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The QUANTUM Simple Harmonic Oscillator

Discrete possible total energies 
that are allowed under quantum 
mechanics.



The QUANTUM Simple Harmonic Oscillator

Via the Plank relation, these 
energies have a corresponding 
frequency. 

In order to get a quantum state 
from one energy state to another, 
it requires applying energy at the 
frequency difference between 
the two states. 
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The QUANTUM Simple Harmonic Oscillator

All this to say: 

1. There is a set energy difference between energy levels of 
this quantum oscillator. 

2. That energy difference is associated with a transition 
frequency via the plank equation. 

3. In order to transition from one energy level to another, we 
must apply energy at this transition frequency



The QUANTUM Simple Harmonic Oscillator

1.

=



The QUANTUM Simple Harmonic Oscillator



Building a Transmon (Superconducting Qubit)

For SHOs, energy levels represented different 
total potential energies in the system, which 
affected the amplitude and phase of the 
position function. 

Here, it is the similar, with amplitude and 
phase of the oscillations according to discrete 
possible energies the system can take.

These “energy levels” correspond to 
information states of the qubit. ( |0>, |1>, etc.)



Building a Transmon (Superconducting Qubit)

So we have two energy states that we 
can transition to by applying energy!

Applying radiation at the drive 
frequency 2pi * f  will drive our energy 
transitions. 

But, there is a problem.



Building a Transmon (Superconducting Qubit)

The energy spacing between any two rungs 
of the ladder (aside from the 0th-1st), is the 
same. So not only do we drive our system 
from |0> to |1>, but also from |1> to |2>.



Building a Transmon (Superconducting Qubit)

Qubits need to have nonlinear energy 
spacing so that our drive frequency can be 
unique to the |0> to |1> transition. LC 
Circuits won’t work for this. Instead, we 
replace our inductor with a similar element 
called the Josephson Junction. 



Building a Transmon (Superconducting Qubit)

Josephson Junction: Nonlinear Inductor via quantum tunnelling

SQUID module 
2 Josephson 
junctions
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Building a Transmon (Superconducting Qubit)

The “anharmonicity” just means that 
the energy gaps are no longer linear. 
This means we can choose a unique 
|0> and |1> state to do quantum 
computation with.

This is a transmon!
(The physical circuit is the system 
and the qubit is encoded in the 
quantum state of the collective 
electromagnetic mode)



Building a Transmon (Superconducting Qubit)
There is one last step. It will be useful to us 
later to be able to change this energy 
transition to whatever we want. 

Instead of one josephson, we use two (that 
act as one) and apply a magnetic flux* 
through it’s area to change its inductive 
effects and affect the drive frequency. 

This is a tunable transmon!

*measure of how much magnetic field passes 
through that surface



Building a Transmon (Superconducting Qubit)

One final step to minimize 
noise, thermal energy, and 
make Josephson Junctions 
work.

This makes our qubit (the 
circuit) superconductive!



So where is the bloch sphere? 

We have:
- Built a tunable transmon qubit (our circuit!) where we can 

define a |0> and |1> state. 
- A method of transitioning between these states by applying 

microwave radiation at the drive frequency 

But where do we get quantum superpositions? 



So where is the bloch sphere? 

Saying: “We can transition between these states by applying 
microwave radiation at the drive frequency” is an 
oversimplification. 

Applying radiation with a certain amplitude, frequency, and 
phase yields a complex energy “hamiltonian” that represents 
how the state will evolve. With some approximation steps 
ignored, we yield: 



So where is the bloch sphere? 

𝛀: Rabi Frequency—a parameter we control via the amplitude of 
applied radiation that sets the speed of rotation of a quantum 
state around a chosen axis in the bloch sphere. 

𝜙: Phase, parameter we control via the phase of applied 
radiation. When its sine and cosine are multiplied to the pauli X 
and pauli Y rotation matrices, creates a rotation around a desired 
axis in the XY plane. 



So where is the bloch sphere? 

