

Introduction to Continuous Control Systems

EEME E3601

Week 12

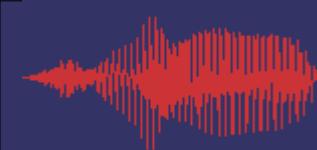
Homayoon Beigi

Homayoon.Beigi@columbia.edu

<https://www.RecoTechnologies.com/beigi>

Mechanical Engineering dept.
&
Electrical Engineering dept.

Columbia University, NYC, NY, U.S.A.



Intro. to Continuous Control

homayoon.beigi@columbia.edu

Root Locus Plots (Review)

Closed-loop transfer function

$$\frac{Y(s)}{R(s)} = \frac{C(s)G(s)}{1 + C(s)G(s)H(s)}$$

Closed-loop characteristic equation

$$1 + C(s)G(s)H(s) = 0$$

Assume $C(s)G(s)H(s)$ has a free parameter, K

$$\begin{aligned} 1 + C(s)G(s)H(s) &= 1 + \frac{KQ(s)}{P(s)} \\ &= \frac{P(s) + KQ(s)}{P(s)} \\ &= 0 \end{aligned}$$

Diagram illustrating the root locus plot:

- Root locus plot showing poles (red 'x') and zeros (green circles) of the characteristic equation $P(s) + KQ(s) = 0$.
- Free parameter K is varied along the locus.
- Feedback path: $H(s)$ (green) and $C(s)G(s)$ (red).
- Forward path: $C(s)G(s)H(s)$ (red).
- Block diagram of the system.

Root Locus Plots (Review)

$$\begin{aligned}
 C(s)G(s)H(s) &= \frac{KC_1(s)G_1(s)H_1(s)}{(s+p_1)(s+p_2)\cdots(s+p_n)} \\
 &= \frac{K(s+z_1)(s+z_2)\cdots(s+z_m)}{(s+p_1)(s+p_2)\cdots(s+p_n)}
 \end{aligned}$$

Use to draw Root Loci

$$\begin{aligned}
 \angle C_1(s)G_1(s)H_1(s) &= \sum_{j=1}^m \angle(s + z_j) - \sum_{k=1}^n \angle(s + p_k) \\
 &= (2l + 1)\pi \quad \text{where } K \geq 0
 \end{aligned}$$

$$\frac{p_1}{p_2} e^{i\theta_1 - \pi}$$

$$\begin{aligned}
 \angle C_1(s)G_1(s)H_1(s) &= \sum_{j=1}^m \angle(s + z_j) - \sum_{k=1}^n \angle(s + p_k) \\
 &= 2l\pi \quad \text{where } K \leq 0
 \end{aligned}$$

where $l \in \{0, \pm 1, \pm 2, \dots\}$

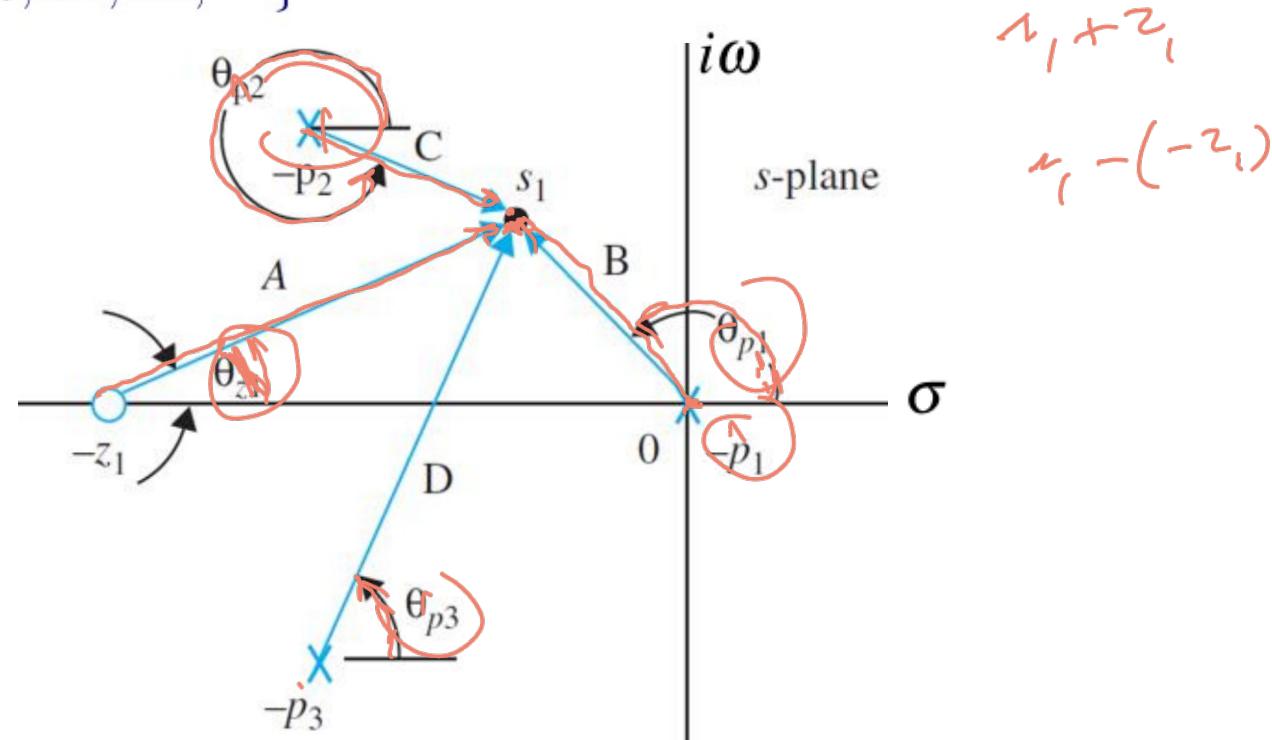
Root Locus Plots

Example

Take an arbitrary point, s_1 , then if s_1 is a point on the Root Locus, the following equation must be satisfied for the case where $K \geq 0$

$$\angle(s_1 + z_1) - \angle s_1 - \angle(s_1 + p_2) - \angle(s_1 + p_3) = \theta_{z_1} - \theta_{p_1} - \theta_{p_2} - \theta_{p_3} = (2l + 1)\pi$$

where $l \in \{0, \pm 1, \pm 2, \dots\}$



Root Locus Plots (Review)

$$F(s) = P(s) + KQ(s) = 0$$

$$(C_1(s)G_1(s)H_1(s)) = -\frac{1}{K} \quad (C_1 G_1 H_1 = 0)$$

$$C(s)G(s)H(s) = KC_1(s)G_1(s)H_1(s) \quad \text{where } -\infty < K < \infty$$

$$\frac{|C_1(s)G_1(s)H_1(s)|}{|C(s)G(s)H(s)|} = \frac{\prod_{j=1}^m |s + z_j|}{\prod_{k=1}^n |s + p_k|} = \frac{1}{|K|}$$

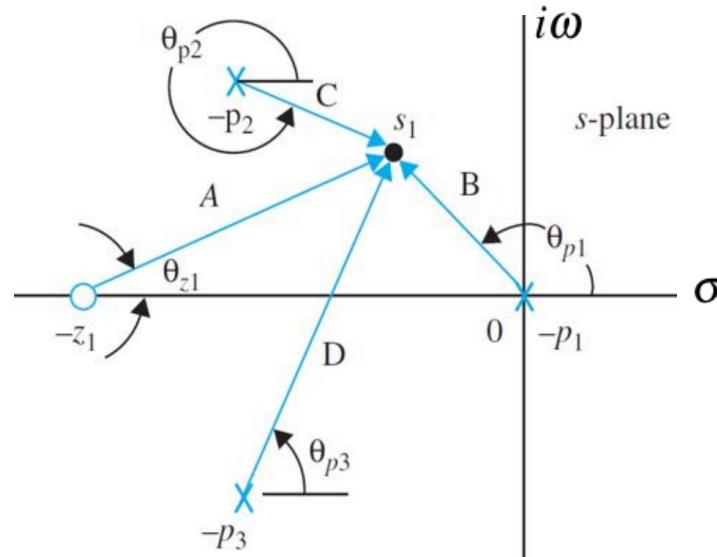
$$|K| = \frac{\prod_{k=1}^n |s + p_k|}{\prod_{j=1}^m |s + z_j|}$$

$fe^{i\theta}$

$\Theta_2 - \Theta_P$

Root Locus Plots

Example



Once s_1 satisfies the angle relation, the gain, K , may be found by the following,

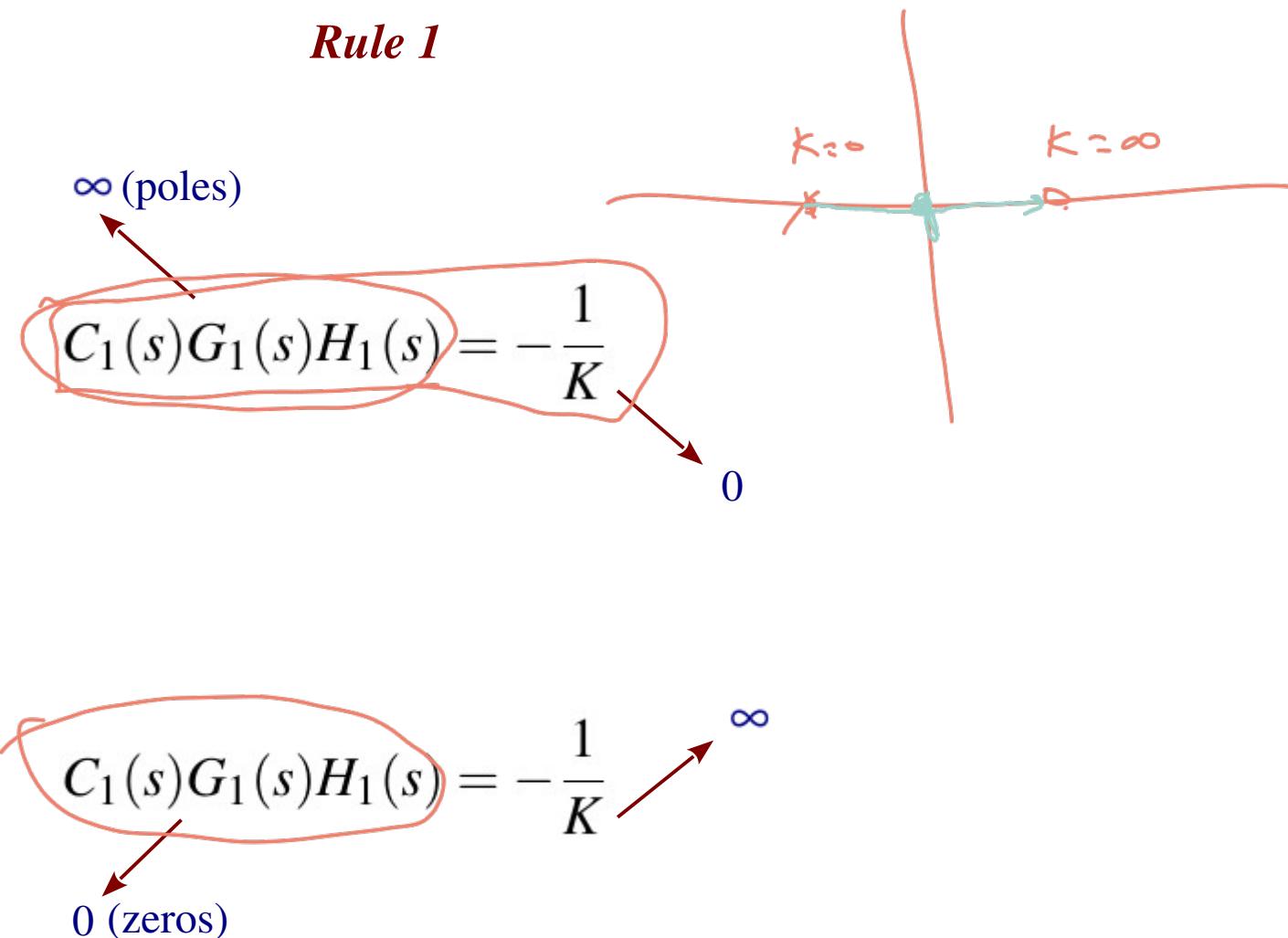
$$|K| = \frac{|s_1| |s_1 + p_2| |s_1 + p_3|}{|s_1 + z_1|} = \frac{B \times C \times D}{A}$$

$\frac{|r(r+p_2)(r+p_3)|}{|(r+z_1)|}$

The sign of K is determined by which angle relation the point satisfies (odd multiple of π : positive, even multiple of π : negative)

Root Locus Plots

Rule 1



Intro. to Continuous Control

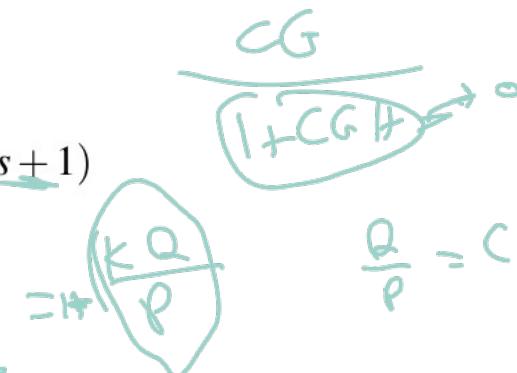
homayoon.beigi@columbia.edu

8

Root Locus Plots

Example

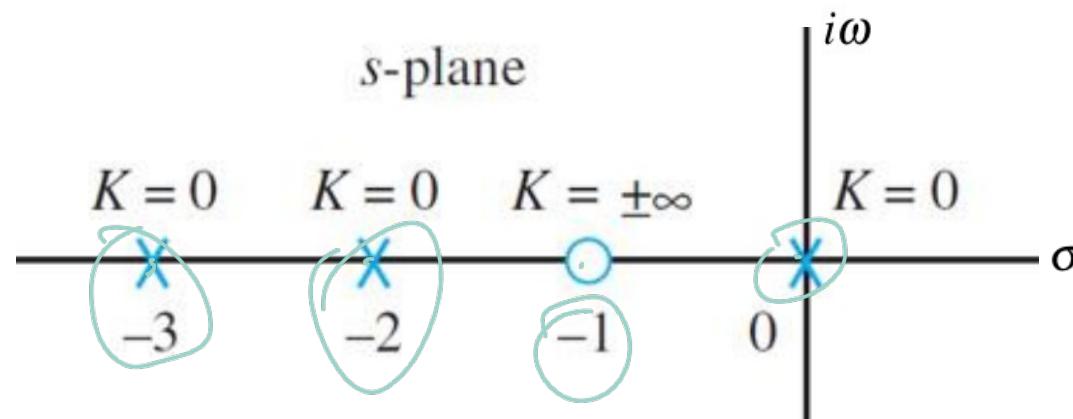
$$\begin{aligned}1 + C(s)G(s)H(s) &= \frac{s(s+2)(s+3) + K(s+1)}{0} \\&= 1 + \frac{K(s+1)}{s(s+2)(s+3)}\end{aligned}$$



$$\frac{Q}{P} = C_1 G_1 H_1$$

$$C(s)G(s)H(s) = \frac{K(s+1)}{s(s+2)(s+3)}$$

$$C_1(s)G_1(s)H_1(s) = -\frac{1}{K}$$



Root Locus Plots

Rule 2

Number of Branches

Number of branches of Root Loci is equal to the degree of the polynomial

Example

$$\begin{aligned}1 + C(s)G(s)H(s) &= s(s+2)(s+3) + K(s+1) \\&= 0 \\&= 1 + \frac{K(s+1)}{s(s+2)(s+3)}\end{aligned}$$

