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Linear Differential Equations

Apply solution to the original linear system of differential equations:
X(I) =  AeM X( X(U) = EAOX{]

Since this system of equations is time-invariant, then, 7y may
be non-zero with the same results. Namley, for x(7y) = x,

X(I ) — € < X( Transition Matrix Takes the state from t, to t
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Linear Differential Equations

|
Al :1+Ar+§A2r2+---

Let us assume that the A 1s diagonalizable through a

transformation matrix M such that

Eigenvector\
Matrix
A =MAM !
where
[ A1 0 0 --- 0 l
0 A 0 0
Ei |
Marix A2
0 0 0 An_1 0
i 0 0 0 0 An |
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Linear Differential Equations

A =T LA+ —A% A = MAM !

Substitube for A 1n the definition of the Matrix Exponential,

1

Al = +MAM '+ —MAM 'MAM 12 4 ...

MM ! I

1

N = M(I+M+EA252+---)M—1

= MMM
Al MAM™

= MMM
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Linear Differential Equations

Fy — AV v: Bl gD = Eigenvectors
/ x: %' s P
Eigenvalue associated E: %P HP
with Eigenvector v
(RAI-E)v=0¥%v
D
/Y|,3;l x| = H(,B; — 4i) Note that in general 3; € €.
i=1
. =)
Determinant
Ev;=pviVie{l,2,--- D} V%@ #P
Sort Eigenvalues from largest to smallest (largest index is 1)
|vil| e =1V¥ie{1,2,--- .D} Normalize Eigenvectors by dividing each element

by the Euclidean norm of the corresponding vector

IV =VA Matrix form after normalization
A AP P
A= 22 .2 A
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Linear Differential Equations

A HP v P
1= h22 - 2 Ab
||V!||l‘f) —_— 1 H;'(-ELE {1,2,"' .LD}
VIEV=_-A Eigenvectors are linearly independent, so the

Eigenvector matrix has an inverse’

In case V can be made unitary (for example for

viv=rl «
/ Symmetric Matrices).

=] Ty
V EIV=V'EV
=A
fWe are assnming that we have distinct Eigenvalues. If A i repeats, then there will be a generalized
Eigenvector Vi associated with the r" repeated Eigenvalue, where A will have a Jordan

block form. A repeated Eigenvalue is also known as a multiple Eigenvalue or a degenerate
Eigenvalue — see Beigi-2011 for more information.
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Transformations
Generalized Eigenvalue Problem

haZoV = ppZgy With special case where £, = X and g =1

(2pZp — haZa) V=0
ALELY —Aﬁzﬁv

ﬁm,za“'n - ﬁﬁ,,zﬁvn

If A has full rank,
A2AL'Ag

i 2B
& oo,
£,V =AZgV

ZoVn = hnZgVn Generalized Eigenvalue and Generalized Eigenvector
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Transformations
Generalized Eigenvalue Problem

If Aa and £ have full rank,

z;zav — AV

z EIEM,, = gnVy < ———The Simple Eigenvalue Problem

However, if |Z3| = 0, then there are p Eigenvectors associated with p Eigenvalues where
p is the rank of Zgand the rest of the Eigenvalues will be infinite.

If |Eq| + 0.

In this case, the rest of the Eigenvalues (with index greater than p), will be zero.

Eu ¥ — Ea_ lzlﬁ Vi
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Cayley-Hamilton Theorem

Theorem 4 (Cayley-Hamilton). If A : Z" — %" is a matrix with the following characteric equation,

A"+ 12" e tonatag =0
then A satisies its own characteristic equation. Namely,

A"+ o, AV A4 ol =0
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Spectral Theory

Case 1: Eigenvectors associated with different eigenvalues are always linearly independent.

Case 2: If for every eigenvalue 3 that is repeated (eg, repeats k-times), the rank(A — 1I) is n (ie, a set of k
independent eigenvectors can be found for that eigenvalue, then the matrix can be diagonalized.

Case 3: If A has repeated eigenvalues for which the condition in case 2 does not hold, then A cannot be diagonalized
and the best we can do is to transform it to a Jordan canonical form which makes use of generalized eigenvectors.

