);
assert((a - b) % g == 0); // else no solution
x = (b - a) % n * x % n / g * m + a;
return x < 0 ? x + m*n/g : x;

}

7.3.1 Bézout’s identity
For a ̸=, b ̸= 0, then d = gcd(a, b) is the smallest positive integer
for which there are integer solutions to

ax+ by = d

If (x, y) is one solution, then all solutions are given by(
x+

kb

gcd(a, b)
, y − ka

gcd(a, b)

)
, k ∈ Z

phiFunction.h
Description: Euler’s ϕ function is defined as ϕ(n) := # of positive integers

≤ n that are coprime with n. ϕ(1) = 1, p prime ⇒ ϕ(pk) = (p − 1)pk−1,

m,n coprime ⇒ ϕ(mn) = ϕ(m)ϕ(n). If n = p
k1
1 p

k2
2 ...pkr

r then ϕ(n) =

(p1 − 1)p
k1−1
1 ...(pr − 1)pkr−1

r . ϕ(n) = n ·
∏

p|n(1 − 1/p).∑
d|n ϕ(d) = n,

∑
1≤k≤n,gcd(k,n)=1 k = nϕ(n)/2, n > 1

Euler’s thm: a, n coprime ⇒ aϕ(n) ≡ 1 (mod n).

Fermat’s little thm: p prime ⇒ ap−1 ≡ 1 (mod p) ∀a.
cf7d6d, 8 lines

const int LIM = 5000000;
int phi[LIM];

void calculatePhi() {
rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
for (int i = 3; i < LIM; i += 2) if(phi[i] == i)
for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;

}

7.4 Fractions
ContinuedFractions.h
Description: Given N and a real number x ≥ 0, finds the closest rational
approximation p/q with p, q ≤ N . It will obey |p/q − x| ≤ 1/qN .

For consecutive convergents, pk+1qk − qk+1pk = (−1)k. (pk/qk alternates
between > x and < x.) If x is rational, y eventually becomes ∞; if x is the
root of a degree 2 polynomial the a’s eventually become cyclic.
Time: O (logN)

dd6c5e, 21 lines

typedef double d; // for N ∼ 1e7; long double for N ∼ 1e9
pair<ll, ll> approximate(d x, ll N) {
ll LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x;
for (;;) {
ll lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),

a = (ll)floor(y), b = min(a, lim),
NP = b*P + LP, NQ = b*Q + LQ;

if (a > b) {
// If b > a/2, we have a semi=convergent that gives us a
// better approximation; i f b = a/2, we *may* have one.
// Return {P, Q} here for a more canonical approximation.
return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)) ?
make_pair(NP, NQ) : make_pair(P, Q);

}
if (abs(y = 1/(y - (d)a)) > 3*N) {
return {NP, NQ};

}
LP = P; P = NP;
LQ = Q; Q = NQ;

}
}

FracBinarySearch.h
Description: Given f and N , finds the smallest fraction p/q ∈ [0, 1] such
that f(p/q) is true, and p, q ≤ N . You may want to throw an exception from
f if it finds an exact solution, in which case N can be removed.
Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); // {1,3}
Time: O (log(N))

27ab3e, 25 lines

struct Frac { ll p, q; };

template<class F>
Frac fracBS(F f, ll N) {

bool dir = 1, A = 1, B = 1;
Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N]
if (f(lo)) return lo;
assert(f(hi));
while (A || B) {
ll adv = 0, step = 1; // move hi i f dir , else lo
for (int si = 0; step; (step *= 2) >>= si) {
adv += step;

Frac mid{lo.p * adv + hi.p, lo.q * adv + hi.q};
if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
adv -= step; si = 2;

}
}
hi.p += lo.p * adv;
hi.q += lo.q * adv;
dir = !dir;
swap(lo, hi);
A = B; B = !!adv;

}
return dir ? hi : lo;

}

7.5 Pythagorean Triples
The Pythagorean triples are uniquely generated by

a = k · (m2 − n2), b = k · (2mn), c = k · (m2 + n2),

with m > n > 0, k > 0, m⊥n, and either m or n even.

7.6 Primes
p = 962592769 is such that 221 | p− 1, which may be useful. For
hashing use 970592641 (31-bit number), 31443539979727 (45-bit),
3006703054056749 (52-bit). There are 78498 primes less than
1 000 000.

