
DIFFERENTIATING UNDER THE INTEGRAL SIGN

KEITH CONRAD

I had learned to do integrals by various methods shown in a book that my high
school physics teacher Mr. Bader had given me. [It] showed how to differentiate
parameters under the integral sign – it’s a certain operation. It turns out that’s
not taught very much in the universities; they don’t emphasize it. But I caught on
how to use that method, and I used that one damn tool again and again. [If] guys
at MIT or Princeton had trouble doing a certain integral, [then] I come along and
try differentiating under the integral sign, and often it worked. So I got a great
reputation for doing integrals, only because my box of tools was different from
everybody else’s, and they had tried all their tools on it before giving the problem
to me. Richard Feynman [2, pp. 71–72]

1. Introduction

The method of differentiation under the integral sign, due originally to Leibniz, concerns integrals

depending on a parameter, such as
∫ 1
0 x

2e−tx dx. Here t is the extra parameter. (Since x is the
variable of integration, x is not a parameter.) In general, we might write such an integral as

(1.1)

∫ b

a
f(x, t) dx,

where f(x, t) is a function of two variables like f(x, t) = x2e−tx.

Example 1.1. Let f(x, t) = (2x+ t3)2. Then∫ 1

0
f(x, t) dx =

∫ 1

0
(2x+ t3)2 dx.

An anti-derivative of (2x+ t3)2 with respect to x is 1
6(2x+ t3)3, so∫ 1

0
(2x+ t3)2 dx =

(2x+ t3)3

6

∣∣∣∣x=1

x=0

=
(2 + t3)3 − t9

6

=
4

3
+ 2t3 + t6.

This answer is a function of t, which makes sense since the integrand depends on t. We integrate
over x and are left with something that depends only on t, not x.

An integral like
∫ b
a f(x, t) dx is a function of t, so we can ask about its t-derivative, assuming

that f(x, t) is nicely behaved. The rule is: the t-derivative of the integral of f(x, t) is the integral
of the t-derivative of f(x, t):

(1.2)
d

dt

∫ b

a
f(x, t) dx =

∫ b

a

∂

∂t
f(x, t) dx.

1
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This is called differentiation under the integral sign. If you are used to thinking mostly about
functions with one variable, not two, keep in mind that (1.2) involves integrals and derivatives with
respect to separate variables: integration with respect to x and differentiation with respect to t.

Example 1.2. We saw in Example 1.1 that
∫ 1
0 (2x+ t3)2 dx = 4/3 + 2t3 + t6, whose t-derivative is

6t2 + 6t5. According to (1.2), we can also compute the t-derivative of the integral like this:

d

dt

∫ 1

0
(2x+ t3)2 dx =

∫ 1

0

∂

∂t
(2x+ t3)2 dx

=

∫ 1

0
2(2x+ t3)(3t2) dx

=

∫ 1

0
(12t2x+ 6t5) dx

= 6t2x2 + 6t5x
∣∣x=1

x=0

= 6t2 + 6t5.

The answers agree.

2. Euler’s factorial integral in a new light

For integers n ≥ 0, Euler’s integral formula for n! is

(2.1)

∫ ∞
0

xne−x dx = n!,

which can be obtained by repeated integration by parts starting from the formula

(2.2)

∫ ∞
0

e−x dx = 1

when n = 0. Now we are going to derive Euler’s formula in another way, by repeated differentiation
after introducing a parameter t into (2.2).

For any t > 0, let x = tu. Then dx = tdu and (2.2) becomes∫ ∞
0

te−tu du = 1.

Dividing by t and writing u as x (why is this not a problem?), we get

(2.3)

∫ ∞
0

e−tx dx =
1

t
.

This is a parametric form of (2.2), where both sides are now functions of t. We need t > 0 in order
that e−tx is integrable over the region x ≥ 0.

Now we bring in differentiation under the integral sign. Differentiate both sides of (2.3) with
respect to t, using (1.2) to treat the left side. We obtain∫ ∞

0
−xe−tx dx = − 1

t2
,

so

(2.4)

∫ ∞
0

xe−tx dx =
1

t2
.
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Differentiate both sides of (2.4) with respect to t, again using (1.2) to handle the left side. We get∫ ∞
0
−x2e−tx dx = − 2

t3
.

Taking out the sign on both sides,

(2.5)

∫ ∞
0

x2e−tx dx =
2

t3
.

If we continue to differentiate each new equation with respect to t a few more times, we obtain∫ ∞
0

x3e−tx dx =
6

t4
,∫ ∞

0
x4e−tx dx =

24

t5
,

and ∫ ∞
0

x5e−tx dx =
120

t6
.

Do you see the pattern? It is

(2.6)

∫ ∞
0

xne−tx dx =
n!

tn+1
.

We have used the presence of the extra variable t to get these equations by repeatedly applying
d/dt. Now specialize t to 1 in (2.6). We obtain∫ ∞

0
xne−x dx = n!,

which is our old friend (2.1). Voilá!
The idea that made this work is introducing a parameter t, using calculus on t, and then setting

t to a particular value so it disappears from the final formula. In other words, sometimes to solve
a problem it is useful to solve a more general problem. Compare (2.1) to (2.6).

3. A damped sine integral

We are going to use differentiation under the integral sign to prove∫ ∞
0

e−tx
sinx

x
dx =

π

2
− arctan t

for t > 0.
Call this integral F (t) and set f(x, t) = e−tx(sinx)/x, so (∂/∂t)f(x, t) = −e−tx sinx. Then

F ′(t) = −
∫ ∞
0

e−tx(sinx) dx.

The integrand e−tx sinx, as a function of x, can be integrated by parts:∫
eax sinx dx =

(a sinx− cosx)

1 + a2
eax.

