
MAGI-1: Autoregressive Video Generation at Scale

Sand AI
research@sand.ai

Abstract

We present MAGI-1, a world model that generates videos by autoregressively
predicting a sequence of video chunks, defined as fixed-length segments of con-
secutive frames. Trained to denoise per-chunk noise that increases monotonically
over time, MAGI-1 enables causal temporal modeling and naturally supports
streaming generation. It achieves strong performance on image-to-video (I2V)
tasks conditioned on text instructions, providing high temporal consistency and
scalability, which are made possible by several algorithmic innovations and a
dedicated infrastructure stack. MAGI-1 facilitates controllable generation via
chunk-wise prompting and supports real-time, memory-efficient deployment by
maintaining constant peak inference cost, regardless of video length. The largest
variant of MAGI-1 comprises 24 billion parameters and supports context lengths
of up to 4 million tokens, demonstrating the scalability and robustness of our ap-
proach. The code and models are available at magi-source and magi-attention.
The product can be accessed at magi-product.

1 Introduction

World modeling and video generation have emerged as central challenges in artificial
intelligence, requiring the synthesis of temporally coherent and photorealistic sequences
conditioned on semantically rich inputs such as natural language, static imagery, or short
video clips. This task resides at the intersection of spatial perception and temporal reasoning,
with profound implications for fields including robotics, embodied artificial intelligence,
interactive media, and scientific simulation. As video becomes a dominant modality for both
human communication and machine understanding, the demand for generative models
that are not only high-fidelity and computationally efficient, but also causally consistent
and compatible with streaming applications, has become increasingly urgent.

Building on the remarkable success of diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2020) and flow-matching frameworks (Lipman et al., 2022; Liu et al., 2022a) in
image generation, recent research has increasingly focused on extending these approaches
to video synthesis. However, most large-scale video diffusion models continue to rely on
globally conditioned denoising architectures that process the entire temporal sequence
simultaneously. These models typically employ uniform noise levels and require full-
sequence access during inference. Such designs disregard the causal structure inherent
to temporal data, rendering them suboptimal for scenarios requiring streaming, real-time
interaction, or autoregressive generation.

To overcome these limitations, we present MAGI-1: a large-scale diffusion-based generative
model that produces video through the autoregressive generation of temporally segmented
chunks, each consisting of a fixed-length sequence of consecutive frames. This chunk-wise
approach offers a principled trade-off between causal modeling and temporal abstraction,
enabling the model to capture mid-range temporal dependencies while maintaining strict
left-to-right temporal consistency. Training is conducted at the chunk level with temporally
progressive noise levels, resulting in a model that is both autoregressively structured and
adaptable in its conditional generation capacity.

MAGI-1 adheres strictly to causal constraints and facilitates real-time, streaming-compatible
video synthesis that approximates multi-step diffusion trajectories with reduced-step, chunk-
level predictions. This is enabled by a Transformer (Vaswani et al., 2017) backbone specifi-
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cally designed for bidirectional spatial and causal temporal denoising, supported by a care-
fully engineered training infrastructure. Central to this infrastructure is a novel distributed
attention mechanism (MagiAttention) tailored for ultra-long autoregressive contexts, along
with a scalable execution framework optimized for low-latency, parallelized inference. These
core components are further augmented by a robust data curation pipeline that supports
multi-stage training and dynamically adapts the data distribution based on ongoing model
evaluation. Together, these architectural and algorithmic advances empower MAGI-1 to
deliver efficient, scalable, and controllable video generation. Notably, the inference-time
peak resource usage of MAGI-1 is independent of the total video length, as each chunk is
processed with a fixed computational and memory footprint. This makes MAGI-1 partic-
ularly suitable for low-latency, memory-efficient applications. The largest variant of the
model comprises 24 billion parameters and supports context lengths of up to 4 million
tokens, demonstrating the scalability and robustness of the framework.

We evaluate MAGI-1 using both internal metrics and publicly available benchmarks, with
a particular focus on the image-to-video (I2V) generation task. Our evaluation protocol
assesses prompt fidelity, temporal coherence, and subject integrity. On VBench-I2V (Huang
et al., 2024) and Physics-IQ Benchmark (Motamed et al., 2025), MAGI-1 achieves substantial
improvements over previous models, especially in its ability to synthesize complex motion,
preserve semantic alignment, and model physically plausible interactions.

In summary, MAGI-1 establishes a scalable and autoregressive foundation for diffusion-
based video synthesis. By integrating architectural innovations, high-throughput inference
techniques, and a comprehensive data processing framework, MAGI-1 bridges the gap
between high-quality generative performance and real-time applicability. The complete
inference codebase and pre-trained models are publicly accessible at magi-source, the
distributed attention available at magi-attention, and a live demonstration available at
magi-product.

2 MAGI-1
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Figure 1: (Left) MAGI-1 performs chunk-wise autoregressive denoising. The video is
generated in chunks of 24 frames, where each chunk attends to all previously denoised
chunks. Once a chunk reaches a certain denoising level, the next chunk begins generation.
(Right) A block-causal attention mask enforces temporal causality across chunks, enabling
pipelined and parallel generation.

MAGI-1 is an autoregressive denoising video generation model operating in latent space.
The generation process is illustrated in Fig. 1. Unlike other bi-directional denoising models
(e.g., Sora (OpenAI, 2024)) that generates the video as a whole, MAGI-1 generates the video
chunk-by-chunk in a pipeline manner. Specifically, each chunk consists of multiple frames
that are denoised holistically. As a chunk is denoised to a certain extent (not necessary
completely clean), the next chunk begins generation, conditioned to all preceding chunks.
This design allows multiple chunks to be processed concurrently. In our implementation,
each chunk contains 24 raw frames (equivalent to one second video clip at 24 FPS), and up
to four chunks can be inferred simultaneously.

Compared to fully denoising one chunk before starting subsequent chunks, our method
leverages parallelism to better utilize computation, reducing the latency of obtaining sub-
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sequent clean chunks and enabling real-time streaming video generation. Moreover, the
auto-regressive design naturally supports video continuation without additional specific
designs, and extends seamlessly to image-to-video generation. This unified framework
enables us to cover text-to-video generation, video continuation, and image-to-video gener-
ation within a single pre-training process, eliminating the need for task-specific fine-tuning
required by other methods. By maintaining consistency between pre-training and down-
stream tasks, our approach achieves superior performance in both video continuation and
image-to-video generation.

In this section, we will systematically introduce the training, distillation, and inference of
MAGI-1 in detail.

2.1 Transformer-based Variational Auto-Encoder

To improve the efficiency of both training and inference, MAGI-1 employs a variational
autoencoder (VAE) to obtain a compressed latent space, over which denoising is performed.
While most open-source VAEs are built upon convolutional architectures (e.g., U-Net (Ron-
neberger et al., 2015)), they are considerably slower than the transformer-based counterparts
(e.g., ViT (Dosovitskiy et al., 2020)) of comparable model size on modern GPUs. To address
this, we design our VAE architecture based on transformers.

The architecture of our VAE is illustrated in Fig. 2. In the encoder, the input is first processed
by an embedding module based on a 3D convolution with a kernel size of 8 × 8 × 41

and a stride of 8× 8× 4, producing an output with 1024 channels. Absolute positional
embeddings are then added to enrich spatial and temporal representations. Building on
this, we stack 24 transformer blocks, where self-attention is stabilized through query, key
and value normalization to improve training stability. The output of the final transformer
block is normalized by a LayerNorm and then projected via a linear layer to 32 channels:
the first 16 channels represent the predicted mean, and the remaining 16 channels represent
the predicted log-variance. Compared to the raw video input, the encoded features are
downsampled by a factor of 8 in the spatial dimensions and by a factor of 4 in the temporal
dimension.

The decoder adopts a symmetric architecture to the encoder. To restore the original spatial
and temporal resolution, we first apply a pixel shuffle operation to the output of the final
transformer block, followed by a 3D convolution with a kernel size of 3× 3× 3 and 3 output
channels to generate the final output in pixel space. For image inputs consisting of a single
frame, we replicate the frame four times along the temporal dimension, which yields better
performance compared to padding with three empty frames.

VAE PSNR Params
(M)

Avg Encode Time
(ms)

Avg Decode Time
(ms)

OpenSoraPlan-1.2 (Lin et al., 2024) 28.39 239 51.08 17.48
CogVideoX (Yang et al., 2025) 35.99 216 40.19 142.96

HunyuanVideo (Kong et al., 2024) 37.27 246 124.39 47.11
StepVideo (Ma et al., 2025) 33.75 499 30.47 18.12
Wan2.1 (Wang et al., 2025a) 35.95 127 51.91 79.43

Ours 36.55 614 36.68 12.28

Table 1: Comprehensive comparison of our VAE with other open-source approaches. Thanks
to the optimized inference support of transformers, our VAE achieves the fastest decode
speed under identical hardware conditions, despite having the largest model size.

The training process of the VAE consists of two stages. In the first stage, we use a fixed
input resolution during training: 16-frame short clips with a spatial resolution of 256× 256
pixels, to maximize training efficiency by avoiding unnecessary padding. In the second
stage, two key modifications are introduced. First, both image data (single frame) and video

1The kernel size is specified in the order of height, width, and temporal dimensions.
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data (16-frame clip) are jointly used during training. Second, we adopt variable spatial
resolutions and aspect ratios by randomly sampling at each training step, enabling the VAE
to generalize across different resolutions. Specifically, we constrain the total number of
pixels (height × width) is be approximately 2562 or 3842, while sampling the aspect ratio
uniformly from the range [0.25, 4.0]. In both stages, we apply a combination of L1 loss, KL
divergence loss, LPIPS loss, and GAN loss, following common practice.

During inference, we use sliding window approach to support arbitrary resolutions. In the
spatial dimension, we adopt a window size of 256× 256 pixels with a stride of 192 pixels,
resulting in a 25% overlap between adjacent patches in spatial. In the temporal dimension,
no overlap is applied.

Tab. 1 shows the comparison with other open-source VAEs. All models were evaluated on a
single NVIDIA H800 GPU. To eliminate potential biases from varying slicing strategies at
higher resolutions, we report the average processing speed measured across 169 test videos,
each containing 25 frames with a spatial resolution of 256×256 pixels. Despite having
the largest model size, our transformer-based VAE achieves the fastest average decoding
time among all models and significantly outperforms most baselines in encoding speed. In
terms of reconstruction quality (measured by PSNR), it remains highly competitive, ranking
second overall.
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Figure 2: Model Architecture of Transformer-based VAE.

2.2 Auto-Regressive Denoising Model

2.2.1 Training objective

MAGI-1 employes flow-matching (Albergo & Vanden-Eijnden, 2022; Liu et al., 2022a; Lip-
man et al., 2022) as its training objective. Given a training video clip contains n chunks, we
sample independent Gaussian noises for each chunk. The linear interpolation with respect
to the denoising timestep t between the sampled noise and the clean latent of the i-th chunk
is defined as:

xt
i = (1− t)x0

i + tx1
i , (1)
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where x1
i denotes the latent of i-th chunk and x0

i is the corresponding sampled Gaussian
noise. The ground-truth velocity for each chunk is given by:

v∗(xt
i ) =

dxt
i

dt
= x1

i − x0
i . (2)

In the auto-regressive model, earlier chunks are cleaner than later ones. For convenience, we
define the noise timestep sampled assigned to each chunk as ti, and impose the constraint
ti < tj whenever i < j.2 The interpolation of the entire video clip is then defined as:
XT = {xt0

0 , xt1
1 , ..., xtn

n }. The model is trained to minimize the following objective:

Ec,XT ∥ v(xti
i |ti, c, {xtj

j<i}; θ)− v∗(xti
i ) ∥

2 . (3)

where v(·; θ) is the denoising model parameterized by θ, and c denotes the conditioning text
inputs. Note that the prediction of velocity for xi explicitly conditioned on all its preceding
chunks xj where j < i.

In contrast, typical bi-directional denoising video models do not enforce monotonicity of
the noise timestep. Instead, they apply the equality constraint, where all chunks share the
same noise timestep. Accordingly, their training objective is formulated as:

Ec,XT ∥ v(xti
i |ti, c, XT ; θ)− v∗(xti

i ) ∥
2 . (4)

where the velocity prediction for xi is conditioned on all chunks, regardless their temporal
order.
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Figure 3: Model Architecture of Auto-Regressive Denoising Model.

2In completely denoising cases, ti = tj = 0, but we use the strict inequality here for simplicity.
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2.2.2 Model Architecture

MAGI-1 is built upon the Diffusion Transformer (DiT) architecture. However, to better
meet the requirements of auto-regressive modeling and to improve training efficiency and
stability at scale, we introduce several key modifications. As shown in Fig. 3(a), MAGI-
1 follows a high-level architecture similar to the standard DiT, consisting of four main
components: patch embedding, attention, feed-forward network (FFN), and final stem. We
employ T5 (Raffel et al., 2020) to extract text embeddings, while the timestep information
is encoded using sinusoidal positional embeddings. Our primary modifications target the
attention and FFN modules, which are illustrated in Fig. 3(b) and Fig. 3(c), respectively. In
the following, we provide a detailed description of these modifications.

Block-Causal Attention MAGI-1 employs full attention within each chunk and causal
attention across chunks. Spatial and temporal positional information is encoded using a
learnable 3D RoPE (Su et al., 2024), in which the base frequency is learnable. However, exist-
ing attention implementations (Dao et al., 2022; Dao, 2023) do not efficiently support block-
causal attention, therefore, we implemented a new kernel called Flexible-Flash-Attention on
top of FlashAttention-3. Further details can be found in Sec. 4.1.2.

Parallel Attention Block MAGI-1 adopts a parallel design for spatial-temporal self-
attention and cross-attention with external conditioning input, offering improved com-
putational efficiency over the serial attention architecture. In the serial setup, each attention
module independently computes query projections and incurs a separate round of Tensor
Parallel (TP) communication. In contrast, the parallel block computes query projections
once and applies them to both attention types concurrently, reducing TP communication
from two rounds to one per block. This optimization lowers inter-GPU synchronization
overhead and enhances scalability in large-scale models.

QK-Norm and GQA Earlier studies on vision transformers (Liu et al., 2022b; Dehghani
et al., 2023) have shown that normalizing the queries and keys of attention can significantly
improve training stability. Moreover, inspired by recent advances in large language models
(LLMs), we replace the standard multi-head attention (MHA) with grouped-query attention
(GQA) (Ainslie et al., 2023) to reduce memory consumption. Both techniques are applied to
the spatial-temporal attention and cross-attention modules in our design.

Sandwich Normalization in FFN In practice, we have noticed that the numerical problems
are more likely to appears in FFN modules as the model size increase. Therefore, we have
added LayerNorm before and after the FFN input and output to alleviate the challenge.

SwiGLU SwiGLU (Shazeer, 2020) has been widely adopted in large language models and
has been shown to consistently improve performance than ReLU. Therefore, we employ
SwiGLU in the feed-forward network (FFN) of our 24B model.

Softcap Modulation The standard DiT incorporates timestep information via adaLN,
where the denoising timestep is used to compute a scaling factor that modulate both the
input and output activations of the attention and FFN. While this design works well for
small models, we observed that in large models it tends to amplify activation magnitudes
and exacerbate numerical instability. To address this issue, we apply a Softcap to the scaling
factor, constraining its values within the range of [−1, 1]. Furthermore, since we adopt
QK-Norm in attention modules, we remove the input modulation of adaLN.

