University of Central Florida

UCF Checkmate

Aga Calkowska, Brian Grana, Nic Washbourne

2025-11-05

1 Contest 1
2 Mathematics 1
3 Data Structures 2
4 Geometry 5
5 Graphs 10
6 Numerical 16
7 Number Theory 20
8 Combinatorial 22
9 Strings 22
10 Bullshit 24
Contest (1)
Makefile 1 lines
imnes
CXXFLAGS=-std=c++20 -g -02 -Wall -Wextra -Wshadow
hash.sh .
ines
Hashes a file, ignoring all whitespace and comments. Use for
verifying that code was correctly typed.
cpp -dD -P -fpreprocessed | tr -d ’[:space:]’| mdSsum |cut -c-6
terminal.txt 5 lines
ines
&> - redirect both standard out and standard error
> — overwrite
>> - append

Mathematics (2)
2.1 Equations

—b+ Vb? — dac

ar’ +bz+c=0=x2=

2a
The extremum is given by x = —b/2a.
_ed—bf
ar+by=e 7 i be
cx+dy=f _af—ec
Y= ad—be

In general, given an equation Az = b, the solution to a variable
x; is given by
v det A
T det A
where A} is A with the i’th column replaced by b.

2.2 Recurrences

If a, = c1an—1+ -+ ckan—x, and r1,...,r, are distinct roots of

2 — et — = ck, there are di, ..., dy s.t.
Qn =dir] + -+ dpry.

Non-distinct roots r become polynomial factors, e.g.
an = (d1n + dQ)Tn.

2.3 'Trigonometry

sin(v 4+ w) = sinv cos w + cos v sinw

cos(v + w) = cosv cosw — sin v sinw

tanv 4 tanw

tan(v + w) = ————

(v +w) 1 — tanvtanw

. . . vtw v —w

sinv + sinw = 2sin t Ccos 5
v v —w

cosv + cosw = 2 cos —; cos 5

(V4+W)tan(v —w)/2 = (V — W) tan(v + w)/2
where V, W are lengths of sides opposite angles v, w.

acosx + bsinz = rcos(x — @)

asinz + bcosz = rsin(x + ¢)

where r = Va? + b2, ¢ = atan2(b, a).

2.4 Derivatives/Integrals

1 d 1

- arccosT = ——————
V1 — 22 dx V1—z2

d
%tanmzl—i—tan%c %arctanm:m

In | cos ax| . sin ax — ax cos ax
tanax = ———— xzsinar = ——————
a a?

/6712 = gerf(x)

— arcsinx =
dx

ax eaz
/aze dxzy(amfl)
Integration by parts:

/ F@)g(@)ds = [F(z)g()]’ — / F(a)g (z)dz

2.5 Sums
a a+1 b_Cb+1 Ca
c +c R el
c—1
1+2+3+-..+n:@
TEIIPIPC NI B G b G
6
PByod gyt L D?
4
14+24+34+...+n4:n(n+1)(2n+1)(3n2+3n_1)
30
2.6 Series
T 1'2 1-3
2 3 4
1n(1+x):$_%+%_%+ ,(-l<z<1)
r 2 23 5t
Trzo14&_% 22 520 e
VIto =145 -5+ 5% "1 ,(-1<z <)
x3 x5 $7
sm:v:mngrﬁ ﬁ+"'7(700<37<oo)
$2 x4 mG
Cosmzl_g"_ﬂ_a"‘"'v(_00<$<oo)

2.7 Probability theory

Let X be a discrete random variable with probability px (z) of
assuming the value z. It will then have an expected value (mean)
p=E(X)=>"_ apx(x) and variance

o? =V(X)=E(X?) — (E(X))* =3, (v — E(X))*px () where o
is the standard deviation. If X is instead continuous it will have
a probability density function fx(x) and the sums above will
instead be integrals with px (z) replaced by fx (z).

Expectation is linear:
E(aX 4+ bY) = aE(X) + bE(Y)
For independent X and Y,
V(aX +bY) =a’V(X) 4+ 0’V (Y).

2.7.1 Discrete distributions
Binomial distribution

The number of successes in n independent yes/no experiments,
each which yields success with probability p is
Bin(n,p),n=1,2,...,0<p < 1.

(Z)pk(l -p)""

p=mnp, o° = np(1 —p)
Bin(n, p) is approximately Po(np) for small p.

p(k) =

UCF

First success distribution

The number of trials needed to get the first success in
independent yes/no experiments, each which yields success with
probability p is Fs(p), 0 < p < 1.

p(k) :p(l _p)k717 k= 1727’ i

Poisson distribution

The number of events occurring in a fixed period of time ¢ if these
events occur with a known average rate x and independently of
the time since the last event is Po(\), A = k.

Ak
p(k) :e_Aﬁ, =0,1,2,...
w=A\, o2 =\

2.7.2 Continuous distributions
Uniform distribution

If the probability density function is constant between a and b
and 0 elsewhere it is U(a,b), a < b.

1
_ = a<z<b

flz) = { 0 otherwise
a+b 02(177@)2
o2 7T T2

Exponential distribution

The time between events in a Poisson process is
Exp(M), A > 0.

x>0
<0

Normal distribution

Most real random values with mean p and variance o are well
described by N (i, 0?), o > 0.

1 _@=w?

L e 202
V2mo?

If X1~ N(p1,0%) and Xo ~ N (p2,03) then

f(z) =

aXi +bXo +c~ N + p2 + ¢,a’01 +b*03)

2.8 Geometry

2.8.1 Triangles
Side lengths: a, b, c

— a+b+c
Semiperimeter: p = ——

Area: A = \/p(p - a)l()p —b)(p—o)
. . abc
Circumradius: R = 1A

Inradius: r = —

p
Length of median (divides triangle into two equal-area triangles):
ma = $V202 + 2¢2 — a?

Length of bisector (divides angles in two):

2
a
a = 1—
s be (b+c>

. sin «
Law of sines: =
a

sinf siny 1

¢ 2R
Law of cosines: a® = b% + ¢ — 2bccos o
tan ath
b
Law of tangents: ZJ—rb = o z 3
tan 5

2.8.2 Quadrilaterals
With side lengths a, b, ¢, d, diagonals e, f, diagonals angle 0, area
A and magic flux F =b% +d? — a? — &

4A:2@f~sin9:Ftan9:\/m

For cyclic quadrilaterals the sum of opposite angles is 180°,
ef =ac+bd, and A= /(p—a)(p—b)(p—c)(p—d).
2.8.3 Spherical coordinates

r= /$2+y2+22

x = rsinfcos ¢
y = rsinfsin ¢ Gzacos(z/\/m)
z=1rcosf ¢ = atan2(y,)

Data Structures (3)

OrderStatisticTree.h
Description: A set (not multiset!) with support for finding the n’th ele-
ment, and finding the index of an element. To get a map, change null_type.

Time: O (log N) cd2981, 16 lines

#include <bits/extc++.h>
using namespace __gnu_pbds;

Makefile hash terminal OrderStatisticTree HashMap RMQ LazySegmentTree 2

template<class T>
using Tree = tree<T, null_type, less<T>,
tree_order_statistics_node_update>;

/*

Tree<int> t, t2; t.insert(8);

auto it = t.insert(10). first;

assert(it = t.lower_bound(9));

assert(t.order_of_key(10) = 1);
assert(t.order_of_key(11) = 2);
assert(xt.find_by_order(0) = 8);

t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
*/

rb_tree_tag,

HashMap.h

Description: Hash map with mostly the same API as unordered_-map, but
~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if

provided). d77092, 7 lines

#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
const uint64_t C = 11 (4el8 % acos(0)) | 71;
11 operator () (11 x) const { return _ builtin_bswap64 (x*C); }
Yi
__gnu_pbds::gp_hash_table<ll, int,chash> h({}, {}, {}, {}, {1<<16});

RMQ.h
Description: Range Minimum Queries on an array. Returns min(V[a], V]a
+ 1], ... V[b - 1]) in constant time.

Usage: RMQ rmqg(values) ;
rmqg.query (inclusive, exclusive);

Time: O (|V]log|V]+ Q) 510c32, 16 lines

template<class T>
struct RMQ {
vector<vector<T>> jmp;
RMQ (const vector<T>& V)
for (int pw =1, k = 1;
jmp.emplace_back (sz (V)
rep(3,0,sz (jmp[k]))
jmp[k] [J] = min(Jjmp(k - 1]1[3],

jop (1, V) {
pw * 2 <= sz (V); pw *= 2,
- pw x 2 + 1);

++k) {

jmplk - 11[3 + pwl);
}
}

T query (int a, int b) {
assert(a < b); // or return inf if a =1»1
int dep = 31 - __builtin_clz(b - a);

return min (jmp[dep] [a], Jmpldep][b - (1 << dep)]);
}

}i

LazySegmentTree.h
Description: S: base datatype. S op(S, S): merge S. S ego(): default S,
identity for op. F: lazy prop type. S mapping(F, s): apply F to S. F composi-
tion(F, F): merge F. F id(): default F, identity for mapping and composition.
Time: O (log N).

// WATCH FOR OUT OF BOUNDS
// template<class S, auto op, auto ego,

afO6ca, 56 lines

// class F, auto mapping, auto composition, auto id>
struct Tree {
int n, size, log;

vector<S> d;
vector<F> 1lz;
Tree (size_t m) {

n = m; size = bit_ceil(m); log = __1lg(size);
d = vector (2+«size, ego());
lz = vector(size, 1id());

UCF

void update (int k)

void fid(int k, F f
d[k] = mapping(f,
if (k < size) 1lz(

}

void push (int k) {
fid(2 « k, 1lz[k])
fid(2 ~ k + 1, 1z
lz[k] = 1id();

}

#define

#define

#define

tip for (in
dip for (in
check (p) {

void set (int p,
p += size;
dip push(p >> 1i);
dlpl = x;
tip update(p >> i

-~

S prod(int 1, int r
1l += size; r += s
dip check (push);
S sml = ego(); S
while (1 < r) {

if

e

return op(sml,
}
void apply(int 1, i
1 += size; r += s
int 12 =1, r2 =
dip check (push) ;
while (1 < r) {
if (1 & 1) £id(
if (r & 1) fid(
1 /=2; r /= 2;
}
1 =12; r = r2;
tip check (update)
}
}i

MaxRight.h

Description: Maximum r such that g(prod(l, r)).

Tree
Time: O (log N).

{ dlk] = op(d[2+k],
) A
dal

k1)
k] =

composition (£,

7

[k])

t i=1;
t i
if
if

i <= log;
= log; 1 >= 1;
((1<<i)-1) & 1)
(

(
(((l<<i)-1) & r)

S x) {

)i

) A

ize;

smr = ego();

= op(sml, d[l++]);
= op(d[--r], smr);

smr) ;

nt r,
ize;
r;

Ff) |

1++,
——r,

£);
£);

7

MaxRight MinLeft PST LiChao UnionFindRollback LinearCHT 3

dl2+k + 11); }

1z [k]);

i++)
i--)

p(l >> i);\

p((r-1)

>> i); }

Goes in LazySegment-

f1bObe, 18 lines

int max_right (int 1,
assert (g(ego()));
1 += size;
dip push(l >> 1i);
S sm = ego();
do {

while (1

if (!g(o
while

push

if |
}

return 1 - size

% 2 ==
p(sm, d
(1 < si
(1);

g

)
(op (sm,

}

sm = op(sm, d[l++
} while ((1 & -1) !
return n;

auto g) {

dfl == 21)))

sm =

7

1)
=1);

op (sm,

d[1++]);

MinLeft.h

Description: Minimum 1 such that g(prod(l, r)). Goes in LazySegmentTree.

Time: O (log N). fc630a, 18 lines

int min_left (int r,

assert (g(ego()));

r += size;

dip push((r - 1)

S sm = ego();

do {
for
if

auto g) {
>> i);

(r-—; r > 1 &&
('g(op(dlr], sm))
while (r < size) {
push (r) ;
if (g(op(dlr =
}

return r +

(r 2);) r /= 2;
)

{

2xr+l], sm))) op(d[r--1, sm);
1 - size;

}

sm = op(d[r], sm);
} while ((r & -r) != r);

return 0;

PST.h

Description: Persistent segment tree with laziness

Time: O (log N) per query, O ((n + g) logn) memory Gosals. 39 lines

struct PST {

PST x1 = 0, »r = 0;
int lo, hi;
11 val = 0, lzadd = 0;
PST(vl& v, int lo, int hi) lo(lo), hi(hi) {
if (lo + 1 < hi) {
int mid = lo + (hi - lo)/2;
1 = new PST(v, lo, mid); r = new PST(v, mid, hi);
val = 1->val + r—->val;
}
else val = v[lo];
}
11 query(int L, int R) {
if (R <= lo || hi <= L) return 0; // idempotent
if (L <= lo && hi <= R) return val;
push () ;
return l->query (L, R) + r->query(L, R);
}
PSTx add(int L, int R, 11 v) {
if (R <= lo || hi <= L) return this;
PST *n = new PST (xthis);
if (L <= lo && hi <= R) {
n->val += v * (hi - lo);
n->lzadd += v;
} else {
n->push () ;
n->1 = n->1->add(L, R, Vv);
n->r = n->r->add (L, R, v);
n->val = n->1->val + n->r->val;
}
return n;
}
void push() {
if (lzadd == 0) return;
1 = 1->add(lo, hi, 1lzadd);
r = r->add(lo, hi, lzadd);
lzadd = 0;
}
Yi

LiChao.h

Description: Creates a segment tree style data structure that supports
adding a function to the set and query the min value at a given x. For any
two added functions, they must intersect at most once. If queries can be
floating point, consider line container instead.

Time: Both operations are O (log N). bdebes. 27 lines

struct line {

11 m, b;
line(ll m = 0, 11 b = LLONG_MAX): m(m), b(b) {}
11 operator() (11 x) { return m x x + b; }
Yi
struct node {
int lo, md, hi;
line £f;
node xleft, =*right;
node (int L, int R): lo(L), md((L+R)>>1), hi(R) {
if(lo == hi) return;
left = new node(lo, md);
right = new node (md+1l, hi);
}
void update (line g) {
if(g(md) < f(md)) swap(f, g);
if(lo == hi) return;
if(f(lo) <= g(lo) && f(hi) <= g(hi)) return;
if(f(lo) > g(lo)) left->update(qg);
else right->update (qg);
}
11 query (1l x) {
if(lo == hi) return f(x);
return min(f(x), (x <= md ? left right)->query (x));
}
Yi

UnionFindRollback.h
Description: Disjoint-set data structure with undo. If undo is not needed,
skip st, time() and rollback().
Usage: int t = uf.time(); ...;
Time: O (log(N))

uf.rollback (t);

de4ad0, 21 lines

struct RollbackUF {
vi e; vector<pii> st;
RollbackUF (int n) e(n, -1)
int size(int x) { return -e[
int find(int x) { return e[x
int time() { return sz (st);
void rollback (int t) {
for (int i = time(); 1 —--> t;)
e[st[i].first] = st[i].second;
st.resize(t);

{}
ind(x)]; }

£
] <02 x : find(elx]); }
}

}

bool join(int a, int b) {
a = find(a), b = find(b);
if (a == b) return false;
if (ela] > e[b]) swap(a, b);
st.push_back ({a, elal});
st.push_back ({b, e[bl});
elal += e[b]; e[b] = a;
return true;

}

Yi

LinearCHT.h

Description: Computes min/max at point for a set of linear functions.
Lines must be inserted in monotonic order of slopes, with increasing giving
max value and decreasing giving min value. Try to avoid inserting two lines
with the same slope. Queries must also be done in order of non-decreasing
X.

UCF LineContainer Treap FenwickTree FenwickTree2d MoQueries 4

Time: O (1) per query £a6997, 26 lines

Time: O (log N)

226541, 38 lines

template<class T>

struct Line {
T m, b;
Line(T m, T b) : m(m), b(b) {}
T isect (const Line<T>& o) {

return (o.b-b) / (m-o.m);

}

Yi

template<class T>
struct CHT {
deque<Line<T>> qg;
void insert (T m, T b) {
Line<T> v(m, b);
while (sz(gq) > 1 && v.isect(q[0]) <= g[0].isect(g[l]))
g.pop_front () ;
g.push_front (v);

}
T query (T x) {
int s = sz (q)-1;
while (s > 0 && g[s].isect(gq[--s]) < x)
q.pop_back () ;
auto [m, b] = g.back();
return m * X + b;
}

Yi

LineContainer.h

Description: Container where you can add lines of the form kx+b, and
query maximum values at points x. Useful for dynamic programming (“con-
vex hull trick”).

Time: O (log N) d2fbe7, 30 lines

struct Line {
mutable 11 m, b, p;
bool operator<(const Line& o) const { return m < o.m; }
bool operator<(ll x) const { return p < x; }

Yi

struct LineContainer : multiset<Line, less<>> {
// (for doubles, use inf = 1/.0, div(a,b) = a/b)
static const 11 inf = LLONG_MAX;
11 div (1l a, 11 b) { // floored division

return a / b - ((a * b) <0 && a % b); }
bool isect (iterator x, iterator y) {
if (y == end()) return x->p = inf, 0;
if (x->m == y->m) x->p = x->b > y->b ? inf : -inf;

else x->p div(y->b - x->b, x->m - y->m);
return x->p >= y->p;

}

void add (1l m, 11 b) {
auto z = insert ({m, b, 0}), y = z++, x = y;
while (isect(y, z)) =z erase(z);
if (x != begin() && isect(--x, y)) isect(x, y = erase(y));
while ((y = x) != begin() && (-—-x)->p >= y->p)

isect (x, erase(y));

}

11 query (1l x) {
assert (lempty ());
auto 1 = xlower_bound(Xx);

return 1l.m = x + 1l.b;
}
Yi

Treap.h

Description: A short self-balancing tree. It acts as a sequential container
with log-time splits/joins, and is easy to augment with additional data.

struct node {
int val, prior,

sz = 1;

node xleft = nullptr, *right = nullptr;

node (int val =
}i

0): val(val), prior(rand()

int getSz (node *cur) { return cur ? cur->sz

) {}

0; %

void recalc (node xcur) { cur->sz = getSz(cur->left) + getSz(cur
->right) + 1; }
pair<nodex, nodex> split (node xcur, int v) {
if(!cur) return {nullptr, nullptr};
node xleft, =right;
if (getSz (cur->left) >= v) {
right = cur;
auto [L, R] = split(cur->left, v);
left = L, right->left = R;
recalc (right);
}
else {
left = cur;
auto [L, R] = split(cur->right, v - getSz(cur->left) - 1);

left->right = L, right = R;

recalc (left);
}
return {left, r

}

node* merge (node
if(lel || 't2)
node +res;
if (tl1->prior >
res = tl,
res->right =
else
res = t2,
res->left = m
return recalc(r

}

FenwickTree.h

ight};

«*tl, node *t2) {

return tl ? tl : t2;

t2->prior)

merge (t1->right, t2);

erge (tl, t2->left);
es), res;

Description: Computes partial sums a[0] + a[l] + ... + a[pos - 1], and
updates single elements a[i], taking the difference between the old and new

value.

Time: Both operations are O (log N).

e62fac, 22 lines

struct FT {
vector<ll> s;
FT(int n) : s(n
void update (int

}

11 query (int pos)

11 res = 0;

) {1}

pos, 11 dif) { // a[pos] += dif
for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;

{ // sum of walues in [0, pos)

for (; pos > 0; pos &= pos — 1) res += s[pos—1];

return res;
}

int lower_bound

if (sum <= 0)
int pos = 0;
for (int pw =

if (pos + pw <= sz(

(11 sum) {// min pos st sum of [0, pos] >= sum
// Returns n if no sum is >= sum, or —I1 if empty sum is.

return -1;

1 << 25; pw; pw >>= 1) {
&& s[pos + pw-1]

s)
pos += pw, sum —-= s[pos—-1];

}

return pos;

}i

< sum)

FenwickTree2d.h

Description: Computes sums ali,j] for all i<I, j<J, and increases single ele-
ments alfi,j]. Requires that the elements to be updated are known in advance
(call fakeUpdate() before init()).
Time: O (log2 N). (Use persistent segment trees for O (log N).)
"FenwickTree.h" 157f07, 22 lines
struct FT2 {

vector<vi> ys; vector<FT> ft;

FT2 (int limx) : ys(limx) {}
void fakeUpdate (int x, int y) {

for (; x < sz(ys); x |= x + 1) ys[x].push_back(y);
}
void init () {

for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v));
}
int ind(int x, int y) {

return (int) (lower_bound(all(ys([x]), y) - ys[x].begin()); }
void update (int x, int y, 11 dif) {

for (; x < sz(ys); x |=x + 1)

ft [x] .update (ind (x, y), dif);

}
11 query(int x, int y) {

11 sum = 0;

for (; x; x &= x — 1)

sum += ft[x-1].query(ind(x-1, y));
return sum;
}
Yi

MoQueries.h

Description: Answer interval or tree path queries by finding an approxi-
mate TSP through the queries, and moving from one query to the next by
adding/removing points at the ends. If values are on tree edges, change step
to add/remove the edge (a, c) and remove the initial add call (but keep in).