Applying this with a = −t and turning the indefinite integral into a definite integral,

F ′(t) = −
∫ ∞
0

e−tx(sinx) dx =
(t sinx+ cosx)

1 + t2
e−tx

∣∣∣∣x=∞
x=0

.
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As x→∞, t sinx+ cosx oscillates a lot, but in a bounded way (since sinx and cosx are bounded
functions), while the term e−tx decays exponentially to 0 since t > 0. So the value at x =∞ is 0.
Therefore

F ′(t) = −
∫ ∞
0

e−tx(sinx) dx = − 1

1 + t2
.

We know an explicit antiderivative of 1/(1 + t2), namely arctan t. Since F (t) has the same
t-derivative as − arctan t, they differ by a constant: for some number C,

(3.1)

∫ ∞
0

e−tx
sinx

x
dx = − arctan t+ C for t > 0.

We’ve computed the integral, up to an additive constant, without finding an antiderivative of
e−tx(sinx)/x.

To compute C in (3.1), let t → ∞ on both sides. Since |(sinx)/x| ≤ 1, the absolute value of
the integral on the left is bounded from above by

∫∞
0 e−tx dx = 1/t, so the integral on the left in

(3.1) tends to 0 as t → ∞. Since arctan t → π/2 as t → ∞, equation (3.1) as t → ∞ becomes
0 = −π

2 + C, so C = π/2. Feeding this back into (3.1),

(3.2)

∫ ∞
0

e−tx
sinx

x
dx =

π

2
− arctan t for t > 0.

If we let t→ 0+ in (3.2), this equation suggests that

(3.3)

∫ ∞
0

sinx

x
dx =

π

2
,

which is true and it is important in signal processing and Fourier analysis. It is a delicate matter to
derive (3.3) from (3.2) since the integral in (3.3) is not absolutely convergent. Details are provided
in an appendix.

4. The Gaussian integral

The improper integral formula

(4.1)

∫ ∞
−∞

e−x
2/2 dx =

√
2π

is fundamental to probability theory and Fourier analysis. The function 1√
2π
e−x

2/2 is called a

Gaussian, and (4.1) says the integral of the Gaussian over the whole real line is 1.
The physicist Lord Kelvin (after whom the Kelvin temperature scale is named) once wrote (4.1)

on the board in a class and said “A mathematician is one to whom that [pointing at the formula] is
as obvious as twice two makes four is to you.” We will prove (4.1) using differentiation under the
integral sign. The method will not make (4.1) as obvious as 2 · 2 = 4. If you take further courses
you may learn more natural derivations of (4.1) so that the result really does become obvious. For
now, just try to follow the argument here step-by-step.

We are going to aim not at (4.1), but at an equivalent formula over the range x ≥ 0:

(4.2)

∫ ∞
0

e−x
2/2 dx =

√
2π

2
=

√
π

2
.

For t > 0, set

A(t) =

(∫ t

0
e−x

2/2 dx

)2

.

We want to calculate A(∞) and then take a square root.
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Differentiating with respect to t,

A′(t) = 2

∫ t

0
e−x

2/2 dx · e−t2/2 = 2e−t
2/2

∫ t

0
e−x

2/2 dx.

Let x = ty, so

A′(t) = 2e−t
2/2

∫ 1

0
te−t

2y2/2 dy =

∫ 1

0
2te−(1+y

2)t2/2 dy.

The function under the integral sign is easily antidifferentiated with respect to t:

A′(t) =

∫ 1

0
− ∂

∂t

2e−(1+y
2)t2/2

1 + y2
dy = −2

d

dt

∫ 1

0

e−(1+y
2)t2/2

1 + y2
dy.

Letting

B(t) =

∫ 1

0

e−(1+x
2)t2/2

1 + x2
dx,

we have A′(t) = −2B′(t) for all t > 0, so there is a constant C such that

(4.3) A(t) = −2B(t) + C

for all t > 0. To find C, we let t→ 0+ in (4.3). The left side tends to (
∫ 0
0 e
−x2 dx)2 = 0 while the

right side tends to −2
∫ 1
0 dx/(1 + x2) + C = −π/2 + C. Thus C = π/2, so (4.3) becomes(∫ t

0
e−x

2/2 dx

)2

=
π

2
− 2

∫ 1

0

e−(1+x
2)t2/2

1 + x2
dx.

Letting t→∞ here, we get (
∫∞
0 e−x

2/2 dx)2 = π/2, so
∫∞
0 e−x

2/2 dx =
√
π/2. That is (4.2).

5. Higher moments of the Gaussian

For every integer n ≥ 0 we want to compute a formula for

(5.1)

∫ ∞
−∞

xne−x
2/2 dx.

(Integrals of the type
∫
xnf(x) dx for n = 0, 1, 2, . . . are called the moments of f(x), so (5.1) is the

n-th moment of the Gaussian.) When n is odd, (5.1) vanishes since xne−x
2/2 is an odd function.

What if n = 0, 2, 4, . . . is even?
The first case, n = 0, is the Gaussian integral (4.1):

(5.2)

∫ ∞
−∞

e−x
2/2 dx =

√
2π.

To get formulas for (5.1) when n 6= 0, we follow the same strategy as our treatment of the factorial

integral in Section 2: stick a t into the exponent of e−x
2/2 and then differentiate repeatedly with

respect to t.
For t > 0, replacing x with

√
tx in (5.2) gives

(5.3)

∫ ∞
−∞

e−tx
2/2 dx =

√
2π√
t
.

Differentiate both sides of (5.3) with respect to t, using differentiation under the integral sign on
the left: ∫ ∞

−∞
−x

2

2
e−tx

2/2 dx = −
√

2π

2t3/2
,
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so

(5.4)

∫ ∞
−∞

x2e−tx
2/2 dx =

√
2π

t3/2
.

Differentiate both sides of (5.4) with respect to t. After removing a common factor of −1/2 on
both sides, we get

(5.5)

∫ ∞
−∞

x4e−tx
2/2 dx =

3
√

2π

t5/2
.

