Towards Agreed-Upon Dose Tables. A Method for Deriving Dosage Tiers
from Collected Data
Introduction

The goal is to create meaningful dosage tiers for each substance and method of administration, providing users with guidance on expected
effects at different dosage levels.

The levels are defined as:

: Minimum dosage where effects start to be noticeable.
: Mild dosage.
: Dosage where typical effects are felt by most users.
: Potent dosage with stronger effects.
: Intense dosage beyond which harm may outweigh benefits.

Each tier is defined by a dosage range, ensuring non-overlapping intervals for clarity and interpretability. Confidence intervals are calculated for
percentile-based thresholds to account for variability in the data.

Data Loading and Preprocessing
Data Fields
Each dose record includes:

: Name of the substance.
: Method of administration (e.g., oral, inhalation).
: Dosage amount.
: Units of measurement (e.g., mg, ug, g, ml).

Data Filtering

: Only records with units in ["mg", "ug", "g", "ml"] are considered.

: Dosage amounts are standardized if necessary (e.g., converting all units to milligrams), but in the provided code,
amounts are directly used without unit conversion.

Outlier Detection

Outliers are detected using the method, which is robust against non-normal distributions.

: Only positive dosage amounts are considered.

X = median(X)
MAD = median(|X; — X])

X, -X
Z; = 0.6745 x
MAD

: Observations with (|Z_i| > 3.5 ) are considered outliers.

: The constant ( 0.6745 ) rescales the MAD to be consistent with the standard deviation for a normal distribution.



Dosage Tier Calculation
Percentile-Based Thresholds

Dosage tiers are defined based on specific percentiles of the dosage amounts to ensure non-overlapping ranges.

: 5th percentile (( 0.05))
: 25th percentile (( 0.25))
: 50th percentile (( 0.50))
: 75th percentile (( 0.75))
: 95th percentile (( 0.95))

: From minimum amount to (P_5)

: Greater than (P {25})
: Greater than (P {75})
: Greater than (P {95})

: Greater than ( P_{95} ) up to maximum amount

def compute_dose_tiers(group):
amounts = group['amount_standard'].dropna().values
if len(amounts) < 15:
return pd.Series(dtype='float64')

results = compute_dose_tiers_cy(amounts)

min_amount = amounts.min()
max_amount = amounts.max()

labels = ['Threshold', 'Light', 'Common', 'Strong', 'Heavy'l
result = {}

thresholds = [min_amount, results[@], results[3], results[6], results[9], max_amount]
ci_lowers = [np.nan, results[1], results[4], results[7], results[10], np.nan]
ci_uppers = [np.nan, results[2], results[5], results[8], results[11], np.nan]

for i, label in enumerate(labels):
result[f'{label} Lower'] = thresholds[il
result[f'{label} Upper']l = thresholds[i+1]
result[f'{label} CI Lower'] = ci_lowers[il]
result[f'{label} CI Upper']l = ci_uppersl[il

reliability_score = calculate_reliability_score(group)
result['Reliability Score (@ to 1)'] = reliability_score

result['Unit'] = group['units'].iloc[0]
return pd.Series(result)

Rationale for Percentile Choices

: Using percentiles like ( P {75} ) helps to capture the middle 50% of the data in the tier.
(P {95} ) capture the lower and upper tails, ensuring extreme dosages are appropriately categorized.

Confidence Interval Calculation

To account for variability in the data and provide an estimate of the uncertainty associated with each percentile threshold, confidence intervals
are calculated. The method used depends on the sample size:

: Bootstrapping is used to estimate confidence intervals.
: The Beta distribution method is used for analytical confidence intervals.

Bootstrapping Method (for N < 75)



Bootstrapping is a non-parametric method that estimates the sampling distribution of a statistic by repeatedly resampling with replacement from
the observed data.

: Generate multiple bootstrap samples by resampling the original data with replacement.
: For each bootstrap sample, compute the desired percentiles.
: Determine the confidence intervals by taking percentiles (e.g., 2.5th and 97.5th) of the bootstrap
distribution of the percentile estimates

Beta Distribution Method (for N >=75)

For larger sample sizes, the distribution of the sample percentiles can be approximated using the Beta distribution, allowing for analytical
calculation of confidence intervals.

For a given percentile (p ), the rank (k) is:

k=[(n+1)xp|

The lower and upper confidence bounds for the cumulative distribution function (CDF) are computed using the Beta distribution's
inverse cumulative density function (CDF), denoted as ( \text{Beta}"{-1}).
Lower bound (( \alpha ) is the significance level, e.g., (\alpha = 0.05 ) for 95% confidence interval):

L = Beta™! (%knf k+1)

Upper bound:
— 112 _
U = Beta (1 Sk —k+ 1)
Lower index:
iy = max (0, L x n] —1)
Upper index:

iy =min(n—1,[U xn] —1)

The confidence interval is given by:

(X(is X))
Where ( X_{(i)} ) denotes the (i )-th ordered observation.

