SVD RS II (Optional)

STAT3009 Recommender Systems

by Ben Dai (CUHK)
On Department of Statistics and Data Science

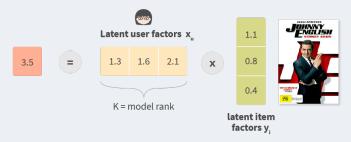
» Matrix Factorization (MF) Models

- SVD-based collaborative filtering
- * Alternating Least Squares (ALS) optimization
- * Coordinate descent methods
- * Low-rank matrix completion

» Recall: Matrix factorization

The main idea of *matrix factorization*

- * params → users/items preference
- * $inner-production \rightarrow user-item interaction$
- * (first proposed by **Simon Funk** during the Netflix Prize)



The idea of MF RS (Source¹). The latent factors \mathbf{x}_u and \mathbf{y}_i in the image are denoted as \mathbf{p}_u and \mathbf{q}_i in the slides.

Image Source:

- » Recall: Matrix Factorization
- Step 1 Introduce a method with some *parameters* (latent factors)
 - * Model the user-item interaction as the inner product

$$\hat{r}_{ui} = oldsymbol{p}_u^{\mathsf{T}} oldsymbol{q}_i
ightarrow r_{ui}$$

Step 2 Estimate the *parameters* by minimizing the regularized *MSE*

$$\min_{P,Q} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_{u}^{\mathsf{T}} \boldsymbol{q}_{i})^{2} + \lambda \left(\sum_{u=1}^{n} \|\boldsymbol{p}_{u}\|_{2}^{2} + \sum_{i=1}^{m} \|\boldsymbol{q}_{i}\|_{2}^{2} \right) \quad (1)$$

- * Use *cross-validation* to determine the optimal *hyperparameters* (K, λ) , denoted as K^* and λ^*
- * Refit the model based on the *full training data* with K^* and λ^* .
- Step 3 Use the *estimated model* with the *best hyperparameters* to make predictions

» Design Your Own Recommender System

We also summarize the *steps* to customize a novel Recommender System.

Step 1. Introduce a model (with parameters and hyperparameters) to formulate the rating. For example,

$$\widehat{r}_{ui} = \mu + a_u + b_i + \mathbf{p}_u^{\mathsf{T}} \mathbf{q}_i$$

Step 2. Find an *algorithm* to fit the model with the observed rating set Ω and use cross-validation to find the best model:

$$\min_{\theta} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \widehat{r}_{ui})^2 + \lambda \operatorname{Reg}(\theta)$$

Step 3. Make a prediction based on the best-tuned model

» More on Matrix Factorization

MF Proposed by **Simon Funk** (2006)

Other names SVD, Matrix Factorization, Latent Factor Models

$$\hat{r}_{ui} = \boldsymbol{p}_{u}^{\mathsf{T}} \boldsymbol{q}_{i} \rightarrow r_{ui},$$

where
$$\mathbf{p}_u = (p_{u1}, \dots, p_{uK})$$
, and $\mathbf{q}_i = (q_{i1}, \dots, q_{iK})$.

- Issue 1 No explicit regularization over users/items
- Issue 2 Difficult to estimate a good latent factor for users/items with few ratings
- * Can we propose a new model to address these issues?
- Remark The baseline terms of all models we are going to discuss below are omitted, as they can simply be *added* or considered by *sequential fitting*.

» More MF: EDA

MovieLens:

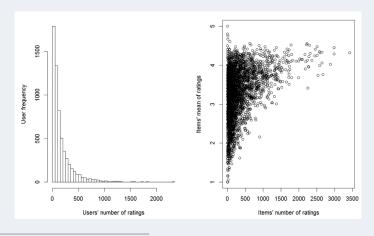


Image source: Bi, X., Qu, A., Wang, J., & Shen, X. (2017). A group-specific recommender system. Journal of the American Statistical Association, 112(519), 1344-1353.

» More MF: EDA

LastFM:

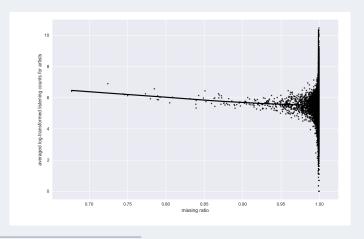


Image source: Dai, B., Wang, J., Shen, X., & Qu, A. (2019). Smooth neighborhood recommender systems. Journal of machine learning research, 20.

» More on Matrix Factorization: Exploratory Data Analysis

What conclusions can be drawn from the exploratory data analysis?

* The rating (r_{ui}) is positively correlated with *popularity*.

Popularity

- $* |I_u|$ represents the number of ratings by user-u
- $* \ |\mathcal{U}_i|$ represents the number of ratings by item-i

Can we incorporate the popularity metrics $|I_u|$ or $|\mathcal{U}_i|$, or more generally the rating patterns I_u or \mathcal{U}_i , into the Matrix Factorization model?

» Linear User SVD (L-SVD)

- N-SVD Proposed by Arkadiusz Paterek (2007)
- Motivation The motivation behind N-SVD is to formulate \mathbf{p}_u based on I_u (*why?*)
 - * Assumes a regression model:

$$p_{uk} \sim |\mathcal{I}_u|^{1/2} |\mathcal{I}_u|^{-1} (w_{1k} \mathbb{I}(1 \in \mathcal{I}_u) + \dots + w_{mk} \mathbb{I}(m \in \mathcal{I}_u))$$

- * (Each rated item influences the user's latent factors)
- * Then \mathbf{p}_u can be replaced as:

$$p_{uk} = \tau_u \sum_{i \in I_u} w_{ik}, \quad \mathbf{p}_u = \tau_u \sum_{i \in I_u} \mathbf{w}_i,$$

where $\tau_u = |\mathcal{I}_u|^{-1/2}$ for notational simplicity.