Primitive roots exist modulo any prime power pa, except for
p = 2, a > 2, and there are ϕ(ϕ(pa)) many. For p = 2, a > 2, the
group Z×

2a is instead isomorphic to Z2 × Z2a−2 .

7.7 Estimates∑
d|n d = O(n log log n).

The number of divisors of n is at most around 100 for n < 5e4,
500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

7.8 Mobius Function

µ(n) =


0 n is not square free

1 n has even number of prime factors

−1 n has odd number of prime factors

Mobius Inversion:

g(n) =
∑
d|n

f(d) ⇔ f(n) =
∑
d|n

µ(d)g(n/d)

Other useful formulas/forms:∑
d|n µ(d) = [n = 1] (very useful)

g(n) =
∑

n|d f(d) ⇔ f(n) =
∑

n|d µ(d/n)g(d)

g(n) =
∑

1≤m≤n f(
⌊

n
m

⌋
) ⇔ f(n) =

∑
1≤m≤n µ(m)g(

⌊
n
m

⌋
)

UCF IntPerm KMP 22

Combinatorial (8)

8.1 Permutations
8.1.1 Factorial

n 1 2 3 4 5 6 7 8 9 10

n! 1 2 6 24 120 720 5040 40320 362880 3628800
n 11 12 13 14 15 16 17

n! 4.0e7 4.8e8 6.2e9 8.7e10 1.3e12 2.1e13 3.6e14
n 20 25 30 40 50 100 150 171

n! 2e18 2e25 3e32 8e47 3e64 9e157 6e262 >DBL MAX

IntPerm.h
Description: Permutation -> integer conversion. (Not order preserving.)
Integer -> permutation can use a lookup table.
Time: O (n)

044568, 6 lines

int permToInt(vi& v) {
int use = 0, i = 0, r = 0;
for(int x:v) r = r * ++i + __builtin_popcount(use & -(1<<x)),
use |= 1 << x; // (note : minus, not ∼!)

return r;
}

8.1.2 Cycles
Let gS(n) be the number of n-permutations whose cycle lengths
all belong to the set S. Then

∞∑
n=0

gS(n)
xn

n!
= exp

(∑
n∈S

xn

n

)

8.1.3 Derangements
Permutations of a set such that none of the elements appear in
their original position.

D(n) = (n−1)(D(n−1)+D(n−2)) = nD(n−1)+(−1)n =

⌊
n!

e

⌉
8.1.4 Burnside’s lemma
Given a group G of symmetries and a set X, the number of
elements of X up to symmetry equals

1

|G|
∑
g∈G

|Xg|,

where Xg are the elements fixed by g (g.x = x).

If f(n) counts “configurations” (of some sort) of length n, we can
ignore rotational symmetry using G = Zn to get

g(n) =
1

n

n−1∑
k=0

f(gcd(n, k)) =
1

n

∑
k|n

f(k)ϕ(n/k).

8.2 Partitions and subsets
8.2.1 Partition function
Number of ways of writing n as a sum of positive integers,
disregarding the order of the summands.

p(0) = 1, p(n) =
∑

k∈Z\{0}

(−1)k+1p(n− k(3k − 1)/2)

p(n) ∼ 0.145/n · exp(2.56
√
n)

n 0 1 2 3 4 5 6 7 8 9 20 50 100

p(n) 1 1 2 3 5 7 11 15 22 30 627 ∼2e5 ∼2e8

8.2.2 Lucas’ Theorem
Let n,m be non-negative integers and p a prime. Write
n = nkp

k + ...+ n1p+ n0 and m = mkp
k + ...+m1p+m0. Then(

n
m

)
≡
∏k

i=0

(
ni
mi

)
(mod p).

8.3 General purpose numbers
8.3.1 Bernoulli numbers
EGF of Bernoulli numbers is B(t) = t

et−1
(FFT-able).

B[0, . . .] = [1,− 1
2
, 1
6
, 0,− 1

30
, 0, 1

42
, . . .]