@cython.boundscheck(False)
@cython.wraparound(False)
def calculate_percentile_confidence_interval_cy(np.ndarray[DTYPE_t, ndim=1] data, DTYPE_t percentile, DTYPE_t alpha=0.05):

Calculates confidence intervals for a percentile using the beta distribution method.

cdef int n = data.shape[0]

cdef int k

cdef DTYPE_t lower_bound, upper_bound
cdef int lower_index, upper_index

if n == 0:
return np.nan, np.nan

data.sort() # In-place sort

k = int(np.ceil((n + 1) * percentile))



from scipy.stats import beta
lower_bound = beta.ppf(alpha / 2, k, n - k + 1)
upper_bound = beta.ppf(1 - alpha / 2, k, n - k + 1)

lower_index = max(@, int(np.floor(lower_bound * n)) - 1)
upper_index = min(n - 1, int(np.ceil(upper_bound % n)) - 1)

return datal[lower_index], datalupper_index]

Combined Implementation in Cython

The compute_dose_tiers_cy function combines both methods, selecting the appropriate confidence interval calculation based on the sample

size.

@cython.boundscheck(False)
@cython.wraparound(False)
def compute_dose_tiers_cy(np.ndarray[DTYPE_t, ndim=1] amounts):
Main function to compute dose tiers with adjusted percentiles for non-overlapping ranges.
Uses bootstrapping for small samples and the Beta distribution method for larger samples.
cdef int n = amounts.shape[0]
cdef np.ndarray[DTYPE_t, ndim=1] percentiles = np.array([0.05, .25, 0.50, 0.75, 0.95], dtype=np.float64)
cdef int num_percentiles = percentiles.shape[@] # num_percentiles = 5
cdef np.ndarray[DTYPE_t, ndim=1] results = np.zeros(num_percentiles % 3, dtype=np.float64) # Size 15
cdef int i
cdef np.ndarray[DTYPE_t, ndim=1] ci_lower = np.zeros(num_percentiles, dtype=np.float64)
cdef np.ndarray[DTYPE_t, ndim=1] ci_upper = np.zeros(num_percentiles, dtype=np.float64)
cdef np.ndarray[DTYPE_t, ndim=1] original_percentiles

if n < 15:
return np.array([np.nan] % (num_percentiles % 3))

amounts.sort() # Sort in-place

if n < 75:
# Use bootstrapping for confidence intervals
original_percentiles, ci_lower, ci_upper = bootstrap_percentiles(amounts, percentiles)
else:
# Use Beta distribution method for confidence intervals
original_percentiles = np.percentile(amounts, percentiles * 100)
for i in range(num_percentiles):
ci_lower[i], ci_upper[i] = calculate_percentile_confidence_interval_cy(amounts, percentiles[i])

# Populate the results array with the percentile boundaries and confidence intervals
for i in range(num_percentiles):

results[i * 3] = original_percentiles[i]

results[i * 3 + 1] = ci_lower[i]

results[i * 3 + 2] = ci_upperl[il

return results

Reliability Score Calculation

Purpose

To assess the reliability of the computed dosage tiers based on the quality and consistency of the data.

Components
1. Sample Size Score (( S_s)):

S, = min <1, L)
Tmax

Where:
¢ n = Sample size of the group.



n_max = Maximum sample size considered optimal (set to 15).

cv=2
m

S. =max (0,1 —CV)

Where:
sigma = Standard deviation of dosage amounts.
mu = Mean of dosage amounts.
If mu =0, CV =infinity.

S, = Proportion of non-missing dosage amounts

Combined Reliability Score ((R))

R=06xS5,+03x85+01x5,

def calculate_reliability_score(group):
sample_size = len(group)
max_sample_size = 15
size_score = min(1, sample_size / max_sample_size)
mean_amount = group["amount"].mean()
std_amount = group["amount"].std()
cv = std_amount / mean_amount if mean_amount != @ else np.inf
consistency_score = max(@, 1 - cv)
completeness = group["amount"].notna().mean()
reliability_score = (size_score * 0.6) + (consistency_score * 0.3) + (completeness * 0.1)
return reliability_score

Rationale for Weights

: Larger sample sizes provide more reliable estimates.
: Lower variability (consistency) in the data increases reliability.
: Data completeness ensures that missing values do not bias the results.

Additional Notes

Upper, Lower, Cl Upper, Cl Lower

The distinction between 'Lower/Upper' and 'Cl Lower/Cl Upper' in dosage tiers serves to differentiate between the estimated boundaries of each
tier and the uncertainty that accompanies those estimates. The 'Lower' and 'Upper’ limits delineate the specific dosage ranges for each tier,
derived from calculated percentiles based on the sample data—these serve as the point estimates for dosage categorization. Conversely, the 'Cl
Lower' and 'Cl Upper' limits denote the confidence intervals for these percentile estimates, reflecting the range within which the true population
percentiles are expected to fall with a specified level of confidence (e.g., 95%). This differentiation informs us of both the precise thresholds for
each tier and the reliability of these estimates.

Handling of NaN Values in Confidence Intervals

Confidence intervals for the tier's lower bound and the tier's upper bound are NaN because they correspond to the
minimum and maximum observed values, for which variability cannot be estimated using these methods.

Assumptions and Limitations

: The method assumes that the data is representative and that any measurement errors are random.
: Dosage amounts probably don't follow a normal distribution (bad to assume that in this context!); hence, non-
parametric methods (percentiles, bootstrapping) and distribution-free methods (Beta distribution) are used.
: The method relies on the units being consistent within each group. Unit conversion is not explicitly handled in the code.

Possible Improvements

: Applying a log transformation to dosage amounts could stabilize variance and make percentile estimation more
robust in skewed distributions.



: Enforcing unit conversion to a standard unit (e.g., milligrams) would improve consistency across the dataset.
: Adjusting percentile thresholds based on the distribution of each substance could provide more tailored dosage tiers.