Differentiating both sides of (5.5) with respect to t a few more times, we get∫ ∞
−∞

x6e−tx
2/2 dx =

3 · 5
√

2π

t7/2
,

∫ ∞
−∞

x8e−tx
2/2 dx =

3 · 5 · 7
√

2π

t9/2
,

and ∫ ∞
−∞

x10e−tx
2/2 dx =

3 · 5 · 7 · 9
√

2π

t11/2
.

Quite generally, when n is even∫ ∞
−∞

xne−tx
2/2 dx =

1 · 3 · 5 · · · (n− 1)

tn/2

√
2π

t
,

where the numerator is the product of the positive odd integers from 1 to n− 1 (understood to be
the empty product 1 when n = 0).

In particular, taking t = 1 we have computed (5.1):∫ ∞
−∞

xne−x
2/2 dx = 1 · 3 · 5 · · · (n− 1)

√
2π.

As an application of (5.4), we now compute (12)! :=
∫∞
0 x1/2e−x dx, where the notation (12)! and

its definition are inspired by Euler’s integral formula (2.1) for n! when n is a nonnegative integer.

Using the substitution u = x1/2 in
∫∞
0 x1/2e−x dx, we have(

1

2

)
! =

∫ ∞
0

x1/2e−x dx

=

∫ ∞
0

ue−u
2
(2u) du

= 2

∫ ∞
0

u2e−u
2

du

=

∫ ∞
−∞

u2e−u
2

du

=

√
2π

23/2
by (5.4) at t = 2

=

√
π

2
.
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6. A cosine transform of the Gaussian

We are going to compute

F (t) =

∫ ∞
0

cos(tx)e−x
2/2 dx

by looking at its t-derivative:

(6.1) F ′(t) =

∫ ∞
0
−x sin(tx)e−x

2/2 dx.

This is good from the viewpoint of integration by parts since −xe−x2/2 is the derivative of e−x
2/2.

So we apply integration by parts to (6.1):

u = sin(tx), dv = −xe−x2 dx

and

du = t cos(tx) dx, v = e−x
2/2.

Then

F ′(t) =

∫ ∞
0

udv

= uv

∣∣∣∣∞
0

−
∫ ∞
0

v du

=
sin(tx)

ex2/2

∣∣∣∣x=∞
x=0

− t
∫ ∞
0

cos(tx)e−x
2/2 dx

=
sin(tx)

ex2/2

∣∣∣∣x=∞
x=0

− tF (t).

As x→∞, ex
2/2 blows up while sin(tx) stays bounded, so sin(tx)/ex

2/2 goes to 0. Therefore

F ′(t) = −tF (t).

We know the solutions to this differential equation: constant multiples of e−t
2/2. So∫ ∞

0
cos(tx)e−x

2/2 dx = Ce−t
2/2

for some constant C. To find C, set t = 0. The left side is
∫∞
0 e−x

2/2 dx, which is
√
π/2 by (4.2).

The right side is C. Thus C =
√
π/2, so we are done: for all real t,∫ ∞
0

cos(tx)e−x
2/2 dx =

√
π

2
e−t

2/2.

Remark 6.1. If we want to compute G(t) =
∫∞
0 sin(tx)e−x

2/2 dx, with sin(tx) in place of cos(tx),
then in place of F ′(t) = −tF (t) we have G′(t) = 1−tG(t), and G(0) = 0. From the differential equa-

tion, (et
2/2G(t))′ = et

2/2, so G(t) = e−t
2/2
∫ t
0 e

x2/2 dx. So while
∫∞
0 cos(tx)e−x

2/2 dx =
√

π
2 e
−t2/2,

the integral
∫∞
0 sin(tx)e−x

2/2 dx is impossible to express in terms of elementary functions.
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7. Logs in the denominator, part I

Consider the following integral over [0, 1], where t > 0:∫ 1

0

xt − 1

log x
dx.

Since 1/ log x → 0 as x → 0+, the integrand vanishes at x = 0. As x → 1−, (xt − 1)/ log x → t.
Therefore when t is fixed the integrand is a continuous function of x on [0, 1], so the integral is not
an improper integral.

The t-derivative of this integral is∫ 1

0

xt log x

log x
dx =

∫ 1

0
xt dx =

1

t+ 1
,

which we recognize as the t-derivative of log(t+ 1). Therefore∫ 1

0

xt − 1

log x
dx = log(t+ 1) + C

for some C. To find C, let t → 0+. On the right side, log(1 + t) tends to 0. On the left side, the
integrand tends to 0: |(xt − 1)/ log x| = |(et log x − 1)/ log x| ≤ t because |ea − 1| ≤ |a| when a ≤ 0.
Therefore the integral on the left tends to 0 as t→ 0+. So C = 0, which implies

(7.1)

∫ 1

0

xt − 1

log x
dx = log(t+ 1)

for all t > 0, and it’s obviously also true for t = 0. Another way to compute this integral is to write
xt = et log x as a power series and integrate term by term, which is valid for −1 < t < 1.

Under the change of variables x = e−y, (7.1) becomes

(7.2)

∫ ∞
0

(
e−y − e−(t+1)y

) dy

y
= log(t+ 1).

8. Logs in the denominator, part II

We now consider the integral

F (t) =

∫ ∞
2

dx

xt log x

for t > 1. The integral converges by comparison with
∫∞
2 dx/xt. We know that “at t = 1” the

integral diverges to ∞: ∫ ∞
2

dx

x log x
= lim

b→∞

∫ b

2

dx

x log x

= lim
b→∞

log log x

∣∣∣∣b
2

= lim
b→∞

log log b− log log 2

= ∞.

