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Rotational Dynamics

Objective: To investigate the behavior of a rotating system subjected to internal torques and
external torques. To apply knowledge gained from the linear momentum lab to its rotational
analog. To see how total energy is a function of linear and rotational energy by re-visiting the
loop-the-loop part of the Work, Energy & Circular Motion experiment.

Apparatus: Angular motion sensor, circular aluminum disc with pulleys of varying diameter on
other side, meter stick, 20g or 50g mass on a string, flexible goose neck mass.

Introduction:

A few weeks ago you investigated the interaction of a system of two masses without any external
forces, namely the conservation of momentum of two colliding carts. In this lab you will
investigate a similar "collision", but there will be no linear motion, only rotational. Below are
some useful equations you may remember from lecture (all scalar).

Definition of angular velocity:
w=v/r

Moment of Inertia of a point mass about an axis of rotation r away:
I,=mr?

Moment of Inertia of a circular disc about a perpendicular axis through its center:
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Laisk= Emrz
Moment of Inertia of a rod about an axis through its center (perpendicular to its length):

I(rod,center) = E ml?

Definition of angular momentum:
L=lw

Kinetic energy of rotation:

— 2
KErotational - E Iw

Total energy of an object undergoing both translational and rotational motion:

1 1
KEtotal = KEtmnslational+ KErotational + PE = my im + E I (D2+ mghCM

translational ~— 5

Newton's Law in rotational form (tau is the external torque; alpha is the angular acceleration):
=la

Equation of motion in rotational form (constant angular acceleration):
0=0, + wt + %atz
Time-independent version of equation above:

w?=w3 + 2a46

In addition, the Moment of Inertia of an object of known lo, when taken about another axis
parallel to the axis used to calculate the known I (when the two axes are a distance h away) is:

I=I, + mh?
This is also known as the Parallel Axis Theorem.
You will perform two experiments:
1. Gently drop a non-rotating rod (which can either be straight or bent into an approximate
circle) onto a circular disc rotating at low angular momentum. The disc is permanently mounted
on an angular sensor which will give output angular position and speed to Logger Pro. This is the
rotational equivalent of the linear collision you performed with the two Pasco carts on the Pasco
track. In this experiment the system (disc + rod) experiences no external torques, just as the two
carts experienced no external forces; all interactions are internal.

2. Use a small mass, connected to a pulley with a string, to rotate the circular disc. Here you are
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using the same equipment as in (1) above, except that you have re-oriented the setup 90 degrees.
This is the rotational equivalent of a force causing a previously stationary mass to accelerate
linearly. In this experiment there is an external torque, just as a cart that is pulled by a mass
hanging over a pulley experienced a force.

Procedure
As usual, write your lab in Google Docs and share it with lab partner(s), TA and LA.

I. Gently drop a non-rotating rod onto a circular disc (no external torques) (65 pts)

1. Open the Logger Pro file Angular Momentum Conservation.cmbl, which is a Logger Pro
template file in the same folder as this write-up. Scroll through the different pages by
clicking on the arrows to the left and right of page selector near the upper left-hand corner:
Page 1, Page 2, Page 3. On Page 3 you will see the data table. Double click on "L rod" and

examine the way it is calculated (currentlyl(,.oq center)y= % mi?). As with the Linear

Momentum lab, you will have to change some parameters to their exact values: look at the
handwritten mass value on the aluminum circular disc and change this in Logger Pro if
necessary. Note that the 1/12 coefficient will have to be changed if you alter the shape of the
rod from its straight shape. Also measure the length of the rod and change that parameter in
Logger Pro if needed. You will therefore be changing the values for L rod and Rod Energy.

2. Make sure the apparatus is positioned as in the photo below. The plane of the circular disc
should be horizontal, with the red toothed "catch™ facing upwards:

3. Go back to Page 1. Press the Collect button in Logger Pro and practice spinning the disc at
low angular speed (you must spin counterclockwise; software is configured for CCW spin) and
gently dropping the straight rod onto the red toothed catch. It should be centered - the middle of
the rod should land on the center of the disc. Remember to drop the rod gently just a centimeter
or two above the disk to minimize vibrations and energy losses. Look at the resulting graph and
visually check if your results make sense. You should see something like the photo below:
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Plots, with all data, of rod being dropped onto disk. Note that on some sensors, clockwise
rotation corresponds to decreasing angle (downward slope on Theta, upward jump on
Omega. If this is the case, go to Page 3 in Logger Pro, double-click on the Omega (Angular
Velocity) column, and put a minus sign in front of the expression in the Equation box.