Number of branches = degree of the above polynomial = 3

Namely, it is *max(m,n)*

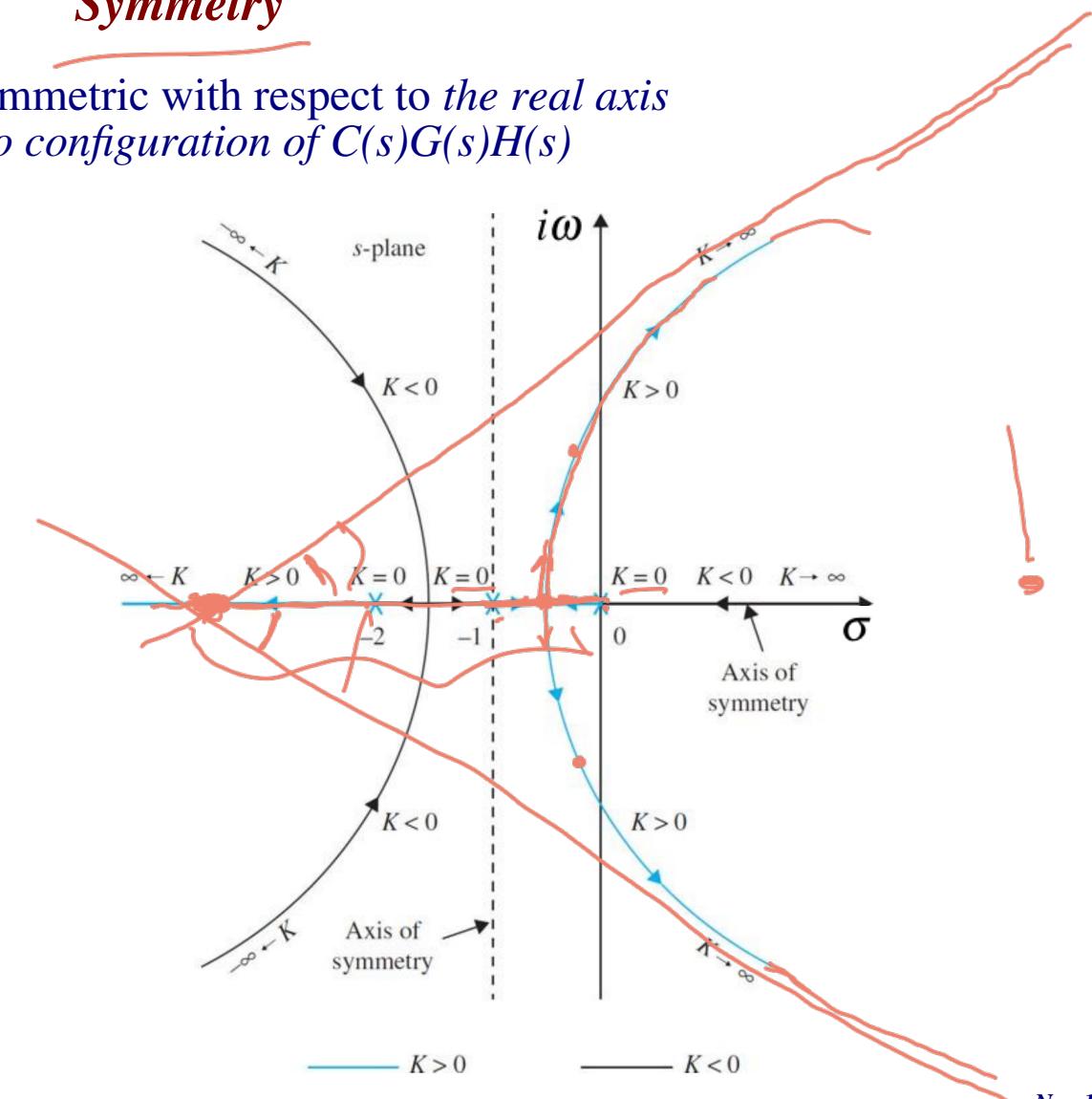
Root Locus Plots

Rule 3 Symmetry

Root Loci are symmetric with respect to *the real axis and the pole-zero configuration of $C(s)G(s)H(s)$*

Example 1

$$C(s)G(s)H(s) = \frac{K}{s(s+2)(s+3)}$$



Root Locus Plots

Rule 3

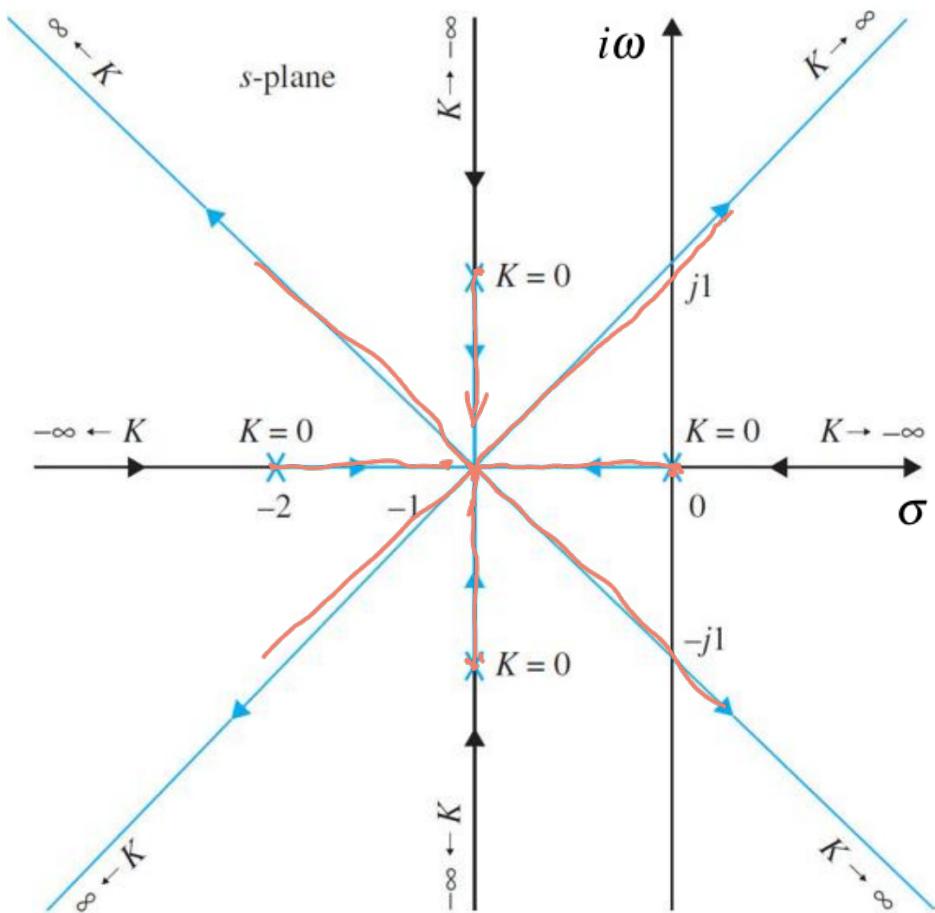
Symmetry

Root Loci are symmetric with respect to the real axis and the *pole-zero configuration of $C(s)G(s)H(s)$*

Example 2

$$\begin{aligned}1 + C(s)G(s)H(s) &= s(s+2)(s^2 + 2s + 2) + K \\&= 0 \\&= s(s+2)(s+1+i)(s+1-i) + K \\&= 1 + \frac{K}{s(s+2)(s+1+i)(s+1-i)}\end{aligned}$$

$$C(s)G(s)H(s) = \frac{K}{s(s+2)(s+1+i)(s+1-i)}$$



Root Locus Plots

Rule 4

Angles of Asymptotes with the real axis

Asymptotes of Root Loci (behavior of root loci at $|s| = \infty$)

Asymptotes angles for $K \geq 0$ are given by

$$\theta_l = \frac{(2l + 1)}{|n - m|} \times \pi \quad \forall n \neq m \quad \text{where } k \geq 0$$
$$\theta_l = \frac{2l}{|n - m|} \times \pi \quad \forall n \neq m \quad \text{where } k \leq 0$$
$$l \in \{0, 1, \dots, |n - m| - 1\}$$

There will be $2|n-m|$ asymptotes for $n \neq m$

Root Locus Plots

Rule 5

Intersection of the Asymptotes with the real axis

Asymptotes of Root Loci (behavior of root loci at $|s| = \infty$)

$$\sigma_1 = \frac{\sum \text{Finite Poles of CGH} - \sum \text{Finite Zeros of CGH}}{n-m}$$
$$= \frac{\sum \Re\{\text{Poles of CGH}\} - \sum \Re\{\text{Zeros of CGH}\}}{n-m}$$

Center of Gravity of Root Loci (Always Real)

Complex conjugate imaginary parts sum to 0

Root Locus Plots

Rule 5

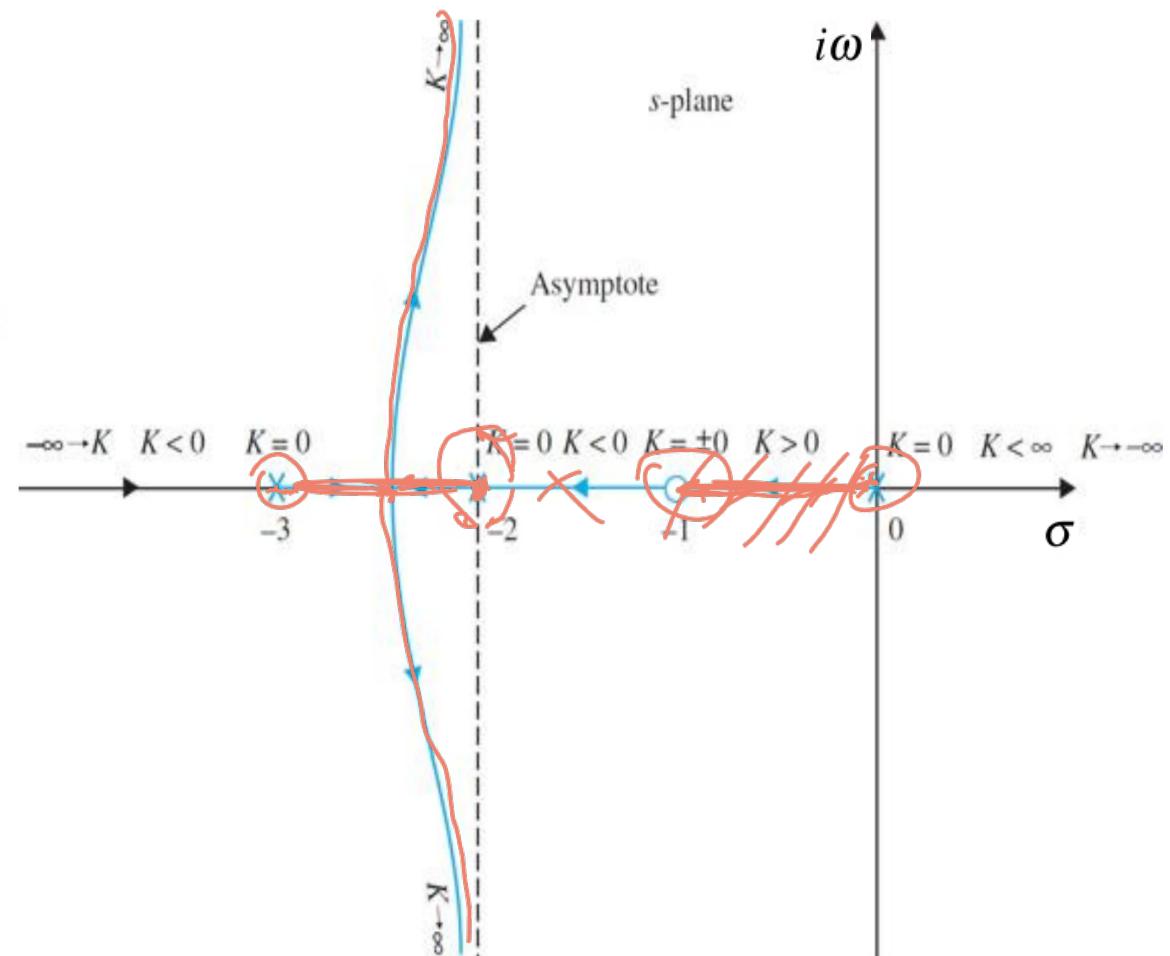
Intersection of the Asymptotes with the real axis

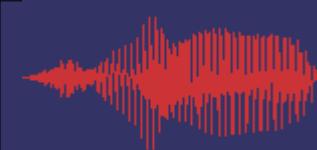
Asymptotes of Root Loci (behavior of root loci at $|s| = \infty$)

Example

$$\begin{aligned}1 + C(s)G(s)H(s) &= s(s+2)(s+3) + K(s+1) \\&= 0 \\&= 1 + \frac{K(s+1)}{s(s+2)(s+3)}\end{aligned}$$

$$C(s)G(s)H(s) = \frac{K(s+1)}{s(s+2)(s+3)}$$





Intro. to Continuous Control

homayoon.beigi@columbia.edu

$$\sigma_1 = \frac{\sum \text{Finite Poles of CGH} - \sum \text{Finite Zeros of CGH}}{n-m}$$

