

C Programming
A Modern Approach

Second Edition

HALFTITLE.fm Page i Friday, February 22, 2008 3:49 PM

HALFTITLE.fm Page ii Friday, February 22, 2008 3:49 PM

K. N. KING
Department of Computer Science
Georgia State University

W • W • Norton & Company

New York • London

C Programming
A Modern Approach

Second Edition

TITLE.fm Page iii Friday, February 22, 2008 3:57 PM

In memory of my father, Paul Ellsworth King

W. W. Norton & Company has been independent since its founding in 1923, when William Warder
Norton and Mary D. Herter Norton first published lectures delivered at the People’s Institute, the adult
education division of New York City’s Cooper Union. The Nortons soon expanded their program beyond
the Institute, publishing books by celebrated academics from America and abroad. By mid-century, the
two major pillars of Norton’s publishing program—trade books and college texts—were firmly estab-
lished. In the 1950s, the Norton family transferred control of the company to its employees, and today—
with a staff of four hundred and a comparable number of trade, college, and professional titles published
each year—W. W. Norton & Company stands as the largest and oldest publishing house owned wholly
by its employees.

Copyright 2008, 1996 by W. W. Norton & Company, Inc.

All rights reserved.
Printed in the United States of America.

Editors: Fred McFarland and Aaron Javsicas
Managing Editor, College: Marian Johnson
Associate Managing Editor, College: Kim Yi
Copy Editor: Mary Kelly
Production Manager: Roy Tedoff
Editorial Assistants: Alexis Hilts and Carly Fraser

Composition by K. N. King.
Manufacturing by Quebecor World Taunton.
Book design by K. N. King.

Library of Congress Cataloging-in-Publication Data

King, K. N. (Kim N.)
 C programming : a modern approach / K.N. King. — 2nd ed.
 p. cm.
 Includes bibliographical references and index.

 ISBN 978-0-393-97950-3 (pbk.)

 1. C (Computer program language) I. Title.

QA76.73.C15K49 2008
005.13'3—dc22 2007049425

W. W. Norton & Company, Inc., 500 Fifth Avenue, New York, NY 10110
www.wwnorton.com

W. W. Norton & Company Ltd., Castle House, 75/76 Wells Street, London W1T 3QT

1 2 3 4 5 6 7 8 9 0

TITLE.fm Page iv Friday, February 22, 2008 3:57 PM

http://www.wwnorton.com

v

Basic Features of C

1 Introducing C 1
2 C Fundamentals 9
3 Formatted Input/Output 37
4 Expressions 53
5 Selection Statements 73
6 Loops 99
7 Basic Types 125
8 Arrays 161
9 Functions 183

10 Program Organization 219

BRIEF CONTENTS

The Standard C Library

Advanced Features of C Reference

11 Pointers 241
12 Pointers and Arrays 257
13 Strings 277
14 The Preprocessor 315
15 Writing Large Programs 349
16 Structures, Unions, and

Enumerations 377
17 Advanced Uses of Pointers 413
18 Declarations 457
19 Program Design 483
20 Low-Level Programming 509

21 The Standard Library 529
22 Input/Output 539
23 Library Support for Numbers

and Character Data 589
24 Error Handling 627
25 International Features 641
26 Miscellaneous Library

Functions 677
27 Additional C99 Support for

Mathematics 705

A C Operators 735
B C99 versus C89 737
C C89 versus K&R C 743
D Standard Library Functions 747
E ASCII Character Set 801

Bibliography 803
Index 807

CBookBTC.fm Page v Sunday, February 17, 2008 10:51 PM

CBookBTC.fm Page vi Sunday, February 17, 2008 10:51 PM

vii

CONTENTS

Preface xxi

1 INTRODUCING C 1
1.1 History of C 1

Origins 1
Standardization 2
C-Based Languages 3

1.2 Strengths and Weaknesses of C 4
Strengths 4
Weaknesses 5
Effective Use of C 6

2 C FUNDAMENTALS 9
2.1 Writing a Simple Program 9

Program: Printing a Pun 9
Compiling and Linking 10
Integrated Development Environments 11

2.2 The General Form of a Simple Program 12
Directives 12
Functions 13
Statements 14
Printing Strings 14

2.3 Comments 15
2.4 Variables and Assignment 17

Types 17
Declarations 17
Assignment 18

CBookTOC.fm Page vii Sunday, February 17, 2008 10:39 PM

viii Contents

Printing the Value of a Variable 19
Program: Computing the Dimensional Weight of a Box 20
Initialization 21
Printing Expressions 22

2.5 Reading Input 22
Program: Computing the Dimensional Weight of a Box
(Revisited) 22

2.6 Defining Names for Constants 23
Program: Converting from Fahrenheit to Celsius 24

2.7 Identifiers 25
Keywords 26

2.8 Layout of a C Program 27

3 FORMATTED INPUT/OUTPUT 37
3.1 The printf Function 37

Conversion Specifications 38
Program: Using printf to Format Numbers 40
Escape Sequences 41

3.2 The scanf Function 42
How scanf Works 43
Ordinary Characters in Format Strings 45
Confusing printf with scanf 45
Program: Adding Fractions 46

4 EXPRESSIONS 53
4.1 Arithmetic Operators 54

Operator Precedence and Associativity 55
Program: Computing a UPC Check Digit 56

4.2 Assignment Operators 58
Simple Assignment 58
Lvalues 59
Compound Assignment 60

4.3 Increment and Decrement Operators 61
4.4 Expression Evaluation 62

Order of Subexpression Evaluation 64
4.5 Expression Statements 65

5 SELECTION STATEMENTS 73
5.1 Logical Expressions 74

Relational Operators 74
Equality Operators 75
Logical Operators 75

5.2 The if Statement 76
Compound Statements 77

CBookTOC.fm Page viii Sunday, February 17, 2008 10:39 PM

Contents ix

The else Clause 78
Cascaded if Statements 80
Program: Calculating a Broker’s Commission 81
The “Dangling else” Problem 82
Conditional Expressions 83
Boolean Values in C89 84
Boolean Values in C99 85

5.3 The switch Statement 86
The Role of the break Statement 88
Program: Printing a Date in Legal Form 89

6 LOOPS 99
6.1 The while Statement 99

Infinite Loops 101
Program: Printing a Table of Squares 102
Program: Summing a Series of Numbers 102

6.2 The do Statement 103
Program: Calculating the Number of Digits in an Integer 104

6.3 The for Statement 105
for Statement Idioms 106
Omitting Expressions in a for Statement 107
for Statements in C99 108
The Comma Operator 109
Program: Printing a Table of Squares (Revisited) 110

6.4 Exiting from a Loop 111
The break Statement 111
The continue Statement 112
The goto Statement 113
Program: Balancing a Checkbook 114

6.5 The Null Statement 116

7 BASIC TYPES 125
7.1 Integer Types 125

Integer Types in C99 128
Integer Constants 128
Integer Constants in C99 129
Integer Overflow 130
Reading and Writing Integers 130
Program: Summing a Series of Numbers (Revisited) 131

7.2 Floating Types 132
Floating Constants 133
Reading and Writing Floating-Point Numbers 134

7.3 Character Types 134
Operations on Characters 135
Signed and Unsigned Characters 136

CBookTOC.fm Page ix Sunday, February 17, 2008 10:39 PM

x Contents

Arithmetic Types 136
Escape Sequences 137
Character-Handling Functions 138
Reading and Writing Characters using scanf and printf 139
Reading and Writing Characters using getchar and
putchar 140
Program: Determining the Length of a Message 141

7.4 Type Conversion 142
The Usual Arithmetic Conversions 143
Conversion During Assignment 145
Implicit Conversions in C99 146
Casting 147

7.5 Type Definitions 149
Advantages of Type Definitions 149
Type Definitions and Portability 150

7.6 The sizeof Operator 151

8 ARRAYS 161
8.1 One-Dimensional Arrays 161

Array Subscripting 162
Program: Reversing a Series of Numbers 164
Array Initialization 164
Designated Initializers 165
Program: Checking a Number for Repeated Digits 166
Using the sizeof Operator with Arrays 167
Program: Computing Interest 168

8.2 Multidimensional Arrays 169
Initializing a Multidimensional Array 171
Constant Arrays 172
Program: Dealing a Hand of Cards 172

8.3 Variable-Length Arrays (C99) 174

9 FUNCTIONS 183
9.1 Defining and Calling Functions 183

Program: Computing Averages 184
Program: Printing a Countdown 185
Program: Printing a Pun (Revisited) 186
Function Definitions 187
Function Calls 189
Program: Testing Whether a Number Is Prime 190

9.2 Function Declarations 191
9.3 Arguments 193

Argument Conversions 194
Array Arguments 195
Variable-Length Array Parameters 198

CBookTOC.fm Page x Sunday, February 17, 2008 10:39 PM

Contents xi

Using static in Array Parameter Declarations 200
Compound Literals 200

9.4 The return Statement 201
9.5 Program Termination 202

The exit Function 203
9.6 Recursion 204

The Quicksort Algorithm 205
Program: Quicksort 207

10 PROGRAM ORGANIZATION 219
10.1 Local Variables 219

Static Local Variables 220
Parameters 221

10.2 External Variables 221
Example: Using External Variables to Implement a Stack 221
Pros and Cons of External Variables 222
Program: Guessing a Number 224

10.3 Blocks 227
10.4 Scope 228
10.5 Organizing a C Program 229

Program: Classifying a Poker Hand 230

11 POINTERS 241
11.1 Pointer Variables 241

Declaring Pointer Variables 242
11.2 The Address and Indirection Operators 243

The Address Operator 243
The Indirection Operator 244

11.3 Pointer Assignment 245
11.4 Pointers as Arguments 247

Program: Finding the Largest and Smallest Elements in an
Array 249
Using const to Protect Arguments 250

11.5 Pointers as Return Values 251

12 POINTERS AND ARRAYS 257
12.1 Pointer Arithmetic 257

Adding an Integer to a Pointer 258
Subtracting an Integer from a Pointer 259
Subtracting One Pointer from Another 259
Comparing Pointers 260
Pointers to Compound Literals 260

12.2 Using Pointers for Array Processing 260
Combining the * and ++ Operators 262

CBookTOC.fm Page xi Sunday, February 17, 2008 10:39 PM

xii Contents

12.3 Using an Array Name as a Pointer 263
Program: Reversing a Series of Numbers (Revisited) 264
Array Arguments (Revisited) 265
Using a Pointer as an Array Name 266

12.4 Pointers and Multidimensional Arrays 267
Processing the Elements of a Multidimensional Array 267
Processing the Rows of a Multidimensional Array 268
Processing the Columns of a Multidimensional Array 269
Using the Name of a Multidimensional Array as a Pointer 269

12.5 Pointers and Variable-Length Arrays (C99) 270

13 STRINGS 277
13.1 String Literals 277

Escape Sequences in String Literals 278
Continuing a String Literal 278
How String Literals Are Stored 279
Operations on String Literals 279
String Literals versus Character Constants 280

13.2 String Variables 281
Initializing a String Variable 281
Character Arrays versus Character Pointers 283

13.3 Reading and Writing Strings 284
Writing Strings Using printf and puts 284
Reading Strings Using scanf and gets 285
Reading Strings Character by Character 286

13.4 Accessing the Characters in a String 287
13.5 Using the C String Library 289

The strcpy (String Copy) Function 290
The strlen (String Length) Function 291
The strcat (String Concatenation) Function 291
The strcmp (String Comparison) Function 292
Program: Printing a One-Month Reminder List 293

