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Asymptotic Stability (Testing)
Corollary

Second, third, and fourth order polynomials are stable if and only if,
A. For a second order polynomial

P(s) = s> + p1s+ po
p1 and py are both positive.

B. For a third order polynomial,
P(s) = s+ pzﬁ‘z + p15s+ po
p2,p1,po > 0 and prpy > po.

C. For a fourth order polynomial,
P(s) = s* + p3s® + pas® + p1s+po
P3,P2,p1,po > 0and p3pap1 > p3po+ pi.

Proof. The proof is easily done by applying the Liénard-Chipart Theorem
directly on these specific polynomials. L]
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Asymptotic Stability (Testing)

1 1 1
Ss+1s+5s—2

H(s) =

Partial Fraction Expansion:
1 1 1 A B C

H S)= e + +
(s) Ss+1s+5s—2 lS+1J ls+5J 15—2}
Y Y Y
s=—-1 s=-5 s=2
Stable Stable Unstable
5= 2 Unstable
eﬂA
C Even if only a single root is unstable,
B the entire system is unstable
A s = —5 Stable See plot_output_lti_unstable2.m
M
>
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Asymptotic Stability (Testing)

1
s*+9s3 - 252 4+ 5+ 3

H(s) =

Different sign: unstable system

See plot_output_Iti_unstable2.m
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Asymptotic Stability (Routh Criterion)

Theorem (Routh Criterion)
The number of roots of P(s),
P(S) ="+ ,"j’arl—lﬂ‘f}i_1 +Pn—25n_2 +--4+pyg=0

with strictly positive real parts is equal to the number
of sign changes in the first column of the Routh array,
AN J/

Copyright: Homayoon Beigi

P4
Row L/
1 1 Pn—2 Pn—4
2 Pn—1 Pn—3 Pn—5
3 b3n—1|| b3n—3 | b3 n—5
4 || ban—1|| ban—3 | ban-s
5 bsp-1|| bsn-3 | b5n-5
n+1
Routh Array Table
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Asymptotic Stability (Routh Criterion)

Row where p,_i 20V i > n.
1 1 Pn—2 Pn—4 . +th ;
3 o1 D3 Prs Also, the coefficients of the j'" row for
3 bin_1|| b3n—3 | b3u-s | -+ j€{3,4,--- ,n+1} are given
4 ban—1 | ghin-3 | ban-s | - in terms of the coefficients in the
S bsn-1 m\bifi - following relations,
s T
Stable only if all these
Routh Array Table coefficients are strictly positive
1 1 Pn_2 I Pn—1 Pn—3 | b b
by, = = n b.cl1 —1 = = = 3n—1 3.n—3
== Pn—1| Pn—1 Pn-3 n b3,n—l blﬂ_l b3=n_3 bS,n—] ban—1 b4=”_1 b4,ﬂ_3
1 1 Pn—4 I Pn—1 Pn—5 1 b b
b3, = - # b4 = — e _ 3.n—1 3.n—5
2R Pn—1 | Pn—=1 Pn-5 =3 b3,fi.—] bln—l b3aﬂ—5 bS,n—3 B b4,n—] bd’e”_l b4’”_5
1 1 Pn—6 1 1 b b
b B — - n b " — . pn_l pﬂ'—? = . 33!1—1 3,?1—?
=5 Pn—1| Pn—1  Pn—7 =S b3, 1| P3n—1 b3n—7 bsn—s bany 1| Pan—1 ban7
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Asymptotic Stability (Routh Criterion)

Easy way to remember

' determinant
1 g4 T T q. Negative of > la,a3/— asa
¢ A- —@ scale
3 "
: : > " v a,a; — as0
sign change = I root in the RHP P4 B =
_3 s? A B 0 Ay
gn ch = [ root in the RHP Aa, — a,B
signc ange root in the " o c 0 C= zA 4
gl
Total of 2 roots in the RHP 2 57 D _¢CB E A0
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Asymptotic Stability (Routh Criterion)
Simple Example for Controller Design

1
T G+D(s+2)

CH =N

' :' 5"‘

s(s+1)(s+2)+K
K

s(s+1)(s+2)+K =«

Characteristic Equation

A
s+ +2)+K=0 ——> s3+3s2+25s+K=0
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Asymptotic Stability (Routh Criterion)
Simple Example for Controller Design

Roots in the complex plane

.tf_\ - E . 1 R a_
S &

. 1 G+Ds+2) g
T  K=0.5

s+ +2)+K=0 —> s> +3s*+25s+K=0

53 1 2 0 _s
g e 3 K 0
6 —K " .
st —_— 0
3 > |
s° K Re(s)
ranging0 < K <6, coooooooooooooo C ' '
Range for stability Root Locus as 0 < K < 6 ] K=8
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Asymptotic Stability (Routh Criterion)

Row
1 1 Pn—2 Pn—4
2 Pn—1 Pn—3 Pn—5
3 | ban_1 | b33 | b3ns two special cases where some intervention
4 | ban1 | ban3 | bans 1s necessary to come to a conclusion
5 bsp—1 | bsp_3 | bsp_s
n+1

Routh Array Table

[. Case: There is a 0 in the first column at some row, but there are
some nonzero values in the later columns of the same row.

