
Page 1 of 7

Intro to Unity for Modders

Wogrim's Brief Guide to Unity for Modders, with KK Modding Tools

What is this Guide About?

This guide is to cover basics of installing and using Unity if you've never touched it before (just the stuff that
matters for making the most common types of mods). It will also talk about how to install and use KK Modding
Tools. You should probably have a basic understanding of a Zipmod before you read this guide, but you could
probably make it through the install and interface sections with no knowledge.

Installing Unity and KK Modding Tools

So if you go out and try to download Unity, you'll probably get something called Unity Hub, which is a launcher
for the Unity Editors. Unity is the game engine, you make a game (or in our case mods) with a Unity Editor. But
there's a bunch of different versions, and you may have projects (games or other things you're creating) in
different versions, so they created a launcher called Unity Hub to manage it all. So find that and install it, it's
pretty small unless it comes with a Unity Editor, I don't remember. IIRC you have to make an account and log in,
and you use the free version unless you make over $100k per year from it.

So you won't have any projects yet, and you won't have any Unity Editors installed. Go to the Installs tab and
click ADD and a window will pop up asking which version you want to install. For making ABs for KK mods (and
for using the KK Modding Tools project) you must get version 5.6.2.f1 which won't be in the list. So hit the link
for the download archive and find it on that page (it just says 5.6.2) to get it.

Page 2 of 7

So at this point you should have it installed, and you could create a project and make mods with it, but KK
Modding Tools makes most types of mods significantly easier/faster so download the zip for it from the github:
https://github.com/IllusionMods/KoikatsuModdingTools

Extract the zip somewhere, and on the Projects tab in Unity Hub, click ADD and navigate to that extracted KK
Modding Tools folder and Select Folder on it. Then the project should show up in Unity Hub and you can open
it.

Page 3 of 7

Unity Interface Stuff

So when you've opened KK Modding Tools it should look something like this but less stuff. There's a bunch of
docked windows, and if you need another one, find it under Window on the menu at the top. So, for an
explanation of the important windows:

Project contains the folder structure for your project. Well, specifically the Assets folder which is where you add
things when making a game (or mods). Some things you can create with a right-click in the Project window,
other things you import with a drag-and-drop from Explorer. The project contains other stuff outside the Assets
folder but you shouldn't mess with it. KK Modding Tools comes with a few folders under Assets, but for making
mods you basically only make changes to the Mods folder.

Scene shows the currently loaded scene (usually a game level) in an editing-friendly way. The first time you
open KK Modding Tools there will probably be no scene loaded, and you should find "Item Preview Scene" in the
Assets folder. By default it will be pretty empty, but you can add stuff to it if you want. Pressing F will focus the
camera on the currently selected object, and holding Alt + left mouse button drag will rotate the camera around
it.

Hierarchy shows the structure of things in the scene. IIRC the Item Preview Scene only has a camera and a light,
with the light being a "child" of the camera (the camera is the "parent" of the light). This means whenever you
move the camera, the light moves with it. Everything listed in the Hierarchy window is a Game Object whether
it's something physical or not, and every Game Object has a Transform, which is the combination of the item's
location, rotation, and scale. The Transform is irrelevant to some Game Objects, but every Game Object has
one. The Transform is a Component of the Game Object, but you can add other Components (such as MBs) to
make Game Objects do things.

Page 4 of 7

Game gives the gameplay camera view of the current scene, which is great for playtesting a game, but mostly
useless for making mods. I’m only mentioning it because I think it’s one of the default windows.

Inspector is where you edit the Components of the currently selected Game Object or most things in the Assets
folder, such as Import Settings for textures and meshes.

AssetBundles is a special window created by KK Modding Tools for building ABs and mods. Fill in your game's
install location so it can copy the mod to your game's mods folder when built.

Console will show error messages, and also shows messages when KK Modding Tools creates (or tries to create)
ABs and mods. Check it if things aren't working.

Page 5 of 7

Texture Item Zipmod Process with KK Modding Tools

Note: This is just the process in KK Modding Tools for someone who already knows what this type of mod
entails.

In the Project window, duplicate (Ctrl+D) the "Body Paint Example" folder in Assets/Examples (because it is a
texture item). Move the new folder into Assets/Mods and rename it to whatever you're going to call your mod.
A single click on the manifest in this folder will give you a special editor in the Inspector window which makes
filling out the manifest a little easier.

Delete existing textures in the Texture2D folder and the Thumbnail folder, and then import your own textures.
Adjust import settings if needed. For the first texture, in the bottom of the Inspector window assign a New AB
called chara/author/modname.unity3d (so if I made a nose mod, it might be chara/wogrim/noses.unity3d).
Assign the rest of your textures to this AB (or put thumbnails in a different AB, typically under
chara/thumb/author/modname.unity3d). These AB names will automatically convert to lowercase.

The list file must remain in List/Maker for KK Modding Tools to find it and place in the correct location of the
zipmod, but rename it to whatever item type your mod is. Then right click -> Show in Explorer and open it from
there instead of from within Unity, or else Unity might try to open it with some other program. Change the list
file to the proper format for your item type and fill it out, with the AB names that you assigned your textures to
and the name in Unity those textures have (no file extension).

