
https://hkgbooks.blogspot.com

PROGRAMMING IN C
third Edition

Ashok N. Kamthane
Associate Professor

Shri Guru Gobind Singhji Institute of Engineering
and Technology, Nanded, Maharashtra, India

A01_KAMT3553_02_SE_FM.indd 1 5/17/2015 8:59:35 AM

https://hkgbooks.blogspot.com

DEDICATION
To My Beloved Late Grandfather

Jagganath Kamthane

Associate Editor—Acquisitions: Neha Goomer
Editor—Production: G Sharmilee

Copyright © 2015 Pearson India Education Services Pvt. Ltd

Copyright © 2006, 2012 Dorling Kindersley (India) Pvt. Ltd
This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold,
hired out, or otherwise circulated without the publisher’s prior written consent in any form of binding
or cover other than that in which it is published and without a similar condition including this condition
being imposed on the subsequent purchaser and without limiting the rights under copyright reserved
above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise),
without the prior written permission of both the copyright owner and the publisher of this book.

ISBN 978-93-325-4355-3

First Impression

Published by Pearson India Education Services Pvt. Ltd, CIN: U72200TN2005PTC057128, formerly
known as TutorVista Global Pvt. Ltd, licensee of Pearson Education in South Asia.

Head Office: A-8(A), 7th Floor, Knowledge Boulevard, Sector 62, Noida 201 309, Uttar Pradesh, India.
Registered Office: Module G4, Ground Floor, Elnet Software City, TS-140, Block 2 & 9,
Rajiv Gandhi Salai, Taramani, Chennai 600 113, Tamil Nadu, India.
Fax: 080-30461003, Phone: 080-30461060
www.pearson.co.in, Email: companysecretary.india@pearson.com

Compositor: Mukesh Technologies Pvt. Ltd

Printed in India

A01_KAMT3553_02_SE_FM.indd 2 5/17/2015 8:59:36 AM

https://hkgbooks.blogspot.com

Preface xi

Acknowledgements xiv

About the Author xv

 1 Basics and introduction to C .. 2
1.1 Why to Use Computers? 3

1.2 Basics of a Computer 3

1.3 Latest Computers 5

1.4 Introduction to C 6

1.5 About ANSI C Standard 7

1.6 Machine, Assembly and High-Level Language 7
1.6.1   Assembly Language  8

1.6.2   High-Level Language  8

1.7 Assembler, Compiler and Interpreter 8

1.8 Structure of a C Program 10

1.9 Programming Rules 12

1.10 Executing the C Program 12

1.11 Standard Directories 16

1.12 The First C Program 16

1.13 Advantages of C 17

1.14 Header Files 17

1.15 Algorithm 18
1.15.1   Program Design  20

1.16 Classification of Algorithms 21

1.17 Flowcharts 22

1.18 Pseudocode 26

Summary  28

Exercises  28

 2 the C declarations .. 32
2.1 Introduction 33

2.2 The C Character Set 33

2.3 Delimiters 34

CONteNts

A01_KAMT3553_02_SE_FM.indd 3 5/17/2015 8:59:36 AM

https://hkgbooks.blogspot.com

iv Contents

2.4 Types of Tokens 35

2.5 The C Keywords 35

2.6 Identifiers 35

2.7 Constants 36
2.7.1   Numerical Constants  37

2.7.2   Character Constant  38

2.8 Variables 39

2.9 Rules for Defining Variables 39

2.10 Data Types 40

2.11 C Data Types 41

2.12 Integer and Float Number Representations 43
2.12.1   Integer Representation  43

2.12.2   Floating-Point Representation  44

2.13 Declaring Variables 44

2.14 Initializing Variables 45

2.15 Dynamic Initialization 46

2.16 Type Modifiers 46

2.17 Type Conversion 47

2.18 Wrapping Around 49

2.19 Constant and Volatile Variables 50
2.19.1   Constant Variable  50

2.19.2   Volatile Variable  50

Summary  51

Exercises  52

 3 operators and Expressions .. 58
3.1 Introduction 59

3.2 Operator Precedence 59

3.3 Associativity 62

3.4 Comma and Conditional Operator 63

3.5 Arithmetic Operators 64

3.6 Relational Operators 67

3.7 Assignment Operators and Expressions 68

3.8 Logical Operators 71

3.9 Bitwise Operators 74

Summary  80

Exercises  80

A01_KAMT3553_02_SE_FM.indd 4 5/17/2015 8:59:36 AM

https://hkgbooks.blogspot.com

Contents v

 4 input and output in C .. 84
4.1 Introduction 85

4.2 Formatted Functions 86

4.3 Flags, Widths and Precision with Format String 88

4.4 Unformatted Functions 99

4.5 Commonly Used Library Functions 104

4.6 Strong Points for Understandability 105

Summary  106

Exercises  106

 5 decision Statements ... 112
5.1 Introduction 113

5.2 The if Statement 114

5.3 The if–else Statement 116

5.4 Nested if–else Statements 120

5.5 The if-else-if Ladder Statement 121

5.6 The break Statement 129

5.7 The continue Statement 130

5.8 The goto Statement 130

5.9 The switch Statement 132

5.10 Nested switch case 144

5.11 The switch case and nested ifs 146

Summary  147

Exercises  148

 6 Loop Control .. 154
6.1 Introduction 155

6.1.1   What is a Loop?  155

6.2 The for Loop 156

6.3 Nested for Loops 172

6.4 The while Loop 194

6.5 The do-while Loop 207

6.6 The while Loop within the do-while Loop 212

6.7 Bohm and Jacopini’s Theory 213

Summary  213

Exercises  213

A01_KAMT3553_02_SE_FM.indd 5 5/17/2015 8:59:36 AM

https://hkgbooks.blogspot.com

vi Contents

 7 data Structure: Array .. 220
7.1 Introduction 221

7.2 Array Declaration 221

7.3 Array Initialization 222

7.4 Array Terminology 223

7.5 Characteristics of an Array 224

7.6 One-Dimensional Array 226

7.7 One-Dimensional Array and Operations 238

7.8 Operations with Arrays 240

7.9 Predefined Streams 246

7.10 Two-Dimensional Array and Operations 251
7.10.1   Insert Operation with Two-Dimensional Array  253

7.10.2   Delete Operation with Two-Dimensional Array  255

7.11 Three- or Multi-Dimensional Arrays 269

7.12 The sscanf() and sprintf() Functions 274

7.13 Drawbacks of Linear Arrays 276

Summary  276

Exercises  277

 8 Strings and Standard Functions .. 286
8.1 Introduction 287

8.2 Declaration and Initialization of String 287

8.3 Display of Strings with Different Formats 289

8.4 String Standard Functions 291

8.5 String Conversion Functions 315

8.6 Memory Functions 316

8.7 Applications of Strings 318

Summary  328
Exercises  328

 9 Pointers ... 336
9.1 Introduction 337

9.2 Features of Pointers 338

9.3 Pointers and Address 338

9.4 Pointer Declaration 339

9.5 The Void Pointers 345

9.6 Wild Pointers 346

9.7 Constant Pointers 347

9.8 Arithmetic Operations with Pointers 348

A01_KAMT3553_02_SE_FM.indd 6 5/17/2015 8:59:36 AM

https://hkgbooks.blogspot.com

Contents vii

9.9 Pointers and Arrays 352

9.10 Pointers and Two-Dimensional Arrays 357

9.11 Pointers and Multi-Dimensional Arrays 358

9.12 Array of Pointers 360

9.13 Pointers to Pointers 362

9.14 Pointers and Strings 364

Summary  371

Exercises  371

10 Functions ... 378
10.1 Introduction 379

10.2 Basics of a Function 379
10.2.1   Why Use Functions?  379

10.2.2   How a Function Works?  380

10.3 Function Definition 380

10.4 The return Statement 384

10.5 Types of Functions 386

10.6 Call by Value and Reference 393

10.7 Function Returning More Values 395

10.8 Function as an Argument 396

10.9 Function with Operators 399

10.10 Function and Decision Statements 406

10.11 Function and Loop Statements 409

10.12 Functions with Arrays and Pointers 412

10.13 Passing Array to a Function 418

10.14 Nested Functions 420

10.15 Recursion 422

10.16 Types of Recursion 424

10.17 Rules for Recursive Function 425

10.18 Direct Recursion 427

10.19 Indirect Recursion 428

10.20 Recursion Versus Iterations 430

10.21 The Towers of Hanoi 432

10.22 Advantages and Disadvantages of Recursion 435

10.23 Efficiency of Recursion 436

10.24 Library Functions 437

Summary  438

Exercises  438

A01_KAMT3553_02_SE_FM.indd 7 5/17/2015 8:59:36 AM

https://hkgbooks.blogspot.com

viii Contents

11 Storage Classes .. 446
11.1 Introduction 447

11.1.1   Lifetime of a Variable  447

11.1.2   Visibility of a Variable  448

11.2 Automatic Variables 448

11.3 External Variables 450

11.4 Static Variables 453

11.5 Static External Variables 454

11.6 Register Variables 455

Summary  456

Exercises  456

12 Preprocessor directives ... 462
12.1 Introduction 463

12.2 The #define Directive 463

12.3 Undefining a Macro 466

12.4 Token Pasting and Stringizing Operators 467

12.5 The #include Directive 468

12.6 Conditional Compilation 469

12.7 The #ifndef Directive 471

12.8 The #error Directive 472

12.9 The #line Directive 473

12.10 The #pragma inline Directive 473

12.11 The #pragma saveregs 473

12.12 The #pragma Directive 473

12.13 The Predefined Macros in ANSI and TURBO-C 475

12.14 Standard I/O Predefined Streams in stdio.h 478

12.15 The Predefined Marcos in ctype.h 478

12.16 Assertions 480

Summary  481

Exercises  481

13 Structure and Union .. 490
13.1 Introduction 491

13.2 Features of Structures 491

13.3 Declaration and Initialization of Structures 492

13.4 Structure within Structure 496

A01_KAMT3553_02_SE_FM.indd 8 5/17/2015 8:59:36 AM

https://hkgbooks.blogspot.com

Contents ix

13.5 Array of Structures 498

13.6 Pointer to Structure 501

13.7 Structure and Functions 504

13.8 typedef 506

13.9 Bit Fields 510

13.10 Enumerated Data Type 513

13.11 Union 517

13.12 Calling BIOS and DOS Services 518

13.13 Union of Structures 524

Summary  524

Exercises  525

14 Files ... 532
14.1 Introduction of a File 533
14.2 Definition of File 533
14.3 Streams and File Types 534

14.3.1   File Types  534

14.4 Steps for File Operations 535
14.4.1   Opening of File  536

14.4.2   Reading a File  536

14.4.3   Closing a File  536

14.4.4   Text Modes  537

14.4.5   Binary Modes  543

14.5 File I/O 545
14.6 Structures Read and Write 553
14.7 Other File Function 558
14.8 Searching Errors in Reading/Writing Files 561
14.9 Low-Level Disk I/O 572
14.10 Command Line Arguments 576
14.11 Application of Command Line Arguments 577
14.12 Environment Variables 579
14.13 I/O Redirection 580
Summary  582

Exercises  582

15 Graphics .. 590
15.1 Introduction 591

15.2 Initialization of Graphics 591

15.3 Few Graphics Functions 591

A01_KAMT3553_02_SE_FM.indd 9 5/17/2015 8:59:36 AM

https://hkgbooks.blogspot.com

x Contents

15.4 Programs Using Library Functions 593
15.4.1   Program on Moving Moon  596

15.5 Working with Text 598
15.5.1   Stylish Lines  599

15.6 Filling Patterns with Different Colours and Styles 600

15.7 Mouse Programming 604

15.8 Drawing Non-common Figures 607

Summary  608

Exercises  608

16 dynamic Memory Allocation and Linked List 612
16.1 Dynamic Memory Allocation 613

16.2 Memory Models 613

16.3 Memory Allocation Functions 614

16.4 List 621

16.5 Traversal of a List 621

16.6 Searching and Retrieving an Element 622

16.7 Predecessor and Successor 623

16.8 Insertion 624

16.9 Linked Lists 626

16.10 Linked List with and without Header 627
16.10.1   Linked List with Header 627

Summary  636

Exercises  637

 Appendix A ... 641
American Standard Code for Information Interchange 641

 Appendix B ... 649
Priority of Operators and Their Clubbing 649

 Appendix C ... 651
Header Files and Standard Library Functions 651

 Appendix d ... 655
ROM-BIOS Services 655

 Appendix E ... 657
Scan Codes of Keyboard Keys 657

index ... 660

A01_KAMT3553_02_SE_FM.indd 10 5/17/2015 8:59:36 AM

https://hkgbooks.blogspot.com

I am indeed very delighted to present the third edition of Programming in C with elaborated concepts
supported with more solved and unsolved problems. I have tried to make the book friendly using

simple and lucid language. In this edition, a chapter on Graphics with thought provoking questions
and programming examples are added.
 This book is proposed for beginners, intermediate level students, and for all those who are
pursing education in computers. It would be extremely useful for the students who enroll for
diploma, degree in science and engineering, certificate courses in computer languages in training
institutes or those who appear for the C aptitude tests/interviews on C Language conducted by
various software companies and enhance their C knowledge. It can be used as a reference book for
those who want to learn or enrich their knowledge in C.
 All the programs given in this book are compiled and run on Turbo C compiler. A few applications
are provided in this book which are fully tested and run on Turbo C compiler. The programmer can
develop advanced applications based on real-life problems using basics of C language. It contains
numerous examples which include solved and unsolved programming exercises that make the book
most interesting. Multiple choice questions are also provided at the end of each chapter for testing the
skills of a programmer.
 An attempt has been made to cover the C syllabi of different branches of various universities.
Hence this book can be adopted as a text or a reference book in engineering/degree/diploma and other
courses.
 In order to bridge the gap between theory and practical, each concept is explained at length in an
easy-to-understand manner supported with numerous worked-out examples and programs. The book
contains solved illustrative problems and exercises. The programmer can run the solved programs, can
see the output and enjoy the concepts of C.

BOOK ORGANIZATION
The first chapter describes the fundamental concepts of a computer, components of a computer, an
overview of compilers and interpreters, structure of a ‘C’ program, programming rules, how to execute
the program, and flowchart for execution of a program. This chapter also presents the techniques of
solving a problem using algorithm and flowchart.
 Chapter 2 explains the fundamentals of ‘C’. These concepts are essential for writing programs
and contain character set supported by C language. Various delimiters used with ‘C’ statements,
keywords and identifiers are also provided. Different constants, variables and data types supported
by C are also given. This chapter covers the rules for defining variables and methods to initialize
them. Dynamic initialization is also presented in this chapter. Type conversion of a variable, type
modifiers and wrapping around, constant and volatile variables are also explained.
 Chapter 3 covers various C operators and their priorities. This chapter presents arithmetic,
relational and logical operators. It also embodies increment, decrement (unary operators) and
assignment operators. Other operators such as comma, conditional operator and bitwise operators are
presented with programming examples.

PRefACe

A01_KAMT3553_02_SE_FM.indd 11 5/17/2015 8:59:36 AM

https://hkgbooks.blogspot.com

xii Preface

 Chapter 4 deals with formatted input and output functions such as scanf()and printf()
functions. The unformatted functions such as putchar() , getche() and gets() are described
in this chapter. Different data types and conversion symbols to be used in the C programs have also
been elaborated. The special symbols such as escape sequences together with their applications are
also discussed. Few of the commonly used library functions to be used in the programs such as
clrscr() and exit() are also described.

Chapter 5 is essential for knowing the decision-making statements in C language. This chapter
presents how to transfer the control from one part to the other part of the program. The programmer
can make the program powerful by using control statements such as if, if-else, nested if-else
statements and switch case. To change the flow of the program, the programmer can use keywords
such as break, continue and goto.

Chapter 6 is devoted to control loop structures in which how statements are executed several times
until a condition is satisfied. In this chapter, the reader follows program loop which is also known as
iterative structure or repetitive structure. Three types of loop control statements are illustrated with
for, while and do-while programming examples. Syntaxes of these control statements are briefed
together with programming examples. The other statements such as the break,continue and goto
statements are also narrated.

Chapter 7 deals with the array in which the reader can follow how to initialize array in different
ways. The theme of this chapter is to understand the array declaration, initialization, accessing array
elements and operations on array elements. How to specify the elements of one-, two- and three- or
multi-dimensional arrays are explained in detail together with ample examples. The functions such
as sscanf() and sprintf()are demonstrated through programming examples. The reader can
develop programs after learning this chapter on arrays. This chapter also gives an overview of the
string. It covers operations on array such as deletion, insertion and searching an element in the array
and how to traverse all the array elements.

Chapter 8 is focused on strings. This chapter teaches you how to learn declaration and initialization
of a string. It is also very important to identify the end of the string. This is followed by NULL
(‘\0’) character. The various formats for display of the strings are demonstrated through numerous
examples.

String handling has strong impact in real-life string problems such as conversion of lower to upper
case, reversing, concatenation, comparing, searching and replacing of string elements. It is also discussed
how to perform these operations with and without standard library functions. Memory functions such
as memcpy(), memove() and memchr()are also illustrated together with programming examples.

Chapter 9 deals with the most important feature of the C language, i.e. pointer, it is important but
difficult to understand easily. The reader is made familiar with pointers with numerous examples. The
reader is brought to light about declaration and initialization of pointers, and how to access variables
using pointers. How pointers are used to allocate memory dynamically at run time is also illustrated
using memory allocation functions such as malloc() and calloc() functions. How memory is
handled efficiently with pointers is also explained. This chapter consists of arithmetic operations on
pointers, pointers and arrays, pointers to pointers and pointers to strings. Memory models are also
explained.

Chapter 10 is one more important chapter on functions. How a large size program is divided in
smaller ones and how a modular program should be developed is learnt in this chapter. Programmer
learns the definition and declaration of function. What are the return statements, types of functions
and functions with passing arguments are described in detail. What do you mean by “call by value”
and “call by reference”? — Their answers are given with many programming examples. This chapter
also incorporates functions and loop statements, function and arrays and association of functions and
pointers.

A01_KAMT3553_02_SE_FM.indd 12 5/17/2015 8:59:37 AM

https://hkgbooks.blogspot.com

Preface xiii

 The reader should know that the function always returns an integer value. Besides a function can
also return a non-integer data type but function prototype needs to be initialized at the beginning of the
program. The recursive nature of function is also explained with suitable example. Direct and indirect
recursive functions have been explained with programming examples.
 Chapter 11 enlightens on the variables used in C in different situations. It also covers types of
variables such as local and global variables. The various storage classes of a variable are also covered
in this chapter. Explanations on auto, extern, static and register variables are also presented
in this chapter.
 Chapter 12 narrates how to make use of preprocessor directives and how various macros are to
be used. This chapter enlightens preprocessor directives such as #define, #undef, #include,
#line, token pasting and stringizing operations and conditional compilation through C are illustrated.
It covers #define directive, undef macro, include directive, predefined macros in ANSI and
Turbo C. A reader learns how to display programmer’s own error messages using #error directive
and making various warnings on/off displayed by compiler using #pragma directive. You are exposed
to predefined macors in ctype.h in this chapter.
 Chapter 13 is on structures and unions. A reader can get derived data type using structures and
unions. User can decide the heterogeneous data types to be included in the body of a structure. Use
of dot operator (.) and pointer (->) are explained for accessing members of structure. Declaration and
initialization of structure and union are also explained. The typedef facility can be used for creating
user-defined data types and illustrated with many examples. Enumerated data type and union are the
important subtitles of this chapter. Enumerated data type provides user-defined data types. Union is a
principal method by which the programmer can derive dissimilar data types. The last but not the least
the DOS and ROM-BIOS functions and their applications are also explained.
 Chapter 14 is on files. This chapter explains the procedure for opening a file, storing information
and reading. How to read a file and how to append information are explained in this chapter. Many file
handling commands are also discussed. Text and binary files are explained. Command line arguments
to accept arguments from command prompt are described. Simulation of various DOS commands
with examples is also narrated. A reader is also made familiar with I/O redirections in which MSDOS
redirects to send the result to disk instead of seeing information on monitor.
 Chapter 15 is on graphics. How to draw various figures/images using C library graphics functions
are to be studied from graphics chapter. This chapter enlightens the reader about the initialization of
graphics with library graphics functions and number of programming examples. Few programs have
been provided on mouse programming.
 Chapter 16 enlightens the reader on dynamic memory allocations, memory models and linked
lists. Dynamic memory allocation deals with memory functions such as malloc(), calloc(),
coreleft() and realloc() and release the allocated memory using free() function. The
linked list is described in brief in this chapter. In the linked list, creation of linked list, traversing,
searching, inserting and deleting an element are described with figures and programming examples.
 Utmost care has been taken to write third edition of the book in order to make it error free. The
suggestions and feedback for the improvement of the book are always welcome, the readers can
directly mail me at ankamthane@gmail.com.

Ashok N. Kamthane

A01_KAMT3553_02_SE_FM.indd 13 5/17/2015 8:59:37 AM

https://hkgbooks.blogspot.com

I would like to thank all those who have encouraged me, especially Professor B.M. Naik, former
principal of Shri Guru Gobind Singhji Institute of Engineering and Technology, who has been

always a source of inspiration.
 Special thanks are due to members of board of governors of SGGS institute who motivated
me for writing this book, Baba Kalyani, Chairman and Managing Director of Bharat Forge Ltd
Pune, Ram Bhogle, C.Y. Gavhane, Mr Kamlesh Pande, Sanjay Kumar, Dr Nirmal Singh Sehra, and
Director of our Institute Dr L.M. Waghmare.
 My sincere thanks to Professor S.D. Mahajan, Director of Technical Education, Maharashtra
State, and ex-Board of Governors of this college, Dr M.B. Kinhalkar, Former Home Minister and
ex-Principal, Dr T.R. Sontakke for inspiring me to write this book.
 I am grateful to all my colleagues, friends and students, who extended morale support,
Dr Y.V. Joshi, Dr R.R. Manthalkar, Dr S.S. Gajre, Dr S.V. Bonde, Dr P.G. Jadhav, Professor N.G.
Megde, Professor P.S. Nalawade, Dr A.R. Patil, Dr A.B. Gonde, Dr M.B. Kokre, Dr U.V. Kulkarni,
Dr P. Pramanik, Dr V.M. Nandedkar, Dr A.V. Nandedkar, Dr B.M. Patre, Dr S.T. Hamde, Dr R.C.
Thool, Dr V.R. Thool, Mrs U.R. Kamble, Dr D.D. Doye, Dr V.G. Asutkar, Professor R.K. Chavan,
Professor Ghanwat Vijay, Dr V.K. Joshi, Dr S.G. Kahalekar, Dr A. Chakraborty, Dr P. Kar, Dr P.G.
Solankar, Dr B.M. Dabde, Dr M.L. Waikar, Dr R.S. Holambe, Dr J.V.L. Venkatesh, Mrs S.S.
Kandhare, Professor S.S. Hatkar, Narayan Patil, Dr P.D. Dahe, Dr P.D. Ullagadi, Dr P.B. Londhe,
Dr A.S. Sontakke, Professor A.M. Bainwad, Professor Deepak Bacchewar, Professor R.P. Parvekar,
Professor N.M. Khandare, Dr V.B.Tungikar, Dr R.N. Joshi, Dr L.G. Patil, Professor A.I. Tamboli,
Mr Bhalerao M.V. and Professor S.B. Dethe.
 I am also thankful to my friends, Professor S.L. Kotgire, Maruti Damkondawar, G.M. Narlawar,
Anil Joshi, D.V. Deshpande, Professor Balaji Bacchewar, M.M. Jahagirdar, L.M. Buddhewar,
K.M. Buddhewar, S.R. Kokane, Ganpat Shinde, M.G. Yeramwar, S.R. Tumma, S.P. Tokalwad,
P.R. Navghare, Somajawar H.S. and Annes for their morale support.
 I am thankful to the wonderful editorial team of Pearson Education for specific invaluable inputs
and bringing this book out in a record time.
 I also express my thanks to my son Lecturer Amit, students Jadhav Gopal and Wanjare Sainath
for their critical review and suggesting improvements.
 Last but not the least, my thanks are due to my wife Surekha for her patience and support. My son
Amol, daughter Sangita and daughter-in-law Swaroopa were of great help and supported me all the
times.

Ashok N. Kamthane

ACkNOwledGeMeNts

A01_KAMT3553_02_SE_FM.indd 14 5/17/2015 8:59:37 AM

https://hkgbooks.blogspot.com

Ashok N. Kamthane is presently working as an associate professor in Department of Electronics and
Telecommunication Engineering at Shri Guru Gobind Singhji Institute of Engineering and Technology,
Nanded, Maharashtra. He has over 32 years of teaching experience. He was associated with the
development of hardware and software using 8051 on acoustic transceiver system for submarines.
Professor Kamthane is also the author of bestselling books Object-Oriented Programming with
ANSI and Turbo C++; Introduction to Data Structures in C; and C Programming: Test Your Skills,
published by Pearson Education.

AbOut the AuthOR

A01_KAMT3553_02_SE_FM.indd 15 5/17/2015 8:59:37 AM

https://hkgbooks.blogspot.com

This page is intentionally left blank

https://hkgbooks.blogspot.com

Basics and
Introduction to C1

CHAPTER

Chapter Outline

 1.1 Why to use Computers?
 1.2 Basics of a Computer
 1.3 Latest Computers
 1.4 Introduction to C
 1.5 About ANSI C Standard
 1.6 Machine, Assembly and High-Level Language
 1.7 Assembler, Compiler and Interpreter
 1.8 Structure of a C Program
 1.9 Programming Rules
 1.10 Executing the C Program
 1.11 Standard Directories
 1.12 The First C Program
 1.13 Advantages of C
 1.14 Header Files
 1.15 Algorithm
 1.16 Classification of Algorithms
 1.17 Flowcharts
 1.18 Pseudocode

M01_KAMT3553_02_SE_C01.indd 2 5/17/2015 9:04:16 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 3

1.1 Why to Use CompUters?
Computers play a vital role in the socioeconomic progress of a country. Every nation is paying much
importance to computer literacy. Progress of individuals, surrounding region, nation and of the world
is ensured only with the introduction and use of computers. In every walk of life, computers are being
used increasingly. In every part of the world, computers are employed to increase the overall produc-
tivity. Moreover, the quality of the products due to application of computers is substantially improved.
The impact of computers is very high on mass education, entertainment and productivity in all fields.
With the use of computers the cost of production reduces drastically, a lot of time is saved and the best
quality is ensured.
 With the adoption of the policy of liberalization, privatization and globalization by the govern-
ments all over the world, it is necessary to become competitive in the market. Luxurious survival is
not easy as was possible in ancient days. With land, labour, muscle power and capital, economy can
certainly be boosted to a certain degree, but the intellectual power is highly superior to all these assets.
With some know-how (for the common users) and a lot of technical innovations (by the developers),
numerical problems, business transactions and scientific applications, can be computed in almost no
time. A computer does various tasks on the basis of programs. Intellectual computer is certainly a
powerful gadget but human intellectual capability is much higher than that of a computer. Thus, com-
puter does not have its own brain. Brainpower of computer is limited. Thus, human intellectual power
is further reinforced by the use of computers frequently in the day-to-day life. By learning program-
ming languages, developing software packages and using hardware of computers, one can make his/
her life and nation prosperous.

1.2 BasiCs of a CompUter
Data to be processed by a computer appears in different forms, such as numeric, alphabetical char-
acters either in uppercase or in lowercase, special characters and multimedia. Research applications
in universities and colleges frequently use numeric data on large scales, whereas businessmen and
people in the corporate sector use both numeric and
character data. However, in animation multimedia is
used which include text, video and audio.
 A computer is a programmable electronic
 machine that accepts instructions and data through
input devices, manipulating data according to
 instructions and finally providing result to the
output device. The result can be stored in memo-
ry or sent to the output device. Figure 1.1 shows
the conventional block diagram of a conventional
computer.
 Figure 1.2 shows a computer system contain-
ing a monitor, a keyboard and a rectangular box
comprising CPU on the motherboard.
 In brief, the various blocks of a computer are described as follows.

Input Device: Input device is used to accept the data and instructions in to the computer. Through
the input device, i.e. keyboard, instructions and data are stored in a computer’s memory. Stored
 instructions are further read by the computer from its memory and thus a computer manipulates
the data according to the instructions. The various input devices that can be used in a computer are

Central
Processor

Unit
Output

Memory

Input

Figure 1.1 Block diagram of a conventional computer

M01_KAMT3553_02_SE_C01.indd 3 5/17/2015 9:04:17 AM

https://hkgbooks.blogspot.com

4 Programming in C

 keyboards, mouse, analog-to-digital converters,
light pen, track ball, optical character reader and
scanner. Figure 1.3 shows the input devices of
a computer. Floppy, compact disc, etc. can be
used as input or output device.

Central Processor Unit: CPU is the abbrevia-
tion for central processor unit. It is the heart of the
computer system. It is a hardware device in the

Figure 1.3 Input devices of a computer

CD Keyboard Mouse Floppy Microphone Pen Drive

computer and quite often it called as microprocessor chip. Since it is a tiny chip hence called as mi-
croprocessor chip. This chip is produced from silicon vapor over which millions of transistors are
mounted with modern fabrication techniques.

 The brain of the computer is CPU. This chip is responsible to interpret and execute the instruc-
tions. It comprises arithmetic and logical unit, registers and control unit. The arithmetic and logical
unit performs various arithmetic and logical operations on the data based upon the instructions. The
control unit generates the timing and control signals for carrying out operations within the processor.
Registers are used for holding the instructions and storing the results temporarily. Instructions are
stored in the memory and they are fetched one by one and executed by the processor.

Output Device: The output device is used to display the results on the screen or to send the data to
an output device. The processed data is ultimately sent to the output device by the computer. The out-
put device can be a monitor, a printer, an LED, seven-segment display, D to A converter, plotter, and
so on. Figure 1.4 shows different output devices of a computer.

Figure 1.4 Output devices of a computer

Printer CD Floppy Monitor Speaker Hard-Disk

Figure 1.2 computer system

Interface

Memory: Memory is used to store the program. There are two types of semi-conductor memories.
They are as follows:

 (i) RAM (Random access memory)

 (ii) ROM (Read only memory)

M01_KAMT3553_02_SE_C01.indd 4 5/17/2015 9:04:18 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 5

semi-conductor memory is used for storing the instructions and data in the form of ones and zeros.
The memory can be called user’s memory or read–write memory. Processor first reads the instructions
and data from the primary memory (semi-conductor memory). Then, it executes the instructions.
 One more memory device used by a computer is called read only memory (ROM). This contains
a fixed software program for providing certain operations. This is non-volatile memory. Its contents
cannot be eliminated when power supply goes off. The basic input–output system (BIOS) is a soft-
ware used to control various peripheral devices such as a keyboard, a monitor, a printer, a mouse,
ports including serial and parallel ports. In fact, this is an operating system. It is possible to access the
users’ written programs, i.e. by loading a file, saving it and doing modifications to it in the later stage.
As soon as a personal computer is switched on, the software gets booted from ROM. Thus, various
functions are assigned to all supporting peripherals of a central processing unit (CPU) and easy inter-
actions are provided to the user by BIOS while booting the system.
 For storing volumous data, secondery storage devices can be used. They are optical disk, magnetic
disc, tapes, etc.

1.3 Latest CompUters
The discussion on the various types of computers existing in the market is beyond the scope in this book.
Latest computers available in the market are in various shapes and sizes. These computers are just like
notebooks or even require lesser space than the notebook. They are handy, light weighted and portable.
Because of these reasons many computer users now carry laptops while travelling for their day-to-day
work. In the next couple of years, it is predicted that every school-going child would be using a laptop or
palmtop, and these devices would be sold just like hot cakes in the market with affordable prizes. A lot
of research work is going on in the foreign and Indian Universities, institutes and industries on the reduc-
tion of the size of a computer, building more functions in it with low cost, minimum battery power for
operating it for large duration in the absence of A.C. mains power supply. In a couple of years, laptops and
palmtops would be flooded in the market. These notebook-shaped laptops are as powerful as desktop com-
puters. In other words, the computing power of a laptop would be advancing to that of desktop computers
and minicomputers. They are used for the purpose of text processing, web surfing, multimedia operation,
image processing and so on. Performances of these computers are constantly improving, and the cost is
drastically reducing. A wireless network can be formed easily with laptops with the Bluetooth technology.
Wifi wireless network is quite popular nowadays, and there we use these computers quite often.
 Typical specifications of a laptop computer are as follows,

 • Processor: Intel Core i7 (8M cache,2.80GHz) OR AMD

 • RAM: Minimum 2 GB to Maximum 16 GB

 • Hard disk: Minimum 320 GB up to 1 TB or higher

 • CD/DVD Drive: Dual Layer DVD+/-RW Drive, SuperDrive, Bluetooth and Camera

 • Screen Size: 15.6” up to 23” Flat screen with LCD/LED display

 • Ethernet: 10/100/1000 Mbps Ethernet

 • Port: USB 3.0

 • Graphics Card: From 520 MB or higher

 • Rechargeable Battery back up

 • Operating system such as windows XP/ windows 7/ Linux

For simpler application, one can go for Celeron-based laptop where heat
 generated by the processor is little. Pentium processors are used only for
dedicated applications. Heat generated by this kind of laptop is more and
battery is to be frequently charged (Figure 1.5). Figure 1.5 The laptop

M01_KAMT3553_02_SE_C01.indd 5 5/17/2015 9:04:18 AM

https://hkgbooks.blogspot.com

6 Programming in C

 The C language is not tied to any particular
 operating system. It can be used to develop new
 operating systems. Refer to Figure 1.7 in which the
C language is shown associated with the various
 operating systems. The C language is closely associat-
ed with the UNIX operating system. The source code
for the UNIX operating system is in C. C runs under
a number of operating systems including MS-DOS.
The C programs are efficient, fast and highly portable,
i.e. C programs written on one computer can be run on
another with mere or almost no modification.
 The C programming language contains modules called functions. The C functions are the basic
building blocks and the most programmers take its benefit. Programmers include these functions in
their program from the C standard library.
 C language is a middle-level computer language. It does not mean that C is not powerful and
rugged for writing programs like in Fortran and Pascal. It also does not mean that it is troublesome
like assembly level languages. It combines the features of a high-level language and functionality like
assembly languages. In C, one can develop a program fast and execute fast. It reduces the gap between
high- and low-level languages; that is why it is known as a middle level language. It is well suited for
writing both application and system softwares.
 C is a structural language. It has many similarities with the other structural languages such as
Pascal and Fortran. Structured language facilitates the development of a variety of programs in small
modules or blocks. Lengthy programs can be divided into shorter programs. The user requires think-
ing of a problem in terms of functional blocks. With appropriate collection of different modules, the
programmer can make a complete program.
 It is easy for writing, testing, debugging and maintenance with structured programming. In case
some changes are to be done in a program, the programmer can refer to the earlier written module
with editor and incorporate the appropriate changes. Hence, structured languages are easier and most
of the developers prefer these languages, than the non-structured languages like BASIC and COBOL.
Programming with non-structured languages is tough in comparison to structured languages.

1.4 introdUCtion to C
C is one of the most popular general-purpose programming languages.
C language has been designed and developed by Dennis Ritchie at
Bell Laboratories, USA, in 1972. Several important concepts of C
are drawn from ‘Basic combined programming language’ and ‘B’
 language. Figure 1.6 shows the development of C language from the
two languages. Martin Richards developed BCPL in 1967. The impact
of BCPL on C is observed indirectly through the language B, which
was developed by Ken Thompson in 1970. C is also called an offspring of the BCPL. Table 1.1
illustrates the evolution of languages and their inventors of programming language.

Figure 1.7 C and operating systems

UNIX

WINDOWS

MS-DOS

C
OTHER
OS......

Table 1.1 Languages and their inventors
Sr. No. Language Inventor Year

1. BCPL Martin Richards 1967

2. B Ken Thompson 1970

3. C Dennis Ritchie 1972

Figure 1.6 Evolution of C

BCPL B

C

M01_KAMT3553_02_SE_C01.indd 6 5/17/2015 9:04:19 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 7

 C is also called a system-programming language because it is greatly helpful for writing operat-
ing systems, interpreters, editors, compilers, database programs and network drivers.
 BCPL and B are data type-less languages. However, C language has a variety of data types. The
standard data types in C are integers, floating point, characters. Also, derived data types can be cre-
ated such as pointers, arrays, structures and unions. Expressions are built from operands and opera-
tors. Any expression or an assignment or a call to function can be a statement. The pointers provide
machine-independent address arithmetic.
 C also provides control-flow statements such as decision-making statements (if–else)
and (switch-case) multi-choice statement. C supports for, while and do-while looping
statements.
 C does not have any operator to perform operation on composite object. There does not exist any
function or operator that handles entire array or string. For example, to assign elements of one array
to another array simply with single assignment statement is not enough, but an element-to-element
assignment is to be done. However, structure objects can be copied as a unit.
 C is not a strongly typed language. But typed statements are checked thoroughly by C compilers.
The compiler will issue errors and warning messages when syntax rules are violated. There is no au-
tomatic conversion of incompatible data types. A programmer has to perform explicit type conversion.

UNIX: The UNIX is an interactive operating system. It is useful in microcomputers, minicomputers
and main frame computers. This operating system is very portable and supports multi-user process-
ing, multi-tasking and networking. Several users can use UNIX at once for performing the same task.
This operating system was developed to connect various machines together. UNIX is primarily used
for workstations and minicomputers.

1.5 aBoUt ansi C standard
For many years, there was no standard version of C language, and the definition provided in reference
manual was followed. Due to this reason portability feature of C language was not provided from one
computer to another. To overcome this discrepancy, a committee was set up in the summer of 1983 to
create a standard C version which is popularly known as American National Standard Institute (ANSI)
standard.
 This committee had defined once and for all a standard C language. The standardization process
took about six years for defining the C language. The ANSI C standard was adopted in 1989, and its
first copy of C language was introduced in the market in 1990.
 Thus, ANSI C is internationally recognized as a standard C language. The purpose of this stan-
dard is to enhance the portability and efficient execution of C language programs on different com-
puters. Today, all compilers of C support the ANSI standard. In other words, almost all C compilers
available in the market have been designed to follow ANSI C standard. ANSI C and other C compilers
such as turbo-C version 2 support programs developed in this book.

1.6 maChine, assemBLy and high-LeveL LangUage
It is a computer’s natural language, which can be directly understood by the system. This language
is machine dependent, i.e. it is not portable. A program written in 1’s and 0’s is called a machine
language. A binary code is used in a machine language for a specific operation. A set of instructions
in binary pattern is associated with each computer. It is difficult to communicate with a computer in
terms of 1s and 0s. Hence, writing a program with a machine language is very difficult. Moreover,
speed of writing, testing and debugging is very slow in machine language. Chances of making careless
errors are bound to be there in this language. The machine language is defined by the hardware design
of that hardware platform. Machine languages are tedious and time consuming.

M01_KAMT3553_02_SE_C01.indd 7 5/17/2015 9:04:19 AM

https://hkgbooks.blogspot.com

8 Programming in C

1.6.1 | assembly Language

Instead of using a string of binary bits in a machine language, programmers started using English-
like words as commands that can be easily interpreted by programmers. In other words, the computer
manufacturers started providing English-like words abbreviated as mnemonics that are similar to
binary instructions in machine languages. The program is in alphanumeric symbols instead of 1s and
0s. The designer chooses easy symbols that are to be remembered by the programmer, so that the
programmer can easily develop the program in assembly language. The alphanumeric symbols are
called mnemonics in the assembly language. The ADD, SUB, MUL, DIV, RLC and RAL are some
symbols called mnemonics.
 The programs written in other than the machine language need to be converted to the machine
language. Translators are needed for conversion from one language to another. Assemblers are used
to convert assembly language program to machine language. Every processor has its own assembly
language. For example, 8085 CPU has its own assembly language. CPUs such as 8086, 80186, 80286
have their own assembly languages.
 Following disadvantages are observed with the assembly languages:

 (i) It is time consuming for an assembler to write and then test the program.

 (ii) Assembly language programs are not portable.

 (iii) It is necessary to remember the registers of CPU and mnemonic instructions by the
programmer.

 (iv) Several mnemonic instructions are needed to write in assembly language than a single line
in high-level language. Thus, assembly language programs are longer than the high language
programs.

1.6.2 | high-Level Language

Procedure-oriented languages are high-level languages. These languages are employed for easy and
speedy development of a program. The disadvantages observed with assembly languages are over-
come by high-level languages. The programmer does not need to remember the architecture and reg-
isters of a CPU for developing a program. The compilers are used to translate high-level language
program to machine language. Examples of HLL are COBOL, FORTRAN, BASIC, C and C++. The
following advantages are observed with HLL languages:

 (i) Fast program development.

 (ii) Testing and debugging a program is easier than in the assembly language.

 (iii) Portability of a program from one machine to other.

1.7 assemBLer, CompiLer and interpreter
A program is a set of instructions for performing a particular task. These instructions are just like
English words. The computer interprets the instructions as 1’s and 0’s. A program can be written in
assembly language as well as in high-level language. This written program is called the source pro-
gram. The source program is to be converted to the machine language, which is called an object pro-
gram. A translator is required for such a translation.
 Program translator translates source code of programming language into machine language-
instruction code. Generally, computer programs are written in languages like COBOL, C, BASIC
and ASSEMBLY LANGUAGE, which should be translated into machine language before execution.

M01_KAMT3553_02_SE_C01.indd 8 5/17/2015 9:04:19 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 9

Programming language translators are classified as
follows. A list of translators is given in Figure 1.8.
 Translators are as follows:

 (i) Assembler

 (ii) Compiler

 (iii) Interpreter

Assembler: An assembler translates the symbolic
codes of programs of an assembly language into
machine language instructions (Figure 1.9). The symbolic language is translated to the machine code
in the ratio of one is to one symbolic instructions to one machine code instructions. Such types of

Figure 1.9 Assembler

Mnemonic
language

Assembler
Machine

codes

Figure 1.10 Compiler/interpreter

Mnemonic
language

Compilers and
interpreters

Machine
codes

languages are called low-level languages. The assembler programs translate the low-level language
to the machine code. The translation job is performed either manually or with a program called as-
sembler. In hand assembly, the programmer uses the set of instructions supplied by the manufacturer.
In this case, the hexadecimal code for the mnemonic instruction is searched from the code sheet. This
procedure is tedious and time-consuming. Alternate solution to this is the use of assemblers. The pro-
gram called assembler provides the codes of the mnemonics. This process is fast and facilitates the
user in developing the program speedily.

Compiler: Compilers are the translators, which
translate all the instructions of the program into
machine codes, which can be used again and
again (see Figure 1.10). The program, which is
to be translated, is called the source program
and after translation the object code is gener-
ated. The source program is input to the compiler. The object code is output for the secondary storage
device. The entire program will be read by the compiler first and generates the object code. However,
in interpreter each line is executed and object code is provided. M-BASIC is an example of an inter-
preter. High-level languages such as C, C++ and Java compilers are employed. The compiler displays
the list of errors and warnings for the statements violating the syntax rules of the language. Compilers
also have the ability of linking subroutines of the program.

Interpreter: Interpreters also come in the group of translators. It helps the user to execute the source
program with a few differences as compared to compilers. The source program is just like English
statements in both interpreters and compilers. The interpreter generates object codes for the source
program. Interpreter reads the program line by line, whereas in compiler the entire program is read by
the compiler, which then generates the object codes. Interpreter directly executes the program from
its source code. Due to this, every time the source code should be inputted to the interpreter. In other
words, each line is converted into the object codes. It takes very less time for execution because no
intermediate object code is generated.

Figure 1.8 Translators

Translator

Assembler InterpreterCompiler

M01_KAMT3553_02_SE_C01.indd 9 5/17/2015 9:04:20 AM

https://hkgbooks.blogspot.com

10 Programming in C

Linking: C language provides a very large library, which contains numerous functions. In some
applications of C the library may be a very large file. Linker is a program that combines source
code and codes from the library. Linking is the process of bringing together source program and
library code.
 The library functions are relocatable. The addresses of various machine codes are defined abso-
lutely and only the offset information is kept. When the source program links with the standard library
functions, offset of the memory addresses is used to create the actual address.

1.8 Structure of a c Program
Every C program contains a number of building blocks known as functions. Each function of
it performs a specific task independently. A C program comprises different sections shown in
Figure 1.11.

	 (i)	 Include	 Header	 File	 Section:	 C program
 depends upon some header files for function
definition that are used in the program. Each
header file has extension ‘.h’. The header
files are included at the beginning of the
 program in the C language. These files should
be included using # include directive as given
 below.

 Example:
 # include <stdio.h> or

include “stdio.h”

 In this example, <stdio.h> file is included,
i.e. all the definitions and prototypes of function
defined in this file are available in the current
program. This file is also compiled with the orig-
inal program. The programmer can include the
appropriate header files while executing solved
or unsolved programming examples given in this
book.

	 (ii)	 Global	Declaration:	This section declares some variables that are used in more than one func-
tion. These variables are known as global variables. This section must be declared outside of
all the functions.

	 (iii)	 Function	main(): Every program written in C must contain main() and its execution starts
at the beginning of this function. In ASCII C standard, first line of C program from where
program execution begins is written as follows.

 int main(void)

 This is the function definition for main(). Parenthesis followed to main is to tell the user
again that main() is a function. The int main(void) is a function that takes no argu-
ments and returns a value of type int. Here in this line, int and void are keywords and they
have special meanings assigned by the compiler. In case int is not mentioned in the above
statement, by default the function returns an integer.

Global Declaration

/* comments */
/*Function name */
main ()
{
 /* comments */
 Declaration part
 Executable part
 Function call

}

User-defined functions

Include header file

Figure 1.11 Structure of a C program

M01_KAMT3553_02_SE_C01.indd 10 5/18/2015 12:14:34 PM

https://hkgbooks.blogspot.com

Basics and Introduction to C 11

 Alternately, one can also write the first line of C program from where program execution be-
gins is as follows.

 void main(void)

 Here, this function takes no arguments and returns nothing. Alternately, one can also write the
same function as follows.

 void main(): This functions returns nothing and takes no arguments.

 In all chapters, in maximum programming examples the main function is written as void
main(). This procedure is followed in this book only to avoid writing return statement at
the end of each program. This step helps to minimize source code lines. At few places in this
book, main function is initialized with int main(void). In such a case, return state-
ment is used at the end of program (before closing brace). The programmer can either write
the function main with int main(void) or void main(). Only in the formal case,
return statement should be used before the end of function for terminating the execution of
the main function.

 The program contains statements that are enclosed within the braces. The opening brace ({)
and closing brace (}) are used in C. Between these two braces, the program should declare
declaration and executable part. The opening curly brace specifies the start of the definition of
the main function. The closing curly brace specifies the end of the code for the main function.

 (iv) Declaration Part: The declaration part declares the entire local variables that are used in
executable part. Local variable scope is limited to that function where the local variables are
 declared. The initializations of variables can also be done in this section. The initialization
means providing initial value to the variables.

 (v) Executable Part: This part contains the statements following the declaration of the variables.
This part contains a set of statements or a single statement.

 (vi) Function Call: From the main() a user defined function can be invoked by the user as per
need/application.

 (vii) User-defined Function: The functions defined by the user are called user-defined functions.
These functions are defined outside the main() function.

 (viii) Body of the Function: The statements enclosed within the body of the function (between
opening and closing brace) are called body of the function.

 (ix) Comments: Comments are not necessary in a program. However, to understand the flow of
programs a programmer can insert comments in the program. Comments are to be inserted by
the programmer. It is useful for documentation. The clarity of the program can be followed if
it is properly documented.

 Comments are statements that give us information about the program which are to be placed
between the delimiters /* and */. The programmers in the programs for enhancing the
lucidity frequently use comments. The compiler does not execute comments. Thus, we can say
that comments are not a part of executable programs.

 A user can frequently use any number of comments that can be placed anywhere in a
program. Please note that comment statements can be nested. The user should select the
OPTION MENU of the editor and select the COMPILER-SOURCE - NESTED COMMENTS
ON/OFF. The comments can be inserted with single statement or in nested statements.

M01_KAMT3553_02_SE_C01.indd 11 5/17/2015 9:04:20 AM

https://hkgbooks.blogspot.com

12 Programming in C

 Example:
 /* This is single comment */
 /* This is an example of /* nested comments */*/
 /* This is an example of
 of comments in
 multiple lines */ /* It can be nested */

1.9 programming rULes
A programmer while writing a program should follow the following rules:

 (i) Every program should have main() function.

 (ii) C statements should be terminated by a semi-colon. At some places, a comma operator is per-
mitted. If only a semi-colon is placed it is treated as a statement. For example:

 while(condition)
 ;

 The above statement generates infinite loop. Without semi-colon the loop will not execute.

 (iii) An unessential semi-colon if placed by the programmer is treated as an empty statement.

 (iv) All statements should be written in lowercase letters. Generally, uppercase letters are used
only for symbolic constants.

 (v) Blank spaces may be inserted between the words. This leads to improvement in the readability
of the statements. However, this is not applicable while declaring a variable, keyword, constant
and function.

 (vi) It is not necessary to fix the position of statement in the program; i.e. a programmer can write
the statement anywhere between the two braces following the declaration part. The user can
also write one or more statements in one line separating them with a semi-colon (;). Hence, it
is often called a free-form language. The following statements are valid:

 a=b+c;
 d=b*c;
 or
 a=b+c; d=b*c;

 (vii) The opening and closing braces should be balanced, i.e. if opening braces are four; closing
braces should also be four.

1.10 exeCUting the C program
A C program must go through various phases such as creating a program with editor, execution of
preprocessor program, compilation, linking, loading and executing the program. The following steps
are essential in C when a program is to be executed in MS-DOS mode:

 (i) Creation of a Program: The program should be written in C editor. The file name does not
necessarily include extension ‘.C’. The default extension is ‘.C’. The user can also specify
his/her own extension. The C program includes preprocessor directives.

 (ii) Execution of a Preprocessor Program: After writing a program with C editor the program-
mer has to compile the program with the command (Alt-C). The preprocessor program executes

M01_KAMT3553_02_SE_C01.indd 12 5/17/2015 9:04:20 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 13

first automatically before the compilation of the program. A programmer can include other files
in the current file. Inclusion of other files is done initially in the preprocessor section.

 (iii) Compilation and Linking of a Program: The source program contains statements that are to be
translated into object codes. These object codes are suitable for execution by the computer. If a
program contains errors the programmer should correct them. If there is no error in the program,
compilation proceeds and translated program is stored in another file with the same file name with
extension ‘.obj’. This object file is stored on the secondary storage device such as a disc.

 Linking is also an essential process. It puts together all other program files and functions that
are required by the program. For example, if the programmer is using pow() function, then
the object code of this function should be brought from math.h library of the system and
linked to the main() program. After linking, the program is stored on the disc.

 (iv) Executing the Program: After the compilation the executable object code will be loaded in the
computer’s main memory and the program is executed. The loader performs this function. All the
above steps/phases of C program can be performed using menu options of the editor.

 As shown in Figure 1.12, pre-processor directories/program is executed before compilation
of the main program. The compiler checks the program and if any syntax error is found, the same

Figure 1.12 Flow chart of a program in C

Source program editor

Pre-processor

Execute object code

Logic error

Output

Compile time errorRun time error
No

Yes Yes
Input error Is logic and data

error?

Input again

Yes

No

Linking processSystem library

Is syntax
error?

Compile source program

M01_KAMT3553_02_SE_C01.indd 13 5/17/2015 9:04:21 AM

https://hkgbooks.blogspot.com

14 Programming in C

is displayed. The user is again forced to go to edit window. After removing an error, the compiler
compiles the program. Here, at this stage object code is generated. During the program execution, if
user makes mistakes in inputting data, the result would not be appropriate. Therefore, the user again
has to enter the data. The output is generated when a program is error free.
Editing, compiling and executing a program file with an editor (Figure 1.13):

Figure 1.13 Window to Turbo C editor

The programmer can use the Turbo C editor/compiler. The Turbo C editor is a software, in which the
programmer can write the program in C source code. The window to Turbo C editor appears when we
invoke shortcut to TC icon, which can be placed on desktop. This window is used for editing, compil-
ing and running the program.

 Its menu bar comprises eight menus: File, Edit, Run, Compile, Project, Options, Debug and
Break/watch.

 File: This menu is used for creating a new program file, loading an existing C file, writing the file
with appropriate path, invoking DOS (OS Shell), changing directory and quitting the program.

 Edit: The Edit menu provides editing options.

 Run: The Run menu provides options such as Run, Program reset, Go to cursor, Trace into, Step
over and User screen.

 On pressing Alt+F keys, one can go to the File menu and select either New for creating a new
file or in case file is already existing then use Load option and load the file by giving the appropriate
path. Extension of the file with .c is automatically provided by the editor. The programmer can put
extension .c or by default .c is provided by the editor. The programmer can now write a program with
C syntax.

 It is better to create and save programs in a separate folder/subdirectory in the home directory of
the disk. The folder/subdirectory is the working directory. This is due to the association of the program
file with several files created during compiling and running. Files created are your own files (source
code file and data files) and besides, some other files created are after compilation and running the
program.

 For example if C:\Turboc2 is home directory, a subdirectory can be created with the Command
prompt. Assume that the created subdirectory is Vishal, then working directory path would be
C:\Turboc2\Vishal. So, create and save all programs in the working directory Vishal (Figure 1.14).

M01_KAMT3553_02_SE_C01.indd 14 5/17/2015 9:04:21 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 15

Figure 1.14 Opening a new file

After editing the program file, the same should be saved either with F2 key or Alt+F & Save from File
menu and compiled from compile menu. Now programmer can use the keys Alt+C in the editor as shown
below (Figure 1.15).

Figure 1.15 Compilation of program

On compilation, the same program is to be run with Alt+R keys. The screen appears as shown below. Of
course, this step is adapted when there are no errors after compilation. After running the program, answer
appears on the other screen. The programmer can try a simple program as cited below in the window.
 Executable file is created after running the program file. The .exe file created can be observed (Figure 1.16).

Figure 1.16 Running a program

It is expected to edit, compile and run a program given in the above snapshot by the user in the C editor.

M01_KAMT3553_02_SE_C01.indd 15 5/17/2015 9:04:22 AM

https://hkgbooks.blogspot.com

16 Programming in C

1.11 standard direCtories
The turbo-C has three standard directories; they are include, sys and lib. The Sys is the
sub-directory of include. The include directory contains all the header files and lib con-
tains all the library files. Before executing the program the path setting should be done. In turbo-
c edit, select Option menu Directories option. Here, set the path of include, library and
turbo-c-directories.

1.12 the first C program
 1.1 Write a program to display message “Hello! C Programmers”.

void main()
{
 printf(“Hello! C Programmers”);
}

OUTPUT:

Hello! C Programmers

 Explanation:
 This program displays the message ‘Hello! C Programmers’ using the printf()

statement. Follow the following steps to execute the program through Turbo-c editor.

 After typing a program by pressing F2, a program can be saved. If you are saving for the first
time, a name will be asked. Type the file and the extension (.c) will automatically be added.

 By pressing ALT+C you can reach the compile option. Also by pressing F9, you can compile
the program. To execute the program you can press CTRL + F9. To see the output of the
program, press ALT+F5. User can make exe file by pressing F9 key twice.

 1.2 Write a program to know about the use of comments (how to use comments?).

void main()
{
 clrscr(); /* clears the screen */
 printf(“\This program explains comments”);
 /* How to use comment? */
}

OUTPUT:
This program explains comments

 Explanation:
 In the above program, we can observe how comments are inserted in a program. The

comments are not an executable part. It is only useful for the programmer to understand
the flow of a program. This program prints the message as shown in the output.
The function clrscr() clears the screen, defined in header file <conio.h>.
Although the file is not included, some compilers allow execution and some will flag
an error message.

M01_KAMT3553_02_SE_C01.indd 16 5/17/2015 9:04:22 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 17

main()
{
 return 0;
}

 1.3 Write a program to return the value from main().

 Explanation:
 The above program produces no output. The main() should return a value of either 0 or 1.

Some operating systems check the return value of main(). If main() returns 0, i.e. pro-
gram executed successfully; else for other value OS assumes the opposite. If user fails to put
the return statement, the compiler would not complain.

1.13 advantages of C
 (i) It contains a powerful data definition. The data type supported are characters, alphanumeric,

integers, long integer, floats and double. It also supports string manipulation in the form of
character array.

 (ii) C supports a powerful set of operators.

 (iii) It also supports powerful graphics programming and directly operates with hardware. Execu-
tion of program is faster.

 (iv) An assembly code is also inserted into C programs.

 (v) C programs are highly portable on any type of OS platforms.

 (vi) System programs such as compilers, operating systems can be developed in C. For example,
the popular operating system UNIX is developed in C.

 (vii) The C language has 32 keywords and about 145 library functions and near about 30 header
files.

 (viii) C works closely with machines and matches assembly language in many ways.

1.14 header fiLes
stdio.h: Standard input and output files. All formatted and unformatted functions include file
operation functions defined in this file. The most useful formatted printf() and scanf() are
defined in this file. This file must be included at the top of the program. Most useful functions from
this header files are printf(), scanf(), getchar(), gets(), putc() and putchar().

conio.h: Console input and output. This file contains input and output functions along with a few
graphic-supporting functions. The getch(), getche() and clrscr() functions are defined in
this file.

math.h: This file contains all mathematical and other useful functions. The commonly useful func-
tions from this files are floor(), abs(), ceil(), pow(), sin(), cos() and tan(). The list
of commonly used header files are given in Table 1.2

M01_KAMT3553_02_SE_C01.indd 17 5/17/2015 9:04:22 AM

https://hkgbooks.blogspot.com

18 Programming in C

There are different ways of representing the logical steps for finding a solution of a given problem.
They are as follows:

 (i) Algorithm

 (ii) Flowchart

 (iii) Pseudo-code

In the algorithm, a description of the steps for solving a given problem is provided. Here, stress is given on the
text. Flowchart represents the solution of a given problem graphically. Pictorial representation of the logical
steps is a flowchart. Another way to express the solution of a given problem is by means of a pseudo-code.

1.15 aLgorithm
Algorithm is a very popular technique used to obtain a solution for a given problem. The algorithm
is defined as ‘the finite set of steps, which provide a chain of actions for solving a definite nature of
problem’. Each step in the algorithm should be well defined. This step will enable the reader to trans-
late each step into a program. Gradual procedure for solving a problem is illustrated in this section.
 An algorithm is a well-organized, pre-arranged and defined textual computational module that
receives some value or set of values as input and provides a single value or a set of values as output.
These well-defined computational steps are arranged in a sequence, which processes the given input
into an output. Writing precise description of the algorithm using an easy language is most essential
for understanding the algorithm. An algorithm is said to be accurate and truthful only when it provides
the exact required output. Lengthy procedure is sub-divided into small parts and thus steps are made
easy to solve a given problem. Every step is known as an instruction.
 In our daily life, we come across numerous algorithms for solving problems. We perform several
routine tasks, for example riding a bike, lifting a phone, making a telephone call, switching on a televi-
sion set and so on.
 For example, to establish a telephonic communication between two subscribers, following steps
are to be followed:

 (i) Dial a phone number

 (ii) Phone rings at the called party

 (iii) Caller waits for the response

 (iv) Called party picks up the phone

Table 1.2 Commonly useful header files
Sr. No. Header File Functions Function Examples

 1. stdio.h Input, output and file operation functions printf(), scanf()

 2. conio.h Console input and output functions clrscr(), getche()

 3. alloc.h Memory allocation-related functions malloc(), realloc()

 4. graphics.h All graphic-related functions circle(), bar3d()

 5. math.h Mathematical functions abs(), sqrt()

 6. string.h String manipulation functions strcpy(), strcat()

 7. bios.h BIOS accessing functions biosdisk()

 8. assert.h Contains macros and definitions void assert(int)

 9. ctype.h Contains prototype of functions which test
characters

isalpha(char)

 10. time.h Contains date- and time-related functions asctime()

M01_KAMT3553_02_SE_C01.indd 18 5/17/2015 9:04:22 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 19

 (v) Conversation begins between them

 (vi) After the conversation, both disconnect the call

Another real life example is to access Internet through Internet service provider with dial up facility.
To log on to the Internet, the following steps are to be followed:

 (i) Choose the Internet service provider for accessing the Internet.

 (ii) Obtain from service provider a dial up number.

 (iii) Acquire IP address of the service provider.

 (iv) Acquire login ID and password.

 (v) Run the Internet browsing software.

When one writes an algorithm, it is essential to know how to analyse the algorithm. Analysing al-
gorithm refers to calculating or guessing resources needed for an algorithm. Resources mean com-
puter memory, processing time, logic gates. In all the above factors, time is the most important factor
because the program developed should be faster in processing. The analysis can also be made by
reading the algorithm for logical accuracy, tracing the algorithm, implementing it, and checking with
some data and with mathematical techniques to confirm its accuracy.
 Algorithms can also be expressed in a simple method. It will help the user to put into operation
easily. However, this approach has a few drawbacks. It requires more space and time. It is very essen-
tial to consider the factors such as time and space of an algorithm. With minimum resources of system
such as CPU’s time and memory, an efficient algorithm must be developed.
Practically, it is not possible to do a simple analysis of an algorithm to conclude the execution time of an
algorithm. The execution time is dependent upon the machine and the way of implementation. The timing
analysis depends upon the input required. To accurately carry out the time analysis, it is also very essential
to know the exact directives executed by the hardware and the execution time passed for each statement.

 1.4 Write a program to swap two numbers using a third variable.

Algorithm for swapping two numbers:
STEP 1: Start.
STEP 2: Declare variables a, b, & c.
STEP 3: Read values of a & b.
STEP 4: Copy value of a to c; b to a; & c to b.
STEP 5: Print swapped values of a & b.
STEP 6: Exit.

Program:
 void main()
 {
 int a,b,c;
 clrscr();
 printf(“\nEnter two numbers for A & B:”);
 scanf(“%d %d”,&a,&b);
 c=a;
 a=b;
 b=c;
 printf(“\nAfter swaping the values

are:A=%d & B=%d.”,a,b);
 getch();
 }

START

c = a;
a = b;
b = c;

END

Enter the values of
a & b

Declare variables a, b, c.

Print a, b

Flowchart for swapping
two numbers:

M01_KAMT3553_02_SE_C01.indd 19 5/17/2015 9:04:23 AM

https://hkgbooks.blogspot.com

20 Programming in C

START

END

Print values
of a & b

Declare variables &
assign values to a & b.

a = a + b;
b = a − b;
a = a − b;

Flowchart:

Hint: Copy value of a in third variable c, value of b in a, and value of c in b.

 Explanation:
 In the above cited program, first three variables a, b, & c are declared. The program invokes

two values of a & b from user. The user assigns values to the variables a & b.

 Now copy the value of a in third variable c, value of b in a, and value of c in b.

 Here, when we assign the value of a to c (c = a), the value of a is copied in variable c. When we
assign (a = b), the value of b is copied in variable a and the previous value is replaced. Now,
b holds the value of variable c in statement (b = c).

 The printf() statement prints the values of a & b.

 1.5 Write a program to swap two numbers without using a third variable.

Algorithm:
STEP 1: Start.
STEP 2: Declare two variables a & b.
STEP 3: Addition of a & b and place result in a.
STEP 4: Subtraction of a & b and place result in b.
STEP 5: Subtraction of a & b and place result in a.
STEP 6: Print values of a & b.
STEP 7: End.

Program:
 void main()
 {
 int a=4,b=6;
 clrscr();
 a=a+b;
 b=a-b;
 a=a-b;
 printf(“\nthe value of a=%d & b=%d”,a,b);
 getch();
 }
 OUTPUT:
 The value of a=6 & b=4

 Explanation:
 In the above cited program, first two variables a & b are declared and initialized.

 Values of a & b are added in the statement a = a + b. In the next statement, b is subtracted from
a and result is stored in b. Finally, the value of a is obtained by subtracting b from a.

 The printf() statement prints the values of a & b.

1.15.1 | program design

When you have thoroughly studied the program and examined the requirement of the program, the
next step is to design the program. To make the programs simple, divide the program into smaller
modules. This makes thinking process easy and you can separately apply logic on each portion. After
dividing the program, according to priority and importance write the code.

M01_KAMT3553_02_SE_C01.indd 20 5/17/2015 9:04:23 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 21

Coding Programs: Coding a program is the second step. Once you have understood the program,
now you can implement through the code. If a program is short, start coding from the beginning to
top in a sequence. Identify the different variables and selection or control structures required. Also
write comments so that you can follow them in future. While coding, appropriate messages for user’s
direction should be prompted.

Testing Programs: After completing the coding of a program, the next step is to test the program.
Confirm that the required source files and data files are at the specified location in the system.

1.16 CLassifiCation of aLgorithms
The classification of algorithm is based on repetitive steps and on control transfer from one statement
to another. Figure 1.17 shows the classification of Algorithms.

Figure 1.17 Classifications of algorithms

Direct Indirect Deterministic Non-deterministic Random

Based on repetitive
steps

Based on control
transfer

Algorithms

 On the basis of repetitive steps, an algorithm can further be classified into two types.

 (i) Direct Algorithm: In this type of algorithm, the number of iterations is known in advance.

 For example, for displaying numerical numbers from 1 to 10, the loop variable should be ini-
tialized from 1 to 10. The statement would be as follows:

 for (j=1;j<=10;j++)
 In the above statement, it is predicted that the loop will iterate 10 times.

 (ii) Indirect Algorithm: In this type of algorithm, repetitively steps are executed. Exactly how
many repetitions are to be made is unknown.

 For example, the repetitive steps are as follows:

 (i) To find the first five Armstrong numbers from 1 to n, where n is the fifth Armstrong
 number.

 (ii) To find the first three palindrome numbers.

M01_KAMT3553_02_SE_C01.indd 21 5/17/2015 9:04:24 AM

https://hkgbooks.blogspot.com

22 Programming in C

 Based on the control transfer, the algorithms are categorized in the following three types.

 (i) Deterministic: Deterministic algorithm is based on either to follow a ‘yes’ path or ‘no’ path
based on the condition. In this type of algorithm when control comes across a decision logic,
two paths ‘yes and ‘no’ are shown. Program control follows one of the routes depending upon
the condition.

 Example:
 Testing whether a number is even or odd. Testing whether a number is positive or negative.

 (ii) Non-deterministic: In this type of algorithm to reach to the solution, we have one of the mul-
tiple paths.

 Example:
 To find a day of a week.

 (iii) Random algorithm: After executing a few steps, the control of the program transfers to
another step randomly, which is known as a random algorithm.

 Example:
 A random search

 Another kind of an algorithm is the infinite algorithm.

 Infinite algorithms: This algorithm is based on better estimates of the results. The number
of steps required would not be known in advance. The process will be continued until the best
results emerged. For final convergence more iterations would be required.

 Example:
 To find shortest paths from a given source to all destinations in the network.

1.17 fLoWCharts
A flowchart is a visual representation of the sequence of steps for solving a problem. It enlightens
what comes first, second, third, and so on. A completed flowchart enables you to organize your prob-
lem into a plan of actions. Even for designing a product a designer many times has to draw a flowchart.
It is a working map of the final product. This is an easy way to solve the complex designing problems.
The reader follows the process quickly from the flowchart instead of going through the text.
 A flowchart is an alternative technique for solving a problem. Instead of descriptive steps, we use
pictorial representation for every step. It shows a sequence of operations. A flowchart is a set of symbols,
which indicates various operations in the program. For every process, there is a corresponding symbol
in the flowchart. Once an algorithm is written, its pictorial representation can be done using flowchart
symbols. In other words, a pictorial representation of a textual algorithm is done using a flowchart.

We give below some commonly used symbols in flowcharts.

Start and end: The start and end symbols indicate both the beginning and the end of the flowchart.
This symbol looks like a flat oval or is egg shaped. Figure 1.18 shows the symbol of Start/stop. Only
one flow line is combined with this kind of symbol. We write START, STOP or END in the symbols
of this kind. Usually this symbol is used twice in a flowchart, that is, at the beginning and at the end.

Start

Stop

Figure 1.18 Start/stop symbol

M01_KAMT3553_02_SE_C01.indd 22 5/17/2015 9:04:24 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 23

Decision or test symbol: The decision symbol is diamond shaped. This symbol is used to take one
of the decisions. Depending on the condition the decision block selects one of the alternatives. While
solving a problem, one can take a single, two or multiple alternatives depending upon the situation. All
these alternatives are illustrated in this section. A decision symbol with a single alternative is shown in
Figure 1.18. In case the condition is satisfied /TRUE a set of statement(s) will be executed otherwise
for false the control transfers to exit.

Single alternative decision: Here more than one flow line can be used depending upon the condi-
tion. It is usually in the form of a ‘yes’ or ‘no’ question, with branching flow line depending upon the
answer. With a single alternative, the flow diagram will be as per Figure 1.19.

Entry

Condition?

Execution of statement(s)

Exit

True False

Figure 1.19 Single alternative decision

Two alternative decisions: In Figure 1.20 two alternative paths have been shown. On satisfying the
condition statement(s) pertaining to 1 action will be executed, otherwise the other statement(s) for
action 2 will be executed.

Entry

Condition?

Execution of action 2Execution of action 1

Exit

True False

Figure 1.20 Two alternative decisions

Multiple alternative decisions: In Figure 1.21 multiple decision blocks are shown. Every decision
block has two branches. In case the condition is satisfied, execution of statements of appropriate
blocks take place, otherwise next condition will be verified. If condition 1 is satisfied then block 1
statements are executed. In the same way, other decision blocks are executed.

M01_KAMT3553_02_SE_C01.indd 23 5/17/2015 9:04:24 AM

https://hkgbooks.blogspot.com

24 Programming in C

Entry

Condition 1

Condition 2

Condition 3

Execution of block 1

Execution of block 2

Execution of block 3

True

True

True

False

False

False

Exit

Figure 1.21 Multiple alternative decisions

Connector symbol: A connector symbol has to be shown in the form of a circle. It is used to establish
the connection, whenever it is impossible to directly join two parts in a flowchart. Quite often, two
parts of the flowcharts may be on two separate pages. In such a case, connector can be used for joining
the two parts. Only one flow line is shown with the symbol. Only connector names are written inside
the symbol, that is, alphabets or numbers. Figure 1.22 shows the connector symbol.

Connector for connecting
to the next block

Connector that comes from the
previous block

Figure 1.22 Connector symbol

Process symbol: The symbol of process block should be shown by a rectangle. It is usually used for
data handling, and values are assigned to the variables in this symbol. Figure 1.23 shows the process
symbol. The operations mentioned within the rectangular block will be executed when this kind of
block is entered in the flowchart. Sometimes an arrow can be used to assign the value of a variable to
another. The value indicated at its head is replaced by the tail values. There are two flow lines con-
nected with the process symbol. One line is incoming and the other line goes out.

Z = X + Y

P = X * Y

Figure 1.23 Process symbol

M01_KAMT3553_02_SE_C01.indd 24 5/17/2015 9:04:25 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 25

Loop symbol: This symbol looks like a hexagon. This symbol is used for implementation of for
loops only. Four flow lines are associated with this symbol. Two lines are used to indicate the
sequence of the program and remaining two are used to show the looping area, that is, from the
beginning to the end.

 For the sake of understanding, Figure 1.24. illustrates the working of for loop. The variable J is
initialized to 0 and it is to be incremented by a step of 2 until it reaches the final value 10. For every
increased value of J, body of the loop is executed. This process will be continued until the value of J
reaches 10. Here the next block is shown for the repetitive operation.

Entry

Exit

To continue the
for loop

Body of the
for loop

For J = 0 to 10 by
step 2

Figure 1.24 For loop

Input/output symbol: Input/output symbol looks like a parallelogram, as shown in Figure 1.25. The
input/output symbol is used to input and output the data. When the data is provided to the program for
processing, then this symbol is used. There are two flow lines connected with the input/output symbol.
One line comes to this symbol and the other line goes from this symbol.
 As per Figure 1.25 compiler reads the values of X, Y and in the second figure the result is dis-
played on the monitor or the printer.

Read X, Y Print X, Y

Figure 1.25 Input/output symbol

Figure 1.26 Delay symbol

Delay symbol: Symbol of delay is just like ‘AND’ gate. It is used for adding delay to the process. It is
associated with two lines. One is incoming and the other is outgoing, as shown in Figure 1.26.

M01_KAMT3553_02_SE_C01.indd 25 5/17/2015 9:04:26 AM

https://hkgbooks.blogspot.com

26 Programming in C

Figure 1.27 Manual input symbol

Manual input symbol: This is used for assigning the variable values through the keyboard, whereas
in data symbol the values are assigned directly without manual intervention. Figure 1.27 represents
the symbol of manual input.
 In addition, the following symbols (Figure 1.28) can be used in the flowchart and they are parts
of flowcharts.

Alternate process Prede�ned process Internal storage

Manual operation

Punched tape Summing junction Or Collate

Sort Extract Merge Stored data

Sequential access
storage

Display Direct access
storage

Off-page connector Card Flow lines

Figure 1.28 Some other symbols used in the flowchart

1.18 pseUdoCode
In pseudocodes english-like words are used to represent the various logical steps. It is a prefix repre-
sentation. Here solution of each step is described logically. The pseudocode is just the raw idea about
the problem. By using this tip, one can try to solve the problem. The meaning of pseudocode is ‘false
code.’ The syntax rule of any programming language cannot be applied to pseudocode.

Example (a): Assume a and b are two numbers and find the larger out of them. In such a case, com-
parison is made between them.

M01_KAMT3553_02_SE_C01.indd 26 5/17/2015 9:04:27 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 27

This can be represented as follows.

Algorithm Pseudocode

Input a and b. get numbers a & b

Is a>b. Compare a & b

If yes a is larger than b. if a is large max=a

If no b is larger than a. if b is large max=b

Print the larger number. Larger number is max

Few skilled programmers prefer to write pseudocode for drawing the flowchart. This is because using
pseudocode is analogous to writing the final code in the programming language. Few programmers
prefer to write the steps in algorithm. Few programmers favour flowchart to represent the logical flow
because with visualization things are clear for writing program statements. For beginners a flowchart
is a straightforward tool for writing a program.

Example (b): The example (b) illustrates how the pseudo code is used to draw the flowchart for squar-
ing a number.

 (i) Accept number

 (ii) Calculate square of the number

 (iii) Display number

All the steps of the program are written down in steps. Some programs follow pseudocode to draw
flowcharts. Using pseudocode, final program can be written. Majority of programs have common
tasks such as input, processing and output. These are fundamental tasks of any program.
Using pseudocode a flowchart can be drawn as per the following steps.
For the statement, that is, ‘Accept number’ the flowchart symbol is as per Figure 1.29.

Accept
number

Figure 1.29 Input symbol

The statements including arithmetic operations are examples of processing statements. The repre-
sentation of second statement ‘Calculate square of the number’ can be represented as in Figure 1.30.

Calculate square
of the number

Figure 1.30 Processing symbol

The output statement, that is, ‘Display number’ can be represented as per Figure 1.31.

Display
number

Figure 1.31 Output symbol

In addition,the flowchart has two more symbols to indicate the beginning and the end of the program
as per Figure 1.32 The standard terminator symbol is racetrack.

M01_KAMT3553_02_SE_C01.indd 27 5/17/2015 9:04:28 AM

https://hkgbooks.blogspot.com

28 Programming in C

 1. C Language is developed by Ken Thompson.

 2. C Language was developed in the year 1972.

 3. C Language is closely associated with Linux.

 4. C Programs are not portable.

 5. The ANSI C standard was developed in 1989.

 6. C Programs are translated into object code by a
compiler.

 7. An interpreter reads one line at a time.

 8. Every C Program should have the main()
 function.

 9. In C, all the statements should be written in small
letters only.

 10. After compilation, the object file of a source pro-
gram is created.

 11. It is not possible to crate .exe file in C.

 12. Compiler executes a program even if the program
contains warning messages.

Begin

Begin

1. Accept number

2. Calculate square of
 the number

3. Display number

Accept
number

Calculate square
of the number

Display
number

End End

 Figure 1.32 Pseudocode and flowchart of a program

 exerCises

 I True or false:

 sUmmary

 This chapter presents the evolution and basics of C. C is a structural language. It has many similari-
ties like other structural languages such as Pascal and Fortran. C is also called a system-programming
language. The ANSI C standard was adopted in December 1989 and the first copy of C language was
introduced in the market in 1990.
 The reader is exposed to an assembler that translates the symbolic code of programs of an
assembly language into machine language instructions. Similarly, compilers are the translators, which
translate all the instructions of the program into machine codes and can be used again and again. An
interpreter comes in the group of translators. It helps the user to execute the source program with few
differences as compared to compilers.
 In this chapter, an overview of algorithms was given. An algorithm is defined as ‘the finite set of
the steps, which provide a chain of actions for solving a definite nature of problem’. Algorithms are of
two types, direct algorithm and indirect algorithm.

M01_KAMT3553_02_SE_C01.indd 28 5/17/2015 9:04:28 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 29

II Select the appropriate option from the multiple choices given below:

1. The C language has been developed by

 (a) Patrick Naughton
 (b) Dennis Ritche
 (c) Ken Thompson
 (d) Martin Richards

2. The C programming is a

 (a) high-level language
 (b) low-level language
 (c) middle-level language
 (d) assembly language

3. The C programs are converted into machine lan-
guage using

 (a) an assembler
 (b) a compiler
 (c) an interpreter
 (d) an operating system

4. The C language was developed in the year

 (a) 1972
 (b) 1980
 (c) 1975
 (d) 1971

5. The C language has been developed at

 (a) AT & T Bell Labs, USA
 (b) IBM, USA
 (c) Borland International, USA
 (d) Sun Microsystems

6. The C language is an offspring of the

 (a) ‘BPCL’ language
 (b) ‘ALGOL’ language
 (c) ‘Basic’ language
 (d) None of the above

 7. The C program should be written only in

 (a) lower case
 (b) upper case
 (c) title case
 (d) sentence case

 8. The role of a compiler is to translate source
program statements to

 (a) object codes
 (b) octal codes
 (c) decimal codes
 (d) None of the above

 9. The extension for C program files by default is

 (a) ‘.c’
 (b) ‘.d’
 (c) ‘.obj’
 (d) ‘.exe’

 10. The C can be used with

 (a) only UNIX operating system
 (b) only LINUX operating system
 (c) only MS-DOS operating system
 (d) All the above

 11. The C language is closely associated with

 (a) MS-DOS
 (b) LINUX
 (c) UNIX
 (d) MS-windows

 12. The C programs are highly portable means

 (a) same programs execute on different computers
 (b) program executes only on the same computer
 (c) program needs a lot of modification to run
 (d) None of the above

 13. In Turbo-C editor Alt+C is used to execute the
program.

 14. A comment can be split in more than one line.

 15. The source code for the UNIX operating system
is in C.

 16. The assembly language program is in alphanu-
meric symbols.

 17. Linking software is used to bring together the
source program and library code.

 18. Assembler translates low-level language to ma-
chine code.

 19. The compiler reads firstly entire program and
generates the object code.

 20. C does not have automatic conversion of compat-
ible variable.

 21. Every processor has its own assembly language.

 22. Assembly language program is portable.

M01_KAMT3553_02_SE_C01.indd 29 5/17/2015 9:04:28 AM

https://hkgbooks.blogspot.com

30 Programming in C

 13. Each instruction in C program is terminated by

 (a) dot (.)
 (b) comma (,)
 (c) semi-colon (;)
 (d) curly brace ({})

 14. Which one of the following statements is incorrect?

 (a) a compiler compiles the source program
 (b) an assembler takes as assembly program as

 input
 (c) interpreter executes the complete source

code just like compiler
 (d) None of the above

 15. ANSI committee was set up in

 (a) 1983
 (b) 1985
 (c) 1990
 (d) 1976

 16. The program which translates high-level program
into its equivalent machine language program is
called

 (a) a translator
 (b) a language processor
 (c) a converter
 (d) None of the above

 17. C is an offspring of the

 (a) basic combined programming language
 (b) basic computer programming language
 (c) basic programming language
 (d) None of the above

 18. An interpreter reads the source code of a program

 (a) one line at a time
 (b) two lines at a time
 (c) complete program in one stroke
 (d) None of the above

 19. A compiler reads the source code of a program

 (a) complete program in one stroke
 (b) one line at a time
 (c) two lines at a time
 (d) None of the above

 20. C keywords are reserved words by

 (a) a compiler
 (b) an interpreter
 (c) a header file
 (d) Both (a) and (b)

 21. The declaration of C variable can be done

 (a) anywhere in the program
 (b) in declaration part
 (c) in executable part
 (d) at the end of program

 22. Variables must begin with character without
 spaces but it permits

 (a) an underscore symbol (_)
 (b) an asterisk symbol ()
 (c) an ampersand symbol (&)
 (d) None of the above

 23. In C, the statements following main() are
 enclosed within

 (a) {}
 (b) ()
 (c) <>
 (d) None of the above

 24. CPU generates

 (a) timing signals
 (b) control signals
 (c) analog signals
 (d) both a & b

 25. The structural languages are

 (a) C
 (b) Pascal
 (c) Fortan
 (d) All the above

 26. Data type-less languages are

 (a) C
 (b) BCPL
 (c) B
 (d) Both c & b

 27. Input device/s of a computer

 (a) Printer
 (b) Speaker
 (c) Monitor
 (d) None of the above

 28. Output device/s of the computer

 (a) Monitor
 (b) Speaker
 (c) Printer
 (d) All the above

 29. CPU comprises of the

 (a) Arithmetic and Logical unit
 (b) Registers
 (c) Control Signals
 (d) All the above

M01_KAMT3553_02_SE_C01.indd 30 5/17/2015 9:04:28 AM

https://hkgbooks.blogspot.com

Basics and Introduction to C 31

 III Answer the following questions:

ansWers

 1. Why to use a computer? Brief its benefits.

 2. Illustrate the functions of various parts of a
computer.

 3. Why is the C language called a middle-level
 language?

 4. What are the functions of an interpreter and a
 compiler?

 5. What is the difference between an interpreter and
a compiler?

 6. What is meant by compilation? Explain in detail.

 7. Write the rules for writing a C program.

 8. Elaborate different sections of a C program.

 9. Explain the functions of a linker.

 10. What is the role of curly braces ({}) in a
C program?

 11. What is ANSI C standard?

 12. What are the user-defined functions?

 13. Explain the assembly-language and machine-lan-
guage concepts.

 14. Write details on header files stdio.h and
conio.h.

 15. Which are the standard directories? Where are .h
files kept?

 16. Write any three advantages of a C language.

 17. What is an algorithm? Explain in short.

 18. Mention and explain two types of algorithms.

 19. Show the flowchart for finding cube of a number.

 20. Write the pseudo code for finding largest out of
three numbers.

I True or false:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. F 2. T 3. F 4. F 5. T

 6. T 7. T 8. T 9. T 10. T

11. F 12. T 13. F 14. T 15. T

16. T 17. T 18. T 19. T 20. T

21. T 22. F

II Select the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. b 2. c 3. b 4. a 5. a

 6. a 7. a 8. a 9. a 10. d

11. c 12. a 13. c 14. c 15. a

16. a 17. a 18. a 19. a 20. a

21. b 22. a 23. a 24. d 25. d

26. d 27. d 28. d 29. d 30. d

 30. Advantages of high level language are

 (a) fast Program Development
 (b) testing and Debugging of program is easier

 (c) portable
 (d) All the above

M01_KAMT3553_02_SE_C01.indd 31 5/17/2015 9:04:29 AM

https://hkgbooks.blogspot.com

2 The C
Declarations

CHAPTER

Chapter Outline

 2.1 Introduction
 2.2 The C Character Set
 2.3 Delimiters
 2.4 Types of Tokens
 2.5 The C Keywords
 2.6 Identifiers
 2.7 Constants
 2.8 Variables
 2.9 Rules for Defining Variables
 2.10 Data Types
 2.11 C Data Types
 2.12 Integer and Float Number Representations
 2.13 Declaring Variables
 2.14 Initializing Variables
 2.15 Dynamic Initialization
 2.16 Type Modifiers
 2.17 Type Conversion
 2.18 Wrapping Around
 2.19 Constant and Volatile Variables

M02_KAMT3553_02_SE_C02.indd 32 5/17/2015 9:05:07 AM

https://hkgbooks.blogspot.com

The C Declarations 33

2.1 IntroductIon
The programming languages are designed to support certain kind of data, such as numbers, characters,
strings, etc., to get useful output known as result/information. Data consists of digits, alphabets and symbols.
 A program should support these data types for getting the required output known as information.
A program is a set of statements, which performs a specific task, executed by users in a sequential
form. These statements/instructions are formed using certain words and symbols according to the
rules known as syntax rules or grammar of the language. Every program must accurately follow the
syntax rules supported by the language.
 In this chapter, C character set, the type of variables, types of tokens, delimiters, data types,
 variable initialization and dynamic initialization are described.

2.2 the c character Set
A character is a part of a word, sentence or paragraph. By using different characters, words, expres-
sions and statements can be created on the basis of the requirement. This creation depends upon the
computer on which a program runs.
 A character is represented by any al-
phabets in lowercase or uppercase, digits
or special characters.
 Figure 2.1 presents valid C character
set which are as follows: (i) Letters
(ii) Digits (iii) White Spaces & Escape
 Sequences and (iv) Special Characters.
As C character set consists of escape
 sequences so each escape sequence begins with back slash (\) and it represents a single character. Any
character can be represented as character constant using escape sequence.
 The complete character set is listed in Tables 2.1 and 2.2.

Table 2.1 Character set
Letters Digits White Spaces and Escape Sequences

Uppercase A to Z All decimal digits 0 to 9 Back space \b

Lowercase a to z Horizontal tab \t

Vertical tab \v

New line \n

Form feed \f

Backslash \\

Alert bell \a

Carriage return \r

Question mark \?

Single quote \’

Double quote \”

Octal number \o or \oo or \ooo

Hexadecimal number \xhh

ALPHABETS

DIGITS

WHITE SPACES AND
ESCAPE SEQUENCES

SPECIAL CHARACTERS

C character set

Figure 2.1 C character set

M02_KAMT3553_02_SE_C02.indd 33 5/17/2015 9:05:07 AM

https://hkgbooks.blogspot.com

34 Programming in C

The special characters listed in Table 2.2 are represented in the computer by numeric values. The C
characters are assigned unique codes. There are many character codes used in the computer system.
The widely and standard codes used in computer are ASCII and EBCDIC (Extended Binary Coded
Decimal Interchange Code).

Table 2.2 List of special characters
, Comma & Ampersand

. Period or dot ^ Caret

; Semi-colon * Asterisk

: Colon _ Minus sign

‘ Apostrophe + Plus sign

“ Quotation mark < Less than

! Exclamation mark > Greater than

| Vertical bar () Parenthesis (left/right)

/ Slash [] Brackets (left/right)

\ Back slash {} Curly braces (left/right)

˜ Tilde % Percent sign

_ Underscore # Number sign or hash

$ Dollar = Equal to

? Question mark @ At the rate

Table 2.3 Delimiters
Delimiters Symbols Uses

Colon : Useful for label

Semi-colon ; Terminates statements

Parenthesis () Used in expression and function

Square brackets [] Used for array declaration

Curly braces {} Scope of statement

Hash # Preprocessor directive

Comma , Variable separator

Angle brackets <> Header file

 ASCII Code: ASCII stands for American Standard Code for Information Interchange, is the
code of two types. One uses 7 bits and other uses 8 bits. The 7-bit code represents 128 different
 characters and the 8-bit code represents 256 characters. For example, the character A is represented
in 7-bit code as 1000001

2
(decimal 65). Refer to Appendix A for the list of characters and their

equivalent number.

2.3 delImIterS
The language pattern of C uses special kind of symbols, which are called delimiters. They are depicted
in Table 2.3.

M02_KAMT3553_02_SE_C02.indd 34 5/17/2015 9:05:07 AM

https://hkgbooks.blogspot.com

The C Declarations 35

2.4 typeS of tokenS
A compiler designer prescribes rules for making a program using statements. The smallest unit in a
program/statement is called a token. The compiler identifies them as tokens. Tokens are classified in
the following types. Figure 2.2 shows the types of tokens supported by C.
 The tokens are as follows:

 (i) Keywords: Key words are reserved by
the compiler. There are 32 keywords
(ANSI Standard).

 (ii) Variables: These are user defined. Any
number of variables can be defined.

 (iii) Constants: Constants are assigned to
variables.

 (iv) Operators: Operators are of different
types and are used in expressions.

 (v) Special Characters: These characters
are used in different declarations in C.

 (vi) Strings: A sequence of characters.

2.5 the c keywordS
The C keywords are reserved words by the compiler. All the C keywords have been assigned fixed
meanings and they cannot be used as variable names. However, few C compilers allow constructing
variable names, which exactly coincide with the keywords. It is suggested that the keywords should
not be mixed up with variable names. For utilizing the keywords in a program, no header file is
required to be included. The descriptions of the keywords are explained in the different programs/
chapters. The 32 C keywords provided in ANSI C are listed in Table 2.4.

Table 2.4 C keywords
auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Additional Keywords for Borland C

asm cdecl far huge interrupt near pascal

2.6 IdentIfIerS
A symbolic name is used to refer to a variable, constant, function, structure, union etc. This process
is done with identifiers. In other words, identifiers are the names of variables, functions, arrays, etc.

Keywords

Variables

Operators

Constants

Special
Characters

Strings

Tokens

Figure 2.2 Types of tokens

M02_KAMT3553_02_SE_C02.indd 35 5/17/2015 9:05:08 AM

https://hkgbooks.blogspot.com

36 Programming in C

They refer to a variety of entities such as structures, unions, enumerations, constants, typedef names,
 functions and objects (see Figure 2.3). An identifier always starts with an alphabet, and it is a plain
sequence of alphabets and/or digits. C identifier does not allow blank spaces, punctuations and signs.
 Identifiers are user-defined names. They are generally defined in lowercase letters. However, the
 uppercase letters are also permitted. The underscore (_) symbol can be used as an identifier. In general, an
underscore is used by a programmer as a link between two words for the long identifiers.
 The programmer can refer to programming example 2.3 in which the identifiers are not defined
in lowercase but with a combination of lowercase and uppercase letters.

Valid identifiers are as follows:
length, area, volume, sUM, Average

Invalid identifiers are as follows:
Length of line, S+um, year’s

Example:
User-defined identifiers are as follows:

 (i) #define N 10
 (ii) #define a 15

Here, ‘N’ and ‘a’ are user-defined identifiers.

2.7 conStantS
The constants in C are applicable to the values, which do not change during the execution of a pro-
gram. There are several types of constants in C. They are classified into following groups as given in
Figure 2.4 (e.g. Table 2.5).

Table 2.5 Constant types
Example Constant Type

542 Integer constant

35.254 Floating-point constant

0 × 54 Hexadecimal integer constant

0171 Octal integer constant

‘C’ Character constant

“cpp” String constant

Variable

Pointer

Structure

Union

Array

Function

Identfier

Figure 2.3 Identifiers

C Constants

Numeric Constant Character Constant

Integer Constant
Real Constant

Character Constant
String Constant

Figure 2.4 C constants

M02_KAMT3553_02_SE_C02.indd 36 5/17/2015 9:05:09 AM

https://hkgbooks.blogspot.com

The C Declarations 37

2.7.1 | numerical constants

 (a) Integer Constants: These constants are represented with whole numbers. They require a
 minimum of 2 bytes and a maximum of 4 bytes of memory.

 The following concepts are essential to follow the numerical constants:

 (a) Numerical constants are represented with numbers. At least one digit is needed for
 representing the number.

 (b) The decimal point, fractional part, or symbols are not permitted. Neither blank spaces nor
commas are permitted.

 (c) Integer constant could be either positive or negative or may be zero.

 (d) A number without a sign is assumed as positive.

 Some valid examples: 10, 20, +30, –15, etc.
 Some invalid integer constants: 2.3, .235, $76, 3 ^6, etc.

 Besides representing the integers in decimal, they can also be represented in octal or hexadeci-
mal number system based on the requirement.

 Octal number system has base 8 and the hexadecimal number system has base 16. The octal
numbers are 0, 1, 2, 3, 4, 5, 6, and 7 and the hexadecimal numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, and F.

 The representation of octal numbers in C would be done with leading digit 0 and for hex rep-
resentation, with leading OX or O

X
.

 Examples of octal and hexadecimal numbers:

 Octal numbers – 027, 037, 072

 Hexadecimal numbers – 0X9, 0Xab, 0X4

 (b) Real Constants: Real constants are often known as floating point constants. Real constants
can be represented in exponential or fractional form. Integer constants are unfit to represent
many quantities. Many parameters or quantities are defined not only in integers but also in real
numbers. For example, length, height, price, distance, etc. are also measured in real numbers.

 The following concepts are essential to follow the real numbers:

 (a) The decimal point is permitted.

 (b) Neither blank spaces nor commas are permitted.

 (c) Real numbers could be either positive or negative.

 (d) The number without a sign is assumed as positive.

 Examples of real numbers are 2.5, 5.521, 3.14, etc.

 The real constants can be written in exponential notation, which contains fractional and expo-
nential parts. For example, the value 2456.123 can be written as 2.4561 X e+3.

 The part that precedes e is called mantissa and the part that follows it is an exponent. In this
example, 2.4561 is the mantissa and +3 is the exponent.

M02_KAMT3553_02_SE_C02.indd 37 5/17/2015 9:05:09 AM

https://hkgbooks.blogspot.com

38 Programming in C

 The following points must be noted while constructing a real number in exponential form:

 (a) The real number should contain a mantissa and an exponent.

 (b) The letter ‘e’ separates the mantissa and the exponent and it can be written in lower or
 upper case.

 (c) The mantissa should be either a real number represented in decimal or integer form.

 (d) The mantissa may be either positive or negative.

 (e) The exponent should be an integer that may be positive or negative.

 Some valid examples are 5.2e2,–2, 5.0e–5, 0.5e–3, etc.

 In double type also the real numbers can be expressed with mantissa and exponent parts.

2.7.2 | character constant

 (i) Single Character Constants: A character constant is a single character. It can also be
 represented with single digit or a single special symbol or white space enclosed within a pair
of single quote marks or character constants are enclosed within single quotation marks.

 Example:

 ‘a’, ‘8’, ‘-’

 Length of a character, at the most, is one character.

 Character constants have integer values known as ASCII values. For example the statement
printf (“%c %d”, 65, ‘B’) will display character ‘A’ and 66.

 (ii) String Constants: String constants are a sequence of characters enclosed within double quote
marks. The string may be a combination of all kinds of symbols.

 Example:
 “Hello”, “India”, “444”, “a”.

 A programming example is given for various constants.

 2.1 Write a program on various constants.

void main()
{
 int x;
 float y;
 char z;
 double p;
 clrscr();
 x=20;
 y=2e1;
 z=‘a’;
 p=3.2e20;
 printf(“\n%d %10.2f %c %.2lf”,x,y,z,p);
 getche();
}

OUTPUT:
20 20.00 a 320000000000000000000.00

M02_KAMT3553_02_SE_C02.indd 38 5/17/2015 9:05:09 AM

https://hkgbooks.blogspot.com

The C Declarations 39

void main()
{
 int age=20;
 float height=5.4;
 char sex=‘M’;
 clrscr();
 printf(“Age :%d \nHeight : %g \nSex : %c”,age,height,sex);
}

OUTPUT:
Age: 20
Height: 5.4
Sex: M

2.8 VarIableS
Variables are the basic objects manipulated in a program. Declaration gives an introduction of variable
to compiler and its properties like scope, range of values and memory required for storage. A variable
is used to store values. It has memory location and can store single value at a time.
 When a program is executed, many operations are carried out on the data. The data types are
integers, real or character constants. The data is stored in the memory, and at the time of execution it
is fetched for carrying out different operations on it.
 A variable is a data name used for storing a data value. Its value may be changed during the pro-
gram execution. The variable value keeps on changing during the execution of the program. In other
words, a variable can be assigned different values at different times during the program execution.
A variable name may be declared based on the meaning of the operation. Variable names are made up
of letters and digits. Some meaningful variable names are as follows.

Example:
height, average, sum, avg12

 2.2 Write a program to declare and initialize variables and display them.

 Explanation:
 In the above program, int, height and char variables are declared and values are as-

signed. Using printf() statement values are displayed.

2.9 ruleS for defInIng VarIableS
 (i) A variable must begin with a character or an underscore without spaces. The underscore is

treated as one type of character. It is very useful to increase readability of variables having long
names. It is advised that the variable names should not start with underscore because library
routines mostly use such variable names.

 (ii) The length of the variable varies from compiler to compiler. Generally, most of the compil-
ers support eight characters excluding extension. However, the ANSI standard recognizes the
maximum length of a variable up to 31 characters. Names of functions and external variables
length may be less than 31 because external names may be used by assemblers and loaders
over which language has no control. For external names, the variable names should be of six
characters and in single case.

M02_KAMT3553_02_SE_C02.indd 39 5/17/2015 9:05:09 AM

https://hkgbooks.blogspot.com

40 Programming in C

 void main()
 {
 int Num=12;
 int WEIGHT = 25;
 float HeIgHt=4.5;
 char name[10]=“AMIT”;
 clrscr();
 printf(“Num :%d \nWEIGHT : %d \nHeight : %g \nName

 =%s”,Num,WEIGHT,HeIgHt,name);
 }

 OUTPUT:
 Num: 12
 WEIGHT: 25
 Height: 4.5
 Name = AMIT

 (iii) The variable should not be a C keyword.

 (iv) The variable names may be a combination of uppercase and lowercase characters. For
example, suM and sum are not the same. The traditional practice is to use lowercase characters
for variable names and uppercase letters for symbolic constants.

 (v) The variable name should not start with a digit.

 (vi) Blanks and commas are not permitted within a variable name.

 2.3 Write a program to declare variables with different names and data types.

 Explanation:
 In this program, you might have noticed that variables of different data types with different

naming styles are defined. For example Num, WEIGHT, HeIgHt and name are variables.
Values are assigned to variables and displayed in the same way as usual.

2.10 data typeS
All C compilers support a variety of data types. This enables the programmer to select the appro-
priate data type as per the need of the application. Generally, data is represented using numbers or
characters. The numbers may be integers or real. The basic data types are char, int, float and
double.
 The C supports a number of qualifiers that can be applied to these basic data type. The short and
long qualifiers provide different length to int. The short is always 16 bits and long is 32 bits, i.e. int
is either 16 or 32 bits. The compiler is free to choose a suitable size depending upon the hardware.
However, the restriction is that short or int is at least of 2 bytes and long is at least of 4 bytes.
The short should not be longer than int and int should not be longer than long.
 The unsigned and signed qualifiers can be applied to char, int and long. The unsigned data
types are always zero or positive. They follow the law of arithmetic modulo 2n, where n is the number of
bits in the type. For example, char are 8 bits with combination of negative and positive values (−128
to 127) (two’s complement). The unsigned char supports values 0 to 255. The characters are signed or
unsigned, the printable char are always positive (see Figure 2.5 for a detailed classification).

M02_KAMT3553_02_SE_C02.indd 40 5/17/2015 9:05:09 AM

https://hkgbooks.blogspot.com

The C Declarations 41

 C data type can be classified as follows:

 (i) Basic Data Type:
 (a) Integer (int), (b) character (char), (c) floating point (float), (d) double floating point

(double).

 (ii) Derived Data Type: Derived data types are pointers, functions and arrays. Pointers are
explained in Chapter 9, functions are explained in Chapter 10 and arrays are explained in
Chapter 7.

 (iii) User-defined Type: Struct, union and typedef are user-defined data types, which are
explained in Chapter 13.

 (iv) void Data Type: This data type is explained in Chapter 10.

2.11 c data typeS
(1) Integer Data Type

 (a) int, short and long

 All C compilers offer different integer data types. They are short and long. Short integer
requires half the space in memory than the long. The short integer requires 2 bytes and long
integers 4 bytes. Brief description on them is given in Table 2.6.

C Data Types

Derived Data Type Basic Data Type User Defined Data Type

Structure
union
Enumeration
typedef

Integer
Floating point

void

char
int float

double
long double

Pointers
Functions
Arrays

Figure 2.5 C data types

Table 2.6 Difference between short and long integers
Short Integer Long Integer

Occupies 2 bytes in memory Occupies 4 bytes in memory

Range: −32,768 to 32,767 Range: −2147483648 to 2147483647

Program runs faster Program runs slower

Format specifier is %d or %i Format specifer is %ld

(Continued)

M02_KAMT3553_02_SE_C02.indd 41 5/17/2015 9:05:09 AM

https://hkgbooks.blogspot.com

42 Programming in C

 (b) Integers Signed and Unsigned

 The difference between the signed integers and unsigned is given in Table 2.7.

Table 2.7 Difference between signed and unsigned integers
Signed Integer Unsigned Integer

Occupies 2 bytes in memory Occupies 2 bytes in memory

Range: −32,768 to 32,767 Range: 0 to 65535

Format specifier is %d or %i Format specifier is %u

By default signed int is short signed int By default unsigned int is short unsigned int

There are also long signed integers having Range
from −2147483648 to 2147483647.

There are also long unsigned int with range 0 to
4294967295

Example:
int a=2;
long int b=2;

Example:
unsigned long b=567898;
unsigned short int c=223;

When a variable is declared as unsigned the negative
range of the data type is transferred to positive, i.e.
doubles the largest size of the possible value. This is due
to declaring unsigned int; the 16th bit is free and not
used to store the sign of the number.

(2) char, signed and unsigned: Brief description on these data types is given in Table 2.8

Table 2.8 Difference between signed and unsigned char
Signed Character Unsigned Character

Occupies 1 bytes in memory Occupies 1 bytes in memory

Range: −128 to 127 Range: 0 to 255

Format specifier: %c Format specifier: %c

When printed using %d format specifier,
prints ASCII character.

When printed using %d format specifier,
prints ASCII character

char ch=‘b’; unsigned char =‘b’;

(3) Floats and Doubles: Table 2.9 shows the description of floats and double floats.

Short Integer Long Integer

Example:
int a=2;
short int b=2;

Example:
long b=123456;
long int c=1234567;

When variable is declared without short or long keyword, the
default is short-signed int.

Table 2.6 Difference between short and long integers (Continued)

M02_KAMT3553_02_SE_C02.indd 42 5/17/2015 9:05:09 AM

https://hkgbooks.blogspot.com

The C Declarations 43

Table 2.9 Difference between floating and double floating
Floating Double Floating

Occupies 4 bytes in memory Occupies 8 bytes in memory

Range: 3.4e−38 to +3.4e+38 Range: 1.7 e−308 to +1.7e+308

Format string: %f Format string: %lf

Example:
float a;

Example:
double y;

There also exist long double having ranged 3.4e −
4932 to 1.1e + 4932 and occupies 10 bytes in memory.

Example:
long double k;

(4) Entire data types in C: The entire data types supported by the C as illustrated above are given
in Table 2.10 for the convenience of the reader for understanding.

Table 2.10 Data types and their control strings
Data Type Size (bytes) Range Format String

char 1 −128 to 127 %c

unsigned char 1 0 to 255 %c

short or int 2 −32,768 to 32,767 %i or %d

unsigned int 2 0 to 65535 %u

long 4 −2147483648 to 2147483647 %ld

unsigned long 4 0 to 4294967295 %lu

float 4 3.4 e−38 to 3.4 e + 38 %f or %g

double 8 1.7 e−308 to 1.7 e + 308 %lf

long double 10 3.4 e−4932 to 1.1 e + 4932 %lf

enum 2 −32768 to 32767 %d

 The size may vary according to the number of variables used with enum data type.

2.12 Integer and float number repreSentatIonS
2.12.1 | Integer representation

Recall that an integer with sign is called a signed integer. The signed integer has signs positive
or negative. The signs are represented in the computer in the binary format as 1 for − (minus)
and 0 for + (plus) or vice versa. The sign bit is always coded as leftmost bit. At the time of
storing the signed number, system reserves the leftmost bit for the representation of the sign
of the number.
 For example, positive signed numbers are represented in the form called signed magnitude
form. In this form, the sign is represented by a binary 0 and the remaining magnitude by equivalent
binary form.

+7 is represented as 0 0000111

M02_KAMT3553_02_SE_C02.indd 43 5/17/2015 9:05:10 AM

https://hkgbooks.blogspot.com

44 Programming in C

The signed negative integers can be represented in any one of the following forms:

(a) signed—magnitude form

(b) signed—1’s complement form

(c) signed—2’s complement form

In the signed magnitude form, the sign of the number is represented as 1 and the magnitude by equiva-
lent binary form.

Example:
−7 is represented as 1 0000111

In the signed 1’s complement form, the sign of the integer is indicated by 1 and the magnitude is
shown in 1’s complement form as follows,

−7 is represented as 1 1111000

In the above signed − 2’s complement form, the sign is indicated by 1 and magnitude by 2’s comple-
ment form as follows,

−7 is represented by 1 1111001

2.12.2 | floating-point representation

In most of the applications, fractions are often used. The system of the number representation that
keeps track of the position of binary and decimal point is better than the fixed-point representation.
This system is called floating-point representation.
 The real number is integer part as well as fractional part. The real number is also called
floating-point number. These numbers are either positive or negative. The real number 454.45 can
be written as 4.5445 × 102 or 0.45445 × 103. This type of representation of number is called the
scientific representation. Using this scientific form, any number can be expressed as combination
of mantissa and an exponent or we can say the number ‘n’ can be expressed as n=mre where m is
the mantissa and r is the radix of the number system and e is the exponent. Mantissa is the fixed-
point number. The exponent indicates the position of the binary or decimal point. For example,
the number 454.45

0.45445 3

Mantissa Exponent

 The zero in the left most position of the mantissa and exponent indicates the plus sign. The mantissa
can be a fraction or integer depending upon make of a computer. Most of the computers use mantissa
for fractional system representation.

Example in C:
1.2 E + 12, 2.5E − 2

2.13 declarIng VarIableS
The declaration of variables should be done in declaration part of the program. The variable must be de-
clared before they are used in the program. Declaration ensures the following two things: (i) compiler
obtains the variable name and (ii) it tells to the compiler data type of the variable being declared and

M02_KAMT3553_02_SE_C02.indd 44 5/17/2015 9:05:10 AM

https://hkgbooks.blogspot.com

The C Declarations 45

helps in allocating the memory. The variable can also be declared before main() such variables are
called external variables. The syntax of declaring a variable is as follows.

Syntax:
 Data_type variable_name;

Example:
 int age;
 char m;
 float s;
 double k;
 int a,b,c;

The int, char, float and double are keywords to represent data types. Commas separate the
variables, in case variables are more than one.
 Table 2.11 shows various data types and their keywords.

Table 2.11 Data types and keywords
Data Types Keyword

Character char

Signed character signed char

Unsigned character unsigned char

Integer int

Signed integer signed int

Unsigned integer unsigned int

Unsigned short integer unsigned short int

Signed long integer signed long int

Unsigned long integer unsigned long int

Floating point float

Double floating point double

Extended double point long double

2.14 InItIalIzIng VarIableS
Variables declared can be assigned or initialized using assignment operator ‘=’. The declaration and
initialization can also be done in the same line.

Syntax:
 variable_name = constant;
 or
 data_type variable_name= constant;

Example:
 x=5; where x is an integer variable.

M02_KAMT3553_02_SE_C02.indd 45 5/17/2015 9:05:10 AM

https://hkgbooks.blogspot.com

46 Programming in C

Example:
 int y=4;

Example:
 int x,y,z; / Declaration of variables /

The third example as cited above for dec-
laration of variables is also a valid state-
ment. Illustration of the initialization of a
variable is shown in Figures 2.6 and 2.7.
 In Figure 2.7, the variable z is assigned
a value 1, and z then assigns its value to
y and again y to x. Thus, initialization in
chain system is done. However, note that
following declarations are invalid:

 int x=y=z=3; / invalid statement /

2.15 dynamIc InItIalIzatIon
The initialization of variable at run time is called dynamic initialization. Dynamic refers to the process
during execution. In C initialization can be done at any place in the program; however the declaration
should be done at the declaration part only. Consider the following program.

 2.4 Write a program to demonstrate dynamic initialization.

void main()
{
 int r=2;
 float area=3.14*r*r;
 clrscr();
 printf(“Area=%g”,area);
}

OUTPUT:
Area=12.56

 Explanation:
 In the above program, area is calculated and assigned to variable area. The expression is solved

at a run time and assigned to area at a run time. Hence, it is called dynamic initialization.

2.16 type modIfIerS
The keywords signed, unsigned, short and long are type modifiers. A type modifier changes
the meaning of basic data type and produces a new data type. Each of these type modifiers is appli-
cable to the basic data type int. The modifiers signed and unsigned are also applicable to the type
char. The long type modifier can be applicable to double type.

Data-type Variable-Name Operator Value

int y = 2

Figure 2.6 Value assignment

x y z 1

Figure 2.7 Multiple assignment

M02_KAMT3553_02_SE_C02.indd 46 5/17/2015 9:05:10 AM

https://hkgbooks.blogspot.com

The C Declarations 47

void main()
{
 short t=1;
 long k=54111;
 unsigned u=10;
 signed j=-10;
 clrscr();
 printf(“\n t=%d”,t);
 printf(“\n k=%ld”,k);
 printf(“\n u=%u”,u);
 printf(“\n j=%d”,j);
}

OUTPUT:
t=1
k=54111
u=10
j=-10

 Explanation:
 Here in the above program, all the variables are of integer type. The variable t and k are

short and long type, whereas u and j are unsigned and signed integers, respectively.

2.17 type conVerSIon
In C, it is possible to convert one data type to another. This process can be done either explicitly or
implicitly. The following section describes explicit type conversion.

 (i) Explicit type conversion
 a) Sometimes a programmer needs the result in certain data type, for example division of

5 with 2 should return float value. Practically the compiler always returns integer values
 because both the arguments are of integer data type.

 (ii) Implicit type conversion
 In C automatically ‘lower’ data type is promoted to ‘upper’ data type. For example, data type

char or short is converted to int. This type of conversion is called as automatic unary
conversion. Even when binary operator has different data types, ‘lower’ data type is converted
to ‘upper’ data type.

 In case an expression contains one of the operands as unsigned operands and another non-
unsigned, the latter operand is converted to unsigned.

 Similarly, in case an expression contains one of the operands as float operands and another
non-float, the latter operand is converted to float.

Example:
 long l; / int data type is applied /
 int s; / signed is default /
 unsigned long int; / int keyword is optional /

 2.5 Write a program to declare different variables with type modifiers and display them.

M02_KAMT3553_02_SE_C02.indd 47 5/17/2015 9:05:10 AM

https://hkgbooks.blogspot.com

48 Programming in C

 Similarly, in case an expression contains one of the operands as double operand and another
non-double, the latter operand is converted to double.

 Similarly, in case an expression contains one of the operands as long int and the other un-
signed int operands, the latter operand is converted to long int.

 For the sake of understanding, the following table describes automatic data type conversion
from one data type to another while evaluating an expression.

Expression Operator Operand 1 Operand 2 Outcome

a unary short – int

a/b binary int float float

a/b-c binary float long int float

(a/b-c) d binary float double double

 2.6 The following program explains the above concepts.

#include <stdio.h>
#include <conio.h>
int main()
{
short a=5;
long int b=123456;
float c=234.56;
double d=234567.78695;
clrscr();

printf(“%lf”,((a+b)*c)/d);
return 0;
}

OUTPUT:
123.456900

 Explanation:
 In the above program, we have taken the variable ‘a’ as short int, ‘b’ as long, c as float and

‘d’ as double. The expression ((a + b) c)/d) gives the result as double float.

Sometimes a programmer needs the result in a certain data type, for example division of 5 with 2
should return float value. Practically, the compiler always returns integer values because both the
 arguments are of integer data type. This can be followed by the execution of the following program.

 2.7 Write a program to change data type of results obtained by division operations.

void main()
{
 clrscr();
 printf(“\n Division operation Result”);
 printf(“\n Two Integers (5 & 2) : %d”,5/2);

M02_KAMT3553_02_SE_C02.indd 48 5/17/2015 9:05:10 AM

https://hkgbooks.blogspot.com

The C Declarations 49

 Explanation:
 In the first division, operation data types are chosen as integer. Hence, the result turns out to

be an integer. Actually, the result should be a float value but the compiler returns an integer
value. In the second division operation, a float value is divided by an integer. The result of divi-
sion in this case, yields a float. The limitation of the first operation is removed in the third
division operation using type conversion. Here, both the values are of integer type. The result
obtained is converted into float. The program uses type casting which is nothing but putting
data type in a pair parenthesis before operation. The programmer can specify any data type.

 (i) Suppose you assign a float value to an integer variable.

 Example:
 int x=3.5;

 Here, the fraction part will not be assigned to integer variable and the part will be lost. The
integer is 2 byes length data type without fractional part and float is 4 bytes data type with
fractional part.

 (ii) In another example, suppose you assign 35425 to int x; you will not get expected result
because 35425 is larger than short integer range.

 The following assignments are invalid:

 int=long;

 int=float;

 long=float

 float=double

 The following assignments are valid:

 long=int

 double=float

 int=char

2.18 wrappIng around
When the value of variable goes beyond its limit, the compiler would not flag any error message. It
just wraps around the value of a variable. For example, the range of unsigned integer is 0 to 65535. In
this type, negative values and values greater than 65535 are compatible.

unsigned int x=65536;

 printf(“\n One int & one float (5.5 & 2) : %g”,5.5/2);
 printf(“\n Two Integers (5 & 2) : %g”,(float)5/2);
}

OUTPUT:
Division operation Result
Two Integers (5 & 2): 2
One int & one float (5.5 & 2): 2.75
Two Integers (5 & 2): 2.5

M02_KAMT3553_02_SE_C02.indd 49 5/17/2015 9:05:11 AM

https://hkgbooks.blogspot.com

50 Programming in C

The value assigned is greater by 1 than the range. Here, the compiler starts again from beginning after
reaching the end of the range.
 Consider the following example.

 2.8 Write a program to demonstrate wrapping around.

void main()
{
 unsigned u=65537;
 clrscr();
 printf(“\n u=%u”,u);
}

OUTPUT:
u=1

 Explanation:
 In this program, the unsigned integer u = 65537; after reaching the last range 65535, the compiler

starts from beginning. Hence, 1 is displayed. The value 65536 refers to 0 and 65537 to 1.

2.19 conStant and VolatIle VarIableS
2.19.1 | constant Variable

If we want the value of a certain variable to remain the same or unchanged during the program
 execution, it can be done by declaring the variable as a constant. The keyword const is then prefixed
before the declaration. It tells the compiler that the variable is a constant. Thus, constant declared
variables are protected from modification.

Example:
const int m=10;

Where const is a keyword, m is variable name and 10 is a constant.
 The compiler protects the value of ‘m’ from modification. The user cannot assign any value to
‘m’, but using pointer the value can be changed. When user attempts to modify the value of con-
stant variable, the message ‘cannot modify the constant object’ will be displayed.

void main()
{
 const int num=12;
 ++num;
}

The above program code will not be executed and end with error message. Here, a constant variable
attempted to modify its value.

2.19.2 | Volatile Variable

The volatile variables are those variables that can be changed at any time by other external program
or the same program. The syntax is as follows:

 volatile int d;

M02_KAMT3553_02_SE_C02.indd 50 5/17/2015 9:05:11 AM

https://hkgbooks.blogspot.com

The C Declarations 51

 Explanation:
 In the above example, the variable x is initialized with keyword volatile and y is with

volatile constant. Value of x can be changed but volatile const can not be changed.
Make an attempt to include the comment statement in the program and see the response
of the compiler. The error would be thrown by the compiler and message displayed on the
screen would be ‘cannot modify a const value’.

Summary

After having studied the basics in the first chapter, the reader is now exposed to, in this second chapter,
the additional fundamentals of C. These concepts are absolutely essential for writing programs. Read-
ers are suggested go in depth of this chapter as it contains the fundamentals and basics. The reader is
made aware of the following points:

 (i) Different types of characters like letters, digits, white space and special characters. Various
delimiters used with C statements, keywords and identifies.

 (ii) Different constants, variables and data types.

 (iii) Rules for defining variables and initializing them. Also initialization of variables at run time
(dynamic initialization) is studied.

 (iv) Type conversion of variable, type modifiers, wrapping around. Constant and volatile variables.

void main()
{
 volatile int x;
 volatile const int y=10;
 clrscr();
 printf(“Enter an integer:”);
 scanf(“%d”,&x);
 printf(“Entered integer is :%d”,x);
 x=3;
 printf(“\nChanged value of x is :%d”,x);
 printf(“\nValue of y:%d”,y);
 /* y=8;*/
 getche();
}

OUTPUT:
Enter an integer:5
Entered integer is :5
Changed value of x is :3
Value of y:10

A program on the above concepts is given below.

 2.9 Write a program to demonstrate wrapping around.

M02_KAMT3553_02_SE_C02.indd 51 5/17/2015 9:05:11 AM

https://hkgbooks.blogspot.com

52 Programming in C

 1. A character variable can store only

 (a) one character
 (b) 20 character
 (c) 254 character
 (d) None of the above

 2. A C variable cannot start with

 (a) a number
 (b) an alphabet
 (c) a character
 (d) None of the above

 3. A short integer variable occupies memory of

 (a) 1 bytes
 (b) 2 byes
 (c) 4 bytes
 (d) 8 bytes

 4. C keywords are reserved words by

 (a) a compiler
 (b) an interpreter
 (c) header file
 (d) Both (b) and (c)

 5. The declaration of C variable can be done

 (a) anywhere in the program
 (b) in declaration part
 (c) in executable part
 (d) at the end of a program

 6. In C one statement can declare

 (a) only one variables
 (b) two variables
 (c) 10 variables
 (d) any number of variables

 7. The word ‘int’ is a

 (a) keyword
 (b) password
 (c) header file
 (d) None of the above

 8. The variables are initialized using

 (a) greater than (>)
 (b) equal to (=)
 (c) twice equal to (==)
 (d) an increment operator (++)

I True or false:

 II Select the appropriate option from the multiple choices given below:

 eXercISeS

 1. Data means the combination of letters, digits,
symbols.

 2. In C, A to Z and a to z are treated as the same.

 3. The signed is a C keyword.

 4. The new is a C keyword.

 5. 10.120 is a integer constant.

 6. Identifiers are the name of variables, arrays,
 functions, and so on.

 7. The constant in C is applicable to values
which do not change during program execution.

 8. ‘A’ is a character constant.

 9. “India” is a string constant.

 10. A variable is a data name used for storing data
 values.

 11. A value of variable can be changed during the
program execution.

 12. A variable name can start with a digit.

 13. The keyword can act as a variable name.

 14. In C the variable name sum & Sum are the same.

 15. short int and int are different from each
other.

 16. int, short int and long int belong to
one category with different size and range of
values.

 17. int occupies 4 bytes in memory.

 18. const int a=10; value of a cannot
bechanged during program execution.

 19. _abc is a valid variable name.

M02_KAMT3553_02_SE_C02.indd 52 5/17/2015 9:05:11 AM

https://hkgbooks.blogspot.com

The C Declarations 53

 9. An unsigned integer variable contains values

 (a) greater or equal to zero
 (b) less than zero
 (c) only zeros
 (d) Both (a) and (b)

 10. The keyword ‘const’ keeps the value of a
variable

 (a) constant
 (b) mutable
 (c) variant
 (d) None of the above

 11. Identifiers are

 (a) user-defined names
 (b) reserved keywords
 (c) C statements
 (d) None of the above

 12. In C every variable has

 (a) a type
 (b) a name
 (c) a value
 (d) a size
 (e) all of the above

 13. The range of character data type is

 (a) −128 to 127
 (b) 0 to 255
 (c) 0 to 32767
 (d) None of the above

 14. An unsigned integer variable occupies memory

 (a) 2 byes
 (b) 4 bytes
 (c) 1 bytes
 (d) 8 bytes

 15. In C double type data needs memory of size

 (a) 4 bytes
 (b) 2 bytes
 (c) 10 bytes
 (d) None of the above

 16. In C main() is a

 (a) function
 (b) user created function
 (c) string function
 (d) any number of variables

 17. The word ‘continue’ is a

 (a) keyword
 (b) password
 (c) header file
 (d) None of the above

 18. The volatile variables are those variables that re-
main/can be

 (a) constant
 (b) changed at any time
 (c) Both of the above
 (d) None of the above

 19. In C the statements following main() are en-
closed within

 (a) {}
 (b) ()
 (c) <>
 (d) None of the above

 20. In C the maximum value of unsigned character is

 (a) 255
 (b) 127
 (c) 65535
 (d) none of the above

 21. The range of long signed integer is

 (a) −2147483648 to 2147483647
 (b) 0 to 255
 (c) 0 to 4294967295
 (d) None of the above

 22. In C ‘sizeof’ is a/an

 (a) variable
 (b) operator
 (c) keyword
 (d) None of the above

 23. Which is the incorrect variable name

 (a) else
 (b) name
 (c) age
 (d) cha_r

 24. How many keywords are there in ANSI C?

 (a) 32
 (b) 33
 (c) 42
 (d) 15

M02_KAMT3553_02_SE_C02.indd 53 5/17/2015 9:05:11 AM

https://hkgbooks.blogspot.com

54 Programming in C

 25. Integer constants in C can be

 (a) positive
 (b) negative
 (c) positive or negative
 (d) None of the above

 26. Which of the following statement is wrong?

 (a) 5+5=a;
 (b) ss=12.25;
 (c) st=‘m’ * ‘b’;
 (d) is =‘A’+10;

 27. The ANSI C standard allows a minimum of

 (a) 31significant characters in identifier
 (b) 8 significant characters in identifier
 (c) 25 significant characters in identifier
 (d) unlimited characters

 28. In C the first character of the variable should be

 (a) an integer
 (b) an alphabet
 (c) a floating number
 (d) None of the above

 29. How many variables can be initialized at a time?

 (a) one
 (b) two

 (c) five
 (d) any number of variables

 30. What is the output of the following program?

 void main()
 {
 unsigned long v=-1;
 clrscr();
 printf(“\n %lu”,v);
 }

 (a) 4294967295
 (b) 0
 (c) –1
 (d) None of the above

 31. What would be the values of variables c and u?

 void main()
 {
 char c=-127;
 unsigned char u=-127;
 clrscr();
 printf(“\n c=%d u= %d”,c,u);
 }

 (a) c=127 u=127
 (b) c= –127 u=129
 (c) c=127 u=128
 (d) None of the above

III What will be the output/s of the following program/s?

1.
 void main()
 {
 char c=90;
 clrscr();
 printf(“%c”,c);
 }

2.
 void main()
 {
 unsigned char c=65;
 clrscr();
 printf(“%d %c %d “,c,c,c);
 }

3.
 void main()
 {
 unsigned u=2147483647;
 long l=2147483647;

 clrscr();
 printf(“\n u=%u l=%ld”,

u,l);
 }

4.
 void main()
 {
 float a=3e-1,b=2e-2;
 clrscr();
 printf(“a=%g b=%g”,a,b);
 }

5.
 void main()
 {
 int x,a=1e1, b=0;
 clrscr();
 b+=1e1;
 printf(“a= %d b=%d”,a,b);
 }

M02_KAMT3553_02_SE_C02.indd 54 5/17/2015 9:05:11 AM

https://hkgbooks.blogspot.com

The C Declarations 55

IV Find the bug/s in the following program/s:

1.

 void main()
 {
 clrscr();
 printf(“\n %d”, 7/2);
 printf(“\n%g”,7.0/2);
 printf(“\n%g”, float7/2);
 getche();
 }

2.

 void main()
 {
 volatile d=15;
 const p=25;
 clrscr();
 printf(“%d %d”d+10,p+1);
 getche();
 }

3.
 void main()
 {
 unsigned int d=65535;
 unsigned char p=65;
 clrscr();
 printf(“%c %c”,d,p);
 getche();
 }

4.
 void main()
 {
 float d=65535.43;
 double p=65789.987654;
 clrscr();
 printf(“%d %d”,d,p);
 getche();
 }

5.
 void main()
 {
 float d=1234567.43;
 double p=987654321.1234567;
 clrscr();
 printf(“\n%f %lf”,d,p);
 printf(“\n%d %d”,size

of(d),size of(p));
 getche();
 }

6.
 #define
 #define N= 90
 main()
 {
 int x=10,p;
 clrscr();
 p=x*N;
 printf(“\n%d “, p);
 getche();
 }

V Answer the following questions:

 1. What are the different data types?

 2. What are the differences between signed and
 unsigned data types?

 3. What does we mean by a variable and constant?

 4. Explain different types of constants in C.

 5. What are the C keywords? Elaborate them.

 6. List the rules for declaring a variable.

 7. What are the identifiers?

 8. Explain the methods for initialization of variables.

 9. Explain constants and volatile variables.

 10. Write about space requirement for variables of
different data types.

 11. What are the delimiters? Explain their uses.

 12. Is ‘main’ a keyword? Explain.

 13. List any three keywords with their use.

 14. What is the difference between %f and %g control
strings? Whether both can be used for represent-
ing float numbers?

 15. What do you mean by type conversion? Why is it
necessary?

 16. What is wrapping around?

 17. List the name of type modifiers.

 18. What is dynamic initialization?

M02_KAMT3553_02_SE_C02.indd 55 5/17/2015 9:05:11 AM

https://hkgbooks.blogspot.com

56 Programming in C

IV Find the bug/s in the following program/s:

Q. Ans.
1. Float must be enclosed with bracket, then answer will be

3
3.5
3.5

2. Missing comma (,) in the printf().
Answer after correction 25 26

3. First %c is to be replaced by %u and then answer will be 65535 A. However,
with %c also program runs.

I True or false:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. T 2. F 3. T 4. F 5. F
 6. T 7. T 8. T 9. T 10. T

11. T 12. F 13. F 14. F 15. F

16. T 17. F 18. T 19. T

II Select the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. a 2. a 3. b 4. a 5. b
 6. d 7. a 8. b 9. a 10. a

11. a 12. b 13. a 14. a 15. d

16. b 17. a 18. b 19. a 20. a

21. a 22. c 23. a 24. a 25. c

26. a 27. a 28. b 29. d 30. a

31. b

III What will be the output/s of the following program/s?

Q. Ans. Q. Ans.
1. Z 4. a=0.3 b=0.02

2. 65 A 65 5. a=10 b=10

3. u=65535 l=2147483647

anSwerS

M02_KAMT3553_02_SE_C02.indd 56 5/17/2015 9:05:11 AM

https://hkgbooks.blogspot.com

The C Declarations 57

4. Control string provided is wrong. %f and %lf are needed. Answer would be
65535.429688 65789.987654. However, with %d & %d answers obtained would
be wrong.

5. Space between size and of should be removed. The answer will be
1234567.375000 987654321.123457
4 8

6. Syntex error in first line #define. Remove = . Answer will be 900

M02_KAMT3553_02_SE_C02.indd 57 5/17/2015 9:05:11 AM

https://hkgbooks.blogspot.com

CHAPTER

3 Operators and
Expressions

Chapter Outline

 3.1 Introduction
 3.2 Operator Precedence
 3.3 Associativity
 3.4 Comma and Conditional Operator
 3.5 Arithmetic Operators
 3.6 Relational Operators
 3.7 Assignment Operators and Expressions
 3.8 Logical Operators
 3.9 Bitwise Operators

M03_KAMT3553_02_SE_C03.indd 58 5/17/2015 9:06:37 AM

https://hkgbooks.blogspot.com

Operators and Expressions 59

3.1 IntroductIon
In our day-to-day life, we perform numerous operations on data with different operators. In order to
perform different kinds of operations, C uses different operators. An operator indicates an operation to
be performed on data that yields a new value. Using various operators in C, one can link the variable
and constants. An operand is a data item on which operators perform operations. C is rich in use of
different operators. C provides four classes of operators which are: (i) arithmetic, (ii) relational, (iii)
logical and (iv) bitwise. Apart from these basic operators, C also supports additional operators. Basic
operators and others along with their symbolic representation are shown in Table 3.1.

Table 3.1 Types of operators
Type of Operator Symbolic Representation

Arithmetic operators +, –, *, / and %

Relational operators >,<,==,>=,<= and !=

Logical operators &&,|| and !

Increment and Decrement operators ++ and ––

Assignment operator =, *=, /=, %=,+=, –=,
&=, ^=,|=, <<=, >>=

Bitwise operators &,|,^,>>,<< and ˜

Comma operator ,

Conditional operators ?:

3.2 oPErAtor PrEcEdEncE
Precedence means priority. Every operator in C has assigned precedence (priority). An expression
may contain a lot of operators. The operations on the operands are carried out according to the prior-
ity of the operators. The operators having higher priority are evaluated first and then lower priority.

 (i) For example, in arithmetic operators, the operators , / and % have assigned highest priority
and of similar precedence. The operators + and – have the lowest priority as compared to the
above operators.

 Example:

 8+9 2–10

 The operator is the highest priority. Hence, the multiplication operation is performed first.
The above expression becomes

 8+18 –10

 In the above expression, + and – have the same priority. In such a situation, the left most
operation is evaluated first. With this the above expression becomes

 26−10

 At last the subtraction operation is performed and answer of the expression will be as follows:

 16

 (ii) When the operators of the same priority are found in the expression, precedence is given to
the left most operators.

M03_KAMT3553_02_SE_C03.indd 59 5/17/2015 9:06:37 AM

https://hkgbooks.blogspot.com

60 Programming in C

	 Here, 5 4 is evaluated first, though and / have the same priorities. The operator occurs
before / and hence evaluation starts from left. The answer for the above equation after evalu-
ation becomes 24.

 (iii) If there is more number of parentheses in the expression, the innermost parenthesis will be
solved first, followed by the second and lastly the outermost.

 Example:

(8 / (2 * (2*2)));
(8 / (2 * (2 * 2)));

1

2

3

Here,

 (a) Innermost bracket is evaluated first (i.e. 2 2=4).
 (b) Second innermost bracket is evaluated. 2 is multiplied with result of innermost bracket. The

answer of 2 4=8.
 (c) The outer most bracket expression is evaluated at last. 8 is divided by 8 and gives result 1.

 Example:

 Show the steps for evaluation of the following equation.

x − y + z / k == a / b − h + u % t

4 1 2

78

3

5 6

 The execution of the above equation is self-explanatory.

 The following program is provided for understanding the concepts of precedence of operators.

 Example:

x = 5 * 4 + 8 / 2 ;

1 2

3

x= 5*4 + 8/2;

M03_KAMT3553_02_SE_C03.indd 60 5/17/2015 9:06:38 AM

https://hkgbooks.blogspot.com

Operators and Expressions 61

include <stdio.h>
include <conio.h>

main ()
{
 int a=1,b=2,c=3,j;
 clrscr();
 j=a+b*c;
 printf (“\n j=%d”,j);
 j=(a+b)*c;
 printf (“\n j=%d”,j);
}
OUTPUT:

 j=7
 j=9

 Explanation:
 In this program, in the expression j = a + b c, first multiplication operation is performed followed

by addition operation; hence, value of j is 7. In the second expression, the parentheses give first
priority to the addition operation. Hence, addition of a and b is performed first and followed by
multiplication is performed.

The list of operators according to priority (Hierarchical) is given in Table 3.2

Table 3.2 Prioritywise list of operators

 3.1 Write a program to demonstrate the precedence of operators.

Operators

Operation

Associativity or
Clubbing

Priority

()
[]

–>
.

Function call
Array expression or square
bracket
Structure operator
Structure operator

Left to right 1st

+
–
++
––
!
˜
*
&
sizeof
Type

Unary plus
Unary minus
Increment
Decrement
Not operator
One’s complement
Pointer operator
Address operator
Size of an object
Type cast

Right to left 2nd

(Continued)

M03_KAMT3553_02_SE_C03.indd 61 5/17/2015 9:06:38 AM

https://hkgbooks.blogspot.com

62 Programming in C

3.3 ASSocIAtIVItY
When an expression contains operators with equal precedence then the associativity property decides
which operation to be performed first. Associativity means the direction of execution. Associativity
is of two types.

	 (i) Left	to	right: In this type, expression, evaluation starts from left to right direction.

 Example:

	 12 4 / 8 % 2

 In the above expression, all operators are having the same precedence, and so associativity
rule is followed (i.e. direction of execution is from left to right).

Operators

Operation

Associativity or
Clubbing

Priority

*
/
%

Multiplication
Division
Modular division

Left to right 3rd

+
-

Addition (Binary plus)
Subtraction (Binary minus)

Left to right 4th

<<
>>

Left shift
Right shift

Left to right 5th

<
<=
>
>=

Less than
Less than or equal to
Greater than
Greater than or equal to

Left to right 6th

==
! =

Equality
Inequality (Not equal to)

Left to right 7th

& Bitwise AND Left to right 8th

^ Bitwise XOR Left to right 9th

| Bitwise OR Left to right 10th

&& Logical AND Left to right 11th

|| Logical OR Left to right 12th

?: Conditional operator Right to left 13th

=, *=, /=, %=,
+=, –=, &=, ^=,
|=, <<=, >>=

Assignment operators Right to left 14th

, Comma operator Right to left 15th

Table 3.2 Prioritywise list of operators (Continued)

M03_KAMT3553_02_SE_C03.indd 62 5/17/2015 9:06:38 AM

https://hkgbooks.blogspot.com

Operators and Expressions 63

 = 48 / 8 % 2

 = 6 % 2

 = 0 (The above modulus operation provides remainder 0)

	 (ii) Right	to	left: In this type, expression, evaluation starts from right to left direction.

 Example:
	 a=b=c

	 In the above example, assignment operators are used. The value of c is assigned to b and then
to a. Thus, evaluation, is from right to left.

3.4 commA And condItIonAl oPErAtor
 (i) Comma	Operator	(,): The comma operator is used to separate two or more expressions. The

comma operator has the lowest priority among all the operators. It is not essential to enclose
the expressions with comma operators within the parentheses. For example, the following
statements are valid.

