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Abstract

Three functions are evaluated for their
suitability as the floor function in the
complex domain. The functions are
evaluated against abstract criteria such
as symmetry and convexity, and also for
suitability in practical applications.
The family of functions derived from
floor is developed and examined in each
case.

Introduction

In 1973 E. E. McDonnell presented a paper
[1] in which he proposed an extension of
floor to the complex domain. His purpose
was to extend the functions floor,
ceiling, residue and encode. McDonnell
gave several properties which he felt a
‘floor’ function ought to have. In this
paper I compare his floor function with
two other functions, as they relate to
McDonnell’s criteria and certain other
properties.

Notation

McDonnell introduced a notation for
expressing complex numbers in APL in
which the representations of the real and
imaginary parts were separated by the
letter I. Thus 3I4 represented 3+4i.
this paper J will separate the parts.
The functions RE and IM returned the
real and imaginary parts of their
arguments. This paper retains that
convention. Furthermore the variable I
will stand for the constant i, that is,
0J1.

In
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McDonnell’s Function

McDonnell’s floor function, which I shall
name MF, can be defined as:

VR<MF 7 3;A;B;A1;B1:T
] A«RE Z

B«IM Z

T« A+B
B1<[0.5xT-1+A-B
A1<T-B1

R<A1+IxB1

Ceiling, residue and encode functions
derived from MF will be named M(C, MR,
and ME.

0J2

0J1

0J71

0J72

Region where 0=MF X
Figure 1

Figure 1 shows the set of points, X, for
which MF X is zero. Points on the thick
part of the boundary are included; points
on the thin part are excluded. The set
of points whose floor is Y, for any
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integer Y, is X+Y, that is, the diagram
is shifted so that point 0 is at Y.

Hurwitz’s Function

In 1888 A. Hurwitz defined a complex
function which I shall name HF.

VR<HF 7
[1] R«(L.5+RE Z)+Ix|L0.5+IM Z
v

Ceiling, residue, and encode functions
derived from HF will be named HC, HR,
and HE.

The region for which HF X is zero is shown
in Figure 2.

0J2

0J1

0J71

0J72

g

Region where 0=HF X
Figure 2

The Third Floor

A third floor function, FF can be defined
as

VR€FF 7
[1) Re«(LRE Z)+Ix|IM Z
v

Ceiling, residue, and encode functions
derived from FF will be named FC, FR,
and FE.

This function is closely related to
Hurwitz’s function since the latter can
be written as:

VR<HF Z

[1] ReFF 0.5J0.5+Z
v
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Tesselation

A requirement for any floor function, F,
satisfied by MF, HF, and FF, is that

(F X+K)=K+F X for any integer X. This
implies that if Z is the region whose
floor is 0, then the region whose floor
is K can be found by shifting Z an
amount X. If the entire plane is mapped
in this way then no two regions can
overlap (otherwise F would be multi-
valued). Similarly if F is to be defined
everywhere, then there can be no point
which is not covered by some region.
This is analogous to covering the plane
with repeated instances of a tile of
shape Z, without rotating Z. It is this
procedure which I refer to as
tesselation.

Properties

I will compare these functions by showing
what definitions they lead to for the
various functions that may be defined in
terms of floor, what identities they
satisfy and so forth. Some of McDonnell's
original criteria, satisfied by all three
functions, have been omitted.

Ideal Properties of a Floor Function F

a) Compatibility MF HF FF
yes no yes
If 0=IM Z then (F Z)=LZ

This obviously rules HF
out as a serious candidate
for an extension to floor.

b) Convexity MF HF FF
yes yes yes
If X=F Z1 and X=F Z2 then
X=F(AxZ1)+BxZ2 for 1=A+B;
420 and B20.

This means that if Z1 has
the same floor as Z2 then
so does any value between

them.
c) Fractionality MF HF FF
yes yes no
1<|Z-F Z

This property ensures that
for A=0
(|14)>|A|B for any B.

d) Symmetry MF HF FF
no yes yes
If (P+Ix@)=F A+IxB then
(Q+IxP)=F B+IxA

This requires that the
real and imaginary parts
be treated similarly (but
not necessarily

independently). McDonnell
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required a weaker

property, that if P=F A
then (IxP)=F IxA for A
real.

MF fails for example:
MF 1.5J1.5
2J1

MF
no

e) HF FF

Separation
If (-F-X)=F X then X=F X

Floor and ceiling X are to
be equal if and only if X
is an integer, not at some
other points as well. MF
fails for example:
MF 0.75J0.25
1
MC 0.75J0.25
1
f) Extendability MF HF FF
yes yes no
The function can be
extended to quaternions.
Quaternions are the four
dimensional analogue of
(two dimensional) complex
numbers. It can be shown
that the constraints of
symmetry and convexity
(generalized to four
dimensions) applied to FF
imply a region for X, such
that 0=FF X, which does
not tesselate the
quaternion domain.

Extended Definition of Ceiling
Ceiling is extended by the relationship
[ X -L-X
As was noted above, MF has the peculiarity

that Y«MC X equals MF X along a line,
rather than at the point Y alone.

