

Introduction to Continuous Control Systems

EEME E3601

Week 10

Homayoon Beigi

Homayoon.Beigi@columbia.edu

<https://www.RecoTechnologies.com/beigi>

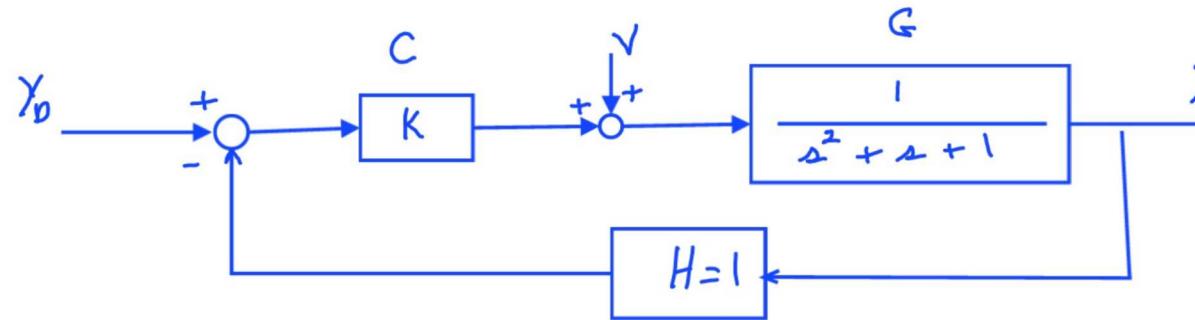
Mechanical Engineering dept.
&
Electrical Engineering dept.

Columbia University, NYC, NY, U.S.A.

Intro. to Continuous Control

homayoon.beigi@columbia.edu

2



$$Y = \left[\frac{C G}{1 + C G H} \right] Y_b + \left[\frac{G}{1 + C G H} \right] V$$

$$\frac{1}{s^2 + s + (1 + K)} = \frac{1}{s^2 + s + (1 + K)}$$

$$[s^2 + s + (1 + K)] Y = K Y_b + V$$

$$\ddot{y} + \dot{y} + (1 + K) y = K y_b + r$$

Intro. to Continuous Control

homayoon.beigi@columbia.edu

3

Solution $y(t) = \cancel{y_H(t)} + \cancel{y_{PD}(t)} + \cancel{y_{PV}(t)}$

① $y_H = c_1 y_1(t) + c_2 y_2(t)$ function of initial conditions

$$s^2 + s + (1+k) = 0 \quad s_{1,2} = \frac{-1 \pm \sqrt{1-4(1+k)}}{2}$$

$$y_1(t) = e^{s_1 t} \quad y_2(t) = e^{s_2 t}$$

want $y_H \rightarrow 0$ as $t \rightarrow \infty$ + $y(0)$

② y_{PD} : particular solution for y_D want $y_{PD} \rightarrow y_D$ as $t \rightarrow \infty$

③ y_{PV} : particular solution for \checkmark want $y_{PV} \rightarrow 0$ as $t \rightarrow \infty$

$$\lim_{t \rightarrow \infty} y_H(t) \rightarrow 0 \quad \forall y(0) \implies \text{Asymptotically Stable}$$

Intro. to Continuous Control

homayoon.beigi@columbia.edu

4

$$y(t) = e^{-\alpha_1 t} C_1 + C_2 e^{\omega_2 t} \quad y(t) = e^{-\alpha_1 t} (C_1 \cos \omega_2 t + C_2 \sin \omega_2 t)$$

→ asymptotically stable: $\dot{y}_H \rightarrow 0$ as $t \rightarrow \infty$ + $y(0)$ if $u(t) = 0$

→ unstable: at least one solution where $y_{H,i} \rightarrow \infty$ as $t \rightarrow \infty$