Sums of powers:

n∑
i=1

nm =
1

m+ 1

m∑
k=0

(m+ 1

k

)
Bk · (n+ 1)m+1−k

Euler-Maclaurin formula for infinite sums:
∞∑

i=m

f(i) =

∫ ∞

m
f(x)dx−

∞∑
k=1

Bk

k!
f (k−1)(m)

≈
∫ ∞

m
f(x)dx+

f(m)

2
−

f ′(m)

12
+

f ′′′(m)

720
+O(f (5)(m))

8.3.2 Stirling numbers of the first kind
Number of permutations on n items with k cycles.

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k), c(0, 0) = 1∑n
k=0 c(n, k)x

k = x(x+ 1) . . . (x+ n− 1)

c(8, k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1
c(n, 2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, . . .

8.3.3 Eulerian numbers
Number of permutations π ∈ Sn in which exactly k elements are
greater than the previous element. k j:s s.t. π(j) > π(j + 1),
k + 1 j:s s.t. π(j) ≥ j, k j:s s.t. π(j) > j.

E(n, k) = (n− k)E(n− 1, k − 1) + (k + 1)E(n− 1, k)

E(n, 0) = E(n, n− 1) = 1

E(n, k) =

k∑
j=0

(−1)j
(
n+ 1

j

)
(k + 1− j)n

8.3.4 Stirling numbers of the second kind
Partitions of n distinct elements into exactly k groups.

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

S(n, 1) = S(n, n) = 1

S(n, k) =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn

8.3.5 Bell numbers
Total number of partitions of n distinct elements. B(n) =
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For p prime,

B(pm + n) ≡ mB(n) +B(n+ 1) (mod p)

8.3.6 Labeled unrooted trees
on n vertices: nn−2

on k existing trees of size ni: n1n2 · · ·nkn
k−2

with degrees di: (n− 2)!/((d1 − 1)! · · · (dn − 1)!)

8.3.7 Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−

(
2n

n+ 1

)
=

(2n)!

(n+ 1)!n!

C0 = 1, Cn+1 =
2(2n+ 1)

n+ 2
Cn, Cn+1 =

∑
CiCn−i

Cn = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . .

� sub-diagonal monotone paths in an n× n grid.
� strings with n pairs of parenthesis, correctly nested.
� binary trees with with n+ 1 leaves (0 or 2 children).
� ordered trees with n+ 1 vertices.
� ways a convex polygon with n+ 2 sides can be cut into

triangles by connecting vertices with straight lines.
� permutations of [n] with no 3-term increasing subseq.

Strings (9)

KMP.h
Description: pi[x] computes the length of the longest prefix of s that ends
at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all
occurrences of a string.
Time: O (n)

a7ac87, 9 lines

vi pi(const auto& s) {
vi p(sz(s));
rep(i,1,sz(s)) {
int g = p[i-1];
while (g && s[i] != s[g]) g = p[g-1];
p[i] = g + (s[i] == s[g]);

}
return p;

}

UCF Zfunc Manacher Eertree SuffixArray SuffixAutomaton Hashing HashInterval AhoCorasick 23

Zfunc.h
Description: z[i] computes the length of the longest common prefix of s[i:]
and s, except z[0] = 0. (abacaba -> 0010301)
Time: O (n)

ee09e2, 12 lines

vi Z(const string& S) {
vi z(sz(S));
int l = -1, r = -1;
rep(i,1,sz(S)) {
z[i] = i >= r ? 0 : min(r - i, z[i - l]);
while (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])
z[i]++;

if (i + z[i] > r)
l = i, r = i + z[i];

}
return z;

}

Manacher.h
Description: For each position in a string, computes p[0][i] = half length
of longest even palindrome around pos i, p[1][i] = longest odd (half rounded
down).
Time: O (N)

e7ad79, 13 lines

array<vi, 2> manacher(const string& s) {
int n = sz(s);
array<vi,2> p = {vi(n+1), vi(n)};
rep(z,0,2) for (int i=0,l=0,r=0; i < n; i++) {

int t = r-i+!z;
if (i<r) p[z][i] = min(t, p[z][l+t]);
int L = i-p[z][i], R = i+p[z][i]-!z;
while (L>=1 && R+1<n && s[L-1] == s[R+1])
p[z][i]++, L--, R++;

if (R>r) l=L, r=R;
}
return p;

}

Eertree.h
Description: Generates an eertree on str. cur is accurate at the end of the
main loop before the final assignment to t.
Time: O (|S|)

