Uﬂ

Bloched

Simulation of the physical execution of

2 gubit entanglement gates



The Simple Harmonic Oscillator
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The Simple Harmonic Oscillator

V(x)
| 2 1 2
FE = ;/{;17— + ;I’Ill'“
1. L
U(z) = ska®  KE=smo®



The Simple Harmonic Oscillator

V(x)
1 2 1 2
E = 51\;1. - Enu
£ Ulz) = %k;z'z KE = érnﬁ2



The OUANTUM Simple Harmonic Oscillator
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Discrete possible total energies
that are allowed under quantum
mechanics.
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The OUANTUM Simple Harmonic Oscillator

1 Via the Plank relation, these
E,=hv|n+ = . .
2 energies have a corresponding
frequency.
e 2
E=hf  2m In order to get a quantum state
B, hwn+l) w . from o.ne energy state to another,
fo= 5 =3 =5 (ntg it requires applying energy at the

frequency difference between
the two states.



The OUANTUM Simple Harmonic Oscillator
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The OUANTUM Simple Harmonic Oscillator

All this to say:

1. There is a set energy difference between energy levels of
this quantum oscillator.

2. That energy difference is associated with a transition
frequency via the plank equation.

3. In order to transition from one energy level to another, we
must apply energy at this transition frequency



The OUANTUM Simple Harmonic Oscillator
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The OUANTUM Simple Harmonic Oscillator
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Building a Transmon (Superconducting Oubit)

For SHOs, energy levels represented different
total potential energies in the system, which
affected the amplitude and phase of the
position function.

Ch"")‘ on (,a{)‘u\w
Here, it is the similar, with amplitude and

phase of the oscillations according to discrete
possible energies the system can take.

These “energy levels” correspond to
information states of the qubit. (10>, [1>, etc.)
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Building a Transmon (Superconducting Oubit)

So we have two energy states that we
can transition to by applying energy!

Applying radiation at the drive
frequency 2pi * f will drive our energy

transitions.

But, there is a problem.
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Building a Transmon (Superconducting Oubit)

The energy spacing between any two rungs

of the ladder (aside from the Oth-1st), is the 2 4 Qcos(u)a‘t* ¢)

same. So not only do we drive our system

from 10> to 1>, but also from 1> to 12>,
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Building a Transmon (Superconducting Oubit)

2 ‘ Qco%(dgk* ¢)

Qubits need to have nonlinear energy

spacing so that our drive frequency can be

unique to the 10> to 11> transition. LC i’l
Circuits won’t work for this. Instead, we

replace our inductor with a similar element L — ¢

called the Josephson Junction.
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Building a Transmon (Superconducting Oubit)

Josephson Junction: Nonlinear Inductor via quantum tunnelling

I = I,.sin (27r<I>/<I>O) (nonlinear) I = ®/L (linear)
SQUID module L
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Building a Transmon (Superconducting QOubit)

Harmonic Oscillator Energies Anharmonic Oscillator Energies
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Building a Transmon (Superconducting Qubit)

The “anharmonicity” just means that
the energy gaps are no longer linear.
This means we can choose a unique

/0> and I1> state to do quantum 4.‘.0‘{3:
computation with. 'S‘_g‘&,r“
—

This is a transmon!

(The physical circuit is the system
and the qubit is encoded in the
quantum state of the collective
electromagnetic mode)



Building a Transmon (Superconducting Qubit)

There is one last step. It will be useful to us
later to be able to change this energy
transition to whatever we want.

Instead of one josephson, we use two (that
act as one) and apply a magnetic flux*
through it’s area to change its inductive
effects and affect the drive frequency.

This is a tunable transmon!

*measure of how much magnetic field passes
through that surface



Building a Transmon (Superconducting Qubit)

One final step to minimize

noise, thermal energy, and
make Josephson Junctions
work.

This makes our qubit (the
circuit) superconductive!




So where is the bloch sphere?

We have:
Built a tunable transmon qubit (our circuit!) where we can

define a 10> and 1> state.
A method of transitioning between these states by applying

microwave radiation at the drive frequency

But where do we get quantum superpositions?



So where is the bloch sphere?

Saying: “We can transition between these states by applying
microwave radiation at the drive frequency” is an
oversimplification.

Applying radiation with a certain amplitude, frequency, and
phase yields a complex energy “hamiltonian” that represents
how the state will evolve. With some approximation steps
ignored, we yield:

Heo = ? (cosqbam + sin¢ay)



So where is the bloch sphere?

Hsic = ? (cosqﬁam + sinq’)ay)

Q: Rabi Frequency—a parameter we control via the amplitude of
applied radiation that sets the speed of rotation of a quantum
state around a chosen axis in the bloch sphere.

¢: Phase, parameter we control via the phase of applied
radiation. When its sine and cosine are multiplied to the pauli X
and pauli Y rotation matrices, creates a rotation around a desired
axis in the XY plane.



So where is the bloch sphere?

Hsic = ? (cosqﬁam + sinq’)ay)

In class, we learned that we can apply any desired 2x2 Unitary
transformation around the bloch sphere. This is directly related to this
hamiltonian as well as time. The hamiltonian sets the rotation axis and
speed, and after applying it for a certain amount of time, we reach the

desired U.