Time: O (NV/Q)

al2ef4, 49 lines

void add(int ind, int end) { ... } // add af[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove afind]
int calc() { ... } // compute current answer

vi mo (vector<pii> Q) {
int L = 0, R = 0, blk = 350; // ~N/sqrt(Q)
vi s(sz(Q)), res = s;

#define K(x) pii(x.first/blk, x.second * —(x.first/blk & 1))
iota(all(s), 0);
sort(all(s), [&] (int s, int t){ return K(Q[s]) < K(Q[t]); });
for (int gi : s) {

pii g = Qlagil;
while (L > g.first) add(--L, 0);
while (R < g.second) add(R++, 1);
while (L < g.first) del(L++, 0);
while (R > g.second) del(--R, 1);
res[gi] = calc();

}

return res;

}

vi moTree (vector<array<int, 2>> Q, vector<vi>& ed, int root=0) {

int N = sz(ed), pos[2] = {}, blk = 350; // ~N/sqrt(Q)

vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);

add (0, 0), in[0] = 1;

auto dfs = [&] (int x, int p, int dep, auto& f) -> void {
par[x] = p;
L[x] = N;
if (dep =
for (int y : edl
if (!dep) I[x]

—
b

N++
x]) if (y !'= p) f(y, x, !dep, £);
N+

}i

UCF

dfs (root, -1, O,
#define K(x) pii(I[x
iota(all(s), 0);

sort (all(s), [&] (int s,
for (int gi : s)

int &a = pos[end],
#define step(c) { if (in[c])
else { add(c,
while (! (L[b] <= L[a] && R[a]
I[i++] = b, b = par[b];
while (a != b) step(parla

while (i--) step(I[i]);
if (end) res[gi] = calc();

}

return res;

dfs)

1)i

SqrtDecomp.h

int t){ return K(Q[s])

rep (end, 0,2) {

b = Qlgil[end], 1

{ del(a, e
end); i

= 0;
nd); inf[a]
infc] =

<= R[Db]))

[
1; }

< K(Q[t]);

a

SqrtDecomp PQUpdate XorBasis WaveletTree BitVector linelntersection 5

[0]] / blk, I[x[1]] ~ —(I[x[0]] / blk & 1)

)i

0; ¥\
=c; }

Description: decomposes (1, r) range into pair of (list of fully covered blocks,

list of partially covered blocks)
Time: O (B + (r —1)/B)

799a5b, 16 lines

template<int B>

pair<vi, vector<array<int, 3>>> decomp(int 1, int
if (1/B == (r-1)/B) return {{}, {{1/B, 1, r}}};
vi full;
vector<array<int, 3>> subs;
if (1%B != 0) {

subs.push_back ({1/B, 1,
1 = subs.back()[2];
}
if (r%B != 0) {
subs.push_back ({r/B,
subs.back () [1];

r/B+B,
r =
}
rep(i, 1/B, r/B)
return {full, subs};

PQUpdate.h

Description: T: value/update type.
std::priority_queue.
est priority update, querying DS.
Time: O (Ulog N).

(1/B+1) *B});

r});

full.push_back (i) ;

r)

{

DS: Stores T. Same semantics as

Allows applying update with priority p, undoing low-

35a7d2, 36 lines

template<class T,
struct PQUpdate {
DS inner;
multimap<T, int,
using iter = decltype (rev_upd) :
vector<iter> st;
PQUpdate (DS inner,
inner (inner), rev_upd (comp)

class DS,

bool empty ()
const T& top()
void push (T value) {

inner.push (value);

st.push_back (rev_upd.insert ({value,

}
void pop () {
vector<iter> extra;
iter curr = rev_upd.end();
int min_ind = sz (st);
do {
extra.push_back (-—curr);
min_ind = min (min_ind,
} while (2*sz(extra) < sz (st)
while (sz(st) > min_ind) {

class Compare =

Compare> rev_upd;
:iterator;

Compare comp={}):

{}

{ return st.empty(); }
{ return rev_upd.rbegin()->first;

sz (st)}));

curr—->second) ;

- min_ind);

less<T>>

}

if (rev_upd.value_comp () (xst.back(),
extra.push_back (st.back());

inner.pop(); st.pop_back();

*Ccurr))

}
rev_upd.erase (extral0]);
for (auto it extra | views::drop(l) | views::reverse) {

it->second = sz (st);
inner.push (it->first);
st.push_back (it);
}
}
Yi

XorBasis.h

Description: Forms a basis of binary vectors, with buildback. get() returns
a list of the input values associated with vectors that XOR to v. If v is not
in the span, or is the zero vector, an empty vector is returned.
Time: O (M?/32)

eeafOa, 33 lines

const int M = 64;
using B = bitset<M>;

template<class T> struct Basis {
B basis([M], which[M];
optional<T> vals([M];

Basis () { memset (vals, 0, sizeof(vals)); }
bool add(B v, T x) {
if (v.none()) return false;
B cur; int ind = -1;
for (int i = 0; 1 < M; i++) if (v[i]) {
if (vals[i].has_value())
v ~= basis[i], cur ~= which[i];
else if (ind < 0) ind = 1i;
}
if (ind < 0) return false;
basis[ind] = v, vals[ind] = x;
which[ind] = cur, which[ind] [ind] = 1;
return true;
}
vector<T> get (B v) const {
if (v.none()) return {{}};
B w;
for (int i1 = 0; 1 < M; i++)
if (v[i]) v ”= basis[i], w "= which[i];
if (v.any()) return {};

vector<T> res;

for (int 1 = 0; 1 < M; i++)
if (w[i]) res.push_back (xvals[i]);
return res;

}
}i

WaveletTree.h

Description: kth: finds k+1th smallest number in [l,r), count: rank of k
(how many < k) in [I,r). Doesn’t support negative numbers, and requires ali]
<= maxval. Use BitVector to make 1.6x faster and 4x less memory.

Time: O (log MAX) 1lacel, 38 lines

struct WaveletTree {
int n; vvi bv; // vector<BitVector> bv;
WaveletTree (vl a, 11 max_val):

n(sz(a)), bv(l+__lg(max_val), {{}}) {
vl nxt(n);
for (int h = sz (bv); h-—;) {
vector<bool> b(n);
rep(i, 0, n) b[i] = ((a[i] >> h) & 1);
bv[h] = vi(n+l); // bv[h] =b;
rep(i, 0, n) bv[h][i+1] = bv[h][i] + !b[i]; // delete

array it{begin(nxt), begin(nxt) + bv[h][n]};

rep(i, 0, n) *it[b[i]]++ = alil];
swap (a, nxt);
}
}
11 kth(int 1, int r, int k) {
11 res = 0;
for (int h = sz(bv); h-——;) {
int 10 = bv[h][1], 0 = bv[h]I[r];
if (k < r0O - 10) 1 = 10, r = r0;
else
k -= r0 - 10, res |= 1ULL << h,
1 += bv[h][n] - 10, r += bv[h][n] - r0;
}
return res;
}
int count (int 1, int r, 11 ub) {
int res = 0;
for (int h = sz (bv); h-—;) {
int 10 = bv[h][1], r0 = bv[h][r];
if ((~ub >> h) & 1) 1 = 10, r = r0;
else
res += r0 - 10, 1 += bv[h][n] - 10,
r += bv[h][n] - r0;
}
return res;
}
Yi

BitVector.h

Description: Given vector of bits, counts number of 0’s in [0, r). Use with
WaveletTree.h by using modifications in comments in that file and replacing
bv[h][x] with bv[h].cnt0(x)

Time: O (1) time afd9d2, 15 lines

struct BitVector {

vector<pair<ll, int>> b;
BitVector (vector<bool> a): b(sz(a) / 64 + 1) {
rep (i, 0, sz (a))
bli >> 6].first |= 1l(ali]) << (i & 63);
rep(i, 0, sz (b)-1)
bli + 1].second = __builtin_popcountll(b[i].first)

+ b[i].second;

}
int cntO(int r) {
auto [x, y] = blr >> 6];
return r - y
- __builtin_popcountll(x & ((1ULL << (r & 63)) - 1));
}
Yi
Geometry (4)
4.1 Lines and Segments
linelntersection.h
Description:
If a unique intersection point of the lines going through sl,el
and s2,e2 exists {1, point} is returned. If no intersection point
exists {0, (0,0)} is returned and if infinitely many exists {-1, e2 I
(0,0)} is returned. The wrong position will be returned if P
is Point<I1> and the intersection point does not have integer cl s2

coordinates. Products of three coordinates are used in inter- ~S1
mediate steps so watch out for overflow if using int or 1l.

Usage: auto res = linelnter(sl,el,s2,e2);

if (res.first == 1)

cout << "intersection point at " << res.second << endl;
"Point.h" a01f81, 8 lines

UCF

template<class P>

pair<int, P> lineInter (P sl, P el, P s2, P e2) {
auto d = (el - sl).cross(e2 - s2);
if (d == 0) // if parallel

return {-(sl.cross(el, s2) == 0), P(0, 0)};
auto p = s2.cross(el, e2), g s2.cross(e2, sl);
)

) -
return {1, (sl » p + el » q) / d};

linearTransformation.h

pl
res
\

r.
Description: 0/\
Apply the linear transformation (translation, rotation and P q0
scaling) which takes line pO-pl to line q0-ql to point r. ql
"Point.h" 032306, 6 lines

typedef Point<double> P;
P linearTransformation(const P& p0, const P& pl,
const P& g0, const P& gl, const P& r) {

P dp = pl-p0, dg = gl-g0, num(dp.cross(dq), dp.dot (dq));
return g0 + P ((r-p0).cross (num), (r-p0).dot (num))/dp.dist2();
}

: 1cs
SegmentDistance.h e Y
Description:

Returns the shortest distance between point p and the line
segment from point s to e. S
Usage: Point<double> a, b(2,2), p(1,1);
bool onSegment = segDist (a,b,p) < le-10;
"Point.h" 5c88f4, 6 lines
typedef Point<double> P;
double segDist (P& s, P& e, P& p) {
if (s==e) return (p-s).dist();
auto d = (e-s).dist2(), t = min(d,max (.0, (p-s).dot (e-s)));
return ((p-s)*d-(e-s)*t).dist()/d;

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going
from sl to el and from s2 to e2 exists then it is returned.

If no intersection point exists an empty vector is returned. el

If infinitely many exist a vector with 2 elements is returned,

containing the endpoints of the common line segment. The €2

wrong position will be returned if P is Point<ll> and the in- Tl

tersection point does not have integer coordinates. Products 51 52

of three coordinates are used in intermediate steps so watch

out for overflow if using int or long long.

Usage: vector<P> inter = seglnter(sl,el,s2,e2);

if (sz(inter)==1)

cout << "segments intersect at " << inter[0] << endl;

"Point.h", "OnSegment.h" 9d57f2, 13 lines
P d) {

template<class P> vector<P> seglInter (P a, P b, P c,

auto oa = c.cross(d, a), ob = c.cross(d, b)
oc = a.cross(b, ¢c), od = a.cross (b, d);
// Checks if intersection is single non—endpoint point.
if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)
return {(a » ob - b * oa) / (ob - oa)};

set<P> s;
if (onSegment (c,
if (onSegment (c,
if (onSegment (a,
if (onSegment (a,
return {all(s)};

’

.insert (a);
.insert (b);
.insert (c);
.insert (d);

n n o n

d, a
d, b
b, c
b, d

4.2 Polygons
InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it
returns false for points on the boundary. The algorithm uses products in
intermediate steps so watch out for overflow.

Usage: vector<P> v = {p{4,4}, p{1,2}, P{2,1}};

bool in = inPolygon(v, P{3, 3}, false);
Time: O (n)
"Point.h", "OnSegment.h", "SegmentDistance.h" 2bf504, 11 lines

template<class P>

bool inPolygon (vector<P> &p, P a, bool strict = true) {
int cnt = 0, n = sz(p);
rep(i,0,n) {
P g=p[l(+1) %n];
if (onSegment (p[i], g, a)) return !strict;

//or: if (segDist(p[i], q, a) <= eps) return !strict;
cnt "= ((a.y<plil.y) - (a.y<q.y)) * a.cross(pl[i], q)
}

return cnt;

}

> 0;

PolygonCenter.h

Description: Returns the center of mass for a polygon.
Time: O (n)

"Point.h"

typedef Point<double> P;

P polygonCenter (const vector<P>& v) {

9706dc, 9 lines

P res (0, 0); double A = 0;

for (int 1 = 0, j = sz(v) - 1; 1 < sz(v); J = i++) {
res = res + (v[i] + v[j]) *» v[j].cross(v([i]);
A += v[j].cross(v[i]);

}

return res / A / 3;

}

PolygonCut.h

Description:

Returns a vector with the vertices of a polygon with every-
thing to the left of the line going from s to e cut away.

Usage: vector<P> p = ...;
p = polygonCut (p, P(0,0), P(1,0));
"Point.h", "lineTntersection.h" £2b7d4, 13 lines

typedef Point<double> P;

vector<P> polygonCut (const vector<P>& poly, P s, P e) {
vector<P> res;
rep(i,0,sz(poly)) {
P cur = poly[i], prev = i ? poly[i-1] poly.back () ;
bool side = s.cross(e, cur) < 0;
if (side != (s.cross (e, prev) < 0))

res.push_back (linelInter (s, e,
if (side)
res.push_back (cur) ;

cur, prev) .second);

}

return res;

}

PolygonUnion.h
Description: Calculates the area of the union of n polygons (not necessar-
ily convex). The points within each polygon must be given in CCW order.
(Epsilon checks may optionally be added to sideOf/sgn, but shouldn’t be
needed.)

Time: O (Nz), where N is the total number of points
"sideOf.h"

"Point.h", 3931c6, 33 lines

typedef Point<double> P;

double rat (P a, P b) { return sgn(b.x) ? a.x/b.x

double polyUnion (vector<vector<P>>& poly) {
double ret = 0;

a.y/b.y; }

linearTransformation SegmentDistance SegmentIntersection InsidePolygon PolygonCenter PolygonCut PolygonUnion Halfplanelntersection

rep (i, 0,sz(poly)) rep(v,0,sz(polyli])) {

P A = polyli][v], B = poly[i][(v + 1) % sz(poly[i])];
vector<pair<double, int>> segs = {{0, 0}, {1, 0}};
rep(j,0,sz(poly)) if (1 !'= j) {
rep (u, 0, sz (poly[j])) {
P C = poly[3]ful, D = poly[3jll(u + 1) % sz(polyl[3])];
int sc = sideOf(A, B, C), sd = sideOf (A, B, D);
if (sc != sd) {
double sa = C.cross (D, A), sb = C.cross (D, B);
if (min(sc, sd) < 0)
segs.emplace_back (sa / (sa - sb), sgn(sc - sd));

} else if (!sc && !sd && j<i && sgn((B-A).dot (D-C))>0) {
segs.emplace_back (rat(C - A, B - A), 1);
segs.emplace_back (rat (D - A, B - A), -1);

}

}
}
sort (all (segs));
for (auto& s segs) s.first = min(max(s.first, 0.0),
double sum = 0;
int cnt = segs[0].second;
rep(j,1,sz(segs)) |
if (!'cnt) sum += segs[j].first - segs[j - 1l].first;

cnt += segs[]j].second;
}
ret += A.cross(B) * sum;

}

return ret / 2;

Halfplanelntersection.h
Description: Returns the intersection of halfplanes as a polygon
Time: O (nlogn)

1.0);

b9fbOf, 38 lines

const double eps = le-8;

typedef Point<double> P;

struct HalfPlane {
P s, e, d;
HalfPlane(P s = P(), P e =P()): s(s), e(e), d(e - s) {}
bool contains (P p) { return d.cross(p - s) > -eps; }
bool side() { return d.x<-eps || (abs(d.x)<=eps && d.y>0);
bool operator<(HalfPlane hp) {

if (side() != hp.side()) return side();
return d.cross (hp.d) > 0;

}

P inter (HalfPlane hp) {
auto p = hp.s.cross(e, hp.e), g = hp.s.cross (hp.e, s);
return (s * p + e » q) / d.cross(hp.d);

}

Yi
vector<P> hpIntersection (vector<HalfPlane> hps) {

sort (all (hps));

int n = sz(hps), 1 =1, r = 0;

vector<HalfPlane> dqg(n+l);

rep(i, 0, n) {
while (1<r && 'hps[i].contains(dg[r].inter(dg[r-11))) r——;
while (1<r && 'hps[i].contains(dg[l].inter (dg[l1+1]))) 1++;
dgl[++r] = hps[i];
if(l < r && abs(dglr].d.cross(dg[r-1].d)) < eps) {

if(dglr].d.dot (dg[r-1].d) < 0) return {};
if (dg[--r].contains (hps[i].s)) dglr] = hps[i];

}

}

while (1<r-1 && !dg[l].contains(dg(r].inter(dgl[r-1]))) r——;

)
while (1<r-1 && !dqglr].contains(dg[l].inter(dg[l+1]))) 1++;
if(l > r-2) return {};
vector<P> poly;
rep(i, 1, r) poly.push_back(dg[i].inter(dg[i+1]));

}

UCF

poly.push_back (dglr].inter (dql[l]));
return poly;

}

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counter-
clockwise order. Points on the edge of the hull between two
other points are not considered part of the hull. Be careful of
duplicate points when working with degenerate hulls.

Time: O (nlogn)

"Point.h" 456306, 16 lines

template<class P> vector<P> convex_hull (vector<P> pts) {
if(sz (pts) == 1) return pts;
stable_sort (all(pts));
vector<P> hull (sz (pts)+1);
int k = 0, t = 2;
rep(_, 0, 2) {
for (P p: pts){

while(k >= t && hull[k-2].cross (hull[k-1], p) <= 0) k——;
hull [k++] = p;

}

reverse (all (pts));

t = k+1;

}
hull.resize (k-1);
return hull;

HullDiameter.h

Description: Returns the two points with max distance on a convex hull
(ccw, no duplicate/collinear points).
Time: O (n)

"Point.h"

typedef Point<1ll> P;

c571b8, 12 lines

array<P, 2> hullDiameter (vector<P> S) {
int n = sz(S), j =n<2 7?0 : 1;
pair<ll, array<P, 2>> res ({0, {S[0], S[01}});
rep(i,0, J)
for (;; J = (3 +1) % n) {
res = max(res, {(S[i] - S[j]).dist2(), {S[i], S[j1}});
if ((S[(jJ + 1) % n] - S[J]).cross(S[i + 1] - S[i]) >= 0)

break;
}

return res.second;

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW
order, with no collinear points). Returns true if point lies within the hull. If
strict is true, points on the boundary aren’t included.

Time: O (log N)
"sideOf.h",

"Point.h", 71446b, 14 lines

typedef Point<ll> P;

"OnSegment .h"

bool inHull (const vector<P>& 1, P p, bool strict = true) {
int a =1, b = sz(l) - 1, r = !strict;
if (sz(l) < 3) return r && onSegment (1[0], l.back(), p);
if (sideOf(1[0], 1[al, 1l[b]) > 0) swap(a, b);
if (sideOf(1[0], 1l[al, p) >= r || sideOf(1[0], 1[b], p)<= -r)
return false;
while (abs(a - b) > 1) {
int ¢ = (a + b) / 2;
(sideOf(1(0], l[c], p) > 0 2 b : a) = c;
}
return sgn(l[a].cross(l[b], p)) < r;

ExtremeVertex.h

Description: returns the point of a hull with the max projection onto a
line.

Time: O (logn)

"Point.h" badlca, 13 lines

#define cmp (i, j) sgn(dir.perp().cross (poly[(i)%n]l-poly[(J)%n])
#define extr(i) cmp(i + 1, i) >= 0 && cmp (i, 1 +n) <0
template <class P> int extrVertex(vector<P>& poly, P dir) {
int n = sz (poly), lo = 0, hi = n;
if (extr(0)) return 0;
while (lo + 1 < hi) {
int m = (lo + hi) / 2;
if (extr(m)) return m;
int 1s = cmp(lo + 1, lo), ms =
(s <ms || (ls == ms && ls == cmp(lo,
}

return lo;

i -

cmp (m + 1, m);

m)) ? hi lo) = m;

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw
and have no collinear points. lineHull(line, poly) returns a pair describing
the intersection of a line with the polygon: e (—1, —1) if no collision, e (i, —1)
if touching the corner ¢, ® (7, 7) if along side (¢,i+ 1), ® (¢, 5) if crossing sides
(i,i4+1) and (j,j+1). In the last case, if a corner ¢ is crossed, this is treated
as happening on side (¢,7+ 1). The points are returned in the same order as
the line hits the polygon. extrVertex returns the point of a hull with the
max projection onto a line.

Time: O (logn)

"Point.h",

"ExtremeVertex.h" 49e334, 25 lines

#define cmpL (i) sgn(a.cross(poly[i], b))

template <class P>

array<int, 2> lineHull(P a, P b, vector<P>& poly) {
int endA = extrVertex(poly, (a — b).perp());
int endB = extrVertex(poly, (b - a).perp());

if (cmpL(endA) < 0 || cmpL(endB) > 0)
return {-1, -1};

array<int, 2> res;

rep(i, 0,2) {
int lo = endB, hi = endA, n = sz (poly);

while ((lo + 1) % n != hi) {
int m = ((lo + hi + (lo < hi 2 0 n)) / 2) % n;
(cmpL (m) == cmpL (endB) ? lo hi) = m;
}
res[i] = (lo + !cmpL(hi)) % n;
swap (endA, endB);
}
if (res[0] == res[l]) return {res([0], -1};
if (!cmpL(res[0]) && !cmpL(res[1l]))
switch ((res[0] - res[l] + sz(poly) + 1) % sz (poly)) {
case 0: return {res[0], res[0]};
case 2: return {res[l], res[l]};
}

return res;

HullTangents.h

Description: Finds the left and right, respectively, tangent points on con-
vex hull from a point. If the point is colinear to side(s) of the polygon, the
point further away is returned. Requires ccw, n > 3, and the point be on or
outside the polygon. Can be used to check if a point is inside of a convex
hull. Will return -1 if it is strictly inside. If the point is on the hull, the two
adjacent points will be returned

Time: O (logn)

"Point.h" 53d067, 16 lines
#define cmp (i, j) p.cross(h[i], h[j == n 2 0 : J]) » (R 2 1

-1)
template<bool R, class P> int getTangent (vector<P>& h, P p) {

ConvexHull HullDiameter PointInsideHull ExtremeVertex LineHullIntersection HullTangents MinkowskiSum CircleIntersection CircleTangents 7

int n = sz(h), lo =0, hi = n - 1, md;
if (cmp(0, 1) >= R && cmp(0, n - 1) >= !R) return 0;
while (md = (lo + hi + 1) / 2, lo < hi) {

auto a = cmp(md, md + 1), b = cmp(md, lo);

if (a > R && cmp(md, md - 1) >= !R)
if (cmp(lo, lo + 1) < R)

a <R&& b > 07?1lo=md : hi =md - 1;
else a <R || b<=0?21lo=md : hi =md - 1;

return md;

}
return -1; // point strictly inside hull

}

template<class P> pii hullTangents (vector<P>& h, P p) {
return {getTangent<0>(h, p), getTangent<l>(h, p)};

}

MinkowskiSum.h
Description: Returns the minkowski sum of a set of convex polygons

Time: O (nlogn) 6a76f5, 20 lines

#define side(p) (p.x > 0 ||
template<class P>
vector<P> convolve (vector<vector<P>> &polys) {
P init; vector<P> dir;
for (auto poly: polys) {
int n = sz (poly);
if(n) init = init + poly([0];
if(n < 2) continue;
rep(i, 0, n) dir.push_back(poly[(i+1)%n]

(p.x == 0 && p.y > 0))

- polyl[il);
}
if (size(dir) == 0) return { init };
stable_sort (all(dir), [&] (P a, P b)->bool {
if (side(a) != side (b)) return side(a);
return a.cross(b) > 0;
}) i
vector<P> sum; P cur =
rep(i, 0, sz(dir))
sum.push_back (cur),
return sum;

+
4.3 Circles

CircleIntersection.h
Description: Computes the pair of points at which two circles intersect.
Returns false in case of no intersection.