 Example:
 a=2,b=4,c=a+b;

 (a=2,b=4,c=a+b;)

 3.2 Write a program to illustrate the use of comma (,) operator.

void main()
{
 clrscr();
 printf(“Addition = %d\nSubtraction = %d”,2+3,5-4);
}

OUTPUT:
Addition = 5
Subtraction = 1

 Explanation:
 In the above-mentioned program, the two equations are separated by commas. The results

are obtained by solving the expressions separated by commas. The result obtained is printed
through printf() statement.

 (ii) Conditional	 Operator	 (?): The conditional operator contains condition followed by two
statements or values. The condition operator is also called the ternary operator. If the condi-
tion is true, the first statement is executed, otherwise the second statement is executed.
Conditional operators (?) and (:) are sometimes called ternary operators because they take
three arguments. The syntax of the conditional operator is as follows:

 Syntax:
 Condition ? (expression1) : (expression2);

 Two expressions are separated by a colon. If the condition is true expression 1 gets evalu-
ated, otherwise expression 2 gets evaluated. The condition is always written before the ?
mark.

M03_KAMT3553_02_SE_C03.indd 63 5/17/2015 9:06:38 AM

https://hkgbooks.blogspot.com

64 Programming in C

 Explanation:
 In the above-given program, the condition 2= =3 is false. Hence, 5 is printed.

 3.4 Write a program to use the conditional operator with two statements.

void main()
{
 clrscr();
 3>2 ? printf(“True.”) : printf(“False.”);
}

OUTPUT:
True.

 Explanation:
 In the above-given program, a full statement is used as the conditional operator. The condi-

tion 3>2 is true. Hence, the first printf() statement is executed.

3.5 ArIthmEtIc oPErAtorS
There are two types of arithmetic operators. These are (i) binary operator and (ii) unary operator.
 As shown in Figure 3.1, the unary and binary operators are defined in the following section and
the ternary operator is described in Section 3.4. The conditional operator is nothing but the ternary
operator.

Operators

Unary

Binary

Ternary

Figure 3.1 Operators

 (i) Binary	Operator: Table 3.3 shows different arithmetic operators that are used in C. These opera-
tors are commonly used in most of the computer languages. These arithmetic operators are used
for numerical calculations between the two constant values. They are also called Binary Arithme-
tic Operators. Binary operators are those operators which require two operands. The examples are
also given in Table 3.3. In the program, variables are declared instead of constants.

void main()
{
 clrscr();
 printf(“Result = %d”,2==3 ? 4 : 5);
}

OUTPUT:
Result = 5

The below mentioned program illustrates the use of conditional operator.

 3.3 Write a program to use the conditional operator with two values.

M03_KAMT3553_02_SE_C03.indd 64 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

Operators and Expressions 65

 C evaluates arithmetic operations as follows.

 (a) Division, multiplication and remainder operations are solved first. When an expression con-
tains many operators such as multiplication, division and modular division operations, expres-
sion evaluation starts from left to right. Multiplication, division and modular division operators
are having equal level of precedence.

 (b) The addition and subtraction operations are solved after division, multiplication and modular
division operations. Evaluation starts from left to right. Addition and subtraction have equal
level of precedence.

 From Table 3.3, the modular division operator cannot be applied to float and double data
types.

Table 3.3 Arithmetic operators
Arithmetic Operators Operator Explanation Examples

+ Addition 2+2=4

- Subtraction 5−3=2

* Multiplication 2 5=10

/ Division 10/2=5

% Modular division 11%3=2 (Remainder 2)

 (ii) Unary	Operators: The operators which require only one operand are called unary operators.
Unary operators are increment operator (++), decrement (– –) and minus (–). These operators
and their descriptions are given in Table 3.4.

Operator Description or Action

- Minus

++ Increment

-- Decrement

& Address operator

sizeof Gives the size of an operator

Table 3.4 Unary arithmetic operators

 (a) Minus	(−): Unary minus is used for indicating or changing the algebraic sign of a value.

 Example:
 int x=–50;
 int y=–x;
 assign the value of –50 to x and the value of –50 to y through x. The minus (–) sign used in this

way is called the unary operator because it takes just one operand. There is no unary plus (+)
in C. Even though, a value assigned with plus sign is valid, for example int x=+50, here, + is
valid, but in practice this sign should not be attached in C.

 (b) Increment	(++)	and		Decrement	(–	–)	Operators: The C compilers produce very fast and ef-
ficient object codes for increment and decrement operations. This code is better than generated
by using the equivalent assignment statement. So, increment and decrement operators should
be used whenever possible.

M03_KAMT3553_02_SE_C03.indd 65 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

66 Programming in C

 The operator ++ adds one to its operand, whereas the operator -- subtracts one from its
operand. For justification, x=x+1 can be written as x++; and x=x–1; can be written as
x--;. Both these operators may either follow or precede the operand. That is x=x+1; can be
represented as x++; or ++x;

 If ‘++’ or ‘--’ are used as a suffix to the variable name, then post-increment/decrement opera-
tions take place. Consider an example for understanding the ‘++’ operator as a suffix to the
variable.

 x=20;
 y=10;
 z=x*y++;

 In the above equation, the current value of y is used for the product. The result is 200, which
is assigned to ‘z’. After multiplication the value of y is incremented by one.

 If ‘++’ or ‘— —’ are used as a prefix to the variable name, then pre increment/decrement operations
take place. Consider an example for understanding ‘++’ operator as a prefix to the variable.

 x=20;
 y=10;
 z=x*++y;

 In the above equation, the value of y is incremented and then multiplication is carried out. The
result is 220, which is assigned to ‘z’. The following programs can be executed for verification
of increment and decrement operations.

 3.5 Write a program to show the effect of increment operator as a suffix.

void main()
{
 int a,z,x=10,y=20;
 clrscr();
 z=x*y++;
 a=x*y;
 printf(“\n%d %d”,z,a);
}

OUTPUT:
200 210

void main()
{
 int a,z,x=10,y=20;
 clrscr();
 z=x*++y;

 Explanation:
 In the above program, the equation z=x*y++ gives the result 200 because ‘y’ does not get

incremented. After multiplication, ‘y’ incremented to 21. The second equation gives the result,
i.e. 210. This can be verified by executing the above program.

 3.6 Write a program to show the effect of increment operator as a prefix.

M03_KAMT3553_02_SE_C03.indd 66 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

Operators and Expressions 67

 Explanation:
 In the above example, variables x and y are declared and initialized. The variable x is an

integer and y is a float data type. Using sizeof() and ‘&’ operator, their sizes and ad-
dresses can be displayed.

3.6 rElAtIonAl oPErAtorS
These operators are used to distinguish between two values depending on their relations. These op-
erators provide the relationship between two expressions. If the relation is true then it returns a value
1 otherwise 0 for false. The relational operators together with their descriptions, example and return
value are described in Table 3.5.

 a=x*y;
 printf(“\n%d %d”,z,a);
}

OUTPUT:
210 210

void main()
{
 int x=2;
 float y=2;
 clrscr();
 printf(“\n sizeof(x)=%d bytes”,sizeof(x));
 printf(“\n sizeof(y)=%d bytes”,sizeof(y));
 printf(“\n Address of x=%u and y=%u”,&x,&y);
}

OUTPUT:
sizeof(x)=2
sizeof(y)=4
Address of x=4066 and y=25096

 Explanation:
 In the above program, ‘y’ gets first incremented and the equations are solved. Here, both the

equations give the same result, i.e. 210.

(c) sizeof and ‘&’ Operator :

 The sizeof operator gives the bytes occupied by a variable, i.e. the size in terms of bytes
required in memory to store the value. The number of bytes occupied varies from variable to
variable depending upon its data types.

 The ‘&’ operator prints address of the variable in the memory. The below mentioned example
illustrates the use of these operators.

 3.7 Write a program to use ‘&’ and sizeof operator and determine the size of integer and float
variables.

M03_KAMT3553_02_SE_C03.indd 67 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

68 Programming in C

void main()
{
 clrscr();
 printf(“\nCondition : Return Values\n”);
 printf(“\n10!=10 : %5d”,10!=10);
 printf(“\n10==10 : %5d”,10==10);
 printf(“\n10>=10 : %5d”,10>=10);
 printf(“\n10<=100: %5d”,10<=100);
 printf(“\n10!=9 : %5d”,10!=9);
}

OUTPUT:
Condition: Return Values
10!=10 : 0
10==10 : 1
10>=10 : 1
10<=100: 1
10!=9 : 1

 Explanation:
 In the above program, the true conditions return 1 and false 0. In this example, the first condi-

tion is false and remaining are true. Hence, the return value for the first is 0 and for remaining
it is 1.

 Assume a program to perform certain steps on the basis of a condition. If A > 5, then some action
will be performed. The example, which is illustrated below, uses the relational operator.

3.7 ASSIgnmEnt oPErAtorS And ExPrESSIonS
Assigning a value to a variable is very simple. For example, int x=5; here, 5 is assigned to x and
this is carried out by the operator =. The equal sign (=) is used for assignment and hence, the name
assignment operator has been given. The list of assignment operators is given in Table 3.6.

Table 3.5 Relational operators
Operator Description or Action Example Return Value

> Greater than 5>4 1

< Less than 10<9 0

<= Less than or equal to 10<=10 1

>= Greater than equal to 11>=5 1

== Equal to 2==3 0

!= Not equal to 3!=3 0

 The relational operator’s symbols are easy for understanding. They are self-explanatory. How-
ever, for the benefit of the readers a program is illustrated below.

 3.8 Write a program to use various relational operators and display their return values.

M03_KAMT3553_02_SE_C03.indd 68 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

Operators and Expressions 69

Table 3.6 Assignment operators
= *= /= %=

+= -= <<= >>=

>>>= &= ^= !=

 Consider the following example: k=k+3; in this expression, the variable on the left side of = is
repeated on the right. The same can be written as follows:

k+=3;

The operators = and += are called assignment operators. The binary operators which need two oper-
ands to their either side are surely have a corresponding assignment operator operand = to the left
side.

 Example:
 j*=x+1;
 or
 j=j*(x+1);

 3.9 Write a program to determine the value of ‘b’ depending on the inputted value of ‘a’. The
variable ‘a’ is used with the conditional operator.

void main()
{
 int a,b;
 clrscr();
 printf(“Enter Any Integer either above 5 or below 5 :-”);
 scanf(“%d”, &a);
 b=(a>5 ? 3 : 4);
 printf(“Calculated Value of b is :- %d”,b);
}

OUTPUT:
Enter Any Integer either above 5 or below 5:- 6
Calculated Value of b is:- 3
OR
Enter Any Integer either above 5 or below 5:- 3
Calculated Value of b is:- 4

 Explanation:
 On the execution of the above program, the value of b will be 3 if the value of a is greater than 5.

Otherwise, it will be 4 for any number which is less than 5. Similarly, for the other operators,
programs are as follows.

 3.10 Determine the value of ‘b’ using the conditional statement.

void main()
{
 int a,b;
 clrscr();

M03_KAMT3553_02_SE_C03.indd 69 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

70 Programming in C

 printf(“Enter Any Integer whose value is 5 or any other:-”);
 scanf(“%d”, &a);
 b=(a==5 ? 3: 4);
 printf(“Calculated Value of b is :- %d\n”,b);
}

OUTPUT:
Enter Any Integer whose value is 5 or any other:- 3
Calculated Value of b is:- 4

void main()
{
 int x,y,z,a,b,c,m,n;
 clrscr();
 printf(“Enter Values of x, y, z :-”);
 scanf(“%d %d %d”, &x,&y,&z);
 a=(x>=5 ? 3 : 4);
 printf(“\n Calculated value of a is :- %d”, a);
 b=(y<=8 ? 10 : 9);
 printf(“\n Calculated value of b is :- %d”, b);
 c=(z==10 ? 20 : 30);
 printf(“\n Calculated value of c is :- %d”, c);
 m=x+y+z;
 n=a+b+c;
 printf(“\nAddition of x,y,z is %d (m)”, m);
 printf(“\nAddition of a,b,c is %d (n)”, n);
 printf(“\n%s”, m!=n ? “m & n NOT EQUAL” : “m & n ARE EQUAL”);
}

OUTPUT:
Enter Values of x, y, z:- 5 2 7
Calculated value of a is:- 3
Calculated value of b is:- 10
Calculated value of c is:- 30
Addition of x,y,z is 14 (m)
Addition of a,b,c is 43 (n)
m & n NOT EQUAL

 Explanation:
 In the above-given program, the value of the variable ‘a’ is entered. The value is compared

with 5. If a is equal to 5, 3 is assigned to b otherwise 4. In this example, 3 is entered which
is not equal to five. Hence, 4 is assigned to b.

 The following program illustrates the use of various relational operators.

 3.11 Write a program to read three variables x, y and z. Use conditional statements and evaluate
values of variables a, b and c. Perform the sum with two sets of variables. Check the sums
for equality and print different messages.

M03_KAMT3553_02_SE_C03.indd 70 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

Operators and Expressions 71

 Explanation:
 In the above given program, three integers are entered through the keyboard (x, y and z).

Using conditional statements, values of a, b and c are obtained. The sum of x, y and z is
stored in ‘m’ and the sum of a, b and c is stored in ‘n’. The variables ‘m’ and ‘n’ are com-
pared and appropriate messages are displayed.

3.8 logIcAl oPErAtorS
The logical relationship between the two expressions is tested with logical operators. Using these
operators, two expressions can be joined. After checking the conditions, it provides logical true (1) or
false (0) status. The operands could be constants, variables and expressions. Table 3.7 describes the
three logical operators together with examples and their return values.

Table 3.7 Logical operators
Operator Description or Action Example Return Value

&& Logical AND 5>3 && 5<10 1

|| Logical OR 8>5 || 8<2 1

! Logical NOT 8!=8 0

From Table 3.7, following rules can be followed for logical operators:

 (i) The logical AND (&&) operator provides true result when both expressions are true,
otherwise 0.

 (ii) The logical OR (||) operator provides true result when one of the expressions is true,
otherwise 0.

 (iii) The logical NOT operator (!) provides 0 if the condition is true, otherwise 1.

 3.12 Illustrate the use of logical operators.

void main()
{
 clrscr();
 printf(“\nCondition : Return Values\n”);
 printf(“\n5>3 && 5<10 : %5d”,5>3 && 5<10);
 printf(“\n 8>5 || 8<2 : %5d”,8>5 || 8<2);
 printf(“\n !(8==8) : %5d”,!(8==8));
}

OUTPUT:
Condition : Return Values
5>3 && 5<10 : 1
8>5 || 8<2 : 1
!(8==8) : 0

 Explanation:
 In the above example, the first and second conditions are true. In the first condition, 5 is greater

than 3 and smaller than 10; hence, output is 1. In the second condition, 8 is greater than 5 and due
to OR operation its output is 1. The third condition is wrong. Hence, result returned will be 0.

M03_KAMT3553_02_SE_C03.indd 71 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

72 Programming in C

 Explanation:
 In the above-given program, a character is entered. Using logical operator AND, entered

character’s ASCII value is checked. If it is in between 65 and 90, the result displayed will be 1
otherwise 0. The AND operator joins two conditions. If the condition is true, 1 is assigned to
y otherwise 0.

 3.14 Write a program to display logic 0 if one reads a character through keyboard otherwise 1.
(ASCII values for 0 to 9 are 48 to 57, respectively.)

void main()
{
 int y;
 char x;
 clrscr();
 printf(“\n Enter The Character or Integer :”);
 scanf(“%c”, &x);
 y=(x>=48 && x<=57 ? 1 : 0);
 Printf(“\nValue of Y =%d”,y);
}

OUTPUT:
Enter The Character or Integer : A
Value of Y = 0
OR
Enter The Character or Integer : 1
Value of Y = 1

 Explanation:
 The above-given program is the same as the previous one. Here, ASCII range 48 to 57 is

used. Equivalent of these values are 0 to 9 digits, respectively. If the entered number is in
between 0 to 9, the compiler returns 1 otherwise 0.

void main()
{
 char x;
 int y;
 clrscr();
 printf(“\nEnter a Character :”);
 scanf(“%c”, &x);
 y=(x>=65 && x<=90 ? 1 : 0);
 printf(“Y :%d”,y);
}

OUTPUT:
Enter a Character : A
Y: 1
Enter a Character : a
Y: 0

 3.13 Write a program to print logic 1 if input character is capital otherwise 0.

M03_KAMT3553_02_SE_C03.indd 72 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

Operators and Expressions 73

 Explanation:
 The logical operator checks the entered value whether it is in between 1 and 100. If the condition

is true, 1 is assigned to z otherwise 0.

 3.16 Write a program to display l if inputted number is either 1 or 100 otherwise 0. Use the logi-
cal OR (||) operator.

main()
{
 int x,z;
 clrscr();
 printf(“Enter numbers :”);
 scanf(“%d”, &x);
 z=(x==1 || x==100 ? 1 : 0);
 printf(“Z=%d”, z);
}

OUTPUT:
Enter numbers : 1
Z = 1
Enter numbers : 100
Z = 1
Enter numbers : 101
Z = 0

 Explanation:
 In the above-given program, the OR operator checks two conditions. If one of the conditions

satisfies, 1 is assigned to z otherwise 0.

void main()
{
 int x,z;
 clrscr();
 printf(“Enter numbers :”);
 scanf(“%d”, &x);
 z=(x>=1 && x<=100 ? 1 : 0);
 printf(“Z=%d”, z);
}

OUTPUT:
Enter numbers : 5
Z = 1
Enter numbers : 101
Z = 0

 3.15 Write a program to display l if inputted number is between 1 and 100 otherwise 0. Use the
logical AND (&&) operator.

M03_KAMT3553_02_SE_C03.indd 73 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

74 Programming in C

void main()
{
 int x,y;
 clrscr();
 printf(“Read The Integer from keyboard (x) :-”);
 scanf(“%d”, &x);

 Explanation:
 In the above-given program ! NOT operator is used with the conditional operator. The value of

x is also entered. Here, if the value of x is other than 100, then 1 is assigned to z otherwise 0.

3.9 BItwISE oPErAtorS
C supports a set of bitwise operators for bit manipulation as listed in Table 3.8. C supports six bit opera-
tors. These operators can operate only on integer operands such as int, char, short, long.

Table 3.8 Bitwise operators
Operators Meaning

>> Right shift

<< Left shift

^ Bitwise XOR (exclusive OR)

˜ One’s complement

& Bitwise AND

| Bitwise OR

 3.18 Write a program to shift inputted data by two bits right.

void main()
{
 int x,z;
 clrscr();
 printf(“Enter number :”);
 scanf(“%d”, &x);
 z=(x!=100 ? 1 : 0);
 printf(“d :%d”, z);
}

OUTPUT:
Enter number : 100
d : 0
Enter number : 10
d : 1

 3.17 Write a program to display l if the inputted number is except 100 otherwise 0. Use the logi-
cal NOT operator (!).

M03_KAMT3553_02_SE_C03.indd 74 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

Operators and Expressions 75

 x>>=2;
 y=x;
 printf(“The Right shifted data is = %d”,y);
}

OUTPUT:
Read The Integer from keyboard (x) :- 8
The Right shifted data is = 2

void main()
{
 int x,y;
 clrscr();
 printf(“Read The Integer from keyboard (x) :-”);
 scanf(“%d”, &x);
 x<<=3;
 y=x;
 printf(“The Right shifted data is = %d”,y);
}

OUTPUT:
Read The Integer from keyboard (x) :- 2
The Left shifted data is = 16

Before the execution of the program: The number entered through the keyboard is 2 and its corre-
sponding binary number is 1 0. The bits will be as follows:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

Before the execution of the program: The number entered through the keyboard is 8 and its corre-
sponding binary number is 1 0 0 0.

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

After execution of the program: As per the above-given program, the inputted data x is to be shifted
by 2 bits right side. The answer in binary bits would be as follows:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

Shifting two bits right means the inputted number is to be divided by 2s where s is the number of shifts
i.e. in short y=n/2s, where n = number and s = the number of position to be shift.

 As per the program cited above, Y=8/22 = 2.
 Similarly, a program for shifting to the left can be written as follows:

 3.19 Write a program to shift inputted data by three bits left.

M03_KAMT3553_02_SE_C03.indd 75 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

76 Programming in C

void main()
{
 int a,b,c;
 clrscr();
 printf(“Read The Integers from keyboard (a & b) :-”);
 scanf(“%d %d”, &a,&b);
 c=a & b;
 printf(“The Answer after ANDing is (C)= %d”,c);
}

OUTPUT:
Read The Integers from keyboard (a & b) : 8 4
The Answer after ANDing is (C) = 0

Binary equivalent of 8 is
Before execution:
a=8

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

b=4
Binary equivalent of 4 is

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

After execution
c=0
Binary equivalent of 0 is

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

After execution of the program: As per the above-given program, the inputted data x is to be shifted
by 3 bits left side. The answer in the binary bits would be as follows:

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

The corresponding decimal number is 16, i.e. answer should be 16.

Shifting three bits left means the number is multiplied by 8; in short y=n*2s where n = number and
s = the number of position to be shifted.

As per the program given above,
Y=2*23 = 16.

 3.20 Write a program to use bitwise AND operator between the two integers and display the results.

M03_KAMT3553_02_SE_C03.indd 76 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

Operators and Expressions 77

OR
Read The Integers through keyboard (a & b) : 8 8
The Answer after ANDing is (C) = 8
Before execution
a=8
Binary equivalent of 8

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

Before execution
b=8
Binary equivalent of 8

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

After execution
c=8
Binary equivalent of 8

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

The table for AND operation (Table 3.9) is as follows and can be used in future for reference.
Similarly, the table for OR operator (Table 3.10) can be used as follows.

Table 3.9 Table for AND
Inputs Output

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

Table 3.10 Table for OR operator

Inputs Output

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

 3.21 Write a program to operate OR operation on two integers and display the result.

void main()
{
 int a,b,c;
 clrscr();
 printf(“Read The Integer from keyboard (a & b) :-”);
 scanf(“%d %d”, &a,&b);
 c=a | b;
 printf(“The Oring operation bewteen a & b in c = %d”,c);
 getche();
}

M03_KAMT3553_02_SE_C03.indd 77 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

78 Programming in C

OUTPUT:
Read The Integer from keyboard (a & b) :- 8 4
The Oring operation between a & b in c = 12

void main()
{
 int a,b,c;
 clrscr();
 printf(“Read The Integers from keyboard (a & b) :-”);
 scanf(“%d %d”, &a,&b);
 c=a^b;

Before execution
a=8
Binary equivalent of 8

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

Before execution
b=4
Binary equivalent of 4

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

After execution
c=12
Binary equivalent of 12

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

The table for Exclusive OR (XOR) is as follows (Table 3.11).

Table 3.11 Table of exclusive OR

Inputs Output

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

 3.22 Write a program with Exclusive OR Operation between the two integers and display the result.

M03_KAMT3553_02_SE_C03.indd 78 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

Operators and Expressions 79

 printf(“The data after Exclusive OR operation is in c= %d”,c);
 getche();
}

OUTPUT:
Read The Integers from keyboard (a & b) : 8 2
The data after Exclusive OR operation is in c =10

void main()
{
 unsigned int v=0;
 clrscr();
 printf(“\n %u”, ~v);
}

OUTPUT:
65535

Before execution
a=8

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

Before execution
b=2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

After execution
c=10

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0

The table for bitwise complement-operator (Inverter Logic) is as follows (Table 3.12).

Table 3.12 Table of inverter logic

Input (X) Output (X)

0 1

1 0

 The operator ~ is used for inverting the bits with this operator 0 becomes 1 & 1 becomes 0.

 3.23 Write a program to show the effect of ~ operator.

M03_KAMT3553_02_SE_C03.indd 79 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

80 Programming in C

 ExErcISES

 I Select the appropriate option from the multiple choices given below:

			1. What will be the output of the following program?

 void main()
 {
 int ans=2;
 int m=10;
 int k;
 k=!((ans<2) && (m>2));
 printf(“\n %d”,k);
 }

 (a) 1
 (b) 0
 (c) –1
 (d) 2

		2. What will be the output of the following
program?

 void main()
 {
 int m,j=3,k;
 m=2*j/2;
 k=2*(j/2);
 clrscr();
 printf(“\n m=%d k=%d”,m,k);
 }

 (a) m=3 k=2
 (b) m=3 k=3
 (c) m=2 k=3
 (d) m=2 k=2

		3. What will be the value of x, y and z after the
 execution of the following program?

 void main()
 {
 int x,y,z;
 y=2;
 x=2;
 x=2*(y++);
 z=2*(++y);
 printf(“\n x=%d y=%d

z=%d”,x,y,z);
 }

 (a) x=4 y=4 z=8
 (b) x=6 y=4 z=8
 (c) x=2 y=4 z=8
 (d) x=4 y=4 z=4

		4. What will be the value of ‘x’ after the execution
of the following program?

 void main()
 {
 int x=!0*10;
 }

 (a) 10
 (b) 1
 (c) 0
 (d) None of the above

 SummArY

 You have now studied the various operators such as arithmetic, logical and relational which are essen-
tial for writing and executing programs. The precedence and associativity of the operators in the arith-
metic operations are also furnished in the form of a table. The conditional and comma operators and
programs on them are also described in this chapter. You are made aware about the logical operators
OR, AND and NOT. Full descriptions of bitwise operators have been illustrated. Numerous simple
examples have been provided to the users to understand the various operators. The reader is expected
to write more programs on this chapter.

M03_KAMT3553_02_SE_C03.indd 80 5/17/2015 9:06:39 AM

https://hkgbooks.blogspot.com

Operators and Expressions 81

5. What is the value of !0?

 (a) 1
 (b) 0
 (c) −1
 (d) None of the above

6. Hierarchy decides which operator

 (a) is used first
 (b) is the most important
 (c) operates on large numbers
 (d) None of the above

7. What will be the output after the execution of the
following program?

 void main()
 {
 int k=8;
 printf(“k=%d”, k++-k++);
 }

 (a) k=-1;
 (b) k=0;
 (c) k=8;
 (d) k=9;

8. What will be the value of b after the execution of
the following program?

 void main()
 {
 int b,k=8;
 b=(k++-k++-k++,k++);
 }

 (a) b=11;

 (b) b=12;

 (c) b=7;

 (d) b=9;

	 9. The ‘&’ operator displays

 (a) address of the variable
 (b) value of the variable
 (c) Both (a) and (b)
 (d) None of the above

	10. Addition of two numbers is performed using

 (a) arithmetic operator
 (b) logical operator
 (c) unary operator
 (d) comma operator

	11. What is the remainder of 8% 10?

 (a) 8
 (b) 2
 (c) 1
 (d) 0

	12. The result of the expression (10/3)*3+5%3 is

 (a) 11
 (b) 10
 (c) 8
 (d) 1

	13. The result of expression (23*2) % (int)
5.5 is

 (a) 2
 (b) 1
 (c) 3
 (d) 0

	14. The result of 16>>2 is

 (a) 4
 (b) 8
 (c) 2
 (d) 5

	15. The result of 5&&2 is

 (a) 0
 (b) 1
 (c) 2
 (d) 5

	16. The value of c after the execution of the
program will be

 void main()
 {
 int a,b,c;
 a=9;
 b=10;
 c=(b<a || b>a);
 clrscr();
 printf(“\n c=%d”,c);
 }

	 OUTPUT:

 (a) c=1
 (b) c=0
 (c) c=–1
 (d) None of the above

M03_KAMT3553_02_SE_C03.indd 81 5/17/2015 9:06:40 AM

https://hkgbooks.blogspot.com

82 Programming in C

II Attempt the following programming exercises:

	 1. Write a program to shift the entered number by
three bits left and display the result.

	 2. Write a program to shift the entered number by
five bits right and display the result.

 3. Write a program to mask the most significant
digit of the entered number. Use AND operator.

	 4. Write a program to enter two numbers and find the
smallest out of them. Use conditional operator.

	 5. Write a program to enter a number and carry out
modular division operation by 2, 3 and 4 and
display the remainders.

 6. Attempt the program (5) with division operation
and find the quotients.

 7. Write a program to enter an integer number and
display its equivalent values in octal and hexa-
decimal.

 8. Write a program to convert hexadecimal to deci-
mal numbers. Enter the numbers such as 0x1c,
0x18, 0xbc, 0xcd.

 9. Write a program to find the average temperature
of five sunny days. Assume the temperature in
Celsius.

 10. Write a program to enter two numbers. Make
a comparison between them with a conditional
operator. If the first number is greater than the
second perform multiplication otherwise
division operation.

	11. Write a program to calculate the total cost of the
vehicle by adding basic cost with (i) excise duty
(15%) (ii) sales tax (10%) (c) octroi (5%) and (d)
road tax (1%). Input the basic cost.

	12. Write a program to display ASCII equivalents of

	 (a) ‘A’, ‘B’,‘C’ and ‘a’,‘b’,‘c’.

 (b) ‘a’-‘C’, ‘b’-‘A’ and ‘c’ – ‘B’.

	 (c) ‘a’+‘c’, ‘b’*‘a’ and ‘c’+12.

	13. Write a program to enter a number that should
be less than 100 and greater than 9. Display the
number in reverse order using modular division
and division operation.

 14. Write a program to enter a four-digit number.
Display the digits of the number in the reverse
order using modular division and division
operation. Perform addition and multiplication
of digits.

	15. Write a program to display numbers from 0 to 9.
Use ASCII range 48 to 59 and control string %c.

	16. Write a program to evaluate the following
 expressions and display their results.

	 (a) x2
 +(2*x3)*(2*x)

	 (b) x1+y2+z3

	 assume variables are integers.

	17. Write a program to print whether the number
entered is even or odd. Use conditional operator.

III Answer the following questions:

	 1. Explain different types of operators supported
by C.

 2. What are the uses of comma (,) and conditional
(?) operators?

	 3. What are unary operators and describe their uses?

	 4. Describe logical operators with their return
values.

 5. Distinguish between logical and bitwise
operators.

 6. What are the relational operators?

 7. What is the difference between ‘=’ and ‘= =’?

 8. What are the symbols used for (a) OR, (b) AND,
(c) XOR and (d) NOT operations?

 9. Explain the precedence of operators in arithmetic
operations?

 10. List the operators from higher priority to least
priority.

 11. What is the difference between %f and %g?

 12. What are the differences between division and
modular division operations?

 13. What are the ASCII codes? List the codes for
digits 1 to 9, A to Z and a to z.

M03_KAMT3553_02_SE_C03.indd 82 5/17/2015 9:06:40 AM

https://hkgbooks.blogspot.com

Operators and Expressions 83

AnSwErS

I Select the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
	 1. a 	 2. a 	 3. a 	 4. a 	 5. a

	 6. a 	 7. a 	 8. a 	 9. a 10. a

11. a 12. a 13. b 14. a 15. b

16. a

			14. Explain different types of assignment operators.

			15. Explain properties of operators.

 16. What are the differences between precedence
and associativity?

M03_KAMT3553_02_SE_C03.indd 83 5/17/2015 9:06:40 AM

https://hkgbooks.blogspot.com

Input and Output
in C4

Chapter Outline

 4.1 Introduction
 4.2 Formatted Functions
 4.3 Flags, Widths and Precision with Format String
 4.4 Unformatted Functions
 4.5 Commonly Used Library Functions
 4.6 Strong Points for Understandability

CHAPTER

M04_KAMT3553_02_SE_C04.indd 84 5/17/2015 9:12:11 AM

https://hkgbooks.blogspot.com

Input and Output in C 85

4.1 IntroductIon
Reading input data, processing it and displaying the results are the three tasks of any program. The
data is read from the input device such as a keyboard. Operations on the data are performed on the
basis of the operators, and the result is displayed on the screen. All the three tasks are important and
none of them can be ignored.
 There are two ways to accept the data. In one method, a data value is assigned to the variable with
an assignment statement. The programmer writes assignment statements in most of the programs. The
assignment statements are mentioned throughout the book. Examples of an assignment statement are
as follows:

 (i) int year=2005; (ii) char letter=‘a’; (iii) long int x=123456.

Another way of accepting the data is with functions. In C the input and output functions can be used
for inputting the data and for getting the results, respectively. To perform these tasks in a user friendly
manner, C has a number of input and output functions. When a program needs data, it takes the data
through the input functions and sends results obtained through the output functions. Thus, the input/
output functions are the link between the user and terminals.
 There are a number of I/O functions in C, based on the data types. The input/output functions are
classified in two types:

 (i) Formatted functions

 (ii) Unformatted functions

With formatted functions, the input or output is formatted as per our requirement. The readability
in easy way is possible with formatted functions. For example, with formatted functions one can
decide how the result should appear or display on the screen. The result can be shown on the second
line or it can appear after leaving some space or if the result is a real number then decisions on
the number of digits before and after decimal point, etc. will be taken care in formatted functions.
All I/O functions are defined as stdio.h header file, which can be initialized at the starting of a
program; that is this header file should be included in the program at the beginning. However, for-
matting is not possible with unformatted functions. Various functions of these categories are listed
in Figure 4.1.
 Streams perform all input and output operations. The streams are nothing but a sequence of bytes.
In input operations, the bytes (data) flow from input device such as keyboard, a disc drive or network
connection to main memory. Similarly, in output operation bytes flow from main memory to output
devices such as monitor, printer, disc drive, network connection.
 When a program performs input and output operations, the streams are connected to the pro-
gram automatically. The operating system always allows streams to redirect to other devices. While
performing these operations, if any error occurs, it will be reported on the screen by the third stream
called standard error stream.
 Further elaboration on formatted functions is as follows.

 (i) Formatted Functions: The formatted input/output functions read and write, respectively, all
types of data values. They require format string to produce formatted results. Hence, they can
be used for both reading and writing of all data values. The formatted functions return values
after execution. The return value is equal to the number of variables successfully read/written.
Using this value, the user can find out the error that occurred during reading or writing of
data. Using this function, the given numeric data can be represented in float, integer and
double to possible available limits of the language.

M04_KAMT3553_02_SE_C04.indd 85 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

86 Programming in C

 The syntax of input function for inputting the data such as scanf() is as follows:

 scanf(“control string”, argu1, argu2,. . .);
 Precisely, if we write scanf() as scanf(“%d”,&x); where %d is a control string

which is nothing but conversion specification and it is to be placed within double quote.
The other part is the argument and a sign & (ampersand) must precede it. Arguments are the
identifiers.

 For displaying the result, prinf() formatted function is used. In Section 4.2, printf()
and scanf() are discussed in depth.

 (ii) Unformatted Functions: The unformatted input/output functions work only with character
data type. They do not require format conversion symbol for formatting of data types because
they work only with character data type. There is no need to convert data. In case, values of
other data types are passed to these functions, they are treated as character data.

4.2 Formatted FunctIons
 (i) The printf() statement: The formatted output as per the programmers requirement

is displayed on the screen with printf(). The list of variables can be indicated in the
printf(). The values of variables are printed according to the sequence mentioned in
printf(). The printf() function prints all types of data values to the console. It trans-
lates internal values to characters. It requires format conversion symbol or format string and
variable names to print the data. The format string symbol and variable names should be the
same in number and type. The syntax of printf() statement is as follows:

 printf(“Control string”,variable1,variable2,. . .variable n);

 The control string specifies the field format such as %d, %s, %g, %f, and variables as
taken by the programmer.

Input and Output Functions

Formatted Functions Unformatted Functions

printf()
scanf ()

getch()
getche()
getchar()
gets()

putch()
putchar()
puts()

Figure 4.1 Formatted and unformatted functions

M04_KAMT3553_02_SE_C04.indd 86 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

Input and Output in C 87

 The following are a few examples of the printf() function.

	 Example:

void main()
{
 int x=2;
 float y=2.2;
 char z=‘C’;
 printf(“%d %f %c”,x,y,z);
}

OUTPUT:
2 2.2000 C

 In the above program, %d corresponds to ‘x’ variable, %f to y and %c to ‘z’. The conversion
symbol given by the user helps the printf() to identify the data type of a given variable.
In case a mismatch occurs, the value of a variable is converted according to the conversion
symbol given.

	 Example:

int main()
{
 int y=65;
 clrscr();
 printf(“%c %d”,y,y);
 return 0;
}

OUTPUT:
A 65

 In the above example, the integer variable ‘y’ contains the value of 65. The variable ‘y’ is
printed using two-conversion symbols, integer and character. As shown in the output, %c
converts numeric 65 value to its corresponding character A. %d prints the value 65, as it is,
because the variable is of integer type. Sometimes, if no conversion is possible between two
data types, some garbage value is printed.

	 Example:

int main()
{
 int y=7;
 clrscr();
 printf(“%f”,y);
 return 0;
}

M04_KAMT3553_02_SE_C04.indd 87 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

88 Programming in C

 In the above example, it is attempted in the printf() statement to print the integer value as
float value providing %f as a conversion symbol. This is not the proper way. While compil-
ing time no error occurs, but after execution the printf() function will produce an error
message ‘floating points formats not linked’.

 The format string is nothing but a string that begins and ends with the double quote. The
printf() statement is used to display the data on console or stdout (standard output device).
The format string is a combination of two types of character objects. They are plain character
and conversion specification.

4.3 FLaGs, WIdtHs and PrecIsIon WItH Format strInG
The plain characters are straightforward and are used to write data on the screen. On the other hand,
the conversion specification retrieves arguments from the list of arguments and apply different format-
ting to them. All format specification starts with % and a format specification letter after this symbol.
It indicates the type of data and its format. In case the format string does not match the corresponding
variable, the result will not be correct.
 Flags: Flags are used for output justification, numeric signs, decimal points, trailing zeros. The flag (-)
left justifies the result. If it is not given, the default is right justification. The plus (+) signed conversion
result always starts with a plus (+) or a minus (-) sign.
 Width specifier : It sets the minimum field width for an output value. Width can be specified
through a decimal point or using an asterisk ‘*’.

 Few programs are provided on width requirement.

 4.1 Write a program to demonstrate the use of width specifier.

void main()
{
 clrscr();
 printf(“\n%.2s”,“abcdef”);
 printf(“\n%.3s”,“abcdef”);
 printf(“\n%.4s”,“abcdef”);
}

OUTPUT:
 ab
 abc
 abcd

	 Explanation:
 Observe the above program carefully and watch the width specified along with conversion

specification character %s. Although the actual string length is six characters, the number of
printed characters as per printf() statements is 2, 3 and 4, respectively.

 4.2 Write a program to demonstrate the use of width specifier.

void main()
{
 int x=55,y=33;

M04_KAMT3553_02_SE_C04.indd 88 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

Input and Output in C 89

	 Explanation:
 In this program, in the first printf() statement width is given 3 and in second width is

given 6. Hence, the results are displayed at different positions on the screen.

 4.3 Write a program to demonstrate the use of ‘*’ for formatting.

 clrscr();
 printf(“\n %3d”,x-y);
 printf(“\n %6d”,x-y);
}

OUTPUT:
22
 22

void main()
{
 int x=55,y=33;
 clrscr();
 printf(“\n %*d”,15,x-y);
 printf(“\n %*d”,5,x-y);
}

OUTPUT:
 22
 22

	 Explanation:
 In this program, ‘*’ is used along with format string or conversion specification character %d.

An extra parameter is required to mention or set the starting column for printing. This value
is given along the set of variables. You can observe in the printf() statements the values
15 and 5 that indicate the position from where printing on screen begins.

 Precision specifiers: Precise results on the screen can be obtained. The precision specifier
 always starts with a period or a dot in order to separate it from any preceding width specifiers.

 Consider the following program:

 4.4 Write a program to demonstrate the use of precision specifiers.

void main()
{
 float g=123.456789;
 clrscr();
 printf(“\n %.1f”,g);
 printf(“\n %.2f”,g);
 printf(“\n %.3f”,g);
 printf(“\n %.4f”,g);
}

M04_KAMT3553_02_SE_C04.indd 89 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

90 Programming in C

	 Explanation:
 In the above program, the precision value is specified before the format string. Fractional part

after decimal point can be precisely shown in various printf() statements. The output
shows these numbers.

 From the above examples, it is now clear that outputs can be shown in different formats. Table 4.1
describes the various formats for presenting various outputs.

OUTPUT:
123.5
123.46
123.457
123.4568

Table 4.1 Formats for various outputs
Sr.	No. Format Meaning Explanation

1 %wd Format for integer output w is width in integer and d is conversion
specification

2 %w.cf Format for float numbers w is width in integer, c specifies the number
of digits after decimal point and f specifies the
conversion specification

3 %w.cs Format for string output w is width for total characters, c are used
for displaying leading blanks and s specifies
conversion specification

A programming example is provided on the above formats for readers understanding.

 4.5 Write a program to display the integers, float point numbers and string with different formats
as explained above.

void main()
{
 clrscr();
 printf(“\n%5d”,12);
 printf(“\n%5d”,123);
 printf(“\n%5d”,1234);
 printf(“\n %4.5f”,6.12);
 printf(“\n %4.6f”,16.12);
 printf(“\n %4.7f”,167.12);
 printf(“\n %4.8f”,1678.12);
 printf(“\n %8s”,“Amitkumar”);
 printf(“\n %8.2s”,“Amitkumar”);
 getche();
}

M04_KAMT3553_02_SE_C04.indd 90 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

Input and Output in C 91

 (ii) The scanf() statement: The scanf() statement reads all types of data values. It is used
for runtime assignment of variables. The scanf() statement also requires conversion
symbol to identify the data to be read during the execution of the program. The scanf()
statement stops functioning when some input entered does not match with format string.
The syntax of the scanf() statement is the same as printf() except they work exactly
 opposite of each other.

	 Syntax:

 The syntax of the input function for inputting the data is scanf().

	 Example:

 scanf(“control string”, address of variable 1,address of vari-
able 2,----);

 The control string has to be enclosed within double quotes. It specifies the format specifier,
such as %d for integer, %f for float, %c for character, etc. and the data are to be invoked by
arguments, such as address of variable1, address of variable 2, etc.

 Precisely, we write scanf() as scanf(“%d”,&x);

 Here, “ %d” is the format specifier in the control string, which is nothing but the conversion
specification and it is to be placed within double quotes. The other part is the variable and &
(ampersand) must precede it.

 The format specifiers and their meanings are given below.

 %d: The data is taken as integer.
 %c: The data is taken as character.
 %s: The data string.
 %f: The data is taken as float.

 scanf(“%d %f %c”,&a,&b,&c);

 The scanf() statement requires ‘&’ operator called address operator. The address operator
prints the memory location of the variable. Here, in the scanf() statement the role of ‘&’
operator is to indicate the memory location of the variable, so that the value read would be
placed at that location.

 The scanf() statement also returns values. The return value is exactly equal to the number
of values correctly read. In case of any mismatch, error will be thrown. Otherwise, if the read
value is convertible to the given format, conversion is made. The following program shows an
example of such a mismatch case.

OUTPUT:
 12
 123
1234
6.12000
16.120000
167.1200000
1678.12000000
Amitkumar
 Am

M04_KAMT3553_02_SE_C04.indd 91 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

92 Programming in C

	 Explanation:
 In the above program, although the type of variable ‘a’ is int, it works perfectly with

conversion symbol of character, i.e. character and integer data types are compatible to
each other. When the two data types are compatible to each other, the compatible range
is equal to the lowest range from the two data types. The above example illustrates this
point.

 4.7 Write a program to read and print the integer value using the character variable.

void main()
{
 char a;
 clrscr();
 printf(“Enter value of ‘A’ : ”);
 scanf(“%d”,&a);
 printf(“A=%d”,a);
}

OUTPUT:
Enter value of ‘A’ : 255
A=255
Enter value of ‘A’ : 256
A=0

	 Explanation:
 In the above program variable ‘a’ is of character type, i.e. its valid range is 0 to 255. The

variable ‘a’ is used with conversion symbol of integer data type, i.e. in the printf() and
scanf() statements the variable ‘a’ is supposed as an integer type. The value read in the
first execution is valid. Hence, it is printed as it is read. In the second execution, the value
read is greater than the range of the character type. In such a case, the excess range is again
considered as the beginning or starting point. Here, the excess value is 1. That is why 0 is
printed.

 Consider the following scanf() statements, where a, b and c are integer variables.

void main()
{
 int a;
 clrscr();
 printf(“Enter value of ‘A’ : ”);
 scanf(“%c”,&a);
 printf(“A=%c”,a);
}

OUTPUT:
Enter value of ‘A’ : 8
A=8

 4.6 Write a program to show the effect of mismatch of data types.

M04_KAMT3553_02_SE_C04.indd 92 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

Input and Output in C 93

	 Explanation:
 From the above program, it is very clear that if format strings are separated by commas, the

inputs should also be separated by commas. The readers are advised to try this by writing more
programs. Table 4.2 describes the formats for the various inputs.

void main()
{
 int a,b,c;
 clrscr();
 printf(“\nEnter values :”);
 scanf(“%d, %d,%d”,&a,&b,&c);
 printf(“a=%d b=%d c=%d”,a,b,c);
}

OUTPUT:
Enter values: 4,5,8
a=4 b=5 c=8

Table 4.2 Formats for the various inputs
Sr.	No. Format Meaning Explanation

1. %wd Format for integer input w is width in integer and d conversion
specification

2. %w.cf Format for float point input w is width in integer, c specifies the number of
digits after decimal point and f is conversion
specification

3. %w.cs Format for string input w is the width for total characters, c are used
for inserting blanks and s is conversion
specification

 An example illustrating a few formatted input is as follows.

 4.9 Write a program to demonstrate the use of scanf() with different formats.

void main()
{
 int a,b;
 float x;

	 Examples:
 (i) scanf(“%d %d %d”,a,b,c);
 (ii) scanf(“%d,%d,%d”,a,b,c);

 In the first statement, the format strings (%d) are separated by a space. It indicates that while
inputting values for these variables, the values should be separated by space. Similarly, in the
second statement, the format strings (%d) are separated by a comma; therefore, while input-
ting, values should be separated by a comma. The following program illustrates this.

 4.8 Write a program to demonstrate the use of comma with scanf() statement.

M04_KAMT3553_02_SE_C04.indd 93 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

94 Programming in C

	 Explanation:
 In the scanf() statements, the format for various inputs are taken. Similarly, the outputs

are also provided with various formats. The readers can verify the input and output.

 The prinf() and scanf() statements follow different data types which are listed in
Table 4.3. It can be seen from this table that format string is initialized with %sign as a special
character, which indicates the format of the data to be displayed on the screen.

 char name[20];
 clrscr();
 printf(“Enter two integers:-\n”);
 scanf(“%4d %4d”,&a,&b);
 printf(“\nEntered integers are”);
 printf(“\n%4d %4d”,a,b);
 printf(“\n”);
 printf(“\nEnter a real number:-\n”);
 scanf(“%f”,&x);
 printf(“\n Entered float number is ”);
 printf(“\n%f”,x);
 printf(“\n”);
 printf(“\nEnter a string :-\n”);
 scanf(“%7s”,name);
 printf(“\n Entered string ”);
 printf(“\n%7s”,name);
 getche();
}

OUTPUT:
Enter two integers:-
1 2
Entered integers are
1 2
Enter a real number:-
12.3
Entered float number is
12.300000
Enter a string:-
Deelipkumar
Entered string
Deelipk

Table 4.3 Data types with conversion symbols
Data	Type Format	String

Integer

Short integer
Short unsigned
Long signed
Long unsigned
Unsigned hexadecimal
Unsigned octal

%d or %i
%u
%ld
%lu
%x
%o

(Continued)

M04_KAMT3553_02_SE_C04.indd 94 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

Input and Output in C 95

 The printf() and scanf() statements follow the combination of characters called es-
cape sequences. In order to come out, computers from routine sequence escape sequences are
used. These are nothing but special characters starting with ‘\’. The escape sequences and
their uses are illustrated in Table 4.4.

Table 4.4 Escape sequences with their ASCII values
Escape	Sequence Use ASCII	Value

\n New line 10

\b Backspace 8

\f Form feed 12

\’ Single quote 39

\\ Backslash 92

\0 Null 0

\t Horizontal tab 9

\r Carriage return 13

\a Alert 7

\” Double quote 34

\v Vertical tab 11

\? Question mark 63

 4.10 Write a program to show the effect of various escape sequences.

void main()
{
 int a=1,b=a+1,c=b+1,d=c+1;
 clrscr();
 printf(“\tA=%d\nB=%d \‘C=%d\’”,a,b,c);
 printf(“\n\b***\D=%d**”,d);
 printf(“\n*************”);

Data	Type Format	String

Real Floating
Double floating

%f or %g
%lf

Character
Signed character
Unsigned character
String

%c
%c
%s

Octal number %o

Displays Hexa decimal number
in lowercase

%hx

Displays Hexa decimal number
in uppercase

%p

Aborts program with error %n

Table 4.3 Data types with conversion symbols (Continued)

M04_KAMT3553_02_SE_C04.indd 95 5/17/2015 9:12:12 AM

https://hkgbooks.blogspot.com

96 Programming in C

	 Explanation:
 In the above program, a few commonly used escape sequences are described.

 (i) In the first printf() statement due to ‘\t’, prints the value of ‘a’ after a tab. The ‘\n’
splits the line and prints the value of B and C on the next line.

 (ii) In the second printf() statement the three prefixes ‘*’ are written followed by the ‘\b’. The
‘\b’ overwrites the last character. The output D=4 will be displayed.

 (iii) In the third printf() statement only the sequences of ‘*’ are printed, but in the output only
half line is displayed because it is affected by the fourth printf() statement.

 (iv) In the fourth printf() statement ‘\r’ is used which reverses the printable area one line
before from the current location. Hence, the line generated by the third statement is replaced
by the output of the fourth statement.

 The programs illustrated below use printf() and scanf() statements.

 4.11 Write a program to print the third power of 2 using pow() function. Assume the floating-
point numbers.

#include <math.h>
void main()
{
 double x = 2.0, y = 3.0;
 clrscr();
 printf(“%lf raised to %lf is %lf\n”, x, y, pow(x, y));
}

OUTPUT:
2.000000 raised to 3.000000 is 8.000000

	 Explanation:
 In the above program, two variables x and y are declared and initialized. In the printf()

statement using pow() function expression x^y is calculated and displayed.

 4.12 Write a program to print the third power of 10 using pow10() function. Assume the floating-
point numbers.

 printf(“\rA=%d B=%d”,a,b);
}

OUTPUT:
 A=1
B=2 ‘C=3’
***D=4**
A=1 B=2******

#include <math.h>
void main
{
 int p = 3;

M04_KAMT3553_02_SE_C04.indd 96 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

Input and Output in C 97

 printf(“Ten raised to %lf is %lf\n”, p, pow10(p));
}

OUTPUT:
Ten raised to 3.000000 is 1000.000000

	 Explanation:
 In the above program, power of 10 is calculated. Here, p is declared as an integer data type. The

value returned by this function is of double data type. Hence, conversion symbol %lf is used.

 4.13 Write a program to detect an error while inputting a data. Use return value of scanf()
statement.

void main()
{
 int a,b,c,v;
 clrscr();
 printf(“Enter value of ‘A’,‘B’ & ‘C’ : ”);
 v=scanf(“%d %d %d”,&a,&b,&c);
 (v<3 ? printf(“\n Error In Inputting.”) : printf(“\n Values

Successfully read.”));
}

OUTPUT:
Enter value of ‘A’,‘B’ & ‘C’ : 1 2 3
Value Successfully read.
Enter value of ‘A’,‘B’ & ‘C’ : 1 J 2
Error In Inputting.

	 Explanation:
 In the above program, the printf() statement returns values equal to the number of vari-

ables correctly read. The conditional statement checks the value of variable ‘v’ and prints
the respective messages.

 4.14 Write a program to find the length of the string using printf() function.

void main()
{
 char nm[20];
 int l;
 clrscr();
 printf(“Enter String :”);
 scanf(“%s”,nm):
 l=printf(nm);
 printf(“\nLength = %d”,l);
}

OUTPUT:
Enter String : HELLO
Length = 5

M04_KAMT3553_02_SE_C04.indd 97 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

98 Programming in C

	 Explanation:
 In the above program, variables a, b and c are declared. Values of a and b are read through

the keyboard using scanf() statement. The addition of variables a and b is performed and
assigned to variable c.

 4.16 Write a program to find the square of the given number.

void main()
{
 int a,c;
 printf(“\n ENTER ANY NUMBER\n”);
 scanf(“\n %d”, &a);
 c=a*a;
 printf(“\n SQUARE OF GIVEN NUMBER = %d”,c);
}

OUTPUT:
ENTER ANY NUMBER 5
SQUARE OF GIVEN NUMBER 25

	 Explanation:
 The above program is same as the previous one. Only difference is that instead of addition,

the square of a is calculated.

 4.17 Write a program to input a single character and display it.

	 Explanation:
 The printf() function returns the length of the string entered. In the above program the

string entered is ‘HELLO’. Length of the string is 5, which is stored in variable ‘l’.

 4.15 Write a program to perform the addition of two numbers.

void main()
{
 int a,b,c;
 printf(“\n ENTER TWO VALUES\n”);
 scanf(“\n %d %d”, &a, &b);
 c=a+b;
 printf(“\n Sum is=%d”,c);
}

OUTPUT:
ENTER TWO VALUES 5 8
Sum is = 13

void main()
{
 char ch;

M04_KAMT3553_02_SE_C04.indd 98 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

Input and Output in C 99

 clrscr();
 printf(“Enter any character :”);
 scanf(“%c”,&ch);
 printf(“\n Your Entered Character is : %c”,ch);
}

OUTPUT:
Enter any character: C
Your Entered Character is: C

	 Explanation:
 In the above program, a character is entered and stored in variable ch. The printf() statement

displays the entered character.

 4.18 Write a program to swap the values of two variables without the use third variable.

void main()
{
 int a=7,b=4;
 clrscr();
 printf(“\n A= %d B= %d”,a,b);
 a=a+b;
 b=a-b;
 a=a-b;
 printf(“Now A= %d B= %d”,a,b);
}

OUTPUT:
A=7 B=4
Now A= 4 B=7

	 Explanation:
 In the above program, no third variable is used as a mediator for swapping the values. The

below given steps illustrate the working of the program.

 (i) In the first statement, variable ‘a’ contains the sum of a+b, i.e. 11.

 (ii) In the second statement, variable ‘b’ contains a-b, i.e. 11−4 =7.

 (iii) In the third statement, variable ‘a’ contains a-b, i.e. 11−7=4.

 Thus, the two values are interchanged.

4.4 unFormatted FunctIons
C has three types of I/O functions.

 (i) Character I/O

 (ii) String I/O

 (iii) File I/O

M04_KAMT3553_02_SE_C04.indd 99 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

100 Programming in C

 This function reads a character-type data from standard input. It reads one character at a time
till the user presses the enter key. The syntax of the getchar() is as follows:

 Variable name=getchar();

	 Example:
 char c;
 c=getchar();

 A program is supported for the following getchar() function.

 4.19 Write a program to accept characters through keyboard using getchar() function.

void main()
{
 char c;
 clrscr();
 printf(“\nEnter a char :”);
 c=getchar();
 printf(“a=%c”,c);
}

OUTPUT:
Enter a char :g
a=g

	 Explanation:
 In the above program, a character variable c is declared. The getchar() reads a character

through the keyboard. The same is displayed by the printf() statement.

2.
putchar() -

 This function prints one character on the screen at a time, read by the standard input.

 The syntax is as follows:

 putchar(variable name);

	 Example:
 char c=‘C’;
 putchar (c);

 A program is provided on putchar().

1.
getchar() -

 (i) Character I/O

M04_KAMT3553_02_SE_C04.indd 100 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

Input and Output in C 101

void main()
{
 char c=‘C’;
 clrscr();
 putchar(c);
}

OUTPUT:
C

	 Explanation:
 In this program, the character variable c assigns a char ‘C’; the same is displayed by the

putchar() statement. The argument c is used with the putchar() statement.

3.
getch() & getche()

 These functions read any alphanumeric character from the standard input device. The char-
acter entered is not displayed by the gectch() function.

 Syntax of getche() is as follows:

 getche();

 4.21 Write a program to show the effect of getche() and getch().

void main()
{
 clrscr();
 printf(“Enter any two alphabetic”);
 getche();
 getch();
}

OUTPUT:
Enter any two alphabetic A

4.
putch() :

	 Explanation:
 In the above program, even though two characters are entered, the user can see only one

character on the screen. The second character is accepted but not displayed on the console.
The getche() accepts and displays the character whereas getch() accepts but does not
display the character.

 This function prints any alphanumeric character taken by the standard input device.

 4.20 Write a program to use putchar() in work.

M04_KAMT3553_02_SE_C04.indd 101 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

102 Programming in C

	 Explanation:
 The function getch() reads a keystroke and assigns to the variable ch. The putch() dis-

plays the character pressed.

 (ii) String I/O

void main()
{
 char ch;
 clrscr();
 printf(“Press any key to continue”);
 ch=getch();
 printf(“\n You Pressed :”);
 putch(ch);
}

OUTPUT:
Press any key to continue
You Pressed: 9

1.
gets () :

 This function is used for accepting any string through stdin (keyboard) until enter key is
pressed. The header file stdio.h is needed for implementing the above function. Format of
gets() is as follows:

 char str[length of string in number];
 gets(str)

 A program is given on gets().

 4.23 Write a program to accept string through the keyboard using the gets() function.

	 Explanation:
 In the above program, gets() reads string through the keyboard and stores it in character

array ch[30]. The printf() function displays the string on the console.

void main()
{
 char ch[30];
 clrscr();
 printf(“Enter the String :”);
 gets(ch);
 printf(“\n Entered String : %s”, ch);
}

OUTPUT:
Enter the String : USE OF GETS()
Entered String : USE OF GETS()

 4.22 Write a program to read and display the character using getch() and putch().

M04_KAMT3553_02_SE_C04.indd 102 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

Input and Output in C 103

2.
puts() :

 This function prints the string or character array. It is opposite to gets().

 char str[length of string in number];
 gets(str);
 puts(str);

 A program is given on puts().

 4.24 Write a program to print the accepted character using puts() function.

void main()
{
 char ch[30];
 clrscr();
 printf(“Enter the String :”);
 gets(ch);
 puts(“Entered String :”);
 puts(ch);
}

OUTPUT:
Enter the String: puts is in use.
Entered String:
puts is in use.

	 Explanation:
 This program is the same as the previous one. Here, to display the string puts() function

is used.

3.
cgets() :

 This function reads string from the console. The syntax is as follows.

	 Syntax:
 cgets(char *st);

 It requires character pointer as an argument. The string begins from st[2].

4.
cputs() :

 This function displays string on the console. The syntax is as follows.

M04_KAMT3553_02_SE_C04.indd 103 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

104 Programming in C

	 Explanation:
 In this example character pointer ‘t’ is declared. The cgets() function reads string

through the keyboard and the cputs() function displays the string on the console.

4.5 commonLy used LIbrary FunctIons

	 Syntax:
 cputs(char *st);

 4.25 Write a program to read string using cgets() and display it using cputs().

void main()
{
 static char *t;
 clrscr();
 printf(“\n Enter Text Here :”);
 cgets(t);
 t+=2;
 printf(“\n Your Entered Text :”);
 cputs(t);
 getche();
}

OUTPUT:
Enter Text Here: How are you?
Your Entered Text: How are you?

1.
clrscr()

 This function is used to clear the screen. It clears previous output from the screen and dis-
plays the output of the current program from the first line of the screen. It is defined in
conio.h header file. The syntax is as follows.

	 Syntax:
 clrscr();

2.
exit()

 This function terminates the program. It is defined in process.h header file.
 The syntax is as follows.

	 Syntax:
 exit();

3.
sleep()

M04_KAMT3553_02_SE_C04.indd 104 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

Input and Output in C 105

 This function pauses the execution of the program for a given number of seconds. The number
of seconds is to be enclosed between parentheses. It is defined in dos.h header file. The syn-
tax is as follows.

	 Syntax:
 sleep(1);

 An example on sleep() is given below.

 4.26 Write a program to show the effect of the sleep() function.

void main()
{
 static char t[10];
 clrscr();
 printf(“\n Enter Text Here :”);
 gets(t);
 printf(“\n Your Entered Text :”);
 sleep(5);
 puts(t);
 getche();
}
OUTPUT:
Enter Text Here: ashok
Your Entered Text: ashok

	 Explanation:
 The explanation is straightforward and self-explanatory. See the effect of sleep(5). The

display appears after taking a pause.

3.
system ()

This function is helpful in executing different DOS commands. It returns 0 on success and –1 on
 failure. The syntax is as follows.

Syntax:
 system (“dir”);

The command should be enclosed within double quotation marks. After we run this command using
C, directory will be displayed. Programmer can verify this command.

4.6 stronG PoInts For understandabILIty
Computer produces output, which is useful for the user. Therefore, the clarity and neatness of result
should appear in the output. The following are a few steps which can be followed to produce the
neatness output:

 (i) Give space between numbers.

 (ii) Provide suitable and problem-related variable names and headings.

 (iii) Provide user prompt so that the user can understand what to do.

M04_KAMT3553_02_SE_C04.indd 105 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

106 Programming in C

 (iv) Provide a gap between two lines so that the text should be readable.

 (v) Alert the user about what to do and what not to do.

 (vi) Use formatted inputs and outputs for precisely inputting the data and outputting results.

 (vii) It is recommended to use escape sequence characters such as \t, \b, \n.

 summary

 This chapter dealt with formatted functions such as printf() and scanf() statements. The unfor-
matted functions such as putchar(), getche(), gets() have been illustrated with suitable
examples. The different data types and conversion symbols used in the C programs have also been
elaborated. The special symbols such as escape sequences together with their applications are also
discussed. A few of the functions which are commonly used in the programs such as clrscr(),
exit() are described in this chapter. Input and output functions together with examples are narrated
with programming example. At last, the main points for the understanding of programs are given to
the readers so that they can follow them.

 1. _______functions provide the conversion symbol
to identify the data type.

 (a) Formatted
 (b) Unformatted
 (c) Library
 (d) User defined

 2. ______functions does not convert data.

 (a) Formatted
 (b) Unformatted
 (c) Library
 (d) User defined

 3. The function prints all types of data values on to
the console_____

 (a) printf()
 (b) scanf()

 (c) gets()
 (d) pow()

 4. The ________statement reads all types of data
 values.

 (a) scanf()
 (b) printf()
 (c) puts()
 (d) abs()

 5. _______function reads one character type data at a
time till the user presses the enter key.

 (a) getchar()
 (b) puts()
 (c) accept()
 (d) fl oor()

 eXercIses

 I Fill in the blanks:

 II True or false:

 1. Formatted functions require format string to for-
mat the data.

 2. The function gets() is an unformatted
function.

 3. The ‘\n escape sequence inserts a tab.

 4. Formatted functions return values.

 5. The function gets() is defined in
<string.h>.

 6. Any signed data type can have negative as well as
positive values.

M04_KAMT3553_02_SE_C04.indd 106 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

Input and Output in C 107

 7. The functions cgets() and cputs() work
with character pointer as argument.

 8. While inputting values through scanf(), & is
required before a variable name.

 9. The getche() is used to read data character by
character.

 10. The char requires one byte space in the memory.

11. The ‘\a’ escape sequence is for alert bell.

12. The format string %g is used for float type.

13. The %s is used to format the string.

14. The format string %P is used to display hexadeci-
mal in lowercase.

15. The %lf is used for long integer

III Select the appropriate options from the choices given in the questions:

 1. What will be the output of the following pro-
gram?

 void main()
 {
 printf(“\n %d%d%d%d”,‘A’,

‘B’,‘C’,‘D’);
 }

 (a) 65666768
 (b) ABCD
 (c) 91929394
 (d) None of the above

 2. What will be the values of a and b after the ex-
ecution of the following program?

 void main()
 {
 int a,b;
 a=65*66;
 b=‘A’ * ‘B’;
 clrscr();
 printf(“a=%d b=%d”,a,b);
 }

 (a) a=4290 b=4290
 (b) a=4290 b=AB
 (c) a=4290 b=0
 (d) None of the above

 3. What function is appropriate for accepting a string?

 (a) gets()
 (b) getch()
 (c) getche()
 (d) scanf()

 4. What is the ASCII range for 0 to 9 digits?

 (a) 48 to 57
 (b) 65 to 90
 (c) 97 to 122
 (d) None of the above

 5. What is the ASCII range for A to Z letters?

 (a) 65 to 90
 (b) 48 to 57
 (c) 97 to 122
 (d) None of the above

 6. The escape sequence ‘\t’ is a

 (a) tab
 (b) next line
 (c) backspace
 (d) None of the above

 7. What would be the value of x on execution of the
program?

 void main()
 {
 float x=2.3;
 clrscr();
 x+=.2;
 printf(“%g”,x);
 }

 (a) 2.5
 (b) 4.3
 (c) 4
 (d) None of the above

 8. What will be the output of the following pro-
gram?

 void main()
 {
 system(“”);
 }

 (a) control goes to the DOS prompt
 (b) syntax error
 (c) bad command or file name
 (d) None of the above

M04_KAMT3553_02_SE_C04.indd 107 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

108 Programming in C

 9. Which is the correct statement for finding the
cube of 2?

 (a) pow(2,3);
 (b) pow(3,2);
 (c) pow(3);
 (d) None of the above

 10. The abs() function displays

 (a) an absolute value
 (b) a negative value
 (c) a zero value
 (d) None of the above

 11. What will be the output of the following program?

 void main()
 {
 printf(“\n %d%d%d%d”,‘a’,

‘b’,‘c’,‘d’);
 }

 (a) 979899100
 (b) 87888990
 (c) 90919293
 (d) None of them

 12. What will be the output of the following pro-
gram?

 void main()
 {
 char yourname[10]={“AJAY”};
 clrscr();
 printf(“\n Welcome %s to ‘C’

Programming Course”, yourname);
 }

 (a) Welcome AJAY to ‘C’ Programming Course
 (b) Welcome to ‘C’ Programming Course
 (c) Welcome ‘C’ Programming Course
 (d) None of them

 13. What will be the values of a and b after execution
of the following program?

 void main()
 {
 int a,b;
 a=65*66;
 b=‘A’*‘B’;
 clrscr();
 printf(“a=%d b=%d”,a,b);
 }

 (a) a=4290 b=4290
 (b) a=4290 b=9506
 (c) a=4290 b=0
 (d) None of the above

IV Attempt the following programming exercises:

 1. Write a program to input the rainfall of
three consecutive days in CMS and find its
average?

 2. Find the simple interest? Inputs are principal
amount, period in year and rate of interest.

 3. Write a program to find the total number of min-
utes of 12 hours?

 4. Find the area and perimeter of (a) square and
(b) rectangle. Input the side(s) through the
keyboard?

 5. Accept any three numbers and find their squares
and cubes.

 6. The speed of a van is 80 km/hour. Find the num-
ber of hours required for covering a distance of
500 km? Write a program in this regard.

 7. Write a program to convert inches into
centimetres.

 8. Write a program to enter the name of this book
and display it.

 9. Write a program to store and interchange two
float numbers in variables a and b.

 10. Write a program to enter text with gets() and
display it using printf() statement. Also find
the length of the text.

 11. Write a program to ensure that the subtraction of
any two-digit number and its reverse is always the
multiple of nine. For example, entered number is
54 and its reverse is 45. The difference between
them is 9.

 12. Write a program to convert kilograms into
grams.

 13. Write a program to find the total amount when
there are five notes of Rs. 100, three notes of
Rs. 50 and 20 notes of Rs. 20.

M04_KAMT3553_02_SE_C04.indd 108 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

Input and Output in C 109

V What will be the output/s of the following program/s?

 1.
 void main()
 {
 clrscr();
 printf(“\n %o %hx %p”,45,

65,65);
 }

 2.
 void main()
 {
 int x=67,y=68,z=69;
 clrscr();
 printf(“\n%c %c %c”,x,

y,z);
 getche();
 }

 3.
 void main()
 {
 char str=”C Programming”;
 clrscr();
 puts(str);
 getche();
 }

 4.
 void main()
 {
 int k=‘A’;
 clrscr();
 while (k<=‘K’) putch(k++);

VI Find the bug/s in the following program/s:

 1.
 void main()
 {
 int x=2;
 char y=‘A’;
 float f=2.05;
 clrscr();
 printf(“%d %c %f”,f,y,x);
 getche();
 }

 2.
 void main()
 {
 int x;
 clrscr();
 printf(“Enter a

 Number :”);
 scanf(“%d”,x);
 printf(“%d”,x);
 }

 3.
 void main()
 {

 char x,d;
 clrscr();
 printf(“Enter an

alphabet:”);
x=getchar();

 }

 4.
 void main()
 {
 clrscr();
 printf(“I \nam /n an\t

 Indian”);
 }

 5.
 void main()
 {
 putchar(“x”);
 }

 14. Write a program to enter the temperature in
 Fahrenheit and convert it to Celsius. Formula
to be used is tc= ((tf-32)*5)/9 where
tc and tf are temperatures in Celsius and Fahr-
enheit, respectively.

 15. Write a program to display the list of c
program files and directories. Use sys-
tem() function to execute DOS commands.

M04_KAMT3553_02_SE_C04.indd 109 5/17/2015 9:12:13 AM

https://hkgbooks.blogspot.com

110 Programming in C

 VII Answer the following questions:

 1. What are the formatted and unformatted
functions?

 2. What is the difference between character I/O and
string I/O?

 3. What is the escape sequence? List and indicate the
functions of escape sequences.

 4. List any three escape sequences with their uses.

 5. What is the difference between puts() and
putch()?

 6. What is the difference between getch() and
getche()?

 7. How cgets() is different from gets()?

 8. How will you execute a DOS command through
C program?

 9. What is the use of the exit() function?

 10. What is a stream?

 11. What are the tips to the design output?

ansWers

I Fill in the blanks:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. a 2. b 3. a 4. a 5. a

II True or false:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. T 2. T 3. F 4. T 5. F

 6. T 7. T 8. T 9. T 10. T

11. T 12. T 13. T 14. F 15. F

III Select the appropriate options from the choices given in the questions:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. a 2. a 3. a 4. a 5. a

 6. a 7. a 8. a 9. a 10. a

11. a 12. a 13. b

V What will be the output/s of the following program/s?

Q. Ans.

1. 55 41 0041

2. C D E

3. No Output

4. ABCDEFGHIJK

M04_KAMT3553_02_SE_C04.indd 110 5/17/2015 9:12:14 AM

https://hkgbooks.blogspot.com

Input and Output in C 111

VI Find the bug/s in the following program/s:

Q. Ans.
1. Program runs but output will be 0 because formatted data cannot be displayed

through unformatted functions. After putting them in sequence output will be 2
A 2.050000.

2. In scanf() & is not prefixed before variable name.

3. Header file <stdio.h> must be included

4. No bug

5. putchar() cannot be used to display string. Instead of it use puts().

M04_KAMT3553_02_SE_C04.indd 111 5/17/2015 9:12:14 AM

https://hkgbooks.blogspot.com

5 Decision
Statements

CHAPTER

Chapter Outline

 5.1 Introduction
 5.2 The if Statement
 5.3 The if–else Statement
 5.4 Nested if–else Statements
 5.5 The if-else-if Ladder Statement
 5.6 The break Statement
 5.7 The continue Statement
 5.8 The goto Statement
 5.9 The switch Statement
 5.10 Nested switch case
 5.11 The switch case and nested ifs

M05_KAMT3553_02_SE_C05.indd 112 5/17/2015 9:13:21 AM

https://hkgbooks.blogspot.com

Decision Statements 113

5.1 IntroductIon
A program is nothing but the execution of one or more instructions sequentially in the order in
which they come into sight. This process is analogous to reading the text and figures that appear
on the page of a notebook. In the monolithic program, the instructions are executed sequentially
in the order in which they appear in the program. Quite often, it is desirable in a program to alter
the sequence of the statements depending upon certain circumstances. In real time applications,
there are a number of situations where one has to change the order of the execution of statements
based on the conditions.
 Decision-making statements in a programming language help the programmer to transfer
the control from one part to other parts of the program. Thus, these decision-making statements
facilitate the programmer in determining the flow of control. This involves a decision-making
condition to see whether a particular condition is satisfied or not. On the basis of real time
 applications it is essential:

 (i) to alter the flow of a program.
 (ii) to test the logical conditions.
 (iii) to control the flow of execution as per the selection.

These conditions can be placed in the program using decision-making statements. C language sup-
ports the control statements as listed below:

 (i) The if statement
 (ii) The if–else statement
 (iii) The if–else–if ladder statement
 (iv) The switch case statement
 (v) The goto unconditional jump
 (vi) The loop statement

Besides, the C also supports other control statements such as continue, break.
 The decision-making statement checks the given condition and then executes its sub-block.
The decision statement decides which statement to execute after the success or failure of a given
 condition.
 The conditional statements use relational operators, which have been explained in Chapter 3. The
relational operators are useful for comparing the two values. They can be used to check whether they
are equal to each other, unequal or one is smaller/greater than the other.
 The reader or the programmer is supposed to understand the concepts as cited above. Following
points are expected to be known to the programmer related to the decision-making statements.
 Sequential execution: The statements in the program are executed one after another in a
sequential manner. This is called the sequential execution.
 Transfer of control: The C statements such as if, goto, break, continue, switch
allow a program to transfer the control at different places in the program. This is accomplished by
skipping one or more statements appearing in a sequential flow. This jumping of control is called the
transfer of control.
 During 1960s, programmers faced various difficulties in the program in which goto statement
was used which allows a programmer to transfer the control anywhere in the program. Bohm and
Jacopini reported that the programmer should not use the goto statement in their programs. Both

M05_KAMT3553_02_SE_C05.indd 113 5/17/2015 9:13:21 AM

https://hkgbooks.blogspot.com

114 Programming in C

 The if statement contains an expression which is evaluated. If the expression is true it returns 1,
otherwise 0. The statement is executed when the condition is true. In case the condition is false,
the compiler skips the lines within the if block. The condition is always enclosed within a pair of
 parentheses. The conditional statements should not be terminated with semi-colons (;). The statements
following the if statement are normally enclosed within curly braces. The curly braces indicate the
scope of the if statement. The default scope is one statement. But it is good practice to use curly
braces even if a single statement is used following the if condition.
 Given below are simple programs that demonstrate the use of the if statement.

 5.1 Write a program to check whether the entered number is less than 10. If yes, display
the same.

void main()
{
 int v;
 clrscr();
 printf(“Enter the number :”);
 scanf(“%d”, &v);

 if(v<10)
 printf(“\nNumber entered is less than 10”);
 sleep(2); /* process halts for given value in seconds */
}

OUTPUT:
Enter the number : 9
Number entered is less than 10

5.2 the if Statement
C uses the keyword if to execute a set of command
lines or one command line when the logical condition
is true. It has only one option. The sets of command
lines are executed only when the logical condition is
true (see Figure 5.1).

 Syntax for the simplest if statement :-
 if (condition) /* no semi-colon */
 statement;

void main ()

{

if (expression)
{
statement1;
statement2;
}

statement3;
}

TRUE FALSE

Figure 5.1 The if statement

Bohm and Jacopini demonstrated that all the programs could be written by using only three control
structures, i.e. sequence structure, selection structure and repetition structure by eliminating the goto
statement.

M05_KAMT3553_02_SE_C05.indd 114 5/17/2015 9:13:22 AM

https://hkgbooks.blogspot.com

Decision Statements 115

	 Explanation:
 In the above program, the user can enter the number. The entered number is checked with the

if statement. If it is less than 10, a message ‘Number entered is less than 10’
is displayed. For the sake of understanding, Figure 5.2 is given for the above program.

START

Input Value of v

is v<10?
False True

Print Message

STOP

Figure 5.2 The if statement (flow of control)

 5.2 Write a program to check whether the candidate’s age is greater than 17 or not. If yes, display
message ‘Eligible for Voting’.

void main()
{
 int age;
 clrscr();
 printf(“\n Enter age in the years :”);
 scanf(“%d”,&age);
 if(age>17)
 printf(“\n Eligible for Voting.”);
 getch();
}

OUTPUT:
Enter age in the years : 20
Eligible for Voting.

M05_KAMT3553_02_SE_C05.indd 115 5/17/2015 9:13:22 AM

https://hkgbooks.blogspot.com

116 Programming in C

	 Explanation:
 In the above program, age is entered through the keyboard. If the age is greater than 17 years,

a message will be displayed as shown at the output.

 5.3 Write a program using curly braces in the if block. Enter only the three numbers and calcu-
late their sum and multiplication.

void main()
{
 int a,b,c,x;
 clrscr();
 printf(“\nEnter Three Numbers:”);
 x=scanf(“%d %d %d”,&a,&b,&c);
 if(x==3)
 {
 printf(“\n Addition : %d”,a+b+c);
 printf(“\n Multiplication : %d”, a*b*c);
 }
}

OUTPUT:
Enter Three Numbers: 1 2 4
Addition : 7
Multiplication : 8
After second time execution
Enter Three Numbers: 5 v 8

	 Explanation:
 The variable ‘x’ contains the number of values correctly inputted by the user. If the value of

‘x’ is 3, the addition and multiplication operations are performed as per the first example
in the output. In the second example, the numbers are not correctly entered. Hence, the if
condition is false and no operation is performed. Here, the statements following the if con-
dition is enclosed within curly braces.

5.3 the if–else Statement
We observed the execution of the if statement in the previous programs. We observed that the if
block statements execute only when the condition in if is true. When the condition is false, program
control executes the next statement which appears after the if statement.
 The if–else statement takes care of the true and false conditions. It has two blocks. One block
is for if and it is executed when the condition is true. The other block is of else and it is executed
when the condition is false. The else statement cannot be used without if. No multiple else state-
ments are allowed with one if (see Figures 5.3 and 5.4).
 The flow chart for the if–else statement is given in Figure 5.4.

M05_KAMT3553_02_SE_C05.indd 116 5/17/2015 9:13:22 AM

https://hkgbooks.blogspot.com

Decision Statements 117

The syntax of if–else statement is as follows:
if(the condition is true)
execute the Statement1;
else
execute the Statement2;

OR

Syntax of if–else statement can be given as follows:
if (expression is true)
{
statement1; /* if block */
statement2;
}
else
{
statement3; /* else block */
statement4;
}

void main ()

{

if (expression)
{
statement1;
statement2;
}
else
{
statement3;
statement4;
}

}

TRUE FALSE

Figure 5.3 The if–else statements

From Previous statement

No

Yes

Is Condition
Satis�ed?

if block execution

else block execution

Next statement

Stop

Figure 5.4 The if–else statement

 The if–else statement is demonstrated in the following programs.

 5.4 Write a program to find the roots of a quadratic equation by using if-else condition.

include <math.h>
void main()
{
 int b,a,c;

M05_KAMT3553_02_SE_C05.indd 117 5/17/2015 9:13:23 AM

https://hkgbooks.blogspot.com

118 Programming in C

 float x1,x2;
 clrscr();
 printf(“\n Enter Values for a,b,c :”);
 scanf(“%d %d %d”, &a,&b,&c);
 if(b*b>4*a*c)
 {
 x1=-b+sqrt(b*b-4*a*c)/2*a;
 x2=-b-sqrt(b*b-4*a*c)/2*a;
 printf(“\n x1=%f x2=%f”,x1,x2);
 }
 else
 printf(“\n Roots are Imaginary”);
 getch();
}

OUTPUT:
Enter Values for a,b,c : 5 1 5
Roots are Imaginary

	 Explanation:
 The user can enter the values of a, b and c in the above program. The terms b2 and 4 a c are

evaluated. The if condition checks whether b2 is greater than 4 a c. If true, x1 and x2 are
evaluated and printed; otherwise message displayed will be ‘Roots are Imaginary’.

 5.5 Write a program to calculate the square of those numbers only whose least significant
digit is 5.

void main()
{
 int s,d;
 clrscr();
 printf(“\n Enter a Number :”);
 scanf(“%d”,&s);
 d=s%10;
 if(d==5)
 {
 s=s/10;
 printf(“\n Square = %d%d”,s*s++,d*d);
 }
 else
 printf(“\n Invalid Number”);
}

OUTPUT:
Enter a Number : 25
Square = 625

	 Explanation:
 In the above program, a number whose square is to be computed is entered. With the modular

division, operation the last digit is separated to confirm whether it is 5 or not. If yes, the body
of the if loop is executed where 10 divides the entered number and a quotient is obtained.

M05_KAMT3553_02_SE_C05.indd 118 5/17/2015 9:13:23 AM

https://hkgbooks.blogspot.com

Decision Statements 119

The quotient and its consecutive number are multiplied and displayed. Followed by this, a
square of 5 is calculated and displayed. Care is taken in the printf() statement to display
the two results: (i) multiplication of quotient and its consecutive number and (ii) square of 5
without space. Thus, the square of a number is displayed.

 5.6 Write a program to calculate the salary of a medical representative based on the sales. Bonus
and incentive to be offered to him will be based on total sales. If the sale exceeds or equals to
Rs.1,00,000, follow the particulars of Table 1, otherwise follow Table 2.

void main()
{
 float bs,hra,da,cv,incentive,bonus,sale,ts;
 clrscr();
 printf(“\n Enter Total Sales in Rs.:”);
 scanf(“%f”, &sale);
 if(sale>=100000)
 {
 bs=3000;
 hra=20 * bs/100;
 da=110 * bs/100;
 cv=500;
 incentive=sale*10/100;
 bonus=500;
 }
 else
 {
 bs=3000;
 hra=20 * bs/100;
 da=110 * bs/100;
 cv=500;
 incentive=sale*5/100;
 bonus=200;
 }
 ts=bs+hra+da+cv+incentive+bonus;
 printf(“\nTotal Sales : %.2f”,sale);
 printf(“\nBasic Salary : %.2f”’,bs)
 printf(“\nHra : %.2f”,hra);
 printf(“\nDa : %.2f”,da);
 printf(“\nConveyance : %.2f”,cv);
 printf(“\nIncentive : %.2f”,incentive);
 printf(“\nBonus : %.2f”,bonus);
 printf(“\nGross Salary : %.2f”,ts);
 getch();
}

1. TABLE 2. TABLE
Basic=Rs. 3000. Basic=Rs. 3000.
Hra=20% of basic. Hra=20% of basic.
Da=110% of basic. Da=110% of basic.
Conveyance=Rs.500. Conveyance=Rs.500.
Incentive=10% of sales. Incentive=5% of sales.
Bonus=Rs. 500. Bonus=Rs. 200.

M05_KAMT3553_02_SE_C05.indd 119 5/17/2015 9:13:23 AM

https://hkgbooks.blogspot.com

120 Programming in C

OUTPUT:
Enter Total Sales in Rs. 100000
Total Sales: 100000.00
Basic Salary: 3000.00
Hra: 600.00
Da: 3300.00
Conveyance: 500.00
Incentive: 10000.00
Bonus: 500.00
Gross Salary: 17900.00

	 Explanation:
 This program calculates the salary of a medical representative depending on sales. The basic

salary is the same but other allowances and incentives change, depending on the sales. If the
sale is more than Rs. 1,00,000, the rate of allowances and incentive is as per Table 1 otherwise
it is as per Table 2. The if condition checks the given figure of sales. If sale is more than
Rs. 1,00,000, the first bock following the if statement is executed otherwise the else block
is executed. In both the blocks, simple arithmetic operations are performed to calculate the
allowances and total salary.

5.4 neSted if–else StatementS
In this kind of statement, a number of logical conditions are checked for executing various statements.
Here, if any logical condition is true the compiler executes the block followed by if condition, other-
wise it skips and executes the else block. In the if–else statement, the else block is executed
by default after failure of condition. In order to execute the else block depending upon certain con-
dition we can add, repetitively, if statements in else block. This kind of nesting will be unlimited.
Figure 5.5 describes the nested if–else–if blocks.

From Previous Statement

TrueFalse

False True False True

Is 1st
Condition
Satis
ed?

Statement 3

Is 3rd

Condition
Satis
ed?

Is
2nd Condition

Satis
ed?

Statement 2 Statement 1Statement 4

Next Statement

Figure 5.5 Nested if–else statements

M05_KAMT3553_02_SE_C05.indd 120 5/17/2015 9:13:23 AM

https://hkgbooks.blogspot.com

Decision Statements 121

 Syntax of nested if-else statement can be given as follows.

if(condition)
{
 /*Inside first if block*/
 if(condition)
 {
 statement 1; /*if block*/
 statement 2;
 }
else
 {
 statement 3; /*else block*/
 statement 4;
 }
}
else
 {
 /*Inside else block*/
 if(condition)
 {
 statement 5; /*if block*/
 statement 6;
 }
 else
 {
 statement 7; /*else block*/
 statement 8;
 }
 }

 From the above block, following rules can be described for applying nested if-else-if
statements.

1. Nested if-else can be chained with one another.

2. If the condition is true control passes to the block following first if. In that case, we may
have one more if statement whose condition is again checked. This process continues till
there is no if statement in the last if block.

3. If the condition is false control passes to else block. In that case, we may have one more if
statement whose condition is again checked. This process continues till there is no if state-
ment in the last else block.

5.5 the if-else-if Ladder Statement
In this kind of statement, a number of logical conditions are checked for executing various statements.
Here, if the first logical condition is true the compiler executes the block followed by first if condition,
otherwise it skips that block and checks for next logical condition followed by else-if, if the condition
is true the block of statements followed by that if condition is executed. The process is continued until a
true condition is occurred or an else block is occurred. If all if conditions become false, it executes the
else block. In the if-else-if ladder statement, the else block may or may not have the else block.
 In if-else-if ladder statement we do not have to pair if statements with the else statements
that is we do not have to remember the number of braces opened like nested if-else. So it is sim-
pler to code than nested if-else and having same effect as nested if-else.

M05_KAMT3553_02_SE_C05.indd 121 5/17/2015 9:13:23 AM

https://hkgbooks.blogspot.com

122 Programming in C

 The statement is named as if-else-if ladder because it forms a ladder like structure as shown
in Figure 5.6.

if(condition)
{
 statement 1; /*if block*/
 statement 2;
}
else if(condition)
{
 statement 3; /*second if block*/
 statement 4;
}
else if(condition)
{
 statement 5; /*third if block*/
 statement 6;
}
else
{
 statement 7; /*else block*/
 statement 8;
}

 Syntax of if-else-if state ment can be given as follows.

From Previous Statement

True

True

True

True

False

False

False

False

Statement 1 Statement 2 Statement 3

To Next Statement

Statement 4 Statement 5

Is 1st if
Condition

True?
Is 2nd if
Condition

True?

Is 3rd if
Condition

True?

Is 4th if
Condition

True?

Figure 5.6 if–else–if ladder statement

M05_KAMT3553_02_SE_C05.indd 122 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

Decision Statements 123

void main()
{
 int initial,final,consumed;
 float total;
 clrscr();
 printf(“\n Initial & Final Readings :”);
 scanf(“%d %d”, &initial, &final);
 consumed = final-initial;
 if(consumed>=200 && consumed<=500)
 total=consumed * 3.50;
 else if(consumed>=100 && consumed<=199)
 total= consumed * 2.50;
 else if(consumed<100)
 total=consumed*1.50;
 printf(“Total bill for %d unit is %f”,consumed,total);
 getche();
}

OUTPUT:
Initial & Final Readings : 800 850
Total bill for 50 unit is 75.000000

	 Explanation:
 Initial and final readings are entered through the keyboard. Their difference is nothing but the

total energy consumed. As per the table given in the example, rates are applied and total bill
based on consumption of energy is calculated.

 From the above block, following rules can be described for applying nested if-else-if
statements:

1. Nested if-else can be chained with one another.

2. If the first if condition is false control passes to else-if block where condition is again
checked with the next if statement. This process continues till there is no if statement in
the last else block.

3. If one of the if statements satisfies the condition, other nested else-if statement will not
be executed.

 Given below programs are described on the bases on nested if-else and if-else-if lad-
der statements.

 5.7 Write a program to calculate electricity bill. Read the starting and ending meter reading.
The charges are as follows.

No. of units consumed Rates in (Rs.)
200–500 3.50
100–200 2.50
Less than 100 1.50

M05_KAMT3553_02_SE_C05.indd 123 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

124 Programming in C

 5.8 Write a program to find the maximum number out of six numbers invoked though the
 keyboard.

void main()
{
int a,b,c,d,e,f;
clrscr();
printf(“Enter 1st number:”);
scanf(“\n%d”,&a);
printf(“Enter 2nd number:”);
scanf(“\n%d”,&b);
printf(“Enter 3 rd number:”);
scanf(“\n%d”,&c);
printf(“Enter 4th number:”);
scanf(“\n%d”,&d);
printf(“Enter 5th number:”);
scanf(“\n%d”,&e);
printf(“Enter 6th number:”);
scanf(“\n%d”,&f);
if((a>b)&&(a>c)&&(a>d)&&(a>e)&&(a>f))
printf(“Maximum out of six Numbers is : %d”,a);
else if((b>c)&&(b>d)&&(b>e)&&(b>f))
printf(“Maximum out of six Numbers is : %d”,b);
else if((c>d)&&(c>e)&&(c>f))
printf(“Maximum out of six Numbers is :%d”,c);
else if((d>e)&&(d>f))
printf(“Maximum out of six Numbers is : %d”,d);
else if(e>f)
printf(“Maximum out of six Numbers is : %d”,e);
else
printf(“Maximum out of six Numbers is : %d”,f);
getch();
}

OUTPUT:
Enter 1st number:23
Enter 2nd number:45
Enter 3rd number:67
Enter 4th number:89
Enter 5th number:80
Enter 6th number:90
Maximum out of six Numbers is : 90

	 Explanation:
 Six numbers are entered through the keyboard. All the values of variables are compared

with one another using && (AND) in nested if–else–if statements. When one of the if
statements satisfies the condition that if block is executed which prints the largest number
otherwise the control passes to another if–else–if statement.

M05_KAMT3553_02_SE_C05.indd 124 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

Decision Statements 125

void main()
{
 int x,y,z;
 clrscr();
 printf(“\nEnter Three Numbers x, y, z :”);
 scanf(“%d %d %d”, &x,&y,&z);
 printf(“\nLargest out of Three Numbers is :”);
 if(x>y)
 {
 if(x>z)
 printf(“x=%d\n”,x);
 else
 printf(“z=%d\n”,z);
 }
 else
 {
 if(z>y)
 printf(“z=%d\n”,z);
 else
 printf(“y=%d\n”,y);
 }
}

OUTPUT:
Enter Three Numbers x, y, z : 10 20 30
Largest out of Three Numbers is :z=30

 5.9 Write a program to find the largest number out of three numbers. Read the numbers through
the keyboard.

	 Explanation:
 This is also an example of the nested ifs. When the if statement satisfies the condition,

control passes to another if statement block. Three numbers are entered through keyboard.
The first if statement compares the first number with the second number. If the condition is
a true, the block followed by first if statement executes. Inside the block, the if statement
checks whether the first number is larger than the third number. If yes, then the largest number
is the first one and the same is displayed. Else the third number is the largest and the same is
printed. In case the first if statement fails to satisfy the condition, the else block with nested
if would be executed. The third number is compared with the second number. If it is true the
third number is the largest otherwise the second number is the largest.

 5.10 Write a program to find the smallest out of the three numbers.

void main()
{
 int a,b,c,smallest;
 clrscr();
 printf(“\n Enter Three Numbers :”);

M05_KAMT3553_02_SE_C05.indd 125 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

126 Programming in C

 scanf(“%d %d %d”, &a,&b,&c);
 if(a<b)
 {
 if(a<c)
 smallest=a;
 else
 smallest=c;
 }
 else
 {
 if(b<c)
 smallest =b;
 else
 smallest =c;
 }
 printf(“The smallest of %d %d %d is %d \n”, a,b,c, smallest);
 getche();
}

OUTPUT:
Enter Three Numbers : 1 5 8
The smallest of 1 5 8 is 1

	 Explanation:
 The logic in the above program is the same as the last one. Instead of > (greater than) < (less

than) condition is used.

 5.11 Write a program to calculate the gross salary for the conditions given below.

void main()
{
 float bs,hra,da,cv,ts;
 clrscr();
 printf(“\n Enter Basic Salary :”);
 scanf(“%f”,&bs);
 if(bs=>5000)
 {
 hra=20 * bs/100;
 da= 110 * bs/100;
 cv=500;
 }
 else
 if(bs=>3000 && bs<5000)
 {
 hra=15*bs/100;

Basic Salary (Rs.) DA (Rs.) HRA (Rs.) Conveyance (Rs.)
BS>=5000 110% of Basic 20% of Basic 500
Bs=>3000 && bs<5000 100% of Basic 15% of Basic 400
bs<3000 90% of Basic 10% of Basic 300

M05_KAMT3553_02_SE_C05.indd 126 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

Decision Statements 127

 da=100*bs/100;
 cv=400;
 }
 else
 {
 if(bs<3000)
 hra=10*bs/100;
 da= 90*bs/100;
 cv=300;
 }
 ts=bs+hra+da+cv;
 printf(“\nBasic Salary : %5.2f”,bs);
 printf(“\nHra : %5.2f”,hra);
 printf(“\nDa : %5.2f”,da);
 printf(“\nConveyance : %5.2f”,cv);
 printf(“\nGross Salary : %5.2f”,ts);
 getch();
}

OUTPUT:
Enter Basic Salary: 5400
Basic Salary: 5400
Hra: 1080
Da: 5940
Conveyance: 500
Gross Salary:12920

	 Explanation:
 In the above program, the basic salary of an employee is entered through the keyboard.

This entered figure is checked with different conditions as cited in the problem. The if–
else conditions are used and on the basis of the conditions gross salary is calculated and
displayed.

 5.12 Calculate the total interest based on the following.

PRINCIPLE AMOUNT (Rs.) Rate of Interest (Rs.)
>=10000 20%
>=8000 && <=9999 18%
<8000 16%

void main()
{
 float princ,nyrs,rate,interest;
 clrscr();
 printf(“\n Enter Loan & No. of years :-”);
 scanf(“%f %f”, &princ, &nyrs);
 if(princ>=10000)
 rate=20;

M05_KAMT3553_02_SE_C05.indd 127 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

128 Programming in C

 else
 if(princ>=8000 && princ<=9999)
 rate=18;
 else
 if(princ<8000)
 rate=16;
 interest = princ * nyrs * rate/100;
 printf(“\nYears : %6.2f”,nyrs);
 printf(“\nLoan : %6.2f”,princ);
 printf(“\nRate : %6.2f”,rate);
 printf(“\nInterest : %6.2f”,interest);
 getche();
}

OUTPUT:
Enter Loan & No. of years :- 5000 3
Loan : 5000.00
Years : 3.00
Rate : 16.00
Interest : 2640.00

	 Explanation:
 In the above program, the loan and the number of years are entered through the keyboard.

The entered principal amount is checked with the if statement. Based on the principal
amount, the rate of interest is charged. The interest is calculated by considering different
factors such as loan amount, the number of years and the rate of interest as per the table.

 5.13 Write a program to find the average of six subjects and display the results as follows.

void main()
{
 int a,b,c,d,e,f;
 float sum=0;
 float avg;
 clrscr();
 printf(“\nEnter Marks:\n”);
 printf(“P C B M E H\n”);
 scanf(“%d %d %d %d %d %d”,&a,&b,&c,&d,&e,&f);

 if(a<35 || b<35 || c<35 || d<35 || e<35 || f<35)
 {
 printf(“\nResult: Fail”);
 exit();
 }

AVERAGE RESULT
>=35 & <50 Third Division
>=50 & <60 Second Division
>=60 & <75 First Division
>=75 & <=100 Distinction
If marks in any subject less than 35 Fail

M05_KAMT3553_02_SE_C05.indd 128 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

Decision Statements 129

 sum=a + b + c + d + e + f;
 avg=sum/6;
 printf(“Total : %g \nAverage : %g”, sum,avg);

 if(avg>=35 && avg<50)
 printf(“\n Result: Third Division”);
 else
 if(avg>=50 && avg <60)
 printf(“\n Result: Second Division”);
 else
 if(avg>=60 && avg<75)
 printf(“\n Result: First Division”);
 else
 if(avg>75 && avg <=100)
 printf(“\nResult : Distinction”);
 getche();
}

Enter Marks:
P C B M E H
56 57 56 89 78 45
Total : 381
Average : 63.5
Result: First Division

	 Explanation:
 In the above program, marks of six subjects are entered through the keyboard. Their sum

and average are calculated. The first if statement checks the condition whether the marks
in individual subjects are less than 35. If so, message displayed will be ‘Result: Fail’
and the program terminates. The logical OR (||) is used here.

 The average marks obtained are checked with different conditions. The if-else blocks are
used. Based on the conditions the statements are executed.

5.6 the break Statement
The keyword break allows the programmers to terminate the loop. The break skips from the loop
or block in which it is defined. The control then automatically goes to the first statement after the loop
or block. The break can be associated with all conditional statements.
 We can also use the break statements in the nested loops. If we use the break statement in the
innermost loop, then the control of the program is terminated only from the innermost loop.
 The difference between the break and exit() is provided in Table 5.1.

Table 5.1 Difference between break and exit()
Sr.	No break exit()

1. It is a keyword. It is a function.

2. No header file is needed. Header file process.h must be included.

3. It stops the execution of the loop. It terminates the program.

M05_KAMT3553_02_SE_C05.indd 129 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

130 Programming in C

5.7 the continue Statement
The continue statement is exactly opposite of the break statement. The continue statement is
used for continuing the next iteration of the loop statements. When it occurs in the loop, it dose not
terminate, but it skips the statements after this statement. It is useful when we want to continue the
program without executing any part of the program. Table 5.2 gives the differences between break
and continue.

Table 5.2 Difference between break and continue
break continue

Exits from current block or loop. Loop takes the next iteration.

Control passes to the next statement. Control passes at the beginning of the loop.

Terminates the loop. Never terminates the program.

5.8 the goto Statement
This statement does not require any condition. This is an unconditional control jump. This statement
passes control anywhere in the program, i.e. control is transferred to another part of the program with-
out testing any condition. User has to define the goto statement as follows:

goto label;

where, the label name must start with any character.
 Here, the label is the position where the control is to be transferred. A few examples are described
for the sake of understanding.

 5.14 Write a program to detect the entered number as to whether it is even or odd. Use the goto
statement.

include <stdlib.h>
void main()
{
 int x;
 clrscr();
 printf(“Enter a Number :”);
 scanf(“%d”,&x);
 if(x%2==0)
 goto even;
 else
 goto odd;
 even :
 printf(“\n %d is Even Number.”,x);
 return;
 odd:
 printf(“\n %d is Odd Number.”,x);
}

OUTPUT:
Enter a Number : 5
5 is Odd Number.

M05_KAMT3553_02_SE_C05.indd 130 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

Decision Statements 131

void main()
{
 int nc;
 clrscr();
 printf(“\nEnter Number of Calls :”);
 scanf(“%d”,&nc);
 if(nc<100)
 goto free;
 else if(nc>99 && nc<200)
 goto charge1;
 else if(nc>199 && nc<300)
 goto charge2;
 else
 goto charge3;
 free :
 printf(“\n No charges.”);
 return;
 charge1:
 printf(“\n Total Charges : %d Rs.”,nc*1);
 return;
 charge2:
 printf(“\n Total Charges : %d Rs.”,nc*2);
 return;
 charge3:
 printf(“\n Total Charges : %d Rs.”,nc*3);
}

OUTPUT:
Enter Number of Calls : 500
Total Charges: 1500 Rs

	 Explanation:
 In the above program, a number is entered. The number is checked for even or odd with mod-

ules division operator. When the number is even, the goto statement transfers the control to
the label even. Similarly, when the number is odd the goto statement transfers the control
to the label odd and respective message will be displayed.

 5.15 Write a program to calculate the telephone bill. Transfer controls at different places
according to the number of calls and calculate the total charges. Follow rates as per
given in the table.

	 Explanation:
 The execution process of the above program is the same as that of the previous one. The

difference is that in this program control is transferred to various labels.

Telephone Call Rate in Rs.
<100 No Charges
>99 & <200 1
>199 & <300 2
>299 3

M05_KAMT3553_02_SE_C05.indd 131 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

132 Programming in C

#include <stdio.h>
#include <conio.h>
int main()
{
 int year;
 clrscr();
 printf(“\nEnter Year :”);
 scanf(“%d”,&year);
 if(year%4==0 && year%100!=0 || year%400==0)
 goto leap;
 else
 goto noleap;
 leap:
 printf(“%d is a leap year.”,year);
 return 0;
 noleap:
 printf(“%d is not leap year.”,year);
 getch();
return 0;
}

OUTPUT:
Enter Year : 2012
2012 is a leap year.

	 Explanation:
 The entered year is divided using the modulus division operator 400. The condition is satis-

fied hence the year 2012 is the leap year.

5.9 the switch Statement
The switch statement is a multi-way branch statement. In the program, if there is a possibility to
make a choice from a number of options, this structured selection is useful. The switch statement
requires only one argument of any data type, which is checked with the number of case options.
The switch statement evaluates expression and then looks for its value among the case constants. If
the value matches with case constant, this particular case statement is executed. If not, default
is executed. Here, switch, case and default are reserved keywords. Every case statement
terminates with ‘:’. The break statement is used to exit from current case structure. The switch
statement is useful for writing the menu-driven program.
 The syntax of the switch case statement is as follows.

 5.16 Write a program to check if the entered year is a leap year or not. Use the goto
statement.

 switch(variable or expression)
 {
 case constant A :
 statement;

M05_KAMT3553_02_SE_C05.indd 132 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

Decision Statements 133

(a) The switch expression

 In the block, the variable or expression can be a character or an integer. The integer expres-
sion following the keyword switch will yield an integer value only. The integer may be
any value 1, 2, 3, and so on. In case a character constant, the values may be given in the
alphabetic order such as ‘x’, ‘y’, ‘z’.

(b) The switch organization

 The switch expression should not be terminated with a semi-colon and/or with any other
symbol. The entire case structure following switch should be enclosed with curly braces.
The keyword case is followed by a constant. Every constant terminates with a colon. Each
case statement must contain different constant values. Any number of case statements
can be provided. If the case structure contains multiple statements, they need not be enclosed
with curly braces. Here, the keywords case and break perform the job of opening and
closing curly braces, respectively.

(c) The switch execution

 When one of the cases satisfies, the statements following it are executed. In case, there is no
match, the default case is executed. The default can be put anywhere in the switch
expression. The switch statement can also be written without the default statement.
The break statement used in switch causes the control to go outside the switch
block. By mistake, if no break statements are given all the cases following it are executed
(see Figure 5.7).

 5.17 Write a program to print lines by selecting the choice.

void main()
{
 int ch;
 clrscr();
 printf(“\n[1]”);
 printf(“\n[2] _________”);
 printf(“\n[3] *********”);
 printf(“\n[4] ==========”);
 printf(“\n[5] EXIT”);
 printf(“\n\n ENTER YOUR CHOICE :”);
 scanf(“%d”, &ch);
 switch(ch)
 {
 case 1 :
 printf(“\n ..”);

 break;
 case constant B :
 statement;
 break;
 default :
 statement ;
 }

M05_KAMT3553_02_SE_C05.indd 133 5/17/2015 9:13:24 AM

https://hkgbooks.blogspot.com

134 Programming in C

 break;
 case 2 :
 printf(“\n ___”);
 break;
 case 3 :
 printf(“\n **”);
 break;
 case 4 :
 printf(“\n ==”);
 break;
 case 5 :
 printf(“\n Terminated by choice”);
 exit();
 break;
 default :
 printf(“\n Invalid Choice”);

Figure 5.7 switch statement

M05_KAMT3553_02_SE_C05.indd 134 5/17/2015 12:33:55 PM

https://hkgbooks.blogspot.com

Decision Statements 135

	 Explanation:
 In this program, a menu appears with five options and it requests the users to enter their

choice. The choice entered by the user is then passed to switch statement. In the switch
statement, the value is checked with all the case constants. The matched case statement is
executed in which the line is printed of the user’s choice. If the user enters a non-listed value,
then no match occurs and default is executed. The default warns the user with a mes-
sage ‘Invalid Choice’.

 5.18 Write a program to calculate (1) Addition, (2) Subtraction, (3) Multiplication, (4) Division,
(5) Remainder calculation, (6) Larger out of two numbers by using switch statements.

 }
 getch();
}

OUTPUT:
[1]
[2] _________
[3] *********
[4] ==========
[5] EXIT
ENTER YOUR CHOICE : 1
...........................

void main()
{
 int a,b,c,ch;
 clrscr();
 printf(“\t =================”);
 printf(“\n\t MENU”);
 printf(“\n\t =================”);
 printf(“\n\t[1] ADDITION”);
 printf(“\n\t[2] SUBTRACTION”);
 printf(“\n\t[3] MULTIPLICATION”);
 printf(“\n\t[4] DIVISION”);
 printf(“\n\t[5] REMAINDER”);
 printf(“\n\t[6] LARGER OUT OF TWO”);
 printf(“\n\t[0] EXIT”);
 printf(“\n\t=================”);
 printf(“\n\n\t ENTER YOUR CHOICE :”);
 scanf(“%d”, &ch);
 if(ch<=6 & ch>0)
 {
 printf(“Enter Two Numbers :”);
 scanf(“%d %d”,&a,&b);
 }
 switch (ch)
 {

M05_KAMT3553_02_SE_C05.indd 135 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

136 Programming in C

 case 1 :
 c=a+b;
 printf(“\n Addtion : %d”,c);
 break;
 case 2 :
 c=a-b;
 printf(“\n Subtraction : %d”,c);
 break;
 case 3 :
 c=a*b;
 printf(“\n Multiplication : %d”,c);
 break;
 case 4 :
 c=a/b;
 printf(“\n Division : %d”,c);
 break;
 case 5 :
 c=a%b;
 printf(“\n Remainder : %d”,c);
 break;
 case 6 :
 if(a>b)
 printf(“\n\t %d (a) is larger than %d (b).”,a,b);
 else
 if(b>a)
 printf(“\n\t %d (b) is larger than %d (a).”,b,a);
 else
 printf(“\n\t %d (a) & %d (b) are same.”,a,b);
 break;
 case 0 :
 printf(“\n Terminated by choice”);
 exit();
 break;
 default :
 printf(“\n Invalid Choice”);
 }
 getch();
}

OUTPUT:
MENU
=================
[1] ADDITION
[2] SUBTRACTION
[3] MULTIPLICATION
[4] DIVISION
[5] REMAINDER
[6] LARGER OUT OF TWO
[0] EXIT
=================
ENTER YOUR CHOICE : 6
Enter Two Numbers : 8 9
9 (b) is larger than 8 (a).

M05_KAMT3553_02_SE_C05.indd 136 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

Decision Statements 137

	 Explanation:
 In this program also, a menu appears with different arithmetic operations. It requests the user

to enter the required choice number. The choice entered by the user is checked with the if
statement. If it is in between 1 and 6 the if block is executed which prompts the user to enter
two numbers. After this, the choice entered by the user is passed to the switch statement
and it performs relevant operations.

 5.19 Write a program that converts number of years into (1) minutes, (2) hours, (3) days, (4)
months and (5) seconds using switch statements.

void main()
{
 long ch,min,hrs,ds,mon,yrs,se;
 clrscr();
 printf(“\n[1] MINUTES”);
 printf(“\n[2] HOURS”);
 printf(“\n[3] DAYS”);
 printf(“\n[4] MONTHS”);
 printf(“\n[5] SECONDS”);
 printf(“\n[0] EXIT”);
 printf(“\n Enter Your Choice :”);
 scanf(“%ld”, &ch);
 if(ch>0 && ch<6)
 {
 printf(“Enter Years :”);
 scanf(“%ld”,&yrs);
 }
 mon=yrs*12;
 ds=mon*30;
 ds=ds+yrs*5;
 hrs=ds*24;
 min=hrs*60;
 se=min*60;
 switch(ch)
 {
 case 1 :
 printf(“\n Minutes : %ld”,min);
 break;
 case 2 :
 printf(“\n Hours : %ld”,hrs);
 break;
 case 3 :
 printf(“\n Days : %ld”,ds);
 break;
 case 4 :
 printf(“\n Months : %ld”,mon);
 break;
 case 5 :
 printf(“\n Seconds: %ld”,se);
 break;
 case 0 :
 printf(“\n Terminated by choice”);

M05_KAMT3553_02_SE_C05.indd 137 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

138 Programming in C

	 Explanation:
 In this program, the number of years is entered and according to the user’s choice switch

case structure performs the operation.

 5.20 Write a program to perform the following operations:

1. Display any numbers or stars on the screen by using for loop.

2. Display the menu containing the following: (a) whole screen, (b) half screen, (c) the top three
lines and (d) the bottom three lines.

 exit();
 break;
 default :
 printf(“\n Invalid Choice”);
 }
 getch();
}

OUTPUT:
[1] MINUTES
[2] HOURS
[3] DAYS
[4] MONTHS
[5] SECONDS
[0] EXIT
Enter Your Choice : 4
Enter Years : 2
Months : 24

void main()
{
 int i,c;
 clrscr();
 for (i=0;i<=700;i++)
 printf(“%d”,i);
 printf(“\n\n\t\tCLRAR SCREE MENU\n”);
 printf(“\t\t1] Whole screen\n”);
 printf(“\t\t2] Half Screen\n”);
 printf(“\t\t3] Top 3 Lines \n”);
 printf(“\t\t4] Bottom 3 Lines\n”);
 printf(“\t\t5] Exit \n Enter Your Choice :”);
 scanf(“%d”,&c);
 switch(c)
 {
 case 1:
 clrscr();
 break;
 case 2 :
 for (i=0;i<=189;i++)
 {
 gotoxy(i,1);
 printf(“\t”);

M05_KAMT3553_02_SE_C05.indd 138 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

Decision Statements 139

 }
 break;
 case 3 :
 for (i=1;i<=99;i++)
 {
 gotoxy(i,1);
 printf(“\t”);
 }
 break;
 case 4 :
 for (i=1;i<120;i++)
 {
 gotoxy(i,21);
 printf(“\t”);
 }
 default :
 break;
 }
 getche();
}

void main()
{
 int c;
 clrscr();
 printf(“\n FILE LISTING MENU”);
 printf(“\n 1] .EXE”);
 printf(“\n 2] .BAT”);
 printf(“\n 3] .obj”);
 printf(“\n 4] .bak\n Enter Your Choice -:”);
 scanf(“%d”,&c);
 switch(c)
 {
 case 1 :
 system(“dir .exe”);
 break;
 case 2:
 system(“\dir .c”);
 break;
 case 3:
 system(“\dir .obj”);
 break;

	 Explanation:
 In the above program, the for loop is used for displaying numbers on the screen. The screen

will be covered with numbers. The screen as a whole or part or top or bottom portion can
be cleared by using switch cases. While using switch cases for loops are used. The
programmer can execute the program and see its effect by entering the different choices.

 5.21 Write a program to display the following files of current directory by using system the DOS
command: (1) .exe files, (2) .bat files, (3) .obj files and (4) .bak files.

M05_KAMT3553_02_SE_C05.indd 139 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

140 Programming in C

	 Explanation:
 In the above program, a menu is displayed. The user can give different choices. The effect

can be observed by selecting one of the choices. The user can view all .exe, .bat,
.obj, .bak files. The effect is the same as the DOS ‘dir’ command. The System func-
tion is used to call the operating system command.

 5.22 Write a program to display days in a calendar format of an entered month of year 2015.

 case 4:
 system(“\dir .bak”);
 break;
 default :
 break;
 }
 getch();
}

void main()
{
int m,h,i=1,a,j,b=1;
clrscr();
printf (“\n Enter Month Number of the Year 2015 : “);
scanf (“%d”,&m); /* Program for finding days of any month of 2015*/
switch(m)
{
 case 1 :
 a=5;
 j=31;
 break;

 case 2 :
 a=1;
 j=28;
 break;

 case 3 :
 a=1;
 j=31;
 break;

 case 4 :
 a=4;
 j=30;
 break;

 case 5 :
 a=6;
 j=31;
 break;

 case 6 :
 a=2;
 j=30;
 break;

M05_KAMT3553_02_SE_C05.indd 140 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

Decision Statements 141

 case 7 :
 a=4;
 j=31;
 break;

 case 8 :
 a=7;
 j=31;
 break;

 case 9 :
 a=3;
 j=30;
 break;

 case 10 :
 a=5;
 j=31;
 break;

 case 11 :
 a=1;
 j=30;
 break;

 case 12 :
 a=3;
 j=31;
 break;

 default :
 printf (“\a\a Invalid Month”);
 exit();
 }
/* starting day is to be shown/adjusted as per calendar */

printf (“\n\n\n”);
printf (“\t\t\tMonth - %d - 2015\n\n”,m);
printf (“ SUN MON TUE WED THU FRI SAT\n\n”);

 switch (a)
 {
 case 1 :
 printf (“\t%d”,i);
 break;

 case 2 :
 printf (“\t\t%d”,i);
 break;

 case 3 :
 printf (“\t\t\t%d”,i);
 break;

 case 4 :
 printf (“\t\t\t\t%d”,i);
 break;

 case 5 :
 printf (“\t\t\t\t\t%d”,i);
 break;

M05_KAMT3553_02_SE_C05.indd 141 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

142 Programming in C

 case 6 :
 printf (“\t\t\t\t\t\t%d”,i);
 break;

 case 7 :
 printf (“\t\t\t\t\t\t\t%d”,i);
 break;
 }
 h=8-a; /* The starting day is subtracted from 8 */
 for (i=2;i<=h;i++) /* To display the first row */
 printf (“\t%d”,i);
 printf (“\n”);

 for (i=h+1; i<=j;i++) /* To continue with second row onwards */
 {
 if (b==8) /* To terminate the line after every week */
 {
 printf (“\n”);
 b=1;
 }
 printf (“\t%d”,i);
 b++;
 }
 getch();
}

OUTPUT:
Enter Month Number of the Year 2015: 2

Month – 2 – 2015

SUN MON TUE WED THU FRI SAT
 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
 15 16 17 18 19 20 21
 22 23 24 25 26 27 28

	 Explanation:
 This program prints the days of a given month of a year (2015) in the calendar form. This

will be done without the help of system resources. The month number is to be entered by the
user. It is passed to the first switch structure. This structure finds the first day of the month
in the numeric form and the number of days present in that month. These values are assigned
to a and j, respectively. Here, Sunday to Monday refer to 1 to 7 values, respectively. The
printf() functions and second switch structure perform printing of dates in a column-
wise manner. The variables i, b are initialized to 1.

 The second switch structure defines starting column and prints the value of ‘i’ that is
always 1. The value of ‘h’ (8 minus ‘a’) determines the number of dates to be printed in the first row.
This task is performed by the first for loop. In the second for loop, h is incremented with 1 and loop
continues up to the number of day, i.e. j. To break up dates rowwise, the if statement compares the
value of variable ‘b’ with 8. If b=8 then line breaks and ‘b’ again initializes to 1. Whenever b=8,
line is broken and whole dates of month are arranged in a calendar form.

M05_KAMT3553_02_SE_C05.indd 142 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

Decision Statements 143

include <process.h>
void main()
{
 int x,y=30,z;
 clrscr();
 printf(“\nEnter a number :”);
 scanf(“%d”,&x);
 printf(“\n Conversion of Decimal to Hexadecimal Number \n”);
 for(;;)
 {
 if(x==0)
 exit(1);
 z=x%16;
 x=x/16;
 gotoxy(y--,5);
 switch(z)
 {
 case 10 :
 printf(“A”);
 break;
 case 11 :
 printf(“%c”,‘B’);
 break;
 case 12 :
 printf(“%c”,“C”);
 break;
 case 13 :
 printf(“D”);
 break;
 case 14 :
 printf(“E”);
 break;
 case 15 :
 printf(“F”);
 break;
 default :
 printf(“%d”,z);
 }
 }
}

OUTPUT:
Enter a number : 31
Conversion of Decimal to Hexadecimal Number
1F

 5.23 Write a program to convert decimal to hexadecimal number.

	 Explanation:
 In the above program, an infinite for loop is used. In the for loop, the switch case

statement is used for printing letters A to F. In case entered numbers are in between 1 to 9,
the same will be displayed. But if the remainders obtained are greater than 9, in for loop, the
appropriate case statement is executed for displaying hexadecimal symbols A to F.

M05_KAMT3553_02_SE_C05.indd 143 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

144 Programming in C

5.10 neSted switch case
The C supports nested switch statements. The inner switch can be a part of an outer switch.
The inner and outer switch case constants may be the same. No conflicts arise even if they are the
same. A few examples are given below on the basis of nested switch statements.

 5.24 Write a program to detect if the entered number is even or odd. Use nested switch case
statements.

void main()
{
 int x,y;
 clrscr();
 printf(“\n Enter a Number :”);
 scanf(“%d”,&x);
 switch(x)
 {
 case 0 :
 printf(“\n Number is Even.”);
 break;
 case 1 :
 printf(“\n Number is Odd .”);
 break;
 default :
 y=x%2;
 switch(y)
 {
 case 0:
 printf(“\n Number is Even.”);
 break;
 default :
 printf(“\n Number is Odd.”);
 }
 }
 getche();
}

OUTPUT:
Enter a Number : 5
Number is Odd.

	 Explanation:
 In the above-given program, the first switch statement is used for displaying the message

such as even or odd numbers when the entered numbers are 0 and 1, respectively.

 When the entered number is other than 0 and 1, its remainder is calculated with modulous operator
and stored in the variable ‘y’. The variable ‘y’ is used in the inner switch statement. If the remainder
is ‘0’ the message displayed will be ‘Number is Even’, otherwise for non-zero it will be ‘Number is
Odd’. Here, the constants used for inner and outer switch statements are the same.

M05_KAMT3553_02_SE_C05.indd 144 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

Decision Statements 145

void main()
{
 static int x,s,a,z,o;
 char txt[20];
 clrscr();
 printf(“\nEnter Numbers :”);
 gets(txt);
 while(txt[x]!=’\0’)
 {
 switch(txt[x])
 {
 case ‘ ’ :
 s++;
 break;
 default :
 switch(txt[x])
 {
 case ‘1’:
 a++;
 break;
 case ‘0’:
 z++;
 break;
 default :
 o++;
 }
 }
 x++;
 }
 printf(“\n Total Spaces : %d”, s);
 printf(“\n Total 1s : %d”,a);
 printf(“\n Total 0s : %d”,z);
 printf(“\n Others : %d”,o);
 printf(“\n String Length: %d”,s+a+z+o);
}

OUTPUT:
Enter Numbers : 1110022 222
Total Spaces : 1
Total 1s : 3
Total 0s : 2
Others : 5
String Length:11

 5.25 Write a program to count the number of 1s, 0s, blank spaces and others using nested
switch statement.

	 Explanation:
 In the above-mentioned program, the outer switch counts only spaces in a given text. For

other than spaces, the inner switch statement is used. The inner switch is for counting
1s, 0s and others. The string length is printed at the end of the program, which is the addition
of all the counts.

M05_KAMT3553_02_SE_C05.indd 145 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

146 Programming in C

5.11 the switch case and nested ifs
The distinction between the switch case and the nested ifs is narrated in Table 5.3.

 5.26 Write a program to convert integer to character using if condition.

void main()
{
 int x;
 clrscr();
 printf(“\n Enter a Number :);
 scanf(“%d”,&x);
 if(x==‘A’)
 printf(“%c”,x);
}

OUTPUT:
Enter a Number : 65
A

	 Explanation:
 In this program, the variable ‘x’ is declared as an integer variable. Its value is entered through

the keyboard. The ASCII value of entered number is checked with the if statement. If there
is a match, the ASCII, value is displayed.

 5.27 Write a program to use nested if–else statements in the switch statement. Also show
the effect of conversion of integer to character.

void main()
{
 int i;
 clrscr();
 printf(“\n Enter Any ASCII Number :”);
 scanf(“%d”,&i);
 clrscr();

switch case nested ifs

The switch can only test for equality, i.e. only
constant values are applicable.

The if can evaluate relational or logical expressions.

No two case statements have identical constants in
the same switch.

Same conditions may be repeated for the number of
times.

Character constants are automatically converted to
integers.

Character constants are automatically converted to
integers.

In switch case statement nested if can be
used.

In nested if statement switch case can be used.

Table 5.3 Distinction between the switch case and nested ifs

M05_KAMT3553_02_SE_C05.indd 146 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

Decision Statements 147

	 Explanation:
 An ASCII number is entered. In the outer switch if its ASCII value is equivalent to ‘A’,

‘B’ and ‘C’ then relevant message is displayed. If the ASCII values are other than these
three values, then the inner switch statement is used to determine its equivalent ASCII
symbols. The symbols may be any character including special symbols and digits. If we
enter 65, Capital A is displayed.

Summary

The reader is made aware about the decision-making statements such as if and the if–else state-
ments in the C programming. Also, the multi-way-decision statement switch case is also dis-
cussed. How nested if–else and switch case statements are to be used in programs are also
illustrated in a simple and easy way. Ample simple examples have been explained on the decision-
making statements. To change the flow of the program, the programmer can use statements such as
break, continue and goto. The reader is expected to execute all programs given in this chapter
so as to achieve the expertise in handling decision-making statements in the programs. By writing
programs for solving more real-life problems, a programmer benefits a lot.

 switch(i)
 {
 case ‘A’:
 printf(“Capital A\n”);
 break;
 case ‘B’:
 printf(“Capital B\n”);
 break;
 case ‘C’:
 printf(“Capital C\n”);
 break;
 default:
 if(i>47 && i<58)
 printf(“\n Digit :[%c]”,i);
 else if(i>=58 && i<=64)
 printf(“\nSymbol :[%c]”,i);
 else if(i>64 && i<91)
 printf(“\nCapital :[%c]”,i);
 else if(i>96 && i<123)
 printf(“\n Small :[%c]”,i);
 else
 printf(“\n Invalid Choice”,i);
 getche();
 }
}

OUTPUT:
Enter Any ASCII Number : 65
Capital A

M05_KAMT3553_02_SE_C05.indd 147 5/17/2015 9:13:25 AM

https://hkgbooks.blogspot.com

148 Programming in C

 1. The switch can only test for ________.

 (a) equality
 (b) non-equality
 (c) None of them

 2. Only ______ values are applicable in the switch
structure.

 (a) constants
 (b) variables
 (c) objects

 3. No two case statements have ______ in the same
switch.

 (a) identical constants

 (b) different constants
 (c) variables

 4. In switch, character constants are automatically
converted to ________

 (a) floats
 (b) integers
 (c) bool values

 5. Same conditions may be repeated for number of
times in _______structure.

 (a) nested ifs
 (b) switch case
 (c) None of the them

 II True or false:

 1. The else is associated with if.

 2. The else block is executed when condition is false.

 3. The if statement can have multiple else statements

 4. The statement if (1) executes if block.

 5. One switch statement can have multiple case
statements but only one default statement.

 6. The default statement can be written anywhere in
the switch block.

 7. The break statement is used to separate two
case statements.

 8. The case statement is always terminated by a
semi-colon.

 9. The switch statement accepts only constant as an
argument.

 10. Like if-else the switch statement can be
nested.

 11. The default statement is compulsory for
switch statement

 12. The switch statement testes for equality only.

 13. The if statement can evaluate relational and
logical expressions.

 14. The if statement works with expression as well
as constants.

 15. The default is a keyword.

 16. The default statement can be placed at the
beginning of switch, without any statement in
its block

 17. The switch block should be terminated by a
semi-colon.

 eXercISeS

I Fill in the blanks:

 III Select the appropriate option from the multiple choices given below:

 1. The switch statement is used to

 (a) switch between functions in a program
 (b) switch from one variable to another variable
 (c) choose from multiple possibilities which may

arise due to different values of a single variable
 (d) use switching variables

 2. The default statement is executed when

 (a) all the case statements are false
 (b) one of the case is true
 (c) one of the case is false
 (d) None of the above

M05_KAMT3553_02_SE_C05.indd 148 5/17/2015 9:13:26 AM

https://hkgbooks.blogspot.com

Decision Statements 149

3. Each case statement in switch is separated by

 (a) break
 (b) continue
 (c) exit()
 (d) goto

4. The keyword else can be used with

 (a) if statement
 (b) switch statement
 (c) do. . .while() statement
 (d) None of the above

5. What will be the output of the following
program?

 void main()
 {
 char x=‘H’;
 clrscr();
 switch(x)
 {
 case ‘H’: printf(“%c”,‘H’);
 case ‘E’: printf(“%c”,‘E’);
 case ‘L’: printf(“%c”,‘L’);
 case ‘l’: printf(“%c”,‘L’);
 case ‘O’: printf(“%c”,‘O’);
 }
 }

 (a) HELLO
 (b) HELlo
 (c) H
 (d) None of the above

6. What will be the output of the following
program?

 void main()
 {
 char x=‘G’;
 switch(x)
 {

 if(x==‘B’)
 {
 case ‘d’: printf(“%”,

‘o’);
 case ‘B’: printf(“%s”,

“Bad”);
 }
 else
 case ‘G’:
 printf(“%s”,“Good”);
 default : printf(“%s”,

“Boy”);
 }
 }

 (a) Good Boy
 (b) bad boy
 (c) boy
 (d) None of the above

7. What will be the output of the following program?

 void main()
 {
 char x=‘d’;
 clrscr();
 switch(x)
 {
 case ‘b’:
 puts(“0 1 001”);
 break;
 default :
 puts(“1 2 3”);
 break;
 case ‘R’ :
 puts(“I II III”);
 }
 }

 (a) 1 2 3
 (b) 0 1 001
 (c) I II III
 (d) None of the above

IV What is/are the output/s of the following programs?

1.

 void main()
 {
 int number=7;
 clrscr();
 if(number %2==0)
 printf(“\n The entered number

%d is even”,number);
 else

 printf(“\n The Entered number
%d is odd”,number);

 getche();
 }

2.

 void main()
 {
 int b=4,a=1,c=2;

M05_KAMT3553_02_SE_C05.indd 149 5/17/2015 9:13:26 AM

https://hkgbooks.blogspot.com

150 Programming in C

 float x1,x2;
 clrscr();
 if(b*b>4*a*c)
 {
 x1=-b+sqrt(b*b-4*a*c)/2*a;
 x2=-b-sqrt(b*b-4*a*c)/2*a;
 printf(“\n x1=%.1f

x2=%.1f”, x1,x2);
 }
 else
 printf(“\n Roots are

Imaginary”);
 getch();
 }

3.

 void main()
 {
 float bs,hra,da,cv,incentive,

bonus,sale=110000,ts;
 clrscr();
 if(sale>=100000)
 {
 bs=3000;
 hra=20 * bs/100;
 da=110 * bs/100;
 cv=500;
 incentive=sale*10/100;
 bonus=500;
 }
 else
 {
 bs=3000;hra=20 *

 bs/100;
 da=110 * bs/100;
 cv=500;
 incentive=sale*5/100;
 }
 ts=bs+hra+da+cv+incentive+

bonus;
 printf(“\n %.2f”,ts);
 getch();
 }

4.

 void main()
 {
 int x=6,y=5,z=10;
 clrscr();
 printf(“\nAnswer is :”);
 if(x > y)
 {
 if(x > z)
 printf(“%d\n”,x);
 else

 printf(“%d\n”,z);
 }
 else
 {
 if(z > y)
 printf(“%d\n”,z);
 else
 printf(“%d\n”,y);
 }
 getche();
 }

5.

 void main()
 {
 int initial=1000,final=1300,

consumed;
 float total;
 clrscr();
 consumed = final-initial;
 if(consumed>=200)
 total=consumed * 2.50;
 else
 total=consumed * 1.50;
 printf(“Total bill

for %d units is Rs
%.2f”,consumed,total);

 getche();
 }

6.

 void main()
 {
 int a=2,b=4,c=1,temp;
 clrscr();
 if
 (a<b)
 {
 if(a<c)
 temp=a;
 else
 temp=c;
 }
 else
 {
 if(b<c)
 temp=b;
 else
 temp=c;
 }
 printf(“Answer out of three

numbers (%d %d %d) is %d \n”,
a,b,c, temp);

 getche();
 }

M05_KAMT3553_02_SE_C05.indd 150 5/17/2015 9:13:26 AM

https://hkgbooks.blogspot.com

Decision Statements 151

1.
 void main()
 {
 int cet ;
 clrscr();
 printf(“\n Enter marks obtained

in CET examination :”);
 scanf(“%d”,&cet);
 if(cit>120)
 printf(“\n Eligible for

admission in autonomous
Institute.”);

 getch();
 }

2.
 void main()
 {
 clrscr();
 if(0)
 printf(“False”);
 else
 printf(“True”);
 }

3.
 void main()
 {
 clrscr();
 if(3>2)
 printf(“2 is smaller than 3”);
 printf(“and”);
 else
 printf(“3 is greater”);
 }

4.
 void main()
 {
 clrscr();
 if(3>2)
 printf(“2 is smaller than 3”);
 else
 printf(“ Numbers are equal”);
 else
 printf(“3 is greater”);
 }

VI Attempt the following programs:

1. Write a program to check whether the blood donor
is eligible or not for donating blood. The condi-
tions laid down are given below. Use if statement.

 (a) Age should be greater than 18 years but not
more than 55 years.

 (b) Weight should be more than 45 kg.

2. Write a program to check whether the voter is eli-
gible for voting or not. If his/her age is equal to or
greater than 18, display message ‘Eligible’ other-
wise ‘Non- Eligible’. Use the if statement.

3. Write a program to calculate bill of a job work
done as follows. Use if-else statement.

 (a) Rate of typing Rs. 3/page.
 (b) Printing of 1st copy Rs. 5/page and later

every copy Rs. 3/page.
 User should enter the number of pages and print

out copies he/she wants.

4. Write a program to calculate the amount of the bill
for the following jobs.

 (a) Scanning and hardcopy of a passport photo
Rs. 5.

 (b) Scanning and hardcopies (more than 10) Rs. 3.

5. Write a program to calculate bill of Internet brows-
ing. The conditions are given below.

 (a) 1 Hour – 20 Rs.
 (b) ½ Hour – 10 Rs.
 (c) Unlimited hours in a day – 90 Rs.

 Owner should enter number of hours spent by cus-
tomer.

6. Write a program to enter a character through
keyboard. Use switch case structure and print
appropriate message. Recognize the entered
character whether it is vowel, consonants or
symbol?

7. The table given below is a list of gases, liquids and
solids. By entering one by one substances through
the keyboard, recognize their state (gas, liquid and
solid).

V Find the bug/s in the following program/s?

M05_KAMT3553_02_SE_C05.indd 151 5/17/2015 9:13:26 AM

https://hkgbooks.blogspot.com

152 Programming in C

 1. Is it possible to use multiple else with if state-
ment?

 2. Is it possible to use multiple default statements
in switch statement?

 3. Write the use of else and default statements in
if–else and switch statements, respectively.

 4. Why goto statement is avoided?

 5. Why the break statement is essential in the
switch statement?

 6. Which other functions or keywords can be used in
place of the break statement?

 7. Is it possible to use the else statement in place
of default or vice versa?

 8. Can we put default statement anywhere in the
switch case structure?

 9. What are the limitations of the switch case
statement?

 10. What is a sequential execution?

 11. What is the transfer of control?

 VII Answer the following questions:

WATER OZONE

OXYGEN PETROL

IRON ICE

GOLD MERCURY

 8. Write a program to calculate the sum of re-
mainders obtained by dividing with modular
division operations by 2 on 1 to 9 numbers.

anSWerS

I Fill in the blanks:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. a 2. a 3. a 4. b 5. a

II True or false:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. T 2. T 3. F 4. T 5. T

6. T 7. T 8. F 9. T 10. T

11. T 12. T 13. T 14. T 15. T

16. T 17. F

III Select the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. a 2. a 3. a 4. a 5. a

6. a 7. a

M05_KAMT3553_02_SE_C05.indd 152 5/17/2015 9:13:26 AM

https://hkgbooks.blogspot.com

Decision Statements 153

IV What is/are the output/s of the following programs?

Q. Ans.
1. The Entered number 7 is odd

2. x1= 2.0 x2= 6.0

3. 18900.00

4. Answer is :10

5. Total bill for 300 units is Rs 750.00

6. Answer out of three numbers (2 4 1) is 1

V Find the bug/s in the following program/s?

Q. Ans.
1. Replace cet instead of cit in if statement.

2. if (0) is always false statement.

3. scope of if block is not defined.

4. if should not have multiple else.

M05_KAMT3553_02_SE_C05.indd 153 5/17/2015 9:13:26 AM

https://hkgbooks.blogspot.com

Loop Control6
CHAPTER

Chapter Outline

 6.1 Introduction
 6.2 The for Loop
 6.3 Nested for Loops
 6.4 The while Loop
 6.5 The do-while Loop
 6.6 The while Loop within the do-while Loop
 6.7 Bohm and Jacopini’s Theory

M14_KAMT3553_02_SE_C6.indd 154 5/17/2015 9:19:51 AM

https://hkgbooks.blogspot.com

Loop Control 155

6.1 IntroductIon
In our life, we need to perform tasks which are repetitive in nature in numerous applications. It is a
tedious process to perform such kind of tasks repeatedly with pen/pencil and paper. But with
computer programming languages and packages, the task becomes easy, accurate and fast. For
example, salary of labours of a factory can be calculated simply by a formula (number of hours
work carried × wage rate per hour). The accounts department of every organization does this
calculation every month/week. Such a type of repetitive deeds can easily be done using a loop in
a program.

6.1.1 | What is a Loop?

A loop is defined as a block of statements, which are repeatedly executed for a certain number of times.
 The loops are of two types.

(i) Counter-controlled repetition: This is also called the definite repetition action, because the
number of iterations to be performed is defined in advance in the program itself. The steps
for performing counter-controlled repetitions are as follows.

Steps in Loop

 Loop variable : It is a variable used in the loop.

 Initialization: It is the first step in which starting and final values are assigned to the loop
variable. Each time the updated value is checked by the loop itself.

