SVD Models I

STAT3009 Recommender Systems

by Ben Dai (CUHK)
On Department of Statistics and Data Science

» What You Should Know by Now

- 1. RS data and Python & Numpy Programming
 - * Basic RS data structures
 - * Array operations and vectorization
- 2. Machine Learning Basics
 - * Linear regression, regularization (Ridge)
 - * Cross-validation techniques, Grid search
- 3. Baseline Methods (global mean, user/item bias)
- 4. scikit-learn Usage
 - * Implement a RS method using sklearn BaseEstimator framework
 - * Automatically perform hyperparameter tuning with GridSearchCV
- 5. Kaggle Platform Operations

» Recall: RS

- * Training dataset: [userID, itemID, rating]
- * Testing dataset: [userID, itemID, ?]
- * Evaluation: Given a testing index set Ω^{te} (set of user-item pairs we want to predict),

$$\textit{RMSE} = \Big(\frac{1}{|\Omega^{\text{te}}|} \sum_{(u,i) \in \Omega^{\text{te}}} (\hat{r}_{ui} - r_{ui})^2 \Big)^{1/2}.$$

- * Goal: Find predicted ratings $(\hat{r}_{ui})_{(u,i)\in\Omega^{\text{te}}}$ such that minimizes RMSE
- * Baseline methods: Global-average, user-average, item-average, user-item average

» Machine learning (ML): RS

Using ML methods to build RS:

- Step 1. Introduce a model with some parameters and hyperparameters
- Step 2. Estimate the parameters by minimizing (maximizing) the Evaluation Loss in Training Set
- Step 3. Using Cross-Validation to determine the optimal hps
- Step 4. Refit the best model, and make prediction

» Components in ML

- Data (feat, label) is a pair of input features and its outcome
- Model $f_{ heta}$: a parameterized function to map features to label
- Loss $L(\cdot,\cdot)$: The measure of how good the predicted outcome compared with the true outcome
 - hp hyperparameter to control the complexity of the model to prevent overfitting
 - Opt The algorithm for solving the problem

» Rethink baseline methods: Opt

Step 1. Introduce a method with some params

method	MATH	parameters
	IVIATIT	parameters
Global pred	$\hat{r}_{ui}=\mu_0$	μ_0
User pred	$\hat{r}_{ui} = a_u$	$\mathbf{a} = (a_1, \cdots, a_n)^{T}$
Item pred	$\hat{r}_{ui} = b_i$	$oldsymbol{b} = (b_1, \cdots, b_m)^{\intercal}$

Step 2. Estimate the parameters by minimizing RMSE

Global
$$\widehat{f}_{\theta}(u,i) = \overline{r}$$

User $\widehat{f}_{\theta}(u,i) = \overline{r}_{u}$
Item $\widehat{f}_{\theta}(u,i) = \overline{r}_{i}$

- Step 3. CV to find the best model
- Step 4. Refit the best model on the whole dataset, and make prediction

InClass demo: Recall Kaggle Quiz 1

» Discussion: Baseline Methods

"All models are wrong, but some are useful." — George E. P. Box

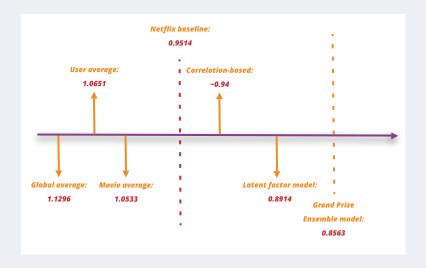
To evaluate each method, we need to understand the underlying assumptions.

- * Global average assumes that all users and items are homogeneous.
- User average assumes that a user has uniform preference for all items.
- * Item average assumes that all users prefer "good" items.
- * User-item average assumes additive effects from users and items, with **no interaction**.

Example: Eric is a generous person, and this is indeed an excellent film, but he simply do not like it.

To improve upon these methods, we need to model the user-item interaction.

» Motivation: SVD Model



» Motivation: SVD Model

A new Python sklearn-type Estimator for RS...