"Point.h"

typedef Point<double> P;

bool circleInter (P a,P b,double rl,double r2,pair<p,

init;

cur = cur + dir[i];

84d6d3, 11 lines

P>+ out) {

if (a == b) { assert(rl != r2); return false; }
P vec = b - a;
double d2 = vec.dist2(), sum = rl+r2, dif = rl-r2,
p = (d2 + rl*rl - r2xr2)/(d2x2), h2 = rlxrl - p*pxd2;
if (sumxsum < d2 || difxdif > d2) return false;
P mid = a + vecxp, per = vec.perp() * sqgrt(fmax(0, h2) / d2);

xout = {mid + per, mid - per};
return true;

¥

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is
negated. Can return 0, 1, or 2 tangents — 0 if one circle contains the other (or
overlaps it, in the internal case, or if the circles are the same); 1 if the circles
are tangent to each other (in which case .first = .second and the tangent line
is perpendicular to the line between the centers). .first and .second give the
tangency points at circle 1 and 2 respectively. To find the tangents of a circle
with a point set r2 to 0.

"Point.h" b0153d, 13 lines

template<class P>

vector<pair<P, P>> tangents (P cl, double rl, P c2, double r2) {

UCF
Pd=c2 - cl;
double dr = rl - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
if (d2 == Il h2 < 0) return {};
vector<pair<P, P>> out;
for (double sign {-1, 1}) {
Pv = (d* dr + d.perp() * sqgrt(h2) % sign) / d2;

out.push_back ({cl + v = rl,
}
if (h2 == 0)
return out;

c2 + vV x r2});

out .pop_back () ;

CircleLine.h

Description: Finds the intersection between a circle and a line. Re-
turns a vector of either 0, 1, or 2 intersection points. P is intended to be
Point<double>.

"Point.h" eOcfba, 9 lines

template<class P>

vector<P> circlelLine (P ¢, double r, P a, P b) {
Pab =Db - a, p=a+ ab » (c-a).dot(ab) / ab.dist2();
double s = a.cross(b, c¢), h2 = rxr - s*s / ab.dist2();
if (h2 < 0) return {};
if (h2 == 0) return {p};
P h = ab.unit () = sqgrt (h2);

return {p - h, p + h};

CirclePolygonIntersection.h
Description: Returns the area of the intersection of a circle with a ccw
polygon.

Time: O (n)

"../../content/geometry/Point .h"

typedef Point<double> P;

#define arg(p, g) atan2(p.cross(q),

alee63, 19 lines

p.dot (q))

double circlePoly (P ¢, double r, vector<P> ps) {
auto tri = [&] (P p, P q) {
auto r2 = r * r / 2;
Pd=gq- p;
auto a = d.dot (p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
auto det = a » a - b;
if (det <= 0) return arg(p, q) * r2;

auto s = max (0., —-a-sqgrt(det)), t = min(1l.,
if (¢t <0 || 1 <= s) return arg(p, g) *» r2;
Pu=p+d=*s, v=p+dx*t;
return arg(p,u) * r2 + u.cross(v
}i
auto sum = 0.0;
rep (i, 0,sz (ps))
sum += tri(ps[i
return sum;

—atsqgrt (det)) ;

)/2 + arg(v,q) * r2;

] —c, psl(i + 1) % sz(ps)] - c);

circumcircle.h
Description:

The circumcirle of a triangle is the circle intersecting all
three vertices. ccRadius returns the radius of the circle going
through points A, B and C and ccCenter returns the center
of the same circle.

"Point.h"

typedef Point<double> P;
double ccRadius (const P& A,

1caa3a, 9 lines

const P& B, const P& C) {

return (B-A). dist()*(C B) .dist () * (A-C) .dist () /
abs ((B-A) .cross (C-A)) /2;
}
P ccCenter (const P& A, const P& B, const P& C) {
Pb=C-A, c = B-A;
return A + (bxc.dist2()-cxb.dist2()) .perp()/b.cross(c)/2;

}

MinimumEnclosingCircle.h
Description: Computes the minimum circle that encloses a set of points.
Time: expected O (n)

"circumcircle.h" 09ddOa, 17 lines

pair<P, double> mec (vector<pP> ps) {
shuffle(all(ps), mt19937 (time (0)));
P o = ps[0];

double r = 0, EPS = 1 + 1le-8;
rep(i,0,sz(ps)) if ((o - ps[i]).dist() > r = EPS) {
o = ps[i], r = 0;
rep(j,0,1i) if ((o - ps[j]).dist() > r % EPS) {
o = (ps[i] + ps(3l) / 2;
r = (o - ps[i]).dist();
rep(k,0,3) 1if ((o - pslk]).dist() > r = EPS) {
o = ccCenter (ps[i], psljl, pslk]l);
r = (o - ps[i]).dist();
}
}
}
return {o, r};
}
4.4 3D
Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or

long long. 8058ae, 32 lines

template<class T> struct Point3D {
typedef Point3D P;
typedef const P& R;
T x, vy, z;

explicit Point3D(T x=0, T y=0, T z=0) x(x), y(y), z(z) {}
bool operator<(R p) const {

return tie(x, y, z) < tie(p.x, p.y, pP-2); }
bool operator==(R p) const {

return tie(x, y, z) == tie(p.x, p.y, p.-2); }
P operator+ (R p) const { return P(x+p.x, yt+p.y, ztp.z); }
P operator-(R p) const { return P(x-p.x, y-p.Y, z2-p.2); }
P operatorx (T d) const { return P (xxd, y=*d, zxd); }
P operator/ (T d) const { return P(x/d, y/d, z/d); }
T dot (R p) const { return xxp.x + y*p.y + zxp.z; }
P cross (R p) const {

return P (y*p.z — zZ*P.y, Z*P.X — X*P.2Z, X*P.Y — Y*P.X);
}
T dist2() const { return x*x + yxy + z=xz; }

double dist () const { return sqgrt((double)dist2()); }

//Azimuthal angle (longitude) to z—awis in interval [—pi, pi]
double phi() const { return atan2(y, x); }
//Zenith angle (latitude) to the z—awis in interval [0, pi]

double theta() const { return atan2 (sqrt (x*x+yxy),z); }
P unit () const { return xthis/(T)dist(); } //makes dist()=1
//returns unit vector normal to *this and p

P normal (P p) const { return cross(p).unit(); }

//returns point rotated ’‘angle’ radians ccw around axis

P rotate (double angle, P axis) const {
double s = sin(angle), c¢ = cos(angle); P u = axis.unit();
return uxdot (u) * (1-c) + (*this)x*c - cross(u)*s;

}
}i

3dHull.h

Description: Computes all faces of the 3-dimension hull of a point set. *No
four points must be coplanar*, or else random results will be returned. All
faces will point outwards.

Time: O (n2)

"Point3D.h" 928b1f, 33 lines

CircleLine CirclePolygonIntersection circumcircle MinimumEnclosingCircle Point3D 3dHull sphericalDistance ClosestPair 8

typedef Point3D<double> P;
const double eps = le-6;

vector<array<int,
int n = sz (p);
if(n < 3) return {};
vector<array<int, 3>> faces;

3>> convex_shell (vector<P> &p) {

vvi active (n, vi(n, false));
auto add_face = [&] (int a, int b, int c¢) -> void {
faces.push_back ({a, b, c})
activela] [b] = active[b] [c] = activel[c][a] = true;
Yi
add_face (0, 1, 2);
add_face (0, 2, 1);
rep(i, 3, n) {
vector<array<int, 3>> new_faces;
for (auto [a, b, c]: faces)
f((pli] - plal).dot(pla].cross(p[b], plcl)) > eps)
activela] [b] = activel[b] [c] = active[lla] = false;

else new_faces.push_back ({a, b,
faces.clear();

c});

for (array<int, 3> f: new_faces)
rep(j, 0, 3) if(lactive[f[(J+1)%31][£[J]1])
add_face (£[(j+1)%3], £[(3], 1i);

faces.insert (end(faces), all (new_faces));

}

return faces;

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius ra-
dius between the points with azimuthal angles (longitude) f1 (¢1) and 2 (¢2)
from x axis and zenith angles (latitude) t1 (1) and t2 (62) from z axis (0 =
north pole). All angles measured in radians. The algorithm starts by con-
verting the spherical coordinates to cartesian coordinates so if that is what
you have you can use only the two last rows. dx*radius is then the difference
between the two points in the x direction and d*radius is the total distance

between the points. 611£07, 8 lines

double sphericalDistance (double f1, double t1,

double f2, double t2, double radius) {
double dx = sin(t2)+*cos(f2) - sin(tl)=*cos(fl);
double dy = sin(t2)+sin(f2) - sin(tl)=*sin(£fl);
double dz = cos(t2) - cos(tl);
double d = sqgrt (dxxdx + dyxdy + dzxdz);
return radius*2xasin(d/2);

4.5 Misc. Point Set Problems
ClosestPair.h

Description: Finds the closest pair of points.
Time: O (nlogn)

"Point.h" ac4la6, 17 lines

typedef Point<ll> P;

pair<P, P> closest (vector<P> v) {
assert (sz (v) > 1);
set<P> S;
sort (all(v), [](P a, P b) { return a.y < b.y; });
pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
int j = 0;
for (P p : v) {
P d{1 + (11)sqgrt(ret.first), 0};

UCF
while (v[]j].y <= p.y - d.x) S.erase(v[j++]);
auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
for (; lo != hi; ++1lo)
ret = min(ret, {(xlo - p).dist2(), {xlo, p}});
S.insert (p);
}

return ret.second;

ManhattanMST.h

Description: Given N points, returns up to 4*N edges, which are guaran-
teed to contain a minimum spanning tree for the graph with edge weights
w(p, q) = —p.X - @.x— + —p.y - q.y—. Edges are in the form (distance,
src, dst). Use a standard MST algorithm on the result to find the final MST.
Time: O (NlogN)

"Point.h" df6f59, 23 lines

typedef Point<int> P;

vector<array<int, 3>> manhattanMST (vector<P> ps) {
vi id(sz(ps));
iota(all(id), 0);
vector<array<int,
rep(k,0,4) {

3>> edges;

sort (all(id), [&] (int i, int J) {
return (ps[i]l-ps[j]).x < (ps[jl-pslil).y;});
map<int, int> sweep;
for (int 1 id) |
for (auto it = sweep.lower_bound(-ps[i].y);
it != sweep.end(); sweep.erase (it++)) {

int j = it->second;

P d=ps[i] - psljl;

if (d.y > d.x) break;

edges.push_back ({d.y + d.x, i, 3});
}
sweep[-ps[i].y] = i;
}
for (P& p ps) if (k & 1) p.x = -p.x; else swap(p.X, pP.Y);

}

return edges;

kdTree.h
Description: KD-tree (2d, can be extended to 3d)

"Point.h" bac5b0, 63 lines

typedef long long T;
typedef Point<T> P;
const T INF = numeric_limits<T>::max();

{ return a.x < b.x; }
{ return a.y < b.y; }

bool on_x(const P& a,
bool on_y (const P& a,

const P& b)
const P& b)

struct Node {
P pt; // if this
T x0 = INF, x1 =
Node xfirst = 0,

is a leaf, the single point in it
-INF, y0 = INF, yl = -INF; // bounds
xsecond = 0;

T distance (const P& p) { /7 min squared distance to a point

T x = (p.x < x0 ? x0 p.x > x1 ? x1 p.X);
Ty= (p.y <y0 ?y0 :p.y>yl?yl:p.y;
return (P(x,y) — p).dist2();
}
Node (vector<P>&& vp) pt(vp[0]) {
for (P p vp) {
x0 = min(x0, p.x); x1 = max(xl, p.x);
y0 = min(y0, p.y); yl = max(yl, p.y);
}
if (vp.size() > 1) {

// split on z if width >= height (not ideal...)

sort (all(vp), x1 - x0 >= yl - y0 ? on_x on_y) ;
// divide by taking half the array for each child (not
// best performance with many duplicates in the middle)

int half = sz (vp)/2;
first = new Node ({vp.begin(), vp.begin() + half});
second = new Node ({vp.begin() + half, vp.end()});

}
}i

struct KDTree {
Node* root;
KDTree (const vector<P>& vp) root (new Node ({all(vp)})) {}
pair<T, P> search(Node xnode,
if (!node->first) {
// uncomment if we should not find the point itself:
// if (p = node—=>pt) return {INF, P()};

const P& p) {

return make_pair ((p - node->pt).dist2(), node->pt);
}
Node *f = node->first, *s = node->second;
T bfirst = f->distance(p), bsec = s->distance (p);

if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
// search closest side first, other side if meeded
auto best = search(f, p);
if (bsec < best.first)

best = min (best, search(s,
return best;

¥

pP))i

// find mearest point to a point, and its squared distance
// (requires an arbitrary operator< for Point)
pair<T, P> nearest (const P& p) {
return search(root, p);
}
Yi

FastDelaunay.h

Description: Fast Delaunay triangulation. Each circumcircle contains none
of the input points. There must be no duplicate points. If all points are on a
line, no triangles will be returned. Should work for doubles as well, though
there may be precision issues in ’circ’. Returns triangles in order {t[0][0],
t[0][1], t[0][2], t[1][O], ...}, all counter-clockwise.

Time: O (nlogn)

"Point.h" eefdf5, 88 lines

typedef Point<ll> P;

typedef struct Quadx Q;

typedef __intl128_t 111; // (can be Il if coords are < 2e4)
P arb (LLONG_MAX, LLONG_MAX); // not equal to any other point

struct Quad {

Q rot, o; P p = arb; bool mark;

P& F() { return r()->p; }

Q& r() { return rot->rot; }

Q prev() { return rot->o->rot; }

Q next () { return r()->prev(); }
b o*H;

bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
111 p2 = p.dist2(), A = a.dist2()-p2,
B = b.dist2()-p2, C = c.dist2()-p2;
return p.cross(a,b)*C + p.cross(b,c)*A + p.cross(c,a)*B > 0;

}

Q makeEdge (P orig, P dest) {
Qr=H?<?H new Quad{new Quad{new Quad{new Quad{O0}}}};
H=r->0; r->r()->r() = r;
rep(i,0,4) r = r->rot, r->p = arb, r->0 =1 & 1 ? r r->r();

ManhattanMST kdTree FastDelaunay PlanarFaceExtraction

r->p = orig;
return r;

}

void splice(Q a,

r->F () = dest;

Q b) |

swap (a—->o->rot->o0, b->o->rot->o0); swap(a->o0, b->0);
}
Q connect (Q a, Q b) {
Q0 g = makeEdge (a->F (), b->p);
splice (g, a->next());
splice(g->r (), b);
return q;
}
pair<Q, Q> rec(const vector<P>& s) {
if (sz(s) <= 3) {
Q a = makeEdge(s[0], s[1l]), b = makeEdge(s[1l], s.back());
if (sz(s) == 2) return { a, a->r() };
splice(a->r (), b);
auto side = s[0].cross(s[l], s[2]);
Q ¢ = side ? connect (b, a) : 0;
return {side < 0 ? c->r() : a, side < 0 ? ¢ b->r () };
}
#define H(e) e->F (), e->p
#define valid(e) (e->F().cross (H(base)) > 0)
Q A, B, ra, rb;
int half = sz (s) / 2;
tie(ra, A) = rec({all(s) - half});
tie (B, rb) = rec({sz(s) - half + all(s)});
while ((B->p.cross(H(A)) < 0 && (A = A->next())) ||
(A->p.cross (H(B)) > 0 && (B = B->r()->0)));
Q base = connect (B->r (), A);
if (A->p == ra->p) ra = base->r();
if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
while (circ(e->dir->F (), H(base), e—>F())) { \
Q t = e->dir; \
splice (e, e->prev()); \
splice(e->r (), e->r()->prev()); \
e->0 = H; H=1¢e; e =t; \
}
for (i) {
DEL (LC, base->r (), o); DEL(RC, base, prev());
if (!valid(LC) && !valid(RC)) break;
if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
base = connect (RC, base->r());
else
base = connect (base->r (), LC->r());
}
return { ra, rb };
}
vector<P> triangulate (vector<P> pts) {
sort (all(pts)); assert (unique (all (pts)) == pts.end());
if (sz(pts) < 2) return {};
Q e = rec(pts).first;
vector<Q> q = {e};
int gi = 0;
while (e->0->F () .cross(e->F(), e->p) < 0) e = e->0;
#define ADD { Q ¢ = e; do { c->mark = 1; pts.push_back (c->p);
g.push_back(c->r()); ¢ = c—>next(); } while (c != e); }
ADD; pts.clear();
while (gi < sz(q)) if (! (e = glgi++])->mark) ADD;
return pts;

\

UCF

PlanarFaceExtraction.h

Description: Given a planar graph and where the points are, extract the set
of faces that the graph makes. The inner faces will be returned in counter-
clockwise order, and the outermost face will be returned in clockwise order.

Time: O (ElogE) 63£230, 39 lines

template<class P>

vector<vector<P>> extract_faces (vvi adj, vector<P> pts) {

int n = sz (pts);

#define cmp (i) [&] (int pi, int gi) -> bool { \
P p = pts[pi] - pts[i], g = ptslgi] - pts[i]; \
bool sideP = p.y < 0 || (p.y == 0 && p.x < 0); \
bool sideQ = g.y < 0 || (g.y == 0 && g.x < 0); \
if (sideP != sideQ) return sideP; \
return p.cross(q) > 0; }

rep(i, 0, n)
sort (all(adj[i]), cmp(i));

vii ed;

rep(i, 0, n) for(int j: adj[i])
ed.emplace_back (i, Jj);

sort (all(ed));

auto get_idx = [&] (int i, int Jj) -> int {

return lower_bound(all (ed),
}i
vector<vector<P>> faces;
vi used(sz(ed));

pii(i, J))-begin(ed);

rep(i, 0, n) for(int j: adjli]) {
if (used[get_idx (i, 3)1)
continue;
used[get_idx (i, j)] = true;
vector<P> face = {pts[i]};
int prv = 1i, cur = j;

while (cur != i) {
face.push_back (pts([cur]);
auto it = lower_bound(all (adjlcur]),
if (it == begin(adjlcur])
it = end(adjlcur]);
prv = cur, cur = *prev(it);
used|[get_idx (prv, cur)] = true;
}
faces.push_back (face) ;
}
#undef cmp
return faces;

prv, cmp(cur));

Graphs (5)

5.1 Network flow

Dinic.h

Description: Flow algorithm with complexity O(VElogU) where U =
max |cap|. O(min(EY/2,V?/3)E) if U = 1; O(VVE) for bipartite match-

ng. d7f0f1, 42 lines

struct Dinic {
struct Edge {

int to, rev;
11 ¢, oc;
11 flow() { return max(oc - ¢, OLL); } // if you need flows
}i
vi 1lvl, ptr, q;
vector<vector<Edge>> adj;
Dinic (int n) lvl(n), ptr(n), g(n), adj(n) {}
void addEdge (int a, int b, 11 ¢, 11 rcap = 0) {
adjlal .push_back ({b, sz(adjlbl), c, c});
adj[b] .push_back({a, sz(adjlal) - 1, rcap, rcap});

i

11 dfs(int v, int t, 11 f) {
if (v == || 'f) return £f;
for (int& i = ptr(v]; i < sz(adjlv]); i++) {
Edges e = adjlv][i];
if (lvl[e.to] == 1lvl[v] + 1)
if (11 p = dfs(e.to, t, min(f, e.c))) {
e.c —= p, adjle.to][e.rev].c += p;
return p;
}
}
return 0;
}
11 calc(int s, int t) {
11 flow = 0; gql0] = s;

rep(L,0,31) do { // ’int L=30" maybe faster for random data
1lvl = ptr = vi(sz(q));

int gi = 0, ge = 1lvl[s] = 1;
while (gi < ge && !1vl[t]) {
int v = glgi++];
for (Edge e adj[v])
if (!lvl[e.to] && e.c >> (30 - L)
glget++] = e.to, lvlle.to] = 1lvl[v] + 1;
}
while (11 p = dfs(s, t, LLONG_MAX)) flow += p;
} while (1vl[t]);
return flow;

}

bool leftOfMinCut (int a) { return 1lvlla] != 0; }

}i

MinCostMaxFlow.h

Description: Min-cost max-flow. Negative cost cycles not supported. To
obtain the actual flow, look at positive values only.

Time: Approximately O (E?), actually O (F'S) where S is the time com-

plexity of the SSSP alg used in find path (in this case SPFA) . . .

struct mcmf {
const 11 inf =
struct edge {
int v;
11 cap,
Yi
int n;
vector<edge> edges;
vvi adj; vii par; vi in_g;
vector<ll> dist, pi;
mcmf (int n): n(n), adj(n),
void add_edge (int u, int v,
int idx = sz (edges);
edges.push_back ({v, cap, O,
edges.push_back ({u, cap, cap,
adjl[u] .push_back (idx) ;
adj[v].push_back (idx ~ 1);
}
bool find_path(int s, int t) {
£ill(all(dist), inf);
fill(all(in_g), 0);
queue<int> g; g.push(s);
dist([s] = 0, in_qg[s] = 1;
while (!g.empty()) {
int cur = g.front();
in_g[cur] = 0;
for (int idx: adjlcur]) {
auto [nxt, cap, fl, wt] =
11 nxtD = dist[cur] + wt;
if(fl1 >= cap || nxtD >= dist[nxt])
dist[nxt] = nxtD;
par[nxt] = {cur, idx};
if(in_g[nxt]) continue;

LLONG_MAX >> 2;

flow, cost;

in_qg(n), dist(n), pi(n) {}

11 cost) {

par (n),
11 cap,

cost});
—-cost});

q.pop();

edges [idx];

continue;

Dinic MinCostMaxFlow MCMFdijkstra GlobalMinCut 10

g.push (nxt); in_g[nxt] = 1;
}
}
return dist[t] < inf;
}
pair<ll, 11> calc(int s, int t) {
11 flow = 0, cost = 0;
while (find_path(s, t)) {
11 £ = inf;
for(int i, u, v = t; tie(u, i) = par[v], v != s; v = u)
f = min(f, edges[i].cap - edges[i].flow);
flow += £f;
for(int i, u, v = t; tie(u, i) = par(v], v != s; v = u)
edges[i].flow += f, edges[i”l].flow -= f;
}
rep(i, 0, sz (edges)>>1)
cost += edges[i<<l].cost % edges[i<<l].flow;
return {flow, cost};
}
Yi
MCMFdijkstra.h

Description: If SPFA TLEs, swap the find_path function in MCMF with the
one below and in_q with seen. If negative edge weights can occur, initialize
pi with the shortest path from the source to each node using Bellman-Ford.