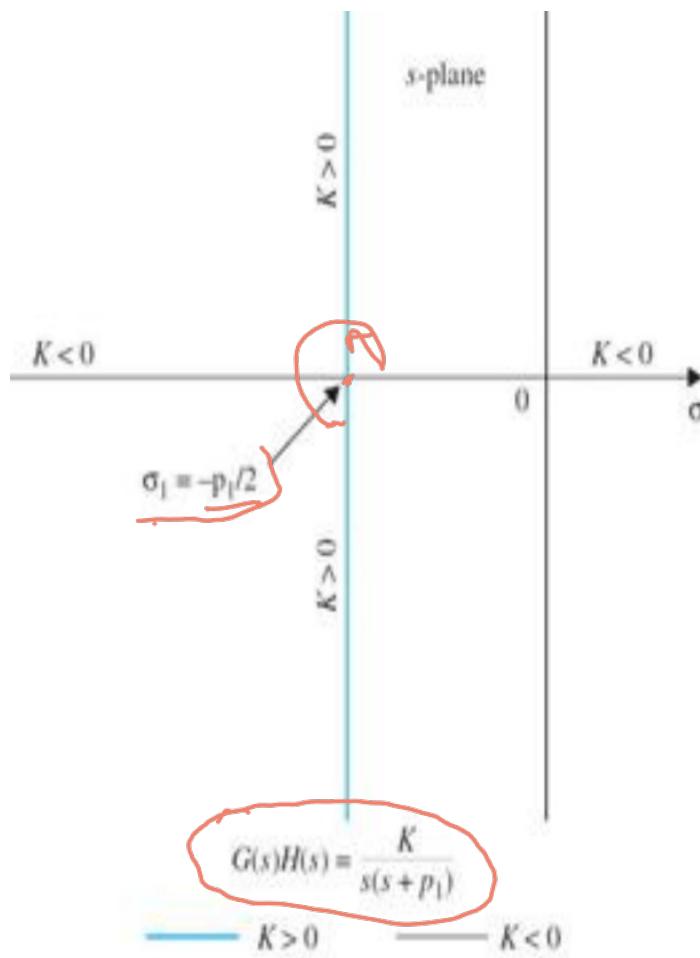
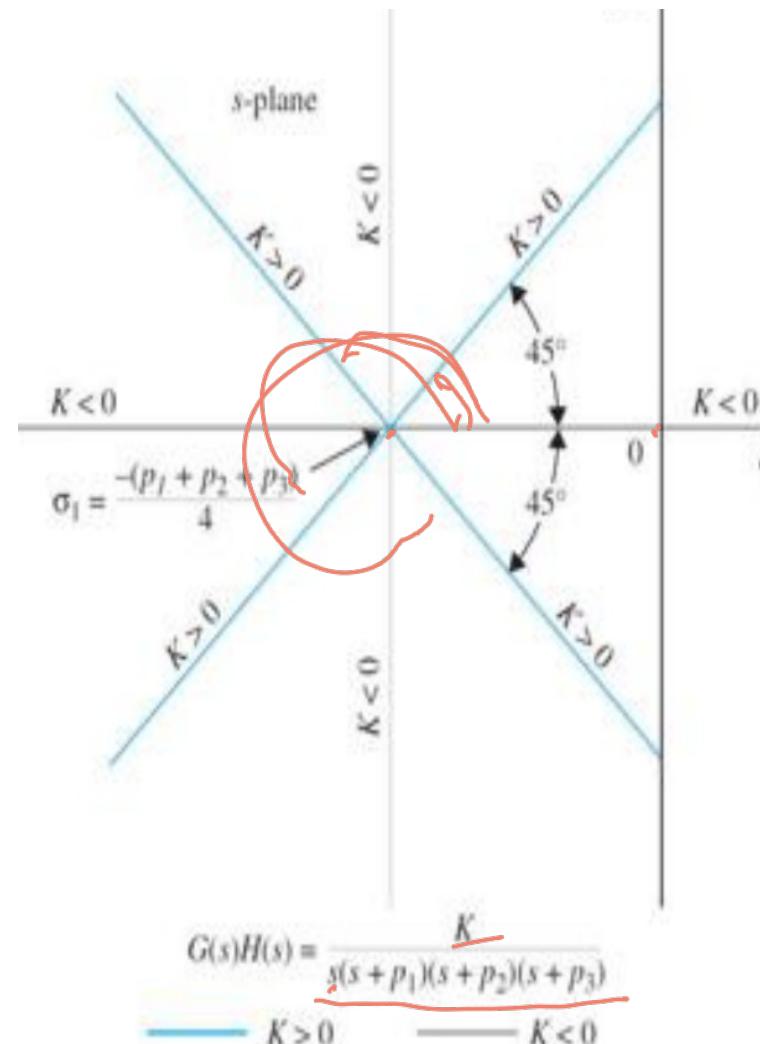
$$= \frac{\sum \Re\{ \text{Poles of CGH} \} - \sum \Re\{ \text{Zeros of CGH} \}}{n-m}$$

Root Locus Plots Rules 4,5

Intersection of the Asymptotes with the real axis

$$\theta_l = \frac{(2l+1)}{|n-m|} \times \pi \quad \forall n \neq m$$

15



Intro. to Continuous Control

homayoon.beigi@columbia.edu

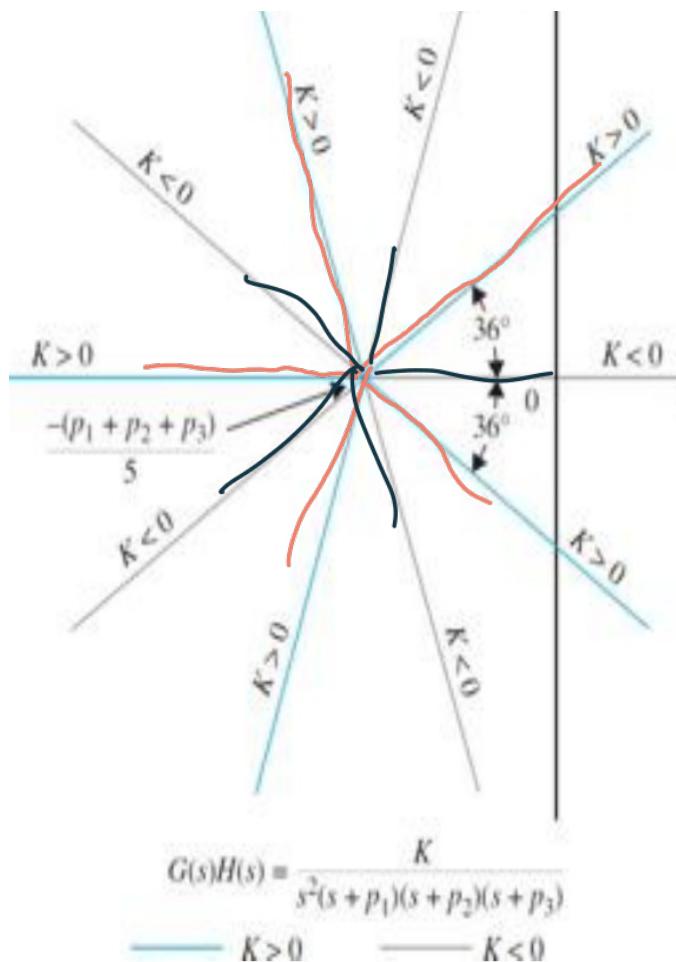
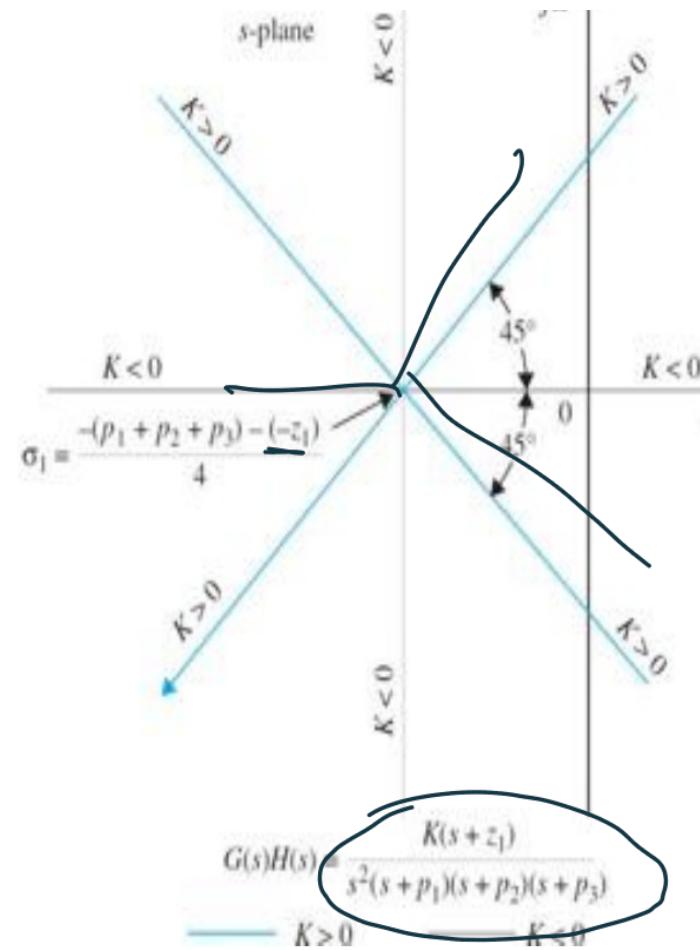
16

$$\sigma_1 = \frac{\sum \text{Finite Poles of CGH} - \sum \text{Finite Zeros of CGH}}{n-m}$$

$$\gamma = \frac{\sum \Re\{ \text{Poles of CGH} \} - \sum \Re\{ \text{Zeros of CGH} \}}{n-m}$$

Root Locus Plots Rules 4,5

Intersection of the Asymptotes with the real axis



Root Locus Plots

Rules 4,5

Intersection of the Asymptotes with the real axis

Example

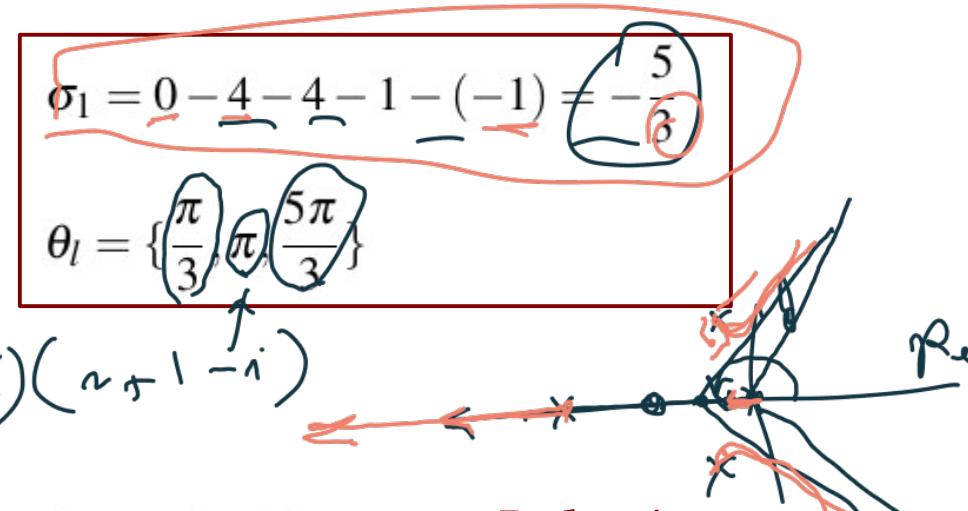
Asymptotes of the root loci of $s(s+4)(s^2+2s+2) + K(s+1) = 0$

$$\begin{aligned} s(s+4)(s^2+2s+2) + K(s+1) &= 0 \\ 1 + \frac{K(s+1)}{s(s+4)(s^2+2s+2)} &= 0 \end{aligned}$$

$$G_1(s)H_1(s) = \frac{s+1}{s(s+4)(s^2+2s+2)} \rightarrow (s+1)(s+1-i)(s+1+i)$$

$$\theta_l = \frac{(2l+1)}{|n-m|} \times \pi \quad \forall n \neq m \quad l \in \{0, 1, \dots, |n-m|-1\}$$

$$\begin{aligned} \sigma_1 &= \frac{\sum \text{Finite Poles of CGH} - \sum \text{Finite Zeros of CGH}}{n-m} \\ &= \frac{\sum \Re\{\text{Poles of CGH}\} - \sum \Re\{\text{Zeros of CGH}\}}{n-m} \end{aligned}$$



Rules 4

Rules 5

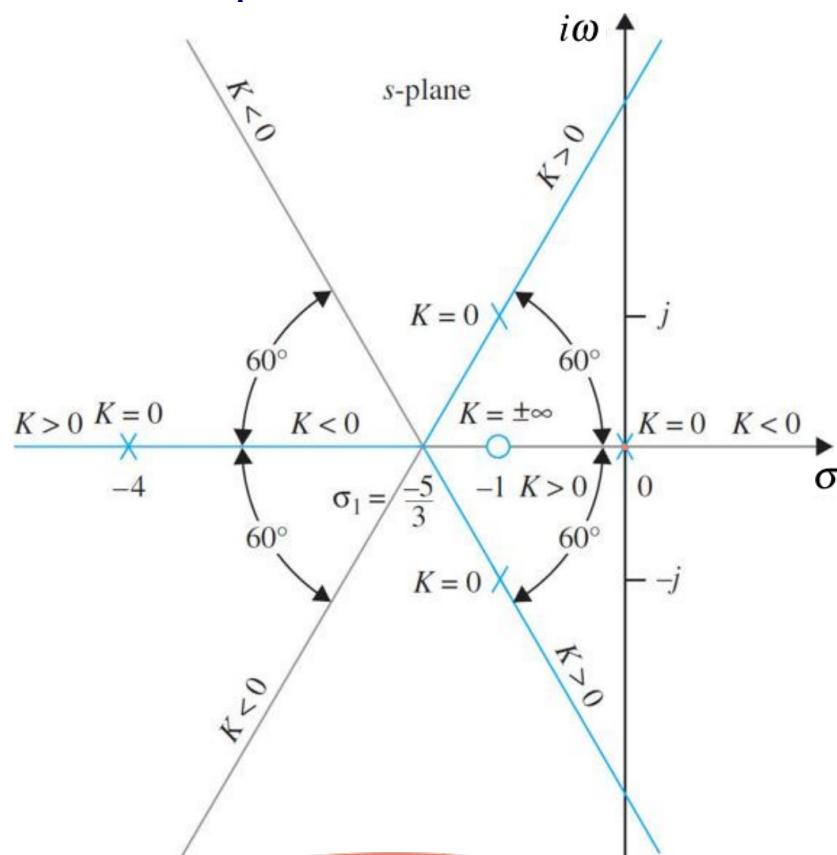
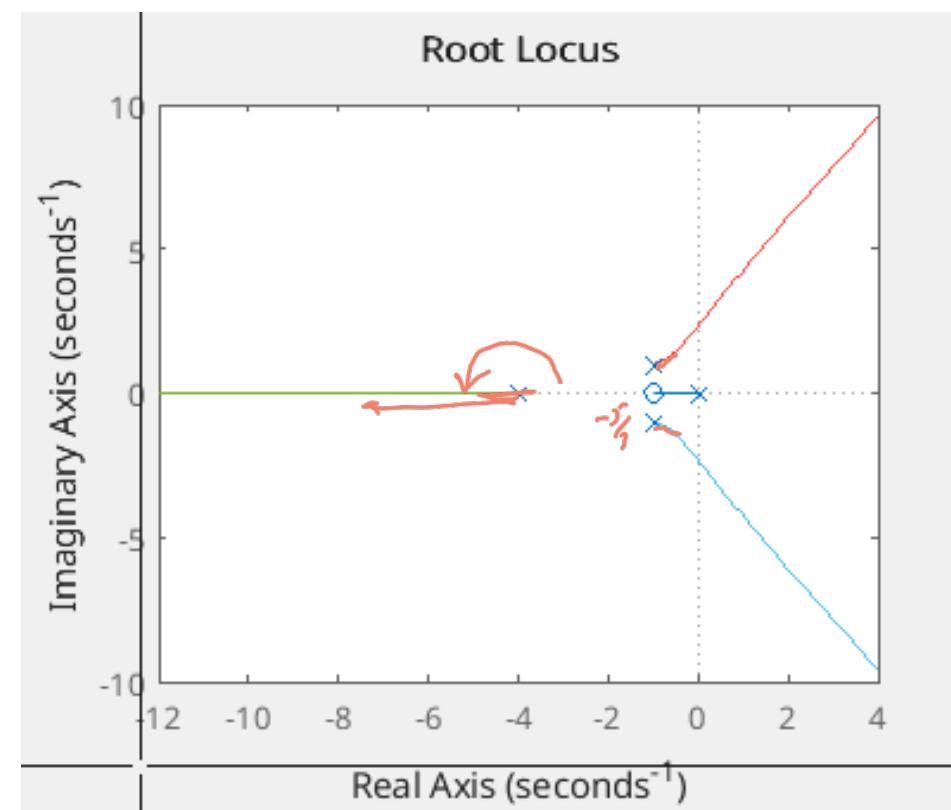
Root Locus Plots