 Incrimination/decrimination: It is the numerical value added or subtracted to the variable in
each round of the loop. The updated value is compared with the final value and if it is found
less than the final value the steps in the loop are executed.

 The above steps are implemented in numerous programs in this chapter.

(ii) Sentinel-controlled repetition: This is also called the indefinite repetition. One cannot esti-
mate how many iterations are to be performed. In this type, loop termination happens on the
basis of certain conditions using the decision-making statement.

 The C language supports three types of loop control statements and their syntaxes are
 described in Table 6.1 (also see Figures 6.1 and 6.2).

Table 6.1 Loops in C
for while do-while

for(expression -1;
expression-2;
expression-3)
statement;

expression -1;
while(expression -2)
{
 statement;
 expression -3;
}

Expression -1; do
{
 statement;
 expression-3;
}
while(expression-2);

M14_KAMT3553_02_SE_C6.indd 155 5/17/2015 9:19:52 AM

https://hkgbooks.blogspot.com

156 Programming in C

 The for loop statement comprises three actions. These actions are placed in the for statement
itself. The three actions are initialize counter, test condition and Re-evalua-
tion parameters, which are included in one statement. The expressions are separated by
semi-colons (;). This leads the programmer to visualize the parameters easily. The for statement is
equivalent to while and do-while statements. The only difference between for and while is
that in the latter case logical condition is tested and then the body of the loop gets executed. However,
in the for statement, test is always performed at the beginning of the loop. The body of the loop may
not be executed at all times if the condition fails at the beginning.

for(a=10;a<10;a–-)
printf(“%d”, a);

 For example, in the above two-line program will never execute because the test condition is not
proper at the beginning, hence statement following to for loop does not execute.
 The do-while loop executes the body of the loop at least once regardless of the logical condition.

6.2 the for Loop
The for loop allows to execute a set of instructions until a certain condition is satisfied. Condition may
be predefined or open-ended. The general syntax of the for loop will be as given in Table 6.2 (see
also Figures 6.3 and 6.4).

Explanation:
The for statement contains three expressions which are separated by semi-colons. Following actions
are to be performed in the three expressions.

False

True

Body
statement/s

Update the
initialised value

Initialization

Test
condition?

Start

Stop

Figure 6.1 The while statement

True

False

Test
condition?

Body of
loop

Start

Stop

Figure 6.2 The do-while statement

Table 6.2 Syntax of for loop

for(initialize counter; test condition; re-evaluation
parameter)

 {
 statement1;
 statement2;
 }

M14_KAMT3553_02_SE_C6.indd 156 5/17/2015 9:19:52 AM

https://hkgbooks.blogspot.com

Loop Control 157

1. The initialize counter sets to an initial value. This statement is executed only once.

2. The test condition is a relational expression, that determines the number of iterations
desired or determines when to exit from the loop. The ‘for’ loop continues to execute
as long as conditional test is satisfied. When the condition becomes false the control of
the program exits from the body of the ‘for’ loop and executes next statement after the
body of the loop.

3. The re-evaluation parameter decides how to make changes in the loop (increment or dec-
rement operations are to be used quite often). The body of the loop may contain either a
single statement or multiple statements. In case, there is only one statement after the for
loop, braces may not be necessary. In such a case, only one statement is executed till the
condition is satisfied. It is good practice to use braces even for single statement following
the for loop.

 The syntax of the ‘for’ loop with only one statement is shown in the third row of Table 6.3.
 The for loop can be specified by different ways and it is as per Table 6.3.

Expression 1

Test
condition?

Statements

Expression 3

Out of the loop

YES

NO

Figure 6.4 Execution of the for loop

for(counter=0;counter<=5;counter++)

Loop conditionCounter variable with
initial value

Keyword
Increment the

variable

Figure 6.3 The for loop

M14_KAMT3553_02_SE_C6.indd 157 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

158 Programming in C

 6.1 Print the first five numbers starting from 1 together with their squares.

void main()
{
 int i;
 clrscr();
 for(i=1;i<=5;i++)
 printf(“\n Number: %5d it’s Square: %5d”,i,i*i);
}

OUTPUT:
Number: 1 it’s Square: 1
Number: 2 it’s Square: 4
Number: 3 it’s Square: 9
Number: 4 it’s Square: 16
Number: 5 it’s Square: 25

 Explanation:
 Let us now examine how the program executes.

1. The value of i sets to one for the first time when the program execution starts in the for
loop.

2. The condition i ≤ 5 is specified and tested in each iteration. Initially, the condition is true
since the value of i is 1. The statements following the for loop gets executed.

3. Upon execution of the printf() statement, compiler sends control back to the for
loop where the value of i is incremented by one. This is repeated till the value of ‘i’
is less than or equal to 5.

4. If the new updated value of i exceeds 5, the control exits from the loop.

5. The printf() statement executes as long as the value of i reaches 5.

 The for loop can be used by different ways. Various examples using for loops are given
below.

Syntax Output Remarks

1. for(; ;) Infinite loop No arguments

2. for(a=0; a<=20;) Infinite loop ‘a’ is neither incremented nor
decremented.

3. for(a =0;a<=10; a++)
printf(“%d”, a);

Displays value from 0 to 10 ‘a’ is incremented from 0 to 10. Curly
braces are not necessary. Default scope of
the for loop is one statement after the
for loop.

4. for(a =10;a>=0;a–-)
printf(“%d”, a)

Displays value from 10 to 0 ‘a’ is decremented from 10 to 0.

Table 6.3 Various formats of ‘for’ Loop

M14_KAMT3553_02_SE_C6.indd 158 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

Loop Control 159

 Explanation:
 In the above program counter is initialized with a variable i = 1. Testing and incrementa-

tion of counter value are done in the for statement itself. Instead of i++ we can also use
i = i + 1. Here, we are illustrating a program using i = i +1.

 6.3 Display numbers from 1 to 15 using for loop. Use i = i +1.

void main()
{
 int i;
 clrscr();
 for(i=1;i<=15;i++)
 printf(“%5d”,i);
 getche()
}

OUTPUT:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

void main()
{
 int i;
 clrscr();
 for(i=1;i<=15;i=i+1)
 printf(“%5d”,i);
 getche();
}

OUTPUT:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Explanation:
 In the above program also, the value of counter is incremented at each time in the for state-

ment itself. Instead of i ++, i = i +1 is used in the for statement. The same result can
be observed as found in the previous example. The incrementation of a counter can be done
anywhere in the body of for loop and for infinite times. An example is stated below where
in the counter value is incremented in the body of the loop and not in the for statement.

 6.4 Write a program to display numbers from 1 to 16. Use incrementation operation in the body
of the loop for more than one time.

void main()
{
 int i,c=0;
 clrscr();
 for(i=0;i<=15;)
 {
 i++;

 6.2 Display numbers from 1 to 15 using for loop. Use i ++.

M14_KAMT3553_02_SE_C6.indd 159 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

160 Programming in C

 Explanation:
 The body of the loop is executed for eight times. Incrementation operation is done following

the for statement. Hence, the counter which is initialized in the for statement is incre-
mented first, i.e. the value of i after incrementation is one and the same is displayed with
the first printf() statement. After this operation, once again in the loop i is incremented
by 1 and the values are displayed using the second printf() statement. The body of the
loop is executed till i=15 and for eight times. In the example given below, the declaration of
counter is done before the for statement.

 6.5 Write a program to display even numbers from 0 to 14. Declare the initial counter value
before the for loop statement.

 printf(“%5d”,i);
 i=i+1;
 printf(“%5d”,i);
 c++;
 }
 printf(“\n\n The Body of the loop is executed for %d times.”,c);
}

OUTPUT:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
The Body of the loop is executed for 8 times.

void main()
{
 int i=0;
 clrscr();
 for(;i<=15;)
 {
 printf(“%5d”,i);
 i+=2;
 }
}

OUTPUT:
0 2 4 6 8 10 12 14

 Explanation:
 In this program, the for statement contains only test condition. The semi-colon (;) is

essential before and after the condition. The for statement must contain two semi-colons
even though no parameters are provided.

 6.6 Write a program to display the numbers in ascending (1 to 10) and descending (10 to 1) orders.

void main()
{
 int i=0;
 clrscr();
 printf(“Numbers in Ascending Order :”);

M14_KAMT3553_02_SE_C6.indd 160 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

Loop Control 161

 Explanation:
 In the above example, incrementation and comparison are done in the first for loop.

The decrementation operation is in the second for loop. With ++i<=10, firstly, i is
incremented and comparison is made and result is displayed through the printf()
statement. With i–->1, (counter) value is compared first. After satisfying decrementation
operation is performed and the value is displayed.

 6.7 Write a program to display letters from a to j using infinite for loop. Use goto statement
to exit from the loop.

 for(;++i<=10;)
 printf(“%3d”,i);
 printf(“\n\n”);

 printf(“Numbers in Descending Order :”);
 for(;i-->1;)
 printf(“%3d”,i);
}

OUTPUT:
Numbers in Ascending Order : 1 2 3 4 5 6 7 8 9 10
Numbers in Descending Order: 10 9 8 7 6 5 4 3 2 1

void main()
{
 char i=97;
 clrscr();

 for(; ;)
 {
 printf(“%5c”,i++);
 if(i==107)
 goto stop;
 }
 stop:;
 getche();
}

OUTPUT:
a b c d e f g h i j

 Explanation:
 The for(; ;) statement is used in the above program. This statement allows the execution

of the body of the loop infinite times. To exit from the infinite for loop, goto statement is
used. After satisfying the test condition, goto statement is executed which terminates the
program. The output is displayed in alphabets from a to j.

 6.8 Write a program to count numbers between 1 to 100 not divisible by 2, 3 and 5.

void main()
{
 int x,c=0;
 clrscr();

M14_KAMT3553_02_SE_C6.indd 161 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

162 Programming in C

 printf(“\n Numbers from 1 to 100 not divisible by 2,3 & 5\n\n”);
 for(x=0 ;x<=100;x++)
 {
 if(x%2!=0 && x%3!=0 && x%5!=0)
 {
 printf(“%d\t”,x);
 c++;
 }
 }
 printf(“\nTotal Numbers : %d”,c);
}

OUTPUT:
Numbers from 1 to 100 not divisible by 2,3 & 5
1 7 11 13 17 19 23 29 31 37
41 43 47 49 53 59 61 67 71 73
77 79 83 89 91 97
Total Numbers : 26

 Explanation:
 In the above program, for loop executes from 1 to 100. Each time mod operation is per-

formed with 2, 3 and 5 with the value of the loop variable. If the remainder is non-zero then
the counter ‘c’ is incremented. Thus, 1 to 100 numbers are checked. At the end, the variable
‘c’ displays the total number.

 6.9 Write a program to display the numbers in increasing and decreasing order using the infinite
for loop.

void main()
{
 int n,a,b;
 clrscr();
 printf(“Enter a number :”);
 scanf(“%d”,&n);
 a=b=n;
 printf(“(++) (–-)\n”);
 printf(“============”);

 for(; ; (a++,b–-))
 {
 printf(“\n%d\t%d”,a,b);
 if(b==0)
 break;
 }
}

OUTPUT:
Enter a number : 5
(++) (--)
==========
 5 5
 6 4

M14_KAMT3553_02_SE_C6.indd 162 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

Loop Control 163

 Explanation:
 The infinite for loop can also be specified as shown in the above program. The initial coun-

ter value, which is set to a given number, can be continuously incremented or decremented.
In order to terminate from the infinite for loop, a condition (b==0) is tested. After satisfy-
ing break statement allows to exit from the loop.

 6.10 Create an infinite for loop. Check each value of the for loop. If the value is even, display
it otherwise continue with iterations. Print even numbers from 1 to 21. Use break state-
ment to terminate the program.

 7 3
 8 2
 9 1
10 0

void main()
{
 int i=1;
 clrscr();
 printf(“\n\t\t Table of Even numbers from 1 to 20”);
 printf(“\n\t\t ===== == ==== ======= ==== = == ==\n”);
 for(; ;)
 {
 if(i==21)
 break;
 else if(i%2==0)
 {
 printf(“%d\t”,i);
 i++;
 continue;
 }
 else
 {
 i++;
 continue;
 }
 }
 getche();
}

OUTPUT:
Table of Even numbers from 1 to 20
==== == ==== ======= === = == ==
2 4 6 8 10 12 14 16 18

 Explanation:
 In the above program, both break and continue statements are in use. The program dis-

plays only even numbers from 1 to 21. An infinite loop is created and in the loop variable ‘i’ is
incremented. The value of ‘i’ is checked every time. If it is even, it is printed otherwise con-
tinue statement is executed, which passes control at the beginning of the for loop. When the
value of ‘i’ reaches to 21, the break statement is executed and it terminates the loop.

M14_KAMT3553_02_SE_C6.indd 163 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

164 Programming in C

 Explanation:
 In the above program, the for loop executes nine times from 1 to 9. The sqrt() functions

return square root of a number. Each time value of variable ‘i’ is passed to sqrt() and it
returns square root of that number. The header file math.h is essential.

 6.12 Write a program to find the number in between 7 and 100 which is exactly divisible by 4
and if divided by 5 and 6 remainders obtained should be 4.

include <math.h>
void main()
{
 int i;
 float a;
 clrscr();
 for(i=1;i<=9;i++)
 printf(“\n\t %d %.2f “,i,a=sqrt(i));
 getche();
}

OUTPUT:
1 1.00
2 1.41
3 1.73
4 2.00
5 2.24
6 2.45
7 2.65
8 2.83
9 3.00

include <process.h>
void main()
{
 int x;
 clrscr();
 for(x=7;x<100;x++)
 {
 if(x%4==0 && x%5==4 && x%6==4)
 {
 printf(“\n Number : %d”,x);
 }
 }
 getche();
}

OUTPUT:
Number : 64

 6.11 Write a program to display numbers from 1 to 9 and their square roots.

M14_KAMT3553_02_SE_C6.indd 164 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

Loop Control 165

 Explanation:
 In the above program, the for loop is initialized from 7 to 100. The if statement is used

for dividing with modular division operations by 4, 5 and 6. The remainders obtained are
checked. If they are 0, 4 and 4 respectively, then the number is displayed.

 6.13 Write a program to evaluate the series given in comments.

/* x=1/1+1/4+1/9...1/n2 */
/* y=1/1+1/8+1/27...1/n3 */
include <math.h>
void main()
{
 int i,n;
 float x=0,y=0;
 clrscr();
 printf(“Enter Value of n:”);
 scanf(“%d”,&n);

 for(i=1;i<=n;i++)
 {

 x=x+(1/pow(i,2));
 y=y+(1/pow(i,3));
 }

 printf(“Value of x = %f”,x);
 printf(“\nValue of y = %f”,y);
 getche();
}

OUTPUT:
Enter Value of n: 2
Value of x = 1.2500
Value of Y = 1.12500

 Explanation:
 Initially, it is assumed that the sum of the two series 1 and 2 is zero. So, the variables ‘x’ and

‘y’ are set to zero. The denominators of the first and second equations are squares and cubes
of numbers from 1 to ‘n’ respectively. The user enters the value of ‘n’, which determines
how long the series should be continued. Every time in the loop square and cube of variable
‘i’ are calculated using the library function pow(). They are added to variables ‘x’ and
‘y’, respectively.

 6.14 Write a program to generate the triangular number.

 Note: Triangular number is nothing but summation of 1 to given number.
 For example, when entered number is 5, its triangular number would be (1+2+3+4+5)=15.

void main()
{
 int n,j,tri_num=0;
 clrscr();
 printf(“What Triangular number do you want :”);

M14_KAMT3553_02_SE_C6.indd 165 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

166 Programming in C

/* 1. 1+2+3+..n */
/* 2. 12+22+32+..n2 */

void main()
{
 int sum=0,ssum=0,i,j;
 clrscr();
 printf(“Enter Number :”);
 scanf(“%d”, &j);
 clrscr();
 printf(“ Numbers:”);
 for(i=1;i<=j;i++)
 printf(“%5d”,i);
 printf(“\n\nSquares:”);
 for(i=1;i<=j;i++)
 {
 printf(“%5d”,i*i);
 sum=sum+i;
 ssum=ssum+i*i;
 }
 printf(“\n\nSum of Numbers from 1 to %d :%d”,j,sum);
 printf(“\nSum of Squares of 1 to %d Numbers :%d”,j,ssum);
}

OUTPUT:
Enter Number: 5

Numbers: 1 2 3 4 5
Squares: 1 4 9 16 25

Sum of Numbers from 1 to 5: 15
Sum of Squares of 1 to 5 Numbers: 55

 scanf(“%d”,&n);
 for(j=1;j<=n;++j)
 tri_num=tri_num+j;
 printf(“Triangular number of 5 is %d”,tri_num);
}

OUTPUT:
What Triangular number do you want? : 5
Triangular number of 5 is 15

 6.15 Write a program to find the sum of the following series.

 Explanation:
 In the above program, a number is entered whose triangular number is to be calculated. The

for loop is initialized from 1 to ‘n’. In each iteration of for loop, the value of ‘j’ is added
to the ‘tri_num’ variable. When the loop terminates the ‘tri_num’ contains triangular
number of the entered number.

M14_KAMT3553_02_SE_C6.indd 166 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

Loop Control 167

 Explanation:
 In the above program, sum and square of sum are assumed to be zero. The first for loop

prints number from 1 to the entered number. The second for loop does sum and squares
of the numbers from 1 to the entered number. The variable ‘sum’ and ‘ssum’ are used for
displaying the final results.

 6.16 Write a program to find the perfect squares from 1 to 500.

#include <math.h>

void main()
{
 int i,count,x;
 float c;
 clrscr();
 printf(“\n\n”);
 printf(“ Perfect squares from 1 to 500\n”);
 count=0;

 for(i=1;i<=500;i++)
 {
 c=sqrt(i);
 x=floor(c); /* For rounding up floor() is used. */
 if(c==x)
 {
 printf(“\t%5d”,i);
 count++;
 }
 }
 printf(“\n\n Total Perfect Squares =%d\n”,count);
 getch();
}

OUTPUT:
Perfect squares from 1 to 500
1 4 9 16 25 36 49 64 81 121 144
169 196 225 256 289 324 361 400 441 484

Total Perfect Squares = 22

 Explanation:
 Numbers like 2, 4, 9, 25, . . . are perfect squares. In the above program a for loop is used from

1 to 500. We can use the sqrt() function for finding the square root of numbers. The square
root obtained is stored in variable ‘c’, and it is rounded off and stored in another variable ‘x’.
The value of ‘c’ remains unchanged. Now the comparison between ‘x’ and ‘c’ is made. If both
of them are the same, then the number becomes a perfect square root. Perfect square roots are
only integers and not floats. Hence, floor() function does not affect the integer values.

 6.17 Write a program to detect the largest number out of five numbers and display it.

#include<process.h>
void main()
exit(0);
{

M14_KAMT3553_02_SE_C6.indd 167 5/17/2015 9:19:53 AM

https://hkgbooks.blogspot.com

168 Programming in C

 int a,b,c,d,e,sum=0,i;
 clrscr();
 printf(“\nEnter Five numbers :”);
 scanf(“%d %d %d %d %d”,&a,&b,&c,&d,&e);
 sum=a+b+c+d+e;
 for(i=sum; i<=sum;i–-)
 {
 if(i==a || i==b || i==c || i==d || i==e)
 {
 printf(“The Largest Number : %d”,i);
 exit(0);
 }
 }
}

OUTPUT:
Enter Five numbers : 5 2 3 7 3
The Largest Number : 7

 Explanation:
 Through the keyboard, five numbers are entered and their sum is stored in the vari-

able ‘sum’. The for loop is used up to the value of ‘sum’ in the reverse order (––).
While decrementing the value of sum, the same is tested each time as to whether dec-
remented sum is equal to one of the entered numbers. In case the condition is satisfied,
the largest number is displayed and exit() terminates the program. The largest num-
ber entered through the keyboard appears first while decrementing the value of ‘sum’
(sum=a+b+c+d+e).

void main()
{
 int a,b,c,d,e,sum=0,i;
 clrscr();
 printf(“\nEnter Five numbers :”);
 scanf(“%d %d %d %d %d”,&a,&b,&c,&d,&e);
 printf(“\n Numbers in ascending order :”);
 sum=a+b+c+d+e;

 for(i=1; i<=sum;i++)
 {
 if(i==a || i==b || i==c || i==d || i==e)
 {
 printf(“%3d”,i);
 }
 }
}

OUTPUT:
Enter Five numbers : 5 8 7 4 1
Numbers in ascending order : 1 4 5 7 8

 6.18 Write a program to print the five entered numbers in the ascending order.

M14_KAMT3553_02_SE_C6.indd 168 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 169

 Explanation:
 The multiplication is nothing but repetitive addition. For example, multiplication of 5 × 5 is 25

and the result is obtained by adding 5, five times. Here, the two numbers are entered and the
1st number (‘a’) is repeatedly added to ‘b’ (2nd number) times and result is stored in ‘d’. Instead
of using ‘+’ sign double negative is used. Multiplication of two −ve signs is +ve (− − = +).

 6.20 Perform multiplication of two integers by using repetitive addition.

void main()
{
 int a,b,c,d=0;
 clrscr();
 printf(“\n Enter two numbers :”);
 scanf(“%d %d”, &a,&b);
 for(c=1;c<=b;c++)
 d=(d)-(-a);
 printf(“Multiplication of %d * %d :%d”,a,b,d);
 getche();
}

OUTPUT:
Enter two numbers : 5 5
Multiplication of 5 * 5 : 25

void main()
{
 int a,b,c=1,d=0;
 clrscr();
 printf(“\n Enter two numbers:”);
 scanf(“%d %d”, &a,&b);
 for(;;)
 {
 d=d+a;
 if(c==b)
 goto stop;
 c++;
 }
 stop:
 printf(“Multiplication of %d * %d :%d”,a,b,d);
 getche();
}

 Explanation:
 The logic used is the same as in the previous program. Here, after satisfying the if condi-

tion the program does not terminate and searches for the next number. This procedure is
continued till the value of ‘a’ reaches to ‘sum’. The numbers are sorted and displayed in
the increasing order.

 For descending order the for should be ‘for(i=sum; i<=sum;i––)’.

 6.19 Perform multiplication of two integers by using the negative sign.

M14_KAMT3553_02_SE_C6.indd 169 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

170 Programming in C

OUTPUT:
Enter two numbers : 8 4
Multiplication of 8 * 4 : 32

 Explanation:
 Here, also the two numbers are entered through the keyboard. The infinite for loop is used

and counter ‘c’ is initialized to 1 and ‘d’ to 0. Variable ‘d’ is used for storing the result after
repetitive addition. After adding the value of ‘a’ in ‘d’ each time the counter ‘c’ is tested with
‘b’. If there is no match, counter is incremented and program goes back in the loop and the
addition is performed again. When ‘c’ equals to ‘b’ (repetitive addition of the first number
till the counter is equal to the second number), program terminates using the goto statement
and the result of multiplication is displayed.

 6.21 Calculate the sum and average of five subjects.

void main()
{
 int a,b,c,d,e,sum=0,i;
 float avg;
 clrscr();
 printf(“\nEnter The Marks of Five Subjects”);
 for(i=1;i<=5;i++)
 {
 printf(“\n[%d] Student:”,i);
 if(scanf(“%d %d %d %d %d”,&a,&b,&c,&d,&e)==5)
 {
 sum=a+b+c+d+e;
 avg=sum/5;
 printf(“\n Total Marks of Student[%d] %d”,i,sum);
 printf(“\n Average Marks of Student[%d] %f\n”,i,avg);
 }
 else
 {
 clrscr();
 printf(“\n Type Mismatch”);
 }
 }
}

OUTPUT:
Enter The Marks of Five Subjects

[1] Student: 58 52 52 56 78
 Total Marks of Student[1] 296
 Average Marks of Student[1] 59.000000
[2] Student:

 Explanation:
 Here, the for loop is used for entering marks of five students. The marks of five subjects are en-

tered through the keyboard. They are assigned to variables ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’. Their ‘sum’ and
‘average’ are calculated. If by mistake, the user enters marks other than integers the program

M14_KAMT3553_02_SE_C6.indd 170 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 171

reports the error message ‘Type Mismatch’. The scanf() is compared with the number of
 arguments entered correctly. If it is less than the given argument the program displays ‘Type
 Mismatch’. The marks of the second student onwards can be entered and the results can be
observed.

 6.22 Write a program to enter a character and display its position in alphabets.

include <ctype.h>
void main()
{
 int c=1;
 char i, ch;
 clrscr();
 printf(“Enter a character :”);
 scanf(“%c”,&ch);
 ch=toupper(ch);

 for(i=65;i<=90;i++,c++)
 if(ch ==i)
 printf(“\n’%c’is%d [st/nd/rd/th] Character in Alphabetic.”,i,c);
}

OUTPUT:
Enter a character : U

‘U’ is 21 [st//nd/rd/th] Character in Alphabetic.

 Explanation:
 In this program, a character is entered. It is converted into capital. The ASCII values of A

to Z are from 65 to 90. The for loop is taken from 65 to 90 and these values are compared
with the entered character. Certainly, there will be a match somewhere. For this, statement
(ch==i) is used. Till the match is achieved counter is incremented. Once the match occurs,
we get the position of character from the first alphabetic with the help of a counter.

 6.23 Write a program to enter mantissa and exponent. Calculate the value of mx. Where ‘m’ is a
mantissa and ‘x’ is an exponent.

void main()
{
 int i,number,power;
 long ans;
 clrscr();
 printf(“\n Enter Number :”);
 scanf(“%d”,&number);
 printf(“\n Enter Power :”);
 scanf(“%d”,&power);
 ans=1;
 for(i=1;i<=power;i++)
 ans*=number;
 printf(“\n The Power of %d raised to %d is %ld\n”, number,

power,ans);
 getche();
}

M14_KAMT3553_02_SE_C6.indd 171 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

172 Programming in C

 Explanation:
 In the above program, mantissa and exponents are entered. The first number is mantissa and

the second is its power. The variable ‘ans’ stores repetitive multiplication of mantissa till the
loop is active. Finally, it displays the power of a given number.

6.3 nested for Loops
We can also use loop within loops. In nested for loops one or more for statements are included in
the body of the loop. In other words C allows multiple for loops in nested forms. The numbers of it-
erations in this type of structure will be equal to the number of iteration in the outer loop multiplied by
the number of iterations in the inner loop. Given below examples are based on the nested for loops.

 6.24 Write a program to perform subtraction of two loop variables. Use nested for loops.

OUTPUT:
Enter Number : 5
Enter Power : 3
The Power of 5 raised to 3 is 125.

void main()
{
 int a,b,sub;
 clrscr();
 for(a=3;a>=1;a–-)
 {

 for(b=1;b<=2;b++)
 {
 sub=a-b;
 printf(“a=%d\t b=%d\t a-b=%d\n”,a,b,sub);
 }
 }
}

OUTPUT:
a=3 b=1 a-b = 2
a=3 b=2 a-b = 1
a=2 b=1 a-b = 1
a=2 b=2 a-b = 0
a=1 b=1 a-b = 0
a=1 b=2 a-b =-1

 Explanation:
 In the above program, the outer loop variable and inner loop variables are ‘a’ and ‘b’, respec-

tively. For each value of ‘a’ the inner loop is executing twice. The inner loop terminates when
the value of ‘b’ exceeds 2 and the outer loop terminates when the value of ‘a’ is 0. Thus, the
outer loop executes thrice and for each outer loop, the inner loop executes twice. Thus, the
total iterations are 3 × 2 = 6 and six output lines are shown in the output.

M14_KAMT3553_02_SE_C6.indd 172 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 173

void main()
{
 int i,j;
 clrscr();
 for(i=1;i<=3;i++) /* outer loop */
 {
 for(j=1;j<=2;j++) /* inner loop */
 printf(“\n i*j : %d”,i*j);
 }
}

OUTPUT:
i*j = 1
i*j = 2
i*j = 2
i*j = 4
i*j = 3
i*j = 6

 Explanation:
 Here, in the above example for each value of ‘i’ the inner loop’s j value varies from 1 to 2. Outer

loop executes three times whereas the inner loop executes six times. The inner loops terminate
when the value of j = 2 and the outer loop terminates when the value of i =3. The total number
of iterations=outer loop iterations (3) inner loop iterations (2) = 6.

 6.26 Write a program using nested for loops. Print values and messages when any loop ends.

void main()
{
 int a,b,c;
 clrscr();
 for(a=1;a<=2;a++) /* outer loop */
 {
 for(b=1;b<=2;b++) /* middle loop */
 {
 for(c=1;c<=2;c++) /* inner loop */
 printf(“\n a=%d + b=%d + c=%d : %d”,a,b,c,a+b+c);
 printf(“\n Inner Loop Over.”);
 }
 printf(“\n Middle Loop Over.”);
 }
 printf(“\n Outer Loop Over.”);
}

 6.25 Write a program to illustrate an example based on the nested for loops.

 Explanation:
 The execution of the above program will be done by the C compiler in sequence as per Table 6.4.

The total number of iterations is equal to 2 2 2 = 8. The final output provides eight results.

M14_KAMT3553_02_SE_C6.indd 173 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

174 Programming in C

Values of Loop Variables Output

Outer Middle Inner

1. a=1 b=1 c=1 a+b+c=3

2. a=1 b=1 c=2 a+b+c=4

Inner loop over

3. a=1 b=2 c=1 a+b+c=4

4. a=1 b=2 c=2 a+b+c=5

Inner loop over

Middle loop over

5. a=2 b=1 c=1 a+b+c=4

6. a=2 b=1 c=2 a+b+c=5

Inner loop over

7. a=2 b=2 c=1 a+b+c=5

8. a=2 b=2 c=2 a+b+c=6

Inner loop over

Middle loop over

Outer loop over

Table 6.4 Output of program 6.27

 6.27 Write a program to find perfect cubes up to a given number.

 / 1, 8, 27, 64 are perfect cubes of 1, 2, 3 and 4 /.

include<math.h>
void main()
{
 int i, j, k;
 clrscr();
 printf(“Enter a Number :”);
 scanf(“%d”,&k);
 for(i=1;i<k;i++)
 {
 for(j=1;j<=i;j++)
 {
 if(i==pow(j,3))
 printf(“\nNumber : %d & it’s Cube :%d”,j,i);
 }
 }
}

OUTPUT:
Enter a Number : 100
Number : 1 & it’s Cube : 1
Number : 2 & it’s Cube : 8
Number : 3 & it’s Cube : 27
Number : 4 & it’s Cube : 64

M14_KAMT3553_02_SE_C6.indd 174 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 175

 Explanation:
 In the above program, the programmer has to enter the number up to which the perfect cubes

are to be obtained. For example, if the user enters 100, the perfect cubes up to 100 are 1, 8, 27
and 64. Here, the two for loops are used. The outer for loop varies up to the entered num-
ber. The inner for loop varies up to value of ‘i’. For each value of ‘j’, its cube is calculated
and checked with the value of ‘i’. If the if condition is true, the perfect cubes are printed,
otherwise the loop continues. Thus, all the perfect cubes up to a given number are displayed.

 6.28 Write a program to display numbers 1 to 100 using ASCII values from 48 to 57. Use the
nested loops.

void main()
{
 int i,j=0,k= -9;
 clrscr();
 printf(“\t Table of 1 to 100 Numbers Using ASCII Values \n”);
 printf(“\t ===== == = == === ======= ===== ===== ======\n”);
 for(i=48;i<=57;i++,k++)
 {
 for(j=49;j<=57;j++)
 printf(“%5c%c”,i,j);
 if(k!=1)
 printf(“%5c%c”,i+1,48);
 if(k==0)
 printf(“\b\b%d%d%d”,k+1,k,k);
 printf(“\n\n”);
 }
 getche();
}

OUTPUT:
Table of 1 to 100 Numbers Using ASCII Values
==== == = == === ======= ===== ===== ==
01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

 Explanation:
 The first for loop is varying from 48 to 57. These numbers are used for printing the first

digit of every number from 1 to 100. 48 to 57 are ASCII codes for 0 to 9. The second for
loop is varying from ASCII 49 to 57 whose equivalent numerical numbers are 1 to 9. These
ASCII codes are used for printing the second digit. In each output line the common digit like
0 in the first line is decided by the variable of the outer loop. It varies from 0 to 9. The second
digit of each line is decided by the variable of inner loop, which varies for all lines from 1 to
9. The value of k = −9 for displaying 10 rows. For displaying numbers from 01 to 99, ‘i’ and

M14_KAMT3553_02_SE_C6.indd 175 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

176 Programming in C

‘j’ are printed without using space in one printf() statement. The first if statement is
used for printing 10, 20, 30 up to 90 numbers. The second if is used to print 100.

 6.29 Write a program to count number of votes secured by ‘A’ & ‘B’. Assume three voters are
voting them. Also count the invalid votes.

include <ctype.h>
void main()
{
 int a=0,b=0,o=0,i;
 char v;
 clrscr();
 printf(“\tPress A or B\n”);
 for(i=1;i<=3;i++)
 {
 printf(“\n\nVoter no. %d”,i);
 printf(“Enter Vote :”);
 v=getche();
 v=toupper(v);
 if(v==‘A’)
 a++;
 else if(v==‘B’)
 b++;
 else
 o++;
 }
 printf(“\n\n Status of vote(s) \n”);
 printf(“\nA secures %d vote(s).”,a);
 printf(“\nB secures %d vote(s).”,b);
 printf(“\nInvalid votes %d.”,o);
}

OUTPUT:
Press A or B
Voter no. 1 Enter Vote :A
Voter no. 2 Enter Vote :A
Voter no. 3 Enter Vote :A
Status of vote(s)
A secures 3 vote(s).
B secures 0 vote(s).
Invalid votes 0.

 Explanation:
 In the above program, the for loop is used for the number of voters who will be voting to

either ‘A’ or ‘B’. The body of the loop is executed for three times. The voter can give his/her
choice by pressing either ‘A’ or ‘B’. Apart from these two characters, if the user enters any
other character, the vote will be invalid. The results are displayed at the output.

 6.30 Write a program to simulate a digital clock.

include <dos.h>
void main()
{

M14_KAMT3553_02_SE_C6.indd 176 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 177

 int h,m,s;

 clrscr();

 for(h=1;h<=12;h++)
 {
 clrscr();
 for(m=1;m<=59;m++)
 {
 clrscr();
 for(s=1;s<=59;s++)
 {
 gotoxy(8,8);
 printf(“hh mm ss\n”);
 gotoxy(8,9);
 printf(“%d %d %d”,h,m,s);
 sleep(1);
 }
 }
 }
}

OUTPUT:
hh mm ss
1 1 1

 Explanation:
 The above program uses three for loops for hour, minute and second. The inner most loop

is for second’s operation, followed by middle loop for minutes and the outer most for hours.
When the second’s loop executes 60 times, the minutes loop increments by 1. Similarly, the
hours loop increments after completing minute’s loop. The hours loop increments only up to
12. Thereafter, it resets from 1. The gotoxy() function is used for selecting the position
where hh mm ss is to be marked.

 6.31 Write a program to count the occurrence of 0 to 9 digits between 1 and the given decimal
number.

void main()
{
 int t,k,n,l,i;
 static int st[10];
 clrscr();
 printf(“\n Enter a Decimal Number :”);
 scanf(“%d”,&n);

 for(l=1;l<=n;l++)
 {
 t=l;
 while(t!=0)
 {
 k=t%10;
 t=t/10;
 st[k]++;
 }
 }

M14_KAMT3553_02_SE_C6.indd 177 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

178 Programming in C

 printf(“\occurrence of 0-9 digits between 1 to %d Numbers.”,n);
 printf(“\n======= = == === ====== ======= = ========\n”);
 for(i=0;i<10;i++)
 if(st[i]>0)
 printf(“\n %d Occurs %8d Times.”,i,st[i]);
 getch();
}

OUTPUT:
Enter a Decimal Number: 15
Occurrence of 0-9 digits between 1 to 15 Numbers.
0 Occurs 1 Times.
1 Occurs 8 Times.
2 Occurs 2 Times.
3 Occurs 2 Times.
4 Occurs 2 Times.
5 Occurs 2 Times.
6 Occurs 1 Times.
7 Occurs 1 Times.
8 Occurs 1 Times.
9 Occurs 1 Times.

void main()
{
 int n,s=0;
 clrscr();
 printf(“\n Enter a Number :”);
 scanf(“%d”,&n);

 printf(“\n Sum of Digits till a single digit\n %d”,n);
 for(; n!=0 ;)
 {
 s=s+n%10;
 n=n/10;
 if(n==0 && s>9)
 {

 Explanation:
 A decimal number is entered through a keyboard with the variable n. The for loop is used

from 1 to n (up to the given number). The value of ‘l’ is copied to another variable ‘t’. In
the body of the while loop mod operation is performed on variable ‘t’ for separating indi-
vidual digits, and the separated digit is stored in the variable ‘k’. Further, the ‘t’ is divided
by 10 for obtaining remainders and is assigned to ‘t’. The array st[10] is initialized
to 0 using static storage class. The variable ‘k’ is used as an argument with st[], and it is
incremented. The value of ‘k’, whatever it contains when used in arrays st[] that element
number will be incremented. Thus, we get the occurrence of digits from 0 to 9 by printing
this array.

 6.32 Write a program to accept a number and find sum of its individual digits repeatedly till the
result is a single digit.

M14_KAMT3553_02_SE_C6.indd 178 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 179

 printf(“\n %2d”,s);
 n=s;
 s=0;
 }
 }
 printf(“\n %2d”,s);
}

OUTPUT:
Enter a Number :4687
Sum of Digits till a single digit
4687
25
7

void main()
{
 int x,y,a,b,c=0,j=12,k=2;
 clrscr();
 printf(“ Binary Bits Parity Bits\n”);
 printf(“ =========== ===========”);
 for(x=0;x<8;x++)
 {
 k++;
 j=12;
 y=x;
 for(a=0;a<3;a++)
 {
 b=y%2;
 gotoxy(j-=3,k);
 printf(“%d”,b);
 y=y/2;
 if(b==1)
 c++;
 }
 if(c%2==0)

 Explanation:
 In the above program, a number is entered through the keyboard. The for loop executes till

the value of variable ‘n’ is non-zero. The sum of digits obtained is assigned to variable ‘n’. If
‘n’ is found zero and sum is greater than 9 the for loop continues. Thus, repeatedly the sum
of digits is calculated till the result of sum becomes less than 10.

 6.33 Write a program to display octal numbers in binary. Attach a parity bit with “1” if number
of 1s are even otherwise “0”.

 OR

Generate odd parity to octal numbers 0 to 7. Express each number in binary and attach the
parity bit.

M14_KAMT3553_02_SE_C6.indd 179 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

180 Programming in C

 {
 gotoxy(25,k);
 printf(“%d”,1);
 }
 else
 {
 gotoxy(25,k);
 printf(“%d”,0);
 }
 c=0;
 }
}

OUTPUT:
Binary Bits Parity Bits
=========== ===========
 0 0 0 1
 0 0 1 0
 0 1 0 0
 0 1 1 1
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

 Explanation:
 In the above program, two for loops are used. The inner for loop generates three binary

bits for each octal number. The 0 to 7 octal numbers are taken from the outer for loop. If the
bit is 1 counter ‘c’ is incremented. The value of ‘c’ is checked for even or odd condition. If
‘c’ is odd, the parity bit ‘0’ is displayed otherwise ‘1’ will be displayed.

 6.34 Write a program to evaluate the series given in comments.

/ sum of series of x-x3/3!+x5/5!-x7/7!+...xn/n! */

include <math.h>

void main()
{
 int n,i,x,c=3,f=1,l;
 float sum;
 clrscr();
 printf(“Enter x & n :”);
 scanf(“%d %d”,&x,&n);
 sum=x;

 for(i=3;i<=n;i+=2)
 {
 f=1;
 if(c%2!=0)
 {
 for(l=1;l<=i;l++)
 f=f*l;
 sum=sum-pow(x,i)/f;
 }

M14_KAMT3553_02_SE_C6.indd 180 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 181

 else
 {
 for(l=1;l<=i;l++)
 f=f*l;
 sum=sum+pow(x,i)/f;
 }
 c++;
}
printf(“\nSum of series Numbers :%f”,sum);
getche();
}

OUTPUT:
Enter x & n : 2 5
Sum of series Numbers :0.9333

include <math.h>

void main()
{
 int f=1,l,i,x,y;
 float sum;
 clrscr();
 printf(“Enter the value of x & y :”);
 scanf(“%d %d”,&x,&y);
 sum = x;
 for(i=2;i<=y;i+=2)
 {
 f=1;
 for(l=1;l<=i;l++)
 f=f*l;
 sum = sum + pow(x,i)/f;
 }
 printf(“\n Sum of Series : %f”, sum);
 getche();
}

OUTPUT:
Enter the value of x & y : 4 4
Sum of Series :22.6666

 Explanation:
 Through the keyboard, the values of ‘x’ and ‘n’ are entered, where numerical constant values

are assigned to ‘x’ and ‘n’. Throughout the series, ‘n’ decides how long the series should con-
tinue. The series contains alternate + and − terms. The two for loops within if are used for
calculating the factorials. The if statement decides the positive or negative term depending
upon odd or even value of ‘c’.

 The following are the programs based on a series. The logic of the programs is simple for under-
standing.

 6.35 Write a program to evaluate the series given in comment.

 /* x+x2/2!+x4/4!+x6/6!+...xn/n! */

M14_KAMT3553_02_SE_C6.indd 181 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

182 Programming in C

 6.36 Write a program to evaluate the series given in comment.

 /* 1-1/1!+2/2!-3/3!...n/n! */

 6.37 Write a program to detect the Armstrong numbers in three digits from 100 to 999. If the sum
of cubes of each digits of the number is equal to the number itself, then the number is called
an Armstrong number (e.g. 153 = 13 53 33 = 153).

include <math.h>

void main()
{
 int n,i,c=3,l;
 float sum=0,f=1,k;
 clrscr();
 printf(“Enter value of n :”);

 scanf(“%d”,&n);
 sum=1;
 for(i=1;i<=n;i++)
 {
 f=1;
 if(c%2!=0)
 {
 for(l=1;l<=i;l++)
 f=f*l;
 k=i/f;
 sum=sum-k;
 }
 else
 {
 for(l=1;l<=i;l++)
 f=f*l;
 sum=sum+(i/f);
 }
 c++;
 }
 printf(“\nSum of series Numbers :%f”,sum);
}

OUTPUT:
Enter value of n : 3
Sum of series Numbers : 0.5000

include <math.h>
void main()
{
 int n,d,x;
 int k,i,cube=0;
 clrscr();
 printf(“\n The following numbers are armstrong numbers.”);

 for(k=100;k<=999;k++)
 {

M14_KAMT3553_02_SE_C6.indd 182 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 183

 cube=0;
 x=1;
 d=3;
 n=k;
 while(x<=d)
 {
 i=n%10;
 cube=cube+pow(i,3);
 n=n/10;
 x++;
 }
 if(cube==k)
 printf(“\n\t\ %d”,k);
 }
}

OUTPUT:
The Following Numbers are Armstrong numbers.
153
370
371
470

 Explanation:
 The program separates individual digit of number and calculates cubes of each digit. If the sum

of the cubes of individual digits of a number is equal to that number, then the number is called
Armstrong numbers.

 6.38 Write a program to display the stars as shown below.
*
* *
* * *
* * * *
* * * * *

void main()
{
 int x,i,j;
 clrscr();
 printf(“How many lines stars (*) should be printed ? :”);
 scanf(“%d”,&x);
 for(i=1;i<=x;i++)
 {
 for(j=1;j<=i;j++)
 {
 printf(“*”);
 }
 printf(“\n”);
 }
}

M14_KAMT3553_02_SE_C6.indd 183 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

184 Programming in C

 Explanation:
 Here in the above example, the two for loops are used for displaying as per the format

shown in the output. Variables ‘x’, ‘i’ and ‘j’ are used according to the requirement. On the
execution of inner loop star/stars are displayed. To display them in different lines the second
printf() statement is used.

 6.39 Write a program to generate the pattern of numbers as given below.
5 4 3 2 1 0
4 3 2 1 0
3 2 1 0
2 1 0
1 0
0

OUTPUT:
How many lines stars (*) should be printed ? : 5
*
* *
* * *
* * * *
* * * * *

void main()
{
 int i,c=0;
 clrscr();
 printf(“Enter a Number :”);
 scanf(“%d”,&i);
 for(;i>=0;i–-)
 {
 c=i;
 printf(“\n”);
 for(; ;)
 {
 printf(“%3d”,c);
 if(c==0)
 break;
 c–-;
 }
 }
}

OUTPUT:
Enter a number: 6
6 5 4 3 2 1 0
5 4 3 2 1 0
4 3 2 1 0
3 2 1 0
2 1 0
1 0
0

M14_KAMT3553_02_SE_C6.indd 184 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 185

void main()
{
 int i,j,x;
 printf(“\nEnter Value of x :”);
 scanf(“%d”,&x);
 clrscr();
 for(j=1;j<=x;j++)
 {
 for(i=1;i<=j;i++)
 printf(“%3d”,i);
 printf(“\n”);
 }
 printf(“\n”);
 for(j=x;j>=1;j–-)
 {
 for(i=j;i>=1;i–-)
 printf(“%3d”,i);
 printf(“\n”);
 }
}

OUTPUT:
Enter Value of x : 4
1
1 2
1 2 3
1 2 3 4
4 3 2 1
3 2 1
2 1
1

 Explanation:
 An integer value is read for variable ‘i’. The first for loop decrements the value of ‘i’. The

value of ‘i’ is assigned to variable ‘c’. In the second infinite for loop, the value of ‘c’ is
printed and decremented. The if condition terminates the infinite for loop when it finds
the value of ‘c’ is 0.

 6.40 Write a program to display the series of numbers as given below.
1
1 2
1 2 3
1 2 3 4
4 3 2 1
3 2 1
2 1
1

 Explanation:
 The first two for loops are used to display the first four lines of the output. The next two for

loops are used to display the last four lines of the output. The outputs of the first four lines are
in ascending order whereas in the last four lines the numbers are in descending order.

M14_KAMT3553_02_SE_C6.indd 185 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

186 Programming in C

void main()
{
 int k,i,j,x,p=34;
 printf(“\n Enter A number :”);
 scanf(“%d”,&x);
 clrscr();

 for(j=0;j<=x;j++)
 {
 gotoxy(p,j+1);
 /* position curosr on screen (x cordinate,y cordinate) */
 for(i=0-j;i<=j;i++)
 printf(“%3d”,abs(i));
 p=p-3;
 }
}

OUTPUT:
Enter a number : 3
 0
 1 0 1
 2 1 0 1 2
3 2 1 0 1 2 3

 Explanation:
 Here, in the above program ‘p’ is equated to 34. This number decides the ‘x’ co-ordinate on

the screen from where numbers are to be displayed. The ‘y’ co-ordinate is decided by j+1
where ‘j’ is varying from 0 to the entered number. The value of ‘i’ is negative towards the
left of zero. Hence, its absolute value is taken. The inner for loop is executed for displaying
digits towards the left and right of zero.

 6.42 Write a program to convert a binary number to a decimal number.

 6.41 Write a program to generate the pyramid structure using numerical.

void main()
{
 int x[5]={1,1,1,1,1};
 int y=x[0],i;
 clrscr();
 printf(“\n Values in different Iterations. \n”);
 printf(“====== == ========= ===========\n”);
 for(i=0;i<4;i++)
 {
 y=y*2+x[i+1];
 printf(“[%d] %d\t”,i+1,y);
 }
 printf(“\nEquivalent of [”);
 for(i=0;i<5;i++)
 printf(“%d”,x[i]);
 printf(“] in Decimal Number is :”);
 printf(“%d\t”,y);

M14_KAMT3553_02_SE_C6.indd 186 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 187

 Explanation:
 A binary number is initialized in an array. The first element of the array is assigned to vari-

able ‘y’. The logic used here is to multiply by 2 the variable ‘y’ and add the next successive
bit. For this the equation y=y*2+x[i+1] is used. The number of iterations to be carried out
is equal to the number of binary bits minus 1. Here, five bits are initialized, hence the number
of iterations will be four.

 6.43 Write a program to add a parity bit with four binary bits such that the total number of one’s
should be even.

 getche();
}

OUTPUT:
Values in different Iterations.
=======================
[1] 3 [2] 7 [3] 15 [4] 31
Equivalent of [1 1 1 1 1] in Decimal Number is : 31

void main()
{
 int bit[5],j,c=0;
 clrscr();
 printf(“\n Enter four bits :”);
 for(j=0;j<4;j++)
 {
 scanf(“%d”,&bit[j]);
 if(bit[j]==1)
 c++;
 else

 if(bit[j]>1 || bit[j]<0)
 {
 j–-;
 continue;
 }
 }

 if(c%2==0)
 bit[j]=0;
 else
 bit[j]=1;
 printf(“\n Message bits together with parity bit :”);
 for(j=0;j<5;j++)
 printf(“%d”,bit[j]);
}

OUTPUT:
Enter four bits : 1 1 1 1
Message bits together with parity bit : 11110

 Explanation:
 In the above program, the four binary bits are entered through the keyboard. If the number of

one’s entered is even, then the fifth bit is set to 0 otherwise to 1. This is checked by the if
statement.

M14_KAMT3553_02_SE_C6.indd 187 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

188 Programming in C

#include <process.h>
void main()
{
 int a,b,z[10],i;
 clrscr();
 printf(“\nEnter the number of bits:-”);
 scanf(“%d”,&b);
 printf(“\nEnter the binary bits:-”);

 for(i=0;i<b;i++)
 scanf(“%d”,&z[i]);
 a=z[0];
 for(i=0;i<(b-1);i++)
 {
 a=a*2+z[i+1];
 printf(“\n%d”,a);

 }
 printf(“\nDecimal Number is : %d”,a);
 getche();
}

OUTPUT:
Enter the number of bits:- 5
Enter the binary bits:- 1 0 0 0 1
2
4
8
17
Decimal Number is : 17

 6.44 Write a program to convert a binary to decimal number. Enter the binary bits by using the
for loop.

 Explanation:
 In the above program, the number of binary bits is entered. Using this number, individual bits

are entered through the keyboard. For this for loop is used. The first element of the array is
assigned to variable ‘a’. The logic used here is to multiply by 2 to the variable ‘a’ and add the
next successive bit. For this the equation a=a*2+z[i+1]; is used. The number of iterations
to be carried out is equal to the number of binary bits minus one. Here, five bits are initialized,
hence the number of iterations will be four.

 Table 6.5 gives the truth table of logic gates AND, OR and EX-OR.

Table 6.5 Logic gates truth table of AND, OR and EX-OR

Inputs
Outputs

AND Gate OR Gate EX-OR Gate

A B C C C

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

M14_KAMT3553_02_SE_C6.indd 188 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

Loop Control 189

void main()
{
 int x,a[4],b[4],c[4];
 clrscr();
 printf(“Enter Four Bits :”);

 for(x=0;x<4;x++)
 {
 scanf(“%d”,&a[x]);
 if(a[x]>1 ||a[x]<0)
 {
 x–-;
 continue;
 }
 }
 printf(“Enter Four Bits :”);
 for(x=0;x<4;x++)
 {
 scanf(“%d”,&b[x]);
 if(b[x]>1 ||b[x]<0)
 {
 x–-;
 continue;
 }
}
 printf(“\nA B C”);
 for(x=0;x<4;x++)
 {
 if(a[x]==1 && b[x]==1)
 c[x]=1;
 else
 c[x]=0;
 printf(“\n%d %d %d”,a[x],b[x],c[x]);
 }
}

OUTPUT:
Enter Four Bits: 1 0 1 0
Enter Four Bits: 1 0 0 1
A B C
1 1 1
0 0 0
1 0 0
0 1 0

 6.45 Write a program to verify the truth table of AND Gate. Assume AND Gate has two input
bits A and B and one output bit C.

 Explanation:
 The four binary bits for A and B are entered. The if statement checks the bits of A and B. If both

of them are 1 then the output ‘C’ must be 1, otherwise for all other conditions the output is 0.

M14_KAMT3553_02_SE_C6.indd 189 5/17/2015 9:19:54 AM

https://hkgbooks.blogspot.com

190 Programming in C

void main()
{
 int x,a[4],b[4],c[4];
 clrscr();
 printf(“Enter Four Bits :”);

 for(x=0;x<4;x++)
 {
 scanf(“%d”,&a[x]);
 if(a[x]>1 ||a[x]<0)
 {
 x–-;
 continue;
 }
 }
 printf(“Enter Four Bits :”);
 for(x=0;x<4;x++)
 {
 scanf(“%d”,&b[x]);
 if(b[x]>1 ||b[x]<0)
 {
 x–-;
 continue;
 }
 }
 for(x=0;x<4;x++)
 {
 if(a[x]==0 && b[x]==0)
 c[x]=0;
 else
 c[x]=1;
 printf(“\n%d %d %d”,a[x],b[x],c[x]);
 }
}

OUTPUT:
Enter Four Bits: 1 1 1 0
Enter Four Bits: 1 0 0 0
A B C
1 1 1
1 0 1
1 0 1
0 0 0

 6.46 Write a program to verify the truth table of OR Gate.

 Explanation:
 The four binary bits for A and B are entered. The if statement checks the bits of A and B.

If one of them is at logic 1, then the output ‘C’ must be 1. When the inputs are 0, the output
is also 0.

M14_KAMT3553_02_SE_C6.indd 190 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

Loop Control 191

void main()
{
 int x,a[4],b[4],c[4];
 clrscr();
 printf(“Enter Four Bits :”);

 for(x=0;x<4;x++)
 {
 scanf(“%d”,&a[x]);
 if(a[x]>1 ||a[x]<0)
 {
 x–-;
 continue;
 }
 }

 printf(“Enter Four Bits :”);

 for(x=0;x<4;x++)
 {
 scanf(“%d”,&b[x]);
 if(b[x]>1 ||b[x]<0)
 {
 x–-;
 continue;
 }
 }

 printf(“\nA B C”);
 for(x=0;x<4;x++)

 {
 if(a[x]==0 && b[x]==1)
 c[x]=1;
 else
 if(a[x]==1 && b[x]==0)
 c[x]=1;
 else
 c[x]=0;
 printf(“\n%d %d %d”,a[x],b[x],c[x]);
 }
}

OUTPUT:
Enter Four Bits: 1 1 1 0
Enter Four Bits: 1 0 0 0
A B C
1 1 0
1 0 1
1 0 1
0 0 0

 6.47 Write a program to verify the truth table of EX-OR GATE.

M14_KAMT3553_02_SE_C6.indd 191 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

192 Programming in C

void main()
{
 static int c[7];
 int x,b[4];
 clrscr();
 printf(“\n Read the Binary Numbers :”);
 for(x=0;x<4;x++)
 scanf(“%d”,&b[x]);
 /* piece copy operation */
 c[0]=b[0];
 c[1]=b[1];
 c[2]=b[2];
 c[4]=b[3];
 printf(“\n Before XOR operation :”);
 for(x=0;x<=6;x++)
 printf(“%3d”,c[x]);

 c[6]= c[0]^c[2]^c[4];
 c[5]= c[0]^c[1]^c[4];
 c[3]= c[0]^c[1]^c[2];

 printf(“\n Hamming code after XOR operation :”);

 for(x=0;x<=6;x++)
 printf(“%3d”,c[x]);
 getche();
}

OUTPUT:
Read the Binary Numbers : 1 0 1 0
Before XOR operation : 1 0 1 0 0 0 0
Hamming code after XOR operation : 1 0 1 0 0 1 0

 Explanation:
 The four binary bits for A and B are entered. The if statement checks the bits of A and B. If

the input bits are dissimilar the output ‘C’ must be 1. When the inputs are similar, the output
is also 0. In the two extreme cases, the output is zero.

 6. 48 Write a program to find the Hamming code for the entered binary code. Assume the binary
code of four bits in length. The Hamming code should be seven bits.

Tip: R.W. Hamming developed error correcting and detecting codes in communication the four
bits data which is to be transmitted containing additional three check bits. The word that is to be
transmitted, its format, will be D7, D6, D5, P4, D3, P2 and P1. Where D bits are data bits and the
P bits are parity bits. P1 is set so that it provides even parity over bits P1, D3, D5 and D7. P2 is set
for even parity over bits P2, D3, D6 and D7. P4 is set for even parity over bits P4, D5, D6 and D7

 Explanation:
 The hamming code that contains seven bits is initially assumed as zeros. This is declared

with static int c[7]. The four bit data is read through the keyboard using the first
for loop. The data bits are placed at the appropriate positions using piece copy operations.
The three parity bits are evaluated using XOR bitwise operations. Ultimately, the seven bits
are displayed using the last for loop.

M14_KAMT3553_02_SE_C6.indd 192 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

Loop Control 193

#define DISTINCTION 420
#define FIRST 360
#define SECOND 240

void main()
{
 int number,i,j,roll_no,marks,total;
 clrscr();
 printf(“\n Enter number of Students :”);
 scanf(“%d”,&number);
 printf(“\n”);

 for(i=1;i<=number;++i)
 {
 printf(“Enter Roll Number :”);
 scanf(“%d”,&roll_no);
 total=0;
 printf(“\n Enter Marks of 6 Subjects for Roll no %d :

\n”,roll_no);
 for(j=1;j<=6;j++)
 {
 scanf(“%d”,&marks);
 total=total+marks;
 }

 printf(“TOTAL MARKS =%d”,total);
 if(total>= DISTINCTION)
 printf(“\n(Distinction)\n\n”);
 else if(total>=FIRST)
 printf(“\n(First Division)\n\n”);
 else if(total>=SECOND)
 printf(“\n(Second Division)\n\n”);
 else
 printf(“\n(***Fail****)”);
 }
}

OUTPUT:
Enter number of Students : 1
Enter Roll Number : 1
Enter Marks of 6 Subjects for Roll no 1 :
42 52 62 72 82 92
TOTAL MARKS = 402
(First Division)

 6.49 Write a program to show the results of students who appeared in the final examination.
Assume that the students have to appear in six subjects. The result declared should be as per
the following table.

Total Marks Result

>=420 Distinction

>=360 First Division

>=240 Second Division

Otherwise Fail

M14_KAMT3553_02_SE_C6.indd 193 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

194 Programming in C

 Explanation:
 In the above program, the number of students whose result is to be calculated is entered.

 After this, the marks of six subjects with their roll numbers are entered. The sum of six
subjects is calculated. The sum is compared with distinction, first and second macros using
if–else ladder and appropriate result is displayed.

 In this program, macros are used. During preprocessing, the preprocessors replace every occur-
rence of distinction with 420, similarly, first and second are replaced with 360 and 240, respectively.
Distinction, first and second in the above program are ‘macro templates’, whereas 420, 360 and 240
are called their corresponding macro expansions. For details of macros refer to Chapter 12.

6.4 the while Loop
Another kind of loop structure in C is the while loop. The while loop is frequently used in pro-
grams for the repeated execution of statement/s in a loop. Until a certain condition is satisfied the loop
statements are executed.
 The syntax of while loop is

 while(test condition)
 {
 body of the loop
 }

 The test condition is indicated at the top and it tests the value of the expression before processing
the body of the loop. The test condition may be any expression. The loop statements will be executed
till the condition is true, i.e. the test condition is evaluated and if the condition is true, then the body
of the loop is executed. When the condition becomes false the execution will be out of the loop.
 The execution of the loop can be followed by the following flow chart given in Figure 6.5.

Entry

True

FalseTest
condition?

Body of
the loop

Steps of while loops areas follows.

(1) The test condition is evaluated and if it is
true, the body of the loop is executed.

(2) On execution of the body, test condition is
repetitively checked and if it is true the body is
executed.

(3) The process of execution of the body will be
continued till the test condition becomes true.

(4) The control is transferred out of the loop if
test condition fails.Update

Stop

Initialize

Figure 6.5 The flow chart showing the execution of the loop

 Here, the block of the loop may contain either a single statement or a number of statements. The
same block can be repeated.

M14_KAMT3553_02_SE_C6.indd 194 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

Loop Control 195

 Explanation:
 The parentheses after ‘while’ contains a condition. As long as the condition remains true,

all the statements within the body of the loop get executed repeatedly. The variable ‘x’ is
initialized to 1. The compiler checks the condition and after satisfying it, the body of the
loop is executed. The control then goes to the while loop. Next time, the value of ‘x’ is
incremented by 1. Now if ‘x’ is 2 again it satisfies the condition and the body of the loop
gets executed. This process is continued till the value of ‘x’ reaches 9. When the condition
becomes false (after 9), the control passes to the first statement that follows the body of the
while loop and the program is now terminated. The output of the program is shown above.

 6.51 Write a program to add 10 consecutive numbers starting from 1. Use the while loop.

void main()
{
 int x=1;
 while(x<10)
 {
 printf(“\n You have learnt C program”);
 x++;
 }
}

OUTPUT:
You have learnt C program
You have learnt C program
You have learnt C program
You have learnt C program
You have learnt C program
You have learnt C program
You have learnt C program
You have learnt C program
You have learnt C program

void main()
{
 int a=1,sum=0;
 clrscr();
 while(a<=10)
 {
 printf(“%3d”,a);
 sum=sum+a;
 a++;
 }
 printf(“\n Sum of 10 numbers :%d”,sum);
}

 The braces are needed only if, the body of the loop contains more than one statement. However,
it is good practice to use braces even if the body of the loop contains only one statement.

 6.50 Write a program to print the string ‘You have learnt C program’ nine times using
while loop.

M14_KAMT3553_02_SE_C6.indd 195 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

196 Programming in C

OUTPUT:
1 2 3 4 5 6 7 8 9 10
Sum of 10 numbers : 55

 Explanation:
 In the above program, integer variable ‘a’ is initialized to 1 and variable ‘sum’ to 0.

The while loop checks the condition for a≤10. The variable ‘a’ is added to variable
‘sum’ and each time ‘a’ is incremented by 1. In each while loop ‘a’ is incremented
and added to ‘sum’. When the value of ‘a’ reaches 10, the condition given in while
loop is false. At last the loop is terminated. The sum of the number is displayed.

 6.52 / 6.53 Write a program to calculate factorial of a given number. Use while loop.

void main()
{
 int a,fact=1;
 clrscr();
 printf(“\n Enter The Number :”);
 scanf(“%d”, &a);
 while(a>=1)
 {
 printf(“ %d *”,a);
 fact=fact*a;
 a–-;
 }
 printf(“ = %d”,fact);
 printf(“\n Factorial of Given number is %d”,fact);
}

OUTPUT:
Enter The Number: 5
5* 4 * 3 * 2 * 1 * = 120
Factorial of Given number is 120

 Explanation:
 In the above program, the working of the while loop is the same as that in the previous

one. The only difference is that variable ‘a’ is decremented. Factorial of a number means
a product from 1 to that number. Here, variable ‘fact’ is initialized to 1. For each itera-
tion of while loop the entered number is multiplied with the previous value of the variable
‘fact’ and ‘a’ is decremented. When the entered number ‘a’ reaches 1, the while
loop terminates and ‘fact’ variable contains the product of 1 to the entered number. Here,
the entered number is 5 and its factorial value is 120, and the same is displayed.

OR

void main()
{
 int a,b=1,fact=1;
 clrscr();
 printf(“\n Enter The Number :”);

M14_KAMT3553_02_SE_C6.indd 196 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

Loop Control 197

 scanf(“%d”, &a);
 while(b<=a)
 {
 printf(“ %d *”,b);
 fact=fact*b;
 b++;
 }
 printf(“ = %d”,fact);
 printf(“\n Factorial of %d is %d”,b-1,fact);
}

OUTPUT:
Enter the Number: 4
1 * 2 * 3 * 4 * = 24
Factorial of 4 is 24.

void main()
{
 int x,y=40;
 clrscr();
 printf(“Enter a Number :”);
 scanf(“%d”,&x);
 printf(“\n Binary Number :”);

 while(x!=0)
 {
 gotoxy(y–-,3);
 printf(“%d”,x%2);
 x=x/2;
 }
}

OUTPUT:
Enter a Number : 25
Binary Number : 11001

 Explanation:
 The working of the above program is the same as the last one. Here, we declared and initial-

ized one more variable ‘b’ to 1. Here, we are keeping the variable ‘a’ unchanged. We
require an extra variable to count the number of loops completed by the while loop. Once
the value of the variable ‘b’ matches with the entered number ‘a’, the while loop termi-
nates. The factorial of a number in variable ‘fact’ is displayed.

 6.54 Write a program to convert decimal number to binary number.

 Explanation:
 In the above program, the number, which is to be converted into binary, is entered through

the keyboard. The while loop is executed till the value of ‘x’ becomes non-zero. The
body of the while loop contains the mod (%) and divide operations. With these opera-
tions, remainders are obtained and the value of ‘x’ is reduced to half. Binary bits corre-
sponding to the decimal number which are obtained are taken in the reverse order by using
the gotoxy() function. In the statement gotoxy (y––, 3), the first argument (y––)

M14_KAMT3553_02_SE_C6.indd 197 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

198 Programming in C

provides the column position and the second provides the row number where the output is
to be displayed.

 Similarly, for conversion of decimal to octal instead of 2 one can use 8 for mod as well as division
operations.

 6.55 Write a program to convert decimal number to the user-defined number system. The base of
the number system may be taken up to 9.

void main()
{
 int m,b,y=35;

 clrscr();
 printf(“Enter the Decimal Number :”);
 scanf(“%d”,&m);
 printf(“Enter base of number System :”);
 scanf “%d”,&b);
 printf(“The Number Obtained :”);
 while(m!=0)
 {
 gotoxy(y–-,3);
 printf(“%d”,m%b);
 m=m/b;
 }

 getche();
}

OUTPUT:
Enter the Decimal Number : 50
Enter base of number System : 5
The Number Obtained : 200

 Explanation:
 The logic of the above program is the same as explained in the previous program. The only

difference is that the user has a choice to enter the base of any number system. This program
is more flexible than the previous one.

 6.56 Write a program to convert binary number to equivalent decimal number.

include <math.h>
include <process.h>

void main()
{
 long n;
 int x,y=0,p=0;
 clrscr();
 printf(“\n Enter a Binary Number :”);
 scanf(“%ld”,&n);

 while(n!=0)
 {

M14_KAMT3553_02_SE_C6.indd 198 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

Loop Control 199

 x=n%10;
 if(x>1 || x<0)
 {
 printf(“\n Invalid Digit.”);
 exit(1);
 }
 y=y+x*pow(2,p);
 n=n/10;
 p++;
 }
 printf(“\n Equivalent Decimal Number is %d.”,y);
 getche();
}

OUTPUT:
Enter a Binary Number : 1111
Equivalent Decimal Number is 15
Enter a Binary Number : 120
Invalid Digit.

 Explanation:
 In the above program, binary number is entered. The equation y=y+x*pow (2,p) is used in

each iteration where ‘y’ is initialized to 0. The variable ‘x’ is obtained by mod operation
which separates individual digit of entered number, and the variable ‘p’ acts as an exponent for
base 2. It is initially zero and incremented by one in each iteration, where p varies from 0 to the
number of digits −1. The product (x*pow (2,p)) is added with the previous value of ‘y’.

 6.57 Write a program to read a positive integer number ‘n’ and generate the numbers in the follow-
ing way. If entered number is 5, the output will be as follows. OUTPUT: 5 4 3 2 1 0 1 2 3 4 5.

include <math.h>

void main()
{
 int n,i,k=0;
 clrscr();
 printf(“Enter a number :”);
 scanf(“%d”,&n);
 i=n+1;
 k=k-n;

 while(i!=k)
 {
 printf(“%3d”,abs(k));
 k++;
 }
}

OUTPUT:
Enter a number : 3
3 2 1 0 1 2 3

M14_KAMT3553_02_SE_C6.indd 199 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

200 Programming in C

 Explanation:
 The value of ‘n’ is entered through the keyboard. The variable ‘k’ is initially declared zero.

The equation k=k-n i.e. k=0-n=-n. The value of ‘k’ is negative, hence abs() function is
used to print the positive (absolute) value. The while loop checks the condition for(i!=k).
Variable ‘k’ is printed and incremented till its value becomes n+1. In this way, the numbers
are printed as asked in the problem.

 6.58 Write a program to enter a number through keyboard and find the sum of its digits.

void main()
{
 int n,k=1,sum=0;
 clrscr();
 printf(“Enter a Number :”);
 scanf(“%d”,&n);

 while(n!=0)
 {
 k=n%10;
 sum=sum+k;
 k=n/10;
 n=k;
 }
 printf(“Sum of digits %d “,sum);
}

OUTPUT:
Enter a Number : 842
Sum of digits 14

 Explanation:
 In the above program, a number is entered by the user. It is assigned to variable ‘n’. In

the while loop mod and division operations are done on the entered number. At each
rotation of while loop, the remainder is obtained and added to the variable ‘sum’. The
original number is also reduced by the division operation. Due to continuos division, at
one stage the entered number reduces to zero. At this stage, the while loop condition
mismatches and is terminated. The variable ‘sum’ displays the ‘sum’ of all digits of the
entered number.

 6.59 Write a program to enter few numbers and count the positive and negative numbers together
with their sums. When 0 is entered program should be terminated.

void main()
{
 int j=1,p=0,n=0,s=0,ns=0;
 clrscr();
 printf(“\n Enter Numbers (0) Exit :”);

 while(j!=0)
 {

M14_KAMT3553_02_SE_C6.indd 200 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

Loop Control 201

 scanf(“%d”,&j);
 if(j>0)
 {
 p++;
 s=s+j;
 }
 else if(j<0)
 {
 n++;
 ns=ns+j;
 }
 }
 printf(“\n Total Positive Numbers : %d”,p);
 printf(“\n Total Negative Numbers : %d”,n);
 printf(“\n Sum of Positive Numbers : %d”,s);
 printf(“\n Sum of Negative Numbers : %d”,ns);
}

OUTPUT:
Enter Numbers (0) Exit :1 2 3 4 5 -5 -4 -8 0
Total Positive Numbers : 5
Total Negative Numbers : 3
Sum of Positive Numbers : 15
Sum of Negative Numbers : -17

 Explanation:
 Numbers are entered through the keyboard. The if statement checks whether the entered

numbers are greater or less than zero. If the numbers are greater than zero the if block is
executed otherwise the else block is executed. The output shows the number of positive
and negative numbers and their sums. When 0 is entered while loop terminates.

 6.60 Read an integer through the keyboard. Sort odd and even numbers by using while loop.
Write a program to add the sum of odd and even numbers separately and display the results.

void main()
{
 int a,c=1,odd=0,even=0;
 float b;
 clrscr();
 printf(“Enter a Number :”);
 scanf(“%d”, &a);

 printf(“ODD EVEN”);
 printf(“\n”);
 while(c<=a) /* A
 {
 b=c%2;
 while(b==0){/* B
 printf(“\t%d “,c);
 even=even+c;
 b=1;}

M14_KAMT3553_02_SE_C6.indd 201 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

202 Programming in C

void main()
{
 int n,d,x=1;
 int i;
 clrscr();
 printf(“Enter the number of digits :-”);
 scanf(“%d”,&d);
 printf(“\nEnter the number which is to be reversed:-”);
 scanf(“%d”,&n);
 printf(“\nThe Reversed Number is :-”);
 while(x<=d)
 {
 i=n%10;
 printf(“%d”,i);
 n=n/10;
 x++;
 }
 getche();
}

 b=c%2;
 while(b!=0){ /*c
 printf(“\n%d”,c);
 odd=odd+c;
 b=0;}
 c++;
 }
 printf(“\n===============”);
 printf(“\n%d %d”,odd,even);
}

OUTPUT:
Enter a Number: 10
 ODD EVEN
 1 2
 3 4
 5 6
 7 8
 9 10
==========
 25 30

 Explanation:
 The above program is an example of nested while loops. When the entered number is even

the first loop (B loop) is executed and number is added to variable ‘even’, otherwise the
while loop (C loop) is executed and the same job of addition is done with variable ‘odd’.
Thus, variables ‘odd’ and ‘even’ give the sum of even and odd numbers.

 6.61 Write a program to print the entered number in the reversed order.

M14_KAMT3553_02_SE_C6.indd 202 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

Loop Control 203

include <ctype.h>
void main()
{
 static char scan[40],cap[20],small[20],num[20],oth[20];
 int i=0,c=0,s=0,h=0,n=0;
 clrscr();
 puts(“Enter Text Here :\n”);
 gets(scan);

 while(scan[i]!=‘\0’)
 {
 if(scan[i]>=48 && scan[i]<=57)
 num[++n]=scan[i];
 else
 if(scan[i]>=65 && scan[i]<=90)
 cap[++c]=scan[i];
 else
 if(scan[i]>=97 && (scan[i]<=122))
 small[++s]=scan[i];
 else
 oth[++h]=scan[i];
 i++;
 }
 printf(“\nCapital Letters :[”);
 for(i=0;i<20;i++)
 printf(“%c”,cap[i]);

 printf(“]\nSmall Letters :[”);
 for(i=0;i<20;i++)
 printf(“%c”,small[i]);

 printf(“]\nNumaric Letters :[”);
 for(i=0;i<20;i++)
 printf(“%c”,num[i]);

 printf(“]\nOther Letters :[”);
 for(i=0;i<20;i++)

 Explanation:
 The statements following the while loop are i=n%10 and n=n/10. They provide the

remainder and quotient values, respectively. By taking repeatedly remainders and quotients,
we get the number in the reverse order. For repeating the loop the ‘x’ is to be incremented.

 6.62 Write a program to enter a statement entering a combination of capital, lower case, symbols
and numerical. Carry out separation of capitals, lower case, symbols and numerical by using
ASCII values from 48 to 122.

OUTPUT:
Enter the number of digits :- 4
Enter the number which is to be reversed:- 5428
The Reversed Number is :- 8245

M14_KAMT3553_02_SE_C6.indd 203 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

204 Programming in C

 Explanation:
 The array scan[40] contains the string. The string is to be entered by the user. The arrays

small[20], num[20] and oth[20] are used at run time in the program. The while loop
reads the array scan[] character by character. The if–else ladder statements check
the characters, whether the character is small, capital or symbol, and assigns it to the different
arrays according to its case or type.

 6.63 /6.64 Write a program to sort numbers 0 to 9, alphabets in upper and lower case using
equivalent ASCII values. The following table can be used.

 printf(“%c”,oth[i]);
 printf(“]”);
 getche();
}

OUTPUT:
Enter Text Here: HAVE A NICE DAY, contact me on 51606.
Capital Letters: [HAVEANICEDAY]
Small Letters : [contactmeon]
Numaric Letters : [28669]
Other Letters: [,]

void main()
{
 char a;
 int i=48;
 clrscr();

 printf(“NUMBERS \n”);
 while(i<=57)
 {
 printf(“%c”,i);
 i++;
 }
 i+=7;
 printf(“\n\n CAPITAL ALPHABETS\n”);
 while(i<=90)
 {
 printf(“ %c”,i);
 i++;
 }
 i+=6;
 printf(“\n\n SMALL ALPHABETS \n”);
 while(i<=122)
 {

ASCII values Corresponding Symbols
48 to 57 0 to 9
65 to 90 A to Z
97 to 120 a to z

M14_KAMT3553_02_SE_C6.indd 204 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

Loop Control 205

 Explanation:
 In the above program, three while loops are used. These three while loops are used for

sorting numbers, capital letters and lowercase letters. The variable ‘i’ is initialized to 48
because the ASCII 48 is ‘0’. The three while loops check ASCII values as per the ranges
given in the table. The number, capital and small letters are not continuous in ASCII. Some
symbols are also present between these values. To ignore these symbols, variable ‘i’ is
increased twice with 7 and 6.

OR

 printf(“%c”,i);
 i++;
 }
}

OUTPUT:
NUMBERS
0 1 2 3 4 5 6 7 8 9
CAPITAL ALPHABETS
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
SMALL ALPHABETS
a b c d e f g h i j k l m n o p q r s t u v w x y z

#include <process.h>

void main()
{
 int i=48;
 clrscr();
 printf(“Numbers :”);
 while(i<124)
 {
 if(i<58)
 printf(“%2c”,i);
 else
 {
 if(i==58)
 {
 printf(“\nCapital Letters :”);
 i+=7;
 }
 if(i>64 && i<91)
 printf(“%2c”,i);
 if(i==90)
 {
 printf(“\n Small Letters :”);
 i+=7;
 }
 if(i>96 && i<123)

M14_KAMT3553_02_SE_C6.indd 205 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

206 Programming in C

 printf(“%2c”,i);
 }
 i++;
 }
}

 Explanation:
 The output of the above program is the same as for the previous one. Instead of nested

while loop, nested if–else statements are used.

 6.65 Write a program to use three while nested loops. Print numbers after each iteration and
messages after termination of each loop.

void main()
{
 int i=1,j=1,k=1;
 clrscr();

 while(i<4)
 {
 while(j<3)
 {
 while(k<2)
 {
 printf(“\n\n i=%d j=%d k=%d”,i,j,k);
 k++;
 }
 printf(“\n Inner Loop (k) Completed.”);
 k=1;
 j++;
 }

 printf(“\n Middle Loop (j) Completed.”);
 j=1;
 i++;
 }
 printf(“\n Outer Loop (i) Completed.”);
}

OUTPUT:
i=1 j=1 k=1
Inner Loop (k) Completed.
i=1 j=2 k=1
Inner Loop (k) Completed.
Middle Loop (j) Completed.
i=2 j=1 k=1
Inner Loop (k) Completed.
i=2 j=2 k=1
Inner Loop (k) Completed.
Middle Loop (j) Completed.
i=3 j=1 k=1
Inner Loop (k) Completed.
i=3 j=2 k=1

M14_KAMT3553_02_SE_C6.indd 206 5/17/2015 9:19:55 AM

https://hkgbooks.blogspot.com

Loop Control 207

Inner Loop (k) Completed.
Middle Loop (j) Completed.
Outer Loop (i) Completed.

do
{
statement/s;
}
while(condition);

 Explanation:
 In the above program, variables i, j and k are declared and initialized to 1. The inner most loop

is ‘k’, the middle is ‘j’ and the outer most is ‘i’. The execution of loop starts from outer to
inner and the completion will be from inner most to the outer most. Here, for example, the values
of i, j and k are printed and messages are printed to understand the termination of loops.

6.5 the do-while Loop
The syntax of do-while loop in C is as follows.

 The difference between the while and do-while loop is the place where the condition is to be
tested. In the while loops the condition is tested following the while statement, and then the body gets
executed, whereas in the do-while the condition is checked at the end of the loop. The do-while loop
will execute at least one time even if the condition is false initially. The do-while loop executes until the
condition becomes false. The comparison between the while and do-while loop is given in Table 6.6
 Some programs are given on do-while loop.

Table 6.6 Comparison of the while and do-while loop
Sr. No. while Loop do-while Loop

1 Condition is specified at the top. Condition is mentioned at the bottom.

2 Body statement/s is/are executed
when condition is satisfied.

Body statement/s executes even when
the condition is false.

3 No brackets for a single statement. Brackets are essential even when a
single statement exits.

4 It is an entry-controlled loop. It is an exit-controlled loop.

 6.66 Use the do–while loop and display a message ‘this is a program of do–while loop’ five
times.

void main()
{
 int i=1;
 clrscr();
 do
 {

M14_KAMT3553_02_SE_C6.indd 207 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

208 Programming in C

 printf(“\n This is a program of do while loop.”);
 i++;
 }
 while(i<=5);

}

OUTPUT:
This is a program of do while loop.
This is a program of do while loop.
This is a program of do while loop.
This is a program of do while loop.
This is a program of do while loop.

 Explanation:
 The body of the loop is executed and the value of ‘i’ is incremented. The incremented value

is tested with the condition specified at the outside of the loop. If the condition is true the
statement within the loop gets executed. In the above program, the statement within the loop
gets executed five times and the result is as shown above.

 6.67 Write a program to print the entered number in the reversed order. Use do-while loop.
Also perform sum and multiplication with their digits.

void main()
{
 int n,d,x=1,mul=1,sum=0;
 int i;
 clrscr();

 printf(“Enter the number of digits :-”);
 scanf(“%d”,&d);
 printf(“\nEnter the number which is to be reversed:-”);
 scanf(“%d”,&n);
 printf(“\n Reversed Number :-”);
 do
 {
 i=n%10;
 printf(“%d”,i);
 sum=sum+i;
 mul=mul*i;
 n=n/10;
 x++;
 }
 while(x<=d);

 printf(“\n Addition of digits :- %4d”,sum);
 printf(“\n Multiplication of digits :- %4d”, mul);
 getche();
}

OUTPUT:
Enter the number of digits : 4
Enter the number which is to be reversed:- 4321

M14_KAMT3553_02_SE_C6.indd 208 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

Loop Control 209

 Explanation:
 In the above program, the length of the number and a number are entered. Using repetitive mod

operations, digits are separated and displayed. The separated digits are repeatedly added and
multiplied with variables ‘sum’ and ‘mul’, respectively. Initially ‘sum’ is 0 and ‘mul’
is 1. After the termination of loop ‘sum’ and ‘mul’ display addition and multiplication of
individual digits of the entered number.

 6.68 Write a program to find the cubes of 1 to 10 numbers using do–while loop.

/* This is a program of cube of a given number */
#include “math.h”

void main()
{
 int y,x=1;
 clrscr();
 printf(“\n Print the numbers and their cubes”);
 printf(“\n”);
 do
 {
 y=pow(x,3);
 printf(“%4d %27d\n”,x,y);
 x++;
 }
 while(x<=10);
}

OUTPUT:
Print the numbers and their cubes
 1 1
 2 8
 3 27
 4 64
 5 125
 6 216
 7 343
 8 512
 9 729
10 1000

Reversed Number :- 1234
Addition of digits :- 10
Multiplication of digits :- 24

 Explanation:
 Here, the mathematical function pow (x, 3) is used. Its meaning is to calculate the third

power of x. With this function, we get the value of y=x3. For the use of the pow() function,
we have to include math.h header file.

M14_KAMT3553_02_SE_C6.indd 209 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

210 Programming in C

 6.69 Write a program to check whether the given number is prime or not?

void main()
{
 int n,x=2;
 clrscr();
 printf(“Enter The number for testing (prime or not) :”);
 scanf(“%d”,&n);
 do
 {
 if(n%x==0)
 {
 printf(“\n The number %d is not prime.”,n);
 getch();
 exit(0);
 }
 x++;
 }
 while(x<n);

 printf(“\n The number %d is prime.”,n);
 getche();
}

OUTPUT:
Enter The number for testing (prime or not) : 5
The number 5 is prime.

 Explanation:
 The number is said to be a prime number, if it is not divisible by any number starting

from 2 onwards up to n-1, where ‘n’ is the entered number by the user. Here, in this
example, the entered number is 5. The mod operation is performed using the divisor from
2 to n-1 (5−1).

 If the remainder is 0 then it is not a prime number and controls exit from the program. Otherwise,
if the remainder is non-zero then the number is prime.

 6.70 Write a program to count the number of students having age less than 25 and weight less
than 50 kg out of five.

void main()
{
 int age,count=0,x=1;
 float wt;
 clrscr();
 printf(“\nEnter data of 5 boys\n”);
 printf(“\nAge Weight\n”);
 do
 {
 scanf(“%d %f”, &age, &wt);
 if(age<25 && wt<50)
 {

M14_KAMT3553_02_SE_C6.indd 210 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

Loop Control 211

 count++;
 }
 x++;
 }
 while(x<=5);
 printf(“\n Number of boys with age <25”);
 printf(“and weight <50 Kgs =%d\n”,count);
 getch();
}

OUTPUT:
Enter data of 5 boys
Age Weight
24 51
20 45
25 51
20 35
24 54
Number of boys with age <25 and weight <50 kgs = 2

 Explanation:
 In the above-given program, age and weight of five boys are entered. The if condition

checks the age and weight and after satisfying the condition counter variable count is in-
creased by one. Thus, loop executes five times. The program displays the number of students
having ages less than 25 years and weight less than 50 kg.

 6.71 Compute the factorial of a given number using the do–while loop.

void main()
{
 int a,fact=1;
 clrscr();
 printf(“\n Enter The Number :”);
 scanf(“%d”, &a);
 do
 {
 printf(“ %d *”,a);
 fact=fact*a;
 a- -;
 }
 while(a>=1);
 printf(“ = %d”,fact);
 printf(“\n Factorial of Given number is %d”,fact);
}

OUTPUT:
Enter The Number : 5
5 * 4 * 3 * 2 * 1 * = 120
Factorial of Given number is 120.

 Explanation:
 The logic of the program is self-explanatory.

M14_KAMT3553_02_SE_C6.indd 211 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

212 Programming in C

 6.72 Write a program to evaluate the series such as 1+2+3+. . . i. Use do–while loop. Where
i can be a finite value. Its value should be read through the keyboard.

void main()
{
 int i,a=1;
 int s=0;
 clrscr();

 printf(“\n Enter a number:”);
 scanf(“%d”,&i);
 do
 {

 printf(“%d +”,a);
 s=s+a;
 a++;
 }
 while(a<=i);
 printf(“\b\bs=%d”,s);
}

OUTPUT:
Enter a number: 5
1 + 2 + 3 + 4 +5 s= 15

 Explanation:
 In the above program, variable ‘a’ is initially 1 and ‘s’ is 0. The value of variable ‘i’

is read which determines the final step of the series. In the do-while loop variable ‘a’ is
printed, added to variable ‘s’ and then incremented. This loop is continuously executed till
‘a’ equals the entered number ‘i’. The output provides the summation of 1 to the entered
number. Here, the entered number is 5. Hence, the sum from 1 to 5 is 15.

6.6 the while Loop WIthIn the do-while Loop
The syntax of do-while with multiple while statement loop is as follows:
 do-while(condition)

{
 statement/s;
}
while(condition);

 6.73 Write a program to use while statement in do–while loop and print values from 1 to 5.

void main()
{
 int x=0;
 clrscr();
 do while(x<5)
 {

M14_KAMT3553_02_SE_C6.indd 212 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

Loop Control 213

 x++;
 printf(“\t %d”,x);
 }
 while(x<1);
}

	OUTPUT	:
1 2 3 4 5

 Explanation :	
 The specialty of using the second while loop in the above program is to know that the

programmer can take the second while loop.

 6.7 BohM And JAcopInI’s theorY
 The structured programming provides simplicity. Bohm and Jacopini showed the following three
forms of controls:

 (i) sequence

 (ii) selection

 (iii) repetition

 Sequence means statements appearing one after another. Recall that in the last chapter, we learned
that selection can be implemented using if–else and switch statements. Now in this chapter, we
learned that repetition can be implemented using for, while and do-while statements. goto
instructions can be used by using if and while, for and do–while, i.e., C language includes if and
other loop control structures which are equivalent to the same with goto.
 All the above controls can be combined by two ways: (i) stacking and (ii) nesting. Thus, the struc-
tured programming supports simplicity.

 suMMArY

 This chapter deals with the loops that are to be used in the C programs. The scope of the various three
loops such as (i) the for loop, (ii) the while loop and (iii) the do-while has been narrated in
detail in this chapter. In this chapter the numbers of solved programs on these loops have been given
for the benefit of the programmers. Also examples on nested loops have been given in a simple lan-
guage and in depth. The information on breaking the loop and continuing the same is also elaborated
in detail together with examples.

 eXercIses

 I True or false:

			1. A loop repeatedly executes a block of statements
for certain number of times.

 2. The loop for(; ;) is a non-working loop.

		3. The for(; ;) loop with no arguments can be
executed.

 4. The loop for(a=1;a<20;a++) will be executed
for 20 times.

M14_KAMT3553_02_SE_C6.indd 213 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

214 Programming in C

	 5. The while(1) is an infinite loop.

 6. The loop cannot be nested.

 7. Even if the condition is false the do-while
loop executes once.

 8. The do-while loop must be terminated by a
semi-colon.

 9. The { } defines the block of the statement.

 10. In case { } is not defined, the default scope is one
statement

1. What will be the last value of ‘c’ after the
 execution of following program?

 void main()
 {
 int c=1,d=0;
 clrscr();
 while(d<=9)
 {
 printf(“\n %d %d”,++d,++c);
 }
 }

 (a) 11
 (b) 10
 (c) 12
 (d) 9

2. What will be the value of ‘x’ after the execution
of following program?

 void main()
 {
 int k;
 float x=0;
 clrscr();
 for(k=0;k<10;k++)
 x+=.1;
 printf(“\nx=%g”,x);
 }

 (a) x=1

 (b) x=0

 (c) x=1.1

 (d) None of the above

3. What will be the value of ‘f’ after the execution of
following program?

 void main()
 {

 char k;
 float f=65;
 clrscr();

 for(k=1;k<=10;k++)
 {
 f-=.1;
 }
 printf(“\nf=%g”,f);

 }

 (a) f=64

 (b) f=-65

 (c) f=66

 (d) None of the above

III Select the appropriate option from the multiple choices given below:

II Match the following correct pairs given in Group A with Group B:

1

Group A Group B

Sr. No. Loop Sr. No. No. of Execution

1 for (;;) A Loop executes
5 times

2 for(j=1;
j<=5;
j++)

B Non-working lop

3 for(;;); C Infinite loop

2

Group A Group B

Sr. No. Loop Sr. No. No. of Execution

1 while(0) A Wrong syntax of
while

2 while(1) B Non-working
loop

3 while
(a>10);
(where a=15)

C Infinite loop

M14_KAMT3553_02_SE_C6.indd 214 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

Loop Control 215

4. What would be the final value of ‘x’ after the
execution of the following program?

 void main()
 {
 int x=1;
 clrscr();
 do while(x<=10)
 {
 x++;
 }
 while(x<=5);
 printf(“\n x=%d”,x);
 }

 (a) x=11
 (b) x=6
 (c) x=2
 (d) None of the above

5. How many while statements are possible in the
do–while loop?

 (a) 2
 (b) 1

 (c) 3
 (d) None of the above

6. What will be the final values of x and y?

 void main()
 {
 int x=1,y=1;
 clrscr();
 do while(x<=8)
 {
 x++,y++;
 }
 while(y<=5);
 printf(“\n x=%d y=%d”,x,y);
 }

 (a) x=9 y=9

 (b) x=9 y=6

 (c) x=6 y= 6

 (d) None of the above

IV Attempt the following programs:

	 1. Write a program to display alphabets as given
below.

	 	 Az	by	cx	dw	ev	fu	gt	hs	Ir	jq	kp	lo	mn	nm	ol	pk	
qj	ri	sh	tg	uf	ve	wd	xc	yb	za.

	 2. Write a program to display count values from
0 to 100 and flash each digit for one second. Reset
the counter after it reaches to hundred. The proce-
dure is to be repeated. Use for loop.

 3. Develop a program to simulate seconds in a
clock. Put the 60 dots on the circle with equal dis-
tance between each other and mark them 0 to 59.
A second’s pointer is to be shown with any symbol.
Also print the total number of revolution made by
second’s pointer.

	 4. Write a program to simulate analog watch
(1 to 12 numbers to be arranged in circular fashion
with all the three pointers for seconds, minutes, and
hours) on the screen. Use nested for loops.

 (a) Use (.) dot for second’s pointer.
 (b) Use (*) star for minute’s pointer.
 (c) Use (#) hash for hour’s pointer.

	 5. Write a program to calculate the sum of first and
last number from 1 to 10.

	 (Example 1+10,2+9, 3+8 sums should be
always 11.)

	 6. Write a program to find the total number of votes in
favour of persons ‘A’ and ‘B’. Assume 100 voters
will be casting their votes to these persons. Count
the number of votes gained by ‘A’ and ‘B’. User can
enter his/her choices by pressing only ‘A’ or ‘B’.

 7. Write a program to pass the resolution in a meeting
comprising of five members. If three or more votes
are obtained the resolution is passed otherwise
rejected.

 8. Assume that there are 99 voters voting to a
person for selecting chairman’s candidature.
If he secures more than 2/3 votes he should be
declared as chairman otherwise his candidature will
be rejected.

 9. Write a program to display the numbers of a series
1, 3, 9, 27, 81. . . . n by using the for loop.

 10. Write a program to check that entered input data
for the following. Whenever input is non-zero or
 positive display numbers from 1 to that number,
otherwise display message ‘negative or zero’. The
program is to be performed for 10 numbers.

 11. Write a program to check entered data types for
10 times. If a character is entered print ‘Character
is entered’ otherwise ‘Numeric is entered’ for
 numerical values.

M14_KAMT3553_02_SE_C6.indd 215 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

216 Programming in C

 12. Write a program to find the sum of the first hundred
natural numbers. (1+2+3+ . . . +100).

 13. Write a program to display numbers 11, 22, 33. . . , 99
using ASCII values from 48 to 57 in loops.

	14. Create an infinite for loop. Check each value of
the for loop. If the value is odd, display it other-
wise continue with iterations. Print even numbers
from 1 to 100. Use break statement to terminate
the program.

 15. Write a program to show the display as a
rectangle of characters as shown below.

Z
YZY

XYZYX
RXYZYXR

XYZYX
YZY

Z

	16. Write a program to read 10 numbers through the
keyboard and count number of positive, negative
and zero numbers.

	17. Write a nested for loop that prints a 5 × 10
pattern of 0s.

 18. Is it possible to create a loop using the goto
statement? If yes write the code for it.

 19. Write a program to find the triangular number
of a given integer. Fox example triangular of 5 is
(1+2+3+4+5) 15. Use do–while loop.

 20. Write a program to display all ASCII numbers
and their equivalent characters numbers and
symbols. Use do–while loop. User should
prompt every time to press ‘Y’ or ‘N’. If user
presses ‘Y’ display next alphabet otherwise
terminate the program.

 21. Accept any five two numbers. If the first number
is smaller than the second then display sum of
their squares, otherwise sum of cubes.

 22. Evaluate the following series. Use do-while
loop.

 (a) 1+3+5+7. . . . n(b) 1+4+25+36 . . . n
 (c) x+x2/2!+x3/3!+ . . n
 (d) 1+x+x2+x3+. . . . xn

	23. Write a program to display the following, using
do-while loop.

 (a) a+1+b+2+c+3. . . .n, where n is an integer.
 (b) z+y+x. . .+a.
 (c) za+yb+xc. . .+az.

	24. Enter the 10 numbers through the keyboard and
sort them in ascending and descending order,
using do-while loop.

	25. Enter text through the keyboard and display it in
the reverse order. Use do-while loop.

	26. Print multiplication of digits of any number.
Fox example number 235, multiplication to be
5 3 2 = 30. Use do-while loop.

 27. Print square roots of each digit of any number.
Consider each digit as perfect square. For
 example, for 494 the square roots to be printed
should be 2 3 2.

	28. Write a program to read a positive integer
number ‘n’ and generate the numbers in the
following way. If entered number is 3 the output
will be as follows.

 (a) 9 4 1 0 1 4 9
 (b) 9 4 1 0 1 2 3

	29. Write a program to enter two integer values
through the keyboard. Using while loop, per-
form the product of two integers. In case product
is zero (0), loop should be terminated otherwise
loop will continue.

	30. Write a program to enter a single character either
in lower or uppercase. Display its correspond-
ing ASCII equivalent number. Use the while
loop for checking ASCII equivalent numbers for
different characters. When capital ‘E’ is pressed,
the program should be terminated.

	31. Write a program to read a positive integer number
‘n’ and generate the numbers in the following
way. If entered number is 4 the output will be as
follows. OUTPUT: 4! 3! 2! 1! 0 1! 2! 3! 4! 5!.

	32. Write a program to read a positive integer
 number ‘n’ and generate the numbers in the
different ways as given below. If the entered
number is 4 the output will be as follows.

 (a) 2 4 6 8 10 . . . n (provided n is even).
 (b) 1 3 5 7 9. . . . n (provided n is odd).

	33. Write a program to read a positive integer
number ‘n’ and perform the squares of individual
digits. For example n=205 then the output will be
25 0 4.

M14_KAMT3553_02_SE_C6.indd 216 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

Loop Control 217

	34. What would be the output of the given below
programs?

 (a)
 void main()
 {
 while(0)
 {
 printf(“\n Hello”);
 }
 }
 (b)
 void main()
 {
 while(!0)
 {
 printf(“\n Hello”);
 }
 }
 (c)
 void main()
 {
 while(!1)
 {
 printf(“\n Hello”);
 }
 }

 (d)
 void main()
 {
 while(! NULL)
 {
 printf(“\n %s”,“Hello”);
 }
 }
 (e)
 void main()
 {
 while(“ ”)
 {
 printf(“\n %s”,“Hello”);
 }
 }

	35. What will be the output of the below given
program? Attempt this program with other
keywords and functions. List the names of
keywords and functions, which can be used as
arguments in the while loop.

 void main()
 {
 while(main)
 {
 printf(“\n %d”,main);
 }

V Find the bug/s in the following program/s:

1.
 void main()
 {
 int n=1;
 clrscr();
 while(n<10);
 {
 printf(“%d”,n);
 n=n+3;
 }
 getche();
 }

2.
 void main()
 {
 int n;
 clrscr();
 printf(“Enter the number up

 to 8:-”);
 scanf(“%d”,n);
 while(n<9)
 {

 printf(“%d”,);
 n=n+1;
 }
 getche();
 }

3.
 void main()
 {
 int k=1;
 clrscr();
 do;
 {
 printf(“\n %d”,k);
 k=k+1;
 }
 while(k<=5);
 getche();
 }

4.
 void main()
 {

M14_KAMT3553_02_SE_C6.indd 217 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

218 Programming in C

 chr i=65;
 clrscr();
 do
 {
 printf(“ %c”,i)
 i=i+1;
 }
 while(i<=90);
 getche();
 }

5.

 void main()
 {
 int num=678,sum=0,rev=0,digit;
 clrscr();
 do
 {
 digit=num-num\10*10;
 num=num/10;
 rev=rev*10+digit;
 sum=sum+digit;
 }
 while(num>0);
 printf(“\n %d”,rev);
 printf(“\n”);
 printf(“\n %d”,sum);
 getche();
 }

6.

 void main()
 {
 int i,j=1,n=4;
 float sum=1.0;
 clrscr();

 for(i=1;i<=n;i++)
 {
 j=j*i;
 sum=sum+i/j;
 }
 printf(“\n %.2f”,sum);
 getche();
 }

7.

 void main()
 {
 int i=10;
 clrscr();
 do
 {
 printf(“%d”,i);
 i=i-1;
 }
 while(i>0 || i=5);
 getche();
 }

8.
 void main()
 {
 int x=7,y=0,z=7,i;
 clrscr();
 for(i=0;i<=x;i++);
 {
 y=x+i*z;
 printf(“%d”,y);
 }
 getche();
 }

VI Answer the following questions:

	 1. What happens if you create a loop that never
ends?

 2. Is it possible to create a for loop that is never
executed?

 3. What is a loop? Why it is necessary in a
program?

 4. Is it possible to nest while loop within for
loops?

 5. How do you choose between while and for
loops?

 6. What is the difference between (!0) and (!1).
How while loop works with these values?

 7. What is the difference between (1= =! 1) and
(1! =1)?

 8. What is the difference between (! 0) and (! 0)?

 9. What are the values of NULL and ! NULL?

 10. Is it possible to use multiple while statements
with Do statement?

 11. Explain Bohm and Jacopini’s theory.

M14_KAMT3553_02_SE_C6.indd 218 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

Loop Control 219

I True or false:

III Select the appropriate option from the multiple choices given below:

V Find the bug/s in the following program/s:

II Match the following correct pairs given in Group A with Group B:

AnsWers

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
	 1. T 	 2. F 	 3. T 	 4. F 	 5. T

	 6. F 	 7. T 	 8. T 	 9. T 10. T

1.	

Q. Ans. Q. Ans. Q. Ans.
1. C 2. A 3. B

2.	

Q. Ans. Q. Ans. Q. Ans.
1. B 2. C 3. A

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
	 1. a 	 2. a 	 3. a 	 4. a 	 5. a

	 6. a

Q. Ans.
1. Semi-colon at the end of while loop is not expected program runs with this

semi-colon, but nothing appears on screen on execution.

2. & is missing in scanf and n variable in printf statements.

3. Semi-colon is not expected in do.

4. chr should replace with char & semi-colon is missing in printf.

5. Instead of “\” division “/” is expected in digit statement.

6. (float)i/j is expected in sum statement, if correct result is required otherwise the
program gives runs but result given will be wrong.

7. i= =5 is expected.

8. Omit semi-colon from for statement if correct result is required.

M14_KAMT3553_02_SE_C6.indd 219 5/17/2015 9:19:56 AM

https://hkgbooks.blogspot.com

Data Structure:
Array

CHAPTER

Chapter Outline

 7.1 Introduction
 7.2 Array Declaration
 7.3 Array Initialization
 7.4 Array Terminology
 7.5 Characteristics of an Array
 7.6 One-Dimensional Array
 7.7 One-Dimensional Array and Operations
 7.8 Operations with Arrays
 7.9 Predefined Streams
 7.10 Two-Dimensional Array and Operations
 7.11 Three- or Multi-Dimensional Arrays
 7.12 The sscanf() and sprintf() Functions
 7.13 Drawbacks of Linear Arrays

7

M07_KAMT3553_02_SE_C07.indd 220 5/17/2015 9:26:50 AM

https://hkgbooks.blogspot.com

Data Structure: Array 221

7.1 IntroductIon
An array is a very popular and useful data structure used to store data elements in successive memory
locations. More than one element is stored in a sequence, so it is also called a composite data structure.
An array is a linear and homogeneous data structure. An array permits homogeneous data. It means
that similar types of elements are stored contiguously in the memory and that too under one variable
name. It can be combined with a non-homogeneous structure, and a complex data structure can be
created. We know that an array of structure objects can also be useful. An array can be declared of any
standard or custom data type. The array of character (strings) type works somewhat differently from
an array of integers, floating numbers.
 Consider the following example. A variable a having data-type integer is initially assigned some
value and later on its value is changed. Later assigned value to the variable can be displayed.

void main()
{
 int a=2;
 a=4;
 printf(“%d”,a);
}

OUTPUT:
4

 In the above example, the value of a printed is 4. 2 is assigned to ‘a’ before assigning 4 to it. When
we assign 4 to a then the value stored in ‘a’ is replaced with the new value. Hence, ordinary variables
are capable of storing one value at a time. This fact is the same for all the data types. But in numerous
applications variables must be assigned more than one value. This can be obtained with the help of
arrays. An array variable allows the storing of more similar data type elements/values at a time.

7.2 ArrAY dEcLArAtIon
Declaration of a one-dimensional array can be done with data type first, followed by the variable name
and lastly the array size is enclosed in square brackets. Array size should be integer constant and it
must be greater than zero and data type should be valid C data type.
 For example, declaration of one-dimensional array is as follows:
 int a[5]; It tells the compiler that ‘a’ is an integer type of an array and its size is five integers. The
compiler reserves 2 bytes of memory for each integer array element, i.e. 10 bytes are reserved for storing
five integers in the memory. In the same way, an array of differrant data types is declared as follows:

 char ch[10];
 float real[10];
 long num[5];

When we declare a variable, for example:

 int x;

the variable x is declared and the memory location of two bytes is allocated to it and later a single
value can be stored in it as shown in Figure 7.1

 x=4;

M07_KAMT3553_02_SE_C07.indd 221 5/17/2015 9:26:50 AM

https://hkgbooks.blogspot.com

222 Programming in C

 Every variable has a name, a value assigned to it and it
is to be stored in memory location. Hence, from the above,
we can say that only one value is assigned to a variable or
stored.
 The way, we declare one-dimensional array in the same
way and can also declare two-dimensional array. Two-
dimensional array is a table that contains rows and
columns. For Example, int a[3][3]; It informs the compiler
that ‘a’ is an integer type of an array and its size is 9 integers.
This array is a three-by-three matrix. Its details are given in
the two-dimensional array and operations.
 Similarly, one can declare the multi-dimensional array as follows:
datatype arrayname[size1][size2][size3]--------[sizeN];
 For example, the following array declares three-dimensional array:
int a[3][3][3];
 Its details are given in this chapter under three- or multi-dimensional array title.

7.3 ArrAY InItIALIzAtIon
The array initialization can be done as under:

 int a[5]={1,2,3,4,5};

Here, five elements are stored in an array ‘a’. List
of elements initialized is shown within the braces.
The array elements are stored sequentially in sepa-
rate locations. Then, the question arises how to call
individually to each element from this bunch of inte-
ger elements. Reading of the array elements begins
from ‘0’. By indicating the position of elements, one
can retrieve any element of an array. Array elements
are called with array names followed by the element
numbers. Table 7.1 explains the same.

Example:
To store more than one value the programming languages have an in-built data structure called
an array.

1. int num[5];

 In the above declaration, an integer array of five elements is declared. Memories for five
integers, i.e. successive 10 bytes, are reserved for the num array. To initialize the num array
following syntax can be used.

2. int num[5] = {1,2,4,2,5};

 In the above statement, all elements are initialized. It is also possible to initialize individual
element by specifying the subscript number in the square bracket following the array name.
Array elements are accessed as follows:

 num[0]=1;
 num[1]=2;
 num[2]=4;

x 4 6048

Variable
name

Value
Memory
Location

Figure 7.1 Variable mechanisms

Table 7.1 Calling array elements
a[0] refers to 1st element i.e. 1

a[1] refers to 2nd element i.e. 2

a[2] refers to 3rd element i.e. 3

a[3] refers to 4th element i.e. 4

a[4] refers to 5th element i.e. 5

M07_KAMT3553_02_SE_C07.indd 222 5/17/2015 9:26:50 AM

https://hkgbooks.blogspot.com

Data Structure: Array 223

 num[3]=2;
 num[4]=5;

The initialization can be done at the compile time or dynamically at the run time. The above is an example
of compile time initialization. In the statement (2), declaration and
initialization are done at once; in such type of declaration the number
of elements (five) is not necessary to mention in the square bracket [].
The compiler automatically counts the value initialized and as-
sumes the number of elements initialized as the array size.
 In the above array, the element num[0] i.e. 1 is the lowest
bound and num[4] i.e. 5 is the last element. In C and C++, there
is no bound checking. Hence, the programmer has to check it
while accessing or storing elements. Once the array is declared,
its lowest bound cannot be changed but the upper bound can be
expanded. The array name itself is a constant pointer, and there-
fore we cannot modify it. Storing elements in contiguous memory
locations can expand the upper bound.
 The array name itself is a pointer. The array num is pointer to
the first element i.e. num contains address of memory location where element 1 is stored. The address
stored in the array name is called the base address. Figure 7.2 shows the pictorial representation. To
access individual elements, the following syntax is used.

 num[0] refers to the 1
 num[1] refers to the 2
 num[2] refers to the 4
 num[3] refers to the 2
 num[4] refers to the 5

Thus, an array is a collection of elements of the same data type, stored in unique and successive
memory locations.

7.4 ArrAY tErmInoLogY
Size: Number of elements or capacity to store elements in an array is called its size. It is always
mentioned in brackets ([]).

Type: Types refer to data type. It decides which type of element is stored in the array. It also instructs
the compiler to reserve memory according to data type.

Base: The address of the first element (0th) is a base address. The array name itself stores address of
the first element.

Index:  The array name is used to refer to the array element. For example, num[x], num is array
name and x is index. The value of x begins from 0 to onwards depending on the size of the array. The
index value is always an integer value.

Range: Index of an array i.e. value of x varies from lower bound to upper bound while writing or
reading elements from an array. For example, in num[100], the range of index is 0 to 99.

Word: It indicates the space required for an element. In each memory location, computer can store a
data piece. The space occupation varies from machine to machine. If the size of element is more than
word (one byte) then it occupies two successive memory locations. The variables of data type int,
float, long need more than one byte in memory.

1

2

4

2

5

num[0]

num[4]

Figure 7.2 Array of integers

M07_KAMT3553_02_SE_C07.indd 223 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

224 Programming in C

7.5 chArActErIstIcs of An ArrAY
1. The Declaration int a[5] is nothing but creation of five variables of integer types in memory.

Instead of declaring five variables for five values, the programmer can define them in an array.

2. All the elements of an array share the same name, and they are distinguished from one an-
other with the help of the element number.

3. The element number in an array plays a major role for calling each element.

4. Any particular element of an array can be modified separately without disturbing the other
elements.

 int a[5]={1,2,3,4,8};

If a programmer needs to replace 8 with 10, then it need not require changing all other numbers except 8.
To carry out this task, the statement a[4]=10 can be used. Here, other four elements are not disturbed.

5. Any element of an array a[] can be assigned/equated to another ordinary variable or array
variable of its type.

	 Example:

 b= a[2];

 a[2]=a[3];

 (a) In the statement b=a[2] or vice versa, the value of a[2] is assigned to ‘b’, where ‘b’
is an integer.

 (b) In the statement a[2]=a[3] or vice versa, the value of a[2] is assigned to a[3],
where both the elements are of the same array.

 (c) The array elements are stored in continuous memory locations.

6. Array elements are stored in contiguous memory locations.

A program on array initialization and determination of their memory locations is given below:

 7.1 Write a program to display array elements with their addresses.

int main()
{
 int num[5]={1,2,3,2,5};
 clrscr();
 printf(“\n num[0] = %d Address : %u”,num[0],&num[0]);
 printf(“\n num[1] = %d Address : %u”,num[1],&num[1]);
 printf(“\n num[2] = %d Address : %u”,num[2],&num[2]);
 printf(“\n num[3] = %d Address : %u”,num[3],&num[3]);
 printf(“\n num[4] = %d Address : %u”,num[4],&num[4]);
 return 0;
}

OUTPUT:
num[0] = 1 Address : 65516
num[1] = 2 Address : 65518
num[2] = 3 Address : 65520
num[3] = 2 Address : 65522
num[4] = 5 Address : 65524

M07_KAMT3553_02_SE_C07.indd 224 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

Data Structure: Array 225

	 Explanation:
 In the output of the program, elements and their addresses are displayed. Recall that integer

requires two bytes in memory. Hence, the memory locations displayed at the output have
a difference of two. From the above program, it is clear that array elements are stored in
 contiguous memory locations. Figure 7.3 shows the memory location and values stored.

Num[0]

1

65516

Num[1]

2

65518

Num[2]

3

65520

Num[3]

2

65522

Num[4]

5

65524

Figure 7.3 Storage of one-dimensional array

7. Once the array is declared, its lowest boundary cannot be changed but upper boundary can
be expanded. The array name itself is a constant pointer and we cannot modify it. Therefore,
the lowest boundary of an array cannot be expanded. In other words, even if the boundary
exceeds than specified, nothing happens. The compiler throws no errors.

 The reader can execute the following program for verifying the above concept.

 7.2 Write a program to exceed the upper boundary of an array and see the element after expan-
sion of an array.

void main()
{
 int num[5]={1,2,3,2,5};
 num[5]=6;
 clrscr();
 printf (“num[5]=%d”,num[5]);
 getche();
}

OUTPUT:
Num[5]=6

	 Explanation:
 In the above program, array num[5] is declared with array size 5 and it is initialized with 5

elements. In the next statement, 6th element is also initialized and displayed. Hence, we can
say that upper boundary of an array can be expanded.

 8. We know that an array name itself is a pointer. Though it is a pointer, it does not need ‘ ’
operator. The brackets ([]) automatically denote that the variable is a pointer.

 9. All the elements of an array share the same name, and they are distinguished from one
another with the help of the element number.

M07_KAMT3553_02_SE_C07.indd 225 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

226 Programming in C

10. The amount of memory required for an array depends upon the data type and the number of
elements. The total size in bytes for a single dimensional array is computed as shown below:

Total bytes=sizeof(data type) X size of array

11. The operation such as insertion, deletion of an element can be done with the list but cannot
be done with an array. Once an array is created, we cannot remove or insert memory location.
An element can be deleted, replaced but the memory location remains as it is.

12. When an array is declared and not initialized, it contains garbage values. If we declared an
array as static, all elements are initialized to zero. However, the values of static type data
persist and remain in the memory as long as program executes. To overcome this problem,
initialize first element of an array with zero or any number. Remaining all elements are
automatically initialized to zero, provided the initialization is done in the declaration state-
ment of an array. The following program illustrates this.

 7.3 Write a program to initialize the static array and display its elements.

void main()
{
 int num[5]={0},j;
 clrscr();
 for(j=0;j<5;j++)
 printf(“\nnum[%d]=%d”,j,num[j]);
 getche();
}

OUTPUT:
num[0]=0
num[1]=0
num[2]=0
num[3]=0
num[4]=0

	 Explanation:
 In the above program, an array num[5] is declared and the first element is initialized with

zero. The compiler automatically initializes all elements with zero. Using the for loop the
contents of an array are displayed and we can see that all elements have zero values.

7.6 onE-dImEnsIonAL ArrAY
Array elements are stored contiguously in sequence one after the other. The elements of an array are
just arranged in one-dimension. They can be shown in a row or column. Single subscript will be used
in one-dimensional array to represent its elements.
 An example of initialization of an array: - int a[5]; in this initialization of an array is done.
The type of variable is integer; its variable name is a and 5 is the size of the array.
 The elements of the integer array a[5] are stored in contiguous memory locations. It is as-
sumed that the starting memory location is 2000. Each integer element requires 2 bytes. Hence, sub-
sequent element appears after the gap of two locations. Table 7.2 shows the locations of elements of
integer array.

M07_KAMT3553_02_SE_C07.indd 226 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

Data Structure: Array 227

Similarly, the elements of arrays of any data type are stored in contiguous memory location. The only
difference is that the number of locations is different for different data types.

An example is illustrated below on the basis of this point.

 7.4 Write a program to print bytes reserved for various types of data and space required for stor-
ing them in memory using arrays.

Table 7.2 Integer data type and their memory locations
Element A[0] A[1] A[2] A[3] A[4]

Address 2000 2002 2004 2006 2008

void main()
{
 int i[10];
 char c[10];
 long l[10];
 clrscr();
 printf(“The type ‘int’ requires %d Bytes”,sizeof(int));
 printf(“\nThe type ‘char’ requires %d Bytes”,sizeof(char));
 printf(“\nThe type ‘long’ requires %d Bytes”,sizeof(long));
 printf(“\n %d memory locations are reserved for ten ‘int’

elements”,sizeof(i));
 printf(“\n %d memory locations are reserved for ten ‘char’

elements”,sizeof(c));
 printf(“\n %d memory locations are reserved for ten ‘long’

elements”,sizeof(l));
}

OUTPUT:
The type ‘int’ requires 2 Bytes
The type ‘char’ requires 1 Bytes
The type ‘long’ requires 4 Bytes

20 memory locations are reserved for ten ‘int’ elements
10 memory locations are reserved for ten ‘char’ elements
40 memory locations are reserved for ten ‘long’ elements

	 Explanation:
 The sizeof() function provides the size of data type in bytes. In the above example, int,

char and long type of data variables are supplied to this function which gives the results 2,
1 and 4 bytes, respectively. The required number of memory locations for int, char and
long will be 2, 1 and 4. Memory locations required for the arrays = argument of an ar-
ray × sizeof(data type). In the above example, an array int i[10] requires 20
memory locations, since each element requires two memory locations. Memory requirement
for various data types will be as given in Table 7.3.

M07_KAMT3553_02_SE_C07.indd 227 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

228 Programming in C

Character arrays are called strings. There is a slight difference between an integer array and charac-
ter array. In character array, NULL (‘\0’) character is automatically added at the end, whereas in
integer or other types of arrays, no null/character is placed at the end.
 The NULL character acts as the end of the character array. By using this NULL character compiler
detects the end of the character array. When compiler reads the NULL character ‘\0’, there is end
of character array.

Note: Detailed information about strings (character array) is given in another chapter ‘Strings and
Standard functions.’ The explanation about strings is given in brief in this chapter.

Given below is an example of a string.

 7.5 Write a program to display character array with their address.

Table 7.3 Data type and their required bytes
Data	Type Memory	Requirement

char 1 bytes

int 2 bytes

float 4 bytes

long 4 bytes

double 8 bytes

void main()
{
 char name[10]={‘A’,’R’,’R’,’A’,’Y’};
 int i=0;
 clrscr();
 printf(“\n Character Memory Location \n”);
 while(name[i]!=‘\0’)
 {
 printf(“\n [%c]\t\t [%u]”,name[i],&name[i]);
 i++;
 }
}

OUTPUT:
Character Memory Location
 [A] 4054
 [R] 4055
 [R] 4056
 [A] 4057
 [Y] 4058

	 Explanation:
 The elements of an array are stored in contiguous memory locations. In the above example,

elements of one-dimensional array ‘A’,‘R’,‘R’,‘A’,‘Y’ are stored from location 4054 to 4058.

 One-dimensional character array elements will be stored in memory as per Table 7.4

M07_KAMT3553_02_SE_C07.indd 228 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

Data Structure: Array 229

void main()
{
 int sumo=0,sume=0,i=0,odd[5],even[5],a=-1,b=-1;
 clrscr();
 for (i=1;i<=10;i++)
 {
 if(i%2==0)
 even[++a]=i;
 else
 odd[++b]=i;
 }
 printf(“\n\tEven \t\tOdd”);
 for(i=0;i<5;i++)
 {
 printf(“\n\t %d\t\t %d”,even[i],odd[i]);
 sume=sume+even[i];
 sumo=sumo+odd[i];
 }
 printf(“\n\t=====================\n”);
 printf(“Addition: %d %14d”,sume,sumo);
}

OUTPUT:
 Even Odd
 2 1
 4 3
 6 5
 8 7
 10 9
 =============
 Addition: 30 25

Table 7.4 Character array elements and their locations
Array Element No 0 1 2 3 4

Elements A R R A Y

Memory Addresses 4054 4055 4056 4057 4058

Notes: In case a NULL ‘\0’ is initialized in the above example after ‘Y’, the result displayed will
be ‘ARRAY’.

A few programs are provided on one-dimensional array and they are as follows:

 7.6 Write a program to add even and odd numbers from 1 to 10. Store them and display their
results in two separate arrays.

	 Explanation:
 The for loop executes 10 times. In the for loop, the value of loop variable ‘i’ is tested for

‘even’ and ‘odd’ conditions. If the value of ‘i’ is even then it is assigned to array even[]

M07_KAMT3553_02_SE_C07.indd 229 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

230 Programming in C

void main()
{
 int a=0,m=1,i,num[5];
 clrscr();
 for(i=0;i<5;i++)
 {
 printf(“\nEnter Number[%d]:”,i+1);
 scanf(“%d”,&num[i]);
 }
 printf(“\n=================================”);
 for(i=0;i<5;i++)
 {
 if(num[i]%2==0)
 {
 printf(“\n Even Number : %d”,num[i]);
 a=a+num[i];
 }
 else
 {
 printf(“\n Odd Number : %d”,num[i]);
 m=m*num[i];
 }
 }
 printf(“\n=================================”);
 printf(“\n Addition of Even Numbers : %d”,a);
 printf(“\n Product of Odd Numbers :%d”,m);
 printf(“\n=================================”);
}

OUTPUT:
Enter Number[1]: 1
Enter Number[2]: 2
Enter Number[3]: 3
Enter Number[4]: 4
Enter Number[5]: 5
================================
Odd Number : 1
Even Number : 2
Odd Number : 3
Even Number : 4
Odd Number : 5
=================================
Addition of Even Numbers : 6
Product of Odd Numbers : 15
=================================

otherwise to odd[]. Thus, for 10 times this task is performed. Finally, the second for loop
displays both the even[] and odd[] arrays. In the same array, sum of even and odd ele-
ments is calculated and displayed.

 7.7 Write a program to input five numbers through the keyboard. Compute and display the addi-
tion of even numbers and product of odd numbers.

M07_KAMT3553_02_SE_C07.indd 230 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

Data Structure: Array 231

	 Explanation:
 In the above example, five integers are entered through the keyboard. To detect even and

odd numbers mod(%) operation is carried out and remainder of each number is obtained.
If the remainder is 0, then the number is even and added to variable ‘a’. If the remainder is
non-zero then this number is multiplied to ‘m’. Variables ‘a’ and ‘m’ are initialized with 0
and 1, respectively. Both the variables are printed through printf() function which gives
addition of even numbers and product of odd numbers, respectively.

 7.8 Write and display a program to detect the occurrence of a character in a given string.

void main()
{
 static char s[15];
 int i,c=0;
 char f;
 clrscr();
 puts(“Enter a String :”);
 gets(s);
 puts(“Enter a Character to Find :”);
 f=getchar();

 for(i=0;i<=15;i++)
 {
 if(s[i]==f)
 c++;
 }
 printf(“The Character (%c) in a String (%s) occurs %d times.”,f,s,c);
}

OUTPUT:
Enter a String : programmer
Enter a Character to Find : r
The Character (r) in a String (programmer) occurs (3) times.

	 Explanation:
 In this program, the string and a single character are entered through the keyboard. Inside the

for loop, the if statement checks each element of the string for the occurrence of the single
entered character. If the character (‘r’) is found then ‘c’ counter is incremented otherwise
without incrementing the counter loop continuous till ‘i’ reaches to 15. At last the value of
‘c’ gives the total occurrence of the given character.

 7.9 Write a program to display the elements of two arrays in two separate columns and add their
corresponding elements. Display the result of addition in the third column.

void main()
{
 int i,num[]={24,34,12,44,56,17};
 int num1[]={12,24,35,78,85,22};
 clrscr();
 printf(“Element of Array 1st - 2nd Array Addtion\n”);

M07_KAMT3553_02_SE_C07.indd 231 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

232 Programming in C

	 Explanation:
 In the above program, two integer arrays are initialized and the corresponding elements of

arrays are added through a simple arithmetic operation.

 7.10 Write a program to enter a character and integer data type. Use the two-dimensional array.
Perform and display the addition of three numbers.

Tips: The Unsigned character data type is capable of performing mathematical operations on
numbers from 1 to 255.

 for(i=0;i<=5;i++)
 {
 printf(“\n\t\t %d + %d = \t%d”,num[i],num1[i],num[i]+num1[i]);
 }
}

OUTPUT:
Element of Array 1st - 2nd Array Addition
 24 + 12 = 36
 34 + 24 = 58
 12 + 35 = 47
 44 + 78 = 122
 56 + 85 = 141
 17 + 22 = 39

void main()
{
 static unsigned char l,r,i,real[3][5],ima[3][5];
 long c;
 clrscr();
 for(l=0;l<3;l++)
 {
 printf(“Enter Number[%d] :”,1+l);
 scanf(“%ld”,&c);
 r=c/255;
 i=c%255;
 real[l][5]=r;
 ima[l][5]=i;
 }

 c=0;
 for(l=0;l<3;l++)
 c=c+real[l][5]*255+ima[l][5];

 printf(“\nSum of 3 Numbers :%3ld”,c);
 getch();
}

OUTPUT:
Enter Number [1] : 5
Enter Number [2] : 4
Enter Number [3] : 3
Sum of 3 Numbers : 12

M07_KAMT3553_02_SE_C07.indd 232 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

Data Structure: Array 233

	 Explanation:
 The unsigned character data type ranges from 0 to 255. In the above example, three numbers

are entered. They are divided and the mod operation is carried out with 255. If the numbers
are less than 255 neither division nor mod operations are carried out. Their sum is evalu-
ated and displayed on the screen. In case the entered numbers are greater than 255, real and
 imaginary parts are computed and stored in the separate arrays. To obtain the whole number,
the real part is multiplied with 255 and added to imaginary part.

 7.11 Write a program to display names of days of a week using single-dimensional array having
length of 7. (A week having seven days).

void main()
{
 int day[7],i;
 clrscr();
 printf(“\nEnter numbers between 1 to 7 :\n”);

 for(i=0;i<=6;i++)
 scanf(“%d”,&day[i]);

 for(i=0;i<=6;i++)
 switch(day[i])
 {
 case 1:
 printf(“\n%dst day of week is Sunday”,day[i]);
 break;

 case 2:
 printf(“\n%dnd day of week is Monday”,day[i]);
 break;

 case 3:
 printf(“\n%drd day of week is Tuesday”,day[i]);
 break;

 case 4:
 printf(“\n%dth day of week is Wednesday”,day[i]);
 break;

 case 5:
 printf(“\n%dth day of week is Thursday”,day[i]);
 break;

 case 6:
 printf(“\n%dth day of week is Friday”,day[i]);
 break;

 case 7:
 printf(“\n%dth day of week is Saturday”,day[i]);
 break;

 default :
 printf(“\n %dth is Invalid day”,day[i]);
 }
}

OUTPUT:
Enter numbers between 1 to 7 : 1 3 2 4 5 7 8

M07_KAMT3553_02_SE_C07.indd 233 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

234 Programming in C

	 Explanation:
 In the above example, depending upon the value entered by the user, the switch()

 statement decides which day to print.

 7.12 Write a program to display the contents of two arrays. The 1st array should contain the
string and 2nd numerical numbers.

1st day of week is Sunday
3rd day of week is Tuesday
2nd day of week is Monday
4th day of week is Wednesday
5th day of week is Thursday
7th day of week is Saturday
8th is invalid day

void main()
{
 char city[6]={‘N’,’A’,’N’,’D’,’E’,’D’};
 int i,pin[6]={4,3,1,6,0,3};
 clrscr();

 for(i=0;i<6;i++)
 printf(“%c”,city[i]);

 printf(“-”);
 for(i=0;i<6;i++)
 printf(“%d”,pin[i]);
}

OUTPUT:
NANDED – 431603

	 Explanation:
 In the above example, two arrays of different data types are printed through printf()

function. The two for loops are used for printing two arrays containing the first string and
second numerics.

 7.13 Write a program to display the number of days of different months of year.

include <process.h>
void main()
{
 int month[12]={31,28,31,30,31,30,31,31,30,31,30,31};
 int i;
 clrscr();

M07_KAMT3553_02_SE_C07.indd 234 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

Data Structure: Array 235

	 Explanation:
 In the above example, one-dimensional array month[12] is initialized with the number

of days of different months of a year from 1 to 12 as per their order. In prinf() function,
number of days of the months are printed. The value of ‘i’ is incremented by one for obtaining
the increasing order of the month of a year.

 7.14 Write a program to display the number of days of a given month of a year.

 for(i=0;i<=11;i++)
 {
 printf(“\n Month [%d] of a year contains %d days.”,i+1,month[i]);
 printf(“\n”);
 }
 getche();
}

OUTPUT:
Month [1] of a year contains 31 days.
Month [2] of a year contains 28 days.
Month [3] of a year contains 31 days.
Month [4] of a year contains 30 days.
Month [5] of a year contains 31 days.
Month [6] of a year contains 30 days.
Month [7] of a year contains 31 days.
Month [8] of a year contains 31 days.
Month [9] of a year contains 30 days.
Month [10] of a year contains 31 days.
Month [11] of a year contains 30 days.
Month [12] of a year contains 31 days.

include <process.h>
void main()
{
 int month[12]={1,3,5,7,8,10,12,4,6,9,11,2};
 int i,mn;
 clrscr();
 printf(“Enter Number of Month :”);
 scanf(“%d”,&mn);

 for(i=0;i<=11;i++)
 {

 if(mn==month[i])
 goto compare;
 }

 printf(“\n Invalid Month”);
 exit(1);

 compare:;

M07_KAMT3553_02_SE_C07.indd 235 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

236 Programming in C

	 Explanation:
 This program is slightly different as compared to the last one. The numbers of days of dif-

ferent months of a year are sorted. For example, first seven (1,3,5,7,8,10,12) elements of an
array have month numbers having 31 days, next four 30 days and last one 28 days. The user
enters the month number and if statement checks where this month number appears in the
array. Whenever there is a match control goes to the compare statements. The if statements
print the number of days depending upon the conditions stated as above.

 7.15 Write a program to find the average sales of an item out of 12 months sale.

 if(i+1==12)
 printf(“Month (%d) Contains 28 days.”,month[i]);
 if(i+1<8)
 printf(“Month (%d) Contains 31 days.”,month[i]);
 if(i+1>7 && i+1!=12)
 printf(“Month (%d) Contains 30 days.”,month[i]);
 getche();
}

OUTPUT:
Enter Number of Month : 2
Month (2) Contains 28 days.

void main()
{
 float sum=0,avg=0;
 int sale;
 int item[12];
 clrscr();
 printf(“\tEnter Month No.-Sale of an Item/month\n”);
 for(sale=0;sale<=11;sale++)
 {
 printf(“\t\t %d =”,sale+1);
 scanf(“%d”,&item[sale]);
 }

 for(sale=0;sale<=11;sale++)
 sum=sum+item[sale];
 avg=sum/12;
 printf(“\n\t Average Sale of an item /month=%f”,avg);
}

OUTPUT:
Enter Month No.-Sale of an Item/month
 1 = 125
 2 = 225
 3 = 325
 4 = 425
 5 = 525
 6 = 625

M07_KAMT3553_02_SE_C07.indd 236 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

Data Structure: Array 237

	 Explanation:
 In the above program, sales of 12 months are entered and stored in an array item[12].

By using the for loop the sum of sales of 12 months is calculated. Average of sales is then
 computed and the result is displayed.

 7.16 Write a program to calculate and display the total cost of four models of Pentium PCs. Use
the single-dimension arrays for PC codes, their price and quantity available.

 7 = 725
 8 = 825
 9 = 925
 10 = 500
 11 = 600
 12 = 700
Average Sale of an item /month= 543.750000

void main()
{
 int i,pccode[4]={1,2,3,4};
 long t=0,price[4]={25000,30000,35000,40000};
 int stock[4]={25,20,15,20};
 clrscr();
 printf(“\t Stock & Total Cost Details \n”);
 printf(“=======================================\n”);
 printf(“Model\t Qty.\tRate (Rs.) Total Value”);
 printf(“\n=======================================”);
 for(i=0;i<=3;i++)
 {
 printf(“\nPentium%d %d %8ld %15ld”,pccode[i],stock[i],price[i],

price[i]*stock[i]);
 t=t+price[i]*stock[i];
 }
 printf(“\n=======================================\n”);
 printf(“Total Value of All PCs in Rs. %ld”,t);
 printf(“\n=======================================\n”);
}

OUTPUT:
Stock & Total Cost Details
=======================================
Model Qty. Rate (Rs.) Total Value
=======================================
Pentium1 25 25000 625000
Pentium2 20 30000 600000
Pentium3 15 35000 525000
Pentium4 20 40000 800000
=======================================
Total Value of All PCs in Rs.2550000
======================================

M07_KAMT3553_02_SE_C07.indd 237 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

238 Programming in C

	 Explanation:
 A character array and integer variable are initialized. Array always begins with element

 number 0. In case if ‘i’ is not initialized with 0 result provides garbage value. Standard
 stdout() function prints the string on console. Here, the string is ‘C is Easy’.

7.7 onE-dImEnsIonAL ArrAY And opErAtIons
We learned how to declare, initialize and access the array elements. One-dimensional array elements
may be shown in one row. So far, the examples, we discussed is of one-dimensional array.

	 Example:

 int num[5]; // one dimensional array

One can perform numerous operations on elements of an array and the same are explained together
with the following programs. We will learn how to traverse, insert, delete and display elements in the
array during program execution.

 	Traversing: The operation of displaying or listing all elements of an array is called traversing.
The following program explains traversing with one-dimensional array.

	 Explanation:
 Here, in the above program, three integer arrays pccode[], price[] and stock[]

are initialized. After this the for loop is used for finding the total value of the available
stock of each model. The result is printed by using simple multiplication of price[] and
stock[]. This product is then added to variable ‘t’, which is the total value. The for loop
executes four times. At the end, variable ‘t’ gives us the total cost of all PCs. Total cost is
printed with printf() statement.

 7.17 Write a program to display the given message by using putc() and stdout() functions.

void main(void)
{
 char msg[] = “C is Easy”;
 int i = 0;
 clrscr();
 while(msg[i])
 putc(msg[i++], stdout);
}

OUTPUT:
C is Easy

M07_KAMT3553_02_SE_C07.indd 238 5/17/2015 9:26:51 AM

https://hkgbooks.blogspot.com

Data Structure: Array 239

	 Explanation:
 In the above program, an array num[] is declared. The first for loop with the help of

scanf() statement reads the elements and places in the array. The element position is
indicated by the loop variable j. Same procedure is applied for displaying elements. The
printf() statement displays the elements and addresses on the screen.

 From Figure 7.4, one can see that one-dimensional arrays are stored one after another in sequence
in the memory.
 In an array, we can insert, delete or add any element but we cannot insert or delete the memory
location. We can change only values.

void main()
{
 int num[5],j;
 clrscr();
 printf(“\n Enter five elements :”);
 for(j=0;j<5;j++)
 scanf(“%d”,&num[j]);
 printf(“\n Elements Address”);
 for(j=0;j<5;j++)
 printf(“\n%d %u”,num[j],&num[j]);
 getche();
}

OUTPUT:
Enter five elements: 4 6 4 2 1

Elements Address
4 65516
6 65518
4 65520
2 65522
1 65524

65516

4 6 4 2 1

65518 65520 65522 65524

Base Address

Figure 7.4 Array elements in memory

 7.18 Write a program to read and display the elements of an array.

M07_KAMT3553_02_SE_C07.indd 239 5/17/2015 9:26:52 AM

https://hkgbooks.blogspot.com

240 Programming in C

void main()
{
 int num[20]={0},j,k,n,p,t;
 clrscr();
 printf(“\n Enter number of elements :”);
 scanf(“%d”,&n);
 printf(“\n Enter elements :”);
 for(j=0;j<n;j++)
 scanf(“%d”,&num[j]);
 printf(“\n Elements are :”);
 for(j=0;j<n;j++)
 printf(“\n %d %u”,num[j],&num[j]);
 printf(“\n Enter element number to delete :”);
 scanf(“%d”,&p);
 p–-;
 for(j=0;j<n;j++)
 {
 if(j>=p)
 num[j]=num[j+1];
 }
 for(j=0;j<n;j++)
 if(num[j]!=0)
 printf(“\n %d %u”,num[j], &num[j]);
 getche();
}

OUTPUT:
Enter number of elements: 4

Enter elements: 5 4 1 2

7.8 opErAtIons WIth ArrAYs

Figure 7.5 shows frequently performed operations with
arrays.

