Go for a walk and arrive at the answer: reasoning over
paths in knowledge bases using reinforcement learning
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-
Objective

@ Problem in knowledge graph (KG): Incomplete

@ Graph completion: It is a task to determine the potential relation
between entities. A popular approach to KG completion is to infer
new relations by combinatory reasoning over the information found
along other paths connecting a pair of entities, or evaluating the truth
of a proposed triple.

@ Practical task: Query answering where relation is known with only
one entity.
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Objective

Example of inferring for graph completion :

LOCATEDIN

(ATHLETEPLAYS
SPORTS)!

MICHAEL
CRABTREE

( COLIN KAEPERNICK, HOME STADIUM, ?)

where solid edges are observed and dashed edges are part of queries.
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-
Objective

Question: "What is the nationality of Colin Kaepernick?"

Query answering form: (Colin Kaepernick, Nationality, ? )

This paper: Authors proposed a neural reinforcement learning approach
(MINERVA?) which learns how to navigate the graph conditioned on the
input query to find predictive paths.

!Meandering In Networks of Entities to Reach Verisimilar Answers
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Related work

Symbolic representations methods:

Stanley Kok and Pedro Domingos. Statistical predicate invention. In
ICML, 2007

Ni Lao, Tom Mitchell, and William Cohen. Random walk inference and

learning in a large scale knowledge base. In EMNLP, 2011.
— Poor performance
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— Poor performance

Graph embedding methods:

Richard Socher, Dangi Chen, Christopher D Manning, and Andrew Ng.
Reasoning with neural tensor networks for knowledge base completion. In
NIPS, 2013.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling
multi-relational data. In NIPS, 2013.
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Related work

Simple illustration for graph embedding methods (TranE):

Liverpool
Acme Inc P
TisA
AN bornln * Acme Inc Lot
worksFor basedIn City ° s *Q
worksFor Z ) likesﬂO&) : |:> » JLemenre
/ friendWith Mlk\ Liverpool FC FootballTeam o ff-fiv‘%\vﬂ’\“‘
© / worksFob A
Q\isA . o :
‘bomln / basedin
George likef
& Person 9

Query answering form: (Mike, likes, 7 )
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Related work

Simple illustration for graph embedding methods (TranE):

Liverpool
Acme Inc
TisA
AN bornIn A Acme Inc Liverpool
as ; o ciy
worksFor basedIn City o Groiovs ry
worksFor ikes isA [ ) Liverpool FC
&llk%-’O—\)O Mike “person-_ @  FootballTeam
ieorge >
/ friendWith

isA

/ friendWith Mlk\ Liverpool FC FootballTeam
worksFor

V'
O_\< \/\)O ° 4
iSA
boraln @ / “basedin
likey

George
& Person

Query answering form: (Mike, likes, 7 )
— good performance but unable to capture chains of reasoning expressed
by KB paths.
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Task and Model

Notation :
@ Set of entities : &
@ Set of binary relations : &Z
Triplet (e1,r,e) : 6 €8,i=1,2, re %

o Inverse triplet (er, r 1, e).
o Knowledge graph: G = (&,E,#) where E C & X # x &
°

Query answer problem: complete (eiq, rg,?).
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N
Task and Model

Reinforcement learning model: Authors specified a deterministic
partially observed Markov decision process (POMDP), which is a 5-tuple
(S,0,A,P,R), from the KG.

@ State S consists of all valid combinations in & X & x % x &. For
S €S, S can be denoted as (e, e1q, rq, €2q), Where eyq, rg is the
query, eoq is the answer, e; is the current location of the the RL agent
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Reinforcement learning model: Authors specified a deterministic
partially observed Markov decision process (POMDP), which is a 5-tuple
(S,0,A,P,R), from the KG.

@ State S consists of all valid combinations in & X & x % x &. For
S €S, S can be denoted as (e, e1q, rq, €2q), Where eyq, rg is the
query, eoq is the answer, e; is the current location of the the RL agent

@ Observations O: Agent knows its current location e; and query
€1q, Iq but not the answer eyq. Therefore, O : S = & x & x %, i.e.