Step 1. Introduce a method with parameters (latent factors):

* Associate each user *u* with a *K*-length latent factor vector

$$\boldsymbol{p}_{u}=(p_{u1},\cdots,p_{uK})^{\mathsf{T}}.$$

* Associate each item i with a K-length latent factor vector

$$\mathbf{q}_i = (q_{i1}, \cdots, q_{iK})^{\mathsf{T}}.$$

 Model the user-item interaction as the inner product of these vectors:

$$\hat{r}_{ui} = \boldsymbol{p}_u^{\mathsf{T}} \boldsymbol{q}_i \rightarrow r_{ui}.$$

* The number of latent factors, K, is a pre-specified **hyperparameter**.

Intuition: Each user/item is represented by a *k*-dimensional vector capturing latent preferences/attributes.

Example with k = 2 **latent factors:**

User vectors
$$\mathbf{p}_u \in \mathbb{R}^2$$
:

Alice watches Avengers:

$$r_{\text{Alice,Avengers}} = 0.9 \times 1.0 + 0.2 \times 0.1 = \boxed{0.92}$$

$$\mathbf{p}_{\mathsf{Alice}} = \begin{bmatrix} 0.9 \\ 0.2 \end{bmatrix}$$
 $\mathbf{p}_{\mathsf{Bob}} = \begin{bmatrix} 0.3 \\ 0.8 \end{bmatrix}$

Bob watches Avengers:

Item vectors
$$\mathbf{q}_i \in \mathbb{R}^2$$
:

$$\textbf{q}_{\text{Avengers}} = \begin{bmatrix} 1.0 \\ 0.1 \end{bmatrix}$$

$$r_{\text{Alice,Notebook}} = 0.9 \times 0.2 + 0.2 \times 0.9 = \boxed{0.36}$$

 $r_{\text{Bob,Avengers}} = 0.3 \times 1.0 + 0.8 \times 0.1 = 0.38$

$$\mathbf{q}_{Notebook} = \begin{bmatrix} 0.2\\0.9 \end{bmatrix}$$

» Geometric Interpretation of $r_{ui} = \mathbf{p}_u^T \mathbf{q}_i$

Dot Product as Similarity:

$$\mathbf{p}_{u}^{T}\mathbf{q}_{i} = \|\mathbf{p}_{u}\|\|\mathbf{q}_{i}\|\cos(\theta)$$

- * $\theta \approx 0$: vectors aligned \Rightarrow high rating
- * $\theta \approx 90$: orthogonal \Rightarrow neutral rating
- * Large $\|\mathbf{p}_u\|$: user with strong preferences
- * Large $\|\mathbf{q}_i\|$: item with distinct features

» Loss: SVD Model

Step 2. Estimate the parameters by minimizing RMSE

$$\min_{\boldsymbol{p} \in \mathbb{R}^{n \times K}, \boldsymbol{Q} \in \mathbb{R}^{m \times K}} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_u^{\mathsf{T}} \boldsymbol{q}_i)^2$$
 (1)

Question: What are the parameters and hyperparameters of this model?

» SVD Model

- Param $\boldsymbol{p}_u(u=1,\cdots,n)$ and $\boldsymbol{q}_i(i=1,\cdots,m)$ are the parameters we want to learn from data.
 - hp K is a pre-specified #Latent Factor, can **NOT** be solved from data.
 - * K increases \implies more parameters \implies lower training loss

How many params?

» Overfitting in ML: SVD Model

Source¹

- * Overfitting: fit the noise
- Too many parameters (model complexity) leads to overfitting

