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Root Locus Plots (Review)

Closed-loop transfer function

Closed-loop characteristic equation 1+C(s)G(s)H(s) =0

Assume C(s)G(s)H(s) has a free parameter, K C (S)G(S)H (5) =

KQ(s)

P(s)
P(s)+KQ(s) = F(s)=P(s)+KQ(s) =0
P(s)

1+C(s)G(s)H(s) = 1+

= 0
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Root Locus Plots (Review)

C(s)G(s)H(s) = KCi(s)G1(s)H(s)
K(JH—Z[)(&JrZz)---(54—2’.;”)
(s+p1)(s+p2)---(s+pn)

[ LCi(5)G1(s)Hi(s) = (s+25) — ): (s+ Pr)

,-—xr-..ME

Use to draw ) o= +1)r where K >0

Root Loci

\ ZCI (S)Gl(ﬁ‘)Hl (?) = i A(S—I—Zj) Z 4(34—}?;()
j=1

= 2In where K <0

where [ € {0,+1,+2,---}
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Root Locus Plots

Example

Take an arbitrary point, s, , then if s, is a point on the Root Locus, the
following equation must be satisfied for the case where K > 0

L(s1+z21)—Ls1 —ZL(s1+p2)—ZL(s1+p3) = 6, —6p —0y —06,,
= Q2+1)x
where [ € {0, +1,+£2,---}
0,3 1)
—p;\g\_‘ S| s-plane
oy
™ /o N
s O / A )
& . /Z X o)
-7 } /D 0 [—p,
/
f/
)/ 0,3
.....I)‘-%
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Root Locus Plots (Review)

F(s)=P(s)+KQ(s) =0

- |
CL()Gi(s)H(s)] = - :i‘”m""
..—Ikzl lS—i—Pk‘
B 1
K|
[T |s+ il
K| = 2= _
j:l{S_I_ZJ‘
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Root Locus Plots

Example

sz/—x: i@

~g. 51 s-plane
=
" % B
A //,/ / %
g™ / T8,
—\/ . 6_ | ‘/ \\ \
U/ } ~ B G
—7 / 0|-—p
/
/
/
/\%

...l)3

Once s, satisfies the angle relation, the gain, K, may be found by the following,

Ist||s1 4+ p2||s1 + p3l
ls1+21]
Bx( XD

A

The sign of K is determined by which angle relation the point satisfies (odd
multiple of TT : positive, even multiple of 7T : negative)

K|l =
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Root Locus Plots

Rule 1
oo (poles)
\\
|
C1(s)G1(s)Hi(s) = — =
N\
0
|
Ci(s)Gi(s)Hi(s) = — =
/
0 (zeros)
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Root Locus Plots

Example

1+C(s)G(s)H(s) = s(s+2)(s+3)+K(s+1)
= 0
K(s+1)

= e

o - K(s+1) 1
CIGOHES) = o G3) Ci(s)Gi(s)Hi1(s) = — %

o)
s-plane

X X O A o
g ., -1 i
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Root Locus Plots

Rule 2
Number of Branches

Number of branches of Root Loci is equal to
the degree of the polynomial

Example

1+C(s)G(s)H(s) = s(s+2)(s+3)+K(s+1)
= 0
K(s+1)

= e

Number of branches = degree of the above polynomial = 3

Namely, it is max(m,n)
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Root Locus Plots

Rule 3
Symmetry

Root Loci are symmetric with respect to the real axis
and the pole-zero configuration of C(s)G(s)H(s)

& I 4 S
" s-plane : "
'
I /
I o
1 /
I
Example 1 | F.
i
K ;
1 /
C(s)G(s)H(s) = L4
s(s+2)(s+3) L
w—K K>0 K=0 |K=0; | K=0 K<0 K—e
: 0 (0
: Axis of
: symmetry
I
I
]
I
: K>0
I
! P
I N :
(S Axis of /7: 4 7
' symmetry | W Y
. = 1 %
K>0 K<0
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Root Locus Plots

Rule 3
Symmetry

Root Loci are symmetric with respect to the real axis
and the pole-zero configuration of C(s)G(s)H(s)

s R b . A &
A m A
T s-plane 1 I v
Example 2 v
1+C(s)G(s)H(s) = s(s+2)(s°+25+2)+K N v r
= 0 b 4
= s(s4+2)(s+1+0)(s+1—i)+K r |
‘
K \ .
— l + . - ’ N\ b 1 3 _//J B
s(s+2)(s+1+0)(s+1-i) -k K20 N/ _  [K=0 K~-—=
) -1 ' 0 bol
K ¥
C(s)G(s)H(s) = . : 4
GlGHH) s(s4+2)(s+ 1+ (s+1—1i) N
¥K=0
X kY
)\ X
/“b ? ‘f\ %
P 8 £,
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Root Locus Plots