So we expect that as t→ 1+, F (t) should blow up. But how does it blow up? By analyzing F ′(t)
and then integrating back, we are going to show F (t) behaves essentially like − log(t−1) as t→ 1+.
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Using differentiation under the integral sign, for t > 1

F ′(t) =

∫ ∞
2

∂

∂t

(
1

xt log x

)
dx

=

∫ ∞
2

x−t(− log x)

log x
dx

= −
∫ ∞
2

dx

xt

= − x−t+1

−t+ 1

∣∣∣∣x=∞
x=2

=
21−t

1− t
.

We want to bound this derivative from above and below when t > 1. Then we will integrate to get
bounds on the size of F (t).

For t > 1, the difference 1− t is negative, so 21−t < 1. Dividing both sides of this by 1− t, which
is negative, reverses the sense of the inequality and gives

21−t

1− t
>

1

1− t
.

This is a lower bound on F ′(t). To get an upper bound on F ′(t), we want to use a lower bound
on 21−t. Since ea ≥ a + 1 for all a (the graph of y = ex lies on or above its tangent line at x = 0,
which is y = x+ 1),

2x = ex log 2 ≥ (log 2)x+ 1

for all x. Taking x = 1− t,
(8.1) 21−t ≥ (log 2)(1− t) + 1.

When t > 1, 1− t is negative, so dividing (8.1) by 1− t reverses the sense of the inequality:

21−t

t− 1
≤ log 2 +

1

1− t
.

This is an upper bound on F ′(t). Putting the upper and lower bounds on F ′(t) together,

(8.2)
1

1− t
< F ′(t) ≤ log 2 +

1

1− t
for all t > 1.

We are concerned with the behavior of F (t) as t→ 1+. Let’s integrate (8.2) from a to 2, where
1 < a < 2: ∫ 2

a

dt

1− t
<

∫ 2

a
F ′(t) dt ≤

∫ 2

a

(
log 2 +

1

1− t

)
dt.

Using the Fundamental Theorem of Calculus,

− log(t− 1)

∣∣∣∣2
a

< F (t)

∣∣∣∣2
a

≤ ((log 2)t− log(t− 1))

∣∣∣∣2
a

,

so
log(a− 1) < F (2)− F (a) ≤ (log 2)(2− a) + log(a− 1).

Manipulating to get inequalities on F (a), we have

(log 2)(a− 2)− log(a− 1) + F (2) ≤ F (a) < − log(a− 1) + F (2)



10 KEITH CONRAD

Since a− 2 > −1 for 1 < a < 2, (log 2)(a− 2) is greater than − log 2. This gives the bounds

− log(a− 1) + F (2)− log 2 ≤ F (a) < − log(a− 1) + F (2)

Writing a as t, we get

− log(t− 1) + F (2)− log 2 ≤ F (t) < − log(t− 1) + F (2),

so F (t) is a bounded distance from − log(t−1) when 1 < t < 2. In particular, F (t)→∞ as t→ 1+.

9. Smoothly dividing by t

Let h(t) be an infinitely differentiable function for all real t such that h(0) = 0. The ratio h(t)/t
makes sense for t 6= 0, and it also can be given a reasonable meaning at t = 0: from the very
definition of the derivative, when t→ 0 we have

h(t)

t
=
h(t)− h(0)

t− 0
→ h′(0).

Therefore the function

r(t) =

{
h(t)/t, if t 6= 0,

h′(0), if t = 0

is continuous for all t. We can see immediately from the definition of r(t) that it is better than
continuous when t 6= 0: it is infinitely differentiable when t 6= 0. The question we want to address
is this: is r(t) infinitely differentiable at t = 0 too?

If h(t) has a power series representation around t = 0, then it is easy to show that r(t) is infinitely
differentiable at t = 0 by working with the series for h(t). Indeed, write

h(t) = c1t+ c2t
2 + c3t

3 + · · ·
for all small t. Here c1 = h′(0), c2 = h′′(0)/2! and so on. For small t 6= 0, we divide by t and get

(9.1) r(t) = c1 + c2t+ c3t
3 + · · · ,

which is a power series representation for r(t) for all small t 6= 0. The value of the right side of
(9.1) at t = 0 is c1 = h′(0), which is also the defined value of r(0), so (9.1) is valid for all small x
(including t = 0). Therefore r(t) has a power series representation around 0 (it’s just the power
series for h(t) at 0 divided by t). Since functions with power series representations around a point
are infinitely differentiable at the point, r(t) is infinitely differentiable at t = 0.

However, this is an incomplete answer to our question about the infinite differentiability of r(t)

at t = 0 because we know by the key example of e−1/t
2

(at t = 0) that a function can be infinitely
differentiable at a point without having a power series representation at the point. How are we
going to show r(t) = h(t)/t is infinitely differentiable at t = 0 if we don’t have a power series to
help us out? Might there actually be a counterexample?

The solution is to write h(t) in a very clever way using differentiation under the integral sign.
Start with

h(t) =

∫ t

0
h′(u) du.

(This is correct since h(0) = 0.) For t 6= 0, introduce the change of variables u = tx, so du = t dx.
At the boundary, if u = 0 then x = 0. If u = t then x = 1 (we can divide the equation t = tx by t
because t 6= 0). Therefore

h(t) =

∫ 1

0
h′(tx)t dx = t

∫ 1

0
h′(tx) dx.
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Dividing by t when t 6= 0, we get

r(t) =
h(t)

t
=

∫ 1

0
h′(tx) dx.

The left and right sides don’t have any t in the denominator. Are they equal at t = 0 too? The

left side at t = 0 is r(0) = h′(0). The right side is
∫ 1
0 h
′(0) dx = h′(0) too, so

(9.2) r(t) =

∫ 1

0
h′(tx) dx

for all t, including t = 0. This is a formula for h(t)/t where there is no longer a t being divided!
Now we’re set to use differentiation under the integral sign. The way we have set things up

here, we want to differentiate with respect to t; the integration variable on the right is x. We can
use differentiation under the integral sign on (9.2) when the integrand is differentiable. Since the
integrand is infinitely differentiable, r(t) is infinitely differentiable!

