& deepseck

DeepSeekMath-V2: Towards Self-Verifiable Mathematical Reasoning

Zhihong Shao*, Yuxiang Luo*, Chengda Lu*’, Z.Z. Ren*
Jiewen Hu, Tian Ye, Zhibin Gou, Shirong Ma, Xiaokang Zhang
DeepSeek-Al

zhihongshao@deepseek.com

https://github.com/deepseek-ai/DeepSeek-Math-V2

Abstract

Large language models have made significant progress in mathematical reasoning, which serves
as an important testbed for Al and could impact scientific research if further advanced. By
scaling reasoning with reinforcement learning that rewards correct final answers, LLMs have
improved from poor performance to saturating quantitative reasoning competitions like AIME
and HMMT in one year. However, this approach faces fundamental limitations. Pursuing higher
final answer accuracy doesn’t address a key issue: correct answers don’t guarantee correct
reasoning. Moreover, many mathematical tasks like theorem proving require rigorous step-by-
step derivation rather than numerical answers, making final answer rewards inapplicable. To
push the limits of deep reasoning, we believe it is necessary to verify the comprehensiveness
and rigor of mathematical reasoning. Self-verification is particularly important for scaling test-
time compute, especially for open problems without known solutions. Towards self-verifiable
mathematical reasoning, we investigate how to train an accurate and faithful LLM-based verifier
for theorem proving. We then train a proof generator using the verifier as the reward model,
and incentivize the generator to identify and resolve as many issues as possible in their own
proofs before finalizing them. To maintain the generation-verification gap as the generator
becomes stronger, we propose to scale verification compute to automatically label new hard-
to-verify proofs, creating training data to further improve the verifier. Our resulting model,
DeepSeekMath-V2, demonstrates strong theorem-proving capabilities, achieving gold-level
scores on IMO 2025 and CMO 2024 and a near-perfect 118/120 on Putnam 2024 with scaled test-
time compute. While much work remains, these results suggest that self-verifiable mathematical
reasoning is a feasible research direction that may help develop more capable mathematical Al
systems.

1. Introduction

The conventional approach to reinforcement learning (RL) for mathematical reasoning involves
rewarding large language models (LLMs) based on whether their predicted final answers to
quantitative reasoning problems match ground-truth answers (Guo et al., 2025). This method-
ology suffices to allow frontier LLMs to saturate mathematical competitions that primarily
evaluate final answers, such as AIME and HMMT. However, this reward mechanism has two
fundamental limitations. First, it serves as an unreliable proxy for reasoning correctness — a
model can arrive at the correct answer through flawed logic or fortunate errors. Second, it is
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inapplicable to theorem proving tasks, where problems may not require producing numerical
final answers and rigorous derivation is the primary objective.

Consequently, LLMs trained on quantitative reasoning problems with such final answer
reward still frequently produce mathematically invalid or logically inconsistent natural-language
proofs. Moreover, this training approach does not naturally develop the models ability to verify
proof validity — they exhibit high false-positive rates, often claiming incorrect proofs are valid
even when they contain obvious logical flaws.

The lack of a generation-verification gap in natural-language theorem proving hinders
further improvement. To address this, we propose developing proof verification capabilities in
LLMs. Our approach is motivated by several key observations:

* Humans can identify issues in proofs even without reference solutions — a crucial ability
when tackling open problems.

* A proof is more likely to be valid when no issues can be identified despite scaled verifica-
tion efforts.

¢ The efforts required to identify valid issues can serve as a proxy for proof quality, which
can be exploited to optimize proof generation.

We believe that LLMs can be trained to identify proof issues without reference solutions. Such a
verifier would enable an iterative improvement cycle: (1) using verification feedback to optimize
proof generation, (2) scaling verification compute to auto-label hard-to-verify new proofs,
thereby creating the training data to improve the verifier itself, and (3) using this enhanced
verifier to further optimize proof generation. Moreover, a reliable proof verifier enables us to
teach proof generators to evaluate proofs as the verifier does. This allows a proof generator to
iteratively refine its proofs until it can no longer identify or resolve any issues. In essence, we
make the model explicitly aware of its reward function and enable it to maximize this reward
through deliberate reasoning rather than blind trial-and-error.