2. Case: There is a row of all zeros.
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Asymptotic Stability (Routh Criterion)

1. Case: There is a 0 in the first column at some row, but there are
some nonzero values in the later columns of the same row.
Procedure:

o Assumption: there are no pure imaginary roots that are
moved to the right-half plane.

* Replace the 0 with a very small number, €

* Continue with the computation of the rest of the coefficients.
Take the limit as € — Q.

Count the number of sign changes like the nominal case and

the number of sign chages gives the number of roots with real parts
in the right half plane.

* In case thre is a breakdown in the procedue, factor out

all the factors of the form (s> + @?) and start over.
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Asymptotic Stability (Routh Criterion)

2. Case: There is a row of all zeros.
Procedure:

» If P(s) has no roots at s = 0, then n — j must be even.

» Use the coefficients in row j— 1 to build the auxiliary polynomial
of order n — j+ 2. (ie, This will be a factor of the P(s)).

* Differentiate the created auxiliary polynomial and enter
the coefficients in place of the zeros and continue.

* May need to repeat the procedure more than once.
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Asymptotic Stability (Routh Criterion)
Example

Explore the stability of,
P(s) =5t +25° + 357 + 4545

Compute the Routh array,

Row | Degree
1 s 1 31510
2 57 2 [410]0
3 5 1 S101]0
4 5! —6. 0|00
5 s” 50N 0|0
N

Two sign changes
Two roots in the right half place
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Asymptotic Stability (Routh Criterion)
Example

Explore the stability of,
P(s) =5 +7s* + 145+ 8
Compute the Routh array,

Row | Degree
1 57 1 [ 14]0
2 5 7 8 | O
T 90
3 \) A 0 0
4 sV 8 0 | 0

No sign changes
Stable
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Asymptotic Stability (Routh Criterion)
Example Case 1

Explore the stability of,
P(s)=s"+5 +2s% +2s5+1
Compute the Routh array,

Row | Degree
1 st 1 21110
p) 5 1 21010
3 = s 019
3 5% £ 11010
4 st 2—-2 101010
5 sV 1 01011

Two sign changes for small €, |&| < %
Two roots in the right-half plane
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Asymptotic Stability (Routh Criterion)
Example Case 2

Explore the stability of, P(s) = §° +25% +35° + 65> —4s—8

Since there 1s a sign change in the coefficients, we know that the
polynomial 1s unstable. However, we would like to know the number
of roots in the right-half plane.

Row | Degree
1 5> 1 3 | —410
D 4 2 6 ~—8 10 < P = 25"+ 65 —8
3 52 8 S o——0
3 | & | 8 [12]0 0 =2 s s
4 52 3 | 8] 0 |0 L
5 5! 33.3 0 [0
6 sV -8 | 0 0 |0

One sign change
One roots in the right-half plane
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Asymptotic Stability (Routh Criterion)
Stability Margin

Have all the poles to the left of -1 io

A

P(s)=P(s—o1)

If the roots of P(s) are s;,i € {1,2,--- ,n},
then, the roots of P(s) would be
Si=si+o01,ic{l,2,--- .n} : s &
Fel{s;} <0 = He{s;} < —01

Use the Routh-Hurwitz test on the new
polynomial
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Asymptotic Stability (Routh Criterion)
Stability Margin

Do all the poles lie to the left of 6 = —1?
P(s) =5 +7s* + 145 +38

P(s)

Copyright: Homayoon Beigi

P(s—1)
(s—1)34+7(s—1)>+14(s—1)+8
s34+ 457 +354+0
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Asymptotic Stability (Routh Criterion)
Damping Margin

‘imagina ry

Damping Margin, { = cos(6)

77\
g

e Testing for a specific damping margin may be done by a
coordinate rotation and the generation of a new polynomial in
the new coordinate system and testing for stability.

* Another method would be through the use of the Nyquist
stability criterion.
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Asymptotic Stability (Lyapunov Stability)

Definition (Positive Definite Matrix).
Q: %" — A" is a positive definite matrix if,
fxX)=x"Qx>0V x#0 (322)

or, alternatively, if Q has all strictly positive Eigenvalues.