2fc643, 24 lines

struct Eertree {
vi slink = {0, 0}, len = {-1, 0};
vvi down;
int cur = 0, t = 0;
Eertree(string &str) : down(2, vi(26, -1)) {

for (int i = 0; i < sz(str); i++) {
char c = str[i]; int ci = c - ’a’;
while (t <= 0 || str[t-1] != c)
t = i - len[cur = slink[cur]];

if (down[cur][ci] == -1) {
down[cur][ci] = sz(slink);
down.emplace_back(26, -1);
len.push_back(len[cur] + 2);
if (len.back() > 1) {
do t = i - len[cur = slink[cur]];
while(t <= 0 || str[t-1] != c);
slink.push_back(down[cur][ci]);

} else slink.push_back(1);
cur = sz(slink) - 1;

} else cur = down[cur][ci];
t = i - len[cur] + 1;

}
}

};

SuffixArray.h
Description: Builds suffix array for a string. sa[i] is the starting index
of the suffix which is i’th in the sorted suffix array. The returned vector
is of size n + 1, and sa[0] = n. The lcp array contains longest common
prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i],
sa[i-1]), lcp[0] = 0. The input string must not contain any nul chars.
Time: O (n logn)

635552, 22 lines

struct SuffixArray {
vi sa, lcp;
SuffixArray(string s, int lim=256) { // or vector<int>

s.push_back(0); int n = sz(s), k = 0, a, b;
vi x(all(s)), y(n), ws(max(n, lim));
sa = lcp = y, iota(all(sa), 0);
for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
p = j, iota(all(y), n - j);
rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
fill(all(ws), 0);
rep(i,0,n) ws[x[i]]++;
rep(i,1,lim) ws[i] += ws[i - 1];
for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
swap(x, y), p = 1, x[sa[0]] = 0;
rep(i,1,n) a = sa[i - 1], b = sa[i], x[b] =
(y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p++;

}
for (int i = 0, j; i < n - 1; lcp[x[i++]] = k)
for (k && k--, j = sa[x[i] - 1];

s[i + k] == s[j + k]; k++);
}

};

SuffixAutomaton.h
Description: Creates a partial DFA (DAG) that accepts all suffixes, with
suffix links. One-to-one map between a path from the root and a substring.
len is the longest-length substring ending here. pos is the first index in the
string matching here. term is whether this node is a terminal (aka a suffix)
Time: construction takes O (N logK), where K = Alphabet Size.

383afe, 27 lines

struct st {int len, pos, term, link=-1; map<char, int> next;};
struct SuffixAutomaton {
vector<st> a;
SuffixAutomaton(string &str) {
a.resize(1);
int last = 0;
for(auto c : str) {
int p = last, cur = last = sz(a);
a.push_back({a[p].len + 1, a[p].len});
while(p >= 0 && !a[p].next.count(c))
a[p].next[c] = cur, p = a[p].link;

if (p == -1) a[cur].link = 0;
else {
int q = a[p].next[c];
if (a[p].len + 1 == a[q].len) a[cur].link = q;
else {

a.push_back({a[p].len+1, a[q].pos, 0, a[q].link,
a[q].next});

for(; p >= 0 && a[p].next[c] == q; p = a[p].link)
a[p].next[c] = sz(a)-1;

a[q].link = a[cur].link = sz(a)-1;
}

}
}
while(last >= 0) a[last].term = 1, last = a[last].link;

}
};

Hashing.h
Description: Self-explanatory methods for string hashing.

4b8fa1, 19 lines

// Arithmetic mod 2^64=1. 2x slower than mod 2^64 and more

// code , but works on evi l test data (e .g . Thue=Morse, where
// ABBA. . . and BAAB. . . of length 2^10 hash the same mod 2^64) .
// ”typedef u l l H;” instead i f you think test data is random,
// or work mod 10^9+7 i f the Birthday paradox is not a problem.
typedef uint64_t ull;
struct H {

ull x; H(ull x=0) : x(x) {}
H operator+(H o) { return x + o.x + (x + o.x < x); }
H operator-(H o) { return *this + ∼o.x; }
H operator*(H o) { auto m = (__uint128_t)x * o.x;

return H((ull)m) + (ull)(m >> 64); }
ull get() const { return x + !∼x; }
bool operator==(H o) const { return get() == o.get(); }
bool operator<(H o) const { return get() < o.get(); }