 (i) Deletion

 (ii) Insertion

 (iii) Searching

 (iv) Merging

 (v) Sorting

(i) Deletion: This operation involves deleting specified
elements from an array. Now consider the following
programs.

 7.19 Write a program to delete specified element from an array and rearrange the elements.

Array

Deletion

Insertion

Searching

Merging

Sorting

Figure 7.5 Operations with arrays

M07_KAMT3553_02_SE_C07.indd 240 5/17/2015 9:26:52 AM

https://hkgbooks.blogspot.com

Data Structure: Array 241

Elements are:
5 65482
4 65484
1 65486
2 65488

Enter element number to delete: 3
5 65482
4 65484
2 65486

	 Explanation:
 In the above program, an array num[20] is declared. The program asks for the number of

elements to be entered. User has to enter the following input.

 (i) Number of elements to be entered and integers.

 (ii) Element number to be erased from an array.

The first for loop and scanf() statement reads numbers from keyboard and places in the array.
In the second for loop onwards, the position of an element number is to be erased, the next array
element is replaced with the previous one. Thus, the specified element is removed from an array. The
third for loop and printf() statement display the elements of an array. You can see in the output
that the third memory location is the same only if its contents are changed (see Figure 7.6 for view).

(a) Original Array

5

4

1

2

5

4

1

2

5

4

2

(b) Shifting one
element up

(c) After deletion

Figure 7.6 Deletion in steps

(ii) Insertion: This operation is used to insert an element at a specified position in an array. Consider
the following program.

 7.20 Write a program to insert an element at a specified position in an array.

void main()
{
 int num[20]={0},j,k,n,p,t,s;
 clrscr();

M07_KAMT3553_02_SE_C07.indd 241 5/17/2015 9:26:52 AM

https://hkgbooks.blogspot.com

242 Programming in C

	 Explanation:
 This program is somewhat like previous program. Here, an element is inserted. The array

elements are shifted to the next location and at a specified position and a space is created
as shown in Figure 7.7 (b); the new element is inserted as shown in Figure 7.7 (c). Here,
you can also see that though we inserted a new element, the memory location of the second
 element is the same (65452). Once again, it is proved that in array operation only contents of
memory can change but the actual addresses remain as it is. The address of the first element,
i.e. num[0] (65450), is called the base address. This address can also be stored in another
pointer and array elements can be accessed. The next program is illustrated in this regard.

 printf(“\n Enter number of elements :”);
 scanf(“%d”,&n);
 printf(“\n Enter elements :”);
 for(j=0;j<n;j++)
 scanf(“%d”,&num[j]);
 printf(“\n Elements and their locations are :”);
 for(j=0;j<n;j++)
 printf(“\n%d %u”,num[j],&num[j]);
 printf(“\n Enter element and position to insert at :”);
 scanf(“%d %d”,&s,&p);
 p–-;
 for(j=n;j!=p;j–-)
 num[j]=num[j-1];
 num[j]=s;
 for(j=0;j<=n;j++)
 printf(“\n %d %u”,num[j],&num[j]);
 getche();
}

OUTPUT:
Enter number of elements : 4
Enter elements: 1
2
3
4
Elements and their locations are:
1 65450
2 65452
3 65454
4 65456
Enter element and position to insert at: 9 2
1 65450
9 65452
2 65454
3 65456
4 65458

M07_KAMT3553_02_SE_C07.indd 242 5/17/2015 9:26:52 AM

https://hkgbooks.blogspot.com

Data Structure: Array 243

void main()
{
 int *p,num[5]={4,5,6,7,8},j;
 clrscr();
 p=num;
 for(j=0;j<5;j++)
 printf(“\n%d %u”,*(p+j),(p+j));
 getche();
}

OUTPUT:
4 65486
5 65488
6 65490
7 65492
8 65494

(a) Original array (b) Insertion
element (step 1)

1

2

3

4

1

2

3

4

1

9

2

3

4

(c) after insertion

Figure 7.7 Insertion steps

 7.21 Write a program to display one-dimensional array using integer pointer.

	 Explanation:
 In the above program, an integer array num[] is declared and initialized. In the same state-

ment, pointer p and integer variable j are declared. The base address is assigned to pointer p.
While assigning base address, it is enough to write the name of an array, and it is optional to
write subscripts number, i.e. num[0][0]. The for loop executes five times and the value
of j varies from 0 to 4. First time 0 is added to base address and there is no change in the
address. Hence, 1st element is displayed. In the second iteration, one is added to the base ad-
dress and it takes the next successive address and 2nd element is displayed. Same procedure
is continued and array elements are displayed. Figure 7.8 simulates what exactly takes place.

 In the above figure, the first line of boxes contains values, second contains memory addresses and
the third contains loop variable values as used in the last program. When the value of a loop variable
is added to the base address, we get the successive memory address and values stored in them can be
displayed.

M07_KAMT3553_02_SE_C07.indd 243 5/17/2015 9:26:53 AM

https://hkgbooks.blogspot.com

244 Programming in C

 In this example, the base address is 65486 and the address gets incremented by 2 due to integers.
 For example, at following locations the data observed is as follows:

(65486)=4

(65488)=5

(65490)=6

(65492)=7

(65494)=8

(iii) Searching: An array element can be searched. The process of seeking specific elements in an ar-
ray is called searching.

(iv) Merging: Merging of two arrays is an important operation with an array. The elements of two
arrays are merged into a single one. The easier way of merging two arrays is first copy all elements of
one array into third one and then copy all elements of the second array into the third one. We can also
merge in alternate order as shown in the following program. Figure 7.9 indicates the merging of two
arrays. One should take into account the following points:

 (i) Elements of one array can be appended to end of the second array.

 (ii) Elements of two arrays can be merged in alternate order.

 (iii) The size of resulting array must be more than the size of the two arrays.

 7.22 Write a program to merge two arrays into third one. Display the contents of all the three arrays.

4

65486

5

65488

6 7 8

65490 65492 65494

0 1 2 3 4

65486 Base address

Figure 7.8 Accesses through base address

void main()
{
 int j,h=0,k=0;
 int x[4]={1,2,3,4};
 int y[4]={5,6,7,8};
 int z[8];
 clrscr();
 printf(“\n Array 1:-”);

 for(j=0;j<4;j++)
 printf(“%d”,x[j]);

M07_KAMT3553_02_SE_C07.indd 244 5/17/2015 9:26:53 AM

https://hkgbooks.blogspot.com

Data Structure: Array 245

	 Explanation:
 In the above program, three integer arrays are declared and initialized. The first two for

loops are used to view the elements of arrays X and Z by transverse process. The while
loop is used to execute until the condition is true. The if() statement checks the condition
and accordingly if and else blocks are executed. These statements also fetch element
from both arrays placed into array 3 (see Figure 7.9).

 printf(“\n Array 2:-”);
 for(j=0;j<4;j++)
 printf(“%d”,y[j]);

 j=0;

 while(j<8)
 {
 if(j%2==0) z[j]=x[k++];
 else z[j]=y[h++];
 j++;
 }
 printf(“\n Array 3:”);
 for(j=0;j<8;j++)
 printf(“%d”,z[j]);
 getche();
}

OUTPUT:
Array 1:- 1 2 3 4
Array 2:- 5 6 7 8
Array 3: 1 5 2 6 3 7 4 8

1

2

3

4

5

6

7

8

1

5

2

6

3

7

4

8

Figure 7.9 Merging two arrays

(v) Sorting: Arranging elements in a specific order either in ascending or in descending order is known
sorting. Sorting is a very important operation and compulsorily used in database application programs.
Let us study the following program, which sorts an array of integers, and store them in another array.

M07_KAMT3553_02_SE_C07.indd 245 5/17/2015 9:26:53 AM

https://hkgbooks.blogspot.com

246 Programming in C

	 Explanation:
 In the above program, an integer array is declared and five numbers are entered. The sum of

all the numbers is taken. Using nested loop, every number of an array is compared from one
to s (s=sum of all numbers). The if statement checks every array element with the value of
s and displays number in the ascending order. The sorting can be done in various ways. The
above is the simplest way, but consumes more time for sorting.

7.9 prEdEfInEd strEAms
Following are the stream functions:

 (i) stdin()
 (ii) stdout()
 (iii) stderr()

 When C program is executed, a few ‘files’ are automatically opened by the system for use by the
program. Constant FILE pointers recognize these files. Streams stdin, stdout and stderr
are defined in the standard I/O include files. These are macros. Their details are illustrated in the chap-
ter Preprocessor Directives.

 (i) stdin:

 The file pointer stdin identifies the standard input text and it is associated with the terminal.
All standard I/O functions perform input and do not take a FILE pointer as an argument and get their
input from stdin.

 7.23 Write a program to enter integer elements and sort them in ascending order.

void main()
{
 int num[5],j,k,s=0;
 clrscr();
 printf(“\n Enter five Elements :”);

 for(j=0;j<5;j++)
 {
 scanf(“%d”,&num[j]);
 s=s+num[j];
 }

for(k=0;k<s;k++)
 {
 for(j=0;j<5;j++)
 {
 if(num[j]==k)
 printf(“%d”,num[j]);
 }
 }
}

OUTPUT:
Enter five Elements: 5 8 9 7 2
2 5 7 8 9

M07_KAMT3553_02_SE_C07.indd 246 5/17/2015 9:26:53 AM

https://hkgbooks.blogspot.com

Data Structure: Array 247

	 Explanation:
 In the above program, two for loops are used. The first for loop reads input characters

from the keyboard and stores in an array ch[11] by using stdin standard function. The
second for loop displays the string using stdout standard function.

 7.25 Write a program to sort the given strings alphabetically.

 (ii) stdout: Similarly, it is used for outputting the text. It is a standard output stream.

 (iii) stderr: It is an output stream in the text mode. It is a standard error stream.

 7.24 Write a program to read the text through keyboard and display it by using stdin and
stdout streams.

void main(void)
{
 char ch[11];
 int i;
 clrscr();
 printf(“Input a Text:”);
 for(i=0;i<10;i++)
 ch[i]=getc(stdin);

 printf(“The Text inputted was”);

 for(i=0;i<10;i++)
 putc(ch[i],stdout);
}

OUTPUT:
Input a Text: Hello World
The text inputted was Hello World

include <ctype.h>
void main()
{
 int i,j;
 char text[30];
 clrscr();
 printf(“Enter Text Below :”);
 gets(text);
 clrscr();

 printf(“Sorted Text Below :\n”);
 for(i=65;i<=90;i++)
 {
 for(j=0;j<30;j++)
 {
 if(text[j]==toupper(i) || text[j]==tolower(i))
 printf(“%c”,text[j]);
 }
 }
}

M07_KAMT3553_02_SE_C07.indd 247 5/17/2015 9:26:53 AM

https://hkgbooks.blogspot.com

248 Programming in C

Tips: The tolower and toupper are the ‘C’ functions for conversion from lower to upper or vice versa
or convert numerical to its ASCII equivalent.For initializing these functions header file ctype.h is
to be included

	 Explanation:
 ASCII equivalents of alphabets are used to sort the given string. The standard functions toup-

per() and tolower() in the if statement are used to ignore the case; i.e. capitals or small
letters are treated the same. If character value given by for loop ‘i’ and string text [] value
denoted by for loop ‘j’ are the same that value gets printed, because the value of character sup-
plied by the outer for loop is taken alphabetically. Hence, characters when matched get printed.

 7.26 Write a program to arrange the numbers in increasing and decreasing order (ascending and
descending order) using loops.

OUTPUT:
Enter Text Below :

Hello

Sorted Text Below :
Ehllo

void main()
{
 int i,j,sum=0,a[10];
 clrscr();
 printf(“Enter ten numbers :”);

 for(i=0;i<10;i++)
 {
 scanf(“%d”,&a[i]);
 sum=sum+a[i];
 }

 printf(“Numbers In Ascending Order :”);

 for(i=0;i<=sum;i++)
 {
 for(j=0;j<10;j++)
 {
 if(i==a[j])
 printf(“%3d”,a[j]);
 }
 }
 printf(“\nNumbers In Descending Order :”);
 for(i=sum;i>=0;i–-)
 {
 for(j=0;j<10;j++)
 {
 if(i==a[j])
 printf(“%3d”,a[j]);
 }
 }
}

M07_KAMT3553_02_SE_C07.indd 248 5/17/2015 9:26:53 AM

https://hkgbooks.blogspot.com

Data Structure: Array 249

void main()
{
 int i,j,n,num[10],temp;
 clrscr();
 printf(“Enter how many numbers to sort :”);
 scanf(“%d”,&n);
 for(i=0;i<n;i++)
 {
 printf(“Enter numbers # %2d:”,i+1);
 scanf(“%d”,&num[i]);
 }
 printf(“The Numbers Entered through keyboard \n”);
 for(i=0;i<n;i++)
 printf(“%4d”,num[i]);
 for(i=0;i<n-1;i++)
 {
 for(j=i+1;j<n;j++)
 {
 if(num[i]>num[j])
 {
 temp=num[i];
 num[i]=num[j];
 num[j]=temp;
 }
 }
 }
 printf(“\n The Numbers in ascending order \n”);
 for(i=0;i<n;i++)
 printf(“%4d”,num[i]);
 getch();
}

OUTPUT:
Enter ten numbers : 5 2 1 4 7 9 10 12 9 3

Numbers In Ascending Order : 1 2 3 4 5 7 9 9 10 12
Numbers In Descending Order: 12 10 9 9 7 5 4 3 2 1

	 Explanation:
 In the above program, 10 numbers are entered through the keyboard in an array a[10]. In

the same loop, their sum is performed. The outer loop executes from 0 to variable ‘sum’.
Here, ‘sum’ variable contains addition of all the 10 entered numbers. The inner loop checks
all the values of an array a[10] with the current value of outer loop. The if statement
checks the value of outer loop with the entire array, when it finds match number gets printed.
The outer loop continues till it reaches the value of variable ‘sum’. The outer loop is in as-
cending order. So the elements of an array a[10] are printed in the ascending order. For
descending order, the outer for loop is made descending.

OR

 7.27 Write a program to sort the numbers in ascending order by comparison method.

M07_KAMT3553_02_SE_C07.indd 249 5/17/2015 9:26:53 AM

https://hkgbooks.blogspot.com

250 Programming in C

	 Explanation:
 Here, sorting of numbers is made through the exchange method. The element number given

by the outer for loop of an array num [10] is compared with all the other elements of
the same array. If the first element is larger than the successive element, the larger value is
assigned to variable ‘temp’(temp=num[i];) and in place of larger value, smaller value
is replaced (num [i]=num[j];). In place of smaller value, the value of ‘temp’ vari-
able (which is larger) is replaced (num[j]=temp;). Thus, the array elements in ascending
order are obtained using the above program.

 7.28 Write a program to evaluate the following series. The series contains the sum of square of num-
bers from 1 to ‘n’. Store result of each term in an array. Calculate the value of ‘s’ using an array
/* s= 12+22+32+42 ...n2 */.

OUTPUT:
Enter how many numbers to sort : 5
Enter numbers # 1: 8
Enter numbers # 2: 3
Enter numbers # 3: 2
Enter numbers # 4: 1
Enter numbers # 5: 9

The Numbers Entered through keyboard
8 3 2 1 9
The Numbers in ascending order
1 2 3 8 9

include <math.h>
void main()
{
 static int sqr[15];
 int i,n,s=0;
 clrscr();
 printf(“Enter value of n:”);
 scanf(“%d”,&n);

 for(i=0;i<n;i++)
 sqr[i]=pow(i+1,2);

 for(i=0;i<n;i++)
 {
 printf(“%d\n”,sqr[i]);
 s=s+sqr[i];
 }
 printf(“Sum of square : %d”,s);
}

OUTPUT:
Enter value of n: 4
1
4
9
16
Sum of square : 30

M07_KAMT3553_02_SE_C07.indd 250 5/17/2015 9:26:53 AM

https://hkgbooks.blogspot.com

Data Structure: Array 251

	 Explanation:
 The above program evaluates squares up to ‘n’ numbers. The value of ‘n’ is entered through

the keyboard. Square of each number is stored in an array sqr[15] and their sum is calcu-
lated. Final result is displayed.

7.10 tWo-dImEnsIonAL ArrAY And opErAtIons
Two-dimensional arrays can be thought of rectangular display of elements with rows and columns. Consid-
er the following example int x[3][3]; The two-dimensional array can be declared as in Figure 7.10.

x[0][0]
x[0][1]
x[0][2]
x[1][0]
x[1][1]
x[1][2]
x[2][0]
x[2][1]
x[2][2]

Base Address

Figure 7.11 Storage of two-dimensional array

Column0 Column1 Column2

Row0 x[0][0] x[0][1] x[0][2]

Row1 x[1][0] x[1][1] x[1][2]

Row2 x[2][0] x[2][1] x[2][2]

Row 0

Row 1

Row 2

[0][0] [0][1] [0][2]

[1][0] [1][1] [1][2]

[2][0] [2][1] [2][2]

Figure 7.10 Two-dimensional array

 The arrangement of array elements shown in Figure 7.10 is only for the sake of understanding.
Actually, the elements are stored in the contiguous memory locations. The two-dimensional array is a
collection of two one-dimensional arrays. The meaning of the first argument is in x [3][3] means num-
ber of rows, i.e. the number of one-dimensional array and the second argument indicate the number
of elements. The x[0][0] means the first element of the first row and column. In one row, the row
number remains the same and the column number changes. The number of rows and columns is called
the range of an array. A two-dimensional array clearly shows the difference between logical assump-
tion and physical representation of the data. The computer memory is linear and any type of an array
may be one, two or multi-dimensional, it is stored in the continuous memory location (Figure 7.11).

M07_KAMT3553_02_SE_C07.indd 251 5/17/2015 9:26:54 AM

https://hkgbooks.blogspot.com

252 Programming in C

	 Explanation:
 From the above program’s output, you can see that the memory address displayed is in sequence

and it is true that the elements of two-dimensional array are stored in successive memory
 locations. The one-dimensional array can be accessed using a single loop. However, for two-
dimensional array two loops are required for row and column. The inner loop helps to access
the rowwise elements and outer loop changes the row number. Like, one-dimensional array
base address of an array can be stored in pointer. Consider the following program:

 7.30 Write a program to assign base address of two-dimensional array to pointer and display the
elements.

 7.29 Write a program to demonstrate the use of two-dimensional array.

void main()
{
 int i,j;
 int a[3][3]={1,2,3,4,5,6,7,8,9};
 clrscr();
 printf(“\n Array elements and address”);
 printf(“\n\t Col-0 Col-1 Col-2”);
 printf(“\n\t ====== ====== ======”);
 printf(“\nRow0”);
 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 printf(“%d [%u]”,a[i][j],&a[i][j]);
 printf(“\nRow%d”,i+1);
 }
 printf(“\r”);
}

OUTPUT:
Array elements and address
 Col-0 Col-1 Col-2
 ====== ====== ======
Row0 1 [65508] 2 [65510] 3 [65512]
Row1 4 [65514] 5 [65516] 6 [65518]
Row2 7 [65520] 8 [65522] 9 [65524]

#include<stdio.h>
#include<conio.h>
void main()
{
 int *p,num[2][2]={4,5,6,7},j;
 clrscr();
 p=&num[0][0];
 for(j=0;j<4;j++)

M07_KAMT3553_02_SE_C07.indd 252 5/17/2015 9:26:54 AM

https://hkgbooks.blogspot.com

Data Structure: Array 253

	 Explanation:
 The above program is the same as the last one. But the point to note here is that to store base

address of two-dimensional array, it is not only enough to mention array, in addition subscript
number and address operation also should be preceded. Then compiler accepts the statement;
otherwise the compiler flags an error message. For one-dimensional array an array name is
sufficient but onwards we have to mention element number with address operator.

7.10.1 | Insert operation with two-dimensional Array

We have studied the example of insertion of element with one-dimensional array. We are also aware of
the fact how pointers can be used to access array elements. The following program gives you an idea
of insert operation with two-dimensional array.

 7.31 Write a program to illustrate insert operation with two-dimensional array.

 printf(“ %d %u\n”,*(p+j),unsigned(p+j));
 getch();
}

OUTPUT:
4 65518
5 65520
6 65522
7 65524

void main()
{
 int num[5][5]={0,0},j,*p,at,e,n;
 clrscr();
 printf(“\n Enter how many elements (<=25) :”);
 scanf(“%d”,&n);
 p=&num[0][0];

 for(j=0;j<n;j++)
 scanf(“%d”,p++);
 p=&num[0][0]; printf (“\n”);

 for(j=0;j<n;j++,p++)
 printf(“%2d”,*p);

 printf(“\n Enter a number & position to insert :”);
 scanf(“%d %d”,&e,&at);

 for(j=n;j>=at;j–-)
 {
 p=(p-1);
 p–-;
 }

M07_KAMT3553_02_SE_C07.indd 253 5/17/2015 9:26:54 AM

https://hkgbooks.blogspot.com

254 Programming in C

	 Explanation:
 In all types of array, one-, two- and three-dimensional elements are stored in successive

memory locations. A pointer is used to get successive memory location of memory. In this
way, elements of an array can be accessed, changed or replaced. For all this, we require only
the base address of the array that is to be assigned to pointer.

 Consider the statement p=&num [0][0]; used to store the base address (address of
0th element of the array) of an array. Later in the program, we need not access the array by its
name and corresponding row, column numbers. The total capacity of array of storing element
is 25 as per the declaration. The user is asked to enter the number of elements. The entered
value is stored in variable n through the scanf() statement. Thus, using loops, values are
repetitively entered and displayed.

 The user is again asked to enter a number and position in the array where the element is to be
inserted. These values are stored in variables (scanf (“%d %d”,&e,&at);) variables e and at.

 *p=e;
 p=&num[0][0];

 for(j=0;j<=n;j++,p++)

 printf(“%2d”,*p);
}

OUTPUT:
Enter how many elements (<=25): 5
1 2 3 4 5

1 2 3 4 5

Enter a number & position to insert: 8 3
1 2 8 3 4 5

for(j=n;j>=at;j–-)

{

 p=(p-1);

 p–-;

}

Using the for loop the elements are shifted to the next position up to the value of variable ‘at’.
 When loop ends, the entered element is assigned to (p=e;). The ‘e’ element is already shifted
to the next position. Thus, finally the list of the latest elements is displayed. Figures 7.12 (a) and (b)
show the representation of the insertion of elements.

M07_KAMT3553_02_SE_C07.indd 254 5/17/2015 9:26:54 AM

https://hkgbooks.blogspot.com

Data Structure: Array 255

7.10.2 | delete operation with two-dimensional Array

Like insert operation delete operation can also be performed on an array. Consider the following program:

 7.32 Write a program to demonstrate delete operation of element with two-dimensional array.

(a) Before insertion

(b) After insertion

1 2 3 4 5

8 is to be inserted after shifting 3

24

1 2 43 58

Figure 7.12 Insertion of element

void main()
{
 int num[5][5]={0,0},j,*p,at,e,n;
 clrscr();

 printf(“\n Enter how many elements (<=25) :”);
 scanf(“%d”,&n);
 p=&num[0][0];

 for(j=0;j<n;j++)
 scanf(“%d”,p++);
 p=&num[0][0]; printf (“\n”);

 for(j=0;j<n;j++,p++)
 printf(“%d”,*p);

 printf(“\n Enter Element number to delete :”);
 scanf(“%d”,&at);
 at–-;
 p=&num[0][0];
 p+=at;

 for(j=at;j<n;j++)
 {
 p=(p+1);
 p++;
 }
 *p=0;
 p=&num[0][0];

M07_KAMT3553_02_SE_C07.indd 255 5/17/2015 9:26:54 AM

https://hkgbooks.blogspot.com

256 Programming in C

Two-dimensional array can be thought as a rectangular display of elements with rows and columns.
For example, elements of int x[3][3] are shown in Table 7.5.

 while(*p!=0)
 {
 printf(“%d”,*p);
 p++;
 }
}

OUTPUT:
Enter how many elements (<=25) : 7
1 2 3 4 5 6 7

1 2 3 4 5 6 7
Enter Element number to delete: 5
1 2 3 4 6 7

	 Explanation:
 The method obtaining base address and pointer arithmetic involved in the program is the

same as the last program. The element to be deleted is replaced with the next element. Thus,
the entire elements are shifted to previous location. Figures 7.13(a) and (b) describe the dele-
tion of element.

(a) Before deletion

(b) After deletion

41 2 3 6 7

Element to be
deleted

1 2 3 4 5 6 7

Figure 7.13 Deletion of element

Table 7.5 Array elements in matrix form
Col0 Col1 Col2

Row1 X[0][0] x[0][1] x[0][2]

Row2 x[1][0] x[1][1] x[1][2]

Row3 x[2][0] x[2][1] x[2][2]

M07_KAMT3553_02_SE_C07.indd 256 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

Data Structure: Array 257

The arrangement of array elements in Table 7.5 is only for the sake of understanding. Conceptually,
the elements are shown in matrix form. Physically array elements are stored in one contiguous form
in memory.
 The two-dimensional array is a collection of a number of one-dimensional arrays, which are
placed one after another. For example, in Table 7.5 each row of a two-dimensional array can be
thought of as a single-dimensional array.

 7.33 Write a program to display two-dimensional array elements together with their addresses.

void main()
{
 int i,j;
 int a[3][3]={{1,2,3},{4,5,6},{7,8,9}};
 clrscr();

 printf(“Array Elements and addresses.\n\n”);
 printf(“Col-0 Col-1 Col-2\n”);
 printf(“===== ===== ======\n”);
 printf(“row0”);

 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 printf(“%d [%5d]”, a[i][j], &a[i][j]);
 printf(“\nRow%d”,i+1);
 }
 printf(“\r”);
}

OUTPUT:
 Array Elements and addresses.
 Col-0 Col-1 Col-2
Row0 1 [4052] 2 [4054] 3 [4056]
Row1 4 [4058] 5 [4060] 6 [4062]
Row2 7 [4064] 8 [4066] 9 [4068]

	 Explanation:
 In the above program, two-dimensional array is declared and initialized. Using two nest-

ed for loops elements of array together with their addresses are displayed. It is shown at
the output that elements of two-dimensional array are displayed in rectangle form. But, in
memory they are not stored in this particular format. They are stored in contiguous memory
location as shown in Table 7.6.

Table 7.6 Memory map of two-dimensional array elements
Row,col A[0][0] A[0][1] A[0][2] A[1][0] A[1][1] A[1][2] A[2][0] A[2][1] A[2][2]

Value 1 2 3 4 5 6 7 8 9

Address 4052 4054 4056 4058 4060 4062 4064 4066 4068

M07_KAMT3553_02_SE_C07.indd 257 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

258 Programming in C

void main()
{
 int bal[5][2],i,j=0;
 clrscr();
 printf(“\nEnter Code No & Balance:\n”);
 for(i=0;i<5;i++)
 scanf(“%d %d”,&bal[i][1],&bal[i][2]);

 printf(“Your Entered Data :”);

 for(i=0;i<5;i++)
 {
 printf(“\n%d %d”,bal[i][1],bal[i][2]);

 if(bal[i][2]<1000)
 j++;
 }
 printf(“\nBalance Less than 1000 are %d”,j-1);
}

OUTPUT:
Enter Code No & Balance:
 1 900
 2 800
 3 1200
 4 550
 5 600

Your Entered Data :
1 900
2 800
3 1200
4 550
5 600

Balance Less than 1000 are 4

	 Explanation:
 The above program finds the number of balance deposits less than 1000. Through the key-

board the codeno and balance deposits are entered. The first for loop is initialized from
0 to less than five for inputting the codenos and their balance deposits. The second for
loop is for displaying the entered elements. The if statement checks whether the balance
deposit is less than 1000 or not. With this, the codenos having deposits less than 1000 are
sorted out. The counter gets incremented when deposits are less than 1000.

 7.35 Write a program to initialize single- and two-dimensional arrays. Accept three elements
in single-dimension array. Using the elements of this array, compute addition, square and
cube. Display the results in two-dimensional arrays.

void main()
{
 int i,j=0, a[3][3],b[3];

 7.34 Write a program to display the balance and code number in two separate columns. Indicate
the number of code, which are having the balance of less than 1000.

M07_KAMT3553_02_SE_C07.indd 258 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

Data Structure: Array 259

 clrscr();
 printf(“\n Enter Three Numbers :\n”);

 for(i=0;i<=2;i++)
 scanf(“%d”, &b[i]);

 for(i=0;i<=2;i++)
 {
 a[i][j] = b[i]*2;
 a[i][j+1]=pow(b[i],2);
 a[i][j+2]=pow(b[i],3);
 }
 clrscr();
 printf(“Number\tAddtion\t\t Square\t\t Cube\n”);

 for(i=0;i<=2;i++)
 {
 printf(“\n%d”,b[i]);
 for(j=0;j<=2;j++)
 printf(“\t%4d\t”,a[i][j]);

 printf(“\n”);
 }
 getch();
}

OUTPUT:
Enter Three Numbers : 5 6 7
Number Addition Square Cube
 5 10 25 125
 6 12 36 216
 7 14 49 343

	 Explanation:
 The one-dimensional array is used for storing the elements entered through the keyboard. The

second for loop performs operations such as multiplication (double), square and cube.
The square and cube of the entered numbers are performed by standard library function pow()
defined in math.h. The results obtained are assigned to the corresponding elements of
two-dimensional arrays. The elements of two arrays are displayed.

 7.36 Read the matrix of the order up to 10 × 10 elements and display the same in the matrix form.

void main()
{
 int i,j,row,col,a[10][10];
 clrscr();
 printf(“\n Enter Order of matrix up to (10 X 10) A :”);
 scanf(“%d %d”,&row,&col);
 printf(“\Enter Elements of matrix A :\n”);

 for(i=0;i<row;i++)
 for(j=0;j<col;j++)

M07_KAMT3553_02_SE_C07.indd 259 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

260 Programming in C

 scanf(“%d”,&a[i][j]);

 printf(“\n The Matrix is: \n”);
 for(i=0;i<row;i++)
 {
 for(j=0;j<col;j++)
 printf(“%6d”,a[i][j]);
 printf(“\n”);
 }
}

OUTPUT:
Enter Order of matrix up to (10 X 10) A : 3 3

Enter Elements of matrix A :
3 5 8
4 8 5
8 5 4

The Matrix is :
3 5 8
4 8 5
8 5 4

	 Explanation:
 In the above program, the order of the matrix is entered. The order of the matrix should be

up to 10 × 10. For the sake of understanding, we have taken 3 × 3 matrix. Using the first two
nested for loops with respect to rows and columns the elements of matrix are entered. The
last two nested for loops are used for displaying the matrix elements with respect to row
and column.

 Transpose of the matrix: The transpose of matrix interchanges rows and columns, i.e. the
row elements become column elements and vice versa.

 7.37 Read the elements of the matrix of the order up to 10 × 10 and transpose its elements.

void main()
{
 int i,j,row1,row2,col1,col2,a[10][10],b[10][10];
 clrscr();
 printf(“\n Enter Order of matrix up to (10 X 10) A :”);
 scanf(“%d %d”,&row1,&col1);
 printf(“\Enter Elements of matrix A :\n”);
 for(i=0;i<row1;i++)
 {
 for(j=0;j<col1;j++)
 scanf(“%d”,&a[i][j]);
 }

 row2=col1;
 col2=row1;

M07_KAMT3553_02_SE_C07.indd 260 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

Data Structure: Array 261

 for(i=0;i<row1;i++)
 {
 for(j=0;j<col1;j++)
 b[j][i]=a[i][j];
 }
 printf(“\n The Matrix Transpose is \n”);
 for(i=0;i<row2;i++)
 {
 for(j=0;j<col2;j++)
 printf(“%4d”,b[i][j]);
 printf(“\n”);
 }
}

OUTPUT:
Enter Order of matrix up to (10 X 10) A : 3 3

Enter Elements of matrix A :
3 5 8
4 8 5
8 5 4

The Matrix is :
3 4 8
5 8 5
8 5 4

	 Explanation:
 This program is the same as the last one. The difference between them is the first program

 displays the elements in the order in which they are entered. But in this program row and column
elements are interchanged. This is obtained by interchanging the order of matrix through the
statements row2=col1; & col2=row1;.

 7.38 Write a program to perform addition and subtraction of two matrices whose orders are up
to 10 × 10.

 void main()
 {

 int i,j,r1,c1,a[10][10],b[10][10];
 clrscr();
 printf(“Enter Order of Matrix A & B up to 10 X 10:”);
 scanf(“%d %d”, &r1,&c1);

 printf(“Enter Elements of Matrix of A :\n”);

 for(i=0;i<r1;i++)
 {
 for(j=0;j<c1;j++)
 scanf(“%d”,&a[i][j]);
 }

M07_KAMT3553_02_SE_C07.indd 261 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

262 Programming in C

 printf(“Enter Elements of Matrix of B :\n”);

 for(i=0;i<r1;i++)
 {
 for(j=0;j<c1;j++)
 scanf(“%d”,&b[i][j]);
 }

 printf(“\nMatrix Addition \n”);

 for(i=0;i<r1;i++)
 {
 for(j=0;j<c1;j++)
 printf(“%5d”,a[i][j]+b[i][j]);
 printf(“\n”);
 }

 printf(“\nMatrix Subtraction \n”);

 for(i=0;i<r1;i++)
 {
 for(j=0;j<c1;j++)
 printf(“%5d”,a[i][j]-b[i][j]);
 printf(“\n”);
 }
 getch();
 }

  OUTPUT:
 Enter Order of Matrix A & B up to 10 X 10: 3 3

 Enter Elements of Matrix of A :
 4 5 8
 2 9 8
 2 9 4

 Enter Elements of Matrix of B :

 1 3 5
 0 5 4
 6 7 2

 Matrix Addition

 5 8 13
 2 13 12
 8 16 6

 Matrix Subtraction

 3 2 3
 2 4 4
 -4 2 2

	 Explanation:
 The elements of two matrices are read in the same manner as described in the previous exam-

ples. Addition and subtraction are computed and the results are displayed. Addition of cor-
responding elements of A and B matrices is performed by the statement a[i][j]+b[i]
[j]. Similarly, for subtraction a[i][j]-b[i][j] statement is used.

M07_KAMT3553_02_SE_C07.indd 262 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

Data Structure: Array 263

void main()
{
 int i,j,k,r1,c1,a[10][10],b[10][10],k,c[10][10];
 clrscr();
 printf(“Enter Order of Matrix A & B up to 10 X 10:”);
 scanf(“%d %d”, &r1,&c1);
 printf (“Enter Elements of Matrix of A:\n”);
 for(i=0;i<r1;i++)
 {
 for(j=0;j<c1;j++)
 scanf(“%d”,&a[i][j]);
 }
printf(“Enter Elements of Matrix of B :\n”);
 for(i=0;i<r1;i++)
 {
 for(j=0;j<c1;j++)
 {
 scanf(“%d”,&b[i][j]);c[i][j]=0;
 }
 }
printf(“\n Matrix Multiplication \n”);
 for(i=0;i<r1;i++)
 {
 for(j=0;j<c1;j++)
 {
 for(k=0;k<r1;k++)
 {
 c[k][i]=c[k][i]+a[k][j]*b[j][i];
 }
 }
}
 for(i=0;i<r1;i++)
{
 for(j=0;j<r1;j++)
 printf(“%5d”,c[i][j]);
 printf(“\n”);
}
 getch();
}

OUTPUT:
Enter Order of Matrix A & B up to 10 X 10: 3 3

Enter Elements of Matrix of A :
4 5 8
2 9 8
2 9 4
Enter Elements of Matrix of B :

1 3 5

 7.39 Write a program to perform multiplication of two matrices whose orders are up to 10 × 10.

M07_KAMT3553_02_SE_C07.indd 263 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

264 Programming in C

void main()
{
 int i;
 long pc[4][2];
 long t=0;
 clrscr();

 for(i=0;i<4;i++)
 {
 printf(“\t Enter Qty. & Price for Pentium%d :”,i+1);
 scanf(“%ld %ld”,&pc[i][0],&pc[i][1]);
 }
 clrscr();
 printf“=======================================\n”);
 printf(“Model\t Qty.\tRate (Rs.) Total Value”);
 printf(“\n=======================================”);
 for(i=0;i<=3;i++)
 {
 printf(“\nPentium%d %2ld %6ld %15ld”,i+1,pc[i][0],pc[i][1],

pc[i][0]*pc[i][1]);
 t=t+pc[i][0]*pc[i][1];
 }

 printf(“\n=====================================\n”);
 printf(“Total Value of All PCs in Rs. %ld”,t);
 printf(“\n=======================================\n”);
}

OUTPUT:
Enter Qty. & Price for Pentium1 :25 25000
Enter Qty. & Price for Pentium2 :20 40000
Enter Qty. & Price for Pentium3 :15 35000
Enter Qty. & Price for Pentium4 :20 40000

0 5 4
6 7 2

Matrix Multiplication

52 93 56
50 107 62
26 79 54

	 Explanation:
 This program is the same as the last one. With the help of the first two for loops the elements

of the first matrix are entered. In a similar way, by using the next two for loops, the elements
of the second matrix are entered. The multiplication is performed in the last two for loops.
In this program, multiplication of corresponding elements of two matrices are performed.

 7.40 Write a program to read the quantity and price of various Pentium models using an array.
Compute the total cost of all models.

M07_KAMT3553_02_SE_C07.indd 264 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

Data Structure: Array 265

	 Explanation:
 Two-dimensional array is initialized for entering the quantity and price. The first for loop is

used for entering the quantity and price of four models through keyboard. The second for
loop is for computing total value of each model. This is obtained by multiplying price of
each model with quantity. The product is added to variable ‘t’. At the beginning, the value of
‘t’ is 0. The equation t=t+pc[i][0]*pc[i][1] is executed four times for finding the
total cost of all the models. The output displays model, quantity, price and total value of each
model and the gross value.

 7.41 Write a program to read the capacity of HD, its price and quantity available in the form of
an array. Compute the cost of HD.

=======================================
Model Qty. Rate (Rs.) Total Value
=======================================
Pentium1 25 25000 625000
Pentium2 20 30000 600000
Pentium3 15 35000 525000
Pentium4 20 40000 800000
=======================================
Total Value of All PCs in Rs.2550000
=======================================

void main()
{
 int i,j;
 long hd[3][4],t=0;
 clrscr();
 for(j=0;j<4;j++)
 {
 printf(“\t Enter Capacity,Price & Qty.:”);
 for(i=0;i<3;i++)
 {
 scanf(“%ld”,&hd[i][j]);
 }
 }
 clrscr();
 printf==\n”);
 printf(“HD Capacity GB Price Rs.\tQuantity Total Value Rs.”);
 printf(“\n=====================================\n”);

 for(j=0;j<4;j++)
 {
 for(i=0;i<3;i++)
 {
 printf(“%2ld”,hd[i][j]);
 printf(“\t\t”);

M07_KAMT3553_02_SE_C07.indd 265 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

266 Programming in C

	 Explanation:
 In the above program, two-dimensional array hd[3][4] is initialized. The first two for

loops are used for reading capacity, price and quantity of hard disk. The next two for loops
are used for evaluating the product of quantity and price of hard disk. Here, the first row con-
tains the capacity, the second row contains price and third row contains the quantity of hard
disk. Here, first row does not require for computing purpose. To avoid this, the if statement
is used. Total cost is obtained by using printf(“%5ld”,hd[i-1][j]*hd[i][j])
and t=t+hd[i-1][j]*hd[i][j] statements.

 7.42 Write a program to display the names of the cities with their base addresses.

 if (i==2)
 {
 printf(“%5ld”,hd[i-1][j]*hd[i][j]);
 t=t+hd[i-1][j]*hd[i][j];
 }
 }
 printf(“\n”);
 }
 printf(“======================================\n”);
 printf(“Total Value Rs. %37ld”,t);
 printf(“\n====================================\n”);
}

OUTPUT:
Enter Capacity, Price & Qty.: 10 8000 25
Enter Capacity, Price & Qty.: 20 12000 20
Enter Capacity, Price & Qty.: 40 15000 15
Enter Capacity, Price & Qty.: 90 20000 10
==
HD Capacity GB Price Rs. Quantity Total Value
==
10 8000 25 200000
20 12000 20 240000
40 15000 15 225000
90 20000 10 200000
==
 Total Value Rs. 865000
==

void main()
{
 int i;
 char city[5][8]={
 “Mumbai”,
 “Chennai”,
 “Kolkata”,
 “Pune”,
 “Delhi” };

M07_KAMT3553_02_SE_C07.indd 266 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

Data Structure: Array 267

	 Explanation:
 In the above program, a two-dimensional character array[][] is initialized with city names.

It prints the city name and base address using the ‘&’ operator. In all the base addresses,
there is difference of eight locations because every string occupies 8 bytes. Though the string
name occupies less than eight characters, the total space eight, which is allocated, is taken in
account.

 7.43 Write a program to display the binary bits corresponding to Hexadecimal numbers from 0
to F. Attach an odd parity to Hex numbers and display them.

 clrscr();
 for(i=0;i<5;i++)
 {
 printf(“Base Address = %u”,&city[i]);
 printf(“String = %s\n”,city[i]);
 }
}

OUTPUT:
Base Address = 4028 String = Mumbai
Base Address = 4036 String = Chennai
Base Address = 4044 String = Kolkata
Base Address = 4052 String = Pune
Base Address = 4060 String = Delhi

void main()
{

 int bin[16][4],x,y,a=0,c=0;

 for(x=0;x<16;x++)
 {
 y=x;

 for(a=0;a<4;a++)
 {
 bin[x][a]=y%2;
 y=y/2;
 }

 }
 clrscr();
 printf(“\n Input Bits Parity Bits”);
 printf(“\n ========== ===========”);
 for(x=0;x<16;x++)
{
 c=0;
 printf(“\n”);

 for(y=3;y>=0;y–-)
 {
 printf(“%3d”,bin[x][y]);

M07_KAMT3553_02_SE_C07.indd 267 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

268 Programming in C

 if(bin[x][y]==1)
 c++;
 }

 if (c%2==0)
 printf(“%7d”,1);
 else
 printf(“%7d”,0);
 }
}

OUTPUT:

Binary Bits Parity Bits
========= =========
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

	 Explanation:
 In the above program, two for loops are used. The inner for loop generates four binary

bits for each hexadecimal number and assigns it to array bin[][]. The 0 to F hexadecimal
numbers are taken from the outer for loop. If the bit is 1 counter ‘c’ is incremented. The
value of ‘c’ is checked for even or odd condition. If ‘c’ is odd the parity bit ‘0’ is displayed
otherwise ‘1’. The output is displayed.

 7.44 Write a program to convert binary to gray codes.

void main()
{

 int bin[16][4],x,y,a=0,c=0;
 clrscr();
 for(x=0;x<16;x++)
 {
 y=x;

 for(a=0;a<4;a++)

M07_KAMT3553_02_SE_C07.indd 268 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

Data Structure: Array 269

 {
 bin[x][a]=y%2;
 y=y/2;
 }
}

 clrscr();
 printf(“\n Binary Bits Gray Bits”);
 printf(“\n ========== ===========”);
 for(x=0;x<16;x++)
 {
 printf(“\n”);
 for(y=3;y>=0;y–-)
 printf(“%3d”,bin[x][y]);
 printf(“%5d %2d %2d %2d”,bin[x][3], bin[x][3]^bin[x][2],bin[x]

[2]^bin[x][1],bin[x][1]^bin[x][0]);

 }
}

OUTPUT:
Binary Bits Gray Bits
========= =========
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0

	 Explanation:
 In this program, the binary bits corresponding to the Hex are obtained. The first two for

loops accomplish this. Exclusive OR operation with previous and successive bits obtains the
gray code. The MSB bits should not be changed.

7.11 thrEE- or muLtI-dImEnsIonAL ArrAYs
The C program allows array of two- or multi-dimensions. The compiler determines the restriction on
it. The syntax of multi-dimensional array is follows:

data_type array_ name[size1][size2][size3]...[sizei];

where Si is the size of the ith dimensions.

M07_KAMT3553_02_SE_C07.indd 269 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

270 Programming in C

A three-dimensional array can be a thought of an array of arrays. The outer array contains three
 elements. The inner array size is two- dimensional with size[3][3].

 7.45 Write a program to explain the working of three-dimensional array.

Three-dimensional array can be initialized as follows:

int mat[3][3][3] =

{
 1,2,3,
 4,5,6,
 7,8,9,

 1,4,7,
 2,5,8,
 3,6,9,

 1,4,4,
 2,4,7,

8,8,5};

void main()
{
 int array_3d[3][3][3];
 int a,b,c;
 clrscr();

 for(a=0;a<3;a++)
 for(b=0;b<3;b++)
 for(c=0;c<3;c++)
 array_3d[a][b][c]=a+b+c;

 for(a=0;a<3;a++)
 {

 printf(“\n”);
 for(b=0;b<3;b++)
 {

 for(c=0;c<3;c++)
 printf(“%3d”,array_3d[a][b][c]);
 printf(“\n”);
 }
 }
}

OUTPUT:
0 1 2
1 2 3
2 3 4

1 2 3
2 3 4

M07_KAMT3553_02_SE_C07.indd 270 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

Data Structure: Array 271

	 Explanation:
 The three-dimensional array array_3d is initialized. The first three for loops are used

for adding the values of a, b and c. Here, initially a and b are zero and ‘c’ varies from 0 to
2. Hence, the addition of a, b and c will be 0 1 2. This will be printed in the first row. In the
second output row in which a = 0 and b = 1, c varies from 0 to 2. Thus, the output of the
second row will be 1 2 3. In this way, the values of a, b and c are changed and the total 27
iterations are carried out.

 7.46 Write a program to explain the working of four-dimensional array.

3 4 5

2 3 4
3 4 5
4 5 6

void main()
{
 int array_4d[2][2][2][2];
 int a,b,c,d;
 clrscr();

 for(a=0;a<2;a++)
 for(b=0;b<2;b++)
 for(c=0;c<2;c++)
 for(d=0;d<2;d++)
 array_4d[a][b][c][d]=a+b+c+d;

 for(a=0;a<2;a++)
 {

 printf(“\n”);
 for (b=0;b<2;b++)
 {
 for(c=0;c<2;c++)
 {
 for(d=0;d<2;d++)
 printf(“%3d”,array_4d[a][b][c][d]);
 printf(“\n”);
 } }
 }
}

OUTPUT:
0 1
1 2
1 2
2 3

1 2
2 3
2 3
3 4

M07_KAMT3553_02_SE_C07.indd 271 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

272 Programming in C

void main()
{
 long m[2][2][2][2];
 int a,b,c,d;
 clrscr();
 printf(“Enter Quantity & Rate\n”);
 for(a=0;a<2;a++)
 for(b=0;b<2;b++)
 for(c=0;c<2;c++)
 for(d=0;d<1;d++)
 {

 if(a==0)
 {
 printf(“a=%d b=%d c=%d d=%d\n”,a,b,c,d);
 scanf(“%ld %ld”,&m[a][b][c][d],&m[a][b][c][d+1]);
 }
 else
 {
 m[a][b][c][d]=m[a-1][b][c][d]*m[a-1][b][c][d+1];
 m[a][b][c][d+1]=m[a-1][b][c][d]*m[a-1][b][c]

[d+1]*2/100;
 }
 }
 printf(“\t=====================================\n”);
 printf(“\tQuantity Rate Amount Discount (@2%) Net Amount\n”);
 printf(“\t===\n”);

 for(a=0;a<1;a++)
 for(b=0;b<2;b++)
 for(c=0;c<2;c++)
 for(d=0;d<1;d++)
 {
 printf(“\n%10ld %10ld”,m[a][b][c][d],m[a][b][c][d+1]);
 printf(“%8ld.00 %6ld.00 %12ld.00”, m[a+1][b][c]

[d],m[a+1][b][c][d+1],
 m[a+1][b][c][d]-m[a+1][b][c][d+1]);
 }
 printf(“\n\t=======================================\n”);
 getch();
}

OUTPUT:
Enter Quantity & Rate
 A=0 b=0 c=0 d=0
 25 50

	 Explanation:
 Here, in the above-cited program, instead of three-dimension, four-dimension array is used.

The operations performed are the same as explained in the previous example.

 7.47 Write a program to read the quantity and rate of certain items using multi-dimensional
array. Calculate the total cost by multiplying the quantity and rate and offer 2% discount on
it and display the net amount.

M07_KAMT3553_02_SE_C07.indd 272 5/17/2015 9:26:55 AM

https://hkgbooks.blogspot.com

Data Structure: Array 273

	 Explanation:
 In the above example, the four-dimension array m[2][2][2][2] is declared. The first four

for loops are used to read the quantity and rate. The values of variables ‘a’ and ‘d’ for four
times remain zero whereas the values of ‘b’ and ‘c’ change to 1,(0,0), 2 (0,1), 3 (1,0) and 4
(1,1). This happens while execution of the for loops. The if statement checks as to whether
the value of a = 0 or not. As long as its value is zero reading operation is performed. When it
is greater than zero rate and quantity are multiplied for obtaining the amount. Also discount
is calculated. Amount and discount are stored in the array m[2][2][2][2]. Net amount is
printed after subtracting discount from the gross amount.

 7.48 Write a program to demonstrate the use of three-dimensional array.

 A=0 b=0 c=1 d=0
 30 60
 A=0 b=1 c=0 d=0
 35 70
 A=0 b=1 c=1 d=0
 40 75
Quantity Rate Amount Discount (@2%) Net Amount

25 50 125000 25.00 1225.00
30 60 1800.00 36.00 1764.00
35 70 2450.00 49.00 2401.00
40 75 3000.00 60.00 2940.00

void main()
{
 int a,b,c;
 int mat[3][3][3] ={ 1,2,3,
 4,5,6,
 7,8,9,
 1,4,7,
 2,5,8,
 3,6,9,
 1,4,4,
 2,4,7,
 8,8,5 };
 clrscr();
 for(a=0;a<3;a++)

 { printf(“\n”);
 for (b=0;b<3;b++)
 {
 for(c=0;c<3;c++)
 printf(“%3d [%u]”,mat[a][b][c],&mat[a][b][c]);
 printf(“\n”);
} } }

OUTPUT:
1 [65470] 2 [65472] 3 [65474]
4 [65476] 5 [65478] 6 [65480]

M07_KAMT3553_02_SE_C07.indd 273 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

274 Programming in C

	 Explanation:
 In the above example, a three-dimensional array is initialized. The three loops are used to

access the elements. The logic of accessing elements is the same as two-dimensional array.
From the output obtained, we can say that elements of multi-dimensional array are stored in
continuous memory locations.

7.12 thE sscanf() And sprintf() functIons
(a) sscanf():

 The sscanf() function allows to read characters from a character array and writes them to
another array.
 This function is similar to scanf() but instead from standard input it reads data from an array.

 7.49 Write a program to read string from a character array.

7 [65482] 8 [65484] 9 [65486]

1 [65488] 4 [65490] 7 [65492]
2 [65494] 5 [65496] 8 [65498]
3 [65500] 6 [65502] 9 [65504]

1 [65506] 4 [65508] 4 [65510]
2 [65512] 4 [65514] 7 [65516]
8 [65518] 8 [65520] 5 [65522]

void main()
{
 char in[10],out[10];
 clrscr();
 gets(in);
 sscanf(in,“%s”,out);
 printf(“%s\n”,out);
}

OUTPUT:
HELLO
HELLO

	 Explanation:
 In the above program, two character arrays in[10] and out[10] are declared. The

gets() function reads the string through the terminal and it is stored in the array in[].
Till this time, the out[] array is empty. The sscanf() function reads characters from
array in[] and assigns it to array out[]. Thus, both the arrays contain the same string. At
the end, the printf() function displays the contents of array out[].

 7.50 Write a program to read integers in character array, convert and assigns them to integer vari-
able using sscanf() function.

void main()
{
 int *x;

M07_KAMT3553_02_SE_C07.indd 274 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

Data Structure: Array 275

	 Explanation:
 In the above program, integer is read and stored in the character array in[]. The variable ‘x’

is declared as integer pointer. The sscanf() function assigns base address of array in[]
to pointer ‘x’. The content of pointer ‘x’ is displayed using pointer notation ().

(b) sprintf():

The sprintf() function is similar to the prinf() function except a small difference between them. The
printf() function sends the output to the screen whereas the sprintf() function writes the values
of any data type to an array of characters. The following program is illustrated pertaining to sprintf().

 7.51 Write a program to explain the use of sprintf().

 char in[10];
 clrscr();
 printf(“\n Enter Integers :”);
 gets(in);
 sscanf(in,“%d”,x);
 printf(“\n Value of int x : %d”,*x);
 getche();
}

OUTPUT:
Enter Integers : 123
Value of int x : 123

void main()
{
 int a=10;
 char c=‘C’;
 float p=3.14;
 char spf[20];
 clrscr();
 sprintf(spf,“%d %c %.2f”,a,c,p);
 printf(“\n%s”,spf);
 getche();
}

OUTPUT:
10 C 3.14

	 Explanation:
 In the above program, sprintf() stores the values of variables in the character array

spf[]. When sprintf() function executes, the contents of variables are not be displayed
on the screen. The contents of array spf is displayed using printf() function.

M07_KAMT3553_02_SE_C07.indd 275 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

276 Programming in C

	 Explanation:
 In the above program, a string is initialized with array name []. The string is not complete

and contains blanks. The if statement within the while() loop checks every character of
the string. If blank space is found, if block is executed and user needs to enter a character.
Otherwise, the next successive characters are displayed.

7.13 drAWbAcks of LInEAr ArrAYs
1. The number of elements, which are to be stored in an array, is to be known first.

2. When an array is declared, memory is allocated to it. If array is not filled completely, the
vacant place occupies memory.

3. Once the array is declared, its dimension can be changed.

summArY

You have now learnt how to initialize an array by different ways. The Characteristics of an array have
been discussed in depth. How to specify the elements of one-dimensional, two-dimensional and three-
or multi-dimensional arrays is explained in detail together with ample examples. The functions such
as the sscanf() and sprintf() functions are demonstrated through examples. In this chapter,
the reader finds practical examples. The programmer should make an attempt to execute all the pro-
grams so as to get expertise in arrays. Unless the unsolved problems are taken up for solving, the depth
of the chapter would not be followed.

 7.52 Write a program to complete the string by filling the spaces with appropriate characters.

void main()
{

 char name[]=“Mas er ng A SI C”;
 int x=0;
 clrscr();
 printf(“Mastering ANSI C\n\n”);

 while(name[x]!=0)
 {

 if(name[x]==32)
 name[x]=getche();
 else
 putch(name[x]);
 x++;
 }
getche();
}

OUTPUT:
Mastering ANSI C
Mastering ANSI C

M07_KAMT3553_02_SE_C07.indd 276 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

Data Structure: Array 277

   1. In an array x[10], the x represents the______

 (a) base address
 (b) base value
 (c) void pointers

   2. Each array element is stored in separate ________.

 (a) memory locations
 (b) value
 (c) data type

   3.  int x[5]; this array can hold values in between
_______to __________.

 (a) –32768 to 32767
 (b) 0 to 255
 (c) –32768 to 32768

   4.  int x[5]={2,3,4,5,6}; the base address is
65564 then the location of element 2 is _____.

 (a) 65564
 (b) 65566
 (c) 65568

  5. int x[3]= {1,2,3}; the address of
x[2] is 65498, i.e. the base address of the
array is _____

 (a) 65494
 (b) 65492
 (c) 65496

   6. Output?

 void main()
 {
 int x[]={1,2.2,3},i;
 clrscr();
 printf(“%f”,x[1]);
 }

 (a) the program will not run
 (b) the program will run with warning messages
 (c) None of the above

   7. The 1st element according to C compiler physically
is a ______

 (a) 2 nd element

 (b) 0th element
 (c) 1st element

     8. In long k[4] the total memory occupied by the
array is ________.

 (a) 16
 (b) 8
 (c) 4

     9. When in between two array of same type values
are interchanged___________

 (a) address of elements are also changed
 (b) only base address of the array is changed
 (c) None of the above happens

    10.   int x[3] if x[0]=12 and x[2]=26 then
x[3] is ______

 (a) 0
 (b) 15
 (c) garbage value

    11. Array element counting starts from zero hence the
statement x[0] defined can hold _____

 (a) nothing
 (b) one integer value
 (c) one char value

    12.   char c[]=“Hello” the H is stored at 65470
then the o is stored at _______

 (a) 65474
 (b) 65475
 (c) 65480

    13. Array element of two dimensions are stored at
_________.

 (a) subsequent memory locations
 (b) alternate memory locations
 (c) any locations

    14. In________, values of the array elements are
passed to function

 (a) call by value
 (b) call by reference
 (c) None of them

 EXErcIsEs

 I Fill in the blanks:

M07_KAMT3553_02_SE_C07.indd 277 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

278 Programming in C

 15. In________, addresses of the array elements are
passed to function

 (a) call by value
 (b) call by reference
 (c) None of them

 16. Fast access of array elements can be done
using ________

 (a) pointer
 (b) call by value
 (c) call by reference

  1. When we declare array elements without initial-
ization, then its elements are set to zero.

 2. If we declare static array without initialization,
then its element are set to garbage value.

 3. When the size of an array is exceeded, then com-
piler will not show any error.

 4. It is not essential to mention the size of array
while initializing it at the time of declaration.

 5. Speed of accessing array elements with pointers
is slower than accessing by subscripts.

 6. Two-dimensional array is also called matrix.

 7. s[i][j] is two-dimensional array where -1 <
i < 4 and -1 < j < 2 then we can say s[1]
[1] =*(*(s+1)+1).

  8. Array contains elements of the same data type
which are stored contiguously in memory.

 9. Default storage class is static

 10. Storage class decides when to create and destroy
variable.

 11. An integer array always terminates with ‘\0’ (null).

 12. When we assign one array to other, array elements
of one are directly copied in to the other array.

 13. The output of the following program is ‘We won
First Test against SriLanka’

void main()
{
 int num[]={24,34,12,44,57,9};
 int i = 0;

 if(num[i]=i[num])
 printf(“\n We won First

Test against SriLanka”);
 else
 printf(“\n We won Second Test

against SriLanka”);
 getch();

}

 14. Output of the following program is 4

void main()
{
 int arr[]={10,20,30,45,67,

56,74};
 int *i,*j;
 i=&arr[1];
 j=&arr[5];
 printf(“%d”,j-i);
 getch();
}

 15. Output of the following program is 67

void main()
{
 int
 arr[]={10,20,30,45,67,

56,74};
 int *j;
 clrscr();
 j=&arr[5];
 printf(“%d”,*(j-1));
 getch();
}

 16. Character array never ends with ‘\0’(NULL).

II True or false:

III Select the appropriate option from the multiple choices given below:

1. An array is a collection of

 (a) elements of different data types
 (b) same data types
 (c) Both A and B

2. Array elements are stored in

 (a) scattered memory locations
 (b) sequential memory locations
 (c) Both (a) and (b)

M07_KAMT3553_02_SE_C07.indd 278 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

Data Structure: Array 279

3. A character array always ends with

 (a) null (‘\0’) character
 (b) question Mark (?)
 (c) full Stop (.)

4. If you declare array without static the elements will
be set to

 (a) null value
 (b) zero
 (c) garbage value

5. Arrays cannot be initialized if they are

 (a) automatic
 (b) external
 (c) static
 (d) None of the above

6. All the elements in the array must be

 (a) initialized
 (b) defined
 (c) Both (a) and (b)
 (d) None of the above

7. What will be the output of the following program

 void main()
 {
 int a1[5]={1};
 int b=0,k=0;
 clrscr();
 for(b=0;b<=4;b++)
 {
 printf(“%3d”,++a1[0]);
 }
 }

 (a) 2 3 4 5 6
 (b) 1 2 3 4 5
 (c) 1 1 1 1 1 1
 (d) 1 2 2 2 2 2

8. What will be the value of x?

 void main()
 {
 int *x;
 char in[10]=“10”;
 clrscr();
 sscanf(in,“%d”,x);
 printf(“\n Value of int x :

%d”,*x);
 }

 (a) 10
 (b) 012
 (c) “1”

  9. What will be the output of the following program?

void main()
{
 int j[]={5,1,2,5,4,8};
 int m[]={1,5,8,4,5,9};
 int l[]={1,2,9,1,5,9},k;

 for(k=0;k<6;k++)
 l[k]=j[k]+m[k]-l[k];
 clrscr();
 for (k=0;k<6;k++)
 printf(“%d”, l[k]);
}

 (a) 5 4 1 8 4 8
 (b) 5 5 1 8 4 9
 (c) 1 2 5 5 5 9

 10. What is the output of the following program?

void main()
{
 int j[]={15,11,17,15,14,18};
 int m[]={1,5,8,4,5,9};
 int l[]={1,2,9,1,5,9},k;
 for(k=0;k<6;k++)
 l[k]=j[k]-m[k]/l[k];
 clrscr();
 for(k=0;k<6;k++)
 printf (“%d”, l[k]);
}

 (a) 14 9 17 11 13 17
 (b) 12 8 16 10 12 16
 (c) 14 19 17 10 12 11

 11.  What is the output of the following program?

void main()
{
 char a[]={‘A’,‘B’,‘C’,‘D’,

‘E’,‘F’};
 char b[]={‘0’,‘1’,‘2’,‘3’,

‘4’,‘4’};
 char c[6],k;
 for(k=0;k<6;k++)
 c[k]=a[k]+b[k];
 clrscr();
 for(k=0;k<6;k++)
 printf(“%c”, c[k]);
}

M07_KAMT3553_02_SE_C07.indd 279 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

280 Programming in C

1. Write a program to read 10 integers in an array.
Find the largest and smallest number.

2. Write a program to read a number containing five
digits. Perform square of each digit. For example,
number is 45252. Output should be square of each
digit, i.e. 4 25 4 25 16.

3. Write a program to read a number of any lengths.
Perform the addition and subtraction on the largest
and smallest digits of it.

4. Write a program to read three digits positive in-
teger number ‘n’ and generate possible permuta-
tion of numbers using their digits. For example,
n=123 then the permutations are 123, 132, 213,
231,312,3218.

5. Write a program to read the text. Find out number
of lines in it.

6. Write a program to read any three characters. Find
out all the possible combinations.

  7. Write a program to enter string in lower and up-
percase. Convert lower to uppercase and vice
versa and display the string.

  8. Read the marks of five subjects obtained by five
students in an examination. Display the top two
student codes and their marks.

  9. Write a program to enter five numbers using array
and rearrange the array in the reverse order. For
Example numbers entered are 5 8 3 2 4 and after
arranging array elements must be 4 2 3 8 5.

 10. Accept a text up to 50 words and perform the fol-
lowing actions.

 (a) Count total vowels, consonants, spaces, sen-
tences and words with spaces.

 (b) Program should erase more than one space
between two successive words.

  Hint: total number of sentences can be computed
based on total number of full stops.

 (a) q s u w y z
 (b) Q S U W Y Z
 (c) K J L M N O

 12. What will happen if you enter (at run time) more
values into an array than its capacity?

 (a) program will be terminated
 (b) run time error message will be displayed
 (c) No bug

 13. What will happen if you assign values in few
 locations of an array?

 (a) rest of the elements will be set to 0
 (b) compiler error message will be displayed
 (c) possible system will crash

 14. When an array is passed to function, in real what
gets passed?

 (a) base address of the array
 (b) element numbers
 (c) values of the array

 15. Which is the correct statement to declare an
 array?

 (a) int x[];
 (b) int x[5];
 (c) int x{5}’

 16. The array name itself is pointer to

 (a) 0th element
 (b) 1st element
 (c) last element

 17. The array name itself is a

 (a) constant pointer object
 (b) address
 (c) None of the above

 18. int x[5],*p; and p=x; then following which
one operation is wrong ?

 (a) x++;
 (b) p++;
 (c) p=x[1];

 19. int x[3]; the base address of x is 65460 the
elements are stored at locations

 (a) 65460, 65462, 65464
 (b) 65460, 65461, 65462
 (c) 65460, 65464, 65468

 20. int j[4] the sizeof(j) and sizeof(int)
 will display the value

 (a) 8,2
 (b) 2,8
 (c) 2,2

IV Attempt the following programming exercises:

M07_KAMT3553_02_SE_C07.indd 280 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

Data Structure: Array 281

 11. Evaluate the following series. Calculate every
term and store its result in an array. Using array
calculate the final result.

 (a) x= 11+22+33+44…nh

 (b) x=1! + 2! + 3!+ … n!
 (c) x=1!-2!+3!- n!

 12. Refer the given below tables. Write a program to
calculate bill amount of stationary articles. Use
array for initializing items and their prices.

 (a)

Item Price	(̀)

10th Book Set 850

12th Book Set 1150

Note books Rate (Rs.)

100 Pages/dozen 75

200 pages/dozen 125

PEN SET 50

 (b) 15% discount if sets are more than 10 other-
wise 10%.

 (c) 10% discount if notebooks are more than 10
dozen.

 13. Consider the following table and write a program
to find the total cost of the computer systems us-
ing arrays. 10% discount is to be offered in case
the total systems sold are more than 5 in quantity.
Display the code, parts of the system and price.
User should enter the configuration and quantity.

Code	No. Particulars
Price	
(̀)

 1 MOTHER BOARD WITH
PROCESSOR P3 600 MHz

3000

 2 MOTHER BOARD WITH
PROCESSOR P4 1000 MHz

8000

 3 HD (200 GB) 4000

 4 HD (400 GB) 8000

 5 RAM (1 GB) 1000

 6 RAM (2 GB) 2000

 7 CACHE (256 MB) 1000

 8 CACHE (1 GB) 1500

 9 FDD (1.44 MB) 1500

10 CD ROM DRIVE 3000

(Continued)

Code	No. Particulars
Price	
(̀)

11 CABINET 400

12 KEYBOARD 750

13 MOUSE 200

14 MULTIMEDIA KIT 3000

15 MODEM 1500

 14. Enter the following information through the key-
board using multi-dimension arrays. Calculate
the salary of individuals and total salary of all
 employees.

Code		
No. Designation Basic DA

Other		
perks

1 Manager 40000 50% 15%

2 Executive 20000 25% 20%

3 Senior Asst. 15000 25% 20%

4 Junior Asst. 10000 20% 15%

5 Steno 8000 20% 10%

6 Clerk 5000 20% 10%

7 Peon 4000 20% 10%

 15. Refer the table given below. Find the total bill
amount using arrays. The user should have option
to enter the quantity of bulbs.

Code	No.
Wattage	of		
the	bulb

Price/bulb	
(̀)

1 15 W 5

2 40 W 8

3 60 W 12

4 100 W 20

5 200 W 35

 16. Write a program to display the different parame-
ters of 10 men in a table. The different parameters
to be entered are height, weight, age and chest in
cm. Find the number of men who satisfy the fol-
lowing condition.

 (a) Age should be greater than 18 and less than
25.

 (b) Height should be between 5.2 to 5.6 inches.
 (c) Weight should be in between 45 to 60 kg.
 (d) Chest should be greater than 45 cm.

(Continued)

M07_KAMT3553_02_SE_C07.indd 281 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

282 Programming in C

1. Explain multi-dimensional array.

2. Array name contains base address of the array. Can
we change the base address of the array?

3. What is the relation between array name and
 element number? How elements are referred using
base address.

4. Can we store values and addresses in the same
 array? Explain.

5. Mention differences between character array and
integer array.

  6.  What are arrays?

 7. How elements of an array are stored?

 8. Explain two-dimensional array.

 9. What are the drawback of liner array?

 10. Explain insertion and deletion of an array.

 11. Explain various operations with an array.

 17. Write a program to display the items that have
been exported between 1995 and 2000. The table
should be displayed as follows. Input the amount
of various items described as under.

 (a) Find the total and average export value of all
the items.

 (b) Find the year in which minimum and maxi-
mum export was made.

 Items/Year 1995–96 1996–97 1997–98 1998–99
1999–2000

 Coffee
 Tea
 Sugar
 Milk powder
 Zinger

 18. Write a program to replace the zero with succes-
sive number in following arrays.

 (a) int x[8] ={1,0,3,0,5,0,7,0}
 (b) int y[8] = {-1,0,-3,0,-5,0,-7,0}

V Answer the following questions:

VI What will be the output/s of the following program/s?

1.

 void main()
 {
 int i,marks[5]={55,56,67,78,64};
 clrscr();
 for(i=2;i<=4;i++)
 printf(“\n %d”,marks[i]);
 getche();
 }

2.

 void main()
 {
 char name []={’a’,’m’,’i’,’t’};
 int i;
 clrscr();
 for(i=0;i<=4;i++)
 printf(“%c”,name[i]);
 getche();
 }

3. Sum of numbers from 1 to 10

 void main()
 {
 int i,sum=0,num[]={1,2,3,4,5,

6,7,8,9,10};

 clrscr();
 for(i=0;i<=9;i++)
 sum=sum+num[i];
 printf(“%d”,sum);
 getche();
 }

4. A program on multiplication table of 6

 void main()
 {
 int i,ans,num[5]={1,2,3,4,5};
 clrscr();
 for(i=0;i<=4;i++)
 {
 ans=num[i]*6;
 printf(“\n %d*%d=%d”,6,

 num[i],ans);
 }
 }

5. Factorial of 5

 void main()
 {
 int i,m=1,num[5]={1,2,3,4,5};
 clrscr();
 for(i=0;i<=4;i++)

M07_KAMT3553_02_SE_C07.indd 282 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

Data Structure: Array 283

 m=m*num[i];
 printf(“Total is %d”,m);
 getche();
 }

6. Searching an element in the array.

 void main ()
 {
 int n=9,i;
 int x[5]={2,3,4,6,7};
 clrscr();
 for(i=0;i<=4;i++)
 printf(“ %d”,x[i]);
 for(i=0;i<=4;i++)
 {
 if(x[i]==n)
 {
 printf(“\n Element %d

found in the array”,n);
 getche();
 exit();
 }
 }

 printf(“\n Element %d not found
in the array”,n);

 getche();
 }

7. Sum of even and odd numbers from

 void main()
 {
 int sumo=0,sume=0,i=0,odd[5],e

ven[5];
 clrscr();
 for(i=5;i<=10;i++)
 {
 if i%2==0)
 sume=i+sume;
 else
 sumo=i+sumo;
 }
 printf(“Addition of even and odd

numbers from 1 to 10 : %d %d”,
sume,sumo);

 getche();
 }

VII Find the bugs in the following program/s:

1.

 void main()
 {
 int a[5]={5,2,3,1,4};
 int i,result=1;
 clrscr();
 for(i=0;i<=5;i++)
 result=result*a[i];
 printf(“\nresult of multi-

plication =%d”,result);
 getche();
 }

2.

 void main()
 {
 int a[10]={5,6,7,8,9,3,4,5,4,6};
 int i,sum=0;
 float avg;
 clrscr();
 for(i=0;i<=9;i++)
 {
 sum=sum+a[i];
 }
 avg=(float)sum/10;
 printf(“\nSum of ten numbers

=%d”,&sum);
 printf(“\nAverage of ten

numbers=%.2f”,&avg);

 getche();
 }

3.

 void main()
 {
 int i,num[]={24,34,12,44,56,17};
 int num1[]={12,24,35,78, 85,22};
 clrscr();
 printf(“Array 1st - 2nd Array

Addtion\n”);
 for(i=0;i<=5;i++)
 {
 num[i]=num1[i]+ ++num[i];
 printf(“\n %d”,num[i]);
 }
 }

4.

 void main()
 {
 int i,num[]={24,34,12,44,56,17};
 clrscr();
 for(i=1;i<=5;i++)
 {
 printf (“%d”,num[i]);
 }
 }

M07_KAMT3553_02_SE_C07.indd 283 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

284 Programming in C

I Fill in the blanks:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
  1. a   2. a   3. a   4. a   5. a

  6. a   7. b   8. a   9. c 10. a

11. a 12. a 13. a 14. a 15. b
16. a

 II True or false :

Q. Ans.
  1. False. Default declaration is auto, where elements are initialized to garbage value.

  2. False. They are set to zero.

  3. True. It is not compiler’s job to check whether array size is exceeded or not. So
no error will be shown by the compiler.

  4. True. E.g.: int n[]={2,4,12,34}; is accepted.

  5. False. Speed of accessing array elements by pointer is always faster.

  6. True.

  7. True. Let us take an example:
void main()
{
 int arr[3][2] = {{1,2},{3,4},{5,6}};
 int a = *(*(arr + 1) + 1);
 int b = arr[2][1];
 clrscr();
 printf(“a = %d \t b = %d”, a, b);
}
OUTPUT:
a = 4 b = 6

  8. True.

  9. False. Default storage class is auto.

10. True.

11. False. Character array always ends with ‘\0’.

5.

 void main()
 {
 int i,j;
 int k[]={1,2,4,5,6,7,8,9};

 clrscr();
 clrscr();
 for(j=0;j<=8;j++)
 printf (“%u”,*(k+j));
 }

 AnsWErs

M07_KAMT3553_02_SE_C07.indd 284 5/17/2015 9:26:56 AM

https://hkgbooks.blogspot.com

Data Structure: Array 285

12. False. C doesn’t allow it. We’ve to copy content of one array element by element
to other array.

13. True.

14. True
Because, Suppose address start from 0
address of arr[1] = 2 address of arr[5] = 10
ans = (10-2)/2
In windows int has 2 byte size. So divide by 2.

15. True
Access of any array element is possible with pointer

16. False

III Select the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
  1. b   2. b   3. a   4. c   5. d
  6. d   7. a   8. a   9. a 10. a
11. a 12. c 13. a 14. a 15. b
16. a 17. b 18. c 19. a 20 a

VI What will be the output/s of the following program/s?

Q. Ans. Q. Ans.
1. 67

78
64

5.

6.

7.

Total is 120

2 3 4 6 7

Element 9 not found in the array
Addition of even and odd numbers
from 1 to 10 : 24 21

2. a m i t
3. 55
4. 6 1=6

6 2=12
6 3=18
6 4=24
6 5=30

VII Find the bugs in the following program/s:

Q. Ans.
1. No bug. The for loop should be from 0 to 4 instead up to 5.
2. & should be removed from the printf statements.

Ans Sum 57 and average 5.7
3. No bug.
4. No bug.
5. Attempt to read more elements than declared in array. Last value of array dis-

played will be garbage.

M07_KAMT3553_02_SE_C07.indd 285 5/17/2015 9:26:57 AM

https://hkgbooks.blogspot.com

Strings and
Standard Functions

Chapter Outline

 8.1 Introduction
 8.2 Declaration and Initialization of String
 8.3 Display of Strings with Different Formats
 8.4 String Standard Functions
 8.5 String Conversion Functions
 8.6 Memory Functions
 8.7 Applications of Strings

CHAPTER

8

M08_KAMT3553_02_SE_C08.indd 286 5/17/2015 9:31:48 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 287

8.1 IntroductIon
Characters are the basic requirement of any program. A program contains statements and statements are
built with words that has specific meaning to be understood by the compiler. In C language, a sequence
of characters, digits and symbols enclosed within double quotation marks is called a string. The string is
always declared as character array and its elements are stored in contiguous memory locations.
 In other words, in C, a string is defined as an array of characters. To manipulate text such as words
and sentences, normally strings are used. Every string is terminated with ‘\0’ (NULL) character. The
NULL character is a byte with all bits at logic zero. Hence, its decimal value is zero. A pointer can
access the string. The value of the string is its base address, i.e. addresses of the first character. When
a string is created, a few compilers place the string in the memory where it cannot be modified.
 An example of a string is as follows:

 char name[]={‘I’,‘N’,‘D’,‘I’,‘A’,‘\0’};

Each character of the string occupies 1 byte of memory. The last character is always ‘\0’. It is not com-
pulsory to write ‘\0’ in string. The compiler automatically puts ‘\0’ at the end of the character array or
string. The characters of a string are stored
in contiguous (neighbouring) memory
locations. In the above example, the compiler
automatically determines the size of the
array. Table 8.1 shows the storing of string
elements in contiguous memory locations.
 While storing characters in a string array one should confirm if the array length is large enough
to store the given string. Moreover, double quotes can be used to store a word or constants with type
char. The length of the characters in “MAHARASHTRA” is 11 but in C, the character array should
have a length of 12. One more character is needed at the end of string, which is called a null character.
 The declaration is as follows:

 char name[12]=“MAHARASHTRA”

 or

 char name[12]={‘M’,‘A’,‘H’,‘A’,‘R’,‘A’,‘S’,‘H’,‘T’,‘R’,‘A’,‘\0’};

 C permits the storage of string to any length. However, if a string exceeds the limit of a character
array, it will overwrite the data beyond the array.

8.2 declaratIon and InItIalIzatIon of StrIng
The syntax for initialization of a string is as follows:

 char name[]=“INDIA”;

 The C compiler inserts the NULL (\0) character automatically at the end of the string. So initial-
ization of the NULL character is not essential. Even if null is added at the end of string, compiler does
not throw any error.
 By initializing character arrays as per the following ways, the programmer can see the output:

(a) char name[6]={‘S’,‘A’,‘N’,‘J’,‘A’,‘Y’};

(b) char name[7]={‘S’,‘A’,‘N’,‘J’,‘A’,‘Y’};

 In case (a) the output will not be ‘SANJAY’ as it contains some garbage value at the end of SANJAY.
Array index/size in this example is initialized with [6], which is exactly equal to the number of

Strings and
Standard Functions

I N D I A \0

5001 5002 5003 5004 5005 5006

Table 8.1 Memory map of a string

M08_KAMT3553_02_SE_C08.indd 287 5/17/2015 9:31:48 AM

https://hkgbooks.blogspot.com

288 Programming in C

characters within the braces. The NULL character must be included at the end of string and hence, the
array index/size must be [7] instead of [6] as given in statement (b).

 8.1 Write a program to display the output when the account of NULL character is not considered.

void main()
{
 char name1[6]={‘S’,‘A’,‘N’,‘J’,‘A’,‘Y’};
 clrscr();
 printf(“Name1 = %s”,name1);
 getche();
}

OUTPUT:
 Name1 = SANJAYabdn12

	 Explanation:
 The output of the above program would be SANJAY followed by some garbage values. To

get the correct result, the argument must be [7] instead of [6]. The output can be seen as given
below after changing the size [7] in place of [6].

 The output will be: SANJAY

 The array size must be equal to the number of characters of the word + NULL character. In case
the NULL character is not taken into account (statement (a)) the string followed by the first string
(statement (b)) will be displayed. The output can be observed by executing the following program.

 8.2 Write a program to display successive string in case first string is not terminated with NULL
character.

void main()
{
 char name1[6]={‘S’,‘A’,‘N’,‘J’,‘A’,‘Y’};
 char name2[7]={‘S’,‘A’,‘N’,‘J’,‘A’,‘Y’};
 clrscr();
 printf(“Name1 = %s”,name1);
 printf(“\nName2 = %s”,name2);
}

OUTPUT:
 Name1 = SANJAYSANJAY
 Name2 = SANJAY

	 Explanation:
 The NULL character has not been considered in the first statement. The compiler reads the

second string immediately followed by the first string because the end of first string is not
identified. Because of this, the second string is printed followed by the first string. Hence, the
argument must include the account of the NULL character.

 Simple string programs are as follows.

M08_KAMT3553_02_SE_C08.indd 288 5/17/2015 9:31:48 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 289

 8.3 Write a program to print ‘WELCOME’ by using different syntax of initialization of array.

void main()
{
 char arr1[9]={‘W’,‘E’,‘L’,’ ’,‘C’,‘O’,‘M’,‘E’,‘\0’};
 char arr2[9]=“WELCOME”;
 char arr3[9]= {{‘W’},{‘E’},{‘L’},{’ ’},{‘C’},{‘O’},{‘M’},{‘E’}};
 clrscr();
 printf(“\nArray1 = %s”,arr1);
 printf(“\nArray2 = %s”,arr2);
 printf(“\nArray3 = %s”,arr3);
}

OUTPUT:
Array1 = WEL COME
Array2 = WELCOME
Array3 = WEL COME

	 Explanation:
 The string elements can be initialized individually with enclosing single quote and curly

braces. The curly braces are optional. While initializing individual elements, they must be
separated by a comma. This is done in the first and third statements. Also it can be initialized
with double-quotation marks and this is done in the second statement.

8.3 dISplay of StrIngS wIth dIfferent formatS
The printf() function is used for displaying various data types. The printf() function with %s
format is to be used for displaying a string on the screen. Various printf() formats are shown in
Table 8.2, when char text[15]=“PRABHAKAR”;

Table 8.2 String formats with different precision
Sr.	No. Statement Output

1. printf (“%s\n”,text); PRABHAKAR

2. printf (“%.5s\n”,text); PRABH

3. printf (“%.8s\n”,text); PRABHAKA

4. printf (“%.15s\n”,text); PRABHAKAR

5. Printf (“%-10.4s\n”,text); PRAB

6. Printf (“%11s”,text); PRABHAKAR

 (i) The 1st statement displays the output ‘PRABHAKAR’. The entire string is displayed with the
first statement.

 (ii) We can also specify the precision with character string, which is to be displayed. The
precision is (the number of characters to be displayed) provided after the decimal point. For
instance in the 2nd statement in Table 8.2 the first five characters are displayed. Here, the inte-
ger value 5 on the right side of the decimal point specifies the five characters to be displayed.

M08_KAMT3553_02_SE_C08.indd 289 5/17/2015 9:31:48 AM

https://hkgbooks.blogspot.com

290 Programming in C

 (iii) In the 3rd statement, the first eight characters are displayed.

 (iv) Statement number four displays the entire string.

 (v) The 5th statement with minus (−) sign (e.g. %-10.4s) displays the string with left justified.

 (vi) When the field length is less than the length of the string the entire string is printed. When it is
greater than the length of the string, blank spaces are initially printed followed by the string.
This effect can be seen in the 6th statement.

 (vii) When the number of characters to be displayed is specified as zero after decimal point nothing
will be displayed.

A few examples are illustrated below giving the effects of various formats of strings.

 8.4 Write a program to display the string ‘PRABHAKAR’ using various printf() format
specifications.

void main()
{
 char text[15]=“PRABHAKAR”;
 clrscr();
 printf(“%s\n”,text);
 printf(“%.5s\n”,text);
 printf(“%.8s\n”,text);
 printf(“%.15s\n”,text);
 printf(“%-10.4s\n”,text);
 printf(“\n%11s”,text);
}

OUTPUT:
PRABHAKAR
PRABH
PRBHAKA
PRABHAKAR
PRAB
 PRABHAKAR

 8.5 Use the while loop and print out the elements of the character array.

void main()
{
 char text[]=“HAVE A NICE DAY”;
 int i=0;
 clrscr();
 while(i<15)
 {
 printf(“%c”,text[i]);
 i++;
 }
}

OUTPUT:
HAVE A NICE DAY

M08_KAMT3553_02_SE_C08.indd 290 5/17/2015 9:31:48 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 291

	 Explanation:
 In this program, while loop is used for printing the characters up to the length of 15; there-

after it terminates when variable ‘i’ reaches 15.

 8.6 Given below is an example in which the string elements are displayed. Use the while loop
and print out the elements of the character array. Take the help of NULL (‘\0’) character.

void main()
{
 char text[]=“HAVE A NICE DAY”;
 int i=0;
 clrscr();
 while(text[i]!=‘\0’)
 {
 printf(“%c”,text[i]);
 i++;
 }
 getch();
}

OUTPUT:
HAVE A NICE DAY

	 Explanation:
 It is not needed to give the array size as given in the previous programs. One can display the

character string without knowing the length of the string. As we know that every character
array always ends with NULL (‘\0’) character, by using the NULL character in while loop
we can write a program to display the string.

8.4 StrIng Standard functIonS
C compiler supports a large number of string handling library functions. Table 8.3 provides the list of
many frequently used functions and their description. The header file string.h is to be initialized
whenever standard library function is used. In other words, the string handling functions are given in
string.h.

(Continued)

Table 8.3 Standard C string library functions
Functions Description

strlen() Determines the length of a string.

strcpy() Copies a string from the source to destination.

strncpy() Copies characters of a string to another string up to the specified length.

strcmp() Compares characters of two strings (function discriminates between small and capital
letters)

stricmp() Compares two strings (function does not discriminate between the small and capital
letters).

M08_KAMT3553_02_SE_C08.indd 291 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

292 Programming in C

Functions Description

strncmp() Compares characters of two strings up to the specified length.

strnicmp() Compares characters of two strings up to the specified length. Ignores case.

strlwr() Converts uppercase characters of a string to lowercase.

strupr() Converts lowercase characters of a string to uppercase.

strdup() Duplicates a string.

strchr() Determines the first occurrence of a given character in a string.

strrchr() Determines the last occurrence of a given character in a string.

strstr() Determines the first occurrence of a given string in another string.

strcat() Appends source string to the destination string.

strncat() Appends the source string to the destination string up to a specified length.

strrev() Reversing all characters of a string.

strset() Sets all characters of a string with a given argument or symbol.

strnset() Sets specified numbers of characters of a string with a given argument or symbol.

strspn() Finds up to what length two strings are identical.

strpbrk() Searches the first occurrence of the character in a given string and then displays the
string starting from that character.

 We shall elaborate the above-cited functions by providing a few examples of each of them. With-
out using the standard functions, we can also write the programs. A few such programs are briefly
described.

Table 8.3 Standard C string library functions (Continued)

strlen()function

 This function counts the number of characters in a given string. The syntax of the function is
strlen (char*S); A program in this regard is illustrated below.

 8.7 Write a program to count the number of characters in a given string.

include <string.h>
void main()
{
 char text[20];
 int len;
 clrscr();
 printf(“Type Text Below.\n”);
 gets(text);
 len=strlen(text);
 printf(“Length of String =%d”,len);
}

M08_KAMT3553_02_SE_C08.indd 292 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 293

	 Explanation:
 In the above program, strlen() function is called. Through the text array base address

will be sent and this function returns the length of the string. It counts the string length with-
out the NULL character.

 8.8 Write a program to read a name through the keyboard. Determine the length of the string and
find its equivalent ASCII codes.

OUTPUT:
Type Text Below.
Hello
Length of String = 5

include <string.h>

void main()
{
 static char name[20];
 int i,l;
 clrscr();
 printf(“Enter your name :”);
 scanf(“%s”,name);
 l=strlen(name);
 printf(“Your Name is %s &”, name);
 printf(“it contains %d characters.”,l);
 printf(“\nName & it’s Ascii Equivalent.\n”);
 printf(“==== = === ===== ==========\n”);

 for(i=0;i<l;i++)
 printf(“\n %c\t\t%d”,name[i],name[i]);
 getch();
}

OUTPUT:
Enter your name : SACHIN
Your Name is SACHIN & it contains 6 characters.

Name & it’s Ascii Equivalent.
==== = ==== ===== ==========
S 83
A 65
C 67
H 72
I 73
N 78

	 Explanation:
 In the above program, a string is entered. The string length is determined using the

strlen() function. The for loop is used for displaying characters and their equivalent
ASCII codes.

M08_KAMT3553_02_SE_C08.indd 293 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

294 Programming in C

 8.9 Write a program to remove the occurrences of ‘The’ word from the entered text.

include <string.h>

void main()
{
 static char line[80],line2[80];
 int i,j=0,l;
 clrscr();
 printf(“Enter Text Below.\n”);
 gets(line);
 l=strlen(line);
 for(i=0;i<=l;i++)
 {

 if (i>=l-4 || l==3 && line[l-4]==‘ ’ && line[l-3]==‘t’ &&
 line[l-2]==‘h’ && line[l-1]==‘e’)

 continue;
 if(line[i]==‘t’ && line[i+1]==‘h’ && line[i+2]==‘e’ &&

line[i+3]==‘ ’)
 {
 i+=2;
 continue;
 }
 else
 {
 line2[j]=line[i];
 j++;
 }
 }
 printf(“\n Text with ‘the’ : %s”, line);
 printf(“\n Text without ‘the’ : %s”,line2);
 getch();
}

OUTPUT:
Enter Text Below.

Printf write data to the screen.

Text with ‘the’ : Printf write data to the screen.
Text without ‘the’ : Printf write data to screen

	 Explanation:
 The first if condition is identifying the appearance of ‘the’ at the end of text as well as

when the string contains only ‘the’. If it is found the program terminates.

 The second if condition in the above program, also identifies the appearance of ‘the’ word
in the text. If it do not found the word ‘the’, elements of the first array are copied to the second
array as it is. If the word ‘the’ is found program will continue to loop and never reach the statement
line2[j]=line[i];.

M08_KAMT3553_02_SE_C08.indd 294 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 295

	 Explanation:
 The logic used here is the same as described in the previous program. The if statement checks

the occurrence of vowels (a, e, i, o, u, A, E, I, O & U). If vowels are found loop is
continued, otherwise elements are copied. Thus, vowels are skipped in the final output.

 8.11 Write a program to find the no. of characters in a given string including and excluding spaces.

void main()
{
 char line[80],line2[80];
 int i,j=0;
 clrscr();
 printf(“Enter Text Below.\n”);
 gets(line);

 for(i=0;i<80;i++)
 {
 if(line[i]==‘a’ || line[i]==‘e’ || line[i]==‘i’ || line[i]==‘o’

|| line[i]==‘u’|| line[i]=‘A’ || line[i]=‘E’ || line[i]=‘I’ ||
line[i]=‘O’ || line[i]=‘U’)

 continue;
 else
 {
 line2[j]=line[i];
 j++;
 }
 }
 printf(“\n Text with Vowels : %s”, line);
 printf(“\n Text without Vowels : %s”,line2);
}

OUTPUT:
Enter Text Below.

Have a nice day.

Text with Vowels : Have a nice day.
Text without Vowels : Hv nc dy.

void main()
{
 char text[20];
 int i=0,len=0,ex=0;
 clrscr();

 printf(“Enter Text Here :”);
 gets(text);
 while(text[i]!=‘\0’)
 {
 if(text[i]==‘ ’)
 ex++;

 8.10 Write a program to delete all the occurrences of vowels in a given text. Assume that the text
length will be of one line.

M08_KAMT3553_02_SE_C08.indd 295 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

296 Programming in C

	 Explanation:
 In the above program, some text is entered. The if statement within the while loop

checks every element of string, and if space is observed the counter variable ‘ex’ is in-
cremented otherwise variable ‘len’ is incremented. Thus, at the end the variable ‘ex’
contains the total number of spaces in the string and the variable ‘len’ contains the
length of the string excluding spaces. The length including spaces is calculated by adding
both the variables.

 8.12 Write a program to display the length of the entered string and display it as per the output
shown.

 else
 len++;
 i++;
 }
 printf(“\nLength of String Including Spaces. : %d”,len+ex);
 printf(“\nLength of String Excluding Spaces. : %d”,len);
}

OUTPUT:
Enter Text Here :

Time is Money.

Length of String Including Spaces. : 13
Length of String Excluding Spaces. : 11

include <string.h>

void main()
{
 int c,d;
 static char string[12];
 int ln;
 printf(“Enter a String :”);
 gets(string);
 ln=strlen(string);
 clrscr();

 printf(“\n Length of given string :%d”,ln);
 printf(“\n Sequence of characters displayed on screen”);
 printf(“\n ======== == ========== ========= == ======”);
 printf(“\n\n\n”);

 for(c=0;c<=ln-1;c++)
 {
 d=c+1;
 printf(“\t%.*s\n”,d,string);
 }

 for(c=ln-1;c>=0;c--)
 {
 d=c+1;

M08_KAMT3553_02_SE_C08.indd 296 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 297

	 Explanation:
 In the above program, the string is entered and its length is calculated. The first for loop

displays characters from left to right. It next adds one character in each successive line. The
first line displays the first character, the second two characters and so on.

 The second for loop displays characters from right to left. It removes the right-most char-
acter in each successive line.

 Here, in the printf() the asterisk (*) used after decimal plays an important role in dis-
playing the characters. It requires an integer argument. It displays only the given number of
characters from the string.

 printf(“\t%.*s\n”,d,string);
 }
}

OUTPUT:
Enter a String : HAPPY

Length of given string : 5

Sequence of characters displayed on screen
======== == ========== ========= == ======
H
HA
HAP
HAPP
HAPPY
HAPPY
HAPP
HAP
HA
H

strcpy() function

This function copies the contents of one string into another.

The syntax of strcpy() is strcpy(char *s2,char *s1);

where

s1 is the source string; s2 is the destination string and s1 is copied to s2.

 In many programs, we copy the contents of one string to other. Given below is an example which
is based on the strcpy() function.

 8.13 Write a program to copy the contents of one string to another by using strcpy().

include <string.h>
void main()
{
 char ori[20],dup[20];
 clrscr();

M08_KAMT3553_02_SE_C08.indd 297 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

298 Programming in C

	 Explanation:
 In the above example, we have declared two arrays namely ori[20] and dup[20]. The

function strcpy() copies characters of ori[] to dup[]. The characters are copied one
by one from source string (ori [20]) to destination string (dup[20]).

 Program without strcpy() function

 8.14 Write a program to copy the contents of one string to another, without the strcpy()
function.

 printf(“Enter Your Name :”);
 gets(ori);

 strcpy(dup,ori);
 printf(“Origional String : %s”,ori);
 printf(“\nDuplicate String : %s”,dup);
}

OUTPUT:
Enter Your Name : SACHIN

Original String : SACHIN
Duplicate String : SACHIN

include <string.h>
void main()
{
 char ori[20],dup[20];
 int i;
 clrscr();
 printf(“Enter Your Name :”);
 gets(ori);

 for(i=0;i<20;i++)
 dup[i]=ori[i];

 printf(“Original String : %s”,ori);
 printf(“\nDuplicate String : %s”,dup);

}

OUTPUT:
Enter Your Name : SACHIN

Original String : SACHIN
Duplicate String : SACHIN

	 Explanation:
 In the above program, we also have declared two arrays namely ori[20] and dup[20].

Instead of using the strcpy() function, by using the for loop elements of source array
are copied into the destination array one by one.

strncpy() function

M08_KAMT3553_02_SE_C08.indd 298 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 299

 strncpy() function performs the same task as strcpy(). The only difference between
them is that the former function copies specified length of characters from the source to destination
string, whereas the latter function copies the whole source string to destination string. The syntax
of the function is

 strncpy(char *destination ,char *source, int n);

where n is the argument.
 A simple example is illustrated below.

 8.15 Write a program to copy source string to destination string up to a specified length. Length
is to be entered through the keyboard.

include <string.h>

void main()
{
 char str1[15], str2[15];
 int n;
 clrscr();
 printf(“Enter Source String :”);
 gets(str1);
 printf(“Enter Destination String :”);
 gets(str2);

 printf(“Enter Number of Characters to Replace in Destination
String :”);

 scanf(“%d”,&n);

 strncpy(str2,str1,n);

 printf(“Source String :%s”,str1);
 printf(“\nDestination String :%s”,str2);
}

OUTPUT:
Enter Source String : wonderful
Enter Destination String : beautiful

Enter Number of Characters to Replace in Destination String : 6

Source String : wonderful
Destination String : wonderful

	 Explanation:
 In the above program, two strings are read from terminal. The number of characters to

replace in the destination string from source string is also entered. After obtaining these three
arguments the strncpy() function replaces the destination string with the number of charac-
ters (argument). The source string characters are ‘wonderful’ and the destination ‘beau-
tiful’ before the use of strncpy(). After execution, the first six characters of destina-
tion string (‘beauti’) are replaced with first six characters of source string (‘wonder’). The
output of the program is as shown above.

stricmp() function

M08_KAMT3553_02_SE_C08.indd 299 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

300 Programming in C

 The syntax of the function is stricmp(char *s1,char *s2);

 This function compares two strings. The characters of the strings may be in lowercase or up-
percase; the function does not discriminate between them. That is, this function compares two strings
without case. If the strings are the same it returns to zero otherwise non-zero value.

 8.16 Write a program to compare the two strings using the stricmp() function. If strings are
identical display ‘The Two Strings are Identical’ otherwise ‘The Strings are Different’.

 Note: stricmp()function compares two strings character by character and returns 0 if the
strings are identical otherwise non-zero value. This function does not discriminate between
small and capital letters.

 void main()
 {
 char sr[10],tar[10];
 int diff;
 clrscr();
 printf(“Enter String(1) : ”);
 gets(sr);
 printf(“Enter String(2) : ”);
 gets(tar);
 diff=stricmp(sr,tar);

 if(diff==0)
 puts(“The Two Strings are Identical.”);
 else
 puts(“The Two Strings are Different”);

 getche();
 }

	 OUTPUT:
 Enter String(1) : HELLO

 Enter String(2) : hello

 The Two Strings are Identical.

	 Explanation:
 In the above program, two strings are entered. Both the strings are compared using the

stricmp() function. If both the strings are identical it returns 0 otherwise non-zero value.
The returned value of the stricmp() function is assigned to variable ‘diff’. The if
condition checks the value of variable ‘diff’ and respective message is displayed.

 8.17 Write a program to perform the following:

 1. Display the question “What is the Unit of Traffic?”

 2. Accept the answer.

 3. If the answer is wrong (Other than Earlang) display “Try again!” & continues to answer.

 4. Otherwise, if it is correct “Earlang” display the message “Answer is correct”.

 5. If the user gives correct answer in first two attempts the program will terminate.

 6. If the user fails to provide correct answer in three attempts the program it self gives the
answer.

M08_KAMT3553_02_SE_C08.indd 300 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 301

	 Explanation:
 In the above program stricmp() function is used for comparing character array ans[]

and ‘Earlang’. If function returns 0 (zero) the message displayed will be ‘Answer is
Correct’. In case, the answer is wrong the message displayed will be ‘Try again!’.
Three attempts are provided using the for loop for answering the question. The fflush()
function is used for clearing the buffer.

include <process.h>
void main()
{
 char ans[8];
 int i;
 clrscr();

 for(i=1;i<=3;i++)
 {
 printf(“\nWhat is the Unit of Traffic?”);
 scanf(“%s”,ans);
 fflush(stdin);

 if(stricmp(ans,”Earlang”)==0)
 {
 printf(“\nAnswer is Correct.”);
 exit(1);
 }
 else
 if(i<3)
 printf(“\n Try Again !\n”);
 }
 clrscr();
 printf(“\nunit of Traffic is Earlang.”);
}

OUTPUT:
What is the Unit of Traffic ? Earlan

Try Again !

What is the Unit of Traffic ? Earlam

Try Again !

What is the Unit of Traffic ? Earlang

Answer is Correct.

strcmp() function

strcmp(): One can also use strcmp() function instead of stricmp(). The only difference
between them is the former function discriminates between small and capital letters whereas the latter
does not. The output of the above program after strcmp() in place of stricmp() will be as follows:

Enter String(1) : HELLO

Enter String(2) : hello

M08_KAMT3553_02_SE_C08.indd 301 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

302 Programming in C

 The Two Strings are Different.
 The above function compares two strings for finding whether they are the same or different. Charac-
ters of these strings are compared one by one. In case of a mismatch the function returns to non-zero value,
otherwise it returns zero, i.e. when the two strings are the same strcmp() returns the value zero. If they
are different it returns the numeric difference between the ASCII values of non-matching characters.

strncmp() function

 Comparison of two strings can be made up to a certain specified length. The function used for this
is strncmp(). This function is the same as strcmp() but it compares the character of the string
to the specified length. The syntax of this function is as follows:

 strncmp(char *source, char *target, int argument);

where the argument is the number of characters up to which the comparison is to be made.

 8.18 Write a program to compare two strings up to specified length.

include <string.h>
void main()
{
 char sr[10],tar[10];
 int n,diff;
 clrscr();
 printf(“Enter String(1) : ”);
 gets(sr);
 printf(“Enter String(2) : ”);
 gets(tar);
 printf(“\nEnter Length up to which comparison is to be made ”);
 scanf(“%d”,&n);
 diff=strncmp(sr,tar,n);
 if(diff==0)
 printf(“The Two Strings are Identical up to %d characters.”,n);
 else
 puts(“The Two Strings are Different.”);
 getche();
}

OUTPUT:
Enter String(1) : HELLO
Enter String(2) : HE MAN

Enter Length up to which comparison is to be made : 2
The Two Strings are Identical up to 2 characters.

	 Explanation:
 One can also use strnicmp() function instead of strncmp(). The only difference

between them is that, the former function discriminates between small and capital letters
whereas the latter does not. The output of the above program after strnicmp() in place of
strncmp() will be as follows:

M08_KAMT3553_02_SE_C08.indd 302 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 303

 Enter String(1) : HELLO
 Enter String(2) : HE MAN

 The two strings are identical up to two characters.

Similarly, a program without using strcmp() can be developed which is as given below.

 8.19 Write a program to enter the two strings and compare them without using any standard func-
tion. Determine whether the strings are identical or not. Also display the number of position
where the characters are different.

include <string.h>
void main()
{
 static char sr[10],tar[10];
 int diff=0,i;
 clrscr();
 printf(“Enter String(1) : ”);
 gets(sr);
 printf(“Enter String(2) : ”);
 gets(tar);
 for(i=0;i<10;i++)
 {
 if(sr[i]==tar[i])
 continue;
 else
 {
 printf(“%c %c\n”, sr[i], tar[i]);
 diff++;

 }

 }

 if(strlen(sr)==strlen(tar) && diff==0)
 puts(“\nThe Two Strings are Identical”);
 else
 printf(“\nThe Two Strings are Different at %d places.”,diff);
 getche();
}

OUTPUT:
Enter String(1) : BEST LUCK

Enter String(2) : GOOD LUCK

G B
O E
O S
D T

The Two Strings are Different at 4 places.

	 Explanation:
 In the above program, two strings up to 10 characters can be entered. The if condition within

the for loop checks corresponding characters of both the strings. If they are identical the

M08_KAMT3553_02_SE_C08.indd 303 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

304 Programming in C

loop is continued. Otherwise, counter variable ‘diff’ is incremented and different char-
acters of two strings are displayed. The last if condition checks the variable ‘diff’ and
displays respective messages.

strlwr() function

 This function can be used to convert any string to lowercase. When you are passing any upper case
string to this function it converts into lowercase. The standard syntax of strlwr() is as follows:

 strlwr(char *string);

 8.20 Write a program to convert the uppercase string to lowercase using strlwr().

include <string.h>

void main()
{
 char upper[15];
 clrscr();
 printf(“\nEnter a string in Upper case :”);
 gets(upper);
 printf(“After strlwr() : %s”, strlwr(upper));
}

OUTPUT:
Enter a string in Upper case : ABCDEFG

After strlwr() : abcdefg

	 Explanation:
 In this program string is entered in capital letters. The string is passed to the function strlwr().

This function converts the string to lower case.

strupr() function

 This function is the same as strlwr() but the difference is that strupr() converts lowercase
strings to uppercase strings. The syntax of this function is strupr(char *string);

 8.21 Write a program to convert the lowercase string to upper case using strupr().

include <string.h>
void main()
{
 char upper[15];
 clrscr();
 printf(“\n Enter a string in Lower Case :”);
 gets(upper);

M08_KAMT3553_02_SE_C08.indd 304 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 305

	 Explanation:
 In this program a string is entered. The string is passed to the function strupr(). This func-

tion converts the string to uppercase.

 printf(“After strupr() : %s”, strupr(upper));
}

OUTPUT:
Enter a string in Lower Case : abcdefg

After strupr() : ABCDEFG

strdup() function

 This function is used for duplicating a given string at the allocated memory which is pointed by
the pointer variable. The syntax of this function is text2=strdup(text1).
 Where text1 is a string and text2 is a pointer.

 8.22 Write a program to enter the string and get its duplicate. Use the strdup() function.

include <string.h>

void main()
{
 char text1[20],*text2;

 clrscr();
 printf(“Enter Text :”);
 gets(text1);

 text2=strdup(text1);

 /* pointer *text2 is initialized to the address of text1 through
 strdup() function. */

 printf(“Original String = %s\nDuplicate String = %s”,text1,text2);
}

OUTPUT:
Enter Text : Today is a Good Day.

Original String = Today is a Good Day.
Duplicate String = Today is a Good Day.

	 Explanation:
 In the above program character array text1[] and pointer variable text2 are declared.

A string is entered in character array text1[]. The strdup() function copies the con-
tents of text1[] array to pointer variable text2. The printf() function displays the
contents of both the variables which are the same.

strchr() function

M08_KAMT3553_02_SE_C08.indd 305 5/17/2015 9:31:49 AM

https://hkgbooks.blogspot.com

306 Programming in C

 This function returns the pointer position to the first occurrence of the character in the given
string. The format of this function is chp=strchr(string,ch);
 Where string is a character array, ch is a character variable and chp is a pointer which collects ad-
dress returned by the strchr() function. The syntax of this function is strchr(char*string,
char character);

 8.23 Write a program to find first occurrence of a given character in a given string. Use the
strchr() function.

include <string.h>
void main()
{
 char string[30],ch,*chp;

 clrscr();
 printf(“Enter Text Below :”);
 gets(string);

 printf(“\nCharacter to find :”);
 ch=getchar();

 /* returns a pointer to the first occurrence of the given
character in*/

 /* pointer chp, if given character is not found strchr()
returns null.*/

 chp=strchr(string,ch);

 if(chp)
 printf(“Character %c found in string.”,ch);
 else
 printf(“Character %c not found in string.”,ch);
}

OUTPUT:
Enter Text Below: Hello Beginners.

Character to find : r
Character r found in string.

OR

 8.24 Write a program to find the first occurrence of a given character in a given string. Find the
memory location where the character occurs. Use the strchr() function.

include <string.h>

void main()
{
 char line1[30],line2,*chp;
 int i;
 clrscr();
 puts(“Enter Text :”);
 gets(line1);

 puts(“Enter Character to find from the text :”);
 line2=getche();

M08_KAMT3553_02_SE_C08.indd 306 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 307

	 Explanation:
 This function finds the memory location where, the first occurrence of a given charac-

ter is found in a given string. When it finds the character the program terminates and the
strchr() function provides the address of that character. The strchr() function returns
the memory address of the first occurred character, i.e. it returns the memory address, which
is collected by the pointer variable.

 Note: In place of strchr() one can use strrchr(). The difference between them is that
strchr() searches the occurrence of a character from the beginning of the string whereas
strrchr() searches the occurrence of a character from the end (reverse).

 for(i=0;i<strlen(line1);i++)
 printf(“\n%c %u”,line1[i],&line1[i]);

 chp=strchr(line1,line2);

 if(chp)
 {
 printf (“\nAddress of first %c returned by strchr() is %u

“,line2,chp);
 }
 else
 printf(“%c character is not present in Given String”,line2);
}

OUTPUT:
Enter Text : HELLO

Enter Character to find from the text : L
H 4032
E 4033
L 4034
L 4035
O 4036

Address of first L returned by strchr() is 4034.

include <string.h>

void main()

strstr() function

 This function finds the second string in the first string. It returns the pointer location from where
the second string starts in the first string. In case the first occurrence in the string is not observed, the
function returns a NULL character.
 The syntax of this function is strstr (char *string1,char *sring2);

 8.25 Write a program using strstr() function for occurrence of second string in the first string.

M08_KAMT3553_02_SE_C08.indd 307 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

308 Programming in C

This function appends the target string to the source string. Concatenation of two strings would be
done using this function. The syntax of this function is strcat(char *text1,char *text2);

 8.26 Write a program to append the second string at the end of the first string using the strcat()
function.

{
 char line1[30],line2[30],*chp;
 clrscr();
 puts(“Enter Line1 :”);
 gets(line1);
 puts(“Enter Line2 :”);
 gets(line2);
 chp=strstr(line1,line2);

 if(chp)
 printf(“\‘%s\’ String is present in Given String.”,line2);
 else
 printf(“\‘%s\’ String is not present in Given String.”,line2);
}

OUTPUT:
Enter Line1 : INDIA IS MY COUNTRY.
Enter Line2 : INDIA
‘INDIA’ String is present in Given String.

strcat() function

include <string.h>
void main()
{
 char text1[30], text2[10];
 puts(“Enter Text1 :”);
 gets(text1);
 puts(“Enter Text2 :”);
 gets(text2);

 strcat(text1,“ ”);
 strcat(text1,text2);

 clrscr();
 printf(“%s\n”, text1);
}

OUTPUT:
Enter Text1 : I am

Enter Text2 : an Indian

I am an Indian

M08_KAMT3553_02_SE_C08.indd 308 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 309

	 Explanation:
 In the above example, two strings are entered in the character array text1[] and text2[].

The strcat() function concatenates both the strings, i.e. the second string is appended in
the first string. The printf() function displays the contents of the text1[] which is the
concatenation of the two strings.

 8.27 Write a program to concatenate two strings without the use of the standard function.

include <string.h>

void main()
{
 char name[50],fname[15],sname[15],lname[15];
 int i,j,k;
 clrscr();
 printf(“First Name :”);
 gets(fname);
 printf(“Second Name :”);
 gets(sname);
 printf(“Last Name :”);
 gets(lname);

 for(i=0;fname[i]!=‘\0’;i++)
 name[i]=fname[i];
 name[i]=‘ ’;

 for(j=0;sname[j]!=‘\0’;j++)
 name[i+j+1]=sname[j];
 name[i+j+1]=‘ ’;

 for(k=0;lname[k]!=‘\0’;k++)
 name[i+j+k+2]=lname[k];
 name[i+j+k+2]=‘\0’;

 printf(“\n\n”);
 printf(“Complete Name After Concatenation.\n”);
 printf(“%s”,name);
 getche();
}

OUTPUT:
First Name : MOHAN
Second Name : KARAMCHAND
Last Name : GANDHI

Complete Name After Concatenation.

MOHAN KARMCHAND GANDHI

	 Explanation:
 In the above program, three strings are entered. The first for loop copies string fname[]

to name[] array using simple assignment. The statement following the for loop adds space
after the string. The next two for loops follow the same procedure to concatenate arrays
sname[] and lname[] in name[]. Thus, we get in name[] concatenation of three
strings.

M08_KAMT3553_02_SE_C08.indd 309 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

310 Programming in C

	 Explanation:
 In this program, two strings are entered. The number of characters of the second string to

append in the first string is also entered. The strncat() function uses three arguments
viz. Text1[], text2[] and ‘n’, where ‘n’ characters of text2[] are appended in
the text1[] string. In this program, two strings ‘MAY I’, ‘COME IN’ and n=4 are
entered. The strncat() function returns ‘MAI I COME’.

strncat() function

This function is the same as that of strcat(). The difference between them is that, the former does
the concatenation of the strings with another up to the specified length. The syntax of this function is
strncat (text1,text2,n); where n is the number of characters to append.

 8.28 Write a program to append the second string with specified (n) number of characters at the
end of the first string using the strncat() function.

include <string.h>
void main()
{
 char text1[30], text2[10],n;
 puts(“Enter Text1 :”);
 gets(text1);
 puts(“Enter Text2 :”);
 gets(text2);
 printf(“Enter Number of Characters to Add :”);
 gets(n);
 strcat(text1,“ ”);
 strncat(text1,text2,n);
 clrscr();
 printf(“%s\n”, text1);
}

OUTPUT:
Enter Text1 : MAY I

Enter Text2 : COME IN ?

Enter Number of Characters to Add : 4
MAY I COME

strrev() function

This function simply reverses the given string. The syntax of this function is strrev(char *s);

 8.29/8.30 Write a program to display the reverse of the given string.

include <string.h>
void main()
{

M08_KAMT3553_02_SE_C08.indd 310 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 311

 char text[15];
 puts(“Enter String”);
 gets(text);
 puts(“Reverse String”);
 puts(strrev(text));
}

OUTPUT:
Enter String

ABCDEFGHI

Reverse String

IHGFEDCBA

OR

include <string.h>

void main()
{
 char text[15];

 int i=0;
 clrscr();
 printf(“Enter String :-”);
 gets(text);

 while (text[i]!= ‘\0’)
 {
 printf(“\n %c is stored at location %u”,text[i],&text[i]);
 i++;
 }

 strrev(text);

 printf(“\nReverse String :-”);
 printf(“%s”,text);
 i=0;

 while (text[i]!= ‘\0’)
 {
 printf (“\n %c is stored at location %u”,text[i],&text[i]);
 i++;
 }
}

OUTPUT:
Enter String :- ABC
A is stored at location 4054
B is stored at location 4055
C is stored at location 4056

Reverse String :- CBA

C is stored at location 4054
B is stored at location 4055
A is stored at location 4056

M08_KAMT3553_02_SE_C08.indd 311 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

312 Programming in C

	 Explanation:
 In the above programs, string is entered and passed into the strrev() function. On the

execution of the function, the given string appears in the reverse order. The strrev()
function physically changes the sequence of characters in the reverse order. The output of the
second program shows the sequence of characters and their locations.

strset() function

 This function replaces every character of a string with the symbol given by the programmer, i.e.
the elements of the strings are replaced with the arguments given by the programmer. The syntax of
the function is strset(char *string,char symbol)

 8.31 Write a program to replace (set) the given string with the given symbol. Use the strset()
function.

include <string.h>
void main()
{
 char string[15];
 char symbol;
 clrscr();
 puts(“Enter String :”);
 gets(string);
 puts(“Enter Symbol for Replacement:”);
 scanf(“%c”,&symbol);
 printf(“Before strset() : %s\n”, string);
 strset(string, symbol);
 printf(“After strset() : %s\n”, string);
}

OUTPUT:
Enter String : LEARN C

Enter Symbol for Replacement: Y

Before strset() : LEARN C

After strset() : YYYYYYY

	 Explanation:
 The strset() function requires two arguments. First one is the string and another char-

acter by which the string is to be replaced. Both these arguments are to be entered when
the program executes. The strset() function replaces every character of the first string
with the given character/symbol, i.e. every character of the string replaces by the entered
character.

strnset() function

M08_KAMT3553_02_SE_C08.indd 312 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 313

 This function is the same as that of strset(). Here, the specified length is provided. The
syntax of this function is strnset(char *string,char symbol,int n); where n is the
number of characters to replace.

 8.32 Write a program to replace (set) the given string with the given symbol for the given number
of arguments. Use the strnset() function.

include <string.h>
void main()
{
 char string[15];
 char symbol;
 int n;
 clrscr();
 puts(“Enter String :”);
 gets(string);
 puts(“Enter Symbol for Replacement:”);
 scanf(“%c”,&symbol);

 puts(“How many String Character to be replaced.”);
 scanf(“%d”,&n);

 printf(“Before strnset() : %s\n”, string);
 strnset(string, symbol,n);
 printf(“After strnset() : %s\n”, string);
}

OUTPUT:
Enter String : ABCDEFGHIJ

Enter Symbol for Replacement: +

How many String Characters to be replaced. 4
Before strnset() : ABCDEFGHIJ
After strnset() : ++++EFGHIJ

	 Explanation:
 This program is the same as that of the previous one. The only difference is that instead of

replacing all characters of the string, only a specified number of characters are to be replaced.
Here, the number entered is 4. Hence, only the first four characters are replaced by the given
symbol. The replacing process starts from the first character of the string.

strspn() function

 This function returns the position of the string from where the source array is not matching the
target one. The syntax of this function is strspn (char *string1,char *string2)

 8.33 Write a program to enter two strings. Indicate after how many characters the source string
is not matching the target string.

include <string.h>
void main()

M08_KAMT3553_02_SE_C08.indd 313 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

314 Programming in C

	 Explanation:
 In this program, two strings are entered. Both the strings are passed to the function strspn().

The function searches the second string in the first string. It searches from the first character
of the string. If there is a match from the beginning of the string, the function returns the
number of characters that are the same.

 This function returns 0, when the second string mismatches with the first from the
beginning. For example, assume the first string is ‘BOMBAY’ and the second ‘TROMBAY’.
On the application of this function in the above case, the function returns 0 and message
displayed will be ‘After 0 characters there is no match’.

{
 char stra[10],strb[10];
 int length;
 clrscr();
 printf(“First String :”);
 gets(stra);
 printf(“Second String :”);
 gets(strb);
 length=strspn(stra,strb);
 printf(“After %d Characters there is no match.\n”,length);
}

OUTPUT:
First String : GOOD MORNING
Second String : GOOD BYE

After 5 Characters there is no match.

strpbrk() function

 This function searches the first occurrence of the character in a given string, and then it
 displays the string starting from that character. This function returns the pointer position to the first
 occurrence of the required character in text2[2]. The syntax of this function is strpbrk(char
*text1,char text2);

 8.34 Write a program to print the given string from the first occurrence of the given character.

include <string.h>
void main()
{
 char *ptr;
 char text1[20],text2[2];
 clrscr();
 printf(“Enter String :”);
 gets(text1);
 printf(“Enter Character :”);
 gets(text2);
 ptr=strpbrk (text1,text2[0]);

M08_KAMT3553_02_SE_C08.indd 314 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 315

	 Explanation:
 In the above program, two strings and character pointer are declared. The strings are entered.

Both the strings are used as arguments with the function strpbrk(). This function finds first
occurrence of required character in second string and returns that address which is assigned to
the character pointer *ptr. The pointer ptr displays the rest string.

 Here, the first string is ‘INDIA IS GREAT’ and the second string is ‘G’. The ‘G’ occurs
at the beginning of the third word. Hence, on the execution of the program the string from
‘G’ onwards is displayed. The output is only ‘GREAT’.

8.5 StrIng converSIon functIonS

Sr.	No. Function	Name Description

1 double atof(const char *s); Converts the given string to double.

2 int atoi(const char *s); Converts the given string to int

3 long atoi(const char *s); Converts the given string to long.

4 double strtod(char *s,char
**endptr);

Separates char and float data from the given string.

5 long strtol(char *s,char
**endptr,int radix);

Separates char and long int data from the given
string.

 8.35 Write a program to demonstrate the use of the atof() function.

 puts(“String from given Character”);
 printf(ptr);
}

OUTPUT:
Enter String : INDIA IS GREAT
Enter Character : G
String from given Character : GREAT

include <stdlib.h>
void main()
{
 double d;
 d=atof(“99.1254”);
 clrscr();
 printf(“%g”,d);
}

OUTPUT:
99.1254

	 Explanation:
 In the above program, the string ‘‘99.1254’’ is passed as an argument to the function

atof() which converts string to double. The converted number is stored in the variable d
and is displayed.

M08_KAMT3553_02_SE_C08.indd 315 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

316 Programming in C

 8.36 Write a program to demonstrate the use of atoi() function.

include <stdlib.h>
void main()
{
 int i;
 i=atoi(“99.11”);
 clrscr();
 printf(“%d”,i);
}

OUTPUT:
99

	 Explanation:
 The above program is the same as the last one. Here, the entered string “99.11” is converted

to an integer, i.e. 99.

 8.37 Write a program to demonstrate the use of strtod().

include <stdlib.h>
void main()
{
 const char *string = “12.2% is rate of interest”;
 char *stp;
 double d;
 clrscr();
 d=strtod(string,&stp);
 printf(“%g”,d);
 printf(“\n%s”,stp);
}

OUTPUT:
12.2
% is rate of interest

	 Explanation:
 In the above program, the string contains 12.2 a float number. The function strtod()

separates float, and strings are stored in separate variables. The same is displayed.

8.6 memory functIonS

Sr.	No Function Description

1 memcpy() Copies n number of characters from one string to another.

2 memove() Moves a specified range of char from one place to another.

3 memchr() Searches for the first occurrence of the given character.

4 memcmp() Compares the contents of the memory.

M08_KAMT3553_02_SE_C08.indd 316 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 317

 8.38 Write a program to demonstrate the use of memcpy() function.

void main()
{
 char *str = “Mukesh and Kamlesh”;
 char stp[20];
 clrscr();
 memcpy(stp,str,20);
 printf(“%s”,stp);
}

OUTPUT:
Mukesh and Kamlesh

	 Explanation:
 In this program, the contents of variable str are copied to stp using the memcpy() func-

tion. The function requires three arguments, i.e. destination, source and size.

 8.39 Write a program to demonstrate the use of memmove().

void main()
{
 char str[] = “Good Very Good”;
 clrscr();
 printf(“\n before : %s”,str);
 memove(str,&str[5],10);
 printf(“\nAfter : %s”,str);
}

OUTPUT:
before : Good Very Good
After : Very Good Good

	 Explanation:
 In this program, the function memove() moves a specified range of char to the given

location. In the output, you can observe how the strings are shifted to the beginning of the
string.

 8.40 Write a program to demonstrate the use of memcmp().

void main()
{
 char sf[]= “a”;
 char ss[]= “A”;
 clrscr();

M08_KAMT3553_02_SE_C08.indd 317 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

318 Programming in C

	 Explanation:
 In the above, two strings are compared up to the specified range. Their ASCII difference is

returned.

 8.41 Write a program to demonstrate the use of memchr().

 printf(“%d”,memcmp(sf,ss,2));
}

OUTPUT:
32

void main()
{
 char *sf= “C IS EASY”;
 clrscr();
 printf(“%s”,memchr(sf,‘E’,10));
}

OUTPUT:
EASY

	 Explanation:
 In the above program, the function memchr() searches for the first occurrence of ‘E’.

After getting the desired result, the remaining string is displayed.

8.7 applIcatIonS of StrIngS
 8.42 Write a program to count a character that appears in a given text for a number of times. Use

the while loop.

void main()
{
 char text[20];
 char find;
 int i=0,count=0;
 clrscr();
 printf(“Type Text Below.\n”);
 gets(text);
 printf(“Type a character to count :”);

 find=getche();

 while(text[i]!=‘\0’)
 {
 if(text[i]==find)
 count++;

M08_KAMT3553_02_SE_C08.indd 318 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 319

	 Explanation:
 In the above program, a string is entered. A single character, which is to be searched in the

string, is also entered. The if condition in the while loop checks every character of the
string with the single character. If there is a match counter variable ‘count’ gets incre-
mented. After the complete execution of the while loop the counter displays the number of
times the character found in the string.

 8.43 Write a program to count ‘m’ characters that appear in a given string without using any
function. Use the for loop.

 i++;
 }
 printf(“\nCharacter (%c) found in Given String = %d

 Times.”,find,count);
}

OUTPUT:
Type Text Below.

Programming

Type a character to count : m

Character (m) found in Given String = 2 Times.

void main()
{
 char text[25];
 int i,count=0;
 clrscr();
 printf(“\nEnter the string:”);
 for(i=0;i<25;++i)
 {
 scanf(“%c”,&text[i]);
 if(text[i]==‘\n’)
 break;
 else
 if(text[i]==‘m’)
 ++count;
 }
 printf(“Character ‘m’ Found in Text=%d times.\n”,count);
 getche();
}

OUTPUT:
Enter the string:

Programming is a skill.

Character ‘m’ Found in Text=2 times.

	 Explanation:
 The logic of the program is the same as that of the previous one. Here, in this program the

character that is to be searched is ‘m’ which is a default character. The first if statement

M08_KAMT3553_02_SE_C08.indd 319 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

320 Programming in C

within the for loop terminates the loop when the user presses the ‘enter’ key. The sec-
ond if statement checks every character of the entered string with ‘m’. If there is a match
counter variable, ‘count’ is incremented. Thus, at last count variable gives the number of
times ‘m’ present in the string.

 8.44 Write a program to count the following characters that appear in a string without using any
functions.

1. ‘m’
2. ‘r’
3. ‘o’

void main()
{
 char text[25]=“Programming is good habit”;
 int i,m=0,o=0,r=0;
 clrscr();
 for(i=0;i<25;++i)
 {
 if(text[i]==‘m’)
 ++m;
 if(text[i]==‘r’)
 ++r;
 if(text[i]==‘o’)
 ++o;
 }
 printf(“\nCharacter ‘m’ Found in Text=%d times.\n”,m);
 printf(“\nCharacter ‘r’ Found in Text=%d times.\n”,r);
 printf(“\nCharacter ‘o’ Found in Text=%d times.\n”,o);
 getche();
}

OUTPUT:
Character ‘m’ Found in Text=2 times.
Character ‘r’ Found in Text=2 times.
Character ‘o’ Found in Text=3 times.

	 Explanation:
 The logic of the program is the same as that of the previous one. Here, in this program the char-

acters that are to be searched are ‘m’,	‘r’ and ‘o’. The if statements within the for loops
increment with respective counter variables when there is a match of these characters. Thus,
after the execution of the for loop the three counter variables ‘m’,	‘r’ and ‘o’ are printed.

 8.45 Write a program to copy the contents of one string to another string without using the
function.

void main()
{
 char ori[20],dup[20];
 int i;

M08_KAMT3553_02_SE_C08.indd 320 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 321

	 Explanation:
 In the above program, two character arrays are declared. The source string is entered.

Using the for loop and assignment operator each character of the source array (ori[])
is assigned to the target array dup[]. After the execution of the for loop, NULL character
is appended in the target string to mark the end of the string. Using the printf() function
both the strings are displayed.

 8.46 Write a program to know whether the entered character string is palindrome or not. (Palin-
drome word reads the same from left to right and right to left.)

 (Ex. DAD, ABBA, MUM)

 clrscr();
 printf(“Enter Your Name :”);
 gets(ori);

 for(i=0;ori[i]!=‘\0’;i++)
 dup[i]=ori[i];
 dup[i]=‘\0’;

 printf(“Origional String : %s”,ori);
 printf(“\nDuplicate String : %s”,dup);

}

OUTPUT:
Enter Your Name : SACHIN

Original String : SACHIN

Duplicate String : SACHIN

include <string.h>
include <process.h>

void main()
{
 char str[10];
 int i=0,j,test;
 clrscr();
 printf(“Enter the word :”);
 scanf(“%s”,str);
 j=strlen(str)-1;

 while(i<=j)
 {
 if (str[i]==str[j])
 test=1;
 else
 {
 test=0;
 break;
 }
 i++;

M08_KAMT3553_02_SE_C08.indd 321 5/17/2015 9:31:50 AM

https://hkgbooks.blogspot.com

322 Programming in C

	 Explanation:
 In the above program, a string is entered that is to be tested for ‘palindrome’. The string

length is calculated and assigned to variable ‘j’. The value of ‘j’ is less by one with the origi-
nal string length because the array elements are counted from zero (0).

The if statement within the while loop checks the first and last characters of the string for equality.
Counter variables ‘i’ and ‘j’ denote the first and last characters, respectively. To get the successive
characters from both the ends, variable ‘i’ is incremented and ‘j’ is decremented. Till there is a match
variable ‘test’ is 1 and the loop continues, otherwise test is set to zero (0) and the break statement
terminates the loop.

 8.47 Write a program to compare the strings using the strcmp() function and display their
ASCII difference. Initialize the strings and copy some names of the cities to the variables.

 j--;
 }
 if(test==1)
 printf(“Word is palindrome.\n”);
 else
 printf(“\n Word is not Palindrome.\n”);
}

OUTPUT:
Enter the word : ABBA

Word is palindrome.

include <string.h>

void main()
{
 char a1[15],a2[15],a3[15],a4[15],a5[15],a6[15];
 int c1,c2,c3;
 strcpy(a1,“NAGPUR”);
 strcpy(a2,“NAGPUR”);
 strcpy(a3,“PANDHARPUR”);
 strcpy(a4,“KOLHAPUR”);
 strcpy(a5,“AURANGABAD”);
 strcpy(a6,“HYDERABAD”);
 clrscr();
 c1=strcmp(a1,a2);
 c2=strcmp(a3,a4);
 c3=strcmp(a5,a6);

 printf(“\nAscii Difference between two strings\n”);
 printf(“Difference between (%s %s)=%d\n”,a1,a2,c1);
 printf(“Difference between (%s %s)=%d\n”,a3,a4,c2);
 printf(“Difference between (%s %s)=%d\n”,a5,a6,c3);
 getche();
}

M08_KAMT3553_02_SE_C08.indd 322 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 323

	 Explanation:
 In the above program, five character arrays are declared. Using the strcpy() function the

names of cities are copied to arrays. Using the strcmp() function, strings are compared. The
strcmp() returns the ASCII difference of two strings. The ASCII values of the first characters
of two strings are taken into account for comparison. Rest of the elements are not considered for
ASCII difference. The ASCII value of the first character of the first string is subtracted from the
ASCII value of the first character of second string. Table 8.4 illustrates the calculation.

OUTPUT:
Difference between (NAGPUR NAGPUR)= 0
Difference between (PANDHARPUR KOLHAPUR)= 5
Difference between (AURANGABAD HYDERABAD)=-7

Table 8.4 ASCII difference
ASCII	Value ASCII	Value Difference

78 (N) 78 (N) 0

80 (P) 75 (K) 5

65 (A) 72 (H) −7

 8.48/8.49 Write a program to enter names of cities and display all the entered names alphabetically.

void main()
{
 char city[5][20];
 int i,j;
 clrscr();
 printf(“Enter Names of Cities.\n\n”);

 for(i=0;i<5;i++)
 scanf(“%s”,city[i]);

 printf(“Sorted List of Cities.\n\n”);

 for(i=65;i<=122;i++)
 {
 for(j=0;j<5;j++)
 {
 if(city[j][0]==i)
 printf(“\n%s”,city[j]);
 }
 }
}

OUTPUT:
Enter Names of Cities.

MUMBAI

M08_KAMT3553_02_SE_C08.indd 323 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

324 Programming in C

	 Explanation:
 In the above program, the first for loop is used for entering the names of cities. The city

name can be entered in either upper or lowercase. Hence, the second for loop is initialized
from 65 to 122 where 65 is the ASCII value of ‘A’ and 122 ASCII value of ‘z’. The if
statement within the third for loop makes the comparison. If there is a match, the city name
will be displayed, otherwise the loop continues. Thus, the elements of city[][] array are
displayed in a sorted order.

OR

NANDED
BANGLORE
KANPUR
INDORE

Sorted List of cities.

BANGLORE
INDORE
KANPUR
MUMBAI
NANDED

include <string.h>

void main()
{
 char city[5][20],temp[20];
 int i,j;
 clrscr();
 printf(“Enter Names of Cities\n”);

 for(i=0;i<5;i++)
 scanf(“%s”,city[i]);

 printf(“\nSorted List of Cities”);

 for(i=1;i<5;i++)
 {
 for(j=1;j<5;j++)
 {
 if(strcmp(city[j-1],city[j])>0)
 {
 strcpy(temp,city[j-1]);
 strcpy(city[j-1],city[j]);
 strcpy(city[j],temp);
 }
 }
 }
 for(i=0;i<5;i++)
 printf(“\n%s”,city[i]);
}

M08_KAMT3553_02_SE_C08.indd 324 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 325

	 Explanation:
 In the above program, standard string functions strcmp() and strcpy() are used. The

strcmp() function compares two successive city names. If theirASCII difference is greater
than zero, city names are exchanged. This is accomplished by the body of the if statement.
Thus, on the execution of the program cities are displayed in the alphabetical order.

 8.50/8.51 Write a program to find the number of words in a given statement. Exclude spaces
between them.

OUTPUT:
Enter Names of Cities.

MUMBAI
NANDED
BANGLORE
KANPUR
INDORE

Sorted List of Cities.

BANGLORE
INDORE
KANPUR
MUMBAI
NANDED

void main()
{
 char text[30];
 int count=0,i=0;
 clrscr();
 printf(“Enter The Line of Text \n”);
 printf(“Give One Space After Each word\n”);
 gets(text);

 while(text[i++]!= ‘\0’)
 if(text[i]==32 || text[i]== ‘\0’)
 count++;

 printf(“The Number of words in line = %d\n”,count);
}

OUTPUT:
Enter The Line of Text
Give One Space After Each word

Read Books
The Number of words in line = 2

	 Explanation:
 In the above program, a string is entered. It is known that the single space separates two consecu-

tive words. The logic for finding the number of words in a statement is to detect the number

M08_KAMT3553_02_SE_C08.indd 325 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

326 Programming in C

of spaces and NULL characters. For example, in a statement ‘C IS A PROGRAMMING
LANGUAGE’ there are four spaces and a NULL character when the string is terminated.
Thus, the total characters are five (4+1). The if statement counts the number of spaces and
NULL characters in the string.

OR

void main()
{
 char text[30];
 int count=0,i=0;
 clrscr();
 printf(“Enter Text Below :”);
 gets(text);
 while(text[i]!=‘\0’)
 {
 if(((text[i]>=97) && (text[i]<=122)) || ((text[i]>=65) &&

(text[i]<=90)))
 {
 i++;
 if(text[i]==32)
 {
 count++;
 i++;
 }
 }
 }
 if(text[i]==‘\0’)
 count++;
 printf(“The Number of words in line = %d\n”,count);
}

OUTPUT:
Enter Text Below : Reading is a good Habit
The Number of words in line = 5

	 Explanation:
 In the above program, a string is entered. The first if statement within the while loop

checks every element of string whether it is a character or space. If it is a character variable
‘i’ is incremented and checked with second if statement. If it is space then countervariables
‘i’ and ‘count’ are incremented. Thus, by counting spaces and NULL characters the total
number of words is calculated.

 8.52 Read the names of mobile customers through keyboard and sort them alphabetically on the
last name. Display the sorted list on the monitor.

include <string.h>
void main()
{
 char fname[20][10],sname[20][10],surname[20][10];
 char name[20][20],mobile[20][10],temp[20];

M08_KAMT3553_02_SE_C08.indd 326 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 327

 int i,j;
 clrscr();
 printf(“Enter Names and Mobile Numbers.\n”);

 for(i=0;i<5;i++)
 {
 scanf(“%s %s %s %s”,fname[i],sname[i],surname[i],mobile[i]);
 strcpy(name[i],surname[i]);
 strcat(name[i],“,”);
 temp[0]=fname[i][0];
 temp[1]=‘\0’;
 strcat(name[i],temp);
 strcat(name[i],“.”);
 temp[0]=sname[i][10];
 temp[1]=‘\0’;
 strcat(name[i],temp);
 }

 for(i=1;i<=5-1;i++)
 for (j=1;j<=5-i;j++)
 if(strcmp(name[j-1],name[j])>0)
 {
 strcpy(temp,name[j-1]);
 strcpy(name[j-1],name[j]);
 strcpy(name[j],temp);
 strcpy(temp,mobile[j-1]);
 strcpy(mobile[j-1],mobile[j]);
 }
 strcpy(mobile[j],temp);
 printf(“List of Customers in alphabetical Order.”);
 for(i=0;i<5;i++)
 printf(“\n%-20s\t %-10s\n”,name[i],mobile[i]);
}

OUTPUT:
Enter Names and Mobile Numbers.