Negative weight cycles not supported. Tace8f, 24 lines

bool find_path(int s, int t) {
£ill (all(dist), inf);
fill (all(seen), 0);
dist[s] = 0;
__gnu_pbds::priority_queue<pair<ll, int>> pq;
vector<decltype (pq) : :point_iterator> its(n);

pg.push ({0, s});
while (!pg.empty ()) {
auto [d, cur] = pqg.top(); pg.pop(); d *= -1;
seen[cur] = 1;
if (dist[cur] < d) continue;
for (int idx: adjlcur]l) {
auto [nxt, cap, f, wt] = edges[idx];
11 nxtD = d + wt + pil[cur] - pi[nxt];
if(f >= cap || nxtD >= dist[nxt] || seen[nxt]) continue;
dist[nxt] = nxtD;
par[nxt] = {cur, idx};
if (its[nxt] == pg.end()) its[nxt] = pg.push({-nxtD, nxt})

else pg.modify (its[nxt], {-nxtD, nxt});
}
}
rep(i, 0, n) pi[i] = min(pi[i]
return seen(t];

+ dist[i], inf);

GlobalMinCut.h
Description: Find a global minimum cut in an undirected graph, as repre-
sented by an adjacency matrix.

P 3
Time: O (V?) 8b0el9, 21 lines

pair<int, vi> globalMinCut (vector<vi> mat) {
pair<int, vi> best = {INT_MAX, {}};
int n = sz (mat);
vector<vi> co(n);
rep(i,0,n) col[i] =
rep(ph,1,n) {
vi w = mat[0];
size_t s = O,
rep (it, 0, n-ph)

{i};

t = 0;
{ // O(V*2) = O(E log V) with prio. queue

UCF
w[t] = INT_MIN;
s = t, t = max_element (all(w)) - w.begin();
rep(i,0,n) w[i] += mat([t][i];
}
best = min(best, {w[t] - mat[t][t], colt]});
co[s].insert (co[s].end(), all(col[t]));
rep(i,0,n) mat[s][i] += mat[t][i];
rep(i,0,n) mat[i] [s] = mat[s][i];
mat [0] [t] = INT_MIN;
}
return best;
}
GomoryHu.h

Description: Given a list of edges representing an undirected flow graph,
returns edges of the Gomory-Hu tree. The max flow between any pair of
vertices is given by minimum edge weight along the Gomory-Hu tree path.
Time: O (V) Flow Computations

"Dinic.h" e2b333, 13 lines

typedef array<ll, 3> Edge;
vector<Edge> gomoryHu (int N,
vector<Edge> tree;
vi par (N);
rep (i, 1,N) {
Dinic D(N);

vector<Edge> ed) {

for (Edge t ed) D.addEdge (t[0], t[1], t[2], t[2]);
tree.push_back ({i, par[i], D.calc(i, par[i])});
rep(j,i+1,N)

if (par[j] == par[i] && D.leftOfMinCut (j)) par([j] = i;

}

return tree;

MatroidIntersection.h

Description: Given two matroids, finds the largest common independent
set. For the color and graph matroids, this would be the largest forest where
no two edges are the same color. A matroid has 3 functions

- check(int x): returns if current matroid can add x without becoming
dependent

- add(int x): adds an element to the matroid (guaranteed to never make it
dependent)

- clear(): sets the matroid to the empty matroid

The matroid is given an int representing the element, and is expected to
convert it (e.g: the color or the endpoints) Pass the matroid with more ex-
pensive add/clear operations to M1.

Time: R?N(M2.add+ M1.check+ M2.check)+R*M1.add+ R*M1.clear +
RNM2.clear

"../data-structures/UnionFind.h"

struct ColorMat {
vi cnt, clr;
ColorMat (int n, vector<int> clr) cnt (n),
bool check (int x) { return !cntlclr(x]]; }
void add(int x) { cntclr[x]]++; }
void clear() { fill(all(cnt), 0); }

}i

struct GraphMat {
UF uf;
vector<array<int, 2>> e;
GraphMat (int n, vector<array<int,
bool check (int x) { return
void add(int x) { uf.join (e
void clear () { uf =

9812a7, 60 lines

clr(clr) {}

2>> e) : u
'uf.sameSet (e[[
[x]1[0], e[x][1
UF (sz (uf.e)); }

— X

Yi

template <class M1,
int nj;
vector<char> iset;
M1 ml; M2 m2;

class M2> struct MatroidIsect {

MatroidIsect (M1 ml, M2 m2, int n) n(n), iset(n + 1), ml(ml)
; m2(m2) {}
vi solve () {
rep(i,0,n) if (ml.check(i) && m2.check (1))
iset[i] = true, ml.add (i), m2.add(i);
while (augment());
vi ans;
rep(i,0,n) if (iset[i]) ans.push_back(i);

return ans;

}
bool augment () {
vector<int> frm(n, -1);
queue<int> q({n}); // starts at dummy node
auto fwdkE = [&] (int a) {
vi ans;
ml.clear();
rep(v, 0, n) if (iset[v] && v != a) ml.add(v);
rep(b, 0, n) if (!iset([b] && frm[b] == -1 && ml.check (b))
ans.push_back (b), frm[b] = a;
return ans;
Yi
auto backE = [&] (int b) {
m2.clear();
rep(cas, 0, 2) rep(v, 0, n)
if ((v == b || iset[v]) && (frm[v] == -1) == cas) {
if (!'m2.check (v))
return cas ? g.push(v), frm[v] = b, v -1;
m2.add (v) ;
}
return nj;
Yi
while (!qg.empty()) {
int a = g.front (), c; g.pop();
for (int b fwdE (a))
while ((c = backE (b)) >= 0) if (¢ == n) {
while (b != n) iset[b] 7= 1, b = frm[b];
return true;
}
}
return false;
}

}i

5.2 Matching
hopcroftKarp.h

Description: Fast bipartite matching algorithm. Graph g should be a list
of neighbors of the left partition, and btoa should be a vector full of -1’s of
the same size as the right partition. Returns the size of the matching. btoal[i]
will be the match for vertex i on the right side, or —1 if it’s not matched.

Usage: vi btoa(m, -1); hopcroftKarp(g, btoa);
Time: O (WE) f612e4, 42 lines
bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vis B) {
if (Afla] != L) return 0;
Ala] = -1;
for (int b glal) if (B[b] ==L + 1) {
B[b] = 0;
if (btoal[b] == -1 || dfs(btoalbl, L + 1, g, btoa, A, B))
return btoal[b] = a, 1;
}
return 0;
}
int hopcroftKarp (vector<vi>& g, vi& btoa) {
int res = 0;
vi A(g.size()), B(btoa.size()), cur, next;
for (;;) |

fill(all(a), 0);

GomoryHu MatroidIntersection hopcroftKarp DFSMatching MinimumVertexCover 11

fill (all (B),
cur.clear();
for (int a

0);

btoa) if(a != -1) Alal = -1;
rep(a,0,sz(g)) if(A[a] == 0) cur.push_back(a);
for (int lay = 1;; lay++) {
bool islast = 0;
next.clear();
for (int a cur)
if (btoalb] ==
B[b] = lay;
islast = 1;
}
else if (btoa[b] !=
B[b] = lay;
next.push_back (btoa[b]);
}

for
-1) A

(int b glal) |

a && !B[b]) {

}
if (islast) break;

if (next.empty()) return res;

for (int a next) Alal] = lay;
cur.swap (next) ;

}

rep(a, 0,sz(g))
res += dfs(a, 0, g, btoa, A, B);

}

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list
of neighbors of the left partition, and btoa should be a vector full of -1’s of
the same size as the right partition. Returns the size of the matching. btoal[i]
will be the match for vertex ¢ on the right side, or —1 if it’s not matched.

Usage: vi btoa(m, -1); dfsMatching(g, btoa);
Time: O (VE) 522b98, 22 lines
bool find(int j, vector<vi>& g, vi& btoa, vis vis) {

if (btoal[j] == -1) return 1;
vis[j] = 1; int di = btoal]l;
for (int e gldil])
if (!vis[e] && find(e, g, btoa, vis)) {
btoale] = di;
return 1;
}
return 0;
}
int dfsMatching(vector<vi>& g, vi& btoa) {
vi vis;
rep (i, 0,sz(g)) {
vis.assign(sz (btoa), 0);
for (int j gli]
if (find(j, g, btoa, vis)) {
btoalj] = i;
break;
}
}
return sz (btoa) - (int)count (all (btoa), -1);

}

Minimum VertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size
is the same as the size of a maximum matching, and the complement is a
maximum independent set.

"DFSMatching.h" da4196, 20 lines

vi cover (vector<vi>& g, int n, int m) {

vi match(m, -1);

int res = dfsMatching(g, match);

vector<bool> lfound(n, true), seen(m);

for (int it match) 1f (it != -1) lfound[it] = false;
vi g, cover;

UCF WeightedMatching GeneralMatching SCC BiconnectedComponents 2sat 12
rep(i,0,n) if (lfound[i]) g.push_back(i); } tin.assign(n, 0); comp.assign(n, -1);
while (!qg.empty()) { }; Time = ncomps = 0;
int 1 = g.back(); g.pop_back(); auto blossom = [&] (int v, int w, int a) { rep(i,0,n) if (comp[i] < 0) dfs(i, g, £f);
lfound[i] = 1; while (origl[v] != a) { }
for (int e gli]) if (!seen[e] && matchl[e] != -1) { par[v] = w;
seenf[e] = true; w matel[v]; .
q.push_back (match[e]) ; if (label(w] == 1) label[w] = 0, q.push_back (w); Blcor}ne_cted(?ompor}ents.h))
} origlv] = orig[w] = a, v riwl; Description: Finds all biconnected components in an undirected graph, and
} } runs a callback for the edges in each. In a biconnected component there are
rep(i,0,n) if (!lfound[i]) cover.push_back (i); }i gt least two distinct paths between.any two r}odes. Note that_ a noc_le can be
rep(i,0,m) if (seen[i]) cover.push_back (n+i); auto augment = [&] (int v) { in several components. An edge which is not in a component is a bridge, i.e.,
assert (sz (cover) == res); while (v != -1) { not part .Of anyl cycle. .
return cover; int pv = par(v], nv = mate[pv]; Usage: int eid = 0; ed.resize(N);
} mate[v] = pv, mate[pv] = v, v = nv; for each edge (a,b) { .
) ed[a] .emplace_back (b, eid);
. . }; ed[b] .emplaceback(a, eid++); }
Welgl'lte'dMat.Chmg.h.)) auto bfs = [&] (int root) { bi.comps([&] (const vis edgelist) {...});
DESCI.‘lptlol’l: Given a v.velghted bipartite graph, mfmtches every 'node on the £ill (all(label), -1), iota(all(orig), 0); Time: O (E+V) 442085, 31 lines
left with a node on Fhe rlght s.u.ch that no nodes are in two matchln.gs. and the g.clear (), g.push_back (root), label[root] = 0; vi tin, st:
sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost ; L= 0. g .4 ! ! L
- : : : Jon for (int i = 0; i < sz(q); i++) { vector<vector<pii>> ed;
for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is int v = gl[i]; ! - P ’
i .
matched with R[matchli]]. Negate costs for max cost. Requires N < M. int Time;
Time: O(N M) for (auto x : adjlv]) template<class F>
1e0fe9, 31 lines if (label[x] == -1) { int dfs(int cur, int par, F& £) {
pair<int, vi> hungarian(const vector<vi> &a) { label[x] =1, par([x] = v; int me = tin[cur] = ++Time, low = me;
if (a.empty()) return {0, {}}; if (mate[x] == -1) return augment (x); for (auto [nxt, e] edlcur]) if (e != par) {
int n = sz(a) + 1, m = sz(al0]) + 1; label[mate(x]] = 0, q.push_back(mate[x]); if (tin[nxt]) {
vi u(n), v(m), p(m), ans(n - 1); } else if (label([x] == 0 && orig[v] != orig[x]) { low = min(low, tin[nxt]);
rep(i,1,n) { int a = lca(origlv], origlx]); if (tin[nxt] < me)
pl0] = i; blossom(x, v, a), blossom(v, x, a); st.push_back (e) ;
int j0 = 0; // add 7dummy” worker 0 } } else {
vi dist(m, INT_MAX), pre(m, -1); ¥ int si = sz (st);
vector<bool> done(m + 1); bi) . .) int up = dfs(nxt, e, f);
do { // dijkstra // l'nlne h.alves 1f you s?fart with (any) mazimal matching. low = min(low, up);
done[j0] = true; for (int i = 0; i < n; i++) if (up >=me) { // e is a bridge if up > me
int i0 = p[j0], 1, delta = INT_MAX; if (mate[i] == -1) bfs(i); st .push_back (e) ;
rep(3,1,m) if (ldone[3]) { return mate; f(vi(st.begin() + si, st.end()));
auto cur = afi0 - 11[jJ - 1] - uli0] - vI[3]; i st.resize(si);
if (cur < dist[j]) dist[j] = cur, prel[j] = JjO; . }
if (dist[j] < delta) delta = dist[3], 31 = 3; 5.3 DFS algorithms else st.push_back(e);
} }
rep(3,0,m) { SCCh }
if (done[j]) ulpl[j]] += delta, v[3j] -= delta; Desprlptlon: Finds strongly connected components in a directed graph.' If return low;
else dist[j] -= delta; vertices u, v belong to the same component, we can reach v from v and vice }
} ! versa.
30 = 91; Usage: scc (graph, .[&] (vi& v) { . }) visits all components template<class F>
} while (p[30]); ?.n reverse topological order. comp[i] holds the component ' void bicomps(F f) {
while (30) // update alternating path index of a node (a component only has edges to components with tin.assign(sz(ed), 0);
int 1 = pre[30]; rlro'wer' 1(;deEx) .V ncomps will contain the number of components. rep(i,0,sz(ed)) if (!tin[i]) dfs(i, -1, f);
p[30] = pl3ll, 30 = 31; ime: O (E +V) 18dads, 24 lines | }
¥ vi tin, comp, z, cont;
¥ (4,1,m) if (p[3D) (o[4] 1] . | int Time, ncomps; QSath
re ,1,m) i ans - = - 1; ; ; . X . .
reguin {-v[0] gn;}' // 7r$injcosL J texlﬂplate<cias:.s G/ Clafs F>‘1nt dfs(int cur, G& g, F& £) { Description: Calculates a valid assignment to boolean variables a,
} ' ! int low = tinf[cur] = ++T}me, ¥j z.push_back (cur); b, c,... to a 2-SAT problem, so that an expression of the type
for (auto nxt : glcur]) 1f7 (comp[nxt] < 0) (a\\b)&&('a”c)&&(d”'b)&& becomes true, or reports that it is unsatis-
) low = min(low, tin[nxt] ?: dfs(nxt,g,f)); fiable. Negated variables are represented by bit-inversions (~x).
GeneralMatChmg.h . L Usage: TwoSat ts(number of boolean variables);
Description: Given a graph, finds a set of edges such that no node is inci- if (low == tinf[cur]) { ts.either (0, ~3); // Var 0 is true or var 3 is false
dent to more than one edge in the set. do { ts.setValue(2); // Var 2 is true
Time: O (VE) 15 . ® z.back (); z.pop_back(); ts.atMostOne ({0,~1,2}); // <= 1 of vars 0, ~1 and 2 are true
a809, 46 lines comp[x] = ncomps; X X X
- - - ’ ts.solve(); // Returns true iff it is solvable
v1‘Blossom(V§ct<IJr<v1>& adj) { cor}t.push_back(x), ts.values[0..N-1] holds the assigned values to the vars
int n = adj.size(), T = -1; } while (x 1= cur); Time: O (N + E), where N is the number of boolean variables, and E is the
vi mate(n, -1), label(n), par(n), orig(n), aux(n, -1), g; f(cont); cont.clear();
)) number of clauses.)
auto lca = [&] (int x, int y) { ncomps++; 59706, 56 lines
for (T++;; swap(x, y)) { } struct TwoSat {
if (x == -1) continue; return tin[cur] = low; int N;
if (aux[x] == T) return x; } vector<vi> gr;
aux[x] = T; template<class G, class F> void scc(Gs& g, F f) { vi values; // 0 = false, 1 = true
x = (mate[x] == -1 2 -1 orig([par[mate[x]]]); int n sz (g9);

UCF EulerWalk DominatorTree Reroot EdgeColoring EnumerateTriangles 13

TwoSat (int n = 0) : N(n), gr(2*n) {}

int addvar() { // (optional)
gr.emplace_back () ;
gr.emplace_back () ;
return N++;

}

void either (int £, int 3j) {
f = max (2+«f, -1-2«f);
J = max (2+3, -1-2x3);
gr[f].push_back (j°1);
gr[j].push_back (f°1);

}

void setValue (int x) { either(x, x); }

void atMostOne (const vi& 1i) { // (optional)
if (sz(li) <= 1) return;
int cur = ~1i[0];
rep(i,2,sz(11)) {
int next = addvar();
either (cur, ~1i[i]);
either (cur, next);
either (~1i[i], next);

cur = ~next;
}
either (cur, ~1i[1]);
}
vi val, comp, z; int time = 0;
int dfs(int 1) {
int low = val[i] = ++time, x; z.push_back(i);
for(int e : gr[i]) if (!'comple])
low = min(low, valle] ?: dfs(e));
if (low == val[i]) do {
x = z.back(); z.pop_back();
comp[x] = low;
if (values[x>>1] == -1)
values[x>>1] = x&l1;
} while (x != 1);
return val[i] = low;
}
bool solve() {
values.assign (N, -1);
val.assign(2+N, 0); comp = val;
rep(i,0,2«N) if (!comp[i]) dfs(i);
rep(i,0,N) if (comp[2%i] == comp[2%i+1l]) return O;
return 1;
}

Yi

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input
should be a vector of (dest, global edge index), where for undirected graphs,
forward /backward edges have the same index. Returns a list of nodes in
the Eulerian path/cycle with src at both start and end, or empty list if no
cycle/path exists. To get edge indices back, add .second to s and ret.

Time: O (V 4+ E) 780b64, 15 lines

vi eulerWalk (vector<vector<pii>>& gr, int nedges, int src=0) {
int n = sz (gr);
vi D(n), its(n), eu(nedges), ret, s = {src};
Dlsrcl++; // to allow Euler paths, not just cycles
while (!s.empty()) {

int x = s.back(), y, e, &it = its[x], end = sz (gr[x]);
if (it == end){ ret.push_back(x); s.pop_back(); continue; }
tie(y, e) = gr[x][it++];

if (leule]) {

D[x]-—, DIlyl++;
1

eule] = 1; s.push_back(y);
1}
for (int x : D) if (x < 0 || sz (ret) != nedges+l) return {};
return {ret.rbegin(), ret.rend()};

}

DominatorTree.h
Description: Builds a dominator tree on a directed graph. Output tree is
a parent array with src as the root. The parent of src is —1.

Time: O (V 4+ E) 6037¢2, 47 lines

vi getDomTree (vvi &adj, int src) {

int n = sz(adj), t = 0;
vvi revAdj(n), child(n), sdomChild(n);
vi label(n, -1), revLabel(n), sdom(n), idom(n), par(n), best(
n);
auto dfs = [&] (int cur, auto &dfs) -> void {
label[cur] = t, revLabel[t] = cur;
sdom[t] = par[t] = best[t] = t; t++;
for (int nxt: adjlcur]l) {
if (label[nxt] == -1) {

[
dfs (nxt, dfs)
c

child[label[cur]].push_back (label [nxt]);

}
revAdj[label [nxt]].push_back (label[cur]);
}
Yi
dfs (src, dfs);
auto get = [&] (int x, auto &get) -> int {
if (par([x] != x) {
int t = get (par[x], get);
par[x] = par[par([x]];
if (sdom[t] < sdom[best([x]]) best[x] = t;
}
return best[x];
Yi
for(int 1 = t-1; i >= 0; i--) {
for(int j: revAdj[i]) sdom[i] = min(sdom[i], sdom[get (]J,
get)1);
if(i > 0) sdomChild[sdom[i]].push_back (1) ;
for (int j: sdomChild[i]) {
int k = get(j, get);
if (sdom[j] == sdom[k]) idom[j] = sdom[]j];
else idom[j] = k;
}
for(int j: child[i]) par([j] = i;
}
vi dom(n);
rep(i, 1, t) {
if (idom[i] != sdom[i]) idom[i] = idom[idom[i]];
dom[revLabel[i]] = revLabel[idom[i]];
}
dom[src] = -1;

return dom;

Reroot.h
Description: Generic reroot DP with decombine. The provided operations
solve sum of distances to all nodes.

Time: O (N) ac6bc6, 24 lines

using T = pair<ll, 11>;
T init () { return {1, 0}; }

T combine(T a, T b) { return {a.first + b.first,
a.second + b.second + b.first}; }

T decombine (T a, T b) { return {a.first - b.first,
a.second - b.second - b.first}; }

vector<vi> adj;
vector<T> dp, dpr;

T dfs(int u, int p) {

dpl[u] = init ();
for (int v : adj[ul) 1if (v != p)
dp[u] = combine(dplul, dfs(v, u));
return dplul;
}
T dfsr(int u, int p, T dpr_p = init()) {
dpr[u] = dplul;
if (p != u) dprlu] = combine(dpr(u], dpr_p);
for (int v : adj[u]l) 1if (v != p)
dfsr (v, u, decombine (dpr(u], dpl[v]));
return dpr(ul;
}

5.4 Coloring
EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, com-
putes a (D + 1)-coloring of the edges such that no neighboring edges share
a color. (D-coloring is NP-hard, but can be done for bipartite graphs by
repeated matchings of max-degree nodes.)