2.2.3 Training Recipes

Training Configurations We train a 4.5B and 24B MAGI-1 models and their configurations
is shown in Tab. 2. The training is organized into three stages. Take the 4.5B model as an
example. In the first two stages, the resolution of training data is set to 360p and 480p,
respectively, with video length is up to 8 seconds. In the third stage, the resolution is further
increased to 720p, and the video length is extended up to 16 seconds. Throughout all three

6



MAGI-1: Autoregressive Video Generation at Scale

4.5B 24B

Layers 34 48
Model Dimension 3072 6144

FFN Activation GLU SwiGLU
FFN Dimension 12288 16384
Attention Type GQA + QK-Norm GQA + QK-Norm

Block-Casual Attention Head 128 128
Block-Casual Attention Group 8 8

Cross Attention Head 128 128
Cross Attention Group 8 8
Positional Embedding Learnable 3d RoPE Learnable 3d RoPE

Optimizer AdamW AdamW
Weight Decay 1× 10−1 1× 10−1

Peak LR 1× 10−4 1× 10−4

Warm-up 1000 10000
β1 0.9 0.9
β2 0.95 0.95

Table 2: Model Specification of MAGI-1.

stages, the image and video are trained jointly. At the beginning of training, we apply a
learning rate warmup, gradually increasing the learning rate to 1e−4 in 1000 steps. Then,
we adopt a stepwise learning rate scheduling strategy. In the first two stages, the learning
rate remains constant, and the stage is switched when the visual assessment of generated
video does not significantly improve. In the third stage, we gradually reduce the learning
rate once the validation loss reaches a plateau, eventually reducing to 1e−5.

For the 24B model, we reduce the resolution in the first training stage from 360p to 256p,
as this stage primarily serves to making the model learn global motion dynamics and
semantic concepts. Lowering the resolution allows for more training iterations within
the same computational budget, thereby improving training efficiency. In addition, we
extend the learning rate warmup phase to 10,000 steps to enhance stability during the early
training phase. Furthermore, since larger models typically require longer training to reach
performance saturation, we proportionally increase the number of training steps at each
stage, guided by empirical visual assessment on the validation set.

Multi-Task Training via Data Configurations Bi-directional denoising models typically
support only text-to-video generation during pretraining, while tasks such as image-to-
video generation often require dedicated architectural designs or additional finetuning. In
contrast, within the auto-regressive framework, text-to-video, image-to-video, and video
continuation tasks differ solely in the proportion of clean chunks present in the training
data. As illustrated in Fig. 4, the early stage of text-to-video generation corresponds to the
case of all chunks are noisy, while the inclusion of some clean chunks represents to video
continuation. Image-to-video generation is a special case of video continuation, with only
the first frame of the first chunk being clean.

Thanks to this property, our auto-regressive model enables unification of various generation
tasks under a single training objective without additional task specific fine-tuning and
requiring only adjustment of the proportion of clean chunks in the training data.

Furthermore, unlike bi-directional denoising models — where the text condition must be
predefined for the entire video and remains fixed throughout generation — MAGI-1 allows
for different text conditions to be provided for each chunk, enabling fine-grained, chunk-
wise text control. To better support this capability, we design a dedicated auto-regressive
captioning strategy (Data details are described in Sec. 3.4) that adapts training accordingly.
Additional examples of this fine-grained control are provided in Sec. 2.6.

Timestep Sampler in Training Early studies have demonstrated that improving the design
of timestep sampler (commonly known as SNR sampler) can facilitate training efficiency by
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𝐼𝑚𝑎𝑔𝑒	𝑡𝑜	𝑉𝑖𝑑𝑒𝑜

𝐶ℎ𝑢𝑛𝑘	0 𝐶ℎ𝑢𝑛𝑘	0 𝐶ℎ𝑢𝑛𝑘	1 𝐶ℎ𝑢𝑛𝑘	0 𝐶ℎ𝑢𝑛𝑘	1 𝐶ℎ𝑢𝑛𝑘	2

…

𝐶ℎ𝑢𝑛𝑘	0 𝐶ℎ𝑢𝑛𝑘	0 𝐶ℎ𝑢𝑛𝑘	1

𝑇𝑒𝑥𝑡	𝑡𝑜	𝑉𝑖𝑑𝑒𝑜

𝐶ℎ𝑢𝑛𝑘	0 𝐶ℎ𝑢𝑛𝑘	1 𝐶ℎ𝑢𝑛𝑘	2

…

𝑉𝑖𝑑𝑒𝑜	𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑡𝑖𝑜𝑛

𝐶ℎ𝑢𝑛𝑘	0 𝐶ℎ𝑢𝑛𝑘	1 𝐶ℎ𝑢𝑛𝑘	1 𝐶ℎ𝑢𝑛𝑘	2 𝐶ℎ𝑢𝑛𝑘	3𝐶ℎ𝑢𝑛𝑘	0

…

Figure 4: The figure shows how different tasks can be unified by varying the proportion
of clean chunks. Each vertical bar represents a latent frame in a chunk, with darker bars
indicating higher noise levels and the white bars denoting clean frames. The first row
illustrates the early inference stage of T2V generation, starting from a single fully noisy
chunk and progressing to multiple noisy chunks, before any clean chunk has been produced.
The middle row depicts the case of I2V generation, treated as a special case of continuation
in which only the first frame of the first chunk is clean. The last row describes a general
stage where clean chunks are already available, applicable to video continuation and other
scenarios involving prior denoised content.
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t
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3
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(t)

(t; m = 0, s = 0.5, w = 1/3)
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Figure 5: The probability density of training timestep. We generally aim to allocate 70% of
training computation when t < 0.3.

better allocating computations across different noise levels. (Esser et al., 2024) introduce the
Logit-Normal sampling strategy, which provides a flexible framework for controlling the
distribution of sampled timestep, the transformed timestep density π(t) is:

π(t; m, s) =
1

s
√

2π

1
t(1− t)

exp(− (logit(t)−m)2

2s2 ), (5)

where logit(t) = log t
1−t . In addition, (Esser et al., 2024) further introduce a timestep shift

strategy to handle the resolution increasing:

t′ =
wt

1− (1− w)t
(6)

In MAGI-1, we draw inspiration from these two sampling strategies but make adjustment
for video data. Since videos typically contain more redundant information than images, we
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aim to shift the overall sampling distribution further towards the noise side compared to
images. In our preliminary experiments, as shown in Fig. 6, we observed that the model is
capable of generating reasonably clear video outputs at t = 0.3. Based on this observation,
we heuristically allocate approximately 70% of the training computation budget to the
region where t < 0.3. Following this principle, we set the m = 0, s = 0.5, and w = 1/3 for
all cases during training.

Figure 6: The generation results at the given timestep t. Through empirical experiments, we
found that model is capable of generating quite clear video outputs at t = 0.3.

Design Choices for Clean Chunks There are two types of chunks in the training of
MAGI-1: noisy chunks and clean chunks, and we adopt three key designs to handle clean
chunks:

First, in practical video continuation scenarios, users typically upload an initial video clip
and provide follow-up text descriptions or dynamically update the prompt during the
continuation process. Considering this usage, we argue that clean chunks should not be
conditioned on text inputs.

Second, exposure bias is a well-recognized challenge in training auto-regressive models (Ben-
gio et al., 2015; Wiseman & Rush, 2016). A common mitigation strategy is to inject a small
amount of noise into clean data during training. Following this practice, we inject up to 5%
noise into clean chunks to alleviate exposure bias.

Finally, since clean chunks are relatively abundant in the pre-training data, they risk domi-
nating the training signal. To address this, we apply the loss function exclusively to noisy
chunks. Nevertheless, clean chunks still participate in training through the attention mecha-
nism and continue to receive gradient updates. Empirically, we observe that blocking the
gradients of clean chunks leads to a significant degradation in model performance.

2.3 Distillation Using Shortcut Model

Flow-matching formulates the generative process as an ODE that maps noise to data along
high-dimensional, curved trajectories. Sampling from such models is computationally
intensive, typically requiring dozens of function evaluations with sufficiently small step
sizes to incrementally transform noise into data. This inefficiency motivates the development
of diffusion distillation methods (Luhman & Luhman, 2021; Salimans & Ho, 2022) that can
reduce the required number of inference steps without sacrificing sample quality.

This work adopts shortcut model (Frans et al., 2024) as the distillation target. Given a noise-
data interpolation defined by xt

i = (1− t)x0
i + tx1

i , where x1
i is the clean data point at the

i-th chunk and x0
i denotes Gaussian noise, the shortcut model uses a single neural network

to predict a velocity field v(xt
i | t, s)3, conditioned not only on the current timestep t, but

3For clarity, we omit irrelevant variables and denote v(xt
i | t, s) as a shorthand for the full expression

v(xti
i | ti, s, c, {xtj

j<i}; θ).
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also on the desired step size s ∝ ∆t. Here, ∆t denotes the interval between adjacent timesteps,
while the reciprocal 1/s ∈ 2N specifies the number of function evaluations required to
complete the denoising process4.

The generation process of the shortcut model closely resembles the flow-matching for-
mulation and can be expressed as x̂t+∆t

i = xt
i + ∆t · v(xt

i , t, s), where x̂t+∆t
i denotes the

model-predicted next point in the denoising trajectory, explicitly indicated by the hat sym-
bol over xt+∆t

i . As ∆t→ 0, this formulation recovers the standard flow-matching scenario,
where the shortcut model approximates the instantaneous velocity.

During training, the shortcut model constructs distillation targets using a bootstrap proce-
dure, leveraging the principle that a single shortcut step is equivalent to two consecutive
steps of half the step size. Formally, the update rule x̂t+∆t1+∆t2

i = xt
i +(∆t1 +∆t2) · v(xt

i , t, 2s)
can also be written as x̂t+∆t1+∆t2

i = x̂t+∆t1
i +∆t2 · v(x̂t+∆t1

i , t +∆t1, s) = xt
i +∆t1 · v(xt

i , t, s) +
∆t2 · v(x̂t+∆t1

i , t + ∆t1, s), leading to the relationship:

v(xt
i , t, 2s) =

∆t1

∆t1 + ∆t2
v(xt

i , t, s) +
∆t2

∆t1 + ∆t2
v(x̂t+∆t1

i , t + ∆t1, s) (7)

In practice, the smallest s utilized is 1/64, corresponding to the standard flow-matching
inference setting that requires 64 function evaluations. When training with this minimal
step size, we incorporate classifier-free guidance (CFG) distillation (Meng et al., 2023) (see
Sec. 2.4.1 for details). The step size s for distillation is cyclically sampled from the set
[1/64] × 8 ∪ [1/32, 1/16, 1/8]. This sampling strategy enables a single distilled model
to perform denoising with different computational budgets (64, 32, 16, or 8 steps), thus
providing flexibility to dynamically balance generation quality and inference efficiency at
test time.

2.4 Inference Approach

2.4.1 Diffusion Guidance

Classifier-free guidance (Ho & Salimans, 2022), a widely adopted low-temperature sampling
technique in diffusion models, offers a principled approach to mediating the inherent
trade-off between sample fidelity and diversity in generative modeling. This technique
is particularly effective in text-to-video generation, where the objective is to synthesize
temporally coherent video frames that conform to given textual prompts.

To improve clarity, we omit irrelevant variables and express the guided posterior distribution
of the latent variable xt given condition c using Bayes’ rule as pguided(xt | c) ∝ p(xt) · p(c |
xt)w, where the exponent w ≥ 1 serves as an inverse temperature parameter. Exponentiating
the conditional likelihood p(c | xt) concentrates the distribution around modes better
aligned with the conditioning signal, thereby reducing entropy and improving sample
fidelity.

In our setting, the generation of the i-th video chunk xi is conditioned not only on the
textual prompt ctext, but also on a sequence of preceding chunks x<i, which may include
partially denoised or fully noised representations. The guided conditional distribution is
thus formulated as:

pguided(xi | x<i, ctext) ∝ p(xi) · p(x<i | xi)
wprev · p(ctext | x<i, xi)

wtext , (8)

where wprev and wtext are scalar weights modulating the influence of temporal and semantic
signals, respectively. Taking the logarithm of both sides of Eq. 8, we obtain the guided
score: ∇xi log pguided(xi | x<i, ctext) = ∇xi log p(xi) + wprev · ∇xi log p(x<i | xi) + wtext ·
∇xi log p(ctext | x<i, xi). Applying Bayes’ rule, we rewrite the gradients as ∇xi log p(x<i |
xi) = ∇xi log p(xi | x<i) − ∇xi log p(xi), and ∇xi log p(ctext | x<i, xi) = ∇xi log p(xi |

4In practice, note that s and ∆t may differ due to nonlinearities in the denoising schedule.
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(a) wprev=1.0

(b) wprev=1.5
… …
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𝐶 h 𝑢 𝑛 𝑘𝑛−1 𝐶 h 𝑢 𝑛 𝑘𝑛

(a) wprev = 1.0
(a) wprev=1.0

(b) wprev=1.5

… …

… …

𝐶h 𝑢𝑛𝑘𝑛−1 𝐶h 𝑢𝑛𝑘𝑛

(b) wprev = 1.5

Figure 7: This figure demonstrates the impact of wprev on the generation results. (a) When
wprev = 1.0, there are perceptible misalignments between adjacent chunks (e.g., the shape of
the smoke). (b) When wprev = 1.5, this phenomenon is significantly alleviated.

x<i, ctext)−∇xi log p(xi | x<i). Substituting and regrouping, we arrive at the final guided
score:

∇xi log pguided(xi | x<i, ctext) = (1− wprev) · ∇xi log p(xi)

+ (wprev − wtext) · ∇xi log p(xi | x<i)

+ wtext · ∇xi log p(xi | x<i, ctext).

(9)

This decomposition cleanly separates the contributions of the unconditional prior, temporal
context, and prompt conditioning. It enables controllable trade-offs between coherence and
semantic fidelity in autoregressive generation.

As a special case, when wprev is 1, i.e., the guidance from previous chunks is disabled, the
score function in Eq. 9 simplifies to∇xi log pguided(xi | x<i, ctext) = (1−wtext) ·∇xi log p(xi |
x<i) + wtext · ∇xi log p(xi | x<i, ctext). This form recovers the standard classifier-free guid-
ance formulation widely adopted in bidirectional text-to-video diffusion models, which
interpolates between unconditional and prompt-conditioned signals.
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However, during our chunk-wise generation process, we observed subtle yet perceptible
misalignments between adjacent chunks, resulting in temporal artifacts. This observation
underscores the necessity of reinforcing temporal guidance to maintain chunk-to-chunk co-
herence. To this end, we increase wprev to 1.5, thereby amplifying the influence of preceding
content. As shown in Fig. 7, this adjustment significantly enhances inter-chunk alignment
and mitigates flickering artifacts, resulting in smoother and more temporally consistent
video synthesis. Nevertheless, it should be noted that further increasing wprev beyond this
optimal range may lead to saturation artifacts or even cause the video to become static (i.e.,
still frames) as playback progresses. We follow standard practice by setting wtext to 7.5.
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Figure 8: Inference timestep sampling of non-distilled model.

2.4.2 Inference Timestep Sampler

Previous video generation studies have demonstrated that applying targeted timestep
sampling strategies during inference can significantly improve generation quality. In our
work, we observed similar behavior in MAGI-1. To enable finer-grained control over the
sampling process, we introduce an additional tunable power transformation based on the
scaling formula (Eq. 6) t′ = wtk

1−(1−w)tk . Through extensive experiments, we found that
setting w = 1/3 and k = 2 yields the best visual quality, and visualization of the sampler is
shown in Fig. 8.