13.6 String Idioms 296
Searching for the End of a String 296
Copying a String 298

13.7 Arrays of Strings 300
Command-Line Arguments 302
Program: Checking Planet Names 303

14 THE PREPROCESSOR 315
14.1 How the Preprocessor Works 315
14.2 Preprocessing Directives 318
14.3 Macro Definitions 319

Simple Macros 319
Parameterized Macros 321

CBookTOC.fm Page xii Sunday, February 17, 2008 10:39 PM

Contents xiii

The # Operator 324
The ## Operator 324
General Properties of Macros 325
Parentheses in Macro Definitions 326
Creating Longer Macros 328
Predefined Macros 329
Additional Predefined Macros in C99 330
Empty Macro Arguments 331
Macros with a Variable Number of Arguments 332
The __func__ Identifier 333

14.4 Conditional Compilation 333
The #if and #endif Directives 334
The defined Operator 335
The #ifdef and #ifndef Directives 335
The #elif and #else Directives 336
Uses of Conditional Compilation 337

14.5 Miscellaneous Directives 338
The #error Directive 338
The #line Directive 339
The #pragma Directive 340
The _Pragma Operator 341

15 WRITING LARGE PROGRAMS 349
15.1 Source Files 349
15.2 Header Files 350

The #include Directive 351
Sharing Macro Definitions and Type Definitions 353
Sharing Function Prototypes 354
Sharing Variable Declarations 355
Nested Includes 357
Protecting Header Files 357
#error Directives in Header Files 358

15.3 Dividing a Program into Files 359
Program: Text Formatting 359

15.4 Building a Multiple-File Program 366
Makefiles 366
Errors During Linking 368
Rebuilding a Program 369
Defining Macros Outside a Program 371

16 STRUCTURES, UNIONS, AND ENUMERATIONS 377
16.1 Structure Variables 377

Declaring Structure Variables 378
Initializing Structure Variables 379
Designated Initializers 380
Operations on Structures 381

CBookTOC.fm Page xiii Sunday, February 17, 2008 10:39 PM

xiv Contents

16.2 Structure Types 382
Declaring a Structure Tag 383
Defining a Structure Type 384
Structures as Arguments and Return Values 384
Compound Literals 386

16.3 Nested Arrays and Structures 386
Nested Structures 387
Arrays of Structures 387
Initializing an Array of Structures 388
Program: Maintaining a Parts Database 389

16.4 Unions 396
Using Unions to Save Space 398
Using Unions to Build Mixed Data Structures 399
Adding a “Tag Field” to a Union 400

16.5 Enumerations 401
Enumeration Tags and Type Names 402
Enumerations as Integers 403
Using Enumerations to Declare “Tag Fields” 404

17 ADVANCED USES OF POINTERS 413
17.1 Dynamic Storage Allocation 414

Memory Allocation Functions 414
Null Pointers 414

17.2 Dynamically Allocated Strings 416
Using malloc to Allocate Memory for a String 416
Using Dynamic Storage Allocation in String Functions 417
Arrays of Dynamically Allocated Strings 418
Program: Printing a One-Month Reminder List (Revisited) 418

17.3 Dynamically Allocated Arrays 420
Using malloc to Allocate Storage for an Array 420
The calloc Function 421
The realloc Function 421

17.4 Deallocating Storage 422
The free Function 423
The “Dangling Pointer” Problem 424

17.5 Linked Lists 424
Declaring a Node Type 425
Creating a Node 425
The -> Operator 426
Inserting a Node at the Beginning of a Linked List 427
Searching a Linked List 429
Deleting a Node from a Linked List 431
Ordered Lists 433
Program: Maintaining a Parts Database (Revisited) 433

17.6 Pointers to Pointers 438

CBookTOC.fm Page xiv Sunday, February 17, 2008 10:39 PM

Contents xv

17.7 Pointers to Functions 439
Function Pointers as Arguments 439
The qsort Function 440
Other Uses of Function Pointers 442
Program: Tabulating the Trigonometric Functions 443

17.8 Restricted Pointers (C99) 445
17.9 Flexible Array Members (C99) 447

18 DECLARATIONS 457
18.1 Declaration Syntax 457
18.2 Storage Classes 459

Properties of Variables 459
The auto Storage Class 460
The static Storage Class 461
The extern Storage Class 462
The register Storage Class 463
The Storage Class of a Function 464
Summary 465

18.3 Type Qualifiers 466
18.4 Declarators 467

Deciphering Complex Declarations 468
Using Type Definitions to Simplify Declarations 470

18.5 Initializers 470
Uninitialized Variables 472

18.6 Inline Functions (C99) 472
Inline Definitions 473
Restrictions on Inline Functions 474
Using Inline Functions with GCC 475

19 PROGRAM DESIGN 483
19.1 Modules 484

Cohesion and Coupling 486
Types of Modules 486

19.2 Information Hiding 487
A Stack Module 487

19.3 Abstract Data Types 491
Encapsulation 492
Incomplete Types 492

19.4 A Stack Abstract Data Type 493
Defining the Interface for the Stack ADT 493
Implementing the Stack ADT Using a Fixed-Length Array 495
Changing the Item Type in the Stack ADT 496
Implementing the Stack ADT Using a Dynamic Array 497
Implementing the Stack ADT Using a Linked List 499

CBookTOC.fm Page xv Sunday, February 17, 2008 10:39 PM

xvi Contents

19.5 Design Issues for Abstract Data Types 502
Naming Conventions 502
Error Handling 502
Generic ADTs 503
ADTs in Newer Languages 503

20 LOW-LEVEL PROGRAMMING 509
20.1 Bitwise Operators 509

Bitwise Shift Operators 510
Bitwise Complement, And, Exclusive Or, and Inclusive Or 511
Using the Bitwise Operators to Access Bits 512
Using the Bitwise Operators to Access Bit-Fields 513
Program: XOR Encryption 514

20.2 Bit-Fields in Structures 516
How Bit-Fields Are Stored 517

20.3 Other Low-Level Techniques 518
Defining Machine-Dependent Types 518
Using Unions to Provide Multiple Views of Data 519
Using Pointers as Addresses 520
Program: Viewing Memory Locations 521
The volatile Type Qualifier 523

21 THE STANDARD LIBRARY 529
21.1 Using the Library 529

Restrictions on Names Used in the Library 530
Functions Hidden by Macros 531

21.2 C89 Library Overview 531
21.3 C99 Library Changes 534
21.4 The <stddef.h> Header: Common Definitions 535
21.5 The <stdbool.h> Header (C99): Boolean Type and

Values 536

22 INPUT/OUTPUT 539
22.1 Streams 540

File Pointers 540
Standard Streams and Redirection 540
Text Files versus Binary Files 541

22.2 File Operations 543
Opening a File 543
Modes 544
Closing a File 545
Attaching a File to an Open Stream 546
Obtaining File Names from the Command Line 546
Program: Checking Whether a File Can Be Opened 547

CBookTOC.fm Page xvi Sunday, February 17, 2008 10:39 PM

Contents xvii

Temporary Files 548
File Buffering 549
Miscellaneous File Operations 551

22.3 Formatted I/O 551
The …printf Functions 552
…printf Conversion Specifications 552
C99 Changes to …printf Conversion Specifications 555
Examples of …printf Conversion Specifications 556
The …scanf Functions 558
…scanf Format Strings 559
…scanf Conversion Specifications 560
C99 Changes to …scanf Conversion Specifications 562
scanf Examples 563
Detecting End-of-File and Error Conditions 564

22.4 Character I/O 566
Output Functions 566
Input Functions 567
Program: Copying a File 568

22.5 Line I/O 569
Output Functions 569
Input Functions 570

22.6 Block I/O 571
22.7 File Positioning 572

Program: Modifying a File of Part Records 574
22.8 String I/O 575

Output Functions 576
Input Functions 576

23 LIBRARY SUPPORT FOR NUMBERS AND CHARACTER
DATA 589
23.1 The <float.h> Header: Characteristics of Floating

Types 589
23.2 The <limits.h> Header: Sizes of Integer Types 591
23.3 The <math.h> Header (C89): Mathematics 593

Errors 593
Trigonometric Functions 594
Hyperbolic Functions 595
Exponential and Logarithmic Functions 595
Power Functions 596
Nearest Integer, Absolute Value, and Remainder Functions 596

23.4 The <math.h> Header (C99): Mathematics 597
IEEE Floating-Point Standard 598
Types 599
Macros 600

CBookTOC.fm Page xvii Sunday, February 17, 2008 10:39 PM

xviii Contents

Errors 600
Functions 601
Classification Macros 602
Trigonometric Functions 603
Hyperbolic Functions 603
Exponential and Logarithmic Functions 604
Power and Absolute Value Functions 605
Error and Gamma Functions 606
Nearest Integer Functions 606
Remainder Functions 608
Manipulation Functions 608
Maximum, Minimum, and Positive Difference Functions 609
Floating Multiply-Add 610
Comparison Macros 611

23.5 The <ctype.h> Header: Character Handling 612
Character-Classification Functions 612
Program: Testing the Character-Classification Functions 613
Character Case-Mapping Functions 614
Program: Testing the Case-Mapping Functions 614

23.6 The <string.h> Header: String Handling 615
Copying Functions 616
Concatenation Functions 617
Comparison Functions 617
Search Functions 619
Miscellaneous Functions 622

24 ERROR HANDLING 627
24.1 The <assert.h> Header: Diagnostics 628
24.2 The <errno.h> Header: Errors 629

The perror and strerror Functions 630
24.3 The <signal.h> Header: Signal Handling 631

Signal Macros 631
The signal Function 632
Predefined Signal Handlers 633
The raise Function 634
Program: Testing Signals 634

24.4 The <setjmp.h> Header: Nonlocal Jumps 635
Program: Testing setjmp/longjmp 636

25 INTERNATIONAL FEATURES 641
25.1 The <locale.h> Header: Localization 642

Categories 642
The setlocale Function 643
The localeconv Function 644

25.2 Multibyte Characters and Wide Characters 647

CBookTOC.fm Page xviii Sunday, February 17, 2008 10:39 PM

Contents xix

Multibyte Characters 648
Wide Characters 649
Unicode and the Universal Character Set 649
Encodings of Unicode 650
Multibyte/Wide-Character Conversion Functions 651
Multibyte/Wide-String Conversion Functions 653

25.3 Digraphs and Trigraphs 654
Trigraphs 654
Digraphs 655
The <iso646.h> Header: Alternative Spellings 656

25.4 Universal Character Names (C99) 656
25.5 The <wchar.h> Header (C99): Extended Multibyte and

Wide-Character Utilities 657
Stream Orientation 658
Formatted Wide-Character Input/Output Functions 659
Wide-Character Input/Output Functions 661
General Wide-String Utilities 662
Wide-Character Time-Conversion Functions 667
Extended Multibyte/Wide-Character Conversion Utilities 667

25.6 The <wctype.h> Header (C99): Wide-Character
Classification and Mapping Utilities 671
Wide-Character Classification Functions 671
Extensible Wide-Character Classification Functions 672
Wide-Character Case-Mapping Functions 673
Extensible Wide-Character Case-Mapping Functions 673

26 MISCELLANEOUS LIBRARY FUNCTIONS 677
26.1 The <stdarg.h> Header: Variable Arguments 677

Calling a Function with a Variable Argument List 679
The v…printf Functions 680
The v…scanf Functions 681

26.2 The <stdlib.h> Header: General Utilities 682
Numeric Conversion Functions 682
Program: Testing the Numeric Conversion Functions 684
Pseudo-Random Sequence Generation Functions 686
Program: Testing the Pseudo-Random Sequence Generation
Functions 687
Communication with the Environment 687
Searching and Sorting Utilities 689
Program: Determining Air Mileage 690
Integer Arithmetic Functions 691

26.3 The <time.h> Header: Date and Time 692
Time Manipulation Functions 693
Time Conversion Functions 695
Program: Displaying the Date and Time 698

CBookTOC.fm Page xix Sunday, February 17, 2008 10:39 PM

xx Contents

27 ADDITIONAL C99 SUPPORT FOR MATHEMATICS 705
27.1 The <stdint.h> Header (C99): Integer Types 705

<stdint.h> Types 706
Limits of Specified-Width Integer Types 707
Limits of Other Integer Types 708
Macros for Integer Constants 708

27.2 The <inttypes.h> Header (C99): Format Conversion of
Integer Types 709
Macros for Format Specifiers 710
Functions for Greatest-Width Integer Types 711

27.3 Complex Numbers (C99) 712
Definition of Complex Numbers 713
Complex Arithmetic 714
Complex Types in C99 714
Operations on Complex Numbers 715
Conversion Rules for Complex Types 715

27.4 The <complex.h> Header (C99): Complex Arithmetic 717
<complex.h> Macros 717
The CX_LIMITED_RANGE Pragma 718
<complex.h> Functions 718
Trigonometric Functions 719
Hyperbolic Functions 720
Exponential and Logarithmic Functions 721
Power and Absolute-Value Functions 721
Manipulation Functions 722
Program: Finding the Roots of a Quadratic Equation 722

27.5 The <tgmath.h> Header (C99): Type-Generic Math 723
Type-Generic Macros 724
Invoking a Type-Generic Macro 725

27.6 The <fenv.h> Header (C99): Floating-Point Environment 726
Floating-Point Status Flags and Control Modes 727
<fenv.h> Macros 727
The FENV_ACCESS Pragma 728
Floating-Point Exception Functions 729
Rounding Functions 730
Environment Functions 730

Appendix A C Operators 735

Appendix B C99 versus C89 737

Appendix C C89 versus K&R C 743

Appendix D Standard Library Functions 747

Appendix E ASCII Character Set 801

Bibliography 803

Index 807

CBookTOC.fm Page xx Sunday, February 17, 2008 10:39 PM

xxi

PREFACE

In computing, turning the obvious into the useful
is a living definition of the word “frustration.”