→ Lyapunov stable: no solution $\rightarrow \infty$

At least one of the homogeneous solutions

some solution may not go to zero

→ Marginal stability: some solution does not decay

(For all practical purposes not considered to be stable)

but it does not blow up either
the rest do the same or decay

→ Bounded Input- Bounded Output (BIBO) stability:

$$\text{if } \vec{x}(0) = \vec{0}$$

$$\|\vec{u}(t)\| \leq k_1 < \infty \quad \forall 0 \leq t < \infty \implies \|\vec{y}(t)\| \leq k_2 < \infty \quad \forall 0 \leq t < \infty$$

BIBO \implies all poles are strictly in the left half plane

Asymptotic Stability

$y(t) \rightarrow 0$ as $t \rightarrow \infty$ $\forall y(0)$ if $u(t) = 0$

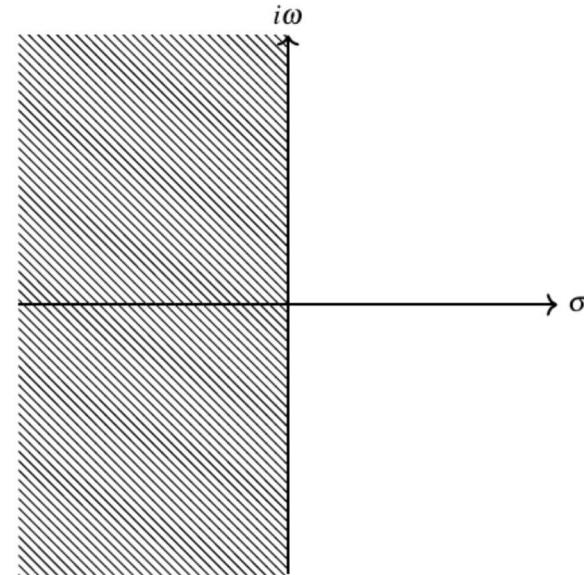
Theorem (Asymptotic Stability)

$$\begin{aligned}\dot{\mathbf{x}}(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t)\end{aligned}\tag{267}$$

The system of Equation 267 is asymptotically stable if and only if all of its poles lie strictly in the left half-plane,

$$\Re e\{\lambda_i\} < 0 \quad i \in \{1, 2, \dots, n\}$$

where λ_i are the eigenvalues of \mathbf{A} .



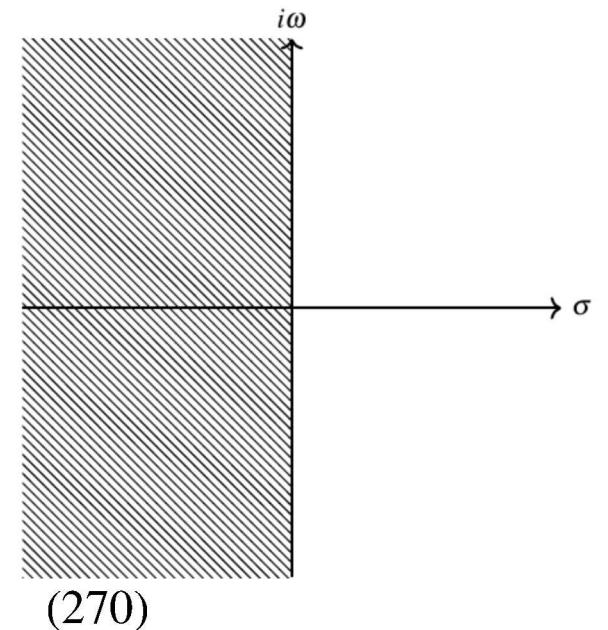
Asymptotic Stability

$y(t) \rightarrow 0$ as $t \rightarrow \infty$ $\forall y(0)$ if $u(t) = 0$

Theorem (Asymptotic Stability)

Equivalently, the system described by Equation 270,

$$\begin{aligned} \frac{d^{(n)}y(t)}{dt^{(n)}} + p_{n-1} \frac{d^{(n-1)}y(t)}{dt^{(n-1)}} + p_{n-2} \frac{d^{(n-2)}y(t)}{dt^{(n-2)}} + \cdots + p_0 y(t) \\ = q_{n-1} \frac{d^{(n-1)}u(t)}{dt^{(n-1)}} + q_{n-2} \frac{d^{(n-2)}u(t)}{dt^{(n-2)}} + \cdots + q_0 u(t) \end{aligned}$$



is asymptotically stable if and only if all of its poles, roots of the characteristic polynomial,

$$P(s) = s^n + p_{n-1}s^{n-1} + p_{n-2}s^{n-2} + \cdots + p_0 \quad (271)$$

are strictly in the left half plane.