Built on DeepSeek-V3.2-Exp-Base (DeepSeek-Al, 2025), we developed DeepSeekMath-V2,
a large language model optimized for natural-language theorem proving that demonstrates
self-verifiable mathematical reasoning. Our model can assess and iteratively improve its own
proofs, achieving gold-level performance in premier high-school mathematics competitions
including IMO 2025 and CMO 2024. On the Putnam 2024 undergraduate competition, it scored
118/120, exceeding the highest score of 90 EI obtained by human participants.

2. Method

2.1. Proof Verification
2.1.1. Training a Verifier to Identify Issues and Score Proofs

We developed high-level rubrics 7, for proof evaluation (see Appendix[A.2) with the goal of
training a verifier to evaluate proofs according to these rubrics, mirroring mathematical experts’
assessment process. Specifically, given a problem X and a proof Y, the verifier 7, (-|X,Y, 1,) is
designed to produce a proof analysis that first summarizes identified issues (if any) and then
assigns a score based on three levels: 1 for complete and rigorous proofs with all logical steps
clearly justified; 0.5 for proofs with sound overall logic but minor errors or omitted details; and
0 for fundamentally flawed proofs containing fatal logical errors or critical gaps.

Thttps://kskedlaya.org/putnam-archive/putnam2024stats.html
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Curating Cold Start RL Data We constructed our initial training data through the following
process:

1. We crawled problems from Art of Problem Solving (AoPS) contests H prioritizing math
olympiads, team selection tests, and post-2010 problems explicitly requiring proofs, total-
ing 17,503 problems. This problem set is denoted as D,,.

2. We generated candidate proofs using a variant of DeepSeek-V3.2-Exp-Thinking. As this
model was not optimized for theorem proving and tended to produce concise but error-
prone outputs, we prompted it to iteratively refine its proofs over multiple rounds to
improve comprehensiveness and rigor.

3. We randomly sampled proofs across diverse problem types (e.g., algebra and number
theory) and had mathematical experts score each proof according to the evaluation rubrics
described above.

This process yielded an initial RL dataset D, = {(X;,Y;, si) }, where each item consists of a problem
X;, a proof Y;, and an overall proof score s; € {0,0.5,1}.

RL Objective. Building on a version of DeepSeek-V3.2-Exp-SFT which was supervised fine-
tuned on reasoning data related to mathematics and code, we trained the model with reinforce-
ment learning to produce proof analyses using two reward components:

¢ Format reward Rormat: An indicator function that enforces the model to generate both a
summary of identified issues and a proof score, by checking whether the final response
contains the key phrase “Here is my evaluation of the solution:” as well as a score within
\boxed{} following “Based on my evaluation, the final overall score should be:”.

* Score reward Rscore: Rewards based on proximity between predicted score s; and annotated
score s;:

Rscore(sgz si) =1- |51, = i 1)

The RL objective for training the verifier is:
II]l[aX IE(Xi,Yi,Si)~Z)u,(Vi’,slf)~Jr,p(~|Xl-,Yl-) [Rformat (Vi,) * Rscore (51{; Si)] (2)
¢

where V! denotes the verifier’s final response and s; is the proof score extracted from it.

2.1.2. Introducing Meta-Verification to Review Proof Analyses

The approach described in Section 2.1.T] trains proof verification through RL to align predicted
proof scores with expert annotations, but provides no direct supervision on the identified
issues themselves. This creates a critical vulnerability: when evaluating flawed proofs (where
si < 1) during training, the verifier can receive full reward by predicting the correct scores while
hallucinating non-existent issues, undermining its trustworthiness.

To address this problem, we introduce meta-verification: a secondary evaluation process
that assesses whether issues identified by the verifier indeed exist and whether these issues
logically justify the predicted proof score according to the evaluation rubrics 7,. The complete
meta-verification rubrics 7,, are detailed in Appendix
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We trained a dedicated meta-verifier using RL to perform this evaluation. By incorporat-
ing the meta-verifier’s feedback into verifier training, we can improve the faithfulness of the
verifier’s issue identification.

Meta-Verifier Training Process

1. We obtained an initial verifier 7, following Section[2.1.1]

2. Mathematical experts scored the quality of verifier responses according to 7,,, creating
dataset D, = {(X;, Y;, Vi, ms;)}, where V; is the analysis of proof ¥; and ms; € {0,0.5,1} is
the expert-annotated quality score.

3. We trained a meta-verifier 7, (-|X,Y,V, I,,) to analyze the verifier’s proof analysis V. The
meta-verifier produces a summary of issues found in the analysis itself, followed by a
quality score measuring how accurate and justified the verifier’s analysis is. The RL
objective follows the same structure as the verifier training, with format and score rewards.