Rule 4
Angles of Asymptotes with the real axis

Asymptotes of Root Loci (behavior of root loci at |s| = )

Asymptotes angles for K >0 are given by

xmwt VYn#m wherek >0

XT Vn#m where £ <0

1e{0,1,-- -, |n—m|—1}

There will be 2|n-m| asymptotes for n # m
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Root Locus Plots

Rule 5
Intersection of the Asymptotes with the real axis

Asymptotes of Root Loci (behavior of root loci at |s| = )

Y Finite Poles of CGH — }_ Finite Zeros of CGH

(8] —

A n—m

/ Y Ze{Poles of CGH} — ). #e{Zeros of CGH}
n—m

Center of Gravity of Root Loci (Always Real)
Complex conjugate imaginary parts sum to 0
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Root Locus Plots
Rule 5

Intersection of the Asymptotes with the real axis

Asymptotes of Root Loci (behavior of root loci at |s| = )

‘Sl : ot
X/
[ s-plane
[ 1
f |
y
Example i
j‘ I Asymplote
1+C(s)G(s)H(s) = s(s+2)(s+3)+K(s+1) ’.‘ L
= 0 l"‘ i
= A K(s+1) —~o+K K<0 K=0 | :I\'zlll\'<() K=%0 K>0 K=0 K<oo K~o=oco
B s(s+2)(s+3) > *—> ‘4 X “ _ “ ¥ »
3 | : 2 l 0 o
|
| |
K(s+1) \ |
C(s)G(s)H(s) = -
BICEHS) s(s+2)(s+3) \
\ i
\ |
\ |
II |
| |
AN
V| !
g 1!
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Y Finite Poles of CGH — ¥ Finite Zeros of CGH (21+1) 15
o = e Root Locus Plots 0= T ¥ m
Y Ze{Poles of CGH} — ¥ #e{Zeros of CGH} Uit
= — Rules 4,5

Intersection of the Asymptotes with the real axis

y-plane
voplane
- - N
< .. ™ v
’
’ ‘.‘
i
K< K<l K<l ) K<)
» |
. y ;
( » |
,.a.-‘"/' 4] i r]l + }'l, [ ]’I-_ ) ” | ) ]
4 O = J. 45
0 =2
K
- 9 7S
-
(el s i ) A K
gl 4] e
K30 K<l WS+ P S 4 iS4 )
A0 K<)
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Y Finite Poles of CGH — ¥ Finite Zeros of CGH (21+1) 16
o = e Root Locus Plots 0= T ¥ m
Y Ze{Poles of CGH} — ¥ #e{Zeros of CGH} Uit
= — Rules 4,5

Intersection of the Asymptotes with the real axis

spline =
= v
~ < Ry
g : - |
< N 'f:, ; 7
-~ y <7 7,
» o
‘f7
“
" %
i 45
K>0 ' ' K<0 K<0 ) K<0
- ~¥ X () - v ,x i)
) 4P 4 ) =~ :1 o, i+ +pl==3) ~° I
-
. 4 ¥
A
i 1
% -
D
> T A ‘r:,.
Y 2 o
< = . v
<
¢ Kiv+z)
GlsiMis)
GlsiHis) AN S NS+ )
SIS+ P s+ pals + ) ' .
") "¢ ()
K>0 K< k- he
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Root Locus Plots

Rules 4,5
Intersection of the Asymptotes with the real axis

Example Asymptotes of the root loci of s(s + 4)(32 +25s+2)+K(s+1)=0

s(s+4)(s* +2s+2)+K(s+1)=0 5
(s +4)( IRl 61 =0—4=4=1=(=1)= =3
i K(s+1) 0
. 2 = T Sm
s(s+4)(s*+2s+2) D=t s, 2}
3 3
s+ 1
Gi(s)H(s) =
1(5)H1(s) s(s+4)(s2+2s+2)
21+ 1
9,3:( 1 )><J'E Vn#m l€{0,1,---,|n—m|—1} Rules 4
[n—m|
Y Finite Poles of CGH — }_ Finite Zeros of CGH
O =
I n—m
Y. %e{Poles of CGH} — Y. Ze{Zeros of CGH} Rules 5
n—m
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Root Locus Plots