N.B., Equation 322 is the Euclidean norm of Q% X
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Asymptotic Stability (Lyapunov Stability)

Aleksandr Mikhailovich Lyapunov (1857-1918)

Uses a scalar energy of the system
Also works for time-variant and nonlinear systems

We only consider the linear time-invariant case here
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Asymptotic Stability (Lyapunov Stability)

Consider the following homogeneous linear time-invariant system,
x(1) = Ax(t)
Note that a measure of the energy of the above system may be written as

£x) 2 |x@)|?

= XTX

If &£(x(t)) — 0 as t — oo, then the system is stable.
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Asymptotic Stability (Lyapunov Stability)

In fact, this would work for any quadratic function,

v(x) 2 x’ Qx

where Q 1s a symmetric positive definite matrix, in which case,

@min”’"”2 <x'Qx< ﬁemaxn"”z

Let’s impose a slightly stronger condition than requiring v(x) — 0
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Definition (Quadratic Lyapunov Function).

The following function,

v(x) = x' Qx

is a quadratic function for the following system,
X(1) = Ax(1)

if Q > 0 and there exists a constant k > 0 such that,
v(x) < —K||x||* Vi

In other words the generalized energy measure, v(X),

decreases monotonicall as time increases.
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Asymptotic Stability (Lyapunov Stability)

Proof.
Since,

ﬂzminHXHZ < XTQX = ﬁmaxHIHZ

v(x) may be bounded with respect to the largest

Eigenvalue of A as follows,

k
v(x) < —k|[x||* < -

v(x)

@max
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Asymptotic Stability (Lyapunov Stability)

Proof.
Since,

ﬁaminHXHZ < XTQX = ﬂmaxHtz

v(x) may be bounded with respect to the largest

Eigenvalue of A as follows,
k

v(x) < —k[x||* < ———v(x)
@max
If we write the above differential equation for the equailty case,
k
v(X) = ———v(x)
ﬁ,max

k

p(x) = ¢ R y(xq)

Copyright: Homayoon Beigi Nov 12, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Asymptotic Stability (Lyapunov Stability)
Proof. (continued)

k )T

V(X) = g_( Emax V(X{])
Since v(x) > 0, then v may decay even faster than the above solution,

E ¢

v(x) < & T " v(xq)

Using the following inequality again,

k
v(x) < —k|[x]|* < — v(X)
A max
then,
v(x(t))

Ix]> < _

& min

= k )r

g e (ﬁlmax V(Xg) . 0
A min 82

Therefore the system 1s asymptotically stable.
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Asymptotic Stability (Lyapunov Stability)

Since
v(x) =x’ Qx
using the homogeneous differential equation,
X = Ax
then
i 4
s = d(xd:)x)
= X' Qx+x Qx
= x'ATQx+x! QAx
= x'(ATQ+QA)x
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Asymptotic Stability (Lyapunov Stability)
Let us define M such that,

M2 —(ATQ+QA)

then,

v(x) = x'(ATQ+QA)x
— —x'Mx
< —kx'x Vit

The above must hold for r = 0 and any 1nitial state x,
which means that M > 0.

M>K >0

Copyright: Homayoon Beigi Nov 12, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Asymptotic Stability (Lyapunov Stability)

To determine whether v 1s a Lyapunov function,
e Choose any Q > 0
* Compute M from its definition, above

« If M > 0, then v(x) = x! Qx is a Lyapunov function
for the homogeneous system of A.

« If M > 0, v(x) is not a Lyapunov function, but there
1S no conclusion about the stability.
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Asymptotic Stability (Lyapunov Stability)
Better Alternative

To determine whether v 1s a Lyapunov function,

* Choose a positive definite matrix, M > 0
e Solve for Q, using this M in ATQ+ QA =—-M
e Test for positive definiteness of Q

 This procedure is definitive, so that if Q 3> 0,
then the system cannot be stable.
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Asymptotic Stability (Lyapunov Stability)
Better Alternative

Theorem (Lyapunov Function Determination).

Choose M > 0, then A is stable if and only if
ATQ+QA=-M

has a unique solution, Q > 0.

