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Linear Differential Equations
Partial Fractions (Recap)

Theorem 3. If H(s) is a strictly proper (M < N), rational (ratio of polynomials) function with real coefficients,

ql::lll-'f—]:ISI:M_l} +I?[M_2]SI:M_2:| + e +qﬂ

H(s) = . . . -
2 sV + pv-1)s™ U+ pv-g sV 4+ po
B Q(s)
(s+s1)(s+s2) - (s+sw)
where {s1,s2,-- ,sN } are distinct roots of P(s), then,
R R R
H(s) = 1 2 N

(s+51) g (5+52) L (5+s5n)

where the residues, Ry, are complex numbers given by the following,
Rn = [(s+5n)H(5)] - _,

wheren={1,2,--- N}

Then, the inverse Laplace Transfor of H(s) is given as,

N
h(t) =Y Ry

n=1
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Linear Differential Equations
Partial Fractions Repeated Poles (Recap)

If H(s) is a strictly proper (M < N), rational (ratio of polynomials) function with real coefficients,

qm—1)sMY +qp_s M+ 4 g
‘EJ"J +F[N—1:|S|:N_I} + P,:J.-.'r_z}.i'[N_zj + -+ po

Os)
(s+s51)(s+52) - (54+5) - (s+5n)

H(s) =

where the pole s; is repeated r times, then H(s) may be expanded as follows,

(1) (r]
H(S) = SE S sz s I g
(5) (s+51)  (5+5) (s i) (s+s5;)" (s+sn)

where the R; ! through R;Zr’] associated with the repeated pole, s; may be computed as follows,

T 1 d”
R = [— {(s+s:)H(s }}]
¢ 2! ds? s

(r—1) d . (1) i
R = T-{(s+s:)"H(s)} R; —[(r,_”_dﬂ_,_,]{wr, "H(s)}

F=—14 =
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Linear Differential Equations
Partial Fractions Complex Conjugate Poles

Let us assume that we have a pole which is complex (includes an imaginary part).
In that case, the poles always occur as complex conjugates,

5i = Oy
Sii] = O —i0=75;
Then the residues associated with these two poles may be written as,

1 I

Rj = 5{:'?— ELS!
1 I =
Ria1 = EC{‘F il‘Sg:R;

The above residues may be alternatively written as,

R, 3 R; Ci(s+0;) — S; 0
(s+s)  (s+5) (s+0;)2 + o?

where C; = 2%¢(R;) and §; = —2.#m(R;) may be computed from

I
2R, = S +iCi = — [((3 +0,)2+ mz) H(:;)]

i S=—g;iay
The inverse Laplace Transform is then given by,
Cie %" cos(w;it) + S;e” %" sin( w;t)
which may also be written in terms of the magnitude and phase.
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Linear Differential Equations
Laplace Transform Table

Laplace Transform

Time Domain Function

1 Dirac Delta: 6(r)
: Unit Step: u(r)
1 A oo
— T Sr =Y, O0(t—nT)
é— Ramp: ¢
] 2
5 )
| i
5”1' ! n!
—at
Stea ¢
(5—|—1u)3 te”
i - —ar
s(s+a) l—e
(Ejfmz) sin{wt)
{fjjmzj cos(wt)
0] —af o;
STa T
(G e~ cos(wt)

Oct 8, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Linear Differential Equations
Laplace Transform Solution
Example

y(t) +7y(t) +12y(t) = 0
subject to the following initial conditions
y0) = 4
y0) = 7
Take the Laplace Transform of the differential Equation,
s2Y (s) — sy(0) — y(0) + 7 [sY (s) — y(0)] + 12Y (s) = 0

Y(s) s> +7s+12| —45—7-28 =0

Y(s) |52 +7s+ 12| =4s+35

B 4s + 35
2475412
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y(#) +Ty(t) +12y(t) =0

y©0) = 4
y0) = 7
4s + 35
Y(s)= 55—~
s« +Ts+12
4s + 35
Ys) = eiain
B 4s + 35
 (s+3)(s+4)
_ A B
 s+3  s+4
23 19
Vo) =33 574
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Linear Differential Equations
Laplace Transform Solution