2.4.3 Fine-Grained Control of Guidance Strength

Non-distilled Model. In the case of the non-distilled model, as described in Sec. 2.4.1, we
set wprev = 1.5 and wtext = 7.5 during generation. In practice, when synthesizing longer
videos (typically exceeding 5 seconds), we observe noticeable saturation and checkerboard
artifacts progressively emerging during playback. These artifacts are primarily attributed
to excessively strong guidance. However, uniformly reducing the strength of wprev and
wtext often results in degraded content quality and increased flickering artifacts. This moti-
vates a more fine-grained strategy in which the guidance scales are dynamically adjusted
throughout the denoising process, that is, varying wprev and wtext as the denoising timestep
t progresses from 0 to 1.

To investigate when strong guidance is necessary, we analyze the evolution of latent repre-
sentations throughout the denoising process (Fig. 6). As t approaches 0.3, just before the final
denoising stage begins, we observe that the decoded latent representations already exhibit
coherent video content, with both structural and semantic elements largely established. The
remaining denoising steps, from t = 0.3 to t = 1, primarily serve to refine local details,
resembling a super-resolution process. Based on this observation, we hypothesize that
strong guidance from either the text or previous chunks is no longer necessary during this
stage. Accordingly, for t > 0.3, we reduce the guidance scales to wprev = 1.0 and wtext = 0.0,
such that only the∇xi log p(xi | x<i) term remains active. As illustrated in Fig. 9, this simple
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0s 8s 12s 16s

(a) w/o Fine-Grained Control 

(b) w/ Fine-Grained Control 

(a) w/o Fine-Grained Control

0s 8s 12s 16s

(a) w/o Fine-Grained Control 

(b) w/ Fine-Grained Control (b) w/ Fine-Grained Control

Figure 9: (a) When the generation length exceeds 5 seconds, severe artifacts emerge and
intensify over time. (b) By adjusting the guidance strength (i.e., wprev = 1.0 and wtext = 0.0
when t > 0.3), there are no serious artifacts in the entire generation.

yet effective adjustment significantly alleviates temporal artifacts and improves the overall
coherence of longer video generations.

Distilled Model. A similar observation holds for the distilled model. Saturation artifacts
progressively intensify as the video plays, motivating a comparable mitigation strategy. In
the first three stages, we directly use the distilled model’s output score, ∇xi log pdistilled(xi |
x<i, ctext). In the final denoising range, we incorporate additional guidance to reduce the
influence of the previous chunk, even though the model has already undergone classifier-
free guidance distillation. Specifically, we adopt the following guided score in the final
stage:

∇xi log pguided, distilled(xi | ctext, x<i) = (1− wprev) · ∇xi log pdistilled(xi | ctext)

+ wprev · ∇xi log pdistilled(xi | ctext, x<i).
(10)

This formulation is derived by switching the positions of x<i and ctext in Eq. 8 and Eq. 9,
resulting in the form ∇xi log pguided(xi | ctext, x<i) = (1− wtext) · ∇xi log p(xi) + (wtext −
wprev) · ∇xi log p(xi | ctext) + wprev · ∇xi log p(xi | ctext, x<i). By setting wtext = 1, thereby
disabling the text guidance term, the first component vanishes and the expression simplifies
to Eq. 10. The rationale behind this modification is that we do not introduce a null text token
during distillation, and therefore do not explicitly model pdistilled(xi) or pdistilled(xi | x<i). In
our experiments, we set wprev = 0.7, which effectively attenuates the influence of previous
chunk guidance in the final denoising stage and helps mitigate temporal saturation artifacts.

2.4.4 KV Cache

Thanks to its auto-regressive nature, MAGI-1 can leverage the KV cache mechanism during
inference, which is a widely adopted technique in language models to avoid redundant
computations. Specifically, once a chunk has been sufficiently denoised, its features can be
cached and reused by subsequent denoising chunks without the need for recomputation.

Furthermore, by constraining the KV range, MAGI-1 can easily support long video genera-
tion. For example, by setting the KV range to 8 for all chunks, each newly generated chunk
depends only on the preceding 8 seconds of video content. This design ensures that the
computational cost of generating long videos scales linearly with their duration.

In addition, many KV compression (Hooper et al., 2024; Xiao et al., 2023b; Sheng et al.,
2023) techniques have recently been developed to reduce the computational overhead of
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auto-regressive model while preserving the ability to reference the full history as much as
possible. MAGI-1 is theoretically compatible with these advancements, although we leave
their exploration in MAGI-1 for future work.

MAGI-1 also benefits from the unique characteristics of denoising models: at higher noise
levels, the model focuses on capturing global structural information, whereas at lower noise
levels, it produces fine details and textures. By dynamically adjusting the KV range at
different denoising stages, we can unlock new capabilities that were previously challenging
to achieve, such as enabling temporally controllable shot transitions while preserving
subject identities, or allowing changes in object identities while maintaining consistent
global layouts. More details and experimental results are provided in Sec. 2.6.

2.5 Prompt-Enhancement Strategy

MAGI-1 is trained with highly descriptive captions that follow a specific structure as text
conditions. However, in real-world scenarios, user inputs vary widely: ranging from
very brief prompts to overly elaborate descriptions. This mismatch between the training
distribution and real user inputs often leads to suboptimal inference performance. To
address this gap, we propose a Prompt Enhancement (PE) strategy during inference. We
take the image-to-video (I2V) task as an example to illustrate our PE approach. In this
setting, users typically provide an image along with an optional textual prompt. To enhance
the user input, we employ a state-of-the-art multi-modal large language model (MLLM) to
perform prompt refinement. Our PE pipeline consists of two parallel sub-processes:

• The first sub-process analyzes and describes the content of the uploaded image.

• The second sub-process predicts the temporal evolution of the scene or objects in the
first frame, such as actions, motion trajectories, and object transitions.

This structured enhancement strategy significantly improves generation quality. However,
due to the large size of the state-of-the-art MLLM, it incurs high computational cost and
latency, limiting its feasibility in real applications. To enable lightweight deployment, we
distill the enhanced prompts generated by the large MLLM into a smaller, more efficient
model (~7B). We construct a training corpus of approximately 2 million examples, filtering
out samples with excessively long target texts to ensure controlled output length. Based on
human evaluation, the distilled model achieves comparable video generation quality to its
larger counterpart, while greatly reducing inference latency and computational resource
usage.

2.6 Model Capability Study

Real-time Streaming Video Generation The chunk-by-chunk pipelined inference of
MAGI-1 offers two key advantages: (1) the time to display the first clear chunk is in-
dependent of the total generated video length; and (2) the generation latency between
consecutive chunks is significantly reduced. Combined with a high-performance inference
infrastructure, MAGI-1 enables real-time streaming video generation, unlocking new ap-
plications in interactive content and live streaming. More implementation details are in
Sec. 4.2.1.

Chunk-wise Text Controllability Chunk-wise text controllability is one of the key features
of MAGI-1, enabling us to decompose complex actions into simpler, shorter segments and
significantly enhancing the model’s ability to generate intricate action sequences. Further-
more, when combined with the capability of MAGI-1 for long video generation, this makes
it possible to create videos with complex narrative structures, as illustrated in Fig. 10

Video Continuations Video continuation is a task that MAGI-1 natively supports. In
the community, an alternative approach to video continuation relies on image-to-video
generation (I2V), where the last frame of the given prefix video is used as the starting frame
for the extended video. However, this approach often struggles to maintain consistent
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(a) A man smiles while resting his chin on his hand.

(b) He slowly rises from his seat.

(c) Draws a pistol, from which a red rose is fired.

(d) The rose transforms into a yellow bird that lands on his shoulder as he makes a playful expression.

(e) He performs a juggling gesture as curtains on both sides gradually close, concealing him completely.

(f) The curtains reopen by the man, then he turns and walks away.

(g) As he departs, a roaring lion logo slowly fades into view on the screen.

Figure 10: This figure presents a near 30-second video generation example that demonstrates
the capability of our model for complex actions and narrative structures through chunk-wise
controllability and long-video generation. The sequence progresses from (a) to (g), with
each sub-caption corresponding to the text prompt used during generation.

15



MAGI-1: Autoregressive Video Generation at Scale

Input Frame Image to Video Generation

R
ea

l
V2

V
I2

V

Input Video Video Continuation

(a) Text Guidance: A clear acrylic sheet placed on a wooden table with a small dollop of red paint.
A rotating paintbrush attached to a rotating platform rotates clockwise and goes through the paint.
Static shot with no camera movement.
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(b) Text Guidance: A grabber arm is holding a tennis ball above a piece of cardstock propped up on a
rotating platform sitting on a table that rotates clockwise. The grabber lowers the ball and places is on
the table as the cardstock rotates. Static shot with no camera movement.

Figure 11: Comparison between video-conditioned (V2V) and image-conditioned (I2V)
video continuation. (a) MAGI-1 (V2V) accurately captures the pen’s rotational trajectory by
leveraging historical motion information, while I2V fails to reproduce the correct motion
due to the absence of temporal context. (b) In an occlusion scenario, V2V successfully
predicts post-occlusion behavior by utilizing information before the occlusion, whereas I2V
shows poor temporal consistency. Each example presents the real-world scene (top row),
MAGI-1 (V2V) generation (middle row), and MAGI-1 (I2V) generation (bottom row).

motion trajectories between the generated continuation and the prefix video, leading to
motion discontinuities or generating implausible predictions due to the loss of essential
historical information. Fig. 11 shows such cases. In the pen rotation example, I2V fails to
capture the correct rotational velocity because it lacks access to preceding motion dynamics.
Similarly, in the occlusion scenario, I2V cannot accurately predict the object’s reappearance
after occlusion due to missing temporal information. In contrast, conditioning on the full
prefix video allows MAGI-1 to naturally preserve motion continuity by leveraging historical
patterns and temporal dependencies, enabling seamless video continuation.

Controllable Shot Transition Another exciting feature of MAGI-1 is its ability to enable
diverse and controllable transitions at any designated chunk by adjusting the KV range
across different denoising stages. Specifically, by setting the KV range to 1 only at high-noise
denoising stages (meaning the model cannot access the preceding video content) while
keeping a normal KV range (e.g., 8) at other stages, we can achieve shot transitions while
preserve object identities unchanged, as shown in Fig. 12a. Conversely, by setting the KV
range to 1 only at low-noise stages, we can produce transitions where the overall layout
of the scene remains consistent, but the fine details of the objects change, as illustrated in
Fig. 12b.

We believe the above capabilities can offer an entirely new level of creative control for video
content creation.
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(a) Shot transition with preserved identity.

(b) Transition with consistent scene layout but changing object details.

Figure 12: This figure illustrates two examples of realizing distinct shot transitions by
modulating the KV range at different denoising stages. (a) demonstrates a case where the
KV range is set to 1 only at the high-noise denoising stages, whereas (b) applies it at the
low-noise denoising stages.

3 DATA

Training a high-performance video generation model demands massive, high-quality, and
diverse data. To this end, we have developed a scalable data processing system that
constructs the training dataset for MAGI-1 from tens of petabytes of raw videos and images
collected from a wide range of sources.

An overview of the data processing pipeline is shown in Fig. 13. We utilize PySceneDetect5

to cut long videos into short clips, ensuring that each clip contains only a single shot. Next,
we apply a series of filters to remove low-quality data and eliminate duplicates. While this
initial filtering stage effectively discards most of the low-quality data, some problematic
cases still persist. To further improve data quality, we incorporate a multi-modal large
language model (MLLM) as a stronger filter. Data that passes this filter is then captioned by
the MLLM to provide accurate and detailed descriptions.

Through this process, we curate training data with satisfactory visual and motion quality.
However, the distribution of the data — particularly in terms of semantic concept — still
requires consideration. Specifically, we observed that the modeling difficulty varies signifi-
cantly across different concepts. To address this, we use a dynamic distribution adjustment
strategy based on evaluation results obtained during training. Additionally, we tailor the
data distribution to accommodate the multi-stage training strategy.

In the sections that follow, we provide a detailed description of each component in our data
processing pipeline.

Shot Cutting Actor-based 
Filtering De-duplication

MLLM Filtering Caption Data Adjustment

Raw 
Videos/Image

Training
Dataset

Figure 13: Overview of the our data processing pipeline. The shot cutting module is only
applied for video data.

5PySceneDetect: https://github.com/Breakthrough/PySceneDetect
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3.1 Filter Actors

We have developed a set of filtering actors to ensure the quality of the training data. These
actors are described below in details:

Video Quality Assessment We adopt DOVER (Wu et al., 2023) to assess the visual quality
of each video clip. DOVER provides three distinct quality scores: overall score, aesthetic
score, and technical score. Through empirical evaluation, we found that the technical score
alone is the most effective indicator for our use case.

Aesthetics We employ the LAION aesthetic model (Schuhmann et al., 2022) to predict
aesthetic score for each image and video. Since the LAION aesthetic model is originally
designed for images, we use the aesthetic score of the first frame to represent the quality of
the entire video clip.

Overexposed and Underexposed Some videos suffer from overexposure or underexpo-
sure, which we have found to adversely affect training stability. To remove such data, we
convert every frame of the video to the HSI color space and compute the average brightness
across the entire video. Videos identified as either overexposed or underexposed, based on
their average brightness, are excluded from the training set.

Motion Strength To quantify the motion strength of each video, we employ the RAFT
optical flow model (Teed & Deng, 2020). To reduce computational overhead, all videos are
first downsampled to 8 FPS before computing the optical flow between adjacent frames.
The optical flow is calculated at the pixel level, and the overall motion strength is obtained
by averaging the flow magnitudes across all pixels in the clip.

However, this approach tends to underestimate motion in cases where the background
remains static while the foreground exhibits significant movement. To mitigate this issue,
we additionally apply a saliency detection model (Zhao & Wu, 2019) to each frame. The
resulting saliency maps enable us to distinguish between foreground and background
regions, allowing us to compute the average optical flow separately for both.

As a result, we derive three motion statistics: overall motion strength, foreground motion
strength, and background motion strength. To balance data quality and training difficulty,
we prioritize video clips with moderate motion strength, avoiding both overly static and
excessively dynamic videos. Specifically, we define lower and upper thresholds for all three
motion statistics to guide data selection.

Camera Movement Stability A significant portion of collected videos is captured with
handheld devices, which often results in erratic camera movements that are challenging for
the model to learn. Since such cases are not effectively filtered by motion strength alone, we
estimate camera stability by evaluating the consistency of optical flow between adjacent
frames, filtering out clips with unstable camera motion.

Slides Movement Slide movements, such as floating photos or banners commonly found
in screen recordings or slideshow presentations, are another undesirable case. To detect
these, we analyze the divergence of the optical flow across all pixels in each frame. If the
divergence remains consistently low over time, the clip is identified as containing slide
movements and is removed.

Border Detection We perform edge detection on each frame and apply the Hough trans-
form to identify persistent vertical and horizontal lines across frames. These lines are treated
as potential borders, and the proportion of frames containing such borders serves as a
confidence score for filtering.

Text Detection We perform text detection on video frames to identify and exclude clips
containing excessive textual content. Specifically, if any frame within a clip contains an
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overly large number of characters or if the detected text regions occupy a substantial portion
of the frame, the corresponding clip is discarded.