 $^{^{1}} https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42$

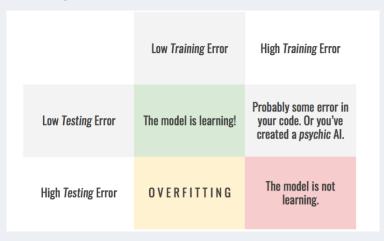
» Overfitting in ML: SVD Model

Source²

* Complexity too large \implies Low Training loss but high Testing loss

 $^{^2} https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42$

» Overfitting in ML: SVD Model



Source³

 $^{^3} https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42\\$

» Tuning: SVD Model

- * Q1: How to quantify the Model Complexity:
 - * #Parameters: (n+m)K
 - * Magnitude of Parameters: $\sum_{u=1}^{n} \|\boldsymbol{p}_u\|_2^2, \sum_{i=1}^{m} \|\boldsymbol{q}_i\|_2^2$
- * **A1:** Control (#Parameters by K, Magnitude by I_2 -norm).
- * Regularized SVD Model:

$$\min_{\boldsymbol{P},\boldsymbol{Q}} \underbrace{\frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_{u}^{\mathsf{T}} \boldsymbol{q}_{i})^{2}}_{\text{Training loss}} + \underbrace{\lambda \left(\sum_{u=1}^{n} \|\boldsymbol{p}_{u}\|_{2}^{2} + \sum_{i=1}^{m} \|\boldsymbol{q}_{i}\|_{2}^{2}\right)}_{\text{Params magnitude}}$$
(2)

where K and $\lambda > 0$ are tuning parameters to balance the model complexity and training loss.

* Why the later term can control the magnitude?

InClass demo: Implement Estimator.__init__ and a
method obj to compute the objective function in (2).

» Tuning: SVD Model

- Step 3. Using GridSearch + CV to find the optimal (K, λ) .
 - * (holdout or K-Fold CV)
- Step 4. Refit the model with the optimal (K, λ) and make prediction.

- » Summary: SVD Model
- Step 1. Introduce a method with some params + hps
 - * Model the user-item interaction as inner production

$$\hat{r}_{ui} = oldsymbol{p}_u^{\mathsf{T}} oldsymbol{q}_i
ightarrow r_{ui}$$

Step 2. Estimate the parameters by minimizing RMSE

$$\min_{\boldsymbol{P},\boldsymbol{Q}} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_{u}^{\mathsf{T}} \boldsymbol{q}_{i})^{2} + \lambda \left(\sum_{u=1}^{n} \|\boldsymbol{p}_{u}\|_{2}^{2} + \sum_{i=1}^{m} \|\boldsymbol{q}_{i}\|_{2}^{2} \right)$$
(3)

- Step 3. Using Cross-Validation to determine the optimal tuning parameters (K,λ) , denote as K^* and λ^*
- Step 4. Refit the model based on full training data with K^* and λ^* and make prediction.

» Big Picture: MF RS

Algorithm 1 Fitting+Tuning+Prediction MF

```
    Input: Training set (u,i,r<sub>ui</sub>)<sub>(u,i)∈Ω</sub>
    Return: Predicted ratings for Testing set: (u,i) ∈ Ω<sup>te</sup>
    for (K,λ) ∈ Grid Set do
    (Tuning: compute CV score)
    Estimate the model with (K,λ) by solving (3)
    Compute CV Score
    end for
    Find the best hps (K*,λ*) with smallest RMSE on valid set
    (Refitting) Estimate the best tuned model by solving (3)
```

10: (*Predict*) test ratings by the estimated **best** tuned model

Question: What's the Python workflow?

» Python Estimator

SVD(BaseEstimator)

- * ___init___
- * fit(X, y): Solving optimization problem in (3)
- * predict(X)

Then, GridSearch + CV can automatically implemented by GridSearchCV

Thus, the key is to implement the fit method to solve (3)?

InClass demo: Implement predict method.

» Optimization I: Matrix Factorization (Optional)

Recall the regularized Matrix Factorization (MF) problem:

$$\min_{\boldsymbol{P},\boldsymbol{Q}} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_u^{\mathsf{T}} \boldsymbol{q}_i)^2 + \lambda \left(\sum_{u=1}^n \|\boldsymbol{p}_u\|_2^2 + \sum_{i=1}^m \|\boldsymbol{q}_i\|_2^2 \right)$$

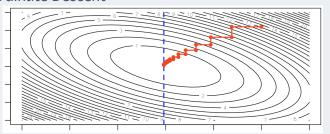
We make the following key observations:

- Obs 1 The optimization problem is nonconvex due to the bilinear term $p_u^T q_i$.
- Obs 2 However, when either *P* or *Q* is fixed, the problem becomes **convex** and can be solved as a standard Quadratic Program (QP), which is essentially a *ridge regression* problem.