Rules 4,5

Intersection of the Asymptotes with the real axis

Example

Asymptotes of the root loci of $s(s + 4)(s^2 + 2s + 2) + K(s + 1) = 0$



Root Locus Plots

Rule 5

Intersection of the Asymptotes with the real axis

Asymptotes of Root Loci (behavior of root loci at $|s| = \infty$)

rlocus_example_rule5-1.m

% This example is based on Golnaraghi-Kuo Edition 10 p.532 Toolbox Fig. 9-5

```
PolynQ=[1 1]; % Numerator
PolynP=conv([1 0],[1 2]) % Denominator
PolynP=conv(PolynP,[1 3]) % Denominator
```

```
%\frac{Q(s)}{P(s)}
TFG = tf(PolynQ,PolynP); % Open loop transfer function
```

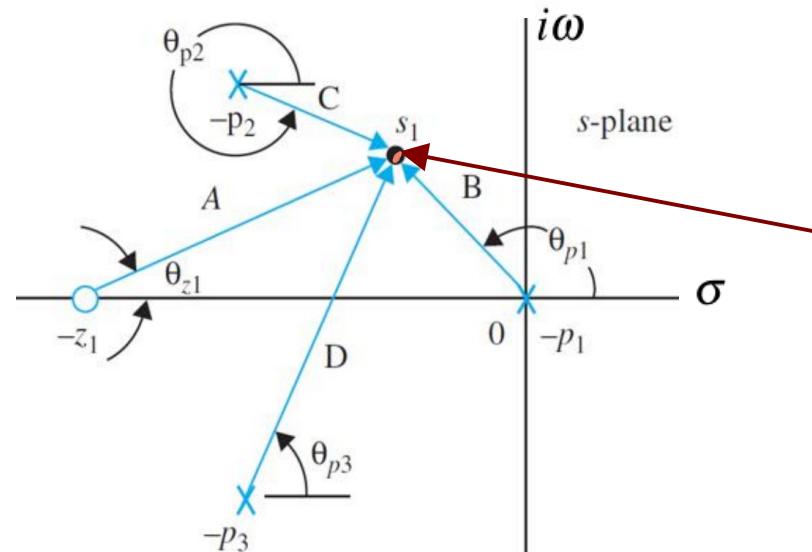
```
rlocus(TFG);
axis([-3 0 -8 8])
```

```
[K,poles] = rlocfind(TFG) %rcocfind allow us to choose desired poles on the root locus
```


Root Locus Plots

Rules 6

Angles of arrival and departure of Root Loci



Use the pole of interest
in the place of s_1
to compute its angle of
departure (or zero for
angle of arrival)

Use to draw
Root Loci

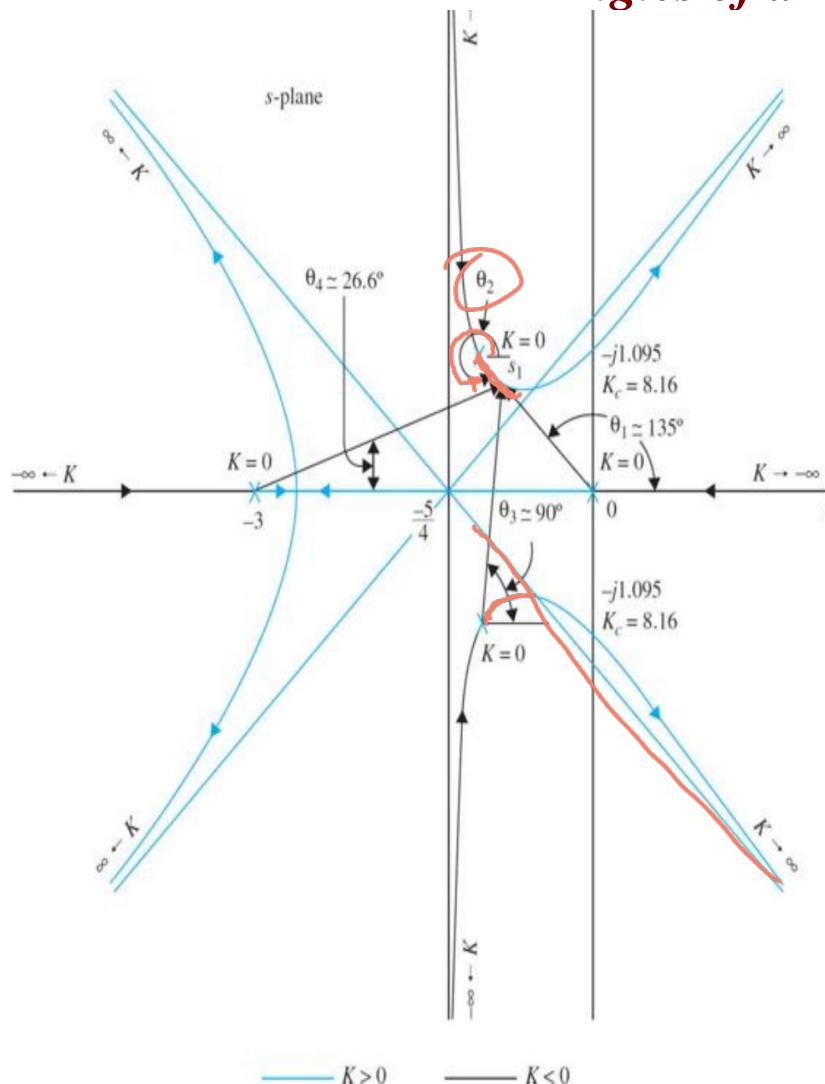
$$\begin{aligned}\angle C_1(s)G_1(s)H_1(s) &= \sum_{j=1}^m \angle(s + z_j) - \sum_{k=1}^n \angle(s + p_k) \\ &= (2l + 1)\pi \quad \text{where } K \geq 0 \\ \angle C_1(s)G_1(s)H_1(s) &= \sum_{j=1}^m \angle(s + z_j) - \sum_{k=1}^n \angle(s + p_k) \\ &= 2l\pi \quad \text{where } K \leq 0\end{aligned}$$

where $l \in \{0, \pm 1, \pm 2, \dots\}$

Root Locus Plots

Rules 6

Angles of arrival and departure of Root Loci



Root loci of $s(s + 3)(s^2 + 2s + 2) + K = 0$ to illustrate the angles of departure or arrival

$$s(s+3)(s+1+i)(s+1-i) + K = 0$$

$$\begin{aligned}
 -\theta_2 &= (2l+1) \times 180^\circ + (135^\circ + 90^\circ + 26.6^\circ) \\
 &= -(2 \times -1 + 1) \times 180^\circ + 251.60^\circ \\
 &= 71.60^\circ
 \end{aligned}$$

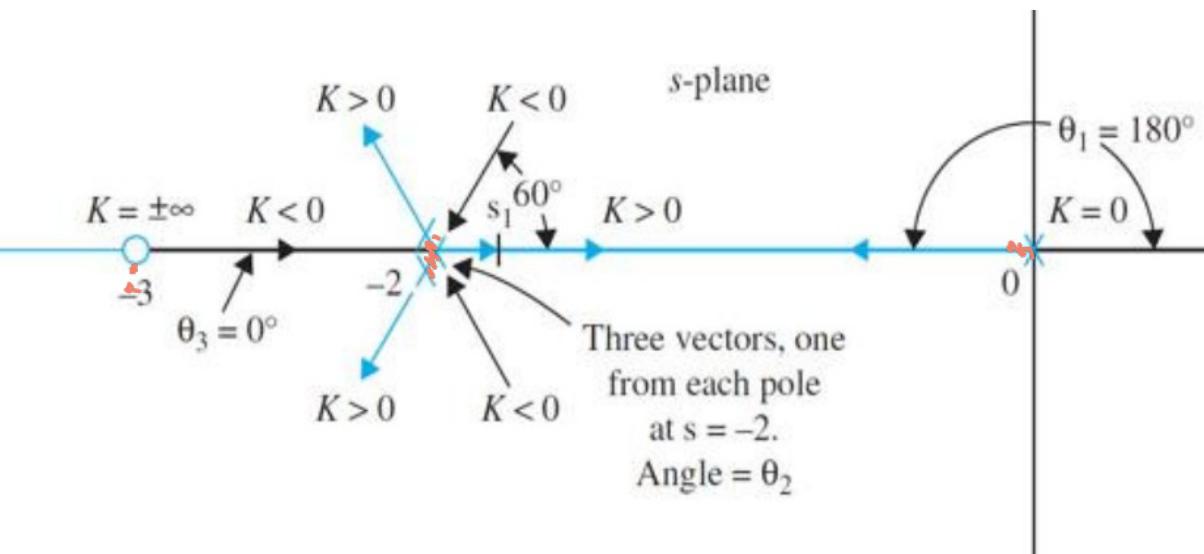
$$\begin{aligned}\theta_2 &= -71.60^\circ \\ &= 288.40^\circ\end{aligned}$$

rlocus_example_rule6-1.m

Root Locus Plots

Rules 6

Angles of arrival and departure of Root Loci



Angles of departure and arrival at a third-order pole
Three poles repeated at $s = -2$

$$s(s+2)^3 + K(s+3) = 0$$

$$\angle G_1(s)H_1(s) = \theta_{z1} - (\theta_{p1} + 3 \times \theta_{p2}) = (2l+1)\pi$$

$$1 + \frac{K(s+3)}{s(s+2)^3} = 0$$

$$\begin{aligned} 3 \times \theta_{p2} &= (2l+1) \times \pi + (\pi - \pi) \\ &= \pi, 3\pi, 5\pi \end{aligned}$$

$$G_1(s)H_1(s) = \frac{s+3}{s(s+2)^3}$$

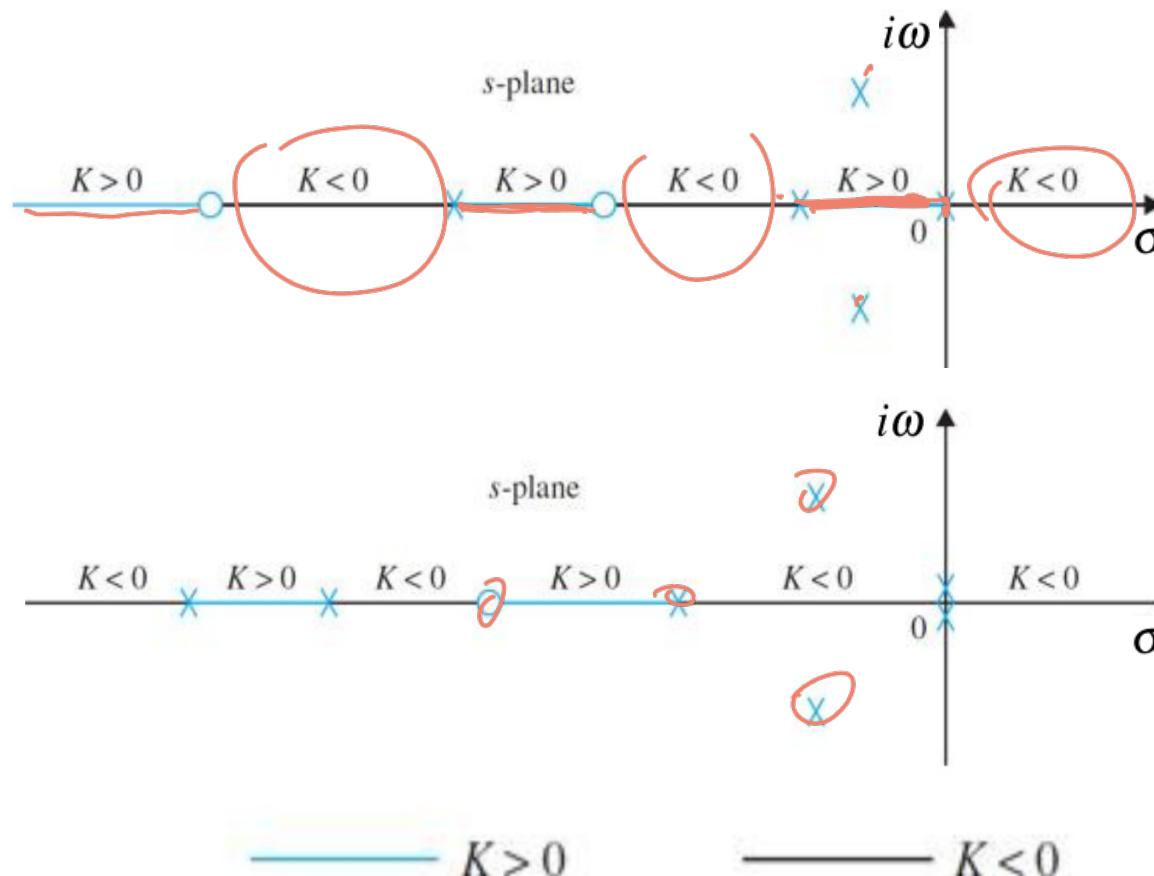
$$\theta_{p2} = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$$