In the years since the first edition of C Programming: A Modern Approach was
published, a host of new C-based languages have sprung up—Java and C# foremost
among them—and related languages such as C++ and Perl have achieved greater
prominence. Still, C remains as popular as ever, plugging away in the background,
quietly powering much of the world’s software. It remains the lingua franca of the
computer universe, as it was in 1996.

But even C must change with the times. The need for a new edition of C Pro-
gramming: A Modern Approach became apparent when the C99 standard was pub-
lished. Moreover, the first edition, with its references to DOS and 16-bit processors,
was becoming dated. The second edition is fully up-to-date and has been improved
in many other ways as well.

What’s New in the Second Edition

Here’s a list of new features and improvements in the second edition:

� Complete coverage of both the C89 standard and the C99 standard. The big-
gest difference between the first and second editions is coverage of the C99 stan-
dard. My goal was to cover every significant difference between C89 and C99,
including all the language features and library functions added in C99. Each
C99 change is clearly marked, either with “C99” in the heading of a section or—
in the case of shorter discussions—with a special icon in the left margin. I did
this partly to draw attention to the changes and partly so that readers who aren’t
interested in C99 or don’t have access to a C99 compiler will know what to skip.
Many of the C99 additions are of interest only to a specialized audience, but
some of the new features will be of use to nearly all C programmers.

C99

PREFACE.FM Page xxi Friday, February 22, 2008 4:12 PM

xxii Preface

� Includes a quick reference to all C89 and C99 library functions. Appendix
D in the first edition described all C89 standard library functions. In this edi-
tion, the appendix covers all C89 and C99 library functions.

� Expanded coverage of GCC. In the years since the first edition, use of GCC
(originally the GNU C Compiler, now the GNU Compiler Collection) has
spread. GCC has some significant advantages, including high quality, low (i.e.,
no) cost, and portability across a variety of hardware and software platforms.
In recognition of its growing importance, I’ve included more information about
GCC in this edition, including discussions of how to use it as well as common
GCC error messages and warnings.

� New coverage of abstract data types. In the first edition, a significant portion
of Chapter 19 was devoted to C++. This material seems less relevant today,
since students may already have learned C++, Java, or C# before reading this
book. In this edition, coverage of C++ has been replaced by a discussion of
how to set up abstract data types in C.

� Expanded coverage of international features. Chapter 25, which is devoted
to C’s international features, is now much longer and more detailed. Informa-
tion about the Unicode/UCS character set and its encodings is a highlight of
the expanded coverage.

� Updated to reflect today’s CPUs and operating systems. When I wrote the
first edition, 16-bit architectures and the DOS operating system were still rele-
vant to many readers, but such is not the case today. I’ve updated the discus-
sion to focus more on 32-bit and 64-bit architectures. The rise of Linux and
other versions of UNIX has dictated a stronger focus on that family of operat-
ing systems, although aspects of Windows and the Mac OS operating system
that affect C programmers are mentioned as well.

� More exercises and programming projects. The first edition of this book con-
tained 311 exercises. This edition has nearly 500 (498, to be exact), divided
into two groups: exercises and programming projects.

� Solutions to selected exercises and programming projects. The most frequent
request I received from readers of the first edition was to provide answers to
the exercises. In response to this request, I’ve put the answers to roughly one-
third of the exercises and programming projects on the web at knking.com/
books/c2. This feature is particularly useful for readers who aren’t enrolled in
a college course and need a way to check their work. Exercises and projects
for which answers are provided are marked with a icon (the “W” stands for
“answer available on the Web”).

� Password-protected instructor website. For this edition, I’ve built a new in-
structor resource site (accessible through knking.com/books/c2) containing
solutions to the remaining exercises and projects, plus PowerPoint presenta-
tions for most chapters. Faculty may contact me at cbook@knking.com for a
password. Please use your campus email address and include a link to your
department’s website so that I can verify your identity.

W

PREFACE.FM Page xxii Friday, February 22, 2008 4:12 PM

Preface xxiii

I’ve also taken the opportunity to improve wording and explanations through-
out the book. The changes are extensive and painstaking: every sentence has been
checked and—if necessary—rewritten.

Although much has changed in this edition, I’ve tried to retain the original
chapter and section numbering as much as possible. Only one chapter (the last one)
is entirely new, but many chapters have additional sections. In a few cases, existing
sections have been renumbered. One appendix (C syntax) has been dropped, but a
new appendix that compares C99 with C89 has been added.

Goals

The goals of this edition remain the same as those of the first edition:

� Be clear, readable, and possibly even entertaining. Many C books are too
concise for the average reader. Others are badly written or just plain dull. I’ve
tried to give clear, thorough explanations, leavened with enough humor to hold
the reader’s interest.

� Be accessible to a broad range of readers. I assume that the reader has at least
a little previous programming experience, but I don’t assume knowledge of a
particular language. I’ve tried to keep jargon to a minimum and to define the
terms that I use. I’ve also attempted to separate advanced material from more
elementary topics, so that the beginner won’t get discouraged.

� Be authoritative without being pedantic. To avoid arbitrarily deciding what to
include and what not to include, I’ve tried to cover all the features of the C lan-
guage and library. At the same time, I’ve tried to avoid burdening the reader
with unnecessary detail.

� Be organized for easy learning. My experience in teaching C underscores the
importance of presenting the features of C gradually. I use a spiral approach, in
which difficult topics are introduced briefly, then revisited one or more times
later in the book with details added each time. Pacing is deliberate, with each
chapter building gradually on what has come before. For most students, this is
probably the best approach: it avoids the extremes of boredom on the one hand,
or “information overload” on the other.

� Motivate language features. Instead of just describing each feature of the lan-
guage and giving a few simple examples of how the feature is used, I’ve tried to
motivate each feature and discuss how it’s used in practical situations.

� Emphasize style. It’s important for every C programmer to develop a consis-
tent style. Rather than dictating what this style should be, though, I usually
describe a few possibilities and let the reader choose the one that’s most
appealing. Knowing alternative styles is a big help when reading other people’s
programs (which programmers often spend a great deal of time doing).

� Avoid dependence on a particular machine, compiler, or operating system.
Since C is available on such a wide variety of platforms, I’ve tried to avoid

PREFACE.FM Page xxiii Friday, February 22, 2008 4:12 PM

xxiv Preface

dependence on any particular machine, compiler, or operating system. All pro-
grams are designed to be portable to a wide variety of platforms.

� Use illustrations to clarify key concepts. I’ve tried to put in as many figures as
I could, since I think these are crucial for understanding many aspects of C. In
particular, I’ve tried to “animate” algorithms whenever possible by showing
snapshots of data at different points in the computation.

What’s So Modern about A Modern Approach?

One of my most important goals has been to take a “modern approach” to C. Here
are some of the ways I’ve tried to achieve this goal:

� Put C in perspective. Instead of treating C as the only programming language
worth knowing, I treat it as one of many useful languages. I discuss what kind
of applications C is best suited for; I also show how to capitalize on C’s
strengths while minimizing its weaknesses.

� Emphasize standard versions of C. I pay minimal attention to versions of the
language prior to the C89 standard. There are just a few scattered references to
K&R C (the 1978 version of the language described in the first edition of Brian
Kernighan and Dennis Ritchie’s book, The C Programming Language). Appen-
dix C lists the major differences between C89 and K&R C.

� Debunk myths. Today’s compilers are often at odds with commonly held
assumptions about C. I don’t hesitate to debunk some of the myths about C or
challenge beliefs that have long been part of the C folklore (for example, the
belief that pointer arithmetic is always faster than array subscripting). I’ve re-
examined the old conventions of C, keeping the ones that are still helpful.

� Emphasize software engineering. I treat C as a mature software engineering
tool, emphasizing how to use it to cope with issues that arise during program-
ming-in-the-large. I stress making programs readable, maintainable, reliable,
and portable, and I put special emphasis on information hiding.

� Postpone C’s low-level features. These features, although handy for the kind
of systems programming originally done in C, are not as relevant now that C is
used for a great variety of applications. Instead of introducing them in the early
chapters, as many C books do, I postpone them until Chapter 20.

� De-emphasize “manual optimization.” Many books teach the reader to write
tricky code in order to gain small savings in program efficiency. With today’s
abundance of optimizing C compilers, these techniques are often no longer
necessary; in fact, they can result in programs that are less efficient.

Q&A Sections

Each chapter ends with a “Q&A section”—a series of questions and answers related
to material covered in the chapter. Topics addressed in these sections include:

PREFACE.FM Page xxiv Friday, February 22, 2008 4:12 PM

Preface xxv

� Frequently asked questions. I’ve tried to answer questions that come up fre-
quently in my own courses, in other books, and on newsgroups related to C.

� Additional discussion and clarification of tricky issues. Although readers
with experience in a variety of languages may be satisfied with a brief expla-
nation and a couple of examples, readers with less experience need more.

� Side issues that don’t belong in the main flow. Some questions raise techni-
cal issues that won’t be of interest to all readers.

� Material too advanced or too esoteric to interest the average reader. Ques-
tions of this nature are marked with an asterisk (*). Curious readers with a fair
bit of programming experience may wish to delve into these questions imme-
diately; others should definitely skip them on a first reading. Warning: These
questions often refer to topics covered in later chapters.

� Common differences among C compilers. I discuss some frequently used (but
nonstandard) features provided by particular compilers.

Some questions in Q&A sections relate directly to specific places in the chap-
ter; these places are marked by a special icon to signal the reader that additional
information is available.

Other Features

In addition to Q&A sections, I’ve included a number of useful features, many of
which are marked with simple but distinctive icons (shown at left).

� Warnings alert readers to common pitfalls. C is famous for its traps; docu-
menting them all is a hopeless—if not impossible—task. I’ve tried to pick out
the pitfalls that are most common and/or most important.

� Cross-references provide a hypertext-like ability to locate information. Al-
though many of these are pointers to topics covered later in the book, some
point to previous topics that the reader may wish to review.

idiom � Idioms—code patterns frequently seen in C programs—are marked for quick
reference.

portability tip � Portability tips give hints for writing programs that are independent of a par-
ticular machine, compiler, or operating system.