A notable exception is subtitles, which typically consist of fewer characters and occupy
relatively limited spatial regions, rendering them less likely to be filtered out by the afore-
mentioned criteria. Nevertheless, subtitles exhibit distinctive spatiotemporal patterns: they
consistently appear in fixed locations where most commonly at the top or bottom of the
frame, and persist across multiple consecutive frames. By leveraging these characteristics,
we are able to reliably detect and exclude video clips containing subtitles from the training
data.

Logo Detection Many videos contain logos in the corners, which is an undesirable pattern
for model training. To address this, we employ the Florence-2 model (Xiao et al., 2024),
which supports open-vocabulary object detection. By providing a predefined set of key-
words, Florence-2 accurately detects and localizes logos within video frames and providing
confidence scores for filtering.

Corner Face Detection In commentary videos, narrators typically appear in a fixed corner
of the screen, and we aim to exclude such patterns from our training data. To achieve this,
we employ a face detection model, leveraging both face location and detection confidence
to identify potential narrators. Specifically, we average the detection confidence of faces
located in fixed corners across all frames to estimate the likelihood of a narrator’s presence.

Transition Detection While PySceneDetect can segment raw videos into clips based on
shot boundaries, it struggles to handle complex transitions, and as a result, the resulting
clips may still contain multiple shots. To address this issue, we sparsely sample keyframes
from each video and use CLIP (Radford et al., 2021) to compute the semantic similarity
between adjacent keyframes. If the similarity falls below a predefined threshold, the clip is
considered to contain multiple shots and is subsequently removed.

3.2 De-duplication

Recent studies on large language models (Lee et al., 2021; Hernandez et al., 2022) have
shown that even small amounts of duplicate data can significantly degrade performance.
Motivated by this, we conduct rigorous de-duplication. We compute pairwise similarity
scores using both CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2023), and treat any
clip exceeding the threshold in either similarity as a duplicate to be removed.

3.3 MLLM as Advanced Filter

After the above filtering and de-duplication processes, most of the undesired data have been
effectively removed. However, due to the limitations of the current filtering actors, a small
portion of low-quality data still remains. As the remaining data size has been significantly
reduced and to further improve data quality, we leverage a multi-modal large language
model (MLLM) to perform an additional round of filtering. This enables us to detect more
complex bad cases. Notably, this step can be seamlessly integrated into the subsequent
caption procedure, thereby reducing overall costs and improving efficiency.

3.4 Caption

Highly Descriptive Caption Recent advances (Betker et al., 2023) have demonstrated
that using MLLMs to generate highly descriptive captions is crucial for improving image
generation quality, and we adopt this approach for captioning our data. Compared to
images, videos have richer temporal information, including actions, camera movements,
and scene changes. However, most mainstream MLLMs are primarily designed for images.
To address this, we process each video by extracting a set of key-frames to form an image
sequence. Through empirical analysis, we find that using 4 to 12 frames per video clip
(depending on its duration) reaches the best trade-off between descriptive accuracy and
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Attribute Instruction

Scene Count Identify the number of distinct scenes in the video.
Camera Transitions Note any noticeable transitions between shots.
Camera Shot Type Specify the type of camera shot used.
Camera Movement Describe any camera movements.

Main Subject Identification Determine who or what is the central focus of the video.
Subject Attributes Describe the main subject’s appearance.
Subject Position Indicate where the main subject is within the frame.
Subject Action Explain what the main subject is doing.

Table 3: Predefined attributes used in caption instruction.

computational efficiency. For video data, the captioning prompt is structured into two
stages. In the first stage, the model is guided through a series of targeted questions aimed at
eliciting responses on predefined attributes of the video clip (as summarized in Tab. 3). This
step encourages the model to perform a structured analysis of the content. In the second
stage, the model generates the final descriptive caption, which can incorporate salient
observations identified in the preceding analysis of first stage. In contrast, for image data,
we directly prompt the model to generate a caption without the attribute-based pre-analysis.
Example captions are provided in Tab. 4.

Auto-Regressive Caption Unlike typical bi-directional denoising video generation models
that produce an entire video as a whole, our model generates videos in an auto-regressive
manner. This design allows our model to condition different parts of the video on dis-
tinct text prompts, offering greater controllability. To enable this capability, we provide
fine-grained, second-by-second descriptions for each video clip. Tab. 4 shows example.
Specifically, the caption of the first second is instruct to generates a detailed description. For
caption of subsequent seconds, they focus on describing changes relative to the previous
one.

3.5 Data Adjustment in Training

We have two different data adjustment scenarios during training. First, we use a multi-stage
training strategy, with later stages having higher data quality; Second, we dynamically
adjust the data distribution during training based on the evaluation results.

Multi-stage Adjustment MAGI-1 is trained in three stages, with the data resolution
gradually increasing from 256p to 480p and ultimately to 720p. Alongside the resolution
improvements, the data volume is progressively reduced, and more rigorous filtering
strategies are employed to ensure higher data quality. Furthermore, in the final stage, the
video duration is extended from a maximum of 8 seconds to a maximum of 16 seconds,
allowing the model to capture richer temporal dynamics. The data specifications for each
stage are summarized in Tab. 5.

Dynamic Distribution Adjustment An appropriate data distribution is crucial for training
high-performance models. However, identifying the optimal distribution in advance is
challenging. For instance, during training, we observed that landscape scenes are relatively
easy for the model to learn, while human expressions are significantly more difficult. These
insights are hard to predict beforehand. To address this, we adopt a dynamic distribution ad-
justment strategy. By continuously monitoring model performance throughout the training
process, we can adaptively adjust the proportion of specific data subsets to strengthen the
underperforming aspects of the model, thereby enabling a more effective learning process.

4 Infrastructure

In this section, we introduce our training infrastructure and inference infrastructure.
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Caption Type Example

Video Detail Caption Medium shot of a hotel reception desk with two staff members. A
woman stands on the left, and a man in a suit and red tie stands on the
right. White orchids are in vases on either side of the desk. A painting
hangs on the wall behind the desk. The man on the right picks up a
telephone receiver and begins a phone conversation.

The man is now more prominently featured in the frame, his up-
per body taking up a larger portion of the screen. The woman on the
left is still visible, but less prominent. The man continues his phone
conversation, his expression becoming more serious.

The new arrival is now standing at the reception desk, slightly
behind the man on the phone. The woman is still visible on the left. A
man in a dark suit approaches the reception desk from the right side of
the frame.

Image Detail Caption A young woman with long dark hair stands on a rocky beach. She is
wearing a light beige, strapless top and matching wide-legged pants. Her
arms are crossed, and her hands are near her chest. She is barefoot. The
rocks are various shades of brown and tan, some smooth and some rough.
The rocks are wet in places. The ocean is visible in the background. The
sky is light blue and mostly clear. A small child is partially visible in the
lower left corner of the frame, seemingly playing near the water’s edge.
The woman is positioned in the center of the frame, slightly off-center
towards the right. She is facing the camera directly. The rocks behind her
are large and form a backdrop to her figure. The rocks in the foreground
are smaller and scattered around her feet. The child is in the lower left
corner, facing towards the center of the frame, and is partially obscured
by rocks. The ocean is in the far background, above the rocks, and extends
across the entire width of the frame. The sky is visible above the rocks
and the ocean, occupying the upper portion of the frame. The lighting is
natural, with sunlight illuminating the scene. The overall composition is
balanced, with the woman as the focal point, surrounded by the natural
elements of the beach.

AR Caption 1st second: A woman holds a lipstick tube, her expression changes
subtly. The background is a simple, light brown wooden wall. The
woman in the frames is wearing a beige lace sleeveless top and gold
necklaces. She holds a gold lipstick tube in her right hand. Her makeup
is subtle, and her expression changes slightly throughout the two frames.
Her hair is dark brown and styled in a shoulder-length cut. The lighting
is soft and even, creating a neutral mood. There are no other objects or
people visible in the frames.

2nd second: The woman’s head tilts slightly, her expression shifts from a
neutral to a slight smile. The lipstick remains in her hand. The camera
remains static, focusing on the woman.

3rd second: The woman’s head is slightly turned to the left, her
expression is more serious. The lipstick is still in her hand. The camera
remains static, focusing on the woman.

4th second: The woman’s head is turned slightly to the right,
her expression is neutral. The lipstick is still in her hand. The camera
remains static, focusing on the woman.

Table 4: Caption examples used in MAGI-1.
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stage-1 stage-2 stage-3

Resolutions 256p/360p 480p 720p
Video Duration ≤ 8s ≤ 8s ≤ 16s

Image-Video Ratio 4:1 4:1 4:1
AR Caption Ratio 0% 10% 10%

Table 5: Data configuration of different stages.

4.1 Training Infrastructure

Efficient training of large-scale autoregressive denoising models like MAGI-1 requires care-
fully tailored distributed training infrastructure. Existing distributed training frameworks,
such as Megatron (Shoeybi et al., 2020) and DeepSpeed (Rajbhandari et al., 2020) are primar-
ily designed for large language models (LLMs). However, MAGI-1 differs significantly from
LLMs in both algorithmic side and data side.

On the algorithmic side, MAGI-1 integrates both autoregressive and denoising modeling
paradigms, resulting in a model architecture that is notably more complex than that of
typical LLMs. It incorporates components such as gating, cross-attention, and block-causal
attention that are rarely used in language models.

On the data side, a single video training example typically contains tens to hundreds of
times more tokens than a text example. Furthermore, ensuring the temporal and semantic
integrity of video content imposes strict constraints, making it infeasible to directly apply
common data processing strategies from LLMs, such as arbitrary sequence truncation or
concatenation of multiple samples into a single training sequence offline, in the context of
video generation.

These fundamental differences introduce unique challenges, necessitating a new, purpose-
built distributed system design. In this section, we propose novel solutions to address these
challenges to enable efficient and scalable training of MAGI-1.

Specifically, the training of MAGI-1 leverages a combination of data parallelism (DP), context
parallelism (CP), and tensor parallelism (TP). To address the DP load imbalance caused
by variable-length video sequence and the insufficient GPU utilization on short token
sequences, we introduce a distributed Packing and Padding (PnP) during training, that
performs online batching of video data in each training iteration. This strategy mitigates
GPU bubbles thereby significantly improving overall training efficiency (Sec. 4.1.1).

Due to the use of PnP and the inherent demands of block-causal attention in MAGI-1, we
require an efficient attention implementation capable of supporting highly flexible attention
masks. Additionally, given the extremely long token sequences typical in video training
data, native support for context parallelism is essential. To address these requirements, we
propose MagiAttention: a scalable distributed attention mechanism that efficiently handles
diverse attention masks and is optimized for ultra-long sequences (Sec. 4.1.2).

Through the above innovations, we enable the efficient training of MAGI-1. However,
while developing the MAGI-1 training system, we identified several limitations in existing
large-scale training frameworks. For instance, most current frameworks (including ours) do
not treat verifiable numerical accuracy in distributed environments as a first-class design
concern. Moreover, the tight coupling between algorithm development and infrastructure
implementation often creates friction between algorithm researchers and infrastructure en-
gineers, hindering efficient collaboration. To address these challenges, we discuss potential
directions and design principles for next-generation training infrastructure in Sec. 4.1.3,
with the goal of providing insights and practical guidance for the broader research and
engineering community.
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4.1.1 Distributed Packing and Padding

Due to the integrity constraints of video data and the variability in video lengths and
resolutions, we adopt a Packing and Padding (PnP) strategy (Sirluk, 2024; Kundu et al., 2024)
to batch video samples in a way that minimizes excessive padding and reduces unnecessary
computational overhead in distributed training scenarios. Moreover, the data composition
is frequently adjusted during the training of MAGI-1 (See Sec. 3.5), and to accommodate
such flexibility, we employ an online PnP strategy instead of a offline approach.

The core idea of PnP is to efficiently utilize GPU resources by concatenating multiple short
sequences into a batch while minimizing redundant filling. The offline formulation of
this problem aligns with the classic bin-packing problem: given a set of input samples,
the goal is to pack them into a set of bins, each with a fixed capacity max_length, while
minimizing overall unused space. Although this problem is NP-complete, it can be efficiently
approximated in practice using the First-Fit Decreasing (FFD) (Dósa, 2007) greedy algorithm.

In our online setting, we must process streaming data inputs while ensuring compatibility
with the 3D parallelism strategy employed during training. To this end, we reformulate
the problem as follows: given M candidate samples, we aim to pack them into N bins of
size max_length, minimizing overall space waste. Here, M denotes the size of the candidate
pool with M≫ N; N must be divisible by the DP_SIZE; and max_length must be divisible by
TP_SIZE×CP_SIZE.

In practice, we extend the FFD algorithm with custom heuristics to support efficient online
packing under these constraints. This approach enables us to achieve a 99% capacity
utilization rate and the differences between different DP groups can be neglected, thus
substantially reducing computational overhead during training.

4.1.2 MagiAttention: Towards Linear Scalability for Ultra-Long and Heterogeneous
Mask Training.

Training large-scale autoregressive diffusion models like MAGI-1 for video generation
presents two major challenges:

• The extremely long context length of video tokens, which reaching up to 4 million
during training, results in prohibitive computational and memory overhead. Context-
Parallelism (CP) is designed for dealing such long context challenge, but existing
state-of-the-art CP methods (Jacobs et al., 2023; Liu et al., 2023; Fang & Zhao, 2024; Gu
et al., 2024; Chen et al., 2024b) face scalability limitations that face scalability limitations
due to size constraints or the high communication overhead inherent in inefficient
ring-style point-to-point (P2P) patterns. While recent efforts (Wang et al., 2024; Zhang
et al., 2024; Ge et al., 2025) dynamically adjust CP sizes to avoid unnecessary sharding
and redundant communication for shorter sequences, they still incur extra memory
overhead for multiple NCCL process groups and involve complex scheduling to
balance loads and synchronize across different subsets of ranks.

• The combination of block-causal attention and Packing-and-Padding introduces highly
complex attention mask patterns (Sec.4.1.1), which cannot be efficiently handled by
existing attention implementations.

To address the aforementioned challenges, we propose MagiAttention, which aims to
support a wide variety of attention mask types (i.e., kernel flexibility) while achieving
linear scalability with respect to context-parallel (CP) size across a broad range of scenarios.
Achieving this goal depends on meeting the following fundamental conditions:

• Linearly Scalable Attention Kernel: The performance of the attention kernel should not
degradate as CP size increases. To this end, we introduce Flex-Flash-Attention, an
extension of FlashAttention-3 (FA3), which native considers the efficiency impact of
attention mask partitioning in distributed environments. It supports distributable
mask representations with a tailored kernel implementation to ensure scalability while
accommodating a broader range of attention mask types.
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Figure 14: Overview of MagiAttention: (1) Flex-Flash-Attention(FFA), an efficient attention
supports flexible mask patterns and native considers distribution requirements; (2) The
dispatch solver shards and dispatches packed data with ultra-long contexts and heterogeneous
masks, ensuring load-balanced computation; (3) Group-Cast and Group-Reduce primitives
eliminate redundant communication; (4) The adaptive multi-stage overlap strategy effectively
hides communication latency; (5) Forward and backward timelines of MagiAttention. With
all techniques together, MagiAttention reach linear scalability under diverse scenarios.

• Balanced Computational Workloads: Imbalances in the computational load across CP
ranks lead to unavoidable idle bubbles that hinder scalability. MagiAttention is
natively designed to ensure Computation Load Balancing, mitigating such inefficiencies.