Using the trained meta-verifier «;, we enhanced the verifier training by integrating meta-
verification feedback into the reward function:

Ry = Rformat * Rscore * Rmeta (3)

where Rpeta is the quality score from the meta-verifier.

We trained the enhanced verifier on both the verification dataset 9, and the meta-verification
dataset Dy, using the same reward mechanism on D,,, as used for training the meta-verifier.
The resulting model can perform both proof verification and meta-verification tasks.

On a validation split of D,, the average quality score of the verifier’s proof analyses — as
evaluated by the meta-verifier —improved from 0.85 to 0.96, while maintaining the same accuracy
in proof score prediction.

2.2. Proof Generation
2.2.1. Training a Generator for Theorem Proving

With verifier 7, serving as a generative reward model, we train a proof generator mg(:|X) with
the RL objective:

max Ex,.p, yio (1) [Ry] (4)

where Ry is the proof score produced by 7, (-|X;,Y;, 7).

2.2.2. Enhancing Reasoning via Self-Verification

When a proof generator fails to produce a completely correct proof in one shot — common
for challenging problems from competitions like IMO and CMO - iterative verification and
refinement can improve results. This involves analyzing the proof with an external verifier and
prompting the generator to address identified issues.

However, we observed a critical limitation: when prompted to both generate and analyze its
own proof in one shot, the generator tends to claim correctness even when the external verifier



easily identify flaws. In other words, while the generator can refine proofs based on external
feedback, it fails to evaluate its own work with the same rigor as the dedicated verifier.

This observation motivated us to endow the proof generator with genuine verification
capabilities. During training, we prompt the generator 7 to produce a proof Y followed by a
self-analysis Z that follows the same format and rubrics 7, as the verifier (see Appendix|[A.T).
We denote the proof score predicted in the self-analysis as s’.

To ensure faithful self-evaluation, we use the verifier x,, to assess both components: the proof
Y receives score Ry = s, and the self-analysis Z receives a meta-verification score Ryeta (Z) = ms.
The reward function combines these assessments:

R= Rformat(Y/Z) ) (O{ ‘Ry +p - RZ) (5)
Rz = Rgcore (5’/5) *Rmeta(Z) (6)

where Riormat(Y, Z) verifies that both the proof and self-analysis follow the specified format,
Rscore (87, s) rewards accurate self-assessment. We set @ = 0.76 and B = 0.24. This reward structure
creates the following incentives:

¢ Faithful acknowledgment of errors is rewarded over false claims of correctness.

¢ The highest rewards come from producing correct proofs and accurately recognizing their
rigor.

* A good strategy to obtain high rewards for the proof generator is to identify and resolve
as many issues as possible before finalizing the response.

2.3. Synergy Between Proof Verification and Generation

The proof verifier and generator create a synergistic cycle: the verifier improves the generator,
and as the generator improves, it produces new proofs that challenge the verifier’s current
capabilities. These challenging cases — where the verifier may fail to identify issues in a single
attempt — become valuable training data for enhancing the verifier itself.

To retrain and improve the verifier, we need labeled correctness data for newly generated
proofs. Manual annotation, while straightforward, becomes increasingly time-consuming as
problems grow harder and errors become more subtle. To boost annotation efficiency, we
generated multiple verifier analyses per proof to surface potential issues for human review.

From this Al-assisted annotation process, we recognized two facts that make it feasible to
push the level of automation a step further:

1. Scaling verifier samples increases the probability of catching real issues in flawed proofs.

2. Reviewing the verifier’s identified issues is exactly meta-verification, which is easier than
identifying issues from scratch. Meta-verification is also more sample-efficient for LLMs
to master.

Building on these observations, we developed the following automated labeling process:

1. For each proof, generate n independent verification analyses



2. For analyses reporting issues (scores 0 or 0.5), generate m meta-verification assessments
to validate the identified problems. An analysis is deemed valid if the majority of meta-
assessments confirm its findings

3. For each proof, we examine analyses that assign the lowest score. If at least k such analyses
are deemed valid, the proof is labeled with that lowest score. If no legitimate issues are
identified across all verification attempts, the proof is labeled with 1. Otherwise, the proof
is discarded or routed to human experts for labeling

In our last two training iterations, this fully automated pipeline replaced human annotation en-
tirely. Quality checks confirmed that the automated labels aligned well with expert judgments.