� Sidebars cover topics that aren’t strictly part of C but that every knowledge-
able C programmer should be aware of. (See “Source Code” on the next page
for an example of a sidebar.)

� Appendices provide valuable reference information.

Programs

Choosing illustrative programs isn’t an easy job. If programs are too brief and arti-
ficial, readers won’t get any sense of how the features are used in the real world. On
the other hand, if a program is too realistic, its point can easily be lost in a forest of

Q&A

cross-references ➤Preface

PREFACE.FM Page xxv Friday, February 22, 2008 4:12 PM

xxvi Preface

details. I’ve chosen a middle course, using small, simple examples to make con-
cepts clear when they’re first introduced, then gradually building up to complete
programs. I haven’t included programs of great length; it’s been my experience that
instructors don’t have the time to cover them and students don’t have the patience to
read them. I don’t ignore the issues that arise in the creation of large programs,
though—Chapter 15 (Writing Large Programs) and Chapter 19 (Program Design)
cover them in detail.

I’ve resisted the urge to rewrite programs to take advantage of the features of
C99, since not every reader may have access to a C99 compiler or wish to use C99.
I have, however, used C99’s <stdbool.h> header in a few programs, because it
conveniently defines macros named bool, true, and false. If your compiler
doesn’t support the <stdbool.h> header, you’ll need to provide your own defi-
nitions for these names.

The programs in this edition have undergone one very minor change. The
main function now has the form int main(void) { … } in most cases. This
change reflects recommended practice and is compatible with C99, which requires
an explicit return type for each function.

Source Code

Source code for all programs is available at knking.com/books/c2. Updates, correc-
tions, and news about the book can also be found at this site.

Audience

This book is designed as a primary text for a C course at the undergraduate level.
Previous programming experience in a high-level language or assembler is helpful
but not necessary for a computer-literate reader (an “adept beginner,” as one of my
former editors put it).

Since the book is self-contained and usable for reference as well as learning, it
makes an excellent companion text for a course in data structures, compiler design,
operating systems, computer graphics, embedded systems, or other courses that use
C for project work. Thanks to its Q&A sections and emphasis on practical prob-
lems, the book will also appeal to readers who are enrolled in a training class or who
are learning C by self-study.

Organization

The book is divided into four parts:

� Basic Features of C. Chapters 1–10 cover enough of C to allow the reader to
write single-file programs using arrays and functions.

� Advanced Features of C. Chapters 11–20 build on the material in the earlier
chapters. The topics become a little harder in these chapters, which provide in-

PREFACE.FM Page xxvi Friday, February 22, 2008 4:12 PM

Preface xxvii

depth coverage of pointers, strings, the preprocessor, structures, unions, enu-
merations, and low-level features of C. In addition, two chapters (15 and 19)
offer guidance on program design.

� The Standard C Library. Chapters 21–27 focus on the C library, a large col-
lection of functions that come with every compiler. These chapters are most
likely to be used as reference material, although portions are suitable for lec-
tures.

� Reference. Appendix A gives a complete list of C operators. Appendix B de-
scribes the major differences between C99 and C89, and Appendix C covers
the differences between C89 and K&R C. Appendix D is an alphabetical listing
of all functions in the C89 and C99 standard libraries, with a thorough descrip-
tion of each. Appendix E lists the ASCII character set. An annotated bibliogra-
phy points the reader toward other sources of information.

A full-blown course on C should cover Chapters 1–20 in sequence, with topics from
Chapters 21–27 added as needed. (Chapter 22, which includes coverage of file
input/output, is the most important chapter of this group.) A shorter course can omit
the following topics without losing continuity: Section 8.3 (variable-length arrays),
Section 9.6 (recursion), Section 12.4 (pointers and multidimensional arrays), Sec-
tion 12.5 (pointers and variable-length arrays), Section 14.5 (miscellaneous direc-
tives), Section 17.7 (pointers to functions), Section 17.8 (restricted pointers),
Section 17.9 (flexible array members), Section 18.6 (inline functions), Chapter 19
(program design), Section 20.2 (bit-fields in structures), and Section 20.3 (other
low-level techniques).

Exercises and Programming Projects

Having a variety of good problems is obviously essential for a textbook. This edi-
tion of the book contains both exercises (shorter problems that don’t require writing
a full program) and programming projects (problems that require writing or modi-
fying an entire program).

A few exercises have nonobvious answers (some individuals uncharitably call
these “trick questions”—the nerve!). Since C programs often contain abundant
examples of such code, I feel it’s necessary to provide some practice. However, I’ll
play fair by marking these exercises with an asterisk (*). Be careful with a starred
exercise: either pay close attention and think hard or skip it entirely.

Errors, Lack of (?)

I’ve taken great pains to ensure the accuracy of this book. Inevitably, however,
any book of this size contains a few errors. If you spot one, please contact me at
cbook@knking.com. I’d also appreciate hearing about which features you found
especially helpful, which ones you could do without, and what you’d like to see
added.

PREFACE.FM Page xxvii Friday, February 22, 2008 4:12 PM

xxviii Preface

Acknowledgments

First, I’d like to thank my editors at Norton, Fred McFarland and Aaron Javsicas.
Fred got the second edition underway and Aaron stepped in with brisk efficiency to
bring it to completion. I’d also like to thank associate managing editor Kim Yi, copy
editor Mary Kelly, production manager Roy Tedoff, and editorial assistant Carly
Fraser.

I owe a huge debt to the following colleagues, who reviewed some or all of the
manuscript for the second edition:

Markus Bussmann, University of Toronto
Jim Clarke, University of Toronto
Karen Reid, University of Toronto
Peter Seebach, moderator of comp.lang.c.moderated

Jim and Peter deserve special mention for their detailed reviews, which saved me
from a number of embarrassing slips. The reviewers for the first edition, in alpha-
betical order, were: Susan Anderson-Freed, Manuel E. Bermudez, Lisa J. Brown,
Steven C. Cater, Patrick Harrison, Brian Harvey, Henry H. Leitner, Darrell Long,
Arthur B. Maccabe, Carolyn Rosner, and Patrick Terry.

I received many useful comments from readers of the first edition; I thank
everyone who took the time to write. Students and colleagues at Georgia State Uni-
versity also provided valuable feedback. Ed Bullwinkel and his wife Nancy were
kind enough to read much of the manuscript. I’m particularly grateful to my depart-
ment chair, Yi Pan, who was very supportive of the project.

My wife, Susan Cole, was a pillar of strength as always. Our cats, Dennis,
Pounce, and Tex, were also instrumental in the completion of the book. Pounce and
Tex were happy to contribute the occasional catfight to help keep me awake while
I was working late at night.

Finally, I’d like to acknowledge the late Alan J. Perlis, whose epigrams appear
at the beginning of each chapter. I had the privilege of studying briefly under Alan
at Yale in the mid-70s. I think he’d be amused at finding his epigrams in a C book.

PREFACE.FM Page xxviii Friday, February 22, 2008 4:12 PM

1

1 Introducing C

When someone says “I want a programming language in which
I need only say what I wish done,” give him a lollipop.*

What is C? The simple answer—a widely used programming language developed
in the early 1970s at Bell Laboratories—conveys little of C’s special flavor. Before
we become immersed in the details of the language, let’s take a look at where C
came from, what it was designed for, and how it has changed over the years (Sec-
tion 1.1). We’ll also discuss C’s strengths and weaknesses and see how to get the
most out of the language (Section 1.2).

1.1 History of C

Let’s take a quick look at C’s history, from its origins, to its coming of age as a
standardized language, to its influence on recent languages.

Origins

C is a by-product of the UNIX operating system, which was developed at Bell Lab-
oratories by Ken Thompson, Dennis Ritchie, and others. Thompson single-hand-
edly wrote the original version of UNIX, which ran on the DEC PDP-7 computer,
an early minicomputer with only 8K words of main memory (this was 1969, after
all!).

Like other operating systems of the time, UNIX was written in assembly lan-
guage. Programs written in assembly language are usually painful to debug and
hard to enhance; UNIX was no exception. Thompson decided that a higher-level

*The epigrams at the beginning of each chapter are from “Epigrams on Programming” by Alan J. Perlis
(ACM SIGPLAN Notices (September, 1982): 7–13).

C1.FM Page 1 Monday, February 18, 2008 12:48 AM

2 Chapter 1 Introducing C

language was needed for the further development of UNIX, so he designed a small
language named B. Thompson based B on BCPL, a systems programming lan-
guage developed in the mid-1960s. BCPL, in turn, traces its ancestry to Algol 60,
one of the earliest (and most influential) programming languages.

Ritchie soon joined the UNIX project and began programming in B. In 1970,
Bell Labs acquired a PDP-11 for the UNIX project. Once B was up and running on
the PDP-11, Thompson rewrote a portion of UNIX in B. By 1971, it became
apparent that B was not well-suited to the PDP-11, so Ritchie began to develop an
extended version of B. He called his language NB (“New B”) at first, and then, as
it began to diverge more from B, he changed the name to C. The language was sta-
ble enough by 1973 that UNIX could be rewritten in C. The switch to C provided
an important benefit: portability. By writing C compilers for other computers at
Bell Labs, the team could get UNIX running on those machines as well.

Standardization

C continued to evolve during the 1970s, especially between 1977 and 1979. It was
during this period that the first book on C appeared. The C Programming Lan-
guage, written by Brian Kernighan and Dennis Ritchie and published in 1978,
quickly became the bible of C programmers. In the absence of an official standard
for C, this book—known as K&R or the “White Book” to aficionados—served as a
de facto standard.

During the 1970s, there were relatively few C programmers, and most of them
were UNIX users. By the 1980s, however, C had expanded beyond the narrow con-
fines of the UNIX world. C compilers became available on a variety of machines
running under different operating systems. In particular, C began to establish itself
on the fast-growing IBM PC platform.

With C’s increasing popularity came problems. Programmers who wrote new
C compilers relied on K&R as a reference. Unfortunately, K&R was fuzzy about
some language features, so compilers often treated these features differently. Also,
K&R failed to make a clear distinction between which features belonged to C and
which were part of UNIX. To make matters worse, C continued to change after
K&R was published, with new features being added and a few older features
removed. The need for a thorough, precise, and up-to-date description of the lan-
guage soon became apparent. Without such a standard, numerous dialects would
have arisen, threatening the portability of C programs, one of the language’s major
strengths.

The development of a U.S. standard for C began in 1983 under the auspices of
the American National Standards Institute (ANSI). After many revisions, the stan-
dard was completed in 1988 and formally approved in December 1989 as ANSI
standard X3.159-1989. In 1990, it was approved by the International Organization
for Standardization (ISO) as international standard ISO/IEC 9899:1990. This ver-
sion of the language is usually referred to as C89 or C90, to distinguish it from the

C1.FM Page 2 Monday, February 18, 2008 12:48 AM

1.1 History of C 3

original version of C, often called K&R C. Appendix C summarizes the major dif-
ferences between C89 and K&R C.

The language underwent a few changes in 1995 (described in a document
known as Amendment 1). More significant changes occurred with the publication
of a new standard, ISO/IEC 9899:1999, in 1999. The language described in this
standard is commonly known as C99. The terms “ANSI C,” “ANSI/ISO C,” and
“ISO C”—once used to describe C89—are now ambiguous, thanks to the existence
of two standards.

Because C99 isn’t yet universal, and because of the need to maintain millions
(if not billions) of lines of code written in older versions of C, I’ll use a special icon
(shown in the left margin) to mark discussions of features that were added in C99.
A compiler that doesn’t recognize these features isn’t “C99-compliant.” If history
is any guide, it will be some years before all C compilers are C99-compliant, if they
ever are. Appendix B lists the major differences between C99 and C89.

C-Based Languages

C has had a huge influence on modern-day programming languages, many of
which borrow heavily from it. Of the many C-based languages, several are espe-
cially prominent:

� C++ includes all the features of C, but adds classes and other features to sup-
port object-oriented programming.