51:2

Example

—b -+ b2 —4ac
2a

—7+ /49— 48

y(t) =23e 7 — 19
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Linear Differential Equations
Laplace Transform Solution

Example
g . Al 1T V t>0
5(0) +45(6) + 13y(1) = u(t) a2{ 5 Y 120
Subject to the following initial conditions,
y0) = 0
y0) = 0

7Y (s) — SM—OW-P [451’(5‘) —)LQ@TT(-}I— 13Y (s) = %

|
Y(s) [:;2 +4s + 13] = —

s
|
) (.5'2 + 45+ 13)

Y(s)=
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Linear Differential Equations
Laplace Transform Solution

Example
|
rig) =
(5) s (.5‘2 + 45+ 13)
s1 =0
—h+Vb? —4dac

§23 = >

_ —4+6i

N 2

= =213i

Y(s) = :
U s(s—(=243i0) (s — (=2 —3i))

(s+2)=3[(s+2)+3i] = (s4+2)*—3ils+2T+3i(s+2]+9
— (5—|—2)2+9

Copyright: Homayoon Beigi Oct 8, 2025



https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Linear Differential Equations
Laplace Transform Solution

ng=%+c“+”+ﬂ3 1 F] S_EZ_ilZ ]
S=—0+im

(s+2)2+9 S+iC =

o |5 13 |3
B 1'1]
3L )=
1] 1
N 5_—2+y]
1 1 —2-3i
~ 3°2+3i-2-3i
1 [=2-3i
3| 449 |
1 [—2—3i]
3|13
N
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Linear Differential Equations
Laplace Transform Solution

Example
A Cs+2)+S03) 1
Vo) =<+ =270 © T i
A = : § o= -
(s+2—3i)(s+2+3i)|._, 39
1
T (2-30)(2+30)
B 1
= 59
1
K
y(t) = % — %e_zf cos(3t) + %Sin(?ﬂ‘)
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Differential Equations
Rigid Body Dynamics

T=M(a)&+c(a,a)+f(a)+gla)+ 1,

TR — BN vector of generalized forces applied to the system

M(e) : Z#" +— %" | equivalent mass matrix

cla,@): %' — #" | vector of generilized forces due to Coriolis and centrifugal effects

fla) : % — %" vector of generalized forces due to viscous friction
g(@): %" — A" vector of generalized gravitational forces
T R — RN vector of disturbances such as friction and other unmodeled foces
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Differential Equations
y_(i) 27 Order Differential Equation
1) (Mass-Spring-Dashpot)

dr? d
Inertial Viscous  Spring  Forcing
Force Damping Force Function
2
md y(f) + (:dy—(r) —+ ky(f) — () Homogeneous Equation

dt? dt

() cdyle) a [k pa_c
ooy =0 e =y ST 5

Natural Angular Damping Ratio
Frequency
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Differential Equations
Integro-Differential Equation
(RLC)

—W—Q—W = I
I I
R © | L erio)+ g [ i@areo) =)

()
o
V

d'.'-‘ E
If differentiate both sides of the L d";i ! +R% EJ'[ )=0 tot,

d>jt) djr) 1 dv(t) N |
L R _ Differential Equation
a2z " a ¢ e = dt
2 :
Ld di g) LR u;_rﬂ + é j(f) — 0 Homogeneous Equation

2
d j(f) 1_2 d-} (I) it L ](f) =0 Compare to Mass Spring Dashpot

dt? g3 L dt LC
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Linear Differential Equations

Causality
d(ﬂ)},(r) d(ﬂ_l)y(t) d(”_z)y(r)
w7 Pl TP G + -+ poy(7)
d"Du(r) d"=Du(t)
= G-l Y2 gy o)
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Sample Plant
(Telescope)
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angle
disturb '
iS ‘}J(rt)ance 8, (x) desired
u ct) o (r) actual
" T@t’ plant —»&&)
/ pfan output
Input
control
Input

