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Objective

Problem in knowledge graph (KG): Incomplete

Graph completion: It is a task to determine the potential relation
between entities. A popular approach to KG completion is to infer
new relations by combinatory reasoning over the information found
along other paths connecting a pair of entities, or evaluating the truth
of a proposed triple.

Practical task: Query answering where relation is known with only
one entity.
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Objective

Example of inferring for graph completion :

where solid edges are observed and dashed edges are part of queries.
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Objective

Question: ”What is the nationality of Colin Kaepernick?”
Query answering form: (Colin Kaepernick, Nationality, ? )
This paper: Authors proposed a neural reinforcement learning approach
(MINERVA1) which learns how to navigate the graph conditioned on the
input query to find predictive paths.

1Meandering In Networks of Entities to Reach Verisimilar Answers
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Related work

Symbolic representations methods:
Stanley Kok and Pedro Domingos. Statistical predicate invention. In
ICML, 2007
Ni Lao, Tom Mitchell, and William Cohen. Random walk inference and
learning in a large scale knowledge base. In EMNLP, 2011.
→ Poor performance

Graph embedding methods:
Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng.
Reasoning with neural tensor networks for knowledge base completion. In
NIPS, 2013.
Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston,
and Oksana Yakhnenko. Translating embeddings for modeling
multi-relational data. In NIPS, 2013.
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Related work

Simple illustration for graph embedding methods (TranE):

Query answering form: (Mike, likes, ? )

→ good performance but unable to capture chains of reasoning expressed
by KB paths.
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Task and Model

Notation :

Set of entities : E

Set of binary relations : R

Triplet (e1, r , e2) : ei ∈ E , i = 1, 2, r ∈ R

Inverse triplet (e1, r
−1, e2).

Knowledge graph: G = (E ,E ,R) where E ⊂ E ×R × E

Query answer problem: complete (e1q, rq, ?).
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Task and Model

Reinforcement learning model: Authors specified a deterministic
partially observed Markov decision process (POMDP), which is a 5-tuple
(S,O,A,P,R), from the KG.

State S consists of all valid combinations in E × E ×R × E . For
S ∈ S, S can be denoted as (et , e1q, rq, e2q), where e1q, rq is the
query, e2q is the answer, et is the current location of the the RL agent

Observations O: Agent knows its current location et and query
e1q, rq but not the answer e2q. Therefore, O : S → E × E ×R, i.e.
O(s = (et , e1q, rq, e2q)) = (et , e1q, rq).

Action AS = {(et , r , v) ∈ E : S = (et , e1q, rq, e2q), r ∈ R, v ∈
E } ∪ {(s,�, s)}.

9 / 20



Task and Model

Reinforcement learning model: Authors specified a deterministic
partially observed Markov decision process (POMDP), which is a 5-tuple
(S,O,A,P,R), from the KG.

State S consists of all valid combinations in E × E ×R × E . For
S ∈ S, S can be denoted as (et , e1q, rq, e2q), where e1q, rq is the
query, e2q is the answer, et is the current location of the the RL agent

Observations O: Agent knows its current location et and query
e1q, rq but not the answer e2q. Therefore, O : S → E × E ×R, i.e.
O(s = (et , e1q, rq, e2q)) = (et , e1q, rq).

Action AS = {(et , r , v) ∈ E : S = (et , e1q, rq, e2q), r ∈ R, v ∈
E } ∪ {(s,�, s)}.

9 / 20



Task and Model

Reinforcement learning model: Authors specified a deterministic
partially observed Markov decision process (POMDP), which is a 5-tuple
(S,O,A,P,R), from the KG.

State S consists of all valid combinations in E × E ×R × E . For
S ∈ S, S can be denoted as (et , e1q, rq, e2q), where e1q, rq is the
query, e2q is the answer, et is the current location of the the RL agent

Observations O: Agent knows its current location et and query
e1q, rq but not the answer e2q. Therefore, O : S → E × E ×R, i.e.
O(s = (et , e1q, rq, e2q)) = (et , e1q, rq).

Action AS = {(et , r , v) ∈ E : S = (et , e1q, rq, e2q), r ∈ R, v ∈
E } ∪ {(s,�, s)}.

9 / 20



Task and Model

Reinforcement learning model: Authors specified a deterministic
partially observed Markov decision process (POMDP), which is a 5-tuple
(S,O,A,P,R), from the KG.

Transition P : S ×A → S defined by P(S ,A) = (v , e1q, rq, e2q)
where S = (et , e1q, rq, e2q) and A = (et , r , v)

Reward R: RT = 1 if, in the final state, the current location et is
equal to e2q. Otherwise, reward is zero.
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Task and Model

To solve the POMDP, authors designed a randomized non-stationary
history-dependent policy π = (d1, d2, .., dT−1), where dt : Ht → ASt and
the history Ht = (Ht ,At−1,Ot) is the sequence of observations and
actions taken.

Technique Detail:
In practice, authors restricted to policies parameterized by long short-term
memory network (LSTM).
Suppose the agent encode the history Ht as ht ∈ R2d , relations are
embedded as r ∈ R|R|×d and entities are embedded as e ∈ R|E |×d . The
history embedding for Ht = (Ht ,At−1,Ot) is updated according to LSTM
dynamics:

ht = LSTM(ht−1, [at−1; ot−1])

where at−1 = rAt−1 and ot = eet if Ot = (et , e1q, rq).
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Task and Model

To solve the POMDP, authors designed a randomized non-stationary
history-dependent policy π = (d1, d2, .., dT−1), where dt : Ht → ASt and
the history Ht = (Ht ,At−1,Ot) is the sequence of observations and
actions taken.
Technique Detail:
Based on the history embedding ht , the policy network makes the decision
to choose an action from all available actions. Typically,

dt = softmax(At(W2 Relu(W1[ht ; ot ; rq])))

At ∼ Categorical(dt)

where At is obtained from the embedding matrix of the available actions
for state St ; W1,W2 are trainable variables.
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Reinforcement learning: training

Author maximized the expected reward:

J(θ) = E(e1,r ,e2)∼DEA1,..,AT−1∼πθ [R(ST )|S1 = (e1, e1, r , e2)]

where assuming there is a true underlying distribution (e1, r , e2) ∼ D, θ
denotes all trainable variable in policy. Specially, authors use the
REINFORCE algorithms (Williams, 1992) to solve the optimization
problem.
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Experiment

Criteria:

Hit Ratio (HR@k): HR@k is defined as #hit
n , where n is the number

of tests and hit is the number of cases that the hidden entity in the
test case is ranked in top-k in the produced ranking list by a
recommender system.

Mean reciprocal rank (MRR) : The mean reciprocal rank is the
average of the reciprocal ranks of results for a sample of n queries:
MRR = 1

n

∑n
i=1

1
ranki
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Experiment

Illustration for criteria:

HR@1 = 1
3

HR@2 = 2
3

HR@3 = 3
3

MRR = (1/3 + 1/2 + 1)/3 = 11/18
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Experiment

Information of dataset:
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Experiment

Result for small dataset:
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Experiment

Result for large dataset:
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Experiment

Ability to learn chain:
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Discussion

A new way of automated reasoning on large KG by training the agent
to walk in KG with RL.

Achieve state-of-the-art results on multiple benchmark knowledge
base completion tasks.

MINERVA can learn long chains-of-reasoning.

Future research directions include applying more sophisticated RL
techniques and working directly on textual queries and documents.
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