These observations motivate us to consider using *coordinate descent* to solve this problem.

» Optimization I: Matrix Factorization (Optional)

(I) Coordinate Descent



- Idea At the (l+1)th iteration, minimize the objective w.r.t. one coordinate, while keeping all others fixed: $\theta_j^{(l+1)} = \operatorname{argmin}_x \ \operatorname{Obj} \big(\theta_1^{(l+1)}, \cdots, \theta_{j-1}^{(l+1)}, \underset{}{\varkappa}, \theta_{j+1}^{(l+1)}, \cdots, \theta_{|\theta|}^{(l)} \big)$
 - * Repeat until a termination condition is met.
 - * This approach is useful when the **joint** optimization problem is difficult to solve, but the **sub-problems** (minimizing w.r.t. one coordinate) are easy to solve.

- » Optimization I: Matrix Factorization (Optional)
- **BCD Blockwise Coordinate Descent**
- Idea At the (l+1)th iteration, minimize the objective function with respect to a block of coordinates: $\theta_j^{(l+1)} = \operatorname{argmin}_{\mathbf{x}} \operatorname{Obj} \big(\theta_1^{(l+1)}, \cdots, \theta_{j-1}^{(l+1)}, \mathbf{x}, \theta_{j+1}^{(l+1)}, \cdots, \theta_{|\theta|}^{(l)} \big),$ where each θ_j is a vector.
 - * This approach is useful when the joint optimization problem is difficult to solve, but the sub-problems (minimizing with respect to a block of coordinates) are easy to solve.

Blockwise Coordinate Descent perfectly fits with our Matrix Factorization formulation...

» Example: BCD for Matrix Factorization (k=1) - Part 1

Setup: 2 users, 2 items, k = 1 latent factor, $\lambda = 0$

Observed ratings: $r_{12} = 5$, $r_{21} = 4$

Objective: $\min_{p_1,p_2,q_1,q_2} (5-p_1q_2)^2 + (4-p_2q_1)^2$

Iteration 0 (Initialize):

$$p_1 = 1$$
, $p_2 = 1$, $q_1 = 1$, $q_2 = 1$

Current obj:
$$(5-1)^2 + (4-1)^2 = 16 + 9 = 25$$

BCD Strategy: Alternate between two blocks:

- Block 1: Update all p's (user factors) while fixing all q's (item factors)
- * Block 2: Update all q's (item factors) while fixing all p's (user factors)

» Example: BCD for Matrix Factorization (k=1) - Part 2

Iteration 1, Step 1: Fix $q_1 = 1, q_2 = 1$, update **p**

- * Update p_1 : $\min_{p_1} (5 p_1 \cdot 1)^2 = (5 p_1)^2$ Derivative: $\frac{d}{dp_1} (5 - p_1)^2 = -2(5 - p_1) = 0 \Rightarrow \boxed{p_1 = 5}$
- * Update p_2 : $\min_{p_2} (4 p_2 \cdot 1)^2 = (4 p_2)^2$ Derivative: $\frac{d}{dp_2} (4 - p_2)^2 = -2(4 - p_2) = 0 \Rightarrow p_2 = 4$

Iteration 1, Step 2: Fix $p_1 = 5, p_2 = 4$, update **q**

- * Update q_1 : $\min_{q_1} (4 4 \cdot q_1)^2 = 16(1 q_1)^2$ Derivative: $32(1 - q_1)(-1) = 0 \Rightarrow \boxed{q_1 = 1}$
- * Update q_2 : $\min_{q_2} (5 5 \cdot q_2)^2 = 25(1 q_2)^2$ Derivative: $50(1 - q_2)(-1) = 0 \Rightarrow \boxed{q_2 = 1}$

After Iteration 1: $p_1 = 5, p_2 = 4, q_1 = 1, q_2 = 1$ New predictions: $\hat{r}_{12} = 5 \times 1 = 5$, $\hat{r}_{21} = 4 \times 1 = 4$ New obj: $(5-5)^2 + (4-4)^2 = 0$ Obj is decreasing!