• Full Overlap of Communication and Computation: Without sufficient overlap, increasing
CP size results in communication-induced idle time on GPUs, impairing scalability.
MagiAttention introduces novel Zero-Redundant Communication Primitives to minimize
communication overhead, along with an Adaptive Multi-Stage Overlap strategy that
enables effective communication-computation overlap.

The overview of MagiAttention is shown in Fig. 14, and we will introduce key designs in
the following, with comprehensive experimental results presented in Appendix B.2.

Flex-Flash-Attention. FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) is
a foundational technique in large-scale model training for its superior performance and
support for varlen-packed data with causal attention masks. However, it offers limited
support for irregular attention masks, particularly when such patterns are distributed across
CP ranks, resulting in increased complexity and underscoring the need for a more flexible
attention kernel (PyTorch; Dong et al., 2024; Wang et al., 2025b) without compromising
performance.

Therefore, we introduce Flex-Flash-Attention (FFA), which is natively designed for distri-
bution scenarios and provides greater flexibility in handling diverse attention mask types.
The core idea behind FFA is to generalize a distributable formulation for irregular attention
masks by decomposing the entire mask into multiple computational units, each referred to
as an AttnSlice. Each AttnSlice is defined by a triplet QRange, KRange, MaskType, which
specifies a submask with a basic shape bounded by a contiguous 2D query-key region (see
Fig. 20). Using this formulation, a wide variety of commonly used attention masks (Fig. 15)
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Figure 15: Examples of mask patterns formulated by AttnSlice. (a)-(d) Standard FA3-
compatible patterns; (e)-(h) Irregular masks beyond FA3’s capabilities, including our novel
varlen block-causal design, which FFA supports seamlessly while maintaining performance
comparable to FA3.

(including our varlen block-causal mask) can be expressed as a composition of multiple
such triplets, making FFA highly suitable for distributed attention computation.

Built on FA3 kernels, Flex-Flash-Attention leverages NVIDIA Hopper GPUs’ TMA fea-
ture (NVIDIA, 2024) and introduces slice-level parallelism with atomic operations for cor-
rectness (Fig 21), achieving comparable MFU to FA3 while supporting the flexible AttnSlice

formulation 6 (see Appendix B.2 for benchmarks).

Computation Load-Balance. In context-parallelism (CP) settings, different CP ranks may
be assigned heterogeneous attention masks, resulting in imbalanced computational work-
loads across ranks. Ring-Attention (zhuzilin, 2024) employs a specialized partitioning
strategy designed specifically for causal attention, which limits its applicability to more
general attention patterns. To overcome this limitation, we propose a generic and efficient
dispatch solver that enables balanced workload distribution across CP ranks for a broad
range of attention types.

First, to enable finer-grained control, we propose a chunk-wise permutable sharding strategy
(Fig 14 (2)). Specifically, the entire mask is evenly partitioned along the query-dimension
into dispatch chunks, each associated with a submask area: {(Ci, Area(Ci))}n

i=1, where Ci

indicates i-th dispatch chunk, Area(Ci) is the mask area of Ci, n is seqlen
dispatch_chunk_size , and

dispatch_chunk_size is a hyperparameter controlling granularity. These dispatch chunks
are then equally assigned to cp_size buckets, with each bucket containing the exact same
number of dispatch chunks to ensure token-level load balance in non-attention modules,
attaching with a summed submask area, denoted as {(Bj, SumArea(Bj))}

cp_size
j=1 .

With above strategy, we could fine-grained control the computational workloads of each
CP rank, and the load-balancing dispatch becomes a combinatorial optimization problem,
defined as finding an optimal mapping function f ∗ : {Ci}n

i=1 → {Bj}
cp_size
j=1 as follows

f ∗ = arg min
f

max
j

{
SumArea(Bj)

}
(11)

s.t. |Bj| =
n

cp_size
, seqlen % (cp_size× dispatch_chunk_size) = 0

6Redundant computation from padding tokens is excluded by easily passing empty QRange or
KRange.
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However, this optimization is a known NP-hard problem, making it impractical to find an
optimal solution on-the-fly during each training iteration, especially given the varying mask
patterns across micro-batches. Thus, we propose an efficient greedy algorithm (as shown in
Alg. 1) that provides a suboptimal yet effective solution within O(n log n) complexity.

Zero-Redundant Communication Primitives. The existing ring-style implementation
uses point-to-point send/recv communication primitives, which cannot provide sufficient
communication granularity, resulting in redundant communication. Take causal mask as an
example, we analyze the redundant communication by recording the distribution of remote
key-value (KV) requests and their gradients (dKV) under sparse attention masks. As shown
in Fig 23, KV0 is required by all queries and should be sent to all devices via Broad-Cast in
the forward pass, with dKV0 reduced via All-Reduce in the backward pass. In contrast, KV7
is only needed by its host device but still circulates through all devices, and this redundancy
intensifies in varlen scenarios.

To address this, we introduce two communication primitives: group-cast and group-reduce,
which model the communication patterns of low-demand KV and dKV (Fig 24). For
example, in the causal mask, KV5 on rank2 is required only by {Q6, Q7} and should be
sent exclusively to the target ranks {rank0, rank1} via group-cast, while the partial dKV5 is
collected and reduced back to rank2 via group-reduce accordingly.

As no existing communication kernels support these primitives, we prototype them using
all-to-all-v (Fig 24), achieving zero-redundant communication in both forward and
backward passes. However, this approach introduces extra pre-/post-processing overhead,
similar to (un)permutation in expert parallelism (EP) (Gale et al., 2022). While kernel
fusion mitigates the overhead, a dedicated implementation of group-cast and group-reduce
remains a key direction for future work.

Adaptive Multi-Stage Overlap. Leveraging previous optimizations, we achieve high-
performance computation through an efficient kernel and balanced workload dispatch,
while minimizing communication overhead with our new primitives. To drive true lin-
ear scalability, we further improve end-to-end performance by introducing a multi-stage
compute-communication overlap strategy, that effectively hides communication latency
and adaptively optimizes overlap through manual or automatic tuning.

Similar to prior works (Liu et al., 2023; Zhao et al., 2023; He et al., 2024), we schedule pipeline
stages to overlap computation with communication for both forward and backward passes
(Fig 25). Each ranki first partitions its remote KV/dKV communication into stages. In the
forward pass, the scheduler first launches the group-cast kernel to prefetch the next remote
KV, then asynchronously executes the FFA kernel for partial attention computation, hiding
all communication behind computation 7. In the backward pass, besides prefetching the
next KV, the group-reduce kernel reduces the last dKV in a separate CUDA stream before
launching the FFA kernel for the current stage, ensuring communication is overlapped
across all stages except the final dKV reduction 8.

To adaptively control overlap granularity, we further introduce a tunable hyperparame-
ter, num_stages, accounting for varying compute-to-communication ratios across training
setups, microbatches, or between forward and backward passes. This parameter can be man-
ually configured or automatically determined by our overlap solver, with a simple dynamic
search algorithm (See Alg. 2 for more details).

7To prevent all SMs from being occupied by the attention kernel, we ensure the communication
kernel picked first by setting CUDA_DEVICE_MAX_CONNECTIONS=1 (User, 2023).

8Due to PyTorch’s one-to-one mapping for process groups and collective communication streams
including all-to-all-v (User, 2024), we internally use an additional CP group for group-reduce to
enable full overlap between communication kernels in the backward pass.
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4.1.3 Rethinking System Design for Robust Distributed Training Frameworks with
DTensor

As large-scale models continue to evolve, the growing complexity of training procedures
has exposed fundamental limitations in existing distributed training frameworks (Shoeybi
et al., 2020; Rajbhandari et al., 2020). Two major bottlenecks are particularly prominent:

• Lack of testability by design. Most frameworks were not initially built with testability
as a first-class feature, resulting in fragile infrastructure with limited maintainability
and reliability;

• Tight coupling between model implementation and parallelization strategy. This
entanglement prevents algorithm researchers and system engineers from working
independently, hindering collaboration and modular development

We argue that next-generation distributed training frameworks must directly address these
two pain points to support large-scale model research and deployment.

Inspired by early explorations (Xu et al., 2021; Yuan et al., 2022) and PyTorch’s pioneering
implementations (Zhao et al., 2023; Team, 2024b; Liang et al., 2024), we propose a blueprint
for redesigning robust distributed training frameworks based on Pytorch Distributed Tensor
(DTensor) (Team, 2024b) and Parallel Plan:

DTensor PyTorch DTensor introduces three parallel placements: Replicated, Shard, and
Partial, alongside a distributed initialization strategy to maintain placement seman-
tics (Contributors, 2025a), and a propagation mechanism that deduces output placements
from input ones for supported ops, triggering communication as needed 9 (Contributors,
2025b). While it supports basic ops including naive distributed matmul, its current imple-
mentations lack the generality to handle more complex yet commonly scenarios in modern
training workflows, as shown in Tab. 12.

Parallel Plan Parallel Plan provides a declarative interface for specifying parallelization
strategies across model submodules. It works in conjunction with the parallelize_module
function and is built on top of DTensor. However, its current capabilities are mostly limited
to tensor parallelism (TP) and do not generalize well to other parallelism.

In our architecture design, we extend both DTensor and Parallel Plan to support a broader
range of usages. These extensions enable the following key features:

Decoupling Modeling from Parallelization. This feature allows model researchers to con-
centrate on model design and algorithm development without needing to manage low-level
parallelism details. At the same time, infrastructure engineers can independently optimize
parallelization strategies without modifying model implementation. This clear separation
of concerns enables more efficient collaboration and improved training throughput.

High-Precision Alignment with Non-Distributed Oracles. By disabling all parallel plans,
we can seamlessly revert to non-distributed configurations, yielding "pure" model code that
serves as a baseline or oracle for evaluating distributed correctness. To ensure alignment
within a relative error of 10−8, we upcast tensors to higher precision 10, enforce deterministic
algorithms (Team, 2024a), and control randomness using consistent seed management.
This design enables precise infrastructure testing, ultimately improving reliability and
debuggability.

9In practice, DTensor selects communication patterns based on estimated redistribution cost, but
these estimates are often inaccurate.

10In our experiments, float32 is insufficient for fully alignment; float64 suffices in most cases.
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4.2 Inference Infrastructure

As an innovative large-scale autoregressive denoising model, MAGI-1 introduces two pivotal
architectural innovations: multi-chunk parallel inference and KV cache, which unlock new
possibilities for user experiences, such as real-time streaming video generation, and enables
cost-effective deployment. However, these advancements also introduce new challenges to
the inference infrastructure. In this section, we present our infrastructure design tailored
to two major scenarios: real-time streaming inference on H100/H800, and cost-efficient
deployment on RTX 4090 GPU.

4.2.1 Real-Time Streaming Video Generation

Our model adopts an auto-regressive architecture that supports real-time streaming video
generation. To ensure a seamless user experience, we optimize for two key latency metrics:
Time to First Chunk (TTFC), which measures the delay between task submission and starting
to see the video, and Time Per Output Chunk (TPOC), which reflects the time required to
generate each subsequent chunk. Maintaining a low TTFC enhances responsiveness, while
keeping TPOC below 1 second is essential for uninterrupted playback.

We encountered three major challenges when designing the infrastructure:

• MAGI-1 consists of multiple sub-models: T5 for text embedding extraction, a VAE
encoder for processing user-uploaded images and prefix videos, a VAE decoder for
decode the denoised output, and a core auto-regressive denoising model. These com-
ponents exhibit distinct computational characteristics: T5 and VAE are memory-bound,
while the denoising model is compute-bound. Efficiently handling this heterogeneity
is essential.

• To meet the TPOC target of under 1 second, MAGI-1 demands approximately 9
PFLOPS of compute per second of video, which far exceeds the capabilities of a single
H100/H800 GPU. Achieving this requires serving models on multiple H100/H800
GPUs and a highly optimized parallelism strategy.

• First-chunk inference differs significantly from subsequent chunks. It is not compute-
bound but CPU-bound, due to limited token workloads per GPU, resulting in a long
TTFC.

To address these challenges, we propose a systematically optimized framework, enabling
real-time streaming video generation for our largest 24B MAGI-1 model on 3-node, 24 H100
GPUs. Here, we briefly introduce our solutions.

Multi-Model Heterogeneous Serving Pipeline We designed a heterogeneous serving
architecture that co-locates T5 and MAGI-1 on high-performance GPUs, while deploying
the VAE to cost-efficient hardware. This approach enables concurrent execution of MAGI-1
inference and VAE decoding, minimizing idle time and improving overall throughput.
Profiling-driven resource allocation strategies further enhance utilization efficiency. With
this design, we could efficiently handling the heterogeneity of different models and achieve
the best performance.

TPOC Optimization Given that the denoising model of MAGI-1 is compute-bound, we
prioritized aggressive quantization and distributed inference optimizations:

• Quantization. We adopted W8A8 SmoothQuant Xiao et al. (2023a) to quantize both
weights and activations to FP8 precision, except the first and last layers. The quantiza-
tion delivered a 30% speedup without compromising generation quality.

• Multi-Node Parallel Inference. We adopt a Ulysses-based multi-node parallel inference
strategy with sufficiently computation and communication overlapping (less than
3% of communication time remaining unoverlapped in the execution timeline). As
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a result, the TPOC is optimized to be within 1 second when we generating 480p (3:4
aspect ratio) videos using 16 denoising steps and KV range of 5 on 24 H100/H800
GPUs.

TTFC Optimization For first-chunk inference, only a few hundred tokens need to be
processed. In this scenario, the GPU workload is relatively light, and CPU-side bottlenecks
become the primary constraint. To address this issue, we employ CUDA Graphs to minimize
kernel launch overhead, reducing 30.4% latency. Additionally, we accelerate VAE decoding
through a tile-based parallel mechanism and torch.compile, bringing latency down from 1
second to around 70 milliseconds. Collectively, these optimizations reduced TTFC to 2.3
seconds, ensuring a smooth real-time streaming experience. Tab. 6 summarizes the key
optimizations and their corresponding latency gains11.

Model Optimization TTFC(s) Gain TPOC(s) Gain

Autoregressive
Denoising Model

Baseline 73.34 - 45.49 -
KV Cache 73.34 - 23.94 1.90X
Ulysses 3.86 18.0X 1.26 18.0X
Smooth Quant 3.00 1.29X 0.98 1.29X
Cuda Graph 2.30 1.30X 0.98 -

Vae Decoder
Baseline 1.00 - 1.00 -
Tile Parallel 0.20 5.00X 0.20 5.00X
torch.compile 0.07 2.86X 0.07 2.86X

End-to-End - 2.37 - 0.98 -

Table 6: Inference Optimization and Latency Gain

4.2.2 Cost-effective Inference on RTX 4090

The NVIDIA GeForce RTX 4090 is a highly cost-effective GPU with 24G memory. However,
through in-depth memory profiling and analysis, we identified memory insufficiency as
the primary bottleneck to serve our model on it. To address this challenge, we developed a
highly memory-efficient inference architecture and performs systematically optimizations.
As a result, we successfully deployed and ran our 4.5B-parameter model on a single RTX
4090 GPU, and also support our largest 24B model on an 8×RTX 4090 GPUs. In the following
section, we briefly introduce the key optimization techniques.