Go to the AssetBundles window, and fill in your game install location if you haven't already. Then hit the Build
Asset Bundles button (which will take a minute first time because of ABs for the Examples) and you should get a
message in the Console that ABs are built. Then with the folder for your mod selected in the Project window,
click the Build Zipmod (Current Folder) button in the AssetBundles window and it should tell you the mod was
built. Assuming you have the Copy Mods checkbox marked, you should now be able to start up your game and
see the item.

You don't have a mod folder quite the same as not using KK Modding Tools so troubleshooting may seem
harder, but if it built the zipmod you can pull it out of your game's mods folder and extract it to see what
happened (such as it won't have a list file if you renamed its parent folder, or the AB will be messed up / missing
if you didn't assign stuff properly).

Page 6 of 7

3D Item Zipmod Process with KK Modding Tools

Note: This is just the process in KK Modding Tools for someone who already knows what this type of mod
entails. I'm assuming you've read the previous section so I won't re-explain how to do things that are the same.

For 3D items (Accessory, Hair, Clothes, Studio Item) duplicate appropriate example folder and move to Mods
(and rename). Delete everything but folders, manifest, and list file(s). Fill out the manifest.

Import your item's FBX. You may need to change Import Settings such as File Scale. If a material comes with the
import, textures may have come with it, otherwise you need to manually import them separately. If there was
no material, create a new one in your mod's Material folder (Project window). In the Inspector window, change
the material to the appropriate (placeholder) shader for your item and fill in the textures and other settings.

Drag the imported mesh from the Project window into the Hierarchy window. If your item has size or rotation
problems, you may be able to fix it later or you may not. It's also possible that you think you have a problem but
don't. So keep reading, but you may have to go back and redo the process with different import (Unity) or
export (modeling software) settings.

Any bones the item had are child Game Objects, and wherever there was a mesh there is now a Game Object
with a Mesh Renderer Component. KK Modding Tools automatically puts items (with all children) in the Chara
layer. If you're doing a Studio Item, you may want to change it (with all children) to the Map layer (upper right
in Inspector window).

Drag your material from the Project window onto the Game Object with the Mesh Renderer in the Hierarchy
window to apply it. One of the great features of KK Modding Tools is there is a script that automatically swaps
the placeholder shader to the real shader ("preview" shader) so you can get a good idea how your item will look
in-game. But there are some things to note.

 there are technical limitations that require us to use the placeholder shader
 if you save scene when something has the preview shader on it, it will revert to the placeholder shader

to not break your item, there's a couple ways to get it to switch back to preview shader like deleting the
item from the scene and re-drag it in there

 do not do File -> Save Project with an item in the scene, it breaks the shader on the item's material and
you have to manually change it back

You will later be dragging a Game Object from the Hierarchy window into your mod's Prefabs folder (in the
Project window); this creates a prefab, which is basically a blueprint for Unity to make copies of your item when
the game is playing. This will be your item in the AB. Depending on how your FBX was structured, you may
make the topmost Game Object into the prefab, or you may use one of its children. Whichever Game Object
you drag becomes the root of the prefab; I will refer to it as your item's root.

So select your item's root in the Hierarchy window, and in the Inspector window add Component; select the
right MB for your item type (KK Modding Tools has all these MBs, otherwise you'd have to edit the AB with SB3U
to copy the MB from a different item like the old days). On the MB change the size of the RendNormal array to
however many Mesh Renderers the item has, and then drag those Game Objects from the Hierarchy window
into the slots. Fill in any other MB settings. If your item needs other MBs like DynamicBone, add them here and
fill them out also. There's a cog wheel in the upper right of the Component for copying and pasting from other
items, such as copying DynamicBone settings from the Accessory Hair Example, but you will need to fill in the
Root slot with the proper bone from your item.

Page 7 of 7

Your item should look decently close to how it will look in-game because of the preview shaders (except clothes
because the shader depends on the game to generate MainTex), but you can also see it with the
Day/Sunset/Night Scene Filters. Select the camera in the Hierarchy window, and in the Amplify Color Effect
Component (in the Inspector window) you will see a slot for a Lut Texture. You can drag one in from the Project
window in Assets/Common/LUT. The filter will probably be applied in both the Game window and the Scene
window.

So hopefully the item looks about how you want it, otherwise go back and change things. You generally want
the Transform of the prefab's root to be "identity" (no change), so you should check to see if positions and
rotations are all 0, and scales are all 1. Your item may work anyways so you should still finish building the mod,
but if it has problems with position/rotation/scale there's a good chance it's this. Sometimes you can fix it in
Unity, sometimes you must go back to your modeling software and fix it before export. Rotation problems are
common because in Blender Z axis is up, but in Unity Y axis is up. But anyways, make the prefab (as described
earlier).

Now that you have the prefab (in the Project window), delete the whole thing from the Hierarchy window.
Assign the prefab to a new AB for this mod. The material and textures on it will automatically be put in the AB,
but if you're doing clothes you must manually assign the MainTex and ColorMask. Assign anything else your
mod needs to an AB.

Do the whole list file thing, referencing your prefab. For Studio Items, list files are a bit different and must be in
a folder under List/Studio; see the Studio Item Example. Then you're good to build ABs and build the zipmod.

If your item has problems that you think you can fix without redoing the whole process, drag the prefab back
into the Hierarchy window (this creates an “instance” of the prefab). Edit it, then hit the Apply button in the
upper right corner of the Inspector window (which saves changes to the prefab). Delete the prefab instance
from the Hierarchy window, and rebuild ABs and the zipmod.