rlocus_example_rule6-2.m

Root Locus Plots

Rules 7

Properties on the real axis – Always to the left of odd number of poles or zeros



Intro. to Continuous Control

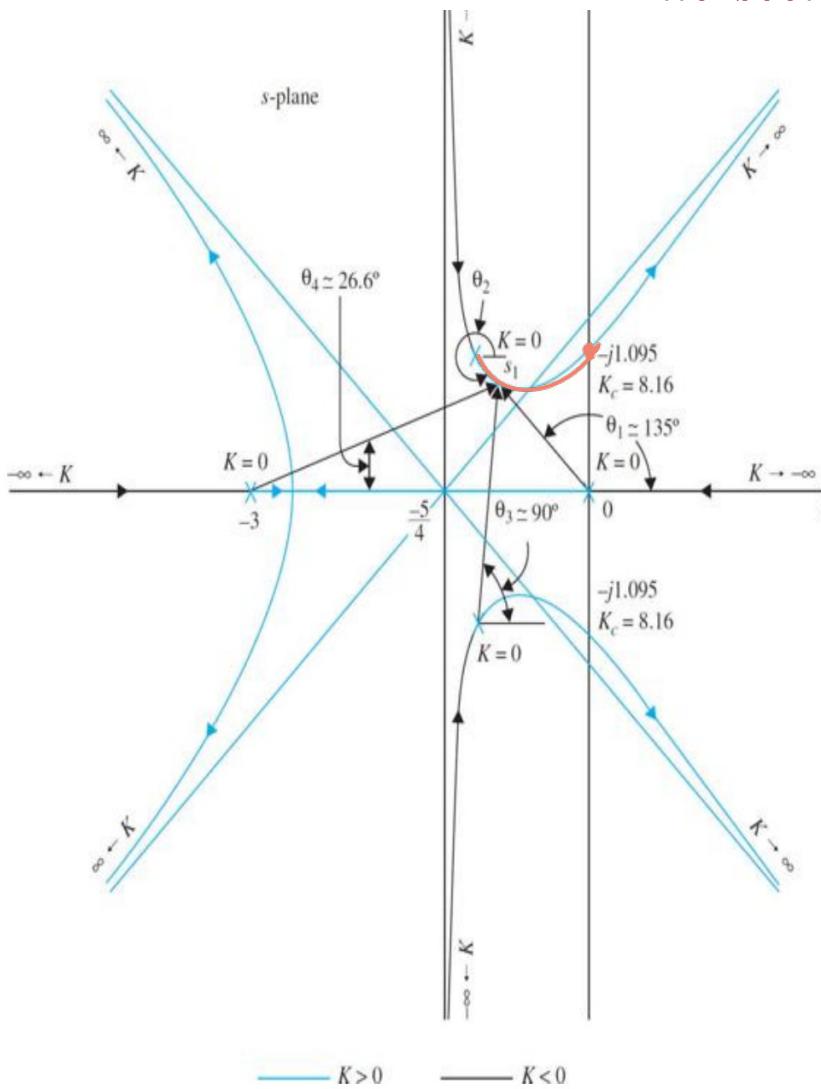
homayoon.beigi@columbia.edu

24

Root Locus Plots

Rules 8

Intersection with the Imaginary Axis



$$s(s+3)(s^2 + 2s + 2) + K = 0$$

$$\textcircled{1} s(s+3)(s^2 + 2s + 2) = -K$$

$$\textcircled{2} i\omega(i\omega + 3)((i\omega)^2 + 2i\omega + 2) = -K$$

$$(-\omega^2 + 3i\omega)(-\omega^2 + 2i\omega + 2) = -K$$

$$\omega^4 - 2\omega^3i - 2\omega^2 - 3i\omega^2 - 6\omega^2 + 6i\omega = -K$$

$$\omega^4 - 5\omega^3i - 8\omega^2 + 6\omega i = -K$$

$$\omega^2(\omega^2 - 8) + \omega(-5\omega^2 + 6)i = -K$$

$$\omega^2 = \frac{6}{5}$$

$$\omega^2 \rightarrow 6 = 0$$

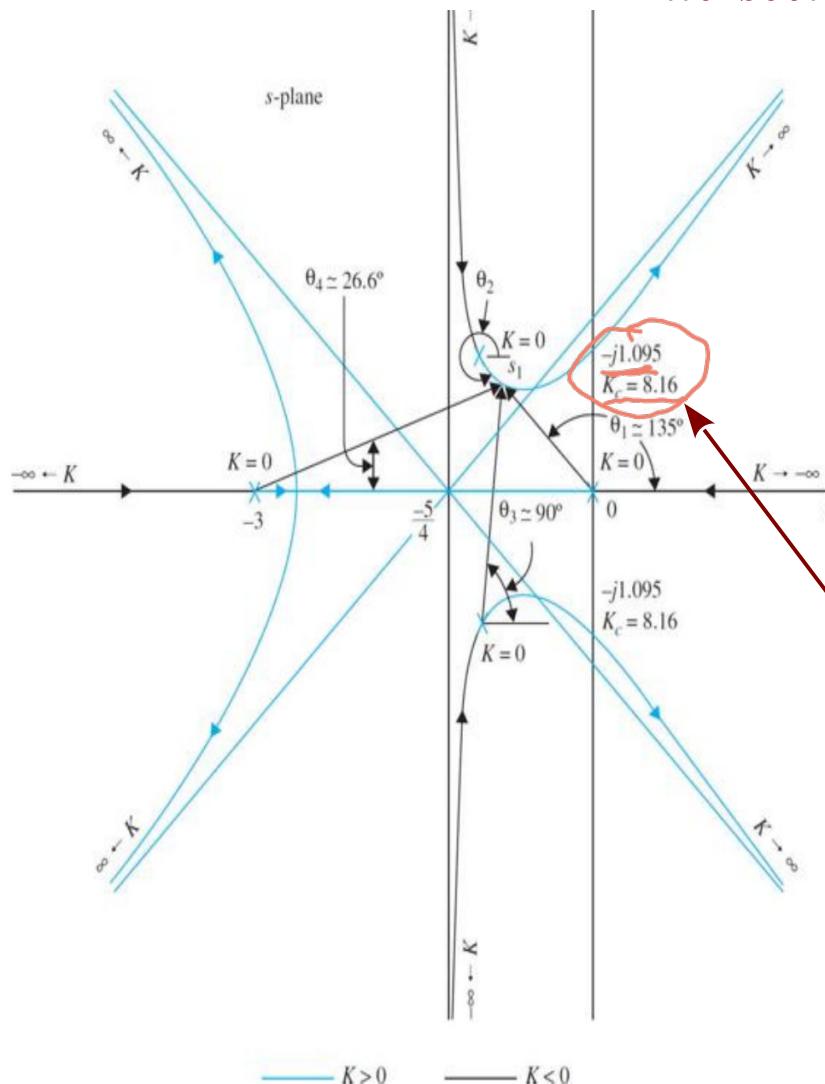
$$\boxed{\omega = \pm \sqrt{\frac{6}{5}}}$$

$$\omega^2 = \frac{6}{5}$$

Root Locus Plots

Rules 8

Intersection with the Imaginary Axis



$$\omega = \pm \sqrt{\frac{6}{5}}$$

$$\omega^2(\omega^2 - 8)$$

$$\frac{6}{5} \left(\frac{6}{5} - 8 \right) = -K$$

$$\frac{36}{25} - \frac{48}{5} = -K$$

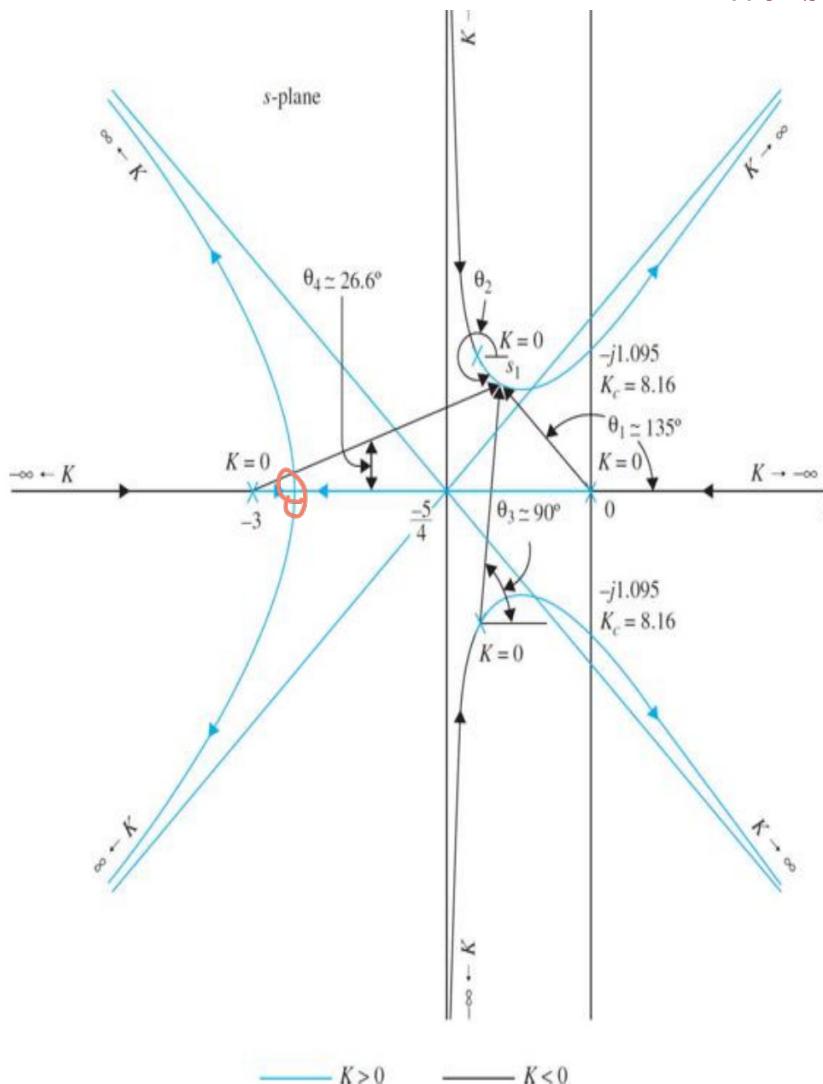
$$\begin{aligned} K &= \frac{48}{5} - \frac{36}{25} \\ &= 8.16 \end{aligned}$$

rlocus_example_rule9-1.m
(program rule9-1 also
shows rule 8)

Root Locus Plots

Rules 9

Intersection with the Real Axis



The location where the root locus intersects the real axis is when,

$$\frac{dG_1(s)H_1(s)}{ds} = \frac{d(s(s+3)(s^2+2s+2))}{ds} = 0$$

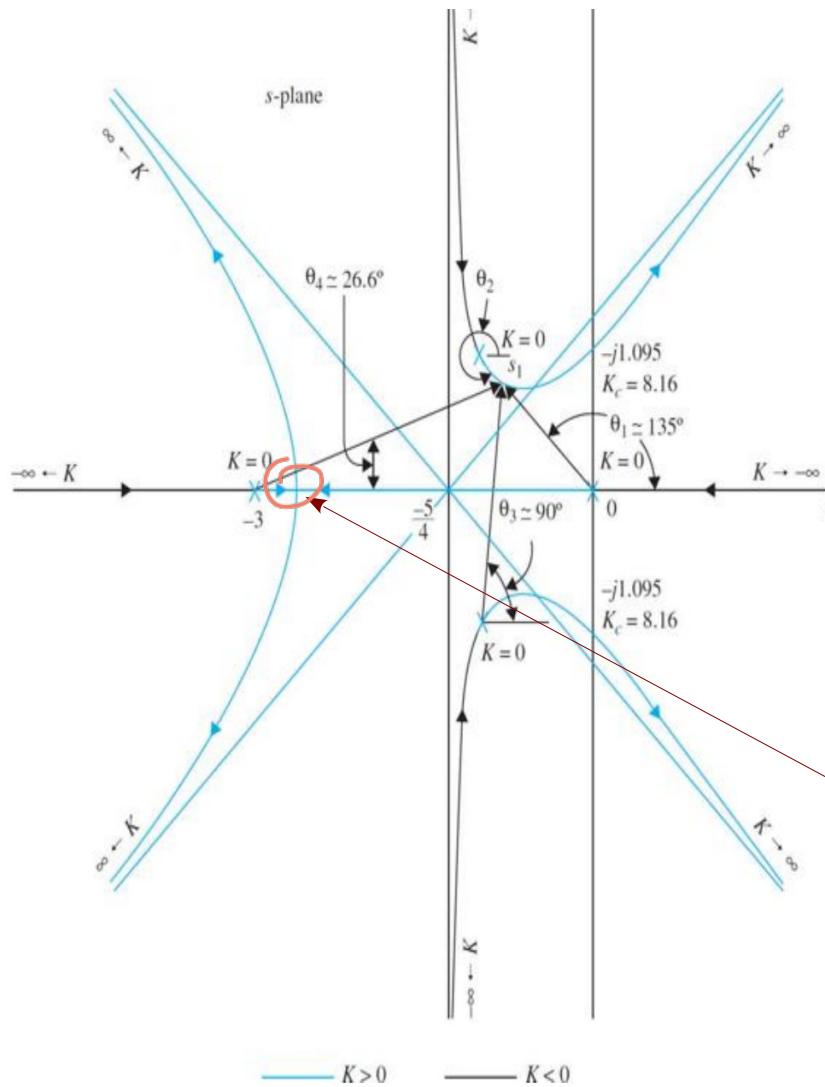
The value of K at the intersection is computed by ensuring that the solution of the above is used in the original closed loop characteristic equation,

$$1 + KG_1(s)H_1(s) = 0$$

Root Locus Plots

Rules 9

Intersection with the Real Axis



The location where the root locus intersects the real axis is when,

$$\frac{dG_1(s)H_1(s)}{ds} = \frac{d(s(s+3)(s^2+2s+2))}{ds} = 0$$

$$\begin{aligned} s(s+3)(s^2+2s+2) &= (s^2+3s)(s^2+2s+2) \\ &= s^4 + 2s^3 + 2s^2 + 3s^3 + 6s^2 + 6s \\ &= s^4 + 5s^3 + 8s^2 + 6s \end{aligned}$$

$$\begin{aligned} \frac{d(s^4 + 5s^3 + 8s^2 + 6s)}{ds} &= \frac{4s^3 + 15s^2 + 16s + 6}{ds} = 0 \\ &= 0 \end{aligned}$$

$$s_1 = -2.2886 \quad s_{2,3} = -0.7307 \pm 0.3486i$$

Intersection point

rlocus_example_rule9-1.m

Intro. to Continuous Control

homayoon.beigi@columbia.edu

28

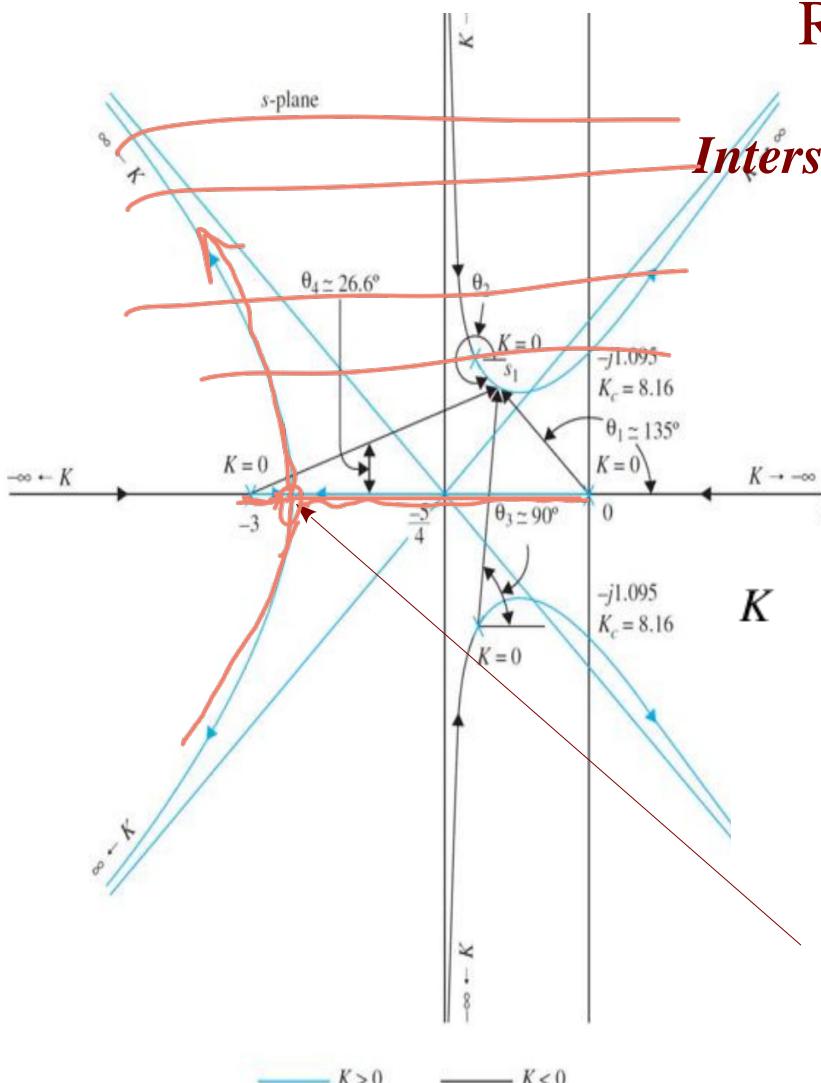
Root Locus Plots

Rules 9

Intersection with the Real Axis

The location where the root locus intersects the real axis is when,

$$1 + KG_1(s)H_1(s) = 0$$



$$\begin{aligned} K &= -\frac{1}{s(s+3)(s^2+2s+2)} \\ &= -\frac{1}{(-2.886)(-2.2886+3)((-22.2886)^2+2(-2.2886)+2)} \\ &= \frac{1}{4.33157} \\ &= 0.23 \end{aligned}$$