Memory Optimization To address the memory constraints of the RTX 4090, we used a
variety of techniques to do systematically optimization:

• Quantization: We adopt the same quantization strategy (WA8A SmoothQuant) as for
streaming video generation.

• KV-offload: KV-offload is a technique that stores the KV cache in CPU memory by
default and dynamically re-load it back to the GPU as needed. This approach signif-
icantly reduces peak GPU memory usage and is widely adopted in long-sequence
processing for large language models (LLMs). In MAGI-1, we also adopt this technique
to effectively address memory constraints.

• Hybrid Parallelism and Communication Optimization: The above two optimizations only
enable 4.5B model deployment on a single RTX 4090 GPU. However, the largest 24B
model further requires multi-GPU parallelism. Unlike the streaming setting where
we primarily adopt a Ulysses-based context-parallelism (CP) approach, deployment

11While TPOC latency is expected to be the sum of autoregressive diffusion model and VAE decoder
latencies—similar to TTFC—in our serving pipeline where autoregressive diffusion model and VAE
run on separate machines, TPOC is instead computed as the maximum of the two.
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on RTX 4090 employs a hybrid strategy combining pipeline-parallelism (PP) and
context-parallelism.

Specifically, pipeline-parallelism is used to partition model weights, while context-
parallelism is used to partition activations. However, since the RTX 4090 utilizes PCIe
for inter-GPU communication, both PP and CP suffer from communication-induced
bubbles that degrade compute utilization, as measured by Model FLOPs Utilization
(MFU). For PP, we mitigate this by interleaving tasks to overlap GPU idle. For context-
parallelism, we initially adopted the Ulysses approach, but found that communication
could not be fully overlapped with computation under PCIe constraints.

Therefore, we propose an enhancement to Ulysses called Context Shuffle Overlap
(CSO)(Details in Sec. A.3), which scatters each chunk evenly across all GPUs, enabling
finer-grained overlap between computation and communication than plain Ulysses.
This strategy significantly improves MFU under the limited interconnect bandwidth
of the RTX 4090.

With the above optimizations, we constrained peak memory usage to 21.94 GB for the 4.5B
model on a single RTX 4090 GPU, and 19.29 GB for the 24B model on 8×RTX 4090 GPUs.
For the 24B model, the maximum MFU reached 58%.

5 Evaluation

Evaluation methods for video generation models in the research community are typically
categorized into two complementary types: the first focuses on the perceptual quality of
the generated videos, while the second evaluates the model’s ability to faithfully capture
underlying physics, which is often regarded as essential for modeling a realistic world. In
MAGI-1, we adopt both evaluation types to obtain a comprehensive understanding of the
model’s strengths and limitations.

For perceptual quality evaluation, the inherently subjective nature of human preference,
combined with the high-dimensional and diverse characteristics of video content (e.g.,
motion continuity, aesthetic, and identity consistency), makes it challenging to rely solely
on objective metrics. As a result, the community typically employs a hybrid evaluation
protocol that integrates human subjective assessments with standardized automated metrics,
ensuring a more robust and comprehensive evaluation.

There is currently no universally accepted human evaluation protocol or human evaluation
platform within the community for perceptual quality evaluation. To address this, we design
our own in-house evaluation benchmark based on a comprehensive review of existing
human evaluation methodologies, combined with our understanding of both evaluation
criteria and model capabilities. Human experts serve as evaluator in this system, comparing
our model against other competitors under strict double-blind conditions, and providing
assessments across multiple perceptual dimensions. For objective evaluation, we adopt
VBench (Huang et al., 2024), which is currently the most widely used benchmark in the
community. VBench consists of two evaluation tracks: text-to-video (T2V) and image-to-
video (I2V). We primarily focus on the I2V track, as it more closely reflects real-world usage
patterns: users typically generate videos from images rather than from text. For the same
reason, we also allocate a larger proportion of I2V tasks during the training of MAGI-1,
aiming to better align the model’s capabilities with practical deployment scenarios.

Physics-IQ (Motamed et al., 2025) is one of the most representative benchmarks for eval-
uating a model’s ability to capture physical dynamics in video. It presents a short video
clip depicting real-world physical motion and asks the model to predict future frames.
The predictions are then compared against ground-truth sequences to assess the model’s
understanding of physical rules.

The evaluation framework and the corresponding benchmark metrics are summarized in
Tab. 7. The following sections present our evaluations in detail, and if not specified, we
evaluate our 24B model by default.
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Evaluation Category Benchmark Metrics

Perceptual
Evaluation

In-house Human Evaluation

Overall
Motion Quality
Instruction Following
Visual Quality

VBench-I2V Automated Quality Metrics

Physical
Evaluation Physics-IQ-Benchmark Physics-IQ-Score

Table 7: Evaluation Benchmark Overview

5.1 Perceptual Evaluation

5.1.1 In-house Human Evaluation Benchmark

Our in-house evaluation benchmark is primarily designed for I2V task, and integrates three
complementary components to ensure comprehensive and unbiased assessment. First, we
design a hierarchical metric system that prioritizes completeness over simplicity, while
enforcing orthogonality among metrics to enable fine-grained evaluation across multiple
quality dimensions without redundancy. Second, we construct a benchmark dataset of
100 diverse image-prompt pairs through systematic selection. These pairs span a broad
spectrum of scenarios, from simple object motions to complex human activities, and each
curated to probe specific aspects of video generation capability. Third, we implement a
double-blind comparison protocol with standardized output normalization, ensuring that
each model operates under fair conditions for a meaningful comparison.

Evaluation Metrics. To ensure a comprehensive and reliable evaluation while avoiding
unnecessary complexity, we adhere to three guiding principles in our metric design: com-
prehensiveness first, simplicity second, and orthogonality third. Unlike T2V, where both
visual content and motion are generated from scratch, I2V starts with a fixed visual input
provided by the user’s uploaded image, while the subsequent dynamics are guided by
the input text condition. This distinction shifts the evaluation focus toward assessing the
motion and temporal quality of generated video while ensuring faithful preservation of the
original visual elements.

Through preliminary analysis, we identified several common failure modes in I2V genera-
tion, including distortion, clipping, and temporal jittering. These typical issues guided the
design of our evaluation framework, which emphasizes motion quality, temporal coherence,
and the trade-off between source image fidelity and natural animation. Therefore, our
evaluation framework organizes metrics into four primarily dimensions: Overall, Motion
Quality, Instruction Following, and Visual Quality. Each dimension is further broken down
into specific sub-metrics designed to capture particular aspects of video generation quality
as shown in Tab. 8.

Dataset Construction. We construct a benchmark dataset consisting of 100 high-quality
image-prompt pairs, each carefully selected to challenge different aspects of I2V generation.
To ensure diversity and representativeness, we source data from four sources: 1) user-
submitted inputs from existing video generation platforms, 2) synthetic images generated
by FLUX (Labs, 2024), 3) authentic photographs from public repositories, and 4) professional
cinematographic materials. Each sample is annotated with specific evaluation targets
defined by our metric framework, enabling broad coverage of assessment dimensions while
avoiding redundancy.

The dataset construction process follows a systematic multi-stage pipeline. We first es-
tablish a set of selection criteria focused on key challenges in I2V generation, including
complex object deformation, multi-object interaction, dynamic camera motion, and lighting
transitions. Based on these criteria, experts nominate candidate samples, which are then

31



MAGI-1: Autoregressive Video Generation at Scale

Main
Metric

Sub
Metric Description

Overall - General preference

Motion
Quality

Motion Speed Appropriate timing of movements
Motion Amplitude Natural range of movement
Motion Smoothness Continuous movement without jitter
Movement Direction Logical and consistent direction

Instruction
Following

Subject Adherence Following behavioral instructions
Environment Adherence Meeting contextual requirements
Camera Adherence Following camera movement requests

Visual
Quality

Subject Features Consistency of main subject
Scene Features Consistency of environment
Lighting Changes Quality of lighting transitions
Texture Changes Consistency of surface appearances

Table 8: Hierarchical Evaluation Framework

finalized through a collaborative voting procedure. This curated process ensures the result-
ing benchmark presents a diverse yet focused set of evaluation cases for rigorously testing
I2V models.

Results and Analysis. Our evaluation methodology employs a paired comparison ap-
proach designed to directly measure relative model performance. Specifically, for each test
case, we generate two videos (one from our model and one from a comparative model)
using identical prompts and input images. Expert evaluators with strong aesthetic training
then indicate their preference between each pair (Win/Tie/Lose) across multiple evaluation
dimensions without knowledge of which model produced which video.

MAGI-1’s autoregressive design enables generation of arbitrary-length videos. For fair
comparison, we adapt our generation length to match each comparison model: for example,
5 seconds for Kling and 6 seconds for Hailuo. To avoid potential manipulation of visual
quality, we maintain each model’s native output without post-processing like resolution
normalization. In addition, all models are evaluated using raw user inputs without any
manual refinement from our side, relying solely on their built-in prompt enhancement (PE)
mechanisms.

The evaluation results shown in Fig. 16 demonstrate MAGI-1’s strong competitive position in
the field. In terms of overall performance, our model shows advantages over the open-source
model Wan-2.1 (Wang et al., 2025a), performs slightly behind the commercial model Kling1.6
(HD) (Kuaishou, 2024), but achieves clearly better results compared to both Hailuo(i2v-
01) (MiniMax, 2024) and HunyuanVideo (Kong et al., 2024). Looking at specific capabilities,
MAGI-1 excels particularly in instruction following and motion quality metrics, consistently
receiving high scores across comparisons. However, in terms of visual quality, there remains
room for improvement compared to top models.

5.1.2 VBench

VBench (Huang et al., 2024) is currently the most widely adopted benchmark in the com-
munity for automated and objective evaluation of video generation models. While its
evaluation framework is still evolving and not without limitations, VBench remains a crit-
ical tool for model comparison due to its fully automated and reproducible assessment
process, especially when contrasted with in-house human evaluations, which are often
subjective and lack transparency.

VBench provides two primary evaluation tracks: text-to-video (T2V) and image-to-video
(I2V). Given that I2V more closely reflects real-world usage patterns, where users typically
input a static image to generate videos in existing product, and in line with our goal of
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Figure 16: Comparative evaluation of our model against leading open-source and pro-
prietary video generation models across multiple metrics. Each bar is divided into three
sections: red, gray, and blue, representing Win-Tie-Loss percentages for each compari-
son. Blue sections indicate where users preferred the competitor model, gray sections
represent ties, and red sections show where users preferred our model. The evaluation
includes both API-based assessments like Kling1.6 (HD) (Kuaishou, 2024) and Hailuo (i2v-
01) (MiniMax, 2024) and locally deployed models like Wan-2.1 (Wang et al., 2025a) and
HunyuanVideo (Kong et al., 2024)), providing a comprehensive comparison across various
implementation environments.

aligning evaluation with practical application scenarios, we focus our evaluation on the I2V
track in VBench.

We evaluate the generation quality of MAGI-1 under two different configurations: MAGI-1
(1×decoder) and MAGI-1 (2×decoder). The only difference between them lies in the VAE
decoder: MAGI-1 (2×decoder) employs an enhanced decoder capable of 2× upsampling,
while the core autoregressive denoising model remains identical across both versions. For
evaluation, both models generate 4-second videos at 24 FPS with a 16:9 aspect ratio.

The results are presented in Tab. 9. As shown, both of our models achieve outstanding
performance, with MAGI-1 (2× decoder) reaching a top overall score of 89.28, ranking
first among all models. Notably, the MAGI-1 models demonstrate a significant advantage
in the dynamic Degree compared to other approaches, while simultaneously maintaining
high visual quality, including strong performance in aesthetic quality and motion smoothness.
This effectively addresses a common trade-off in other methods, where increasing motion
amplitude often downgrade image quality. We attribute this strength to the autoregressive
denoising architecture, which provides a stronger modeling capability for complex motion
dynamics.

5.2 Physical Evaluation

Video generation models are increasingly recognized as a foundation toward building the
world model, and the ability to accurately capture real-world physical dynamics has become
a central focus within the research community. In contrast to perceptual evaluation, which
inevitably involves subjective human preferences, physics-based evaluation aims to assess a
model’s ability to understand and simulate objective physical principles.

Currently, there are only a few established benchmarks (Bansal et al., 2024; Meng et al., 2024;
Dash et al., 2011; Yi et al., 2019; Kang et al., 2024) in this area, and Physics-IQ (Motamed et al.,
2025) stands out as the most comprehensive and state-of-the-art benchmark. Therefore,
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Metric
(VBenchI2V)

MAGI-1
(2×decoder)

MAGI-1
(1×decoder) VisualPi StepFun

(TI2V)

Quality
Metrics

I2V-Camera 50.85 50.77 51.20 49.23
I2V-Subject 98.39 98.36 98.67 97.86
I2V-Background 99.00 98.98 98.87 98.63
Subject Cons. 93.96 94.28 96.87 96.02
Motion Smooth. 98.68 98.83 99.18 99.24
Imaging Quality 69.71 69.68 72.86 70.44
Dynamic Degree 68.21 63.41 49.93 48.78
Background Cons. 96.74 96.90 97.50 97.06
Aesthetic Quality 64.74 61.89 61.91 62.29

Agg.
Scores

Quality Score 82.44 81.67 81.95 81.22
I2V Score 96.12 96.08 96.21 95.50
Total Score 89.28 88.88 89.08 88.36

Table 9: Quantitative evaluation results on VBench-I2V benchmark. MAGI-1 (1×decoder)
denotes our baseline model (1280× 720 resolution), while MAGI-1 (2×decoder) represents
the enhanced variant with 2x VAE upsampling (2560× 1440 resolution). Comparative data
for other models are sourced from the top tier at latest Vbench leaderboard. Bold and
underlined values indicate the highest and second-highest scores respectively across all
metrics.

we adopt Physics-IQ to evaluate the physical understanding and reasoning capabilities of
MAGI-1.

The Physics-IQ evaluation protocol uses 8-second real-world videos that depict objective
physical phenomena. The first 3 seconds of each video are provided as conditional input to
the model, which is then required to predict the remaining 5 seconds. The accuracy of the
model’s physical modeling capability is measured by comparing the predicted videos with
the ground truth.

Since most existing video generation models do not natively support video-conditioned
continuation, they typically approximate this task using image-to-video (I2V) generation,
conditioning only on the last frame of the input video. To provide a comprehensive compar-
ison, we report results for both two settings.

The results are presented in Tab. 10. When conditioned on video inputs, MAGI-1 out-
performs all competing models by a substantial margin, reaches the score of 56.02. The
previous state-of-the-art model VideoPoet (Kondratyuk et al., 2023), which also supports
video-to-video (V2V) prediction, is outperformed by approximately 27 points. Even when
using only image condition, MAGI-1 still achieves the highest score among all models,
reaching 30.23, despite a noticeable drop compared to its video-conditioned version.

These results clearly demonstrate the strong capability of MAGI-1 in understanding and
modeling real-world physical principles. We attribute this advantage to its autoregres-
sive nature: modeling physical processes demands a focus on causality rather than mere
correlation, and autoregressive models inherently promote causal reasoning. In contrast,
bidirectional denoising models lack the algorithmic foundations necessary to effectively
capture causality, which leads to inferior performance in such tasks. While VideoPoet is also
an autoregressive model, its primary design objective is integration with language models,
which limits its efficiency in modeling the video modality; In contrast, MAGI-1 is purpose-
built for video generation, combining the strengths of autoregressive and denoising-based
modeling. This targeted design enables it to achieve significantly superior performance.