};
static const H C = (ll)1e11+3; // (order ∼ 3e9; random also ok)

H hashString(string& s){H h{}; for(char c:s) h=h*C+c;return h;}

HashInterval.h
Description: Various self-explanatory methods for string hashing.
"Hashing.h" 122649, 12 lines

struct HashInterval {
vector<H> ha, pw;
HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
pw[0] = 1;
rep(i,0,sz(str))
ha[i+1] = ha[i] * C + str[i],
pw[i+1] = pw[i] * C;

}
H hashInterval(int a, int b) { // hash [a, b)
return ha[b] - ha[a] * pw[b - a];

}
};

AhoCorasick.h
Description: Aho-Corasick automaton, used for multiple pattern matching.
Initialize with AhoCorasick ac(patterns); the automaton start node will be
at index 0. find(word) returns for each position the index of the longest word

that ends there, or -1 if none. findAll(−, word) finds all words (up to N
√
N

many if no duplicate patterns) that start at each position (shortest first).
Duplicate patterns are allowed; empty patterns are not. To find the longest
words that start at each position, reverse all input. For large alphabets, split
each symbol into chunks, with sentinel bits for symbol boundaries.
Time: construction takes O (26N), where N = sum of length of patterns.
find(x) is O (N), where N = length of x. findAll is O (NM).

647ca9, 47 lines

const int ABSIZE = 26;

struct node {
int nxt[ABSIZE];
vi ids = {};
int prv = -1, link = -1;
char c;
int linkMemo[ABSIZE];

node(int prv = -1, char c = ’$’): prv(prv), c(c) {
fill(all(nxt), -1);
fill(all(linkMemo), -1);

}
};

vector<node> trie(1);

void addWord(string &s, int id) {
int cur = 0;
for(char c: s) {
int idx = c - ’a’;

UCF LyndonFactorization IntervalContainer IntervalCover ConstantIntervals LIS CountRectangles FastKnapsack 24

if(trie[cur].nxt[idx] == -1) {
trie[cur].nxt[idx] = sz(trie);
trie.emplace_back(cur, c);

}
cur = trie[cur].nxt[idx];

}
trie[cur].ids.push_back(id);

}

int getLink(int cur);

int calc(int cur, char c) {
int idx = c - ’a’;
auto &ret = trie[cur].linkMemo[idx];
if(ret != -1) return ret;
if(trie[cur].nxt[idx] != -1)
return ret = trie[cur].nxt[idx];

return ret = cur == 0 ? 0 : calc(getLink(cur), c);
}

int getLink(int cur) {
auto &ret = trie[cur].link;
if(ret != -1) return ret;
if(cur == 0 || trie[cur].prv == 0) return ret = 0;
return ret = calc(getLink(trie[cur].prv), trie[cur].c);

}

LyndonFactorization.h
Description: Computes the Lyndon Factorization of a string. A Lyndon
word is a nonempty string that is strictly smaller in lexicographic order than
any of its proper suffixes. Returns the starting indices of the Lyndon words
in the string.
Time: O (n)

09e827, 12 lines

vi duval(string &s) {
vi ans;
for(int start = 0; start < sz(s);) {
int i = start+1, j = start;
for(; i < sz(s) && s[i] >= s[j]; i++)
if(s[i] > s[j]) j = start;
else j++;

for(int sz = i-j; start + sz <= i; start += sz)
ans.push_back(start);

}
return ans;

}

Bullshit (10)

10.1 Intervals
IntervalContainer.h
Description: Add and remove intervals from a set of disjoint intervals.
Will merge the added interval with any overlapping intervals in the set when
adding. Intervals are [inclusive, exclusive).
Time: O (logN)

edce47, 23 lines

set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
if (L == R) return is.end();
auto it = is.lower_bound({L, R}), before = it;
while (it != is.end() && it->first <= R) {
R = max(R, it->second);
before = it = is.erase(it);

}
if (it != is.begin() && (--it)->second >= L) {
L = min(L, it->first);
R = max(R, it->second);
is.erase(it);

}
return is.insert(before, {L,R});

