Introduction

- Imagine a World Without Electricity (after EMP)
 - No lights or infrastructure like the Middle Ages
 - You don't know how to live in the Middle Ages
 - There is no Middle Ages infrastructure
 - Surrounded by starving, cold, desperate people
 - Worse than the Third World because...
 - Third World people know how to live without & they aren't expecting help
 - It's going to be dark for years
- Current State of American People
 - Rely on technology for everything
 - Lived far from what they need for life
 - Few people have survival skills for real world

Physics Lesson

• Electromagnetic (EM) Spectrum

- Changing magnetic field (moving magnet) causes electric field
- Changing electric field (moving charge) causes magnetic field
- EM = Radio, Microwaves, Light, Heat, X-rays, Gamma & Cosmic rays–different frequencies
- X-rays and Gamma rays are ionizing radiation
- As frequency increases, wavelength gets shorter
- Antenna must be near size of wavelength

What Is EMP?

- EMP is a burst of high intensity electromagnetic energy at radio frequencies
- 3 types of EMP Destroy different types of devices in different ways, & are produced in different ways
 - Solar Flares/Coronal Mass Ejections (CME)
 - High altitude (above atmosphere) nuclear detonation (HEMP)
 - Other explosive & electronic devices (local EMP)
- Begins with High Altitude Nuclear Detonation

- Usually measured in kilotons (1000 tons of TNT) or megatons (million tons of TNT)
- WWII 3.4 MT of bombs, Viet Nam 7 MT
- Modern warheads 100s KT to MT
- 10 or fewer have more destructive power that all the allied bombs dropped in WWII
- Energy released from nuclear weapon
 - Blast: 40–50% of total energy
 - Thermal radiation: 30-50%
 - Ionizing radiation: 5% (X-rays and Gamma rays) (Ionize = separate electrons from atoms)
 - Residual radiation : 5-10%
- Compton Effect

• Compton electrons move through Earth's magnetic field – generate EM wave

- EMP Coverage is Line-of-Sight 300 miles altitude
 → covers all of US
- Intensity Varies With Magnetic Field
- Nuclear EMP has 3 components: E1, E2, and E3
- E1 produces intense EM field ~ 50,000 Volts/meter
 - Range is line of sight
 - Very fast, short, intense pulse ends in 1 μsec
 - Too fast for ordinary surge protectors

Preparing for Electromagnetic Pulse (EMP) – Roald Peterson

– Damages semiconductors (transistors, diodes,	Effects of EMP		
LEDs, microprocessors, etc.) by exceeding breakdown voltages	 Solar EMP causes GMS, whi Geomagnetically Induced Curr 	ch produces large ents (GIC) in long	
Nuclear EMP E2	conductors - primarily DC (Dir	ect Current), 10s -	
 Generated by scattered gammas & Compton 	100s of amps (Grid is high volta	age, low current AC	
 Less energy, less intense than E1 	(Alternating Current))		
 Intermediate time pulse (to 1 Sec after) 	– Damages/Destroys Electrica	l transmission &	
 May destroy devices weakened by E1 pulse 	generation equipment (transformers, and more)		
Nuclear EMP E3	– IT power substation fails, load transfers to others		
 Long slow pulse, 10s to 100s of seconds 	- Can cause cascading failures. Estimates:		
- Detonation distorts Earth's magnetic field. As	- It 2-4% of key substations fail \rightarrow 60% blackout		
field restores, induces currents in power lines	- If 8% fail \rightarrow 100% blackout of continent		
 Damages transformers and other components 	– Few spares are available - Grid down for years		
 Like geomagnetic storm caused by a solar flare 	Nuclear E3 has same effects as a solar induced GMS		
 Proportional to energy yield of weapon 	 Loss of power grid and everything it supports 		
• Solar EMP	 Accompanied by E1 and probably war 		
– Solar flares accompanied by an increase in the	Nuclear E1 creates EM field of up to 50 kV/m		
solar wind or Coronal Mass Ejections (CME) may	- Field varies with distance and	location	
- GMS can cause an E3 type of EMP (Not E1 or E2)	 All metal objects, wires, circuits act as antennas 		
- Broduces large currents in long electrical	 Fields are directional. Geometry is unpredictable 		
transmission lines, damaging transformers, etc.	 Your world is run by semiconductors (transistors, microprocessors, diodes, LEDs, etc.) 		
 Not dangerous to household length lines 	 High voltage destroys semiconductors 		
EMP Timing	 Semiconductors usually low voltage devices. Most handle < 100V, some < 10V 		
E1	 High voltage enters electronic circuits via antennas (any wire) or metal traces on circuit boards and destroys semiconductors 		
	 Lower voltage can lock up computers reset What's at risk – most everything using electricity 		
E2			
	 Cardiac pacemakers should survive (see study) 		
E3	Antenna Length	Voltage Induced	
0 1 µs 1 sec Minutes	1 meter	50,000 Volts	
• EMP Frequency Spectrum = 0 – 250 MHz	10 meter	500,000 Volts	
50 K V/M	1 foot	15,244 Volts	
EMP HF VHF UHF	1 inch	1,270 Volts	
	15 inch laptop screen	19,050 Volts	
•	42 inch TV	53,340 Volts	
Drops off around 250 MHz	6 ft electrical cord	91,463 Volts	
	75 ft house electrical wire	1,143,300 Volts	
	Motor vehicle susceptibility		
0.1 1 10 10 ² 10 ³ 10 ⁴	 Vehicles have 30 to 100 microprocessors 		
PREVENUE (mn2)	 Made to run in harsh electronic environment 		