3. Experiments
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Figure 1 | Average proof scores on CNML-level problems by category and model, as evaluated
by our verifier.

3.1. Training Settings

We employed Group Relative Policy Optimization (GRPO) (Shao et al., 2024) for reinforcement
learning, iteratively optimizing proof verification and generation capabilities as described in
Section 2} In each iteration, we first optimized proof verification. The proof generator was then
initialized from the verifier checkpoint and optimized for proof generation. Starting from the
second iteration, the proof verifier was initialized with a checkpoint that consolidated both
verification and generation capabilities from the previous iteration through rejection fine-tuning.

3.2. Evaluation Benchmarks

We evaluate our final proof generator on the following theorem proving benchmarks:

In-House CNML-Level Problems 91 theorem-proving problems spanning algebra (13), geome-
try (24), number theory (19), combinatorics (24), and inequality (11), comparable in difficulty to
problems from Chinese National High School Mathematics League (CNML)

Competition Problems

¢ IMO 2025 (6 problems): The International Mathematical Olympiad, the premier global
mathematics competition for pre-university students
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e CMO 2024 (6 problems): The China Mathematical Olympiad, China’s national champi-
onship

¢ Putnam 2024 (12 problems): The William Lowell Putnam Competition, the preeminent
mathematics competition for undergraduate students in North America

* ISL 2024 (31 problems): The IMO Shortlist, a collection of problems proposed by participat-
ing countries and considered by the Problem Selection Committee for potential inclusion
in IMO 2024

¢ IMO-ProofBench (60 problems): Developed by the DeepMind team behind DeepThink
IMO-Gold (Luong and Lockhart, [2025), this benchmark (Luong et al.,|2025) is divided into
a basic set (30 problems, pre-IMO to IMO-Medium difficulty) and an advanced set (30
challenging problems simulating complete IMO examinations, up to IMO-Hard level)

3.3. Evaluation Results
3.3.1. One-Shot Generation

We first evaluate the model’s ability to generate correct proofs without iterative refinement. On
the in-house problems, we generated 8 proof samples per problem for each evaluated model.
Proof correctness was measured by majority voting across 8 verification analyses produced by
our final verifier. As shown in Figure|l} across all categories of CNML-level problems — algebra,
geometry, number theory, combinatorics, and inequality — DeepSeekMath-V2 consistently
outperforms GPT-5-Thinking-High (OpenAl, 2025) and Gemini 2.5-Pro (DeepMind, |2025),
demonstrating superior theorem-proving ability across domains.

3.3.2. Sequential Refinement with Self-Verification

For challenging problems from competi-
tions like IMO and CMO, models often
cannot generate comprehensive and rigor-
ous proofs in a single attempt within the
128K token limit. When this occurs, our
proof generator recognizes its proof is in-
valid through self-verification but lacks the
context length to resolve all identified is-
sues in a single attempt.
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self-verification can improve proof qual- ' ?  Mox Sequential Iterations
ity, we evaluate sequential refinement with
self-verification. This approach first gen- Figure 2 | Proof quality improvements as the max-
erates a proof with self-analysjs , then iter- imum sequential iterations varies from 1 (no re-
atively re-prompts the generator with its  finement) to 8 (initial generation plus up to 7 re-
previous output (see Appendix for the finements based on self verification).
refinement prompt), allowing it to address
identified issues. The process continues until the generator assigns itself a perfect score or
reaches the maximum number of sequential attempts.

Figure 2| demonstrates proof quality improvement through sequential refinement on IMO
Shortlist 2024 problems. For each problem, we launched 32 independent refinement threads.
Proof correctness was measured by majority voting across 32 verification analyses from our
final verifier. We report two metrics in Figure 2} (1) Pass@1 - the average score of the final



proof from each thread, and (2) Best@32 — the score of the best proof per problem, selected by
self-assigned scores across all threads. The self-selected best proofs achieve significantly higher
verification scores than the thread average, demonstrating our generator’s ability to accurately
assess proof quality. Furthermore, Pass@1 improves substantially as maximum sequential
attempts increase, showing that self-verification effectively guides iterative improvement. These
results confirm that our generator can reliably differentiate between high-quality and flawed
proofs, and leverage this self-awareness to systematically improve its mathematical reasoning.