}

void removeInterval(set<pii>& is, int L, int R) {
if (L == R) return;
auto it = addInterval(is, L, R);
auto r2 = it->second;
if (it->first == L) is.erase(it);
else (int&)it->second = L;
if (R != r2) is.emplace(R, r2);

}

IntervalCover.h
Description: Compute indices of smallest set of intervals covering another
interval. Intervals should be [inclusive, exclusive). To support [inclusive,
inclusive], change (A) to add || R.empty(). Returns empty set on failure
(or if G is empty).
Time: O (N logN)

9e9d8d, 19 lines

template<class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {

vi S(sz(I)), R;
iota(all(S), 0);
sort(all(S), [&](int a, int b) { return I[a] < I[b]; });
T cur = G.first;
int at = 0;
while (cur < G.second) { // (A)
pair<T, int> mx = make_pair(cur, -1);
while (at < sz(I) && I[S[at]].first <= cur) {
mx = max(mx, make_pair(I[S[at]].second, S[at]));
at++;

}
if (mx.second == -1) return {};
cur = mx.first;
R.push_back(mx.second);

}
return R;

}

ConstantIntervals.h
Description: Split a monotone function on [from, to) into a minimal set of
half-open intervals on which it has the same value. Runs a callback g for
each such interval.
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];},
[&](int lo, int hi, T val){...});
Time: O

(
k log n

k

)
753a4c, 19 lines

template<class F, class G, class T>
void rec(int from, int to, F& f, G& g, int& i, T& p, T q) {

if (p == q) return;
if (from == to) {
g(i, to, p);
i = to; p = q;

} else {
int mid = (from + to) >> 1;
rec(from, mid, f, g, i, p, f(mid));
rec(mid+1, to, f, g, i, p, q);

}
}
template<class F, class G>
void constantIntervals(int from, int to, F f, G g) {

if (to <= from) return;
int i = from; auto p = f(i), q = f(to-1);
rec(from, to-1, f, g, i, p, q);
g(i, to, q);

}

10.2 Misc. algorithms
LIS.h
Description: Compute indices for the longest increasing subsequence.
Time: O (N logN)

2932a0, 17 lines

template<class I> vi lis(const vector<I>& S) {
if (S.empty()) return {};
vi prev(sz(S));
typedef pair<I, int> p;
vector<p> res;
rep(i,0,sz(S)) {

// change 0 => i for longest non=decreasing subsequence
auto it = lower_bound(all(res), p{S[i], 0});
if (it == res.end()) res.emplace_back(), it = res.end()-1;

*it = {S[i], i};
prev[i] = it == res.begin() ? 0 : (it-1)->second;

}
int L = sz(res), cur = res.back().second;
vi ans(L);
while (L--) ans[L] = cur, cur = prev[cur];
return ans;

}

CountRectangles.h
Description: Counts the number of rectangles of every size that fit in a grid
where 1 represents a filled cell.
Time: O (NM)

abc6f5, 31 lines

vvi count_rectangles(vvi &grid) {
int n = sz(grid), m = sz(grid[0]);
vvi ans(n+1, vi(m+1));
vi col(m); // free space in column
rep(r, 0, n) {
rep(c, 0, m)
if(grid[r][c]) col[c] = 0;
else col[c]++;

vi pre(m, -1), nex(m, m); // nearest < on lef t , <= on right
rep(c, 0, m) {
int i = c-1;
while(i >= 0 && col[i] >= col[c]) {
nex[i] = c;
i = pre[i];

}
pre[c] = i;

}
rep(c, 0, m) {
int left = c - pre[c] - 1, right = nex[c] - c - 1;
ans[col[c]][left + right + 1]++;
ans[col[c]][left]--;
ans[col[c]][right]--;

}
}
rep(i, 1, n+1)

rep(t, 0, 2)
for(int j = m-1; j; j--) ans[i][j] += ans[i][j+1];

rep(j, 1, m+1)
for(int i = n-1; i; i--) ans[i][j] += ans[i+1][j];

return ans;
}

FastKnapsack.h
Description: Given N non-negative integer weights w and a non-negative
target t, computes the maximum S <= t such that S is the sum of some
subset of the weights.
Time: O (N max(wi)) b20ccc, 16 lines

int knapsack(vi w, int t) {
int a = 0, b = 0, x;
while (b < sz(w) && a + w[b] <= t) a += w[b++];