Explicitly,

r′(t) =

∫ 1

0
vh′′(tx) dx

and

r′′(t) =

∫ 1

0
vh′′(tx) dx

and more generally

r(k)(t) =

∫ 1

0
xkh(k+1)(tx) dx.

In particular, r(k)(0) =
∫ 1
0 x

kh(k+1)(0) dx = h(k+1)(0)
k+1 .

10. Counterexamples

We have seen many examples where differentiation under the integral sign can be carried out
with interesting results, but we have not actually stated conditions under which (1.2) is valid.
Something does need to be checked. In [6], an incorrect use of differentiation under the integral
sign due to Cauchy is discussed, where a divergent integral is evaluated as a finite expression. Here
are two other examples where differentiation under the integral sign does not work.

Example 10.1. It is pointed out in [3, Example 6] that the formula∫ ∞
0

sinx

x
dx =

π

2
,

which we discussed at the end of Section 3, leads to an erroneous instance of differentiation under
the integral sign. Rewrite the formula as

(10.1)

∫ ∞
0

sin(ty)

y
dy =

π

2

for any t > 0, by the change of variables x = ty. Then differentiation under the integral sign implies∫ ∞
0

cos(ty) dy = 0,

which doesn’t make sense.

The next example shows that even if both sides of (1.2) make sense, they need not be equal.
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Example 10.2. For any real numbers x and t, let

f(x, t) =


xt3

(x2 + t2)2
, if x 6= 0 or t 6= 0,

0, if x = 0 and t = 0.

Let

F (t) =

∫ 1

0
f(x, t) dx.

For instance, F (0) =
∫ 1
0 f(x, 0) dx =

∫ 1
0 0 dx = 0. When t 6= 0,

F (t) =

∫ 1

0

xt3

(x2 + t2)2
dx

=

∫ 1+t2

t2

t3

2u2
du (where u = x2 + t2)

= − t
3

2u

∣∣∣∣u=1+t2

u=t2

= − t3

2(1 + t2)
+

t3

2t2

=
t

2(1 + t2)
.

This formula also works at t = 0, so F (t) = t/(2(1 + t2)) for all t. Therefore F (t) is differentiable
and

F ′(t) =
1− t2

2(1 + t2)2

for all t. In particular, F ′(0) = 1
2 .

Now we compute ∂
∂tf(x, t) and then

∫ 1
0

∂
∂tf(x, t) dx. Since f(0, t) = 0 for all t, f(0, t) is differen-

tiable in t and ∂
∂tf(0, t) = 0. For x 6= 0, f(x, t) is differentiable in t and

∂

∂t
f(x, t) =

(x2 + t2)2(3xt2)− xt3 · 2(x2 + t2)2t

(x2 + t2)4

=
xt2(x2 + t2)(3(x2 + t2)− 4t2)

(x2 + t2)4

=
xt2(3x2 − t2)

(x2 + t2)3
.

Combining both cases (x = 0 and x 6= 0),

(10.2)
∂

∂t
f(x, t) =

{
xt2(3x2−t2)
(x2+t2)3

, if x 6= 0,

0, if x = 0.

In particular ∂
∂t

∣∣
t=0

f(x, t) = 0. Therefore at t = 0 the left side of the “formula”

d

dt

∫ 1

0
f(x, t) dx =

∫ 1

0

∂

∂t
f(x, t) dx.

is F ′(0) = 1/2 and the right side is
∫ 1
0

∂
∂t

∣∣
t=0

f(x, t) dx = 0. The two sides are unequal!



DIFFERENTIATING UNDER THE INTEGRAL SIGN 13

The problem in this example is that ∂
∂tf(x, t) is not a continuous function of (x, t). Indeed, the

denominator in the formula in (10.2) is (x2 + t2)3, which has a problem near (0, 0). Specifically,
while this derivative vanishes at (0, 0), it we let (x, t) → (0, 0) along the line x = t, then on this
line ∂

∂tf(x, t) has the value 1/(4x), which does not tend to 0 as (x, t)→ (0, 0).

Theorem 10.3. The equation

d

dt

∫ b

a
f(x, t) dx =

∫ b

a

∂

∂t
f(x, t) dx

is valid at t = t0, in the sense that both sides exist and are equal, provided the following two
conditions hold:

• f(x, t) and ∂
∂tf(x, t) are continuous functions of two variables when x is in the range of

integration and t is in some interval around t0,
• there are upper bounds |f(x, t)| ≤ A(x) and | ∂∂tf(x, t)| ≤ B(x), both being independent of t,

such that
∫ b
a A(x) dx and

∫ b
a B(x) dx exist.

Proof. See [4, pp. 337–339]. If the interval of integration is infinite,
∫ b
a A(x) dx and

∫ b
a B(x) dx are

improper. �

In Table 1 we include choices for A(x) and B(x) for each of the functions we have treated. Since
the calculation of a derivative at a point only depends on an interval around the point, we have
replaced a t-range such as t > 0 with t ≥ c > 0 in some cases to obtain choices for A(x) and B(x).