U(t) _ e—z’Ht/h




Single-Qubit Gates

e Thus far, we have shown that we can create an arbitrary
desired single-qubit gate by altering parameters of our input
radiation: phase and amplitude (corresponding to the Rabi
Frequency).

e The frequency of input radiation is not a parameter that we
should vary—in order to apply our gate, we need this to be very
close to the frequency required for our desired energy state
transition.

U(t) _ e—th/h




Two Qubit Gates?

But what about 2 Qubit Gates?

e Some 2 Qubit Gates (4x4, Unitary) can be broken down into a tensor product of two
single qubit gates (2x2, Unitary).

e Physically, we can apply single qubit gates individually to any set of 2 qubits and achieve
any desired rotation on each just by modifying the input radiation to the respective drive
capacitor. Unlike with single qubit gates, we cannot necessarily achieve any 2 Qubit gate
with this set of physical operations (adding microwave pulses to both qubits).

e A gate that cannot be broken down into two single qubit gates in this way is known as
an entangling gate.

Non-entangling Gate: Entangling Gate:

1 1 1 1
1 -1 1 <1

1
V2|1 1 -1 -1
1 -1 -1 1

H®H = CNOT =

o0 O -
O O = O
-0 O O
o -~ O O




Two OQubit Gates?

e To allow the qubits to interact with Couphrg Cogai™
one another, we add a coupler to Quort 1 \——ﬂ_—a.)b\-\' ")
the system. In our case, we use a .
capacitor as our coupler. N

e When two transmons are coupled,
an “interaction Hamiltonian” is
created that affects the evolution of
both quantum states.

e Here, g represents the effective

coupler strength, which is H.. — @
characteristic of the physical system. e 2 (Jx ®oz + 0y ® Jy)
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Two OQubit Gates?

When we “connect” 2 qubits
through an coupler, they
naturally begin interacting with
one another over time.

In other words, entanglement is
the natural interaction between
two coupled transmon qubits.

The “natural interaction’:

U(t) — e_iH'mtt/h
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Two OQubit Gates?

So, it turns out we can create an
entanglement gate by simply
coupling the circuits and waiting
for entanglement to occur.

But if this entanglement always
occurs, how can we control it?
We need to modify something
about the system to “switch” the
entanglement on/off.
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Detuning and Resondnce

The effective coupler strength (g) is highly sensitive to the detuning (A
— difference in frequency) between the 2 circuits.

When w.=w,, g_. reaches its maximal value and the 2 circuits become
resonant with one another.

By tuning the circuits to very different frequencies, we can make g_..
very small so that the circuits are essentially “isolated”.
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Detuning and Resondnce

By applying a mag!wetic flux (from Cooptny copaciror
some external device) to the SQUID

in each transmon circuit, we can Q\)b‘ﬂ' 1 hﬁ"j_gﬂb“' o

change the intrinsic frequency of Wy, = Woo L
either qubit. == }
So by applying a magnetic flux to 2
one of the qubits so they become | orive 'Tp',m
T Capecitor T  (epacidor

resonant, we can effectively “switch
on/off” the natural entanglement

interaction between qubits. &
\/SEJO cos (g—o) Ec¢ E.




Creating the Entanglement Gate

To create a standard entanglement gate, we define our time interval to be a set
amount of time, given by t = 11/(29).
Recall our equations for a 2-qubit through the natural entanglement interaction:

h
U(t) — e_":Hintt/h Hint — Eg (Um o, + Oy ®0'y)

Now, we plug in the Hamiltonian and t = 11/(29) to find our entanglement gate:

U( 71'): o—i%(02®0+0,80y) _ = iSWAP

2g

0
0
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0

- O O

0
1
0
0

OO O =

This is known as the iISWAP gate!




Decomposing any gate?

e Now that we have access to any combination of single-qubit gates and an
entanglement gate, it turns out that we have a fundamental gate set for any

2-qubit quantum gate!
e We can decompose any such gate as the following, where A's and B’s are

single-qubit gates:

U= (A1 ®B)) iSWAP - (4, ® By) - iSWAP - (4; ® B;) - iSWAP - (4, ® By)

e To make matters slightly more straightforward, it also turns out that we can
express any single-qubit gate as a combination of rotations about Y and Z axes
(times a global phase), so we have a fundamental gate set out of {iISWAP, Ry(e),

R (®))
U = eiaRz (,B)Ry(’Y)Rz (5) (Only for single—qubit gates)




Demo Preparation

e In orderto test our demo, let’s try creating one of the fundamental entangled
states — the Bell |¢p+> state.

e First we apply a Hadamard gate to qubit O (which can be broken down into R
and R)), and then a CNOT gate, which can be broken down into 2 iISWAP’s and
a selectlon of Ry and R_:

1 1 0 0 1 0 00

1 {1 -1 0 O 01 00
Hel="51o o 1 1 000 1
0 0 1 -1 0 01O

e Applying to the |00> state, we expect the following (which can be verified by
matrix multiplication):

|#") = (CNOT - (H ® I))|00) = (|OO) + |11))

%\




https://boxofgubits.com/ Demo!
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