UCF KnuthDP DivideAndConquerDP FastMod BumpAllocator SmallPtr SIMD 25

if (b == sz(w)) return a;
int m = *max_element(all(w));
vi u, v(2*m, -1);
v[a+m-t] = b;
rep(i,b,sz(w)) {
u = v;
rep(x,0,m) v[x+w[i]] = max(v[x+w[i]], u[x]);
for (x = 2*m; --x > m;) rep(j, max(0,u[x]), v[x])
v[x-w[j]] = max(v[x-w[j]], j);

}
for (a = t; v[a+m-t] < 0; a--) ;
return a;

}

10.3 DP Optimizations
KnuthDP.h
Description: When doing DP on intervals: a[i][j] = mini<k<j(a[i][k] +
a[k][j]) + f(i, j), where the (minimal) optimal k increases with both i
and j, one can solve intervals in increasing order of length, and search
k = p[i][j] for a[i][j] only between p[i][j − 1] and p[i + 1][j]. This is
known as Knuth DP. Sufficient criteria for this are if f(b, c) ≤ f(a, d) and
f(a, c) + f(b, d) ≤ f(a, d) + f(b, c) for all a ≤ b ≤ c ≤ d. Consider also:
LineContainer (ch. Data structures), monotone queues, ternary search.
Time: O

(
N2

)

DivideAndConquerDP.h
Description: Given a[i] = minlo(i)≤k<hi(i)(f(i, k)) where the (minimal)
optimal k increases with i, computes a[i] for i = L..R − 1.
Time: O ((N + (hi − lo)) logN)

d38d2b, 18 lines

struct DP { // Modify at wi l l :
int lo(int ind) { return 0; }
int hi(int ind) { return ind; }
ll f(int ind, int k) { return dp[ind][k]; }
void store(int ind, int k, ll v) { res[ind] = pii(k, v); }

void rec(int L, int R, int LO, int HI) {
if (L >= R) return;
int mid = (L + R) >> 1;
pair<ll, int> best(LLONG_MAX, LO);
rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
best = min(best, make_pair(f(mid, k), k));

store(mid, best.second, best.first);
rec(L, mid, LO, best.second+1);
rec(mid+1, R, best.second, HI);

}
void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }

};

10.4 Debugging tricks

� signal(SIGSEGV, [](int) { _Exit(0); });
converts segfaults into Wrong Answers. Similarly one can
catch SIGABRT (assertion failures) and SIGFPE (zero
divisions). _GLIBCXX_DEBUG failures generate SIGABRT
(or SIGSEGV on gcc 5.4.0 apparently).

� feenableexcept(29); kills the program on NaNs (1),
0-divs (4), infinities (8) and denormals (16).

10.5 Optimization tricks
__builtin_ia32_ldmxcsr(40896); disables denormals
(which make floats 20x slower near their minimum value).

10.5.1 Bit hacks

� x & -x is the least bit in x.

� for (int x = m; x;) { --x &= m; ... } loops
over all subset masks of m (except m itself).

� c = x&-x, r = x+c; (((rˆx) >> 2)/c) | r is the
next number after x with the same number of bits set.

� rep(b,0,K) rep(i,0,(1 << K))
if (i & 1 << b) D[i] += D[iˆ(1 << b)];

computes all sums of subsets.

10.5.2 Pragmas

� #pragma GCC optimize ("Ofast") will make GCC
auto-vectorize loops and optimizes floating points better.

� #pragma GCC target ("avx2") can double performance of
vectorized code, but causes crashes on old machines.

� #pragma GCC optimize ("trapv") kills the program on integer
overflows (but is really slow).

FastMod.h
Description: Compute a%b about 5 times faster than usual, where b is
constant but not known at compile time. Returns a value congruent to a
(mod b) in the range [0, 2b).

751a02, 8 lines

typedef unsigned long long ull;
struct FastMod {

ull b, m;
FastMod(ull b) : b(b), m(-1ULL / b) {}
ull reduce(ull a) { // a % b + (0 or b)
return a - (ull)((__uint128_t(m) * a) >> 64) * b;

}
};

BumpAllocator.h
Description: When you need to dynamically allocate many objects and
don’t care about freeing them. ”new X” otherwise has an overhead of some-
thing like 0.05us + 16 bytes per allocation.