» Optimization II: Matrix Factorization (Optional)

Let's take a closer look...

Update Q When $(p_u)_{u=1}^n$ are fixed, (3) is a quadratic program (QP) with respect to $(q_i)_{i=1,\cdots,m}$

$$\min_{Q} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_{u}^{\mathsf{T}} \boldsymbol{q}_{i})^{2} + \lambda \left(\sum_{u=1}^{n} \|\boldsymbol{p}_{u}\|_{2}^{2} + \sum_{i=1}^{m} \|\boldsymbol{q}_{i}\|_{2}^{2} \right)$$

$$\iff \min_{Q} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_{u}^{\mathsf{T}} \boldsymbol{q}_{i})^{2} + \lambda \sum_{i=1}^{m} \|\boldsymbol{q}_{i}\|_{2}^{2}$$

$$\iff \min_{Q} \sum_{i=1}^{m} \left(\frac{1}{|\Omega|} \sum_{u \in \mathcal{U}_{i}} (r_{ui} - \boldsymbol{p}_{u}^{\mathsf{T}} \boldsymbol{q}_{i})^{2} + \lambda \|\boldsymbol{q}_{i}\|_{2}^{2} \right). \tag{4}$$

* Note that the objective function in (4) is *separable* with respect to q_i for $i = 1, \dots, m$.

» Optimization III: Matrix Factorization (Optional)

Decompose Thus, solving the objective function in (4) is equivalent to separately solving *m* small quadratic programs (QPs):

$$\min_{\boldsymbol{Q}} \sum_{i=1}^{m} \left(\frac{1}{|\Omega|} \sum_{u \in \mathcal{U}_{i}} (r_{ui} - \boldsymbol{p}_{u}^{\mathsf{T}} \boldsymbol{q}_{i})^{2} + \lambda \|\boldsymbol{q}_{i}\|_{2}^{2} \right)$$

$$\iff \min_{\boldsymbol{q}_{i}} \frac{1}{|\Omega|} \sum_{u \in \mathcal{U}_{i}} (r_{ui} - \boldsymbol{q}_{i}^{\mathsf{T}} \boldsymbol{p}_{u})^{2} + \lambda \|\boldsymbol{q}_{i}\|_{2}^{2}, \text{ for } i = 1, \cdots, m$$

» Optimization III: Matrix Factorization (Optional)

Decompose Thus, solving the objective function in (4) is equivalent to separately solving *m* small quadratic programs (QPs):

$$\min_{\mathbf{Q}} \sum_{i=1}^{m} \left(\frac{1}{|\Omega|} \sum_{u \in \mathcal{U}_{i}} (r_{ui} - \mathbf{p}_{u}^{\mathsf{T}} \mathbf{q}_{i})^{2} + \lambda \|\mathbf{q}_{i}\|_{2}^{2} \right)
\iff \min_{\mathbf{q}_{i}} \frac{1}{|\Omega|} \sum_{u \in \mathcal{U}_{i}} (r_{ui} - \mathbf{q}_{i}^{\mathsf{T}} \mathbf{p}_{u})^{2} + \lambda \|\mathbf{q}_{i}\|_{2}^{2}, \text{ for } i = 1, \dots, m$$

Interestingly, each sub-QP is essentially a *Ridge Regression* problem:

$$\min_{\boldsymbol{q}_i} \frac{1}{|\Omega|} \sum_{u \in \mathcal{U}_i} (r_{ui} - \underbrace{\boldsymbol{q}_i^{\mathsf{T}} \boldsymbol{p}_u}_{\beta^{\mathsf{T}} \boldsymbol{x}_i \text{ in Linear Regression}})^2 + \lambda \underbrace{\|\boldsymbol{q}_i\|_2^2}_{\|\beta\|_2^2}.$$

InClass demo: Solve the sub-problem by
sklearn.linear_model.Ridge for i = 1.