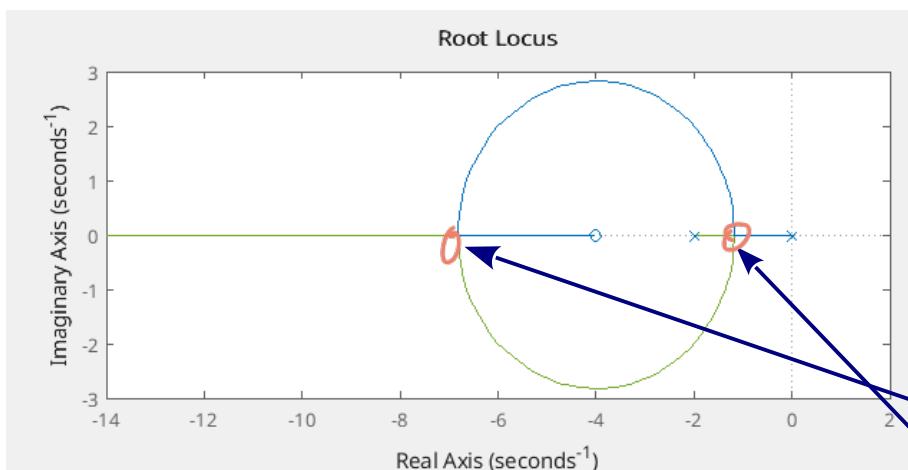
Root Locus Plots

Rules 9

Intersection with the Real Axis

The location where the root locus intersects the real axis is when,

$$\begin{aligned} \frac{dG_1(s)H_1(s)}{ds} &= \frac{d\left(\frac{s+4}{s(s+2)}\right)}{ds} \\ &= \frac{s(s+2) - 2(s+1)(s+4)}{s^2(s+2)^2} \\ &= \frac{s^2 + 2s - 2[s^2 + 5s + 4]}{s^2(s+2)^2} \\ &= \frac{-s^2 - 8s - 8}{s^2(s+2)^2} \\ &= 0 \\ \therefore s^2 + 8s + 8 &= 0 \\ s_1 &= -1.172 \quad s_2 = -6.6828 \\ \text{Intersection points} \end{aligned}$$



Root Locus Plots

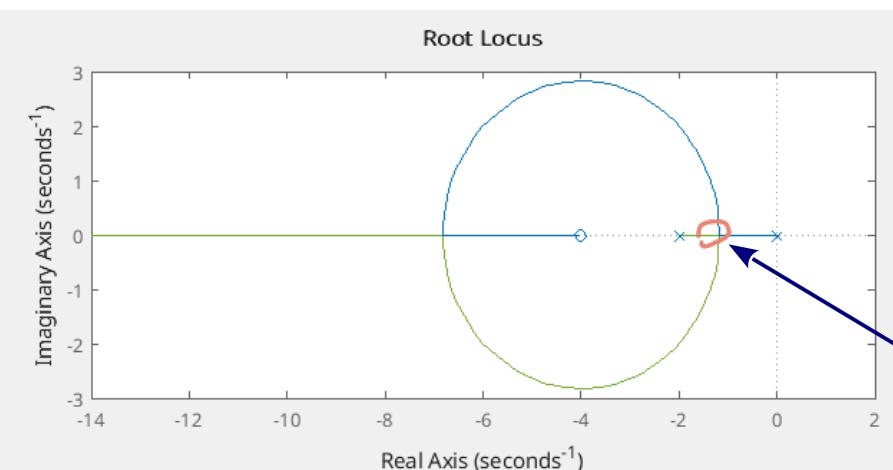
Rules 9

Intersection with the Real Axis

The location where the root locus intersects the real axis is when,

$$1 + K_1 G_1(s_1) H_1(s_1) = 0$$

$$\begin{aligned} K_1 &= -\frac{s_1(s_1 + 2)}{s_1 + 4} \\ &= -\frac{-1.172 \times (-1.172 + 2)}{(-1.172 + 4)} \\ &= \frac{0.97}{2.28} \\ &= 0.426 \end{aligned}$$



Root Locus Plots

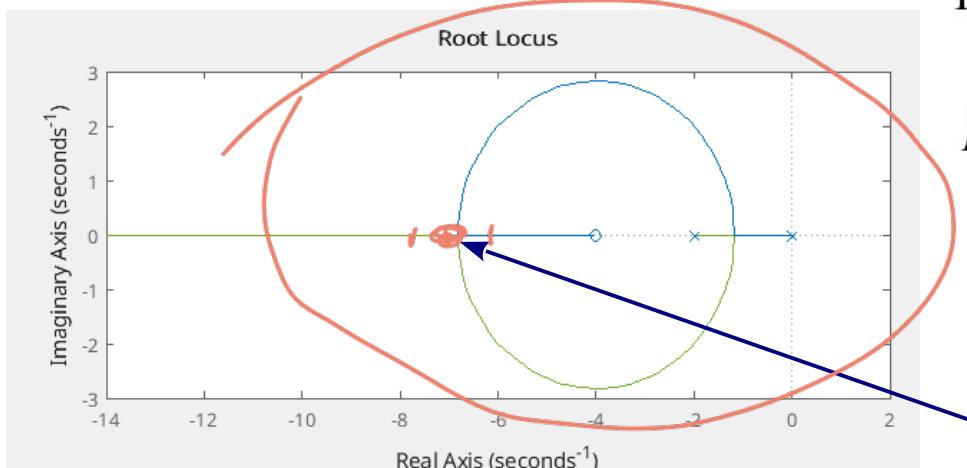
Rules 9

Intersection with the Real Axis

The location where the root locus intersects the real axis is when,

$$1 + K_2 G_1(s_2) H_1(s_2) = 0$$

$$\begin{aligned} K_2 &= -\frac{s_2(s_2 + 2)}{s_2 + 4} \\ &= -\frac{-6.6828 \times (-6.6828 + 2)}{(-6.6828 + 4)} \\ &= \frac{-31.294}{-2.6828} \\ &= 11.665 \end{aligned}$$



Root Locus Plots

Rules 10

Arrival and Departure Angles from the Real Axis

*The n Root Loci arrive and depart
to/from the root axis at $180/n$ degrees*

Root Locus Plots

Rules 11 *Root Sensitivity*

Root sensitivity tends toward infinity at the break-away points

Break-away points transition between real, repeated, and complex roots

Robust System \longleftrightarrow Low Root Sensitivity

Break-away points may be computed as follows,

$$S_K = \frac{\frac{ds}{s}}{\frac{dK}{K}} = \frac{K ds}{s dK}$$

Intro. to Continuous Control

homayoon.beigi@columbia.edu

Bode Plot

$$P(t) = A \cos(\Omega t) + B \sin(\Omega t)$$
$$D(t) = C \cos(\Omega t) + D \sin(\Omega t)$$

34

Concerned with Steady-State Response of the system

We assume that the transients have died out – stable system

Forcing Function	Particular Solution Form
α (Constant)	C (Constant)
Polynomial of order n in t	Polynomial of order n in t
$\alpha \cos(\Omega t) + \beta \sin(\Omega t)$	$C \cos(\Omega t) + D \sin(\Omega t)$
$\beta e^{\alpha t}$	$C e^{\alpha t}$
$e^{\alpha t} (\alpha \cos(\Omega t) + \beta \sin(\Omega t))$	$e^{\alpha t} (C \cos(\Omega t) + D \sin(\Omega t))$
Product of the Above	Product of the Above

For an oscillatory forcing function, steady state frequency stays the same, different amplitude and phase

Intro. to Continuous Control

homayoon.beigi@columbia.edu

35

Bode Plot

$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = \sin(3t)$$
$$y(0) = -1$$
$$\dot{y}(0) = 0$$
$$y(t) = \frac{10}{13}e^{-2t} - \frac{17}{10}e^{-t} \underbrace{\left(\frac{9}{130} \cos(3t) - \frac{7}{130} \sin(3t) \right)}_{\text{Transience}}$$

frequency stays the same, different amplitude and phase

$$\ddot{y}(t) + 4\dot{y}(t) + 4y(t) = \cos(4t)$$
$$y(0) = 1$$
$$\dot{y}(0) = 1$$
$$y(t) = \frac{103}{100}e^{-2t} + \frac{29}{10}te^{-2t} \underbrace{\left(-\frac{3}{100} \cos(4t) + \frac{1}{25} \sin(4t) \right)}_{\text{Transience}}$$

frequency stays the same, different amplitude and phase

Intro. to Continuous Control

homayoon.beigi@columbia.edu

36

Bode Plot

$$\ddot{y}(t) + \dot{y}(t) + y(t) = 1 + \cos(6t)$$

$$y(0) = 0$$

$$\dot{y}(0) = 0$$

$$y(t) = 1 - \frac{35}{1261} \cos(6t) + \frac{6}{1261} \sin(6t)$$

$$- \frac{2}{1261} e^{-t/2} \left(613 \cos\left(\frac{\sqrt{3}}{2}t\right) + \frac{1262}{\sqrt{3}} \sin\left(\frac{\sqrt{3}}{2}t\right) \right)$$

frequency stays the same,
different amplitude and phase

$$\ddot{y}(t) + y(t) = 1 + e^{(-2t)}$$

$$y(0) = 0$$

$$\dot{y}(0) = 0$$

$$y(t) = 1 + \frac{1}{5} e^{-2t} - \frac{6}{5} \cos(t) + \frac{2}{5} \sin(t)$$

Transience

Transience

Bode Plot

The objective:

$$C \cos(\omega t) + D \sin(\omega t) = A \sin(\omega t + \phi)$$

Note that,

$$\sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y)$$

Therefore,

$$C \cos(\omega t) + D \sin(\omega t) = A \cos(\phi) \sin(\omega t) + A \sin(\phi) \cos(\omega t)$$

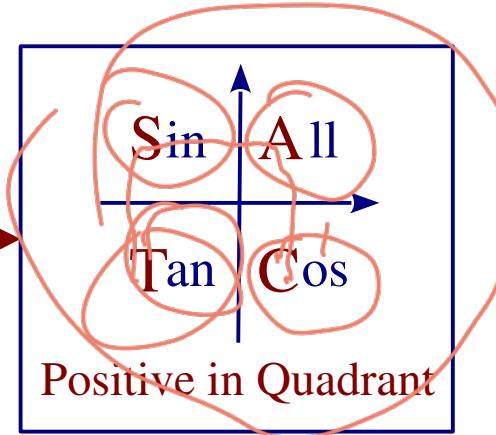
Since sine and cosine are linearly independent, the coefficients must match.

$$C = A \sin(\phi)$$

$$D = A \cos(\phi)$$

$$\begin{aligned} \sin(\phi) &= \frac{C}{A} \\ \cos(\phi) &= \frac{D}{A} \end{aligned}$$

Use to find quadrant



Bode Plot

Special case: If $D = 0$, then there is only cos, in which case,

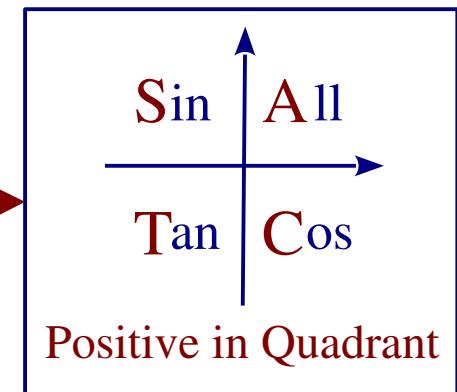
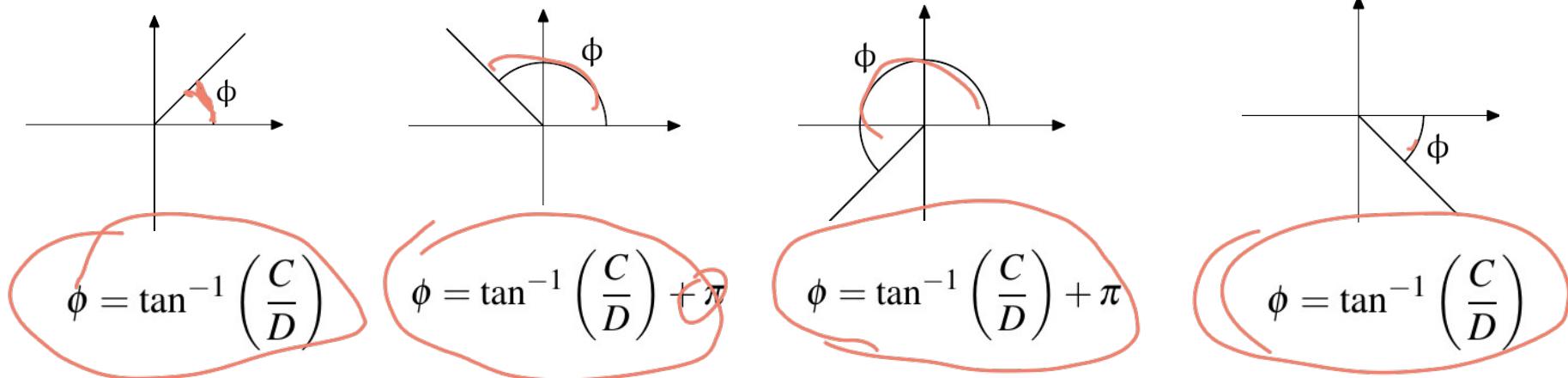
$$A = C$$
$$\phi = \frac{\pi}{2}$$

Otherwise,

$$A = \sqrt{C^2 + D^2}$$
$$\tan(\phi) = \frac{C}{D}$$

$$\sin(\phi) = \frac{C}{A}$$
$$\cos(\phi) = \frac{D}{A}$$

Use to find quadrant



Homework 10

See Courseworks

Intro. to Continuous Control

homayoon.beigi@columbia.edu

40

Intensity

Intensity – Power per unit area. $\left(\frac{W}{m^2}\right)$ ($\frac{J/s}{m^2}$ or $\frac{Ns}{m^2}$)

$$I = \frac{P^2}{\zeta} \quad \text{pressure differential}$$

$$= \frac{P^2}{\rho c} \quad \text{specific acoustic impedance}$$

$$\zeta = \rho c$$

Dry air at 1 atm
and 20°C

$$\left\{ \begin{array}{l} \rho = 1.204 \frac{kg}{m^3} \\ c = 343.2 \frac{m}{s} \end{array} \right. \rightarrow \zeta = 413.21 \frac{Ns}{m^3}$$

$$P_0 = 2 \times 10^{-5} \frac{N}{m^2} \quad (\text{RMS of } P \text{ for } 1\text{kHz})$$

$$I_0 = \frac{P_0^2}{\zeta} \approx 10^{-12} \frac{W}{m^2} \quad (\text{Intensity } 1\text{kHz})$$

Pressure and Intensity
Threshold to hear 1 kHz

$$\begin{aligned} \text{Unit of } \zeta &= \left(\frac{kg}{m^3}\right) \left(\frac{m}{s}\right) \left(\frac{s}{s}\right) \\ &= \frac{kgm}{s^2} \frac{s}{m^3} \\ &= \frac{Ns}{m^3} \end{aligned}$$

Relative Intensity

$$I_r = 10 \log \left(\frac{I}{I_0} \right)$$
$$= 10 \log \left(\frac{P^2}{P_0^2} \right)$$
$$= 20 \log \left(\frac{P}{P_0} \right)$$

Dimensionless (in dB)

- 3 kHz - 4 kHz - around the resonance freq. of the ear canal

- 10 dB - 80 dB

Quiet Library: 40 - 60 dB

Loud Rock Concert: 110 dB

Average Relative Intensity: 58 dB

Male Speakers are about 4.5 dB louder than females

Fourier Series Expansion

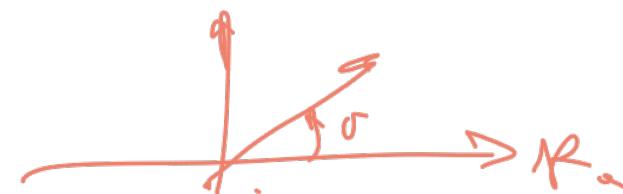
We can write any function in terms of a set of sinusoidal functions.