Rules 4,5
Intersection of the Asymptotes with the real axis

Example Asymptotes of the root loci of s(s + 4)(32 +25s+2)+K(s+1)=0

im A '
Lo s-plane v Root Locus
X 7 14
5y
iy
./// ‘TL”
A T q
N\ F=OXNN :
60° /60 &
/ LA
VK=0 ‘( v\ /K=o N : =
K>0 y K<0 / 5 v \k =0 K<0 5 E 5 o
¥ e\ _1K o < *
4 “ i Tﬁ 1 1 K>0/ |0 >
60° \ 60 E
\ K=0 /\\/ ] E G
=
- E
S/ \e
Jt_ / \\\ _-"ll: 1 1 1 1 1 i 1
/ 12 -10 -3 -6 -4 -4 0 2 4
‘ | Real Axis (seconds ')
Error in fig. 9-6 of book Correct Root Locus
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Root Locus Plots

Rule 5
Intersection of the Asymptotes with the real axis

Asymptotes of Root Loci (behavior of root loci at |s| = )
rlocus_example_rule5-1.m
% This example is based on Golnaraghi-Kuo Edition 10 p.532 Toolbox Fig. 9-5
PolynQ=[1 1]; % Numerator

PolynP=conv([1 0],[1 2]) % Denominator
PolynP=conv(PolynP,[1 3]) % Denominator

Po\rac{Q(s) } {P(s)}
TFG = tf(PolynQ,PolynP); % Open loop transfer function

rlocus(TFG);
axis([-3 0 -8 8])

[K,poles] = rlocfind(TFG) %rcocfind allow us to choose desired poles on the root locus
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Root Locus Plots

Rules 6
Angles of arrival and departure of Root Loci

epz E Im
-Pp 3\\“(:\ 51 s-plane
e —_|
A T 7B \Use the pole of interest
\*"’6/ / \\ in the place of s;
o——= “ ) o} to compute its angle of
2 } /D ol departure (or zero for
/ angle of arrival)
A
[ \'P
X
-1,3
( ZCi1(s)Gi(s)H (s) = L(s+zj)— Z Z(s+ px)
j=1 =
= (2I+1)mr where K >0
Use to draw 2ha0) -
Root Loci \ m n
LCi(8)Gi()Hi(s) = Y Z(s+zj)— Z s+ pr)
j=1 k=1
\ = 2Ilm where K <0
Copyright: Homayoon Beigi Where [ E {OJ :|: 1 7 :|:2! T }
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Root Locus Plots

Rules 6
Angles of arrival and departure of Root Loci

Root loci of s(s + 3)(s% + 2s + 2) + K =0 to illustrate the angles of

4 departure or arrival

s(s+3)(s+1+i)(s+1-i) + K=0

s-plane

L, K. =8.16 —92 = (21—+—l) X 1800+(1350—|‘900+2660)
s ){ o g = —(2x—1+1)x180°+251.60°
- & = = 71.60°
TR 6, = —71.60°
y . = 288.40°
K * rlocus_example_rule6-1.m

K>0 K<0

CUPYIEIL. 110U yUurL DELEL
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Root Locus Plots

Rules 6
Angles of arrival and departure of Root Loci

s-plane

» =0, = 180
Esde k<o \ ’/ftm l Han / 20 Angles of departure and arrival at a
- - > 1

third-order pole

-3 .. "\\ 0 Three poles repeated at s=-2
K

B;=0 / Three vectors, one
S B s s
K>0 <0 ““I:l' :':‘ ll:‘“ l
Angle =6,
s(s+2)° +K(s+3)=0 LG(s)H(s) =601 — (6p1 +3 X 6p2) = 21+ )7
1+K(£+31:0 3x0p = (2+1)x7a+(T—7)
s(s+2)- = WAWSK
‘4+3 T ST
Gi(s)H(s) = ——— T e T
1(s)Hi(s) 5(s+2)3 Op2 = ?a"ﬂ= 3
rlocus_example_rule6-2.m
Copyright: Homayoon Beigi
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Root Locus Plots

Rules 7

Properties on the real axis — Always to the left of
odd number of poles or zeros

ot
s-plane
K=>0 " K< ! T 5 K<( K>0 ; K<0 3
() o
1) 4
s-plane
K<0 K> o, K<0 K>0 K<0 \ K<(
0 o
K>0 — K <)
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Root Locus Plots