Time: O (NM) e210e2, 31 lines

vi edgeColoring(int N, vector<pii> eds) {

vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
for (pii e : eds) ++ccle.first], ++ccle.second];
int u, v, ncols = smax_element (all(cc)) + 1;

vector<vi> adj (N, vi(ncols, -1));
for (pii e : eds) {

tie(u, v) = e;

fan[0] = v;

loc.assign (ncols, 0);

int at = u, end = u, d, ¢ = free[u], ind = 0, i 0;

while (d = freelv], !loc[d] && (v = adj[u][d]) != -1)
loc[d] = ++ind, ccl[ind] = d, fan[ind] = v;

cclloc[d]] = c;

for (int cd = d; at != -1; cd "= c ~ d, at = adjlat] [cd])
swap (adj[at] [cd], adjlend = at][cd ~ c ~ d]);

while (adj[fan[i]][d] !'= -1) {
int left = fan[i], right = fan[++i], e = cc[i];
adj[u] [e] = left;
adj[left] [e] = u;
adjl[right] [e] = -1;
free[right] = e;

}

adj[u] [d] = fan[i];

adjl[fan[i]][d] = u;

for (int y : {fan[0], u, end})
for (int& z = freely] = 0; adjlyllz] != -1; z++);

}
rep (i, 0, sz (eds))
for (tie(u, v) = eds[i]; adj[u] [ret[i]] !'= v;) ++ret[i];

return ret;

}

5.5 Miscellaneous

EnumerateTriangles.h
Description: Runs a callback on all triangles in an undirected graph.

UCF

Usage: enumerate_triangles(edges, n, [&] (int u, int v, int w) {

Hi
Lo 3/2
Time: O (V + E) dc108f, 17 lines

void enumerate_triangles (

const vector<pair<int, int>>& edges, int n, auto f) {
vector<int> deg(n);
for (auto [u, V] edges) deglul++, deg[v]++;
vector<vector<int>> adj(n);
for (auto [u, V] edges) {

if (tie(deglu], u) > tie(deglv], v)) swap(u, v);

adj[u] .push_back (v);
}
vector<bool> seen(n);
for (auto [u, V] edges) {
for (int w adj[u]) seen[w] = 1;
for (int w adjlv])
if (seen[w]) f(u, v, w);
for (int w adjlul]) seen[w] = 0;
}

}

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a
symmetric bitset matrix; self-edges not allowed). Callback is given a bitset
representing the maximal clique.

Time: O (3"/3), much faster for sparse graphs .
b0d5b1l, 12 lines

typedef bitset<128> B;
template<class F>

void cliques (vector& eds, F £, B P = ~B(), B X={}, B R={}) {
if (!P.any()) { if (!X.any()) f(R); return; }
auto g = (P | X)._Find_first();
auto cands = P & ~eds[q];
rep(i,0,sz(eds)) if (cands[i]) {
R[i] = 1;
cliques(eds, f, P & eds[i], X & eds[i], R);
R[i] = P[i] = 0; X[1i] = 1;
}

}

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmet-
ric bitset matrix; self-edges not allowed). Can be used to find a maximum
independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90).

Runs faster for sparse graphs. f7e0be. 49 lines

typedef vector<bitset<200>> vb;
struct Maxclique {
double 1limit=0.025, pk=0;
struct Vertex { int i, d=0; };
typedef vector<Vertex> vv;
vb e;
vv V;
vector<vi> C;
vi gmax, g, S, old;
void init (vv& r) |

for (auto& v r) v.d = 0;
for (auto& v r) for (auto j : r) v.d += e[v.i][J.1];
sort (all(r), [](auto a, auto b) { return a.d > b.d; });
int mxD = r[0].d;
rep(i,0,sz(xr)) r[i].d = min(i, mxD) + 1;
}
void expand(vv& R, int lev = 1) {
S[lev] += S[lev - 1] - old[lev];
old[lev] = S[lev - 1];
while (sz (R)) {

if (sz(gq) + R.back().d <= sz (gmax)) return;

g.push_back (R.back () .1);

vv T;

for (auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i})

if (sz(T)) {
if (S[lev]++ / ++pk < limit) init(T);
int j = 0, mxk = 1, mnk = max(sz (gmax)
C[l].clear(), C[2].clear();
for (auto v : T) {
int k = 1;
auto f = [&] (int 1)
while (any_of (all(C
if (k > mxk) mxk = k, C[mxk + 1].clear();
if (k < mnk) T[j++].1 = v.i;
Clk] .push_back (v.1i);
}
if (3 > 0) T[J - 1].d = 0;
rep (k,mnk, mxk + 1) for (int i
T[j].i = i, T[j++].d = k;
expand (T, lev + 1);
} else if (sz(g) > sz (gmax))
g.pop_back (), R.pop_back();
}

- sz(q) + 1, 1);

{ return e[v.i][i]; };
[k1), £)) k++;

Clkl)

gmax = q;

}

vi maxClique () { init (V), expand(V);

Maxclique (vb conn) e(conn), C(sz(e
rep(i, 0,sz(e)) V.push_back ({i});

return gmax; }

)+1), S(sz(C)), old(s) {
¥

Yi

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max
clique of the complement. If the graph is bipartite, see MinimumVertex-
Cover.

5.6 Trees

5.6.1 Number of Spanning Trees

Create an N X N matrix mat, and for each edge a — b € G, do
mat[a] [b]-—, mat[b] [b]++ (and mat [b] [a]-—,

mat [a] [a]++ if G is undirected). Remove the ith row and
column and take the determinant; this yields the number of
directed spanning trees rooted at ¢ (if G is undirected, remove
any row/column).

5.6.2 Erdoés-Gallai theorem

A simple graph with node degrees di > --- > d,, exists iff

di +---+dy is even and for every k =1...n,
Zd <k(k—1)+ Z min(d;, k).
i=k+1
BinaryLifting.h

Description: lca and kth_parent queries

Time: construction O (N), queries O (log N) 4667, 37 lines

struct tree_lift {
struct node {
int d, p = -1, jJ = -1;
Yi
vector<node> t;

tree_lift (const auto& adj): t(ssize(adj)) {

MaximalCliques MaximumClique MaximumIndependentSet BinaryLifting KthPath LCA 14

auto dfs = [&] (auto&s& self, int v) -> void {
int jump =
(tv].d + tlt[t[v].]j].3].d == * tlt[v].jl.d)
? tltlv].Jl.]
s v
for (int u : adjlv])
if (u !'= t[v].p)
tlu].d = t(t[u]l.p = v].d + 1, tlul.]J = jump,
self (self, u);
Yi
for (int i = 0; 1 < ssize(t); i++)
if (£[i].J == -1) t[i].j = 1, dfs(dfs, 1);
}
int kth_par(int v, int k) {
int anc_d = t[v].d - k;
while (t[v].d > anc_d)
v = t[t[v].j].d >= anc_d ? t[v].] t[v].p;
return v;
}
int lca(int u, int v) {
if (t[ul.d < t[v].d) swap(u, v);
u = kth_par(u, t[u].d - t[v].d);
while (u != v)
if (tful.j !'= tlvl.Jd) u=tlul.j, v =tlv]l.J;
else u = tlul.p, v = t[v].p;
return u;
}
int dist_edges (int u, int v) {
return tf[u].d + t[v].d - 2 % t[lca(u, v)].d;
}
Yi
KthPath.h

Description: kth on path, goes in tree_lift

Time: O (log N) 080dbe, 9 lines

int kth_path(int u, int v, int k) {
int lca_d = t[lca(u, v)].d;
int u_lca = t[u].d - lca_d;
int v_lca = t[v].d - lca_d;
if (k <= u_lca) return kth_par(u, k);
if (k <= u_lca + v_lca)
return kth_par (v, u_lca + v_lca - k);
return -1;
}
LCA.h

Description: Data structure for computing lowest common ancestors in a
tree (with 0 as root). C should be an adjacency list of the tree, either di-
rected or undirected.
Time: O (Nlog N + Q)
"../data-structures/RMQ.h"
struct LCA {

int T = 0;

vi time, path,

RMQ<int> rmqg;

3a5045, 21 lines

ret;

LCA (vector<vi>& C) time (sz(C)), rmg((dfs(C,0,-1), ret)) {}
void dfs(vector<vi>& C, int cur, int par) {
time[cur] = T++;
for (int nxt Clcur]) if (nxt != par) {
path.push_back (cur), ret.push_back (time[cur]);
dfs (C, nxt, cur);
}
}
int lca(int a, int b) {
if (a == b) return a;
tie(a, b) = minmax(time[a], time[b])

UCF
return path[rmg.query(a, b)];

}
//dist(a,b){return depth[a] + depth[b] — 2xdepth[lca(a,b)];}
bi

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the

minimal subtree that contains all the nodes by adding all (at most |S| — 1)
pairwise LCA’s and compressing edges. Returns a list of (par, orig-index)
representing a tree rooted at 0. The root points to itself.

Time: O (]S]|log|S|)

"LCA.h"

9775a0, 21 lines

typedef vector<pair<int, int>> vpi;
vpi compressTree (LCA& lca, const vi& subset) {
static vi rev; rev.resize(sz(lca.time));

vi 1i = subset, &T = lca.time;

auto cmp = [&] (int a, int b) { return Tla] < T[bl; };
sort (all(li), cmp);

int m = sz (l1i)-1;

rep(i,0,m) {
int a = 1i[i], b = 1i[i+1];
li.push_back(lca.lca(a, b));

}

sort (all(li), cmp);

li.erase (unique (all(1i)),

rep(i,0,sz(1i)) rev[li[i]]

li.end());
= 1i;

vpl ret = {pii(0, 1i[0])};
rep (i, 0,sz(1i)-1) {
int a = 1i[i], b = 1i[i+1];
ret.emplace_back (rev[lca.lca(a, b)], b);
}

return ret;

}

CentroidDecomp.h

Description: Calls callback function on undirected forest for each centroid
int

Usage: centroid(adj, [&] (const vector<vector<int>>s& adj,
cent) { ... });

Time: O (nlogn)

d2787e, 32 lines

template <class F, class G> struct centroid {
G adj;

F £;

vi sub_sz, par;

centroid(const G& adj, F f)

adj(adj), £(f), sub_sz(sz(adj), -1), par(sz(adj), -1) {
rep(i, 0, sz(adj))
if (sub_sz[i] == -1) dfs(i);
}
void calc_sz (int u, int p) {
sub_sz[u] = 1;
for (int v adjf[ul)
if (v != p) calc_sz(v, u), sub_sz[u] += sub_sz[V];
}
int dfs(int u) {
calc_sz(u, -1);
for (int p = -1, sz_root = sub_sz[ul;;) {
auto big_ch = find_if (all(adj[u]), [&] (int v) {
return v != p && 2 % sub_sz[v] > sz_root;
)i
if (big_ch == end(adj[u])) break;
p = u, u = *xbig_ch;
}
f(adj, u);
for (int v adjful) {
iter_swap (find(all(adj[v]), u), rbegin(adjlv]));

adj[v] .pop_back();
par[dfs(v)] = u;
}

return u;
}
}i

EdgeCD.h
Description: Recursively splits a tree into two edge sets that share a cen-
troid. Consider all paths that pass through the centroid and use at least
one edge from each set. A node can be a centroid multiple times. Consider
all length 1 paths separately. Callback takes the graph, centroid, and split,
where edges [0, split) from adj[centroid] are in the first set and the rest are
in the second set.

Usage: edge_cd(adj, [&] (const vector<vector<int>>& adj,
cent, int split) { ... });
Time: O (nlogn)

int

436f41, 34 lines

template <class F> struct edge_cd {
vvi adj;
F f;
vi sub_sz;
edge_cd (const vvi& adj, F f)
sub_sz (sz (adj)) {
dfs (0, sz(adj) - 1);
}
int find_cent (int u,
sub_sz[u] = 1;
for (int v adjul) if (v != p) {
int cent = find_cent (v, u, siz);
if (cent != -1) return cent;
sub_sz[u] += sub_sz[Vv];

adj(adj), f(f),

int p, int siz) {

}
return 2 * sub_sz[u] > siz ?
p >= 0 && (sub_sz[p] = siz + 1 - sub_sz[u]), u : -1;
}
void dfs(int u, int siz) {
if (siz < 2) return;
u = find_cent (u, -1,
int sum = 0;
auto it = partition(all(adjlul),
11l x = sum + sub_sz[Vv];
return x * x < siz * (siz - X)
Y
f(adj, u,
vi oth(it,

siz);
[&] (int v) {
? sum += sub_sz[v], 1 : 0;

it - begin(adjlul));
end (adjlul));

adj[u] .erase(it, end(adjlul));
dfs (u, sum);

swap (adj[u], oth);

dfs (u, siz - sum);

}
}i

HLD.h
Description: Decomposes a tree into vertex disjoint heavy paths and light
edges such that the path from any leaf to the root contains at most log(n)
light edges. Code does additive modifications and max queries, but can
support commutative segtree modifications/queries on paths and subtrees.
Takes as input the full adjacency list. VALS_EDGES being true means that
values are stored in the edges, as opposed to the nodes. All values initialized
to the segtree default. Root must be 0.
Time: O ((log N)?)
"../data-structures/LazySegmentTree.h"
template <bool VALS_EDGES> struct HLD {
int N, tim = 0;
vector<vi> adj;
vi par, siz, rt,
Node x*tree;
HLD (vector<vi> adj_)
N(sz(adj_)), adj(adj_), par(N,
rt (N),pos (N), tree (new Node (0,
void dfsSz (int v) {

9547af, 46 lines

pos;

-1), siz(N, 1),
N)){ dfsSz (0); dfsH1d(0); }

CompressTree CentroidDecomp EdgeCD HLD LinkCutTree 15

for (int& u adj[v]) {
adj[u] .erase(find(all (adjlul), v));
par[u] = v;
dfsSz (u) ;
siz[v] += siz[u];
if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
}
}
void dfsHld (int v) {
pos[v] = tim++;
for (int u adj[v]) {
rt[u] = (u == adj[v][0] ? rt[v] : u);
dfsH1ld (u) ;
}
}
template <class B> void process(int u, int v, B op) {
for (;; v = par[rt[v]]) {
if (pos[u] > pos([v]) swap(u, Vv);
if (rt[u] == rt[v]) break;
op(pos[rt[v]], pos[v] + 1);
}
op (pos[u] + VALS_EDGES, pos[v] + 1);
}
void modifyPath(int u, int v, int val) {
process (u, v, [&] (int 1, int r) { tree->add(l, r, val); });
}
int queryPath(int u, int v) { // Modify depending on problem
int res = -1le9;
process (u, v, [&] (int 1, int r) {
res = max(res, tree->query(l, r));
)i
return res;
}

{ // modifySubtree is similar
+ VALS_EDGES, pos[v] + siz[v]);

int querySubtree (int v)
return tree->query (pos|[v]
}
Yi

LinkCutTree.h

Description: Represents a forest of unrooted trees. Nodes are 1l-indexed.

You can add and remove edges (as long as the result is still a forest). You

can also do path sum, subtree sum, and LCA queries, which depend on the
current root.

Time: All operations take amortized O (log N). 9aabda. 105 lines

struct SplayTree {
struct Node {
int ch[2]

= 0y, p =0;
11 self = 0, path = 0; // Path aggregates
11 sub = 0, vir = 0; // Subtree aggregates
bool flip = 0; // Lazy tags

}i
vector<Node> T;
SplayTree (int n) T(n + 1) {}

void push(int x) {
if (!'x || !T[x].flip)

return;

int 1 = T[x].ch[0], r = T[x].ch[1l];
T[1].flip "= 1, T[r].flip "= 1;
swap (T[x].ch[0], T[x].ch[1]);

[
T(x].flip = 0;
}

void pull (int x) {
[

int 1 = T[x].ch[0], r = T[x].ch[1l]; push(l); push(r);

T[x].path = T[1l].path + T[x].self + T[r].path;

UCF DirectedMST Polynomial PolyRoots PolyInterpolate 16

T[x].sub = T[x].vir + T[1l].sub + T[r].sub + T[x].self; } for (auto& [u,t,comp] : cycs) { // restore sol (optional)
} uf.rollback(t);
// Query path [u..v] Edge inEdge = in[ul;
void set (int x, int d, int y) { 11 Path(int u, int v) { for (auto& e : comp) in[uf.find(e.b)] = e;
T[x].ch[d] =vy; Tlyl.p = x; pull(x); reroot (u); access(v); return T[v].path; in[uf.find (inEdge.b)] = inEdge;
} } }
rep(i,0,n) par[i] = in[i].a;
void splay (int x) { // Update verter u with value v return {res, par};
auto dir = [&] (int x) { void Update (int u, 11 v) { }
int p = T[x].p; if (!p) return -1; access (u); T[u].self = v; pull(u);
return T[p].ch[0] == x 2?2 0 : T[pl.ch[l] == x 2 1 : -1; } .
by | b Numerical (6)
auto rotate = [&] (int x) {
int y = T[x].p, z = Tlyl.p, dx = dir(x), dy = dir(y); I)irecte([kiSfF.h .
set (y, Cyix’ Tlx].chltdx]); Description: Finds a minimum spanning tree/arborescence of a directed 6.1 POlynomlalS and recurrences
§et (x, ldx, vy);) graph, given a root node. If no MST exists, returns -1. Polynomial.h)
if (~dy) set(z, dy, x); Time: O(ElogV) c9b7b0, 17 lines
) Tlx]l.p = z; "../data-structures/UnionFindRollback.h" 39¢620, 60 lines | Sstruct Poly {
;) t t Ed int b: 11 w: . vector<double> a;
for (push(x); ~dir(x);) { struc ge { int a, bj Wi b double operator () (double x) const {

struct Node {

int y = T[x].p, z = Tlyl.p; double val = 0;

Edge key;
push (z); push(y); push(x); Noge *ly er for (int i = sz(a); i-—;) (val x= x) += al[il];
int dx = dir(x), dy = dir(y); ! ! return val;
i 1= . . 11 delta; ;
if (~dy) rotate(dx !=dy ? x : y); X }
rotate (x); void prop() { id diff () {
! key.w += delta; vol l X X X
¥ if (1) l->delta += delta; rep(i,1,sz(a)) ali~1] = ixalil;
},} if (r) r->delta += delta; a.pop_back () ;
! delta = 0; } X X
¥ void divroot (double x0) {
struct LinkCut : SplayTree { double b = a.back(), c; a.back() = 0;
. . Edge to ro ; return key; y 4 ’ . ’
LinkCut (int n) : SplayTree(n) {} . g p () { prop() u vi) for (int i=sz(a)-1; i--;) ¢ = al[i], al[i] = a[i+1]*x0+b, b=c;
! a.pop_back () ;
int access(int x) { Noc.ie merge (Node xa, Node +b) { } '
i - =0 if (!a || !b) return a ?: b;
int u = x, v = 0; - . . };
for (; u; v =u, u= Tlul.p) { fa >prop (), >prop () ;
) if (a->key.w > b->key.w) swap(a, b);
splay(u); (a=>1, (a—>r = (b, a->1))); PolyRoots.h
int& ov = T[ul.ch[1l]; swap (a + (a=>r = merge (b, a->r i oy.O(') S.))
T[u].vir += T[ov].sub; return a; Description: Finds the real roots to a polynomial.
Tlu].vir -= T[v].sub; } Usage: polyRoots ({{2,-3,1}},-1e9,1e9) // solve x'2-3x+2 = 0
. . ; . B . _ B B . : 4
ov = v; pull (u); void pop (Nodex& a) { a->prop(); a = merge(a->1, a->r); } Time: O (n”log(1/e¢))
} "Polynomial.h" b0Obfe, 23 lines
return splay(x), v; pair<ll, vi> dmst (int n, int r, vector<Edge>s g) { vector<double> polyRoots (Poly p, double xmin, double xmax) {
phay RollbackUF uf (n);
) o ac uf (n);) if (sz(p.a) == 2) { return {-p.al0]/p.alll}; }
vector<Nodex> heap (n); B vector<double> ret;
void reroot (int x) { iir (Ed?eoé : g) heapl[e.b] = merge (heaple.b], new Node{e}); Poly der = p;
access (x); T[x].flip ~= 1; push (x); - res = Ui] der.diff ();
} vi seen(?, -1), path(n), par(n); auto dr = polyRoots (der, xmin, =xmax);
seen([r] = r; . dr.push_back (xmin-1) ;
void Link (int u, int v) { Zector<Ed?e>.Q(n)(in(n, {71’731})’ comp; dr.push_back (xmax+1) ;
reroot (u); access (v); eque<tuple<int, int, vector<Edge>>> cycs; sort (all (dr));

rep(s,0,n) { rep(i,0,sz(dr)-1) {

T[v].vir += T[u].sub;

] .)
Tlul.p = v; pull(v); int u =s, gl =0, w; double 1 = dr[i], h = dr[i+1];
, while (seen[u] < 0) { bool sign = p(l) > 0;
if ('heap[u]) return {-1,{}}; if (sign ~ (p(h) > 0))
void Cut (int u, int v) { Edge e = heap[u]:>top(); rep(it,0,60) { // while (h — | > 1e—8)
reroot (u); access (v); hea}?[u]—>delta Cew pop (heap[ul) ; double m = (1 + h) / 2, f = p(m);
Tlv].ch[0] = T[u].p = 0; pull (v); Qlal]l = e, pathlqi++] = u, seen[u] = s; if ((f <= 0) ~ sign) 1 = m;
} res += e.w, u = uf.find(e.a); else h = m:
if (seen[u] == s) { } ’
// Rooted tree LCA. Returns 0 if uw and v arent connected. Node* cyc :,O; . . ret.push_back((1 + h) / 2);
int LCA(int u, int v) { int end = gi, time = uf.time(); }
if (u == v) return u; do cyc = merge (cyc, heap[w = path[--qgi]l]); }
access (u); int ret = access(v); while (u,f']Oln(u’ w))i return ret;
return T[u].p ? ret : O0; u = uf.find(u), heaplu] = cyc, seenlu] = -1; }
' ! cycs.push_front ({u, time, {&Q[gi], &Qlend]}});
}
// Query subtree of uw where v is outside the subtree. ¥ . L . . . EOlyInE;erpOlc?teh int . . 6 1-d 1 ial
11 Subtree (int w, int v) rep(i, 0,qi) in[uf.find(Q[i].b)] = Q[i]; escription: Given n points (x[i], y[i]), computes an n-1-degree polynomia
! } p that passes through them: p(z) = a[0] * 2° + ... + a[n — 1] * 2"~ . For

reroot (v); access(u); return Tlu]l.vir + Tlu].self; numerical precision, pick z[k] = ¢ * cos(k/(n — 1) *7),k=0...n — 1.