Fourier Series Expansion: Any periodic function may be written in terms of an infinite series of exponential functions (or sines and cosines)

Defined for the period: $[-T, T]$

$$h(t) \approx \sum_{n=-\infty}^{\infty} c_n e^{i\left(\frac{n\pi t}{T}\right)}$$

$$c_n = \frac{1}{2T} \int_{-T}^T h(t) e^{-i\left(\frac{n\pi t}{T}\right)} dt$$

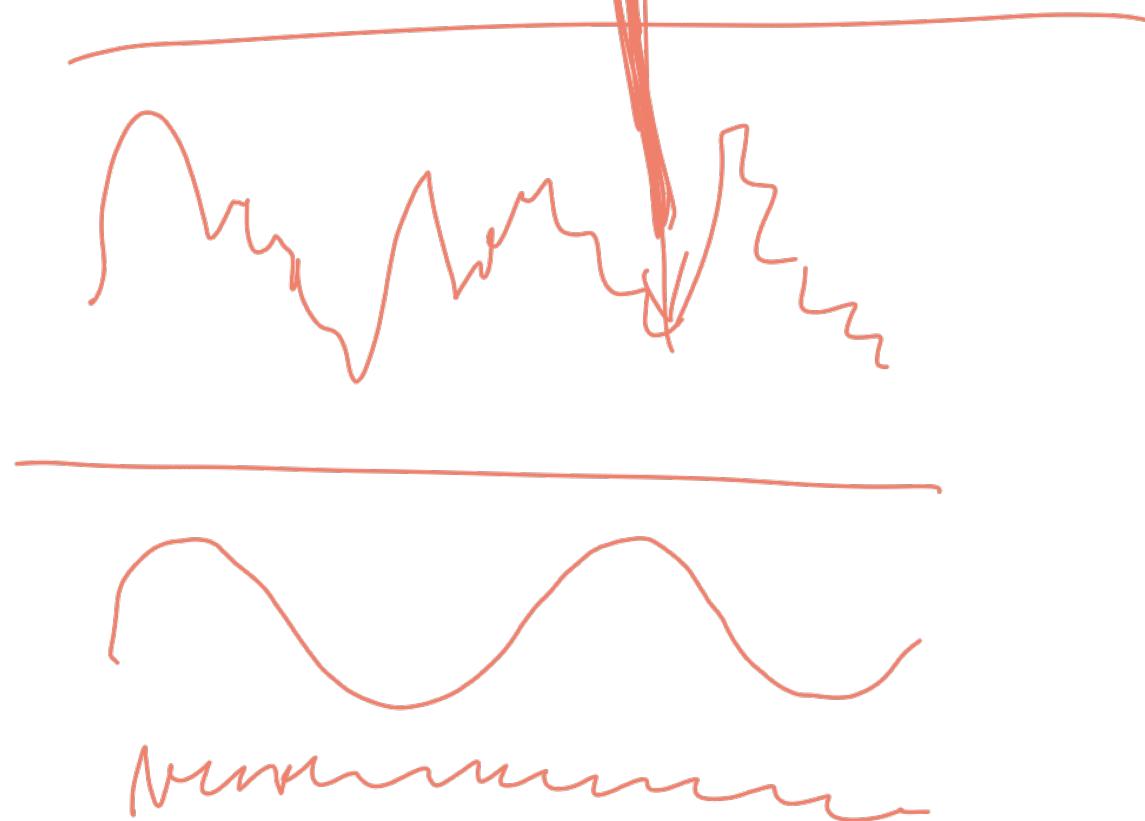


Parseval's Theorem

Theorem 24.28 (Parseval's Theorem – Fourier Transform). The Total power in a signal is the same when computed in the time or Frequency domain. In other words, the Total Power P is given by,

$$\mathcal{P} \stackrel{\Delta}{=} \int_{-\infty}^{\infty} |h(t)|^2 dt$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 d\omega$$

$$h(t) = \int_{-\infty}^{\infty} h(\tau) e^{-i\omega t} d\tau$$
$$H(\omega) = \int_{-\infty}^{\infty} h(t) e^{-i\omega t} dt$$



Parseval's Theorem: *proof* (Complex Fourier Transform)

$$\mathcal{P} \triangleq \int_{-\infty}^{\infty} |h(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 d\omega$$

$$\begin{aligned} \overline{se^{i\theta}} &= \overline{(\sigma + i\omega)e^{i\theta}} \\ &= \overline{(\sigma + i\omega)(\cos(\theta) + i\sin(\theta))} \\ &= \overline{(\sigma \cos(\theta) - \omega \sin(\theta)) + i(\sigma \sin(\theta) + \omega \cos(\theta))} \\ &= (\sigma \cos(\theta) - \omega \sin(\theta)) - i(\sigma \sin(\theta) + \omega \cos(\theta)) \\ &= \cos(\theta)(\sigma - i\omega) - \sin(\theta)(\omega + i\sigma) \\ &= \cos(\theta)(\sigma - i\omega) - i \sin(\theta)(\sigma - i\omega) \\ &= (\sigma - i\omega)(\cos(\theta) - i\sin(\theta)) \\ &= \overline{\sigma e^{-i\theta}} \end{aligned}$$

Then,

$$\overleftrightarrow{h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) e^{i\omega t} d\omega} \quad \overleftrightarrow{\overline{h(t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{H(\omega)} e^{-i\omega t} d\omega}$$

Intro. to Continuous Control

homayoon.beigi@columbia.edu

45

$|h|$
 \bar{h}

Plancherel's Theorem: *proof* (Complex Fourier Transform)

$$\hat{\mathcal{P}} \triangleq \int_{-\infty}^{\infty} g(t) \bar{h(t)} dt$$

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) e^{i\omega t} d\omega$$

$$\bar{h(t)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{H(\omega)} e^{-i\omega t} d\omega$$

$$\begin{aligned} \hat{\mathcal{P}} &= \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(\omega_1) e^{i\omega_1 t} d\omega_1 \int_{-\infty}^{\infty} \bar{H(\omega_2)} e^{-i\omega_2 t} d\omega_2 dt \\ &= \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(\omega_1) e^{i\omega_1 t} \bar{H(\omega_2)} e^{-i\omega_2 t} d\omega_2 d\omega_1 dt \\ &= \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(\omega_1) \bar{H(\omega_2)} e^{i\omega_1 t} e^{-i\omega_2 t} d\omega_2 d\omega_1 dt \\ &= \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(\omega_1) \bar{H(\omega_2)} \int_{-\infty}^{\infty} e^{i\omega_1 t} e^{-i\omega_2 t} dt d\omega_2 d\omega_1 \end{aligned}$$

$$\int_{-\infty}^{\infty} e^{i\omega_1 t} e^{-i\omega_2 t} dt = \begin{cases} 0 & \forall \omega_1 \neq \omega_2 \\ 2\pi & \text{for } \omega_1 = \omega_2 \end{cases} \quad (\text{Orthogonality of Exponential Functions})$$

$$\begin{aligned} \hat{\mathcal{P}} &= \int_{-\infty}^{\infty} g(t) h(t) dt \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) \bar{H(\omega)} d\omega \end{aligned}$$

(Plancherel's Theorem)
(Swiss Mathematician:
Michel Plancherel)

Parseval's Theorem: *proof* (Complex Fourier Transform)

$$\begin{aligned}\hat{\mathcal{P}} &= \int_{-\infty}^{\infty} g(t) \overline{h(t)} dt \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) \overline{H(\omega)} d\omega\end{aligned}$$

(Plancherel's Theorem)

Special case where $g(t) = h(t)$

$$\begin{aligned}\mathcal{P} &= \int_{-\infty}^{\infty} |h(t)|^2 dt \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 d\omega\end{aligned}$$

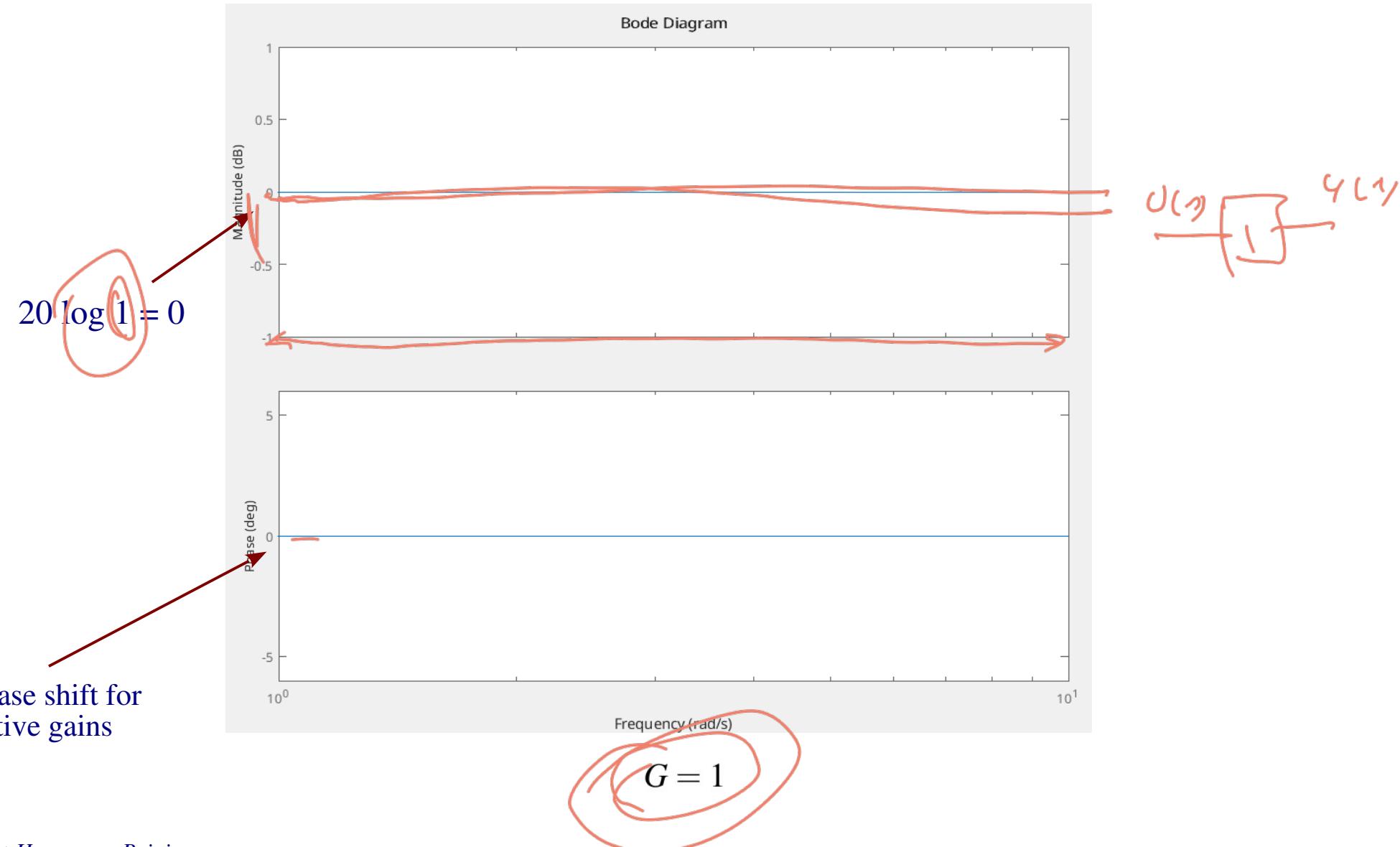
(Parseval's Theorem)