100.00%

I Claude Sonnet 4
[0 DeepSeek R1
I Qwen3-235B
I Grok 4

I Gemini 2.5 Pro
I GPT-5

Gemini 2.5 Pro
with (Huang & Yang, 2025)

= Gemini Deep Think
(IMO lite)

Gemini Deep Think
B (1Mo Gold)

I DeepSeekMath-V2 (Heavy)

75.00%

50.00%

25.00% 1856 17.6 200

Human evaluations

0.00%

ProofBench-Basic ProofBench-Advanced

Figure 3 | Expert evaluation results on the Basic and Advanced subsets of IMO-ProofBench. All
results are sourced from Luong et al. (2025), with the exception of DeepSeekMath-V2, which
was evaluated by our experts following the grading guidelines.

3.3.3. High-Compute Search

To solve the most challenging problems,

we scaled both verification and generation

} X [N Contest Problems Points

compute — using extensive verification to
identify subtle issues and parallel genera- ~ IMO 2025 P1, P2, P3, P4, P5 83.3%
tion to explore diverse proof strategies. CMO 2024 P1, P2, P4, P5,P6  73.8%
Our approach maintains a pool of can-  pytnam 2024 A1 ~ B4, B5, B6 98.3%

didate proofs for each problem, initialized
with 64 proof samples with 64 verification
analyses generated for each. In each re-
finement iteration, we select the 64 highest-
scoring proofs based on average verifica-
tion scores and pair each with 8 randomly selected analyses, prioritizing those identifying
issues (scores 0 or 0.5). Each proof-analysis pair is used to generate one refined proof, which
then updates the candidate pool. This process continues for up to 16 iterations or until a proof
successfully passes all 64 verification attempts, indicating high confidence in correctness. All ex-
periments used a single model, our final proof generator, which performs both proof generation
and verification.

Table 1 | Problems in gray are fully solved , while
underlined problems received partial credit.

To validate our results, mathematical experts assessed the highest-scoring proofs. As shown
in Table[} our approach solved 5 of 6 problems from IMO 2025 and 4 problems plus partial credit
on another from CMO 2024, achieving gold medal performance in both pinnacle high-school
competitions. On Putnam 2024, the preeminent undergraduate mathematics competition, our
model solved 11 of 12 problems completely and the remaining problem with minor errors,
scoring 118/120 and surpassing the highest human score of 90. Figure 3|shows the results on
IMO-ProofBench. Our approach outperforms DeepMind’s DeepThink (IMO Gold) on the basic
set and remains competitive on the advanced set, while substantially outperforming all other
baselines. We observe that the hardest IMO-level problems remain challenging for our model.



Notably, for problems not fully solved, our generator typically identifies the genuine issues in
its proofs, while fully solved problems pass all 64 verification attempts. This demonstrates that
we can successfully train LLM-based verifiers to assess proofs previously considered difficult to
verify automatically. By scaling test-time compute under verifier guidance, our model solves
problems that require hours of effort from human competitors.

4. Related Work

Reasoning models (OpenAl, 2024; Guo et al., 2025) have saturated quantitative reasoning
benchmarks like AIME and HMMT within one year. This rapid advancement is partly attributed
to the well-defined evaluation criterion: if we care only about final answers, then quantitative
reasoning is easy to verify. However, this final answer metric is inapplicable to theorem proving,
which often requires no numerical answers but demands rigorous step-by-step derivation.
Informal mathematical proofs have long been considered hard to verify automatically, lacking
reliable approaches to assess proof correctness. Recent developments suggest this barrier may be
surmountable. Models like Gemini-2.5 Pro already demonstrate a certain level of self-verification
capabilities, which can refine their own solutions to improve quality (Huang and Yang), 2025).
More significantly, DeepMind’s internal DeepThink variant (Luong and Lockhart, 2025) achieved
gold medal performance at IMO 2025 using pure natural language reasoning — serving as an
existence proof that LLM-based verification of complex proofs is achievable. Recent research
has begun exploring whether reasoning models can evaluate proofs, both with and without
reference solutions (Dekoninck et al., 2025} Luong et al| 2025), showing promising results. In
this work, we open source DeepSeekMath-V2 and our training methodology as concrete steps
toward self-verifiable mathematical reasoning, showing how models can learn to verify and
improve their own proofs.