In class, we learned that we can apply any desired 2x2 Unitary 
transformation around the bloch sphere. This is directly related to this 
hamiltonian as well as time. The hamiltonian sets the rotation axis and 
speed, and after applying it for a certain amount of time, we reach the 

desired U. 



Single-Qubit Gates

● Thus far, we have shown that we can create an arbitrary 
desired single-qubit gate by altering parameters of our input 
radiation: phase and amplitude (corresponding to the Rabi 
Frequency).

● The frequency of input radiation is not a parameter that we 
should vary—in order to apply our gate, we need this to be very 
close to the frequency required for our desired energy state 
transition.



Two Qubit Gates?
But what about 2 Qubit Gates?
● Some 2 Qubit Gates (4x4, Unitary) can be broken down into a tensor product of two 

single qubit gates (2x2, Unitary).
● Physically, we can apply single qubit gates individually to any set of 2 qubits and achieve 

any desired rotation on each just by modifying the input radiation to the respective drive 
capacitor. Unlike with single qubit gates, we cannot necessarily achieve any 2 Qubit gate 
with this set of physical operations (adding microwave pulses to both qubits).

● A gate that cannot be broken down into two single qubit gates in this way is known as 
an entangling gate. 

Non-entangling Gate: Entangling Gate:



Two Qubit Gates?

● To allow the qubits to interact with 
one another, we add a coupler to 
the system. In our case, we use a 
capacitor as our coupler.

● When two transmons are coupled, 
an “interaction Hamiltonian” is 
created that affects the evolution of 
both quantum states.

● Here, g represents the effective 
coupler strength, which is 
characteristic of the physical system.



Two Qubit Gates?

● When we “connect” 2 qubits 
through an coupler, they 
naturally begin interacting with 
one another over time.

● In other words, entanglement is 
the natural interaction between 
two coupled transmon qubits.

The “natural interaction”:



Two Qubit Gates?

● So, it turns out we can create an 
entanglement gate by simply 
coupling the circuits and waiting 
for entanglement to occur.

● But if this entanglement always 
occurs, how can we control it?

● We need to modify something 
about the system to “switch” the 
entanglement on/off.



Detuning and Resonance

● The effective coupler strength (g) is highly sensitive to the detuning (△ 
– difference in frequency) between the 2 circuits.

● When ω1≈ω2, geff reaches its maximal value and the 2 circuits become 
resonant with one another.

● By tuning the circuits to very different frequencies, we can make geff 
very small so that the circuits are essentially “isolated”.



Detuning and Resonance

● By applying a magnetic flux (from 
some external device) to the SQUID 
in each transmon circuit, we can 
change the intrinsic frequency of 
either qubit.

● So by applying a magnetic flux to 
one of the qubits so they become 
resonant, we can effectively “switch 
on/off” the natural entanglement 
interaction between qubits.



Creating the Entanglement Gate

● To create a standard entanglement gate, we define our time interval to be a set 
amount of time, given by t = π/(2g). 

● Recall our equations for a 2-qubit through the natural entanglement interaction:

● Now, we plug in the Hamiltonian and t = π/(2g) to find our entanglement gate:

● This is known as the iSWAP gate!



(Only for single–qubit gates)

Decomposing any gate?

● Now that we have access to any combination of single-qubit gates and an 
entanglement gate, it turns out that we have a fundamental gate set for any 
2-qubit quantum gate!

● We can decompose any such gate as the following, where A’s and B’s are 
single-qubit gates:

● To make matters slightly more straightforward, it also turns out that we can 
express any single-qubit gate as a combination of rotations about Y and Z axes 
(times a global phase), so we have a fundamental gate set out of {iSWAP, Ry(θ), 
Rz(ϕ)}:



Demo Preparation
● In order to test our demo, let’s try creating one of the fundamental entangled 

states – the Bell |ɸ+> state.
● First we apply a Hadamard gate to qubit 0 (which can be broken down into Ry 

and Rz), and then a CNOT gate, which can be broken down into 2 iSWAP’s and 
a selection of Ry and Rz:

● Applying to the |00> state, we expect the following (which can be verified by 
matrix multiplication):



Demo!https://boxofqubits.com/
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