K S MORE 458454
J M CHATE 658963
M M GORE 660585
L K JAIN 547855
J J JOSHI 354258

List of Customers in alphabetical Order.

CHATE J.M. 658963
GORE M M 660585
JAIN L K 547855
JOSHI J J 354258
MORE K S 458454

	 Explanation:
 The logic used here is the same as logic used in the program where city names are sorted

alphabetically.

M08_KAMT3553_02_SE_C08.indd 327 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

328 Programming in C

 Summary

 This chapter is focused on strings. In this chapter, you have learnt how to declare and initialize strings.
It is also very important to identify the end of the string. This is followed by NULL (\0) character. The
various formats for display of the strings are demonstrated with numerous examples.
 String handling has strong impact in our life string problems such as conversion of lower to
uppercase, reversing, concatenation, comparing, searching and replacing of string elements. It is also
discussed how to perform these activities with and without standard library functions.
 Memory functions have also been illustrated together with programming examples.
 After having performed programs discussed in this chapter, the programmer should not face any
problem in solving string-handling applications.

	1. The ______ is a group of characters, digits and
symbols.

 (a) number
 (b) array
 (c) string

	2. The string is terminated with ______
character.

 (a) ‘?’
 (b) ‘\0’
 (c) ‘#’

	3. Consider the declaration char name[10];.
Out of following, ______ cannot be held in name?

 (a) “A12BC34D”
 (b) “hello”
 (c) “1a3b5c7d9e”

	4. _____ is not the library string function.

 (a) strlen()
 (b) strrev()
 (c) strstrstr()

	5. ______ copies one string to another.

 (a) strstr()
 (b) strcpy()
 (c) strcat()

	6. The length of string name in the following program
segment is _____.

 char[]name
 ={‘h’,‘e’,‘l’,‘l’,‘o’,‘\0’};
 printf(“%d”,strlen(name));

 (a) 5
 (b) 6
 (c) 7

	 	7. The printf statement in the following program
segment prints _____.

 char name[] = “AbCdEf”;
 printf(“%s”,strlen(strlwr(strupr

(name))));

 (a) AbCdEf
 (b) ABCDEF
 (c) Abcdef
 (d) none of the above three

	 	8. _____ header file is to be included for using string
functions.

 (a) str.h
 (b) string.h
 (c) stdio.h

	 	9. The printf() statement in the following program
statement prints _____.

 char name[] = “India”;
 char *a;
 a = name;
 printf(“%s”,a);
 (a) India
 (b) I
 (c) no output

		10. Keyword const can be used with ______.

 (a) string
 (b) pointer
 (c) both string and pointer

 eXercISeS

 I Fill in the blanks :

M08_KAMT3553_02_SE_C08.indd 328 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 329

	11. The free() frees blocks allocated with ______.

 (a) malloc()
 (b) gets()
 (c) stralloc()

	12. ________ is used to allocate main memory.

 (a) gets()
 (b) malloc()
 (c) stralloc()

	13. ________ is used for duplication of a string.

 (a) gets()
 (b) strdup()
 (c) strcmp()

	14. ________ appends source to destination string.

 (a) strcat()
 (b) strdup()
 (c) strcmp()

II True or false:

1. Array of characters is also known as a string.

2. The name of array is the pointer to the first
element of the array.

3. strcat() function is used to find the length of
the string.

4. In const char* p = “Hello” pointer is
fixed and string is constant.

5. The array of pointers, declared as char *a[], is
a 2D character array.

6. In any array, its ith element can be accessed
using the - arr[i], i[arr], *(i+arr) and
*(arr+i).

7. Function malloc() can be used to allocate space
in memory at compile time.

8. In multidimensional array the consecutive arrays
are not stored in contiguous memory locations.

9. If you want to take the address of a person as an
input, you will mostly prefer scanf().

	10. The efficient declaration in terms of memory
for multidimensional string is *mul[] than
mul[20][30].

 11. The string is declared with int name[];

 12. “1ABCDE2345” is a valid string.

 13. “$ABCDE4567” is an invalid string.

 14. NULL character appears at first if the string is re-
versed.

 15. strlen() counts the number of characters
including \0 (null).

 16. strcmp() compares two arrays elements by el-
ements.

 17. ‘ABCD’ is a valid string.

 18. strcpy() copies string from the destination to
source string.

III Match the functions/words given in Group A with meanings in Group “B”:

1.

Group	A Group	B

Sr.	No. Statement Sr.	No. Output

1. printf(“%s\n”,text); A PRABHAKAR

2. printf(“%.5s\n”,text); B PRAB

3. printf(“%.8s\n”,text); C PRABHAKAR

4. printf(“%.15s\n”,text); D PRABHAKA

5. Printf(“%-10.4s\n”,text); E PRABH

6. Printf(“%11s”,text); F PRABHAKAR

M08_KAMT3553_02_SE_C08.indd 329 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

330 Programming in C

1. The string always ends with

 (a) ‘\0’ character
 (b) ‘\’ character
 (c) ‘0\’ character
 (d) None of the above

2. What will be the output of the program

 void main()
 {
 char nm[]={‘A’,‘N’,‘S’,‘I’,0,

‘C’,‘\0’};
 int x=0;
 clrscr();
 while (nm[x]!=‘\0’)
 printf (“%c”,nm[x++]);
 }

 (a) ANSI
 (b) ANSI0C
 (c) ANSIC
 (d) None of the above

3. What will be the size of character array

 void main()
 {
 char x[]={‘s’,‘a’,‘\0’};
 printf (“\n %d”,sizeof(x));
 }

 (a) 3
 (b) 2
 (c) 0
 (d) None of the above

4. What will be the output of the following
program?

 # include <string.h>
 void main()
 {
 char x[]=“a1b2c3d4e5f6g7h8i9j0”;
 int t=0;
 clrscr();
 for(t=1;x[t]!=0 &&
 t<=strlen(x);t+=2)
 printf (“%c”,x[t]);
 }

 (a) 1234567890
 (b) abcdefghij
 (c) a1b2c3d4e5f6g7h8i9j0
 (d) None of the above

5. What will be the output of the following program?

 void main()
 {
 char txt[]=“12345\0abcdef”;
 clrscr();
 printf(“%s”,txt);
 }

 (a) 12345
 (b) abcdef
 (c) 12345\0abcdef
 (d) None of the above

6. What will be the output of the following program?

 void main()
 {
 char txt[]=“ABCDEF\0GHIJKL”;
 clrscr();
 printf(“%s %d”,txt,sizeof

(txt));
 }

2.

Group	A Group	B

Sr.	No. Functions Sr.	No. Working

1 strlen() A Duplicate the string

2 strcpy() B Copies the string

3 strdup() C Returns length of the string

4 strrev() D Reverse the string

IV Selecting the appropriate option from the multiple choices given below:

M08_KAMT3553_02_SE_C08.indd 330 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 331

1. Write a program to arrange a set of fruit names
given below in descending order (reverse alpha-
betic). (mango, banana, apple, orange, graphs,
coconut, water melon and papaya).

2. Write a program to arrange the following names
in the alphabetic order. The sorting is to be done
on the first three characters of the first name.

 (Ashok, Alok, Akash, Amit, Amol, Anil, Ashish
and Anand).

3. Write a program to enter some text and display
the text in reverse order. (Example: ‘I am happy’
will be displayed as ‘happy am I’).

4. Write a program to enter five full names of per-
sons. Display their names, initials and last names.

5. Write a program to enter text through keyboard.
Convert first character of each word in capital and
display the text.

	 6. Write a program to enter some text through the
keyboard. Insert dot (.) after every three words in
the text. The first character after every dot should
be converted to capital.

 7. Write a program to enter some text through
the keyboard. Count the number of words that
starts from ‘w’. Display such words and count
them.

	 8. Write a program to print the entered word with
all possible combinations.

 9. Write a program to encrypt the text ‘INDIA’.
The output should be ‘KPFKC’. (‘A’ is to be
replaced with ‘C’, ‘B’ with ‘D’ and ‘C’ with
‘E’ and so on.)

	10. Write a program to dycrypt the text ‘KPFKC’ to
get original string ‘INDIA’.

VI Answer the following questions:

1. What are strings? How are they declared?

2. What is the NULL character? Why is it important?

3. Is it possible to initialize the NULL character in
the string?

4. Why is it necessary to count NULL characters
while declaring string?

5. What is the difference between the functions
strcmp() and stricmp()?

6. What is the use of strrev() and strlen()
functions?

	 7. What is the use of strcpy() and strdup()
functions?

 8. What is the difference between strcpy() and
strncpy() functions?

 9. What is the difference between NULL, ‘\0’
and 0?

 10. Describe any of the memory functions.

 11. Describe any three string conversion
functions.

 12. What is the use of atof() function?

V Attempt the following programming exercises:

 (a) ABCDEF 14
 (b) ABCDEF\0GHIJKL 14

 (c) ABCDEF 7
 (d) None of the above

VII What will be the output/s of the following program/s?

1.
 # include <string.h>
 void main()
 {
 char *a1[12]={“MAHARASHTRA”};

 clrscr();
 printf(“%s”,*a1);
 getche();
 }

M08_KAMT3553_02_SE_C08.indd 331 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

332 Programming in C

2.
 # include <string.h>
 void main()
 {
 char a1[12]=“MAHARASHTRA”;
 char *a2[13]={“MADHYAPRADESH”};
 clrscr();
 printf(“%s”, a1);
 printf(“%s”,*a2);
 getche();
 }

3. Program to find the length of the string.

 void main()
 {
 char text[20];
 int len;
 clrscr();
 printf(“type text below.\n”);
 gets(text);
 len=strlen(text);
 printf(“lenth of the strng

is=%d”,len);
 }

4. Program to copy the string using strcpy function

 void main()
 {
 char name1[10]={‘P’,‘r’,‘i’,‘

y’,‘a’},name2[10];
 clrscr();
 printf(“\n Original name=%s”,

name1);
 strcpy(name2,name1);
 printf(“\n Copied name

is=%s”,name2);
 getch();
 }

5. Without strcpy

 void main()
 {

 char main[10]=“abcd”,dup[10];
 int i;
 clrscr();
 for(i=0;i<10;i++)
 dup[i]=main[i];
 printf (“Origional String :

%s”,main);
 printf(“\nDuplicate String :

%s”,dup);
 getche();
 }

6.
 void main()
 {
 char group[15]={‘I’,‘n’,‘d’,

‘i’,‘a’};
 int len=0,i;
 clrscr();
 for(i=0;group[i]!=‘\0’;i++)
 len++;
 printf(“Length of the string

is=%d”,len);
 getch();
 }

7. Program on comparison of two strings

 void main()
 {
 char str1[20]={‘C’,‘o’,‘m’,‘p’,

‘u’,‘t’,‘e’,‘r’},
 str2[20]={‘C’,‘o’,‘m’,‘p’,‘u’,

‘t’,‘e’,‘r’};
 clrscr();
 if((strcmp(str1,str2))==0)
 printf(“Length of the strings

are same \n”);
 else
 printf(“Length of the strings

are not same \n”);
 getch();
 }

1.
 # include <string.h>
 void main()
 {
 char a1[]={“KOLKATA”};
 int i;
 clrscr();
 while(a1[i++]!=‘\0’)

 printf(“%c”,a1[i]);
 getche();
 }

2.
 # include <string.h>
 void main()
 {

VIII Find the bug/s in the following programs:

M08_KAMT3553_02_SE_C08.indd 332 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 333

Q. Ans.
1. c. String

It is a group of characters, digits and symbols. Actually it is an array of
 characters. So, more specific answer is String.

2. b. ‘\0’
Every string in C is terminated with ‘\0’ (NULL) character.

3. c. 1a3b5c7d9e
In C the maximum characters that can fit into a string is less than its size by 1.
Because, the string always terminates with ‘\0’ (NULL) character.

	 4. c. strstrstr()
There is no function strtstrstr() in C.

 char a1[6]={‘NAGPUR’};
 clrscr();
 printf(“%c”,a1);
 getche();
 }

	3.	
 # include <string.h>
 void main()
 {
 char *a[]=“ROYAL”;
 clrscr();
 printf(“%s %u”,*(a),&*a);
 getche();
 }

	4.	
 # include <string.h>
 void main()
 {
 char a1[6]={“CHENNAI”};
 int i;
 clrscr();
 for(i=0;i<7;i++)
 printf(“%c”,a1[i]);
 ++i;
 getche();
 }

	5.	
 void main()
 {
 char text[15]=“MOUNTAIN”;
 int i;

 clrscr();
 for(i=7;i>=0;i--)
 printf(“%.8d”,text[i]);
 getche();
 }

	6.	
 # include <string.h>
 void main()
 {
 char *a2[10]={“MADHYAPRADESH”};
 clrscr();
 printf(“%s”,*&(a2));
 getche();
 }

	7	.
 void main()
 {
 char str1[15]=‘snowy’,

str2[15]=‘sunny’;
 clrscr();
 printf(“\n Source String-

:%s”, str1);
 printf(“\n Destination

String-:%s”,str2);
 strncpy(str2,str1,3);
 printf(“\nDestination String

-:%s”,str2);
 getche();
 }

 I Fill in the blanks :

 anSwerS

M08_KAMT3553_02_SE_C08.indd 333 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

334 Programming in C

	 5. b. strcpy()
strcpy() function is used to copy a string from source to destination string.

	 6. a. 5
In C the string i.e. character array is terminated by ‘\0’ (NULL) character. If the
‘\0’ is specified like in declaration the compiler doesn’t insert more ‘\0’. Also,
the strlen() function gives the length of string without ‘\0’ character.

	 7. d. None of the above three
Understand the sequence of functions. The outer function executes last. So we
are trying to print integer with %s. It’ll print something which we cannot pre-
dict.

	 8. b. string.h
In C the string.h header file contains the functions needed by the strings.

	 9. a. India
In character array the name of the array is same as the pointer to the first
 element.

10. c. both string and pointer

11. a. malloc()

12. b. malloc()

13. b. strdup()

14. a. strcat()

II True or False:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
	 1. T 	 2. T 	 3. F 	 4. F 	 5. T

	 6. T 	 7. F 	 8. F 	 9. F 10. T

11. F 12. T 13. F 14. F 15. F

16. T 17. F 18. F.

III Match the functions/words given in Group A with meanings in Group “B”:

1.

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. F 2. E 3. D 4. C 5. B

6. A

2.

Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. C 2. B 3. A 4. D

M08_KAMT3553_02_SE_C08.indd 334 5/17/2015 9:31:51 AM

https://hkgbooks.blogspot.com

Strings and Standard Functions 335

Q. Ans.

1. MAHARASHTRA

2. MAHARASHTRA MADHYAPRADESH

3. My name is=Romali
Length of the string is=6

4. Original name=Priya
Copied name is=Priya

5. Origional String : abcd
Duplicate String : abcd

6. Length of the string is=5

7. Length of the strings are same

Q. Ans.
1. ‘i’is to be initialized with some value say i=–1.

2. Array initialization is incorrect and %s is to used instead of %c.

3. ROYAL must be enclosed with double quote.

4. char array is to be initialized with 7 instead of 6.

5. Replace c instead of d in printf statement.

6. ‘&’ operator to be deleted.

7. Double quotation mark is needed in char statement.

VII What will be the output/s of the following program/s?

VIII Find the bug/s in the following programs:

IV Selecting the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. a 2. a 3. a 4. a 5. a

6. a

M08_KAMT3553_02_SE_C08.indd 335 5/17/2015 9:31:52 AM

https://hkgbooks.blogspot.com

9 Pointers

CHAPTER

Chapter Outline

 9.1 Introduction
 9.2 Features of Pointers
 9.3 Pointers and Address
 9.4 Pointer Declaration
 9.5 The void Pointers
 9.6 Wild Pointers
 9.7 Constant Pointers
 9.8 Arithmetic Operations with Pointers
 9.9 Pointers and Arrays
 9.10 Pointers and Two-Dimensional Arrays
 9.11 Pointers and Multi-Dimensional Arrays
 9.12 Array of Pointers
 9.13 Pointers to Pointers
 9.14 Pointers and Strings

M09_KAMT3553_02_SE_C09.indd 336 5/17/2015 9:32:51 AM

https://hkgbooks.blogspot.com

Pointers 337

9.1 IntroductIon
Pointer is a special data-type in C and it is widely used by programmers. Most of the computer lan-
guage learners feel that the pointer is a puzzling topic and very difficult to understand. However, the
pointer enables fast and straightforward execution of a program. With pointers, memory is used most
efficiently. C gives more importance to pointers. Hence, it is important to know the operation and
applications of pointers. Pointers are used as a tool in C and if you fail to understand it, you will be
losing the power of C.
 In C, variables are used to hold data values during the execution a program. Every variable when
declared occupies certain memory location/s. For example, integer-type variable takes two bytes of
memory, character type one byte and float type four. With pointers, one can manipulate memory
addresses. It is possible to access and display the address of a memory location of a variable using the
‘&’ operator. Memory is arranged in a series of bytes. These series of bytes are numbered from zero
onwards. The number specified to a cell is known as the memory address. Pointer variable stores the
memory address of any type of variable. The pointer variable and normal variable should be of the
same type. The pointer is denoted by an asterisk () symbol.
 A byte is nothing but a combination of eight bits as shown in Figures 9.1 and 9.2. The binary
numbers 0 and 1 are known as bits. Each byte in the memory is specified with a unique (matchless)
memory address. The memory address is an unsigned integer starting from zero to uppermost address-
ing capacity of the microprocessor. The number of memory locations pointed by a pointer depends on
the type of pointer. The programmer should not take care and worry about addressing procedure of
variables. The compiler knows and performs the procedure of a pointer. The pointers are either 16 bits
or 32 bits long.

00110110

Value stored in binary form

Memory
addresses

1002 1003 1004 1005 1006 1007

Figure 9.1 Memory picture

 The allocation of memory during a program run time is called the dynamic memory allocation.
Such type of memory allocation is essential for data structures and can efficiently handle it using
pointers. Another reason to use pointers is in arrays. Arrays are used to store more values. Actually, the
name of array is a pointer. One more reason to use pointers is command-line arguments. Command-
line arguments are passed to programs and stored in an array of pointers argv[].

Pointer: Pointer is a special variable that stores the address of another variable. Pointer can
have any name that is legal for other variable and it is declared in the same fashion like other
variables but is always denoted by an asterisk () operator.

M09_KAMT3553_02_SE_C09.indd 337 5/17/2015 9:32:51 AM

https://hkgbooks.blogspot.com

338 Programming in C

9.2 Features oF PoInters
 (i) Pointers are a fundamental tool in developing code in C.

 (ii) Pointers save the memory space.

 (iii) The memory is accessed efficiently with the pointers. The pointer assigns the memory space
and also releases it. Pointers are used to allocate memory dynamically.

 (iv) Pointers are used with data structures. They are useful for representing two-dimensional and
multi-dimensional arrays.

 (v) Access elements of an array of any data type irrespective of its subscript range.

 (vi) Pointers are used for file handling.

 (vii) They allow us to create linked lists and other algorithmically oriented data structures.

 (viii) Execution time with pointer is faster because data is manipulated with the address.

9.3 PoInters and address
The theory of the pointer is not complicated. The computer memory is made by the semi-conductor
technology. Memory comprises binary cells. Each cell has a capacity to store a bit either 0 or 1. Byte
means a unit of 8 bits. Every such byte has a unique memory address as shown in Figure 9.2.

0
1
2

65535

Address

Figure 9.2 Memory address

 When a variable of any data type is declared, memory according to its data type is reserved.
For example:

int x,y;
char c;

65551

65552

65553

65554

65550

x

y

c

Figure 9.3 Memory allocated

 As shown in Figure 9.3, memory locations are reserved for the variables x, y and c. For an integer
variable two bytes each and for character variable one byte is reserved. The locations 65550 and 65551
are used to store x, and 65552 and 65553 are used to store y and so on. The starting address for x is 65550
and for y, it is 65552. The character needs only one byte and its location shown in Figure 9.3 is 65554.

M09_KAMT3553_02_SE_C09.indd 338 5/17/2015 9:32:51 AM

https://hkgbooks.blogspot.com

Pointers 339

9.4 PoInter declaratIon
Pointer variables can be declared as follows.

	 Example:
 int *x;
 float *f;
 char *y;

 (i) In the first statement, ‘x’ is an integer pointer and tells the compiler that it holds the address of
any integer variable. In the same way, ‘f ’ is a float pointer which stores the address of any float
variable and ‘y’ is a character pointer that stores the address of any character variable.

 (ii) The indirection operator () is also called the dereferencing operator. When a pointer is deref-
erenced, the value at that address stored by the pointer is retrieved.

 (iii) Normal variable provides direct access to their own values, whereas a pointer provides indirect
access to the values of the variable whose address it stores.

 (iv) The indirection operator () is used in two distinct ways with pointers, declaration and deref-
erence.

 (v) When a pointer is declared, a star () indicates that it is a pointer and not a normal variable.

 (vi) When the pointer is dereferenced, the indirection operator indicates that the value at that mem-
ory location stored in the pointer is to be accessed rather than the address itself.

 (vii) Also note that is the same operator that can be used as the multiplication operator. The com-
piler knows which operator to call, based on the context.

 (viii) ‘&’ is the address operator and represents the address of the variable. %u is used with the
printf() for printing the address of a variable. The address of any variable is a whole
number. The operator ‘&’ immediately preceding the variable returns the address of the vari-
able. In the below given example, ‘&’ is immediately preceding the variable ‘num’ which
provides the address of the variable.

 9.1 Write a program to display the address of the variable.

void main()
{
 int num;
 clrscr();
 printf(“Enter a Number = ”);
 scanf(“%d”,&num);
 printf(“Value of num =%d\n”,num);
 printf(“Address of num=%u\n”,&num);
 getche();

}

OUTPUT:
Enter a Number = 20
Value of num = 20
Address of num = 4066

M09_KAMT3553_02_SE_C09.indd 339 5/17/2015 9:32:52 AM

https://hkgbooks.blogspot.com

340 Programming in C

	 Explanation:
 The physical memory location of a variable is system-dependent; hence, the address of the

variable cannot be predicted immediately. In the above example, the address of the variable
‘num’ is 4066. Here, in the below given Figure 9.4, three blocks are shown related to the
above program. The first block contains variable name. The second block represents the
value of the variable. The third block is the address of the variable ‘num’ where 20 is stored.
Here, 4066 is the memory address.

NUM

20

4066

Variable name

Value of variable

Address of variable

Figure 9.4 Variable value and its address

	 Explanation:
 The program mentioned above declares three variables of different data types. Their values

are displayed together with respective addresses. Memory addresses are unsigned integers.
From the above example, a programmer can understand that the difference between two suc-
cessive addresses is not constant due to different data types.

 9.2 Write a program to display the addresses of different variables together with their values.

void main()
{
 char c;
 int i;
 float f;
 clrscr();
 printf(“Enter alphabet, number, float=”);
 scanf(“%c %d %f”,&c,&i,&f);
 printf(“Value of c=%c i=%d f=%f\n”,c,i,f);
 printf(“\nAddress of(c)%c =%u”,c,&c);
 printf(“\nAddress of(i)%d =%u”,i,&i);
 printf(“\nAddress of(f)%.2f =%u”,f,&f);
 getche();
}

OUTPUT:
Enter alphabet, number, float = C 20 2.5
Address of(c)c = 4061
Address of(i)20 = 4062
Address of(f)2.5 = 4064

M09_KAMT3553_02_SE_C09.indd 340 5/17/2015 9:32:52 AM

https://hkgbooks.blogspot.com

Pointers 341

 9.3 Write a program to show pointer of any data type that occupies the same space.

void main()
{
 clrscr();
 printf(“\t char %d byte & its pointer %d bytes\

n”,sizeof(char),sizeof(char*));
 printf(“\t int %d byte & its pointer %d bytes\

n”,sizeof(int),sizeof(int*));
 printf(“\t float %d byte & its pointer %d bytes\

n”,sizeof(float),sizeof(float*));
}

OUTPUT:
char 1 byte & its pointer 2 bytes
int 2 byte & its pointer 2 bytes
float 4 byte & its pointer 2 bytes

	 Explanation:
 In the above program, using sizeof() operator size of data type and its pointer are cal-

culated and displayed. It can be observed from the above program that data type requires
different number of bytes for storage whereas pointer of any data type requires two bytes.
On linux platform size of pointers is four bytes.

 9.4 Write a program to display the value of variables and its location using pointer.

void main()
{
 int v=10,*p;
 clrscr();
 p=&v;
 printf(“\n Address of v = %u”,p);
 printf(“\n Value of v = %d”,*p);
 printf(“\n Address of p= %u”,&p);
}

OUTPUT:
Address of v = 4060
Value of v = 10
Address of p = 4062

	 Explanation:
 In the above program, ‘v’ is an integer variable and its value is 10. The variable ‘p’ is de-

clared as a pointer variable. The statement p = &v assigns address of ‘v’ to ‘p’ i.e. ‘p’ is
the pointer to variable ‘v’. To access the address and value of ‘v’, pointer ‘p’ can be used.
The value of ‘p’ is nothing but an address of variable ‘v’. To display the value stored at that
location p is used. The pointer variables also have addresses and are displayed using ‘&’
operator. The statement used for finding pointer address, in this example, the statement used
is printf(“\n Address of p = %u”,&p); (see Figure 9.5).

M09_KAMT3553_02_SE_C09.indd 341 5/17/2015 9:32:52 AM

https://hkgbooks.blogspot.com

342 Programming in C

The value of ‘v’ is 10 and it is stored at location 4060. The address of ‘v’ 4060 is assigned to variable
‘p’. The address of pointer variable ‘p’ is 4062. Here, ‘p’ is the pointer-type variable, which points to
the variable ‘v’. Hence, it must be declared as int v = 10; and pointer variable as int*p;.

 9.5 Write a program to print the value of variables in different ways. How would you use ‘ ’ and
‘&’ operators for accessing the values:

4061

4060

v 10

Figure 9.5 Variable, addresses, and value

void main()
{
 int a,*pa;
 float b,*pb;
 clrscr();
 printf(“Enter Integer & float Value :”);
 scanf(“%d %f”,&a,&b);
 pa=&a;
 pb=&b;

 printf(“\n Address of a=%u”,pa);
 printf(“\n Value of a=%d”,a);
 printf(“\n Value of a=%d”,*(&a));
 printf(“\n Value of a=%d”,*pa);

 printf(“\nAddress of b=%u”,pb);
 printf(“\n Value of b=%.2f”,b);
 printf(“\n Value of b=%.2f”,*(&b));
 printf(“\n Value of b=%.2f”,*pb);
}

OUTPUT:
Enter Integer & float Value : 4 2.2
Address of a=4054
Value of a=4
Value of a=4
Value of a=4

Address of b=4060

Value of b=2.20
Value of b=2.20
Value of b=2.20

	 Explanation:
 The output of the program is as shown above. The program illustrates for accessing the val-

ues of variables ‘a’ and ‘b’ using pointers. The address of ‘pa’ is 4054 and it points to 4. The
address of ‘pb’ is 4060, and it points to 2.2.

 Thus, from the above example, we have noticed the equivalencies as given below.

 .a=*(&a)=*pa

M09_KAMT3553_02_SE_C09.indd 342 5/17/2015 9:32:52 AM

https://hkgbooks.blogspot.com

Pointers 343

 �Explanation�of�*(&a): Here, &a is used to get the address of the variable ‘a’. The content
stored in this location is accessed by ‘ ’. The declaration *(&a) acts as *pa.

 A simple example is given to understand the above concepts.

 9.6 Write a program to print the value of a variable using different pointer notations.

void main()
{
 int v=10,*p;
 clrscr();
 p=&v;

 printf(“\n v = %d v = %d v = %d”,v,*(&v),*p);
}

OUTPUT:
v = 10 v = 10 v = 10

	 Explanation:
 In the above program to display the value of variable ‘v’, three different syntaxes are used in

the printf() statement.

 9.7 Write a program to print an element and its address using pointer.

void main()
{
 int i,*k;
 clrscr();
 printf(“Enter a number : ”);
 scanf(“%d”,&i);
 k=&i;

 printf(“\nAddress of i is %u”,k);
 printf(“\nValue of i is %d”,*k);

}

OUTPUT:
Enter a number : 15
Address of i is 4062
Value of i is 15

	 Explanation:
 In the above program, the address of variable ‘i’ is assigned to pointer variable ‘k’ with

statement k=&i;. Hence, ‘k’ is pointing to ‘i’. The value of the variable ‘i’ is dis-
played using pointer (*k) with the statement printf(“\nValue of i is %d”,*k);

 9.8 Write a program to add two numbers through variables and their pointers.

 void main()
{

M09_KAMT3553_02_SE_C09.indd 343 5/17/2015 9:32:52 AM

https://hkgbooks.blogspot.com

344 Programming in C

 int a,b,c,d,*ap,*bp;
 clrscr();
 printf(“Enter Two Numbers :”);
 scanf(“%d %d”,&a,&b);
 ap=&a;
 bp=&b;
 c=a+b;
 d=*ap+*bp;
 printf(“\nSum of A & B Using Variable :%d”,c);
 printf(“\nSum of A & B Using Pointers :%d”,d);
}

OUTPUT:
Enter Two Numbers : 8 4
Sum of A & B Using Variable : 12
Sum of A & B Using Pointers : 12

	 Explanation:
 In the above program, the sum of two numbers is obtained in two ways.

 (i) Adding variables ‘a’ and ‘b’ directly.

 (ii) Through pointers of ‘a’ and ‘b’ i.e. ‘ap’ and ‘bp’, respectively.

The addresses of ‘a’ and ‘b’ are stored in ‘ap’ and ‘bp’, respectively. Thus, adding ‘*ap’ and ‘*bp’
gives an addition of ‘a’ and ‘b’. Here, ‘ap’ and ‘bp’ mean addresses of ‘a’ and ‘b’ and ‘ ap’ and ‘ bp’
mean the values at memory locations. Hence, the equation used here is d= ap+ bp; and not�d=ap+bp.

 9.9 Write a program to assign the pointer value to another variable.

void main()
{
 int a=5,b,*c;
 c=&a;
 b=*c;
 clrscr();
 printf(“\nMemory location of ‘a’=%u”c);
 printf(“\nThe value of a=%d & b=%d”,a,b);
}

OUTPUT:
Memory location of ‘a’= 4062
The value of a=5 & b=5

	 Explanation:
 In the above program, the pointer variable ‘c’ is assigned the memory location of ‘a’. The

value stored in this memory location is assigned to ‘b’ through pointer c.

 9.10 Write a program to assign the value of ‘b’ to ‘a’ through pointers. Show the effect of addi-
tion before and after the assignment of the value of ‘b’ to ‘a’.

M09_KAMT3553_02_SE_C09.indd 344 5/17/2015 9:32:52 AM

https://hkgbooks.blogspot.com

Pointers 345

void main()
{
 int a,b,*pa,*pb;
 clrscr();
 printf(“Enter Value of ‘a’ & ‘b’. :”);
 scanf(“%d %d”,&a,&b);
 pa=&a;
 pb=&b;
 printf(“\nValue of a=%d & b=%d”,a,b);
 printf(“\nAddress of a=%u”,pa);
 printf(“\nAddress of b=%u”,pb);
 printf(“\n\nAddition of ‘a’ & ‘b’ : %d”,*pa+*pb);

 pa=pb;

 printf(“\n*pa=%d *pb=%d”,*pa,*pb);
 printf(“\npa =%u pb=%u”,pa,pb);
 printf(“\nAddition of *pa +*pb : %d”,*pa+*pb);
 getche();
}

OUTPUT:
Enter Value of ‘a’ & ‘b’. : 8 4
Value of a=8 & b=4
Address of a=4056
Address of b=4058
Addition of ‘a’ & ‘b’ : 12
*pa=4 *pb=4
pa=24350 pb=24350
Addition of *pa & *pb : 8

	 Explanation:
 In the above program, addresses of variables ‘a’ and ‘b’ are assigned to pointers ‘pa’

and ‘pb’. The statement pa = pb; means the value of pointer ‘pb’ is assigned to pointer
‘pa’. Now, both the pointers have the same value and they point to the same variable ‘b’.
Hence, the addition is 8.

9.5 the void PoInters
Pointers can also be declared as void types. void pointers cannot be dereferenced without explicit
type conversion. This is because being void the compiler cannot determine the size of the object that
the pointer points to. Though void pointer declaration is possible, void variable’s declaration is not
allowed. Thus, the declaration void p will display an error message ‘Size of ‘p’ is unknown
or zero’ after compilation.
 A pointer points to an existing entity. A void pointer can point any type of variable with proper
type casting. The size of a void pointer displayed will be two. When a pointer is declared as void two
bytes are allocated to it. Later using type casting, a number of bytes can be allocated or deallocated.
void variables cannot be declared because memory is not allocated to them and there is no place to
store the address. Therefore, void variables cannot serve the job actually they are made for.

M09_KAMT3553_02_SE_C09.indd 345 5/17/2015 9:32:52 AM

https://hkgbooks.blogspot.com

346 Programming in C

 9.11 Write a program to declare a void pointer. Assign the address of int, float and char variables
to the void pointer using the typecasting method. Display the contents of various variables.

int p;
float d;
char c;

void *pt = &p;

void main
{
 clrscr();
 *(int *) pt = 12;
 printf(“\n p= %d”,p);
 pt=&d;
 *(float *)pt = 5.4;
 printf(“\n r=%g”,d);
 pt=&c;
 (char)pt=‘S’;
 printf(“\n c=%c”,c);
}

OUTPUT:
p=12
r=5.4
c=s

	 Explanation:
 In the above example, variables p, d and c are variables of types int, float and char,

respectively. Pointer pt is a pointer of type void. These entire variables are declared before
main(). The pointer is initialized with the address of integer variable p, i.e. the pointer pt
points to variable p. The statement *(int *) pt = 12 assigns the integer value 12 to pointer
pt i.e. to a variable p. The contents of variable p are displayed using the succeeding statement.
The declaration *(int *) tells the compiler the value assigned is of the integer type. Thus,
the assignment of float and char types is carried out. The statements *(int *) pt = 12,
* (float *)pt =5.4 and *(char*) pt=‘S’ help the compiler to exactly determine
the size of the data type.

9.6 WIld PoInters
Pointers are used to store memory addresses. An improper use of pointer creates many errors in the
program. Hence, pointers should be handled cautiously. When a pointer points to an unallocated
memory location or data value whose memory is de-allocated, such a pointer is called a wild pointer.
The wild pointer generates garbage memory location and dependent reference. The pointer becomes
wild due to the following reasons:

 (i) Pointer declared but not initialized

 (ii) Pointer alternation

 (iii) Accessing the destroyed data

M09_KAMT3553_02_SE_C09.indd 346 5/17/2015 9:32:52 AM

https://hkgbooks.blogspot.com

Pointers 347

When a pointer is declared and not initialized, it holds an unauthorized address. It is very difficult to
manipulate such pointers.

 9.12 Write a program to show the wild pointer and its output.

void main()
{
 int k,*x;
 /*clrscr();*/
 for(k=0;k<=3;k++)
 printf(“%u”,x[k]);
}

OUTPUT:
7272 24330 30559 27753

	 Explanation:
 In this program, pointer x is not initialized. The successive locations are displayed.

 (i) The forgetful assignment of a new memory location in a pointer is called the pointer alterna-
tion. This happens when the wild pointer accesses the location of the wild pointer. The wild
pointer converts the legal pointer to the wild pointer.

(ii) Sometimes the pointer attempts to access the data that has no longer life.

9.7 constant PoInters
The address of the constant pointer cannot be modified.

char* const str=“Constant”;

In the above example, it is not possible to modify the address of the pointer str. The following opera-
tions will generate error messages:

str=‘san’ /* cannot modify a constant object */
++str /* cannot modify a constant object */

If pointer constant is pointing to a variable, we can change the value of the actual variable but not
through the constant pointer. The following valid and invalid operations are given:

k=5 /* possible */
pm=5 / invalid */
pm++ /* possible */
pm++ / invalid */
pm=5 / invalid */

 9.13 Write a program to declare a constant pointer and modify the value.

void main()
{
 int k=10;
 int const *pm=&k;

M09_KAMT3553_02_SE_C09.indd 347 5/17/2015 9:32:52 AM

https://hkgbooks.blogspot.com

348 Programming in C

 clrscr();
 k=40;
 /* *pm=50; invalid operation */
 printf(“k=%d”,k);
}

OUTPUT:
k=40

	 Explanation:
 In the above program, variable k is an integer and pm is a constant pointer of the same type.

The value of k cannot be changed through the pointer pm, because pm is a constant pointer.
The value of a variable can be changed through itself only. Any constant entity cannot permit
any modification.

9.8 arIthmetIc oPeratIons WIth PoInters
Arithmetic operations on pointer variables are also possible. Increment, decrement, prefix and
postfix operations can be performed with the pointers. The effects of these operations are shown
in Table 9.1.

Data	Type
Initial		

Address Operation
Address	after		
Operations

Required		
Bytes

int i=2 4046 ++ –– 4048 4044 2

char c=‘x’ 4053 ++ –– 4054 4052 1

float f=2.2 4058 ++ –– 4062 4054 4

long l=2 4060 ++ –– 4064 4056 4

Table 9.1 Pointer and arithmetic operation

From Table 9.1, we can observe that, on increment of the pointer variable for integers, the address is
incremented by two, i.e. 4046 is the original address and on increment its value will be 4048 because
integers require two bytes.
 Similarly, characters, floating point numbers and long integers require 1, 4 and 4 bytes, respec-
tively. After the effect of increment and decrement the memory locations are shown in Table 9.1.

 9.14 Write a program to show the effect of increment on pointer variables. Display the memory
locations of integer, character and floating point numbers before and after the increment of
pointers.

void main()
{
 int x,*x1;
 char y,*y1;
 float z,*z1;
 clrscr();

M09_KAMT3553_02_SE_C09.indd 348 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 349

 printf(“Enter integer, character, float Values \n”);

 scanf(“%d %c %f”,&x,&y,&z);

 x1=&x;
 y1=&y;
 z1=&z;
 printf(“Address of x = %u\n”,x1);
 printf(“Address of y = %u\n”,y1);
 printf(“Address of z = %u\n”,z1);
 x1++;
 y1++;
 z1++;
 printf(“\nAfter Increment in Pointers\n”);
 printf(“\nNow Address of x=%u\n”,x1);
 printf(“Now Address of y=%u\n”,y1);
 printf(“Now Address of z=%u\n”,z1);
 printf(“\nSize of Integer: %d”,sizeof(x));
 printf(“\nSize of Character: %d”,sizeof(y));
 printf(“\nSize of Float: %d”,sizeof(z));
}

OUTPUT:
Enter integer, character, float Values
2 A 2.2

Address of x = 4046
Address of y = 4053
Address of z = 4058

After Increment in Pointers

Now Address of x = 4048
Now Address of y = 4054
Now Address of z = 4062

Size of Integer : 2
Size of Character : 1
Size of Float : 4

	 Explanation:
 Observe the output. 4046 is the address of integer ‘x’, 4053 is the address of character ‘y’

and 4058 is the address of floating point number ‘z’. On the increment of the pointer the ad-
dress of integer, character and float will be 4048, 4054 and 4062, respectively. This is because
a pointer is incremented, if points to immediately next location of its type.

 9.15 Write a program to show the effect of increment and decrement operators used as prefix and
suffix with the pointer variable.

void main()
{
 int i, *ii;
 puts(“Enter Value of i=”);
 scanf(“%d”,&i);

M09_KAMT3553_02_SE_C09.indd 349 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

350 Programming in C

 ii=&i;
 clrscr();
 printf(“Address of i = %u\n”,ii);
 printf(“Address of i = %u\n”,++ii);
 printf(“Address of i = %u\n”,ii++);
 printf(“Address of i = %u\n”,--ii);
 printf(“Address of i = %u\n”,ii--);
 printf(“Address of i = %u\n”,ii);
}

OUTPUT:
Enter Value of i= 8

Address of i = 4060
Address of i = 4062
Address of i = 4062
Address of i = 4062
Address of i = 4062
Address of i = 4060

	 Explanation:

 (i) The 1st printf() statement displays the address of i =4060.

 (ii) The 2nd printf() statement prefix increment is done with pointer variable ‘ii’; so before
printing it is incremented. Hence, a pointer is an integer type, and an integer requires two bytes
in memory. Hence, the address of i=4062.

 (iii) The 3rd printf() statement is opposite of the 2nd. Here, the address value is printed
first and then it is incremented. Hence, it prints i=4062 and after printing incremented
address becomes 4064.

 (iv) In the 4th printf() statement, the address of ‘i’ is decremented first and then printed.
Hence, the address of ‘i’ is 4062.

 (v) In the 5th printf() statement, the address of ‘i’ is printed first and then decremented.
On decrement, the address of ‘i’ becomes 4060.

 (vi) The last printf() statement prints the initial address of ‘i’.

 9.16 Write a program to perform different arithmetic operations using pointers.

void main()
{
 int a=25,b=10,*p,*j;

 p=&a;
 j=&b;

 clrscr();
 printf(“\n Addition a+b = %d”, *p+b);
 printf(“\n Subtraction a-b = %d”, *p-b);
 printf(“\n Product a*b = %d”, *p**j);

M09_KAMT3553_02_SE_C09.indd 350 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 351

 printf(“\n Division a/b = %d”, *p / *j);
 printf(“\n a Mod b = %d”, *p % *j);
}

OUTPUT:
Addition a+b = 35
Subtraction a-b = 15
Product a*b = 250
Division a/b = 2
a mod b = 5

	 Explanation:	
 The various arithmetic operations can be performed on a pointer such as addition, subtrac-

tion, multiplication, division and mod. Here, the value stored at the address is taken into
account for operations but not the address. The arithmetic operations are impossible with
addresses. For example, two address locations are not possible to add. Various arithmetic
operations performed with the above program are elaborated as given below:

 (i) Addition: A number can be added to a pointer or addition of two variables through pointers can
also be possible. In the first printf() statement, the value of ‘b’ is added to ‘a’ through
a pointer, i.e. *p. The result of addition is 35.

 (ii) Subtraction: A number can be subtracted from a pointer. Subtraction of two variables through
pointers can also be possible. In the second printf() statement, value of ‘b’ is subtracted
from ‘a’ through a pointer, i.e. *p. The result of subtraction is 15.

 (iii) Multiplication: Multiplication of two pointers or a multiplication of a number with pointer
variable can be done. In the third printf() statement, multiplication of variables ‘a’ and
‘b’ is done through their pointers ‘*p’ and ‘*j’.

 Similarly, division and mod operations can be carried out as shown in the above program.

 Please note that the following operations with addresses are not possible:

 (i) Addition of two addresses (pointers)

 (ii) Multiplication of addresses or multiplication of address with a constant

 (iii) Division of address with a constant

 9.17 Write a program to compare two pointers. Display the message ‘Two pointers have the same
address’ or ‘Two pointers have different addresses’.

void main()
{
 int a=2,*j,*k;
 j=&a;
 k=&a;

 clrscr();

 if(j==k)
 printf(“\n The Two Pointers have the same address.”);
 else

M09_KAMT3553_02_SE_C09.indd 351 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

352 Programming in C

 printf(“\n The Pointers have the different address.”);

 printf(“\n Address of a(j)=%u”,j);
 printf(“\n Address of a(k)=%u”,k);
}

OUTPUT:
The Two Pointers have the same address.
Address of a(j)= 4056
Address of a(k)= 4056

	 Explanation:
 The comparison between the two pointers is done in the above program. The pointer vari-

able should be of the same data type while a comparison is made. The comparison of point-
ers can test if either address is identical or not. Here, in this program pointers ‘j’ and ‘k’
are of integer data types and points to the same integer variable ‘a’. Hence, they contain
the same address.

9.9 PoInters and arrays
(i) Array name by itself is an address or pointer. It points to the address of the first element

(0th element of an array). The elements of the array together with their addresses can be dis-
played by using array name itself. Array elements are always stored in contiguous memory
locations.

 Programs in this regard are explained below.

 9.18 Write a program to display elements of an array. Start element counting from 1 instead of 0.

void main()
{

 int x[]={2,4,6,8,10},k=1;
 clrscr();

 while(k<=5)
 {
 printf(“%3d”,x[k-1]);
 k++;
 }
}

OUTPUT:
2 4 6 8 10

	 Explanation:
 Array element counting always starts from ‘0’. The element number is added in the base

address and each element of an array is accessed. If one is subtracted from base address of an
array, it points to the prior address of 0th element. By adding one to its reduced base address,
it is possible to start element counting from ‘1’.

M09_KAMT3553_02_SE_C09.indd 352 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 353

void main()
{
 int x[5]={2,4,6,8,10},k=0;
 clrscr();
 printf(“\nElement No. Element Address”);

 while(k<5)
 {
 printf(“\nx[%d] = \t%8d %9u”,k,*(x+k),x+k);
 k++;
 }
}

OUTPUT:
Element No. Element Address
x[0]= 2 4056
x[1]= 4 4058
x[2]= 6 4060
x[3]= 8 4062
x[4]= 10 4064

 9.19 Write a program to display an array element with their addresses using array name as a pointer.

	 Explanation:
 In the above program, variable ‘k’ acts as an element number and its value varies from 0 to 4.

When it is added with an array name ‘x’, i.e. with the address of the first element, it points
to the consecutive memory location. Thus, the element number, element and their addresses
are displayed.

OR

 9.20 Write a program to display array elements with their addresses using an array name as a pointer.

void main()
{
 int num[4]={10,25,35,45},i;
 clrscr();
 printf(“Element Address\n”);
 for(i=0;i<4;i++)
 {
 printf(“num[%d]=%d”,i,*(num+i));
 printf(“%8u\n”,num+i);
 }
}

OUTPUT:
Element Address
num[0] = 10 4062
num[1] = 25 4064
num[2] = 35 4066
num[3] = 45 4068

M09_KAMT3553_02_SE_C09.indd 353 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

354 Programming in C

	 Explanation:
 In the above program, the array name ‘num’itself acts as a pointer to the array num[].

The pointer ‘num’ provides the address of the first array element and ‘*num’ gives the
value stored at that address. When ‘i’ is added with ‘num’, the equations*(num+i)and
num+i show ‘i’th element and its location, respectively.

 9.21 Write a program to access elements of an array through different ways using a pointer.

void main()
{
 int arr[5]={10,20,30,40,50},p=0;
 clrscr();

 for(p=0;p<5;p++)
 {
 printf(“Value of arr[%d]=”,p);
 printf(“%d |”,arr[p]);
 printf(“%d |”,*(arr+p));
 printf(“%d |”,*(p+arr));
 printf(“%d |”,p[arr]);
 printf(“address of arr[%d]=%u\n”,p,&arr[p]);
 }
}

OUTPUT:
Value of arr[0]=10 | 10 | 10 | 10 | address of arr[0]=4056
Value of arr[1]=20 | 20 | 20 | 20 | address of arr[1]=4058
Value of arr[2]=30 | 30 | 30 | 30 | address of arr[2]=4060
Value of arr[3]=40 | 40 | 40 | 40 | address of arr[3]=4062
Value of arr[4]=50 | 50 | 50 | 50 | address of arr[4]=4064

 	 Explanation:
 In the above program, elements are displayed using a different syntax.

 (i) arr[p], (ii) *(arr+p), (iii) *(p+arr), (iv) p[arr]. The results of all of them
would be the same.

 (i) arr[p]: This statement displays various array elements. Here, ‘arr’ refers to the address
and ‘p’ refers to the element number.

 (ii) *(arr+p): The arr+p is the addition of constant with base address of the array. It shows the
address of the pth element. The*(arr+p) points to the pth element of the array.

 (iii) *(p+arr): This statement is the same as (ii).

 (iv) p[arr]: This statement is the same as (i). Here, ‘p’refers to the element number and
‘arr’refers to the base address. By varying ‘p’ and ‘arr’ the various elements of the
 array are displayed.

M09_KAMT3553_02_SE_C09.indd 354 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 355

void main()
{
 int sum=0,i=0,a[]={1,2,3,4,5};
 clrscr();
 printf(“Elements Values Address\n\n”);

 while(i<5)
 {
 printf(“a[%d]\t%5d\t%8u\n”,i,*(a+i),(a+i));
 sum=sum+*(a+i++);
 }
 printf(“\nSum of Array Elements = %d”,sum);
}

OUTPUT:
Elements Values Address
a[0] 1 4056
a[1] 2 4058
a[2] 3 4060
a[3] 4 4062
a[4] 5 4064
Sum of Array Elements = 15

	 Explanation:
 In this program, the array name ‘a’ acts as a pointer and the variable ‘i’ is used for referring

the element numbers. Using the for loop and expressions *(a+i) & (a+i) various
elements and their addresses are displayed, respectively. In the ‘sum’ variable, the sum of all
elements is obtained.

 9.23 Write a program to display the sum of squares and cubes of array elements using pointer.

include <math.h>
void main()
{

 int b[]={1,2,3,4,5},j,sumsq=0,sumc=0;

 clrscr();

 for (j=0;j<5;j++)
 {
 sumsq=sumsq+pow(*(j+b),2);
 sumc=sumc+pow(b[j],3);
 }
 printf(“\nSum of Squares of array elements : %d”, sumsq);
 printf(“\nSum of Cubes of array elements : %d”,sumc);
}

OUTPUT:
Sum of Squares of array elements : 55
Sum of Cubes of array elements : 225

 9.22 Write a program to find the sum all the elements of an array. Use the array name itself as
a pointer.

M09_KAMT3553_02_SE_C09.indd 355 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

356 Programming in C

	 Explanation:
 In the above program, using the pow() function, square and cube of array elements are com-

puted and added to variable ‘sumsq’ and ‘sumc’, respectively. Using the printf()
statement, the sum of square and cube of array elements are displayed.

 9.24 Write a program to copy the elements of one array to another using pointers.

void main()
{
 int so[]={10,20,30,40,50},*pb,ds[5],i;
 pb=so;
 clrscr();
 for(i=0;i<5;i++)
 {
 ds[i]=*pb;
 pb++;
 }
 printf(“Orignal Array Duplicated Array”);
 for(i=0;i<5;i++)
 printf(“\n\t%d\t\t %d”, so[i],ds[i]);
}

OUTPUT:
Original Array Duplicated Array
 10 10
 20 20
 30 30
 40 40
 50 50

	 Explanation:
 In the above program, pointer ‘pb’contains the base address of array so[]. In the for

loop, pointer ‘pb’ is assigned to the corresponding element of array ds[]and then incre-
mented. After the increment, it points to the address of the next element of the array. Thus,
all the elements are copied to ds[] array.

 9.25 Write a program to copy one array into another array. The order of elements of the second
array should be opposite of the first array.

void main()
{

 int arr1[]={15,25,35,45,55},arr2[5],i;
 clrscr();

 printf(“\nOrigonal Array Duplicate Array”);

 for(i=0;i<5;i++)
 {
 arr2[i]=*(arr1+4-i);
 printf(“\n\t%d \t\t%d”,arr1[i],arr2[i]);
 }
}

M09_KAMT3553_02_SE_C09.indd 356 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 357

OUTPUT:
Original Array Duplicate Array

 15 55
 25 45
 35 35
 45 25
 55 15

	 Explanation:
 The logic of the program is the same as the previous one. Here, instead of starting from the

base address of the array, the address of the last element of the array is selected first. Using
the for loop, the addresses are read in the reverse order and their contents are copied to the
destination array arr2[].

9.10 PoInters and tWo-dImensIonal arrays
A matrix can represent two-dimensional elements of an array. Here, the first argument is row number
and second the column number. To display the address of 1st element of two-dimensional array using a
pointer, it is essential to have ‘&’ operator as prefix with an array name followed by element number;
otherwise the compiler shows an error.

 9.26 Write a program to display array elements and their addresses using pointers.

void main()
{

 int i,j=1,*p;
 int a[3][3]={{1,2,3},{4,5,6},{7,8,9}};
 clrscr();
 printf(“\tElements of An Array with their addresses\n\n”);

 p=&a[0][0];

 for(i=0;i<9;i++,j++)
 {
 printf(“%5d [%5u]”,*(p),p);
 p++;
 if(j==3)
 {
 printf(“\n”);
 j=0;
 }
 }
}

OUTPUT:
Elements of An Array with their addresses.
1 [4052] 2 [4054] 3 [4056]
4 [4058] 5 [4060] 6 [4062]
7 [4064] 8 [4066] 9 [4068]

M09_KAMT3553_02_SE_C09.indd 357 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

358 Programming in C

	 Explanation:
 In the above program, the two-dimensional array is declared and initialized. The base ad-

dress of the array is assigned to integer pointer ‘p’. While assigning the base address of
the two-dimensional array, ‘&’ operator is to be prefixed with the array name followed by
element numbers. Otherwise, the compiler shows an error. The statement p=&a[0][0]is
used in this context. The pointer ‘p’ is printed and incremented in the for loop till it prints
the entire array elements. The if statement splits a line when three elements in each row are
printed.

OR

 9.27 Write a program to display array elements and their address. Use the array name itself as
a pointer.

void main()
{

 int i;
 int a[][3]={{1,2,3},{4,5,6},{7,8,9}};
 clrscr();
 printf(“\tElements of An Array with their addresses.\n\n”);
 for(i=0;i<9;i++)

 {
 printf(“%u”,&a[0][0]+i);
 printf(“[%d]”,*(&a[0][0]+i));

 if(i==2 || i==5)
 printf(“\n”);
 }
}

OUTPUT:
Elements of An Array with their addresses.
1 [4052] 2 [4054] 3 [4056]
4 [4058] 5 [4060] 6 [4062]
7 [4064] 8 [4066] 9 [4068]

	 Explanation:
 The logic of the program is the same as the previous one. The only difference is that the array

name itself is used as a pointer. The if statement inserts a line after displaying every three
elements.

9.11 PoInters and multI-dImensIonal arrays
Array is a contiguous block of memory where multiple values are stored, i.e. elements are stored one
after the other. Array name itself is a pointer (address) where the first value of the array is stored.
Successive values are stored by incrementing the array name. In this multi-dimensional array also the
addresses of its elements are stored contiguously. The same effect can be observed with the following
program.
 Normally, a two-dimensional array can be represented in the following way:

 data-type name_of_array[row_size][col_size];

M09_KAMT3553_02_SE_C09.indd 358 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 359

	 Example:

 int a[2][2];

 Two-dimensional array with pointer notation is as follows:

 data_type (*name_of_array)[col_size];

	 Example:

 int (*a)[2];

 This example represents a two-dimensional integer pointer array ‘a’, where each row con-
tains two integer elements. The ‘a’ points to first two elements of the array which is nothing
but first row of a[2][2]. Similarly, (a+1) points to the second row containing two elements.
In two-dimensional array, the value of ith row and jth column is to obtained by the following
expression:

 ((a+i)+j)

 Following are a few examples on pointer and multi-dimensional arrays.

 9.28 Program to display addition of the elements of three-dimensional arrays.

#include <stdio.h>
#include <conio.h>
void main()
{
 int a[2][2][2]={1,2,3,4,5,6,7,8};
 int i,j,k,b[2][2][2]={1,2,3,4,5,6,7,8};
 int c[2][2][2];
 clrscr();
 printf("\n Addition of Three Dimensional arrays as follows:");
 for(i=0;i<2;i++)
 {
 for(j=0;j<2;j++)
 {
 for(k=0;k<2;k++)
 {
 ((*(c+i)+j)+k)=*(*(*(a+i)+j)+k)+*(*(*(b+i)+j)+k);
 }
 }
 }
 for(i=0;i<2;i++)
 {
 for(j=0;j<2;j++)
 {
 for(k=0;k<2;k++)
 {
 printf("%d",*(*(*(c+i)+j)+k));
 }
 }
}
getch();
}

M09_KAMT3553_02_SE_C09.indd 359 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

360 Programming in C

OUTPUT:
Addition of Three Dimensional arrays as follows: 2 4 6 8 10 12 14 16

 9.29 Program to display addresses of multi-dimensional array and compute the addition of its
elements.

int main()
{
int a[2][2][2]={1,2,3,4,5,6,7,8},i,j,k,sum=0;

clrscr();
printf("Addresses of elements of an array are as follows:\n");

for(i=0;i<2;i++)
 for(j=0;j<2;j++)
 for(k=0;k<2;k++)
{
 printf("%u ",&a[i][j][k]);

 sum=sum+*(*(*(a+i)+j)+k);

}
printf("\n Sum of all the elements of array = %d",sum);
return 0;
}

OUTPUT:
Addresses of elements of an array are as follows:
65506 65508 65510 65512 65514 65516 65518 65520
Sum of all the elements of array = 36

	 Explanation:
 By refereeing to the first element using pointer (name of the array), it is easy to identify the

other elements of multi-dimensional array. Successive elements are accessed one by one and
the same is added with the sum variable. Addition of all the elements of an array is done in
the above program.

9.12 array oF PoInters
So far, we have studied the arrays of different standard data types such as int, float, char. In
the same way, the ‘C’ language also supports the array of pointers. It is nothing but a collection
of addresses. Here, we store the addresses of variables for which we have to declare the array as
pointer.

M09_KAMT3553_02_SE_C09.indd 360 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 361

 9.30 Write a program to store addresses of different elements of an array using array of pointers.

void main()
{

 int *arrp[3];
 int arr[3]={5,10,15},k;

 for(k=0;k<3;k++)
 arrp[k]=arr+k;

 clrscr();
 printf(“\n\tAddress Element\n”);

 for(k=0;k<3;k++)
 {
 printf(“\t%u”,arrp[k]);
 printf(“\t%d \n”,*(arrp[k]));
 }
}

OUTPUT:
Address Element
 4060 5
 4062 10
 4064 15

	 Explanation:
 In the above program, *arrp[3] is declared as an array of pointer. Using the first for

loop, the addresses of various elements of array ‘arr[]’ are assigned to ‘*arrp[]’.
The second for loop picks up addresses from ‘*arrp[]’ and displays the value present
at that locations. Here, each element of ‘*arrp[]’ points to respective element of array
‘arr[]’ (see Table 9.2).

Element	No.
Array	of		
Values Element	No.

Array	of		
Addresses

arr[0] 5 arrp[0] 4060

arr[1] 10 arrp[1] 4062

arr[2] 15 arrp[2] 4064

Table 9.2 Array of pointers in memory

 9.31 Write a program to display the address of elements and pointers.

void main()
{

 int a[5]={0,1,2,3,4};
 int *p[5],i;

 for(i=0;i<5;i++)
 p[i]=a+i;

M09_KAMT3553_02_SE_C09.indd 361 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

362 Programming in C

 clrscr();
 for(i=0;i<5;i++)
 {
 printf(“\n\t%d at location”,*(*p+i));
 printf(“\t%u at location”,*(p+i));
 printf(“%u”,p+i);
 }
 printf(“\n\n Integer requires 2 bytes, pointer require 2 bytes”);
}

OUTPUT:
0 at location 4036 at location 4046
1 at location 4038 at location 4048
2 at location 4040 at location 4050
3 at location 4042 at location 4052
4 at location 4044 at location 4054
Integer requires 2 bytes, pointer require 2 bytes

	 Explanation:
 In the above program, the first for loop assigns addresses of the elements of integer

array to the pointer array. The first printf() statement prints elements, the second dis-
plays addresses of the element and the third displays addresses of the address, i.e. the address
of the pointer. Thus, it is clear from the above example that integer requires two bytes and the
pointer requires two bytes.

9.13 PoInters to PoInters
A pointer is known as a variable containing the address of another variable. The pointer variables also
have an address. The pointer variable containing the address of another pointer variable is called the
pointer to pointer. This chain can be continued to any extent. The below given program illustrates the
concept of the pointer to pointer.

 9.32 Write a program to print the value of a variable through pointer and pointer to pointer.

void main()
{

 int a=2,*p,**q;

 p=&a;
 q=&p;

 clrscr();
 printf(“\n Value of a=%d Address of a=%u”,a,&a);
 printf(“\n Through *p Value of a=%d Address of a=%u”,*p,p);
 printf(“\n Through **q Value of a=%d Address of a=%d”,**q,*q);
}

OUTPUT:
Value of a=2 Address of a=4056
Through *p Value of a=2 Address of a=4056
Through **q Value of a=2 Address of a=4056

M09_KAMT3553_02_SE_C09.indd 362 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 363

	 Explanation:
 In the above program, variable ‘p’ is declared as a pointer. The variable ‘q’ is declared as a

pointer to another pointer. Hence, they are declared as ‘ p’ and ‘ q’, respectively. The address
of a variable ‘a’ is assigned to the pointer ‘p’. The address of pointer ‘p’ is assigned to ‘q’.
The variable ‘q’ contains the address of pointer variable. Hence, ‘q’ is a pointer to pointer. The
program displays the value and address of variable ‘a’ using variable itself and pointers ‘p’ and
‘q’. Table 9.3 illustrates the contents of different variables used in the program.

void main()
{
 int k;
 int a[]={1,2,3};
 int *b[3];
 int **c[3];
 int ***d[3];
 int ****e[3];
 int *****f[3];

 clrscr();

 for(k=0;k<3;k++)
 {
 b[k]=a+k;
 c[k]=b+k;
 d[k]=c+k;
 e[k]=d+k;
 f[k]=e+k;
 }
 for(k=0;k<3;k++)
 {
 printf(“%3d”,*b[k]);
 printf(“%3d”,**c[k]);
 printf(“%3d”,***d[k]);
 printf(“%3d”,****e[k]);
 printf(“%3d\n”,*****f[k]);
 }
}

OUTPUT:
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3

 9.33 Write a program to use different levels of array of pointer to pointer and display the elements.

Variable Pointer	(*)
Pointer	of		
Pointer	(**)

A P q

2 4056 4058

Table 9.3 Pointer to pointer

M09_KAMT3553_02_SE_C09.indd 363 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

364 Programming in C

	 Explanation:
 In the above example, the addresses of one-array elements are assigned to another array.

The second array assigned addresses to third one and so on. In the successive printf()
 statements, ‘ ’ incremented by one for getting higher level value.

9.14 PoInters and strIngs
 9.34 Write a program to read string from keyboard and display it using character pointer.

void main()
{
 char name[15],*ch;
 printf(“Enter Your Name :”);
 gets(name);
 ch=name ;
 /* store base address of string name */
 while (*ch!=’\0’)
 {
 printf(“%c”,*ch);
 ch++;
 }
}

OUTPUT:
Enter Your Name: KUMAR
KUMAR

	 Explanation:
 Here, the address of the 0th element is assigned to character pointer ‘ch’. In other words,

the base address of string is assigned to ‘ch’. The pointer ‘*ch’ points to the value stored
at that memory location and it is printed through the printf() statement. After every
increment of ‘ch’ the pointer goes to the next character of the string. When it encounters
the NULL character, the while loop terminates the program.

 9.35 Write a program to find the length of a given string including and excluding spaces using
pointers.

void main()
{
 char str[20],*s;
 int p=0,q=0;
 clrscr();
 printf(“Enter String :”);
 gets(str);
 s=str;
 while(*s!=‘\0’)
 {
 printf(“%c”,*s);
 p++;

M09_KAMT3553_02_SE_C09.indd 364 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 365

 s++;
 if(*s==32) /* ASCII equivalnet of ‘ ’ (space)is 32*/
 q++;
 }
 printf(“\nLength of String including spaces : %d”,p);
 printf(“\nLength of String excluding spaces : %d”,p-q);
}

OUTPUT:
Enter String: POINTERS ARE EASY

POINTERS ARE EASY

Length of String including spaces: 17
Length of String excluding spaces: 15

	 Explanation:
 The above program is the same as the previous one. Here, the counter variables ‘p’ and ‘q’

are incremented to count the number of characters and spaces found in the string. The ASCII
value of space is 32. Thus, at the end of the program both the variables are printed.

 9.36 Write a program to interchange elements of character array using pointer.

void main()
{
 char *names[]=
 {
 “kapil”,
 “manoj”,
 “amit”,
 “amol”,
 “pavan”,
 “mahesh”
 } ;
 char *tmp;
 clrscr();
 printf(“Original : %s %s”,names[3],names[4]);
 tmp=names[3];
 names[3]=names[4];
 names[4]=tmp;
 printf(“\nNew : %s %s”,names[3],names[4]);
}

OUTPUT:
Original : amol pavan
New : pavan amol

	 Explanation:
 In the above program, the character array *names[]is declared and initialized. Another

character pointer *tmp is declared. The destination name that is to be replaced is assigned to

M09_KAMT3553_02_SE_C09.indd 365 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

366 Programming in C

the variable ‘*tmp’. The destination name is replaced with the source name and the source
name is replaced with the *tmp variable. Thus, using simple assignment statements, two
names are interchanged.

 9.37 Write a program to read two strings through the keyboard. Compare these two strings char-
acter by character. Display the similar characters found in both the strings and count the
number of dissimilar characters.

include <string.h>
void main()
{
 char str1[20],str2[20],*a,*b;
 int c=0, l=0;
 clrscr();
 printf(“\n Enter First String :”);
 gets(str1);
 printf(“\n Enter Second String :”);
 gets(str2);
 a=str1;
 b=str2;
 printf(“\n Similar Characters Found in Both String.”);
 while(*a!=‘\0’)
 {
 if(stricmp(*a,*b)==0)
 {
 printf(“\n\t%c \t%c”,*a,*b);
 l++;
 }
 else
 c++;

 a++;
 b++;
 }
 if(c==0)
 printf(“\n The String are Identical.”);
 else
 printf(“\nThe Strings are different at %d places.”,c);
 printf(“\n The String Characters are similar at %d places.”,l);
}

OUTPUT:
Enter First String : SUNDAY

Enter Second String : MONDAY

Similar Characters Found in Both String.
 N N
 D D
 A A
 Y Y
The Strings are different at 2 places.
The String Characters are similar at 4 places.

M09_KAMT3553_02_SE_C09.indd 366 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 367

	 Explanation:
 In the above program, two strings are entered in the character arrays str1[] and str2[].

Their base addresses are assigned to pointers ‘a’ and ‘b’. In the while loop, two pointers
are compared using the stricmp() function. If the characters of two strings are the same
the counter variable ‘l’ is incremented and characters are printed. Otherwise, the counter
‘c’ is incremented. This job is done in the if statement. The character pointers ‘a’ and
‘b’ are incremented throughout the while loop to obtain the successive characters from
both the strings. The last if statement displays the messages giving string are different or
identical depending on the value of ‘C’.

 9.38 Write a program to enter three characters using pointers. Use the memcmp () function for
comparing the three characters. In case the entered characters are the same display the mes-
sage ‘the characters are the same’, otherwise indicate their appearance before or after one
another or display the status of characters in alphabetic. (The memcmp() function com-
pares a specified number of characters from two buffers.)

include <string.h>
include <process.h>

void main()
{
 char x,y,z,*xp,*yp,*zp;
 int stat=0;
 clrscr();
 printf(“Enter Three Characters”);
 scanf(“%c %c %c”,&x,&y,&z);
 xp=&x,yp =&y, zp =&z;
 stat = memcmp(yp, xp, strlen(yp));
 if(*xp==*yp)
 {
 printf(“\n1st and 2nd Character are same.\n”);
 goto next;
 }
 if(stat > 0)
 printf(“2nd Character appears after the 1st Character in

Alphabetic.\n”);
 else
 printf(“2nd Character appears before the first Character in

Alphabetic \n”);
 next:
 stat = memcmp(yp,zp, strlen(yp));
 if(*yp==*zp)
 {
 printf(“\n2nd and 3rd Character are same.”);
 exit(1);
 }
 if(stat > 0)
 printf(“2nd Character appears after the 3rd Character in

Alphabetic. \n”);
 else

M09_KAMT3553_02_SE_C09.indd 367 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

368 Programming in C

 printf(“2nd Character appears before 3rd Character in
Alphabetic.\n”);

}

OUTPUT:
Enter Three Character C C A
1st and 2nd Character are same.
2nd Character appears after the 3rd Character in Alphabetic.

	 Explanation:
 In the above program, three characters are entered in the character variables ‘x’, ‘y’ and

‘z’ and their base addresses are stored in the pointers ‘xp’, ‘yp’ and ‘zp’, respectively. The
functionmemcmp() is used to compare two pointers for a specified length. If the first two
characters are the same, a message is displayed and control goes to the next label. In the next
label, the second and third characters are compared. Using the value of the variable ‘stat’
locations of characters are decided.

 9.39 Write a program to compare two strings irrespective of case. Compare the characters
at the specific position. If they are the same display ‘the characters are the same at
that position’.

void main()
{
 char *buf1 = “computer”;
 char *buf2 = “comp ter”;
 int stat;
 stat = memicmp(buf1, buf2, 4);
 clrscr();
 printf(“The Characters up to 4th position are”);
 if (stat) */ if stat is non zero then prints ‘not’ otherwise

‘same’ .t */
 printf(“not”);
 printf(“same\n”);
}

OUTPUT:
The Characters up to 4th position are same.

	 Explanation:
 The memicmp() function compares two strings for a specified number of characters. It

returns zero if both the strings are the same up to a specified length of characters. Otherwise,
the non-zero value will be returned. Depending upon the value it returns, the if statement
displays respective messages.

M09_KAMT3553_02_SE_C09.indd 368 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

Pointers 369

include <string.h>
void main()
{
 char src[20],dest[50],*ptr,*sr,f;
 clrscr();
 printf(“\n Enter a String :”);
 gets(src);
 printf(“\n Enter a Character to find in the text :”);
 scanf(“%c”,&f);
 sr=src;
 ptr = memccpy(dest, sr, f, strlen(sr));
 if(ptr)
 {
 *ptr = ‘\0’;
 printf(“String up to that Character : %s\n”, dest);
 }
 else
 printf(“The character wasn’t found\n”);
}

OUTPUT:
Enter a String : FUNCTIONS
Enter a Character to find in the text : T
String up to that Character : FUNCT

	 Explanation:
 The memccpy() function copies the number of characters from the source string up to

the first occurrence of a given character. It returns a pointer if the given character is found,
 otherwise it returns NULL.

 9.41 Write a program to read two strings through the keyboard. Replace the contents of the sec-
ond string with the first string. The length of the first string should be less than that of the
second string.

include <string.h>
void main()
{
 static char src[20],dest[20];
 char *ptr;
 clrscr();
 printf(“\nEnter a Source String:”);

 9.40 Write a program to read a string. Print the string up to the first occurrence of the character
entered through the keyboard.

M09_KAMT3553_02_SE_C09.indd 369 5/17/2015 9:32:53 AM

https://hkgbooks.blogspot.com

370 Programming in C

 gets(src);
 printf(“\nEnter a Destination String :”);
 gets(dest);

 printf(“\n\nDestination before memcpy: %s\n”, dest);
 ptr = memcpy(dest, src, strlen(src));
 if(ptr)
 printf(“Destination after memcpy : %s\n”, dest);
 else
 printf(“memcpy failed\n”);
}

OUTPUT:
Enter a Source String: Tomorrow
Enter a Destination String: Today is Sunday
Destination before memcpy : Today is Sunday
Destination after memcpy : Tomorrow is Sunday

	 Explanation:
 The function memcpy() works similarly as in the previous program. It copies the source

string to the destination string. Both the strings are displayed.

 9.42 Write a program to display the string through their pointer.

void main()
{
 char *c,*m;
 c=“Central Processing Unit”;
 m=“Math Co- Procresser”;
 clrscr();
 printf(“‘c’ is pointing the string ‘%s’\n”,c);
 printf(“‘m’ is pointing the string ‘%s’\n”,m);
 getche();
}

OUTPUT:
‘c’ is pointing the string ‘Central Processing Unit’
‘m’ is pointing the string ‘Math Co-Processor’

	 Explanation:
 In the above program, two strings are initialized to the character pointers ‘c’ and ‘m’.

When printed using ‘%s’ control string in printf() statement, entire strings are
displayed.

M09_KAMT3553_02_SE_C09.indd 370 5/17/2015 9:32:54 AM

https://hkgbooks.blogspot.com

Pointers 371

 eXercIses

 I True or false :

� ���1. Every variable is associated with an address in
memory.

 2. All the addresses in the memory are unique.

 3. The address of a variable cannot be stored in an-
other variable.

 4. The pointer is a special type of variable which
holds the value of address of other variable.

 5. The pointer is a variable and cannot be made con-
stant.

 6. The size of a pointer variable is the same as that
of standard size of its data type.

 7. One type of pointer cannot hold the data with
other data type.

 8. The pointer variable is also stored somewhere in
memory.

 9. We cannot store the address of the pointer
variable.

���10. If we want to change the value of variable passed
as an argument to the function inside that function
then we should pass the address of the variable.

��11. If we increment pointer, it will point to the next
byte in memory.

���12. The segment char *a[]={“ABC”, “def”};
is invalid.

 13. Pointer of any data type occupies the same mem-
ory space.

 14. With indirection operator (), the value of
the variable stored at some address can be
accessed.

���15. The allocation of memory during pro-
gram run time is called dynamic memory
allocation.

���16. With pointer, data is manipulated with the
address.

 17. Pointers are not associated with multi-
dimensional arrays.

���18. Pointers are used to allocate memory dynamically.

���19. Value of the const pointer *pm can be changed.

 20. Arithmetic operations on pointer variables are not
possible.

II Match the functions /words given in Group A with meanings in Column B:

Sr.	No Data	Type Sr.	No Required	Bytes
1 int i=2 A 4

2 char c=‘x’ B 4

3 fl oat f=2.2 C 1

4 long l=2 D 2

 summary

 This chapter describes the most important feature of the C language, i.e. pointer. In this chapter, we
have discussed declaration and initialization of pointers. You have studied how to access variables
using their pointers. After having gone through the topic you are familiar with the effect of unary op-
erators on pointers of different data types as well as arithmetic operations with pointers. You are also
familiar with array of pointers and relation of pointer with arrays of different dimensions. Now you
also know how to make a chain of pointers, i.e. how one-pointer points to another pointer. Finally, the
association of strings with a pointer is explained.

M09_KAMT3553_02_SE_C09.indd 371 5/17/2015 9:32:54 AM

https://hkgbooks.blogspot.com

372 Programming in C

III Select the appropriate option from the multiple choices given below:

1. Which of the following statement is true after the
execution of following program?

 int a[5]={2,3},*c;
 c=a;
 (*c)--;

� (a) the value of a[0] will be 1
� (b) the value of a[0] will be 2
 (c) the value of a[1] will be 2
� (d) None of the above

2. The fastest way to exchange two rows in a two-
dimensional array is

� (a) exchange the addresses of each element in the
two rows

 (b) exchange the elements of the two rows
 (c) store the addresses of the rows in an array of

pointers and exchange the pointers
 (d) None of the above

3. Which is the correct way to declare a pointer?

� (a) int *ptr
� (b) *int ptr
� (c) int ptr*
� (d) int_ptr x

4. What will be the result of the following program?

 void main()
 {
 int a=8,b=2,c,*p;
 c=(a=a+b,b=a/b,a=a*b,b=a-b);
 p=&c;
 clrscr();
 printf(“\n %d”,++*p);
 }

� (a) 50
� (b) 46

 (c) 36
 (d) 40

5. What will be the resulting string after the execution
of following program?

 #include<string.h>
 void main()
 {
 char *str1, *str2, *str3;
 str1=“The Capital of India is”;
 str2=“!!ihleD weN”;
 str3=“Bangalore”;
 strncat(str1,strrev(str2),

strlen(str3));
 clrscr();
 puts(str1);
 }

� (a) The Capital of India is Mumbai
� (b) The Capital of India is New Delhi
 (c) The Capital of India is Bangalore
 (d) None of the above

6. What will be the values of variables a and b after
execution ?

 #include<string.h>
 void main()
 {
 int a,*b=&a,**c=&b;
 a=5;
 **c=15;
 *b= **c;
 clrscr();
 printf(“A=%d, B=%d”,a,*b);
 }

� (a) A=15, B=15
� (b) A=15,B=5
 (c) A=15, B=16
 (d) None of the above

Sr.	No Declaration Sr.	No Declaration

1 int *x; A Array

2 float **x; B Pointer of pointer

3 long *x C Integer pointer

4 int x[5] D Long pointer

M09_KAMT3553_02_SE_C09.indd 372 5/17/2015 9:32:54 AM

https://hkgbooks.blogspot.com

Pointers 373

� 7. What will be the value of the variables a1 and a2
after execution?

 void main()
 {
 int a1,a2,c=3,*pt;
 pt=&c;
 a1=3*(c+5);
 a2=3*(*pt+5);
 printf(“ln a1=%d, a2=%d”, a

1
,a

2
);

 }

� (a) a
1
=24, a

2
=24

� (b) a
1
=12, a

2
=24

 (c) a
1
=12, a

2
=20

 (d) None of the above

� 8. What will be the value of x after execution of the
following program?

 void main()
 {
 int x,*p;
 p=&x;
 *p=2;
 clrscr();
 printf(“\nValue of x=%d”,x);
 }

� (a) x=2
� (b) x=0
 (c) x=65504
 (d) None of the above

IV Attempt the following programs:

� 1. Write a program to accept a string using charcter
pointer and display it.

� 2. Write a program to calculate square and cube of
the entered number using pointer of the variable
containing entered number.

� 3. Write a program to display all the elements of an
array using pointer.

� 4. Write a program to allocate memory for 10
 integers.

 5. Write a program to demonstrate the use of
 realloc() functions.

V Answer the following questions:

� 1. What are pointers? Why are they important?

� 2. Explain features of pointers.

 3. Explain pointer of any data type that requires four
bytes.

 4. Explain the use of () indirection operator.

 5. Explain the effect of ++ and –– operators with
pointer of all data type.

 6. What is an array of pointer? How is it declared?

 7. Explain the relation between an array and a
 pointer.

 8. Why addition of two pointers is impossible?

 9. Which are the possible arithmetic operations with
pointers?

 10. Explain comparison of two pointers.

 11. How one pointer points to another pointer?

 12. How will you recognize pointer to pointer? What
does the number of ‘ ’s indicate?

 13. How strings are stored in pointer variables? Is it
essential to declare length?

�14. What is base address? How is it accessed differ-
ently for one and two-dimensional arrays?

�15. Elaborate the address stored in the pointer and the
value at that address.

 16. Why element counting of arrays always starts
from ‘0’ ?

 17. Write a program to read and display a two-
dimensional array of 5 by 2 numbers. Reduce the
base address of an array by one and start element
counting from one.

M09_KAMT3553_02_SE_C09.indd 373 5/17/2015 9:32:54 AM

https://hkgbooks.blogspot.com

374 Programming in C

 18. Explain tiny and large memory models.

�19. What are the uses of malloc()and free()
functions?

 20. Explain the concept of dynamic memory allocation.

�21. Describe the various functions used for memory
allocation.

VI What is/are the output/s of the following programs?

� 1. Use pointer and display value and address of an
element

 void main()
 {
 int num=10,*p;
 p=#
 clrscr();
 printf(“%d”,*p);
 printf(“%d”,num);
 printf(“%u”,&num);
 printf(“%u”,p);
 getche();
 }

� 2. Program on display of a string

 void main()
 {
 char c[]=“India”;
 char *p;
 p=c;
 clrscr();
 printf(“%s”,p);
 }

� 3. Display two strings

 void main()
 {
 char *c=“India”;
 char *p =“Bharat”;
 char *k;
 k=p;
 p=c;
 clrscr();
 printf(“%s”,p);
 printf(“%s”,k);
 }

� 4. Use pointer and display values of an element by
various ways

 void main()
 {
 int v=10,*p;

 p=&v;
 clrscr();
 printf(“v=%d v=%d v=%d”,v,*p,

*(&v));
 }

� 5. Use pointers and display addition of two numbers
with and without pointers

 void main()
 {
 int a=5,b=7,c,d,*ap,*bp;
 clrscr();
 ap=&a;
 bp=&b;
 c=a+b;
 d=*ap+*bp;
 printf(“\n Sum of A & B : %d”,c);
 printf(“\n Sum of A & B : %d”,d);
 }

� 6. Addition, Substraction, Multiplication, Division &
Modulus operation on pointers.

 void main()
 {
 int a=25,b=10,*p,*j;
 p=&a; j=&b;
 clrscr();
 printf(“%d %d %d %d %d”,*p+b,*p-

b,*p * *j,*p / *j,*p % *j);
 }

� 7. Display numbers

 void main()
 {
 int x[]={1,2,3,4,5,6,7},k=1;
 clrscr();
 while(k<=5)
 {
 printf(“%2d”,k[x-1]); k++;
 }
 }

M09_KAMT3553_02_SE_C09.indd 374 5/17/2015 9:32:54 AM

https://hkgbooks.blogspot.com

Pointers 375

VII Find the bug/s in the following programs:

1.

 void main()
 {
 char *c;
 float x=10;
 c=&x;
 printf(“%d”,*c);
 }

2.

 void main()
 {
 float x=10.25,*f;f=x;clrscr();
 printf(“%g”,*f);
 }

3.

 void main()
 {
 float x=10.25,*t,*f;
 t=&x;
 f=&t;
 clrscr();
 printf(“%g”,**f);
 }

4.
 void main()
 {
 char sa[]=“How are you ?”;
 char t,*f;f=&sa;clrscr();
 printf(“%s”,f);
 }

5.
 void main()
 {
 int *t,x;t=&x;x=11;
 *t++;
 clrscr();
 printf(“%d”,*t);
 }

6.
 void main()
 {
 int t[]={1,2,3,4,5};
 int *p,*q,*r;p=t;q=p[1];
 r=p[2];
 clrscr();
 printf(“%d %d %d”,*p,*q,*r);
 }

7.

 void main()
 {
 int num[2][3]={1,2,3,4,5},*k;
 k=#
 clrscr();
 printf(“%d”,*k);
 }

8.

 void main()
 {
 int x=5,y=8,z;
 int *px,*py,*pz;px=&x;py=&y;p

z=&z;pz=*px+*py;
 clrscr();
 printf(“%d”,z);
 }

9.

 void main()
 {
 int x=5;
 int *px=&x,*py;
 clrscr();
 printf(“%d”,px);
 }

M09_KAMT3553_02_SE_C09.indd 375 5/17/2015 9:32:54 AM

https://hkgbooks.blogspot.com

376 Programming in C

 ansWers

 I True or false :

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.

� 1. T � 2. T � 3. F � 4. T � 5. F

� 6. F � 7. F � 8. T � 9. F 10. T

11. F 12. F 13. T 14. T 15. T

16. T 17. T 18. T 19. F 20. F

II Match the functions/words given in Group A with meanings in Column “B”:

Q. Ans. Q. Ans.
1. D 1. C

2. C 2. B

3. A,B 3. D

4. A,B 4. A

 III Select the appropriate option from the multiple choices given below :

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. a 2. a 3. a 4. b 5. b

6. a 7. a 8. a

VI What is/are the output/s of the following programs?

Q. Ans. Q. Ans.
1. 10 10 65496 65496 5. Sum of A & B : 12

Sum of A & B : 122. India

3. India Bharat 6. 35 15 250 2 5

4. v=10 v=10 v=10 7. 1 2 3 4 5

 VII Find the bug/s in the following programs :

Q. Ans.
1. pointer pointing to a variable should be of same type.

2. & is missing is assignment statement.

M09_KAMT3553_02_SE_C09.indd 376 5/17/2015 9:32:54 AM

https://hkgbooks.blogspot.com

Pointers 377

3. f should be declared as pointer of pointer.

4. No Bug.

5. t++ dose not work (++ t) works.

6. & is required in q=p[1]; & r=p[2].

7. k=# would be k=&num[0][0].

8. In the assignment statement pz required.

9. %u is required for formatting address.

M09_KAMT3553_02_SE_C09.indd 377 5/17/2015 9:32:54 AM

https://hkgbooks.blogspot.com

10 Functions

CHAPTER

Chapter Outline

 10.1 Introduction
 10.2 Basics of a Function
 10.3 Function Definition
 10.4 The return Statement
 10.5 Types of Functions
 10.6 Call by Value and Reference
 10.7 Function Returning More Values
 10.8 Function as an Argument
 10.9 Function with Operators
 10.10 Function and Decision Statements
 10.11 Function and Loop Statements
 10.12 Functions with Arrays and Pointers
 10.13 Passing Array to a Function
 10.14 Nested Functions
 10.15 Recursion
 10.16 Types of Recursion
 10.17 Rules for Recursive Function
 10.18 Direct Recursion
 10.19 Indirect Recursion
 10.20 Recursion Versus Iterations
 10.21 The Towers of Hanoi
 10.22 Advantages and Disadvantages of Recursion
 10.23 Efficiency of Recursion
 10.24 Library Functions

M10_KAMT3553_02_SE_C10.indd 378 5/17/2015 9:33:42 AM

https://hkgbooks.blogspot.com

Functions 379

10.1 IntroductIon
It is difficult to prepare and maintain a large-sized program. Moreover, the identification of the flow
of data is hard to understand. The best way to prepare a programming application is to divide the big-
ger program into small pieces or modules and the same modules can be repeatedly called from the
main() function as and when required. These small modules or subprograms are easily manageable.
This method is called the divide and conquer method. In C, such small modules are called functions.
Figure 10.1 describes the method of developing a program.

 The programs written in the C language are highly dependent on functions. The C program is noth-
ing but a combination of one or more functions. Every C program starts with the user-defined function
main(). Each time when a new program is started, main() function must be defined. The main()
function calls another functions to share the work. The main program can supply data to a function. A
specific operation is performed on the data and a value is returned to the calling function.
 The C language supports two types of functions: (1) library functions and (2) user-defined func-
tions. The library functions are pre-defined set of functions. Their task is limited. A user should not
worry to understand the internal working of these functions. One can only use the functions but cannot
change or modify them. For example, sqrt(81) gives result 9. Here, the user need not worry about
its source code, but the result should be provided by the function.
 The user-defined functions are totally different. The functions defined by the user according to
his/her requirement are called user-defined functions. A user can modify the functions according to
the requirement. A user certainly understands the internal working of the function. The user has full
scope to implement his/her own ideas in the function. Thus, the set of such user-defined functions can
be useful to another programmer. One should include the file in which the user-defined functions are
stored to call the function in the program. For example, let square(9) be a user-defined function
that gives the result 81. Here, the user knows the internal working of the square() function, as its
source code is visible. This is the major difference between the two types of functions.

10.2 BasIcs of a functIon
A function is a self-contained block or a sub-program of one or more statements that perform a special
task when called.

10.2.1 | Why use functions?

 (a) If we want to perform a task repetitively, then it is not necessary to re-write the par-
ticular block of the program again and again. Shift the particular block of statements
in a user-defined function. The function defined can be called any number of times to
perform the task.

main()

Module 1 Module 2 Module 3

Module 4 Module 5

Figure 10.1 A program divided in multiple functions

M10_KAMT3553_02_SE_C10.indd 379 5/17/2015 9:33:43 AM

https://hkgbooks.blogspot.com

380 Programming in C

 (b) Using functions, large programs can be reduced to smaller ones. It is easy to debug and
find out the errors in it. It also increases readability.

10.2.2 | How a function Works?

 (a) Once a function is defined and called, it takes some data from the calling function and
returns a value to the called function.

 (b) The detail of inner working of a function is unknown to the rest of the program. When-
ever a function is called, control passes to the called function and working of call-
ing function is paused. When the execution of a called function is completed, control
returns back to the calling function and executes the next statement.

 (c) The values of actual arguments passed by the calling function are received by the formal
arguments of the called function. The number of actual and formal arguments should
be the same. Extra arguments are discarded if they are defined. If the formal arguments
are more than the actual arguments, then the extra arguments appear as garbage. Any
mismatch in the data type will produce the unexpected result.

 (d) The function operates on formal arguments and sends back the result to calling func-
tion. The return() statement performs this task.

10.3 functIon defInItIon
Function definition is as per the format given below.
 return_type function_name (argument/parameter list)
 {
 local variable declaration;
 Statement1;
 Statement2;
 return(value);
 }

The following code illustrates the working of a function with its necessary components (Table 10.1).

} /*Body of the function definition*/

int abc (int, int, int);
void main()
{
 int x, y, z;

abc(x,y,z); /* Function Call */

Actual arguments

}

}
Table 10.1 Working of a function

(Continued)

M10_KAMT3553_02_SE_C10.indd 380 5/17/2015 9:33:43 AM

https://hkgbooks.blogspot.com

Functions 381

 (a) The return type of the function can be int, fl oat, double, char, void,
etc., depending upon what is to be returned from called function to the calling function.
By default in ANSI C, function returns int, if return type is not mentioned.

 (b) Actual argument: The arguments of calling functions are actual arguments. In Table
10.1 , variables ‘ x ’, ‘ y ’ and ‘ z ’ are actual arguments.

 (c) Formal argument: The arguments of the called function are formal arguments. In Table
10.1 , variables ‘ l ’, ‘ k ’ and ‘ j ’ are formal arguments.

 (d) Function name: A function name follow the same rule as we use for naming a variable.

	 		Example	:	
 sum (int a, int b);
 where sum() is a user-defined function. This is a function call and ‘ a ’ and ‘ b ’ are integer

arguments. The function call must be ended by a semi-colon (;).

 (e) Argument/parameter list: The argument list means variable names enclosed within the
parentheses. They must be separated by a comma (,). These formal arguments (con-
signment) receive values from the actual argument for performing the communication
between consignee and consignor functions.

 (f) Function call: A compiler executes the function when a semi-colon (;) is followed by the
function name. A function can be called simply using its name like other C statement,
terminated by a semi-colon (;).

 Consider the following example.

 10.1 Write a program to show how user-defined function is called.

int add(int,int); /* function prototype */
 void main()
{
 int x=1,y=2,z;
 z=add(x,y); /* FUNCTION call/
 printf(“z=%d”,z);
}

/* FUNCTION DEFINITION */
int add(int a, int b)
{
 return(a+b);
}

 OUTPUT:	
z=3

int abc(int l, int k, int j) Function defi nition
{
 Formal arguments

 return(); return value
}

M10_KAMT3553_02_SE_C10.indd 381 5/17/2015 9:33:43 AM

https://hkgbooks.blogspot.com

382 Programming in C

	 Explanation:
 In the above program, values of ‘x’ and ‘y’ are passed to function add(). Formal arguments

‘a’ and ‘b’ receive the values. The function add() calculates the addition of both the vari-
ables and returns result. The result is collected by the variable ‘z’ of the main() function
which is printed through the printf() statement.

 10.2 Write a program to define a user-defined function. Call them at different places.

void y();
void y()
{
 printf(“Y”);
}

void main()
{
 void a(),b(),c(),d();
 clrscr();
 y();
 a();
 b();
 c();
 d();
}

void a()
{
 printf(“A”);
 y();
}

void b()
{
 printf(“B”);
 a();
}

void c()
{
 a();
 b();
 printf(“C”);
}

void d()
{
 printf(“D”);
 c();
 b();
 a();
}

OUTPUT:
Y A Y B A Y A Y B A Y C D A Y B A Y C B A Y A Y

M10_KAMT3553_02_SE_C10.indd 382 5/17/2015 9:33:43 AM

https://hkgbooks.blogspot.com

Functions 383

	 Explanation:
 From the above program we can conclude that.

 (i) The main() function can call any other function defined before or after the main() function.

 (ii) Any other user-defined function can call the main() function.

 (iii) The user-defined function can call only those user-defined functions which are defined
before it, i.e. the function a() can call only y() and not b(), c() and d(). The function
b() cannot call functions c() and d(). The function d() can call all the functions because
it is the last function.

 (f) Local and global variables: There are two kinds of variables: (i) local and (ii) global.

 (i) Local variable: The local variables are defined within the body of the function or block. The
variable defined is local to that function or block only. Other functions cannot access these
variables. The compiler shows errors in case other functions try to access the variables.

	 Example:
 value(int k, int m)
 {
 int r,t;
 }

 Here ‘r’ and ‘t’ are the local variables, which are defined within the body of the function
value(). The same variable names may be defined in different functions. They are local to
that particular function.

 Programs on local and global variables are illustrated below.

 10.3 Write a program to show how similar variable names can be used in different functions.

void fun(void);
void main()
{
 int b=10,c=5;
 clrscr();
 printf(“\n In main() B=%d C=%d”,b,c);
 fun();
}

void fun()
{
 int b=20,c=10;
 printf(“\nIn fun() B=%d C=%d”,b,c);
}

OUTPUT:
In main() B=10 C=5
In fun() B=20 C=10

	 Explanation:
 In the above program, two functions are used. One is main() and the other user-defined

function is fun(). The variables ‘b’ and ‘c’ are defined in both the functions. Their effect
is only within the function in which they are defined. Both the functions print local values of
‘b’ and ‘c’ assigned in their functions.

M10_KAMT3553_02_SE_C10.indd 383 5/17/2015 9:33:43 AM

https://hkgbooks.blogspot.com

384 Programming in C

 We can also declare the same variable names for actual and formal arguments. The compiler
will not get confused due to same variable names. The scope of every auto variable is local
to the block in which they are defined.

(ii) Global variables: Global variables are defined outside the main() function. Multiple func-
tions can use them. The example is illustrated below for understanding.

 10.4 Write a program to show the effect of global variables on different functions.

void fun(void);
int b=10,c=5;
void main()
{
 clrscr();
 printf(“\nIn main() B=%d C=%d”,b,c);
 fun();
 b++;
 c--;
 printf(“\n Again In main() B=%d C=%d”,b,c);
}

void fun()
{
 b++;
 c--;
 printf(“\nIn fun() B=%d C=%d”,b,c);
}

OUTPUT:
In main() B=10 C=5
In fun() B=11 C=4
Again In main() B=12 C=3

	 Explanation:
 In the above program, variables ‘b’ and ‘c’ are defined outside the main(). Hence, they are

global. They can be called by any other function. The same variables ‘b’ and ‘c’ are used
throughout the program. In main(), values of ‘b’ and ‘c’ are printed.

 The function fun() is called; ‘b’ is incremented and ‘c’ is decremented. The values of ‘b’
and ‘c’ are printed. The control then returns to the function main().

 Again ‘b’ is incremented and ‘c’ is decremented. The values of ‘b’ and ‘c’ are printed. Here,
both the functions use the same variables.

 (g) Return value: It is the outcome of the function. The result obtained by the function
is sent back to the calling function through the return statement. The return
statement returns one value per call. The value returned is collected by the variable
of the calling function.

10.4 tHe return statement
The user-defined function uses the return statement to return the value to the calling function. Exit
from the called function to the calling function is done by the use of the return statement. When the
return statement is executed without argument, it always return 1.

M10_KAMT3553_02_SE_C10.indd 384 5/17/2015 9:33:43 AM

https://hkgbooks.blogspot.com

Functions 385

(a) return 0: This statement returns zero to the operating system if the value entered by the
user is 1 or negative.

(b) return: The value of ‘x’ is passed to the function pass(). If the value is zero then the
return statement returns 1. The return statement is used to exit from the function
pass().

(c) return (a*a*a): In a function pass(), when the if statement finds the value of ‘x’
as non-zero then else block is executed and the return statement returns the cube of the
entered number.

 The return statement can be used in the following ways.

(a) return(expression);

	 Example:
 return(a+b+c);

int pass(int);
void main()
{
 int x,y;
 clrscr();

 printf(“Enter value of x :”);
 scanf(“%d”,&x);

 if(x==1 || x<0)
 return 0;

 y=pass(x);
 switch(y)
 {
 case 1:
 printf(“The value returned is %d”,y);
 break;
 default :
 printf(“The Cube of %d is : %d”,x,y);
 }

 return 0;
}

int pass(a)
{
 if(a==0)
 return 0;
 else
 return(a*a*a);
}

OUTPUT:
Enter value of x : 5
The Cube of 5 is :125

 10.5 Write a program to use the return statement in different ways.

M10_KAMT3553_02_SE_C10.indd 385 5/17/2015 9:33:43 AM

https://hkgbooks.blogspot.com

386 Programming in C

 If such a statement is executed, the expression within the parentheses is first solved and the result
obtained is returned.

(b) A function may use one or more return statements. It is used when we want to return a
value depending upon certain conditions.

	 Example:

 The if statement
 if(a>b)
 return(a);
 else
 return(b);

	 The switch()statement
 switch(x)
 {
 case 1 :
 return(1);
 break;

 case 2
 return(1*2);
 break;

 default :
 return(0);
 }

(c) return(&p);
 If above syntax is used, it returns the address of the variable.

(d) return(*p);
 The above statement returns the value of a variable through the pointer.

(e) return(sqrt(r));
 If such a format is used, when control reaches to the return statement, control again passes

to function sqrt(). The return statement collects the result obtained from sqrt() func-
tion and returns it to the calling function. Here, the return statement calls the function
sqrt().

(f) return(float(square(2.8));

 All functions return by default integer value. To force the function return other type of value,
specify the data type to be used. When a value is returned, it automatically converts to the
function data type. In the above example, the return value will be converted to float type.

 From the above discussion we can conclude the following:

(1) When the return statement is encountered in the function the control sends back to the
calling function and next statement following return statement if present will not be
executed.

(2) The absence of the return statement indicates that no value is returned. Such functions are
called a void.

10.5 types of functIons
Depending on arguments present, the return value sends the result back to the calling function. Based
on this, the functions are divided into four types.

(1)	 	Without	arguments	and	return	values	(see	Table	10.2).

M10_KAMT3553_02_SE_C10.indd 386 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 387

(1) Data is neither passed through the calling function nor sent back from the called function.

(2) There is no data transfer between calling and called functions.

(3) The function is only executed and nothing is obtained.

(4) If such functions are used to perform any operation, they act independently. They read data
values and print result in the same block.

(5) Such functions may be useful to print some message, draw a line or spilt the line.

	 Example:

 10.6 Write a program to display a message using user-defined function.

Calling	Function Analysis Called	Function

void main()
{

No arguments are passed.
No values are sent back.

abc()
{

abc();

}

}

void main()
{
 void message();
 message();
}
void message()
{
 puts(“Have a nice day”);
}

OUTPUT:
Have a nice day

	 Explanation:
 This program contains a user-defined function named message(). It requires no argu-

ments and returns nothing. It displays only a message when called.

 10.7 Write a program to display alphabets ‘A’ , ‘B’ and ‘C’ using functions.

void main()
{
 void a(), b(),c();
 a();
 b();
 c();
}

Table 10.2 Functions without arguments and return values

M10_KAMT3553_02_SE_C10.indd 387 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

388 Programming in C

	 Explanation:
 In the above example, three user-defined functions a(), b() and c() are defined. The

main() function calls these three functions. These functions get called as per the calling
sequence and messages are displayed.

(2)	 With	arguments	but	without	return	values	(Table	10.3).

void a()
{
 printf(“\nA”);
}

void b()
{
 printf(“B”);
}

 void c()
{
 printf(“C”);
}

OUTPUT:
ABC

(1) In the above functions, arguments are passed through the calling function. The called func-
tion operates on the values. But no result is sent back.

(2) Such functions are partly dependent on the calling function. The result obtained is utilized by
the called function and there is no gain to the main().

	 Example:

 10.8 Write a program to pass date, month and year as parameters to a user-defined function and
display the day in the format dd/mm/yy.

include<stdio.h>
include<conio.h>

void main()
{

Calling	Function Analysis Called	Function

void main()
{

Argument(s) are passed.
No values are sent back.

abc(y)
{

abc(x);

}

}

Table 10.3 Function with arguments but without return values

M10_KAMT3553_02_SE_C10.indd 388 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 389

int dat(int ,int ,int);
int d,m,y;
clrscr();
printf(“\nEnter Date: dd/mm/yy”);
scanf(“%d %d %d”,&d,&m,&y);
dat(d,m,y);
getch();
}

int dat(int x, int y, int z)
{
printf(“\nDate = %d/%d/%d”,x,y,z);
return 0;
}

OUTPUT:
Enter Date: dd/mm/yy09 09 2014
Date = 9/9/2014

void main()
{
 int j=0;
 void sqr(int);
 clrscr();
 for(j=1;j<5;j++)
 sqr(j);
}

void sqr(int k)
{
 printf(“\n%d”, k*k);
}

OUTPUT:
1
4
9
16

	 Explanation:
 Here, in this program, the main() function passes one argument per call to the function

sqr(). The function sqr() collects this argument and prints its square. The function
sqr() is void.

	 Explanation:
 In this program, three value are passed to the dat() function. The dat() function receives

arguments form main() and displays date. But it returns nothing.

 10.9 Write a program to calculate square of a number using user-defined function.

M10_KAMT3553_02_SE_C10.indd 389 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

390 Programming in C

	 Explanation:
 To execute this program, first create its executable file and execute the program from the

command prompt. The above example illustrates the command line arguments.

 C:\> main.exe 1 2 3

 In the above example, main.exe is the file name containing the program code. The file is ex-
ecuted from the command prompt. Following the file name some arguments are written. The variable
‘j’ contains the number of arguments supplied from the command prompt. Here, four arguments are
supplied to the file name. Thus, the main() function receives the arguments and returns nothing.

(3)	 With	arguments	and	return	values	(Table	10.4).

void main(int j)
{
 clrscr();
 printf(“\n Number of command line arguments J = %d”,j);

}

(1) In the above example, the copy of the actual argument is passed to the formal argument, i.e.
the value of ‘x’ is assigned to ‘y’.

(2) The return statement returns the incremented value of ‘y’. The returned value is collected by ‘z’.

(3) Here, data is transferred between calling and called functions, i.e. communication between
functions is made.

 10.11 Write a program to pass values to a user-defined function and display the date, month and
year.

include <stdio.h>
include <conio.h>

void main()

 10.10 Write a program to pass the value to main() function.

void main()
{
int z;

z=abc(x);

}

Argument(s) are passed.

Values are send back.

abc(y)
{

y++;

return(y);
}

Table 10.4 Function with arguments and return values

M10_KAMT3553_02_SE_C10.indd 390 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 391

	 Explanation:
 In the above program, three values date, month and year are passed to the function dat().

The function displays date. The function dat() returns the next date. The next date is
printed in function main(). Here, function dat() receives arguments and return values.

 10.12 Write a program to send values to user-defined function and receive and display the return
value.

{
int dat(int ,int ,int);
int d,m,y,t;
clrscr();
printf(“Enter Date dd/mm/yy : “);
scanf(“%d %d %d”,&d,&m,&y);
t=dat(d,m,y);
printf(“\nTomorrow = %d/%d/%d”,t,m,y);
getch();
}

int dat(int x, int y, int z)
{
printf(“\nToday = %d/%d/%d”,x,y,z);
return(++x);
}

OUTPUT:
Enter Date dd/mm/yy : 09 09 2014
Today = 9/9/2014
Tomorrow = 10/9/2014

int main()
{
 int sum(int,int,int), a,b,c,s;
 clrscr();
 printf(“Enter Three Numbers :”);
 scanf(“%d %d %d”, &a,&b,&c);
 s=sum(a,b,c);
 printf(“Sum = %d”,s);
 return 0;
}
int sum(int x, int y, int z)
{
 return(x+y+z);
}

OUTPUT:
Enter Three Numbers : 7 5 4
Sum = 16

	 Explanation:
 In the above program, the function sum() receives three values from the function main().

The sum() calculates the sum of three numbers and returns them to main().

M10_KAMT3553_02_SE_C10.indd 391 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

392 Programming in C

(4)	 Without	arguments	and	but	with	return	values	(Table	10.5)

int main()
{
 int sum(),a,s;
 clrscr();
 s=sum();
 printf(“Sum = %d”,s);
 return 0;
}

int sum()
{
 int x,y,z;
 printf(“\n Enter Three Values :”);
 scanf(“%d %d %d”,&x,&y,&z);
 return(x+y+z);
}

OUTPUT:
Enter Three Values : 3 5 4
Sum = 12

	 	 Explanation:
 The user-defined function sum() is an independent function. The function sum() reads

three values through the keyboard and returns their sum to the function main(). The
main() only prints the sum.

(1) In the above type of function, no argument(s) is passed through the main() function. But
the called function returns values.

(2) The called function is independent. It reads values from keyboard or generates from initial-
ization and returns the values.

(3) Here, both the calling and called functions partly communicate with each other.

 10.13 Write a program to receive values from user-defined function without passing any value through
main().

main()
{
int z;

abc()
{
int y=5;

z=abc();

}

No Argument(s) are passed.

Values are sent back.

return(y);
}

Table 10.5 Functions without arguments but with return values

M10_KAMT3553_02_SE_C10.indd 392 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 393

	 Explanation:
 The function sum() is declared as a pointer function, i.e. the function declared as a pointer

always returns reference. The reference returned by the function sum() is assigned to pointer
*s. The pointer *s prints the sum.

10.6 call By Value and reference
There are two ways in which we can pass arguments to the function.

 (i) Call by value: In this type, the value of actual arguments is passed to the formal arguments
and operation is done on the formal arguments. Any change in the formal argument made
does not affect the actual arguments because formal arguments are the photocopy of the
actual argument. Hence, when a function is called by the call by value method, it does not
affect the actual contents of the arguments. Changes made in the formal arguments are local
to the block of the called function. Once control returns back to the calling function, changes
made vanish. The example given below illustrates the use of call by value.

 10.15 Write a program to exchange values of two variables by using ‘call by value’ to the function.

int main()
{
 int *sum(),*s;
 clrscr();
 s=sum();
 printf(“Sum = %d”,*s);
 return 0;
}

int *sum()
{
 int x,y,z,k;
 printf(“\nEnter Three Values :”);
 scanf(“%d %d %d”,&x,&y,&z);
 k=x+y+z;
 return(&k);
}

OUTPUT:
Enter Three Values : 1 3 5
Sum = 9

int main()
{
 int x,y,change (int, int);
 clrscr();
 printf(“\n Enter Values of X & Y :”);
 scanf(“%d %d”,&x,&y);

 10.14 Write a program to read values through the user-defined function and send back the result
in the form of an address.

M10_KAMT3553_02_SE_C10.indd 393 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

394 Programming in C

	 Explanation:
 In the above program, we are passing values of actual argument ‘x’ and ‘y’ to the function

change(). The formal arguments ‘a’ and ‘b’ of function change() receive these val-
ues(). The values are interchanged, i.e. the value of ‘a’ is assigned to ‘b’ and vice versa
and printed. When the control returns back to the main(), the changes made in the function
change() vanish. In the main(), the values of ‘x’ and ‘y’ are printed as they read from the
keyboard. In the call by value method, the formal argument acts as a photocopy of the actual
argument. Hence, changes made to them are temporary.

 (ii) Call by reference: In this type, instead of passing values, addresses (reference) are passed. Func-
tion operates on addresses rather than values. Here, the formal arguments are pointers to the actual
argument. In this type, formal arguments point to the actual argument. Hence, changes made in the
argument are permanent. The example given below illustrates the use of call by value.

 10.16 Write a program to send a value by reference to the user-defined function.

 change(x,y);
 printf(“\n In main() X=%d Y=%d”,x,y);
 return 0;
}
change(int a, int b)
{
 int k;
 k=a;
 a=b;
 b=k;
 printf(“\n In Change() X=%d Y=%d”,a,b);
}

OUTPUT:
Enter Values of X & Y : 5 4
In Change() X=4 Y=5
In main() X=5 Y=4

int main()
{
 int x,y,change (int*, int*);
 clrscr();
 printf(“\n Enter Values of X & Y :”);
 scanf(“%d %d”,&x,&y);
 change(&x,&y);
 printf(“\n In main() X=%d Y=%d”,x,y);
 return 0;
}

change(int *a, int *b)
{
 int *k;
 *k=*a;
 *a=*b;
 *b=*k;
 printf(“\n In Change() X=%d Y=%d”,*a,*b);
}

M10_KAMT3553_02_SE_C10.indd 394 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 395

	 Explanation:
 In the above example, we are passing addresses of formal arguments to the function

change(). The pointers in the change() receive these addresses, i.e. pointer points
to the actual argument. Here, the change() function operates on the actual argument
through the pointer. Hence, the changes made in the values are permanent. In this type of
call, no return statement is required.

10.7 functIon returnIng more Values
So far, we know that the function can return only one value per call. We can also force the function to
return more values per call. It is possible by the call by reference method. The given below example
illustrates this fact.

 10.17 Write a program to return more than one value from the user-defined function.

int main()
{
 int x,y,add,sub,change (int*, int*, int*, int*);
 clrscr();
 printf(“\n Enter Values of X & Y :”);
 scanf(“%d %d”,&x,&y);
 change(&x,&y,&add,&sub);
 printf(“\n Addition : %d ”,add);
 printf(“\n Subtraction : %d ”,sub);
 return 0;
}

change(int *a, int *b,int *c,int *d)
{
 *c=*a+*b;
 *d=*a-*b;
}

OUTPUT:
Enter Values of X & Y : 5 4
Addition : 9
Subtraction : 1

	 Explanation:
 In this program the return statement is not used. Still function returns more than one

value. Actually, no values are returned. Once the addresses of variables are available, we can
directly access them and modify their contents. Hence, in the call by reference method, it is
possible to directly modify the contents of the variable. The memory addresses of the vari-
ables are unique. There is no scope rule for memory address. If we declare the same variable
for actual and formal arguments, their memory addresses will be different from each other.

OUTPUT:
Enter Values of X & Y : 5 4
In Change() X=4 Y=5
In main() X=4 Y=5

M10_KAMT3553_02_SE_C10.indd 395 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

396 Programming in C

	 Explanation:
 In the above example, we are passing value as well as reference; therefore it is a mix-call

i.e. calls by value and reference. The first variable is passed by the call by value method and
second by reference.

(1) The variable ‘k’ of the functions other() and main() is different from each other. The
compiler treats them different. Hence, their memory addresses are different.

(2) We are passing the address of variable ‘m’. It is received by the pointer ‘ m’ of the other()
function, i.e. pointer ‘m’ of function other() contains the memory location of variable ‘m’
of main(). The pointer ‘m’ points to variable ‘m’. Hence, the address printed of ‘m’ is the
same as in main(). This is the difference between these two calls.

10.8 functIon as an argument
Till now we passed values or address through the functions. It is also possible to pass a function as
an argument.

 10.19 Write a program to pass a user-defined function as an argument to another function.

int main()
{
 int k,m,other(int,int*);
 clrscr();
 printf(“\n Address of k & m in main() : %u %u”,&k,&m);
 other(k,&m);
 return 0;
}
other(int k,int *m)
{
 printf(“\n Address of k & m in other() : %u %u”,&k,m);
}

OUTPUT:
Address of k & m in main() :65524 65522
Address of k & m in other() :65518 65522

#include<stdio.h>
#include<conio.h>
int doub(int m);
int square(int k);
void main()
{
 int y=2,x;
 clrscr();
 x=doub(square(y));
 printf(“x=%d”,x);
}

int doub(int m)
{

 10.18 Write a program to pass arguments to the user-defined function by value and reference.

M10_KAMT3553_02_SE_C10.indd 396 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 397

	 Explanation:
 In the above example, instead of passing a variable or its address, a function is passed as an

argument. The innermost function square() is executed first and completed. Its return
value is collected by the doub() function. The doub() function uses the square()
function as an argument. It operates on the return value of square() function and makes
the returned value double and returns to the main() function.

 10.20 Write a program to use two functions as arguments for another function.

 int p;
 p=m*2;
 return(p);
}
int square(int k)
{
 int z;
 z=k*k;
 return(z);
}

OUTPUT:
x=8

include <math.h>

int main()
{
 int d,x(int,int),y(),z();
 d=x(z(), y());
 printf(“\n z() - y()= %d”,d);
 return 0;
}
int x(int a, int b)
{
 return(abs(a-b));
}

int y()
{
 int y;
 clrscr();
 printf(“\n Enter First Number : ”);
 scanf(“%d”,&y);
 return(y);
}

int z()
{
 int z;
 printf(“\n Enter Second Number : ”);
 scanf(“%d”,&z);
 return(z);
}

M10_KAMT3553_02_SE_C10.indd 397 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

398 Programming in C

	 Explanation:
 The above program consists of three user-defined functions x(), y() and z(). The func-

tions z() and y() are passed through the function x(), i.e. they are used as arguments.
They read values and return to function x(). The function x() carries subtraction and return
to main(). The variable ‘d’ prints difference between these two values. The abs() func-
tion is called through the return() statement to return only the positive value.

 Note: abs() function returns absolute value of a given number.

 Below given program can be used in place of the abs() function. It is a user-defined func-
tion, we call it as uabs().‘U’ stands for user- defined.

 10.21 Write a program to return only the absolute value like the abs() function.

int main()
{
 int uabs(int),x;
 clrscr();
 printf(“Enter a Value :”);
 scanf(“%d”,&x);
 x=uabs(x);
 printf(“\n X= %d”,x);
 return 0;
}

int uabs(int y)
{
 if(y<0)
 return(y * -1);
 else
 return(y);
}

OUTPUT:
Enter a Value : -5
X = 5

 Working of uabs() function.

 The uabs() function receives values from the calling function. If the value is less than zero (0),
i.e. negative, it is multiplied by –1 to make it absolute, otherwise it returns as it is.

 10.22 Write a program to calculate square and cube of an entered number. Use function as an
argument.

OUTPUT:
Enter First Number : 25
Enter Second Number : 50
z() - y()= 25

M10_KAMT3553_02_SE_C10.indd 398 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 399

	 Explanation:
 In the above program, three user-defined functions are defined. They are input(), sqr()

and cube().
1. The function input() prompts user to enter a number.
2. The function sqr() calculates the square of the entered number.
3. The function cube() calculates the cube of the entered number.

In the printf() statement, the input() function is used as an argument of sqr() function and again
the function sqr() is used as an argument for the cube() function. These functions work as given below.
 The function input() is executed first. It prompts the user to enter a number. The function
input() returns the value which is the entered number. The return value of input() function is
passed to the function sqr() and square is calculated. The sqr() function returns the number and it
is passed to the function cube(). The function cube() calculates the cube of the original number.

10.9 functIon WItH operators
The below given program illustrates the use of various operators with a function.

(1)	 The	assignment	operator	(=): The use of this operator is to assign some value to the vari-
able. To assign return value of function to the variable following syntax is used.

include <math.h>
int input();
int sqr(int m);
int cube(int m);
void main()
{
 int m;
 clrscr();
 printf(“\n\tCube : %d”,cube(sqr(input())));
}

int input()
{
 int k;
 printf(“Number :”);
 scanf(“%d”,&k);
 return k;
}
int sqr(int m)
{
 printf(“\tSquare : %d”,m*m);
 return m;
}
int cube(int m)
{
 return m*m*m;
}

OUTPUT:
Number : 2
Square : 4
Cube : 8

M10_KAMT3553_02_SE_C10.indd 399 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

400 Programming in C

	 Syntax:

 x=sqr(2);

where ‘x’ is a variable and sqr() is a user-defined function. The value returned by the the sqr()
function is assigned to variable ‘x’.

 10.23 Write a program to assign the return value of a function to another variable.

include <math.h>
void main()
{
 int input(int);
 int sqr(int);
 int x;
 clrscr();

 x=sqr(1-input(x)+1);
 printf(“\nSquare = %d”,x);

void main()
{
 int input(int);
 int x;
 clrscr();

 x=input(x);
 printf(“\nx=%d”,x);
}

int input(int k)
{
 printf(“\nEnter Value of x =”);
 scanf(“%d”,&k);
 return(k);
}

OUTPUT:
Enter Value of x = 5
x = 5

	 Explanation:
 In the above program, the user-defined function input() reads integer value through the

keyboard. The read value is returned to the main() function. The variable ‘x’ in the main()
function collects the returned value. The printf() statement prints the value of ‘x’.

(2)	 Addition	and	Subtraction	(+	&	−):

	 Syntax:

 x=(1-fun()+1);

where ‘x’ is an integer and fun() is a user-defined function.

 10.24 Write a program to perform the addition and subtraction of numbers with the return value
of function.

M10_KAMT3553_02_SE_C10.indd 400 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 401

	 Explanation:
 In the above program, two user-defined functions are defined. The input() function

reads the number through the keyboard. The sqr() function calculates the square of the
number. The input() function is an argument of sqr() function.

 The value returned by input() is subtracted from 2. Though we used ‘−’ operator only
once; the equation built is 1−5+1. The number 5 is the returned value of input(). The
subtraction takes place two times. Hence, two times one is subtracted and instead of 5, the
sqr() function receives number −3. Hence, square of −3 is 9.

(3) Multiplication	and	Division	(&	/):

 10.25 Write a program to perform multiplication and division of numbers with return value of function.

}

int input(int k)
{
 printf(“\nEnter Value of x =”);
 scanf(“%d”,&k);
 return(k);
}
int sqr(int m)
{
 return(pow(m,2));
}

OUTPUT:
Enter Value of x = 5
Square = 9

include <math.h>
void main()
{
 int input(int);
 int sqr(int);
 int x;
 clrscr();

 x=sqr(5*input(x)/2);
 printf(“\nSquare = %d”,x);
}

int input(int k)
{
 printf(“\nEnter Value of x =”);
 scanf(“%d”,&k);
 return(k);
}

int sqr(int m)
{
 return(pow(m,2));
}

M10_KAMT3553_02_SE_C10.indd 401 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

402 Programming in C

	 Explanation:
 The above program is the same as the previous one. Instead of addition and subtraction

operations, multiplication and division operations are performed

(4) Increment	and	Decrement	Operators	(++	&	−−):	The uses of these operators are to incre-
ment or decrement the value of the variable. Here, they perform the same job with the return
value of functions.

	 Syntax:

 x=fun1(++(y=(fun2 (x))));

 where ‘x’ and ‘y’ are integer and fun1() and fun2() are functions.

 Consider the example following example.

 10.26 Write a program to use (++) operator with the return value of a function.

include <math.h>

void main()
{
 int input(int);
 int sqr(int);
 int x,y=0;
 clrscr();

 x=sqr(++(y=(input(x))));
 printf(“\n Square = %d”,x);
}

int input(int k)
{
 printf(“\n Enter Value of x =”);
 scanf(“%d”,&k);
 return(k);
}

int sqr(int m)
{
 return(pow(m,2));
}

OUTPUT:
Enter Value of x = 7
Square = 64

	 Explanation:
 In the above example, the returned value of input() function is first incremented and passed

to the function sqr(). The sqr() function gives the square of incremented value. We cannot

OUTPUT:
Enter Value of x = 5
Square = 144

M10_KAMT3553_02_SE_C10.indd 402 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 403

	 Explanation:
 In the above program, the mod operation is directly applied to return the value of function

j(). The function j() reads the number through the keyboard and returns it to main(). If
the remainder is ‘0’, the number is even, otherwise it is odd.

 10.28 Write a program to use conditional operator (?) with function.

int main()
{
 int j();
 if(j()%2==0)
 printf(“\n Number is Even.”);
 else
 printf(“\n Number is Odd.”);
 return 0;
}

int j()
{
 int x;
 clrscr();
 printf(“\n Enter a Number :”);
 scanf(“%d”,&x);
 return(x);
}

OUTPUT:
Enter a Number : 5
Number is Odd.

include <math.h>

int main()
{
 int x,y(),z, sqr(int),cube(int);
 clrscr();
 printf(“\n Enter a Number :”);
 scanf(“%d”,&x);
 z=(x>y() ? sqr(x) : cube(x));
 printf(“= %d”,z);
 return 0;
}

int sqr(int x)
{
 printf(“Square”);

 apply these operators (++ and --) directly to the function. We used an extra variable ‘y’. The
value returned is collected in variable ‘y’ and then ‘y’ is incremented.

 Note: The decrement (––) operator works in the same way. It decrements the value.

(5)	 Mod	(%)	and	?	Operators.

 10.27 Write a program to use mod (%) with function.

M10_KAMT3553_02_SE_C10.indd 403 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

404 Programming in C

	 Explanation:
 There are three user-defined functions in this example. They are y(), sqr() and cube().

The return value of function y() is compared with value entered by the user, i.e. ‘x’. The
condition is given in the ternary operator. The ternary operator decides which function to call
depending on the condition. If (x > y()) condition is true, i.e. ‘x’ is larger the function
sqr() is called, otherwise function cube() is called. The user-defined functions can be
used with (< and >). Here, the function y() is used.

 10.29 Write a progr am to compare two return values of functions.

 return(pow(x,2));
}
int cube(int x)
{
 printf(“Cube”);
 return(pow(x,3));
}
int y()
{
 return(10);
}

OUTPUT:
Enter a Number : 5
Cube = 125

int main()
{
 int a(),b();
 clrscr();
 if(a()==b())
 printf(“\n Value of a() & b() are equal.”);
 else
 printf(“\n Value of a() & b() are unique.”);
 return(0);
}

int a()
{
 int x;
 printf(“\n Enter a Number a() :”);
 scanf(“%d”,&x);
 return(x);
}

int b()
{
 int x;
 printf(“\n Enter a Number b() :”);
 scanf(“%d”,&x);
 return(x);
}

M10_KAMT3553_02_SE_C10.indd 404 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 405

	 Explanation:
 Here, a() and b() are two user-defined functions. They read values through the keyboard

and return to main() function. Both functions are called from the if() statement. First,
a() is called. It reads an integer. Similarly, b() is called to perform the same task as a().
The if statement compares both return values and displays proper message.

(6)	 Arithmetic	equations

 10.30 Write a program to evaluate the equation s=sqr(a()+b()) using function.

int main()
{
 int s=0,a(),b(),sqr(int);
 clrscr();
 s=sqr(a()+b());
 printf(“\n Square of Sum = %d”,s);
 return 0;
}

int a()
{
 int a;
 printf(“\n Enter value of a :”);
 scanf(“%d”,&a);
 return(a);
}

int b()
{
 int b;
 printf(“\n Enter value of b :”);
 scanf(“%d”,&b);
 return(b);
}

int sqr(int x)
{
 return (x*x);
}

OUTPUT:
Enter value of a : 5
Enter value of b : 3
Square of Sum = 64

	 Explanation:
 In the above program, functions a() and b() read integer ‘a’ and ‘b’ through the input

device. The returned values of these function are added and this addition is passed to function
sqr() to obtain the square the sum.

OUTPUT:
Enter a Number a() : 5
Enter a Number b() : 5
Value of a() & b() are equal.

M10_KAMT3553_02_SE_C10.indd 405 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

406 Programming in C

	 Explanation:
 In the above example, the statement y=y+pow(x, b()) within the while loop evaluates

the series. The pow() function calculates the power of ‘x’ by returned value of function
b(). The function b() is called for ‘n’ times. During each call, the value of variable ‘m’
is incremented by one. The variable ‘m’ is declared as static. The value of variable ‘m’ does
not vanish when the function is not active.

10.10 functIon and decIsIon statements
There are two ways to use decision-making statements in C.
 (1) Use of if ... else statement. For syntax see Table 10.6

#include<math.h>
int main()
{
 int b(),x,y=0,z=0,n,a;
 clrscr();
 printf(“Values of ‘x’ and ‘n’: ”);
 scanf(“%d %d”,&x,&n);
 while(z++!=n)
 {
 a=pow(x,b());
 y=y+a;
 printf(“%d +”,a);
 if(z==n)
 {
 printf(“\n Value of y = %d”,y);
 return 0 ;
 }
 }
 return 0;
}
int b()
{
 static int m;
 return(++m);
}

OUTPUT:
Values of ‘x’ and ‘n’ : 3 3
3 + 9 + 27 +
Value of y = 39

 10.31 Write a program to evaluate the equation y=x1+x2+ ... xn using function.

M10_KAMT3553_02_SE_C10.indd 406 5/17/2015 9:33:44 AM

https://hkgbooks.blogspot.com

Functions 407

	 Explanation:
 In the above program, a() reads number from terminal and sends it to the main() func-

tion. The mod operation is done on the return value. If the result of mod operation is zero
then the message printed is ‘The number is even’ otherwise ‘The number is odd’. Thus, in
this example the returned value of function is directly used for operation.

(2) switch...case statement: The switch case statement also makes decision at run
time in the program. It has multiple choices. The switch() requires one argument and

Without	Function With	Function

if(condition)
Statement1;
else
Statement1;
}

if(fun())
statement1;
else
statement2;
where fun() is a function.

The if ... else statement is used to make the deci-
sion in the program at the run time. It decides which state-
ment to execute and which statement to bypass, depending
up certain conditions.

The above syntax is used commonly in the program.

Here, in this example, instead of writing condi-
tion directly, we are passing function. Here,
when the if() statement executes control is
passed in the function fun(). The return value
of function is used for condition.

void main()
{
 int a();
 clrscr();
 if(a()%2==0)
 printf(“\n The number is even.”);
 else
 printf(“\n The Number is odd.”);
}

int a()
{
 int a;
 printf(“\n Enter value of a :”);
 scanf(“%d”,&a);
 return(a);
}

OUTPUT:
Enter value of a : 5
The Number is odd.

 10.32 Write a program to call user-defined function through the if statement.

Table 10.6 if else statement with & without function

M10_KAMT3553_02_SE_C10.indd 407 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

408 Programming in C

its body contains various case statements like branch. Depending upon the value of the
switch argument matched case statement is executed. Syntax of switch with and without
function is as per Table 10.7.

 Syntax:

 10.33 Write a program to call user-defined function through the swtich() statement.

include <math.h>
include <ctype.h>

void main()
{
 int a();
 int x=5;
 clrscr();

 switch(a())
 {
 case ‘s’ :
 printf(“\n Square of %d is %d”,x,pow(x,2));
 break;

 case ‘c’ :
 printf(“\n Cube of %d is %d”,x,pow(x,3));
 break;

 case ‘d’ :
 printf(“\n Double of %d is %d”,x,x*2);
 break;
 default :
 printf(“\n Unexpected Choice printed as it is : %d”, x);
 }
}
int a()
{
 char c=‘’;

Without	function With	function

switch(x)
{
 case 1:

 break;
 case 2:

 break;
 default:
}

switch(b())
{
 case 1:

 break;
 case 2:

 break;
 default:
}

where ‘x’ is an argument
of any data type.

where b() is a function.

Table 10.7 Function and swtich() statements

M10_KAMT3553_02_SE_C10.indd 408 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

Functions 409

	 Explanation:
 In the above example, value ‘5’ is assigned to variable ‘x’. Here, the function is called from

the switch() statement. It prompts the user to enter choice. The choice entered by the
user is returned to the switch() statement. Depending upon this value, matching case
statement is executed. In the shown output, user pressed ‘D’. The swich() case executes
double operation.

10.11 functIon and loop statements
Loop statements are used to repeat program code repetitively for a given number of times or based on
certain conditions.

(1) The for loop

(2) The while loop

(3) The do..while loop

1. Working with for loop: The syntax of for with & without function is as per Table 10.8.

 printf(“Enter Your Choice Square(s),Cube(c),Double(d) : ”);
 c=getche();
 c=tolower(c);
 return(c);
}

OUTPUT:
Enter Your Choice Square(s),Cube(c),Double(d) : D
Double of 5 is 10

include <process.h>

void main()
{

I.	 Working	with	for loop	:

 10.34 Write a program to call function through the for loop.

Without	Function With	Function

for(starting value; stop value; step)

OR
for(initial value; condition,
increment/decrement)

for(fun(); fun1(); fun2())

where, fun(), fun1() and fun2() are
user-defined functions.

These are common syntax of the for loop statement. In the above example, at every step of for loop
we are using user-defined function, i.e. when
such statement executes iterations are completed
calling the functions.

Table 10.8 Function and for loop

M10_KAMT3553_02_SE_C10.indd 409 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

410 Programming in C

	 Explanation:
 In the above example, in each iteration of the for loop the function plus() gets called.

The function plus() checks the value of the formal argument ‘k’. If variable ‘k’ contains
10, the program is terminated, otherwise the value of ‘k’ is returned as it is. Thus, the func-
tion plus() checks the value of the loop variable.

II.	 Working	with	the	while loop: Its syntax is shown in Table 10.9.

 int plus(int),m=1;
 clrscr();

 for(;plus(m);m++)
 {
 printf(“%3d”,m);
 }
}
int plus(int k)
{
 if(k==10)
 {
 exit(1);
 return 0;
 }
 else
 return(k);
}

OUTPUT:
1 2 3 4 5 6 7 8 9

 How it works with while statement? Below given is an example that illustrates the use of
while statement.

 10.35 Write a program to call user-defined function through while loop.

int main()
{
 int x,y();

Without	Function With	Function

while(condition)
{
}

while(fun())
{
}

This is a common syntax of the while
loop statement.

Where, fun() is a user-defined function.

In the above example, in place of condi-
tion we are passing a function. The while
checks the returned value of function.

Table 10.9 Function and while loop

M10_KAMT3553_02_SE_C10.indd 410 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

Functions 411

	 Explanation:
 In the above example, y() is a user-defined function. The function is called through the

while loop. When the control is passed to y() function, it reads a number through the ter-
minal and returns it to the while loop. The while loop checks this value. If it is non-zero,
the while loop executes and a message is displayed ‘value entered is non-zero’ otherwise
if ‘0’ value is returned, the while loop terminates.

III.	 Working	with	do–while loop.	Its syntax is given in Table 10.10.

 clrscr();

 while(y()!=0)
 printf(“Value entered is non-zero”);
 return 0;
}

int y()
{
 int x;
 printf(“\n Enter a Number :”);
 scanf(“%d”,&x);
 return(x);
}

OUTPUT:
Enter a Number : 5
Value entered is non-zero
Enter a Number : 0

 10.36 Write a program to call a user-defined function through do-while() loop.

int main()
{
 int x,y();
 clrscr();

 do
 printf(“Value enter is non-zero”);
 while(y()!=0);

 return 0;
}

Without	Function With	Function

do
{
}while(condition);

do
{
}while(fun());
where, fun()is a user-defined function.

This is a common syntax of the do-while
loop statement.

In the above example, in place of condition we
are passing a function. The while checks the
returned value of the function.

Table 10.10 Function and do-while loop

M10_KAMT3553_02_SE_C10.indd 411 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

412 Programming in C

	 	 Explanation:
 The above program is similar to the previous one. In the output, the message is displayed,

though we have not entered any number. This is the only drawback of the do–while state-
ment. It executes once, though the given condition is false.

10.12 functIons WItH arrays and poInters
(i) Initialization	of	Array	Using	Function

 User initializes the array using statement like int d []={1,2,3,4,5}; instead of this, a function
can also be directly called to initialize the array. The given below program illustrates this point.

 10.37 Write a program to initialize an array using functions.

int y()
{
 int x;
 printf(“\n Enter a Number :”);
 scanf(“%d”,&x);
 return(x);
}

OUTPUT:
Value enter is non-zero
Enter a Number : 5
Value enter is non-zero
Enter a Number : 0

int main()
{
 int k,c(),d[]={c(),c(),c(),c(),c()};
 clrscr();
 printf(“\n Array d[] elements are :”);
 for(k=0;k<5;k++)
 printf(“%2d”,d[k]);

 return(0);
}
int c()
{
 static int m,n;
 m++;
 printf(“\nEnter Number d[%d] : ”,m);
 scanf(“%d”,&n);
 return(n);
}

OUTPUT:
Enter Number d[1] : 4
Enter Number d[2] : 5

M10_KAMT3553_02_SE_C10.indd 412 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

Functions 413

	 Explanation:
 A function can be called in the declaration of an array. In the above program, d[] is an inte-

ger array and c() is a user-defined function. The function c() when called reads the value
through the keyboard. The function c() is called from an array, i.e. the value returned by the
function is assigned to the array.

(ii) Passing	Array	Elements	to	Function
 Arrays are a collection of one or more elements of the same data type. Array elements can

be passed to the function by value or reference. Below given programs explain both the
ways.

 10.38 Write a program to pass the array element to the function. Use the call by value method.

Enter Number d[3] : 6
Enter Number d[4] : 7
Enter Number d[5] : 8
Array d[] elements are : 4 5 6 7 8

void main()
{
 int k, show(int,int);
 int num[]={12,13,14,15,16,17,18};
 clrscr();

 for(k=0;k<7;k++)
 show(k,num[k]);
}

show(int m,int u)
{
 printf(“\nnum[%d] = %d”,m+1,u);
}

OUTPUT:
num[1]=12
num[2]=13
num[3]=14
num[4]=15
num[5]=16
num[6]=17
num[7]=18

	 Explanation:
 The show() is a user-defined function. The array num[] is initialized with seven elements.

Using for loop, the show() function is called for seven times and one element is sent per
call. The function show() prints the element.

M10_KAMT3553_02_SE_C10.indd 413 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

414 Programming in C

 10.39 Write a program to pass array element to the function. Use call by reference.

void main()
{

 void show(int*);
 int num[]={12,13,14,15,16,17,18};
 clrscr();
 show(num);
}

void show(int *u)
{
 int m=0;
 printf(“\n num[7]={”);
 while(m!=7)
 {
 printf(“%2d,”,*(u++));
 m++;
 }
 printf(“\b }”);

}

OUTPUT:
num[7]={12,13,14,15,16,17,18}

	 Explanation:
 In the above program, base address of 0th element is passed to the function show(). The

pointer *u contains base address of array num[]. The pointer notation prints the elements.

(iii) Passing	Reverse	Array	to	Function

 10.40 Write a program to display array elements in the reverse order.

void main()
{
 int show(int*);
 int num[]={12,13,14,15,16,17,18};
 clrscr();
 show(&num[6]);
}

show(int *u)
{
 int m=6;
 while(m!=-1)
 {
 printf(“\nnum[%d] = %d”,m,*u);
 u--,m--;
 }
 return(0);
}

M10_KAMT3553_02_SE_C10.indd 414 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

Functions 415

	 Explanation:
 Increment or decrement in any pointer points next or previous location of its type, respec-

tively. In the above program, instead of the address of 0th element, the address of the last
element is passed. The sixth element is the last element of the array. Decrement in pointer
points to the address of the previous element of array.