Proof assistants like Lean (de Moura et al. [2015) and Isabelle (Paulson, [1994) offer a reliable
approach to verify proofs — proofs must be written in formal language, but once compiled,
correctness is guaranteed. AlphaProof (AlphaProof and teams, 2024; Trinh et al.| 2024;/Chervonyi
et al.,|[2025), a system specialized for formal proof search, achieved silver-level performance at
IMO 2024 but required intensive computation. While using informal reasoning to guide formal
proof generation has been explored extensively (Jiang et al., 2023), recent reasoning models have
dramatically improved informal reasoning quality, making this guidance far more effective.
Systems like DeepSeek-Prover-V2 (Ren et al., 2025) and Seed-Prover (Chen et al.,2025) can now
produce substantially more valid formal proofs within the same computational budget, with
Seed-Prover solving 5 of 6 problems at IMO 2025. Notably, these results were achieved without
specifically optimizing the informal reasoning components for theorem proving tasks. We
believe advancing natural language theorem proving will significantly benefit formal reasoning.
We hope to contribute toward truly reliable mathematical reasoning systems that leverage both
informal insights and formal guarantees to advance mathematical research.

5. Conclusion

We presented DeepSeekMath-V2, a model capable of both generating and verifying mathe-
matical proofs. By training models to identify issues in their own reasoning and incentivizing
them to address these issues before finalizing outputs, we move beyond the limitations of final-
answer-based rewards toward self-verifiable mathematical reasoning. Our iterative training
process — alternating between improving verification capabilities and using these to enhance
generation — creates a sustainable cycle where each component drives the other forward. Our



key technical contributions include: (1) training an accurate and faithful LLM-based verifier
for mathematical proofs, (2) using meta-verification to largely reduce hallucinated issues and
ensure verification quality, (3) incentivizing the proof generator to maximize proof quality
through self-verification, and (4) scaling verification compute to automatically label increasingly
hard-to-verify proofs to improve the verifier without human annotation. DeepSeekMath-V2
demonstrates strong performance on competition mathematics. With scaled test-time compute,
it achieved gold-medal scores in high-school competitions including IMO 2025 and CMO 2024,
and a near-perfect score on the undergraduate Putnam 2024 competition. This work establishes
that LLMs can develop meaningful self-evaluation abilities for complex reasoning tasks. While
significant challenges remain, we hope this research direction contributes to the goal of creating
self-verifiable Al systems that can solve research-level mathematics.
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A. Prompt Templates

A.1. Proof Generation Prompt

Your task is to solve a given problem. The problem may ask you to
< prove a statement, or ask for an answer. If finding an
< answer is required, you should come up with the answer, and
< your final solution should also be a rigorous proof of that
< answer being valid.

Your final solution to the problem should be exceptiomnally
<~ comprehensive and easy-to-follow, which will be rated
< according to the following evaluation instruction:

(lltxt

Here is the instruction to evaluate the quality of a solution to
< a problem. The problem may ask for a proof of statement, or
< ask for an answer. If finding an answer is required, the
< solution should present the answer, and it should also be a
< rigorous proof of that answer being valid.

Please evaluate the solution and score it according to the
— following criteria:

- If the solution is completely correct, with all steps executed
— properly and clearly demonstrated, then the score is 1

- If the solution is generally correct, but with some details
< omitted or minor errors, then the score is 0.5

- If the solution does not actually address the required problem,
<~ contains fatal errors, or has severe omissions, then the
— score is O

Additionally, referencing anything from any paper does not save
the need to prove the referemnce. It’s okay IF AND ONLY IF
the solution also presents a valid proof of the reference
argument (s); otherwise, if the solution omits the proof or
if the proof provided is not completely correct, the
solution should be scored according to the criteria above,
and definitely not with a score of 1

U

(SN AN1

In fact, you already have the ability to rate your solution
yourself , so you are expected to reason carefully about how
to solve a given problem, evaluate your method according to
the instruction, and refine your solution by fixing issues
identified until you can make no further progress.

[rid

In your final response, you should present a detailed solution to
— the problem followed by your evaluation of that solution.
- To give a good final response, you should try your best to
< locate potential issues in your own (partial) solution
< according to the evaluation instruction above, and fix them
< as many as you can.
- A good final response should just faithfully present your
— progress, including the best solution you can give, as well
< as a faithful evaluation of that solution.
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- Only when you fail to locate any issues in your solution should
< you score it with 1.

- If you do notice some issues in your solution but fail to
< resolve them with your best efforts, it’s totally ok to
— faithfully present the issues in your final response.