� Java is based on C++ and therefore inherits many C features.

� C# is a more recent language derived from C++ and Java.

� Perl was originally a fairly simple scripting language; over time it has grown
and adopted many of the features of C.

Considering the popularity of these newer languages, it’s logical to ask
whether it’s worth the trouble to learn C. I think it is, for several reasons. First,
learning C can give you greater insight into the features of C++, Java, C#, Perl, and
the other C-based languages. Programmers who learn one of these languages first
often fail to master basic features that were inherited from C. Second, there are a
lot of older C programs around; you may find yourself needing to read and main-
tain this code. Third, C is still widely used for developing new software, especially
in situations where memory or processing power is limited or where the simplicity
of C is desired.

If you haven’t already used one of the newer C-based languages, you’ll find
that this book is excellent preparation for learning these languages. It emphasizes
data abstraction, information hiding, and other principles that play a large role in
object-oriented programming. C++ includes all the features of C, so you’ll be able
to use everything you learn from this book if you later tackle C++. Many of the
features of C can be found in the other C-based languages as well.

C99

C1.FM Page 3 Monday, February 18, 2008 12:48 AM

4 Chapter 1 Introducing C

1.2 Strengths and Weaknesses of C

Like any other programming language, C has strengths and weaknesses. Both stem
from the language’s original use (writing operating systems and other systems
software) and its underlying philosophy:

� C is a low-level language. To serve as a suitable language for systems pro-
gramming, C provides access to machine-level concepts (bytes and addresses,
for example) that other programming languages try to hide. C also provides
operations that correspond closely to a computer’s built-in instructions, so that
programs can be fast. Since application programs rely on it for input/output,
storage management, and numerous other services, an operating system can’t
afford to be slow.

� C is a small language. C provides a more limited set of features than many
languages. (The reference manual in the second edition of K&R covers the
entire language in 49 pages.) To keep the number of features small, C relies
heavily on a “library” of standard functions. (A “function” is similar to what
other programming languages might call a “procedure,” “subroutine,” or
“method.”)

� C is a permissive language. C assumes that you know what you’re doing, so it
allows you a wider degree of latitude than many languages. Moreover, C
doesn’t mandate the detailed error-checking found in other languages.

Strengths

C’s strengths help explain why the language has become so popular:

� Efficiency. Efficiency has been one of C’s advantages from the beginning.
Because C was intended for applications where assembly language had tradi-
tionally been used, it was crucial that C programs could run quickly and in
limited amounts of memory.

� Portability. Although program portability wasn’t a primary goal of C, it has
turned out to be one of the language’s strengths. When a program must run on
computers ranging from PCs to supercomputers, it is often written in C. One
reason for the portability of C programs is that—thanks to C’s early associa-
tion with UNIX and the later ANSI/ISO standards—the language hasn’t splin-
tered into incompatible dialects. Another is that C compilers are small and
easily written, which has helped make them widely available. Finally, C itself
has features that support portability (although there’s nothing to prevent pro-
grammers from writing nonportable programs).

� Power. C’s large collection of data types and operators help make it a power-
ful language. In C, it’s often possible to accomplish quite a bit with just a few
lines of code.

C1.FM Page 4 Monday, February 18, 2008 12:48 AM

1.2 Strengths and Weaknesses of C 5

� Flexibility. Although C was originally designed for systems programming, it
has no inherent restrictions that limit it to this arena. C is now used for appli-
cations of all kinds, from embedded systems to commercial data processing.
Moreover, C imposes very few restrictions on the use of its features; opera-
tions that would be illegal in other languages are often permitted in C. For
example, C allows a character to be added to an integer value (or, for that mat-
ter, a floating-point number). This flexibility can make programming easier,
although it may allow some bugs to slip through.

� Standard library. One of C’s great strengths is its standard library, which con-
tains hundreds of functions for input/output, string handling, storage alloca-
tion, and other useful operations.

� Integration with UNIX. C is particularly powerful in combination with UNIX
(including the popular variant known as Linux). In fact, some UNIX tools
assume that the user knows C.

Weaknesses

C’s weaknesses arise from the same source as many of its strengths: C’s closeness
to the machine. Here are a few of C’s most notorious problems:

� C programs can be error-prone. C’s flexibility makes it an error-prone lan-
guage. Programming mistakes that would be caught in many other languages
can’t be detected by a C compiler. In this respect, C is a lot like assembly lan-
guage, where most errors aren’t detected until the program is run. To make
matters worse, C contains a number of pitfalls for the unwary. In later chap-
ters, we’ll see how an extra semicolon can create an infinite loop or a missing
& symbol can cause a program crash.

� C programs can be difficult to understand. Although C is a small language
by most measures, it has a number of features that aren’t found in all program-
ming languages (and that consequently are often misunderstood). These fea-
tures can be combined in a great variety of ways, many of which—although
obvious to the original author of a program—can be hard for others to under-
stand. Another problem is the terse nature of C programs. C was designed at a
time when interactive communication with computers was tedious at best. As
a result, C was purposefully kept terse to minimize the time required to enter
and edit programs. C’s flexibility can also be a negative factor; programmers
who are too clever for their own good can make programs almost impossible
to understand.

� C programs can be difficult to modify. Large programs written in C can be
hard to change if they haven’t been designed with maintenance in mind. Mod-
ern programming languages usually provide features such as classes and pack-
ages that support the division of a large program into more manageable pieces.
C, unfortunately, lacks such features.

C1.FM Page 5 Monday, February 18, 2008 12:48 AM

6 Chapter 1 Introducing C

Obfuscated C

Even C’s most ardent admirers admit that C code can be hard to read. The annual
International Obfuscated C Code Contest actually encourages contestants to write
the most confusing C programs possible. The winners are truly baffling, as 1990’s
“Best Small Program” shows:

v,i,j,k,l,s,a[99];
main()
{
 for(scanf("%d",&s);*a-s;v=a[j*=v]-a[i],k=i<s,j+=(v=j<s&&
(!k&&!!printf(2+"\n\n%c"-(!l<<!j)," #Q"[l^v?(l^j)&1:2])&&
++l||a[i]<s&&v&&v-i+j&&v+i-j))&&!(l%=s),v||(i==j?a[i+=k]=0:
++a[i])>=s*k&&++a[--i])
 ;
}

This program, written by Doron Osovlanski and Baruch Nissenbaum, prints all solu-
tions to the Eight Queens problem (the problem of placing eight queens on a
chessboard in such a way that no queen attacks any other queen). In fact, it works
for any number of queens between four and 99. For more winning programs, visit
www.ioccc.org, the contest’s web site.

Effective Use of C

Using C effectively requires taking advantage of C’s strengths while avoiding its
weaknesses. Here are a few suggestions:

� Learn how to avoid C pitfalls. Hints for avoiding pitfalls are scattered through-
out this book—just look for the symbol. For a more extensive list of pitfalls,
see Andrew Koenig’s C Traps and Pitfalls (Reading, Mass.: Addison-Wesley,
1989). Modern compilers will detect common pitfalls and issue warnings, but
no compiler spots them all.

� Use software tools to make programs more reliable. C programmers are pro-
lific tool builders (and users). One of the most famous C tools is named lint.
lint, which is traditionally provided with UNIX, can subject a program to a
more extensive error analysis than most C compilers. If lint (or a similar
program) is available, it’s a good idea to use it. Another useful tool is a debug-
ger. Because of the nature of C, many bugs can’t be detected by a C compiler;
these show up instead in the form of run-time errors or incorrect output. Con-
sequently, using a good debugger is practically mandatory for C programmers.

� Take advantage of existing code libraries. One of the benefits of using C is
that so many other people also use it; it’s a good bet that they’ve written code
you can employ in your own programs. C code is often bundled into libraries
(collections of functions); obtaining a suitable library is a good way to reduce
errors—and save considerable programming effort. Libraries for common

Q&A

C1.FM Page 6 Monday, February 18, 2008 12:48 AM

http://www.ioccc.org

Q & A 7

tasks, including user-interface development, graphics, communications, data-
base management, and networking, are readily available. Some libraries are in
the public domain, some are open source, and some are sold commercially.

� Adopt a sensible set of coding conventions. A coding convention is a style
rule that a programmer has decided to adopt even though it’s not enforced by
the language. Well-chosen conventions help make programs more uniform,
easier to read, and easier to modify. Conventions are important when using
any programming language, but especially so with C. As noted above, C’s
highly flexible nature makes it possible for programmers to write code that is
all but unreadable. The programming examples in this book follow one set of
conventions, but there are other, equally valid, conventions in use. (We’ll dis-
cuss some of the alternatives from time to time.) Which set you use is less
important than adopting some conventions and sticking to them.

� Avoid “tricks” and overly complex code. C encourages programming tricks.
There are usually several ways to accomplish a given task in C; programmers
are often tempted to choose the method that’s most concise. Don’t get carried
away; the shortest solution is often the hardest to comprehend. In this book,
I’ll illustrate a style that’s reasonably concise but still understandable.

� Stick to the standard. Most C compilers provide language features and library
functions that aren’t part of the C89 or C99 standards. For portability, it’s best
to avoid using nonstandard features and libraries unless they’re absolutely
necessary.

Q & A

Q: What is this Q&A section anyway?
A: Glad you asked. The Q&A section, which appears at the end of each chapter,

serves several purposes.
The primary purpose of Q&A is to tackle questions that are frequently asked

by students learning C. Readers can participate in a dialogue (more or less) with
the author, much the same as if they were attending one of my C classes.

Another purpose of Q&A is to provide additional information about topics
covered in the chapter. Readers of this book will likely have widely varying back-
grounds. Some will be experienced in other programming languages, whereas oth-
ers will be learning to program for the first time. Readers with experience in a
variety of languages may be satisfied with a brief explanation and a couple of
examples, but readers with less experience may need more. The bottom line: If you
find the coverage of a topic to be sketchy, check Q&A for more details.

On occasion, Q&A will discuss common differences among C compilers. For
example, we’ll cover some frequently used (but nonstandard) features that are pro-
vided by particular compilers.

C1.FM Page 7 Monday, February 18, 2008 12:48 AM

8 Chapter 1 Introducing C

Q: What does lint do? [p. 6]
A: lint checks a C program for a host of potential errors, including—but not limited

to—suspicious combinations of types, unused variables, unreachable code, and
nonportable code. It produces a list of diagnostic messages, which the programmer
must then sift through. The advantage of using lint is that it can detect errors that
are missed by the compiler. On the other hand, you’ve got to remember to use
lint; it’s all too easy to forget about it. Worse still, lint can produce messages
by the hundreds, of which only a fraction refer to actual errors.

Q: Where did lint get its name?
A: Unlike the names of many other UNIX tools, lint isn’t an acronym; it got its

name from the way it picks up pieces of “fluff” from a program.

Q: How do I get a copy of lint?
A: lint is a standard UNIX utility; if you rely on another operating system, then you

probably don’t have lint. Fortunately, versions of lint are available from third
parties. An enhanced version of lint known as splint (Secure Programming
Lint) is included in many Linux distributions and can be downloaded for free from
www.splint.org.

Q: Is there some way to force a compiler to do a more thorough job of error-
checking, without having to use lint?

A: Yes. Most compilers will do a more thorough check of a program if asked to. In
addition to checking for errors (undisputed violations of the rules of C), most com-
pilers also produce warning messages, indicating potential trouble spots. Some
compilers have more than one “warning level”; selecting a higher level causes the
compiler to check for more problems than choosing a lower level. If your compiler
supports warning levels, it’s a good idea to select the highest level, causing the
compiler to perform the most thorough job of checking that it’s capable of. Error-
checking options for the GCC compiler, which is distributed with Linux, are dis-
cussed in the Q&A section at the end of Chapter 2.

