
INTRODUCTION TO CONTINUOUS CONTROL SYSTEMS

COLUMBIA UNIVERSITY MECHANICAL AND ELECTRICAL ENGINEERING
DEPARTMENTS: E3601

Homayoon Beigi†

1340 Mudd Building
Columbia University, New York City, NY 10027

hb87@columbia.edu

Homework 9

Problem 1 (Hurwitz Criterion).

Using the Hurwitz Criterion, determine whether the following two characteristic equations describe asymptotically
stable systems.
A.

P(s) = s3 +2s2 + s+3 (1)

Solution

Pn−1 = 2 (2)

Pn−2 = 1 (3)

Pn−3 = 3 (4)

(5)

∣

∣2
∣

∣> 0 (6)

∣

∣

∣

∣

2 3
1 1

∣

∣

∣

∣

=−3 < 0 (7)

Therefore the system is Unstable.
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B.

P(s) = s4 +2s3 +2s2 +4s+2 (8)

Solution

Pn−1 = 2 (9)

Pn−2 = 2 (10)

Pn−3 = 4 (11)

Pn−4 = 2 (12)

(13)

∣

∣2
∣

∣> 0 (14)

∣

∣

∣

∣

2 4
1 2

∣

∣

∣

∣

= 0 (15)

Therefore the system is not asymptotically syable. It is Marginally Stable.

Problem 2 (Eigensystem).

Solve the following equation by using the Eigenvalue-Eigenvector approach:

ẋ(t) =

[

3 −4
1 −2

]

x(t) (16)

y(t) = [1 0] x(t) (17)

where the initial conditions are given by,

x(0) =

[

1
1

]

(18)

Solution

A =

[

3 −4
1 −2

]

(19)

A−λ I =

[

3−λ −4
1 −2−λ

]

(20)



|A−λ I| = (3−λ )(−2−λ )+4 (21)

= −6−3λ +2λ +λ
2 +4 (22)

= λ
2 −λ −2 (23)

(24)

λ1,2 =
1±

√
1+8

2
(25)

= 2,−1 (26)

(A−2I)⃗v1 =

[

1 −4
1 −4

]

v⃗1 (27)

if v1,1 = 1 =⇒ 1−4v1,2 = 0, v1,2 =
1
4

λ1 = 2 v⃗1 =

[

1
1
4

]

(28)

(A− (−1)I)⃗v2 =

[[

3 −4
−2 1

]

+

[

1 0
0 1

]]

v⃗2 (29)

=

[

4 −4
−2 2

]

v⃗2 (30)

= 0⃗ (31)

−v2,1 + v2,2 = 0 (32)

if v2,1 = 1 =⇒ v2,2 = 1

λ2 =−1 v⃗2 =

[

1
1

]

(33)

M =
[

v⃗1 |⃗v2

]

(34)

=

[

1 1
1
4 1

]

(35)

M
−1 =

1

3

[

4 −4
−1 4

]

(36)

x⃗(t) =C1

[

1
1
4

]

e2t +C2

[

1
1

]

e−t (37)



[

C1

C2

]

= M
−1x⃗(0) (38)

=
1

3

[

4 −4
−1 4

][

1
1

]

(39)

=
1

3

[

0
3

]

(40)

=

[

0
1

]

(41)

x⃗(t) = M

[

e2t 0

0 e−t

]

M
−1x⃗0 (42)

=

[

1 1
1
4 1

][

e2t 0

0 e−t

][

0
1

]

(43)

=

[

e2t e−t

1
4 e2t e−t

][

0
1

]

(44)

=

[

e−t

e−t

]

(45)

y(t) =
[

1 0
]

x⃗(t) (46)

= e−t (47)