(iv) Copying	Array

 We have already studied call by reference in which one can change the contents of any local
variable of other function, provided its reference or address should be available. Using the
call by reference method, copying contents of one array to another is possible.

 10.41 Write a program to copy array elements using user-defined function.

OUTPUT:
num[6]=18
num[5]=17
num[4]=16
num[3]=15
num[2]=14
num[1]=13
num[0]=12

void main()
{
 int cpy(int*, int*),h;
 int a1[]={1,2,3,4,5},a2[5];
 clrscr();

 cpy(&a1[0],&a2[0]);

 printf(“Source Target”);
 for(h=0;h<5;h++)
 printf(“\n%5d\t\t%d”,a1[h],a2[h]);

}

int cpy(int *p,int *m)
{
 int j=0;

 while(j!=5)
 {
 *m=*p;
 p++;
 m++;
 j++;
 }
 return(0);
}

OUTPUT:
Source Target
 1 1

M10_KAMT3553_02_SE_C10.indd 415 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

416 Programming in C

	 Explanation:
 The function cpy() collects the base addresses of both the arrays sent by the main()

function. The pointer p points to array a1[] and the pointer ‘ m’ points to array a2[].
Assigning value of p to m, elements of array a1[] are copied to array a2[]. The
for loop used in the main() function displays contents of both the arrays. Here, the
function cpy() is called only once. Using the base addresses of the array the function
‘cpy()’ performs this task independently.

(v)	 Reading	Private	Array

 10.42 Write a program to read array of other function in main().

 2 2
 3 3
 4 4
 5 5

void main()
{
 int k;
 int arry();
 clrscr();

 for(k=0;k<5;k++)
 {
 printf(“\t%d”,arry());
 }

}

int arry()
{
 static int k;
 int b[5]={1,2,3,4,5};
 return(b[k++]);
}

OUTPUT:
1 2 3 4 5

	 	 Explanation:
 In the above program, integer array b[] is declared and iniatlized in the function arry().

The function arry() is called five times. During each call, it returns successive elements of
array b[] to function main(). Thus, all elements of array b[] are displayed.

(vi)	 Interchange	of	Array	Elements

 10.43 Write a program to interchange array elements of two array using functions.

void main()
{

 int read();
 void change(int*,int*);
 int x,a[5],b[5];

M10_KAMT3553_02_SE_C10.indd 416 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

Functions 417

 clrscr();

 printf(“Enter 10 Numbers :”);
 for(x=0;x<10;x++)
 {
 if(x<5)
 a[x]=read();
 else
 b[x-5]=read();
 }

 printf(“\n Array A & B”);

 for(x=0;x<5;x++)
 {
 printf(“\n%7d%8d”, a[x],b[x]);
 change(&a[x],&b[x]);
 }

 printf(“\nNow A & B”);
 for(x=0;x<5;x++)
 {
 printf(“\n%7d%8d”, a[x],b[x]);
 }
}
int read()
{
 int x;
 scanf(“%d”,&x);
 return(x);
}
void change(int *a, int *b)
{
 int *k;
 *a=*a+*b;
 *b=*a-*b;
 *a=*a-*b;
}

OUTPUT:
Enter 10 Numbers:
1 2 3 4 5 6 7 8 9 0
Array A & B
1 6
2 7
3 8
4 9
5 0
Now A & B
6 1
7 2
8 3
9 4
0 5

M10_KAMT3553_02_SE_C10.indd 417 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

418 Programming in C

	 Explanation:
 Interchange of array elements can be done by call by reference. Here, we are passing

address of array elements of arrays a[] and b[] to the function change(). The function
change() interchanges the contents of the elements.

(vii)	 Global	Pointer

 10.44 Write a program to read array elements declared in different functions using global pointer
declaration.

int *p,*q;
void main()
{
 int m=0,call(int),k[5]={3,8,5,2,5};
 p=k;
 clrscr();

 call(5);

 while(m!=5)
 {
 printf(“%3d”,*q);
 m++;
 q++;
 }
}

int call(int j)
{
 static int m=0,u[5]={5,1,6,0,6};
 q=u;
 while(m!=j)
 {
 printf(“%3d”,*p);
 m++;
 p++;
 }
 printf(“\n”);
 return(0);
}

OUTPUT:
3 8 5 2 5
5 1 6 0 6

	 Explanation:
 In the above program, ‘p’ and ‘q’ are declared as global pointers, i.e. they are defined outside

the main() function. The pointer ‘p’ contains the base address of array k[]and pointer
‘q’ contains base address of u[]. Hence, pointers ‘p’ and ‘q’ are global pointers. They can be
accessed through any function.

10.13 passIng array to a functIon
We can pass array as arguments to a function. Passing an array to a function with arguments means
address of array is passed. Arrays for all the times are passed to function by address, i.e. array name
is passed to the function. Example is illustrated as follows.

M10_KAMT3553_02_SE_C10.indd 418 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

Functions 419

 10.45 Program to pass an array to function and compute the average of five floating point
numbers.

#include <stdio.h>
#include <conio.h>

float avg(float []);
void main()
 {
 float array[5]={2.0,3.5,4.8,5.9,7.8};
 float average;
 clrscr();
 average= avg(array);
 printf(“\nAverage of five numbers is %f\n”, average);
 getch();
 }
float avg(float a[5])
 {
 int i;
 float sum=0;
 for(i = 0; i < 5; ++i)
 sum=sum+a[i];
 return (float)(sum/5);
 }

OUTPUT:
Average of five numbers is 4.800000

	 Explanation:
 Array is passed to the function avg(). One by one elements of an array are passed to the

function avg() and addition of array element with a variable sum is performed. Finally, the
average of five elements is returned to the calling function and answer is displayed.

 10.46 Program to pass an array to function and find the minimum value of the array using pointer.

#include <stdio.h>
#include <conio.h>

 int min(int *);
 void main()
 {
 int array[5]={10,9,4,5,7},n;
 clrscr();
 printf(“Elements of array are:”);
 for(int i=0;i<5;i++)
 printf(“ %d”,array[i]);
 n= min(array);
 printf(“\nMinimum of five numbers is %d\n”, n);
 getch();
 }
 int min(int *a)
 {

M10_KAMT3553_02_SE_C10.indd 419 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

420 Programming in C

 int i;
 int min;
 min=*a;
 for(i = 1; i < 5; i++)
 {
 if(min>*(a+i))
 {
 min=*(a+i);
 }
 }
 return min;
 }

OUTPUT:
Elements of array are: 10 9 4 5 7
Minimum of five numbers is 4

	 Explanation:
 Here, in this program, min is a function called from the main program. Using call by reference

the elements of an array are called in the function min(). Initially, it is assumed minimum
value to the first element and compared with successive elements. In case, successive ele-
ment is smaller than the element under comparison, swapping of elements is done. Eventu-
ally the element having minimum value is obtained and the same is displayed on the screen.

10.14 nested functIons
A nested function refers to function within the function. The programmer can invoke function within
a function. The following program gives an idea on how to define function within function.

 10.47 Write a program to display some messages in sub() and nest() functions.

#include<stdio.h>
#include<conio.h>
void main()
{
 void sub();
 clrscr();
 printf(“\nWe are in main() function”);
 sub();
 printf(“\nWe are back in main() function”);
}
void sub()
 {
 void nest();
 printf(“\nWe are in sub function”);
 nest();
 }

M10_KAMT3553_02_SE_C10.indd 420 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

Functions 421

void nest()
 {
 printf(“\nWe are in nest function”);
 }

OUTPUT:
We are in main() function
We are in sub function
We are in nest function
We are back in main() function

	 Explanation:
 The function sub() is invoked from the main() and nest() from the sub() and messages are

displayed. Prototypes for functions sub() and nest() are initialized at the start of functions.

 10.48 Write a program to invoke sub() and nest () functions and perform some arithmetic
operations.

#include<stdio.h>
#include<conio.h>
void main()
{
 void sqr();
 float a=5.5;
 clrscr();
 printf(“\nIn main() %g”,a);
 sqr();
 printf(“\n Back in main() %g”,a*a);
 }
void sqr()
 {
 void cube();
 float b=2.1;
 printf(“\n In sub() %g”,b*b);
 cube();
 }
void cube()
 {
 float b=1.1;
 printf(“\n In nest%g”,b*b*b);
 }

OUTPUT:
In main() 5.5
In sub 4.41
In nest 1.331
Back in main() 30.25

	 Explanation:
 Invocation of functions is the same as done in the previous program, and only some opera-

tions are performed and results are displayed.

M10_KAMT3553_02_SE_C10.indd 421 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

422 Programming in C

10.15 recursIon
So far, we have seen function calling one another. In programming, there might be a situation where
a function needs to invoke itself. The C language supports recursive feature, i.e. a function is called
repetitively by itself. The recursion can be used directly or indirectly. The direct recursion function
calls to itself till the condition is true. In indirect recursion, a function calls to another function and
then called function calls to the calling function.
 When a function calls itself until the last call is invoked till that time the first call also remains
open. At every time, a function invoked, the function returns the result of previous call. The sequence
of return ensues all the way up the line until the first call returns the result to caller function.

 10.49 Write a program to call the main() function recursively and perform the sum of one to
five numbers.

int x,s;
void main(int);

void main(x)
{
 s=s+x;
 printf(“\n x = %d s = %d”,x,s);

 if(x==5)
 exit(0);
 main(++x);
}

OUTPUT:
x = 1 s = 1
x = 2 s = 3
x = 3 s = 6
x = 4 s = 10
x = 5 s = 15

	 Explanation:
 In the above program, variables x and y are declared outside the main() function. Initially,

their values are zeros. Followed by it, the prototype of function main() is defined. The
variable x is passed through the main() function. The variable x is added to variable s till
the value of x reaches 5. Every time the function main() is called repeatedly and x is incre-
mented. The result of the program is displayed at the output. The value of x in main() is 1
because it is a command line argument.

 The recursive function main() is called as in Table 10.11. The analysis of each step is given for
understanding.

Function	Call Value	of	x Value	of	s	(sum)

main(1)
main(2)
main(3)
main(4)
main(5)

x = 1
x = 2
x = 3
x = 4
x = 5

s=1 (0 + 1) = 1
s=3 (2 + 1 + 0) = 3
s=6 (3 + 2 + 1 + 0) = 6
s=10 (4 + 3 + 2 + 1 + 0) = 10
s=15 (5 + 4 + 3 + 2 + 1 + 0) = 15

Table 10.11 Steps of the recursive function

M10_KAMT3553_02_SE_C10.indd 422 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

Functions 423

 10.50 Write a program to calculate triangular number of an entered number through the
keyboard using recursion.

void main()
{
 int n,t,tri_num(int);
 clrscr();
 printf(“\n Enter a Number :”);
 scanf(“%d”,&n);
 t=tri_num(n);
 printf(“\n Triangular number of %d is %d”,n,t);

}

int tri_num(int m)
{
 int f=0;

 if(m==0)
 return(f);
 else
 f=f+m+tri_num(m-1);
 return(f);
}

OUTPUT:
Enter a Number : 5
Triangular Number of 5 is 15

	 Explanation:
 In the above program, a number is entered whose triangular number is to be calculated. The

number is passed to the function tri_num(). The value of variable n is copied to vari-
able m. In the tri_num() function, the entered number is added to variable f. The entered
number is decremented and the tri_num function is called repetitively (recursively) till the
entered number becomes zero.

 10.51 Write a program using recursion to display sum of digits of a given number.

include <stdio.h>
include <conio.h>
int sum(int);
void main ()
{
 int num,f;
 clrscr();
 printf (“\n Enter a number : “);
 scanf (“%d”, &num);
 f=sum(num);
 printf (“\n Sum of the all digits of given number (%d) is (%d)”,num,f);
getch();

M10_KAMT3553_02_SE_C10.indd 423 5/17/2015 9:33:45 AM

https://hkgbooks.blogspot.com

424 Programming in C

}
int sum(int f)
{
 if(f==0)
 return f;
 else
 return (f%10)+sum(f/10);
}

OUTPUT:
Enter a number: 654
Sum of all the digits of the given number (654) is (15)

10.16 types of recursIon
Recursion process is a little bit difficult, but if one keeps track of the sequence in which statements
are executed then it is easy to understand. Recursion is one of the most dominant tools used in the
programming technique. There are various situations when we need to execute a block of statements
for a number of times depending on the condition at the time recursion is useful. Recursion is used to
solve a problem, which have iterations in the reverse order. Data structures also support recursion, for
example tree supports recursion. Various programs are solved with recursion. The major application
of recursion is game programming where a series of steps can be solved with recursion.

 When a function calls itself it is called recursion. Recursions are of two types:

 (i) Direct recursion

 (ii) Indirect recursion.

 When a function calls itself, this type of recursion is direct recursion. In this type, only one func-
tion is involved. In indirect recursions, two function calls each other. Figure 10.2 describes direct and
indirect recursions.

(a) Direct recursion (b) In-direct recursion

int num()
{

_ _ _

num();
}

int num()
{ _ _ _

sum();
}

int sum()
{
_ _ _
num();

}

Figure 10.2 Types of recursion

 The recursion is one of the applications of stack. Stacks are also explained in this book. There are
several problems without recursion; their solution is lengthy. The programming languages like c, c++
allow us to define the user-defined function. Functions in the programming languages are very useful
because by using a function a separate block of statements can be defined. This block can be invoked
a number of times anywhere in the program.

M10_KAMT3553_02_SE_C10.indd 424 5/17/2015 9:33:46 AM

https://hkgbooks.blogspot.com

Functions 425

 Two essential conditions should be satisfied by a recursive function. First every time a function
calls itself directly or indirectly, the function should have a condition to stop the recursion. Otherwise,
an infinite loop is generated that will halt the system. Some people think that recursion is a very need-
less luxury in the programming language. Using iteration, one can solve the problems. However, in
programming at some situation, there is no substitute for recursion.
 There are some kinds of problems associated with recursive functions that are not present in the
non-recursive function. A function itself or any other function can invoke the recursive function. To
ensure execution, it is very essential for the function to save the return address in order to return at a
proper location. Also the function has to save the formal and local variables.

 10.52 Write a C program to calculate factorial of a given number using recursion.

int fact(int);

void main()
{
 int num,f;
 clrscr();
 printf(“\n Enter a number :”);
 scanf(“%d”,&num);
 f=fact(num);
 printf(“\n Factorial of (%d) is (%d)”,num,f);
}
int fact(int f)
{
 if(f==1) return f;
 else return f*fact(f-1);
}

OUTPUT:
Enter a number: 4
Factorial of (4) is (24)

	 Explanation:
 In the above program, fact() is a recursive function. The entered number is passed to func-

tion fact(). When function fact() is executed, it is repeatedly invoked by itself. Every
time a function is invoked, the value of f is reduced by one and multiplication is carried out.
The recursive function produces the numbers 4, 3, 2 and 1. The multiplication of these num-
bers is taken out and it return to main() function.

10.17 rules for recursIVe functIon
1. In recursion, it is essential to call a function itself, otherwise recursion would not take place.

2. Only the user-defined function can be involved in the recursion. Library function cannot be
involved in recursion because their source code cannot be viewed.

3. A recursive function can be invoked by itself or by other function. It saves return address
with the intention to return at proper location when return to a calling statement is made.
The last-in-first-out nature of recursion indicates that stack data structure can be used to
implement it.

M10_KAMT3553_02_SE_C10.indd 425 5/17/2015 9:33:46 AM

https://hkgbooks.blogspot.com

426 Programming in C

4. Recursion is turning out to be increasingly important in non-numeric applications and sym-
bolic manipulations.

5. To stop the recursive function, it is necessary to base the recursion on test condition, and
proper terminating statement such as exit() or return must be written using the if()
statement (see Figure 10.3).

int num()
{
_ _ _

if
(condition)

_ _ _
num();

}

Figure 10.3 Terminating statement in recursion

6. The user-defined function main() can be invoked recursively. To implement such recur-
sion, it is necessary to mention prototype of function main(). An example in this regard is
as follows.

 10.53 Write a program to call main() recursively.

include <process.h>

char str[]=“Have a Good Day”;
int x=0;

void main(void);

void main()
{

 switch(str[x])
 {
 case ‘H’ :
 clrscr();
 default:
 printf(“%c”,str[x]);
 break;
 case ‘\0’:
 exit(0);
 break;
 }
 x++;
 main();
}

OUTPUT:
Have a Good Day

M10_KAMT3553_02_SE_C10.indd 426 5/17/2015 9:33:46 AM

https://hkgbooks.blogspot.com

Functions 427

	 Explanation:
 In this program, main() program is invoked recursively. A prototype of function main()

is given before the function definition. In recursion, the function invoked should have return
type and arguments. Working of recursion is briefed as follows.

1. When a recursive function is executed, the recursion calls are not implemented instantly.
All the recursive calls are pushed on to the stack until the terminating condition is not
detected. As soon as the terminating condition is detected, the recursive calls stored in
the stack are popped and executed. The last call is executed first, then the second, third
and so on.

2. During recursion, at each recursive call new memory is allocated to all the local variables of
the recursive functions with the same name.

3. At each call, the new memory is allocated to all the local variables; their previous values are
pushed onto the stack and with its call. All these values can be available to the corresponding
function call when it is popped from the stack.

10.18 dIrect recursIon
In this type, only one function is involved which calls itself until the given condition is true. The reader
can refer to program numbers 10.45 and 10.46. Following programming example is given on Direct
recursion.

 10.54 Write a program to calculate triangular number using recursion.

include <process.h>

void main()
{
 int trinum(int);
 int t,x;

 clrscr();
 printf(“\n Enter a Number :”);
 scanf(“%d”,&x);
 t=trinum(x);
 printf(“\n Triangular Number of %d is %d”,x,t);
}
int trinum(int x)
{
 int f=0;

 if(x==0) return f;
 else f=f+x+trinum(x-1);
 return f;
}

OUTPUT:
Enter a Number: 4
Triangular Number of 4 is 10

M10_KAMT3553_02_SE_C10.indd 427 5/17/2015 9:33:46 AM

https://hkgbooks.blogspot.com

428 Programming in C

	 	 Explanation:
 In the above program, a function trinum() is defined which calls itself. An integer is

entered through the keyboard and it is stored in the variable x. In function trinum(), the
function calls itself and decreases the value of x passed by one. The return values are added
to variable f. When the value of x becomes zero, the recursive process ends and the total sum
is returned to variable t in function main(). The value of t is triangular of number means
that the sum of all the numbers between 1 to entered number. The recursive function is called
repetitively by itself without completing the execution of previous call. When program ends
and the control about to return to caller function the return statement is executed for number
of times equal to the function is called recursively. With F7 key, one can keep the track of
number of times execution of function.

 When a function returns, three actions are done. The return address is placed in the safe
location. The data stored in local variables of function is freed. The previously saved address
is retrieved. The return value of function is returned and put in the safe location and calling
program receives it. Normally, the location is a hardware register, which is placed in CPU for
the same purpose.

As shown in Figure 10.4, the main function invoke the function B. The function B invokes the func-
tion C and again C invokes D. The figure shows the control is present in function D. In every function,
a location is reserved for storage of return address. The return address location of function D contains
the address of statement in C immediately after the function invocation statement.
 Every time a recursive function invokes itself, new data variables are created and memory is al-
located. The data area contains all local variables and return addresses. In the recursion of function,
the data area is not connected only with the function but closely associated with the particular function
call. In every call new data area is allocated. While returning to the calling function the data area is
de-allocated or freed and the former data area turns into current.
 The recursion in C and C++ language is more expensive as compared to non-recursive function.
It not only takes more space but is also time consuming. In some system programs such as compiler,
operating system if a program contains recursive function, it will be executed for a lot of times. In
such a case, an alternate non-recursive function may be defined.

10.19 IndIrect recursIon
In this type of recursion, two or more functions are involved in the recursion. The indirect recursion
does not make any overhead as direct recursion. When control exits from one function and enter into
another function, the local variables of former function are destroyed. Hence, memory is not engaged.
The following program explains the indirect recursion.

Call on B

main()

Call on D

Return
Address

Function C

Call on C

Return
Address

Function B

Return
Address

Function D

Figure 10.4 Functions calling one another

M10_KAMT3553_02_SE_C10.indd 428 5/17/2015 9:33:46 AM

https://hkgbooks.blogspot.com

Functions 429

int s=0;
void show(void);

void main()
{
 if(s==5) exit(0);
 show ();
}

void show()
{
 printf(“ %d”,s);
 s++;
 main();
}

OUTPUT:
0 1 2 3 4

 10.55 Write a program to demonstrate recursion between two functions.

	 Explanation:
 In the above program, two user-defined functions are defined as main() and show(). The

s is a global variable. The main() function invokes the show() function and the show()
function invokes the main() function. The value of s is increased and displayed. When the
value of s reaches to 5, the program is terminated.

 10.56 Write a program to display numbers in different rows.

int s;
void show(void);

void main()
{
 if(s==0) clrscr();
 if(s==10) exit(0);
 show();
}

void show()
{
 int j;
 for(j=0;j<=s;j++)
 printf(“ %d”,j);
 printf(“\n);

 s++;
 main();
}

M10_KAMT3553_02_SE_C10.indd 429 5/17/2015 9:33:46 AM

https://hkgbooks.blogspot.com

430 Programming in C

OUTPUT:
0
0 1
0 1 2
0 1 2 3
0 1 2 3 4
0 1 2 3 4 5
0 1 2 3 4 5 6
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8 9

Recursion Iteration

Recursion is the term given to the mechanism of de-
fining a set or procedure in terms of itself.

The block of statement is executed repeatedly using
loops.

A conditional statement is required in the body of the
function for stopping the function execution.

The iteration control statements itself contain state-
ments for stopping the iteration. At every execution,
the condition is checked.

At some places, the use of recursion generates extra
overhead. Hence, it is better to skip when easy solu-
tion is available with iteration.

All problems cannot be solved with iteration.

Recursion is expensive in terms of speed and mem-
ory.

Iteration does not create any overhead. All the
programming languages support iteration.

Table 10.12 Recursion versus iterations

	 Explanation:
 This program is the same as the last one. Here, depending on the value of variable s the itera-

tion of the for loop is performed.

10.20 recursIon Versus IteratIons
Recursion and iteration are based on the control structure. Iteration uses repetition structure whereas
recursion uses selection structure. Both recursion and iteration repeat the process but with a few dif-
ferences. Let us discuss the differences.
 In iteration repetition structure is explicitly used whereas in recursion the same function is invoked
by itself. Both recursion and iteration go through the termination test. Iteration terminates when the loop
continuation condition fails. The recursion also terminates when the test for termination is satisfied.
Both iteration and recursion can be executed infinitely. When recursion and iteration are defined without
termination condition, they turn to infinite loop. Recursion has several overheads. Each time a function is
executed, a new copy of function is created. Memory is occupied by the functions. In iteration, only once
the variable is created. Thus, iteration is very useful and efficient as compared to recursion. However,
there are a few problems that cannot be solved with iteration, and recursion perfectly works.
 We have studied both recursion and iteration. They can be applied depending upon the situation.
Table 10.12 explains the differences between recursion and iteration.
Iterative process is given in Figure 10.5.

M10_KAMT3553_02_SE_C10.indd 430 5/17/2015 9:33:46 AM

https://hkgbooks.blogspot.com

Functions 431

Initialization: The variables involved in iteration process are initialized. These variables are used to
decide when to end the loop.

Decision:	The decision variable is used to decide if to continue or discontinue the loop. When the
condition is satisfied, control goes to return, else goes to computation block.

Computation:	The required processing or computation is carried out in this block.

Update: The decision argument is changed and shifted to the next iteration.

The common algorithm for any kind of recursive function is as per Figure 10.6.

Preliminary	Part: The use of this block is to store the local variables, formal arguments and return
address. The end-part will restore these data. Only recently saved arguments, local variables and re-
turn address are restored. The variables last saved are restored first.

Body: If the test condition is satisfied, it performs complete processing and control passes to end-
block. If not partial processing is performed and a recursive call is made. The body also contains call
to itself. There may be one or more calls. Every time a recursive call is made, the preliminary part of
the function saves all the data. The body also contains two processing boxes, i.e. partial processing
and complete processing. In some programs, the result can be calculated by only complete processing.
For this, the recursive call may not be required. For example, we want to calculate factorial of one. The
factorial of one is one. For this, it is needless to call function recursively. It can be solved by transfer-
ring control to complete processing box.
 In other case, if five is given for factorial calculation, the factorial of five cannot be calculated in
one step. Hence, the function will be called recursively. Everytime one step is solved, i.e. 5 4 3 and so
on. Hence, it is called partial processing.

Depth	of	Recursion: The recursion function calls itself infinite times. If we want to calculate factorial
of five, then we can easily estimate the number of times the function would be called. In this case, we
can determine the depth of the recursive function. In complex programs, it is difficult to determine the
number of calls of recursive function.

Entry

Initialization

Decision

Computation

Return

Update

Yes

No

Figure 10.5 Iterative processes

M10_KAMT3553_02_SE_C10.indd 431 5/17/2015 9:33:47 AM

https://hkgbooks.blogspot.com

432 Programming in C

ENTRY

Restore previously stored
local variables, formal
parameters and return

address.

Exit

Store local variables,
formal arguments,

return address

CHECK Partial
Processing

Complete
Processing

Function
call to itself

Preliminary part

Body

End-part

No

Yes

Figure 10.6 Recursive process

10.21 tHe toWers of HanoI
The Tower of Hanoi has historical roots in the ceremony of the ancient tower of Brahma. There are n
disks of decreasing sizes mounted on one needle as shown in the Figure 10.7 (a). Two more needles
are also required to stack the entire disk in the decreasing order. The use of third needle is for imper-
manent storage. While mounding the disk, following rules should be followed.

 1. At a time only one disk may be moved.

 2. The disk may be moved from any needle to another needle.

 3. No larger disk should be placed on top of the smaller disk.

M10_KAMT3553_02_SE_C10.indd 432 5/17/2015 9:33:47 AM

https://hkgbooks.blogspot.com

Functions 433

Our aim is to move the disks from A to C using the needle B as an intermediate by obeying the
above three conditions. Only top-most disks can be moved to another needle. The following figures
and explanation clear the process of Tower of Hanoi stepwise.

In Figure 10.7 (a), the three needles are displayed in the initial state. The needle X contains three
disks and there are no disks on needle Y and Z.

In Figure 10.7 (b), the top-most disk is moved from needle X to Z. The arrow indicates the move-
ment of disk from one needle to another needle.

In Figure 10.7 (c), the disk from the X needle moves to the Y needle.
In Figure 10.7 (d), the disk from Z needle moves to Y needle. Needle Y has two disks.
In Figure 10.7 (e), the disk from the X needle moves to the Z needle. Now there is no disk in the X needle.
In Figure 10.7 (f), the disk from the Y needle moves to the X needle.
In Figure 10.7 (g), the disk from the Y needle moves to the Z needle. The Y needle contains no disk.
In Figure 10.7 (h), the disk from the X needle moves to the Z needle. Thus, the Z needle contains

all the three disks of the X needle shown in Figure 10.7 (a). Thus, the problem is solved.

X Y Z X Z

Figure 10.7 (a) Towers of Hanoi Figure 10.7 (b) Towers of Hanoi

Y ZX

Figure 10.7 (c) Towers of Hanoi

X Y Z

Figure 10.7 (d) Towers of Hanoi

M10_KAMT3553_02_SE_C10.indd 433 5/17/2015 9:33:48 AM

https://hkgbooks.blogspot.com

434 Programming in C

X Y Z X Y Z

Figure 10.7 (e) Towers of Hanoi Figure 10.7 (f) Towers of Hanoi

X Y Z X Y Z

Figure 10.7 (g) Towers of Hanoi Figure 10.7 (h) Towers of Hanoi

The above process is summarized as follows:

 1. The three needles are displayed in the initial state.

 2. The needle X contains three disks and there are no disks on needle Y and Z.

 3. The top-most disk is moved from the needle X to Z

 4. The disk from the X needle moves to the Y needle.

 5. The disk from the Z needle moves to the Y needle.

 6. The disk from the X needle moves to the Z needle.

 7. The disk from the Y needle moves to the X needle.

 8. The disk from the Y needle moves to the Z needle.

 9. The disk from the X needle moves to the Z needle.

 10.57 Write a program to illustrate the towers of Hanoi.

void hanoi(int,char,char,char);

void main()
{
 int num;
 printf(“\n Enter a Number :”);

M10_KAMT3553_02_SE_C10.indd 434 5/17/2015 9:33:49 AM

https://hkgbooks.blogspot.com

Functions 435

 scanf(“%d”,&num);
 clrscr();
 hanoi(num,’A’,’C’,’B’);
}

void hanoi(int num, char f_peg,char t_peg, char a_peg)
{
 if(num==1)
 {
 printf(“\nmove disk 1 from Needle %c to %c”,f_peg,t_peg);
 return;
 }
 hanoi(num-1,f_peg,a_peg,t_peg);
 printf(“\nmove disk %d from Needle %c to Needle %c”,num,f_peg,

t_peg);
 hanoi(num-1,a_peg,t_peg,f_peg);
}

OUTPUT:
Enter a Number: 3
move disk 1 from Needle A to C
move disk 2 from Needle A to Needle B
move disk 1 from Needle C to B
move disk 3 from Needle A to Needle C
move disk 1 from Needle B to A
move disk 2 from Needle B to Needle C
move disk 1 from Needle A to C

	 Explanation:
 In the above program, numbers of disks are entered. The function Hanoi() is invoked from

main(). The A, B and C are needles. If value of n is one, and the disk is transferred from
A to C and program ends. If the value of n is greater than one, then the Hanoi() function
invokes itself recursively. Every time the value of n is decreased by one. The output of the
program is shown as above.

10.22 adVantages and dIsadVantages of recursIon
advantages

 (i) Although, at most of the times, a problem can be solved without recursion, but in some situ-
ations in programming, it is a must to use recursion. For example, a program to display a list
of all files of the system cannot be solved without recursion.

 (ii) The recursion is very flexible in data structure like stacks, queues, linked list and quick sort.

(iii) Using recursion, the length of the program can be reduced.

disadvantages

 (i) It requires extra storage space. The recursive calls and automatic variables are stored on the
stack. For every recursive calls, separate memory is allocated to automatic variables with the
same name.

M10_KAMT3553_02_SE_C10.indd 435 5/17/2015 9:33:50 AM

https://hkgbooks.blogspot.com

436 Programming in C

 (ii) If the programmer forgets to specify the exit condition in the recursive function, the program
will execute out of memory. In such a situation user has to press Ctrl+ break to pause and stop
the function.

 (iii) The recursion function is not efficient in execution speed and time.

 (iv) If possible, try to solve a problem with iteration instead of recursion.

10.23 effIcIency of recursIon
We have studied both advantages and disadvantages of recursion. We also studied iteration as an al-
ternative to recursion. The major overhead of recursion is the memory it occupies and execution time.
A non-recursive function will require minimum memory and less time for execution as compared
to the recursive function. The recursive function uses stack to push and pop the local variables. In
non-recursive function, the above push and pop operations with stack can be skipped. However, at
some situation in programming, the use of recursion is a must. If the part of program is to be invoked
frequently, in such a case it is better to develop a non-recursive function.

 10.58 Write a program to display the given string 10 times using recursive call of function.

include <process.h>

char str[]=“Have a Good Day”;
int x=1;

void main(void);

void main()
{

 printf(“\n %.2d] %s”,x,str);
 x++;
 switch(x)
 {
 case 1:
 clrscr();
 default :
 main();
 case 11:
 exit(1);
 }
}

OUTPUT:
01] Have a Good Day
02] Have a Good Day
03] Have a Good Day
04] Have a Good Day
05] Have a Good Day
06] Have a Good Day
07] Have a Good Day
08] Have a Good Day
09] Have a Good Day
10] Have a Good Day

M10_KAMT3553_02_SE_C10.indd 436 5/17/2015 9:33:50 AM

https://hkgbooks.blogspot.com

Functions 437

	 Explanation:
 The logic of the program is the same as in the previous one. In this program, the entire string

is displayed at each call and x is incremented. The main() is called through the switch
case structure. When x reaches 11, the program gets terminated.

10.24 lIBrary functIons

include <math.h>

void main()
{
 clrscr();
 printf(“\n Square root of 9 is %g”,sqrt(9));
 printf(“\n log of 5 is : %g”,log(5));
 printf(“\n 10.3 after ceil () : %g”,ceil(10.3));
 printf(“\n power 3 raised to 4 is : %g”,pow(3,4));
}

OUTPUT:
Square root of 9 is 3
log of 5 is : 1.60944
10.3 after ceil() : 11
power 3 raised to 4 is : 81

 10.59 Write a program to demonstrate the use of functions given in Table 10.13.

	 Explanation:
 In the above program, the sqrt() function returns the square root of 9. Log() gives result

1.60944. The ceil() promotes 10.3 to 11 and pow() calculates 34. All the above functions
are defined in math.h header file.

 10.60 Write a program to demonstrate the use of rand() function

S.No. Function Description

1 sqrt(j) Calculates square root of j

2 log(j) Natural logarithm of j base e

3 ceil(j) Rounds j to the smallest integer !< j

4 pow(j,k) j raised to power k

5 rand() Generates random number

Table 10.13 Library function

include <stdlib.h>

void main ()
{
 int j;
 clrscr();
 for(j=0;j<=15;j++)
 {

M10_KAMT3553_02_SE_C10.indd 437 5/17/2015 9:33:50 AM

https://hkgbooks.blogspot.com

438 Programming in C

 printf(“%10d”,1+(rand()%6));
 if(j%5==0)
 printf(“\n”);
 }
}

 OUTPUT	:
5
5 3 5 5 2
4 2 5 5 5
3 2 2 1 5

			 Explanation:		
 In the above program, the rand() function produces random number which modular

 divided and added 1. The obtained number is displayed. The last printf() inserts a line.

 summary

 This chapter is focused on functions. You have studied how to initialize and use functions while writ-
ing programs in C. How the functions are interacted with one another is also explained with examples.
It is also described how to use function as argument. The reader should know that the function always
returns an integer value. Executing programs as illustrated in this chapter can be followed. Besides
non-integer specifying data type in function prototype can also return a value. The recursive nature of
function is also explained with suitable examples. Direct and indirect recursive functions have been
explained with programming examples.

 eXercIses

 I True or false :

 1. Every C Program starts with function main().

	 		2. Library function can be defined by the user.

 3. User-defined functions have serious limitations.

 		4. The sum() is a standard library function.

 		5. The abs() is a standard library function.

 6. The abs() gives absolute value.

 7. Mathematical library functions are defined in
math.h.

	 		8. Function not returning any value is known as a
void.

	 		9. The return() statement can return more than one
value at a time.

			10. The arguments of a function which are invoked
are called actual arguments.

			11. A user-defined function cannot call another user-
defined function.

			12. A user-defined function cannot call the main()
function.

			13. The scope of local variables is limited to the block
in which they are defined.

			14. Actual and formal arguments can have the same
variable type.

			15. In the call by value, values are passed to formal
arguments.

			16. In call by address, formal arguments are pointer
to actual arguments.

M10_KAMT3553_02_SE_C10.indd 438 5/17/2015 9:33:50 AM

https://hkgbooks.blogspot.com

Functions 439

1. 2.

3.	

Group	A Group	B

1 delay() A alloc.h

2 ceil() B dos.h

3 circle() C math.h

4 malloc() D graphics.h

	17. A change made in formal arguments can change
the value of variable permanently.

	18. A function prototype gives information in
advance to the compiler.

	19. A function can pass arguments to another
function.

	20. The data type before the function name
indicates the type of value the function will
return.

	21. By default function returns integer value.

	22. When a function calls itself the process is called
recursion.

	23. Like variable, functions also have address in the
memory.

	24. Functions can be invoked using pointers to
function.

	25. Function prototype is not necessary to match with
actual function definition.

II Match the following correct pairs given in Group A with Group B:

Group	A Group	B

1 abs() A Clear the screen

2 sqrt() B Quit from the program

3 clrscr() C Gives square root of the
value

4 exit() D Absolute value

E Gives square of the
number

Group	A Group	B

1 abs() A process.h

2 sqrt() B conio.h

3 clrscr() C math.h

4 exit() D stdio.h

III Select the appropriate option from the multiple choices given below:

1. Arrays are passed as arguments to a function by

 (a) value
 (b) reference
 (c) Both (a) and (b)
 (d) None of the above

2. Following one keyword is used for function not re-
turning any value

 (a) void
 (b) int
 (c) auto
 (d) None of the above

3. Recursion is a process in which a function calls

 (a) itself
 (b) another function
 (c) main() function
 (d) None of the above

4. By default the function returns

 (a) integer value
 (b) float value
 (c) char value
 (d) None of the above

M10_KAMT3553_02_SE_C10.indd 439 5/17/2015 9:33:50 AM

https://hkgbooks.blogspot.com

440 Programming in C

	 5.	 The meaning of keyword void before function
name means

 (a) function should not return any value
 (b) function should return any value
 (c) no arguments are passed
 (d) None of the above

	 6. The function name itself is

 (a) an address
 (b) value
 (c) definition
 (d) None of the above

	 7. A global pointer can access variable of

 (a) all user-defined functions
 (b) only main() function
 (c) only library functions
 (d) None of the above

	 8. What will be the values of x and s on execution?

 int x,s;
 void main(int);

 void main(x)
 {
 printf(“\n x = %d s = %d”,x,s);
 }

 (a) x=1 s=0
 (b) x=0 s=0
 (c) x=1 s=1
 (d) None of the above

	 9. The main() is a

 (a) user-defined function
 (b) library function
 (c) keyword
 (d) None of the above

	10.	 What will be the value of x after execution

 void main()
 {
 float x=2.2,sqr(float),y;

 y=(int)sqr(x);
 printf(“\n x=%g”,y);

 }
 float sqr(float m)
 {
 return (m*m);
 }

 (a) x=4
 (b) x=4.84
 (c) x=4.50
 (d) None of the above

	11. What is the data type of variable m

 void main()
 {
 int sqr(int);
 int x=2;
 int sqr(x);
 }
 sqr(m)
 {
 return (m*m);
 }

 (a) int
 (b) float
 (c) char
 (d) void

IV Attempt the following programming exercises:

	 1. Write a program to display three different Metro
names of India by using different functions.

 2. Write a program with two functions and call one
function from other.

 3. Write a program which takes an int argument and
calculates its cube.

	 4. Write a program to display the table of given num-
ber. Write different functions for accepting the in-
put, calculating the table and displaying the value.

	 5. Write a program to calculate the sum of digits
of a number. Use a function to return the sum.

	 6. Write a program to swap the two variables present
in one function to other function.

 7. Write a program to sort an array (in descending
order) in different function and return it to the
original function.

 8. Write a program to display ‘Hello!’ five times.
Create a user-defined function message().

M10_KAMT3553_02_SE_C10.indd 440 5/17/2015 9:33:50 AM

https://hkgbooks.blogspot.com

Functions 441

 9. Write a program to calculate average marks of
five subjects by using pass by value.

	10. Write a user-defined function for performing the
following tasks.

 (a) Cube of a number
 (b) Perimeter of a circle

 (c) Conversion of binary to decimal
 (d) Addition of individual digits of a given num-

ber
	11. Write a program to reverse the given number re-

cursively.

	12. Write a program to add 1 to 10 numbers
recursively.

V What will be the output/s of the following program/s?

1.
 void main()
 {
 clrscr();
 printf(“\n India is”);
 sub();
 getche();
 }
 sub()
 {
 printf(“ my Country”);
 }

2.
 void main()
 {
 clrscr();
 printf(“\n India is”);
 sub();
 secondsub();
 printf(“\n I love my country”);
 getche();
 }
 sub()
 {
 printf(“my Country”);
 }
 secondsub()
 {
 printf(“ ”);
 }

3.
 void main()
 {
 clrscr();
 sum();
 getche();
 }

 sum()
 {
 int a=7,f=0,d;
 while(a>=1)
 {

 f=f+a;
 a=a-1;
 }
 printf(“\n%d”,f);
 }

4.
 void main()
 {
 clrscr();
 fact();
 getche();
 }
 fact()
 {
 int a=5,f=1,d;
 while(a>=1)
 {
 f=f*a;
 a=a-1;
 }
 printf(“\n%d”,f);
 }

5.
 void main()
 {
 int a=4,fac;
 clrscr();
 fac=fact(a);
 printf(“\n%d”,fac);
 getche();
 }

 int fact(int x)
 {
 int f=1,d;
 while(x>=1)
 {
 f=f*x;
 x=x-1;
 }
 return(f);
 }

M10_KAMT3553_02_SE_C10.indd 441 5/17/2015 9:33:50 AM

https://hkgbooks.blogspot.com

442 Programming in C

6.
 void main()
 {
 int a=3,b=4,c=5,d;
 clrscr();
 mul();
 d=a+b+c;
 printf(“\n%d”,d);
 getche();
 }
 void mul()
 {
 int a=2,b=3,c=4,d;
 d=a*b*c;
 printf(“\n%d”,d);
 }

7.
 void main()
 {
 int result;
 clrscr();
 result=sq();
 printf(“\n Result of function

is= %.2d”,result);

 getche();
 }
 int sq()
 {
 int x=2,y=3;
 return(x*x+y*y);
 }

8.
 void main()
 {
 int num=5,result;
 clrscr();
 result=cb(num);
 printf(“\n Result of function

is= %.2d”,result);
 getche();
 }
 int cb(int x)
 {
 float y;
 y=x*x*x;
 return(y);
 }

VI Find the bug/s in the following program/s?

1.
 void main()
 {
 sum(int f);
 int f=2;
 clrscr();
 void sum(f);
 }
 sum(int j)
 {
 printf(“%d”,j);
 }

2.
 void main()
 {
 int a=0, B();
 a=a+ +-B();
 printf(“%d”,a);
 }
 int B()
 {
 int x;
 printf(“Enter a Number”);

 scanf(“%d”,&x);
 return x;
 }

3.
 void main()
 {
 int sum(int j, k,l);
 clrscr();
 sum(1,2,3);
 }

 sum(int j,int k, int l)
 {
 printf(“%d %d %d”,j,k,l);

 }

4.
 void main()
 {
 void show (void);
 clrscr();
 show();
 }
 void show()

M10_KAMT3553_02_SE_C10.indd 442 5/17/2015 9:33:50 AM

https://hkgbooks.blogspot.com

Functions 443

 {
 puts(“Hello”);
 }
5.

 void main()
 {
 float ave(int,int,int);
 float av;
 clrscr();

 av=ave (2,3,5);
 printf(“%g”,av);
 }
 float ave(int j,int k, int l)
 {
 float x= j+k+l/3.0;
 }
6.

 void A()
 {
 clrscr();
 printf(“\n in A”);
 }

 void main()
 {
 A(‘x’,’x’);
 }

7.

 void main()
 {
 int B();
 B(5.5);
 }

 B(float a)
 {
 clrscr();
 printf(“ %f”,a);
 }
8.
 void main()
 {
 int B();
 B();
 }
 C()
 {
 printf(“In C”);
 }
 B()
 {
 printf(“In B”);
 C();
 B();
 }

VII Answer the following questions:

	 1. Write the definition of a function. Mention the
types of functions available in C.

 2. How do functions help to reduce the program
size?

 3. Differentiate between library and user-defined
functions.

 4. How does a function works? Explain how argu-
ments are passed and results are returned?

 5. List any five library functions and illustrate them
with suitable examples.

 6. What are actual and formal arguments?

 7. What are the uses of the return() statements?

 8. What does it mean if there is no return statement
in the function?

 9. What are the void functions?

 10. Why is it possible to use the same variable names
for actual and formal arguments?

 11. What is the main() function in C? Why is it
necessary in each program?

	12. Explain the different formats of return()
statements. How many values return statement
returns at each call?

	13. What is a global pointer? Illustrate with a suitable
example.

 14. Why the return statement is not necessary when
function is called by reference?

 15. Distinguish between function prototype and func-
tion definition.

 16. Does the function prototype match with the
function definition?

 17. Can we define a user-defined function with the
same library function name?

 18. What is recursion? Explain its advantages.

 19. Explain the types of recursions.

	20. Is it possible to call library function
recursively?

M10_KAMT3553_02_SE_C10.indd 443 5/17/2015 9:33:50 AM

https://hkgbooks.blogspot.com

444 Programming in C

ansWers

I True or false:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
	 1. T 	 2. F 	 3. F 	 4. F 	 5. T

	 6. T 	 7. T 	 8. T 	 9. F 10. F

11. F 12. F 13. T 14. T 15. T

16. T 17. F 18. T 19. T 20. T

21. T 22. T 23. T 24. T 25. F

III Select the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
	 1. c 	 2. a 	 3. a 	 4. a 	 5. a

	 6. c 	 7. a 	 8. a 	 9. a 10. a

11. a

 V What will be the output/s of the following program/s?

Q. Ans. Q. Ans.
1. India is my Country 5. 24

2. India is my Country
I love my country

6. 24 12

3. 28 7. Result of function is= 13

4. 120 8. Result of function is= 125

1.	

Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. D 2. C 3. A 4. B

2.	

Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. C 2. C 3. B 4. A

3.

Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. B 2. C 3. D 4. A

II Match the following correct pairs given in Group A with Group B:

M10_KAMT3553_02_SE_C10.indd 444 5/17/2015 9:33:50 AM

https://hkgbooks.blogspot.com

Functions 445

VI Find the bug/s in the following program/s?

Q. Ans.
1. int sum (int) is needed instead of sum(int f).

2. Prototype of function sum() is incorrect, but program runs.

3. Function prototype error.

4. In Function definition void is not mentioned.

5. Return statement is not mentioned.

6. No Bug.

7. Function prototype error.

8. infinite recursion.

M10_KAMT3553_02_SE_C10.indd 445 5/17/2015 9:33:51 AM

https://hkgbooks.blogspot.com

Storage Classes

Chapter Outline

 11.1 Introduction
 11.2 Automatic Variables
 11.3 External Variables
 11.4 static Variables
 11.5 static external Variables
 11.6 register Variables

11
CHAPTER

M11_KAMT3553_02_SE_C11.indd 446 5/17/2015 9:37:40 AM

https://hkgbooks.blogspot.com

Storage Classes 447

11.1 IntroductIon
The variables declared in C programs are totally different from other languages. We can use the same
variable names in the C program in separate blocks. When we declare a variable, it is available only to
a specific part or block of the program. Remaining block or other functions cannot access the variable.
Variables declared within function are called internal variables and those declared outside are called
external or global variables.
 The area or block of the C program from where the variable can be accessed is known as the scope
of variables. The area or scope of the variable depends on its storage class, i.e. where and how it is
declared. There are four scope variables.

 (i) Function

 (ii) File

 (iii) Block

 (iv) Function prototype

The storage class of a variable tells the compiler:

 (i) the storage area of a variable

 (ii) the initial value of a variable if not initialized

 (iii) the scope of a variable

 (iv) the life of a variable, i.e. how long the variable would be active in a program.

Any variable declared in C can have any one of the above four storage classes:

 (i) Automatic variables

 (ii) External variables

 (iii) Static variables

 (iv) Static external variables

 (v) Register variables

The storage class determines storage duration, scope and linkage. The variable’s storage duration is
the period during which the variable exists in the memory. Some kind of variables are repeatedly cre-
ated in memory and some exist throughout the program execution.
 Another important aspect is scope, i.e. the area in which the variable can be accessed. Some vari-
ables are global and can be accessed anywhere in the program. On the other hand, some variables are
of limited scope in the block where they are defined. The above declared four kinds of storage classes
can be further divided into two types, depending on the storage duration. They are automatic stor-
age duration and static storage duration. Generally, local variables have automatic storage where the
use of keyword auto is optional. Static variables belong to static storage class defined as static
and external keywords. From the above discussion, we can state that there are two types of
storage classes, i.e. (i) local and (ii) global; and storage class specifiers are auto, register,
static and extern.

11.1.1 | Lifetime of a Variable

Every variable has its lifetime, i.e. its time duration during which its status is active in the program. We
can also say that lifetime of a variable is the time gap between its declaration and cleanup. The lifetime
depends upon the storage class. For example, auto variable gets destroyed immediately when the
function execution is over, whereas static variable remains in the memory.

M11_KAMT3553_02_SE_C11.indd 447 5/17/2015 9:37:40 AM

https://hkgbooks.blogspot.com

448 Programming in C

11.1.2 | Visibility of a Variable

Visibility of a variable is another property. It defines its scope. The scope is of two types, i.e. local
and global. Global is recognized throughout the program, whereas the local variable scope is limited
to the declaration block.

11.2 AutomAtIc VArIAbLes
The auto variables are defined inside a function. A variable declared inside the function without storage
class name is, by default, an auto variable. These functions are declared on the stack. The stack provides
temporary storage. The scope of the variable is local to the block in which they are defined. These vari-
ables are available only to the current block or program. Once the executions of the function take place and
return turns off the function, the contents and existence of the auto variables or local variables vanish.
Whenever a function is executed, all auto variables are allocated memory and de-allocated when the ex-
ecution of function ends. auto variables are safe, i.e. they cannot be accessed directly by other functions.
 The keyword ‘auto’ is used for declaration of automatic variables. By default, every variable
pertains to auto storage class.
 Some programs are given on auto storage class.

 11.1 Write a program to show the working of the auto variable.

void main()
{
 auto int v=10;
 clrscr();
 call2();
 printf(“\nV=%d”,v);
}

void call1()
{
 auto int v=20;
 printf(“\nV=%d”,v);
}

 call2()
{
 auto int v=30;
 call1();
 printf(“\nV=%d”,v);
}

OUTPUT:
V=20
V=30
V=10

	 	 Explanation:
 In the above program, the variable ‘v’ is declared and initialized in three different functions.

Each function, when called, prints the local values of variables ‘v’, which are shown at the
output. When a function is called, it declares its own variable ‘v’, and when a function

M11_KAMT3553_02_SE_C11.indd 448 5/17/2015 9:37:40 AM

https://hkgbooks.blogspot.com

Storage Classes 449

terminates, the local variable ‘v’ is destroyed. Here, every function has its own variable ‘v’
with different values. The three variables ‘v’ are having their own unique memory locations.
Even after the removal of auto word from the program, there will not be any error thrown
by the compiler. The reader can verify this fact.

 11.2 Write a program to show the working of auto variables in different blocks.

void main()
{
 int x=10;
 clrscr();
 printf(“\n X=%d”,x);

 {
 int x=20;
 printf(“\n X=%d”,x);
 }

 printf(“\n X=%d”,x);

}

OUTPUT:
X=10
X=20
X=10

	 	 Explanation:
 In the above program, declaration of ‘x’ is made two times with different values. Before the second

block, the value of ‘x’ was 10. The control passes to the second block and again ‘x’ is declared and
assigned a new value 20. When the control exits from the second block, the value of second ‘x’
disappears and the value of current block, i.e. 10, is printed. In the second variable, declaration int
x=20, i.e. we declared another variable ‘x’ different from the first variable ‘x’. If we declare only
x=20, i.e. changing the value of the first ‘x’, no second variable ‘x’ is created. Hence, int tells the
compiler to create a new variable and allocates two bytes for it in the memory.

 11.3 Write a program to use the same variable in different blocks with different data types.

void main()
{
 int x=10;
 clrscr();

 printf(“\n X=%d”,x);
 {
 float x=2.22;
 printf(“\n X=%g”,x);
 }
 {
 char *x=”Auto Storage Class”;

M11_KAMT3553_02_SE_C11.indd 449 5/17/2015 9:37:40 AM

https://hkgbooks.blogspot.com

450 Programming in C

	 	 Explanation:
 The above program is the same as the previous one. Here, in each block, the variables are

defined with different data types.

11.3 externAL VArIAbLes
The external storage class indicates that the variable has been defined at other place other than the
place where it is declared. It can be declared in another source file. The variable declaration gener-
ally appears before main() and use of keyword extern is optional. Initialization cannot be done
because its value is defined in another source file. Memory is not allotted in the source program, and
it is allotted, where it is defined.
 The variables that are available to all the functions, i.e. from entire program, can be accessed. The
variables are called external or global variables. External variables are declared outside the function
body. In case, in a program both external and auto variables are declared with the same name, the
first priority is given to the auto variable. In this case, external variable is hidden. If we declare ex-
ternal variables in the program, there is no need to pass these variables to other function. The compiler
does not allocate memory for these variables. It is already allocated for it in another module where it
is declared as a global variable.

   11.4 Write a program to demonstrate the use of external variables.

 printf(“\n X=%s”,x);
 }
 printf(“\n X=%d”,x);
}

OUTPUT:
X=10
X=2.22
X=Auto Storage Class
X=10

int j=4;
void main()
{
 extern int j;
 clrscr();
 j=j*3;
 printf(“j=%d”,j);
 fun();
 printf(“\nj=%d”,j);
}

fun ()
{
 j=j*j;
}

OUTPUT:
j=12
j=144

M11_KAMT3553_02_SE_C11.indd 450 5/17/2015 9:37:40 AM

https://hkgbooks.blogspot.com

Storage Classes 451

	 	 Explanation:
 In the above program, variable j is declared and initialized with 4. The second declaration inside

the main() with keyword external indicates that it is declared already. The expression j =
j 3 gives the result 12, i.e. the value of j considered is 4. In the function fun(), the value of j is
considered 12, i.e. the last result and hence, the result 144. We can also declare the statement int
j=4 in another file. The file must be included in the main program. Consider the program below:

FILE v.c
int j=4;

 11.5 Write a program to demonstrate the use of the external variables.

include “v.c”

void main()
{
 extern int j;
 clrscr();
 j=j*3;
 printf(“j=%d”,j);
 fun();
 printf(“\nj=%d”,j);
}

fun()
{
 j=j*j;
}

OUTPUT:
j=12
j=144

	 	 Explanation:
 This program is the same as the last one. Only the statement int j=4 is stored in the file

v.c. The file is included in the main program. The output is the same.

 11.6 Write a program to show the working of the external variables.

int v=10;
void main()
{
 clrscr();
 call1();
 call2();
 printf(“\n In main() V=%d”,v);
}

M11_KAMT3553_02_SE_C11.indd 451 5/17/2015 9:37:40 AM

https://hkgbooks.blogspot.com

452 Programming in C

	 	 Explanation:
 In the above program, variable ‘v’ is declared outside the function body and initialized to the

value 10. Every function can access the variable ‘v’, so no re-declaration or local variable is cre-
ated. Every function in turn prints the value of ‘v’. The same value is printed by all the functions.

 11.7 Write a program to show the working of auto and global variables with the same name.

call1()
{

 printf(“\n In Call1() V=%d”,v);
}

call2()
{
 printf(“\n In call2() V=%d”,v);
}

OUTPUT:
In Call1() V= 10
In call2() V= 10
In main() V= 10

int v=10;
void main()
{
 clrscr();
 call1();
 call2();
 printf(“\n In main() V=%d”,v);
}

call1()
{
 int v=20;
 printf(“\n In Call1() V=%d”,v);
}

 call2()
{
 printf(“\nIn call2() V=%d”,v);
}

OUTPUT:
In Call1() V= 20
In call2() V= 10
In main() V= 10

	 	 Explanation:
 In the above program, an external variable and global variables are declared with the same

name. In such a case, when call1() function is called, the local variable ‘v’ of call1()

M11_KAMT3553_02_SE_C11.indd 452 5/17/2015 9:37:40 AM

https://hkgbooks.blogspot.com

Storage Classes 453

hides the global variable ‘v’. As soon as the control returns back from the call1() func-
tion, the local variable ‘v’ will be destroyed and the global variables ‘v’ appear.

 11.8 Write a program to declare external variables using the extern keyword.

int m=10;

void main()
{
 extern int m;
 clrscr();
 printf(“\n m=%d”,m);

}

OUTPUT:
m = 10

	 	 Explanation:
 In the above program, variable ‘m’ is declared and initialized with 10 before the main() function.

The variable ‘m’ is again re-defined with extern keyword. The extern keyword is optional.

11.4 Static VArIAbLes
The static variable may be of an internal or external type, depending where it is declared. If de-
clared outside the function body, it will be static global. In case, declared in the body or block, it
will be an auto variable. When a variable is declared as static, its garbage value is removed and
initialized to NULL value. The contents stored in these variables remain constant throughout the pro-
gram execution. A static variable is initialized only once; it is never reinitialized. The value of the
static variable persists at each call and the last change made in the value of the static variable
remains throughout the program execution. Using this property of the static variable, we can count
how many times a function was called.
The following programs illustrate the working of static variables.

 11.9 Write a program to show the use of the static variable.

void main()
{
 clrscr();
 for(;;)

 print();
}
print()
{
 int static m;
 m++;
 printf(“\nm=%d”,m);

M11_KAMT3553_02_SE_C11.indd 453 5/17/2015 9:37:41 AM

https://hkgbooks.blogspot.com

454 Programming in C

	 	 Explanation:
 In the above program, print() function is called. The variable ‘m’ of print() function is the

static variable. It is increased and printed in each call. Its contents persist at every call. In the first call,
its value is changed from 0 to 1, in the second call from 1 to 2, and in the third call from 2 to 3.

 11.10 Write a program to show the difference between variables of auto and static class,
when they are not initialized.

 if(m==3)
 exit(1);
}

OUTPUT:
m=1
m=2
m=3

void main()
{
 int x;
 static int y;
 clrscr();
 printf(“\nx=%d & y=%d”,x,y);
}

OUTPUT:
x=1026 & y =0

#include <stdio.h>
#include <conio.h>
static int i;
int main()
{

	 	 Explanation:
 In the above program, variables ‘x’ and ‘y’ are declared as integer variables. The variable ‘y’

is a static variable. Both variables are printed. The value of ‘x’ printed is some garbage, i.e.
1026 and ‘y’ is 0. When we declare a variable as static, it is automatically initialized to zero,
otherwise some garbage is assigned to its vacant locations.

11.5 Static EXtERNaL VArIAbLes
The static external variable can be accessed as external variables only in the file in which they are
defined. No other file can access the static external variables that are defined in another file.

 11.11 Program to demonstrate the use of static external Variable.

M11_KAMT3553_02_SE_C11.indd 454 5/17/2015 9:37:41 AM

https://hkgbooks.blogspot.com

Storage Classes 455

 11.12 Write a program to declare and use variable of register class.

register int k;

	 	 Explanation:
 In the above program, the external variable ‘i’ is accessed within the scope of this program

only. Other files cannot access a static external variable that is defined in another file.

Note: The difference between an ordinary external variable and a static external variable is of scope. An
ordinary external variable is visible to all functions in the file and can be used by functions in other files. A
static external variable is visible only to functions in its own file and below the point of definition.

11.6 REgiStER VArIAbLes
We can also keep some variables in the CPU registers instead of memory. The keyword register
tells the compiler that the variable list followed by it is kept on the CPU registers, since register ac-
cess is faster than the memory access. If the CPU fails to keep the variables in CPU registers, in that
case, the variables are assumed as auto and stored in memory. CPU registers are limited in number.
Hence, we cannot declare more variables with register variables. However, compiler automatically
converts register variables to non-register variables, once the limit is reached. User cannot determine
the success or failure of register variables. We cannot use register class for all types of variables. The
CPU registers 8086 in microcomputer are 16 bit registers. The data types float and double need
more than 16 bits space. If we define variables of these data type with register class, no errors will be
shown. The compiler treats them as a variable of auto sclass.

Syntax:

void main()
{
 register int m=1;
 clrscr();

 for(;m<=5;m++)
 printf(“\t%d”,m);

}

 i=20;
 clrscr();
 printf(“\n The value of I is : %d”,i);
 getch();
return 0;
}

OUTPUT:

The value of i is : 20

M11_KAMT3553_02_SE_C11.indd 455 5/17/2015 9:37:41 AM

https://hkgbooks.blogspot.com

456 Programming in C

Serial	No. Group	A Serial	No. Group	B

1. Default storage A Auto

2. Static storage B Global scope

3. External storage C Local scope

4. Auto storage D CPU register

5. Register E Value persists

Serial	No. Group	A Serial	No. Group	B

1. Automatic A External data type

2. Static B auto

3. Register C register

4. External D static

 exercIses

 I Match the following correct pairs given in Group A with Group B :

1.

2.

 summArY

 After studying this chapter, your understanding in regard to the variables is now perfect. You have
studied the variables and their motives. The variables are declared using storage class in different
blocks and functions. You have also gained the knowledge of auto storage class used to define local
variables, static storage class used to initialize variables with null, register storage class to
use CPU registers for storage of data and extern storage class to declare global variables. Now, pro-
grammer must have gained knowledge on static external variables and their access, in the file in
which they are declared. Varied easy examples have been illustrated on the above storage classes. The
reader is advised to execute the programs provided in this chapter, in order to understand the concepts
and applications of the storage class.

 OUTPUT :
1 2 3 4 5

	 	 		Explanation	:	
 In the above program, variable ‘m’ is declared and initialized to 1. The for loop displays

values from 1 to 5. The register class variable is used as a loop variable.

M11_KAMT3553_02_SE_C11.indd 456 5/17/2015 9:37:41 AM

https://hkgbooks.blogspot.com

Storage Classes 457

1. A static variable is one that

 (a) retains its value throughout the life of the
 program

 (b) cannot be initialized
 (c) is initialized once at the commencement of the

execution and cannot be changed at the run
time

 (d) is the same as an automatic variable but is
placed at the head of the program

2. An external variable is one

 (a) which is globally accessible by all functions
 (b) which is declared outside the body of any

function
 (c) which resides in the memory till the end of the

program
 (d) all of the above

3. If a storage class is not mentioned in the declara-
tion then default storage class is

 (a) automatic
 (b) static
 (c) external
 (d) register

4. If the CPU fails to keep the variables in
CPU registers, in that case the variables are
assumed

 (a) automatic
 (b) static
 (c) external
 (d) None of the above

5. What will be the value of variable ‘x’ on the execu-
tion of the following program?

 int x;
 void main()
 {
 clrscr();
 x++;
 printf(“\n %d”,x);
 }

 (a) x=1
 (b) x=0
 (c) garbage value
 (d) None of the above

II Select the appropriate option from the multiple choices given below:

1. Write a program to calculate the sum of digits of
the entered number. Create user-defined function
sumd(). Use the static variable and calculate the
sum of digits.

2. Write a program to call function main() recur-
sively. The program should be terminated when the
main() function is called during 5th time. Take
help of the static variable.

3. Write a program to calculate the triangular
number. Use the static variable with the user-
defined function.

4. Write a program to create the for loop from 1 to
10000. Declare the loop variable of class register
and auto. Observe the time required for complet-
ing the loop for both types of variables. Find out in
which class the execution time is minimum.

III Attempt the following programs:

IV Answer the following questions:

1. List and explain the four scope variables in
brief.

2. What are the automatic variables?

3. Distinguish between static and external
variables.

4. Briefly explain register variables.

5. List the limitations of register variables.

6. Why register storage class does not support all data
types?

7. Can we declare a variable in different scopes with
different data types? Answer in detail.

8. Explain lifetime and visibility of a variable.

M11_KAMT3553_02_SE_C11.indd 457 5/17/2015 9:37:41 AM

https://hkgbooks.blogspot.com

458 Programming in C

V What will be the output/s of the following program/s?

1.

 void main()
 {
 int v=5;
 clrscr();
 {
 int v=4;
 printf(“ %d “,v);
 }
 printf(“ %d “,v);
 {
 int v=9;
 printf(“ %d “,v);
 }
 printf(“ %d “,v);
 }

2.

 void main()
 {
 int x=11;
 clrscr();
 printf(“\n x=%d”,x);
 {
 float x=2.5;
 printf(“ x=%g”,x);
 }
 {
 char *x=”Auto Storage

 Class”;
 printf(“ x=%s”,x);
 }
 }

3.

 int v=10;
 void main()
 {
 clrscr();
 call1();
 call2();
 printf(“In main()”);
 }
 call1()
 {
 printf(“ In call1()”);
 }
 call2()
 {
 printf(“ In call2()”);
 }

4.

 int v=10;
 void main()
 {
 clrscr();
 call1();
 call2();
 printf (“ In main()”);
 }
 call1()
 {
 printf(“ In call1() v=%d”,v);
 }
 call2()
 {
 printf(“ In call2()

v=%d”,v);
 }

5.
 int v=10;

 void main()
 {
 clrscr();
 for(;;)
 print();
 }
 print()
 {
 int static m;
 m++;
 printf(“ %d”,m);
 if (m==3) exit(0);
 }

6.

 void main()
 {
 auto int j=2;
 clrscr();
 {
 {
 {
 printf(“%d”,j);
 }
 printf(“ %d”,j);
 }
 printf(“ %d”,j);
 }
 }

M11_KAMT3553_02_SE_C11.indd 458 5/17/2015 9:37:41 AM

https://hkgbooks.blogspot.com

Storage Classes 459

1.

 Auto int x=20;
 void main()
 {
 auto int x=10;
 clrscr();
 printf(“\nx=%d”,x);
 }

2.

 void main()
 {
 register x=10;
 printf(“\nx=%d”,x);
 }

3.

 void main()
 {
 clrscr();
 value();
 }
 static value()
 {
 printf(“Hi”);
 }

4.

 void main()
 {
 int x=25;
 clrscr();

 printf(“%d\n”,x);
 show();
 }
 show()
 {
 printf(“%d”,x);
 }

5.

 void main()
 {
 int count =5;
 printf(“\n%d”,count--);
 if (count!=0) main();
 }

6.

 float x=5.5;
 void main()
 {
 float y,f();
 clrscr();
 x*=4.0;
 y=f(x);
 printf(“%g %g”,x,y);
 }
 float f(float a)
 {
 a+=1.3;
 x-=4.5; return a+x;
 return 0;
 }

7.

 void main()
 {
 auto int j=1;
 clrscr();
 {
 auto int j=2;
 {
 auto int j=3;
 printf (“%d”,j);
 }
 printf(“%d”,j);
 }
 printf(“%d”,j);
 }

8.

 void main()
 {
 clrscr();
 increment();
 increment();
 increment();
 }
 increment()
 {
 static int j=1;
 printf(“\n%d”,j);
 j++;
 }

VI Find the bug/s in the following program/s:

M11_KAMT3553_02_SE_C11.indd 459 5/17/2015 9:37:41 AM

https://hkgbooks.blogspot.com

460 Programming in C

  7.

register int i;
void main()
{

 clrscr();
 for(i=3;i>0;i--)
 printf (“\ % d”,i);
 getche();
}

 AnsWers

I Match the following correct pairs given in Group A with Group B:

1.

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.

  1. A   2. E   3. B   4. C   5. D

2.

Q. Ans. Q. Ans. Q. Ans. Q. Ans.

  1. B   2. D   3. C   4. A

II Select the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.

  1. a   2. d   3. a   4. a   5. a

V What will be the output/s of the following program/s?

Q. Ans.

1. 4 5 9 5

2. x=11 x=2.5 x=Auto Storage Class

3. In call1() In call2()In main()

4. In call1() v=10 In call2() v=10 In main()

5. 1 2 3

6. 2 2 2

7. 321

8. 1

2

3

M11_KAMT3553_02_SE_C11.indd 460 5/17/2015 9:37:41 AM

https://hkgbooks.blogspot.com

Storage Classes 461

VI Find the bug/s in the following program/s:

Q. Ans.

1. Automatic variables cannot be defined outside functions.

2. No Bug.

3. No Bug.

4. variable x should be defined.

5. count should be static.

6. return 0 should be removed and function declaration should be f(float) in
third line.

7. Incompatible storage class.

M11_KAMT3553_02_SE_C11.indd 461 5/17/2015 9:37:41 AM

https://hkgbooks.blogspot.com

CHAPTER

12 Preprocessor
Directives

Chapter Outline

 12.1 Introduction
 12.2 The #define Directive
 12.3 Undefining a Macro
 12.4 Token Pasting and Stringizing Operators
 12.5 The #include Directive
 12.6 Conditional Compilation
 12.7 The #ifndef Directive
 12.8 The #error Directive
 12.9 The #line Directive
 12.10 The #pragma inline Directive
 12.11 The #pragma saveregs
 12.12 The #pragma Directive
 12.13 The Predefined Macros in ANSI and TURBO-C
 12.14 Standard I/O Predefined Streams in stdio.h
 12.15 The Predefined Marcos in ctype.h
 12.16 Assertions

M12_KAMT3553_02_SE_C12.indd 462 5/15/2015 9:53:41 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 463

12.1 IntroductIon
You are now aware about the execution of C programs. For refreshing the knowledge of the reader, the
program execution needs certain steps. They are as follows: (i) the C program is written in editor, and
then (ii) compilation, (iii) linking and (iv) the executable code generation are to be done. In between
these stages, there also involves one more stage i.e. preprocessor. The preprocessor is a program that
processes the source program, before it is passed to the compiler.
 The program typed in the editor is the source code to the preprocessor. The preprocessor then
passes the source code to the compiler. It is not necessary to write the program with the preprocessor
facility. But it is good practice to use it preferably at the beginning. Preprocessor can reduce the execu-
tion time of a program, because it takes place of a function call.
 One of the most important features of the C language is to offer preprocessor directives. The
preprocessor directives are always preferably initialized at the beginning of the program before the
main(). It begins with a symbol #(hash). It can be placed anywhere but quite often, it is declared
at the beginning before the main() function or any particular function. In traditional C language #
(hash) must begin at the first column.

12.2 the #define dIrectIve
The syntax of the #define directive is as follows:

define identifier substitute

OR

#define identifier (argument 1… argument N) substitute

Example:

define PI 3.14

This statement defines PI as macro templates and 3.14 as macro substitute. During preprocessing,
the preprocessor replaces every occurrence of PI (identifier) with 3.14 (substitute value). Here, PI
is a macro template and 3.14 is its macro expansion. The macro templates are generally declared
with capital letters for quick identification. One can also define macros with small letters. The macro
templates and its expansions must be separated with at least one blank space. It is not necessary to
provide space between # and define. It is optional to the programmer. To increase readability, the
programmer should provide space.
 The macro definition should not be terminated with a semi-colon. The words followed by # are
not keywords. The programmer can use these words for variable names.
 A few examples are illustrated below for understanding macros.

 12.1 Use the identifier for 3.14 as PI and write a program to find the area of circle using it.

define PI 3.14
void main()
{
 float r,area;
 clrscr();

M12_KAMT3553_02_SE_C12.indd 463 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

464 Programming in C

	 Explanation:
 In the above program, PI replaces 3.14 during the program execution. In the program, instead

of writing the value of PI as 3.14. We directly define the value of PI as 3.14. The term PI is
replaced by 3.14 and used for calculating the area of a circle.

 12.2 Write a program to define and create identifier for C statements and variables.

 (1) Read N as 10

 (2) Replace clrscr() with cls

 (3) Replace getche() with wait()

 (4) Replace printf with display

 printf(“\n Enter radius of the circle in cm :-”);
 scanf(“%f”,&r);
 area=PI*r*r;
 printf(“Area of the Circle = %.2f cm^2”,area);
 getche();
}

OUTPUT:
Enter radius of the circle in cm = 7
Area of the Circle = 153.86 cm2

define N 10
define cls clrscr()
define wait() getche()
define display printf

void main()
{
 int k;
 cls;
 for(k=1;k<=N;k++)
 display(“ %d”,k);
 wait();

}

OUTPUT:
1 2 3 4 5 6 7 8 9 10

	 Explanation:
 In the above program pre-processor directives are defined as follows:
 (i) 10 is replaced by N. (ii) getche() is replaced by wait(). (iii) printf is replaced by

display. The preprocessor directives are executed first and then program.

M12_KAMT3553_02_SE_C12.indd 464 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 465

 12.3 Write a program to define macros for logical operators.

define and &&
define equal ==
define larger >

void main()
{
 int a,b,c;
 clrscr();
 printf(“Enter Three Numbers. :”);
 scanf(“%d %d %d”,&a,&b,&c);

 if(a larger b and a larger c)
 printf(“%d is larger than other two numbers.”,a);
 else
 if(b larger a and b larger c)
 printf(“%d is larger than other two numbers.”,b);
 else
 if(c larger a and c larger b)
 printf(“%d is the larger than other two numbers.”,c);
 else
 if(a equal b and b equal c)
 printf(“\n Numbers are same.”);
}

OUTPUT:
Enter Three Numbers:7 8 4
8 is larger than other two numbers.

	 Explanation:
 In the above program, three macros are defined. They are and (&&), equal (= =) and larger

(>). Instead of using operators in expressions, macros are used and result is obtained.

 12.4 Write a program to create identifier for displaying double and triple of a number.

define DOUBLE(a) a*2
define TRIPLE(a) a*3

void main()
{
 int a=1;
 clrscr();
 printf(“\nSINGLE\tDOUBLE\tTRIPLE”);
 for(;a<=5;a++)

M12_KAMT3553_02_SE_C12.indd 465 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

466 Programming in C

	 Explanation:
 In this program, we are using two identifiers double() and triple(). These are substi-

tute for double() and triple() with a 2 and a 3, respectively. When a value is passed
through these macros their corresponding expansions are solved.

12.3 undefInIng a Macro
A macro defined with #define directives can be undefined with #undef directive.

Syntax:

#undef macro_template substitute

It is useful, when we do not want to allow the use of macros in any portion of the program.

 12.5 Write a program to undefine a macro.

 printf(“\n%d\t%d\t%d”,a,DOUBLE(a),TRIPLE(a));
 getche();
}

OUTPUT:
SINGLE DOUBLE TRIPLE
1 2 3
2 4 6
3 6 9
4 8 12
5 10 15

define wait getche()

void main()
{
 int k;
 # undef wait() getche();
 clrscr();
 for(k=1;k<=5;k++)
 printf(“%d\t”,k);
 wait;
}

	 Explanation:
 In the above program, wait() is defined in place of getche(). In the program #undef

directive undefines the same macro. Hence, the compiler flags an error message ‘unde-
fined symbol ‘wait’ in function main()’. In case, one more statement ‘# define wait
getche()’ is written after ‘#undef wait getche()’ then the compiler does not show
any error and the output displayed on the screen would be ‘1 2 3 4 5’.

M12_KAMT3553_02_SE_C12.indd 466 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 467

12.4 token PastIng and strIngIzIng oPerators
Stringizing operation: In this operation macro argument is converted to a string. The sign # carries
the operation. It is placed before the argument.

 12.6 Write a program to carry out stringizing operation.

define say(m) printf(#m)
void main()
{
 clrscr();
 say(Hello);
 getche();
}

OUTPUT:
Hello

	 Explanation:
 In the above program, after conversion the statement say(Hello) is treated as printf

(“Hello”). It is not essential to enclose the text with quotation marks in the stringizing
operator. If # is removed from the macro definition, the user has to enclose the text in double
quotes.

 12.7 Write a program to carry stringizing operation and macro arguments.

define DOUBLE(x) printf(“Double of “#x” = %d\n”,x*2)
define TRIPLE(x) printf(“Triple of “#x” = %d\n”,x*3)

void main()
{
 int m;
 clrscr();
 printf(“Enter a number :”);
 scanf(“%d”,&m);
 DOUBLE(m);
 TRIPLE(m);
 getche();
}

OUTPUT:
Enter a number : 5

Double of m = 10
Triple of m = 15

M12_KAMT3553_02_SE_C12.indd 467 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

468 Programming in C

	 Explanation:
 In the above program the value of ‘m’ is passed to double() and triple() macros

which is assigned to x. #x prints the name of the variable passed through the macros.
 A macro can have arguments. A program on macro with arguments is illustrated below.

 12.8 Write a program to find the largest out of two numbers using macro with arguments.

define MAX(x,y) if (x>y) c=x; else c=y;

void main()
{
 int x=5,y=8,c;
 clrscr();
 MAX(x,y);
 printf(“\n Largest out of two numbers = %d”,c);
 getche();
}

OUTPUT:
Largest out of two numbers = 8

	 Explanation:
 In the above program, macro MAX() is defined with two arguments x and y. When a macro

is called, its corresponding expression is executed and the result is displayed. The expression
contains the if statement that determines the largest number and assigns it to variable c.

12.5 the #include dIrectIve
The #include directive loads specified file in the current program. The macros and functions of
loaded file can be called in the current program. The included file also gets complied with the current
program. The syntax is as given below:

(a) # include “filename”

(b) # include <filename>

 where # is a symbol used with directives.

(a) The file name is included in the double quotations marks, which indicates that the search for
the file is made in the current directory and in the standard directories.

Example:

 # include “stdio.h”

(b) When the file name is included within the angle brackets, the search for file is made only in
the standard directories.

Example:

 # include <stdio.h>

 # include <udf.h>

M12_KAMT3553_02_SE_C12.indd 468 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 469

 12.9 Write a program to call the function defined in ‘udf.c’ file.

include “udf.c”

void main()
{
 clrscr();
 display();
}

OUTPUT:
Function Called

int display(); display () {printf(“\n Function
Called”); return 0;}

 Contents of udf.c file.

	 Explanation:
 In the first program the ‘udf.c’ is included. It is a user-defined function file. It is complied

before the main program is compiled. The complete programs along with the included one
are executed. The output of the program ‘Function Called’ is displayed.

12.6 condItIonal coMPIlatIon
Quite often, one can use conditional compilation directives in the programs. The most frequently used
conditional compilation directives are #ifdef, #else, #endif. These directives allow the program-
mer to include the portions of the codes based on the conditions. The compiler compiles selected portion
of the source codes based on the conditions. The syntax of the #ifdef directives is given below.

Syntax:

#ifdef identifier

{

 statement1;

 statement2;

}

#else

{

 statement3;

 statement4;

}

#endif

M12_KAMT3553_02_SE_C12.indd 469 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

470 Programming in C

The #ifdef preprocessor tests whether the identifier has defined substitute text or not. If the identi-
fier is defined, then #if block is compiled and executed. The compiler ignores #else block even
if errors are intentionally made. Error messages will not be displayed. If identifier is not defined then
the #else block is compiled and executed.

 12.10 Write a program to use conditional compilation statement as to whether the identifier is
defined or not.

define LINE 1
void main()
{
 clrscr();
 #ifdef LINE
 printf(“This is line number one. ”);
 #else
 printf(“This is line number two.”);
 #endif
 getche();
}

OUTPUT:
This is line number one.

	 Explanation:
 In the above program, #ifdef checks whether the LINE identifier is defined or not. If

defined the #if block is executed. On execution, the output of the program is ‘This is line
number one’. In case the identifier is undefined, the #else block is executed and output is
‘This is line number two’.

 12.11 Write a program similar to the one given above with conditional compilation directives as
to whether the identifier is defined or not.

define E =
void main()
{
 int a,b,c,d;
 clrscr();
 #ifdef E
 {
 a E 2;
 b E 3;
 printf(“A=%d & B=%d”,a,b);
 }
 #else
 {
 c=2;
 d=3;
 printf(“C=%d & D=%d”,c,d);
 }

M12_KAMT3553_02_SE_C12.indd 470 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 471

	 Explanation:
 The execution of the above program is the same as the previous one. The only difference is

the name of the identifier. Here, in this program the identifier is E. Compiler searches for
the identifier E. If it is found, then the execution of #if block takes place otherwise the
execution of #else block takes place. The #endif statement indicates the end of #if
#endif block.

12.7 the #ifndef dIrectIve
The syntax of the #ifndef directive is given below.

Syntax:

#ifndef <identifier>

{

 statement1;

 statement2;

}

#else

{

 statement3;

 statement4;

}

#endif

The #ifndef works exactly opposite to that of #ifdef. The #ifndef preprocessor tests whether
the identifier has defined substitute text or not. If the identifier is defined then #else block is com-
piled and executed and the compiler ignores the #if block even if errors are intentionally made.
Error messages will not be displayed. If identifier is not defined then #if block is compiled and
executed.

 12.12 Write a program to check conditional compilation directives #ifndef. If it is observed,
display one message, otherwise another message.

 #endif
 getche();
}

OUTPUT:
A=2 & B=3

define T 8

void main()
{
 clrscr();
 #ifndef T

M12_KAMT3553_02_SE_C12.indd 471 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

472 Programming in C

	 Explanation:
 In the above program, #ifndef checks for the identifier T. If it is defined the #else block

is executed. On the execution of the block, the output of the program is ‘Macro is defined’.
In case the identifier is undefined, the #else block is executed and output is ‘Macro is not
defined’.

12.8 the #error dIrectIve
The #error is used to display the user-defined message during the compilation of the program. The
syntax is as follows:

if !defined (identifier)

error <ERROR MESSAGE>

#endif

 12.13 Write a program to display the user-defined error message using #error directive.

 printf(“\n Macro is not defined.”);
 #else
 printf(“\n Macro is defined.”);
 #endif
 getche();
}

OUTPUT:
Macro is defined.

define B 1
void main()
{
 clrscr();
 #if !defined(A)
 #error MACRO A IS NOT DEFINED.
 #else
 printf(“Macro found.”);
 #endif
}

	 Explanation:
 In the above program identifier ‘B’ is defined. In the absence of an identifier, an error is

generated and the #error directive displays the error message. The error message is user-
defined and displayed in the message box at the bottom of the editor.

 Note: The #defined directive will work exactly opposite to #! defined directive. The syntax
is as given below:

if defined (identifier)
{
}

M12_KAMT3553_02_SE_C12.indd 472 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 473

#else
error <ERROR MESSAGE>
#endif

12.9 the #line dIrectIve
In order to renumbering the source text this directive is used. The syntax of line directive is as
follows:

#line <constant> [<identifier>]

This causes the compiler to renumber the line number of the next source line as given by
<constant> and <identifier> gives the current input file. If <identifier> is absent, then the
current file name remains unchanged.

Example:

#line 15 pragma.c

12.10 the #pragma inline dIrectIve
This reports the compiler that the source code has in-line asm statements. It is important to know
previously that, the source code contains assembly code.

12.11 the #pragma saveregs
This assure that a huge function will not modify the value of any of the registers when it is entered.
Place this directive immediately before the function definition.

12.12 the #pragma dIrectIve
The ANSI-C and TURBO-C provide pragma directives. These #pragma directives are defined with
(hash) and these are the preprocessor directives. These directives deal with formatting source list-
ing and placing components in the object file generated by the compiler. It sets /resets certain warning
and errors during the compilation of C program. When a program is compiled, the compiler throws er-
rors and warnings. The programmer should see the errors rather than the warnings. After the removal
of errors, the programmer can turn attention on warnings and take further steps for sorting warnings.
Tables 12.1, 12.2 and 12.3 and 12.4 describe the different pragma names with error messages.

Table 12.1 ANSI violations and #pragma
#pragma	Name Warning	On Warning	Off

Hexadecimal or octal constant too large +big -big

Redefinition not identical +dup -dup

Both return and return of a value used +ret -ret

Not part of structure +str -str

Undefined structure +stu -stu

(Continued)

M12_KAMT3553_02_SE_C12.indd 473 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

474 Programming in C

#pragma	Name Warning	On Warning	Off

Suspicious pointer conversion +sus -sus

Void functions cannot return a value +voi -voi

Zero length structure +zst -zst

Table 12.2 Common errors and #pragma
#pragma	Name Warning	On Warning	Off

Assigned a value but never used +aus -aus

Possible use before definition +def -def

Code has no effect +eff -eff

Parameter never used +par -par

Possibly incorrect assignment +pia -pia

Unreachable code +rch -rch

Function should return a value +rvl -rvl

Ambiguous operators need parentheses +amb -amb

Table 12.3 Less common errors and #pragma
#pragma	Name Warning	On Warning	Off

Superfluous & with function or array +amp -amp

No declaration for function +nod -nod

Call to function with no prototype +pro -pro

Structure passed by value +stv -stv

Declared but never used +use -use

Table 12.4 Portability warnings and #pragma
#pragma	Name Warning	On Warning	Off

Non-portable pointer assignment +apt -apt

Constant is long +cln -cln

Non-portable pointer comparison +cpt -cpt

Constant out of range in comparison +rng -rng

Non-portable pointer conversion +rpt -rpt

Conversion can lose significant digits +sig -sig

Mixing pointers to signed and unsigned char +ucp -ucp

Table 12.1 ANSI violations and #pragma (Continued)

Syntax:

pragma warn + xxx

pragma warn -xxx

 Where the first statement turns on the warning message and the second statement sets off the
warning message.

M12_KAMT3553_02_SE_C12.indd 474 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 475

 12.14 Write a program to set off certain errors shown by the program using #pragma
directives.

#pragma warn –aus
#pragma warn –def
#pragma warn –rvl
#pragma warn –use

int main()
{
 int x=2,y,z;
 printf(“\n y= %d”,y);
}

	 Explanation:
 The above program contains the following warnings:

 (i) Possible use of ‘y’ before definition in function.

 (ii) ‘z’ declared but never used in function main.

 (iii) ‘x’ is assigned a value which is never used in function.

 (iv) Function should return a value in function main.

The display of these warning messages can be made on or off by setting the pragma options. In the above
program, the four pragma options are set to off. Hence, after compilation the above listed lines will not be
displayed. If the four pragma options are set to on the compiler will display these warning messages.

12.13 the PredefIned Macros In ansI and turbo-c
 (i) ANSI C Predefined Macros: The list of predefined macros according to ANSI standard is

 given in Table 12.5. There are five predefined macros and are always available to the program-
mer for use. They cannot be undefined. Every macro name is defined with two underscores
as prefix and suffix. These macros are useful for finding system information such as date, time
and file name and line number. A program is illustrated for testing these macros.

Table 12.5 Predefined macros in ANSI –C
Predefined	Macros Function

_ _DATE_ _ Displays system date in string format.

_ _TIME_ _ Displays system time in string format.

_ _LINE_ _ Displays line number as an integer.

_ _FILE_ _ Displays current file name in string format.

_ _STDC_ _ In ANSI C the value returned will be non-zero.

 12.15 Write a program to use predefined macros of ANSI C.

include <stddef.h>
void main()
{
 clrscr();

M12_KAMT3553_02_SE_C12.indd 475 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

476 Programming in C

 printf(“\nDATE : %s”,_ _DATE_ _);
 printf(“\nTIME : %s”,_ _TIME_ _);
 printf(“\nFILE NAME : %s”,_ _FILE_ _);
 printf(“\nLINE NO. : %d”,_ _LINE_ _);
}

OUTPUT:
DATE : Oct 05 2010
TIME : 21:07:39
FILE NAME : PRE_MA~1.C
LINE NO. : 8

 Explanation:
 In the above program, five macros are used in the printf() statements. On its execution the

output of the program is displayed as shown above. The program displays system date, time,
program file name and total lines in the program. The STDC indicates whether the version of C
compiler follows ANSI C standard. Here, the result is one. Hence, the compiler follows ANSI
C standards. The programmer should set ANSI keyword on option by selecting option menu
of the editor – compiler-source- ANSI keywords only on.

 (ii) TURBO-C Predefined Macros: The predefined macros in TURBO-C are listed in Table 12.6.
The programmer can use the macro __TURBOC__ to find the version of Turbo. Setting option
of code generation in option menu one can test next two macros. For more information, the
user is advised to view options in option menu.

 12.16 Write a program to use a few predefined macros indicated in Table 12.6.

Table 12.6 Predefined macros in TURBO-C
Predefined	Macros Function

_ _TURBOC_ _ Displays current TURBO-C version

_ _PASCAL_ _ 1 if ‘Calling convention…’Pascal option is chosen,
otherwise undefined.

_ _CDECL_ _ 1 if “Calling convention…C’ option is chosen,
otherwise undefined.

_ _MSDOS_ _ The integer constant 1.

include <stddef.h>
void main()
{
 clrscr();
 printf(“\nMSDOS : %d”,_ _MSDOS_ _);
 printf(“\nCALLING CONVENTION : %d”,_ _CDECL_ _);
 getche();

}

OUTPUT:
MSDOS : 1
CALLING CONVENTION : 1

M12_KAMT3553_02_SE_C12.indd 476 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 477

	 (iii)	 Memory Model Macros: The	following	six	macros	are	defined	on	the	basis	of	memory	models	
chosen	by	the	user.	There	are	six	memory	models	and	only	one	is	defined	which	is	currently	in	
use,	and	remaining	are	undefined.	The	program	is	illustrated	below	to	find	the	memory		model.	To	
change	the	memory	model	the	user	is	advised	to	select	option menu->compiler->	model.

	 	 12.17	 Write	a	program	to	display	the	name	of	memory	model	that	is	currently	in	use.

Table 12.7 Memory model predefined macros
_	_TINY_	_ _	_SMALL_	_ _	_MEDIUM_	_

_	_COMPACT_	_ _	_LARGE_	_ _	_HUGE_	_

void main()
{
 clrscr();

 #ifdef _ _TINY_ _
 printf(“\nTINY %d”,_ _TINY_ _);
 #else
 #ifdef _ _SMALL_ _
 printf(“\nSMALL %d”,_ _SMALL_ _);
 #else
 #ifdef _ _MEDIUM_ _
 printf(“\nMEDIUM %d”,_ _MEDIUM_ _);
 #else
 #ifdef _ _COMPACT_ _
 printf(“\nCOMPACT %d”,_ _COMPACT_ _);
 #else
 #ifdef _ _LARGE_ _
 printf(“\nLARGE %d”,_ _LARGE_ _);
 #else
 printf(“\nHUGE %d”,_ _HUGE_ _);
 #endif
 #endif
 #endif
 #endif
 #endif
}

OUTPUT:
LARGE 1

	 Explanation:
	 	 	In	the	above	program,	the	preprocessor	directives	activate	only	one	macro	based	on	the	mem-

ory	model	currently	selected	on	the	system.	Remaining	five	macros	are	undefined.	The	ladder		
of	#if .#else, .#endif	checks	the	definition	of	all	the	six	macros.	When	it	finds	the	
defined	macro	it	is	displayed.

M12_KAMT3553_02_SE_C12.indd 477 5/17/2015 12:45:39 PM

https://hkgbooks.blogspot.com

478 Programming in C

12.14 standard I/o PredefIned streaMs In stdio.h
The predefined streams automatically open when the program is started. Table 12.8 describes their
macro expansion defined in stdio.h header file.

12.15 the PredefIned Marcos In ctype.h
The header file ‘ctype.h’ contains a set of macros that check characters. Table 12.9 describes all
the macros. These macros take an argument of integer type and return an integer.

Table 12.8 Standard I/O predefined macros in stdio.h
Macros Function Definition	in	stdio.h

stdin Standard input device. #define stdin (&_streams[0])

stdout Standard output device. #define stdout (&_streams[1])

stderr Standard error output device. #define stderr (&_streams[2])

stdaux Standard auxiliary device. #define stdaux (&_streams[3])

stdprn Standard printer. #define stdprn (&_streams[4])

 12.18 Write a program to enter text and display it using macro expansions.

void main()
 {
 char ch[12];
 int i;
 clrscr();
 printf(“Input a Text : ”);
 for(i=0;i<11;i++)
 ch[i]=getc(&_streams[0]);
 printf(“Text Inputted : ”);
 for (i=0;i<11;i++)
 putc(ch[i],&_streams[1]);
 }

OUTPUT:
Input a Text : Programming
Text Inputted : Programming

	 Explanation:
 In the above program instead of using macros their corresponding macro expansion is used

in the program. The first macro expansion &_streams [0] reads string through the key-
board and the second &_streams [1] displays it.

M12_KAMT3553_02_SE_C12.indd 478 5/15/2015 9:53:42 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 479

Table 12.9 Predefined macros in ctype.h.
Sr.	No. Macro Returns	True	(!0)	Value	If

01 isalpha(d) d is a letter.

02 isupper(d) d is a capital letter.

03 islower(d) d is a small letter.

04 isdigit(d) d is a digit.

05 isalnum(d) d is a letter or digit.

06 isxdigit(d) d is a hexadecimal digit.

07 isspace(d) d is a space.

08 ispunct(d) d is a punctuation symbol.

09 isprint(d) d is a printable character.

10 isgraph(d) d is printable, but not be a space.

11 iscntrl(d) d is a control character.

12 isascii(d) d is an ASCII code.

 12.19 Write a program to identify whether the entered character is a letter or digit and capital or
small using predefined macros.

include<ctype.h>

void main()
{
 char d;
 int f;
 clrscr();
 printf(“\n Enter any character : ”);
 d=getche();

 f=isalpha(d);

 if(f!=0)
 {
 printf(“\n%c is a letter in”,d);
 f=isupper(d);
 if (f!=0)
 printf(“ Capital case”);
 else
 printf(“ Small Case”);
 }
 else
 {
 f=isdigit(d);

 if(f!=0)
 printf(“\n %c is a digit”,d);
 else
 {
 f=ispunct(d);
 if(f!=0)

M12_KAMT3553_02_SE_C12.indd 479 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

480 Programming in C

	 Explanation:
 In the above program a character is entered through the keyboard. The macro isalpha ()

checks whether it is digit or letter. It returns true or false value to variable d. The if condi-
tion checks the value of variable d. If the entered character is a letter the if block is executed
and again the macro isupper () checks whether the character is capital or small. Thus
appropriate messages are displayed.

 If the entered character is not a letter else block of the first if statement is executed. The macro
isdigit() checks whether the character is a digit or other any symbol. If it is a digit the if block
is executed, otherwise else block is executed. In the else block, macro ispunct () checks whether
the entered character is a punctuation symbol. If so the message is displayed.

12.16 assertIons
The assert() macro is defined in the assert.h header file. This macro tests the value of an ex-
pression. If the expression contains a false value, assert() displays an error message and executes
function abort() to abort the program execution. The following program demonstrates the use of
the assert() function.

 12.20 Write a program to demonstrate the use of the assert() macro.

 printf(“\n %c is a punctuation symbol”,d);

 }

 }
 getche();
}

OUTPUT:
Enter any character : C
C is a letter in Capital case

include <assert.h>

void main()
{
 int x=4;
 clrscr();
 assert(x!=4);
}

OUTPUT:
Assertion failed: x!=4, file P1.C, line 9
Abnormal program termination

	 Explanation:
 In this program the value of x is 4. The assert() macro checks the value of x. If the condi-

tion is false, the macro executes abort() and program is terminated.

M12_KAMT3553_02_SE_C12.indd 480 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 481

 suMMarY

 In this chapter you have studied one of the most useful features of the C language, i.e. the preprocessor
directive. It supports the programmer to write portable programs, which can be executed on different
types of systems. After having gone through this chapter and on execution of programs, you have the
knowledge of the uses of #defi ne, #undef, #include, #line, token pasting and stringiz-
ing operator, conditional compilation through illustrated examples. You have also learnt how to dis-
play programmer’s own error messages using #error directive and making various warnings
on/off displayed by compiler using #pragma directive. You have been exposed to predefined macros
in ctype.h. You are now aware of the predefined macros and their uses.

 eXercIses

 1. The program typed in the editor is the ___________
to the preprocessor.

 (a) source code
 (b) object code
 (c) ASCII code

 2. The preprocessor passes the source code to the C
________.

 (a) compiler
 (b) assembler
 (c) interpeter

 3. The preprocessor directives are always
initialized at the _____________.

 (a) beginning of the program
 (b) run time
 (c) compile time

 4. The preprocess or begins with a symbol
_______.

 (a) //
 (b) #
 (c) $

 5. A macro defined with ________ directives can be
undefined with # undef directive.

 (a) #defi ne
 (b) #include
 (c) #ifdef

 6. In __________________operation macro argu-
ment is converted to string.

 (a) string concatenation
 (b) stringizing operation
 (c) string coping

 7. The ____________ loads specified file in the cur-
rent program.

 (a) #include
 (b) #defi ne
 (c) #ifndef

 8. The_____ is used to display a user-defined mes-
sage during the compilation of the program.

 (a) #error
 (b) #pragma
 (c) #stderr

 9. inline DIRECTIVE reports the compiler that
the source code has in line _____statements.

 (a) bsm code
 (b) asm code
 (c) c++ code

 I Fill in the blanks:

 1. The preprocessor is a program that processes the
source code before compilation.

 2. The program typed in the editor is the source code
for the preprocessor.

 3. The #defi ne defines the macro templates.

 4. The macro definition must be terminated by a
semi-colon.

 5. The defi ne is a keyword.

 II True or false :

M12_KAMT3553_02_SE_C12.indd 481 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

482 Programming in C

III Match the functions/words given in Group A with meanings in Column B:

1.

Sr.	No Predefined	Macros Sr.	No Function

1 _ _DATE_ _ A Displays current file name in string format

2 _ _TIME_ _ B Displays line number as an integer

3 _ _LINE_ _ C In ANSI ‘C’ the value returned will be non-zero

4 _ _FILE_ _ D Displays system date in string format

5 _ _STDC_ _ E Displays system time in string format

2.

Sr.	No Directive Sr.	No Function

1 #define A Specifies the alternative when #if fails

2 #else B Tests a compile time condition

3 #include C Tests whether the a macro is not defined

4 #ifdef D Specifies the end of #if

5 #endif E Tests for a macro definition

6 #ifndef F Specifies the file to be included

7 #if G Undefines a macro

8 #undef H Defines a macro substitute value

3.

Sr.	No Macros Sr.	No Function

1 stdin A Standard output device

2 stdout B Standard printer

3 stderr C Standard input device

4 stdaux D Standard error output device

5 stdprn E Standard auxiliary device

4.

Sr.	No Macros Sr.	No Function

1 COMPILER A Translates assembly program

2 PREPROCESSOR B A program can be typed

 6. The #undef undefinies the macro.

 7. The #include loads the a specified file.

 8. With #include “stdio.h” the compiler
searches the file in the entire system.

 9. With #include <stdio.h> the compiler
searches the file in the standard directory.

 10. Conditional compilation means a few statements
can be skipped from a compiler.

 11. The #ifdef and #ifndef work exactly in the
same manner.

 12. The #error flags are user-defined messages.

 13. The #pragma sets off/on warning and error mes-
sages.

 14. The #ninclude closes the file loaded by
#include.

(continued )

M12_KAMT3553_02_SE_C12.indd 482 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 483

1. What will be the value of y after the execution of
the following program?

 # define plus(x) x;
 # define minus(x) --x+ plus(x);
 void main()
 {
 int x=8,y;
 clrscr();
 y=minus(x)
 printf(“\n y = %d”,y);
 }
 (a) y = 14
 (b) y = 15
 (c) y = 13
 (d) None of the above

2. What will be the values of variables x and y after
execution of the following program?

 # define P x++;
 # define plus(x) P
 void main()
 {
 int x=2,y;
 clrscr();
 y=plus(x)
 printf(“\nx = %d y = %d”,x,y);
 }

 (a) x=3 y=2
 (b) x=3 y=3
 (c) x=2 y=2
 (d) None of the above

3. In the following example whether macro is treat-
ed as

 # define S “This Book Teaches C”
 void main()
 {
 printf(“\n %s”,S);
 }

 (a) macro as well as array
 (b) only macro
 (c) only array
 (d) None of the above

4. What will be the output after the execution of the
following program?

 # define S “This Book Teaches C”
 void main()
 {
 clrscr();
 printf(“\n %c”,*(S+3));
 }

 (a) s
 (b) h
 (c) i
 (d) T

5. What will be the value of variable z after the execu-
tion of the following program?

 # define ROW 2
 # define COL 3
 int a[ROW][COL]={8,6,4,2,0,-2};
 void main()
 {
 int x,y,z=0;
 clrscr();
 for(x=0;x<ROW;x++)
 for(y=0;y<COL;y++)
 if(a[x][y]>z)
 z=a[x][y];
 printf(“\nz = %d”,z);
 }

 (a) z=8
 (b) z=-2
 (c) z=0
 (d) z=2

6. What will be the value of variable k and m after the
execution of the following program?

 # define product(k) k*k
 void main()
 {
 int k=3,m;
 m=product(k++);
 clrscr();
 printf(“\t k=%d m=%d”,k,m);
 }
 (a) k=5 m=9
 (b) k=4 m=16

IV Select the appropriate option from the multiple choices given in the brackets:

Sr.	No Macros Sr.	No Function

3 LINKER C Compiles the source code

4 Assembler D Supplies source code to compiler

5 EDITOR E Relocatable object code

M12_KAMT3553_02_SE_C12.indd 483 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

484 Programming in C

 (c) k=5 m=25
 (d) k=4 m=9

 7. The following program will display

 # define P &x
 void main()
 {
 int x=2;
 clrscr();
 printf(“\t %u”,P);
 }
 (a) address
 (b) value
 (c) error message
 (d) None of the above

 8. The following program will display the output

 void main()
 {
 int x=2,*p=5;
 p=&x;
 # define P &p
 clrscr();
 printf(“\t %d”,**P);
 }
 (a) 2
 (b) 5
 (c) 65500
 (d) None of the above

 9. Consider the statement # deifne PI 3.14, it
means

 (a) every occurrence of PI (identifier) replaced
with 3.14 (substitute value).

 (b) occurrence of PI only in expressions
replaced with 3.14

 (c) None of the above

 10. A macro defined with #define directives can be
undefined with

 (a) # undef directive
 (b) #ifndef
 (c) #!def

 11. The file name is included in the double quotations
marks indicates that

 (a) the search for the file is to be made in
the current directory and in the standard
 directories

 (b) the search for the file is to be made in the
current directory

 (c) the search for the file is to be made in the
entire system

 12. When the file name is included without double
quotation marks and when the program is
 executed, the message that appears on the
screen will be

 (a) the search for file is made only in the
standard directories

 (b) the search for file is made only in the
current directory

 (c) the search for the file is to be made in the
entire system

 (d) bad file name format in include directory

 13. Generally the standard directories for header file
and library files are

 (a) include and lib
 (b) turboc2 and include
 (c) tc2 and Lib

 14. The standard directory called include contains

 (a) header files
 (b) library file
 (c) program file

 15. The standard directory called lib contains

 (a) header files
 (b) library file
 (c) program file

 16. The conditional compilation directives allow the
programmer to

 (a) compile a part of program
 (b) compile entire program
 (c) compile program excluding header files

 17. In the statement #ifdef, #else, #endif, the
compiler ignores #else block

 (a) when macro is not defined
 (b) when macro is defined
 (c) None of the above

 18. What is the output of the following program?

 #define SQUARE X*X*X
 void main()
 {
 int X=10;
 printf(“%d”,SQUARE);
 getche();
 }
 (a) 100
 (b) 1000
 (c) 10

M12_KAMT3553_02_SE_C12.indd 484 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 485

 19. What is the output of the following program?

 #define PI 3.14
 void main()
 {
 float x;
 clrscr();
 for(x=PI*2;x<=7.28;x++)

 printf(“%g”,x);
 getche();
 }
 (a) 7.28
 (b) 6.28
 (c) 6.28 7.28

1.
 # define PI 3.14
 void main()
 {
 float r=2.2,area;
 area=PI*r*r;
 clrscr();
 printf(“Area of a Circle =

%.2f cm2”,area);
 }

2.

 # define N 5
 # define say printf

 void main()
 {
 int k;
 clrscr();
 for(k=1;k<=N;k++)
 say(“ %d ”,k);
 }

3.
 # define DOUBLE(a) a*2
 void main()
 {
 int a=1;
 clrscr();
 for(;a<=5;a++)
 printf(“ %d”,DOUBLE(a));
 }

4.

 # define say(m) printf(#m)
 void main()
 {
 clrscr();
 say(C is portable);
 }

5.

 # define MAX(x,y) if (x>y) c=x;
else c=y;

 void main()
 {
 int x=3,y=5,c;
 clrscr();
 MAX(x,y);
 printf(“\n Largest of two

numbers = %d”,c);
 }

6.

 # define else
 void main()
 {
 clrscr();
 #ifdef LINE
 printf(“This is line number

one. ”);
 #else
 printf(“This is line number

two.”);
 #endif
 }

7.
 # define K 1

 void main()
 {
 clrscr();
 #ifndef K
 printf(“\n Macro is not

defined.”);
 #else
 printf(“\n Macro is defined.”);
 #endif
 }

8.
 # include <stddef.h>
 void main()
 {
 clrscr();
 printf(“\nDATE : %s”,_ _

DATE_ _);

V What will be the output/s of the following program/s?

M12_KAMT3553_02_SE_C12.indd 485 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

486 Programming in C

 printf(“\nTIME : %s”,_ _
TIME_ _);

 printf(“\nFILE NAME : %s”,_ _
 FILE_ _);

 printf(“\nLINE NO. : %d”,_ _
 LINE_ _);

 }

9.
 # define RANGE (j> 30 && j<51)
 void main()
 {
 int j=31;
 clrscr();
 if (RANGE)
 printf(“Within range”);
 else
 printf(“Out of Range”);
 }

10.
 # define FUN(k) k+3.14

 void main()
 {
 {
 int x=2;
 clrscr();
 printf(“%g”,x*FUN(FUN

(x)));
 }
 }

11.
 # define PRINT(a) printf (“%c”,a)

 void main()

 {
 int a=2;
 clrscr();
 for(a=48;a<55;a++)
 PRINT(a);

 }

12.

 void main()
 {
 clrscr();
 #ifdef _ _TINY_ _
 printf(“\nTINY %d”,_ _

TINY_ _);
 #else
 #ifdef _ _SMALL_ _
 printf(“\nSMALL %d”,_ _

SMALL_ _);
 #else
 #ifdef _ _MEDIUM_ _
 printf(“\nMEDIUM %d”,_ _

MEDIUM_ _);
 #endif
 #endif
 #endif

 }

13.
 # include<math.h>
 # define P a*2
 # define X P/4
 void main()
 {
 int a=20,z;
 clrscr();
 printf(“\n %d “,P);
 printf(“ %d “,X);
 getche();
 }

14.
 # define con(x,y) x##y
 void main()
 {
 int xy=20;
 clrscr();
 printf(“\n %d ”,con(x,y));
 getche();
 }

1.
 # define 3.14 PI
 void main()
 {
 printf(“%f”,PI);
 }

2.
 # define DOUBLE(a) a*2
 # define TRIPLE(a) a*3

 void main()
 {
 int a=1;
 clrscr();
 for (;a<=5;a++)
 printf(“\n %d \t%d\t

%d”,a,double(a),
TRIPLE(a));

 }

VI Find the bug/s in the following programs:

M12_KAMT3553_02_SE_C12.indd 486 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 487

3.
 # define wait getche()
 void main()
 {
 int k;
 # undef wait()
 getche();
 clrscr();
 for(k=1;k<5;k++)
 printf(” %d “,k);wait;
 }

4.
 # define say(m) printf(m)
 # define show(m) printf(#m)
 void main()
 {
 clrscr();
 say(Hello);
 show(Hello);
 }

5.
 # define T 8
 void main()
 {
 clrscr();
 #ifndef T
 printf(“\n Macro is not

 defined”);
 #else
 printf(“\n Macro is defined”);
 }

6.
 define T 8
 void main()
 {
 clrscr();
 printf(“\n %d”,T);
 }

7.
 void main()
 {
 clrscr();

 printf(“\n TIME : %s”,
_ _TIME_ _);

 }

8.
 void main()
 {
 char d=’1’;
 int f;

 f=isalpha(1);
 clrscr();
 if (f!=0)
 printf(“%c is a letter”,d);
 else
 printf(“\n %c is not a

 letter”,d);
 }

9.
 # define B 1
 void main()
 {
 clrscr();
 #if !defined(A)
 #error MACRO A IS NOT

DEFINED.
 #else
 printf(“Macro found.”);
 #endif
 }

10.
 define FUN(k) k+3.14
 void main()
 {
 {
 int x=2;
 clrscr();
 printf(“%d”,x*FUN(x));
 }
 }

11.
 # define PRINT (a) printf(“%c”,a)

 void main()
 {

 int a=2;
 clrscr();
 for (a=48;a<55;a++)
 PRINT(a);
 }

12.

 #pragma warn +aus
 #pragma warn +def
 #pragma warn +rvl
 #pragma warn +use

 void main()
 {
 int x=2,y,z;
 clrscr();
 printf(“\n y= %d”,y);
 }

M12_KAMT3553_02_SE_C12.indd 487 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

488 Programming in C

 I Fill in the blanks:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. a 2. a 3. a 4. b 5. a

6. b 7. a 8. a 9. b

 II True or false:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. T 2. T 3. T 4. F 5. F
 6. T 7. T 8. F 9. T 10. T

11. F 12 T

ansWers

III Match the following correct pairs given in Group A with Group B:

1.

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. D 2. E 3. B 4. A 5. C

2.

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. H 2. A 3. F 4. E 5. D
6. C 7. B 8. G

3.

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. C 2. A 3. D 4. E 5. B

4.

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. C 2. D 3. E 4. A 5. B

IV Select the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. a 2. a 3. a 4. a 5. a
 6. a 7. a 8. a 9. a 10. a

11. a 12. d 13. a 14. a 15. b

16. a 17. b 18. b 19. b

M12_KAMT3553_02_SE_C12.indd 488 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

Preprocessor Directives 489

V What will be the output/s of the following program/s?

Q. Ans.
 1. Area of Circle = 15.20 cm2.

 2. 1 2 3 4 5

 3. 2 4 6 8 10

 4. C is portable.

 5. Largest of two numbers = 5.

 6. This is line number two.

 7. Macro is defined.

 8. DATE : Oct 5 2010
TIME : 14:04:54
FILE NAME : ANK.C
LINE NO. : 8

 9. Within Range.

10. 10.28

11. 0123456

12. SMALL 1.
Based on the memory model selection the answer will be different.
Here a small memory model is selected. Hence the output small 1.

13. 40 10

14. 20

VI Find the bug/s in the following programs:

Q. Ans.
 1. The statement defining macro would be # define PI 3.14.

 2. The macro DOUBLE is typed as double.

 3. The macro wait is undefined.

 4. The text ‘Hello’ should be enclosed in double quotes in say macro.

 5. #endif is missing.

 6. # is missing.

 7. No Bug Time = 02:20:45.

 8. Header file <ctype.h> to be included.

 9. Macro A not defined.

10. format string should be %g or %f.

11. The gap between PRINT (a) and (a) should be removed.

12. There is no bug. Warning errors are set.

M12_KAMT3553_02_SE_C12.indd 489 5/15/2015 9:53:43 AM

https://hkgbooks.blogspot.com

CHAPTER

Structure and
Union13

Chapter Outline

 13.1 Introduction
 13.2 Features of Structures
 13.3 Declaration and Initialization of Structures
 13.4 Structure within Structure
 13.5 Array of Structures
 13.6 Pointer to Structure
 13.7 Structure and Functions
 13.8 typedef
 13.9 Bit Fields
 13.10 Enumerated Data Type
 13.11 Union
 13.12 Calling BIOS and DOS Services
 13.13 Union of Structures

M13_KAMT3553_02_SE_C13.indd 490 5/15/2015 10:06:30 AM

https://hkgbooks.blogspot.com

Structure and Union 491

13.1 IntroductIon
You know that a variable stores a single value of a data type. Arrays can store many values of a simi
lar data type. Data in the array is of the same composition in nature as far as the type is concerned.
In real life, we need to have different data types; for example, to maintain employees information
we should have information such as name, age, qualification, salary and so on. Here, to maintain
the information of employees dissimilar data types are required. Name and qualification of the
employee are char data type, age is an int and salary is float. All these data types cannot be
expressed in a single array. One may think to declare different arrays for each data type. But
there will be huge increase in source codes of the program. Hence, arrays cannot be useful here.
For tackling such a mixed data type problems, a special feature is provided by C. It is known as a
structure.
 A structure is a collection of one or more variables of different data types, grouped together
under a single name. It is a derived data type to be arranged in a group of related data items of
different data types. It is a userdefined data type because the user can decide the data types to be
included in the body of a structure. By using structures, we can make a group of variables, arrays,
pointers.

13.2 Features oF structures
In order to copy elements of an array to another array, elements of the same data type are copied one
by one. It is not possible to copy all the elements at a time. However, in a structure it is possible to
copy the contents of all structure elements of different data types to another structure variable of its
type using assignment (=) operator. It is possible because the structure elements are stored in succes
sive memory locations.
 Comparison between array and structure is shown in Table 13.1.

Table 13.1 Comparison between an array and a structure
S. No. Points of Comparison Array Structure

01 Collection of data Same data type Different data types

02 Keyword It is not a keyword struct is a keyword

03 Declaration and definition of
data types

Only declaration Both declaration and
definition

04 Bit fields Does not have bit fields May contain bit fields

 Nesting of structures is possible, i.e. one can create structure within the structure. Using this
feature, one can handle complex data types. It is also possible to pass structure elements to a function.
This is similar to passing an ordinary variable to a function. One can pass individual structure ele
ments or entire structure by value or address.
 It is also possible to create structure pointers. In the pointer, we have studied pointing a pointer to
an int, pointing to a float and pointing to a char. In a similar way, we can create a pointer point
ing to structure elements. For this it requires -> operator.

M13_KAMT3553_02_SE_C13.indd 491 5/15/2015 10:06:30 AM

https://hkgbooks.blogspot.com

492 Programming in C

13.3 declaratIon and InItIalIzatIon oF structures
Structures can be declared as follows:
 struct struct_type
 {
 type variable1;
 type variable2;

 };

Structure declaration always starts with struct keyword. Here, struct_type is known as tag.
The struct declaration is enclosed within a pair of curly braces. Closing brace is terminated with
a semicolon. Using struct and tag, a user can declare structure variables like variable1,
variable2 and so on. These are the members of the structure. After defining structure templete, we
can create variables as given below:

struct struct_type v1,v2,v3;

Here v1, v2 and v3 are variables or objects of structure struct_type. This is similar to declaring
variables of any data type.

The declaration defines the structure but this process does not allocate memory. The memory alloca
tion takes place only when variables are declared.

 struct book1
 {
 char book[30];
 int pages;
 float price;
 };

 struct book1 bk1;

In the above example, a structure of type book1 is created. It consists of three members: book [30]
of char data type, pages of int type and price of float data type. Figure 13.1 explains various
members of a structure.

 struct book1 bk1;

The above line creates variable bk1 of type book1,
and it reserves total 36 bytes (30 bytes for book[30],
2 bytes for int and 4 bytes for float). Through bk1
all the three members of structure can be accessed. Pro
gram 13.1 can be referred to for understanding the mem
ory size requirement for structure elements. In order to
initialize structure elements with certain values following
statement is used.

 struct book1 bk1 = {“shrinivas”,500,385.00};

 All the members of structure are related to variable bk1.

bk1

book[30]

pages

price

Figure 13.1 Block diagram of a structure

M13_KAMT3553_02_SE_C13.indd 492 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

Structure and Union 493

void main()
{
 struct book1
 {

 structure_variable.member or bk1.book

The period (.) sign is used to access the structure members.
We can directly assign values to members as given below:

 bk1.book =”shrinivas”;
 bk1.pages=500;
 bk1.price=385.00;

 13.1 Write a program to display the size of structure elements. Use sizeof() of operator.

void main()
{
 struct book1
 {
 char book[30];
 int pages;
 float price;
 };
 struct book1 bk1;
 clrscr();
 printf(“\n Size of Structure Elements”);
 printf(“\n Book : %d”,sizeof(bk1.book));
 printf(“\n Pages : %d”,sizeof(bk1.pages));
 printf(“\n Price : %d”,sizeof(bk1.price));
 printf(“\n Total Bytes : %d”,sizeof(bk1));
}

OUTPUT:
Size of Structure Elements
Book : 30
Pages : 2
Price : 4
Total Bytes : 36

 Explanation:
 In the above program, structure book1 is defined with three member variables char

book[30], int pages and float price, respectively. The bk1 is an object of
the structure book1. Using the sizeof() operator, their sizes are displayed. The
 memory sizes in bytes displayed are 30, 2 and 4, respectively. The total size of one record is
36, i.e. size of all member variables of the above structure.

A few examples are illustrated below for understanding the working of a structure.

 13.2 Write a program to define a structure and initialize its member variables.

M13_KAMT3553_02_SE_C13.indd 493 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

494 Programming in C

 Explanation:
 In the above program, the structure book1 is defined with its member variables char

book[30], int pages and float price. The bk1 is an object of the structure
book1. The statement struct book1 bk1={“Programming in C ” 300,285}
defines object bk1 and initializes the variables with the values enclosed in the curly braces,
respectively. Using the printf() statement, contents of the individual fields are displayed.

It is possible to copy the structure variable to another structure variable one by one or whole at once.
An example is illustrated below on this concept.

 13.3 Write a program to copy structure elements from one object to another object.

 char book[30];
 int pages;
 float price;
 };
 struct book1 bk1={“Programming in C “,600,185};
 clrscr();
 printf(“\n Book Name : %s”,bk1.book);
 printf(“\n No. of Pages : %d”,bk1.pages);
 printf(“\n Book Price : %.2f”,bk1.price);
 getche();
}

OUTPUT:
 Book Name : Programming in C
 No. of Pages : 600
 Book Price : 185.00

include <string.h>

void main()
{
 struct disk
 {
 char co[15];
 float type;
 int price;
 };
 struct disk d1={“SONY”,1.44,20};
 struct disk d2,d3;

 strcpy(d2.co,d1.co);
 d2.type=d1.type;
 d2.price=d1.price;

 d3=d2=d1;

 clrscr();

 printf(“\n %s %g %d”,d1.co,d1.type,d1.price);
 printf(“\n %s %g %d”,d2.co,d2.type,d2.price);

M13_KAMT3553_02_SE_C13.indd 494 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

Structure and Union 495

 Explanation:
 In the above program, d1, d2 and d3 are objects defined based on structure disk. The object

d1 is initialized. The contents of d1 are copied to d2 and d3 objects. In the first method,
individual elements of d1 object are copied using the assignment statement. The strcpy()
function is used because the first element of the structure is a string. In the second method, all
the contents of d1 are copied to d2 and d3. Here, the statement d3=d2=d1 performs this
task. Thus, in a structure, elements are possible to be copied (or elements can be copied to. . .)
to another object of the same type at one stroke.

 13.4 Write a program to read the values using scanf() and assign them to structure variables.

 printf(“\n %s %g %d”,d3.co,d3.type,d3.price);
 getche();
}

OUTPUT:
SONY 1.44 20
SONY 1.44 20
SONY 1.44 20

void main()
{
 struct book1
 {
 char book[30];
 int pages;
 float price;
 };
 struct book1 bk1;
 clrscr();

 printf(“Enter Book name, pages, price :”);
 scanf(“%s”, bk1.book);
 scanf(“%d”, &bk1.pages);
 scanf(“%f”, &bk1.price);

 printf(“\n Book Name : %s”,bk1.book);
 printf(“\n No. of Pages : %d”,bk1.pages);
 printf(“\n Book Price : %.2f”,bk1.price);
 getche();
}

OUTPUT:
Enter Book name, pages, price :C 500 450
Book Name : C
No. of Pages : 500
Book Price : 450.00

 Explanation:
 This program is the same as the previous one. Instead of initializing values, the values are

read using scanf() statements and structure variables. The printf() statement displays
the contents of structure variables.

M13_KAMT3553_02_SE_C13.indd 495 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

496 Programming in C

13.4 structure wIthIn structure
We can take any data type for declaring structure
members like int, float, char. In the same
way, we can also take objects of one structure as a
member in another structure. Thus, a structure within
a structure can be used to create complex data appli
cations (see Figure 13.2). The syntax of the structure
within the structure is as follows:

struct time
{
 int second;
 int minute;
 int hour;
};

struct t
{
 int carno;
 struct time st;
 struct time et;
};

struct t player;

 13.5 Write a program to read and display the car
number, starting time and reaching time.
Use structure within structure.

void main()
{
 struct time
 {
 int second;
 int minute;
 int hour;
 };

 struct t
 {
 int carno;
 struct time st;
 struct time rt;
 };
 struct t r1;

 clrscr();
 printf(“\n Car No. Starting Time Reaching Time :”);
 scanf(“%d”, &r1.carno);
 scanf(“%d %d %d”, &r1.st.hour, &r1.st.minute, &r1.st.second);
 scanf(“%d %d %d”, &r1.rt.hour, &r1.rt.minute, &r1.rt.second);
 printf(“\n\tCar No. \tStarting Time \tReaching Time\n”);
 printf(“\t%d\t”,r1.carno);

player

car no.

st

second

minute

hour

et

second

minute

hour

Figure 13.2 Structure within structure

M13_KAMT3553_02_SE_C13.indd 496 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

Structure and Union 497

 Explanation:
 In the above program, two structures are defined. The first structure is time that contains

member fields int second, int minute and int hour. The second structure is t
whose member fields are carno, st and rt. The variables st and rt are the objects of
the first structure. Using these two variables, it is possible to access the member variables of
the first structure. The variable r1 is an object of the structure t. The statement r1.carno
accesses the variable carno of the structure t and the statement r1.st.hour accesses the
variable hour of the structure time. Here, the dot operator is used twice because we are
accessing time structure through the object of t structure.

 13.6 Write a program to enter full name and date of birth of a person and display the same. Use
the nested structure.

 printf(“\t%d:%d:%d\t\t”,r1.st.hour,r1.st.minute,r1.st.second);
 printf(“\t%d:%d:%d”,r1.rt.hour,r1.rt.minute,r1.rt.second);
 getche();
}

OUTPUT:
Car No. Starting Time Reaching Time :125 2 50 30 3 50 25

Car No. Starting Time Reaching Time
125 2:50:30 3:50:25

void main()
{

 struct name
 {

 char first[10];
 char second[10];
 char last [10];
 };

 struct b_date
 {
 int day;
 int month;
 int year;
 };

 struct data
 {
 struct name nm;
 struct b_date bt;
 };
 struct data r1;
 clrscr();
 printf(“\n Enter Name (First / Second / Last)\n”);
 scanf(“%s %s %s”,r1.nm.first,r1.nm.second,r1.nm.last);
 printf(“\n Enter Birth Date Day / Month / Year\n”);
 scanf(“%d %d %d”, &r1.bt.day, &r1.bt.month, &r1.bt.year);

 printf(“Name : %s %s %s\n”,r1.nm.first,r1.nm.second,r1.nm.last);

M13_KAMT3553_02_SE_C13.indd 497 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

498 Programming in C

 Explanation:
 In the above example, structure name, b_date and data are defined. The structure data has

member variables of type name and b_date structures, respectively. Therefore, this type
of structure is called a nested structure. The variable r1 is a variable of type data structure.
Using scanf() statement, the program reads data from the keyboard. In the same way,
using the printf() statement entered data is displayed on the screen. Here, the dot (.)
operator is used twice as we are accessing variables of structure which are inside the another
structure.

13.5 array oF structures
As we know an array is a collection of similar data types. In the same way, we can also define an
 array of structure. In such type of array, every element is of structure type. Array of structure can be
declared as follow:

struct time
{
 int second;
 int minute;
 int hour;
} t[3];

In the above example, t[3] is an array of three elements containing three objects of time structure.
Each element of t[3] has structure of time with three members that are second, minute and hour. A
program is explained as given below.

 13.7 Write a program to create an array of structure objects.

 printf(“Birth Date : %d.%d.%d”,r1.bt.day,r1.bt.month,r1.bt.year);
 getche();
}

OUTPUT:
Enter Name(First / Second / Last)
Ram Sham Pande

 Enter Birth Date Day / Month / Year
12 12 1980

Name : Ram Sham Pande
Birth Date : 12.12.1980

void main()
{
 int k;

 struct time
 {
 int second;
 int minute;

M13_KAMT3553_02_SE_C13.indd 498 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

Structure and Union 499

 Explanation:
 In the above program, two structures time and are declared. An array of threeelements

r1[3] is defined. The first for loop executes three times and the scanf() statement
reads data through the keyboard for each element of the object. The second for loop and the
printf() statements within it display the contents of the array of object with their elements.

 13.8 Write a program to display names, roll numbers and grades of three students who have ap
peared in an examination. Declare the structure of name, roll nos and grade. Create an array
of structure objects. Read and display the contents of the array.

 int hour;
 };

 struct t
 {
 int carno;
 struct time st;
 struct time rt;
 };

 struct t r1[3];

 clrscr();
 printf(“\nCar No. Starting Time Reaching Time :\n\n”);
 printf(“\t hh:mm:ss\t hh:mm:ss \n”);

 for (k=0;k<3;k++)
 {
 scanf(“%d”, &r1[k].carno);
 scanf(“%d %d %d”, &r1[k].st.hour, &r1[k].st.minute, &r1[k].

st.second);
 scanf(“%d %d %d”, &r1[k].rt.hour, &r1[k].rt.minute, &r1[k].

rt.second);
 }
 printf(“\n\tCar No. \tStarting Time \tReaching Time\n”);
 for (k=0;k<3;k++)
 {
 printf(“\n\t%d\t”,r1[k].carno);
 printf(“\t%d:%d:%d\t\t”,r1[k].st.hour,r1[k].st.minute,r1[k].

st.second);
 printf(“\t%d:%d:%d”,r1[k].rt.hour,r1[k].rt.minute,r1[k].rt.second);
 }
 getche();
}

OUTPUT:
Car No. Starting Time Reaching Time :
 hh:mm:ss hh:mm:ss
120 2 20 25 3 25 58
121 3 25 40 4 40 25
122 4 30 52 5 40 10

Car No. Starting Time Reaching Time :

120 2 :20: 25 3 :25:58
121 3 :25: 40 4 :40: 25
122 4 :30: 52 5 :40:10

M13_KAMT3553_02_SE_C13.indd 499 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

500 Programming in C

 Explanation:
 In the above program, structure stud is declared with its members char name [12], int

rollno and char grade[2]. The array st[3] of structure stud is declared. The first

void main()
{
 int k=0;
 struct stud
 {
 char name[12];
 int rollno;
 char grade[2];
 };

 struct stud st[3];

 while(k<3)
 { clrscr();
 gotoxy(2,4);
 printf(“Name : “);
 gotoxy(17,4);
 scanf(“%s”,st[k].name);

 gotoxy(2,5);
 printf(“Roll No. : ”);
 gotoxy(17,5);
 scanf(“%d”,&st[k].rollno);

 gotoxy(2,6);
 printf(“Grade :”);
 gotoxy(17,6);
 scanf(“%s”,st[k].grade);
 st[k].grade[1]=’\0’;
 puts(“ press any key..”);
 getch();
 k++;

 }
 k=0;
 clrscr();
 printf(“\nName\t Rollno\ Grade\n”);
 while(k<3)
 {
 printf(“\n%s\t %d\t %s”,st[k].name,st[k].rollno,st[k].grade);
 k++;
 }

}

OUTPUT:
Name Rollno. Grade
Sanjay 125 A
Rajesh 126 A+
Srinivas 127 A

Note: This output is displayed after entering the data of three students.

M13_KAMT3553_02_SE_C13.indd 500 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

Structure and Union 501

while loop and scanf() statements within the loop are used for repetitive data reading. The
second while loop and printf() statements within it display the contents of the array.

13.6 PoInter to structure
We know that the pointer is a variable that holds the address of another data variable. The variable
may be of any data type, i.e. int, float or double. In the same way, we can also define pointer
to structure. Here, starting address of the member variables can be accessed. Thus, such pointers are
called structure pointers.

Example:

struct book
{ char name[25];
 char author[25];
 int pages;

};
struct book *ptr;

In the above example, ptr is pointer to structure book. The syntax for using pointer with member
is as given below:

(1) ptr->name (2) ptr->author (3) ptr->pages.

By executing these three statements, starting address of each member can be estimated.

 13.9 Write a program to declare pointer to structure and display the contents of the structure.

void main()
{
 struct book
 {
 char name[25];
 char author[25];
 int pages;
 };
 struct book b1={“JAVA COMPLETE REFERENCE”, “P.NAUGHTON”, 886};
 struct book *ptr;

 ptr=&b1;
 clrscr();
 printf(“\n %s by %s of %d pages”,b1.name,b1.author,b1.pages);
 printf(“\n %s by %s of %d pages”, ptr->name,ptr->author,ptr->pages);
}

OUTPUT:
JAVA COMPLETE REFERENCE by P.NAUGHTON of 886 pages
JAVA COMPLETE REFERENCE by P.NAUGHTON of 886 pages

 Explanation:
 In the above program, the function printf() statement prints structure elements by call

ing them as usual. In the second printf() statement to print the structure elements using
pointer an arrow operator (− and > together) is used instead of dot (.) operator. The reason
is that the ptr is not a structure variable but pointer to a structure.

M13_KAMT3553_02_SE_C13.indd 501 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

502 Programming in C

 13.10 Write a program to declare pointer as members of structure and display the contents of the
structure.

void main()
{
 struct boy
 {
 char *name;
 int *age;
 float *height;
 };

 static struct boy *sp;

 char nm[10]=”Mahesh”;
 int ag=20;
 float ht=5.40;

 sp->name=nm;
 sp->age=&ag;
 sp->height=&ht;

 clrscr();
 printf(“\n Name = %s”,sp->name);
 printf(“\n Age = %d”,*sp->age);
 printf(“\n Height = %.2f”,*sp->height);
}

OUTPUT:
Name = Mahesh
Age = 20
Height = 5.40

 Explanation:
 In the above program, structure boy is declared. The members of structure boy are pointers.

The pointer sp is a pointer to structure boy. Another three ordinary variables char nm
[10]=”Mahesh”, int ag=20 and float ht=5.40 are declared and initialized. The
addresses of these ordinary variables are assigned to structure variables using arrow operator.
Using the printf() statement, the contents of structure variables are displayed.

 13.11 Write a program to declare a pointer as members of structure and display the contents of
the structure without using the arrow (−>) operator.

include <string.h>
void main()
{
 struct boy
 {
 char *name;
 int *age;

M13_KAMT3553_02_SE_C13.indd 502 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

Structure and Union 503

 Explanation:
 This program is the same as the previous one. Here, no pointer is declared in structure.

Hence, using dot operator, we can display the contents of the structure.

 13.12 Write a program to display the contents of the structure using the ordinary pointer.

 float *height;
 };
 struct boy b;

 char nm[10]=”Somesh”;
 int ag=20;
 float ht=5.40;
 strcpy(b.name,nm);
 b.age=&ag;
 b.height=&ht;
 clrscr();
 printf(“\n Name = %s”,b.name);
 printf(“\n Age = %d”,*b.age);
 printf(“\n Height = %g”,*b.height);
}

OUTPUT:
Name = Somesh
Age = 20
Height = 5.4

void main()
{
 int *p;

 struct num
 {
 int a;
 int b;
 int c;
 };
 struct num d;
 d.a=2;
 d.b=3;
 d.c=4;

 p=&d.a;

 clrscr();
 printf(“\n a=%d”,*p);
 printf(“\n b=%d”,*(++p));
 printf(“\n c=%d”,*(++p));
}

OUTPUT:
a=2
b=3
c=4

M13_KAMT3553_02_SE_C13.indd 503 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

504 Programming in C

 Explanation:
 In the above program, *p and structure num are declared. The structure num has three mem

bers a, b and c of integer data type and initialized with the values 2, 3 and 4, respectively.
We know that structure variables are stored in successive memory locations. If we get start
ing address of one variable then we can display next elements. The address of variable a is
assigned to pointer p. By applying unary and ++ operators a pointer is incremented and
values are displayed.

13.7 structure and FunctIons
Like variables of standard data type structure variables can be passed to the function by value or
address. The syntax of the same is as follows:

struct book
{
 char name[35];
 char author[35];
 int pages;
} b1;

 void main()
 {

 show(&b1);

 }
 show (struct book *b2)
 {

 }

Whenever a structure element requires to pass to any other function, it is essential to declare the struc
ture outside the main() function, i.e. global.
 In the above example, structure book is declared before main(). It is a global structure. Its
member elements are char name[35], char author[35] and int pages. They can be
accessed by all other functions.

 13.13 Write a program to pass address of a structure variable to a userdefined function and
display the contents.

/* passing address of structure variable */

struct book

{
 char name[35];
 char author[35];
 int pages;
};

M13_KAMT3553_02_SE_C13.indd 504 5/15/2015 10:06:31 AM

https://hkgbooks.blogspot.com

Structure and Union 505

 Explanation:
 In the above program, structure book is defined before main(). In the main() function,

b1 is a structure object declared and initialized. The address of object b1 is passed to func
tion show(). In the function show(), the address is assigned to pointer b2 that is a pointer
to the structure book. Thus, using the operator contents of structure elements are displayed.

 13.14 Write a program to pass structure elements to function print() and print the elements.

void main()
{
 struct book b1= {“JAVA COMPLETE REFERENCE”,”P.NAUGHTON”,886};
 show(&b1);
}

show(struct book *b2)
{
 clrscr();
 printf(“\n %s by %s of %d pages”,b2->name,b2->author,b2->pages);

}

OUTPUT:
JAVA COMPLETE REFERENCE by P.NAUGHTON of 886 pages

void main()
{
 struct boy
 {
 char name[25];
 int age;
 int wt;
 };
 struct boy b1={“Amit”,20,25};
 print(b1.name,b1.age,b1.wt);
}
print(char *s, int t, int n)
{
 clrscr();
 printf(“\n %s %d %d”,s,t,n);
}

OUTPUT:
Amit 20 25

 Explanation:
 In the above example, the structure name has member variables like a character array

name[25], age and wt of integer type. We have passed the base address of name to the
function & age and wt by call by value. Thus, here values are passed using call by refer
ence and call by value methods. Instead of passing each element, one can also pass the entire
structure into the function. This is shown in the belowgiven program.

M13_KAMT3553_02_SE_C13.indd 505 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

506 Programming in C

 13.15 Write a program to pass the entire structure to the userdefined function.

/* passing entire structure to function */

struct boy
{
 char name[25];
 int age;
 int wt;
};
void main()
{
 struct boy b1={“Amit”,20,25};
 print(b1);
}
print(struct boy b)
{
 clrscr();
 printf(“\n %s %d %d”,b.name,b.age,b.wt);
 return 0;
}

OUTPUT:
Amit 20 25

 Explanation:
 In the above program, structure boy is defined outside the main(). So it is global

and every function can access it. The object defined on structure boy b1 is passed to
function print(). The formal argument (object) of function print() receives the
contents of object b1. Thus, using dot operator contents of individual elements are
displayed.