. Lo . angular
S torques 1 T accelerations

moment

_of .
Inertia

. / ult)- Mm(t) 4 V(1)
damping force
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v(t)

g oW AL g2
'B*L‘;Qa COIQKOI ___»| actuator > plant —

SEensor (e

proportional control
n ox) ~ Kfe(x—) constant v(t) ——constant error

integral control

t
Uu, ) = e(c)dT _n*t
"" Kl‘i < has to overshoot

D s
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V(%)
.t-) Q'Lr) “n}lt‘ g 9(17
'BJ‘(A‘;Q_. control | 1 4ctuator —>£—> plant .

law e

Sensor |e
Pl control *
n (t) = K’Pﬂ(f\'f' Klj e (1) d¢
M o
PD

K d e(#)
M“Ci‘) — K/\oe.(t) - A It
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P T L g de _ Kfc(rl AN ()

= &t ¢, (&fﬂ -0 () +or(t)

(t) ~ v(%
)T-Ke&;ﬂ V(%)

v stox) g de® g ek
LY

de*
PD: dewx) _ (¢
dle &) /e_ d e(t) - Kf"-‘“ % dt v
1 ye G ‘ Mﬂ,.wr('l‘)
= Yo 9'&)—\- 0
Se ) Z’ 40‘*’ KK R = ¥
IV assuming
constant

O (%)
A
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Differential Equations
State-Space Representation

o (t) é y(t) Relc}:all
| dy(t) cdy(t) k
SONERE R 2t T Ty
P Ea0-Se0+0 O
22 k- o+ s
a) ] 0 1 x1 (1) 0
l ) ll ke “ X2 (1) l+l s l& |
(1) A x(1) b 0| | X0) = Ax()+bu(y)
_ x1 () e
GRS b EXV TN
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Differential Equations
State-Space Representation

o 2 [ s ,,
. {ﬂxl(r) Ld;—iﬂ +Rj(f)+é/ j(t)dT+v(0) = v(z)
o) = =) ’
dx,(t)
dx;fr): Llcxl(r>—§xz(r)+1v(r) z - Y
dx (1) 1 R 1
e = —Exl(f)—zxz(f)‘FEV(f)
@) (_| 0 l xy (1) 0
; = 1 R N +[ 1 | v(@)
l jéz)l 1 E‘A’ L “ j‘;)l l%l‘:@" k() = Ax() +bu(t)

y(r) = ¢ x(t) +du(r)
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Linear Differential Equations

Causality
d)y() (1 lw) dDy(r)
n 1 u(f) d(n—Z)u 1‘)
= QH—I 4 (n—1) + qn—2 17 (1=2) + 4 qou(r)
Controllable Canonical Form
I, | 0 0 il ~ 0 7
ORI R G I 170
. —Po —P1 - —Pn-2 —Pn-1 _ o
y(l‘): [ qo 41 -+ 4pn—2 {p—1 }X(I)
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Feedback Control

Manip. Variable

Input
(Desired Output) Error
ya(s) + e(s) m(s) y65)
> Controller o Plant .
Feedback

Output: Variable to be controlled
Input (Command): What we want the output to be

Plant: System that needs to be controlled

& Measure the output
2 Compare it to the desired output

& Manipulated Variable: The physical variable we adjust to make
the plant produce the desired output
A

The solution to the differential equation
Representing the plant
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Controller

9 Looks at the error & decides how to change the manipulated variable

Error
e(s
®) Control
Law

> Actuator » m(s)
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Compensators & Filters

d Frequency

d Bandpass Filter
J Notch Filter
J Lowpass Filter

J Highpass Filter

9 Phase
J Phase-Lead Compensator

9 Phase-Lag Compensator

d Phase-Lead-LLag Compensator
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