*Q: I’m interested in making my program as reliable as possible. Are there any
other tools available besides lint and debuggers?

A: Yes. Other common tools include “bounds-checkers” and “leak-finders.” C doesn’t
require that array subscripts be checked; a bounds-checker adds this capability. A
leak-finder helps locate “memory leaks”: blocks of memory that are dynamically
allocated but never deallocated.

*Starred questions cover material too advanced or too esoteric to interest the average reader, and often
refer to topics covered in later chapters. Curious readers with a fair bit of programming experience may
wish to delve into these questions immediately; others should definitely skip them on a first reading.

GCC ➤2.1

C1.FM Page 8 Monday, February 18, 2008 12:48 AM

http://www.splint.org

9

2 C Fundamentals

 One man’s constant is another man’s variable.

This chapter introduces several basic concepts, including preprocessing directives,
functions, variables, and statements, that we’ll need in order to write even the sim-
plest programs. Later chapters will cover these topics in much greater detail.

To start off, Section 2.1 presents a small C program and describes how to com-
pile and link it. Section 2.2 then discusses how to generalize the program, and Sec-
tion 2.3 shows how to add explanatory remarks, known as comments. Section 2.4
introduces variables, which store data that may change during the execution of a
program, and Section 2.5 shows how to use the scanf function to read data into
variables. Constants—data that won’t change during program execution—can be
given names, as Section 2.6 shows. Finally, Section 2.7 explains C’s rules for cre-
ating names (identifiers) and Section 2.8 gives the rules for laying out a program.

2.1 Writing a Simple Program

In contrast to programs written in some languages, C programs require little “boil-
erplate”—a complete program can be as short as a few lines.

PROGRAM Printing a Pun

The first program in Kernighan and Ritchie’s classic The C Programming Lan-
guage is extremely short; it does nothing but write the message hello, world.
Unlike other C authors, I won’t use this program as my first example. I will, how-
ever, uphold another C tradition: the bad pun. Here’s the pun:

To C, or not to C: that is the question.

C2.FM Page 9 Friday, February 8, 2008 3:12 PM

10 Chapter 2 C Fundamentals

The following program, which we’ll name pun.c, displays this message each
time it is run.

pun.c #include <stdio.h>

int main(void)
{
 printf("To C, or not to C: that is the question.\n");
 return 0;
}

Section 2.2 explains the form of this program in some detail. For now, I’ll just
make a few brief observations. The line

#include <stdio.h>

is necessary to “include” information about C’s standard I/O (input/output) library.
The program’s executable code goes inside main, which represents the “main”
program. The only line inside main is a command to display the desired message.
printf is a function from the standard I/O library that can produce nicely for-
matted output. The \n code tells printf to advance to the next line after printing
the message. The line

return 0;

indicates that the program “returns” the value 0 to the operating system when it ter-
minates.

Compiling and Linking

Despite its brevity, getting pun.c to run is more involved than you might expect.
First, we need to create a file named pun.c containing the program (any text edi-
tor will do). The name of the file doesn’t matter, but the .c extension is often
required by compilers.

Next, we’ve got to convert the program to a form that the machine can exe-
cute. For a C program, that usually involves three steps:

� Preprocessing. The program is first given to a preprocessor, which obeys
commands that begin with # (known as directives). A preprocessor is a bit like
an editor; it can add things to the program and make modifications.

� Compiling. The modified program now goes to a compiler, which translates it
into machine instructions (object code). The program isn’t quite ready to run
yet, however.

� Linking. In the final step, a linker combines the object code produced by the
compiler with any additional code needed to yield a complete executable pro-
gram. This additional code includes library functions (like printf) that are
used in the program.

C2.FM Page 10 Friday, February 8, 2008 3:12 PM

2.1 Writing a Simple Program 11

Fortunately, this process is often automated, so you won’t find it too onerous. In
fact, the preprocessor is usually integrated with the compiler, so you probably
won’t even notice it at work.

The commands necessary to compile and link vary, depending on the compiler
and operating system. Under UNIX, the C compiler is usually named cc. To com-
pile and link the pun.c program, enter the following command in a terminal or
command-line window:

% cc pun.c

(The % character is the UNIX prompt, not something that you need to enter.) Link-
ing is automatic when using cc; no separate link command is necessary.

After compiling and linking the program, cc leaves the executable program in
a file named a.out by default. cc has many options; one of them (the -o option)
allows us to choose the name of the file containing the executable program. For
example, if we want the executable version of pun.c to be named pun, we would
enter the following command:

% cc -o pun pun.c

The GCC Compiler

One of the most popular C compilers is the GCC compiler, which is supplied with
Linux but is available for many other platforms as well. Using this compiler is similar
to using the traditional UNIX cc compiler. For example, to compile the pun.c pro-
gram, we would use the following command:

% gcc -o pun pun.c

The Q&A section at the end of the chapter provides more information about GCC.

Integrated Development Environments

So far, we’ve assumed the use of a “command-line” compiler that’s invoked by
entering a command in a special window provided by the operating system. The
alternative is to use an integrated development environment (IDE), a software
package that allows us to edit, compile, link, execute, and even debug a program
without leaving the environment. The components of an IDE are designed to work
together. For example, when the compiler detects an error in a program, it can
arrange for the editor to highlight the line that contains the error. There’s a great
deal of variation among IDEs, so I won’t discuss them further in this book. How-
ever, I would recommend checking to see which IDEs are available for your plat-
form.

Q&A

C2.FM Page 11 Friday, February 8, 2008 3:12 PM

12 Chapter 2 C Fundamentals

2.2 The General Form of a Simple Program

Let’s take a closer look at pun.c and see how we can generalize it a bit. Simple C
programs have the form

directives

int main(void)
{
 statements
}

In this template, and in similar templates elsewhere in this book, items printed in
Courier would appear in a C program exactly as shown; items in italics repre-
sent text to be supplied by the programmer.

Notice how the braces show where main begins and ends. C uses { and } in
much the same way that some other languages use words like begin and end.
This illustrates a general point about C: it relies heavily on abbreviations and spe-
cial symbols, one reason that C programs are concise (or—less charitably—cryp-
tic).

Even the simplest C programs rely on three key language features: directives
(editing commands that modify the program prior to compilation), functions
(named blocks of executable code, of which main is an example), and statements
(commands to be performed when the program is run). We’ll take a closer look at
these features now.

Directives

Before a C program is compiled, it is first edited by a preprocessor. Commands
intended for the preprocessor are called directives. Chapters 14 and 15 discuss
directives in detail. For now, we’re interested only in the #include directive.

The pun.c program begins with the line

#include <stdio.h>

This directive states that the information in <stdio.h> is to be “included” into
the program before it is compiled. <stdio.h> contains information about C’s
standard I/O library. C has a number of headers like <stdio.h>; each contains
information about some part of the standard library. The reason we’re including
<stdio.h> is that C, unlike some programming languages, has no built-in
“read” and “write” commands. The ability to perform input and output is provided
instead by functions in the standard library.

Directives always begin with a # character, which distinguishes them from
other items in a C program. By default, directives are one line long; there’s no
semicolon or other special marker at the end of a directive.

Q&A

headers ➤15.2

C2.FM Page 12 Friday, February 8, 2008 3:12 PM

2.2 The General Form of a Simple Program 13

Functions

Functions are like “procedures” or “subroutines” in other programming lan-
guages—they’re the building blocks from which programs are constructed. In fact,
a C program is little more than a collection of functions. Functions fall into two
categories: those written by the programmer and those provided as part of the C
implementation. I’ll refer to the latter as library functions, since they belong to a
“library” of functions that are supplied with the compiler.

The term “function” comes from mathematics, where a function is a rule for
computing a value when given one or more arguments:

f(x) = x + 1
g(y, z) = y2 – z2

C uses the term “function” more loosely. In C, a function is simply a series of
statements that have been grouped together and given a name. Some functions
compute a value; some don’t. A function that computes a value uses the return
statement to specify what value it “returns.” For example, a function that adds 1 to
its argument might execute the statement

return x + 1;

while a function that computes the difference of the squares of its arguments might
execute the statement

return y * y - z * z;

Although a C program may consist of many functions, only the main func-
tion is mandatory. main is special: it gets called automatically when the program
is executed. Until Chapter 9, where we’ll learn how to write other functions, main
will be the only function in our programs.

The name main is critical; it can’t be begin or start or even MAIN.

If main is a function, does it return a value? Yes: it returns a status code that
is given to the operating system when the program terminates. Let’s take another
look at the pun.c program:

#include <stdio.h>

int main(void)
{
 printf("To C, or not to C: that is the question.\n");
 return 0;
}

The word int just before main indicates that the main function returns an inte-
ger value. The word void in parentheses indicates that main has no arguments.

C2.FM Page 13 Friday, February 8, 2008 3:12 PM

14 Chapter 2 C Fundamentals

The statement

return 0;

has two effects: it causes the main function to terminate (thus ending the program)
and it indicates that the main function returns a value of 0. We’ll have more to say
about main’s return value in a later chapter. For now, we’ll always have main
return the value 0, which indicates normal program termination.

If there’s no return statement at the end of the main function, the program
will still terminate. However, many compilers will produce a warning message
(because the function was supposed to return an integer but failed to).

Statements

A statement is a command to be executed when the program runs. We’ll explore
statements later in the book, primarily in Chapters 5 and 6. The pun.c program
uses only two kinds of statements. One is the return statement; the other is the
function call. Asking a function to perform its assigned task is known as calling
the function. The pun.c program, for example, calls the printf function to dis-
play a string on the screen:

printf("To C, or not to C: that is the question.\n");

C requires that each statement end with a semicolon. (As with any good rule,
there’s one exception: the compound statement, which we’ll encounter later.) The
semicolon shows the compiler where the statement ends; since statements can con-
tinue over several lines, it’s not always obvious where they end. Directives, on the
other hand, are normally one line long, and they don’t end with a semicolon.

Printing Strings

printf is a powerful function that we’ll examine in Chapter 3. So far, we’ve only
used printf to display a string literal—a series of characters enclosed in double
quotation marks. When printf displays a string literal, it doesn’t show the quo-
tation marks.

printf doesn’t automatically advance to the next output line when it fin-
ishes printing. To instruct printf to advance one line, we must include \n (the
new-line character) in the string to be printed. Writing a new-line character termi-
nates the current output line; subsequent output goes onto the next line. To illus-
trate this point, consider the effect of replacing the statement

printf("To C, or not to C: that is the question.\n");

by two calls of printf:

printf("To C, or not to C: ");
printf("that is the question.\n");

return value of main ➤9.5

Q&A

Q&A

compound statement ➤ 5.2

C2.FM Page 14 Friday, February 8, 2008 3:12 PM

2.3 Comments 15

The first call of printf writes To C, or not to C: . The second call writes
that is the question. and advances to the next line. The net effect is the
same as the original printf—the user can’t tell the difference.

The new-line character can appear more than once in a string literal. To dis-
play the message

Brevity is the soul of wit.
 --Shakespeare

we could write

printf("Brevity is the soul of wit.\n --Shakespeare\n");

2.3 Comments

Our pun.c program still lacks something important: documentation. Every pro-
gram should contain identifying information: the program name, the date written,
the author, the purpose of the program, and so forth. In C, this information is
placed in comments. The symbol /* marks the beginning of a comment and the
symbol */ marks the end:

/* This is a comment */

Comments may appear almost anywhere in a program, either on separate lines
or on the same lines as other program text. Here’s what pun.c might look like
with comments added at the beginning:

/* Name: pun.c */
/* Purpose: Prints a bad pun. */
/* Author: K. N. King */

#include <stdio.h>

int main(void)
{
 printf("To C, or not to C: that is the question.\n");
 return 0;
}

Comments may extend over more than one line; once it has seen the /* sym-
bol, the compiler reads (and ignores) whatever follows until it encounters the */
symbol. If we like, we can combine a series of short comments into one long com-
ment:

/* Name: pun.c
 Purpose: Prints a bad pun.
 Author: K. N. King */

A comment like this can be hard to read, though, because it’s not easy to see where

C2.FM Page 15 Friday, February 8, 2008 3:12 PM

16 Chapter 2 C Fundamentals

the comment ends. Putting */ on a line by itself helps:

/* Name: pun.c
 Purpose: Prints a bad pun.
 Author: K. N. King
*/

Even better, we can form a “box” around the comment to make it stand out:

/**
 * Name: pun.c *
 * Purpose: Prints a bad pun. *
 * Author: K. N. King *
 **/

Programmers often simplify boxed comments by omitting three of the sides:

/*
 * Name: pun.c
 * Purpose: Prints a bad pun.
 * Author: K. N. King
 */

A short comment can go on the same line with other program code:

int main(void) /* Beginning of main program */

A comment like this is sometimes called a “winged comment.”