When we do not have enough independent eigenvctors for a repeated eigenvalue, we generate a chain of generalized
eigenvectors from each true eigenvector.
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Spectral Theory

The first generated eigenvector satisfies:
(A — ,@,{I)V(i’l) — vl
The second generated eigenvector satisfies:

(A — pD)v?) =y

Note that,
(A—pD>vED = 0
(A—p D)V = 0
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Spectral Theory

Consider the case where %1 appears 3 times, and having only
I true eigenvector. All other Eigenvalues are distinct.

avD = 4D
Av(lﬂl) — klv(ll)+v(l)
AV = g,v@
AV = v
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Spectral Theory

Av(l)IAv(l'l) IAv(lﬂz)IAv('d')I PR IAv(n)] — [le(l) |@lv(171) +V(1)|@1V(1"2) +V(11)|,@,4V(4)| e |k”v(”):|

[ 21 I 0 - 0 0 7
0 2 1 0
0 0 21 0
A v(1)|v(1f1)lv(1,2)|v(4)|.”|V(n)] _ [V(l)|v(l’1)|v(l‘2)|v(4)|---|V(”)] .
er 0 0 0 An—1 0
0 0 0 0 Zn
J
M lAM =]
A =M M !
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Transformations
Generalized Eigenvalue Problem

Repeated Eigenvalues result in a Jordan block for as follows,

A1 1 0 .- 0 7 B
o l s i)
0 0 )
0 0 0 An—1 D

0 0 0 0  An
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Jordan Block Form

(Different Blocks)
21 0 0 - 0 T et 0 0 - 0 T
0 i 0 s 0 0 ekt 0 - 0
exp X . . s . f —
0 0 0 An—1 0 0 0 0 eRn1l 0
(00 0 0 An_ | 0 0 0 0 eRn! |
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Jordan Block Form

(Different Blocks)
_ 2 n—1 =
0 1 0 0 0 | =
00 l 0 O 1 1 =]
exp|... . .. . i|t= .

o O
oo
oo -
oSO
=R
SO -
oo -
o O

Copyright: Homayoon Beigi Oct 22, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Jordan Block Form

(Different Blocks)
- 2 n—1 -
0 A | o0 0 1 " {r”‘§1
. FY; n—2)!
exp|... ... .. .. i|t=e -
SO 0o 0 0 0 ¢
- A- 0 0 0 0 [
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Jordan Block Form

(Different Blocks)
A, 0 0 0 7 eM 0 0 0 7
0 As 0 0 0 A 0 0
exp Z Z Z . e ) =
0 0 0 A, O 0 0 0 ehAn1t ()
| 0 0 0 0 A, | 0 0 0 0 el
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Jordan Block Form
(Different Blocks)

—sin(wt) cos(wt)

0 a)]t: {cos(a)t) sin(a)t)]

o co] . _ ot [ cos(wt) sin(a)t)]
® N —sin(wt) cos(wt)
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Linear Differential Equations
Ignoring Input

x(t) = Ax(t )—|—Bu( )

X (s) — x(0) = AX(s) + BO)

(sT—A)X(s) = x(0)

X(s) = (sI—A)~'x(0)  Compare to the solution in time, x(¢) = ¢*'x(0)

This means that, .Z{e?} = (sI—A)~!
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Linear Differential Equations

Including Input

X(t) = Ax(t)+Bu(r)

y(r) = Cx()

Since there 1s an input, we can set,

x(0) =10

sX (s) = AX(s) +BU(s) — (sI— A)X(s) = BU(s)

X(s) = (I-A)"'BU(s)

P(s) = [C(SI—A)_IB] 7 (s)

If the output depends on the input directly,
(1) = Ax(r)+Bu(t) X(s) = (sI-A)"'BU(s)
y(r) = Cx()+Du@t) < >¥(s) = [C(sl A)~ 1B—!—D] U (s)

G(.?)
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Linear Differential Equations
Solution of Forced Systems

X(1) = Ax(t) +Bu(t)
X(I‘{]) = X[
X(t) — Ax(t) = Bu(r)

Multiply the above equation by e from the left,

e M x(r) — Ax(t)] = e A Bu(r) (192)

The left hand side of the above is a perfect differential,
d

e M [x(1) — Ax()] = [e—mx(r)] (193)

Combining Equations 192 and 193,

d

- [E—Afx(;)] — ¢ A'Bu(r) (194)
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Linear Differential Equations
Solution of Forced Systems
d

- [e—mx(;)] — ¢ ABu(r) (194)

Integrating both sides of Equation 194,

/;f d [e_Mx(*r)] dr:/re_MBu(r)dﬁ:

0 dt Iy

e Ax(1) — e~ Alx(1g) = / | e A"Bu(t)dt (196)

Iy

Multiplying Equation 196 from the left by e?’,
!
x(t) — A 0)x(zg) = / AU Bu(1)dT

Iy

[
x(t) = eAU0)x(15) + / A=Y Bu(1)dT

Iy
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Linear Differential Equations
Solution of Forced Systems

[
x(t) = AU 0)x(20) + / A=Y Bu(r)dr
Iy

t
y(t) = CeAl0)x (1)) —I—/ CA="Bu(1)dT

X(s) = (I-A)"'BU(s)
P(s) = [C(:;I—A)_IB] 7 (s)

Transfer Function Matrix

Resolvent Matrix: ~ ¢Z { oAl } - ( o] — A) —1
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Homework 7

Please see Courseworks
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