It is critical to remember that the only thing that the instrumentation will directly measure is the
angular position and speed of the rotary sensor (connected to the disc); the angular velocity of
the rod should be the same as the disc after the collision since they spin in unison. Before the
collision, the rod's angular speed (and the resulting calculated angular momentum and rotational
kinetic energy) should be zero; the software displays a non-zero value since the software
algorithm assumes that the rod always spins with the disc. You will then have to eliminate
these false data points by highlighting the L rod and KE rod points in Logger Pro and
going to Edit--> Strike Through Data Cells. Note that the points you will be striking through
should correspond to the time interval before the rod and disc have settled into a fairly constant
(yet slowly dropping) angular speed. Identify the points just before the “collision” and just
after it. (5 pts)

Examine the numbers in the data table for L rod - they will help you choose where to put the
strike-through cutoff by showing periods of mostly constant values. After you strike through the
pre-collision and collision data point, your graph should appear as follows:
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Plots, with pre-dropping data removed, of rod being dropped onto disk. Note that on some

sensors, clockwise rotation corresponds to decreasing angle (downward slope on Theta,

upward jump on Omega. If this is the case, go to Page 3 in Logger Pro, double-click on the

Omega (Angular Velocity) column, and put a minus sign in front of the expression in the

Equation box.

Notice that before the collision, only the disc has angular velocity, momentum and kinetic
energy; the rod's should be zero. After the collision, all three quantities are present in both rod
and disc. For your lab report, include the graphs you obtain (as above) and also record (see

below) the following : total energies (initial i, final f, ratio f/i); total angular momenta(i, f, f/i).

(20 pts)

DISC

ROD

DISC + ROD

Initial L

Final L

Initial E

Final E

Ratio of (Ltota)™/ (Ltotar) ™ =

RatiO Of (Etotal)ﬂnall (Etota|)initia| =
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Note that initial refers to just before the collision, and final refers to just after the collision. Use
your experience from Linear Momentum to select the appropriate points.

4. Now bend the rod into a roughly circular shape and repeat the experiment. For the red to

retain a circular shape, you will have to tape the ends together with one or two, short strips of
tape oriented along the length of the rod — no need to wind the tape around the diameter of
the rod (which would make it difficult for to unwind when you are done). See this photo:

The moment of inertia of circular hoop rotating about an axis perpendicular to and going through
its center is:I(Cicularhoop,center)=mr2. If you cannot bend (and tape) the rod into a perfect circle,
you can try either:

a) measuring the semi-major axis of the elliptical rod (the “radius” of the long diameter of the
ellipse) and average that with the semi-minor axis of the elliptical rod (the “radius” of the short
diameter of the ellipse) to find the effective r in the above equation, or

b) using the equation for leiptical hoop, centery=mab, where a is the semi-major axis of the elliptical
rod and b is the semi-minor axis of the elliptical rod (as described above)

Don't forget to change parameters — as you did in the Linear Momentum lab by double clicking
on the data column header in Logger Pro - for rod mass, rod radius (when bent in circle; use
average between long radius and short radius) and moment of inertia coefficient (1/12 for
straight rod, 1 for circular rod) in Logger Pro. Also remember to enter the rod radius instead of
the rod length. As with (3), include the graphs you obtain (as above) and also record (see below)
the following: total energies (initial i, final f, ratio f/i); total angular momenta(i, f, f/i). (30 pts)

DISC ROD DISC + ROD

Initial L




Final L

Initial E

Final E

Ratio of (Lotal)"™/ (Ltota)) ™" =
Ratio of (Etotal)fmall (Etotal)mltlal -

***REMOVE THE MASKING TAPE FROM THE ROD AFTER YOU ARE DONE***

2. Use a small mass to rotate the circular disc (external torque) (35pts)

1. Open up the Logger Pro template file Constant Torque Rotational Motion.cmbl. Unscrew
the angular sensor/disc from the ring stand and re-orient it so that the plane of the disc is now
vertical (see photo below). Anchor a thread or string through a pulley slot and wrap a thread or
string with small weight suspended around one of the drive pulleys. The free end of the string
must be the first thing to wrap around the pulley.  Also, the string must be wound tightly
enough not to slip, and that you should start winding by putting the knot at the end of the
string through the notch in the pulley. Then the external torque exerted is approximately
mgRpuiey (0.025m for the larger pulley; remember to change this in the parameters if necessary).