- The worst final response would provide a wrong solution but 1lie
< that it’s correct or claim that it’s correct without
<— careful error checking. A better version should faithfully
< 1identify errors in the solution. Remember! You CAN’T cheat!
<~ If you cheat, we will know, and you will be penalized!

Your final response should be in the following format:

## Solution // Your final solution should start with this exact
<~ same markdown title
// Your final solution to the problem here. You should try
< your best to optimize the quality of your solution according
< to the evaluation instruction above before finalizing it
< here.

## Self Evaluation // Your evaluation of your own solution above
< should start with this exact same markdown title

Here is my evaluation of the solution: // Your analysis should
< start with this exact same phrase

// Your evaluation here. You are required to present in
detail the key steps of the solution or the steps for which
you had doubts regarding their correctness, and explicitly
analyze whether each step is accurate: for correct steps,
explain why you initially doubted their correctness and why
they are indeed correct; for erroneous steps, explain the
reason for the error and the impact of that error on the
solution. You should analyze your solution faithfully. E.g.,

if there are issues in your final solution, you should
point it out.

DO A A

Based on my evaluation, the final overall score should be:
\\boxed{{...}} // where ... should be the final overall score (0,
< 0.5, or 1, and nothing else) based on the evaluation
< instruction above. You should reach this score ONLY AFTER
— careful RE-examination of your own solution above

Here is your task input:

## Problem
{question}

A.2. Proof Verification Prompt

## Instruction

Your task is to evaluate the quality of a solution to a problem.
— The problem may ask for a proof of statement, or ask for an
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— answer. If finding an answer is required, the solution
< should present the answer, and it should also be a rigorous
— proof of that answer being valid.

Please evaluate the solution and score it according to the
— following criteria:
- If the solution is completely correct, with all steps executed
— properly and clearly demonstrated, then the score is 1
- If the solution is generally correct, but with some details
< omitted or minor errors, then the score is 0.5
- If the solution does not actually address the required problem,
<~ contains fatal errors, or has severe omissions, then the
— score is O
- Additionally, referencing anything from any paper does not save
the need to prove the reference. It’s okay IF AND ONLY IF
the solution also presents a valid proof of the reference
argument(s); otherwise, if the solution omits the proof or
if the proof provided is not completely correct, the
solution should be scored according to the criteria above,
and definitely not with a score of 1

U

Please carefully reason out and analyze the quality of the
< solution below, and in your final response present a
— detailed evaluation of the solution’s quality followed by
— your score. Therefore, your response should be in the
<~ following format:

Here is my evaluation of the solution:

// Your evaluation here. You are required to present in
detail the key steps of the solution or the steps for which
you had doubts regarding their correctness, and explicitly
analyze whether each step is accurate: for correct steps,
explain why you initially doubted their correctness and why
they are indeed correct; for erroneous steps, explain the
reason for the error and the impact of that error on the
solution.

LLeeeey.

Based on my evaluation, the final overall score should be:
\\boxed{{...}} // where ... should be the final overall score (O,
— 0.5, or 1, and nothing else) based on the above criteria

Here is your task input:

## Problem
{question}

## Solution
{proof}

A.3. Meta-Verification Prompt

You are given a "problem", "solution", and "solution evaluation",
— and you need to assess the whether this "solution
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< evaluation" is reasonable.

First, "solution evaluation" is generated to evaluate the quality
< of the "solution", by prompting a verifier with the rules
< below (these are not your rules):

(SN AN1

Please evaluate the solution and score it according to the
— following criteria:

- If the solution is completely correct, with all steps executed
<~ properly and clearly demonstrated, then the score is 1

- If the solution is generally correct, but with some details
< omitted or minor errors, then the score is 0.5

- If the solution does not actually address the required problem,
< contains fatal errors, or has severe omissions, then the
<~ score is O

Additionally, referencing anything from any paper does not save
the need to prove the reference. It’s okay IF AND ONLY IF

— the solution also presents a valid proof of the reference

< argument (s); otherwise, if the solution omits the proof or
< 1f the proof provided is not completely correct, the
s
s

[

solution should be scored according to the criteria above,
and definitely not with a score of 1

Next, I will introduce the rules for you to analyze the quality
<~ of the "solution evaluation":

1. Your task is to analyze the "solution evaluation". You do not
— need to solve the "problem", nor do you need to strictly
< assess whether the "solution" is accurate. Your only task is
< to strictly follow the rules below to evaluate whether the
— "solution evaluation" is reasonable.