* The N-SVD model is:

$$\widehat{r}_{ui} = \mathbf{q}_i^{\mathsf{T}} \left(\tau_u \sum_{i' \in \mathcal{I}_u} \mathbf{w}_{i'} \right).$$

» Linear User SVD (L-SVD)

- Params $* \mathbf{Q} = (\mathbf{q}_1, \cdots, \mathbf{q}_m)^\mathsf{T}$ with $\mathbf{q}_i = (q_{i1}, \cdots, q_{iK})^\mathsf{T}$ * $\mathbf{W} = (\mathbf{w}_1, \dots, \mathbf{w}_m)^{\mathsf{T}}$ with $\mathbf{w}_i = (w_{i1}, \dots, w_{iK})^{\mathsf{T}}$
 - Empirical loss function with regularization term:

$$\min_{\mathbf{Q},\mathbf{W}} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} \left(r_{ui} - \mathbf{q}_i^\mathsf{T} \left(\tau_u \sum_{i' \in \mathcal{I}_u} \mathbf{w}_{i'} \right) \right)^2 + \lambda \sum_{i=1}^m \left(\|\mathbf{q}_i\|_2^2 + \|\mathbf{w}_i\|_2^2 \right)$$

- $* \lambda$: weight of regularization term
 - * K: number of latent factors

» L-SVD: Discussion

Advantages

- S1 Explicitly considers the smoothness across users
- S2 Incorporates popularity into a MF model
- S3 Leverages ratings from other users to estimate latent factors for users with sparse ratings

Disadvantages

- W Less flexible in modeling users' latent factors.
- * For example, when two users have rated the same set of items, say (1,2,3), their latent factors will be identical!

Potential Solution

Sol We can combine the strengths of SVD and L-SVD: by retaining both user-specific latent factors and item-aggregated latent factors → SVD++

Note that there is a trade-off between model flexibility and estimation complexity.

SVD++ Proposed by Yehuda Koren (2008)

Model SVD++ integrates SVD and L-SVD:

$$\widehat{r}_{ui} = \mathbf{q}_i^{\mathsf{T}} ig(\mathbf{p}_u + au_u \sum_{j \in \mathcal{I}_u} \mathbf{w}_j ig).$$

Empirical loss function with regularization term:

$$\begin{aligned} \min_{\mathbf{P}, \mathbf{Q}, \mathbf{W}} \frac{1}{|\Omega|} \sum_{(u, i) \in \Omega} \left(r_{ui} - \mathbf{q}_i^{\mathsf{T}} \left(\mathbf{p}_u + \tau_u \sum_{j \in \mathcal{I}_u} \mathbf{w}_j \right) \right)^2 \\ + \lambda \left(\sum_{i=1}^m \left(\|\mathbf{q}_i\|_2^2 + \|\mathbf{w}_i\|_2^2 \right) + \sum_{u=1}^n \|\mathbf{p}_u\|_2^2 \right) \end{aligned}$$

Params

- * User latent factors: P
- * Regression latent factors: W
- $^{ ext{HP}}$ * λ : regularization strength
 - * K: number of latent factors

» Nonnegative Matrix Factorization (NMF) (Optional)

- NMF Introduced by **Paatero** and **Tapper** (1994), and further developed by **Lee** and **Seung** (1999)
- Model The predicted rating is given as:

$$\hat{r}_{ui} = oldsymbol{p}_u^{\mathsf{T}} oldsymbol{q}_i pprox r_{ui}$$

Formulation Empirical loss function with nonnegative constraints:

$$\min_{\mathbf{P},\mathbf{Q}} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_u^{\mathsf{T}} \boldsymbol{q}_i)^2 + \lambda \operatorname{\mathsf{Reg}}(\mathbf{P},\mathbf{Q}), \quad \mathbf{P} \geq \mathbf{0}; \mathbf{Q} \geq \mathbf{0}$$

» Group SVD (gSVD)

```
Group MF Introduced by Bi, et al. (2017)
```

Grouping Pre-computed group assignments for users and items

User Group Each user u is assigned to a group with ID v_u Item Group Each item i is assigned to a group with ID j_i

Model The predicted rating is given as:

$$\hat{r}_{ui} = \left(oldsymbol{p}_{u} + oldsymbol{s}_{
u_{u}}
ight)^{\intercal} \left(oldsymbol{q}_{i} + oldsymbol{t}_{j_{i}}
ight) pprox r_{ui}$$

» Smooth SVD (sSVD)

- SSVD Introduced by **Dai, et al.** (2019)
- Weight Pre-computed similarity weights between pairs of users and items
 - User Sim $w_{u,u'}$ represents the similarity between users u and u' Item Sim $w_{i,i'}$ represents the similarity between items i and i'
 - Model The predicted rating is given as: $\hat{r}_{ui} = \mathbf{p}_u^{\mathsf{T}} \mathbf{q}_i \approx r_{ui}$
 - Using *neighborhood* ratings to estimate (u,i), with weighted regularization:

$$\min_{\mathbf{P},\mathbf{Q}} \frac{1}{nm} \sum_{u=1}^{n} \sum_{i=1}^{m} \sum_{(u',i') \in \Omega} w_{u,u'} w_{i,i'} (r_{u'i'} - \mathbf{p}_{u}^{\mathsf{T}} \mathbf{q}_{i})^{2} + \lambda \mathsf{Reg}(\mathbf{P},\mathbf{Q})$$

» MF / SVD models

Advantages of SVD-/MF-based Methods

- Widely adopted in both industry and academic research
- + Exhibits competitive performance
- Amenable to efficient implementation using parallel computing architectures
- Achieves state-of-the-art (SOTA) performance when only rating data is available
- Most models suffer from cold-start users and/or items problems