Rules 8
Intersection with the Imaginary Axis

s-plane 3(.5‘ + 3) (52 + 23 + 2) + K — 0

¢ s(s+3)(s* +25+2) = —-K

io(io+3)((io)* +2i0+2) = -K

A k=sin (—0? +3i0)(—0* +2i0+2) = —K
0, ~ 135

s AN 0t — 2% —20% — 3i0® — 6w* +6im = —K
& e o* —50% — 8w’ + 6wi=—K
=() i 0
; * 0*(0* — 8) + 0(=5&*F6)i = —K
, 6
h 1 2
. 2 ©
5
6
M=+l
5

K>0 K<0
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Root Locus Plots

Rules 8
Intersection with the Imaginary Axis

6
W ==+4/=
v \/;

: 0*(w® - 8)

‘;lk‘:” j1.095
8 d K =8.16 6 6
pE e g
o = K " K:(J# + K:(\ c\}\. .
-3 j By=00 10 36 iR
SR I Pl _K
X 5 s

= 8.16

s-plane

rlocus_example_rule9-1.m
(program rule9-1 also
shows rule 8)

K>0 K<0
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Root Locus Plots

Rules 9
Intersection with the Real Axis

The location where the root locus intersects
the real axis 1s when,

s-plane

, dG(s)H;(s)) d(s(s+3) (s> +25+2))
0;=26.6° ) A —
& ds ds
\ ‘ }\;: 0 11,005 — D
: K. =8.1¢
] Q{ ey The value of K at the intersection is computed
—— T Y “'\' e by ensuring that the solution of the above is used
e A in the original closed loop characteristic

i1.095 equation,
K =8.16

- 1+ KGi(s)H (s) =0

K>0 K<0
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Root Locus Plots

Rules 9
Intersection with the Real Axis

The location where the root locus intersects
the real axis i1s when,

s-plane

, ' dG(s)H(s))  d(s(s+3)(s* +25+2))
% i ;l ds B ds
l ; ]i[:” ,‘,nw‘i — D
’ K =8.16
0, ~ 135
o *Q{ =0\ g s(s+3)(s%+2542) = (s7+39)(s>+25+2)
- 1' Ad 3 0;~00° |0 =
: ! f — st 4283 1267 4353 + 657 +6s
: Af'ffm = - 53 + 852 + 6s
_ . d(s* + 553 + 852 + 6
; (bSHBROS) | g 80 g
ds
& *. = 0
5| = —2.2886 523 = —0.7307 £ 0.3486i
Y\

Intersection point
rlocus_example_rule9-1.m

K>0 K<0

CUPYIEIL. 110U yUurL DELEL
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Root Locus Plots

| Rules 9
Intersection with the Real Axis

s-plane

The location where the root locus intersects
the real axis i1s when,

1+KGi(s)H (s) =0

A ;
1
K = -
s(s+3)(s2 +25+2)

- I

T (—2.886)(—2.2886+3)((—22.2886)2 +2(—2.2886) + 2)

R, B I
~ 4.33157
= 0.23

K>0

K<0
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Root Locus Plots

Rules 9
Intersection with the Real Axis

The location where the root locus intersects
the real axis i1s when,

s+4
— dGi(s)Hi(s)) _ ¢ (S(M))
3 ds ds
PR o s(s+2)=2(s+1)(s+4)
N a s2(s+2)2
'%? 52+2S—2[52+SS+4]
g, B s2(s +2)?
_3:14 12 -'IID -;i IB -:4 I2 0 _52 - SS - 8
Real Axis (seconds™) SZ (S + 2)2

wi = 117D s = —6.6828
Intersection points

Copyright:Homayoon Beigi rlocus_example_rule9-2.m Now 19, 2025
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Root Locus Plots

Rules 9
Intersection with the Real Axis

The location where the root locus intersects
the real axis i1s when,

1 +K1Gi(s1)Hi(s1) =0

Root Locus

Sl(Sl —|—2)
- S1 +4
—1.172 % (= 1.172+2)
(—1.172+4)