Proof.
For any M,

Q:/ EATIMeArdr (352)
J0

1s a solution to the above linear eauation. The intereral of 352
must converge for A to be stable. Plugging in for Q,

M = AT / A TMeA dr + / A TMA I A
0 JO

. / (ATeA”MeA‘ +eAT“MeAfA) dt
JO

T o0
_ [EA rMEAIL
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Asymptotic Stability (Lyapunov Stability)
Better Alternative

Theorem (Lyapunov Function Determination).
Proof. (Continued)

The linear map,

LQ=ATQ+QA 2
is such that L(Q) : Z" +— %™, where, L(Q) = —M

has a solution for all M, therefore, L(Q) has full rank and hence it
is invertible. To verify that Q > 0,

i T
X, Qx) = /x{];eA "‘Me? xq dt
0

= [mxT (£YMx(t) dt

where x(7) can only be 0 if xo = 0 since e is nonsingular.
A>0 = X(];QX() > 0 unless xo) =0
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Asymptotic Stability (Lyapunov Stability)

Example

Find a Lyapunov function for

«0=| | 3 [x0

Choose M = 1 and solve the following linear equation,

{1 1][Q11 Q|2]+{Q11 Qu]{l—3]: =1 U]
—3 =2 Q21 Qxn O On 1 -2 o =l
—2011 —2012 = =1
=301 —-0Q12+0»2 = 0
—00hp.—~4lsy = =l
which leads to the following slution for Q,

Q= [ _g 5 _5355 } Therefore the system is stable since Q > 0.
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Root Locus Plots

1+828) _g  _ecK <o
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Root Locus Plots

R(s) J;Q_, C(s) —» G(s) >Y (s)

H(s) <
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Root Locus Plots

Closed-loop transfer function

Closed-loop characteristic equation 1+C(s)G(s)H(s) =0

Assume C(s)G(s)H(s) has a free parameter, K C (S)G(S)H (S) —

KQ(s)
P(s)

_ P +KO(s) . F(s) = P(s)+KQ(s) =0
P(s)

1+C(s)G(s)H(s) = 1+

= ¥
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Root Locus Plots

What if K is not a multiplicative factor in C(s)G(s)H(s)

14+C(s)G(s)H(s) = s(s+1)(s+2)+s*+(3+2K)s+5
= 0

Rearrange the equation to have K as a factor

s(s+ 1) (s+2)+s*+35+5=—2Ks

[ — —2Ks
Cos(s+D(s+2)+52+35+5
|4 2Ks - KQ(s)
s(s+1)(s+2)+s2+3s5+5 P(s)
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Root Locus Plots

2K KQ(s)
1 + = 1+
s(s+1)(s+2)+s2+35+5 P(s)
= 0
Q(s) =2s
P(s) = s(s+1)(s+2)+ s2+35+5
(%) (s 2) L 543545

= P4 I 355

= s +4s2+55+5
O(s) 2s

P(s} ~ 3 4+452155+5

Copyright: Homayoon Beigi

Nov 12, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Root Locus Plots
O(s) 2s

P(s) s3+4s2+55+5

We can define new transfer functions that do not contain K,

C(s)G(s)H(s) = KC;(s)Gy(s)H,(s)

Such that,
1

Ci(s)Gi(s)Hi(s) = —

Therefore we can say the following about the magnitude of the above equation,
1

IC1(s)G1(s)H (s)| = Kl where —oo < K < oo
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Root Locus Plots

|
Ci(s)Gi(s)Hi(s) = — =
Also, the following phase angle conditions also hold
LCi1(s)G (s)H(s) = (2I+1)mr where K >0
= Odd multiples of &
/Ci1(s)Gi(s)Hi(s) = 2Imr where K <0

Even multiples of

where [ € {0,+1,£2,---}
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Root Locus Plots

C(s)G(s)H(s) = KCi(s)G1(s)H,(s)
K(s+z1)(s+z2) - (s+zm)
(s+p1)(s+p2)---(s+ pn)

[T, |5+ z;

[Ty s+ Pkl
1
K]

IC1(s)G1(s)H (s)| =
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Root Locus Plots

C(s)G(s)H(s) = KCi(s)G1(s)H(s)
K(JH—Z[)(&JrZz)---(54—2’.;”)
(s+p1)(s+p2)---(s+pn)

[ LCi(5)G1(s)Hi(s) = (s+25) — ): (s+ Pr)

,-—xr-..ME

Use to draw ) o= +1)r where K >0

Root Loci

\ ZCI (S)Gl(ﬁ‘)Hl (?) = i A(S—I—Zj) Z 4(34—}?;()
j=1

= 2In where K <0

where [ € {0,+1,+2,---}
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Root Locus Plots

[Ty |s+2;]

[Tizi s+ Pl
1

K]

IC1(s)G1(s)H (s)| =

After the Root Locus is created, use the following to compute the value of K

_ Hﬁzl |S—|—Pk‘

K| = = _
=1 |5 +z;
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