Section f(x, t) x range t range t we want A(x) B(x)
2 xne−tx [0,∞) t ≥ c > 0 1 xne−cx xn+1e−cx

3 e−tx sinx
x (0,∞) t ≥ c > 0 0 e−cx e−cx

4 e−t2(1+x2)

1+x2
[0, 1] 0 ≤ t ≤ c t→∞ 1

1+x2
2c

5 xne−tx
2

R t ≥ c > 0 1 xne−cx
2

xn+2e−cx
2

6 cos(tx)e−x
2/2 [0,∞) R all t e−x

2/2 |x|e−x2/2

7 xt−1
log x (0, 1] 0 < t < c 1 1−xc

log x 1

8 1
xt log x [2,∞) t ≥ c > 1 t > 1 1

x2 log x
1
xc

9 xkh(k+1)(tx) [0, 1] |t| < c 0 max
|y|≤c
|h(k+1)(y)| max

|y|≤c
|h(k+2)(y)|

Table 1. Summary

Corollary 10.4. If a(t) and b(t) are both differentiable, then

d

dt

∫ b(t)

a(t)
f(x, t) dx =

∫ b(t)

a(t)

∂

∂t
f(x, t) dx+ f(b(t), t)b′(t)− f(a(t), t)a′(t)

if the following conditions are satisfied:

• there are α < β and c1 < c2 such that f(x, t) and ∂
∂tf(x, t) are continuous on [α, β]×(c1, c2),

• we have a(t) ∈ [α, β] and b(t) ∈ [α, β] for all t ∈ (c1, c2),
• there are upper bounds |f(x, t)| ≤ A(x) and | ∂∂tf(x, t)| ≤ B(x) for (x, t) ∈ [α, β] × (c1, c2)

such that
∫ β
α A(x) dx and

∫ β
α B(x) dx exist.
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Proof. This is a consequence of Theorem 10.3 and the chain rule for multivariable functions. Set a
function of three variables

I(t, a, b) =

∫ b

a
f(x, t) dx

for (t, a, b) ∈ (c1, c2)× [α, β]× [α, β]. (Here a and b are not functions of t.) Then

(10.3)
∂I

∂t
(t, a, b) =

∫ b

a

∂

∂t
f(x, t) dx,

∂I

∂a
(t, a, b) = −f(a, t),

∂I

∂b
(t, a, b) = f(b, t),

where the first formula follows from Theorem 10.3 (its hypotheses are satisfied for each a and
b in [α, β]) and the second and third formulas are the Fundamental Theorem of Calculus. For
differentiable functions a(t) and b(t) with values in [α, β] for c1 < t < c2, by the chain rule

d

dt

∫ b(t)

a(t)
f(x, t) dx =

d

dt
I(t, a(t), b(t))

=
∂I

∂t
(t, a(t), b(t))

dt

dt
+
∂I

∂a
(t, a(t), b(t))

da

dt
+
∂I

∂b
(t, a(t), b(t))

db

dt

=

∫ b(t)

a(t)

∂f

∂t
(x, t) dx− f(a(t), t)a′(t) + f(b(t), t)b′(t) by (10.3).

�

A version of differentiation under the integral sign for t a complex variable is in [5, pp. 392–393].

11. An example needing a change of variables

Our next example is taken from [1, pp. 78,84]. For all t ∈ R, we will show by differentiation
under the integral sign that

(11.1)

∫
R

cos(tx)

1 + x2
dx = πe−|t|.

Here f(x, t) = cos(tx)/(1 + x2). Since f(x, t) is continuous and |f(x, t)| ≤ 1/(1 + x2), the integral

exists for all t. The function πe−|t| is not differentiable at t = 0, so we shouldn’t expect to be able
to prove (11.1) at t = 0 using differentiation under the integral sign; this special case can be treated
with elementary calculus: ∫

R

dx

1 + x2
= arctanx

∣∣∣∣∞
−∞

= π.

The integral in (11.1) is an even function of t, so to compute it for t 6= 0 it suffices to treat the case
t > 0.1

Let

F (t) =

∫
R

cos(tx)

1 + x2
dx.

If we try to compute F ′(t) for t > 0 using differentiation under the integral sign, we get

(11.2) F ′(t)
?
=

∫
R

∂

∂t

(
cos(tx)

1 + x2

)
dx = −

∫
R

x sin(tx)

1 + x2
dx.

Unfortunately, there is no upper bound | ∂∂tf(x, t)| ≤ B(x) that justifies differentiating F (t) under
the integral sign (or even justifies that F (t) is differentiable). Indeed, when x is near a large odd

1A reader who knows complex analysis can derive (11.1) for t > 0 by the residue theorem, viewing cos(tx) as the
real part of eitx.
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multiple of (π/2)/t, the integrand in (11.2) has values that are approximately x/(1 + x2) ≈ 1/x,
which is not integrable for large x. That does not mean (11.2) is actually false, although if we
weren’t already told the answer on the right side of (11.1) then we might be suspicious about
whether the integral is differentiable for all t > 0; after all, you can’t easily tell from the integral
that it is not differentiable at t = 0.

Having already raised suspicions about (11.2), we can get something really crazy if we differentiate
under the integral sign a second time:

F ′′(t)
?
= −

∫
R

x2 cos(tx)

1 + x2
dx.

If this made sense then

(11.3) F ′′(t)− F (t) = −
∫
R

(x2 + 1) cos(tx)

1 + x2
dx = −

∫
R

cos(tx) dx =???.

All is not lost! Let’s make a change of variables. Fixing t > 0, set y = tx, so dy = tdx and

F (t) =

∫
R

cos y

1 + y2/t2
dy

t
=

∫
R

t cos y

t2 + y2
dy.

This new integral will be accessible to differentiation under the integral sign. (Although the new
integral is an odd function of t while F (t) is an even function of t, there is no contradiction because
this new integral was derived only for t > 0.)

Fix c′ > c > 0. For t ∈ (c, c′), the integrand in∫
R

t cos y

t2 + y2
dy

is bounded above in absolute value by t/(t2 + y2) ≤ c′/(c2 + y2), which is independent of t and
integrable over R. The t-partial derivative of the integrand is (y2 − t2)(cos y)/(t2 + y2)2, which
is bounded above in absolute value by (y2 + t2)/(t2 + y2)2 = 1/(t2 + y2) ≤ 1/(c2 + y2), which is
independent of t and integrable over R. This justifies the use differentiation under the integral sign
according to Theorem 10.3: for c < t < c′, and hence for all t > 0 since we never specified c or c′,

F ′(t) =

∫
R

∂

∂t

(
t cos y

t2 + y2

)
dy =

∫
R

y2 − t2

(t2 + y2)2
cos y dy.