HC is just HF itself except that the
boundaries of each region are reversed
with respect to inclusion. For example:

HF 0.5J0.5

HC 0.5J0.5
1J1

Extended Definition of Residue

Residue is derived from floor through the
application of the following identities:

0|B «— B
1|B « B-LB
AlB — Ax1|B+4 for A=0

Figure 1 shows the set of points, X, for
which X=1 MR X. Figure 3 shows
geometrically the computation of 4 MR B.
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.B
e
0
B’=A MR B
Figure 3

Tile 0 is constructed with corners at
Ax1 0J1 0.5J0.5 0.5J 0.5. The plane is
tesselated with such tiles centred on
Ax0.25J0.25+K for each integer X. B is

located in some tile which is translated
to overlay tile 0, with B falling on B'.
B' is A MR B.

Figures 4 and 5 show the similar way in
which HR and FR obtain their results.
Here again there is a close relationship

between HR and FR since HR can be
defined in terms of FH as:
V R<A HR B

[1] R«(A FR B +0.5J0.5xA)~-0.5J0.5xA
v

Notice that in figure 5 part of tile O lies
outside a circle of radius (4 about 0.
This shows the failure of ‘fractionality’
for FF. In figure 3, illustrating MR,
tile O lies just within that radius,
while in figure 4, illustrating HF,
lies well within it.

Extended Definition of Encode
Encode may be defined in terms of residue.
Here are several examples with encode

functions ME, HE, FE.

TEN«10 10 10
CTEN«10J10 10/10 10710

EG+T789.J987
_  _TEN ME EG
8] 1 1J8 1.J7
_ _CTEN ME EG
5J6 2 97
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Tile 0
.B,

U

B™=A HR B

Figure 4
_ _ TEN_HE EG
2 1J 1 1J 3
_  _CTEN HE EG
5774 "1 1J 3
TEN FE EG
7J9 8J8 9J7
CTEN FE EG

T6J6 8J9 ~1J17

It is possible to show that for
sufficiently large X (a function of B)
B=A1(KpA)HE B provided 2<|4. Whether
convergence criteria can be found for ME
and FE remains an open question.
Certainly for positive real A, neither
function converges for negative real B.

Practical Applications
a) Rounding

It is frequently necessary to round real
numbers to a specific number of decimal
places. Presumably complex applications
will require something similar. Rounding
to 0 decimal places (i.e., to the
nearest integer) is trivial with HF:

V R<HRND X
[1] R<HF X
v
and almost as trivial with FF:

V R«FRND X
[1] R<FF 0.5J0.5+X
v
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v

The analogue of this function based on MF
is:

V R<MRND X
(1] ReMF 0.25J0.25+X
v

This function does not round to the
nearest integer in every case however.
For example:

MRND 0.3J0.u4
0J1

HF 0.3J0.4
0

b) Computation of GCD

McDonnell cited finding the GCD of two
numbers as a practical use of residue
and suggested the following function:

Vv X<W GCD Y
[1] X<W
[2] W<W RES Y
[3] Y<X
4] »W=0

v

Provided RES is a residue function derived
from a floor function with
‘fractionality’, the above function will
converge to a GCD of its arguments. For
real arguments, all versions of GCD
converge rapidly (proportional to eWLY
for positive integers). For complex
arguments, however, substituting FR for
RES, GCD does not always converge (e.g.
4L GCD 3J2). Substituting MR for RES, GCD
always converges, but can do so in time
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proportional to the magnitude_of its
arguments (e.g. 99J1 GCD 99J 2 takes 100
iterations). Substituting HR for RES, GCD
continues to converge logarithmically.

c) Computation of Continued Fractions

A. Hurwitz[2] and J. O. Shallit[3] have
both given algorithms for computing
continued fraction expressions for
complex values. Hurwitz’s algorithm was
based on HF; Shallit’s was based on MF.
In his paper Shallit gives a rule for
deciding whether or not a particular
continued fraction expression can be
generated by his algorithm. He
conjectures that no similar rule exists
for Hurwitz’s algorithm.

Conclusion

No complex floor function is perfect. HF
fails to be compatible with the 'present
floor function. FF fails to possess
‘fractionality’ and cannot be extended to
the quaternions. MF fails to have
symmetry or separation.

My feeling is that attempting to choose a
floor function by satisfying identities
puts the cart before the horse. The
point of insisting on identities is to
ensure a useful function. Nevertheless,
the acid test of a primitive must be its
utility - its ability to combine with
the other primitives to form useful
functions.

On this basis, I prefer FF. It can be used
to find the integer parts of a complex
number, or the nearest integer to a
complex number (by using it to express
HF). A GCD function written using FF (by
substituting the FR expression for HR
into GCD) converges faster than any GCD
function written with MR. Similarly
continued fractions found with Hurwtiz’'s
algorithm (easily expressed with FF)
require fewer terms for the same degree
of accuracy than those found with
Shallit’s algorithm. The classic test for
being integral, (LX)=[X, works when FF
and FC are used, but not when MF and MC
are (of course X=|lX fails equally well
under both definitions when X is near
0).

The difficulty in extending these
functions can probably be traced to the
definition of floor X: the largest of
the integers less than or equal to X.
The complex domain is not ordered, so
any attempt to extend such a definition
is bound to be imperfect. Hurwitz's
function which computes the nearest
integer does not suffer from this problem
however. It must resolve equal distances
in some arbitrary fashion, but it has
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this problem even on the reals. There is
a direct analogy with the arbitrary
choice for the phase angle of 1.

My own recommendation is that FF be
adopted for complex floor and that if
and when APL is extended to the
quaternions Hurwitz’s functions be
adopted as primitives also. This latter
recommendation applies even if MF is
eventually chosen as the definition of
complex floor, since there would
otherwise be no convenient expression for
it.
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