Bounded-Input Bounded-Output (BIBO) Stability

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

$$\|\mathbf{u}(t)\| \leq K_1 < \infty \quad \forall \quad 0 \leq t < \infty \implies \|\mathbf{y}(t)\| \leq K_2 < \infty \quad \forall \quad 0 \leq t < \infty$$

$$\begin{aligned} \frac{d^{(n)}y(t)}{dt^{(n)}} + p_{n-1} \frac{d^{(n-1)}y(t)}{dt^{(n-1)}} + p_{n-2} \frac{d^{(n-2)}y(t)}{dt^{(n-2)}} + \dots + p_0 y(t) \\ = q_{n-1} \frac{d^{(n-1)}u(t)}{dt^{(n-1)}} + q_{n-2} \frac{d^{(n-2)}u(t)}{dt^{(n-2)}} + \dots + q_0 u(t) \end{aligned}$$

If all the initial conditions are zero, $y(0) = \dot{y}(0) = \ddot{y}(0) = \dots = y^{(n-1)}(0) = 0$
and,

$$|u(t)| \leq K_1 < \infty \quad \forall \quad 0 \leq t < \infty \implies |y(t)| \leq K_2 < \infty \quad \forall \quad 0 \leq t < \infty$$

Asymptotic Stability (Testing)

Lemma (Positive Coefficients for Stability). *Necessary – But not Sufficient*

$$P(s) = s^n + p_{n-1}s^{n-1} + p_{n-2}s^{n-2} + \cdots + p_0 = 0 \quad (275)$$

If $P(s)$ is stable, then all of its coefficients, p_i , including the coefficient for s^n (usually 1), must have the same sign,

$$p_i > 0 \quad \forall i \in \{0, 1, \dots, n-1, n\}$$

assuming that $P(s)$ may be multiplied by -1 to make $p_{n-1} > 0$, if needed.

Asymptotic Stability (Testing)

Lemma (Positive Coefficients for Stability). *Necessary – But not Sufficient*

$$P(s) = s^n + p_{n-1}s^{n-1} + p_{n-2}s^{n-2} + \cdots + p_0 = 0 \quad (275)$$

If $P(s)$ is stable, then all of its coefficients, p_i , including the coefficient for s^n (usually 1), must have the same sign,

$$p_i > 0 \quad \forall i \in \{0, 1, \dots, n-1, n\}$$

assuming that $P(s)$ may be multiplied by -1 to make $p_{n-1} > 0$, if needed.

Proof.

Equation 275 may be rewritten in terms of a set of complex conjugate and real roots,

$$P(s) = \left[(s - \sigma_1)^2 + \omega_1^2 \right] \cdots \left[(s - \sigma_{m-1})^2 + \omega_{m-1}^2 \right] (s - \lambda_{m+1}) \cdots (s - \lambda_n) \quad (277)$$

with $\sigma_i \pm i\omega_i$, $i \in \{1, 3, \dots, m-1\}$, and λ_j , $j \in \{m+1, m+2, \dots, n\}$ as its roots.

$$\sigma_i < 0 \quad i \in \{1, 3, \dots, m-1\} \quad \lambda_j < 0 \quad j \in \{m+1, m+2, \dots, n\}$$

all $\{-\sigma_i, \omega_i^2, -\lambda_j\}$ must be positive

multiplying the terms in 277 would cause all the coefficients of 275 to be positive. \square

Asymptotic Stability (Testing)

Theorem (Hurwitz Criterion) Necessary and Sufficient

$P(s)$ is stable if and only if the Hurwitz determinants are all positive.