We want to compute F ′′(t) using differentiation under the integral sign. For 0 < c < t < c′, the
t-partial derivative of the integrand for F ′(t) is bounded above in absolute value by a function of
y that is independent of t and integrable over R (exercise), so for all t > 0 we have

F ′′(t) =

∫
R

∂2

∂t2

(
t cos y

t2 + y2

)
dy =

∫
R

∂2

∂t2

(
t

t2 + y2

)
cos y dy.

It turns out that (∂2/∂t2)(t/(t2 + y2)) = −(∂2/∂y2)(t/(t2 + y2)), so

F ′′(t) = −
∫
R

∂2

∂y2

(
t

t2 + y2

)
cos y dy.

Using integration by parts on this formula for F ′′(t) twice (starting with u = − cos y and dv =
(∂2/∂y2)(t/(t2 + y2)), we obtain

F ′′(t) = −
∫
R

∂

∂y

(
t

t2 + y2

)
sin y dy =

∫
R

(
t

t2 + y2

)
cos y dy = F (t).
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The equation F ′′(t) = F (t) is a second order linear ODE whose general solution is aet + be−t, so

(11.4)

∫
R

cos(tx)

1 + x2
dx = aet + be−t

for all t > 0 and some real constants a and b. To determine a and b we look at the behavior of the
integral in (11.4) as t→ 0+ and as t→∞.

As t→ 0+, the integrand in (11.4) tends pointwise to 1/(1 +x2), so we expect the integral tends
to
∫
R dx/(1 +x2) = π as t→ 0+. To justify this, we will bound the absolute value of the difference∣∣∣∣∫

R

cos(tx)

1 + x2
dx−

∫
R

dx

1 + x2

∣∣∣∣ ≤ ∫
R

| cos(tx)− 1|
1 + x2

dx

by an expression that is arbitrarily small as t→ 0+. For any N > 0, break up the integral over R
into the regions |x| ≤ N and |x| ≥ N . We have∫

R

| cos(tx)− 1|
1 + x2

dx ≤
∫
|x|≤N

| cos(tx)− 1|
1 + x2

dx+

∫
|x|≥N

2

1 + x2
dx

≤
∫
|x|≤N

t|x|
1 + x2

dx+

∫
|x|≥N

2

1 + x2
dx

= t

∫
|x|≤N

|x|
1 + x2

dx+ 4
(π

2
− arctanN

)
.

Taking N sufficiently large, we can make π/2− arctanN as small as we wish, and after doing that
we can make the first term as small as we wish by taking t sufficiently small. Returning to (11.4),
letting t→ 0+ we obtain π = a+ b, so

(11.5)

∫
R

cos(tx)

1 + x2
dx = aet + (π − a)e−t

for all t > 0.
Now let t→∞ in (11.5). The integral tends to 0 by the Riemann–Lebesgue lemma from Fourier

analysis, although we can explain this concretely in our special case: using integration by parts
with u = 1/(1 + x2) and dv = cos(tx) dx, we get∫

R

cos(tx)

1 + x2
dx =

1

t

∫
R

2x sin(tx)

(1 + x2)2
dx.

The absolute value of the term on the right is bounded above by a constant divided by t, which
tends to 0 as t→∞. Therefore aet+ (π−a)e−t → 0 as t→∞. This forces a = 0, which completes
the proof that F (t) = πe−t for t > 0.

12. Exercises

1. From the formula

∫ ∞
0

e−tx
sinx

x
dx =

π

2
− arctan t for t > 0, in Section 3, use a change

of variables to obtain a formula for

∫ ∞
0

e−ax
sin(bx)

x
dx when a and b are positive. Then use

differentiation under the integral sign with respect to b to find a formula for

∫ ∞
0

e−ax cos(bx) dx

when a and b are positive. (Differentiation under the integral sign with respect to a will produce
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a formula for

∫ ∞
0

e−ax sin(bx) dx, but that would be circular in our approach since we used that

integral in our derivation of the formula for

∫ ∞
0

e−tx
sinx

x
dx in Section 3.)

2. From the formula

∫ ∞
0

e−tx
sinx

x
dx =

π

2
− arctan t for t > 0, the change of variables x = ay

with a > 0 implies ∫ ∞
0

e−tay
sin(ay)

y
dy =

π

2
− arctan t,

so the integral on the left is independent of a and thus has a-derivative 0. Differentiation under
the integral sign, with respect to a, implies∫ ∞

0
e−tay(cos(ay)− t sin(ay)) dy = 0.

Verify that this application of differentiation under the integral sign is valid when a > 0 and t > 0.
What happens if t = 0?

3. Show

∫ ∞
0

sin(tx)

x(x2 + 1)
dx =

π

2
(1− e−t) for t > 0 by justifying differentiation under the integral

sign and using (11.1).

4. Prove that

∫ ∞
0

e−tx
cosx− 1

x
dx = log

(
t√

1 + t2

)
for t > 0. What happens to the integral

as t→ 0+?

5. Prove that

∫ ∞
0

log(1 + t2x2)

1 + x2
dx = π log(1 + t) for t > 0 (it is obvious for t = 0). Then deduce∫ ∞

0

log(1 + a2x2)

b2 + x2
dx =

π log(1 + ab)

b

for a > 0 and b > 0.

6. Prove that

∫ ∞
0

(e−x−e−tx)
dx

x
= log t for t > 0 by justifying differentiation under the integral

sign. This is (7.2) for t > −1. Deduce that

∫ ∞
0

(e−ax − e−bx)
dx

x
= log(b/a) for positive a and b.