2. You need to analyze the content of the "solution evaluation"
< from three aspects:

Step Restatement: In the "solution evaluation", certain behaviors
— of the "solution" may be restated. You need to returmn to
— the original text of the "solution" and check whether the "
— solution" actually has these behaviors mentioned in the "
< solution evaluation".

Defect Analysis: "solution evaluation" may point out errors or
— defects in the "solution". You need to carefully analyze
— whether the mentioned errors and defects are indeed valid.

Expression Analysis: Whether the "solution evaluation"’s
< expressions are accurate.

Score Analysis: Whether the final score given by the "solution

< evaluation" matches the defects it found. You need to
< analyze according to the scoring rules given above.
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3. The most important part is **defect analysis**: In this part,
your core task is to check whether the errors or defects of
the "solution" pointed out in the "solution evaluation" are
reasonable. In other words, any positive components about
the "solution" in the "solution evaluation", regardless of
whether they are reasonable, are not within your evaluation
scope.

U

|
T
o
H

example: If the "solution evaluation" says that a certain
conclusion in the "solution" is correct, but actually this
conclusion is incorrect, then you do not need to care about
this point. All parts that the "solution evaluation"
considers correct do not belong to your evaluation scope.
- Specifically: If the "solution evaluation" believes that the "
— solution" 1is completely accurate and has not found any
< errors or defects, then regardless of whether the "solution"
< itself is actually accurate, even if there are obvious
< errors, you should still consider its analysis of errors to
— be reasonable.

rrid

*x* Importantly**, for defects found by the "solution evaluation",
< you need to analyze two points simultaneously:

- whether this defect actually exists
- whether the "solution evaluation"’s analysis of this defect is
<~ accurate

These two aspects constitute the analysis of defects.

4. About x**expression analysisx**, if there are certain expression
< errors in the "solution evaluation", even minor errors in
< details, you need to identify them. However, please note
<~ that identifying incorrect steps in the "solution" as
< correct steps does not constitute an **expression error*x.

In practice, expression errors include but are not limited to:

If the "solution evaluation" identifies some reasoning step(s)
<5 in the "solution" as incorrect, then it cannot further

< indicate that subsequent conclusion(s) depending on those
<> reasoning step(s) are wrong, but can only indicate that

< subsequent conclusion(s) are "not rigorously demonstrated."
- Typos and calculation errors made by "solution evaluation"
Inaccurate restatement of content from "solution"

5. Finally, you need to present your analysis of the "solution
— evaluation" in your output and also rate its quality based
< on the rules below:

First, if there is at least one unreasonable defect among the
— defects found by the "solution evaluation", then you only

— need to do **xdefect analysisx*x*:

- If all defects found by the "solution evaluation" are
< unreasonable, then you should rate it with \(0\)
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- If some defects found by the "solution evaluation" are
< reasonable and some are unreasonable, then your rating
< should be \(0.5\)

Next, if the "solution evaluation" points out no errors or
— defects, or all defects found by the evaluation are
< reasonable, then you should do the following things:

- Analyze whether "expression errors" exist in the "solution
evaluation" (**xexpression analysisx**) or whether "solution
evaluation" gives a wrong score according to the rules for "
solution evaluation" (**score analysisx*x). If yes, you
should rate the "solution evaluation" with \(0.5\); if no,
your rating should be \(1\)

U

Your output should follow the format below:

Here is my analysis of the "solution evaluation':
// Your analysis here.

Based on my analysis, I will rate the "solution evaluation" as:

\\boxed{{...}} // where ... should be a numerical rating of the "
< solution evaluation" (0, 0.5, or 1, and nothing else) based
< on the criteria above.

Here is your task input:

## Problem
{question}

## Solution
{proof}

## Solution Evaluation
{proof analysis}

A.4. Proof Refinement Prompt

{proof_generation_prompt}

## Candidate Solution(s) to Refine

Here are some solution sample(s) along with their correctness
evaluation(s). You should provide a better solution by
solving issues mentioned in the evaluation(s), or by re-
using promising ideas mentioned in the solution sample(s),
or by doing both.

[rid

{proof}
{proof analyses}’

## Final Instruction

Your final response should follow the format above, including a
— ‘## Solution‘ section followed by a ‘## Self Evaluation®
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