Intro. to Continuous Control

homayoon.beigi@columbia.edu

47

Bode Plot

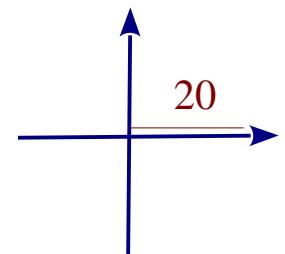


Intro. to Continuous Control

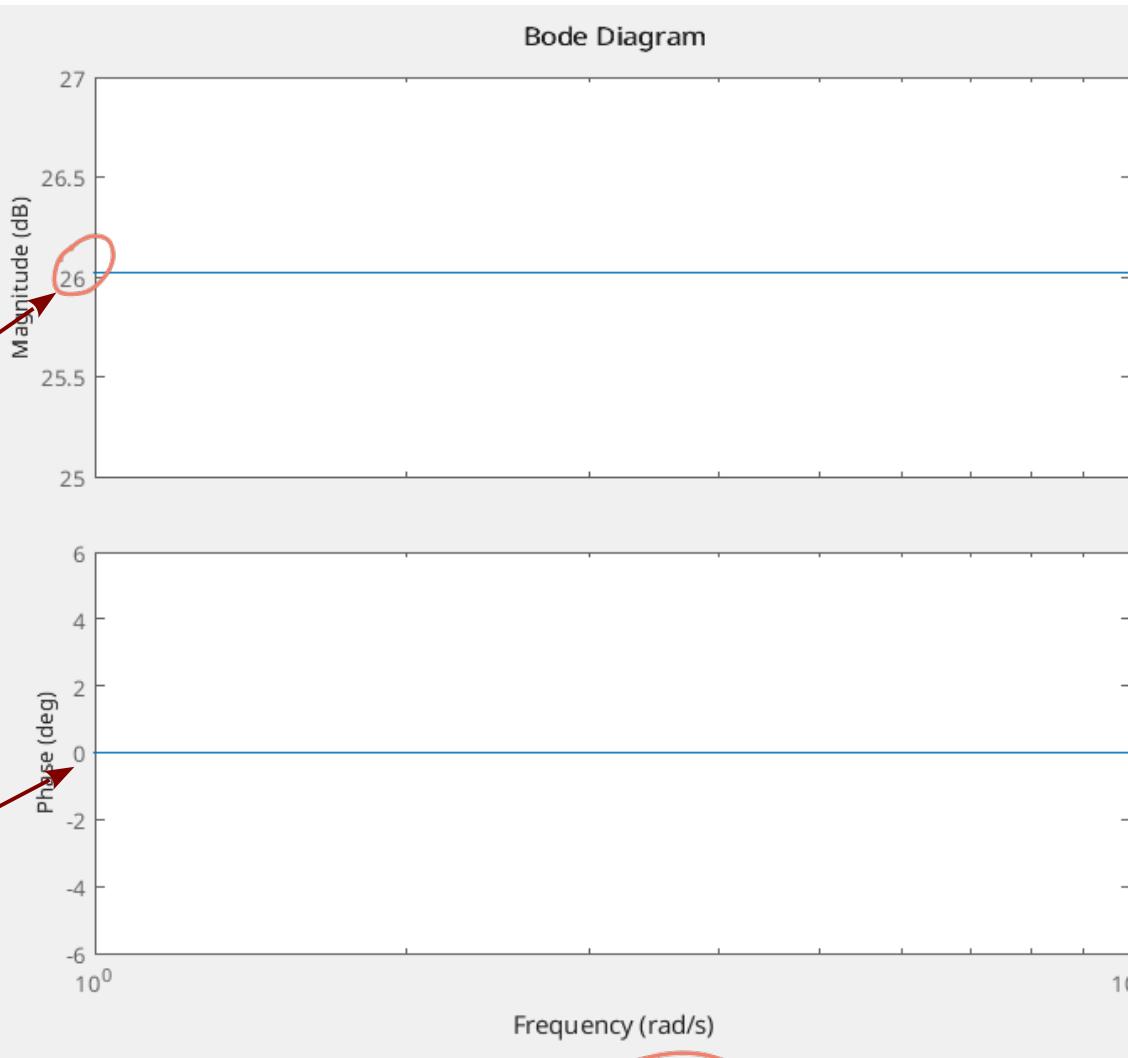
homayoon.beigi@columbia.edu

48

Bode Plot



$20 \log 20$



0 phase shift for positive gains

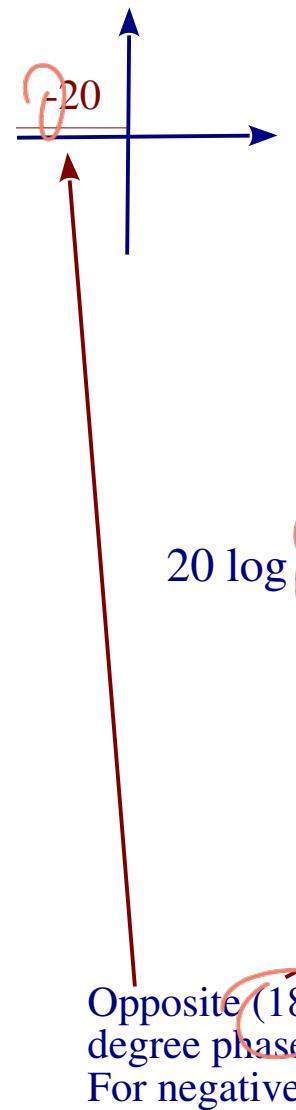
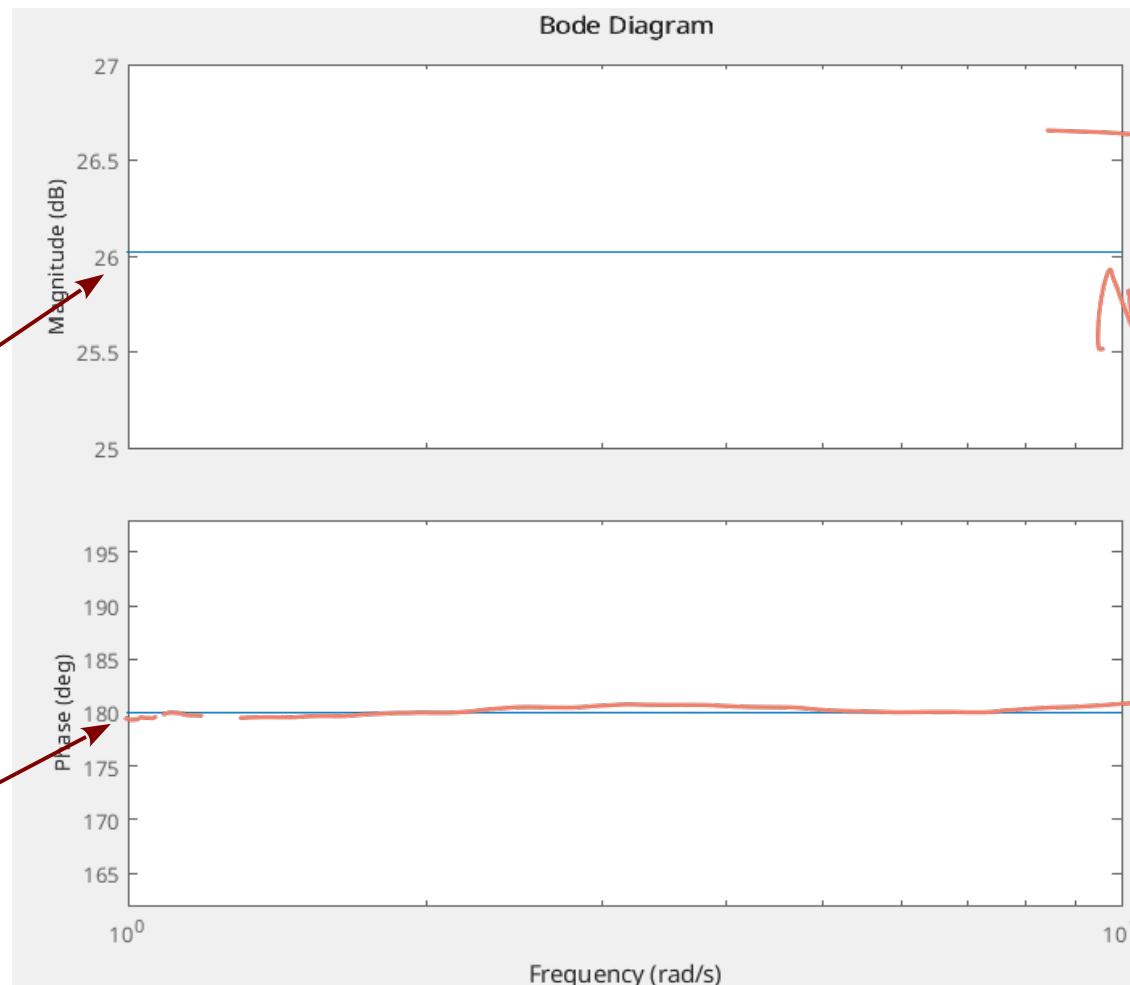
$G = 20$

Intro. to Continuous Control

homayoon.beigi@columbia.edu

49

Bode Plot



$$G = -20$$



Intro. to Continuous Control

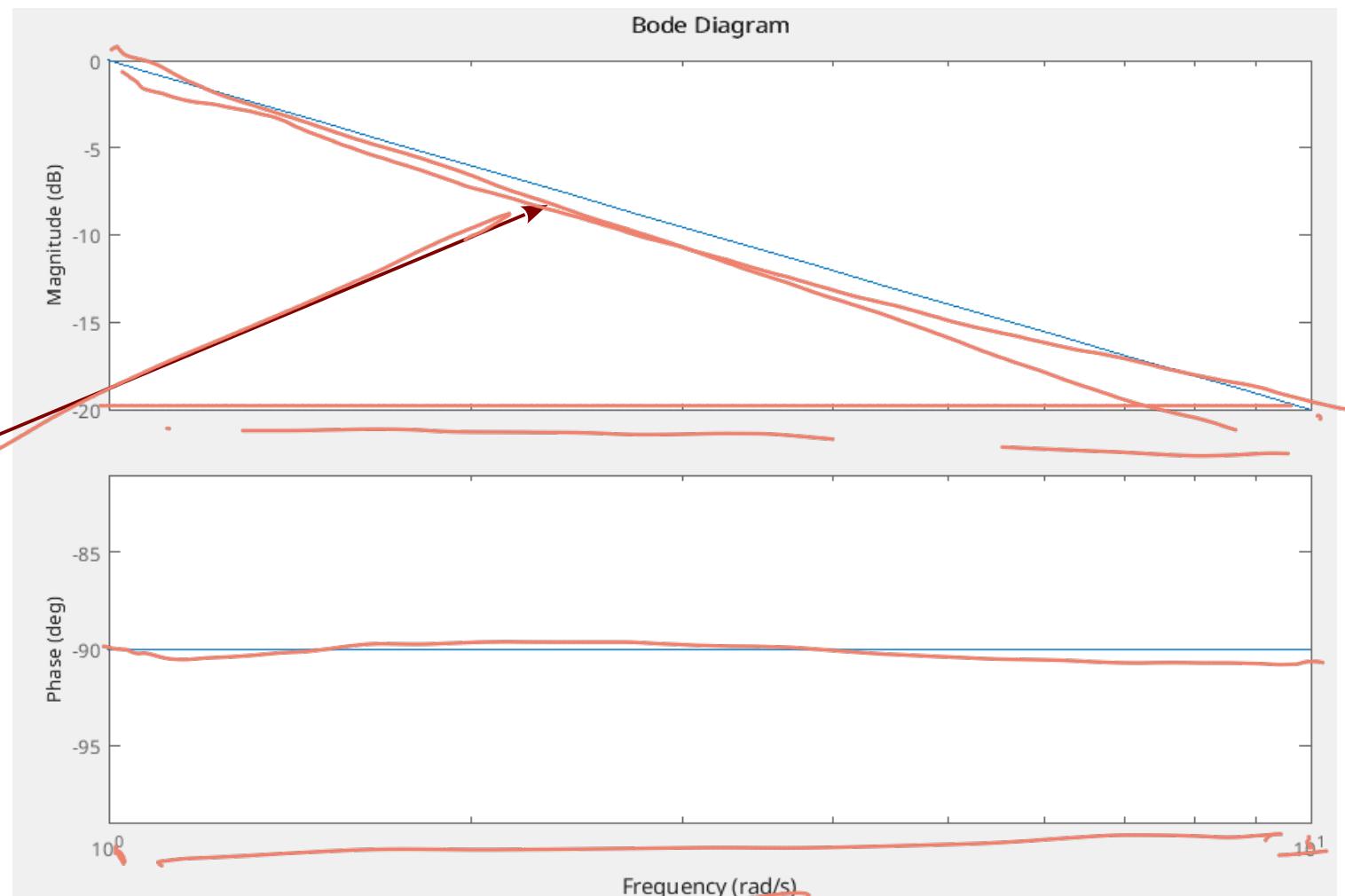
homayoon.beigi@columbia.edu

50

Bode Plot (Integrator)

$$\begin{aligned} G(i\omega) &= \frac{1}{i\omega} \\ &= -\frac{1}{\omega}i \\ |G(i\omega)| &= \left| -\frac{1}{\omega}i \right| \\ &= \frac{1}{\omega} \\ \angle G(i\omega) &= -90^\circ \end{aligned}$$

Slope=20db/decade



$$G = \frac{1}{s}$$

Intro. to Continuous Control

homayoon.beigi@columbia.edu

51

Bode Plot

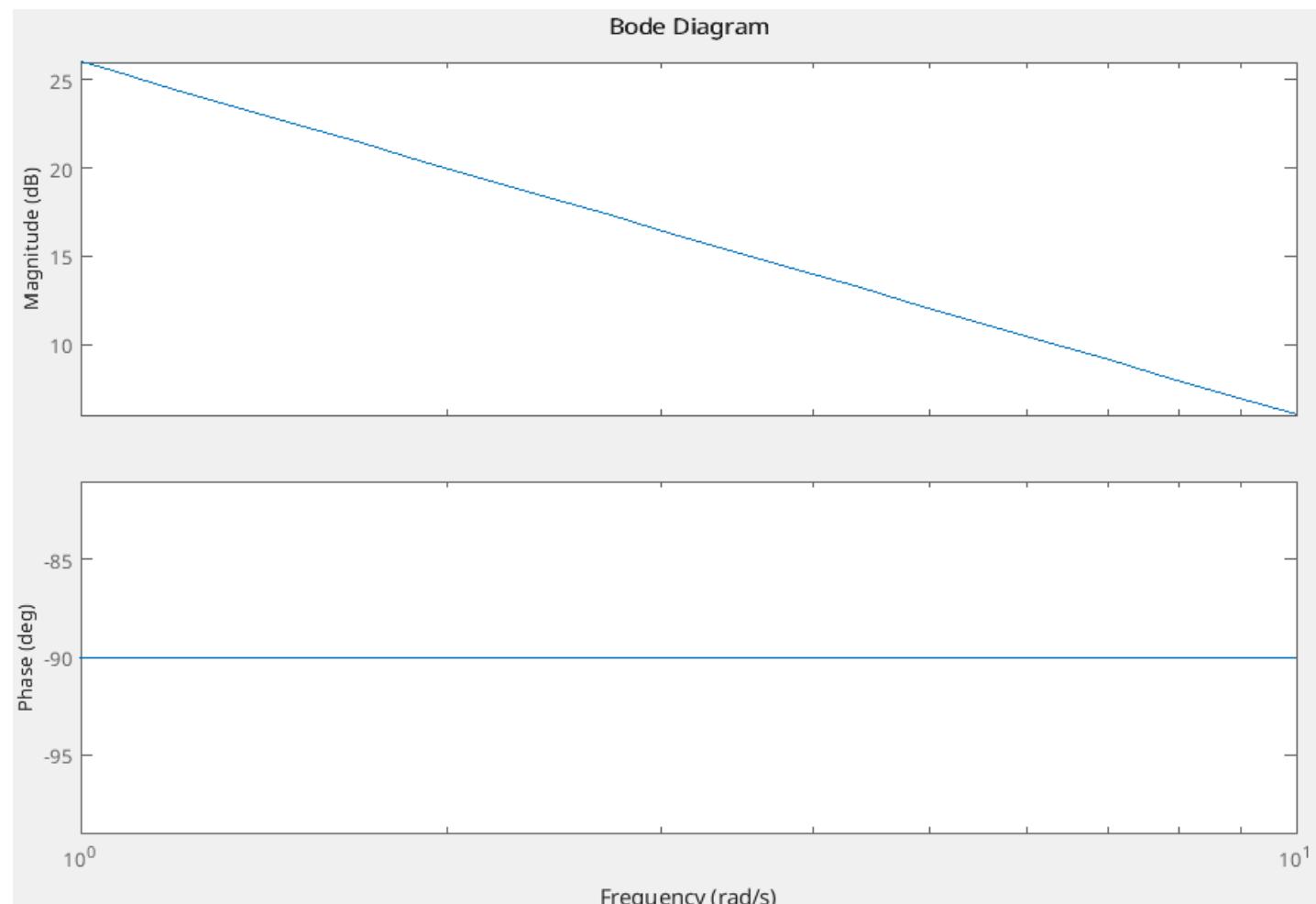
$$G(s) = \frac{20}{s}$$
$$= 20 \frac{1}{s}$$

$$|G(i\omega)| = |20| \left| -\frac{1}{\omega} i \right|$$

$$20 \log(|20| \frac{1}{\omega}) =$$

$$20 \log(|20|) + 20 \log(\frac{1}{\omega})$$

$$\angle G(i\omega) = \angle 20 + \angle -\frac{1}{\omega} i$$
$$= 0^\circ - 90^\circ$$
$$= -90^\circ$$



$$G(s) = \frac{20}{s}$$