Forgetting to terminate a comment may cause the compiler to ignore part of your
program. Consider the following example:

printf("My "); /* forgot to close this comment...
printf("cat ");
printf("has "); /* so it ends here */
printf("fleas");

Because we’ve neglected to terminate the first comment, the compiler ignores the
middle two statements, and the example prints My fleas.

C99 provides a second kind of comment, which begins with // (two adjacent
slashes):

// This is a comment

This style of comment ends automatically at the end of a line. To create a comment
that’s more than one line long, we can either use the older comment style (/* …
*/) or else put // at the beginning of each comment line:

// Name: pun.c
// Purpose: Prints a bad pun.
// Author: K. N. King

C99

C2.FM Page 16 Friday, February 8, 2008 3:12 PM

2.4 Variables and Assignment 17

The newer comment style has a couple of important advantages. First, because a
comment automatically ends at the end of a line, there’s no chance that an untermi-
nated comment will accidentally consume part of a program. Second, multiline
comments stand out better, thanks to the // that’s required at the beginning of
each line.

2.4 Variables and Assignment

Few programs are as simple as the one in Section 2.1. Most programs need to per-
form a series of calculations before producing output, and thus need a way to store
data temporarily during program execution. In C, as in most programming lan-
guages, these storage locations are called variables.

Types

Every variable must have a type, which specifies what kind of data it will hold. C
has a wide variety of types. For now, we’ll limit ourselves to just two: int and
float. Choosing the proper type is critical, since the type affects how the variable
is stored and what operations can be performed on the variable. The type of a
numeric variable determines the largest and smallest numbers that the variable can
store; it also determines whether or not digits are allowed after the decimal point.

A variable of type int (short for integer) can store a whole number such as 0,
1, 392, or –2553. The range of possible values is limited, though. The largest int
value is typically 2,147,483,647 but can be as small as 32,767.

A variable of type float (short for floating-point) can store much larger
numbers than an int variable. Furthermore, a float variable can store numbers
with digits after the decimal point, like 379.125. float variables have drawbacks,
however. Arithmetic on float numbers may be slower than arithmetic on int
numbers. Most significantly, the value of a float variable is often just an approx-
imation of the number that was stored in it. If we store 0.1 in a float variable, we
may later find that the variable has a value such as 0.09999999999999987, thanks
to rounding error.

Declarations

Variables must be declared—described for the benefit of the compiler—before
they can be used. To declare a variable, we first specify the type of the variable,
then its name. (Variable names are chosen by the programmer, subject to the rules
described in Section 2.7.) For example, we might declare variables height and
profit as follows:

int height;
float profit;

range of int values ➤7.1

Q&A

C2.FM Page 17 Friday, February 8, 2008 3:12 PM

18 Chapter 2 C Fundamentals

The first declaration states that height is a variable of type int, meaning that
height can store an integer value. The second declaration says that profit is a
variable of type float.

If several variables have the same type, their declarations can be combined:

int height, length, width, volume;
float profit, loss;

Notice that each complete declaration ends with a semicolon.
Our first template for main didn’t include declarations. When main contains

declarations, these must precede statements:

int main(void)
{
 declarations
 statements
}

As we’ll see in Chapter 9, this is true of functions in general, as well as blocks
(statements that contain embedded declarations). As a matter of style, it’s a good
idea to leave a blank line between the declarations and the statements.

In C99, declarations don’t have to come before statements. For example,
main might contain a declaration, then a statement, and then another declaration.
For compatibility with older compilers, the programs in this book don’t take
advantage of this rule. However, it’s common in C++ and Java programs not to
declare variables until they’re first needed, so this practice can be expected to
become popular in C99 programs as well.

Assignment

A variable can be given a value by means of assignment. For example, the state-
ments

height = 8;
length = 12;
width = 10;

assign values to height, length, and width. The numbers 8, 12, and 10 are
said to be constants.

Before a variable can be assigned a value—or used in any other way, for that
matter—it must first be declared. Thus, we could write

int height;
height = 8;

but not

height = 8; /*** WRONG ***/
int height;

blocks ➤10.3

C99

C2.FM Page 18 Friday, February 8, 2008 3:12 PM

2.4 Variables and Assignment 19

A constant assigned to a float variable usually contains a decimal point. For
example, if profit is a float variable, we might write

profit = 2150.48;

It’s best to append the letter f (for “float”) to a constant that contains a decimal
point if the number is assigned to a float variable:

profit = 2150.48f;

Failing to include the f may cause a warning from the compiler.
An int variable is normally assigned a value of type int, and a float vari-

able is normally assigned a value of type float. Mixing types (such as assigning
an int value to a float variable or assigning a float value to an int variable)
is possible but not always safe, as we’ll see in Section 4.2.

Once a variable has been assigned a value, it can be used to help compute the
value of another variable:

height = 8;
length = 12;
width = 10;
volume = height * length * width; /* volume is now 960 */

In C, * represents the multiplication operator, so this statement multiplies the val-
ues stored in height, length, and width, then assigns the result to the vari-
able volume. In general, the right side of an assignment can be a formula (or
expression, in C terminology) involving constants, variables, and operators.

Printing the Value of a Variable

We can use printf to display the current value of a variable. For example, to
write the message

Height: h

where h is the current value of the height variable, we’d use the following call of
printf:

printf("Height: %d\n", height);

%d is a placeholder indicating where the value of height is to be filled in during
printing. Note the placement of \n just after %d, so that printf will advance to
the next line after printing the value of height.

%d works only for int variables; to print a float variable, we’d use %f
instead. By default, %f displays a number with six digits after the decimal point.
To force %f to display p digits after the decimal point, we can put .p between %
and f. For example, to print the line

Profit: $2150.48

Q&A

C2.FM Page 19 Friday, February 8, 2008 3:12 PM

20 Chapter 2 C Fundamentals

we’d call printf as follows:

printf("Profit: $%.2f\n", profit);

There’s no limit to the number of variables that can be printed by a single call
of printf. To display the values of both the height and length variables, we
could use the following call of printf:

printf("Height: %d Length: %d\n", height, length);

PROGRAM Computing the Dimensional Weight of a Box

Shipping companies don’t especially like boxes that are large but very light, since
they take up valuable space in a truck or airplane. In fact, companies often charge
extra for such a box, basing the fee on its volume instead of its weight. In the
United States, the usual method is to divide the volume by 166 (the allowable num-
ber of cubic inches per pound). If this number—the box’s “dimensional” or “volu-
metric” weight—exceeds its actual weight, the shipping fee is based on the
dimensional weight. (The 166 divisor is for international shipments; the dimen-
sional weight of a domestic shipment is typically calculated using 194 instead.)

Let’s say that you’ve been hired by a shipping company to write a program
that computes the dimensional weight of a box. Since you’re new to C, you decide
to start off by writing a program that calculates the dimensional weight of a partic-
ular box that’s 12″ × 10″ × 8″. Division is represented by / in C, so the obvious
way to compute the dimensional weight would be

weight = volume / 166;

where weight and volume are integer variables representing the box’s weight
and volume. Unfortunately, this formula isn’t quite what we need. In C, when one
integer is divided by another, the answer is “truncated”: all digits after the decimal
point are lost. The volume of a 12″ × 10″ × 8″ box will be 960 cubic inches. Divid-
ing by 166 gives the answer 5 instead of 5.783, so we have in effect rounded down
to the next lowest pound; the shipping company expects us to round up. One solu-
tion is to add 165 to the volume before dividing by 166:

weight = (volume + 165) / 166;

A volume of 166 would give a weight of 331/166, or 1, while a volume of 167
would yield 332/166, or 2. Calculating the weight in this fashion gives us the fol-
lowing program.

dweight.c /* Computes the dimensional weight of a 12" x 10" x 8" box */

#include <stdio.h>

int main(void)
{

C2.FM Page 20 Friday, February 8, 2008 3:12 PM

2.4 Variables and Assignment 21

 int height, length, width, volume, weight;

 height = 8;
 length = 12;
 width = 10;
 volume = height * length * width;
 weight = (volume + 165) / 166;

 printf("Dimensions: %dx%dx%d\n", length, width, height);
 printf("Volume (cubic inches): %d\n", volume);
 printf("Dimensional weight (pounds): %d\n", weight);

 return 0;
}

The output of the program is

Dimensions: 12x10x8
Volume (cubic inches): 960
Dimensional weight (pounds): 6

Initialization

Some variables are automatically set to zero when a program begins to execute, but
most are not. A variable that doesn’t have a default value and hasn’t yet been
assigned a value by the program is said to be uninitialized.

Attempting to access the value of an uninitialized variable (for example, by dis-
playing the variable using printf or using it in an expression) may yield an
unpredictable result such as 2568, –30891, or some equally strange number. With
some compilers, worse behavior—even a program crash—may occur.

We can always give a variable an initial value by using assignment, of course.
But there’s an easier way: put the initial value of the variable in its declaration. For
example, we can declare the height variable and initialize it in one step:

int height = 8;

In C jargon, the value 8 is said to be an initializer.
Any number of variables can be initialized in the same declaration:

int height = 8, length = 12, width = 10;

Notice that each variable requires its own initializer. In the following example, the
initializer 10 is good only for the variable width, not for height or length
(which remain uninitialized):

int height, length, width = 10;

variable initialization ➤18.5

C2.FM Page 21 Friday, February 8, 2008 3:12 PM

22 Chapter 2 C Fundamentals

Printing Expressions

printf isn’t limited to displaying numbers stored in variables; it can display the
value of any numeric expression. Taking advantage of this property can simplify a
program and reduce the number of variables. For instance, the statements

volume = height * length * width;
printf("%d\n", volume);

could be replaced by

printf("%d\n", height * length * width);

printf’s ability to print expressions illustrates one of C’s general principles:
Wherever a value is needed, any expression of the same type will do.

2.5 Reading Input

Because the dweight.c program calculates the dimensional weight of just one
box, it isn’t especially useful. To improve the program, we’ll need to allow the user
to enter the dimensions.

To obtain input, we’ll use the scanf function, the C library’s counterpart to
printf. The f in scanf, like the f in printf, stands for “formatted”; both
scanf and printf require the use of a format string to specify the appearance
of the input or output data. scanf needs to know what form the input data will
take, just as printf needs to know how to display output data.

To read an int value, we’d use scanf as follows:

scanf("%d", &i); /* reads an integer; stores into i */

The "%d" string tells scanf to read input that represents an integer; i is an int
variable into which we want scanf to store the input. The & symbol is hard to
explain at this point; for now, I’ll just note that it is usually (but not always)
required when using scanf.

Reading a float value requires a slightly different call of scanf:

scanf("%f", &x); /* reads a float value; stores into x */

%f works only with variables of type float, so I’m assuming that x is a float
variable. The "%f" string tells scanf to look for an input value in float format
(the number may contain a decimal point, but doesn’t have to).