[
T

K =

—
T

=

|
8]
T

| | | | | 0.97
- -zealeis (-E.Eiaccmds';:l ’ D 2 2°28
= 0.426

Imaginary Axis (seconds i )

s
-
=9
=
P
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Root Locus Plots

Rules 9
Intersection with the Real Axis

The location where the root locus intersects
the real axis i1s when,

1 4+ K>Gq (SQ)HI (52) =0

Root Locus

52(32—'—2)
sy td
—6.6828 x (—6.6828 +2)
 (—6.6828+4)
o~ = —31.294
et T T7.6828

= 11.665

[
T

Ky, =

—
T

=

Imaginary Axis (s econds )

|
8]
T

s
-
=9

0
-
P
-
o
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Root Locus Plots

Rules 10
Arrival and Departure Angles from the Real Axis

The n Root Loci arrive and depart
to/from the root axis at 180/n degrees
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Root Locus Plots

Rules 11
Root Sensitivity

Root sensitivity tends toward infinity at the break-away points
Break-away points transition between real, repeated, and complex roots
Robust System «—»Low Root Sensitivity

Break-away points may be computed as follows,

ds

P
SK_dK

K
K ds

s dK
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Bode Plot

Concerned with Steady-State Response of the system
We assume that the transients have died out — stable system

Forcing Function Particular Solution Form

o (Constant) C (Constant)

Polynomial of order n in ¢ Polynomial of order n in ¢
o cos(Qt) + B sin(Qr) C cos(Qt) + Dsin(€t)

ﬁ eOCt C eOCt

e (arcos(Qr) + Bsin(Qr)) | e* (Ccos(Qr) + Dsin(Q))
Product of the Above Product of the Above

For an oscillatory forcing function, steady state
frequency stays the same, different amplitude and phase
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Bode Plot

¥(r) +3y(t) +2y(t) = sin(3t)

i) = =l K
50) = 0 R

10 17 9 7
¥(1) iy _t cos(31) — (31) frequency stays the same,

— ﬁe - 1_06 130 130 sin different amplitude and phase
Tral;s(ience
y(t) +4y(t) +4y(t) = cos(4t)
y0) = 1
yo0) = 1
A
103 ., 29 _,| 3 I . frequency stays the same,
(1) = 1006 T 10 1T 100 cos(4r) + 75 sin(4)| | gifferent amplitude and phase
Trar?sfience
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Bode Plot

¥(£) + (1) +y(t) = 1+ cos(6¢)
y(0) = 0

y©0) = 0

y
P 6 el 212 V3, 4 1262 o (V3
y(t) =1— 61 cos(6t) + 261 sin(6¢) 561° (613(:03( 5 t) +°75 sm( 5 t))
frequency stays the same, Transience

different amplitude and phase

() +y(t) =1+

y0) = 0 /
(0) 0

I

| 4
1 2
y(t) =1+ ge_zr — gcos(t) + 5 sin(t)
Transience
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Bode Plot

The objective:

Ccos(wt) + Dsin(@t) = Asin(t + @)

Note that,

sin(x—+y) = sin(x) cos(y) + cos(x) sin(y)
Therefore,

Ccos(wt)+ Dsin(wt) = Acos(¢@) sin(@t) + Asin(¢) cos(wt)

Since sine and cosine are linearly independent, the coefficients must match.

C = Asin(9)
D = Acos(9)
A

Sl = C Sin | All

A | Use to find quadrant >

»

D Tan | Cos

cos(¢p) = 1
Positive in Quadrant
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Bode Plot

Special case: If D = 0, then there is only cos, in which case,

A = C
T A
o = =
Otherwise, A | Use to find quadrant . -
Tan | Cos
A= VOIDE aosp) = 2
tan(¢p) = 19) Positive in Quadrant

¢ =tan ! (19)) ¢ = tan”' (g) T ¢ = tan~! (%) +7 ¢ = tan ! (%)
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Homework 10

See Courseworks
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. 40
Intensity
ity — i s : kg my [§
Intensity — Power per unit area. %’F (::,_;} or X Unit of £ = ( 2) (_) (_)
‘ m s §
e ;
J= pressure differential - @i
g s m?
Pz\ . o e
— specific acoustic impedance = —
- m
re ¢ =pe
_ 1.204
Dry air at 1 atm P m3 Ns
and 20°C " —p C = 413.21 E
c=2343.2 —

A}

Ph=2x107" ﬂz (RMS of P for 1kHz)
i Pressure and Intensity
Threshold to hear 1 kHz

10-12 E (Intensity 1kHz)
¢ m?
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Relative Intensity !