O(S = (et7 elq7 rq; qu)) - (et7 elq7 rq)-



N
Task and Model

Reinforcement learning model: Authors specified a deterministic
partially observed Markov decision process (POMDP), which is a 5-tuple
(S,0,A,P,R), from the KG.

@ State S consists of all valid combinations in & x & x #Z x &. For
S €S, S can be denoted as (e, e1q, rq, €2q), Where eyq, rg is the
query, eoq is the answer, e; is the current location of the the RL agent
@ Observations O: Agent knows its current location e; and query
€1q, Iq but not the answer eyq. Therefore, O : S = & x & x %, i.e.
O(s = (et, e14: 1q; €2q)) = (¢, €14; 1q)-
o Action As = {(et,r,v) € E: S = (e, e1q,rq, €2q),r € Z,V €
&Y UA{(s,,s)}.



N
Task and Model

Reinforcement learning model: Authors specified a deterministic
partially observed Markov decision process (POMDP), which is a 5-tuple
(S,0,A,P,R), from the KG.

e Transition P : S x A — S defined by P(S,A) = (v, e1q, rq, €24)
where S = (e, €14, g, €2q) and A= (e, r,v)

10/20



N
Task and Model

Reinforcement learning model: Authors specified a deterministic
partially observed Markov decision process (POMDP), which is a 5-tuple
(S,0,A,P,R), from the KG.

e Transition P : S x A — S defined by P(S,A) = (v, e1q, rq, €24)
where S = (e, €14, g, €2q) and A= (e, r,v)

@ Reward R: R+ = 1 if, in the final state, the current location e; is
equal to eyq. Otherwise, reward is zero.
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N
Task and Model

To solve the POMDP, authors designed a randomized non-stationary
history-dependent policy m = (d1, d2, .., d7—1), where d; : Hy — As, and

the history Hy = (H:, At—1, O¢) is the sequence of observations and
actions taken.
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N
Task and Model

To solve the POMDP, authors designed a randomized non-stationary
history-dependent policy m = (d1, d2, .., d7—1), where d; : Hy — As, and
the history Hy = (H:, At—1, O¢) is the sequence of observations and
actions taken.
Technique Detail:
In practice, authors restricted to policies parameterized by long short-term
memory network (LSTM).
Suppose the agent encode the history H; as h; € R?9, relations are
embedded as r € RI#1*9 and entities are embedded as e € RI¢1*9. The
history embedding for H; = (H;, A¢—1, O;) is updated according to LSTM
dynamics:

h; = LSTM(h;_1,[a;—1;0:-1])

where a;_1 =ra, , and o; = e, if Oy = (e, 14, 1q)-

11/20



N
Task and Model

To solve the POMDP, authors designed a randomized non-stationary
history-dependent policy 7 = (d1, d2, .., d7_1), where d; : Hy — As, and
the history Hy = (H:, A¢—1, O;) is the sequence of observations and
actions taken.

Technique Detail:

Based on the history embedding h;, the policy network makes the decision
to choose an action from all available actions. Typically,

d; = softmax(A{(Wo Relu(Wilhe; 045 1g])))
A ~ Categorical(d;)

where A; is obtained from the embedding matrix of the available actions
for state S;; Wi, Wh are trainable variables.
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Reinforcement learning: training

Author maximized the expected reward:

J(e) = E(el,I’,EQ)NDEAl,..7AT_1N7Tg [R(ST)|51 — (e].? 617 r? e2)]

where assuming there is a true underlying distribution (e, r, &) ~ D, 6
denotes all trainable variable in policy. Specially, authors use the
REINFORCE algorithms (Williams, 1992) to solve the optimization
problem.
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Experiment

Criteria:

o Hit Ratio (HRQk): HRQk is defined as | where n is the number
of tests and hit is the number of cases that the hidden entity in the
test case is ranked in top-k in the produced ranking list by a
recommender system.