UCF

s 2
Time: O (n?) 08b£48, 13 lines

typedef vector<double> vd;
vd interpolate(vd x, vd vy,
vd res(n), temp(n);
rep(k,0,n-1) rep(i,k+1,n)
ylil = (y[i] - y(k]) / (xI
double last = 0; temp[0] = 1;
rep(k,0,n) rep(i,0,n) {
res[i] += y[k] * temp[i];
swap (last, temp[i]);
temp[i] -= last *» x[k];
}

return res;

int n) {

BerlekampMassey.h

Description: Recovers any n-order linear recurrence relation from the first
2n terms of the recurrence. Useful for guessing linear recurrences after brute-
forcing the first terms. Should work on any field, but numerical stability for
floats is not guaranteed. Output will have size < n.

Usage: berlekampMassey ({0, 1, 1, 3, 5, 11}) // {1, 2}

Time: O (Nz)

"../number—theory/ModPow.h" 96548b, 20 lines

vector<ll> berlekampMassey (vector<ll> s) {

int n = sz(s), L =0, m = 0;

vector<ll> C(n), B(n), T;

C[0] = B[O] = 1;

11 b = 1;

rep(i,0,n) { ++m;
11 d = s[i] % mod;
rep(j,1,L+1) d = (d + C[j] * s[i — F]) % mod;
if (!d) continue;
T = C; 11 coef = d x modpow (b, mod-2) % mod;
rep(j,m,n) C[j] = (C[J] - coef * B[j - m]) % mod;
if (2 = L > 1) continue;

L=1i+1-L; B=T; b=d; m=0;
}

C.resize(L + 1); C.erase(C.begin());
for (l1ll& x : C) x = (mod - x) % mod;
return C;

LinearRecurrence.h

Description: Generates the k’th term of an n-order linear recurrence
S[i] = >, S[i —j — 1]tr[j], given S[0... > n — 1] and tr[0...n — 1]. Faster
than matrix multiplication. Useful together with Berlekamp—Massey.
Usage: linearRec ({0, 1}, {1, 1}, k) // k’th Fibonacci number

LS 2
Time: O (n” logk) fded44, 26 lines

typedef vector<ll> Poly;

11 linearRec (Poly S, Poly tr, 11 k) {
int n = sz (tr);
auto combine = [&] (Poly a, Poly b) {
Poly res(n « 2 + 1);
rep(i,0,n+1l) rep(j,0,n+1)
res[i + j] = (res[i + J] + ali] * b[j]) % mod;
for (int 1 = 2 % n; 1 > n; —--i) rep(j,0,n)
res[i - 1 - j] = (res[i - 1 - 3] + res[i] % tr[J]) % mod;
res.resize(n + 1);
return res;
}i
Poly pol(n + 1),

e(pol);
pol[0] = e[l] = 1;

for (++k; k; k /= 2) {
if (k % 2) pol = combine (pol, e);
e = combine (e, e);

}

11 res = 0;
rep (i, 0,n)
return res;

}

res = (res + pol[i + 1] =

6.2 Optimization
GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval
la, b] assuming f is unimodal on the interval, i.e. has only one local mini-
mum and no local maximum. The maximum error in the result is eps. Works
equally well for maximization with a small change in the code. See Ternary-
Search.h in the Various chapter for a discrete version.

Usage: double func(double x) { return 4+x+.3xxxx; }

double xmin = gss(-1000,1000, func);

Time: O (log((b — a)/e)) 31d45b, 14 lines

(«f) (double)) {

double gss (double a, double b, double

double r = (sqrt(5)-1)/2, eps = le-7;
double x1 = b - rx(b-a), x2 = a + r*(b-a);
double f1 = f(x1), f2 = £(x2);

while (b-a > eps)

if (f1 < £2) { //change to > to find mazimum

b = x2; x2 = x1; f2 = f1;
xl = b - rx(b-a); fl1 = f(x1);
} else {
a = x1; x1 = x2; fl1 = £2;
x2 = a + r+x(b-a); f2 = £f(x2);
}
return aj;

}

HillClimbing.h

Description: Poor man’s optimization for unimodal functions .
Beeeaf, 14 lines

typedef array<double, 2> P;

template<class F> pair<double, P> hillClimb (P start, F f) {
pair<double, P> cur(f(start), start);
for (double jmp = 1e9; jmp > 1le-20; jmp /= 2) {
rep(3j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
P p = cur.second;

pl0] += dx*jmp;
pl[l] += dyxjmp;
cur = min(cur, make_pair(f(p), p));
}
}
return cur;
}
IntegrateAdaptive.h
Description: Gets area under a curve oThoba, 17 lines
#define approx(a, b) (b-a) / 6 = (f(a) + 4 = f((atb) / 2) + f(b
))
template<class F>
1d adapt (F &f, 1d a, 1d b, 1d A, int iters) {
1ld m = (atb) / 2;
1d Al = approx(a, m), A2 = approx(m, b);

if(liters &s&

return A;
1d left = adapt(f, a, m, Al,
1d right = adapt(f, m, b, A2,
return left + right;

(abs (Al + A2 - A) < eps || b-a < eps))

max (iters-1, 0));
max (iters-1, 0));

BerlekampMassey LinearRecurrence GoldenSectionSearch HillClimbing IntegrateAdaptive RungeKutta Simplex 17

}

template<class F>

1ld integrate(F £, 1d a,
return adapt (f, a, b,

}

1d b,
approx(a,

int iters = 0) {
b), iters);

RungeKutta.h
Description: Numerically approximates the solution to a system of Differ-

ential Equations b068fd, 12 lines

template<class F, class T>
T solveSystem(F f, T x, double time,
double h = time / iters;

int iters) {

for (int iter = 0; iter < iters; iter++) {
T k1 = £(x);
A k2 = f(x + 0.5 %« h = kl1);
A k3 = f(x + 0.5 « h » k2);
A k4 = f(x + h » k3);
x=%x+h/ 6.0 (kI + 2.0 » k2 + 2.0 » k3 + k4);
}
return x;
}
Simplex.h

Description: Solves a general linear maximization problem: maximize Tz
subject to Az < b, x > 0. Returns -inf if there is no solution, inf if there
are arbitrarily good solutions, or the maximum value of ¢’z otherwise. The
input vector is set to an optimal z (or in the unbounded case, an arbitrary
solution fulfilling the constraints). Numerical stability is not guaranteed. For
better performance, define variables such that x = 0 is viable.

Usage: vvd A = {{1,-1}, {-1,1}, {-1,-2}};

vd b = {l,l,—4}, c = {—1,—1}, X;

T val = LPSolver (A, b, c).solve(x);

Time: O (NM x #pivots), where a pivot may be e.g. an edge relaxation.

ny S
O (2™) in the general case. 228530, 68 lines

typedef double T; // long double, Rational, double + mod&kP>...
typedef vector<T> vd;

typedef vector<vd> vvd;

const T eps = le-8, inf = 1/.0;

#define MP make_pair

#define 1tj(X) if(s == -1 || MP(X[J],N[J]) < MP(X[s],N[s])) s=3
struct LPSolver {
int m, n;
vi N, B;
vvd D;
LPSolver (const vvd& A, const vd& b, const vdé& c)
m(sz (b)), n(sz(c)), N(n+l), B(m), D(m+2, vd(n+2)) {
rep(i,0,m) rep(J,0,n) D[1]1[J] = A[Li][]];
rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+l] = b[i];}
rep(J,0,n) { N[Jj] = j; DIm][3] = -cl[J]; }
N[n] = -1; D[m+1] [n] = 1;
}
void pivot (int r, int s) {
T »a = D[r].data(), inv =1 / als];
rep(i,0,m+2) if (i != r && abs(D[i][s]) > eps) {
T b = D[i].data(), inv2 = b[s] * inv;
rep(3j,0,n+2) b[j] -= alj] x inv2;
b[s] = als] * inv2;
}
rep(3j,0,n+2) if (j != s) D[r]l[j] *= inv;
rep(i,0,m+2) if (i != r) D[i][s] *»= -inv;
D(r][s] = inv;
swap (B[r], N[s]);

UCF

}

bool simplex (int phase) {

int x = m + phase - 1;
for (;;) A
int s = -1;
rep(j,0,n+l) if (N[Jj] != -phase) 1ltj(D[x]);
if (D[x][s] >= -eps) return true;
int r = -1;
rep (i, 0,m) {
if (D[i][s] <= eps) continue;
if (r == -1 || MP(D[i][n+1] / DI[i][s], BI[i])
< MP(D[r] [n+1] / D[r][s], B[r])) r = i;
}
if (r == -1) return false;
pivot (r, s);
}
}
T solve(vd &x) {
int r = 0;
rep(i,1,m) if (D[i][n+1] < D[r][n+l]) r = i;
if (D[r][n+l] < -eps) {
pivot (r, n);

if (!simplex(2) || D[m+1l][n+l] < -eps) return -inf;

rep(i,0,m) if (B[i] == -1) {
int s = 0;
rep(j,1,n+l) 1t3j(D[i]);
pivot (i, s);
}
}
bool ok = simplex(l); x = vd(n);
rep(i,0,m) if (B[i] < n) x[B[i]] = D[i] [n+1l];
return ok ? D[m] [n+1] inf;

}
}i

6.3 Matrices

Determinant.h
Description: Calculates determinant of a matrix. Destroys the matrix.

Time: O (N bdscec, 15 lines

double det (vector<vector<double>>& a) {

int n = sz (a); double res = 1;
rep(i,0,n) {
int b = i;
rep(j,i+1l,n) if (fabs(aljl[i]) > fabs(alb][i])) b = j3;
if (1 !'= b) swap(alil, alb]), res = -1;
res x= al[i][i];
if (res == 0) return 0;
rep(j,i+l,n) {
double v = al[jl[i] / alillil;
if (v != 0) rep(k,i+1l,n) aljl[k] -= v = a[i]l [k];
}
}

return res;

}

DeterminantMod.h
Description: Calculates determinant using modular arithmetics.
can also be removed to get a pure-integer version.
Time: O (N?)

Modulos

3313dc, 18 lines

const 11 mod = 12345;
11 det (vector<vector<ll>>& a) {
int n = sz(a); 11 ans = 1;

rep(i,0,n) {
rep(j,i+1l,n) {
while (a[j][1]

1= 0) { // gcd step

11 t = alil(il / aljllil;
if (t) rep(k,1i,n)
alil[k] = (al[il[k] - aljl[k] * t) % mod
swap (ali], al3jl);
ans *= -1;
}
}
ans = ans * al[i][i] % mod;
if ('ans) return 0O;
}
return (ans + mod) % mod;

SolveLinear.h
Description: Solves A x x = b. If there are multiple solutions, an arbitrary
one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost.

= 2
Time: O (n?m) 44c9ab, 38 lines

typedef vector<double> vd;

const double eps = le-12;
int solvelinear (vector<vd>& A, vd& b, vds x) {
int n = sz(A), m = sz(x), rank = 0, br, bc;
if (n) assert(sz(A[0]) == m);
vi col(m); iota(all(col), 0);
rep(i,0,n) {
double v, bv = 0;
rep(r,i,n) rep(c,i,m)
if ((v = fabs(A[r][c])) > bv)
br = r, bc = ¢, bv = v;
if (bv <= eps) {
rep(j,i,n) if (fabs(b[j]) > eps) return -1;
break;
}
swap (A[i], A[br]);
swap (b[i], blbr]);
swap (col[i], collbc]);
rep(j,0,n) swap(A[J][1], A[J][bc]);
bv = 1/A[i][1];
rep(j,i+l,n) {
double fac = A[]J][i] * bv;
b[j] -= fac » b[i];
rep (k,i+1,m) A[Jj][k] —-= facxA[i] [k];
}
rank++;
}
x.assign(m, 0);
for (int i = rank; i-——;) {
b[i] /= A[i][i];
x[col[i]] = bli];
rep(3,0,1) bl(j] -= A[J][1] » b[i];

}

return rank; // (multiple solutions if rank < m)

}

SolveLinear2.h
Description: To get all uniquely determined values of z back from Solve-
Linear, make the following changes:

"SolveLinear.h" 08e495, 7 lines

rep(j,0,n) if (j != i) // instead of rep(j,i+1,n)
// ... then at the end:

x.assign(m, undefined);

rep (i, 0, rank) {

rep(j,rank,m) if (fabs(A[i][]J]) > eps) goto fail;
x[col[i]] = b[i] / A[i][i];
fail:; }

Determinant DeterminantMod SolveLinear SolveLinear2 SolveLinearBinary MatrixInverse 18

SolveLinearBinary.h
Description: Solves Az = b over Fy. If there are multiple solutions, one is
returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b.

A 2
Time: O (n’m) fa2d7a, 34 lines

typedef bitset<1000> bs;

int solvelinear (vector<bs>& A, vi& b, bs& x, int m) {
int n = sz (A), rank = 0, br;

assert (m <= sz (x));

vi col(m); iota(all(col),

rep(i,0,n) {

0);

for (br=i; br<n; ++br) if (A[br].any()) break;
if (br == n) {
rep(j,i,n) if(b[j]) return -1;
break;
}
int bc = (int)A[br]._Find_next (i-1)
swap (A[i], A[br]);
swap (b[1], blbrl]);
swap (col[i], col[bc]);
rep(3,0,n) if (A[J]1[i] !'= A[3][bc]l) {
A[j].flip(i); A[J].flip(bc);
}
rep(j,i+l,n) if (A[J][1]) {
b[j] *= blil];
A[J] ~= A[il;
}
rank++;
}
x = bs();
for (int i = rank; i-——;) {
if (!'b[i]) continue;
x[col[i]] = 1;
rep(3,0,1) b[j] *= A[J][1];
}

return rank; // (multiple solutions if rank < m)

}

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless
singular (rank < n). Can easily be extended to prime moduli; for prime
powers, repeatedly set A7 = A71(2I — AA™!) (mod p*) where A1 starts
as the inverse of A mod p, and k is doubled in each step.

L 3
Time: O (n?) ebfff6, 35 lines

int matInv (vector<vector<double>>& A) {
int n = sz(A); vi col(n);
vector<vector<double>> tmp(n, vector<double>(n));
rep(i,0,n) tmp[i][i] = 1, col[i] = i;

rep (i, 0,n) {
int r = 1,
rep(j,i,n) rep(k,i,n)
if (fabs(A[j][k]) > fabs(A[r
r =3, c¢c=k;

c = ij;

Ilcl))

if (fabs(A[r][c]) < le-12) return i;
A[i].swap(A[r]); tmp[i].swap (tmp[r])
rep(j,0,n)
swap (A[]J][1], A[]][c]), swap(tmp[]j][i], tmp[3j][c]);
swap (col[i], collc]);
double v = A[i][1];
rep(j,i+1l,n) {
double £ = A[J][1] / v;
A[3][i] = 0;
rep(k,i+1l,n) A[3][k] -= £+A[i][k];
rep(k,0,n) tmp[j][k] —= fxtmp[i][k];

UCF Tridiagonal JacobianMatrix NewtonsMethod FastFourierTransform FastFourierTransformMod NumberTheoreticTransform 19

rep(j,i+l,n) A[1][3] /= v;
rep(3,0,n) tmp[il[3] /= v;
A[i][i] = 1;

}

for (int i = n-1; 1 > 0; --1) rep(3J,0,1) {
double v = A[F][i];
rep(k,0,n) tmp[J][k] —-= vxtmp[i][k];

}

rep(i,0,n) rep(j,0,n) A[col[i]][col[3F]] = tmp[i]l[]j];
return n;

}

Tridiagonal.h

Description: z = tridiagonal(d, p, q, b) solves the equation system
bo dg Po 0 0 N 0 o
b1 g di p1 0 e 0 Ty
b2 0 ¢ do P2 e 0 T2
b3 = T3
. 0 0 -+ gn-3 dn-2 Dpn-2 :

bn_1 0 0 cee 0 Qn—2 dn_1 Tp—1

This is useful for solving problems on the type
a; =bja;_1 +ciaip1 +di, 1 <i<n,
where ag, an41, bi, ¢; and d; are known. a can then be obtained from
{a;} = tridiagonal({1, -1, -1, ..., —=1,1},{0,¢c1,¢c2,...,¢cn},
{b1,b2,...,b,,0},{ao,d1,d2,...,dn,ans1}).

Fails if the solution is not unique.

If |d;| > |pi| + |gi—1]| for all ¢, or |d;| > |pi—1]|+|qgi|, or the matrix is positive
definite, the algorithm is numerically stable and neither tr nor the check for
diag[i] == 0 is needed.

Time: O (N) 8f9fa8, 26 lines

typedef double T;
vector<T> tridiagonal (vector<T> diag, const vector<T>& super,
const vector<T>& sub, vector<T> b) {
int n = sz(b); vi tr(n);
rep(i,0,n-1) {
if (abs(diag[i]) < le-9 * abs(super([il)) { // diag[i] = 0
b[i+l] -= b[i] * diag[i+1l] / super[il];
if (i+2 < n) b[i+2] -= b[i] * sub[i+l] / super[il];
diag[i+l] = sub[i]; tr[++i] = 1;
} else {
diag[i+1l] -= super([i]ls*sub[i]/diaglil];
b[i+1l] —-= b[i]*sub[i]/diag[i];
}
}
for (int i = n; 1i--;) {
if (tr[il) |
swap (b[1], b[i-1]);
diag[i-1] = diag[i];
b[i] /= super[i-1];
} else {
bl[i] /= diagl[i];
if (i) b[i-1] -= b[i]*super[i-1];
}
}
return b;

}

JacobianMatrix.h

Description: Makes Jacobian Matrix using finite differences 7590, 15 lines

template<class F, class T>
vector<vector<T>> makeJacobian(F &f, vector<T> &x) {

int n = sz (x);
vector<vector<T>> J(n, vector<T>(n));
vector<T> fX0 = f(x);
rep(i, 0, n) {
x[1] += eps;

vector<T> fX1 = f (x);
rep(j, 0, n){
JI3104) = (£X1[3] - £X0[31) / eps;
}
x[i] -= eps;
}
return J;

NewtonsMethod.h

Description: Solves a system on non-linear equations
jacobianMatrix.h 6af945, 10 lines

template<class F, class T>
void solveNonlinear (F f, vector<T> &x){
int n = sz (x);
rep (iter, 0, 100) {
vector<vector<T>> J = makeJacobian (f, x);
matInv (J);
vector<T> dx = J » f(x);
x = x — dx;

6.4 Fourier transforms

FastFourierTransform.h

Description: fft(a) computes f(k) = > a[z]exp(2ni - kx/N) for all k.
N must be a power of 2. Useful for convolution: conv(a, b) = c, where
c[z] = > ali]b[x — i]. For convolution of complex numbers or more than two
vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT
back. Rounding is safe if (3" a? + 3 b?)log, N < 9-10'* (in practice 10*°;
higher for random inputs). Otherwise, use NT'T/FFTMod.

Time: O (Nlog N) with N = |A| +|B| (~1s for N =2%%) | lines

typedef complex<double> C;
typedef vector<double> vd;
void fft (vector<C>& a) {
int n = sz(a), L = 31 - __builtin_clz(n);
static vector<complex<long double>> R(2, 1);
static vector<C> rt (2, 1); // (*~ 10% faster if double)
for (static int k = 2; k < n; k *= 2) {
R.resize(n); rt.resize(n);
auto x = polar(1.0L, acos(-1.0L) / k);
rep(i,k,2+k) rt[i] = R[1] = i&l ? R[1i/2] % x : R[1/2];
}
vi rev(n)
rep(i,0,n

) rev[i] = (rev[i / 2] | (1 & 1) << L) / 2;
rep (i, 0,n)
k

e
if (1 < rev[i]) swap(ali], alrev[i]]);
for (int =1; k < n; k x= 2)
for (int i = 0; i < n; 1 += 2 % k) rep(3j,0,k) {
C z = rt[j+k] * ali+j+k]; // (25% faster if hand—rolled)
]

ali + j + k]l = ali + jl - z;
ali + 31 += z;
}
}
vd conv (const vdé& a, const vd& b) {
if (a.empty() || b.empty()) return {};
vd res(sz(a) + sz(b) - 1);
int L = 32 - __builtin_clz(sz(res)), n = 1 << L;

vector<C> in(n), out (n);

copy (all(a), begin(in));
rep(i,0,sz (b)) in[i].imag(b[i]);
fft (in);

for (C& x : 1in) x *= X;

rep(i,0,n) out[i] = in[-i & (n - 1)] - conj(in[i]);
fft (out);
rep(i,0,sz(res)) res[i] = imag(out[i]) / (4 * n);

return res;

¥

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo
arbitrary integers as long as N logy, N - mod < 8.6 - 1014 (in practice 106 or
higher). Inputs must be in [0, mod).

Time: O (Nlog N), where N = |A| + |B| (twice as slow as NTT or FFT)

"FastFourierTransform.h" b82773, 22 lines

typedef vector<ll> vl;
template<int M> vl convMod (
if (a.empty () || b.empty (
vl res(sz(a) + sz(b) - 1);
int B=32-__builtin_clz (sz(res)), n=1<<B, cut=int (sqrt (M));
vector<C> L(n), R(n), outs(n), outl(n);
rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a
rep(i,0,sz (b)) R[i] = C((int)b[i] / cut, (int)b[i] % cu
fft (L), fft(R);
rep (i, 0,n) {

const vl &a, const vl &b) {
)) return {};

)

t
t)

7
i

int 3 = -1 & (n - 1);
outl[j] (L{i] + conj(L[3])) = R[i] / (2.0 n;
outs[j] = (L[i] - conj(L[3j])) = R[i] / (2.0 n) / 1i;

}
fft (outl), fft (outs);
rep (i, 0,sz(res)) {

11 av = 1l (real(outl[i])+.5), cv = 1ll(imag(outs[i])+.5);
11 bv = 1l (imag(outl[i])+.5) + 1ll(real(outs[i])+.5);
res[i] = ((av $ M = cut + bv) $ M x cut + cv) % M;

}

return res;

}

NumberTheoreticTransform.h

Description: ntt(a) computes f(k) = > a[z]g®* for all k, where g =
root(™°4=1/N N must be a power of 2. Useful for convolution modulo spe-
cific nice primes of the form 2°b + 1, where the convolution result has size
at most 2. For arbitrary modulo, see FFTMod. conv(a, b) = c, where
clz] = Y a[i]blx — i]. For manual convolution: NTT the inputs, multiply
pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in

[0, mod).