» Optimization SUM: MF

- BCD perfectly fits our model (alternative least squares (ALS))
- Steps solve **Q** (fixed **P**) \rightarrow solve **P** (fixed **Q**) \rightarrow ...
 - * When **P** is fixed, the objective function for **Q** is a standard QP, and each \mathbf{q}_i can be solved **parallelly** with an *analytic solution*.
 - * When **Q** is fixed, the objective function for **P** is a standard QP, and each **p**_i can be solved **parallelly** with an *analytic solution*.

» ALS: MF

end for

8:

Algorithm 2 ALS for solving MF

```
1: Input: Training set (u,i,r_{ui})_{(u,i)\in\Omega}, hps: K,\lambda

2: Return: Est params: (\widehat{P},\widehat{Q})

3: (Initialization) Initialize P^{(0)}

4: for l=0,\cdots,Max\_Iter do

5: (Item-Update)

6: for i=1,\cdots,m do

7: q_i^{(l+1)} updated by Ridge regression
```

» ALS: MF

Algorithm 3 ALS for solving MF

```
1: Input: Training set (u,i,r_{ui})_{(u,i)\in\Omega}, hps: K,\lambda
 2: Return: Est params: (\widehat{P}, \widehat{Q})
 3: (Initialization) Initialize P^{(0)}
4: for l = 0, \dots, Max Iter do
5:
    (Item-Update)
     for i = 1, \dots, m do
6.
      q_i^{(l+1)} updated by Ridge regression
7:
     end for
8:
     (User-Update)
     for u = 1, \dots, n do
10:
     p_{ij}^{(l+1)} updated by Ridge regression
11:
     end for
12:
      Break the loop if termination condition.
13:
14: end for
15: Return(P^{(l+1)}, Q^{l+1})
```

» ALS: Latent Factor Model

Termination condition:

* Diff in params:

$$\frac{1}{n} \sum_{u=1}^{n} \| \boldsymbol{p}_{u}^{(l+1)} - \boldsymbol{p}_{u}^{(l)} \|_{2}^{2} + \frac{1}{m} \sum_{i=1}^{m} \| \boldsymbol{q}_{i}^{(l+1)} - \boldsymbol{q}_{i}^{(l)} \|_{2}^{2} \leq \varepsilon,$$

* Diff in objective function:

$$\mathsf{MSE}^{(\mathit{l})} + \lambda \, \mathsf{Reg}^{(\mathit{l})} - (\mathsf{MSE}^{(\mathit{l}+1)} + \lambda \, \mathsf{Reg}^{(\mathit{l}+1)}) \leq \varepsilon.$$

InClass demo: Implementation of Algorithm 3.

» Theory of Algorithms

- * An iterative algorithm is said to **converge** when, as the iterations proceed, the output gets closer and closer to a specific value.
- * Conditions for convergence

Lemma (Monotone Convergence Lemma)

If a sequence of real numbers is decreasing and bounded below, then it will converge to its infimum.

» Theory of Algorithms

- * An iterative algorithm is said to **converge** when, as the iterations proceed, the output gets closer and closer to a specific value.
- * Conditions for convergence

Lemma (Monotone Convergence Lemma)

If a sequence of real numbers is decreasing and bounded below, then it will converge to its infimum.

- * Most algorithms use this lemma to show convergence
- 1 The objective function is **bounded below**
 - e.g Most objective functions are bounded below by their definition: Root Mean Squared Error (RMSE) + Regularization (Reg)
- C2 Each step should result in a decreasing objective function
 - e.g. Block Coordinate Descent (BCD) and Alternating Least Squares (ALS)

» Tips for Debugging Block Coordinate Descent (BCD)

Identifying a bug in the algorithm with multiple blocks in one iteration

- * Handling multiple blocks in a single iteration
- Monitor the objective function after each block update
- Identify the blocks for which the objective function is not decreasing
- * Pinpoint the location of the bug