$$D_1 = |p_{n-1}| = p_{n-1}$$

$$D_2 = \begin{vmatrix} p_{n-1} & p_{n-3} \\ 1 & p_{n-2} \end{vmatrix}$$

$$p_{n-1} + p_{n-3} + p_{n-2} + p_{n-1} + p_{n-3} + p_{n-2}$$

$$D_3 = \begin{vmatrix} p_{n-1} & p_{n-3} & p_{n-5} \\ 1 & p_{n-2} & p_{n-4} \\ 0 & p_{n-1} & p_{n-3} \end{vmatrix}$$

$$D_i > 0 \quad i \in \{1, 2, \dots, n\}$$

$$D_n = \begin{vmatrix} p_{n-1} & p_{n-3} & p_{n-5} & \cdots & 0 & 0 \\ 1 & p_{n-2} & p_{n-4} & \cdots & 0 & 0 \\ 0 & p_{n-1} & p_{n-3} & \cdots & 0 & 0 \\ 0 & 1 & p_{n-2} & \cdots & 0 & 0 \\ 0 & 0 & p_{n-1} & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \cdots & p_0 & 0 \\ 0 & 0 & 0 & \cdots & p_1 & 0 \\ 0 & 0 & 0 & \cdots & p_2 & p_0 \end{vmatrix}$$

Asymptotic Stability (Testing)

Theorem (Liénard-Chipart). **Necessary and Sufficient**

Assuming that the coefficients of $P(s)$ are all positive,

$$p_i > 0 \quad i \in \{0, 1, 2, \dots, n-1\}$$

then, $P(s)$ is stable if and only if,

$$D_i > 0 \quad i \in \{2, \underbrace{4, \dots, n-1}\} \quad (\text{when } n \text{ is odd})$$

or

$$D_i > 0 \quad i \in \{\underbrace{3, 5, \dots, n-1}\} \quad (\text{when } n \text{ is even})$$

Asymptotic Stability (Testing)

Example

Consider the following system,

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & -4 & -3 & -2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

$$\mathbf{y}(t) = [2 \quad -6 \quad 4 \quad 0] \mathbf{x}(t)$$

with the characteristic polynomial, $P(s) = s^4 + 2s^3 + 3s^2 + 4s + 5$

Since $n = 4$ is even, we require, $D_i > 0 \quad i \in \{3, 5, \dots, n-1\}$

Therefore, we need to evaluate only one determinant,

$$D_3 = \begin{vmatrix} 2 & 4 & 0 \\ 1 & 3 & 5 \\ 0 & 2 & 4 \end{vmatrix} = -12 \quad \text{See plot_output_lti_statespace.m}$$

Since D_3 is negative, according to the combination of Hurwitz Theorem and Liénard-Chipart Theorem, this system is unstable.

Asymptotic Stability (Testing)

Example

Consider the following system,

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & -4 & -3 & -2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

$$\mathbf{y}(t) = [2 \quad -6 \quad 4 \quad 0] \mathbf{x}(t)$$

Note that using the Hurwitz theorem only, we would have also had to compute,

$$D_1 = |2| = 2 \quad D_2 = \begin{vmatrix} 2 & 4 \\ 1 & 3 \end{vmatrix} = 2$$

$$D_4 = \begin{vmatrix} 2 & 4 & 0 & 0 \\ 1 & 3 & 5 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 1 & 3 & 5 \end{vmatrix} = -60$$

Asymptotic Stability (Testing)

Example

Consider the following system,

$$\ddot{y}(t) + 7\dot{y}(t) + 14y(t) + 8y(t) = \dot{u}(t) + 3u(t)$$

with the following characteristic polynomial,

$$P(s) = s^3 + 7s^2 + 14s + 8 \quad \text{See plot_output_lti.m}$$

All the coefficients are positive, so we need to check,

$$D_2 = \begin{bmatrix} 7 & 8 \\ 1 & 14 \end{bmatrix} = 90$$

Since D_2 is positive, the system is stable.