13.8 typedef

We can create new data type by using typedef. The statement typedef is to be used while defin
ing the new data type. The syntax is as follows:

 typedef type dataname;

Here, type is the datatype and dataname is the userdefined name for that type.

 typedef int hours;

Here, hours is another name for int and now we can use hours instead of int in the program as
follows:

 hours hrs;

 13.16 Write a program to create userdefined data type hours on int data type and use it in the
program.

M13_KAMT3553_02_SE_C13.indd 506 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

Structure and Union 507

 Explanation:
 In the above example, with typedef we have declared hours as an integer data type. Im

mediately after the typedef statement hrs is a variable of hours data type which is similar
to int. Further program calculates minutes & seconds using hrs variable.

 13.17 Write a program to create string data type.

#define H 60
void main()
{
 typedef int hours;
 hours hrs;
 clrscr();
 printf(“Enter Hours: ”);
 scanf(“%d”, &hrs);
 printf(“\nMinutes = %d”,hrs*H);
 printf(“\nSeconds = %d”,hrs*H*H);
}

OUTPUT:
Enter Hours: 2
Minutes = 120
Seconds = 7200

void main()
{
 typedef char string[20];
 string a=” Hello ”,b;
 clrscr();
 puts(“Enter Your Name :”);
 gets(b);
 printf(“%s %s”,a,b);
}

OUTPUT:
Enter Your Name : KAMAL
Hello KAMAL

 Explanation:
 In the above program, string[20] is a userdefined character data type. It defines two

variables and having 20 character space for each. Similarly, we can also use typedef
for defining the structure. One of its example is as given below.

 13.18 Create a userdefined data type from structure. The structure should contain the variables such
as char, int. By using these variables, display name, sex and acno. of an employee.

void main()
{
 typedef struct

M13_KAMT3553_02_SE_C13.indd 507 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

508 Programming in C

 Explanation:
 In the above program, info is another userdefined name for defining the structure. Here,

info is used for defining the structure variables such as employee’s name, sex and age. The
user can understand the rest of the program.

 13.19 Create a userdefined data type from structure. The structure should contain the variables
such as char, int. By using these variables display name, sex and acno of two
 employees. Use array of structures.

 {
 char name[20];
 char sex[2];
 int acno;
 }info;
 info employee={“Sanjay”,“M”,125};
 clrscr();
 printf(“\nName\t Sex\t A/c No.\n”);
 printf(“%s\t”,employee.name);
 printf(“ %s\t”,employee.sex);
 printf(“ %d\n”,employee.acno);
}

OUTPUT:
Name Sex A/c No.
Sanjay M 125

void main()
{
 typedef struct
 {
 char name[20];
 char sex[2];
 int acno;
 }info;
 info employee[2];
 int k;
 clrscr();
 for (k=0;k<2;k++)
 {
 printf(“ Name of the Employee :”);
 scanf(“%s”,employee[k].name);
 printf(“ Sex :”);
 scanf(“%s”,employee[k].sex);
 printf(“A/c No. :”);
 scanf(“%d”, &employee[k].acno);
 }
 printf(“\nName\t Sex\t A/c No.\n”);

 for (k=0;k<2;k++)
 {
 printf(“%s\t”,employee[k].name);

M13_KAMT3553_02_SE_C13.indd 508 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

Structure and Union 509

 Explanation:
 In the above program, using typedef statement the userdefined data type info is created.

The info data type contains two characters and one integer field. An array employee
[2] is declared based on the info data type. The first for loop and scanf() statements
within it read data. The second for loop and the printf() statements within it display the
contents of the array on the screen.

 13.20 Write a program to define the structure containing the details of the employee. The struc
ture may contain first, middle, last name, place, city and pin code. Use typedef to create
data type. Display the records of two employees.

 printf(“ %s\t”,employee[k].sex);
 printf(“ %d\n”,employee[k].acno);
 }
}

OUTPUT:
Name of the Employee : AJAY
Sex : M
A/c No. : 122

Name of the Employee : ANITA
Sex : F
A/c No. : 124
NAME SEX A/C NO.
AJAY M 122
ANITA F 124

void main()
{
 int j;
 typedef struct
 {
 char first[20];
 char middle[20];
 char last [15];
 char city[15];
 int pincode;
 }name;
 name person[2];
 clrscr();
 for (j=0;j<2;j++)
 {
 printf(“\nRecord No. : %d”,j+1);
 printf(“\nFirst Name :”);
 scanf(“%s”,person[j].first);
 printf(“Middle Name :”);
 scanf(“%s”,person[j].middle);
 printf(“Last Name :”);
 scanf(“%s”,person[j].last);
 printf(“City & Pincode”);

M13_KAMT3553_02_SE_C13.indd 509 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

510 Programming in C

 scanf(“%s %d”,person[j].city, &person[j].pincode);
 }
 for (j=0;j<2;j++)
 {
 printf(“\n\nFirst Name : %s”,person[j].first);
 printf(“\nMiddle Name : %s”,person[j].middle);
 printf(“\nLast Name : %s”,person[j].last);
 printf(“\nCity & Pincode : %s - %d”,person[j].city,person[j].

pincode);
 }
}

OUTPUT:
Record No. : 1
First Name : Jay
Middle Name : Mohan
Last Name : Deshmukh
City & Pincode : Nanded 431 602

Record No. : 2
First Name : Vijay
Middle Name : Kamal
Last Name : Nandedkar
City & Pincode : Nanded 431 602

Record No. : 1
First Name : Jay
Middle Name : Mohan
Last Name : Deshmukh
City & Pincode : Nanded 431 602

Record No. : 2
First Name : Vijay
Middle Name : Kamal
Last Name : Nandedkar
City & Pincode : Nanded 431 602

 Explanation:
 In the above program, the typedef structure contains employee details like first, middle,

last name, city and pincode. Based on this structure, the user defines data type name, which
is further used in the program to accept and print the relevant data fed by the user.

13.9 BIt FIelds
Bit field provides exact amount of bits required for storage of values. If a variable value is 1 or 0 then
we need a single bit to store it. In the same way if the variable is expressed between 0 and 3 then the
two bits are sufficient for storing these values. Similarly if a variable assumes values between 0 and
7 then three bits will be sufficient to hold the variable and so on. The number of bits required for a
variable is specified by nonnegative integer followed by a colon.
 To hold the information, we use the variables. The variables occupy minimum one byte for char
and two bytes for int. Instead of using complete integer if bits are used, and space of memory can be
saved. For example, to know the information about the vehicles, the following information has to be
stored in the memory:

M13_KAMT3553_02_SE_C13.indd 510 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

Structure and Union 511

 (i) PETROL VEHICLE

 (ii) DIESEL VEHICLE

 (iii) TWO_WHEELER VEHICLE

 (iv) FOUR_WHEELER VEHICLE

 (v) OLD MODEL

 (vi) NEW MODEL

In order to store the status of the above information, we may need two bits for the type of fuel
as to whether vehicle is of petrol or diesel type. Three bits for its type as to whether the vehicle
is a two or a fourwheeler. Similarly, three bits for model of the vehicle. Total bits required
for storing the information would be eight bits i.e. 1 byte. It means that the total information
can be packed into a single byte. Eventually, bit fields are used for conserving the memory.
The amount of memory saved by using bit fields will be substantial which is proved from the
above example.
 However, there are restrictions on bit fields when arrays are used. Arrays of bit fields are not
permitted. Also, the pointer cannot be used for addressing the bit field directly, although the use of the
member access operator (>) is acceptable.
 The unnamed bit fields could be used for padding as well as for alignment purposes.
The structure for the above problem would be as follows:

struct vehicle
{
 unsigned type: 3;
 unsigned fuel: 2;
 unsigned model: 3;
};

The colon (:) in the above declaration tells to the compiler that bit fields are used in the structure and
the number after it indicates how many bits are required to allot for the field.

 13.21 Write a program to store the information of vehicles. Use bit fields to store the status of
information.

define PETROL 1
define DISEL 2
define TWO_WH 3
define FOUR_WH 4
define OLD 5
define NEW 6

void main()
{
 struct vehicle
 {
 unsigned type : 3;
 unsigned fuel : 2;
 unsigned model :3;
 };
 struct vehicle v;
 v.type=FOUR_WH;

M13_KAMT3553_02_SE_C13.indd 511 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

512 Programming in C

 Explanation:
 In the above program, using #define macros are declared. The information about the

vehicle is indicated between integers 1 to 6. The structure vehicle is declared with bit fields.
The number of bits required for each member is initialized. As per the program, for type of
vehicle requires 3 bits, fuel requires 2 bits and model requires 3 bits. An object v is declared.
Using the object bits fields are initialized with data. The output of the program displays
integer value stored in the bit fields, which can be verified with macro definitions initialized
at the beginning of the program.

 13.22 Write a program to display the examination result of students using bit fields.

 v.fuel=DISEL;
 v.model=OLD;
 clrscr();
 printf(“\n Type of Vehicle : %d”,v.type);
 printf(“\n Fuel : %d”,v.fuel);
 printf(“\n Model : %d”,v.model);
 getche();
}

OUTPUT:
 Type of Vehicle : 4
 Fuel : 2
 Model : 5

define PASS 1
define FAIL 0
define A 0
define B 1
define C 2

void main()
{
 struct student
 {
 char *name;
 unsigned result : 1;
 unsigned grade : 2;
 };
 struct student v;
 v.name=”Sachin”;
 v.result=PASS;
 v.grade =C;
 clrscr();
 printf(“\n Name : %s”,v.name);
 printf(“\n Result : %d”,v.result);
 printf(“\n Grade : %d”,v.grade);
 getche();
}

M13_KAMT3553_02_SE_C13.indd 512 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

Structure and Union 513

 Explanation:
 The above program is the same as the previous one. Only the member variables and bits

assigned are different.

13.10 enumerated data tyPe
The enum is a keyword. It is used for declaring enumeration types. The programmer can create his/
her own data type and define what values the variables of these data types can hold. This enumeration
data type helps in reading the program.
 Consider the example of 12 months of a year.

enum month {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec};

This statement creates a userdefined data type. The keyword enum is followed by the tag name
month. The enumerators are the identifiers and so on. Their values
are constant unsigned integers and starts from 0. The identifier Jan referes to 0, Feb to 1 and so on.
The identifiers are not to be enclosed with quotation marks. Please also note that integer constants
are also not permitted.

 13.23 Write a program to create enumerated data type for 12 months. Display their values in
integer constants.

OUTPUT:
Name : Sachin
Result : 1
Grade : 2

void main()
{

 enum month {Jan, Feb, Mar, Apr, May, June, July, Aug, Sep, Oct,
Nov, Dec};

 clrscr();

 printf(“\nJan = %d”,Jan);
 printf(“\nFeb = %d”,Feb);
 printf(“\nJune = %d”,June);
 printf(“\nDec = %d”,Dec);
}

OUTPUT:
Jan = 0
Feb = 1
June = 5
Dec = 11

M13_KAMT3553_02_SE_C13.indd 513 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

514 Programming in C

 Explanation:
 In the above program, enumerated data type month is declared with 12month names within

two curly braces. The compiler assigns 0 value to the first identifier and 11 to the last identifier.
Using printf() statement, the constants are displayed for different identifiers. By default,
the compiler assigning values from 0 onwards. Instead of 0 the programmer can initialize
his/her own constant to each identifier. The below given program illustrates this concept.

 13.24 Write a program to create enumerated data type for 12 months. Initialize the first identifier
with 1. Display their values in integer constants.

void main()
{
 enum month

{Jan=1, Feb, Mar, Apr, May, June, July, Aug, Sep, Oct, Nov, Dec};
 clrscr();
 printf(“\nJan = %d”,Jan);
 printf(“\nFeb = %d”,Feb);
 printf(“\nJune = %d”,June);
 printf(“\nDec = %d”,Dec);
}

OUTPUT :
Jan = 1
Feb = 2
June = 6
Dec = 12

 Explanation:
 In the above program, enumerated data type month is declared with 12 months names within

two curly braces. The compiler starts assigning values from 1 to first identifier because the
first identifier is initialized with constant 1 and 12 to last identifier. Using printf() state
ment, the constants are displayed for different identifiers.

 13.25 Write a program to display the name of month using enumerated data type. Initialize the
enumerated data with userdefined constant.

void main()
{
 int f;
 enum month {Jan=1,Feb,Mar,Apr,May,June,July,Aug,Sep,Oct,Nov,Dec};
 clrscr();

 for (f=Jan;f<=Dec;f++)
 switch(f)
 {
 case Jan :
 printf(“\n January”);

M13_KAMT3553_02_SE_C13.indd 514 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

Structure and Union 515

 break;

 case Feb :
 printf(“\n February”);
 break;

 case Mar :
 printf(“\n March”);
 break;

 case Apr :
 printf(“\n April”);
 break;

 case May :
 printf(“\n May”);
 break;

 case June :
 printf(“\n June”);
 break;

 case July :
 printf(“\n July”);
 break;

 case Aug :
 printf(“\n August”);
 break;

 case Sep :
 printf(“\n September”);
 break;

 case Oct :
 printf(“\n October”);
 break;

 case Nov :
 printf(“\n November”);
 break;

 case Dec :
 printf(“\n December”);
 break;
 }
}

OUTPUT :
January
February
March
April
May
June
July
August
September
October
November
December

M13_KAMT3553_02_SE_C13.indd 515 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

516 Programming in C

 Explanation:
 In the above program, enumerated data type month is defined and initialized with month

names. In the declaration, the enumerated month is initialized with constant 1, so that the
counting of enum constants starts from 1. The constants are used in the for loop. The
switch() case executes appropriate case and displays month names.

 13.26 Write a program to use enumerated data type.

include <string.h>
void main()
{
 enum capital
 {
 Mumbai,Hyderabad, Bangalore
 };

 struct state
 {
 char name[15];
 enum capital c;
 };
 struct state s;
 strcpy(s.name,”Andhra Pradesh”);
 s.c=Hyderabad;
 clrscr();

 printf(“\n State : %s”,s.name);
 printf(“\n Capital : %d”,s.c);

 if (s.c==Hyderabad)
 printf(“\n Hyderabad is the Capital city of %s”,s.name);

}

OUTPUT:
State : Andhra Pradesh
Capital : 1
Hyderabad is the Capital city of Andhra Pradesh

 Explanation:
 In the above program, enum data type capital is defined and initialized with three identi

fiers. They are Mumbai, Hyderabad and Bangalore. The Structure state is declared
with two members such as name and capital. The structure variables are assigned with
values Andhara Pradesh and Hyderabad. The printf() statement displays the contents of
structure variables. If the structure variable s.c contains value Hyderabad then a message is
displayed otherwise not.

 13.27 Write a program to identify the type of entered character whether it is a letter, digit or other
symbol. Use enumerated data type.

include <ctype.h>

void main()

M13_KAMT3553_02_SE_C13.indd 516 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

Structure and Union 517

 Explanation:
 In the above program, enum data type ctype is declared with identifiers letter, digit and

anything else. A character is entered through the keyboard. The macros isalpha() and
isdigit() check the character whether it is a letter, digit or anything else. Depending
upon the type of character entered appropriate identifiers are displayed. In the output, = is
entered. It is neither a letter nor a digit. Hence, it comes under other type whose enumerated
value is 2. Thus, we get the type entered character with its value.

13.11 union

Union is a variable, which is similar to the structure. It contains the number of members like
structure but it holds only one object at a time. In the structure, each member has its own memory
location whereas the members of unions have the same memory locations. It can accommodate one
member at a time in a single area of storage. union also contains members of types int, float,
long, arrays, pointers. It allocates fixed specific bytes of memory for access of data types
irrespective of any data type.
 The union requires bytes that are equal to the number of bytes required for the largest members.
For example, if the union contains char, integer and long integer then the number of bytes
reserved in the memory for the union is 4 bytes. An example is illustrated below for proper under
standing.

{
 char ch;
 int f;
 enum ctype
 {
 Letter,Digit,Other
 };

 clrscr();
 printf(“\n Enter any character ”);
 ch=getch();
 f=isalpha(ch);

 if(f!=0)
 printf(“\n %c is type %d symbol ”,ch,Letter);
 else
 {
 f=isdigit(ch);
 if (f!=0)
 printf(“\n %c is type %d symbol ”,ch,Digit);
 else
 printf(“\n %c is type %d symbol ”,ch,Other);
 }
}

OUTPUT:
Enter any character
= is type 2 symbol

M13_KAMT3553_02_SE_C13.indd 517 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

518 Programming in C

 13.28 Write a program to find the size of union and the number of bytes reserved for it.

void main()
{
 union result
 {
 int marks;
 char grade;
 };

 struct res
 {
 char name[15];
 int age;
 union result perf;
 }
 data;
 clrscr();
 printf(“Size of union : %d\n”,sizeof(data.perf));
 printf(“Size of Structure : %d\n”, sizeof(data));
}

OUTPUT:
Size of union : 2
Size of Structure : 19

 Explanation:
 Union contains two variables of data types int and char, respectively. The int and

char require 2 and 1 bytes, respectively, for storage. According to the theory, the union
reserves two bytes because int takes more space than the char data type.

The structure res is defined immediately after union, which contains data types char, int and
union variable. The size of the structure is printed which is nothing but the sum of 15 bytes of char
array, two bytes of int and two bytes of union variable perf. Thus, the total size of structure is 19.

13.12 callIng BIos and dos servIces
We can access BIOS and DOS services through C language. A few simple examples are illustrated by
making the use of BIOS and DOS services. The programmer does not have direct access to the CPU reg
isters. However, the C language provides an interface that allows the programmer to access any BIOS or
DOS service. The C language defines a union type called ‘REGS’ and structure type called ‘SREGS’
in the file ‘DOS.H’ which escort the C compiler. These data types are used to pass parameters to the CPU
registers. In order to have access to these definitions, the programmer has to include ‘dos.h’ header file.
 The union type ‘REGS’ contains the CPU registers. These registers are used for holding the
data temporarily. The microprocessors 8086, 8088, 80186, 80286 and 80386 use a variety of registers
for arithmetic and logical operations. They are also used to receive instructions and pass data to and
from memory.
 The CPU registers are 16 bits in size in 8086. They are AX, BX, CX, DX, SI, DI and CFLAG,
which is carry flag. The size of CFLAG is also 16 bits. The structure that defines these 16 bit registers
is called ‘x’. The ‘x’ stands for a register pair. Size of each lower or upper register is 8 bits. Thus, the
size of pair register ‘x’ is 16 bits.

M13_KAMT3553_02_SE_C13.indd 518 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

Structure and Union 519

 The union also allows us to refer 8 bit registers of above type processors. These 8 bits registers
are AL, AH, BL, BH, CL, CH, DL and DH. The structure that defines these 8 bit registers is called ‘h’,
where ‘h’ stands for a high register, i.e.8 bit register.
 There are also segment registers in the above processors. The size of segment registers is 16 bits.
These segment registers DS, ES, CS and SS. The structure type ‘SREGS’ defines these segment registers.
 The C language provides the functions such as intdos(), intdosx() and segread() to
access the DOS services. The intdos() is used for calling DOS interrupt. The intdos() invokes
a DOS function by issuing software interrupt INT 21H.
 We can also invoke BIOS services by using C functions such as int86() and int86x(). The
int86() stands for 8086 interrupt. The int86() functions invoke a BIOS functions by issuing a
software interrupt. The int86() function can be invoked with the following three arguments.
 Interrupt type number corresponding to ROMBIOS service.
 Two arguments of union type REGS. They are ‘x’ and ‘h’.
 The int86() function takes the values of input registers from one ‘REGS’ union and returns
the output registers in another. The int86x() function is similar to int86(). The difference is
int86x() requires an input argument in DS or ES register. Below given are a few examples of
int86() functions.

 13.29 Write a program to find the memory size of the computer.

include <dos.h>
/* Finding Memory Size */
void main()
{
 union REGS in,out;
 int86(18, &in, &out);
 clrscr();
 printf(“\n Total Memory = %d KB”,out.x.ax);
}

OUTPUT:
Total Memory = 640 KB

 Explanation:
 In the above program, ‘in’ and ‘out’ are objects of type union REGS. In this example, we

need not send any values to the ROMBIOS function. Thus, nothing is to be passed to any of
the registers before invoking int86(). Here, the first argument 18 is the interrupt number
 followed by two arguments of union REGS. The result obtained here is the memory size dis
played by calling ax register. Here, extended memory of PC is displayed.

 13.30 Write a program to display the system time at a specified cursor position.

include <dos.h>
/* Positioning Cursor on the console */
void main()
{

M13_KAMT3553_02_SE_C13.indd 519 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

520 Programming in C

 Explanation:
 In the above program, the register ah contains service number, dh contains the row number

and dl contains the column number. Here, interrupt number is 16 which is placed in the
int86() function with two union variables. Thus, the system time is displayed at the speci
fied position.

 13.31 Write a program to change the cursor in different sizes.

 union REGS in,out;
 in.h.ah=2;
 in.h.dh=20;
 in.h.dl=15;
 int86(16,&in,&out);
 printf(“%s”,--TIME--);
}

OUTPUT:
19:42:49

include <dos.h>
/* Cursor sizes */
void main()
{
 union REGS in,out;

 in.h.ah=0x01;
 in.h.ch=0;
 in.h.cl=10;

 int86(0x10,&in,&out);
 getche()
}

 Explanation:
 In the above program, 0x01 is the service number under interrupt number 0x10. The CH

register contains starting scan line and CL contains ending scan line. After execution of the
function, the cursor is modified. Programmer can verify after running the program.

 13.32 Write a program to create a directory using DOS interrupt.

include <dos.h>
void main()
{
 union REGS in,out;
 char dir[11];
 clrscr();
 puts(“\n Enter Directory Name : ”);

M13_KAMT3553_02_SE_C13.indd 520 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

Structure and Union 521

 Explanation:
 The program prompts to enter the name of the directory to be created. The name entered is

stored in the variable dir. The address of dir is assigned to register DX. Now, the DX regis
ter points to directory name. The DOS service number 0x39 is called to create the directory. If
the carry flag is zero then it means the operation is successfully carried out otherwise an error
occurs. Appropriate messages are displayed on the screen.

 13.33 Write a program to display the given character on the screen.

 scanf(“%s”,dir);
 in.x.dx=(int) &dir;
 in.h.ah=0x39;
 intdos(&in,&out);

 if(out.x.cflag!=0)
 printf(“Directory %s not created”,dir);
 else
 printf(“\n Directory %s created”,dir);
}

OUTPUT:
Enter Directory Name : XYZ
Directory XYZ created

include <dos.h>

/* displays specified character */

void main()
{
 union REGS in,out;
 in.h.ah=02;
 in.h.dl=67;
 intdos(&in,&out);
}

OUTPUT:
C

 Explanation:
 In the above program, the register variable ah is initialized with service number 02 which

controls standard output devices. The register variable dl is initialized with ASCII code of
character that is to be displayed on the screen. After the execution of intdos() function,
the given character is displayed on the screen.

 13.34 Write a program to display the attributes of a file using the DOS interrupt.

include <dos.h>
/* Getting attrribute of a file */
void main()

M13_KAMT3553_02_SE_C13.indd 521 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

522 Programming in C

{
 union REGS in,out;
 char file[15];
 int mask,j;
 clrscr();
 puts(“\n Enter a file name : ”);
 scanf (“%s”,file);
 in.x.dx=(int) &file;
 in.h.al=0;
 in.h.ah=0x43;
 intdos(&in,&out);

 if (out.x.cflag!=0)
 printf(“\n File not found”);
 else
 {
 printf(“\n File attributes of %s are\n”,file);
 if (out.h.cl==0)
 puts(“\n Normal file”);
 else
 {
 mask=1;
 for (j=1;j<=6;++j)
 {
 switch(out.h.cl & mask)
 {
 case 1 : puts (“[*] Read Only”);
 break;
 case 2 : puts (“[*] Hidden ”);
 break;
 case 4 : puts (“[*] System”);
 break;
 case 8 : puts (“[*] Volume Label”);
 break;
 case 16 : puts (“[*] Subdirectory”);
 break;
 case 32 : puts (“[*] Archive”);
 break;
 }
 mask=mask*2;
 }
 }
 }
}

OUTPUT:
 Enter a file name :
C:\IO.SYS

File attributes of C:\IO.SYS are
[*] Read Only
[*] Hidden
[*] System

M13_KAMT3553_02_SE_C13.indd 522 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

Structure and Union 523

 Explanation:
 In the above program, a file name is en

tered whose attributes are to be displayed.
The DX register contains the address of the
entered file. The register AL is initialized
with 0 to get the file attributes. The register
AH is always initialized with service num
ber. Here, it is initialized with 0x43. The
result obtained is stored in the AL regis
ter. Checking the status of CL register
by AND (&) operation, we can find the
attributes of a file. Table 13.2 describes Bit
status of CL and file attributes.

 13.35 Write a program to delete a file using the DOS interrupt.

Table 13.2 Bit status and attributes
Bit Status of CL Attribute

0 Read only file

1 Hidden file

2 System file

3 Volume label

4 Subdirectory

5 Archive

6 & 7 Unused

include <dos.h>

void main()
{
 union REGS in,out;
 char file[11];
 puts(“\n Enter a file name : “);
 scanf(“%s”,file);

 in.h.ah=0x41;
 in.x.dx=(int)file;
 intdos(&in, &out);

 if(out.x.cflag==0)
 puts(“\n File successfully deleted”);
 else
 puts(“\n File could not be deleted”);
}

OUTPUT:
Enter a file name : ABC.TXT
File successfully deleted

 Explanation:
 In the above program, a file name is entered which is to be deleted. The ah register contains service

number 0x41 which performs this task. The register DX contains addresses of the file. If the func
tion is successful then the flag register contains 0 otherwise it contains nonzero values. The statuses
of cflag registers are checked using the if statement and appropriate messages are displayed.

 This program works correctly only with small memory model. To delete a file the segment address
of the file is stored in the DS register whereas the offset address is stored in the DX register. In this pro
gram, without separating the offset and segment address, address is assigned to register DX. It works
correctly in small memory model because there is only one data segment in small memory model and
DS register always contains the segment address. If you try this program with other memory models
then it would not run successfully. To make this program suitable for all the memory models, we need

M13_KAMT3553_02_SE_C13.indd 523 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

524 Programming in C

to make the address of file far. This address is then separated into offset and segment parts. For that C
provides two macros FP_SEG and FP_OFF. The description of far pointer and FP_SEG and FP_OFF
macros is beyond the scope of this book.

13.13 Union of StructureS
We know that one structure can be nested within another structure. In the same way, a union can be
nested within another union. We can also create a structure in a union or vice versa.

 13.36 Write a program to use structure within union. Display the contents of structure elements.

void main()
{
 struct x
 {
 float f;
 char p[2];
 };
 union z
 {
 struct x set;
 };
 union z st;
 st.set.f=5.5;
 st.set.p[0]=65;
 st.set.p[1]=66;

 clrscr();
 printf(“\n %g”,st.set.f);
 printf(“\n %c”,st.set.p[0]);
 printf(“\n %c”,st.set.p[1]);
}

OUTPUT:
5.5
A
B

	 Explanation:
 In the above program, structure x is defined. The union z contains structure member as its

member variable. The variable st is an object of union z. The member variables of structure
x are assigned with certain values. Using objects of structure and union with a dot operator,
the member contents of member variables are displayed.

Summary

This chapter explains the concept of structure and programs on it. One of the powerful features of
C language is that it supports the creation of a structure. The various features of a structure are de-
scribed at the beginning of this chapter. For the beginners the concepts and examples on structures are

M13_KAMT3553_02_SE_C13.indd 524 5/17/2015 1:05:10 PM

https://hkgbooks.blogspot.com

Structure and Union 525

given	in	an	easy	way	and	a	step-by-step	process	is	adopted.	The	various	titles	under	structure	such	as	
how	the	structures	are	declared,	initialized,	structure	within	the	structure,	array	of	structure,	pointer	
to	structure	are	elaborated.	Moreover,	 the	point	 that	how	functions	are	defined	 in	structure	 is	also	
illustrated	with	good	examples.	The	typedef	 facility	 can	be	used	 for	 creating	user-defined	data	
types	and	illustrated	with	many	examples.	Enumerated	data	type,	union	are	the	important	subtitles	
of	this	chapter.	Enumerated	data	type	provides	user-defined	data	types.	union	is	a	principal	method	by	
which	a	programmer	can	derive	dissimilar	data	types.	The	last	but	not	the	least	the	DOS	and	ROM-
BIOS	functions	and	their	applications	are	explained.	The	user	is	advised	to	go	through	Appendix	C	
whereby	using	these	functions	a	number	of	programs	can	be	developed.	The	readers	will	benefit	a	lot	
if	they	execute	the	programs	given	in	this	chapter.		

 EXERCISES

				1.	 Identify	the	most	appropriate	sentence	to	describe	
unions		

	 	(a)	 		unions	contain	members	of	different	data	
types	which	share	the	same	storage	area	in	
memory	

	 	(b)	 unions	are	like	structures	
	 	(c)	 	unions	are	less	frequently	used	in	the	program	
	 	(d)	 unions	are	used	for	set	operations		

			2.	 The	member	variable	of	a	structure	is	accessed	by	
using		

	 	(a)	 dot	(.)	operator	
	 	(b)	 arrow	(−>)	operator	

	 	(c)	 asterisk	()	operator	
	 	(d)	 ampersand	(&)	operator		

			3.	 The	structure	combines	variables	of		

	 	(a)	 dissimilar	data	types	
	 	(b)	 similar	data	types	
	 	(c)	 unsigned	data	types	
	 	(d)	 None	of	the	above		

		4.	 	The		typedef		statement	is	used	for		

	 	(a)	 declaring	user-defined	data	types	
	 	(b)	 declaring	variant	variables	
	 	(c)	 for	typecasting	of	variables	
	 	(d)	 None	of	the	above		

 II Select the appropriate option from the multiple choices given below:

	 			1.	 A	structure	is	a	set	of	different	data	type.		

	 		2.	 A	struct	is	a	keyword.		

	 		3.	 Structure	elements	can	be	accessed	directly.		

	 		4.	 The	dot	operator	can	be	used	to	access	the	
strut	variable.		

	 		5.	 The	structure	definition	must	be	terminated	by	a	
semi-colon.		

	 		6.	 The	declaration	and	initialization	of	structure	
variable	can	be	done	at	once.		

	 		7.	 Structure	can	be	defined	inside	another	structure	
(nested).		

	 		8.	 It	is	possible	to	pass	structure	elements	to	function.		

	 		9.	 The	array	structure	elements	cannot	be	declared.		

			10.	 The	ptr	is	a	pointer	to	structure	and	it	can	ac-
cess	elements	using	-	>	operator.		

			11.	 Bit	fields	provide	the	exact	amount	of	bits	re-
quired	for	storage.		

			12.	 Bit	fields	are	always	defined	of	signed	type.		

			13.	 The	enum	keyword	is	used	to	define	enumerated	
data	type.		

			14.	 The	value	of	enumerated	data	type	starts	from	1.		

			15.	 The	structure	elements	are	stored	in	the	separate	
memory	locations.		

			16.	 The	union	elements	are	stored	at	random	
memory	locations.		

			17.	 The	union	has	common	storage	space	for	all	its	
variable.		

			18.	 The	union	requires	more	space	as	compared	to	
a	structure.				

 I True or false :

M13_KAMT3553_02_SE_C13.indd 525 5/17/2015 12:49:16 PM

https://hkgbooks.blogspot.com

526 Programming in C

	 5. The number of bytes required for enumerated
data type in memory is

 (a) 2 bytes

 (b) 4 bytes

 (c) 1 byte

 (d) 3 bytes

	 6. The service number is always initialized in the
 register

 (a) AH

 (b) AL

 (c) BH

 (d) AX

	 7. The intdos() function invokes interrupt
 number

 (a) 0x21

 (b) 0x17

 (c) 0x18

 (d) None of the above

	 8. The int86() function invokes

 (a) ROMBIOS services

 (b) DOS services

 (c) Both (a) and (b)

 (d) None of the above

	 9. Interrupt 0x21 is a

 (a) software interrupt

 (b) hardware interrupt

 (c) Both (a) and (b)

 (d) None of the above

	10. The union holds

 (a) one object at a time

 (b) multiple objects

 (c) Both (a) and (b)

 (d) None of the above

	11. Bit fields are used only with

 (a) unsigned int data type

 (b) float data type

 (c) char data type

 (d) int data type

	12. Observe the following program neatly and
choose the appropriate printf() statement
from the options.

 struct month
 {
 char *month;
 };
 void main()
 {
 struct month m={“March”};

 }

 (a) printf (“\n Month : %s”,
m.month);

 (b) printf (“\n Month : %s”,
m->month)

 (c) printf (“\n Month :
%s”,m.*month)

 (d) printf (“\n Month : %s”,
*m.month)

	13. What will be the value of m displayed on
execution of the following program?

 struct bit
 {
 unsigned int m :3;
 };

 void main()
 {
 struct bit b={8};

 clrscr();

 printf (“\n m = %d”,b.m);
 }

 (a) m=0
 (b) m=8
 (c) m=3
 (d) None of the above

	14. The size of the structure in bytes occupied in the
following program will be

 struct bit
 {
 unsigned int m :4;
 unsigned int x :4;
 int k;
 float f;
 };
 struct bit b;

M13_KAMT3553_02_SE_C13.indd 526 5/15/2015 10:06:32 AM

https://hkgbooks.blogspot.com

Structure and Union 527

 void main()
 {
 clrscr();
 printf (“\n Size of structure

in Bytes = %d”,sizeof(b));
 }

 (a) 8
 (b) 10
 (c) 7
 (d) 4

1. Write a program to define a structure with tag
state with fields state name, number of districts
and total population. Read and display the data.

2. Write the program (1)using pointer to structure.

3. Define a structure with tag population with
fields Men and Women. Create a structure within
a structure using state and population
 structure. Read and display the data.

4. Modify the program developed using exercise (3).
Create array of structure variables. Read and dis
play the 5 records.

5. Create userdefined data type equivalent to int.
Declare three variables of its type. Perform arith
metic operations using these variables.

6. Create enumerated data type logical with
TRUE and FALSE values. Write a program to
check whether the entered number is positive or
negative. If the number is positive display 0 other
wise display 1. Use enumerated data type logical to
display 0 and 1.

7. Write a program to accept records of the differ
ent states using array of structures. The structure
should contain char state, int population, int
literacy rate and int per capita income. Assume
suitable data. Display the state whose literacy rate
is the highest and whose per capita income is the
highest.

	 8. Write a program to accept records of different states
using array of structures. The structure should con
tain char state and number of int engineering
collages, int medical collages, int management
collages and int universities. Calculate the total
collages and display the state, which is having the
highest number of collages.

	 9. Write a program to check the status of the printer
using the int86() function. The details are as
given below:

 Interrupt - 0x17
 Inputs - AH = 0x02
 - DX = printer port

number (0=LPT1,
1=LPT2, 2=LPT3)

 Returns - AH = Completion /
nonsuccess code

 Completion values are

 Bit 0=1 : time out
 Bit 3=1 : I/O mistake
 Bit 4=1 : Printer selected
 Bit 5=1 : Out of paper
 Bit 6=1 : Printer acknowledge
 Bit 7=1 : Printer not engaged

	10. Write a program to reboot the system. Use the
following data with int86() function.

 (a) Interrupt - 0x19
 (b) Input - Void (Nothing)

III Attempt the following programming exercises:

1. What is a structure in C? How is a structure de
clared?

2. What is the use of the keyword struct? Explain
the use of the dot operator.

3. How are structure elements stored in memory?

4. Explain nested structure. Draw a diagram to ex
plain a nested structure.

5. How are arrays of structure variables defined?
How are they beneficial to the programmers?

6. How are structure elements accessed using
pointer? Which operator is used?

7. Is it possible to a pass structure variable to
function? Explain in detail the possible ways.

8. How are userdefined data types defined?

IV Answer the following questions:

M13_KAMT3553_02_SE_C13.indd 527 5/15/2015 10:06:33 AM

https://hkgbooks.blogspot.com

528 Programming in C

	 9. Explain the importance of bit fields. How do bit
fields save memory space?

 10. Explain the enumerated data type.

 11. What is a union in C? How is data stored using
union?

 12. What are the differences between union and
structure?

 13. Explain REGS and SREGS unions. List any five
CPU registers of each union type.

 14. Explain int86() and intdos() functions.
How they used to interact with hardware?

1.

 void main()
 {
 struct emp
 {
 char name[30];
 int age;
 int sal;
 };
 struct emp

e={“Satish”,28,20000};
 clrscr();
 printf(“\n Name : %s”,e.

name);
 printf(“\n Age : %d”,e.age);
 printf(“\n Salary : %d”,e.sal);
 getche();
 }

 oUTPUT:

 Name : Satish
 Age : 28
 Salary : 20000

2.
 void main()
 {
 struct emp
 {
 char name[30];
 int age;
 int sal;
 };
 struct emp e={“Santosh”,28,

7000};
 clrscr();
 printf (“\n SIZE OF e :

%d”,sizeof(e));
 }

 oUTPUT:
 SIZE OF e : 34

3.
 void main()
 {
 struct emp

 {
 int k;
 int a;
 int s;
 };
 struct emp e={1,2,4};
 e.k++;
 clrscr();
 printf(“%d %d %d”,e.k,e.a,e.s);
 }

 oUTPUT:
 2 2 4

4.
 # include <string.h>

 void main()
 {
 struct boy
 {
 char *name;
 int *age;
 float *height;
 };
 struct boy b;

 char nm[10]=”Somesh”;
 int ag=20;
 float ht=5.40;

 strcpy(b.name,nm);
 b.age=&ag;
 b.height=&ht;

 clrscr();
 printf(“\n Name = %s”,b.name);
 printf(“\n Age = %d”,*b.age);
 printf(“\n Height = %g”,*b.

height);
 }

 oUTPUT:
 Name = Somesh
 Age = 20
 Height = 5.4

5.

 void main()
 {

V What is/are the output/s of the following programs?

M13_KAMT3553_02_SE_C13.indd 528 5/15/2015 10:06:33 AM

https://hkgbooks.blogspot.com

Structure and Union 529

 int *p;

 struct num
 {
 int a;
 int b;
 int c;
 };
 struct num d;
 d.a=2;
 d.b=3;

 d.c=4;

 p=&d.a;

 clrscr();

 printf(“\n a=%d”,*p);
 printf(“\n b=%d”,*(++p));
 printf(“\n c=%d”,*(++p));
 }

 oUTPUT:
 a = 2
 b = 3
 c = 4

1.
 void main()
 {
 struct book
 {
 int pages;
 float price;
 }
 *b1;
 b1.pages=500;
 b1.price=255;
 clrscr();
 printf(“\n Pages : %d”,b1.

pages);
 printf(“\n Price : %g”,b1.

price);
 }

 1. * b1 is a pointer and hence
operator –> is to be used in
place of dot (.).

2.
 void main()
 {
 struct book
 {
 int pages;
 float price;
 }
 b1
 b1.pages=450;
 b1.price=450.55;
 clrscr();
 }
 2. structure should be terminated

by semicolon.

3.
 void main()
 {

 struct book
 {
 int pages;
 float price;
 }
 b2,*b3;
 b3=&b2;
 b3->pages=400;
 b2.price=700.00;
 clrscr();
 printf(“\n Pages : %d”,

 b2->pages);
 printf(“\n Price :%g”,

b3->price);
 }
 3. variable b2 is not pointer

and hence use of –> is invalid.

4.
 void main()
 {
 struct book
 {
 int pages;
 float price;}
 b2;
 b2.pages=400;
 b2.price=700.00;
 clrscr();
 show (b2);
 }
 show (struct book b1)
 {
 printf(“\n Pages : %d”,b1.

pages);
 printf(“\n Price : %f”,b1.

price);
 }
 bug: structure should be defined

outside all functions

VI Find the bug/s in the following programs:

M13_KAMT3553_02_SE_C13.indd 529 5/15/2015 10:06:33 AM

https://hkgbooks.blogspot.com

530 Programming in C

V What is/are the output/s of the following programs?

Q. Ans. Q. Ans.

2. SIZE OF e : 34 3. 2 2 4

4. Name = Sameer
Age = 24
Height = 4.9

5. a=2
b=3
c=4

answers

I True or false:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
	 1. T 	 2. T 	 3. F 	 4. T 	 5. T

	 6. F 	 7. T 	 8. T 	 9. F 10. T

11. T 12. F 13. T 14. F 15. T

16. F 17. T 18. F

II Select the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
	 1. a 	 2. a 	 3. a 	 4. a 	 5. a
	 6. a 	 7. a 	 8. a 	 9. a 10. a

11. a 12. a 13. a 14. c

	5.

 void main()
 {
 typedef hours int;
 hours hrs;
 hrs=120/60;
 clrscr();
 printf(“\n 120 minutes=%d

Hours”,hrs);
 }
 bug: type def int hours

	6.
 void main()
 {
 struct vehicle

 {
 unsigned type : 3;
 int fuel :32;
 };

 struct vehicle v;
 v.type=2;
 v.fuel=1;
 clrscr();
 printf(“\n%d”,v.type);
 printf(“\n%d”,v.fuel);}
 }
 6. int fuel: 4; is expected

M13_KAMT3553_02_SE_C13.indd 530 5/15/2015 10:06:33 AM

https://hkgbooks.blogspot.com

Structure and Union 531

VI Find the bug/s in the following programs:

Q. Ans.
1. b1 is a pointer and hence operator > is to be used in place of dot.

2. Structure should be terminated by semicolon.

3. Bug: variable b2 is not pointer and hence use of > is invalid.

4. Structure should be defined outside all functions.

5. Bug : typede int hours.

6. int type can hold 32 (4 bytes) data int fuel: 4; is expected.

M13_KAMT3553_02_SE_C13.indd 531 5/15/2015 10:06:33 AM

https://hkgbooks.blogspot.com

14
CHAPTER

Files

Chapter Outline

 14.1 Introduction of a File
 14.2 Definition of File
 14.3 Streams and File Types
 14.4 Steps for File Operations
 14.5 File I/O
 14.6 Structures Read and Write
 14.7 Other File Function
 14.8 Searching Errors in Reading/Writing Files
 14.9 Low-Level Disk I/O
 14.10 Command Line Arguments
 14.11 Application of Command Line Arguments
 14.12 Environment Variables
 14.13 I/O Redirection

M14_KAMT3553_02_SE_C14.indd 532 5/15/2015 10:18:32 AM

https://hkgbooks.blogspot.com

Files 533

14.1 IntroductIon oF A FILE
A file is nothing but collection of records. Record is group of related data items. All data items related
to students, employees, customers etc is nothing but records. In other words, file is a collection of
numbers, symbols & text placed onto the secondary devices like hard disk, pen drive, compact disk
etc. Files are stored permanently on to the disk and one can access them for further monitoring/
processing if needed. In the next few paragraphs/sections, we will learn how files can be read and
modified as per requirements.

14.2 dEFInItIon oF FILE
A file can be considered as a stream of characters. A file can be a set of records that can be accessed
through the set of library functions. These functions are available in stdio.h.
 The data can be stored in secondary storage devices such as floppy or hard disk. Figure 14.1
shows communication between keyboard, Ram and Secondary device.
 As shown in the figure data, read from keyboard is stored in variables. Variables are created
in RAM (type of primary memory). Variables hold the data temporarily in the program. On the

Input device
keyboard

PROGRAM

RAM

Floppy

MONITOR

Placing data into floppy Reading data from floppy

Accepts data
from keyboard

and temporarily
stores in RAM

Data from RAM
transfers to output

device monitor

Communication
between file and

program

Program and output
device communication

Figure 14.1 Communication between program, file and output device

M14_KAMT3553_02_SE_C14.indd 533 5/15/2015 10:18:32 AM

https://hkgbooks.blogspot.com

534 Programming in C

execution of a program and ma-
nipulating data the original data
may be lost. It is needed to store the
data permanently on to the second-
ary devices. On applying disk I/O
operations, all variables created in
RAM can be stored to the secondary
storage device such as hard disk or
floppy disk.
 In Figure 14.1, a floppy disk
is shown. It is also possible to read
data from it or secondary storage de-
vices. When data is read from such
devices it is placed in the RAM and
then using console I/O operations it
is transferred to screen.
 A file is nothing but the accu-
mulation of data stored on the disk created by the user. The programmer assigns file name. The
file names are unique and are used to identify the file. No two files can have the same names in the
same directory. There are various kinds of files such text files, program files, data files, executable
file and so on. Data files contain a combination of numbers, alphabets, symbols called data.
 Data communication can be performed between program and output devices or files and pro-
gram. File streams are used to carry the communication among above-mentioned devices. The
stream is nothing but the flow of data in bytes in sequence. If data is received from input devices in
sequence then it is called source stream and when the data is passed to output devices then it is called
destination stream. Figure 14.2 shows the input and output streams. The input stream brings data
to the program and the output stream collects data from program. In this way, input stream extracts
data from the file and transfers it to the program while the output stream stores the data into the file
provided by the program.

14.3 StrEAmS And FILE typES
Data flow from program to a file or vice versa is done with stream, which is a series of bytes. In order
to perform I/O operations on the files, reading or writing a file is done with streams. Reading and writ-
ing data is done with streams. The streams are designed to allow the user to access the files efficiently.
A stream is a file and using physical device like keyboard, information is stored in the file. The FILE
object uses these devices such as keyboard, printer and monitor.
 The FILE object contains all the information about stream like current position, pointer to any
buffer, error and end of file (EOF). Using this information of object, C program uses pointer, which is
returned from the stream function fopen(). A function fopen() is used for opening a file.

14.3.1 | File types

There are two types of files. (1) Sequential file and (2) Random accesses file.

(1) Sequential file: In this type of file, data are kept sequentially. If we want to read the last
record of the file then it is expected to read all the records before it. It takes more time for
accessing the records. Or if we desire to access the 10th record then the first nine records
should be read sequentially for reaching the 10th record.

INPUT STREAM

OUTPUT STREAM

Floppy
Disk Program

Figure 14.2 Input and output streams

M14_KAMT3553_02_SE_C14.indd 534 5/15/2015 10:18:32 AM

https://hkgbooks.blogspot.com

Files 535

(2) Random access file: In this type, data can be read and modified randomly. If the user desires
to read the last records of a file, directly the same records can be read. Due to random access
of data, it takes access time less as compared to the sequential file.

14.4 StEpS For FILE opErAtIonS
Most of the compilers support file handing functions. C language also supports numerous file-handling
functions that are available in standard library. A few of these functions are listed in Table 14.1. All the
functions that are supported by C for file handling are not listed. The library functions supported by
C are very exhaustive ones and hence, all functions are not provided. One should check the C library
functions before using them.

Table 14.1 File functions
Function Operation

fopen() Creates a new file for read/write operation.

fclose() Closes a file associated with file pointer.

closeall() Closes all files opened with fopen().

fgetc() Reads the character from current pointer position and
advances the pointer to the next character.

getc() Same as fgetc().

fprintf() Writes all types of data values to the file.

fscanf() Reads all types of data values from a file.

putc() Writes characters one-by-one to a file.

fputc() Same as putc().

gets() Reads a string from the file.

puts() Writes a string to the file.

putw() Writes an integer to the file.

getw() Reads an integer from the file.

fread() Reads structured data written by fwrite() function.

fwrite() Writes block of structured data to the file.

fseek() Sets the pointer position anywhere in the file.

feof() Detects the end of file.

ferror() Reports error occurred while read/write operations.

perror() Prints compilers error messages along with user-
defined messages.

ftell() Returns the current pointer position.

rewind() Sets the record pointer at the beginning of the file.

unlink() Removes the specified file from the disk.

rename() Changes the name of the file.

M14_KAMT3553_02_SE_C14.indd 535 5/15/2015 10:18:32 AM

https://hkgbooks.blogspot.com

536 Programming in C

14.4.1 | opening of File

A file has to be opened before read and write operations. Opening of a file creates a link between the
operating system and the file functions. The name of the file and its mode of operation are to be indi-
cated to the operating system. This important task is carried out by the structure FILE that is defined
in stdio.h header file. So this file must be included.
 When a request is made to the operating system for opening a file, it does so by granting the request.
If request is granted then the operating systems points to the structure FILE. In case, the request is not
granted, it returns NULL. That is why the following declaration before opening of the file is to be made:

FILE *fp

where fp is the file pointer.

Each file that we open has its own FILE structure. The information that is there in the file may be its
current size, and its location in memory. The only one function to open a file is fopen().

Syntax:

FILE *fp;

fp=fopen(“data.txt”,”r”);

Here fp is a pointer variable that contains the address of the structure FILE that has been defined in the head-
er file stdio.h. It is necessary to write FILE in the uppercase. The function fopen() will open a file
‘data.txt’ in read mode. The C compiler reads the contents of the file because it finds the read mode (“r”).
Here, “r” is a string and not a character. Hence, it is enclosed with double quotes and not with single quotes.
 The fopen() performs the following important tasks:

(i) It searches the disk for opening of the file.

(ii) In case the file exists, it loads the file from the disk into memory. If the file is found with huge
contents then it loads the file part by part.

(iii) If the file is not existing this function returns a NULL. NULL is a macro defined in the header
file ‘stdio.h‘. This indicates that it is unable to open a file. There may be the following
reasons for failure of fopen() functions: (A) when the file is in protected or hidden mode
and (B) the file may be in use by another program.

(iv) It locates a character pointer, which points the first character of the file. Whenever a file is
opened the character pointer points to the first character of the file.

14.4.2 | reading a File

Once the file is opened using fopen(), its contents are loaded into the memory (partly or wholly). The
pointer points to the very first character of the file. The fgetc() function is used to read the contents
of the file. The syntax for fgetc() is as follows:

ch=fgetc(fp);

where fgetc() reads the character from current pointer position and advances the pointer position
so that the next character is pointed. The variable ch contains the character read by fgetc(). There
are also other functions to read the contents of file, which are explained below.

14.4.3 | closing a File

The file that is opened from the fopen() should be closed after the work is over, i.e. we need to close
the file after reading and writing operations. In other words, the file must be closed after operations.

M14_KAMT3553_02_SE_C14.indd 536 5/15/2015 10:18:32 AM

https://hkgbooks.blogspot.com

Files 537

1. w(write)

2. r(read)

Also, whenever an opened file needs to be reopened in other mode in such a case also the opened file
must be closed first. Closing the file enables to wash out all its contents from the RAM buffer and
further the link is disconnected from the file.

Example:
The function to close a file is

fclose(fp);

This statement closes the file associated with file pointer fp. This function closes one file at a time. In
order to close all files function syntax used is as follows:

fcloseall();

This function closes all the opened files and returns the number of files closed. It does not require any
argument.

14.4.4 | text modes

This mode opens a new file on the disk for writing. If the file already exists, its contents will be over-
written without confirmation. If the concerned file is not found, a new file is created.

Syntax:

fp=fopen (“data.txt”,“w”);

Here data.txt is the file name and “w” is the mode.

This mode searches a file and if it is found the same is loaded into the memory for reading from the
first character of the file. The file pointer points to the first character and reading operation begins. If
the file does not exist then compiler returns NULL to the file pointer. Using pointer with the if state-
ment we can prompt the user regarding failure of operation. The syntax of read mode is as follows:

Syntax:

fp=fopen(“data.txt”,“r”);

if(fp==NULL)

printf(“File does not exist”);

 OR

if(fp=(fopen(“data.txt”,“r”))==NULL)

printf(“File does not exist”);

Here data.txt is opened for reading only. If the file does not exist the fopen() returns
NULL to file pointer ‘fp’. Using the NULL value of fp with the if statement, we can prompt
the user for failure of fopen() function. A program is illustrated below giving the use of “w”
and “r” modes.

M14_KAMT3553_02_SE_C14.indd 537 5/15/2015 10:18:32 AM

https://hkgbooks.blogspot.com

538 Programming in C

This mode opens a pre-existing file for appending data. The data appending process starts at the end of
the opened file. The file pointer points to the last character of the file. If the file does not exist, then a
new file is opened, i.e. if the file does not exist then the mode of “a” is the same as “w”. Due to some
or other reasons if file is not opened in such a case NULL is returned. File opening may be impossible
due to insufficient space on to the disk and some other reasons. Syntax for opening a file with append
mode is a follows:

Syntax:

fp=fopen(“data.txt”,“a”);

	 Explanation:
 In the above program, the file named “data.txt” is opened in write mode. The characters

are read from the keyboard and stored in variable ‘c’. Using fputc() the characters are
written to a file until ‘.’ (dot) is pressed. The same file is closed and then it is re-opened in
read mode. On reopening of the file, character pointer sets to the beginning of the file. The
contents of the file will be displayed on the screen using getc().

 14.1 Write a program to write data to text file and read it.

3. a(append)

include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 FILE *fp;
 char c=‘ ’;
 clrscr();
 fp=fopen(“data.txt”,“w”);
 if(fp==NULL)
 {
 printf(“Can not open file”);
 exit(1);
 }
 printf(“Write data & to stop press ‘.’ :”);

 while(c!=‘.’)
 {
 c=getche();
 fputc(c,fp);
 }
 fclose(fp);
 printf(“\n Contents read :”);
 fp=fopen(“data.txt”,”r”);
 while(!feof(fp))
 printf(“%c”,getc(fp));
}

OUTPUT:
Write data & to stop press ‘.’: ABCDEFGHIJK.
Contents read: ABCDEFGHIJK.

M14_KAMT3553_02_SE_C14.indd 538 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 539

Here, if data.txt file already exists, it will be opened. Otherwise a new file will be opened with
the same name.

 14.2 Write a program to open a pre-existing file and add information at the end of file. Display
the contents of the file before and after appending.

include <stdio.h>
include <conio.h>
include <process.h>
void main()
{
 FILE *fp;
 char c;
 clrscr();

 printf(“Contents of file before appending :\n”);

 fp=fopen(“data.txt”,“r”);
 while(!feof(fp))
 {
 c=fgetc(fp);
 printf(“%c”,c);
 }

 fp=fopen(“data.txt”,“a”);

 if(fp==NULL)
 {
 printf(“File can not appended”);
 exit(1);
 }
 printf(“\n Enter string to append :”);

 while(c!=‘.’)
 {
 c=getche();
 fputc(c,fp);
 }
 fclose(fp);

 printf(“\n Contents of file After appending :\n”);

 fp=fopen(“data.txt”,“r”);

 while(!feof(fp))
 {
 c=fgetc(fp);
 printf(“%c”,c);
 }
}

OUTPUT:
Contents of file before appending :
String is terminated with ‘\0’.
Enter string to append :
This character is called as NULL character.
Contents of file After appending :
String is terminated with ‘\0’.
This character is called as NULL character.

M14_KAMT3553_02_SE_C14.indd 539 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

540 Programming in C

include <stdio.h>
include <conio.h>
include <process.h>
void main()
{
 FILE *fp;
 char c=’ ‘;
 clrscr();
 fp=fopen(“data.txt”,“w+”);
 if(fp==NULL)
 {
 printf(“Can not open file”);
 exit(1);
 }

 printf(“Write data & to stop press ‘.’ :”);
 while(c!=‘.’)
 {
 c=getche();
 fputc(c,fp);
 }
 rewind(fp);
 printf(“\n Contents read :”);

 while(!feof(fp))
 printf(“%c”,getc(fp));
}

OUTPUT:
Write data & to stop press ‘.’: ABCDEFGHIJK.
Contents read : ABCDEFGHIJK.

	 Explanation:
 Instead of using separate read and write modes, one can use w+ mode to perform both the op-

erations. Hence, in the above program w+ is used. At first writing operation is done. It is not
essential to close the file for reading the contents of it. We need to set the character pointer at
the beginning. Hence, rewind() function is used. The advantage of using w+ is to reduce
the number of statements.

This mode starts for file search operation on the disk. In case the file is found, its contents are de-
stroyed. If the file is not found, a new file is created. It returns NULL if it fails to open the file. In this
file mode, new contents can be written and thereafter reading operation can be done.

Example:

fp=fopen(“data.txt”,“w+”);

In the above example, data.txt file is open for reading and writing operations.

 14.3 Write a program to use w+ mode for writing and reading of a file.

 5. a+ (append + read)

4. w+ (Write + read)

M14_KAMT3553_02_SE_C14.indd 540 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 541

	 Explanation:
 In the above program, a file named “data.txt” is opened in read and append mode (a+). If

a file does not exist, a new file is created. Write operation is performed first and the contents are
read thereafter. Before reading character pointer is set at the beginning of file using rewind().

	 Notes:

1. In case read operation is done after write operation, character pointer should be set to begin-
ning of the file using rewind().

2. In case write/append operation is done after read operation, it is not essential to set the char-
acter pointer at the beginning of file.

In this file operation mode the contents of the file can be read and records can be added at the end of
file. A new file is created in case the concerned file does not exist. Due to some or the other reasons if
a file is unable to open then NULL is returned.

Example:

fp=fopen(“data.txt”,“a+”);

Here data.txt is opened and records are added at the end of file without affecting the previous
contents.

 14.4 Write a program to open a file in append mode and add new records in it.

include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 FILE *fp;
 char c=‘ ’;
 clrscr();
 fp=fopen(“data.txt”,“a+”);
 if(fp==NULL)
 {
 printf(“Can not open file”);
 exit(1);
 }

 printf(“Write data & to stop press ‘.’ :”);
 while(c!=‘.’)
 {
 c=getche();
 fputc(c,fp);
 }

 printf(“\n Contents read :”);
 rewind(fp);
 while(!feof(fp))
 printf(“%c”,getc(fp));
}

OUTPUT:
Write data & to stop press ‘.’ : This is append and read mode.
Contents read : This is append and read mode.

M14_KAMT3553_02_SE_C14.indd 541 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

542 Programming in C

 14.5 Write a program to open a file in read/write mode in it. Read and write new information in
the file.

include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 FILE *fp;
 char c=‘ ’;
 clrscr();
 fp=fopen(“data.txt”,“r+”);
 if(fp==NULL)
 {
 printf(“Can not open file”);
 exit(1);
 }

 printf(“\n Contents read :”);

 while(!feof(fp))
 printf(“%c”,getc(fp));
 printf(“Write data & to stop press ‘.’ :”);
 while(c!=‘.’)
 {
 c=getche();
 fputc(c,fp);
 }
}

OUTPUT:
Contents read: Help me.
Write data & to stop press ‘.’: I am in trouble.

	 Explanation:
 In the above example, file is opened in read and write mode (r+). The getc() function reads

the contents of file which is printed through printf() function. The getche() func-
tion reads characters from the keyboard and the read characters are written to the file using
fputc() function.

6. r+ (read + write)

This mode is used for both reading and writing. We can read and write the record in the file. If the file
does not exist, the compiler returns NULL to the file pointer. It can be written as follows:

Example:

fp=fopen(“data.dat”,“r+”);

if(fp==NULL)

printf(“File not found”);

In the above example, data.dat is opened for the read and write operation. If fopen() fails to
open the file then it returns NULL. The if statements check the value of file pointer fp; and if it
 contains NULL then a message is printed and program terminates.

M14_KAMT3553_02_SE_C14.indd 542 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 543

14.4.5 | Binary modes

When numerical data is to be transferred to disk from RAM, the data occupies more memory space
on disk. For example, a number 234567 needs 3 bytes memory space in RAM and when transferred to
disk requires 6 bytes memory space. For each numerical digit one byte space is needed. Hence, total
requirement for the number 234567 would be 6 bytes. Thus, text mode is inefficient for storing large
amount of numerical data because space occupation by it is large. Only solution to this inefficient
memory use is to open a file in binary mode, which takes lesser space than text mode. Few binary
modes are described below.

1. wb(write) :

2. rb(read) :

This mode opens a binary file in write mode.

Example:

fp=fopen(“data.dat”,“wb”);

Here data.dat file is opened in binary mode for writing.

This mode opens a binary file in read mode.

Example:

fp=fopen(“data.dat”,“rb”);

Here data.dat file is opened in binary mode for reading.

 14.6 Write a program to open a file for read/write operation in binary mode. Read and write new
information in the file.

include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 FILE *fp;
 char c=‘ ’;
 clrscr();
 fp=fopen(“data.dat”,“wb”);
 if (fp==NULL)
 {
 printf(“Can not open file”);
 exit(1);
 }
 printf(“Write data & to stop press ‘.’ :”);
 while(c!=’.’)
 {
 c=getche();
 fputc(c,fp);
 }
 fclose(fp);
 fp=fopen(“data.dat”,“rb”);

M14_KAMT3553_02_SE_C14.indd 543 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

544 Programming in C

3. ab(append):

 printf(“\n Contents read :”);
 while(!feof(fp))
 printf(“%c”,getc(fp));
}

	 Explanation:
 This program is the same as explained earlier. The only difference is that the file-opening

mode is binary.

This mode opens a binary file in append mode i.e. data can be added at the end of file.

Example:

fp=fopen(“data.dat”,“ab”);

Here “data.dat” file is opened in append mode.

4. r+b(read + write):

This mode opens a pre-existing file in read and write mode, i.e. a file can be read and written.

Example:

fp=fopen(“data.dat”,“r+b”);

Here, the file “data.dat” is opened for reading and writing in binary mode.

5. w+b(read + write):

6. a+b(append+ write):

This mode creates a new file in read and write mode.

Example:

fp=fopen(“data.dat”,“w+b”);

Here, the file “data.dat” is created for reading and writing in binary mode.

This mode opens a file in append mode, i.e. data can be written at the end of file. If file does not exist
then a new file is created.

Example:

fp=fopen(“data.dat”,”a+b”);

Here the file “data.dat” is opened in append mode and data can be written at the end of file.

M14_KAMT3553_02_SE_C14.indd 544 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 545

14.5 FILE I/o

 2. fscanf() :

1. fprintf() :

This function is used for writing characters, strings, integers, floats, etc. to the file. The fprint()
function is used for writing characters in various formats. Hence, this function is called the formatted
function. It contains one more parameter that is file pointer, which points the opened file.
 The operation of fprintf() and fscanf() functions are identical to that of printf() and
scanf() except that former function works with files.
 The format of fprintf() is as follows:

fprintf() (fp,“control string”,text);

where fp is a file pointer associated with an opened file in write mode. The text can be variables,
constants or strings.
 A programming example on this function is as follows.

 14.7 Write a program to open a text file and write some text using fprintf() function. Open the
file and verify the contents.

include <stdio.h>
include <conio.h>
void main()
{
 FILE *fp;
 char text[30];
 fp=fopen(“Text.txt”,“w”);
 clrscr();
 printf(“Enter Text Here :”);
 gets(text);
 fprintf(fp,“%s”,text);
 fclose(fp);
}

OUTPUT:
Enter Text Here: Have a nice day.

	 Explanation:
 In the above program, fprintf() function writes the string to the file pointed by fp. The

string is collected through gets() function into character array name[30].

This function reads characters, strings, integer, floats, etc. from the file pointed by file pointer. This is
also a formatted function. A program is illustrated below based on this.
 The syntax of this function is as follows:

fscanf(fp,“control string”,text);

With this statement reading operations from the designated file is done.

M14_KAMT3553_02_SE_C14.indd 545 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

546 Programming in C

	 Explanation:
 In the above program, fscanf() reads the data from the file named “Text.txt”.

 14.8 Write a program to enter data into the text file and read the same. Use “w+” file mode. Use
fscanf() to read the contents of the file.

include <stdio.h>
include <conio.h>
void main()
{
 FILE *fp;
 char text[15];
 int age;
 fp=fopen(“Text.txt”,“w+”);
 clrscr();
 printf(“Name\t AGE\n ”);
 scanf(“%s %d”,text,&age);
 fprintf(fp,“%s %d”, text,age);

 printf(“Name\t AGE\n ”);
 fscanf(fp,“%s %d”,text,&age);
 printf(“%s\t%d\n”, text,age);
 fclose(fp);

}

OUTPUT:
Name AGE
AMIT 12
Name AGE
AMIT 12

3. getc() :

include <stdio.h>
include <process.h>
include <conio.h>

void main()
{
 FILE *f;
 char c;
 clrscr();
 f=fopen(“list.txt”,“r”);
 if(f==NULL)

This function reads a single character from the opened file and moves the file pointer. It returns EOF,
if end of file is reached.
 For example, in the statement c=getc(f);, a character is read from the file whose file pointer
is f. A program is illustrated below on the basis of this function.

 14.9 Write a program to read the contents of the file using getc() function.

M14_KAMT3553_02_SE_C14.indd 546 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 547

 {
 printf(“\nCannot open file”);
 exit(1);
 }
 while((c=getc(f))!=EOF)
 printf(“%c”,c);

 fclose(f);
}

OUTPUT:
aman
akash
amit
ajay
ankit

	 Explanation:
 In the above program, the getc(f) reads character from the file “list.txt”. Some text

is to be written before reading this file.

4. putc():

include <stdio.h>
include <conio.h>
void main()
{
 int c;
 FILE *fp;
 clrscr();
 printf(“\n Enter Few Words ‘*’ to Exit\n”);
 fp=fopen(“words.doc”,“w”);
 while((c=getchar())!=‘*’)
 putc(c,fp);
 fclose(fp);
}

OUTPUT:
Enter Few Words ‘*’ to Exit
This is saved into the file *

 This function is used to write a single character into a file. If an error occurs then it returns EOF.
 For example, in the statement putc(c,fp);, a character contained in character variable c
is written in the file whose file pointer is fp. A program is illustrated below on the basis of this
function.

 14.10 Write a program to write some text into the file using putc() function.

M14_KAMT3553_02_SE_C14.indd 547 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

548 Programming in C

5. fgetc() :

This function is similar to the getc() function. It also reads a character and increments the file
pointer position. If any error or end of file is reached then it returns EOF.

 14.11 Write a program to read a C program file and count the following in the complete program:

(a) Total number of statements.

(b) Total number of included files.

(c) Total number of blocks and brackets.

	 Explanation:
 The putc() function writes character read through getchar() in the file “words.

doc”. User should enter ‘ ’ to stop reading character.

include <stdio.h>
include <conio.h>
void main()
{
 FILE *fs;
 int i=0,x,y,c=0,sb=0,b=0;

 clrscr();

 fs=fopen(“PRG2.C”,“r”);
 if (fs==NULL)
 {
 printf(“\n File opening error.”);
 exit(1);
 }

 while((x=fgetc(fs))!=EOF)
 {
 switch(x)
 {
 case ‘;’ :
 c++;
 break;
 case ‘{’ :
 sb++;
 break;
 case ‘(’ :
 b++;
 break;
 case ‘#’ :
 i++;
 break;
 }
 }
 fclose (fs);
 printf(“\n Summary of ‘C’ Program\n”);

M14_KAMT3553_02_SE_C14.indd 548 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 549

 printf(“=========================”);
 printf(“\n Total Statements : %d ”,c+i);
 printf(“\n Include Statements : %d”,i);
 printf(“\n Total Blocks {} : %d”,sb);
 printf(“\n Total Brackets () : %d”,b);
 printf(“\n==========================”);
}

OUTPUT:
Total Statements : 25
Include Statements : 4
Total Blocks {} : 5
Total Brackets () : 25

	 Explanation:
 In the above program, the fgetc() function reads the file “prg2.c” character by charac-

ter and returns the read character to variable ‘x’. The variable ‘x’ is passed then to switch
case. Depending upon the contents of the variable ‘x’ respective counter is incremented in
each case statement. Thus, at last all summary is printed.

6. fputc() :

This function writes the character to the file shown by the file pointer. It also increments the file pointer.

Syntax:

fputc(c,fp);

where fp is the file pointer and c is a variable written to the file pointed by file pointer.

 14.12 Write a program to write text to a file using fputc() function.

include <stdio.h>
include <conio.h>
void main()
{
 FILE *fp;
 char c;

 clrscr();
 fp=fopen(“lines.txt”,“w”);
 if(fp==NULL)
 return;
 else
 {
 while((c=getche())!=‘*’)
 fputc(c,fp);
 }

M14_KAMT3553_02_SE_C14.indd 549 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

550 Programming in C

This function reads a string from a file pointed by file pointer. It also copies the string to a memory
location referenced by an array.

 14.13 Write a program to read text from the given file using fgets() function.

 fclose(fp);
}

OUTPUT:
India is my country *

7. fgets() :

	 Explanation:
 In the above program, the text entered by the user is written into the file “lines.txt”

using the fputc() function.

include <stdio.h>
include <conio.h>
void main()
{
 FILE *fp;
 char file[20],text[50];
 int i=0;
 printf(“Enter File Name :”);
 scanf(“%s”,file);

 fp=fopen(file,“r”);

 if(fp==NULL)
 {
 printf(“File not found\n”);
 return;
 }
 else
 {
 if(fgets(text,50,fp)!=NULL)
 while(text[i]!=‘\0’)
 {
 putchar(text[i]);
 i++;
 }
 }
}

OUTPUT:
Enter File Name : IO.C
include <stdio.h>

M14_KAMT3553_02_SE_C14.indd 550 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 551

	 Explanation:
 In the above program, the function fgets() reads a string from the file pointed by file

pointer. In this example, the IO.C file is opened and its first line is displayed on the screen.

8. fputs() :

9. putw() :

This function is useful when we want to write a string into the opened file.

 14.14 Make a program to write a string into a file using fputc() function.

	 Explanation:
 In the above example, “data.dat” file is opened in write mode. The text entered by the

user is written in the file using the fputs() function. The user can read the contents of file
from DOS prompt or one can read the contents of the file using the fgets() function as
explained in the previous example.

include <stdio.h>
include <conio.h>
void main()
{
 FILE *fp;
 char file[12],text[50];
 clrscr();
 printf(“\n Enter the name of file :”);
 scanf(“%s”, file);
 fp=fopen(file,“w”);

 if(fp==NULL)
 {
 printf(“\nFile can not opened\n”);
 return;
 }
 else
 {
 printf(“\n Enter Text Here : “);
 scanf(“%s”,text);
 fputs(text,fp);
 }
 fclose(fp);
}

OUTPUT:
Enter the name of file : data.dat
Enter Text Here : Good Morning

M14_KAMT3553_02_SE_C14.indd 551 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

552 Programming in C

This function is used to write an integer value to file pointed by file pointer. This function deals with
integer data only.

 14.15 Write a program to enter integers and write them in the file using the putw() function.

	 Explanation:
 In the above program, the file “num.txt” is opened in the write mode. Integers are then

entered and written in the file using the putw() function. When the ‘0’ is entered, writing
of data is stopped and file is closed.

include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 FILE *fp;
 int v;
 clrscr();
 fp=fopen(“num.txt”,“w”);

 if(fp==NULL)
 {
 printf(“\n File dose not exist”);
 exit(1);
 }
 else
 {
 printf(“\n Enter Numbers :”);

 while(1)
 {
 scanf(“%d”,&v);
 if(v==0)
 {
 fclose(fp);
 exit(1);
 }
 putw(v,fp);
 }
 }
}

OUTPUT:
Enter Numbers : 1 2 3 4 5 0

10. getw () :

This function returns the integer value from a file and increments the file pointer. This function deals
with integer data only.

M14_KAMT3553_02_SE_C14.indd 552 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 553

1. fwrite() & fread()

include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 FILE *fp;
 int v;
 clrscr();
 fp=fopen(“num.txt”,“r”);

 if(fp==NULL)
 {
 printf(“\n Entered numbers :”);
 exit(1);
 }
 else
 {
 printf(“\n Entered numbers :”);

 while((v=getw(fp))!=EOF)
 printf(“%2d”,v);
 fclose(fp);
 }
}

OUTPUT:
Entered numbers: 1 2 3 4 5

	 Explanation:
 In the above program, the same file ‘num.txt’ used in the previous program is opened for

reading the integers. Here, the function getw() reads integers from the file.

14.6 StructurES rEAd And WrItE
It is important to know how numerical data is stored on the disk by fprintf() function. Text and
characters require one byte for storing them with fprintf(). Similarly for storing numbers in
memory two bytes and for floats four bytes will be required.
 All data types are treated as characters, for example the data 3456; it occupies two bytes in
memory. But when it is transferred to the disk file using fprintf() function it would occupy four
bytes. For each character one byte would be required. Even for float also each digit including dot (.)
requires one byte. For example 12.34 would require five bytes. Thus, large amount of integers or
float data requires large space on the disk. Hence, in the text mode storing of numerical data on the
disk turns out to be inefficient. To overcome this problem the files should be read and written in binary
mode, for which we use functions fread() and fwrite().

 14.16 Write a program to read integers from the file using getw() function.

(1) fwrite(): This function is used for writing an entire structure block to a given file.

(2) fread(): This function is used for reading an entire block from a given file.

M14_KAMT3553_02_SE_C14.indd 553 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

554 Programming in C

 14.17 Write a program to write a block of structure elements to the given file using fwrite()
function.

include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 struct
 {
 char name[20];
 int age;
 }
 stud[5];

 FILE *fp;
 int i,j=0,n;
 char str[15];
 printf(“Enter the file name :”);
 scanf(“%s”,str);
 fp=fopen(str,”rb”);

 if(fp==NULL)
 {
 printf(“File dose not exist \n”);
 exit(1);
 }
 else
 {
 printf(“How Many Records :”);
 scanf(“%d”,&n);
 for(i=0;i<n;i++)
 {
 printf(“Name :”);
 scanf(“%s”,&stud[i].name);
 printf(“Age :”);
 scanf(“%d”,&stud[i].age);
 }

 while(j<n)
 {
 fwrite(&stud,sizeof(stud),1,fp);
 j++;
 }
 }
 fclose(fp);
}

OUTPUT:
How Many Records : 2
Name : SANTOSH
Age : 22
Name : AMIT
Age : 14

M14_KAMT3553_02_SE_C14.indd 554 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 555

	 Explanation:
 In the above program, a file is opened in write mode. After successfully opening the file the

number of records to be entered is asked. Using the for loop records are entered. Using the
while loop and fwrite() statement within it records are written in the file.

 14.18 Write a program to write and read the information about the player containing player’s
name, age and runs. Use fread() and fwrite() functions.

include <stdio.h>
include <conio.h>
include <process.h>
struct record
{
 char player[20];
 int age;
 int runs;
};

void main()
{
 FILE *fp;
 struct record emp;
 fp=fopen(“record.dat”,“w”);

 if(fp==NULL)
 {
 printf(“\n Cannot open the file”);
 exit(1);
 }
 clrscr();

 printf(“\n Enter Player Name, Age & Runs Scored \n”);
 printf(“ ==== ===== ==== === = ==== ======\n”);
 scanf(“%s %d %d”,emp.player, &emp.age,&emp.runs);
 fwrite(&emp,sizeof(emp),1,fp);
 fclose(fp);

 if((fp=fopen(“record.dat”, “r”))==NULL)
 {
 printf(“\n Error in opening file”);
 exit(1);
 }
 printf(“\n Record Entered is \n”);
 fread(&emp,sizeof(emp),1,fp);
 printf(“\n%s %d %d”, emp.player, emp.age, emp.runs);
 fclose(fp);
}

OUTPUT:
Enter Player Name, Age & Runs Scored
==== ===== ==== === = ==== ======
Sachin 25 10000

Record Entered is

Sachin 25 10000

M14_KAMT3553_02_SE_C14.indd 555 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

556 Programming in C

	 	 Explanation:
 In the above program, a user writes the information of the player using the fwrite function.

The entire record of players which is containing information given in the structure is written
first using the fwrite() function.

 Similarly, the information written in the file can be read by using the fread() function. Thus,
the program reads entire data file with single fread() and writes the data with single fwrite()
function. These two functions are efficiently used for handling I/O files in comparison to fscanf()
and fprintf().

 14.19 Write a program to write a block of structure elements to the given file using fwrite()
function. User should press ‘Y’ to continue and ‘N’ for termination.

include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 FILE *fp;
 char next=‘Y’;

 struct bike
 {
 char name[40];
 int avg;
 float cost;
 };

 struct bike e;

 fp=fopen(“bk.txt”,“wb”);

 if(fp==NULL)
 {
 puts(“Cannot open file”);
 exit(1);
 }
 clrscr();
 while (next==‘Y’)
 {

 printf(“\nModel Name, Average, Prize : ”);
 scanf(“%s %d %f”,e.name,&e.avg,&e.cost);
 fwrite(&e,sizeof(e),1,fp);

 printf(“\nAdd Another (Y/N :”);
 fflush(stdin);
 next=getche();
 }
 fclose(fp);
}

OUTPUT:
Model Name, Average, Prize : HONDA 80 45000
Add Another (Y/N : Y
Model Name, Average, Prize : SUZUKI 65 43000
Add Another (Y/N : Y

M14_KAMT3553_02_SE_C14.indd 556 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 557

	 Explanation:
 The above program is the same as the previous one. Here, the user has to press ‘Y’ to continue

and ‘N’ to stop the program. After every key press of ‘Y’ a new record is added to the file.

 14.20 Write a program to read the information about the bike like name, average and cost from
the file using fread() function.

include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 FILE *fp;
 struct bike
 {
 char name[40];
 int avg;
 float cost;
 };

 struct bike e;

 fp=fopen(“bk.txt”,“rb”);

 if(fp==NULL)
 {
 puts(“Cannot open file”);
 exit(1);
 }
 clrscr();
 while(fread(&e,sizeof(e),1,fp)==1)
 printf(“\n %s %d %.2f”,e.name,e.avg,e.cost);

 fclose(fp);
}

OUTPUT:
Model Name, Average, Prize : HONDA 80 45000.00
Model Name, Average, Prize : SUZUKI 65 43000.00
Model Name, Average, Prize : YAMAHA 55 48000.00

	 Explanation:
 In the above program, the records are written in the binary mode on the disk in the file “bk.

txt”. Record writing will be over after the user presses ‘N’.

 The same file is opened in read mode. The fread() function reads the records from the disk
which is to be placed in the printf() statement to display on the screen. After the file detection of
end of the file fread() function no more reads anything. It returns a ‘0’.
 Functions fread() and fwrite() store the numbers more efficiently and the reading and
writing of structures are easy.

Model Name, Average, Prize : YAMAHA 55 48000
Add Another (Y/N : N

M14_KAMT3553_02_SE_C14.indd 557 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

558 Programming in C

14.7 othEr FILE FunctIon
(a) The fseek() function: The fseek() can be used to access the part of the file. The file

pointer can be moved to any position in a file. It positions file pointer on the stream.

 The format of fseek() is as follows:

fseek(filepointer,offset,position)

Thus, three arguments are to be passed through this function. They are

(1) file pointer.

(2) Offset: offset may be positive (moving in forward from current position) or negative (moving
backwards). The offset being a variable of type long.

(3) The current position of file pointer.

Table 14.2 displays the various values of location of file pointer.

Example:

fseek(fp,10,0) or fseek(fp,10,SEEK_SET)

The file pointer is repositioned in the forward direction by 10 bytes.

 14.21 Write a program to read the text file containing some sentence. Use fseek() and read
the text after skipping n characters from beginning of the file.

Table 14.2 Locations of file pointer
Integer	Value Constant Location	in	the	File

0 SEEK_SET Beginning of the file.

1 SEEK_CUR Current position of the file pointer.

2 SEEK_END End of the file

include <stdio.h>
include <conio.h>
void main()
{

 FILE *fp;
 int n,ch;
 clrscr();
 fp=fopen(“text.txt”,“r”);

 printf(“\nContents of file\n”);

 while((ch=fgetc(fp))!=EOF)
 printf(“%c”,ch);

 printf(“\nHow many characters including spaces would you like
to skip ? :”);

 scanf(“%d”,&n);
 fseek(fp,n,SEEK_SET);
 printf(“\n Information after %d bytes\n”,n);

M14_KAMT3553_02_SE_C14.indd 558 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 559

 while((ch=fgetc(fp))!=EOF)
 printf(“%c”,ch);
 fclose(fp);
}

OUTPUT:
Contents of file:
THE C PROGRAMMING LANGUAGE INVENTED BY DENNIS RITICHE
How many characters including spaces would you like to skip ? : 18
Information after 15 bytes
LANGUAGE INVENTED BY DENNIS RITICHE

	 Explanation:
 In the above program, while statement is used for checking the end of the file. The file

pointer is initially positioned at the beginning of the file and the whole text is printed.

 To reposition the file pointer the statement fseek() is used. The file pointer is to be positioned
at nth character from the beginning of the file and the characters from nth position onwards will be
printed on the screen.
 In the above program, one can use the statement fseek(fp,-n,SEEK_END) in place of
fseek(fp,n,SEEK_SET) to read from backward direction from the end of the file.

 14.22 Write a program to read the last few characters of the file using the fseek()
statement.

include <dos.h>
include <stdio.h>
include <conio.h>
void main()
{
 FILE *fp;
 int n,ch;
 clrscr();
 fp=fopen(“text.txt”,“r”);
 printf(“\nContents of file\n”);
 while((ch=fgetc(fp))!=EOF)
 printf(“%c”,ch);
 printf(“\n How many characters including spaces would you like

to skip ? :”);
 scanf(“%d”,&n);
 fseek(fp,-n-2,SEEK_END);
 printf(“\nLast %d characters of a file\n”,-n-2);
 while((ch=fgetc(fp))!=EOF)
 printf(“%c”,ch);
 fclose(fp);
}

OUTPUT:
How many characters including spaces would you like to skip? : 4
Last 5 characters of a file
WORLD

M14_KAMT3553_02_SE_C14.indd 559 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

560 Programming in C

	 Explanation:
 The statement fseek(fp,-n-2,SEEK_END); repositions the file pointer –n-2

bytes in the backward directions from the end of file. With this statement last charac-
ters of a statement can be printed on the screen, i.e. printing information will be from
the position till the end of file. Here, the value of ‘n’ entered is 4. The value of –n-2
in this example works out to be –6. So the last six characters are displayed. The result
shown here is ‘WORLD’ which contains five characters and the last is NULL. NULL
is skipped.

 14.23 Write a program to display C program files in current directory. The user should select one
of the files. Convert the file contents in capital and display the same on the screen. Also
calculate total characters and lines.

include <ctype.h>
include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 FILE *fp;
 int l=0,c=0,ch;
 static char file [12];

 clrscr();
 system(“dir *.c/w”);
 printf(“\n Enter a file name :”);
 scanf(“%s”,file);
 fp=fopen(file,“r”);
 clrscr();

 printf(“\nContents of ‘c’ program File in capital case \n”);
 printf(“===\n”);

 while((ch=fgetc(fp))!=EOF)
 {
 c++;
 if(ch==‘\n’)
 l++;
 printf(“%c”,toupper(ch));
 }
 printf(“\n Total Characters : %d”,c);
 printf(“\n Total Lines : %d”,l);
}

OUTPUT:
Enter a file name : IO10.C
Contents of ‘c’ program File in capital case
main()
{
 printf(“HELLO WORLD”);
}
Total Characters : 31
Total Lines : 4

M14_KAMT3553_02_SE_C14.indd 560 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 561

	 Explanation:
 In the above program, system() statement is used for invoking MS-DOS command. The dir

*.c/w displays the contents of the current directory. The function fgetc() reads the text of the
entered file character by character till the end of the file. In the while loop, total characters and
lines are counted. The line termination is to be identified by ‘\n’. Hence, the if statement is used
for the identification of termination of line. In the same way, ‘\t’ can be used to take the account
of tabs. The text is also converted to capital by using toupper() function and it is displayed.

(b) feof(): The macro feof() is used for detecting if the file pointer is at the end of file or
not. It returns non-zero if the file pointer is at the end of file, otherwise it returns zero.

 14.24 Write a program to detect the end of file using the function feof(). Display the file
pointer position for detecting end of file.

	 Explanation:
 At starting, the feof() function returns 0 (zero) because the file pointer is at the beginning

of file. After reading the contents of file the file pointer reaches at the end of file. At this
stage, the feof() function returns non-zero value which is 32 in this program.

14.8 SEArchIng ErrorS In rEAdIng/WrItIng FILES
While performing read or write operation a few times, we do not get results successfully. The reason
may be that the attempt of reading or writing operation may not be correct. The provision must be
provided for searching the error while read/write operations are carried out.
 The C language provides standard library function ferror(). This function is used for detect-
ing any error that might occur during read/write operation of a file. It returns a ‘0’ while the attempt
is successful otherwise non-zero in case of failure.

(c) ferror(): The ferror() is used to find out error when file read write operation is
carried out.

include <conio.h>
include <stdio.h>
void main()
{
 FILE *fp;

 char c;
 fp=fopen(“text.txt”, “r”);
 c=feof(fp);
 clrscr();
 printf(“File pointer at the beginning of the file : %d\n”,c);

 while(!feof(fp))
 {
 printf(“%c”,c);
 c=getc(fp);
 }

 c=feof(fp);
 printf(“File pointer at the end of file : %d ”,c);
}

File pointer at the beginning of the file : 0
TECHNOCRATS LEAD THE WORLD
File pointer at the end of file : 32

M14_KAMT3553_02_SE_C14.indd 561 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

562 Programming in C

 14.25 Write a program to detect an error with read/write operation of a file.

include <stdio.h>
include <conio.h>
include <process.h>
void main()
{
 FILE *fp;
 char next=‘Y’;
 char name[25];
 int marks;
 float p;

 fp=fopen(“marks.dat”,“r”);

 if(fp==NULL)
 {
 puts(“Can not open file”);
 exit(1);
 }
 clrscr();

 while(next==‘Y’)
 {
 printf(“\n Enter Name, Marks, Percentage”);
 scanf(“%s %d %f”,name,&marks,&p);
 p=marks/7;
 fprintf(fp,“%s %d %f”,name,&marks,&p);
 if(ferror(fp))
 {
 printf(“\n Unable to write data ? ”);
 printf(“\n File opening mode is incorrect.”);
 fclose(fp);
 exit(1);
 }
 printf(“Continue(Y/N”);
 fflush(stdin);
 next=getche();
 }
 fclose(fp);
}

OUTPUT:
Enter Name, Marks
KAMAL 540
Unable to write data?
File opening mode is incorrect.

	 Explanation:
 In the above program, the fprintf() function fails to write the entered data to the file

because it is opened in the read mode. Hence, write operation cannot be done. The error
generated is caught by the ferror() function and the program terminates.

 14.26 Write a program to catch the error that occurs while read operation of a file using
ferror() function.

M14_KAMT3553_02_SE_C14.indd 562 5/15/2015 10:18:33 AM

https://hkgbooks.blogspot.com

Files 563

include <stdio.h>
include <process.h>
include <conio.h>

void main()
{
 FILE *f;
 char c;
 clrscr();
 f=fopen(“io8.c”,“w”);
 if(f==NULL)
 {
 printf(“\nCannot open file”);
 exit(1);
 }
 while((c=fgetc(f))!=EOF)
 {
 if(ferror(f))
 {
 printf(“\nCan’t read file.”);
 fclose(f);
 exit(1);
 }
 printf(“%c”,c);
 getch();
 }
 fclose(f);
}

OUTPUT:
Can’t read file.

	 Explanation:
 In the above program, the file ‘io8.c’ is opened in write mode. Whereas the function

fgetc() would certainly fail because it used for reading operation the fgetc() is trying
to read the file which is impossible. This never happens because the file that is opened in
write mode cannot be read and vice versa.

(d) perror(): It is a standard library function which prints the error messages specified by
the compiler. A program is illustrated below for understanding.

 14.27 Write a program to detect and print the error message using perror() function.

include <stdio.h>
include <conio.h>
include <process.h>

void main()
{
 FILE *fr;
 char c,file[]=“lines.txt”;
 fr=fopen(file,“w”);
 clrscr();

M14_KAMT3553_02_SE_C14.indd 563 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

564 Programming in C

	 Explanation:
 In the above program to print the error message a user can use perror() function instead of

printf(). The output of the above program is ‘lines.txt: Permission Denied’.
We can also specify our own message together with the system error message. In the above
example, ‘file’ variable prints the file name ‘lines.txt’ together with compiler’s message
‘Permission Denied’.

(e) ftell():It is a file function. It returns the current position of the file pointer. It returns
the pointer from the beginning of file. The current position of the file is detected with this
function.

 14.28 Write a program to print the current position of the file pointer in the file using the
ftell() function.

 while(!feof(fr))
 {
 c=fgetc(fr);
 if(ferror(fr))
 {
 perror(file);
 exit(1);
 }
 else
 printf(“%c”,c);
 }
 fclose(fr);
}

OUTPUT:
lines.txt : Permission Denied

include <stdio.h>
include <conio.h>
void main()
{
 FILE *fp;
 char ch;
 fp=fopen(“text.txt”,“r”);
 fseek(fp,21,SEEK_SET);
 ch=fgetc(fp);
 clrscr();

 while(!feof(fp))
 {
 printf(“%c\t”,ch);
 printf(“%d\n”,ftell(fp));
 ch=fgetc(fp);
 }
 fclose(fp);
}

M14_KAMT3553_02_SE_C14.indd 564 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

Files 565

OUTPUT:
W 22
O 23
R 24
L 25
D 26
 28

	 Explanation:
	 	 	In	the	above	program,	fseek()	function	sets	the	cursor	position	on	byte	21.	The	fgetc()

function	in	the	while	loop	reads	the	character	after	21st	character.	The	ftell()	function	
prints	the	current	pointer	position	in	the	file.	When	feof()	function	is	found	at	the	end	of	
file,	program	terminates.

(f)	 rewind():	This	function	resets	the	file	pointer	at	the	beginning	of	the	file.

	 	 14.29	 Write	a	program	to	show	how	rewind()	function	works.

include <stdio.h>
include <conio.h>
void main()
{
 FILE *fp;
 char c;
 fp=fopen(“text.txt”,“r”);
 clrscr();
 fseek(fp,12,SEEK_SET);
 printf(“Pointer is at %d\n”, ftell(fp));
 printf(“Before rewind() : ”);
 while(!feof(fp))
 {
 c=fgetc(fp);
 printf(“%c”,c);
 }
 printf(“\bAfter rewind() : ”);
 rewind(fp);

 while(!feof(fp))
 {
 c=fgetc(fp);
 printf(“%c”,c);
 }
}

OUTPUT:
Pointer is at 12
Before rewind() : LEAD THE WORLD
After rewind() : TECHNOCRATS LEAD THE WORLD

M14_KAMT3553_02_SE_C14.indd 565 5/17/2015 12:52:03 PM

https://hkgbooks.blogspot.com

566 Programming in C

	 Explanation:
 In the above program, the fseek() function sets the pointer position on the 12th charac-

ter. The first while loop reads and prints the file from the current position up to the end
in which first 12 characters of file are not displayed. Before starting of the second while
loop the rewind() function sets the pointer position at the beginning of file, i.e. on 1 char-
acter. The while loop reads all the characters of the file from starting to end. In short the
rewind() function sets the file pointer at the beginning of the file.

(g) unlink() or remove(): These functions delete the given file in the directory. It is simi-
lar to the del command in DOS.

 14.30 Write a program to delete the given file from the disk using remove() or unlink()
function.

include <dos.h>
include <stdio.h>
include <conio.h>
include <process.h>
void main()
{
 FILE *fp;
 char file[15];
 clrscr();
 system(“dir *.txt”);

 printf(“ Enter The File Name :”);
 scanf(“%s”,file);
 fp=fopen(file,“r”);
 if(fp==NULL)
 {
 printf(“\nFile dose not exist”);
 exit(1);
 }
 else
 {
 remove(file);
 printf(“\n File (%s) has been deleted !”,file);
 }
}

OUTPUT:
Enter The File Name : TEXT.TXT
File (TEXT.TXT) has been deleted !

	 Explanation:
 In the above program, file to be deleted is entered. The entered file is opened in read

mode. If the fopen() fails to open the file then it returns NULL to pointer *fp, i.e. file
does not exist and program terminates. By using unlink() or remove() function
the entered file is deleted.

(h) rename(): This function changes name of the given file. It is similar to the DOS command
rename.

M14_KAMT3553_02_SE_C14.indd 566 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

Files 567

 14.31 Write a program to change the name of the file. Use rename() function.

include <stdio.h>
include <conio.h>
void main()
{
 char old[12], new[12];
 system(“dir *.c /w”);
 printf(“\nOld File Name : ”);
 scanf(“%s”,old);
 printf(“New File Name : ”);
 scanf(“%s”,new);
 rename(old,new);
 system(“dir *.c/w”);

}

OUTPUT:
Old File Name : old.c
New File Name : new.c

	 Explanation:
 In the above program, the rename() function changes the name of the given file with a new

name. Its meaning is similar to DOS command ‘rename’.

 14.32 Write a program to copy the contents of one file to another file.

/* File copy program */
include <stdio.h>
include “process.h”
void main()
{
 /* Declaration */

 FILE *ft,*fs;
 int c=0;
 clrscr();

 /* Opening Files */

 fs=fopen(“a.txt”,“r”);
 ft=fopen(“b.txt”,“w”);

 if(fs==NULL)
 {
 printf(“\n Source file opening error.”);
 exit(1);
 }
 else
 if(ft==NULL)
 {
 printf(“\n Target file opening error.”);
 exit(1);
 }

 /* Reading file */

M14_KAMT3553_02_SE_C14.indd 567 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

568 Programming in C

	 Explanation:
 In the above program, two files are opened. The source file ‘a.txt’ is opened in read mode and

the target file ‘b.txt’ is opened in the write mode. With the fputc() function the contents
read by fgetc() is written to the target file. To count the number of characters of source file ‘c’
counter is used. The fcloseall() function closes all the opened files and returns the number of
files closed. This return value of fcloseall() is collected by the variable ‘c’.

 14.33 Read the contents of three files and find the largest file.

 while(!feof(fs))
 {
 fputc(fgetc(fs),ft);
 c++;
 }
 printf(“\n %d Bytes copied from ‘a.txt’ to ‘b.txt.’”,c);

 /* Closing Files */
 c=fcloseall();
 printf(“\n %d files closed.”,c);
}

OUTPUT:
45 Bytes copied from ‘a.txt’ to ‘b.txt.
2 files closed.

include <stdio.h>
include <conio.h>
include <alloc.h>
include <process.h>

void main()
{
 FILE *f[3],*fp;
 int x[3],l,y=0,k=0,t=0;
 char c1;
 char name[3][11]={“1.txt”,“2.txt”,“3.txt”};
 clrscr();

 for(l=0;l<3;l++)
 {
 fp=fopen(name[l],“r”);
 f[l]=fp;

 if(fp==NULL)
 {
 printf(“\n %s file not found. ”,name[l]);
 exit(1);
 }
 }

 clrscr();
 for(l=0;l<3;l++)
 {
 while(!feof(f[l]))
 {
 c1=fgetc(f[l]);

M14_KAMT3553_02_SE_C14.indd 568 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

Files 569

 x[l]=y++;
 }
 y=0;
 }

 clrscr();
 fcloseall();

 for(l=0;l<=2;l++)
 {
 printf(“File : %s Bytes : %d\n”,name[l],x[l]);
 t=t+x[l];
 }
 for(l=t;l>=1;l--)
 {
 for(k=0;k<3;k++)
 {
 if(l==x[k])
 {
 printf(“%s are the largest file.”,name[k]);
 exit(1);
 }
 }
 }
}

OUTPUT:
File : 1.txt Bytes : 16
File : 2.txt Bytes : 20
File : 3.txt Bytes : 25
3.txt are the largest file.

Explanation:
 In the above program, an array of file pointer and a separate file pointer fp are declared. The

two-dimensional character array is used for storing file names. Using file pointer array in
the for loop, three files are opened in read mode. Each element of file pointer array points to the
corresponding elements of character array i.e. file names.

 The fgetc() function in the while loop reads contents of each file one by one. The numbers
of characters are also written to integer array in the same loop. At the end, the values stored in integer
array are compared with one another and the file containing the largest number of bytes is detected.
The name of the largest file is displayed.

 14.34 Write a program to copy up to 100 characters from a file to an array. Then copy the con-
tents of an array to another file.

include <stdio.h>
include <conio.h>
include <process.h>
define SIZE 100
void main()
{
 FILE *f,*f2;
 static char c,ch[SIZE];

M14_KAMT3553_02_SE_C14.indd 569 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

570 Programming in C

	 Explanation:
 In the above program, the contents of file ‘poem.txt’ are read using and copied to a char-

acter array ch[]. The same array is read and written to the file ‘alpha.txt’ using the
fputc() function.

 14.35 Write a program to copy the contents of one file to another three files. Display the contents
of the three files.

 int s=0,x=0;
 clrscr();
 f=fopen(“poem.txt”,“r”);
 f2=fopen(“alpha.txt”, “w”);

 if(f==NULL || f2==NULL)
 {
 perror(“?”);
 exit(1);
 }
 clrscr();

 while(!feof(f))
 {
 c=fgetc(f);
 x++;
 if(x==99)
 {
 fcloseall();
 exit(1);
 }
 else
 ch[s++]=c;
 }
 fclose(f);

 for(s=0;s<=100;s++)
 fputc(ch[s],f2);
 fclose(f2);
 perror(“Process Completed”);
}

OUTPUT:
Process Completed : Error 0

include <stdio.h>
include <conio.h>
include “process.h”
void main()
{
 FILE *ft,*fs,*fa,*fb;
 int c=0;
 char k;
 clrscr();
 fs=fopen(“intl.txt”,“r”);
 ft=fopen (“a.txt”,“w”);
 fa=fopen(“b.txt”,“w”);

M14_KAMT3553_02_SE_C14.indd 570 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

Files 571

 fb=fopen(“c.txt”,“w”);

 if(fs==NULL)
 {
 printf(“\n Source file opening error.”);
 exit(1);
 }
 else
 if(ft==NULL || fa==NULL || fb==NULL)
 {
 printf(“\n Target file opening error.”);
 exit(1);
 }

 while(!feof(fs))
 {
 k=fgetc(fs);

 if(c<100)
 fputc(k,ft);

 if(c>=100 && c<200)
 fputc(k,fa);

 if(c>200 && c<=282)
 fputc(k,fb);
 c++;

 if(c==283) break;
 }

 fcloseall();

 ft=fopen(“a.txt”,“r”);
 fa=fopen(“b.txt”,“r”);
 fb=fopen(“c.txt”,“r”);

 if(ft==NULL || fa==NULL || fb==NULL)
 {
 printf(“\n Target file opening error.”);
 exit(1);
 }

 while(!feof(ft))
 {
 k=fgetc(ft);
 printf(“%c”,k);
 }

 while(!feof(fa))
 {
 k=fgetc(fa);
 printf(“%c”,k);
 }
 while(!feof(fb))
 {
 k=fgetc(fb);
 printf(“%c”,k);
 }
 fcloseall();
}

M14_KAMT3553_02_SE_C14.indd 571 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

572 Programming in C

	 Explanation:
 In this program, the text file intl.txt is opened in the read mode. Another three files

a.txt, b.txt and c.txt are opened in the write mode. Total 300 characters are read
from the file and 100 characters are written into each file. Later contents of these a.txt,
b.txt and c.txt are displayed on the screen.

14.9 LoW-LEvEL dISk I/o
Text files can be copied from one file to other or in many files. However if we attempt to open binary
files such as .EXE in text mode, unexpectedly the process of getting characters would stop. This is
because whenever ASCII value 26 is observed copying work stops due to EOF(). Another approach
to copy such binary files are with low-level disk I/O.
 In the low-level disk I/O disk operation, data cannot be written as character-by-character or with
sequence of characters as it carried in the high-level disk I/O functions. In the low-level disk I/O func-
tions, buffers are used to carry the read and write operations.
 Buffer plays an important role in the low-level disk I/O program. The programmer needs to
declare the appropriate buffer size. The low-level disk I/O operations are more efficient and quick than
the high-level disk I/O operations.

(a) Opening a file: To open a file or files open() function is used. This function is defined in
‘io.h’. The syntax of open() is as given below.

Syntax:

int open(const char *f_name, int access, unsigned mode)

In the low-level operation, a number is assigned to the file and the number is used to refer the file. If
open() returns –1, it means that the file could not be opened otherwise the file is successfully opened.
 Table 14.3 describes the file-opening modes in the low-level disk I/O operations.

OUTPUT:

Microsoft Windows 98 Seco_nd Edition
README for Pan-European Regional Settings
(c) Copyright Micro_oft Corporation, 1999

Table 14.3 File-opening modes
Mode Meaning

O_APPEND Opens a file in append mode.

O_WRONLY Creates a file for writing only.

O_RDONLY Opens a file for writing only.

O_RDWR Opens a file for read/write operations.

O_BINARY Opens a file in binary mode.

O_CREATE Opens a new file for writing.

O_EXCEL When used with O_CREATE, if a file exists it is not overwritten.

O_TEXT Creates a text file.

M14_KAMT3553_02_SE_C14.indd 572 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

Files 573

include <stdio.h>
include <conio.h>
include <io.h>
include <fcntl.h>

void main()
{
 char file[10];
 char buff[15];
 int s,c;

 puts(“\n Enter a file name :”);
 gets(file);

 s=open(file,O_CREAT | O_TEXT);

 if(s==-1)
 puts(“\n File does not exits”);
 else
 {
 puts(“Enter text below : ”);

 When O_CREATE flag is used, it also requires
one of arguments described in Table 14.4 to verify
the read/write status of the file. These arguments
are called permission argument. The programmer
need to include the header file ‘stat.h’ and
‘types.h’ along with ‘fcntl.h’.

(b) Writing a file: The write() function is used to write() data into the file. This function
is defined in ‘io.h’. The syntax of write() function is as given below.

Syntax:

int write(int handle, void *buf, unsigned nbyte);

Returns the number of bytes written or –1 if an error occurs.

(c) Reading a file: The read() function reads a file. The syntax of read() function is as follows.

Syntax:

int read(int handle, void *buf, unsigned len);

Upon successful end, it returns an integer specifying the number of bytes placed in the buffer; if the
file was opened in text mode, read does not count carriage returns or ctrl-Z characters in the number
of bytes read. On error, it returns –1 and sets errno.

(d) Closing a file: The close() function closes the file. This function is defined in ‘io.h’.The
syntax of close() is as per given below.

	Syntax:

int _close(int handle);

int close(int handle);

Upon successful finish, close & _close returns 0; otherwise, they return –1 and set errno.

 14.36 Write a program to enter text through keyboard and store it on the disk. Use low-level disk
I/O operations.

Table 14.4 Permission argument
S_IWRITE Writing to the file allowed

S_IREAD Reading from the file allowed

M14_KAMT3553_02_SE_C14.indd 573 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

574 Programming in C

 for(c=0;c<=13;c++)
 buff[c]=getche();
 buff[c]=’\0’;

 write(s,buff,15);
 close(s);
 }
}

OUTPUT:
Enter a file name :
TEXT.txt
Enter text below : PROGRAMMING IN C

	 Explanation:
 In the above program, a prompt appears for asking a file name to be created. A file is cre-

ated with the name entered by the user. If the file is already present, it would not be over-
written and the entered text would not be written in the file. If open() fails to open the
file then it will return –1 and this value is assigned to variable s. The if statement checks
the value of s and respective blocks are executed. In the else block, the getche()
within the for loop reads 14 characters through the keyboard and after the for loop the
string is terminated by the NULL character. Here, instead of using gets(), getche()
is used. In gets(), there may be a possibility that the entered text may be of less than
15 characters. In such a case, some garbage values are also written in the file. To avoid the
garbage we used getche() within the for loop to exactly read character equal to that
mentioned in the write() statement, i.e. 15.

 14.37 Write a program to read text from a specified file from the disk. Use low-level disk I/O
operations.

include <stdio.h>
include <conio.h>
include <io.h>
include <fcntl.h>
include <process.h>

void main()
{
 char file[10],ch;
 int s;
 clrscr();
 puts(“\n Enter a file name :”);
 gets(file);

 s=open(file,O_RDONLY);

 if (s==-1)
 {
 puts(“\n File does not exits.”);
 exit(1);
 }
 else

M14_KAMT3553_02_SE_C14.indd 574 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

Files 575

	 Explanation:
 In the above program, the file is opened in read-only mode. The read() declaration with-

in the while loop reads single character from the file destined by the file handler s. The
putch() statement following the read() declaration shows the read character on the
console. The while loop ends when the end of file is detected.

(e) Setting Buffer: The size of buffer can be set using the setbuf() function. This function is
defined in ‘stdio.h’. The syntax of setbuf() is as follows.

Syntax:

void setbuf(FILE *fp, char *buffer);

 14.38 Write a program to set a buffer size using setbuf() function.

 {
 while(!eof(s))
 {
 read(s,&ch,1);
 putch(ch);
 }
 close(s);
 }
}

OUTPUT:
Enter a file name : TEXT.txt
PROGRAMMING IN C

include <stdio.h>
include <conio.h>
void main()
{
 char buff[22];
 clrscr();
 setbuf(stdout,buff);
 printf (“\nThis book teaches C”);
 fflush(stdout);

}

OUTPUT:
This book teaches C

	 Explanation:
 In the above program, a character array buff[22] is declared. The setbuf() function

sets the buffer size as per the size of buff[22] array. The printf() statement displays
the message written in it. If the characters written in the printf() statement are more
than the buffer size i.e. 22 the program will be terminated with a critical error. Hence, the
text that is to be displayed using any output function should be less or equal to the size of
buffer.

M14_KAMT3553_02_SE_C14.indd 575 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

576 Programming in C

14.10 commAnd LInE ArgumEntS
An executable program that performs a specific task for operating system is called a command. The
commands are issued from the prompt of operating system. Some arguments are to be associated with
the commands hence these arguments are called command line arguments. These associated argu-
ments are passed to the program.
 In C language, every program starts with a main() function and it marks the beginning of the
program. We have not provided any arguments so far in the main() function. Here, we can make
arguments in the main like other functions. The main() function can receive two arguments and
they are: (1) argc and (2) argv. The information contained in the command line is passed on to the
program through these arguments when the man() is called up by the system.

(1) Argument argc: An argument argc counts the total number of arguments passed from
command prompt. It returns a value which is equal to the total number of arguments passed
through the main().

(2) Argument argv: It is a pointer to an array of character strings which contain names of argu-
ments. Each word is an argument.

Example:

Copy file1 file2

Here, file1 and file2 are arguments and copy is a command. The first argument is always an execut-
able program followed by associated arguments. If you do not specify the argument, the first program
name itself is an argument but the program will not run properly and will flag an error.
 A program on above concept is explained below.

 14.39 Write a program to display the number of arguments and their names.

include <stdio.h>
include <conio.h>
main(int argc, char *argv[])
{
 int x;
 clrscr();
 printf(“\n Total number of arguments are %d \n”,argc);
 for(x=0;x<argc;x++)
 printf(“%s\t”,argv[x]);

 getch();
 return 0;
}

OUTPUT:
Total number of arguments are 4
C:\TC\C.EXE A B C

	 Explanation:
 To execute this program, one should create its executable file and run it from the command

prompt with required arguments. The above program is executed using the following steps:

 (i) Compile the program.

 (ii) Make its exe file (executable file).

(iii) Switch to the command prompt. (C:\TC>)

M14_KAMT3553_02_SE_C14.indd 576 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

Files 577

(iv) Make sure that the exe file is available in the current directory.

 (v) Type the following bold line.

c:\tc> c.EXE hELp mE
In the above example, c.exe is an executable file and ‘HELP ME’ are taken as arguments. The total
numbers of arguments including program file name are three.

14.11 AppLIcAtIon oF commAnd LInE ArgumEntS
Below given programs can be used on command prompt similar to that of DOS commands.

(1) TYPE:

 14.40 Write a program to read any file from command prompt. Use command line arguments.
(Save this program as read.c)

include <stdio.h>
include <conio.h>
include <process.h>

main(int argc, char *argv[])
{
 FILE *fp;
 int ch;
 fp=fopen(argv[1],”r”);

 if(fp==NULL)
 {
 printf(“Can not open file”);
 exit(0);
 }
 while(!feof(fp))
 {
 ch=fgetc(fp);
 printf(“%c”,ch);
 }
 fclose(fp);
 return 0;
}

	 Explanation:
 The above program after getting its exe file will run similarly as type command of DOS.

On the command prompt, one should write first exe file name and file name to be read. The
contents of file will be displayed on the screen.

(2) DEL:

 14.41 Write a program using command line argument to perform the task of DEL command of
DOS. (Save this program as cut.c)

include <stdio.h>
include <conio.h>
include <process.h>

M14_KAMT3553_02_SE_C14.indd 577 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

578 Programming in C

main(int argc, char *argv[])
{
 FILE *fp;
 if(argc<2)
 {
 printf(“Insufficient Arguments”);
 exit(1);
 }

 fp=fopen(argv[1],“r”);
 if(fp==NULL)
 {
 printf(“File Not Found”);
 exit(1);
 }

 unlink(argv[1]);
 printf(“File has been deleted ”);
 return 0;
}

	 Explanation:
 This program performs the task of DEL command of disk operating system. It deletes only

one file at a time. It also creates exe file of this program and executes it on the command
prompt. User should give the file name for deleting. Opening it in read mode checks the
existence of file. The file will be deleted in case it exists. In the program, appropriate mes-
sages are displayed if user makes any mistake. Error messages are ‘insufficient arguments’,
‘file not found’ and “file has been deleted”.

(3) RENAME:

 14.42 Write a program using command line argument to perform the task of REN command of
DOS. (Save this program as change.c)

include <stdio.h>
include <conio.h>
include <process.h>

main(int argc, char *argv[])
{
 FILE *fp,*sp;
 if(argc<3)
 {
 printf(“Insufficient Arguments”);
 exit(1);
 }

 fp=fopen(argv[1],“r”);

 if(fp==NULL)

M14_KAMT3553_02_SE_C14.indd 578 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

Files 579

 {
 printf(“File Not Found”);
 exit(1);
 }

 sp=fopen(argv[2],“r”);

 if(sp==NULL)
 {
 fcloseall();
 rename(argv[1],argv[2]);
 }
 else
 printf(“Duplicate file name or file is in use.”);
 return0;
}

	 Explanation:
 In the above program, the main() receives two file names. The existence of old file is

checked through read mode. If the file does not exist, program terminates. On the other hand,
if the second file exists the rename operation can not be done. If the file pointer of the second
file contains the NULL value, then only rename operation is performed otherwise program
terminates with an appropriate error message.

14.12 EnvIronmEnt vArIABLES
Environment variables provide different system settings/path related to operating system. These vari-
ables are available in both MS-DOS and UNIX operating system. The output depends upon the oper-
ating system. The following program displays the output related to MS-DOS.

 14.43 Write a program to use the environment variable and display various settings.

include <stdio.h>
include <conio.h>
void main(int argc, char *argv[],char *env[])
{
 int i;
 clrscr();
 for(i=0;env[i]!=NULL;++i)
 {

 printf(“%s\n”,env[i]);
 }

}

OUTPUT:
TMP=C:\WINDOWS\TEMP
TEMP=C:\WINDOWS\TEMP
PROMPT=pg
winbootdir=C:\WINDOWS
COMSPEC=C:\WINDOWS\COMMAND.COM

M14_KAMT3553_02_SE_C14.indd 579 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

580 Programming in C

PATH=C:\WINDOWS;C:\WINDOWS\COMMAND;C:\JDK1.2.1\BIN;C:\JDK1.2.1;
CMDLINE=WIN
windir=C:\WINDOWS

14.13 I/o rEdIrEctIon
Normally a program receives the input from keyboard, and on processing the input result is provided on
the output device such as monitor. Using MSDOS, the feature redirection permits to send the result to disk
instead of the monitor. It is also possible to bring information in program from disk instead of the keyboard.
 Consider the DOS command dir > abc; execute it at the DOS prompt. Here, dir is the in-
ternal DOS command and abc is the name of the file. Here, the list of files and directories, instead of
displaying on the screen, is redirected in a text file abc i.e. the files and directories would, possible to
be seen in abc file. For this use, type abc command at DOS prompt.
 From the above example, the reader can understand that the output of the command can be redi-
rected to another file. Using redirection the output of the program instead of displaying on the screen
is stored on the disk in the form of a file. With this, we can avoid creating a separate function for writ-
ing files to the disk or to the printer. Thus, this is an advantage and a convenient approach for writing
files to the disk. Using this redirection concept both read and write operations are possible.
 The following steps can be adopted to follow the concept of redirection:

 (i) Compile a program

 (ii) Get an executable file .exe

(iii) Execute this .exe file on the DOS prompt with redirection

Example: read.exe > input.txt

(iv) Input the data from keyboard

 (v) See the typed data on DOS prompt by typing Type input.txt

 Executing the following programs can follow the concept of redirection.

 14.44 Write a program to read a character from the keyboard till the user presses enter.

include <stdio.h>
include <conio.h>
void main()
{
 char c;
 while((c=getc(stdin))!=‘\n’)
 putc(c,stdout);
}

OUTPUT:
1 2 3 4 5 6 7 8 9

	 Explanation:
 On compiling this program, we would get an executable file read.exe. Execute this pro-

gram on the DOS prompt as given below.

C> read.exe > input.txt

M14_KAMT3553_02_SE_C14.indd 580 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

Files 581

Now, whatever data is inputted, it is redirected to text file input.txt. To confirm, type the file using
type command. The output would be

 1 2 3 4 5 6 7 8 9

The redirection operator ‘>’ transfers any output proposed for screen to the file followed by the operator.
 It is optional to input data in the program. We can also redirect output of the program generated
by itself to the text file. The above program illustrates this point.

 14.45 Write a program to display A to Z characters.

include <stdio.h>
include <conio.h>
void main()
{
 int a;
 clrscr();
 for(a=65;a<91;a++)
 printf(“\t%c\t”,a);
 printf(“\n”);
}

OUTPUT:
A B C D E
F G H I J
K L M N O
P Q R S T
U V W X Y
Z

	 Explanation:
 After compilation we get the exe file. Execute it at DOS prompt as given below.

c> alpha.exe > abc.txt

After execution, the output generated by the program is directed to file abc.txt. It is also possible
to send the output to printer. For this, follow the following syntax:

c> alpha.exe > prn

We can also redirect the input to the program from a file. Instead of writing with the keyboard, a com-
plete file can be transferred. The below given program explains this point.

C> read.exe < abc.txt

This command display output is

A B C D E
F G H I J
K L M N O
P Q R S T
U V W X Y
Z

M14_KAMT3553_02_SE_C14.indd 581 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

582 Programming in C

 Here, the contents of abc.txt are redirected to program read.exe. The user need not enter any
data through the keyboard. The entire contents of abc.txt are used as input and the same is displayed.
Here, the ‘<’ redirection operator is used.
 Input and output can be redirected simultaneously. Here, input is taken from a file and transferred
to another file. The program acts as mediator between both the files. The following command illus-
trates this process:

 C> read.exe < abc.txt > alpha.txt

 In this process, program reads redirected data from the file abc.txt. Also instead of displaying
output on the screen, it would be redirected to the file alpha.txt. The contents of both the files
abc.txt and alpha.txt will be the same. User can confirm by typing them.

 SummAry

 This chapter explains the procedure for opening files and storing information in them. The various
I/O functions related to high level and low-level file disk operations are elaborated with program-
ming examples. After having gone through structures read and write, you are now familiar with
fwrite() and fread() functions. Using other file functions, we described functions related to
seeking the particular record, end of file and detecting the errors. Command line arguments to accept
arguments from command prompt of the operating system are described. Simulations of various DOS
commands with examples are also narrated. Reader is also made familiar with I/O-REDIRECTIONS
in which output of the program can be redirected to file or printer. Also, data from file can also be
redirected to program.

 EXErcISES

 1. A file is a set of records.

 2. The FILE pointer contains all information about
a file.

 3. Without the file pointer file can be operated in C.

 4. In sequential file data can be read directly.

 5. In random file the last record can be read first.

 6. The fopen() is used to open file.

 7. The statement FILE p declares file pointer.

 8. The ‘r‘ mode means file is opened for writing only.

 9. The ‘w‘ mode opens a new file on the disk.

 10. The function fputc() writes data to the file.

 11. The fprintf() is similar to printf().

 12. The function feof() finds the end of file.

 13. The getw() is not associated with any file
operation.

 14. The SEEK_CUR indicates current position of
the file pointer.

 15. The ferror() reports error occurred during
file read/write operation.

 I True or false :

M14_KAMT3553_02_SE_C14.indd 582 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

Files 583

III Select the appropriate option from the multiple choices given below:

1. The fscanf() statements reads data from

 (a) file
 (b) keyboard
 (c) Both (a) and (b)
 (d) None of the above

2. When fopen() fails to open a file it returns

 (a) NULL
 (b) −1
 (c) 1
 (d) None of the above

3. A file opened in w+ mode can be

 (a) read/write
 (b) only read

 (c) only write
 (d) None of the above

4. Command line arguments are used to accept argu-
ment from

 (a) command prompt of operating system
 (b) through scanf() statement
 (c) Both (a) and (b)
 (d) None of the above

5. The redirection operator ‘>’ transfers any output to

 (a) text file
 (b) console
 (c) both (a) and (b)
 (d) None of the above

1.
Group A Group B

Sr.	No File	Functions Sr.	No Used	for

1. fputs() A Writes characters one by one to a file.

2. fputc() B Writes strings to the file.

3. fwrite() C Detects the end of file.

4. feof() D Writes the block of structured data to the file.

2.
Group A Group B

Sr.	No File	Functions Sr.	No Used	for

1. rewind() A Returns the current pointer position.

2. perror() B Set the record pointer at the beginning of the file.

3. ftell() C Removes the specified file from the disk.

4. unlink() D Prints compilers error messages along with user defined
messages.

II Match the following correct pairs given in Group A with Group B:

 16. The function rewind() reverses the contents
of a file.

 17. The ‘wb’ creates a file in binary mode.

 18. The O_APPEND is a low-level disk operation.

 19. The argc and argv are not command line
arguments.

M14_KAMT3553_02_SE_C14.indd 583 5/15/2015 10:18:34 AM

https://hkgbooks.blogspot.com

584 Programming in C

VI What will be the output/s of the following program/s?

1.
 # include <process.h>
 void main()

 {
 FILE *fp;
 char c;

V Answer the following questions:

1.	 What is the difference between end of a file and
end of a string?

2. Distinguish between text mode and binary mode
operation of a file.

3.	 What is the use of fseek()? Explain its
syntax.

4.	 Distinguish between the following functions:

	 (a) scanf() and fscanf()
	 (b) getc() and getchar()
 (c) putc() and fputc()
 (d) putw() and getw()
	 (e) ferror() and perror()
	 (f) feof() and eof()

5.	 How does an append mode differs from a write
mode?

	 6. Why the header file stdio.h is frequently used
in C Language?

 7. Compare between printf and fprintf
 functions.

 8. Distinguish between the following modes:

	 (a) w and w+
	 (b) r and r+
 (c) rb and rb+
 (d) a and a+

	 9. Explain low-level disk operations.

 10. Explain command line arguments.

 11. Explain environment variables.

 12. How redirection of input and output is done?
Explain in brief.

IV Attempt the following programming exercises:

1.	 Write a program to generate a data file containing
the list of cricket players, no. of innings played,
highest run score and no. of hatriks made by them.
Use structure variable to store the cricketer’s name,
no. of innings played, highest run score and the
number of hatricks.

2. Write a program to reposition the file to its 10th
character.

3. Write a program to display contents of file on the
screen. The program should ask for file name. Dis-
play the contents in capital case.

4. Write a program to find the size of the file.

5. Write a program to combine contents of two files
in a third file. Add line number at the beginning of
each line.

6.	 Write a program to display numbers from 1 to 100.
 Re-direct the output of the program to text file.

7.	 Write a program to write contents of one file in
 reverse into another file.

8. Write a program to interchange contents of two
files.

6. This function is used to detect the end of file

	 (a) feof()
 (b) ferror()
	 (c) fputs()
	 (d) fgetch()

7. The EOF is equivalent to

	 (a) –1
 (b) 0
 (c) 1
 (d) None of the above

M14_KAMT3553_02_SE_C14.indd 584 5/17/2015 1:10:49 PM

https://hkgbooks.blogspot.com

Files 585

 clrscr();
 printf(“Contents of file

before appending :\n”);
 fp=fopen(“data.txt”,

 “r”);
 while(!feof(fp))
 {
 c=fgetc(fp);
 printf(“%c”,c);
 }
 fp=fopen (“data.txt”,“a”);
 if(fp==NULL)
 {
 printf(“File can not

appended”);
 exit(1);
 }
 printf(“\n Enter string to

append :”);
 while(c!=‘.’)
 {
 c=getche();
 fputc(c,fp);
 }
 fclose(fp);
 printf(“\n Contents of file

 After appending :\n”);
 fp=fopen(“data.txt”,“r”);
 while(!feof(fp))
 {
 c=fgetc(fp);
 printf(“%c”,c);
 }
 }

2.
 # include <process.h>
 void main()
 {
 FILE *fp;
 Char c=‘ ’;
 Clrscr();
 Fp=fopen(“data.txt”,“w+”);
 if(fp==NULL)
 {
 printf(“Can not open

file”);
 exit(1);
 }
 printf(“Write data & to stop

press ‘.’ :”);
 while(c!=‘.’)

 {
 c=getche();
 fputc(c,fp);
 }
 rewind(fp);
 printf(“\n Contents

read :”);
 while(!feof(fp))
 printf(“%c”,getc(fp));
 }

3.
 # include <process.h>
 void main()
 {
 FILE *fp;
 char c=‘ ’;
 clrscr();
 fp=fopen(“data.txt”,“a+”);
 if(fp==NULL)
 {
 printf(“Cannot open

file”);
 exit(1);
 }
 printf(“Write data & to stop

press ‘.’ :”);
 while(c!=‘.’)
 {
 c=getche();
 fputc(c,fp);
 }
 printf(“\n Contents read :”);
 rewind(fp);
 while(!feof(fp))
 printf(“%c”,getc(fp));
 }

4.
 # include <process.h>
 void main()
 {
 FILE *fp;
 char c=‘ ’
 clrscr();
 fp=fopen(“data.dat”,“wb”);
 if(fp==NULL)
 {
 printf(“Cannot open file”);
 exit(1);
 }

M14_KAMT3553_02_SE_C14.indd 585 5/15/2015 10:18:35 AM

https://hkgbooks.blogspot.com

586 Programming in C

 printf(“Write data & to stop
press ‘.’ :”);

 while(c!=‘.’)
 {
 c=getche();
 fputc(c,fp);
 }
 fclose(fp);
 fp=fopen(“data.dat”,“rb”);
 printf(“\n Contents read :”);
 while(!feof(fp))
 printf(“%c”,getc(fp));
 }

5.
 void main()
 {
 FILE *fp;
 char c;
 clrscr();
 fp=fopen(“lines.txt”,“w”);
 if(fp==NULL)
 return;
 else
 {
 while((c=getche())!=‘*’)

 fputc(c,fp);
 }
 fclose(fp);
 }

6.
 void main()
 {
 FILE *fp;
 char ch;
 fp=fopen(“text.txt”,“r”);
 clrscr();
 if(fp==NULL)
 {
 printf(“File Not Found”);
 exit(0);
 }
 fseek(fp,21,SEEK_SET);
 ch=fgetc(fp);
 clrscr();
 rewind(fp);
 for(; ;)
 {
 printf(“%d\n”,ftell(fp));
 ch=fgetc(fp);
 }
 }

VII Find the bug/s in the following program/s:

1.
 # include <process.h>
 void main()
 {
 FILE *fp;
 char c=‘ ’;
 clrscr();
 fp=fopen(“data.txt”,“w”);
 if(fp==NULL)
 {
 printf(“Cannot read file”);
 exit(0);
 }
 printf(“Write data & to stop

press . : ”);
 while(c!=‘.’)
 {
 c=getche();
 fputc(c,fp);
 }
 printf(“\n Contents Read :”);
 fp=fopen (“data.txt”,“r”);

 while(!feof(fp))
 printf(“%c”,getc(fp));
 }

2.
 # include <process.h>
 void main()
 {
 FILE *fp;
 char c= ‘ ’;
 clrscr();
 fp=fopen(“data.txt”,“w”);
 if(fp==NULL)
 {
 printf(“Cannot read file”);
 exit(0);
 }
 printf(“Write data & to stop

press . : ”);
 while (c!=‘.’)
 {
 c=getche();

M14_KAMT3553_02_SE_C14.indd 586 5/15/2015 10:18:35 AM

https://hkgbooks.blogspot.com

Files 587

 fputc(c,fp);
 }
 printf(“\n Contents

 Read :”);
 fp=fopen(“data.txt”,“r”);
 while(!feof(fp))
 printf(“%c”,getc(fp));
 }

 3.
 void main()
 {
 FILE *fp;
 char text[30];
 clrscr();
 fp=fopen(“text.txt”,“w”);
 clrscr();
 puts(“\n Enter Text Here”);
 gets(text);
 fprintf(“%s”,text);
 }

 4.
 # include <process.h>
 void main()
 {
 FILE *fp;
 char c;
 clrscr();
 fp=fopen(“text.txt”,“r”);
 if(fp==NULL)
 {
 printf(“\n cannot open

fi le”);
 }

 while((c=getc(fp)) !=EOF)
 printf (“%c”,c);
 fclose(fp);
 }

 5.
 void main()
 {
 FILE *fr;
 Char c,fi le[]=“text.txt”;
 Fr=fopen(fi le,“w”);
 clrscr();
 while(feof(fr))
 {
 c=fgetc(fr);
 if (ferror(fr))
 {
 perror(fi le);
 exit(0);
 }
 else
 printf(“%c”,c);
 }
 fclose(fr);
 }

 6.
 void main()
 {
 char buff[10];
 clrscr();
 setbuf(stdout,buff);
 printf(“This Book is very

good”);
 ffl ush (stdout);
 }

I True or false:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. T 2. T 3. F 4. F 5. T

 6. T 7. T 8. F 9. T 10. T

11. F 12. T 13. F 14. T 15. T

16. F 17. T 18. T 19. F

 AnSWErS

M14_KAMT3553_02_SE_C14.indd 587 5/15/2015 10:18:35 AM

https://hkgbooks.blogspot.com

588 Programming in C

VI What will be the output/s of the following program/s?

Q. Ans.
1. Contents of file before appending :

String is terminated with ‘\0’.
Enter string to append :
This character is called as NULL character.
Contents of file After appending :
String is terminated with ‘\0’.
This character is called as NULL character.

2. Write data & to stop press ‘.’: ABCDEFGHIJK.
Contents read: ABCDEFGHIJK.

3. Write data & to stop press ‘.’ : This is append and read mode.
Contents read: This is append and read mode.

4. Enter Text Here: Have a nice day.

5. Have a nice day.

6. File Not Found.

VII Find the bug/s in the following program/s:

Q. Ans.
1. After writing data file should be closed.

2. The file opening mode “W” is invalid.

III Select the appropriate option from the multiple choices given below:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.

1. a 2. a 3. a 4. a 5. c

6. a 7. a

II Match the following correct pairs given in Group A with Group B:

1.

Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. B 2. A 3. D 4. C

2.

Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. B 2. D 3. A 4. C

M14_KAMT3553_02_SE_C14.indd 588 5/15/2015 10:18:35 AM

https://hkgbooks.blogspot.com

Files 589

3. The file pointer is missing in fprintf().
4. In if() statement exit(0) statement is required.

5. while (!eof(fr)) is correct condition.

6. The size of the buffer is to small.

M14_KAMT3553_02_SE_C14.indd 589 5/15/2015 10:18:35 AM

https://hkgbooks.blogspot.com

Graphics

CHAPTER

15
Chapter Outline

 15.1 Introduction
 15.2 Initialization of Graphics
 15.3 Few Graphics Functions
 15.4 Programs Using Library Functions
 15.5 Working with Text
 15.6 Filling Patterns with Different Colours and Styles
 15.7 Mouse Programming
 15.8 Drawing Non-common Figures

M15_KAMT3553_02_SE_C15.indd 590 5/15/2015 9:56:10 AM

https://hkgbooks.blogspot.com

Graphics 591

15.1 IntroductIon
Computer graphics is one of the most interesting and useful topics of computers and C language. The goal
of this chapter is to explore information on graphics. Everywhere information is conveyed in the form of
pictures, which needs computer graphics understanding. In other words, pictorial presentation can be done
with the graphics. We can draw all figures of various shapes with computer graphics. Lines, circles, ellipse,
rectangle, triangle of various shapes can be drawn with computer graphics. Besides, nowadays we deal
with animation, multimedia which works pre-dominantly using graphics. The intention of introducing this
chapter is to interact with graphics using C language in an easy way. The basic concept of graphics
is explained with examples. In this chapter, standard library functions are described together with
 illustrations. Also discussed in brief are computer graphics.
 Video display unit is one of the most useful output components of the computer system. The
video display system comprises the following components:

 (i) Video screen, where text and picture can be displayed.

 (ii) Video display adapter card, which is plugged in to one of the expansion slots, provided on the
motherboard.

The display adapter facilitates the programmer to show the various figures and text on the screen
with different resolutions. Resolution is decided by the number of pixels (small dots) available on
the screen. The display resolution is a combination of the number of rows from top to bottom and the
number of pixels from left to right on each scan line. Higher the resolution more clear is the picture.
With higher number of pixels the picture becomes clearer. Commonly available display adapters are
video display adapters, colour graphic adapters and super video graph adapters. All these adapters
operate both in text and in graphic modes. The clarity and quality of picture with VGA, SVGA, etc.
are better than CGA and monochrome adapters.
 The display adapter acts as an inter-mediator between the processor and monitor. The display
adapter has two parts: (i) VDU memory and (ii) circuitry that passes contents of VDU memory to the
screen. The microprocessor writes the information into VDU memory. The display adapter transfers
the information written by a processor to screen. Every address of the VDU memory corresponds to
the specific location of the monitor screen.

15.2 InItIALIZAtIon of GrAphIcs
The header file graphics.h is to be included at the beginning of the program. This header file
comprises the definitions and explanations of all the graphic functions. The functions described in
this chapter are defined in graphics.h file, which should be included in every graphics program.
 To switch over to the graphics mode, a function initgraph() must be invoked. It selects the
best resolution and puts the corresponding number in gm, where gm is the graphics mode.

15.3 few GrAphIcs functIons

 (i) initgraph();
 This function initializes the graphics system. Prototype is defined in ‘graphics.h’. It is

declared as given below:

 void far initgraph(int far *gd,int far *gm,char far *pathtodriver);
 where gd is the graphics driver and gm is the graph mode.

M15_KAMT3553_02_SE_C15.indd 591 5/15/2015 9:56:10 AM

https://hkgbooks.blogspot.com

592 Programming in C

 In real application to detect graphics drives DETECT macro is used.

 (ii) closegraph();

 This function shuts down the graphics system. The declaration is given below. Prototype is
defined in ‘graphics.h’.

 void far closegraph(void);

 (iii) restorecrtmode();

 This function restores the screen mode to its pre-initgraph setting. Its prototype is defined in
‘graphics.h’.

 void far restorecrtmode(void);

 (iv) graphresult();

 This function returns an error code for the last failed graphics operation. This function is
 defined as follows:

 int far graphresult(void);

 It returns the error code for the last graphics execution that reported an error and resets the
 error level to grOK, where grOK is enumerated error code.

 (v) getmaxx(); and getmaxy();

 The getmaxx() returns maximum x screen coordinate and getmaxy() returns maximum
y screen coordinate. Its prototype is defined in ‘graphics.h’. These functions can be
declared as given here:

 int far getmaxx(void);
 int far getmaxy(void);

 (vi) line();

 It draws a line between two specified points. This function is declared as given below:

 void far line(int x1, int y1, int x2, int y2);

 Draws a line from (x1, y1) to (x2, y2) using the current colour, line style and thickness.

 (vii) circle();

 This function draws a circle at (x, y) of the given radius. This function is declared as follows:

 void far circle(int x, int y, int radius);

 (viii) arc();

 This function draws an arc. This function is declared as given here:

 void far arc(int x, int y, int sa, int ea, int r);

 where (x, y) is the centre point. The variables sa and ea are the start and the end angles in
degrees and variable r is the radius.

 (ix) ellipse();

 This function draws an elliptical arc. This function is declared as follows:

 void far ellipse(int x, int y, int sa, int ea, int xr, int yr);

 where (x, y) is the centre point. The variables sa and ea are the start and end angles in
 degrees, respectively. The variables xr and yr are horizontal and vertical radii.

M15_KAMT3553_02_SE_C15.indd 592 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

Graphics 593

include <graphics.h>

void main()
{
 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);

 arc(50,20,50,300,100);

 getch();
 closegraph();
 restorecrtmode();
}

 (x) bar();

 This function draws a bar using given co-ordinates. It can be declared as given below:

 void far bar(int left, int top, int right, int bottom);

(xi) setcolor();

This function sets the current drawing colour. This is declared as follows:

void far setcolor(int color);

(xii) outtextxy();
 It displays a string at the specified location (graphics mode). This function is declared as given

below:

 void far outtextxy(int x, int y, char far *textstring);

(xiii) settextstyle();

 This function sets the current text attributes. This function is declared as follows:

 void far settextstyle(int font, int direction, int fontsize);

(xiv) settextjustify();

 This function sets text justification for graphics mode. This function is declared as given
below:

 void far settextjustify(int horiz, int vert);

 It affects text output with outtext() function. Text is justified horizontally and vertically.

(xv) getcolor();

 It returns the current drawing colour. This function is declared as follows:

 void far getcolor(void);

15.4 proGrAms usInG LIbrAry functIons
 (i) arc(): This function is useful to draw a circular arc. It requires five arguments. The syntax would be

as follow:
 arc(int x, int y, int a, int b, int c);

 Here, the first two arguments i.e. x and y are the centre points. The arguments a and b are the start
and end angles and finally c is the radius. The following programming example can be referred for
drawing an arc.

 15.1 Write a program to demonstrate the use of the arc() function.

M15_KAMT3553_02_SE_C15.indd 593 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

594 Programming in C

	 	 Explanation:
 Consider the statement initgraph(&gd,&gm,”d:\turboc2\bgi”); which initial-

izes the graphic mode. The required adapter files are present in the specified directory. The
arc() function draws arc by simply using parameter values. The function closegraph()
shuts the graphics mode. The function restorecrtmode(); restores the screen mode to
the previous one. The DETECT is enum data type of BGI graphic drivers.