- Most vehicles are partial Faraday cages
- Immune to damage from solar storm -no fuel
- Risk? Depends on orientation, weapon, distance, parked in or out, running or not, magnetic field
- Rigorous testing not done or results unavailable
- Cars not running expected to survive
- Running cars may or may not suffer upset or damage – percentages unknown
- Nuclear E2 EMP like E1 but slower, weaker
 - May destroy devices weakened by E1

EMP Protection

- Two types of EMP protection
 - Protect against surges induced in devices by EM field - Use Faraday Cage
 - Protect against surges entering via antennas (power, signal, and control cables) - Disconnect cables (don't use device) or use EMP surge protectors (Filters that stop EMP surges)

Filter = Surge Suppressor (EMP Qualified, not Lightning)

 A Faraday Cage = enclosure of conductive material. Charge is conducted throughout the material, creating a constant potential (voltage) on all sides, and zero net potential inside the enclosure.

- Cage works as long as the charge doesn't exceed ability of conductive material to carry the charge
- If screen is used, mesh size (holes) must be significantly smaller than the wavelength

Frequency	Wavelength	Wavelength	1/10 Wavelength
100 KHz	3,000 m	9,843 ft.	984 ft.
1 MHz	300 m	984 ft.	98 ft.
10 MHz	30 m	98 ft.	9.8 ft.
100 MHz	3 m	9.8 ft.	11.8 in.
200 MHz	1.5 m	4.92 ft.	5.9 in.
250 MHz	1.2 m	3.94 ft.	4.7 in.
894 MHz	33.6 cm	13.2 in.	1.32 in. (phone)
1900 MHz	15.8 cm	6.2 in.	.62 in. (phone)

- Faraday Cage Principle works without grounding.
 No harm in grounding equalizes charge on cage with any other grounded devices
- Pre-built Faraday cages: microwave oven, metal tool box, file cabinet, metal cases, metal garbage can
- Use Ohmmeter (multimeter) to test for connectivity between door/lid and cage.
 - 1. Set for Resistance (Ω) testing (ohms)
 - 2. Set for lower readings (< 2000 Ω)
 - 3. Touch probes together, note reading (0-2)
 - 4. Touch 2 parts of cage reading should be nearly same
 - Note some multi-meters have beeper
- Build a Faraday Cage using metal sheeting, screen, or foil
 - Screen mesh should be smaller than smallest wavelength (1/10 wavelength or smaller)
 - All parts of enclosure must electrically connected (sides, top, floor, door)
 - Keep metal parts of objects inside from touching cage
 - Copper, Aluminum, galvanized steel good. Make a box and add screen – or make a pouch
 - Hard part is door and gasket. Make your own RF gasket by rolling screen under itself
- Poor Man's Cage testing put radio inside
 - 100 MHz FM radio (87.5 108 MHz)
- For better protection, use a cage within a cage Wrap in aluminum foil, then put in a cage
- Filters (Surge Protectors) only needed for operating equipment
 - Usually used in conjunction with Faraday cage
 - Need to select filters for your specific needs -Power (voltage, current) and signals (radio, TV, network, phone)

Preparing for Electromagnetic Pulse (EMP) – Roald Peterson

- Need EMP surge suppressors, not lightning
- Study the subject and get advice from engineer
- In most cases it's easier and more reliable, and possibly cheaper to just shield spare equipment
- Move more into cage, have fewer filters

Preparation for EMP

- EMP Preparation Strategy
 - EMP is one of many threats. Preparation should fit in with and augment your other preparation
 - Prepare for a total loss of infrastructure
 - Nationwide versus local or regional (no help)
 - Effects likely to last for years
 - Associated with nuclear war or societal collapse
 - Plan and implement a **low-energy lifestyle**
 - Avoid single point of failure have multiple solutions for everything possible
- If you want the convenience of electricity:
 - Decide what electronics you want to use
 - Protect electrical devices (originals or spares)
 - Provide a protected source of electricity
- Have plans Practice them
- You probably don't have time, resources, and storage space to get everything
 - Prioritize your preparations essentials first
 - Research what others are doing, and why
 - Counsel with your spouse about what you need
 - Counsel with the Lord
- Augment your current preparations for EMP
 - Consider the following areas with the idea of years long, total collapse of infrastructure: Food, Cooking, Food prep, Renewable food supply, Water, renewable water, Garden water, Fuel for cooking and heating, Sanitation, Tools, Protection, Medical & Health, Entertainment, Education, Light, etc.
- Communications
 - Receive-only comm for warnings and info: AM/FM radios, weather radios, satellite radio, Shortwave (HF) radio – learn to use it now
 - Two-way communications: Amateur radio (HF for long-distance), FRS and GMRS radios (1-26 miles)
 - Arrange with family for a message box: Set times and places for messages and meeting, Discuss plans for getting home or to safe places