Time: O (N log N)

"../number-theory/ModPow.h" ced03d, 35 lines
const 11 mod = (119 << 23) + 1, root = 62; // = 998244353

// For p < 2780 there is also e.g. 5<< 25, 7<< 26, 479 << 21
// and 483 << 21 (same root). The last two are > 10"9.
typedef vector<ll> vl;
void ntt (vl &a) {
int n = sz(a), L = 31 - __builtin_clz(n);
static vl rt(2, 1);
for (static int k =
rt.resize(n);
11 z[] = {1, modpow(root, mod >> s)};
rep(i,k,2+xk) rt[i] = rt[i / 2] % z[i & 1] % mod;
}
vi rev(n);
rep(i,0,n) rev[i] = (rev[i / 2] | (1 & 1) << L) / 2;
rep(i,0,n) if (i < rev[i]) swap(ali], alrev[i]]);
for (int k = 1; k < n; k »= 2)
for (int i = 0; 1 < n; i += 2 % k) rep(j,0,k) {
11 z = rt[j + k] % a[i + j + k] %$ mod, &ai = al[i + J];
ali + j+ k] =ail -z + (z>ai ? mod : 0);
ai += (ai + z >> mod ? z - mod : z);

2, s =2; k <n; k =2, s+t+) {

}
}
vl conv(const vl &a, const vl &b) {

UCF
if (a.empty() || b.empty()) return {};
int s = sz(a) + sz(b) - 1, B = 32 - __builtin_clz(s),
n =1 << B;
int inv = modpow(n, mod - 2);
vl L(a), R(b), out(n);
L.resize(n), R.resize(n);
ntt (L), ntt(R);
rep (i, 0,n)
out[-1 & (n — 1)] = (11)L[i] = R[i] % mod * inv % mod;
ntt (out) ;

return {out.begin(), out.begin() + s};

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form
clz] = Z alz] - bly], where @ is one of AND, OR, XOR. The size
z=z Dy

of a must be a power of two.

Time: O (NlogN) 464cf3, 16 lines

void FST(vi& a, bool inv) {

for (int n = sz(a), step = 1; step < n; step *= 2) {
for (int 1 = 0; 1 < n; i += 2 * step) rep(j,i,i+step) {
int s&u = al[j], &v = al[j + stepl; tie(u, v) =
inv ? pii(v - u, u) pii(v, u + v); // AND
inv ? pii(v, u - v) pii(u + v, w; // OR
pii(u + v, u - v); // XOR
}
}
if (inv) for (ints x : a) x /= sz(a); // XOR only
}
vi conv(vi a, vi b) {
FST(a, 0); FST(b, 0);
rep(i,0,sz(a)) al[i] *= b[i];
FST(a, 1); return a;
}
GcedConvolution.h
Description: Returns c[k] = Z ali] - b[7].
ged(i,j)=k

Time: O (nlogn) 2dfb20, 16 lines

const int mod = 998’244’ 353;
vector<int> gcd_convolution (const vector<int>& a,
const vector<int>& b) {

int n = ssize(a);
vector<int> c(n);
for (int g = n - 1; g >=1; g-—) {
int64_t sum_a = 0, sum_b = 0;
for (int i = g; 1 < n; 1 += g) {
sum_a += al[i], sum_b += b[i];
if ((clg] -= cli]) < 0) clg] += mod;
}
sum_a %= mod, sum_pb %= mod;
cl[g] = (c[g] + sum_a * sum_b) % mod;
}
return c;
}
LemConvolution.h
Description: Returns c[k] = Z ali] - blj].

lem(i,j)=k

Time: O (nlogn) ce1440, 16 lines

const int mod = 998’244’353;

vector<int> lcm_convolution (const vector<int>& a,
const vector<int>& b) {
int n = ssize(a);

vector<int64_t> sum_a(n), sum_b(n);

vector<int> c(n);
1;

for (int i = i < n; i++) {
for (int j i; 3 <n; j += 1)
sum_al[j] += ali], sum_b[j] += b[i];
sum_al[i] %= mod, sum_b[i] %= mod;
c[i] = (c[i] + sum_a[i] *» sum_b[i]) % mod;
for (int j =1 + i; j < n; j += 1)
if ((c[j] -= cl[i]) < 0) c[3] += mod;
}
return c;

Number Theory (7)

7.1 Modular arithmetic
ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM < mod
and that mod is a prime.

6f684f, 3 lines

const 11 mod = 1000000007, LIM = 200000;
1lx inv = new 11[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) % inv[mod % 1] % mod;

ModLog.h
Description: Returns the smallest > 0 s.t. a® = b (mod m), or —1 if no
such z exists. modLog(a,1,m) can be used to calculate the order of a.

Time: O (y/m)

11 modLog (11l a, 11 b, 11 m) {
11 n = (11) sgrt(m) + 1, e=1, £ =1, J =1;
unordered_map<ll, 11> A;
while (j <= n && (e = f =e x a $m !=Db % m)
Ale » b $ m] = j++;
if (e == % m) return j;
if (__gcd(m, e) == _ _gcd(m,
rep(i,2,n+2) if (A.count(e = e « £ % m))
return n « i - Ale];
return -1;

c040b8, 11 lines

ModSum.h

Description: Sums of mod’ed arithmetic progressions.

modsum (to, ¢, k, m) = Y021 (ki+c)%m. divsum is similar but for
floored division.

Time: log(m), with a large constant. 5c5bes, 16 lines

typedef unsigned long long ull;

ull sumsqg(ull to) { return to / 2 % ((to-1) | 1); }
ull divsum(ull to, ull ¢, ull k, ull m) {
ull res = k / m * sumsqg(to) + ¢ / m * to;
k $=m; c %= m;
if (!'k) return res;
ull to2 = (to » k + ¢c) / m;
return res + (to - 1) * to2 - divsum(to2, m-1 - ¢, m, k);
}
11 modsum(ull to, 11 ¢, 11 k, 11 m) {
c = ((c $m +m % m;
k= ((k $m +m $m
return to * ¢ + k % sumsqg(to) - m » divsum(to, c, k, m);

ModMulLL.h
Description: Calculate a-b mod ¢ (or a® mod c)for0<a,b<c< 7.2-10'8,

Time: O (1) for modmul, O (logb) for modpow bbbdsf. 11 lines

FastSubsetTransform GcdConvolution LecmConvolution ModInverse ModLog ModSum ModMulLL ModSqrt FastEratosthenes 20

typedef unsigned long long ull;

ull modmul (ull a, ull b, ull M) {
11l ret = a *x b - M x ull(l.L. / M a b);
return ret + M * (ret < 0) - M % (ret >= (11)M);
}
ull modpow (ull b, ull e, ull mod) {
ull ans = 1;
for (; e; b = modmul (b, b, mod), e /= 2)
if (e & 1) ans = modmul (ans, b, mod);
return ans;
}

ModSqrt.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x
s.t. 22 = a (mod p) (—z gives the other solution).
Time: O (log® p) worst case, O (logp) for most p

"ModPow.h" 19a793, 24 lines

11 sqrt(ll a, 11 p) {
a %= p; if (a < 0) a += p;

if (a == 0) return 0;
assert (modpow (a, (p-1)/2, p) == 1); // else no solution
if (p % 4 == 3) return modpow(a, (p+l)/4, p);
// a~(n+3)/8 or 2~(n+3)/8 x 2~(n—1)/4 works if p % 8 =5
11 s =p -1, n=2;
int r = 0, m;
while (s % 2 == 0)

++r, s /= 2;
while (modpow(n, (p - 1) / 2, p) !=p - 1) ++n;
11 x = modpow(a, (s + 1) / 2, p);
11 b = modpow(a, s, p), g = modpow(n, s, p);
for (;; r =m {

11 t = b;

for (m = 0; m < r & t !=1; ++m)

t =t ~t % p;
if (m == 0) return x;

11 gs = modpow (g, 1LL <<
g =9gs x gs % p;
X = X *x gs % p;
b=Dbx*gs%p;

(r —-m - 1), p);

7.2 Primality
FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM.

Time: LIM=1e9 ~ 1.5s 652912, 20 lines

const int LIM = le6;
bitset<LIM> isPrime;

vi eratosthenes () {
const int S = (int)round(sqrt(LIM)), R = LIM / 2;
vi pr = {2}, sieve(S+1l); pr.reserve (int (LIM/log(LIM)~*1.1));
vector<pii> cp;
for (int 1 = 3; 1 <= S; 1 += 2) if (!sieve[i]) {
cp.push_back ({i, i = i / 2});
for (int j =1 % i; J <= S; j += 2 % 1) sievel[]] = 1;
}
for (int L = 1; L <= R; L += S) {
array<bool, S> block{};
for (auto &[p, idx] cp)
for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;
rep(i,0,min(S, R - L))
if (!block[i]) pr.push_back ((L + i) = 2 + 1);
}
for (int i pr) isPrime([i] = 1;
return pr;

UCF LinearSieve MillerRabin

LinearSieve.h
Description: Finds smallest prime factor of each integer
Time: O (N)

32eeca, 8 lines

const int LIM = 1000000;
vi lp (LIM+1), primes;

rep(i, 2, LIM + 1) {
if (lp[i] == 0) primes.push_back(lp[i] = 1);
for (int j = 0; j < sz (primes) && i * primes[]j] <= LIM &&
primes[j] <= 1lp[i]; ++3)
lp[i % primes[]j]] = primes[]j];
}
MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to
work for numbers up to 7 - 10'®; for larger numbers, use Python and ex-
tend A randomly.

Time: 7 times the complexity of a® mod c.

"ModMulLL.h" 60dcdl, 12 lines

bool isPrime (ull n) {

if m <2 || n% 6 % 4 !=1) return (n | 1) == 3;
ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
s = __builtin_ctzll(n-1), d = n >> s;
for (ull a : A) { // ~ count trailing zeroes
ull p = modpow(a%n, d, n), i = s;
while (p != 1 && p !=n -1 & a %$ n && i——)
p = modmul (p, p, n);
if (p !'= n-1 && i != s) return 0;
}
return 1;

}

PrimeFactors.h
Description: Pollard-rho randomized factorization algorithm. Returns
prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: O (n1/4), less for numbers with small factors.

"ModMulLL.h", "MillerRabin.h" d8d98d, 18 lines

ull pollard(ull n) {
ull x =0, vy =0, t =30, prd =2, 1 =1, qg;

auto f = [&] (ull x) { return modmul (x, x, n) + i; };
while (t++ % 40 || _gcd(prd, n) == 1) {
if (x ==y) x = ++i, y = £(x);
if ((g = modmul (prd, max(x,y) - min(x,y), n))) prd = g;
x = f(x), v = £(f(y));
}
return __gcd(prd, n);
}
vector<ull> factor (ull n) {
if (n == 1) return {};

if (isPrime (n)) return {n};

ull x = pollard(n);

auto 1 = factor(x), r = factor(n / x);
l.insert (l.end (), all(r));

return 1;

}
7.3 Divisibility
euclid.h

Description: Finds two integers = and y, such that az + by = ged(a, b). If
you just need gcd, use the built in __gcd instead. If a and b are coprime, then

x is the inverse of a (mod b). 33ba8f, 5 lines

11 euclid(1ll a, 11 b, 11 &x, 11 &y) {

if (!b) return x =1, y = 0, a;
11 d = euclid(b, a $ b, y, x);
return y -= a/b * x, d;

}

PrimeFactors euclid CRT phiFunction ContinuedFractions FracBinarySearch 21

CRT.h

Description: Chinese Remainder Theorem.

crt(a, m, b, n) computes z such that z = a (mod m), x =b (mod n). If

la| < m and |b] < n, z will obey 0 < z < lem(m,n). Assumes mn < 252,
Time: log(n)

"euclid.h" 04d93a, 7 lines
11 crt(ll a, 11 m, 11 b, 11 n) {

if (n > m) swap(a, b), swap(m, n);

11 %, y, g = euclid(m, n, x, y);

assert((a - b) % g == 0); // else no solution

x=(b-a) %$n+*x5%n/g*m+ a;

return x < 0 ? x + m*n/g : Xx;
}

7.3.1 Bézout’s identity
For a #, b # 0, then d = ged(a, b) is the smallest positive integer
for which there are integer solutions to

ar +by=d

If (z,y) is one solution, then all solutions are given by

PR L ke
ged(a,0)"Y ” ged(a,b))

phiFunction.h

Description: Euler’s ¢ function is defined as ¢(n) := # of positive integers

< n that are coprime with n. ¢(1) = 1, p prime = ¢(pk) = (p— l)pkfl,
m,n coprime = ¢(mn) = ¢p(m)p(n). If n = pflp’;?‘..pfr then ¢(n) =
(p1 = Vpy* (o — DpET T () = - [T, (1= 1/p).
Zd\n #(d) = n, Zlgkgn,gcd(km,)zl k=n¢(n)/2,n >1
Euler’s thm: a,n coprime = a®™ =1 (mod n).
Fermat’s little thm: p prime = a?~! =1 (mod p) Va.

cf7d6d, 8 lines

const int LIM = 5000000;
int phi[LIM];

void calculatePhi () {
rep(i, 0,LIM) phi[i] = i&l 2 i : 1/2;
for (int 1 = 3; 1 < LIM; i += 2) if(phi[i] == i)
for (int j = i; j < LIM; j += i) phi[j] -= phil[]j] / i;
}

7.4 Fractions

ContinuedFractions.h

Description: Given N and a real number z > 0, finds the closest rational

approximation p/q with p,q < N. It will obey |p/q — | < 1/gN.

For consecutive convergents, px4+1qr — qr+1Pk = (—1)’“. (pr/qr alternates
between > z and < z.) If x is rational, y eventually becomes oo; if x is the

root of a degree 2 polynomial the a’s eventually become cyclic.
Time: O (log N)

dd6c5e, 21 lines

typedef double d; // for N~ 1e7; long double for N~ 1e9
pair<ll, 11> approximate(d x, 11 N) {
11 p = 0, LO =1, P =1, Q = 0, inf = LLONG_MAX; d y = x;
for (;;) A
11 lim = min(P 2 (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
a = (l1)floor(y), b = min(a, lim),
NP = b#P + LP, NQ = b+Q + LQ;
if (a > b) {
// If b > a/2, we have a semi—convergent that gives us a

// better approzimation; if b = a/2, we #*mayx have one.
// Return {P, Q} here for a more canonical approzimation.
return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)) ?

make_pair (NP, NQ) : make_pair (P, Q);
}
if (abs(y = 1/(y - (d)a)) > 3xN) {
return {NP, NQ};
}

LP = P; P = NP;
LO = Q; Q = NQ;

}

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction p/q € [0, 1] such
that f(p/q) is true, and p, ¢ < N. You may want to throw an exception from
f if it finds an exact solution, in which case N can be removed.

Usage: fracBS ([] (Frac f) { return f.p>=3xf.q; }, 10); // {1,3}

Time: O (log(N)) 27ab3e, 25 lines

struct Frac { 11 p, 4; };

template<class F>
Frac fracBS(F f, 11 N) {
bool dir =1, A =1, B = 1;
Frac lo{0, 1}, hi{1l, 1}; // Set hi to 1/0 to search (0, N]
if (f(lo)) return lo;
assert (f(hi));

while (A || B) {
11 adv = 0, step = 1; // move hi if dir, else lo
for (int si = 0; step; (step »= 2) >>= si) {

adv += step;
Frac mid{lo.p * adv + hi.p, lo.g % adv + hi.qg};
if (abs(mid.p) > N || mid.g > N || dir == !f (mid)) {
adv —-= step; si = 2;
}
}
hi.p += lo.p * adv;
hi.q += lo.qg % adv;

dir = !dir;
swap (lo, hi);
A = B; B = !ladv;
}
return dir ? hi : lo;

}

7.5 Pythagorean Triples
The Pythagorean triples are uniquely generated by

a=k-(m*—n?), b=k-(2mn), c=k-(m*+n?),

with m >n >0, k > 0, m_Ln, and either m or n even.

7.6 Primes

p = 962592769 is such that 22! | p — 1, which may be useful. For
hashing use 970592641 (31-bit number), 31443539979727 (45-bit),
3006703054056749 (52-bit). There are 78498 primes less than
1000 000.

Primitive roots exist modulo any prime power p®, except for

p = 2,a > 2, and there are ¢(¢(p®)) many. For p = 2,a > 2, the
group Z. is instead isomorphic to Za X Zga—2.

7.7 Estimates

>dn @ = O(nloglogn).

The number of divisors of n is at most around 100 for n < 5e4,
500 for n < 1e7, 2000 for n < 1el0, 200 000 for n < 1el9.

UCF
7.8 Mobius Function
0 n is not square free

p(n) =41
—1

n has even number of prime factors

n has odd number of prime factors

Mobius Inversion:

n) =Y f(d) & f(n) = u(dg(n/d)
d|n d|n

Other useful formulas/forms:

2 apn #(d) = [n = 1] (very useful)
9(n) = 3,0 f(d) & f(n) = 32, m(d/n)g(d)
9) = Xicmen FUED € F(0) = Ticpen nlm)g(| 2])

Combinatorial (8)

8.1 Permutations
8.1.1 Factorial

n|1234 5 6 7 8 9 10

n! | 12624 120 720 5040 40320 362880 3628800

n 11 12 13 14 15 16 17

n! | 4.0e7 4.8e8 6.2e¢9 8.7¢10 1.3e12 2.1el13 3.6el14

n 20 25 30 40 50 100 150 171

n! | 2el18 2e25 3e32 8e47 3e64 9e157 6262 >DBL.MAX

IntPerm.h
Description: Permutation -> integer conversion. (Not order preserving.)
Integer -> permutation can use a lookup table.

Time: O (n) 044568, 6 lines
int permToInt (vi& v) {
int use = 0, 1 =0, r = 0;
for(int x:v) r = r » ++i + __builtin_popcount (use & - (1<<x)),
use |= 1 << x; // (note: minus, not ~!)

return r;
}
8.1.2 Cycles
Let gs(n) be the number of n-permutations whose cycle lengths
all belong to the set S. Then

pOPRDC (z n)

nes

8.1.3 Derangements
Permutations of a set such that none of the elements appear in
their original position.

n'

D(n) = (n—1)(D(n—1)+D(n—2)) = nD(n—1)+(~1)" = P}

e

IntPerm

8.1.4 Burnside’s lemma
Given a group G of symmetries and a set X, the number of
elements of X up to symmetry equals

21X,

geG

\G |
where X7 are the elements fixed by g (g.x = z).

If f(n) counts “configurations” (of some sort) of length n, we can
ignore rotational symmetry using G = Z,, to get

ngcdnk Zf

k:\n
8.2 Partitions and subsets

8.2.1 Partition function
Number of ways of writing n as a sum of positive integers,
disregarding the order of the summands.

pO) =1, p(n)= > ()" 'pn
keZ\{0}
p(n) ~ 0.145/n - exp(2.564/n)
n ‘012345678920 50 100
p(n) ‘ 112357111522 30 627 ~2ed ~2e8

8.2.2 Lucas’ Theorem

Let n, m be non-negative integers and p a prime. Write

n= nkpk 4+ ...+ nip+no and m = mkpk + ... + mip + mo. Then
(m) == () (mod p).

8.3 General purpose numbers

8.3.1 Bernoulli numbers

o(n/k).

— k(3k — 1)/2)

EGF of Bernoulli numbers is B(t) = -5 (FFT-able).
B[07]:[15 25(1370 30703$7"']

Sums of powerS'
2om41
Zn :m+12< k

Euler-Maclaurin formula for infinite sums:

Z (@)= /00 f(x)dz — Z %f(kfl)(m)

[flm) f'(m) f"(m)
N/m f@yde+ == = o+ o

8.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.
c(n,k)y=cn—1,k—1)+ (n—1)e(n — 1,k),
S ocn k) =z(@+1)...(z+n—-1)

(8, k) = 8,0,5040, 13068, 13132, 6769, 1960, 322, 28, 1
e(n,2) =0,0,1,3,11, 50, 274, 1764, 13068, 109584, . . .

)Bk: . (n + 1)m+17k

+0(f®) (m))

¢(0,0) =1

22

8.3.3 Eulerian numbers

Number of permutations 7w € S,, in which exactly k& elements are
greater than the previous element. k j:s s.t. w(j) > 7(j + 1),
kE+1 jsst w(j) >4, k jis st w(f) > 5.

E(nk)=(n—-kEn-1,k—1)+ (k+1)E(n—1,k)

E(n,0)=E(n,n—-1)=1

(n;r1>(k+1j)

8.3.4 Stirling numbers of the second kind
Partitions of n distinct elements into exactly k groups.

S(n,k)=Sn—1,k—1)+kS(n—1,k)
S(n,1)=5Smn,n)=1
1< ik
Sn0) = g5 (0" (J.)g

8.3.5 Bell numbers
Total number of partitions of n distinct elements. B(n) =
1,1,2,5,15,52,203,877,4140,21147, For p prime,

B(p™ +n)=mB(n)+ B(n+1) (mod p)
8.3.6 Labeled unrooted trees
on n vertices: n" 2
on k existing trees of size n;: ning - - - npnF 2
with degrees d;: (n —2)!/((dx — 1)!-- - (dn — 1))

8.3.7 Catalan numbers

1 2n 2n 2n (2n)!
C’n = = — =
n+1l\n n n+1 (n+1)n!
2(2n + 1)
Co = 1, Cn+1 = ﬁcn, On+1 - Zcicn—i

C, =1,1,2,5,14,42, 132,429, 1430, 4862, 16796, 58786, . . .

sub-diagonal monotone paths in an n x n grid.

strings with n pairs of parenthesis, correctly nested.
binary trees with with n + 1 leaves (0 or 2 children).
ordered trees with n + 1 vertices.

ways a convex polygon with n + 2 sides can be cut into
triangles by connecting vertices with straight lines.

e permutations of [n] with no 3-term increasing subseq.

Strings (9)

UCF
KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends
at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all
occurrences of a string.