Nevertheless, our model is not without limitations. Fig. 17 presents several representative
results, revealing both its strengths and weaknesses. While MAGI-1 effectively captures
primary dynamics—such as projectile motion, rotational behavior, and material deforma-
tion, it struggles with complex secondary effects, including precise collision responses,
material-specific reactions, and post-deformation behavior. Notably, even when the pre-
dicted outcome deviates from the ground truth, the model often generates physically
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Model Phys.
IQ Score↑

Spatial
IoU ↑

Spatio
Temporal↑

Weighted
Spatial IoU ↑ MSE↓

MAGI-1 (V2V) 56.02 0.367 0.270 0.304 0.005
VideoPoet (V2V) (Kondratyuk et al., 2023) 29.50 0.204 0.164 0.137 0.010
Lumiere (V2V) (Bar-Tal et al., 2024) 23.00 0.170 0.155 0.093 0.013

MAGI-1 (I2V) 30.23 0.203 0.151 0.154 0.012
Kling1.6 (I2V) (Kuaishou, 2024) 23.64 0.197 0.086 0.144 0.025
VideoPoet (I2V) (Kondratyuk et al., 2023) 20.30 0.141 0.126 0.087 0.012
Gen 3 (I2V) (Runway, 2024) 22.80 0.201 0.115 0.116 0.015
Wan2.1 (I2V) (Wang et al., 2025a) 20.89 0.153 0.100 0.112 0.023
Lumiere (I2V) (Bar-Tal et al., 2024) 19.00 0.113 0.173 0.061 0.016
SVD (I2V) (Blattmann et al., 2023) 14.80 0.132 0.076 0.073 0.021
Pika 1.0 (I2V) (PikaLabs, 2024) 13.00 0.140 0.041 0.078 0.014
Sora (I2V) (OpenAI, 2024) 10.00 0.138 0.047 0.063 0.030

GroundTruth 100.0 0.678 0.535 0.577 0.002

Table 10: Quantitative comparison of video generation models evaluated on the Physics-
IQ-Benchmark. Models are categorized by input modality: image-to-video (I2V) and
video-to-video (V2V). Results were obtained through direct evaluation of model APIs, local
deployment of open-source implementations, and as reported in Motamed et al. (2025). In
the V2V task, models observe the first 3 seconds of an 8-second ground truth video and
predict the remaining 5 seconds, while in the I2V task, models take only a single frame at
the 3-second mark and predict the subsequent 5 seconds. Magi(V2V) utilizes the full 24 FPS
video input (96 frames).

plausible alternatives. For example, in the second case (Fig. 17(b)), although the model
fails to simulate the ignition of a match and the popping of a balloon, it instead produces a
coherent sequence in which the rod rotates, contacts the object, and realistically bends upon
impact. These results suggest that MAGI-1 has acquired a non-trivial physical intuition,
capable of generating alternative yet physically consistent scenarios.

The influence of historical context length The benefit of utilizing historical context for
more accurate predictions has already been demonstrated in the comparison between image-
conditioned and video-conditioned MAGI-1 models. To more systematically evaluate the
impact of historical information in physical modeling, we varied the length of accessible
history by adjusting the KV range of MAGI-1 during inference. Fig. 18 presents the results.
Overall, we observe that increasing the amount of historical context generally leads to better
performance. However, the most significant gain occurs at KV range = 2, meaning that
short-term history is often sufficient to support accurate predictions.

6 Related Works

This section reviews major developments in text-to-video generation, categorized by propri-
etary systems, open-source efforts, and recent trends in autoregressive and causal modeling.
We highlight unresolved challenges in scalability, causality, and streaming compatibil-
ity—challenges that MAGI-1 is designed to address.

Proprietary Systems. Recent proprietary models have significantly advanced gener-
ation length, resolution, and semantic fidelity. OpenAI’s Sora (OpenAI, 2024) intro-
duced long-form, high-resolution generation with strong prompt consistency. Kuaishou’s
Kling (Kuaishou, 2024) and Runway’s Gen-3 (Runway, 2024) emphasized temporal fidelity
and fine-grained stylistic control, respectively. Luma AI’s DreamMachine (LumaLabs, 2024)
improved motion continuity and stylistic adherence. Pika Labs’ Pika 1.5 (PikaLabs, 2024)
enabled interactive control over visual attributes, while Meta’s MovieGen (Polyak et al.,
2024) offered transparency into foundational model training. Most recently, Google’s Veo
2 (DeepMind, 2024) advanced physical realism and human motion modeling. Despite
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(a) A light beige coffee table with a small yellow rubber ducky on it. A mustard yellow couch is in
the background. There is a black pipe on one end of the table and a brown tennis ball rolls out of it
towards the rubber ducky. Static shot with no camera movement.
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(b) A black balloon is sitting on a wooden table next to a small rotating platform with a lit matchstick
taped to it. The match rotates clockwise and touches the balloon. Static shot with no camera movement.
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(c) Two black and blue gripping tools are pulling a piece of green paper from its two corners, causing
it to tear. Static shot with no camera movement.

Figure 17: Case study results from the Physics-IQ Benchmark illustrate three distinct
physical scenarios over time. Each scenario compares the ground truth (top row) with our
model’s predictions (bottom row), conditioned on the first 3 seconds and forecasting the
next 5 seconds. The results highlight the model’s ability to capture core physical interactions,
as well as its limitations with complex material-specific effects: (a) The model correctly
predicts the initial projectile motion but erroneously shows the ball deflecting off the duck
instead of stopping upon impact. (b) Rotational dynamics are accurately captured, but the
model fails to predict the match igniting and popping the balloon, instead showing the
object being pushed back. (c) The model predicts the card tearing but struggles to model
the motion of the torn pieces afterward.
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Figure 18: Physical IQ scores as a function of historical context. This visualization shows
how performance changes with varying amounts of historical information, represented by
the KV Range Value.

these innovations, most systems are closed-source and opaque in architecture, limiting
reproducibility and extensibility.
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Open-Source Ecosystem. The open-source community pioneered latent diffusion through
Stable Diffusion (Esser et al., 2021), which integrated a variational autoencoder (Kingma,
2013) for latent representation, a CLIP-based text encoder (Radford et al., 2021), and a
U-Net denoiser (Ronneberger et al., 2015). Temporal extensions such as VDM (Ho et al.,
2022), AnimateDiff (Guo et al., 2024), and SVD (Blattmann et al., 2023) adapted the archi-
tecture for frame coherence. Transformer-based backbones like DiT (Peebles & Xie, 2023),
PixArt-α (Chen et al., 2023), and Latte (Ma et al., 2024) demonstrated scalability and inspired
early video adaptations. Recent open implementations—including Open-Sora (Zheng et al.,
2024), Open-Sora-Plan (Lin et al., 2024), CogVideoX (Yang et al., 2025), Mochi 1 (GenmoTeam,
2024), HunyuanVideo (Kong et al., 2024), StepVideo (Ma et al., 2025), LTX-Video (HaCohen
et al., 2024), and Wan (Wang et al., 2025a)—introduced modular advances in chunking,
compression, and streaming. However, these systems largely retain bidirectional denoising
and globally conditioned inference, limiting applicability to real-time or causal settings.

Autoregressive and Causal Modeling. An emerging trend is the integration of autore-
gressive modeling and causal constraints. Diffusion Forcing (Chen et al., 2024a) introduces
independent per-token noise schedules that allow a causal model to denoise future tokens
while keeping past tokens minimally perturbed, effectively unifying next-token prediction
with full-sequence diffusion. FVDM (Liu et al., 2024) employed timestep vectorization for
precise noise control. CausVid (Yin et al., 2024) combined causal inference with distillation
for streaming scenarios. While promising, these models remain limited in scale, often lack
chunk-wise abstraction, and do not unify video continuation with I2V/T2V generation.

MAGI-1: Scalable Autoregressive Diffusion. To our knowledge, MAGI-1 is the first
large-scale, chunk-wise autoregressive diffusion model trained from scratch that unifies
high-fidelity text-to-video, image-to-video, and video continuation tasks under strict causal
constraints. It supports real-time streaming and long-horizon synthesis via efficient chunk-
wise denoising, shortcut distillation, and KV-cached inference. By explicitly addressing
scalability, causality, and streaming compatibility, MAGI-1 establishes a new foundation for
unified and controllable video generation.

7 Conclusion

MAGI-1 introduces a scalable chunk-wise autoregressive diffusion framework for high-
fidelity video synthesis. By progressively denoising fixed-length segments under strict
causal constraints, it enables real-time, streaming-compatible generation with fixed compu-
tational overhead regardless of video length. The architecture builds upon a Transformer
backbone enhanced with block-causal and parallel attention modules, and is supported
by a distributed attention mechanism and a highly efficient training strategy for handling
ultra-long contexts.

A key contribution lies in its unified design: MAGI-1 supports text-to-video, image-to-video,
and video continuation tasks without requiring task-specific modifications, all under a
shared training objective. Through chunk-wise text conditioning, it further achieves fine-
grained semantic control across long-form video generation. A shortcut distillation strategy
significantly reduces the number of diffusion steps required for inference, improving effi-
ciency while maintaining temporal consistency and sample quality.

Empirical results on VBench-I2V and Physics-IQ benchmarks demonstrate that MAGI-1
outperforms existing large-scale video diffusion models in prompt adherence, physical
plausibility, and temporal coherence. Taken together, these contributions establish MAGI-1
as a robust and extensible foundation for autoregressive video synthesis—offering both
state-of-the-art performance and a fertile ground for future advancements in modularity,
controllability, and multi-modal reasoning.
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8 Limitation and Future Work

While MAGI-1 demonstrates strong generation quality and low-latency inference via chunk-
wise autoregressive denoising, its current architecture remains tightly coupled. Specifically,
a single large decoder-style Transformer is tasked with both (1) high-level temporal context
fusion—integrating static conditioning signals with progressively noisier visual inputs—and
(2) low-level denoising, which requires accurate reconstruction of fine-grained visual details.
This conflation of heterogeneous objectives introduces several technical limitations:

• Inference latency bottleneck: The same large model is repeatedly invoked across
all denoising steps, even when only minor refinements are required. This leads to
inefficient utilization of compute, especially in streaming settings where low-latency
frame delivery is critical.

• Optimization conflict: Jointly optimizing global semantic planning and pixel-level
restoration within a single model exacerbates objective interference, often leading to
suboptimal scaling behavior.

• Limited controllability: The monolithic architecture constrains the insertion of aux-
iliary control signals—such as confidence-based guidance modulation, or dynamic
temporal constraints—due to entangled latent pathways and overlapping functional
scopes.

Thus, a decoupled design that structurally separates high-level semantic reasoning from
low-level visual synthesis is worth exploring. Looking ahead, as video generation evolves
from producing isolated clips to constructing long-form content with coherent narratives, we
anticipate a convergence between video generation and understanding. In this closed-loop
setting, the quality of generated content will increasingly depend on the model’s capacity
to understand video content, making understanding the key bottleneck. Although we are
still far from this frontier, we believe that a modular architecture represents a crucial step
toward closing the loop between video understanding and generation.
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A Inference Infra

A.1 W8A8 Quantization

We adopt the A8W8 SmoothQuant approach (Xiao et al., 2023a), which leverages a cali-
bration dataset to pre-compute per-channel scaling factors s. This enables an equivalent
transformation of the form Y = (X · diag(s)−1) · (diag(s)W), effectively mitigating the
impact of outliers in channel-wise activations.

For calibration, we constructed a dataset encompassing a wide range of usage scenarios,
including different task types (e.g., T2V and I2V) and a uniformly sampled step size within
the range [12, 32]. Notably, I2V samples constituted approximately 30% of the dataset. We
employed the FP8 data type for quantization, as INT8 was found to introduce noticeable
visual artifacts in the generated videos. Furthermore, we conducted a hyperparameter
search over the range α ∈ (0.4, 0.6), and ultimately selected α = 0.45 for SmoothQuant. All
model weights were quantized except for the first and last layers. This quantization strategy
led to a 30% performance improvement without compromising generation quality.

A.2 Multi-Node Parallel Inference

We adopted a multi-node Ulysses-based parallel inference framework across 3 nodes (24
GPUs), where inter-GPU communication and the high computational density of attention
emerged as the primary bottlenecks. Ulysses performs four all-to-all communication steps
for the q, k, v, and o tensors. To mitigate communication overhead, we carefully overlapped
each communication stage with corresponding computations:

• v-communication overlaps with k-computation

• k-communication overlaps with q-computation

• q-communication overlaps with KV cache updates

• o-communication overlaps with cross-attention computation

This overlapping strategy effectively reduced communication overhead to less than 3% of
total execution time.
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(b) CSO context split logic.

Figure 19: Overview of Ulysses and CSO context split logic.

A.3 Context Shuffle Overlap

We optimized based on the Ulysses CP algorithm, striving to overlap communication with
computation or data movement. Since the RTX 4090 GPUs communicate via PCIe, which
has a relatively low bandwidth, we further proposed the CSO (Context Shuffle Overlap)
algorithm to optimize communication more deeply.

The key difference between CSO and Ulysses lies in how the context is partitioned. In
Ulysses, all chunks are distributed sequentially across different ranks. In contrast, CSO
assigns each rank a partial view of every chunk. As illustrated in Fig. 19, this alternative
partitioning strategy allows CSO to conveniently overlap computation and communication
at the chunk level. Assuming we have 5 chunks, the complete process of CSO is as follows:

• k-communication and v-communication of all chunks overlaps with q-computation of
all chunks

• q-communication of chunk 1 overlaps with KV cache updates

• q-communication of chunk 2 overlaps with o-computation of chunk 1

• q-communication of chunk 3 and o-communication of chunk 1 overlaps with o-
computation of chunk 2

• q-communication of chunk 4 and o-communication of chunk 2 overlaps with o-
computation of chunk 3

• q-communication of chunk 5 and o-communication of chunk 3 overlaps with o-
computation of chunk 4

• o-communication of chunk 4 overlaps with o-computation of chunk 5

• o-communication of chunk 5 overlaps with cross-attention computation

In addition, the CSO partition pattern enables communication operations to be split into
multiple balanced all-to-all communications. These balanced operations offer better per-
formance compared to unbalanced all-to-all communication and also allow for efficient
subsequent merging.

B Training Infrastructure

B.1 MagiAttention Materials
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Figure 20: Illustration of AttnSlice formulation for some irregular mask (see 4.1.2). It
decomposes the original mask into multiple AttnSlices and allows re-expression of fractal
masks after rearrangement across CP ranks, making it suitable for distributed attention.
Note that computation load balance across CP ranks is not considered in this illustration.