Question (not for credit): why is the external torque only approximately mgRpuiey?

The smaller pulley will have a radius of 0.0125m. This being constant (we neglect any variation
in earth gravitational pull with distance from earth center), the constant angular acceleration
equations apply (see equations in introduction). These have the same form as those for constant
force in translational acceleration. In the photo below, the string is wrapped around the larger
(0.025m radius) pulley:



The drop mass PE is set to zero by subtraction of the time-zero height. This is accomplished with
the two data columns “theta sub” (subset) and “init theta”.

(This is not a “before and after” collision test. We are interested in the continuous time interval
from time zero until dropping drive mass hits. We are not interested in any data after drop mass
hits the table. Strike through subsequent data only if it makes you feel better.)

2. Practice winding the drive mass string around the pulley and collecting data. Wind the string
around the pully such that the disk rotates in the same direction as in Part I. The picture
and LP graph below show the operation and result, for 20g drop mass on larger pulley.
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NOTE: You would expect potential energy to decrease as the 20g mass falls; if Logger Pro
shows the opposite, simply wind the string around the pulley in the opposite direction.

The 20g weight hit sthe table at about 1.6 seconds; algorithms fail for later data (the PE no
longer changes). Most of the drive mass gravitational PE (red) is converted to disk rotational KE
(blue); the KE of the falling drive mass is relatively very small (both theoretically and
experimentally). Total energy (green) appears to decrease slightly.

(Note, drive mass PE would be linear if plotted vs. height h, but this is a time plot.)

If the string slips while the drive mass falls, assumptions are invalid!

3. From theory, calculate and include in your report, the following quantities. Include a FBD:

a) The torque exerted on the disk by the drive mass. (5 pts) Note that the force associated with
this torque should be the T in the string which, as you learned last week, is not equal to because
it is accelerating — but you can choose to neglect a if you can justify that this is a good
approximation. See “Newton's Laws I write-up for reference.

b) The moment of inertia of the disk (5 pts)

c) The calculated angular acceleration of the disk (5 pts)

d) The change in theta (angle) and omega (angular velocity) from the time the drive mass is
released to when it hits the table. (5 pts) You may find these equations useful:
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Kinematics equation without time variable:
1
B = 8y + wet +Eﬂt2

Relationship between drop height and change in angle:
w? = wi+2add

Make sure to put the proper subscript on the variable to distinguish between different objects,
.., Tdisk VS. I'pulley - Errors in labeling may lead to incorrect calculations.

4. Include a graph for one good example, as in the first experiment (collision). Label the points
where the mass was released and when it hit the table. Enter numerical values, and ratios of
experimental to theoretical, for Angular Momentum and Energy (disc) for when the drive mass
hits the table. (10 pts)

5) Compare your value for angular acceleration (part c in step 3 above) to your experimental
value (values from the Logger Pro plots/tables) and give your analysis on how close (or far)
these values are using Percent Difference. (5 pts) Remember that you can obtain the angular
acceleration value from the angular velocity vs. time plot, just as you did with linear acceleration
and the linear velocity vs. time plot.

QUESTIONS

1. What if the rod (straight or bent) were already rotating at the same angular velocity as the disc
before you dropped the former onto the latter — would the disc's angular velocity change after
dropping? Why or why not? (5 pts)

2. If you were a bug (instead of the falling mass) hanging from the string wrapped around the
same pulley you used in the lab, and you wanted to descend to the lab table as softly as possible
(smallest possible acceleration) so as not to squash yourself. You have your choice of discs — the
usual one, or one with half the mass but twice the radius — which one would you choose?
(Remember — you are only swapping the disc (aluminum) part of the setup). (5 pts)