@ Mean reciprocal rank (MRR) : The mean reciprocal rank is the
average of the reciprocal ranks of results for a sample of n queries:
MRR = 1371

rank;
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Experiment

lllustration for criteria:
Query | Proposed Results  Correct response | Rank | Reciprocal rank

cat catten, cati, cats cats 3 1/3
tori torii, tori, toruses | tori 2 1/2
virus viruses, virii, viri viruses 1 1

HRO1 = 1

HRQ@2 = i

HR@3 = %

MRR = (1/3+1/2+1)/3 = 11/18
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Experiment

Information of dataset:

Dataset #entities #relations #ifacts #queries _ f#degree .

avg. median
COUNTRIES 272 2 1158 24 4.35 4
UMLS 135 49 5,216 661 38.63 28
KINSHIP 104 26 10686 1074 82.15 82
WN18RR 40,945 11 86,835 3134 2.19 2
NELL-995 75,492 200 154,213 3992 4.07 1
FB15K-237 14,505 237 272,115 20,466 19.74 14
WikiMovies 43,230 9 196,453 9952 6.65 4

Table 1: Statistics of various datasets used in experiments.

16

20



Experiment

Result for small dataset:

Data Metric ComplEx ConvE DistMult NTP NTP-A NeuralLP MINERVA
HITS@1 0.754 0.697 0.808 0.500  0.759 0.475 0.605

KINSHIP HITS@3 0.910 0.886 0.942 0.700  0.798 0.707 0.812
HITS@10 0.980 0.974 0.979 0.777  0.878 0912 0.924
MRR 0.838 0.797 0.878 0.612 0.793 0.619 0.720
HITS@1 0.823 0.894 0916 0.817 0.843 0.643 0.728

UMLS HITS@3 0.962 0.964 0.967 0.906  0.983 0.869 0.900
HITS@10 0.995 0.992 0.992 0.970  1.000 0.962 0.968
MRR 0.894 0.933 0.944 0.872 0912 0.778 0.825

Table 3: Query answering results on KINSHIP and UMLS datasets.
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Experiment

Result for large dataset:

Data Metric ComplEx ConvE DistMult NeuralLP Path-Baseline MINERVA
HITS@1 0.382 0403 0410 0.376 0.017 0413

WNISRR HITS@3 0433 0452  0.441 0.468 0.025 0.456
HITS@10  0.480 0519 0475 0.657 0.046 0513

MRR 0415 0438  0.433 0.463 0.027 0.448

HITS@1 0.303 0313 0275 0.166 0.169 0217
rlsk.237  HITS@3 0434 0457 0417 0.248 0.248 0329
. HITS@10 0572 0.600  0.568 0.348 0.357 0456
MRR 0.394 0410  0.370 0.227 0.227 0.293

HITS@1 0.612 0672  0.610 ) 0.300 0.663

HITS@3 0.761 0.808  0.733 ; 0.417 0.773

NELL-995  irs@10 0.827 0864  0.795 ; 0.497 0.831
MRR 0.694 0747  0.680 ; 0.371 0.725

Table 4: Query answering results on WN18RR, FB15K-237 and NELL-995 datasets. NeuralLP does
not scale to NELL-995 and hence the entries are kept blank.
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Experiment

Ability to learn chain:

(i) Can learn general rules:

(S1) LocatedIn(X, Y) + LocatedIn(X, Z) & LocatedIn(Z, Y)
(S2) LocatedIn(X, Y) + NeighborOf(X, Z) & LocatedIn(Z, Y)
(S3) LocatedIn(X, Y) + NeighborOf(X, Z) & NeighborOf(Z, W) & LocatedIn(W, Y)

(ii) Can learn shorter path: Richard F. Velky WorksFor,

Richard F. Velky M) Schaghticokes No-op, Schaghticokes NO-op, Schaghticokes

. ‘WorksF
(iii) Can recover from mistakes: Donald Graham RALL L)

OrgTerminatedPerson OrgTerminatedPerson~" OrgHiredPerson
e e L _— —_—

Donald Graham TNT Post Donald Graham Wash Post

Table 8: A few example of paths found by MINERVA on the COUNTRIES and NELL. MINERVA can
learn general rules as required by the COUNTRIES dataset (example (i)). It can learn shorter paths if
necessary (example (ii)) and has the ability to correct a previously taken decision (example (iii))
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Discussion

@ A new way of automated reasoning on large KG by training the agent
to walk in KG with RL.

@ Achieve state-of-the-art results on multiple benchmark knowledge
base completion tasks.

@ MINERVA can learn long chains-of-reasoning.

@ Future research directions include applying more sophisticated RL
techniques and working directly on textual queries and documents.
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