Пусть $(X, \|\cdot\|)$ – банвахово пространство; $M \subset X$ – замкнутое множество, и

$$B = \{x \in X \mid ||x|| \le 1\}$$

— единичный шар. Мы предполагаем, что $\inf\{\|x\|: x \in M\} > 1$.

THEOREM 1. Пусть отображение $T:M\to M$ обладает следующим свойством. Если $Tx\neq x$ то существует t>1 такое, что $x+t(Tx-x)\in B$.

Тогда отображение T имеет неподвижную точку.

Доказательство. Введем отношение частичного порядка в M по правилу:

$$x < y \iff x = y$$
 либо $\exists t > 1: x + t(y - x) \in B$.

Таким образом, для всех $x \in M$ имеем x < Tx.

Очевидно, что максимальный элемент множества M и будет искомой неподвижной точкой. Покажем, что максимальный элемент существует. Для этого проверим условия леммы Цорна. Пусть $C \subset M$ – цепь; положим $\rho = \inf\{\|z\| : z \in C\}$, $\rho > 1$ и

$$K_x = \{ y \in M \mid ||y|| \ge \rho, \quad y > x \}, \quad x \in C.$$

Множество K_x не пусто, ибо $x \in K_x$.

Легко показать, что множества K_x замкнуты и

$$x_1 < x_2 \Longrightarrow K_{x_2} \subset K_{x_1}. \tag{1}$$

Lemma 1. $u < v \Longrightarrow ||v|| \le ||u||$.

Действительно, поскольку $u, v \in M$, имеем ||u||, ||v|| > 1 и тогда

$$u + t(v - u) = a$$
, $||a|| = 1$, $t > 1$.

Откуда

$$v = \frac{(t-1)u + a}{t}, \quad ||v|| \le ||u|| + (1 - ||u||)/t < ||u||.$$

Lемма 2. Пусть $z \in K_x$, $x \in C$. Тогда

$$||z - x|| \le \frac{||x|| - \rho}{||x|| - 1} (1 + ||x||).$$

Действительно,

$$x + t(z - x) = a$$
, $||a|| = 1$, $t > 1$, $||x||, ||z|| \ge \rho > 1$. (2)

Откуда z = (a + (t-1)x)/t и

$$\rho \le ||z|| \le \frac{1}{t} + \frac{t-1}{t}||x||, \quad \frac{1}{t} \le \frac{||x|| - \rho}{||x|| - 1}.$$

Еще раз используем формулу (2):

$$||z - x|| = \frac{1}{t}(||a - x||) \le \frac{1}{t}(1 + ||x||).$$

LEMMA 3. Для любого $\varepsilon > 0$ существует $\tilde{x} \in C$ такой, что

$$C \ni x > \tilde{x} \Longrightarrow \operatorname{diam} K_x < \varepsilon.$$

Доказательство леммы 3. По определению числа ρ и лемме 1 для любого $\varepsilon > 0$ найдется $x' \in C$ такой, что

$$C \ni x > x' \Longrightarrow ||x|| < \varepsilon + \rho.$$

Пусть теперь $z_1, z_2 \in K_x$. Применим лемму 2 к каждому слагаемому в правой части неравенства:

$$||z_1 - z_2|| \le ||z_1 - x|| + ||z_2 - x||.$$

Лемма доказана.

Таким образом, замкнутые множества K_x вложены друг в друга (см. формулу (1)) и их диаметры стремятся к нулю. По известной теореме, следующее пересечение не пусто и состоит из единственной точки:

$$\bigcap_{x \in C} K_x = \{m\}.$$

 $\bigcap_{x\in C} K_x = \{m\}.$ Точка m и есть верхняя грань цепи C: для любого $x\in C$ имеем $m\in K_x$, следовательно, по определению K_x , будет x < m.

Теорема доказана.