745db2, 8 lines

// Either globally or in a single class :
static char buf[450 << 20];
void* operator new(size_t s) {
static size_t i = sizeof buf;
assert(s < i);
return (void*)&buf[i -= s];

}
void operator delete(void*) {}

SmallPtr.h
Description: A 32-bit pointer that points into BumpAllocator memory.
"BumpAllocator.h" 2dd6c9, 10 lines

template<class T> struct ptr {
unsigned ind;
ptr(T* p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {

assert(ind < sizeof buf);
}
T& operator*() const { return *(T*)(buf + ind); }
T* operator->() const { return &**this; }
T& operator[](int a) const { return (&**this)[a]; }
explicit operator bool() const { return ind; }

};

SIMD.h
Description: Cheat sheet of SSE/AVX intrinsics, for doing arithmetic
on several numbers at once. Can provide a constant factor improvement
of about 4, orthogonal to loop unrolling. Operations follow the pat-
tern " mm(256)? name (si(128|256)|epi(8|16|32|64)|pd|ps)". Not all
are described here; grep for mm in /usr/lib/gcc/*/4.9/include/ for
more. If AVX is unsupported, try 128-bit operations, ”emmintrin.h” and
#define SSE and MMX before including it. For aligned memory use
mm malloc(size, 32) or int buf[N] alignas(32), but prefer loadu/s-
toreu.

551b82, 43 lines

#pragma GCC target ("avx2") // or sse4.1
#include "immintrin.h"

typedef __m256i mi;
#define L(x) _mm256_loadu_si256((mi*)&(x))

// High=leve l/specific methods:
// load(u)? si256 , store(u)? si256 , setzero si256 , mm malloc
// blendv (epi8 |ps |pd) (z?y:x) , movemask epi8 (hibits of bytes)
// i32gather epi32(addr , x , 4) : map addr [] over 32=b parts of x
// sad epu8 : sum of absolute differences of u8, outputs 4xi64
// maddubs epi16: dot product of unsigned i7 ’s , outputs 16xi15
// madd epi16: dot product of signed i16 ’s , outputs 8xi32
// extractf128 si256 (, i) (256=>128), cvtsi128 si32 (128=>lo32)
// permute2f128 si256(x ,x,1) swaps 128=bit lanes
// shuffle epi32(x , 3*64+2*16+1*4+0) == x for each lane
// shuffle epi8 (x , y) takes a vector instead of an imm

// Methods that work with most data types (append e .g . epi32) :
// set1 , blend (i8?x :y) , add, adds (sat .) , mullo , sub , and/or ,
// andnot , abs , min, max, sign(1,x) , cmp(gt | eq) , unpack(lo | hi)

int sumi32(mi m) { union {int v[8]; mi m;} u; u.m = m;
int ret = 0; rep(i,0,8) ret += u.v[i]; return ret; }

mi zero() { return _mm256_setzero_si256(); }
mi one() { return _mm256_set1_epi32(-1); }
bool all_zero(mi m) { return _mm256_testz_si256(m, m); }
bool all_one(mi m) { return _mm256_testc_si256(m, one()); }

ll example_filteredDotProduct(int n, short* a, short* b) {
int i = 0; ll r = 0;
mi zero = _mm256_setzero_si256(), acc = zero;
while (i + 16 <= n) {
mi va = L(a[i]), vb = L(b[i]); i += 16;
va = _mm256_and_si256(_mm256_cmpgt_epi16(vb, va), va);
mi vp = _mm256_madd_epi16(va, vb);
acc = _mm256_add_epi64(_mm256_unpacklo_epi32(vp, zero),
_mm256_add_epi64(acc, _mm256_unpackhi_epi32(vp, zero)));

}
union {ll v[4]; mi m;} u; u.m = acc; rep(i,0,4) r += u.v[i];
for (;i<n;++i) if (a[i] < b[i]) r += a[i]*b[i]; // <= equiv
return r;

}

	Contest
	Mathematics
	Data Structures
	Geometry
	Graphs
	Numerical
	Number Theory
	Combinatorial
	Strings
	Bullshit