①

QRange=[0,2)
KRange=[0,2)
MaskType=Full

AttnSlice ① ~ ⑤
QRange=[2,4)
KRange=[2,6)
MaskType=Full

QRange=[4,6)
KRange=[0,2)

MaskType=Causal

QRange=[4,6)
KRange=[4,6)
MaskType=Full

QRange=[6,8)
KRange=[2,8)

MaskType=Causal

② ③ ④ ⑤

dV: [sk,nhk,hd]

Q: [sq,nhq,hd]

K: [sk,nhk,hd]

V: [sk,nhk,hd]

Q, O, lse

for slic
e ③

K,V 
for slice ③

O: [sq,nhq,hd]

lse: [sq,nhq]

K0 K1 K2 K3 K4 K5 K6 K7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q, O, lse
for slice ④

K,V
for slice ④

dQ: [sq,nhq,hd]

dK: [sk,nhk,hd]

atomic reduce
for dq, dk, dv

atomic add

K,V 
for slice ①

Q, O, lse
for slice ①

atomic add

Q: [sq,nhq,hd]

K: [sk,nhk,hd]

V: [sk,nhk,hd]

Q for slic
e ③

K,V 
for slice ③

O: [sq,nhq,hd]

lse: [sq,nhq]

K0 K1 K2 K3 K4 K5 K6 K7

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q for slice ④

K,V
for slice ④

partial o, lse 
from slice ③

partial o, lse 
from slice ④

atomic reduce
for o, lse

mutex lock
+

correction

forward backwardSlice-Level Parallelism in FFA

partial dq 
from slice ③

partial dq 
from slice ④

partial dk,dv 
from slice ③

partial dk,dv 
from slice ①

Figure 21: Illustration of slice-level parallelism in FFA for both forward and backward
kernels (see 4.1.2). The overlapping nature across slices in both rows (QRange) and columns
(KRange) necessitates atomic reduce operations in both kernels to ensure correct reduction.
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Figure 22: Illustration of Ring-Attention’s customized sharding strategies for load balancing.
(a) Full mask uses sequential sharding for the global mask; (b) Causal mask employs tailored
zigzag sharding (zhuzilin, 2024); (c) Varlen full mask applies sequential sharding per local
mask (one per packed sample); (d) Varlen causal mask uses zigzag sharding per local mask,
causing performance degradation from fragmentation and padding.
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Figure 23: Examples illustrating redundant communication in Ring P2P patterns for dis-
tributed attention given heterogeneous masks (see 4.1.2).: (a) Even with a simple causal
mask, Ring P2P incurs 25% redundant communication; (b) For irregular mask patterns such
as varlen block-causal mask with last global block, Ring P2P results in over 33% redundancy.
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Figure 24: Illustration of group-cast/group-reduce primitives for zero redundancy, using
the varlen block-causal mask with the last global block as an example for irregular patterns
(see 4.1.2). (a) In both forward and backward passes, the group-cast primitive internally
analyzes and generates a transfer table for KV send/receive buffers, and launches the
underlying all-to-all-v to complete communication with our custom Range Gather kernel
for pre-/post-processing. (b) In the backward pass, group-reduce similarly handles the
partial dKV communication for reduction, using all-to-all-v with the Range Gather kernel
for pre-processing and the Range Scatter-Reduce kernel for post-processing.
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MagiAttention backward timeline with 3-stage overlap
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Figure 25: Schematic of MagiAttention’s multi-stage overlap scheduling (see 4.1.2). (a)
Forward pass: 4-stage scheduling overlaps computation (partial attention outputs and lse
factors) with prefetching of next-stage KV requests (where applicable), hiding all commu-
nication overhead with the final stage’s computation exposed. (b) Backward pass: 3-stage
scheduling overlaps computation (partial dQ, dKV) with prefetching of next-stage KV re-
quests and reduction of prior dKV requests, hiding all communication overhead except the
dKV reduction of the final stage.

Algorithm 1 Greedy Load-Balance Dispatch Algorithm via Min-Heap w.r.t. 4.1.2

Require: Dispatch chunk and area pairs {(Ci, Area(Ci))}n
i=1, number of buckets cp_size

(cp_size | n)
Ensure: A dispatch mapping minimizing maximum bucket workload, satisfying Eq. (11)

1: Sort dispatch chunks {Ci}n
i=1 in descending order by Area(Ci)

2: Compute chunk capacity per bucket: chunk_per_bucket← n/cp_size
3: Initialize buckets: workload counters W ← [0]cp_size, chunk counters count← [0]cp_size,

and mapping Bj ← ∅, ∀j
4: Initialize min-heapH with tuples (0, j) for each bucket j ∈ [1, cp_size]
5: for each chunk Ci in sorted order do
6: repeat
7: (wmin, jmin)← extract-min(H)
8: until count[jmin] < chunk_per_bucket {Select least-loaded bucket that is not full}
9: Assign chunk: Bjmin ← Bjmin ∪ {Ci}

10: Update workload and count:

W[jmin]←W[jmin] + Area(Ci), count[jmin]← count[jmin] + 1

11: Insert updated tuple (W[jmin], jmin) back intoH
12: end for
13: return Bucket assignments {Bj}

cp_size
j=1 and maximum bucket workload maxj W[j]
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Algorithm 2 Dynamic Overlap Stage Search Algorithm w.r.t. 4.1.2

Require: Remote KV/dKV requests per rank; kernel cost models for FFA (C f f a(·)),
group-cast (Cgc(·)), and group-reduce (Cgr(·)), estimated via offline profiling; hyper-
parameters to control search range: (min_chunk_size,max_num_chunks)

Ensure: Optimal number of overlap stages for both forward and backward passes
1: for each ranki in parallel do
2: [Step 1: Communication Partition] Partition remote KV/dKV requests into pi fine-

grained communication packages, with sizes bounded by hyperparameters
(min_chunk_size, max_num_chunks)

3: [Step 2: Cost Evaluation]
4: for si ← pi to 1 do
5: Randomly assign pi communication packages into si stages, and pack them
6: Estimate the overall timeline costs for both forward and backward as:

C( f wd)(si)←
si−1

∑
j=0

max
{

Cgc(j+1), C f f a(j)
}

︸ ︷︷ ︸
overlapped

+C f f a(si)︸ ︷︷ ︸
exposed

C(bwd)(si)←
si

∑
j=0

max
{

Cgc(j+1), C f f a(j), Cgr(j−1)
}

︸ ︷︷ ︸
overlapped

+Cgr(si)︸ ︷︷ ︸
exposed

{Where C f f a(0) denotes the host computation cost and Cgc(si+1), Cgr(0), Cgr(−1)
are all assigned to 0 to handle boundary conditions}

7: end for
8: [Step 3: Local Selection]
9: s∗( f wd)

i ← arg min
si

C( f wd)(si) {Optimal forward stage count for ranki}

10: s∗(bwd)
i ← arg min

si
C(bwd)(si) {Optimal backward stage count for ranki}

11: end for
12: [Step 4: Global Synchronization]
13: num_stages( f wd) ← max

i
s∗( f wd)

i via All-Reduce across all CP ranks

14: num_stages(bwd) ← max
i

s∗(bwd)
i via All-Reduce across all CP ranks

15: return num_stages( f wd), num_stages(bwd)
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B.2 MagiAttention Experiments

B.2.1 Benchmarking MagiAttention kernel-level performance and flexibility

To demonstrate FFA kernels’ state-of-the-art performance and flexibility in handling ultra-
long, heterogeneous mask training, we measure the throughput (in TFLOPs/s) on Hopper
GPUs for both forward and backward passes of prevalent attention kernels across standard
mask patterns (see Fig.27, Fig.28) with their varlen variants (see Fig.29 and Fig.30), and
some irregular mask patterns (see Fig.31).

Benchmark settings: for each mask pattern, we vary the sequence length seqlen from
4k, 8k, 16k, ..., up to 128k (seqlenq = seqlenk = seqlen) while measuring throughput (in
TFLOPs/s) for forward and backward passes of different attention kernels. Other config-
urations are fixed using common training settings (see Tab.11) to focus on the impact of
sequence length and mask pattern. For the varlen packed data, we simply follow the vari-
able sequence length distribution in the open-sourced dataset (Xu et al., 2024) (see Fig.26),
from which we sample to pack and pad to the required seqlen.

To calculate the TFLOPs/s for various mask patterns during both forward and backward
passes, we use the subsequent equations, following Flash-Attention (Dao, 2023):

FLOPs( f wd) = 2︸︷︷︸
2 matmul

× 2︸︷︷︸
2 flops per matmul

× MaskArea(seqlen, mask_type) (12)

× batch_size× num_headsq × head_dim

FLOPs(bwd) = 2.5︸︷︷︸
5 matmul due to recomputation

× FLOPs( f wd) (13)

where MaskArea(seqlen, f ull) = seqlen2,

MaskArea(seqlen, causal) =
seqlen(seqlen + 1)

2
, ...

TFLOPs/s(wd) =
FLOPs(wd)

Runtime(wd)
, wd ∈ { f wd, bwd} (14)
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Figure 26: Distribution of sequence lengths in the dataset (Xu et al., 2024), used to sample
and construct the variable-length data for both kernel-level and module-level experiments
of MagiAttention.
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Settings Value

Batch Size (b) 1

Number of Heads (nh) nhq:nhk:nhv = 64:8:8
(GQA)

Head Dimension (hd) 128
Dtype torch.bfloat16

Window Size 1024
(for sliding window masks only)

Table 11: The fixed settings of FFA performance and flexibility benchmark
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(a) Forward pass for full mask.
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(b) Backward pass for full mask.

Figure 27: Benchmarking FFA’s performance and flexibility against other leading attention
kernels for full mask scenarios.
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(a) Forward pass for causal mask.
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(b) Backward pass for causal mask.

Figure 28: Benchmarking FFA’s performance and flexibility against other leading attention
kernels for causal mask scenarios.
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(a) Forward pass for varlen full mask.
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(b) Backward pass for varlen full mask.

Figure 29: Benchmarking FFA’s performance and flexibility against other leading attention
kernels for varlen full mask scenarios. (Note that: the E symbol indicates the corresponding
distributed attention implementation raises Cuda Out of Memory error in that specific config-
uration.)
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(a) Forward pass for varlen causal mask
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(b) Backward pass for varlen causal mask

Figure 30: Benchmarking FFA’s performance and flexibility against other leading attention
kernels for varlen causal mask scenarios. (Note that: the E symbol indicates the correspond-
ing distributed attention implementation raises Cuda Out of Memory error in that specific
configuration.)
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(a) Forward pass for sliding-window causal mask.
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(b) Backward pass for sliding-window causal mask.

Figure 31: Benchmarking FFA’s performance and flexibility against other leading attention
kernels for sliding-window causal mask scenarios. (Note that: the E symbol indicates the
corresponding distributed attention implementation raises Cuda Out of Memory error in that
specific configuration.)
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B.2.2 Benchmarking MagiAttention module-level scalability

To validate the scalability of MagiAttention, we assess the per-GPU throughput (in
TFLOPs/s/GPU) of the attention module during both forward and backward propaga-
tion, as the sequence length and parallel size increase. This assessment is compared against
common CP strategies including Ring-Attention and Ulysses (Liu et al., 2023; Jacobs et al.,
2023). Due to the complexity of supporting irregular masks for baselines, our experiments
are limited to the full mask and varlen full mask scenarios. And the distribution of variable
sequence lengths still follow the one in kernel-level experiments B.2.1. The results are
presented in Fig.32 and Fig.33.

Our experiments are conducted on a large-scale productive GPU cluster 12. We jointly scale
the total sequence length seqlen, the context-parallel size cp_size, and the node size nnodes
from (seqlen:64k, cp_size:1, nnodes:1) up to (seqlen:3072k (3M), cp_size:48, nnodes:48). The
tensor-parallel size tp_size is kept constant at 8, with sequence-parallel enabled. Other data
and model configurations for different mask types are consistent with those detailed in
Tab.11.

Therefore, in every training setting, each rank is assigned constantly with seqlen = 64k,
num_headsq = 8 and num_headsk = 1 for attention propagation, while the remaining
activations stays seqlen = 8k, num_headsq = 64 and num_headsk = 8 with SP enabled. This
setup simulates a common training configuration.

To calculate the TFLOPs/s/GPU for various mask patterns during both forward and back-
ward passes, similarly, we first calculate the FLOPs as Eq.12 and Eq.13 and apply the follow-
ing equation:

TFLOPs/s/GPU(wd) =
FLOPs(wd)

Runtime(wd) × cp_size
, wd ∈ { f wd, bwd} (15)

As demonstrated, MagiAttention exhibits linear scalability as the context length and CP
size increase, in both full mask and varlen full mask configurations, for both forward and
backward passes. In contrast, baseline methods either face strict limitations in scaling up or
experience performance degradation with ultra-long contexts, which worsens with varlen
mask patterns.

12Due to business and confidentiality reasons, specific details about the productive cluster, such as
the number and type of GPUs, are withheld.
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(a) Forward pass for full mask.
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(b) Backward pass for full mask.

Figure 32: Benchmarking MaiAttention’s scalability against other leading CP strategies
for full mask scenarios. (Note that: the X symbol indicates the corresponding distributed
attention implementation is not supported in that specific configuration.)
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(a) Forward pass for varlen-full mask.
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(b) Backward pass for varlen-full mask.

Figure 33: Benchmarking MaiAttention’s scalability against other leading CP strategies for
varlen full mask scenarios. (Note that: the X symbol indicates the corresponding distributed
attention implementation is not supported in that specific configuration.)
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B.3 Other Materials

Table 12: Examples of DTensor’s parallel placements and propagation common in modern
training workflows w.r.t. 4.1.3

Basic Placements Specific Placements Examples

Replicate Replicate (R)

LayerNorm w/o SP:

y(R) =
x(R) − E[x(R)]√

Var[x(R)] + ϵ
∗ γ(R) + β(R)

Partial

SumPartial (Psum)

RowLinear w/o SP:

O(R) = AllReduce((X(S(1)) ×W(S(0)))(Psum))

ZERO-1 Grad Sync:

grad(R) = AllReduce(grad(Psum))

FSDP Grad Sync:

grad(S(0)) = ReduceScatter(grad(Psum))

MSE Loss Sync:

loss(R) = AllReduce(loss(Psum))

AvgPartial (Pavg)

Parallel RMSNorm:

y(R) =
x(S(1))

AllReduce(RMS(x(S(1)))(Pavg))
∗ γ(S(1))

MaxPartial (Pmax)
Grad L∞-Norm :

grad_norm(R) = AllReduce(grad_norm(Pmax))

MinPartial (Pmin)
FP8 Scaling:

x̃(R) = x(R) ×AllReduce((scaling_ f actor−1)(Pmin))

NormPartial (Pnorm)
Grad Lp-Norm :

grad_norm(R) = AllReduce(pow(grad_norm(Pnorm), p)(Psum))
1
p

LSEPartial (Plse)
LSE Correction :

lse(R) = log(AllReduce(exp(lse(Plse))(Psum)))

AttnPartial (Pattn)
Attention Forward Correction:

o(R) = AllReduce((exp(lse(Plse)−lse(R)) · o(Pattn))(Psum))

Shard

(Even)Shard (S(dim))

ColLinear with SP :

O(S(1)) = AllGather(X(S(0)))×W(S(1))

LayerNorm with SP:

y(S(0)) =
x(S(0)) − E[x(S(0))]√

Var[x(S(0))] + ϵ
∗ γ(R) + β(R)

(Even)StridedShard (SS(dim))

FSDP + ColLinear w/o SP :

O(S(1)) = X(R) ×AllGather(W(SS(0),S(1)))(S(1))

MHA QKV-fused ColLinear w/o SP :

Q(S(1)), K(S(1)), V(S(1)) = split(QKV(SS(1))),

QKV(SS(1)) = X(R) ×W(SS(1))
qkv

UnevenStridedShard (USS(dim))

GQA QKV-fused ColLinear w/o SP :

Q(S(1)), K(S(1)), V(S(1)) = split(QKV(USS(1))),

QKV(USS(1)) = X(R) ×W(USS(1))
qkv

Note: the specific placements with the bold text are the ones we’ve complemented.
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