Time: O(n) aT7ac87, 9 lines
vi pi(const auto& s) {
vi p(sz(s));
rep(i,1,sz(s)) {
int g = p[i-1];
while (g && s[i] != s[g]l) g = plg-11;
plil = g + (sl[i] == slgl);
}
return p;
}
Zfunc.h

Description: z[i] computes the length of the longest common prefix of s[i:]
and s, except z[0] = 0. (abacaba -> 0010301)

Time: O (n) ee09e2, 12 lines
vi Z(const strings& S) {
vi z(sz(S));
int 1 = -1, r = -1;
rep(i,1,sz(S)) {
z[i] =1 > r 2 0 : min(r - 1, [i - 11);
while (i + z[i] < sz (S) && S[i + z[i]] == S[z[i]])
z[1]++;
if (1 + z[i] > r)
1 =14, r =1 + z[i];
}
return z;
}
Manacher.h
Description: For each position in a string, computes p[0][i] = half length
of longest even palindrome around pos i, p[1][i] = longest odd (half rounded
down).
Time: O (N) e7ad79, 13 lines
array<vi, 2> manacher (const string& s) {
int n = sz (s);
array<vi,2> p = {vi(n+l), vi(n)};
rep(z,0,2) for (int 1i=0,1= O r=0; 1 < n; 1i++) {
int t = r-i+!z;
if (i<r) plz]l[i] = min(t, plz][1l+t]);
int L = i-plz][i], R = i+plz][i]l-!z;
while (L>=1 && R+1l<n && s[L-1] == s[R+1])
plz] [1]++, L--, R++;
if (R>r) 1=L, r=R;
}
return p;
}
Eertree.h

Description: Generates an eertree on str. cur is accurate at the end of the
main loop before the final assignment to t.

Time: O (|S])

2fc643, 24 lines

struct Eertree {
vi slink = {0, 0},
vvi down;

len = {-1, 0};

int cur = 0, t = 0;
Eertree(string é&str) down (2, vi(26, -1)) {
for (int 1 = 0; 1 < sz (str); i++) {
char ¢ = str[i]; int ci = c¢c - "a’;
while (t <= 0 || str[t-1] !'= ¢)
t = 1 - len[cur = slink[cur]];
if (down[cur] [ci] == -1) {
down|[cur] [ci] = sz (slink);

down.emplace_back (26, -1);

len.push_back (len[cur] + 2);

if (len.back() > 1) {
do t = i - len[cur = slink([cur]];
while(t <= 0 || str[t-1] != ¢);
slink.push_back (down[cur] [ci]);

} else slink.push_back(1l);

cur = sz (slink) - 1;
} else cur = down([cur][ci];
t =1 - len[cur] + 1;
}
}
}i

SuffixArray.h

Description: Builds suffix array for a string.

is of size n 4+ 1, and sa[0] = n.
prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(salil,
al[i-11), 1lcp[0] = 0. The input string must not contain any nul chars.
Time: O (nlogn)

sa[i] is the starting index
of the suffix which is i’th in the sorted suffix array. The returned vector
The lcp array contains longest common

635552, 22 lines

struct SuffixArray {
vi sa, lcp;
suffixArray (string s,

int 1im=256) { // or wvector<int>

s.push_back (0); int n = sz(s), k =0, a, b;
vi x(all(s)), y(n), ws(max(n, lim));
sa = lcp = vy, 1ota(all(a), 0);
for (int j = 0, p = 0; p < n; j =max(l, j = 2), lim = p) {
p = Jj, iota(all(y), n - 3J);
rep(i,0,n) if (sali] >= j) ylp++] = sali]l - J;
fill(all(ws), 0);
rep(i,0,n) ws[x[i]]++;
rep(i,1,1lim) ws([i] += ws[i - 1];
for (int i = n; i-—-;) sal--ws[x[y[i]]]] = yI[i]
swap(x, y), p =1, x[sa[0]] = 0;
rep(i,1,n) a = sali - 1], b = salil], [b] =
(yla] == y[b] && y[la + j] == y[b + j1) 2 p - 1 pt+;
}
for (int 1 = 0, j; 1 <n - 1; lecplx[i++]] = k)
for (k && k-——, j = salx[i] - 1];
s[i + k] == s[j + k]; k++);
}
Yi

SuffixAutomaton.h

Description: Creates a partial DFA (DAG) that accepts all suffixes, with
One-to-one map between a path from the root and a substring.
len is the longest-length substring ending here. pos is the first index in the

suffix links.

string matching here. term is whether this node is a terminal (aka a suffix)

Time: construction takes O (N log K), where K = Alphabet Sjge. ., ;.

struct st {int len, pos, term, link=-1; map<char, int> next;};
struct SuffixAutomaton {
vector<st> a;
SuffixAutomaton (string &str) {
a.resize(l);
int last = 0;
for (auto c str) {
int p = last, cur = last = sz (a);
a.push_back ({a[p].len + 1, alp]l.len});
while(p >= 0 && 'al[p].next.count (c)
al[p].next[c] = cur, p = alp].link;
if (p == -1) alcur].link = 0;
else {
int g = alp].next[c];
if (alpl.len + 1 == a[gl.len) alcur].link = qg;
else {
a.push_back ({a[p].len+l, algl.pos, 0, alg].link,

KMP Zfunc Manacher Eertree SuffixArray SuffixAutomaton Hashing HashInterval AhoCorasick 23

alql .next});
for(; p >= 0 && alp].next[c] == g; p = alp].link)
alp] .next[c] = sz (a)-
alg].link = alcur].link = sz (a)-
}
}
}
while (last >= 0) allast].term = 1, last = al[last].link;

}
}i

Hashing.h

Description: Self-explanatory methods for string hashing.

// Arithmetic mod 2°64—1. 2z slower than mod 264 and more
// code, but works on evil test data (e.g. Thue—Morse, where
// ABBA... and BAAB... of length 2710 hash the same mod 2°64).
// 7typedef wll H;” instead if you think test data is random,
// or work mod 10°9+7 if the Birthday paradoz is mot a problem.
typedef uint64_t ull;
struct H {
ull x; H(ull x=0)
H operator+ (H o) {
H operator-(H o) {

4b8fal, 19 lines

x(x) {}
return x + 0.x + (x + 0.x < X); }
return xthis + ~o.x; }
H operator*(H o) { auto m = (__uintl28_t)x % 0.x;
return H((ull)m) + (ull) (m >> 64); }
ull get () const { return x + !~x; }
bool operator==(H o) const { return get() == o.get(); }
bool operator<(H o) const { return get() < o.get(); }
Yi
static const H C = random also ok)

(11)1el1+3; // (order ~ 3e9;

H hashString(strings& s){H h{}; for(char c:s) h=hxC+c;return h;}
HashlInterval.h

Description: Various self-explanatory methods for string hashing.
"Hashing.h" 122649, 12 lines

struct HashInterval {
vector<H> ha, pw;

HashInterval (strings& str) : ha(sz(str)+1l), pw(ha) {
pwl[0] = 1;
rep (i, 0,sz (str))
hal[i+l] = hali] = C + str[i],
pwli+l] = pw[i] = C;
}
H hashInterval (int a, int b) { // hash [a,
return hal[b] - halal » pw(b - a]

}
}i

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching.
Initialize with AhoCorasick ac(patterns); the automaton start node will be
at index 0. find(word) returns for each position the index of the longest word
that ends there, or -1 if none. findAll(—, word) finds all words (up to Nv'N
many if no duplicate patterns) that start at each position (shortest first).
Duplicate patterns are allowed; empty patterns are not. To find the longest
words that start at each position, reverse all input. For large alphabets, split
each symbol into chunks, with sentinel bits for symbol boundaries.

Time: construction takes O (26N), where N = sum of length of patterns.

find(x) is O (N), where N = length of x. findAllis O (NM). .. o,

const int ABSIZE = 26;

struct node {
int nxt [ABSIZE];

vi ids = {};
int prv = -1, link = -1;
char c;

UCF

int linkMemo [ABSIZE];

node (int prv = -1, char ¢ = ’$’): prv(prv), c(c) {
fill(all (nxt), -1);
fill(all(linkMemo), -1);
}
Yi
vector<node> trie(l);
void addWord(string &s, int id) {
int cur = 0;
for(char c: s) {
int idx = ¢ - 'a’;
if (trief[cur].nxt[idx] == -1) {
trielcur] .nxt[idx] = sz (trie);
trie.emplace_back (cur, c);
}
cur = trielcur].nxt[idx];
}
triefcur].ids.push_back (id);
}
int getLink (int cur);
int calc(int cur, char c) {
int idx = ¢ - "a’;
auto &ret = trie[cur].linkMemo[idx];
if(ret != -1) return ret;
if (trief[cur] .nxt[idx] != -1)
return ret = trie[cur].nxt[idx];
return ret = cur == 0 2?2 0 calc (getLink (cur), c);
}
int getLink (int cur) {
auto &ret = trie[cur].link;
if(ret != -1) return ret;
if(cur == 0 || trie[cur].prv == 0) return ret = 0;
return ret = calc(getLink(trie[cur].prv), trielcur].c);

LyndonFactorization.h

Description: Computes the Lyndon Factorization of a string. A Lyndon
word is a nonempty string that is strictly smaller in lexicographic order than
any of its proper suffixes. Returns the starting indices of the Lyndon words
in the string.

Time: O (n) 09e827, 12 lines

vi duval (string &s) {

vi ans;
for (int start = 0; start < sz (s);) {
int i = start+l, j = start;
for(; i < sz(s) && s[i] >= s[J]; 1i++)
if(s[i] > s[3j]) J = start;
else j++;
for (int sz = i-j; start + sz <= i; start += sz)

ans.push_back (start) ;

}

return ans;

Bullshit (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals.
Will merge the added interval with any overlapping intervals in the set when
adding. Intervals are [inclusive, exclusive).

Time: O (log N) edced7, 23 lines

set<pii>::iterator addInterval (set<pii>& is, int L, int R) {
if (L == R) return is.end();
auto it = is.lower_bound({L, R}), before = it;
while (it != is.end() && it->first <= R) {

R = max (R, it->second);
before = it = is.erase(it);
}
if (it != is.begin() && (--it)->second >= L) {
L = min(L, it->first);
R = max (R, it->second);
is.erase(it);

}
return is.insert (before, {L,R});
}
void removelnterval (set<pii>& is, int L, int R) {
if (L == R) return;
auto it = addInterval(is, L, R);
auto r2 = it->second;
if (it->first == L) is.erase(it);
else (inté&)it->second = L;

if (R != r2) is.emplace(R, r2);

}

IntervalCover.h
Description: Compute indices of smallest set of intervals covering another
interval. Intervals should be [inclusive, exclusive). To support [inclusive,
inclusive], change (A) to add || R.empty (). Returns empty set on failure
(or if G is empty).

Time: O (N log N) 9¢9d8d, 19 lines

template<class T>

vi cover (pair<T,
vi S(sz(I)), R;
iota(all(S), 0);

T> G, vector<pair<T, T>> I) {

sort (all(S), [&] (int a, int b) { return I[a] < I[bl; });
T cur = G.first;
int at = 0;
while (cur < G.second) { // (A)
pair<T, int> mx = make_pair (cur, -1);
while (at < sz (I) && I[S[at]].first <= cur) {
mx = max (mx, make_pair(I[S[at]].second, Slat]));
at++;
}
if (mx.second == -1) return {};
cur = mx.first;
R.push_back (mx.second) ;
}
return R;

}

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of
half-open intervals on which it has the same value. Runs a callback g for
each such interval.

Usage: constantIntervals (0, sz (v), [&] (int x){return v[x];},
[&] (int lo, int hi, T val){...});

i . n
Time: O (k log k) 753a4c, 19 lines
template<class F, class G, class T>
void rec(int from, int to, F& £, G& g, int& i, T& p, T q) {

if (p == q) return;

if (from == to) {

g(i, to, p);

i=to; p=gqg;

}

template<class F,

LyndonFactorization IntervalContainer IntervalCover ConstantIntervals LIS CountRectangles

} else {
int mid = (from + to) >> 1;
rec(from, mid, £, g, i, p, f(mid));
rec(mid+l, to, £, g, i, p, Q) ;

}

class G>

void constantIntervals (int from, int to, F £, G g) {
if (to <= from) return;
int i = from; auto p = f£(i), g = f(to-1);
rec (from, to-1, £, g, i, p, 9 ;

}

g(i, to, q);

10.2 Misc. algorithms
LIS.h

Description: Compute indices for the longest increasing subsequence.
Time: O (N log N)

24

2932a0, 17 lines

template<class I> vi lis(const vector<I>& S) {

if (S.empty())
vi prev(sz(S));
typedef pair<I,
vector<p> res;
rep(i,0,sz(S)) {

return {};

int> p;

// change 0 —> i for longest non—decreasing subsequence
auto it = lower_bound(all(res), p{S[i], 0});
if (it == res.end()) res.emplace_back(), it = res.end()-1;
*it = {S[i], 1i};
prev[i] = it == res.begin() ? 0 (it-1)->second;

}

int L = sz (res), cur = res.back().second;

vi ans (L) ;

while (L--) ans[L] = cur, cur = prev[cur];

return ans;

CountRectangles.h

Description: Counts the number of rectangles of every size that fit in a grid

where 1 represents a filled cell.
Time: O (NM)

15a128, 29 lines

vvi count_rectangles (vvi &grid) {

int n = sz (grid), m = sz (grid[0]);
vvi ans (n+l, vi(m+l));
vi col(m); // free space in column
rep(r, 0, n) {
rep(c, 0, m)
if (grid[r]lc])
else col[c]+
vi pre (m,
rep(c, 0, m) {
int 1 = c-1;
while(i >= 0 && col[i]
nex[i] = c;
i = preli];

col[c] = 0;

+;

>= col[c]) {

}

prelc] = 1i;
}
rep(c, 0, m)

int left =
ans[col[c]]
ans[col[c]]

left + right + 1]++;

{
c - prel[c] - 1, right = nex[c] - ¢ - 1;
[
[left]-—, ans[col[c]][right]-—;

t, 0, 2)

j—-) ans[i][J] += ans[i][3+1];

ans[i] [j] += ans[i+1][7];

-1), nex(m, m); // nearest < on left, <= on right

UCF FastKnapsack KnuthDP DivideAndConquerDP FastMod BumpAllocator SmallPtr SIMD 25

return ans;

}

FastKnapsack.h

Description: Given N non-negative integer weights w and a non-negative
target t, computes the maximum S <= t such that S is the sum of some
subset of the weights.

Time: O (N max(w;)) b20ccc, 16 lines

int t) {

int knapsack (vi w,
0, x;
)

int a = 0, b =
while (b < sz (w) && a + w[b] <= t) a += wlb++];
if (b == sz (w)) return a;
int m = xmax_element (all(w));
vi u, v(2+m, -1);
v atm-t] = b;
rep(i,b,sz(w)) {
u = v;
rep(x,0,m) v[x+w[i]] = max(v[x+w[i]],
for (x = 2xm; —--x > m;) rep(j, max(0,u
vix-w[j]l] = max(v[x-w[3]], 3);

ulx]);
[x]), vix])
}

for (a = t; v[a+tm-t] < 0; a—-) ;

return a;

10.3 DP Optimizations
KnuthDP.h

Description: When doing DP on intervals: a[i][j] = min;<r<;(ald][k] +
alk][j]) + f(i,j), where the (minimal) optimal k increases with both 3
and j, one can solve intervals in increasing order of length, and search
k = pli[j] for ali][j] only between p[i][j — 1] and p[i + 1][j]. This is
known as Knuth DP. Sufficient criteria for this are if f(b,c¢) < f(a,d) and
fla,c) + f(b,d) < f(a,d) + f(b,c) for all a < b < ¢ < d. Consider also:
LineContainer (ch. Data structures), monotone queues, ternary search.
Time: O (N?)

DivideAndConquerDP.h
Description: Given ali] = ming,()<r<nici)(f(%,k)) where the (minimal)
optimal k increases with ¢, computes a[i] for i = L..R — 1.

Time: O ((N + (hi — lo))log N) d38d2b, 18 lines

struct DP { // Modify at will:
int lo(int ind) { return 0; }
int hi(int ind) { return ind; }
11 f(int ind, int k) { return dplind][k]; }
void store(int ind, int k, 11 v) { res[ind] = pii(k, v); }
void rec(int L, int R, int LO, int HI) {
if (L >= R) return;
int mid = (L + R) >> 1;
pair<ll, int> best (LLONG_MAX, LO);
rep (k, max(LO,lo(mid)), min(HI,hi(mid)))
best = min(best, make_pair (f(mid, k),
store (mid, best.second, best.first);
rec (L, mid, LO, best.second+l);
rec (mid+1, R, best.second, HI);
}
void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
Yi

k))i

10.4 Debugging tricks

e signal (SIGSEGV, [] (int) { _Exit(0); 1});
converts segfaults into Wrong Answers. Similarly one can
catch SIGABRT (assertion failures) and SIGFPE (zero
divisions). _GLIBCXX_DEBUG failures generate SIGABRT
(or SIGSEGV on gec 5.4.0 apparently).

e feenableexcept (29); kills the program on NaNs (1),
0-divs (4), infinities (8) and denormals (16).

10.5 Optimization tricks
__builtin_ia32_ldmxcsr (40896); disables denormals
(which make floats 20x slower near their minimum value).

10.5.1 Bit hacks
e x & —x is the least bit in x.

e for (int x = m; x;) { ——x &= m; ... } loops
over all subset masks of m (except m itself).

e Cc = x&%, r = x+tc; (((r'x) >> 2)/c) | risthe
next number after x with the same number of bits set.

rep(b,0,K) rep(i, 0, (1 << K))
if (i & 1 << b) D[1] += D[1i" (1 << b)];
computes all sums of subsets.

10.5.2 Pragmas

® #pragma GCC optimize ("Ofast") will make GCC
auto-vectorize loops and optimizes floating points better.

® jpragma GCC target ("avx2") can double performance of
vectorized code, but causes crashes on old machines.

® #pragma GCC optimize ("trapv") kills the program on integer
overflows (but is really slow).

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is
constant but not known at compile time. Returns a value congruent to a

(mod b) in the range [0, 2b). 751202, 7 lines

typedef unsigned long long ull;
struct FastMod {
ull b, m;
FastMod (ull b) : b(b), m(-1ULL / b) {}
ull reduce(ull a) { // a % b + (0 or b)
return a - (ull) ((__uintl28_t (m) * a) >> 64) = b; }
}i

BumpAllocator.h
Description: When you need to dynamically allocate many objects and
don’t care about freeing them. "new X” otherwise has an overhead of some-

thing like 0.05us + 16 bytes per allocation. 745db2. 8 lines

// Either globally or in a single class:
static char buf[450 << 207];
void+ operator new(size_t s) {

static size_t i = sizeof buf;

assert (s < 1);

return (voidx)&buf[i -= s];

}

void operator delete(voidx) {}

SmallPtr.h

Description: A 32-bit pointer that points into BumpAllocator memory.
"BumpAllocator.h" 2dd6c9, 9 lines

template<class T> struct ptr {
unsigned ind;

ptr(Tx p = 0) : ind(p ? unsigned((charx)p - buf) : 0) {
assert (ind < sizeof buf); }
T& operatorx () const { return = (Tx) (buf + ind); }
Tx operator->() const { return &=xxthis; }
T& operator([] (int a) const { return (&xxthis) [a]l; }
explicit operator bool() const { return ind; }
Yi
SIMD.h

Description: Cheat sheet of SSE/AVX intrinsics, for doing arithmetic
on several numbers at once. Can provide a constant factor improvement
of about 4, orthogonal to loop unrolling. Operations follow the pat-
tern "_mm(256) ?_.name_(si (128]256) |epi(8116]32|64) |pdlps)". Not all
are described here; grep for mm- in /usr/lib/gcc/x/4.9/include/ for
more. If AVX is unsupported, try 128-bit operations, ”emmintrin.h” and
#define __SSE__ and _MMX_. before including it. For aligned memory use
mmalloc(size, 32) or int buf[N] alignas(32), but prefer loadu/s-

toreu. 551b82, 42 lines

#pragma GCC target ("avx2") // or sse4.1
#include "immintrin.h"

typedef _ m2561i mi;

#define L(x) _mm256_loadu_si256 ((mi*) & (x))

// High—level/specific methods:

// load(u)?_si256, store(u)?_-si256, setzero_si256, _mm_malloc
// blendv_(epi8|ps|pd) (z?y:xz), movemask_epi8 (hibits of bytes)
// i82gather_epi32(addr, x, 4): map addr[] over 32—b parts of z
// sad_epu8: sum of absolute differences of u8, outputs 4zi64
// maddubs_epil6: dot product of unsigned i7’s, outputs 16zilb
// madd_epil6: dot product of signed i116°s, outputs 8zi32

// extractf128_si256(, i) (256—>128), cutsil28_si32 (128—>1032)
// permute2f128_si256 (x,x,1) swaps 128—bit lanes

// shuffle_epi32(x, 3%64+2x16+1x4+0) = x for each lane

// shuffle_epi8(xz, y) takes a vector instead of an @mm

// Methods that work with most data types (append e.g. _epi32):
// setl, blend (i8%?x:y), add, adds (sat.), mullo, sub, and/or,
// andnot, abs, min, max, sign(1,z), cmp(gt|eq), unpack(lo|hi)

int sumi32 (mi m) { union {int v[8]; mi m;} u; u.m = m;
int ret = 0; rep(i,0,8) ret += u.v[i]; return ret; }
mi zero() { return _mm256_setzero_si256(); }
mi one () { return _mm256_setl_epi32(-1); }
bool all_zero(mi m) { return _mm256_testz_si256(m, m); }
bool all_one(mi m) { return _mm256_testc_si256(m, one()); }

11 example_filteredDotProduct (int n, short* a, shortx b) {
int 1 = 0; 11 r = 0;

mi zero _mm256_setzero_si256(), acc = zero;
while (i + 16 <= n) {
mi va = L(a[i]), vb = L(b[i]); 1 += 16;
va = _mm256_and_si256 (_mm256_cmpgt_epil6 (vb, va), va);

mi vp = _mm256_madd_epil6 (va, vb);
acc = _mm256_add_epi6d (_mm256_unpacklo_epi32 (vp, zero),
_mm256_add_epi6d (acc, _mm256_unpackhi_epi32 (vp, zero)));

}

union {11 v[4]; mi m;} u; u.m = acc; rep(i,0,4) r += u.v([i];
for (;i<n;++i) if (ali] < bli]) r += al[ilxbl[i]; // <— equiv
return r;

	Contest
	Mathematics
	Data Structures
	Geometry
	Graphs
	Numerical
	Number Theory
	Combinatorial
	Strings
	Bullshit

