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Homework 6

Problem 1 (Laplace Transform). Show the following:
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Now, we can use integration by parts again using the following definitions,
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Then,
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Problem 2 (Transfer Function). Consider,
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Solution
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Using equation 18 in equation 14 we have,
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Now, let’s define 0 as prescribed in the problem statement,
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Problem 3 (Temporal Response). Show that equation 24 may be rewritten as 25:
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Solution
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Problem 4 (Use Laplace Transform and Partial Fractions to solve these ODEs).

3(t) +3y(¢) + 2y(¢) = sin(3¢)

y0) = -1
y0) = 0
Solution

Take the Laplace transform of both sides:
ZA3(1) +39(1) +2y(t) } = Z{sin(31)}
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5% (s) = sy(0) = ¥(0) +3(sY (s) —y(0)) +2¥ (s) =

Substitute initial conditions y(0) = —1,y(0) = 0:

$2Y (s) +5+3sY (s)+3+2Y (s) = ﬁ
Combine like terms:
(s +3s5+2)Y (s) —(s+3)
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(s+3) (s> +9) = 5° +35% + 95+ 27 = Numerator = —s> — 35> — 9s — 24

—52 =352 —95—24

Y(s) =

(s) (2+9)(s+1)(s +2)
A B Cs+D

Y(s)7s+1 s+2+s2+9

Solving for constants (e.g., using symbolic computation), we get:
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Using Laplace inverse formulas:
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Final Answer

() = %edt — %67, — % cos(3t) — % sin(3¢)
Problem 5.

(1) +4y(t) +4y(t) = cos(4)

y0) = 1
y0) = 1
Solution

Apply the Laplace transform to both sides:
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Substitute the initial conditions:
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Combine the terms over a common denominator:
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Using standard Laplace pairs:
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Final Answer

103, 29 ., 3 .

y(t) = IOOe + lOte 100 cos(4t)—§-25 sin(4t)

Problem 6.

() + (1) +y(t) = 1 4 cos(6¢) (32)
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Solution
Taking the Laplace transform of both sides:
20+ 200+ 2H0)} = L{1} + ZL{cos(6r)}

(2¥(5) = 55(0) —5(0)) + (5¥(5) ~3(O) 4V (s = -+ 50

Using initial conditions y(0) = 0, y(0) = 0, we simplify:
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Combine the right-hand side over a common denominator:
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Using symbolic computation, we obtain:
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Final Answer
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Problem 7.

() +y(t) = 1+ (34)

(35)

Solution
Taking the Laplace transform of both sides:

LY+ 200}y =21} +2{e ™}



(RY(6) = 55(0) = 3(0) +Y(5) = -+ —

Using the initial conditions y(0) = 0, y(0) = 0, we simplify:
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(s +1)Y(s) = %+

Combine the terms:

o 2(s+1)
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Using partial fraction decomposition:
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Apply known Laplace inverse formulas:
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Solution
Taking the Laplace transform of both sides:
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2 (s) — 5(0) — y(0) = —

s +5
Using the initial conditions y(0) = 0, (0) = 0, we simplify:
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We decompose:
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Solving, we find:
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Using standard Laplace inverse formulas:
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Apply them:

LY () = me Y — o+ ot

Final Answer
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Problem 9 (Transition Matrix).

Starting with the series definition of €M, compute e for the following matrices:
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Problem 10.

Part A

Solve for x(t) in the following:
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() = () ()- ()
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Therefore,
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Part B

Compute M for
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e

using the series definition ()feA’.
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