

INTRODUCTION TO CONTINUOUS CONTROL SYSTEMS
COLUMBIA UNIVERSITY MECHANICAL AND ELECTRICAL ENGINEERING
DEPARTMENTS: E3601

Homayoon Beigi[†]

1340 Mudd Building
Columbia University, New York City, NY 10027
hb87@columbia.edu

Homework 9

Problem 1 (Hurwitz Criterion).

Using the Hurwitz Criterion, determine whether the following two characteristic equations describe asymptotically stable systems.

A.

$$P(s) = s^3 + 2s^2 + s + 3 \quad (1)$$

Solution

$$P_{n-1} = 2 \quad (2)$$

$$P_{n-2} = 1 \quad (3)$$

$$P_{n-3} = 3 \quad (4)$$

(5)

$$|2| > 0 \quad (6)$$

$$\begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = -3 < 0 \quad (7)$$

Therefore the system is Unstable.

COPYRIGHT HOMAYOON BEIGI, 2025 THIS DOCUMENT IS COPYRIGHTED BY HOMAYOON BEIGI AND MAY NOT BE SHARED WITH ANYONE OTHER THAN THE STUDENTS REGISTERED IN THE COLUMBIA UNIVERSITY EEME-E3601 COURSE.

[†]Homayoon Beigi is Professor of Professional Practice in the department of mechanical engineering and in the department of electrical engineering at Columbia University

B.

$$P(s) = s^4 + 2s^3 + 2s^2 + 4s + 2 \quad (8)$$

Solution

$$P_{n-1} = 2 \quad (9)$$

$$P_{n-2} = 2 \quad (10)$$

$$P_{n-3} = 4 \quad (11)$$

$$P_{n-4} = 2 \quad (12)$$

$$|2| > 0 \quad (13)$$

$$|2| > 0 \quad (14)$$

$$\begin{vmatrix} 2 & 4 \\ 1 & 2 \end{vmatrix} = 0 \quad (15)$$

Therefore the system is not asymptotically stable. It is Marginally Stable.

Problem 2 (Eigensystem).

Solve the following equation by using the Eigenvalue-Eigenvector approach:

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 3 & -4 \\ 1 & -2 \end{bmatrix} \mathbf{x}(t) \quad (16)$$

$$y(t) = [1 \ 0] \mathbf{x}(t) \quad (17)$$

where the initial conditions are given by,

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad (18)$$

Solution

$$\mathbf{A} = \begin{bmatrix} 3 & -4 \\ 1 & -2 \end{bmatrix} \quad (19)$$

$$\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 3 - \lambda & -4 \\ 1 & -2 - \lambda \end{bmatrix} \quad (20)$$

$$|\mathbf{A} - \lambda \mathbf{I}| = (3 - \lambda)(-2 - \lambda) + 4 \quad (21)$$

$$= -6 - 3\lambda + 2\lambda + \lambda^2 + 4 \quad (22)$$

$$= \lambda^2 - \lambda - 2 \quad (23)$$

$$(24)$$

$$\lambda_{1,2} = \frac{1 \pm \sqrt{1+8}}{2} \quad (25)$$

$$= 2, -1 \quad (26)$$

$$(\mathbf{A} - 2\mathbf{I})\vec{v}_1 = \begin{bmatrix} 1 & -4 \\ 1 & -4 \end{bmatrix} \vec{v}_1 \quad (27)$$

$$if v_{1,1} = 1 \implies 1 - 4v_{1,2} = 0, v_{1,2} = \frac{1}{4}$$

$$\boxed{\lambda_1 = 2 \quad \vec{v}_1 = \begin{bmatrix} 1 \\ \frac{1}{4} \end{bmatrix}} \quad (28)$$

$$(\mathbf{A} - (-1)\mathbf{I})\vec{v}_2 = \left[\begin{bmatrix} 3 & -4 \\ -2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right] \vec{v}_2 \quad (29)$$

$$= \begin{bmatrix} 4 & -4 \\ -2 & 2 \end{bmatrix} \vec{v}_2 \quad (30)$$

$$= \vec{0} \quad (31)$$

$$-v_{2,1} + v_{2,2} = 0 \quad (32)$$

$$if v_{2,1} = 1 \implies v_{2,2} = 1$$

$$\boxed{\lambda_2 = -1 \quad \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}} \quad (33)$$

$$\mathbf{M} = [\vec{v}_1 | \vec{v}_2] \quad (34)$$

$$= \begin{bmatrix} 1 & 1 \\ \frac{1}{4} & 1 \end{bmatrix} \quad (35)$$

$$\mathbf{M}^{-1} = \frac{1}{3} \begin{bmatrix} 4 & -4 \\ -1 & 4 \end{bmatrix} \quad (36)$$

$$\vec{x}(t) = C_1 \begin{bmatrix} 1 \\ \frac{1}{4} \end{bmatrix} e^{2t} + C_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t} \quad (37)$$

$$\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \mathbf{M}^{-1} \vec{x}(0) \quad (38)$$

$$= \frac{1}{3} \begin{bmatrix} 4 & -4 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad (39)$$

$$= \frac{1}{3} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \quad (40)$$

$$= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad (41)$$

$$\vec{x}(t) = \mathbf{M} \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{-t} \end{bmatrix} \mathbf{M}^{-1} \vec{x}_0 \quad (42)$$

$$= \begin{bmatrix} 1 & 1 \\ \frac{1}{4} & 1 \end{bmatrix} \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{-t} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad (43)$$

$$= \begin{bmatrix} e^{2t} & e^{-t} \\ \frac{1}{4}e^{2t} & e^{-t} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad (44)$$

$$= \begin{bmatrix} e^{-t} \\ e^{-t} \end{bmatrix} \quad (45)$$

$$y(t) = [1 \ 0] \vec{x}(t) \quad (46)$$

$$= e^{-t} \quad (47)$$