I, = 10log (fi) Dimensionless (in dB)
0

p2
= lOlﬂg(—2>

Fy
= 201 ( P)
— og Pﬂ

Maximum Intensity — 3 kHz — 4 kHz — around the resonance freq. of the ear canal
Comfort Range in Relative Intensity — /0 dB — 80 dB

Quiet Library: 40 — 60 dB

Loud Rock Concert: /110 dB

Average Relative Intensity: 58 dB

Male Speakers are about 4.5 dB louder than females

Nov 19, 2025
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Fourier Series Expansion

We can write any function in terms
of a set of sinusoidal functions.

Fourier Series Expansion: Any periodic function may be written in terms of
an infinite series of exponential functions (or sines and cosines)

Defined for the period: [-T, T]

h(t) ~ i CHE’.(E';E) Cri = L/_T h(r)e_i(%ti)dr

H=—oa
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Parseval’s Theorem

Theorem 24.28 (Parseval’s Theorem - Fourier Transform). The Total power in a

signal is the same when computed in the time or Frequency domain. In other words,
the Total Power P is given by,

,?Jf’i/ h(t)|dt

1 = 7
— Hiw)| " dw
= H)]
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44
Parseval's Theorem: proof

(Complex Fourier Transform)

P = /uz |2dr—_/ H(o)[*do

5 E—!‘

o +iw)e®

G+ i@)(cos(B)+isin(B))

ocos(B)— wsin(B)) +i(osin(6) + wcos(0))
Gcos(ﬁ}—mqin{ﬁj} i(osin(6)+ wcos(0))
= cos(0)(oc —iw)—sin(8)(w+io)

= {

= (
= {
= {
= cos(B8)(o —iw)—isin(0)(c —iw)
= (0 —im)(cos(6)—isin(B))
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Plancherel's Theorem: proof 45

(Complex Fourier Transform)

52 [ g 5=t [ [ cloemrao f; e dasd

1 [~ ; i ;
g(r}:ﬁf G(w)e' dw 2:?:}1[ / f e’V H(w,), (an)e 2 s dw, dt

G(ml}H(ﬂ}z H:I'.Il!' I’ﬂ.'l-f

darndwdt

2?17}2[/ 7 H a}z}/ 'O T I0 qt d on d @y

. 0 V¥V @ #on . . .
AT —iWat g,
| /_ Be dt {291' £ e (Orthogonality of Exponential Functions)

(Plancherel's Theorem)
_ S AT (Swiss Mathematician:
- Bt GH 0 Michel Plancherel)
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Parseval's Theorem: proof
(Complex Fourier Transform)

(Plancherel's Theorem)

.6, ol S

Special case where g(t) = h(t)

P =[ h(1)|* dt
N
Y .

(Parseval's Theorem)

Copyright: Homayoon Beigi
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Bode Plot Y

Bode Diagram

1
05 _
R
=
-05 - _
20log1 =0
-1
5 _
30
5+ B
0 phase shift for 10° 10"
pOSitiVC gains Frequency (rad/s)

G=1
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48
A Bode Plot
20
>
Bode Diagram
27
_ 265 ]
é 26T ]
o
255 N
20 log 20
25
6
ar _
=l i
30
o ot 1
4+ _
0 phase shift for 2o 0

positive gains Frequency (rad/s)

G=20
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A Bode Plot
-20 ,
> Bode Diagram
A 7
_ 26.5 T
% 26 F =
=
/
255 T
20 log 20 -
195 n
150 N
'g} 185 N
? 180
O 175 n
170 T
165 N
Opposite (180 e o
degree phase) Frequency (rad/s)
For negative gains e
G=-20
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50
Bode Plot
(Integrator)
) 1 Bode Diagram
G(IO)) = 16 0
1
= ——i
() _ 5~ -
|G(iw)| = ‘1. lé-m— i .
i = col g
1 =
= = sl ]
£G(iw) = —90° /
Slope=20db/decade
B85 ]
% -90
95 |- -
10 10"

Frequency (rad/s)

1
G=-
S

Copyright: Homayoon Beigi Nov 19, 2025


mailto:homayoon.beigi@columbia.edu
https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

20

G(S) = ?

_ ol

Y
Gliw)| = [20]|——i
I = ——1
()]

1
20log(|20| —) =
Olog([20] )

1
201og(|20]) + 2010g(6)

1
LG(iw) = L20+/— —i

@
= 0°-90°
= -90°

Copyright: Homayoon Beigi

Magnitude [dB)

Phase (deq)

-85

-90

-95 —

Bode Plot

Bode Diagram
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25

IJ
=
I

-
un
I

-
=]
I

10°

Frequency (rad/s)

20

G(s) = ;

10"
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