 (ii) rectangle(): The rectangle() function draws the rectangle. It has four arguments.
The syntax of the rectangle is as follows:

rectangle(int left, int top, int right, int bottom);

The following program illustrates this function.

 15.2 Write a program to demonstrate the use of rectangle() function.

include <graphics.h>
void main()
{
 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 setcolor(WHITE);
 rectangle (50,20,150,200);
 getch();
 closegraph();
 restorecrtmode();
}

	 	 Explanation:
 This program draws the rectangle using the given arguments. The setcolor() sets the

 colour of drawings.

 (iii) circle(): It draws the circle of the given radius. It has three arguments.

circle (int x, int y, int r); where r is the radius.

 15.3 Write a program to draw the circle of the given radius.

include <graphics.h>
void main()
{
 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 setcolor(WHITE);
 circle(160,260,35);
 getch();
 closegraph();
 restorecrtmode();
}

M15_KAMT3553_02_SE_C15.indd 594 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

Graphics 595

	 Explanation:
 This program draws circle using the given arguments.

(iv) line(int a, int b, int c, int d) : This function draws line from (a,b) to
(c,d).

 15.4 Write a program to draw the line.

include <graphics.h>
void main()
{
 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 line(100,100,100,400);
 getch();
 closegraph();
 restorecrtmode();
}

(v) ellipse(): the following function draws ellipse using the given arguments.

 15.5 Write a program to draw ellipse.

include <graphics.h>
void main()
{
 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 ellipse(100,100,100,300,300,200);
 getch();
 closegraph();
 restorecrtmode();
}

 15.6 Write a program to draw circle, line and arc using graphics function.

 # include <graphics.h>

void main()
{
 int gd=DETECT,gm,x,y,c=0;
 initgraph(&gd,&gm,“c:\\tc”);
 x=getmaxx();
 y=getmaxy();
 setcolor(WHITE);
 outtextxy(1,20,“Circle”);

M15_KAMT3553_02_SE_C15.indd 595 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

596 Programming in C

	 	 Explanation:
 In the above program, a ‘graphics.h’ header file is included. This header file contains

all prototypes and the definition of all graphic functions.
 Before starting any drawing action, we need to initialize graphics mode. The initgraph()

function finds out the best graphics mode and sets the corresponding number in the
variable gm. Using the value of gm, we can find out the details of monitor like its type,
resolution, number of video pages and supporting colours.

 The variable gd is used for graphics driver. Graphics drivers are sub-set of device drivers and are
used in only graphics mode. The graphics driver files have an extension .bgi. Depending on the type
of adapter, one of the supporting device driver file is selected. In graphics mode, cursor disappears and
the top left corner (0,0) of the console is considered as beginning.
The above program draws circle, arc, ellipse and line depending on the given values. The user can put
different values for the different shapes.

15.4.1 | program on moving moon

 15.7 The following program illustrates a moving moon.

Write a program to draw circle and move it on the screen.

 circle(40,100,40);
 outtextxy(200,10,“Arc”);
 arc(x/3,y/8,180,70,30);

 line(210,150,110,150);
 outtextxy(150,140,“Line”);

 ellipse(215,150,0,70,150,150);
 outtextxy(290,10,“Ellipse”);

 getche();
 closegraph();
 restorecrtmode();
}

include <graphics.h>

void main()
{
 int gd =DETECT,gm,x,y;

 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 clrscr();
 for(x=30;x<400;x+=10)
 {
 fillellipse(x,50,30,30);
 sleep(1);
 clrscr();
 }
 closegraph();
 restorecrtmode();
}

M15_KAMT3553_02_SE_C15.indd 596 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

Graphics 597

	 	 Explanation:
 In this program, using the fillellipse() function moon-like shape is drawn. Using the loop,

the drawn figure moved on the screen. The sleep() function halts the execution for a second.

(vi) bar (int left, int top, int right, int bottom): The function bar()
has four arguments. The bar() displays bar mostly shown in graphs.

 15.8 Write a program to display bar.

include <graphics.h>
void main()
{
 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);

 bar(10,20,50,190);
 getch();
 closegraph();
 restorecrtmode();
}

 (vii) sector(): This function is used to draw a sector.

 15.9 Write a program to draw a sector.

include <graphics.h>
void main()
{
 int gd =DETECT,gm,x,y;

 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 sector(150,170,50,60,90,150);
 getch();
 closegraph();
 restorecrtmode();
}

 (viii) getdrivername(): This function displays the name of graphics driver name. For example:
EGAVGA, EGA VGA.

 (ix) getmaxcolor(): It returns the maximum colour available with the adapter.

 (x) getmaxmode(): It returns the number of display modes available.

 (xi) getmaxx(): It returns the number of maximum x coordinate on the screen.

 (xii) getmaxy(): It returns the number of maximum y coordinate on the screen.

 (xiii) getmodename(int): This function returns the name of the graphics mode.

 (xiv) lineto(): This function draws a line. It requires two integer arguments. It draws a line from the
current position to (x,y), where x and y are the coordinates to be specified by the user.

 (xv) moveto(): This function moves the current position to (x,y), where x and y are the coordi-
nates to be specified by the user.

M15_KAMT3553_02_SE_C15.indd 597 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

598 Programming in C

The following program illustrates these concepts.

 15.10 Write a program to shift the line coordinates to other positions with moveto() and lineto()
functions.

include <graphics.h>
include <stdlib.h>
void main()
{
 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 line(20,30,200,30);
 moveto(250,50);
 lineto(200,50);
 getch();
 closegraph();
 restorecrtmode();
}

	 	 Explanation:
 In this program, the line() function is used for drawing a line. Also, the effect of

moveto() and lineto() functions can be seen by executing this program. You will
observe that the line coordinates get changed with these functions.

15.5 workInG wIth text
There are several functions for display text in different fonts, sizes and directions. Consider the fol-
lowing functions:

 (i) outtextxy (int, int, char far *): This function is used to display the text in
graphic mode.

 (ii) settextstyle(int,int,int): This functions has three integer arguments. First argu-
ment indicates font, second direction and third size.

 15.11 Write a program to display text in different font and size.

include <graphics.h>
void main()
{
 int gd =DETECT,gm,x,y;

 initgraph(&gd,&gm,“d:\turboc2\bgi”);

 settextstyle(1,0,30);
 outtextxy(0,120,“AMOL”);
 getch();
 closegraph();
 restorecrtmode();
}

M15_KAMT3553_02_SE_C15.indd 598 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

Graphics 599

	 	 Explanation:
 After the execution of the program, the string ‘AMOL’ is displayed. This is performed by

giving different values in the settextstyle() function. Another new function that can
be used is settextjustify() which takes care of alignment of the text. This function is
explained in the following program.

 15.12 Write a program to display text in different size, font, vertically and horizontally using
graphic functions.

include <graphics.h>
include <stdlib.h>

void main()
{
 int gd=DETECT,gm;
 initgraph(&gd,&gm, “c:\\tc”);
 settextstyle(1,0,10);
 settextjustify(0,2);
 outtextxy(10,2,“Hello”);
 settextjustify(2,3);
 settextstyle(3,1,5);
 outtextxy(14,150,“Hello”);
 getche();
 closegraph();
 restorecrtmode();
}

	 	 Explanation:
 After the execution of the program, the string ‘Hello’ is displayed horizontally and verti-

cally with different font and font size. This is performed by giving different values in the
settextstyle() function. Another new function used is settextjustify() which
takes care of alignment of the text.

15.5.1 | stylish Lines

 15.13 Write a program to display stylish lines.

include <graphics.h>
void main()
{
 int gd =DETECT,gm,x,y;

 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 clrscr();
 line(20,9,20,70);
 setlinestyle(1,1,1);

M15_KAMT3553_02_SE_C15.indd 599 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

600 Programming in C

	 	 Explanation:
 In this program, using setlinestyle() function, a line drawn can be displayed in a

different style. It requires three integer arguments. The first represents style of line, second
represents pattern and the third represents thickness.

 15.14 Program to draw lines of different styles with increasing length and displaying text.

 line(40,9,40,60);
 setlinestyle(2,1,1);
 line(60,9,60,70);
 getch();
 closegraph();
 restorecrtmode();
}

include <graphics.h>
void main()
{
 int gd =DETECT,gm,x,y,i,k=20,j=200;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 settextstyle(1,0,30);
 settextjustify(100,50);
 setcolor(GREEN);
 outtextxy(20,40,“line”);

 if(k<220)
 for(i=0;i<5;i++)
 {
 setlinestyle(i,10,2);
 line(k,30,j,30);
 k=k+20;
 j=j+20;
 sleep(1);
 }
 else
 getch();
 closegraph();
 restorecrtmode();
}

	 	 Explanation:
 This program is the same as that explained in the previous one. In this program, additional

function for text is used. The programmer can run the program and see its effects.

15.6 fILLInG pAtterns wIth dIfferent coLours And styLes
Now, we will use a function to fill the different patterns with different colours using different styles. In
the following program, a setfillstyle() function is used for drawing a bar. This function needs
to pass two parameters: the first being the pattern and the second being the colour.

M15_KAMT3553_02_SE_C15.indd 600 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

Graphics 601

 15.15 Write a program to use the setfillstyle() and show its effect on the VDU.

include <graphics.h>
include <stdlib.h>
void main()
{
 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 setcolor(GREEN);
 setfillstyle(SOLID_FILL,RED);
 bar(20,30,200,40);
 moveto(250,50);
 bar(200,50,250,60);
 getch();
 closegraph();
 restorecrtmode();
}

	 	 Explanation:
 This program uses setfillstyle() function for filling various colours with different

styles. A bar is drawn with green colour. The programmer can run the program and see its
effects.

 15.16 Write a program to draw the triband flag by using setfillstyle() and show its effect
on the VDU.

include <graphics.h>
include <stdlib.h>
void main()
{

 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 setfillstyle(1,3);
 bar(20,30,200,40);
 rectangle(20,30,200,40);

 setfillstyle(1,4);
 bar(20,40,200,50);
 rectangle(20,40,200,50);

 setfillstyle(1,5);
 bar(20,50,200,60);
 rectangle(20,50,200,60);
 line(20,30,20,150);

 getch();
 closegraph();
 restorecrtmode();
}

M15_KAMT3553_02_SE_C15.indd 601 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

602 Programming in C

	 	 Explanation:
 This program uses setfillstyle() function for filling various bars with different colours.

Bars are drawn with different colours. The programmer can run the program and see the output.

 15.17 Write a program to draw the rectangles duly filled with different patterns using setfill-
style() and show its effect on the VDU.

include <graphics.h>
include <stdlib.h>
void main()
{

 int gd =DETECT,gm, x=20,y=20,i;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 for(i=0;i<10;i++)
 {
 setfillstyle(i,2);
 bar(x,y,x+50,y+50);
 rectangle(x,y,x+50,y+50);
 x=x+50;
 if(x>500)
 {
 y=y+50;
 x=20;
 }
 }

 getche();
 closegraph();
 restorecrtmode();
}

	 	 Explanation:
 This program uses setfillstyle() function for filling the rectangles with different pat-

terns. Rectangles are drawn with different colours. The programmer can run the program and
see the output.

 15.18 Write a program to draw boxes using bar() function. Fill the boxes with different designs.

#include <graphics.h>
include <stdlib.h>

void main()
{
 int gd=DETECT,gm,a=40,b=40,ptr,k;
 char txt[10];

 char *design[]=

 {

 “EMPTY_FILL”, “SOLID_FILL”, “LINE_FILL”,
 “LTSLAH_FILL”, “SLASH_FILL”, “BKSLASH_FILL”,

M15_KAMT3553_02_SE_C15.indd 602 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

Graphics 603

	 	 Explanation:
 In the above program, the settextstyle()function sets text attribute like font size,

direction of text, horizontal or vertical and size of the character. The message ‘user-defined
styles’ is displayed in larger size with red colour. Again, the text attribute are set to 0 so
that further they will not affect the outputting text. The character pointer is initialized with
pre-defined patterns (designs). The setfillstyle() function has two argument patterns
and colour to be filled. The bar() function draws the bar using the attribute of set-
fillstyle(). The rectangle() function draws border to the various bars created by
bar() function. The itoa() function converts an integer to string. The numbers 1 to 12
displayed below each bar are due to this function.

 15.19 Write a program to draw the rectangle using floodfill() function and show its effect on
the VDU.

“LTBKSLASH_FILL”, “HATCH_FILL”, “XHATCH_FILL”,
“INTERLEAVE_FILL”, “WIDE_DOT_FILL”,
“CLOSE_DOT_FILL”, “USER_FILL”};

 initgraph(&gd,&gm, “c:\\tc”);
 setcolor(RED);
 settextstyle(0,0,2);
 outtextxy(100,1,“User-defined Styles”);
 settextstyle(0,0,0);
 setcolor(WHITE);

 for (ptr=0;ptr<12;ptr++)
 {
 setfillstyle(ptr,ptr);
 bar(a,b,a+70,b+70);
 rectangle(a,b,a+70,b+70);
 k=1+ptr;
 itoa(k,txt,10);
 outtextxy(a,b+100,txt);
 setcolor(ptr+1);
 outtextxy(a,b+110,design[ptr]);
 a=a+150;

 if (a>490)
 {
 b=b+150;
 a=40;
 }
 }
 getche();
 closegraph();
 restorecrtmode();
}

include <graphics.h>
include <stdlib.h>
void main()
{

M15_KAMT3553_02_SE_C15.indd 603 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

604 Programming in C

	 	 Explanation:
 This program uses setfillstyle() and floodfill() functions for filling the rectangles

with any pattern. It is not necessary to use bar() at first and then enclose it by rectangle as
used in the previous program. Straightway, one can use floodfill() function for filling a
pattern with different colours. The programmer can run the program and see the output.

15.7 mouse proGrAmmInG
 15.20 Write a program to display the status of mouse button pressed and restrict the mouse

between given co-ordinates on the screen. Use int86() function to call different ROM-
BIOS services.

 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);
 setcolor(WHITE);
 outtextxy(30,20,“RECTANGLE”);
 setcolor(GREEN);
 rectangle(20,40,200,60);
 setfillstyle(1,3);
 floodfill(21,41,GREEN);
 getch();
 closegraph();
 restorecrtmode();
}

include <process.h>
include <dos.h>
include <graphics.h>

union REGS i,o;

int initmouse(void);
void showarrow(void);
void mousearea(int, int, int,int);
void m_pointerat(int *, int *, int *);

void main()
{
 int gd=DETECT, gm,maxx,maxy,button,x,y;
 initgraph(&gd,&gm,“C:\\tc”);
 maxx=getmaxx();
 maxy=getmaxy();
 rectangle(0,56,maxx,maxy);
 setviewport(1,57,maxx-1,maxy-1,1);
 gotoxy(26,1);
 printf(“\n Mouse Button pressed”);

 if(initmouse()==0)
 {
 closegraph();

M15_KAMT3553_02_SE_C15.indd 604 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

Graphics 605

 restorecrtmode();
 printf(“\n Mouse driver not found”);
 exit(1);
 }
 mousearea(0,100,maxx-50,maxy-10);
 showarrow();
 gotoxy(52,3);
 printf(“\n Press any key to exit”);

 while(!kbhit())
 {
 m_pointerat(&button,&x,&y);
 gotoxy(5,3);
 (button & 1)==1 ? printf(“LEFT”) : printf(“****”);
 gotoxy(20,3);
 (button & 2)==2 ? printf(“RIGHT”) : printf(“*****”);
 gotoxy(65,2);
 printf(“Cursor Position”);
 gotoxy(65,3);
 printf(“X=%03d y= %03d”,x,y);
 }
}
initmouse()
{
 i.x.ax=0;
 int86(0x33,&i,&o);
 return(o.x.ax);
}
void showarrow()
{
 i.x.ax=1;
 int86(0x33,&i,&o);
}
void mousearea(int x1,int y1,int x2,int y2)
{
 i.x.ax=7;
 i.x.cx=x1;
 i.x.dx=x2;
 int86(0x33,&i,&o);
 i.x.ax=8;
 i.x.cx=y1;
 i.x.dx=y2;
 int86(0x33,&i,&o);
}

void m_pointerat(int *button, int *x,int *y)
{
 i.x.ax=3;
 int86(0x33,&i,&o);
 *button=o.x.bx;
 *x=o.x.cx;
 *y=o.x.dx;
}

M15_KAMT3553_02_SE_C15.indd 605 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

606 Programming in C

	 	 Explanation:
 In the above program, the function initgraph()switches the mode from text to graphics.

The DETECT is a macro which requests the initgraph()to set the graphics driver. The
functions getmaxx() and getmaxy() obtain the maximum rows and columns available
on the screen. The function setviewport()defines the viewport area which bounds the
drawing operation inside the area.

 The initmouse() function checks if the mouse drives are loaded or not. If the mouse is not
initialized then the closegraph() function off loads the graphics driver. The restoremode()
function restores the mode.
 The function mousearea() defines the area in which mouse pointer can be a pointer. In this
function, int86() is invoked by initializing CPU register with appropriate values.
 The functions mousearea()and showarrow()calls ROM-BIOS services under 33h with
appropriate values. The while() loop checks the button pressed and displays messages accordingly.
The function m_pointerat() displays the current cursor position. When the user presses a key,
the program terminates.

 15.21 Write a program to change the mouse cursor.

include <graphics.h>
include <dos.h>
include <process.h>
union REGS i,o;
struct SREGS s;
int
cursor[50]={0xaaaa,0xbbbb,0xdddd,0xbbbb,
 0xaaaa,0xffff,0xdddd,0xbbbb,
 0xaaaa,0xffff,0xdddd,0xbbbb,
 0xaaaa,0xffff,0xdddd,0xbbbb,
 0xaaaa,0xffff,0xdddd,0xbbbb,
 0xaaaa,0xffff,0xdddd,0xbbbb,
 0xaaaa,0xffff,0xdddd,0xbbbb,
 0xaaaa,0xffff,0xdddd,0xbbbb,
 0xaaaa,0xffff,0xdddd,0xbbbb,
 0xaaaa,0xffff,0xdddd,0xbbbb};
void main()
{

 int mouse(void);
 void cur_shape(int *);
 void showpointer(void);
 int gd=DETECT, gm;
 initgraph (&gd,&gm, “C:\\tc”);

 if (mouse()==0)
 {
 closegraph();
 printf (“\n Mouse Supporting files are not installed”);
 exit(1);
 }

 gotoxy(10,1);

M15_KAMT3553_02_SE_C15.indd 606 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

Graphics 607

	 	 Explanation:
 In the above program, an integer array cursor is initialized with certain hexadecimal num-

bers. The structure SREGS is declared. The functions mouse() and showpointer() are
described in the previous program. In appropriate values of the cur_shape() function
are initialized in the CPU registers. The segread() function reads segment registers. The
read segment addresses of pointer (s) with interrupt 0x33 and the variables of REGS (i) are
passed to function int86x(). The cursor shape changes to a square-like shape.

15.8 drAwInG non-common fIGures
The following program illustrates the use of drawpoly() function. With this, patterns of non-
common shapes can be drawn.

 15.22 Draw non-common shape pattern.

 printf(“\n Press any key to exit..”);
 cur_shape(cursor);
 showpointer();
 getch();
}

mouse()
{
 i.x.ax=0;

 int86(0x33,&i,&o);
 /* retrun(o.x.ax); */
}

void showpointer()
{
 i.x.ax=1;

 int86(0x33,&i,&o);
}

void cur_shape(int *shape)
{
 i.x.ax=9;
 i.x.bx=0;
 i.x.cx=0;
 i.x.dx=(unsigned) shape;
 segread(&s);
 s.es=s.ds;
 int86x(0x33,&i,&i,&s);
}

include <graphics.h>
include <stdlib.h>
void main()
{
 int maxx,maxy;
 int array[8];

M15_KAMT3553_02_SE_C15.indd 607 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

608 Programming in C

	 	 		Explanation	:	
 This program uses drawpoly() function. The programmer can run the program and see

the output. You will get non-regular shape, figure on the screen.

 summAry

 In this chapter, the reader is exposed to the basics of graphics programming in C. Initialization of
graphics with library graphics functions concepts are explained. A number of programming examples
are provided. The reader is advised to go through other functions provided in HELP of C. Last few
programs teach you how to do mouse programming.

 int gd =DETECT,gm,x,y;
 initgraph(&gd,&gm,“d:\turboc2\bgi”);

 setcolor(WHITE);
 outtextxy(30,20,“NONCOMMON SHAPE”);
 setcolor(GREEN);
 maxx=getmaxx();
 maxy=getmaxy();
 array[0]=20;
 array[1]=40;
 array[2]=60;
 array[3]=80;
 array[4]=maxx/3;
 array[5]=maxy/3;
 array[6]=array[0];
 array[7]=array[1];
 drawpoly(4,array);

 getch();
 closegraph();
 restorecrtmode();
}

exercIses

 I Fill in the blanks:

 1. To switch over to graphics mode a function ___________ must be invoked.

 (a) initgraph ()
 (b) restorecrtmode ()
 (c) graphresult ()

M15_KAMT3553_02_SE_C15.indd 608 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

Graphics 609

1. For drawing a bar number of arguments to be passed are

 (a) 3
 (b) 4
 (c) 5
 (d) 6

III Select the appropriate option from the multiple choices given below:

 1. The function getmaxx() returns maximum x screen coordinate.

 2. One must specify the value of diameter for drawing circle using function circle().

 3. Video screen is used only for displaying text.

 4. The function setcolor() sets the current drawing colour.

 5. The outtextxy() function displays a string at the specified location.

 6. The function closegraph() shuts the graphics mode.

 7. The function settextjustify() sets text justification for graphics mode.

 8. The header file graphics.h comprises the definitions and explanations of all the graphics functions.

 9. The initgraph() function find outs the best graphics mode.

 10. The function cirarc() is a library function.

II True or false:

2. The prototype for closegraph() is defined in ________.

 (a) graphics.h
 (b) stdio.h
 (c) conio.h

3. The bar() function draws a bar using _______ coordinates.

 (a) 2
 (b) 4
 (c) 6

4. _______ returns maximum y screen coordinate.

 (a) getmaxy()
 (b) getmaxx()
 (c) getmayy()

5. The function displays a string at the specified location.

 (a) outtextxy()
 (b) settextstyle()
 (c) setcolor()

M15_KAMT3553_02_SE_C15.indd 609 5/15/2015 9:56:11 AM

https://hkgbooks.blogspot.com

610 Programming in C

Fill in the blanks:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
1. a 2. a 3. b 4. a 5. a

 1. Write the initialization procedure of graphics under C.

 2. What are the functions of video display adapter?

 3. What are the display adapters available in the market?

 4. List any 10 graphics library functions and explain their details.

 IV Answer the following questions :

 1. Write a program to draw two overlapping circles.

 2. Write a program to fill overlapping circles with different colours.

 3. Write a program to draw 10 rectangles having similar size one after
other in one vertical line.

 4. Draw alternately bars and rectangles one after other.

 5. Draw the different shapes of rectangles and fill them with
different colours.

 V Attempt the following programs :

 2. The initialization of graphics under C is done with the function

 (a) loadgraph()
 (b) initgraph()
 (c) modegraph()

 3. Name the function to close the graphics mode in C

 (a) closeall()
 (b) closegraph()
 (c) cls()

Answers

M15_KAMT3553_02_SE_C15.indd 610 5/15/2015 9:56:12 AM

https://hkgbooks.blogspot.com

Graphics 611

II True or false:

III Select the appropriate option from the multiple choice given below:

Q. Ans.
1. (b) 4

2. (b) initgraph()
3. (b) closegraph()

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.
 1. T 2. F 3. F 4. T 5. T

 6. T 7. T 8. T 9. T 10. F

M15_KAMT3553_02_SE_C15.indd 611 5/15/2015 9:56:12 AM

https://hkgbooks.blogspot.com

Dynamic Memory
Allocation and
Linked List16

CHAPTER

Chapter Outline

 16.1 Dynamic Memory Allocation
 16.2 Memory Models
 16.3 Memory Allocation Functions
 16.4 List
 16.5 Traversal of a List
 16.6 Searching and Retrieving an Element
 16.7 Predecessor and Successor
 16.8 Insertion
 16.9 Linked Lists
 16.10 Linked List with and without Header

M16_KAMT3553_02_SE_C16.indd 612 5/15/2015 9:59:12 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 613

16.1 Dynamic memory allocation
For the execution of a program, it is essential to bring the program in the main memory. When a pro-
gram does not fit into the main memory, parts of it are brought into the main memory one by one and
the full program is executed eventually. Of course, the parts of program which are not currently in
main memory are resident either at secondary memory such as floppy or hard disk or at any other mag-
netic disk. When a new segment of a program is to be moved into a full main memory, it must replace
another segment already resident in the main memory. There are memory replacement policies and
their description is beyond the scope of this book. Hence, a programmer should not worry about the
method of transfer of program from secondary to primary memory or memory replacement policies.
 There are two techniques used for storing the information of C programs in the main memory.
The first technique involves storing global and local variables, which are fixed during compilation and
remain constant throughout the run time program. Here, even the variables of structures and arrays are
stored in the main memory during compilation. Space for local variables is allocated from the stack
each time when the variable comes into existence. Global and local variables are efficiently stored
in C. But the programmer must know the amount of space required for every program.
 The second technique by which a program can obtain memory space in the main memory is with
dynamic allocation. One of the features provided in C is the allocation of memory at the time of execu-
tion of a program. The method of allocation of memory at the time of execution of a program is called
dynamic memory allocation. Acquiring main memory by a program and freeing it are done by some
library functions provided in C. Memory allocation techniques are described in this chapter. These
functions are described in the following sections.
 The free region of the memory is called the heap.
The size of heap does not remain constant all the
time for all the programs. Its size keeps on changing
during the execution of program. This is due to
creation and destruction of variables that are local to the
functions and bocks.
 Conceptually the C programs are stored as per
Figure 16.1. The heap changes depending on the
memory model used. 8086 memory models are
described in this chapter. The amount of memory
requirement is decided by how the program is
designed. For example, if a program is developed
with many recursive functions then this is imple-
mented with stack

16.2 memory moDels

1.	 TINY: All segment registers are initialized with the identical value and all addressing is
accomplished using 16 bits. This means that the code, data and stack all must fit within the
same 64-KB segment. Programs are executed quickly in this case.

2.	 SMALL: All codes should fit in a single 64-KB segment and all data should fit in a second
64-KB segment. All pointers are 16 bits in length. Execution speed is the same as tiny model.

3.	 MEDIUM: All data should be fit in a single 64-KB segment; however, the code is allowed to
use multiple segments. All pointers to data are 16 bits, but all jumps and calls require 32-bit
addresses. Fast access to data is observed, but slower program execution is also noticed with
this model.

Stack

Free Memory for
Allocation

Global Variables

Program

High End

Low End

Figure 16.1 A view of a C program’s use of memory

M16_KAMT3553_02_SE_C16.indd 613 5/15/2015 9:59:12 AM

https://hkgbooks.blogspot.com

614 Programming in C

4. COMPACT: All codes should fit in 64 KB segment, but the data can use multiple segments.
However, no data item can surpass 64 KB. All pointers to data are 32 bits, but jumps and calls
can use 16 bit addresses. There is slow access to data and quick code execution.

5.	 LARGE: Both code and data are allowed to use multiple segments. All pointers are 32 bits
in length. However, no single data item can exceed 64 KB. There is slower code execution.

6.	 HUGE: Both code and data are allowed to use multiple segments. Every pointer is of 32-bit
in length. Single data item can exceed 64 KB. There is slowest code execution.

16.3 memory allocation Functions
A variable is allowed to use memory to store its value. But permanently memory is not used by
the variables. Recent programming languages permit memory space for storing the variables when
 necessary. They also deallocate the memory of the variables when not required. Dynamic	memory	
allocation	permits	to	use memory for the variables at run time with memory allocation functions. In
this and the following sections, we discuss the various memory allocation and deallocation functions
together with their implementation in the programs.

1. malloc(): A memory block is allocated with a function called malloc(). In other words,
the malloc() function is used to allocate memory space in bytes to the variables of differ-
ent data types. The function reserves bytes of determined size and returns the base address to
pointer variable. The prototypes are declared in alloc.h and stdlib.h. The format of
the malloc() function is as follows:

 pnt= (data type*) malloc(given size);

Here, from data type, compiler understands the pointer type and given size is the size to reserve in the
memory. For example:

 pnt=(int *) malloc(20);

Here, in this declaration 20 bytes are allocated to pointer variable pnt of type int and base address
is returned to pointer pnt.
 A few programs are illustrated below on this function.

 16.1 Write a program to allocate memory to a pointer variable based on the number of subjects
marks to be entered. Compute average marks.

include <alloc.h>

void main()
{
 int k,*p,j=0,sum=0;
 float avg;
 clrscr();
 puts(“\n How many subjects marks to be entered : ”);
 scanf(“%d”,&k);

 p=(int *) malloc(k * sizeof(int));

 while(j!=k)
 {
 printf(“Subject %d marks=”,j+1);
 scanf(“%d”,p+j);
 j++;
 }
 j=0;

M16_KAMT3553_02_SE_C16.indd 614 5/15/2015 9:59:12 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 615

void main()
{
 int *ptr;
 int i,item;
 clrscr();
 printf(“How many items you want?”);
 scanf(“%d”,&item);
 ptr = (int*)malloc(sizeof(int)*item);

 printf(“\nEnter the values of items in Rs:”);
 for(i=0;i<item;i++)
 scanf(“%d”,(ptr+i));
 printf(“You have entered the values :\n”);
 for(i=0;i<item;i++)
 printf(“\n%d”,*(ptr+i));
}

 printf(“\n Sum of marks : ”);
 while(j!=k)
 sum=*(p+j++)+sum;
 printf(“%d”,sum);
 avg=sum/k;
 printf(“\n Average marks =%f: ”,avg);

 getche();
}

OUTPUT:
 How many subjects marks to be entered :
5
Subject 1 marks=88
Subject 2 marks=89
Subject 3 marks=90
Subject 4 marks=87
Subject 5 marks=91

 Sum of marks : 445
 Average marks =89.000000:

	 	 Explanation:
 In the above program, program prompts user to enter the number of subjects. The sizeof

function determines the size of data type required to store single value of that type. The size
determined by sizeof function and the number entered (k) are multiplied and the result
obtained is nothing but the number bytes to be allocated to a pointer ‘ p’. The pointer ‘ p’
contains the base address. The first while loop reads marks of the subjects through the
keyboard. Each time while entering the marks, ‘j’ variables value is added to pointer ‘ p’,
which indicates successive address of its type and entered subjects marks are stored in the
successive locations. This process is continued till the value of ‘j’ reaches to ‘k’. Thus, in a
single variable by allocating memory, a programmer can store multiple subjects marks. In
the second while loop, sum and average of marks are calculated.

 16.2 Write a program to allocate memory to a pointer variable based on the number of items.
Display the values of items.

M16_KAMT3553_02_SE_C16.indd 615 5/15/2015 9:59:12 AM

https://hkgbooks.blogspot.com

616 Programming in C

OUTPUT:
How many items you want?3

Enter the values of items in Rs:111
233
100
You have entered the values :

111
233
100

	 	 Explanation:
 Refer to the explanation of Example 16.1.

2. calloc(): This function is useful for allocating multiple blocks of memory. It is declared
with two arguments. The prototypes are declared in alloc.h and stdlib.h. The format
of the calloc() function is as follows:

 pnt= (int *)calloc(4,2);

The above declaration allocates four blocks of memory; each block containing two bytes. The base ad-
dress is stored in the integer pointer. This function is usually used for allocating memory for array and
structure. The calloc() can be used in place of the malloc() function. The programs illustrated
with the malloc() function can be executed using the calloc() function.

 16.3 Write a program to allocate memory based on requirement of the number of books to a
pointer variable using the calloc() function.

include <alloc.h>

void main()
{
 int k,j=0,sum=0;
 int *p;
 clrscr();
 puts(“\n How many books to be purchased?”);
 scanf(“%d”,&k);

 p=(int *) calloc(k,2);

 while(j!=k)
 {
 printf(“Cost of the book(%d)=”,j+1);
 scanf(“%d”,p+j);
 sum=sum+*(p+j);
 j++;
 }
 printf(“\n Total cost of the books: ”);
 printf(“%d”,sum);
}

M16_KAMT3553_02_SE_C16.indd 616 5/15/2015 9:59:12 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 617

OUTPUT:
How many books to be purchased?
4
Cost of the book(1)=100
Cost of the book(2)=200
Cost of the book(3)=400
Cost of the book(4)=500

 Total cost of the books: 1200

	 	 Explanation:
 Logic of the above program is the same as the previous one.
Here, the calloc() function is used to allocate the memory instead of malloc().

3. free(): The free() function is used to release the memory if not required. Thus, using
this function the wastage of memory is prevented. The declaration of the function is as follows:

 free(pnt);

 In the above declaration, pnt is a pointer. The free() function releases the memory
occupied by the pointer variable pnt. You can put free(p) after the first while loop and
see its response by executing the program.

 16.4 Based on the requirement of the number of e-books, write a program to allocate memory
using calloc() and release it using free(). Display the memory locations where the
cost of the each e-book is stored and total cost of e-books.

 Given below program is supporting free(pnt).

include <alloc.h>

void main()
{
 int j=0,k=5;
 int *p;
 float sum=0.0;
 clrscr();

 p=(int *) calloc(k * sizeof(int),2);
 printf(“\nFirst location %u”,p);
 printf(“\n”);

 while(j!=k)
 {
 printf(“\nCost of the e-book(%d)=”,j+1);
 scanf(“%d”,p+j);
 printf(“(%d)location %u\n”,j+1,p+j);
 sum=sum+*(p+j);
 j++;
 }

 printf(“\n Total cost of the e-books: ”);
 printf(“%g”,sum);
 free(p);
 printf(“\n After freeing the memory the location:%u”,p);
}

M16_KAMT3553_02_SE_C16.indd 617 5/15/2015 9:59:12 AM

https://hkgbooks.blogspot.com

618 Programming in C

OUTPUT:
First location 3176

Cost of the e-book(1)=1000
(1)location 3176

Cost of the e-book(2)=2000
(2)location 3178

Cost of the e-book(3)=3000
(3)location 3180

Cost of the e-book(4)=4000
(4)location 3182

Cost of the e-book(5)=5000
(5)location 3184

 Total cost of the e-books: 15000
 After freeing the memory the location:3176

	 	 Explanation:
 Program logic is the same as used in the earlier programs where calloc() is used. In

addition to this free() is used for freeing the memory. Different locations where the costs
of e-books are stored are displayed.

4. realloc(): This function reallocates the main memory. This is needed as and when
allocat ed memory is different from the required memory. The prototypes are declared in
alloc.h and stdlib.h. Attempts are made to shrink or enlarge the previously allocated
memory by malloc()or calloc()functions. It returns the address of the reallocated
block, which can be different from the original address. If the block cannot be reallocated or
size == 0, realloc()returns NULL. The declaration of function is as follows:

 str=(char*) realloc (str, 30)

 In the above declaration, str is a pointer. The realloc() function reallocates the memo-
ry previously allocated by pointer variable str to the new size 30.

 16.5 Write a program to reallocate memory using realloc() function.

include <alloc.h>
include <string.h>

void main()
{
 char *str;
 str=(char *)malloc(6);
 str=(“India”);
 clrscr();
 printf(“str = %s”,str);

 str=(char *)realloc(str,30);
 strcpy(str,“Great Researchers’ of India”);
 printf(“\nNow str= %s”,str);free(str);
}

M16_KAMT3553_02_SE_C16.indd 618 5/15/2015 9:59:12 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 619

OUTPUT:
str = India
Now str= Great Researchers’ of India

	 Explanation:
 In the above program, using malloc() function six 6 bytes are allocated to character

 pointer str. The character pointer is initialized with string ‘India’. To store more than six
characters, we need to allocate more bytes to pointer str. Using realloc() function
memory reallocation takes place. After reallocation the pointer contains 30 bytes. The point-
er str is again initialized with ‘Great	Researchers’	of	India’ The output displays contents of
str before and after reallocation. The free() function releases the memory allocated.

 16.6 Write a program to display two numbers with malloc() and reallocate memory for dis-
playing three numbers.

include <alloc.h>
include <string.h>

 void main()
 {
 int j,*p;
 p=(int *)malloc(2* sizeof(int));
 clrscr();
 for(j=0;j<2;j++)
 {
 printf(“number %d=”,j+1);
 scanf(“\n%d”,(p+j));
 }
 printf(“\nNumbers are”);
 printf(“\n”);
 for(j=0;j<2;j++)
 printf(“number %d= %d\n”,j+1,*(j+p));
 printf(“\n\n”);
 printf(“numbers after Reallocation\n”);

 p=(int *) realloc (p,6);

 for(j=0;j<3;j++)
 {
 printf(“number %d=”,j+1);
 scanf(“\n%d”,(p+j));
 }
 printf(“\nnumbers are\n “);

 for(j=0;j<3;j++)
 printf(“number %d= %d\n”,j+1,*(j+p));

 free(p);
 getche();
 }

M16_KAMT3553_02_SE_C16.indd 619 5/15/2015 9:59:12 AM

https://hkgbooks.blogspot.com

620 Programming in C

OUTPUT:
number 1=1
number 2=2

Numbers are
number 1= 1
number 2= 2

numbers after Reallocation
number 1=3
number 2=4
number 3=5

numbers are
number 1= 3
number 2= 4
number 3= 5

	 	 Explanation:
 In the above program, using malloc() function four bytes are allocated to two integers to

pointer p. The integer pointer is initialized with for loop. To store three integers, we need
to allocate more bytes to pointer p. Using the realloc() function, memory reallocation
takes place. After reallocation the pointer contains six bytes. The pointer p is again initial-
ized. The output displays contents of p before and after reallocation. The free() function
releases the memory allocated.

5. coreleft(): This function returns a measure of unused memory. If the memory model
selected is tiny, small or medium, then follow the function declaration as per statement (a). If
the memory model selected is compact, large or huge, follow the declaration (b).

 (a) unsigned coreleft(void);

 (b) unsigned long coreleft (void);

 16.7 Write a program to display unused memory using the coreleft() function.

include <alloc.h>

void main()
{
 clrscr();
 printf(“\n Measure of unused memory = %u”,coreleft());
}

OUTPUT:
Measure of unused memory = 56936

	 	 Explanation:
 In the above program, the function coreleft() is invoked without any argument. The

function displays unused memory i.e. 56936.

M16_KAMT3553_02_SE_C16.indd 620 5/15/2015 9:59:12 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 621

16.4 list
A list is a sequential arrangement of elements. The programmer can add, delete or search the indi-
vidual element in the list. There are two techniques for creating lists. A list is created using an array
or linked lists.
 First method is to take an array and store the elements. Arrays have many drawbacks. To delete
an element from an array or to insert an element into an array, it requires a lot of actions. It may be
possible that the required elements in the list may be more/less than declared size of an array. The
operations such as deletion, insertion, searching of element can be performed on an array.
 The list implemented using an array is called a static list. A list is a series of linearly arranged
numbers of the same data type. The list can be of basic data type or custom data type. The elements
are positioned one after another and their position number appears in sequence. The first element of
the list is called HEAD and the last element is called TAIL.
 Please refer to Figure 16.2,
where elements having a value 1 is
at HEAD position (0th) and element
2 is at TAIL position (5th). The ele-
ment 5 is a predecessor of the ele-
ment 8 and 4 is a successor. Every
element can act as a successor ex-
cluding the first element because it
is the first element of the list. The list
has the following properties:

 (i) The list can be enlarged or reduced from the end.

 (ii) The TAIL (ending) position of the list depends on how long the list is extended by the user.

 (iii) Various operations such as transverse, insertion and deletion can be performed on the list.

 (iv) Applying static (array) or dynamic (pointer) a list can be implemented.

16.5 traversal oF a list
The simple list can be created using an array. In it elements are stored in successive memory locations.
Consider the following program.

 16.8 Write a program to create a simple list of elements. Display the list in original and reverse
order.

void main()
{
 int arr[5],j;
 clrscr();
 printf(“\nEnter five integers : ”);
 for(j=0;j<5;j++)
 scanf(“%d”,&arr[j]);
 printf(“\n Elements of List are: ”);
 for(j=0;j<5;j++)
 printf(“ %d ”,arr[j]);

1 5 8 4 3 2

0 1 2 3 4 5

ELEMENTS

ELEMENT
POSITION

HEAD TAIL

Figure 16.2 Elements of a list

M16_KAMT3553_02_SE_C16.indd 621 5/15/2015 9:59:13 AM

https://hkgbooks.blogspot.com

622 Programming in C

	 	 Explanation:
 Using simple declaration of an array, a list can be implemented. Using for loop and

scanf() statements, five integers are entered. The list can be displayed using printf()
statement. Once a list is created, various operations such as sorting, searching can be applied.
A user is advised to see the chapter Data	Structure:	Array	for more information on arrays.

16.6 searching anD retrieving an element
Once a list is created, we can access and perform operations with the elements. In the last program, all
the elements are displayed. One can also specify some conditions such as to display numbers after a
specific number or remove the duplicate numbers from the list or finding a specific number or concat-
enation of two lists, etc. If the list contains large elements, then it may be difficult to find a particular
element and its position. Consider the following program on searching an element from the list.

 16.9 Write a program to create a list of integer elements and search the entered number from the list.

 printf(“\n Elements of List in reverse :”);
 for(j=4;j>=0;j--)
 printf(“ %d”,arr[j]);
}

OUTPUT:
Enter five integers : 4 5 6 7 8
Elements of List are: 4 5 6 7 8
Elements of List in reverse : 8 7 6 5 4

void main()
{
 int sim[5],j,n,f=0;
 clrscr();
 printf(“\nEnter five Integers : ”);
 for(j=0;j<5;j++)
 scanf(“%d”,&sim[j]);
 printf(“\n Enter an integer from the entered numbers for

Search :”);
 scanf(“%d”,&n);
 for(j=0;j<5;j++)
 {
 if(sim[j]==n)
 {
 f=1;
 printf(“\n Found ! Position of integer %d is %d “, n,j+1);
 break;
 }
 }
 if(f==0)
 printf(“\n Element not found ! ”);
}

OUTPUT:
Enter five Integers : 1 2 3 4 5

M16_KAMT3553_02_SE_C16.indd 622 5/15/2015 9:59:13 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 623

Enter an integer from the entered numbers for Search : 4

Found ! Position of integer 4 is 4

16.7 PreDecessor anD successor
In the list of elements, for any location n, (n-1) is the
predecessor and (n+1)is successor. In other words,
for any location n in the list the left element is a pre-
decessor and the right element is a successor. One can
find predecessor and successors of an element in the
list. The first element of a list does not have a prede-
cessor and last does not have a successor.
 Figure 16.3 shows the predecessor and suc-
cessor elements of number 10.
 The following program displays the predecessor and successor elements of the entered element
from the list.

 16.10 Write a program to find predecessor and successor of the entered number in a list.

void main()
{

 int num[8],j,n,k=0,f=0;
 clrscr();
 printf(“\n Enter eight elements : ”);
 for(j=0;j<8;j++)
 scanf(“%d”,&num[j]);
 printf(“\n Enter an element : ”);
 scanf(“%d”,&n);
 for(j=0;j<8;j++)
 {
 if(n==num[j])
 {
 f=1;
 (j>0) ? printf(“\n The Predecessor of %d is

%d ” ,num[j],num[j-1]):
 printf(“ No Predecessor”);
 (j==7) ? printf(“\n No Successor”) :
 printf(“\n The Successor of %d is %d”, num[j],num[j+1]);
 break;
 }
 k++;
 }
 if(f==0)
 printf(“\nThe element %d is not found in list”,n);
}

OUTPUT:
 Enter eight elements: 1 2 5 8 7 4 4 6
 Enter an element: 5

5 8 10 15 18 20

PREDECESSOR SUCCESSOR

Figure 16.3 Predecessor and successor

M16_KAMT3553_02_SE_C16.indd 623 5/15/2015 9:59:13 AM

https://hkgbooks.blogspot.com

624 Programming in C

	 	 Explanation:
 In this program, eight elements are entered. The user has to enter an element whose predecessor

and successors are to be identified.All the elements of the array are checked with the entered num-
ber. When the match is found, the next element of the entered number displays as a successor and
the previous element displays as a predecessor. If the element entered is the first element of the list
then only successor is displayed. If the entered element is the last element of the list then only the
predecessor is displayed. The above conditions are checked using conditional	operator (? :).

16.8 insertion
Appending is a process in which a new element is added. However, insertion of an element can also
be done in the list. Insertion means an element is added in between two elements in the list. The
insertion can be done at the beginning, inside or anywhere in the list.
 For a successful insertion of an element, the array-implementing list should have at least one
empty location. If the array is full, insertion cannot be possible. The target location where element
is to be inserted is made empty by shifting elements downwards by one position and the newly
inserted element is placed at that location. Consider Figure 16.4.

 The Predecessor of 5 is 2
 The Successor of 5 is 8

 Enter eight elements : 1 2 3 4 5 6 7 8

 Enter an element : 1
 No Predecessor
 The Successor of 1 is 2

 Enter eight elements : 12 34 54 76 69 78 85 97

 Enter an element : 3

 The element 3 is not found in list

(a)

5 7 9 10 12

0 1 2 3 4 5 6

(b)

5 7 9 10 12

0 1 2 3 4 5 6

As per the above figure, two empty spaces are available. Suppose we want to insert 3 in between 7 and
9. All the elements after 7 must be shifted towards the end of the array. The resulting array would be

The entered number 3 can be assigned to that memory location and the array would look like. Figure 16.4
describes the insertion of an element. The following program illustrates the insertion operation.

(c)

5 7 3 9 10 12

0 1 2 3 4 5 6

Figure 16.4 Insertion

M16_KAMT3553_02_SE_C16.indd 624 5/15/2015 9:59:14 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 625

 16.11 Write a program to create a list. Insert some element at the specified location.

include <process.h>

void main()
{
 int num[8]={0},j,k=0,p,n;
 clrscr();
 printf(“\n Enter elements (0 to exit) : ”);

 for(j=0;j<8;j++)
 {
 scanf(“%d”,&num[j]);
 if(num[j]==0)
 break;
 }

 if(j<8)
 {
 printf(“\n Enter Position number and element : ”);
 scanf(“%d %d”,&p,&n);
 --p;
 }
 else

 while(num[k]!=0)
 k++;
 k--;

 for(j=k;j>=p;j--)
 num[j+1]=num[j];
 num[p]=n;

 for(j=0;j<8;j++)
 printf(“ %d ”, num[j]);
}

OUTPUT:
 Enter elements (0 to exit) : 1 2 3 4 5 6 0
 Enter Position number and element: 5 10
 1 2 3 4 10 5 6 0

	 	 Explanation:
 In the above program, an array num[8] is declared. The user has to enter elements continuous-

ly. A user can enter zero to exit from the continuous input routine. If zero is entered, the break
statement takes control out of the for loop. Thus, the list contains a few empty memory loca-
tions, which are enough to carry out insertion operations. When a user enters eight elements
then the program ends. In this case, due to the lack of space, insertion operation is impossible.

 The position number where an element is to be inserted is prompted by the program. After enter-
ing these values by the user, using while loop, the position of the first vacant location is determined.
From user-specified position number, next all successive elements are shifted one memory location
towards down side of array. Due to shifting one memory, space is generated and the entered element
is placed at that location.

M16_KAMT3553_02_SE_C16.indd 625 5/15/2015 9:59:14 AM

https://hkgbooks.blogspot.com

626 Programming in C

The reader can perform other operations on list such as the deletion of an element, sorting of elements
and merging two lists.

16.9 linkeD lists
A linked list is implemented with pointers. This method is called Dynamic implementation because
all operations as described above on the list can be implemented without complication. By applying
increment, operation on pointer successive locations of memory can be accessed and an element can
be stored in that location. Thus, the series of element can be continued to any number of elements. The
programmer has to keep the starting address of the pointer in which the first element is stored. Thus,
in the same way, the numbers can be viewed or altered. Here is the simple example.

singly linked list

In this type of linked list, two successive nodes of the linked list are linked with each other in sequen-
tial linear manner, Figure 16.5 describes singly link list. It is like a train, in which two successive
bogies are connected. The train is an example of single linked list.
 A linked list is a dynamic data
structure with the ability to expand and
shrink as per the program requirement.
The singly liked list is easy and straight-
forward data structure as compared to
other structure. By changing the link
position, other type of linked list such as circular, doubly linked list can be formed. For creating a
linked list, the structure is defined as follows:

 struct node
 {
 int number;
 struct node *p;
 };

The above structure is used to implement the linked list. In it the number, variable entered numbers
are stored. The second member is pointer to the same structure. The pointer p points to the same
structure. Here, though the declaration of struct node has not been completed, the compiler permits
the pointer declaration of the same structure type. However, the variable declaration is not allowed.
This is because the pointers are dynamic in nature whereas variables are formed by early binding.
The declaration of objects inside the struct leads to the preparation of very complex data structure.
This concept is called object composition and its detailed discussion is out of the scope of this book.
 We are familiar with the array and we know the importance of the base address. Once a base ad-
dress is obtained, later successive elements can be accessed. In the linked list, also a list can be created
with or without header	node. The head holds the starting address.

 16.12 Write a program to create a simple linked list.

struct list
{
 int n;
 struct list *p;
};

& indicates address ofthe next node

5 & 7 & 9START

Figure 16.5 Single linked list

M16_KAMT3553_02_SE_C16.indd 626 5/15/2015 9:59:14 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 627

	 	 Explanation:
 In the above program, the structure list is declared with two elements int n and struct

list *p. The pointer *p recursively points to the same structure. The struct list
item0, item1 and item2 are three variables of type list. Consider the initialization

 item2.n=3;
 item2.p=NULL;

The item2 is the third (last) node of the list. The pointer *p is initialized with a null. This is because node
2 is the last node and after this node no node exists and thus it need not require to pointing any address.

 item1.n=5;
 item1.p=&item2.n;

In this node, n is assigned with five. The pointer points to the data field of the next node, i.e.
item2.n (7).

 item0.n=7;
 item0.p=&item1.n;

16.10 linkeD list with anD without heaDer
16.10.1 | linked list with header

The following steps are used to create linked list with header:

1. Three pointers header, first and rear are declared. The header pointer is initially initialized
with NULL. For example, header=NULL, where the
header is pointer to structure. If it remains NULL, it
 implies that the list has no element. Such list is known
as the NULL list or empty list. Figure 16.6 explains
header pointer initialization.

void main()
{

 struct list item0,item1, item2;

 item2.n=3;
 item2.p=NULL;

 item1.n=5;
 item1.p=&item2.n;
 item0.n=7;
 item0.p=&item1.n;

 clrscr();
 printf(“\n Linked list elements are :”);
 printf(“ %d ”,item0.n);
 printf(“ %d ”,*item0.p);
 printf(“ %d ”,*item1.p);
 printf(“ %d ”,*item2.p);

}

OUTPUT:
Linked list elements are: 7 5 3 0

NULL HEADER

Figure 16.6 Header pointer initialization

M16_KAMT3553_02_SE_C16.indd 627 5/15/2015 9:59:14 AM

https://hkgbooks.blogspot.com

628 Programming in C

2. In the second step, memory is allocated for the first
node of the linked list. For example, the address of
the first node is 1888. An integer say 8 is stored in
the variable num and value of header is assigned to
pointer next. Figure 16.7 enlightens memory alloca-
tion to the first node.

 Both the header and rear are initialized the address of first node.
 The statement would be

 header=first;
 rear=first;

3. The address of pointer first is assigned to pointers header and rear. The rear pointer is used
to identify the end of the list and to detect the NULL pointer.

 Node node->next

4. Again, create a memory location,
suppose 1890, for the successive node.

5. Join the element of 1890 by assign-
ing the value of node rear->next.
Move the rear pointer to the last node.
Figure 16.8 provides the last node and
other pointers.

The following program explains the above concept.

 16.13 Write a program to create the linked list with header.

10 NULL1890

include <malloc.h>
struct num
{
 int num;
 struct num *next;
}
*header,*first,*rear;
void main()
{
 void form(void);
 form();
 clrscr();

 printf(“\n Linked list elements are : ”);
 while (header!=NULL)
 {
 printf(“ %d ”,header->num);
 header=header->next;
 }
}

void form(void)
{
 struct num *node;
 printf(“\n Enter number : ”);

Header First first->next

8 NULL1888

Figure 16.7 Memory allocation to the first
node

8 18901888 10 NULL

Figure 16.8 Rear pointer to the last node with other pointers

M16_KAMT3553_02_SE_C16.indd 628 5/15/2015 9:59:15 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 629

	 	 Explanation:
 The above program is an example of linked list with header. Three structure pointers

header,*first and *rear are declared after structure declaration. Initially, these point-
ers are NULL because they are declared as global. The form function is used to create linked
list nodes. Inside the function form() another structure pointer *node is defined and its
scope is local to the same function. The procedure for creating the first and later successive
nodes is different. The if() statement checks the value of the header. The value of header
is NULL. The malloc() function allocates memory to pointer first and the entered number
is stored in variable num of the node. In the same if() block, both the pointer’s header and
rear are assigned the value of first. Once the first node is created, next time the execution of
the if() block is not required. The while loop iterated continuously and successive nodes
are created by allocating memory to the pointer node. Consider the statements

1. node->next=NULL;

The above statement assigns NULL to the pointer next of current node. If users do not want, create
more nodes. The linked list can be closed here.

2. rear->next=node;

The rear pointer keeps track of the last node, the address of current node (node) is assigned to link
field of the previous node.

3. rear=node;

Before creating the next node, the address of the last created node is assigned to the pointer *rear, which
is used for statement (2). In function main(), using while loop the elements of linked list are displayed.

 Header: The pointer *header is very useful in the formation of the linked list. The address of the
first node (1888) is stored in pointer *header. The value of the header remains unchanged until it
turns out to be NULL. Pointer *header only can determine the starting location of the list only.

 if(header==NULL)
 {
 first=(struct num*)malloc(size of(struct num));
 scanf(“%d”,&first->num);
 first->next=header;
 header=first;
 rear=first;
 }
 while(1)
 {
 node=(struct num*) malloc(sizeof(struct num));
 scanf(“%d”,&node->num);
 if(node->num==0) break;
 node->next=NULL;
 rear->next=node;
 rear=node;
 }
}

OUTPUT:
 Enter number : 1 3 4 8 7 9 0
 Linked list elements are : 1 3 4 8 7 9

M16_KAMT3553_02_SE_C16.indd 629 5/15/2015 9:59:15 AM

https://hkgbooks.blogspot.com

630 Programming in C

 while(header!=NULL)
{
 printf(“ %d ” ,header->num);
 header=header->next;
}

 We can perform different operations on the linked list. They are as follows.
 (a)	Traversing	a	Link	List:

 In the above linked list, the data is the information part of the structure (Figure 16.9). The link
is the address of the coming element. BEGIN is the address of the first element. We declare P as a
pointer variable. First p points to the address of the BEGIN that points to the first element of the list.
For accessing the next element, we give the address of the next element to the P as:

p=p->LINK

Now, the P has the address of the next element. We can traverse the entire list till the P has NULL
address.

(b)	 Searching	a	Link	List	:	Searching refers to the searching of an element into a linked list.
For searching the element, initially we transverse the linked list and with traversing the list
we compare data part of each element with the given element.

(c)	 Insertion	into	a	Linked	List:	Insertion into a linked list is possible in two methods (Figure 16.10)

1. Insertion at beginning

2. Insertion in between

LINK
LINK

DATA DATA DATA

BEGIN

Address element of the node that contains the address
of the succeeding node

Data part of the node

NULL

Figure 16.9 Linked list

Temp

Temp = LINK=P

Data Data DataBEGIN NULL

Figure 16.10 Insertion of element at the beginning of the linked list

M16_KAMT3553_02_SE_C16.indd 630 5/15/2015 9:59:16 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 631

P is the address of the BEGIN. For inserting at the beginning address of the P is given to the link part.

First we transverse the list for finding the node. After that, we insert the element. For inserting
the element after the particular node, we give the address of that node to the link part of the
inserted node and address of the inserted node is arranged into the LINK part of the former node
(Figure 16.11).

(a)	Deletion	from	linked	list

For deleting the node from the linked list, first we transverse the linked list and compare the every
element (Figure 16.12). If the element is the first element then we give the address of the link part of
node to the pt. Here, pt is another pointer, which points to the address of BEGIN.

pt=p-> LINK

If the element is other than the first element, then we give the address of the link part of the deleted
node to the link part of the previous node (Figure 16.13).

Temp

Data

BEGIN
NULLData Data Data NULL

Figure 16.11 Insertion of element in between the linked list

NULLData Data Data
BEGIN

Figure 16.12 Deletion of element at the beginning of linked list

Data NULLData DataBEGIN

Figure 16.13 Deletion of element in between the linked list

M16_KAMT3553_02_SE_C16.indd 631 5/15/2015 9:59:16 AM

https://hkgbooks.blogspot.com

632 Programming in C

include <alloc.h>

struct node
{
 int data;
 struct node *next;
}
*p;

printf(“Enter the element : ”);
void addatstart(struct node *pt,int);
void append(struct node *pt, int, int);
void erase(struct node *pt,int);
void show(struct node *pt);
void count(struct node *pt);
void descending(struct node *pt);

void main()
{
int n,m,po,d,i,j;
char ch=‘y’;
clrscr();
p=NULL;
do
{

 clrscr();
 printf(“ 1 Generate\n”);
 printf(“ 2 Add at starting\n”);
 printf(“ 3 Append \n”);
 printf(“ 4 Delete\n”);
 printf(“ 5 Show\n”);
 printf(“ 6 Count\n”);
 printf(“ 7 Descending\n”);
 printf(“Enter your choice : ”);
 scanf(“%d”,&n);

switch(n)
{
 case 1:
 printf(“\n How many node you want : ”);
 scanf(“%d”,&i);
 for(j=0;j<i;j++)
 {
 printf(“enter the element : ”);
 scanf(“%d”,&m);
 gen_rate (p,m);
 }
 show(p);
 break;

 case 2:
 printf(“Enter the element : ”);

 16.14 Write a program to create a linked list. Add, delete and insert the element in the linked list.
Also display and count the elements of the linked list.

M16_KAMT3553_02_SE_C16.indd 632 5/15/2015 9:59:16 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 633

 scanf(“%d”,&m);
 addatstart(p,m);
 show(p);
 break;

 case 3 :
 printf(“\n Enter the element and position ”);
 scanf(“%d %d”,&m,&po);
 append(p,m,po);
 show(p);
 break;

 case 4 :
 printf(“\n Enter the number for deletion :”);
 scanf(“%d”,&d);
 erase(p,d);
 show(p);
 break;

 case 5 :
 show(p);
 break;

 case 6 :
 count(p);
 break;

 case 7:
 descending(p);
 break;

 default:
 printf(“\n Enter value between 1 to 7”);
 }

 printf(“\n Do u want to continue (Y/N)”);
 ch=getche();
 }
 while (ch==‘Y’ || ch==‘y’);
}

 void gen_rate(struct node *q,int num)
 {
 if(q==NULL)
 {
 p=(struct node *)malloc(sizeof(struct node));
 p->data=num;
 p->next=NULL;
 }

 else
 {
 while(q->next!=NULL)
 q=q->next;
 q->next=(struct node *)malloc(sizeof(struct node));
 q->next->data=num;
 q->next->next=NULL;
 }
}

M16_KAMT3553_02_SE_C16.indd 633 5/15/2015 9:59:16 AM

https://hkgbooks.blogspot.com

634 Programming in C

void addatstart(struct node *q, int num)
{
 p=(struct node *)malloc(sizeof(struct node));
 p->data=num;
 p->next=q;
}

void append(struct node *q,int num, int c)
{
 struct node *tmp;
 int i;
 for(i=0;i<c-2;i++)
 {
 q=q->next;

 if(q==NULL)
 {
 printf(“There are less than %d elements\n”,c);
 return;
 }
 }

 tmp=(struct node *)malloc(sizeof(struct node));
 tmp->next=q->next;
 tmp->data=num;
 q->next=tmp;
}

void erase(struct node *q, int num)
{
 struct node *t;

 if(q->data==num)
 {
 p=q->next;
 free(q);
 return;
 }
 while(q->next->next!=NULL)
 {
 if(q->next->data==num)
 {
 t=q->next;
 q->next=q->next->next;
 free(t);
 return;
 }
 q=q->next;
 }
 if(q->next->data==num)
 {
 free(q->next);
 p->next=NULL;
 return;
 }

M16_KAMT3553_02_SE_C16.indd 634 5/15/2015 9:59:16 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 635

 printf(“element %d not fount\n”,num);
}

 void show(struct node *q)
 {
 printf(“Your list is :\n”);

 while(q!=NULL)
 {
 printf(“%d\t”,q->data);
 q=q->next;
 }

 printf(“\n”);
 }
void count (struct node *q)
{
 int c=0;
 while (q!=NULL)
 {
 q=q->next;
 c++;
 }

 printf(“\n Number of element are %d\n”, c);

}

void descending(struct node *x)
{

 struct node *q,*r,*s;
 q=x;
 r=NULL;
 while(q!=NULL)
 {
 s=r;
 r=q;
 q=q->next;
 r->next=s;
 }
 p=r;
 show(p);
}

OUTPUT:
1 Generate
2 Add at starting
3 Append
4 Delete
5 Show
6 Count
7 Descending
Enter your choice : 1

How many node you want : 4
enter the element : 1

M16_KAMT3553_02_SE_C16.indd 635 5/15/2015 9:59:16 AM

https://hkgbooks.blogspot.com

636 Programming in C

	 	 Explanation:
 In the above program, a self-referential structure node is declared with member variables

int data and integer pointer next. A menu appears with seven options on the screen. The
menu options are given as per given in the output. Different functions are defined to perform
the tasks given in the menu.

 The gen_rate() function is used to create a linked list. When the user enters the number
of nodes, the for loop in the first case structure is executed and at each iteration a number is entered
by the user. The entered number and pointer ‘p’ are passed to function ger_rate(). If the pointer
‘p’ contains NULL, the malloc() function allocates memory to pointer ‘p’. The number entered is
assigned to data part of the structure and NULL value is assigned to the address part. If the pointer ‘p’
contains value other than NULL, in such a case the while loop transverses the entire list and the num-
ber is added at the end of the list. The show() function displays the total elements of the linked list.

 The function addatstart() adds the entered elements at the beginning of the linked list.
In this function, the malloc() function allocates the memory to pointer ‘p’. The entered number
is assigned to variable and the pointer variable next is initialized with the address of the next node.
 The function append() adds the elements at given position in the linked list. The for loop is
executed till the pointer ‘q’ is not equal to the position number. When the element number is found
the entered number is inserted using tmpstructure variable.
 The function erase() is used to delete the given number from the linked list. In this function,
the entered number is checked in the entire list. When the number occurs, the free() function re-
leases the memory of that node.
 The function count() counts the total numbers present in the linked list; the function
descending() displays the elements in reverse order and the function show() displays the num-
ber. These functions are self-explanatory.

summary

In this chapter, you are introduced to the few unique features of C like dynamic memory allocation,
linked lists and graphics. You learnt how to allocate the memory using malloc(), calloc()
and realloc() functions and release the allocated memory using free() function. The linked
list is described in brief in this chapter. In the linked list, the creation of linked list, traversing,
searching, inserting and deleting element are described with figures. The reader is advised to refer
to the book authored by me on Introduction	to	Data	structures	in	C for a detailed understanding of
the linked lists.

enter the element : 5
enter the element : 4
enter the element : 7
Your list is :
1 5 4 7

Do u want to continue (Y/N) N

M16_KAMT3553_02_SE_C16.indd 636 5/15/2015 9:59:17 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 637

		1. Singly Linked list uses random searching method.

		2. calloc(m,n) = m*malloc(n)

		3. malloc(8); it will allocate the memory of size
8 bytes and initialize it with 0.

 4. calloc(4,4); it will allocate 4 blocks of mem-
ory with 4 bytes each and also initialize it with 0.

 5. Doubly linked list moves in forward and/or back-
ward direction.

 6. free() function releases the memory reference
on invocation.

 7. The link list is self referential structure.

III Find out the bugs from the programs given below:

		1.

 #include<alloc.h>
 void main()
 {
 int *a;
 a=malloc(sizeof(int),2);
 *a=100;
 printf(“The value of a is

%d”,*a);
 }

		2.

 #include<alloc.h>
 struct node{

 int a;
 struct node *p;
 }
 void main()
 {
 struct node *k;
 k = (s t r u c t n o d e *)

malloc(sizeof(struct node));
 k->a=100;
 k->p=NULL;
 printf(“The value of a is

%d”,k->a);
 }

eXercises

 I True or false :

 II Select the appropriate correct option from the following:

 				1. The function used to allocate the memory is

 (a) alloc()
 (b) malloc()
 (c) free()
 (d) none of the above.

			2. The different memory manipulation functions are
defined in the header file

 (a) process.h
 (b) stdio.h
 (c) malloc.h
 (d) alloc.h

			3. The singly linked list structure contains the decla-
ration of this data types.

 (a) int and struct node *
 (b) int and int
 (c) fl oat and char*
 (d) none of the above.

			4. The singly linked list is

 (a) unidirectional
 (b) bidirectional
 (c) moves forward only
 (d) moves backward only

			5. pnt= (int *)calloc(4,2); this state-
ment allocates

 (a) 16 bytes of memory
 (b) 6 bytes of memory
 (c) 4 blocks with 2 bytes each
 (d) a block of size 8 bytes.

M16_KAMT3553_02_SE_C16.indd 637 5/15/2015 9:59:17 AM

https://hkgbooks.blogspot.com

638 Programming in C

3.

 #include<alloc.h>

 void main()

 {

 int *d;

 float *s;

 char *c;

 c=(int *)
malloc(6*sizeof(char));

 d=(int *)malloc(sizeof(int));

 s=(int *)malloc(sizeof(float));

 *d=100;

 *s=34.2;

 *c=“HELLO”

 printf(“%d\t%f\t%s”,*d,*s, c);

 }

4.

 #include<alloc.h>
 struct node
 {
 int a;
 struct node *p;
 }
 *k;
 struct node* create(int i)
 {

 struct node*k;
 k=(struct node *)

malloc(sizeof(struct node));
 k->a=i;
 k->p=NULL;

 }
 void main()
 {
 k=create(10);
 printf(“%d ”,k->a);
 }

5.

 #include<alloc.h>
 struct node
 {
 int a;
 struct node *p;
 }

 *head;
 void main()
 {
 head=(struct node*)

calloc(sizeof(struct node));
 head->a=100;
 printf(“%d ”,head->a);
 }

IV Find the output from the following program:

1.
 #include<alloc.h>
 void main()
 {
 int *a[4];
 int i;
 for(i=0;i<4;i++)
 a[i]=(int *)malloc(2);
 for(i=0;i<4;i++)
 *a[i]=i+1;
 for(i=0;i<4;i++)
 printf(“%d ”,*a[i]);
 }

2.
 #include<alloc.h>
 struct node
 {
 int a;
 struct node *next;
 }

 *k;
 struct node* make_node(int i)
 {
 struct node*m;
 m=(struct node *)

malloc(sizeof(struct node));
 m->a=i;
 m->next=NULL;
 return m;
 }
 void main()
 {
 k=make_node(239);
 printf(“%d ”,k->a);
 }

3.

 #include<alloc.h>

 int main()

 {

M16_KAMT3553_02_SE_C16.indd 638 5/15/2015 9:59:17 AM

https://hkgbooks.blogspot.com

Dynamic Memory Allocation and Linked List 639

answers

I True or false:

II Select the appropriate correct option from the following:

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.

	 1. F 	 2. T 	 3. F 	 4. T 	 5. T
	 6. T 	 7. T

Q. Ans. Q. Ans. Q. Ans. Q. Ans. Q. Ans.

	 1. b 	 2. d 	 3. a 	 4. c 	 5. c

 int *i;

 fl oat *f;

 i=(int *)malloc(sizeof(int));

 f=(fl oat *)malloc(sizeof(fl oat));

 *i=100;

 *f=34.2;

 printf(“%d\t%f”,*i,*f);

 return 0;

 }

		4.

 #include<alloc.h>
 int main()
 {
 int *i;
 int k;
 i=(int *)

calloc(4,sizeof(int));
 for(k=0;k<4;k++)
 i[k]=k+3;

 for(k=0;k<4;k++)
 printf(“%d
 %d\n”,*(i+k),k[i]);
 return 0;
 }

		5.

 #include<alloc.h>
 void main()
 {
 int *a;
 int j;
 a=(int *)calloc(5,2);
 for(j=0;j<4;j++)
 j[a]=j+1;
 for(j=0;j<4;j++)
 {
 if(a[j]==3)
 printf(“\n Yes I got it!”);
 else printf(“\n Sad…”);
 }
 }

 V Attempt the following exercises:

			1. Write a program to display first five letters of
alphabets using malloc().

		2. Write a program to enter integers using malloc()
and search for the position of entered number.

		3. Write a program to find maximum number amongst
the float array and allocate the float memory using
calloc().

		4. Write a program a program to allocate initially
memory with malloc() and then with
calloc() and check out the difference between
them.

		5. Write a program for singly linked list to display
few elements and search in decreasing order.

M16_KAMT3553_02_SE_C16.indd 639 5/15/2015 9:59:17 AM

https://hkgbooks.blogspot.com

640 Programming in C

III Find out the bugs from the programs given below:

Q. Ans.
1. Error is in line no 5: Extra parameter is 2.

2. A semi-colon is missing after struct node declaration.

3. All the pointers are type casted with int . To get the correct output they must be type
casted with appropriate data types.

4. Error return k is missing in the function create(int i).

5. Error is in calloc() function, one parameter is missing. Line 2 in main() should be
head=(struct node) calloc(1,sizeof (struct node)).

Q. Ans. Q. Ans. Q. Ans.
1. 1 2 3 4 4. 3 3 5. Sad

2. 239 4 4 Sad

3. 100 34.2 5 5 Yes I got it!

6 6 Sad

IV Find the output from the following program:

M16_KAMT3553_02_SE_C16.indd 640 5/15/2015 9:59:17 AM

https://hkgbooks.blogspot.com

AmericAn StAndArd code for informAtion interchAnge

ASCII Value Symbol Description

000 (NUL) Null char

001 (SOH) Start of Heading

002 (STX) Start of Text

003 (ETX) End of Text

004 (EOT) End of Transmission

005 (ENQ) Enquiry

006 (ACK) Acknowledgment

007 • (BEL) Bell

008 (BS) Back Space

009 (HT) Horizontal Tab

010 (LF) Line Feed

011 (VT) Vertical Tab

012 (FF) Form Feed

013 (CR) Carriage Return

014 (SO) Shift Out / X-On

015 (SI) Shift In / X-Off

016 (DLE) Data Line Escape

017 (DC1) Device Control 1 (often XON)

018 (DC2) Device Control 2

019 (DC3) Device Control 3 (often XOFF)

020 (DC4) Device Control 4

021 (NAK) Negative Acknowledgement

022 (SYN) Synchronous Idle

023 (ETB) End of Transmit Block

024 (CAN) Cancel

025 (EM) End of Medium

026 (SUB) Substitute

027 (ESC) Escape

028 (FS) File Separator

029 (GS) Group Separator

(continued )

Appendix A

Z01_KAMT3553_02_SE_App_A.indd 641 5/15/2015 10:23:40 AM

https://hkgbooks.blogspot.com

642 Programming in C

ASCII Value Symbol Description

030 (RS) Record Separator

031 (US) Unit Separator

032 (BL) Space (Blank)

033 Exclamation mark

034 “ Double quotes (or speech marks)

035 # Number

036 $ Dollar

037 % Percentage

038 & Ampersand

039 ‘ Single quote

040 (Open parenthesis (or open bracket)

041) Close parenthesis (or close bracket)

042 Asterisk

043 + Plus

044 , Comma

045 - Hyphen

046 . Period, dot or full stop

047 / Slash or divide

048 0 Zero

049 1 One

050 2 Two

051 3 Three

052 4 Four

053 5 Five

054 6 Six

055 7 Seven

056 8 Eight

057 9 Nine

058 : Colon

059 ; Semi-colon

060 < Less than (or open angled bracket)

061 = Equals

062 > Greater than (or close angled bracket)

063 ? Question mark

064 @ At symbol

065 A Uppercase A

(continued )

Z01_KAMT3553_02_SE_App_A.indd 642 5/15/2015 10:23:41 AM

https://hkgbooks.blogspot.com

Appendix A 643

ASCII Value Symbol Description

066 B Uppercase B

067 C Uppercase C

068 D Uppercase D

069 E Uppercase E

070 F Uppercase F

071 G Uppercase G

072 H Uppercase H

073 I Uppercase I

074 J Uppercase J

075 K Uppercase K

076 L Uppercase L

077 M Uppercase M

078 N Uppercase N

079 O Uppercase O

080 P Uppercase P

081 Q Uppercase Q

082 R Uppercase R

083 S Uppercase S

084 T Uppercase T

085 U Uppercase U

086 V Uppercase V

087 W Uppercase W

088 X Uppercase X

089 Y Uppercase Y

090 Z Uppercase Z

091 [Opening bracket

092 \ Backslash

093] Closing bracket

094 ^ Caret – circumflex

095 _ Underscore

096 ` Grave accent

097 a Lowercase a

098 b Lowercase b

099 c Lowercase c

100 d Lowercase d

101 e Lowercase e

102 f Lowercase f

(continued )

Z01_KAMT3553_02_SE_App_A.indd 643 5/15/2015 10:23:41 AM

https://hkgbooks.blogspot.com

644 Programming in C

ASCII Value Symbol Description

103 g Lowercase g

104 h Lowercase h

105 i Lowercase i

106 j Lowercase j

107 k Lowercase k

108 l Lowercase l

109 m Lowercase m

110 n Lowercase n

111 o Lowercase o

112 p Lowercase p

113 q Lowercase q

114 r Lowercase r

115 s Lowercase s

116 t Lowercase t

117 u Lowercase u

118 v Lowercase v

119 w Lowercase w

120 x Lowercase x

121 y Lowercase y

122 z Lowercase z

123 Opening brace

124 Vertical bar

125 Closing brace

126 Equivalency sign – tilde

127 Delete

128 Ç Latin capital letter C with cedilla

129 ü Latin small letter u with diaeresis

130 é Latin small letter e with acute

131 â Latin small letter a with circumflex

132 ä Latin small letter a with dieresis

133 à Latin small letter a with grave

134 å Latin small letter a with ring above

135 ç Latin small letter c with cedilla

136 ê Latin small letter e with circumflex

137 ë Latin small letter e with dieresis

138 è Latin small letter e with grave

139 ï Latin small letter i with dieresis

140 î Latin small letter i with circumflex

(continued )

Z01_KAMT3553_02_SE_App_A.indd 644 5/15/2015 10:23:41 AM

https://hkgbooks.blogspot.com

Appendix A 645

ASCII Value Symbol Description

141 ì Latin small letter i with grave

142 Ä Latin capital letter A with dieresis

143 Å Latin capital letter A with ring above

144 É Latin capital letter E with acute

145 æ Latin small letter ae

146 Æ Latin capital letter AE

147 ô Latin small letter o with circumflex

148 ö Latin small letter o with dieresis

149 ò Latin small letter o with grave

150 û Latin small letter u with circumflex

151 ù Latin small letter u with grave

152 ÿ Latin small letter y with dieresis

153 Ö Latin capital letter O with dieresis

154 Ü Latin capital letter U with dieresis

155 c Cent

156 £ Lira

157 ¥ Yen

158 Pt Peseta

159 ƒ Latin small letter f with hook

160 á Latin small letter a with acute

161 í Latin small letter i with acute

162 ó Latin small letter o with acute

163 ú Latin small letter u with acute

164 ñ Latin small letter n with tilde

165 Ñ Latin capital letter N with tilde

166 ª Feminine ordinal indicator

167 ° Masculine ordinal indicator

168 ¿ Inverted question mark

169 Reversed not

170 Not

171 ½ Vulgar fraction one half

172 ¼ Vulgar fraction one quarter

173 ¡ Inverted exclamation

174 Left-pointing double angle quotation

175 Right-pointing double angle quotation

176 Light shade

177 Medium shade

(continued )

Z01_KAMT3553_02_SE_App_A.indd 645 5/15/2015 10:23:41 AM

https://hkgbooks.blogspot.com

646 Programming in C

ASCII Value Symbol Description

178 Dark shade

179 Box drawings light vertical

180 Box drawings light vertical and left

181 Box drawings vertical single and left double

182 Box drawings vertical double and left single

183 Box drawings down double and left single

184 Box drawings down single and left double

185 Box drawings double vertical and left

186 Box drawings double vertical

187 Box drawings double down and left

188 Box drawings double up and left

189 Box drawings up double and left single

190 Box drawings up single and left double

191 Box drawings light down and left

192 Box drawings light up and right

193 Box drawings light horizontal and up

194 Box drawings light horizontal and down

195 Box drawings light vertical and right

196 Box drawings light horizontal

197 Box drawings light vertical and horizontal

198 Box drawings vertical single and right double

199 Box drawings vertical double and right single

200 Box drawings double up and right

201 Box drawings double down and right

202 Box drawings double up and horizontal

203 Box drawings double down and horizontal

204 Box drawings double vertical and right

205 Box drawings double horizontal

206 Box drawings double vertical and horizontal

207 Box drawings up single and horizontal double

208 Box drawings up double and horizontal single

209 Box drawings down single and horizontal double

210 Box drawings down double and horizontal single

211 Box drawings up double and right single

212 Box drawings up single and right double

(continued )

Z01_KAMT3553_02_SE_App_A.indd 646 5/15/2015 10:23:41 AM

https://hkgbooks.blogspot.com

Appendix A 647

ASCII Value Symbol Description

213 Box drawings down single and right double

214 Box drawings down double and right single

215 Box drawings vertical double and horizontal single

216 Box drawings vertical single and horizontal double

217 Box drawings light up and left

218 Box drawings light down and right

219 Full block

220 Lower half block

221 Left half block

222 Right half block

223 Upper half block

224 Greek small letter Alpha

225 Greek small letter Beta

226 Greek capital letter Gamma

227 Greek small letter Pi

228 Greek capital letter Sigma

229 Greek small letter Sigma

230 Greek small letter Mu

231 Greek small letter Tau

232 Greek capital letter Phi

233 Greek small letter Theta

234 Greek capital letter Omega (ohm)

235 Greek small letter Delta

236 Infinity

237 Latin small letter o with stroke

238 Cyrillic capital letter Ukrainian IE

239 Intersection

240 Identical to

241 Plus–minus

242 Greater than or equal to

243 Less than or equal to

244 Top half integral

245 Bottom half integral

246 Division

247 Almost equal to

(continued )

Z01_KAMT3553_02_SE_App_A.indd 647 5/15/2015 10:23:41 AM

https://hkgbooks.blogspot.com

648 Programming in C

ASCII Value Symbol Description

248 White bullet

249 Bullet

250 Decimal point

251 Square root

252 Greek small letter Eta

253 Superscript two

254 Black square

255

Z01_KAMT3553_02_SE_App_A.indd 648 5/15/2015 10:23:41 AM

https://hkgbooks.blogspot.com

Priority of oPerators and their Clubbing

Operators

Operation

Associativity
or

Clubbing

Priority

() Function call Left to right 1st

[] Array expression or square bracket

−> Structure operator

. Structure operator

+ Unary plus Right to left 2nd

− Unary minus

++ Increment

−− Decrement

! Not operator

~ Ones complement

Pointer operator

& Address operator

sizeof Size of an object

typecast Type cast

Multiplication Left to right 3rd

/ Division

% Modular division

+ Addition (Binary plus) Left to right 4th

− Subtraction (Binary minus)

<< Left shift Left to right 5th

>> Right shift

< Less than Left to right 6th

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equality Left to right 7th

! = Inequality (Not equal to)

& Bitwise AND Left to right 8th

Appendix B

(continued )

Z02_KAMT3553_02_SE_App_B.indd 649 5/15/2015 10:25:11 AM

https://hkgbooks.blogspot.com

650 Programming in C

Operators

Operation

Associativity
or

Clubbing

Priority

^ Bitwise XOR Left to right 9th

| Bitwise OR Left to right 10th

&& Logical AND Left to right 11th

| | Logical OR Left to right 12th

?: Conditional operator Right to left 13th

>==

Assignment operators Right to left 14th

, Comma operator Left to right 15th

Z02_KAMT3553_02_SE_App_B.indd 650 5/15/2015 10:25:12 AM

https://hkgbooks.blogspot.com

Header Files and standard library Functions
Every C compiler provides the standard library functions. The following table describes few C library
functions that can be used by programmers in their programs. Since standard library functions are
huge in numbers, it is not possible to include all of them in this appendix. Programmer can refer to
the help of the C compiler. Functions supported by compilers may vary from compiler to compiler.
 Header files and functions supported by a compiler are as follows.

1. stdio.h

Function Name & Syntax Description Example

printf:
int printf (const
char *format,
argument, ...);

It applies each argument to corresponding
format specifier in *format and sends
formatted output to stdin. If successful,
returns non-zero; otherwise EOF#.

• printf(“%d”,d);: prints
value of d. (65)

• printf(“%c”,65);: prints
ASCII character of 65 i.e. ‘A’

• printf(“s=%f,t=%d”,
s,t);: prints float value of s
and int value of t. (s=4.5,t=2)

scanf:
int scanf (const
char *format,
address, ...);

It scans a series of input fields one character
at a time, format each field according
to a corresponding format specifier in
*format and stores the formatted input at
an address passed as an argument. If suc-
cessful, returns number of fields scanned;
returns zero, if no fields are stored. Returns
EOF#, when it attempts to read end of file.

• scanf(“%d”,&s);: reads the
value for s and stores in s.

• scanf(“%d%c”,&i,&c);:
reads value for i as int and value
for c as char and stores in i and c.

• scanf(“%s”,p);: reads string
for p and stores in char array p.

gets:
char *gets
(char *s);

It collects a string of characters terminat-
ed by a new line from the standard input
stream stdin and puts it into s by re-
placing newline by null character (\0). It
allows whitespaces in string. If success-
ful, returns string s; otherwise null.

If we enter “C language” in screen
for input;
• scanf only takes “C” as string
• gets takes “C Language” as string
• gets(a);: entered string will

be stored in char array a.

puts:
int puts(const
char *s);

It copies the null-terminated string s to
the standard output stream stdout and
appends a newline character. If success-
ful, returns non-zero; otherwise EOF#.

puts(a);: The entire string with
whitespaces stored in char array will
get printed on screen.

fopen:
FILE *fopen(const
char *filename,
const char *mode);

fopen opens a file and associate a
stream with it and returns a pointer that
identifies the stream in subsequent op-
erations. Mode indicates in which mode
a file will be accessed (r,w,a).

• FILE *fp=fopen(“a.txt”,
“r”);: opens file a.txt in
read mode.

• FILE *fc=fopen(“s.C”,
“w”);: opens file s.C in write mode.

• FILE *fd=fopen(“p.
doc”,“a”);: opens file
p.doc in append mode.

(continued )

Appendix C

Z03_KAMT3553_02_SE_App_C.indd 651 5/15/2015 10:26:53 AM

https://hkgbooks.blogspot.com

652 Programming in C

Function Name & Syntax Description Example

fclose:
int fclose(FILE
*stream);

fclose closes the named stream and
 returns 0 on success; otherwise EOF#. All
buffers associated with the stream are
flushed before closing. System-allocated
buffers are freed upon closing.

fclose(fp);
fclose(fc);
fclose(fd);

fprintf:
int fprintf(FILE
*stream, const
char *format,
argument, ...);

It applies each argument to corresponding
format specifier in *format and sends
formatted output to stream. If successful,
returns non-zero; otherwise EOF#.

fprintf(fp,“s=%f,t=%d”,
s,t);
Writes “s=4.5,t=2” to a file indi-
cated by fp.

fscanf:
int fscanf(FILE
*stream, const
char *format,
address, ...);

It scans a series of input fields one char-
acter at a time from a stream, format each
field according to a corresponding format
specifier in *format and stores the for-
matted input at an address passed as an
argument. If successful, returns number
of fields scanned; returns zero, if no fields
are stored. Returns EOF# when it attempts
to read end-of-file.

fscanf(fp,“%s”,&str);
Reads a string from a file indicated
by fp and stores it in char array
str.

fgets:
char *fgets(char
*s, int n, FILE
*stream);

It reads characters from stream into the
string s. It stops when it reads either n - 1
characters or a newline character, which-
ever comes first. fgets retains the new-
line character at the end of s and appends
a null byte to s to mark the end of the
string. fgets returns the string pointed
to by s.

fgets(str,10,fp);
Reads 9 characters or newline
character, whichever comes first
from a file pointed by fp and stores
them into char pointer str.

fputs:
int fputs(const
char *s, FILE
*stream);

fputs copies the null-terminated string
s to the given output stream. It does not
append a newline character, and the ter-
minating null character is not copied.
fputs returns the last character written.

fputs(str,fp);
Writes the characters in string str
to a fle pointed by fp.

fgetc:
int fgetc(FILE
*stream);

It returns the next character on the named
input stream. It returns the character read,
after converting it to an int on success;
EOF# otherwise.

fgetc(fp);
Reads next character from file
indicated by fp.

fputc:
int fputc(int c,
FILE *stream);

It outputs character c to the named stream.
It returns the character written on success;
EOF# otherwise.

fputc(65,fp); Writes ‘A’ to a
file indicated by fp.

fflush:
int fflush(FILE
*stream);

If the given stream has buffered output,
fflush writes the output for stream to the
associated file.

#EOF: end-of-file

Z03_KAMT3553_02_SE_App_C.indd 652 5/15/2015 10:26:53 AM

https://hkgbooks.blogspot.com

Appendix C 653

2. conio.h

Function Name & Syntax Description Example

clrscr:
void clrscr(void);

It clears the current text window and
places the cursor in the upper left-hand
corner (at position 1,1).

clrscr();

getch:
int getch(void);

It reads a single character directly from
the keyboard, without echoing to the
screen and returns the character read
from keyboard.

getch();

3. alloc.h

Function Name & Syntax Description Example

malloc:
void *malloc
(size_t size);

It allocates a block of size bytes from the
memory heap. It allows a program to al-
locate memory explicitly as it’s needed,
and in the exact amounts needed. On suc-
cess, returns pointer to newly allocated
block of memory; otherwise null.

char *str=(char *) mal-
loc(10);
Allocates space for 10 chracters
pointed by str. Typecasting is needed
here.

calloc:
void *calloc
(size_t nitems,
size_t size);

calloc provides access to the C mem-
ory heap, which is available for dynamic
allocation of variable-sized blocks of
memory. calloc allocates a block
(nitems * size) bytes and clears it
to 0. On success, returns pointer to newly
allocated block of memory; otherwise null.

int *str=(int *) cal-
loc(10, sizeof(int));
Allocates space for 10 chracters as
10 sizeof(int)=10 2=20 bytes
pointed by str. Typecasting is also
needed here.

free:
void free(void
*block);

free deallocates a memory block
allocated by a previous call to calloc,
malloc, or realloc.

free(str);
Frees the allocated block pointed
by str.

Note: Above three functions are also available in stdlib.h file.

4. math.h

Function Name & Syntax Description Example

abs:
int abs(int x);

It returns absolute value of its argument. abs(-1);
returns 1

ceil:
double ceil
(double x);

It finds the smallest integer not less
than x.

ceil(2.6);
returns 3.0

floor:
double floor
(double x);

It finds the largest integer not greater
than x.

floor(2.6);
returns 2.0

exp:
double exp(double x);

It calculates the exponential function; e
to the xth power.

exp(2);
returns e^2=7.389056

(continued )

Z03_KAMT3553_02_SE_App_C.indd 653 5/15/2015 10:26:53 AM

https://hkgbooks.blogspot.com

654 Programming in C

Function Name & Syntax Description Example

log:
double log(double x);
double log10
(double x);

log calculates the natural logarithm of x
while log10 calculates the base 10 loga-
rithm of x.

log(5);
returns 1.609438
log10(5);
returns 0.698970

pow:
double pow(double x,
double y);

It calculates x^y i.e. x to the power y. pow(2,5);
returns 32

Trigonometric:
double cos(double
x); double sin
(double x); double
tan(double x);

cos computes the cosine of the input
value. sin compute the sine of the input
value. tan calculates the tangent of the in-
put value. The value to be passed as argu-
ment must be in radians.

cos(30*M_PI/180);
#returns 0.866025
sin(30*M_PI/180);
returns 0.500000
cos(30*M_PI/180);
returns 0.577350

sqrt:
double sqrt
(double x);

It calculates the positive square root of
the input value.

sqrt(6.25);
returns 2.500000

#M_PI=π=3.141593

5. stdlib.h

Function Name & Syntax Description Example

atoi:
int atoi
(const char *s);

It converts a string pointed to by s to int.
If s is inconvertible, it returns zero.

char *s=“123”atoi(s);
returns an integer 123.

exit:
void exit(int
status);

It terminates the calling process. Before
termination, it closes all files and writes
buffered output. status=0 indicates
normal exit and non-zero indicates error.
This function is also available in
process.h file.

exit(0);
stops the execution of main func-
tion. Hence, terminates the program.

itoa:
char *itoa(int
value, char
*string, int radix);

It converts value to a null-terminated string
and stores the result in string. radix speci-
fies the base to be used in converting value
(2 to 36).

itoa(123,a,16);
The hexadecimal string format of
123 i.e. 7b will be stored in string a.

random:
int random(int num);

It returns a random number between 0
and (num-1).

random(999);
may return 10

Z03_KAMT3553_02_SE_App_C.indd 654 5/15/2015 10:26:53 AM

https://hkgbooks.blogspot.com

ROM-BIOS SeRvIceS
These services can be invoked using int86() function.

PRINT SCREEN
Interrupt : 0 × 5
Returns : Nothing
Use : Sends contents of the screen to the printer

INITIALIZE PRINTER
Interrupt : 0 × 17
Input : AH = 0 × 01

DX = Printer number
(0 = LPT1, 1 = LPT2, 2 = LPT3)

Use : Initializes the printer

MEMORY SIZE
Interrupt : 0 × 12
Input : Nothing
Returns : AX (memory size)

READ DISK CONTROLLER
Interrupt : 0 × 13
Input : AH = 0 × 0

DL = drive
0 × 00-0 × 7f floppy disks
0 × 80-0 × ff Hard disks

SET CURSOR SIZE
Interrupt : 0 × 10
Input : AH = 0 × 01

CH = Starting Scan line
CL = Ending Scan line

Use : Changes the cursor size.

SET CURSOR POSITION
Interrupt : 0 × 10
Input : AH = 0 × 02

BH = Display Page Number
DH = Row number
DL = Column number

REBOOT COMPUTER
Interrupt : 0 × 19
Input : Nothing
Use : Restarts the computer

DELAY
Interrupt : 0 × 15
Input : AH = 0 × 86

CX: DX = Number of micro seconds to halt
Use : Same as delay() function

GET TIME
Interrupt : 1AH
Input : AH = 02H
Returns : CH = Hours in BCD

CL = Minutes in BCD
DH = Seconds in BCD
DL = Daylight time code
00h-Standard time
01h-Daylight saving time

BCD-Binary coded decimal.

GET DATE
Interrupt : 1AH
Input : AH = 04H
Returns : CH = Century in BCD

CL = Year in BCD
DH = Month in BCD
DL = Day in BCD

Carry flag is clear if the clock is running, otherwise
carry flag is set.

SHOW MOUSE POINTER
Interrupt : 33H
Input : AX = 0001H
Returns : Nothing
Shows the mouse pointer and neutralizes any mouse
pointer area previously defined.

HIDE MOUSE POINTER
Interrupt : 33H
Input : AX = 0002H
Returns : Nothing
Removes the mouse pointer. The driver keeps on to
track the mouse pointer.

Appendix d

Z04_KAMT3553_02_SE_App_D.indd 655 5/15/2015 10:28:09 AM

https://hkgbooks.blogspot.com

656 Programming in C

These services can be invoked using intdos() function. The interrupt number for all services is 0 × 21.

MAKE DIRECTORY
Input : AH = 0 × 39
DS : DX =Segment : offset address
Returns : If function is successful carry flag is clear
otherwise carry flag is set and AX contains error
code.

REMOVE DIRECTORY
Input : AH = 0 × 3A
DS : DX =Segment : offset address
Returns : If function is successful carry flag is clear
otherwise carry flag is set and AX contains error
code.

CHANGE DIRECTORY
Input : AH = 0 × 3B
DS : DX = Segment : offset address of directory name.
Returns : If function is successful
carry flag is clear otherwise carry flag is set and AX
contains error code.

DELETE FILE
Input : AH = 0 × 41
DS : DX = Segment : offset address
Returns : If function is successful carry flag is clear
otherwise carry flag is set and AX contains error
code.

Z04_KAMT3553_02_SE_App_D.indd 656 5/15/2015 10:28:09 AM

https://hkgbooks.blogspot.com

Scan codeS of Keyboard KeyS

Key Normal Shift Ctrl Alt

A 1E61 1E41 1E01 1E00

B 3062 3042 3002 3000

C 2E63 2E43 2E03 2E00

D 2064 2044 2004 2000

E 1265 1245 1205 1200

F 2166 2146 2106 2100

G 2267 2247 2207 2200

H 2368 2348 2308 2300

I 1769 1749 1709 1700

J 246A 244A 240A 2400

K 256B 254B 250B 2500

L 266C 264C 260C 2600

M 326D 324D 320D 3200

N 316E 314E 310E 3100

O 186F 184F 180F 1800

P 1970 1950 1910 1900

Q 1071 1051 1011 1000

R 1372 1352 1312 1300

S 1F73 1F53 1F13 1F00

T 1474 1454 1414 1400

U 1675 1655 1615 1600

V 2F76 2F56 2F16 2F00

W 1177 1157 1117 1100

X 2D78 2D58 2D18 2D00

Y 1579 1559 1519 1500

Z 2C7A 2C5A 2C1A 2C00

1 0231 0221 7800

2 0332 0340 0300 7900

3 0433 0423 7A00

4 0534 0524 7B00

(continued )

Appendix e

Z05_KAMT3553_02_SE_App_E.indd 657 5/15/2015 10:30:12 AM

https://hkgbooks.blogspot.com

658 Programming in C

Key Normal Shift Ctrl Alt

5 0635 0625 7C00

6 0736 075E 071E 7D00

7 0837 0826 7E00

8 0938 092A 7F00

9 0A39 0A28 8000

0 0B30 0B29 8100

− 0C2D 0C5F OC1F 8200

= 0D3D 0D2B 8300

[1A5B 1A7B 1A1B 1A00

] 1B5D 1B7D 1B1D 1B00

; 273B 273A 2700

“ 2827 2822

2960 297E

\ 2B5C 2B7C 2B1C 2600

, 332C 333C

. 342E 343E

/ 352F 353F

F1 3B00 5400 5E00 6800

F2 3C00 5500 5F00 6900

F3 3D00 5600 6000 6A00

F4 3E00 5700 6100 6B00

F5 3F00 5800 6200 6C00

F6 4000 5900 6300 6D00

F7 4100 5A00 6400 6E00

F8 4200 5B00 6500 6F00

F9 4300 5C00 6600 7000

F10 4400 5D00 6700 7100

F11 8500 8700 8900 8B00

F12 8600 8800 8A00 8C00

BackSpace 0E08 0E08 0E7F 0E00

Del 5300 532E 9300 A300

Down Arrow 5000 5032 9100 A000

End 4F00 4F31 7500 9F00

Enter 1C0D 1C0D 1C0A A600

Esc 011B 011B 011B 0100

Home 4700 4737 7700 9700

Ins 5200 5230 9200 A200

(continued )

Z05_KAMT3553_02_SE_App_E.indd 658 5/15/2015 10:30:13 AM

https://hkgbooks.blogspot.com

Appendix E 659

Key Normal Shift Ctrl Alt

Keypad 5 4C35 8F00

Keypad 372A 9600 3700

Keypad− 4A2D 4A2D 8E00 4A00

Keypad + 4E2B 4E2B 4E00

Keypad / 352F 352F 9500 A400

Left arrow 4B00 4B34 7300 9B00

Page Down 5100 5133 7600 A100

Page UP 4900 4939 8400 9900

Prn scr 372A

Right Arrow 4D00 4D36 7400 9D00

SpaceBar 3920 3920 3920 3920

Tab 0F09 0F00 9400 A500

Up arrow 4800 4838 8D00 9800

Z05_KAMT3553_02_SE_App_E.indd 659 5/15/2015 10:30:13 AM

https://hkgbooks.blogspot.com

INdex

A

abs () function, 398
advantages of C program, 17
algorithm

analysis of, 19
classification of, 21–22
definition, 18
examples, 19
instruction, 18
program design, 19–20

alphanumeric symbols, 8
American National Standard Institute (ANSI)

standard, 7
AND Gate, 188–189
AND (&&) operator, 70, 73
ANSI C predefined macros, 475
arc () functions, 592
array, 337

addition of even and odd numbers using,
229–230

addition of even numbers and product of odd
numbers, 230–231

amount of memory required for, 226
arranging numbers in increasing and

decreasing order, 248–249
assigning/equating variables, 224
base, 223
calculating the total cost, 237–238
characteristics of an, 224–226
comparison with structure, 491
declaration of a one-dimensional, 221
definition, 221
delete operation with two-dimensional array,

255–269
deleting specified element and rearranging the

elements, 240–241
detecting the occurrence of a character in a

given string, 231
of different data types, 221

displaying balance and code number, 258–259
displaying binary bits corresponding to

Hexadecimal numbers, 267–268
displaying character array with their address,

228
displaying contents of two, 234
displaying elements of string with their

element numbers, 238
displaying elements of two arrays in two

separate columns, 258
displaying matrix form, 259–262
displaying names of cities with their base

addresses, 266–267
displaying names of days of a week using

single-dimensional array, 233–234
displaying number of days of a given month

of a year, 235–236
displaying number of days of different months

of year, 234–235
displaying one-dimensional array using

integer pointer, 243–245
displaying text using stdin and stdout streams,

247
displaying the given message by using putc()

and stdout() functions, 238
displaying two-dimensional elements together

with their addresses, 257
elements, 222
evaluating price and quantity available in the

form of an, 265–266
evaluation of series, 250–251
even[] and odd[], 229–230
finding the average sales of an item, 236
finding the occurrence of similar numbers,

236–237
four-dimensional, 271–272
and functions, 412–418
index, 223
initialization, 222–223, 226

Z06_KAMT3553_02_SE_Ind.indd 660 5/18/2015 9:48:33 AM

https://hkgbooks.blogspot.com

Index 661

initializing single- and two-dimensional
arrays, 258–259

inserting an element at a specified position in,
241–243

insertion/deletion of an element, 225
insert operation with two-dimensional array,

253–255
of integers, 222
linear, 276
memory requirement, 226–227
merging of two or more, 244–245
multi-dimensional, 269–274
NULL character, 228
one-dimensional, 226–238
operations with, 240–246
of pointers, 352–357
predefined streams, 478
printing a string in reverse order, 231–232
program to convert binary to gray codes,

268–269
program to display elements with their

addresses, 224–225
range, 223
searching a specified element in an, 240–241
size, 223
sorting an, 242–243
sorting numbers in ascending order, 246
sorting of strings, 245–246
sprintf () function, 274–276
sscanf () function, 273
static type, 226
storage, 224
of structures, 491–492
syntax, 222–223
terminology, 223
three-dimensional, 270–271,273–274
traversing of, 238–239
two-dimensional, 251–269
types, 223
unsigned character data type, 232–233
upper boundary of, 225
word, 223

arr [p], 354–355
*(arr1p), 354
ASCII Code, 34
assembler, 9
assembly language, 8

assertions, 480
assignment operator (=), 399–400
assignment operators, 59–62
asterisk (*) symbol, 225, 337, 642
atof () function, 315
atoi () function, 316
automatic variables, 435–436
auto variables, 448–450

B

bar () function, 593, 597, 600–604
base address, 223, 242, 266–267
BASIC, 6, 8
basic combined programming language (BCPL),

6–7
basic input–output system (BIOS), 5
binary arithmetic operators, 64
binary code, 7
BIOS service, 519–520, 604, 606
bit field, 510–513
bits, 337
bitwise operators, 74–79

AND, 76–77
bit right, 74–75
bits left, 75–76
exclusive OR (XOR), 78–79
OR, 77–78

‘B’ language, 5–6
Bluetooth technology, 5
Bohm And Jacopini’s theory, 213
brackets ([]), 225
break statement, 129, 130, 132–133, 163
byte, 337

C

call1 () function, 448
calloc () function, 616–618
C compilers, 7
Celeron-based laptop, 5
central processing unit (CPU), 5
c.exe, 576, 577
C functions, 6
change () function, 393–395
character codes, 34
character constant, 33–34
character I/O, 99–100

Z06_KAMT3553_02_SE_Ind.indd 661 5/18/2015 9:48:33 AM

https://hkgbooks.blogspot.com

662 Index

cgets (), 103
cputs (), 103–104
gectch (), 101–102
getchar (), 100–101
gets (), 102–103
putchar (), 101–102
puts (), 102–103

character set, 33–34
circle () functions, 591
close () function, 585–587
closegraph () functions, 592
clrscr (), 93–95
COBOL, 6, 8
coding a program, 21
command line arguments, 576–577

application of, 577–579
compilers, 9
compile time initialization, 222
composite data structure, 221
computer basics

central processing unit (CPU), 5
input device, 4
memory, 4–5
output device, 4

computers, impact of, 3
conditional compilation directives, 469–471

#ifndef, 471–472
conditional operator, 63–64
conditional statements, 69–71
conio.h header file, 104
constant declared variables, 50
constants, 36–38

program on various constants, 38
constant variables, 50
continue statement,130, 163
coreleft () function, 620
counter-controlled repetitions, 155
CPU registers, 455, 518
C standard library, 6
cube () funtion, 398–399

D

data, definition, 534
data communication, 534
data types, 40–41

floats and double floats, 42–43
integer, 41

signed and unsigned char, 42
decision-making statements

break statement, 129, 133–134
continue statement, 130, 163
distinction between switch case and nested

ifs, 146–147
goto statement, 130–132
goto unconditional jump, 129
if–else–if ladder statement, 121–129
if–else statement, 113, 116–120
if statement, 114–116
loop statement, 113
nested if-else statement, 120–121
nested switch statements, 144–145
switch case statement, 132–143

declaration of structures, 492–495
declaration of variables, 44–45
decrement operator, 65–67
definite repetition action, 155
delimiters, 34
destination stream, 534
deterministic algorithm, 22
display adapter, 591
division operations, 48–49
dos.h header file, 105
DOS prompt, 580
DOS service, 518–524

changing the cursor in different sizes, 520
creating a directory using, 520–521
displaying the system time at a specified

cursor position, 519–520
to display the attributes of a file using,

521–522
to display the given character on the screen

using, 521
finding memory size of the computer, 519
program to delete a file using, 523

double floating, 41
double () function, 397
do-while loop

to compare factorial of a given number,
196–197

to display a message, 207–208
to evaluate series of numbers, 185
execution of program if the condition is false,

207
to find cubes of numbers, 165

Z06_KAMT3553_02_SE_Ind.indd 662 5/18/2015 9:48:33 AM

https://hkgbooks.blogspot.com

Index 663

functions and, 409–412
to print an entered number in reversed order,

202–203
program to find age and weight of students,

210–211
program to find number is prime or not, 210
syntax, 207
with while statement loop, 212–213

do-while statement, 156
drawpoly () function, 607–608
dynamic implementation, 626
dynamic initialization, 46
dynamic memory allocation, 337, 613

E

EBCDIC, 34
ellipse () functions, 591
enumeration data type, 513–517

creating, for 12 months, 513–514
displaying the name of month using, 514–516
programs using, 514
program to identify the type of entered

character using, 514–515
environment variables, 579–580
escape sequences, 95
execution of C program, 12–15
exit (), 104
EX-OR GATE, 191–192
external variables, 450–453
extern keyword, 453
extra arguments, 380

F

fact () function, 424–425
fcloseall () function, 535, 568–569
feof () function, 561
fgetc () function, 535–539, 548
files

abc.txt, 581–582
alpha.txt, 581–582
binary modes, 543–544
closing of, 573–574
communication with programs and output

device, 533
data, 533
fgetc () function, 535–539, 559–561

fprint () function, 535, 545
fputc () function, 538–541
fread () function, 535, 553–555
fscanf () function, 545–546
fseek () function, 558–559
fwrite () function, 553–555
low-level disk I/O operations, 572–575
opening a file for read/write operation in

binary mode, 543–544
opening a file in append mode and add new

records in it, 541
opening a file in read/write mode in it, 542
opening a pre-existing file and add

information at the end of file, 538–539
opening a text file and write some text using

fprintf () function, 545
opening modes, 572–573
opening of, 536
program to copy the contents of one file to

another file, 567–568, 570–571
program to copy up to 100 characters from a

file to an array, 569–570
program to display C program files in current

directory, 560–561
program to read a character from the keyboard

till the user presses enter, 580–581
program to write data to text file and read it,

538
random access, 534–535
reading contents of the file, 567–568
reading contents of the file using getc ()

function, 546–547
reading of, 535
searching errors in reading/writing, 561–562
sequential, 534–535
steps for operations, 535–544
syntax, 535
syntax of read mode, 536
text modes, 536
using w+ mode for writing and reading of,

540–541
fillellipse () function, 596–597
first C program, 16–17
flags, 88–99
floating, 37
floating-point constants, 36
floating-point representation, 44

Z06_KAMT3553_02_SE_Ind.indd 663 5/18/2015 9:48:33 AM

https://hkgbooks.blogspot.com

664 Index

floodfill () function, 603–604
floor () function, 167
floppy disk, 534
flowchart, 18
fopen (), 534–536
for loop statement, 156, 160–163

conditions, 146
counting of numbers, 161–162
displaying a character and its position in

alphabets, 171
displaying even numbers, 160
displaying largest number, 168–169
displaying letters using infinite, 161
displaying mantissa and exponent, 171–173
displaying numbers from 1 to 15 using, 159
displaying numbers from 1 to 16 using

incrementation operation, 159–160
displaying numbers in ascending and

descending orders, 160–163, 169–170
displaying numbers with square roots,

164–165
displaying numbers with squares, 158, 164
displaying smallest number, 169
evaluation of series using, 165–166
execution of, 157
explanation, 156–157
expressions are, 156
flow chart, 157
functions and, 405–406
generating multiplication of two integers,

169–170
generating perfect squares, 167–168
generating sum and average of numbers,

171–172
generating sum and square of sum, 167
generating triangular numbers using, 166
infinite, 161–163
multiplication of two integers by using

repetitive addition, 170–171
re-evaluation parameter, 156–157
syntax, 156–157
test condition, 157
various formats, 158

formal arguments, 380
formatted functions, 85–86

printf () statement, 86–88
return values, 85

scanf () statement, 86, 91–95
FORTRAN, 6, 8
fprint () function, 535, 541
fputc () function, 535, 538–540, 549–550
fread () function, 553–555, 557
free () function, 613–618
fscanf () function, 535
fseek () function, 558–559
ftell () function, 535–536
functions

addition (+), 400–401
as an argument, 396–399
with arguments and return values, 387–388
with arguments but without return values, 388
assigning return value of a function to another

variable, 400
assignment operator (=), 68–71
call by value, 393–395
comparing two return values, 404–405
copying of array elements using user-defined,

415–416
and decision statements, 406–409
definition, 380
division (/), 401–402
and do-while loop, 411–412
effect of global variables on different, 384
evaluating equation s = sqr (a ()1+ b())

using, 405
evaluating equation y = x1+x2+ . . . xn using,

406
graphic, 591–593
if else statement with & without, 407
increment/decrement operator (+ + & – –),

402–403
initalization of array using, 412–413
input/output, 73–74
interchanging of array elements of two array

using, 416417
library, 437–438
and for loop statement, 409–410
and loop statements, 409–412
main () function, 380, 384
mod (%), 403
multiplication (*), 401–402
names, 383–384
need for, 382–383
operator (?), 492–493

Z06_KAMT3553_02_SE_Ind.indd 664 5/18/2015 9:48:33 AM

https://hkgbooks.blogspot.com

Index 665

with operators, 399–400
passing array elements to, 413
passing reverse array to, 413–414
programs using library, 593–598
program to send a value by reference to the

user-defined function, 379–380
program to show using similar names for

different, 383–384
reading array elements declared in different

functions using global pointer declaration,
418

reading private array of other, 416
recursive feature of. see recursion
to return more values per call, 395–396
return statement, 384–386
return type of, 383
and structures, 504–506
subtraction (–), 400–401
and swtich() statements, 408–409
types of, 386–393
user-defined, 381–383
void,390
and while loop, 410–411
without arguments and but with return

values, 386–387
without arguments and return values, 386–387
working of, 380–381

fun () function, 384
fwrite () function, 555–556

G

getc () function, 535–538
getche () function, 540–542
getcolor () function, 593
getdrivername () function, 597
getmaxcolor () function, 597
getmaxmode () function, 597
getmaxx () function, 592, 597, 604
getmaxy () function, 597, 604
getmodename () function, 592
getw () function, 552–553
global variables, 10, 383–384, 447, 450,

452–453
goto statement, 130–132, 161, 170
goto unconditional jump, 113
graphics

arc () functions, 592

bar () functions, 593
circle () functions, 592
closegraph () functions, 592
drawing noncommon figures, 607–608
ellipse () functions, 592
filling patterns with different colours and

styles, 600–604
getcolor () functions, 593
getmaxx () functions, 592
graphresult () functions, 592
initgraph () functions, 591–592
initialization of, 591
line () functions, 592
mouse programming, 604–607
outtextxy () functions, 593
programs using library functions, 593–594
restorecrtmode () functions, 592
setcolor () functions, 593
settextjustify () functions, 593
settextstyle () functions, 593
working with text, 598–600

graphics.h header file, 591
graphresult () functions, 592

H

Hamming code, 192–193
hash # define directive, 463–466
hash #error directive, 472–473
hash #ifndef directive, 471–472
hash #include directive, 462–463
hash #line directive, 473
hash #pragma directives, 473–475

ANSI violations and, 474
errors and, 474
inline, 473
portability warnings and, 474
program to set off certain errors shown by,

475
saveregs, 473

hash #undef directive, 466
header files, 17–18
header node, 626
hexadecimal code, 9
hexadecimal integer constant, 36
Hexadecimal numbers, 267–268
high-level languages, 8
homogeneous data, 221

Z06_KAMT3553_02_SE_Ind.indd 665 5/18/2015 9:48:34 AM

https://hkgbooks.blogspot.com

666 Index

I

identifiers, 35–36
if–else–if ladder statement, 113, 121–129

examples, 121–129
flow chart, 120
process, 121
rules, 123
syntax, 121–123

if–else statement, 113, 116–120
examples, 116–119
flow chart, 116
syntax, 116
true and false conditions, 116
with & without functions, 407

if statement, 113–114, 188
examples, 113–115
flow chart, 113

include directory, 16
increment operator, 65–66
indefinite repetition, 155
infinite algorithms, 22
initgraph () function, 591–592, 597
initialization of variables, 46
input device, 3–4
input () funtion, 399, 400
input/output functions

formatted, 85–88
unformatted, 85–88

insertion, 241–242
integer constants, 36
integer representation, 43–44
interpreters, 9
int86 () function, 510, 604–606
int86x () function, 510
I/O disk operation, 572
I/O redirection, 580–582
isalpha () check, 517
isdigit () check, 517
iterative process, 430–431

J

Java compilers, 9

K

keywords, 35

L

laptop computer, 5
lib directory, 14
library functions, 10

commonly used, 104–105
line () function, 592
LINE identifier, 470
lineto () function, 591–592
linking, 10
list

definition, 621
deletion from linked, 631
HEAD position, 621
insertion into linked, 630–631
insertion of an element in, 624–625
linked, 626–627
linked with and without header, 627–636
predecessor, 621, 623–624
program to create a linked, 632–636
program to create the linked list with header,

628–629
searching a linked, 630
searching and retrieving an element from,

622–623
singly linked, 626–627
successor, 621, 623–624
TAIL position, 621
traversal of, 621–622
traversing a linked, 630

logical operators, 71–74
long integer, 41–42
loop statement, 113

see also do-while loop; for loop statement;
nested for loops; while loop
in C, 155
definition, 155
and functions, 409–411
incrimination/decrimination, 155
initialization, 155
loop variable, 155
steps in, 155–156

low-level disk I/O operations, 572–575
low-level languages, 9

M

machine language, 7
macros

Z06_KAMT3553_02_SE_Ind.indd 666 5/18/2015 9:48:34 AM

https://hkgbooks.blogspot.com

Index 667

abort (), 480
ANSI C predefined, 475–477
with arguments, program on, 468
assert (), 479–480
DETECT, 592
feof (), 561
isalpha () checks, 479
isupper () checks, 479
for logical operators, 465
memory model, 477–476
predefined in ctype.h, 478–480
program to enter text and display it using,

477–476
program to identify whether the entered

character is a letter or digit and capital or
small using predefined, 478–480

standard I/O predefined, in stdio.h, 477–476
TURBO-C predefined, 476

main () function, 419–422, 463, 468, 506
malloc () function, 614–619
math.h header file, 164
M-BASIC, 9
memchr () function, 316
memcmp () function, 316–318, 367
memcpy () function, 316
memicmp () function, 368
memmove () function, 316
memory, 4–5

allocation functions, 614–620
allocation programs, 614–620
models, 613–614

memory address, 337
memory model macros, 477
message () functions, 387
mnemonics, 8
mouse programming, 604–607
moveto () function, 597–598
MS.DOS, 6

N

nested for loops
adding a parity bit with binary bits, 179–180
C compiler in sequence, 173–174
converting a binary number to a decimal

number, 186–187
converting a binary to decimal number, 188
count number of votes, 176

detection of Armstrong numbers, 182–183
displaying octal numbers in binary, 179–180
displaying results of students, 193–194
displaying series of numbers, 195
display numbers using ASCII values, 175
generating pattern of numbers, 184–185
generating pyramid structure using numerical,

186
inner loop iterations, 173
perfect cubes, 165–166
printf () statement using, 174–175
program to accept a number and find sum of

its individual digits, 178–179
program to count occurrence of digits from 0

to 9, 175–178
program to display the stars, 183–184
program to simulate a digital clock, 176–177
subtraction of two loop variables, 172–173

nested if-else statement, 120–121
flow chart, 120
rules, 121
syntax, 120–121

nested switch statements, 144–145
non-deterministic algorithm, 22
NOT operator (!), 71, 73
NULL character (‘0’), 228, 287–291, 293
numerical constants, 37–38

O

object codes, 9
object program, 8
open () function, 580
operand, 59
operators

‘&’,337, 342–343
arithmetic, 64–67
assignment, 68–71
bitwise, 74–79
comma, 63–64

operators, 16, 35
conditional, 63–64
logical, 71–74
priority of, 59, 649–650
relational, 67–68
types of, 59

OR Gate, 188–189
OR (||) operator, 71, 73

Z06_KAMT3553_02_SE_Ind.indd 667 5/18/2015 9:48:34 AM

https://hkgbooks.blogspot.com

668 Index

other () function, 396
output device, 4
outtextxy () functions, 593

P

p [arr], 354
*(p + arr), 354
Pascal, 6
Pentium, 5
period (.) sign, 447, 493
perror () function, 563–564
PI (identifier), 463–464
pointers

addition using, 351–352
and address, 338
to add two numbers through variables using,

343–344
arithmetic operations with, 348–352
array of, 360–362
assigning of, 343–344
comparison of two, 373
constant, 347–348
to copy the elements of one array to another,

356
declaration, 339
definition, 337
to display array elements and their addresses,

367–368
displaying the addresses of different variables

together with their values, 340–341
to display the address of a variable, 339, 363
to display the data type that occupies the same

space, 341
to display the string using, 373
to display the sum of squares and cubes of

array elements, 355–356
to display the value of variables and its

location using, 341–342
division using, 373
effect of increment and decrement operators

used as prefix and suffix, 349–350
effect of increment on, 348–349
features, 338
file, 558
multiplication using, 373
to pointers, 361, 367
to print an element and its address using, 343

to print value of a variable, 343
to print variables using ‘*’ and ‘&’ operators,

342–343
program to access elements of an array using,

354
program to interchange elements of character

array using, 365
to read two strings through the keyboard, 366,

369–370
and strings, 364–370
subtraction using, 351
sum all the elements of an array using, 355
and two-dimensional arrays, 357–358
void, 345–346
wild, 346–347

pow () function, 165, 174–177
precision specifier, 89
preprocessor, definition, 463
preprocessor directives

conditional compilation, 469–471
hash #pragma directives, 473–475
identifier for C statements and variables,

464–465
identifier for displaying double and triple of a

number, 465–466
macros for logical operators, 465
standard I/O predefined macros in stdio.h,

475–477
undefining a macro, 466

printf () function, 74, 96, 118–130, 425–428
length of the string using, 97–98

printf () statement, 20, 96, 118–130, 425–428
addition of two numbers, 98
average of three real numbers, 93–94
and conversion symbol, 86–88
for displaying single character, 98–99
escape sequences, 95–96
examples, 95
flags, 94
format string, 94
precision specifier, 89–90
square of the given number, 98–99
for swapping values of two variables, 99–100
use of ‘*’ for formatting, 85
using nested for loops, 173–174
width specifier, 88–89

problem-solving techniques

Z06_KAMT3553_02_SE_Ind.indd 668 5/18/2015 9:48:34 AM

https://hkgbooks.blogspot.com

Index 669

algorithm, 17–22
flowchart, 22–26
pseudo-code, 26–28

procedure-oriented languages, 7
see high-level languages, 5, 6

programming language, evolution of, 5–6
programming rules, 12
pseudo-code, 26–28
putc () function, 547–548
putw () function, 551–552

R

RAM (random access memory), 4
rand () function, 437
random algorithm, 22
read () declaration, 574–575
read () function, 572
read only memory (ROM), 4
read–write memory, 5
see user’s memory, 5

real constants, 37–38
realloc () function, 619–620
recursion

advantages, 435–436
calculation of triangular number of an entered

number with, 414
definition, 423–424
depth of, 431–432
direct, 427–428
disadvantages, 435–436
efficiency, 435–436
essential conditions for, 425
indirect, 428–430
program to call the main () function

recursively, 423
rules, 425–426
steps, 423
terminating statement in, 425
types, 424–425
vs iteration, 430–431

register class, 455
register variables, 454–455
relational operator, 67–68
remove () function, 566
rename () function, 566–567
restorecrtmode () functions, 592
return statement, 384–386

return () statement, 380
rewind () function, 540–541
Ritchie, Dennis, 6

S

scanf () statement
addition of two numbers, 98–99
average of three real numbers, 93–94
detecting an error using, 93
with different formats, 93
for displaying inputted name, 97–98
for displaying single character, 98
effect of mismatch of data types, 92
escape sequences, 95
for reading and printing integer value, 92
square of the given number, 98
use of comma, 93

searching, 240
segment registers, 519
semi-colon (;), 156, 160–161
semiconductor memory, 4
sentinel-controlled repetition, 155
sequential execution, 113
setcolor () functions, 593
setfillstyle () function, 600–603
settextjustify () functions, 593
settextstyle () functions, 593
setviewport () function, 604
short integer, 41
show () function, 429–430
signed char, 42
signed integer, 41, 43
signed magnitude form, 43
single character constant, 38
sizeof () function, 227–228
sleep () function, 104–105
source code, 9
source program, 8–9
source stream, 534
sprintf () function, 274–275
sqrt () function, 118
square () function, 396
sscanf () function, 274–276
stacks, 424
standard directories, 18
static int, 205
static variables, 453–454

Z06_KAMT3553_02_SE_Ind.indd 669 5/18/2015 9:48:34 AM

https://hkgbooks.blogspot.com

670 Index

stderr, 246
stdin, 246
stdio.h header file,85, 478
stdout, 246
storage class, 437
strcat () function, 292, 308–309
strchr () function, 292, 305–306
strcmp () function, 291, 301–303
strcpy () function, 291, 297
strdup () function, 292, 305
stricmp ()function, 291
stricmp () function, 300
string constants, 36
stringizing operation, 467–468
strings,

applicaions of, 318–325
comparing the source with destination,

32–333
concatenation of two, 308–310
conversion functions, 315–316
copying the contents of one to another,

298–299
copying the contents of one to another by

using strcpy (), 297–298
copying the source to destination, 298–299
counting the number of characters in a,

289–290
with different formats, 289–291
displaying names of cities alphabetically,

322–324
displaying successive, 288
displaying the length of the entered string,

296–297
displaying using various printf () format

specifications, 290
displaying using while loop, 290–291
equivalent ASCII codes of, 293
finding no. of characters in a given string

including and excluding spaces, 295–296,
365

memory functions, 316–318
and NULL character, 228, 287
palindrome, 321–322
printing a given string from the first

occurrence of the given character, 314–315
removing the occurrences of ‘The’ from text,

294

removing the occurrences of vowels in a
given text, 294

sorting of names, 250
standard library functions of, 291–292
syntax for, 287
using the stricmp () function, 300

strlen () function, 291–293
strlwr () function, 292, 304
strncat () function, 292, 310
strncmp () function, 292, 302
strncpy () function, 291
strnicmp () function, 292
strnset () function, 292, 312–313
strpbrk () function, 292, 314
strrchr () function, 292
strrev () function, 292, 310–311
strset () function, 292, 312
strspn () function, 292, 313
strstr () function, 292, 307–308
strtod () function, 315
structures, of C program

array of, 498–501
body of the function, 11
comments, 11–12
copying elements from one object to another

object, 494–495
creating a user-defined data type from, 50–507
declaration and initialization of, 492–495
declaration part, 11
defining, containing the details of the

employee, 509–510
executable part, 11
features, 491
global declaration, 10
header files for function, 10
main () function, 10–11
memory allocation, 492
nested, 497–498
pointer to, 501–504
printing elements using print () function, 505
program to display the size of, 493
read and write, 553–557
reading the values using scanf (), 495
string data type, 507
within structure, 496–498
understanding the working of, 493–494
union of, 524
user-defined functions, 11

Z06_KAMT3553_02_SE_Ind.indd 670 5/18/2015 9:48:34 AM

https://hkgbooks.blogspot.com

Index 671

variable to a user-defined function, 504–505
strupr () function, 292, 304–305
switch case statement, 113, 132–143

examples, 133–143
flow chart, 134
switch execution, 133
switch expression, 133
switch organization, 133
syntax, 133

switch () statement, 40–408
syntax

array, 222–223
of close () function, 573
do-while loop, 207–212
for fgetc (), 536
files, 536
fscanf () function, 535
if–else–if ladder statement, 121–129
if–else statement, 116–120
for loop statement, 160
nested if-else statement, 120–121
of read mode, 537
strings,33, 35
switch case statement, 132–133
while loop, 194–212

sys directory, 14
system-programming language, 7, 28

T

testing programs, 21
tokens, 35
tower of Hanoi, 432–435
transfer of control, 113
translators, 8–9
traversing, 238
trinum () function, 427
tri_num () function, 423
Turbo-c editor, 16
TURBO-C predefined macros, 476–477
turbo-C version 2 support programs, 7
type conversion, 47–49
typedef statement, 507, 509
type modifiers, 46–47

U

uabs () function, 398
unary minus, 61

unary operators, 61
unary plus, 61
understanding of programs, 106
union, 49–493

of structures, 524
UNIX operating system, 6–7
unlink () function, 535
unsigned char, 40
unsigned integer, 39
user’s memory, 4

V

variable name, 35
variables, 447

automatic, 448–449
definition, 35
environment, 579–580
external/global, 447, 451–452
internal, 447
variables, 10, 18
lifetime of, 447–448
program to declare and initialize, 39
rules for defining, 39–40
scope, 447
static, 447
storage class of,447
visibility, 448

video display unit, 591
volatile variables, 50–51

W

while loop, 194–207
adding of consecutive numbers, 195–196
calculating factorial of a given number,

196–197
converting binary number to equivalent

decimal number, 198–199
converting decimal number to binary number,

197–198
converting decimal number to user-defined

number system, 197–198
counting of positive and negative numbers,

200–201
displaying ASCII numbers and their

equivalent character, numbers and symbols,
219

displaying ‘sum’ of all digits, 200

Z06_KAMT3553_02_SE_Ind.indd 671 5/18/2015 9:48:34 AM

https://hkgbooks.blogspot.com

672 Index

execution of, 194
flow chart, 194
functions and, 410–411
to print an entered number in reversed order,

202–203
program to convert entered character into its

opposite case, 230–231
program to enter a statement using a

combination of capital, small, symbols and
numerical, 203–204

program to print a string, 194–195

program to sort numbers 0 to 9, 204–205
program to use three, 206–207
reading positive integer number ‘n,’ 199
sorting odd and even numbers, 201–202
syntax, 194

while statement, 149
width specifier, 88
wrapping around, 49–50

program demonstrating, 50
write () function, 572

Z06_KAMT3553_02_SE_Ind.indd 672 5/18/2015 9:48:34 AM

https://hkgbooks.blogspot.com

https://hkgbooks.blogspot.com

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgements
	About the Author
	1 Basics and Introduction to C
	1.1 Why to Use Computers?
	1.2 Basics of a Computer
	1.3 Latest Computers
	1.4 Introduction to C
	1.5 About ANSI C Standard
	1.6 Machine, Assembly and High-Level Language
	1.6.1 Assembly Language
	1.6.2 High-Level Language
	1.7 Assembler, Compiler and Interpreter
	1.8 Structure of a C Program
	1.9 Programming Rules
	1.10 Executing the C Program
	1.11 Standard Directories
	1.12 The First C Program
	1.13 Advantages of C
	1.14 Header Files
	1.15 Algorithm
	1.15.1 Program Design
	1.16 Classification of Algorithms
	1.17 Flowcharts
	1.18 Pseudocode
	Summary
	Exercises

	2 The C Declarations
	2.1 Introduction
	2.2 The C Character Set
	2.3 Delimiters
	2.4 Types of Tokens
	2.5 The C Keywords
	2.6 Identifiers
	2.7 Constants
	2.7.1 Numerical Constants
	2.7.2 Character Constant

	2.8 Variables
	2.9 Rules for Defining Variables
	2.10 Data Types
	2.11 C Data Types
	2.12 Integer and Float Number Representations
	2.12.1 Integer Representation
	2.12.2 Floating-Point Representation

	2.13 Declaring Variables
	2.14 Initializing Variables
	2.15 Dynamic Initialization
	2.16 Type Modifiers
	2.17 Type Conversion
	2.18 Wrapping Around
	2.19 Constant and Volatile Variables
	2.19.1 Constant Variable
	2.19.2 Volatile Variable
	Summary
	Exercises

	3 Operators and Expressions
	3.1 Introduction
	3.2 Operator Precedence
	3.3 Associativity
	3.4 Comma and Conditional Operator
	3.5 Arithmetic Operators
	3.6 Relational Operators
	3.7 Assignment Operators and Expressions
	3.8 Logical Operators
	3.9 Bitwise Operators
	Summary
	Exercises

	4 Input and Output in C
	4.1 Introduction
	4.2 Formatted Functions
	4.3 Flags, Widths and Precision with Format String
	4.4 Unformatted Functions
	4.5 Commonly Used Library Functions
	4.6 Strong Points for Understandability
	Summary
	Exercises

	5 Decision Statements
	5.1 Introduction
	5.2 The if Statement
	5.3 The if–else Statement
	5.4 Nested if–else Statements
	5.5 The if-else-if Ladder Statement
	5.6 The break Statement
	5.7 The continue Statement
	5.8 The goto Statement
	5.9 The switch Statement
	5.10 Nested switch case
	5.11 The switch case and nested ifs
	Summary
	Exercises

	6 Loop Control
	6.1 Introduction
	6.1.1 What is a Loop?
	6.2 The for Loop
	6.3 Nested for Loops
	6.4 The while Loop
	6.5 The do-while Loop
	6.6 The while Loop within the do-while Loop
	6.7 Bohm and Jacopini’s Theory
	Summary
	Exercises

	7 Data Structure: Array
	7.1 Introduction
	7.2 Array Declaration
	7.3 Array Initialization
	7.4 Array Terminology
	7.5 Characteristics of an Array
	7.6 One-Dimensional Array
	7.7 One-Dimensional Array and Operations
	7.8 Operations with Arrays
	7.9 Predefined Streams
	7.10 Two-Dimensional Array and Operations
	7.10.1 Insert Operation with Two-Dimensional Array
	7.10.2 Delete Operation with Two-Dimensional Array
	7.11 Three- or Multi-Dimensional Arrays
	7.12 The sscanf() and sprintf() Functions
	7.13 Drawbacks of Linear Arrays
	Summary
	Exercises

	8 Strings and Standard Functions
	8.1 Introduction
	8.2 Declaration and Initialization of String
	8.3 Display of Strings with Different Formats
	8.4 String Standard Functions
	8.5 String Conversion Functions
	8.6 Memory Functions
	8.7 Applications of Strings
	Summary
	Exercises

	9 Pointers
	9.1 Introduction
	9.2 Features of Pointers
	9.3 Pointers and Address
	9.4 Pointer Declaration
	9.5 The Void Pointers
	9.6 Wild Pointers
	9.7 Constant Pointers
	9.8 Arithmetic Operations with Pointers
	9.9 Pointers and Arrays
	9.10 Pointers and Two-Dimensional Arrays
	9.11 Pointers and Multi-Dimensional Arrays
	9.12 Array of Pointers
	9.13 Pointers to Pointers
	9.14 Pointers and Strings
	Summary
	Exercises

	10 Functions
	10.1 Introduction
	10.2 Basics of a Function
	10.2.1 Why Use Functions?
	10.2.2 How a Function Works?
	10.3 Function Definition
	10.4 The return Statement
	10.5 Types of Functions
	10.6 Call by Value and Reference
	10.7 Function Returning More Values
	10.8 Function as an Argument
	10.9 Function with Operators
	10.10 Function and Decision Statements
	10.11 Function and Loop Statements
	10.12 Functions with Arrays and Pointers
	10.13 Passing Array to a Function
	10.14 Nested Functions
	10.15 Recursion
	10.16 Types of Recursion
	10.17 Rules for Recursive Function
	10.18 Direct Recursion
	10.19 Indirect Recursion
	10.20 Recursion Versus Iterations
	10.21 The Towers of Hanoi
	10.22 Advantages and Disadvantages of Recursion
	10.23 Efficiency of Recursion
	10.24 Library Functions
	Summary
	Exercises

	11 Storage Classes
	11.1 Introduction
	11.1.1 Lifetime of a Variable
	11.1.2 Visibility of a Variable
	11.2 Automatic Variables
	11.3 External Variables
	11.4 Static Variables
	11.5 Static External Variables
	11.6 Register Variables
	Summary
	Exercises

	12 Preprocessor Directives
	12.1 Introduction
	12.2 The #define Directive
	12.3 Undefining a Macro
	12.4 Token Pasting and Stringizing Operators
	12.5 The #include Directive
	12.6 Conditional Compilation
	12.7 The #ifndef Directive
	12.8 The #error Directive
	12.9 The #line Directive
	12.10 The #pragma inline Directive
	12.11 The #pragma saveregs
	12.12 The #pragma Directive
	12.13 The Predefined Macros in ANSI and Turbo-C
	12.14 Standard I/O Predefined Streams in stdio.h
	12.15 The Predefined Marcos in ctype.h
	12.16 Assertions
	Summary
	Exercises

	13 Structure and Union
	13.1 Introduction
	13.2 Features of Structures
	13.3 Declaration and Initialization of Structures
	13.4 Structure within Structure
	13.5 Array of Structures
	13.6 Pointer to Structure
	13.7 Structure and Functions
	13.8 typedef
	13.9 Bit Fields
	13.10 Enumerated Data Type
	13.11 Union
	13.12 Calling BIOS and DOS Services
	13.13 Union of Structures
	Summary
	Exercises

	14 Files
	14.1 Introduction of a File
	14.2 Definition of File
	14.3 Streams and File Types
	14.3.1 File Types
	14.4 Steps for File Operations
	14.4.1 Opening of File
	14.4.2 Reading a File
	14.4.3 Closing a File
	14.4.4 Text Modes
	14.4.5 Binary Modes
	14.5 File I/O
	14.6 Structures Read and Write
	14.7 Other File Function
	14.8 Searching Errors in Reading/Writing Files
	14.9 Low-Level Disk I/O
	14.10 Command Line Arguments
	14.11 Application of Command Line Arguments
	14.12 Environment Variables
	14.13 I/O Redirection
	Summary
	Exercises

	15 Graphics
	15.1 Introduction
	15.2 Initialization of Graphics
	15.3 Few Graphics Functions
	15.4 Programs Using Library Functions
	15.4.1 Program on Moving Moon
	15.5 Working with Text
	15.5.1 Stylish Lines
	15.6 Filling Patterns with Different Colours and Styles
	15.7 Mouse Programming
	15.8 Drawing Non-common Figures
	Summary
	Exercises

	16 Dynamic Memory Allocation and Linked List
	16.1 Dynamic Memory Allocation
	16.2 Memory Models
	16.3 Memory Allocation Functions
	16.4 List
	16.5 Traversal of a List
	16.6 Searching and Retrieving an Element
	16.7 Predecessor and Successor
	16.8 Insertion
	16.9 Linked Lists
	16.10 Linked List with and without Header
	16.10.1 Linked List with Header
	Summary
	Exercises

	Appendix A
	American Standard Code for Information Interchange

	Appendix B
	Priority of Operators and Their Clubbing

	Appendix C
	Header Files and Standard Library Functions

	Appendix D
	ROM-BIOS Services

	Appendix E
	Scan Codes of Keyboard Keys

	Index
	Back Cover