- Transportation Keep supplies and pack in car be ready to walk
 - Plan escape and alternative routes before hand
 - Have maps national & local change)
 - Plan a lifestyle with minimal travel
 - Fuel supplies will disappear; save for emergencies
 - Get bicycles, tires, tubes, slime, extra bicycles
 - Get air pumps and extra air pumps
 - Consider similar bicycles so you can cannibalize
 - Consider wheelbarrows with solid tires
 - Consider garden carts for food, water, and fuel
- Electrical Power
 - Store lots of batteries when you need them they won't be for sale (hurricane Frederick)
 - Consider solar power system one or more panels

- Have rechargeable batteries and chargers that work with 120 VAC and 12 VDC
- Have and protect spare panels, charge controllers, inverters if you keep your system operational
- Analyze how much power you really need and Have extra storage batteries for dark times
- Other sources of electrical power: Gas or diesel generators – require fuel, Wind power – for South Weber residents
- Study before you buy learn how, save money
- Preparation At Work 1/4 of your life at work 25% chance of EMP while at work
 - Have plans to communicate and get home -Alternative ways home, know what to do
 - Protected two-way radio with extra battery
 - In some scenarios, if you can't get home in time, may have to shelter your work place for days

Preparing for Electromagnetic Pulse (EMP) – Roald Peterson

- Have supplies at work or in car (food, water)
- Have walking shoes and appropriate clothing
- Have protected radio AM, FM, Weather, HF
- EMP Preparation for Car
- EMP Not Isolated Event Multi-disasters are increasing - Fukushima – quake, tsunami, reactor meltdown
 - EMP will be accompanied by infrastructure collapse, societal breakdown (no law), panic, desperate people, starvation, disease, death
 - EMP probably not the only attack vector- other attacks possible including nuclear, chemical, biological

More Information

- US EMP Commission Reports:
- http://www.empcommission.org/reports.php
- DNA EMP Course Notes:
- http://www.dtic.mil/dtic/tr/fulltext/u2/a058367.pdf
- Future Science EMP Pages:
- http://www.futurescience.com/emp/
- Many Documents Used by Military. Search on "EMP" & "Electromagnetic Pulse":

http://www.dtic.mil/dtic/

• EMP Effects on Pacemaker

http://www.dtic.mil/dtic/tr/fulltext/u2/a242990.pdf

• Metatech EMP Reports

http://web.ornl.gov/sci/ees/etsd/pes/ferc_emp_gic.s html

• Mil Hbk for Grounding Bonding Shielding 1987 vol1 https://www.wbdg.org/ccb/FEDMIL/hdbk419a_vol1. pdf

• Mil Hbk for Grounding Bonding Shielding 1987 vol2 https://www.wbdg.org/ccb/FEDMIL/hdbk419a_vol2. pdf

• Mil Hbk 1195 - RF Shielded Enclosures

http://www.wbdg.org/ccb/NAVFAC/DMMHNAV/119 5.pdf

• Mil Std 188-125-1 - HEMP Protection for C41 Facilities

http://www.wbdg.org/ccb/FEDMIL/std188_125_1.pd f

• EMP Electronic Analysis Handbook 1973

http://www.dtic.mil/dtic/tr/fulltext/u2/918275.pdf

- EMP Electronic Design Handbook 1973
- http://www.dtic.mil/dtic/tr/fulltext/u2/918277.pdf
- EMP Handbook for AF Comm Service 1976
- http://www.dtic.mil/dtic/tr/fulltext/u2/a060435.pdf
- EMP Hbk for Electric Power Systems Stanford 1975

http://www.dtic.mil/dtic/tr/fulltext/u2/a009228.pdf

• Nuclear Matters Handbook

http://www.acq.osd.mil/ncbdp/nm/nm_book_5_11/i ndex.htm

- TM 5-690 Grounding & Bonding in C4ISR Facilities http://www.wbdg.org/ccb/ARMYCOE/COETM/tm_5_ 690.pdf
- EMP Lightning Threats to Telecom 1978

http://www.dtic.mil/dtic/tr/fulltext/u2/a060629.pdf

- AF Manual for Design & Analysis of Hardened Structures 1974
- http://www.dtic.mil/docs/citations/ADA955183
- See the following in Wikipedia
 - Geomagnetically induced current
 - Electromagnetic Pulse
 - Nuclear electromagnetic pulse
 - Faraday cage
 - Effects of nuclear weapons
- If you want to protect everything, go to link below, click book image "EMP Protect Family, Homes and Community" by Don White and Jerry Emanuelson

www.futurescience.com/emp/EMP-Sitemap.html

Testing for Connectivity

- Test for Resistance Ω
 Set for lower
- readings (< 2000 Ω)
- Touch probes together, note reading (0-2)
- Touch 2 parts of cage – reading should be nearly same
- Note some <u>multimeters</u> have beeper