7. In calculus textbooks, formulas for the indefinite integrals∫
xn sinx dx and

∫
xn cosx dx

are derived recursively using integration by parts. Find formulas for these integrals when n =
1, 2, 3, 4 using differentiation under the integral sign starting with the formulas∫

cos(tx) dx =
sin(tx)

t
,

∫
sin(tx) dx = −cos(tx)

t

for t > 0.
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8. If you are familiar with integration of complex-valued functions, show for y ∈ R that∫ ∞
−∞

e−(x+iy)
2

dx =
√

2π.

In other words, show the integral on the left side is independent of y. (Hint: Use differentiation
under the integral sign to compute the y-derivative of the left side.)

Appendix A. Justifying passage to the limit in a sine integral

In Section 3 we derived the equation

(A.1)

∫ ∞
0

e−tx
sinx

x
dx =

π

2
− arctan t for t > 0,

which by naive passage to the limit as t→ 0+ suggests that

(A.2)

∫ ∞
0

sinx

x
dx =

π

2
.

To prove (A.2) is correct, we will show
∫∞
0

sinx
x dx exists and then show the difference

(A.3)

∫ ∞
0

sinx

x
dx−

∫ ∞
0

e−tx
sinx

x
dx =

∫ ∞
0

(1− e−tx)
sinx

x
dx

tends to 0 as t→ 0+. The key in both cases is alternating series.
On the interval [kπ, (k + 1)π], where k is an integer, we can write sinx = (−1)k| sinx|, so

convergence of
∫∞
0

sinx
x dx = limb→∞

∫ b
0

sinx
x dx is equivalent to convergence of the series∑

k≥0

∫ (k+1)π

kπ

sinx

x
dx =

∑
k≥0

(−1)k
∫ (k+1)π

kπ

| sinx|
x

dx.

This is an alternating series in which the terms ak =
∫ (k+1)π
kπ

| sinx|
x dx are monotonically decreasing:

ak+1 =

∫ (k+2)π

(k+1)π

| sinx|
x

dx =

∫ (k+1)π

kπ

| sin(x+ π)|
x+ π

dx =

∫ (k+1)π

kπ

| sinx|
x+ π

dx < ak.

By a simple estimate ak ≤ 1
kπ for k ≥ 1, so ak → 0. Thus

∫∞
0

sinx
x dx =

∑
k≥0(−1)kak converges.

To show the right side of (A.3) tends to 0 as t→ 0+, we write it as an alternating series. Breaking
up the interval of integration [0,∞) into a union of intervals [kπ, (k + 1)π] for k ≥ 0,

(A.4)

∫ ∞
0

(1− e−tx)
sinx

x
dx =

∑
k≥0

(−1)kIk(t), where Ik(t) =

∫ (k+1)π

kπ
(1− e−tx)

| sinx|
x

dx.

Since 1− e−tx > 0 for t > 0 and x > 0, the series
∑

k≥0(−1)kIk(t) is alternating. The upper bound

1 − e−tx < 1 tells us Ik(t) ≤ 1
kπ for k ≥ 1, so Ik(t) → 0 as k → ∞. To show the terms Ik(t) are

monotonically decreasing with k, set this up as the inequality

(A.5) Ik(t)− Ik+1(t) > 0 for t > 0.

Each Ik(t) is a function of t for all t, not just t > 0 (note Ik(t) only involves integration on a
bounded interval). The difference Ik(t)− Ik+1(t) vanishes when t = 0 (in fact both terms are then

0), and I ′k(t) =
∫ (k+1)π
kπ e−tx| sinx| dx for all t by differentiation under the integral sign, so (A.5)
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would follow from the derivative inequality I ′k(t)− I ′k+1(t) > 0 for t > 0. By a change of variables
y = x− π in the integral for I ′k+1(t),

I ′k+1(t) =

∫ (k+1)π

kπ
e−t(y+π)| sin(y + π)|dy = e−tπ

∫ (k+1)π

kπ
e−ty| sin y|dy < I ′k(t).

This completes the proof that the series in (A.4) for t > 0 satisfies the alternating series test.
If we truncate the series

∑
k≥0(−1)kIk(t) after the Nth term, the magnitude of the error is no

greater than the absolute value of the next term:∑
k≥0

(−1)kIk(t) =

N∑
k=0

(−1)kIk(t) + rN , |rN | ≤ |IN+1(t)| ≤
1

(N + 1)π
.

Since |1− e−tx| ≤ tx,∣∣∣∣∣
N∑
k=0

(−1)kIk(t)

∣∣∣∣∣ ≤
∫ (N+1)π

0
(1− e−tx)

| sinx|
x

dx =

∫ (N+1)π

0
t dx = t(N + 1)π.

Thus ∣∣∣∣∫ ∞
0

(1− e−tx)
sinx

x
dx

∣∣∣∣ ≤ t(N + 1)π +
1

(N + 1)π
.

For any ε > 0 we can make the second term at most ε/2 by a suitable choice of N . Then the first
term is at most ε/2 for all small enough t (depending on N), and that shows (A.3) tends to 0 as
t→ 0+.

References

[1] W. Appel, Mathematics for Physics and Physicists, Princeton Univ. Press, Princeton, 2007.
[2] R. P. Feynman, Surely You’re Joking, Mr. Feynman!, Bantam, New York, 1985.
[3] S. K. Goel and A. J. Zajta, “Parametric Integration Techniques”, Math. Mag. 62 (1989), 318–322.
[4] S. Lang, Undergraduate Analysis, 2nd ed., Springer-Verlag, New York, 1997.
[5] S. Lang, Complex Analysis, 3rd ed., Springer-Verlag, New York, 1993.
[6] E. Talvila, “Some Divergent Trigonometric Integrals”, Amer. Math. Monthly 108 (2001), 432–436.