PROGRAM Computing the Dimensional Weight of a Box (Revisited)

Here’s an improved version of the dimensional weight program in which the user
enters the dimensions. Note that each call of scanf is immediately preceded by a

& operator ➤11.2

C2.FM Page 22 Friday, February 8, 2008 3:12 PM

2.6 Defining Names for Constants 23

call of printf. That way, the user will know when to enter input and what input
to enter.

dweight2.c /* Computes the dimensional weight of a
 box from input provided by the user */

#include <stdio.h>

int main(void)
{
 int height, length, width, volume, weight;

 printf("Enter height of box: ");
 scanf("%d", &height);
 printf("Enter length of box: ");
 scanf("%d", &length);
 printf("Enter width of box: ");
 scanf("%d", &width);
 volume = height * length * width;
 weight = (volume + 165) / 166;

 printf("Volume (cubic inches): %d\n", volume);
 printf("Dimensional weight (pounds): %d\n", weight);

 return 0;
}

The output of the program has the following appearance (input entered by the user
is underlined):

Enter height of box: 8
Enter length of box: 12
Enter width of box: 10
Volume (cubic inches): 960
Dimensional weight (pounds): 6

A message that asks the user to enter input (a prompt) normally shouldn’t end with
a new-line character, because we want the user to enter input on the same line as
the prompt itself. When the user presses the Enter key, the cursor automatically
moves to the next line—the program doesn’t need to display a new-line character
to terminate the current line.

The dweight2.c program suffers from one problem: it doesn’t work cor-
rectly if the user enters nonnumeric input. Section 3.2 discusses this issue in more
detail.

2.6 Defining Names for Constants

When a program contains constants, it’s often a good idea to give them names. The
dweight.c and dweight2.c programs rely on the constant 166, whose mean-
ing may not be at all clear to someone reading the program later. Using a feature

C2.FM Page 23 Friday, February 8, 2008 3:12 PM

24 Chapter 2 C Fundamentals

known as macro definition, we can name this constant:

#define INCHES_PER_POUND 166

#define is a preprocessing directive, just as #include is, so there’s no semico-
lon at the end of the line.

When a program is compiled, the preprocessor replaces each macro by the
value that it represents. For example, the statement

weight = (volume + INCHES_PER_POUND - 1) / INCHES_PER_POUND;

will become

weight = (volume + 166 - 1) / 166;

giving the same effect as if we’d written the latter statement in the first place.
The value of a macro can be an expression:

#define RECIPROCAL_OF_PI (1.0f / 3.14159f)

If it contains operators, the expression should be enclosed in parentheses.
Notice that we’ve used only upper-case letters in macro names. This is a con-

vention that most C programmers follow, not a requirement of the language. (Still,
C programmers have been doing this for decades; you wouldn’t want to be the first
to deviate.)

PROGRAM Converting from Fahrenheit to Celsius

The following program prompts the user to enter a Fahrenheit temperature; it then
prints the equivalent Celsius temperature. The output of the program will have the
following appearance (as usual, input entered by the user is underlined):

Enter Fahrenheit temperature: 212
Celsius equivalent: 100.0

The program will allow temperatures that aren’t integers; that’s why the Celsius
temperature is displayed as 100.0 instead of 100. Let’s look first at the entire
program, then see how it’s put together.

celsius.c /* Converts a Fahrenheit temperature to Celsius */

#include <stdio.h>

#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f / 9.0f)

int main(void)
{
 float fahrenheit, celsius;

 printf("Enter Fahrenheit temperature: ");

parentheses in macros ➤14.3

C2.FM Page 24 Friday, February 8, 2008 3:12 PM

2.7 Identifiers 25

 scanf("%f", &fahrenheit);

 celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR;

 printf("Celsius equivalent: %.1f\n", celsius);

 return 0;
}

The statement

celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR;

converts the Fahrenheit temperature to Celsius. Since FREEZING_PT stands for
32.0f and SCALE_FACTOR stands for (5.0f / 9.0f), the compiler sees this
statement as

celsius = (fahrenheit - 32.0f) * (5.0f / 9.0f);

Defining SCALE_FACTOR to be (5.0f / 9.0f) instead of (5 / 9) is impor-
tant, because C truncates the result when two integers are divided. The value of
(5 / 9) would be 0, which definitely isn’t what we want.

The call of printf writes the Celsius temperature:

printf("Celsius equivalent: %.1f\n", celsius);

Notice the use of %.1f to display celsius with just one digit after the decimal
point.

2.7 Identifiers

As we’re writing a program, we’ll have to choose names for variables, functions,
macros, and other entities. These names are called identifiers. In C, an identifier
may contain letters, digits, and underscores, but must begin with a letter or under-
score. (In C99, identifiers may contain certain “universal character names” as
well.)

Here are some examples of legal identifiers:

times10 get_next_char _done

The following are not legal identifiers:

10times get-next-char

The symbol 10times begins with a digit, not a letter or underscore. get-next-
char contains minus signs, not underscores.

C is case-sensitive: it distinguishes between upper-case and lower-case letters
in identifiers. For example, the following identifiers are all different:

job joB jOb jOB Job JoB JOb JOB

C99
universal character names ➤25.4

C2.FM Page 25 Friday, February 8, 2008 3:12 PM

26 Chapter 2 C Fundamentals

These eight identifiers could all be used simultaneously, each for a completely dif-
ferent purpose. (Talk about obfuscation!) Sensible programmers try to make identi-
fiers look different unless they’re somehow related.

Since case matters in C, many programmers follow the convention of using
only lower-case letters in identifiers (other than macros), with underscores inserted
when necessary for legibility:

symbol_table current_page name_and_address

Other programmers avoid underscores, instead using an upper-case letter to begin
each word within an identifier:

symbolTable currentPage nameAndAddress

(The first letter is sometimes capitalized as well.) Although the former style is
common in traditional C, the latter style is becoming more popular thanks to its
widespread use in Java and C# (and, to a lesser extent, C++). Other reasonable
conventions exist; just be sure to capitalize an identifier the same way each time it
appears in a program.

C places no limit on the maximum length of an identifier, so don’t be afraid to
use long, descriptive names. A name such as current_page is a lot easier to
understand than a name like cp.

Keywords

The keywords in Table 2.1 have special significance to C compilers and therefore
can’t be used as identifiers. Note that five keywords were added in C99.

Because of C’s case-sensitivity, keywords must appear in programs exactly as
shown in Table 2.1, with all letters in lower case. Names of functions in the stan-
dard library (such as printf) contain only lower-case letters also. Avoid the
plight of the unfortunate programmer who enters an entire program in upper case,
only to find that the compiler can’t recognize keywords and calls of library func-
tions.

Q&A

C99

auto
break
case
char
const
continue
default
do
double
else

enum
extern
float
for
goto
if
inline†

int
long
register

restrict†

return
short
signed
sizeof
static
struct
switch
typedef
union

unsigned
void
volatile
while
_Bool†

_Complex†

_Imaginary†

†C99 only

Table 2.1
Keywords

C2.FM Page 26 Friday, February 8, 2008 3:12 PM

2.8 Layout of a C Program 27

Watch out for other restrictions on identifiers. Some compilers treat certain identi-
fiers (asm, for example) as additional keywords. Identifiers that belong to the stan-
dard library are restricted as well. Accidentally using one of these names can cause
an error during compilation or linking. Identifiers that begin with an underscore
are also restricted.

2.8 Layout of a C Program

We can think of a C program as a series of tokens: groups of characters that can’t
be split up without changing their meaning. Identifiers and keywords are tokens.
So are operators like + and -, punctuation marks such as the comma and semico-
lon, and string literals. For example, the statement

printf("Height: %d\n", height);

consists of seven tokens:

printf ("Height: %d\n" , height) ;
➀ ➁ ➂ ➃ ➄ ➅ ➆

Tokens ➀ and ➄ are identifiers, token ➂ is a string literal, and tokens ➁, ➃, ➅, and
➆ are punctuation.

The amount of space between tokens in a program isn’t critical in most cases.
At one extreme, tokens can be crammed together with no space between them at
all, except where this would cause two tokens to merge into a third token. For
example, we could delete most of the space in the celsius.c program of Sec-
tion 2.6, provided that we leave space between tokens such as int and main and
between float and fahrenheit:

/* Converts a Fahrenheit temperature to Celsius */
#include <stdio.h>
#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f/9.0f)
int main(void){float fahrenheit,celsius;printf(
"Enter Fahrenheit temperature: ");scanf("%f", &fahrenheit);
celsius=(fahrenheit-FREEZING_PT)*SCALE_FACTOR;
printf("Celsius equivalent: %.1f\n", celsius);return 0;}

In fact, if the page were wider, we could put the entire main function on a single
line. We can’t put the whole program on one line, though, because each prepro-
cessing directive requires a separate line.

Compressing programs in this fashion isn’t a good idea. In fact, adding spaces
and blank lines to a program can make it easier to read and understand. Fortunately,

restrictions on identifiers ➤21.1

C2.FM Page 27 Friday, February 8, 2008 3:12 PM

28 Chapter 2 C Fundamentals

C allows us to insert any amount of space—blanks, tabs, and new-line characters—
between tokens. This rule has several important consequences for program layout:

� Statements can be divided over any number of lines. The following statement,
for example, is so long that it would be hard to squeeze it onto a single line:

printf("Dimensional weight (pounds): %d\n",
 (volume + INCHES_PER_POUND - 1) / INCHES_PER_POUND);

� Space between tokens makes it easier for the eye to separate them. For this
reason, I usually put a space before and after each operator:

volume = height * length * width;

I also put a space after each comma. Some programmers go even further, put-
ting spaces around parentheses and other punctuation.

� Indentation can make nesting easier to spot. For example, we should indent
declarations and statements to make it clear that they’re nested inside main.

� Blank lines can divide a program into logical units, making it easier for the
reader to discern the program’s structure. A program with no blank lines is as
hard to read as a book with no chapters.

The celsius.c program of Section 2.6 illustrates several of these guide-
lines. Let’s take a closer look at the main function in that program:

int main(void)
{
 float fahrenheit, celsius;

 printf("Enter Fahrenheit temperature: ");
 scanf("%f", &fahrenheit);

 celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR;

 printf("Celsius equivalent: %.1f\n", celsius);

 return 0;
}

First, observe how the space around =, -, and * makes these operators stand out.
Second, notice how the indentation of declarations and statements makes it obvi-
ous that they all belong to main. Finally, note how blank lines divide main into
five parts: (1) declaring the fahrenheit and celsius variables; (2) obtaining
the Fahrenheit temperature; (3) calculating the value of celsius; (4) printing the
Celsius temperature; and (5) returning to the operating system.

While we’re on the subject of program layout, notice how I’ve placed the {
token underneath main() and put the matching } on a separate line, aligned with
{. Putting } on a separate line lets us insert or delete statements at the end of the
function; aligning it with { makes it easy to spot the end of main.

A final note: Although extra spaces can be added between tokens, it’s not pos-

Q&A

C2.FM Page 28 Friday, February 8, 2008 3:12 PM

Q & A 29

sible to add space within a token without changing the meaning of the program or
causing an error. Writing

fl oat fahrenheit, celsius; /*** WRONG ***/

or

fl
oat fahrenheit, celsius; /*** WRONG ***/

produces an error when the program is compiled. Putting a space inside a string lit-
eral is allowed, although it changes the meaning of the string. However, putting a
new-line character in a string (in other words, splitting the string over two lines) is
illegal:

printf("To C, or not to C:
that is the question.\n"); /*** WRONG ***/

Continuing a string from one line to the next requires a special technique that we’ll
learn in a later chapter.

Q & A

Q: What does GCC stand for? [p. 11]
A: GCC originally stood for “GNU C compiler.” It now stands for “GNU Compiler

Collection,” because the current version of GCC compiles programs written in a
variety of languages, including Ada, C, C++, Fortran, Java, and Objective-C.

Q: OK, so what does GNU stand for?
A: GNU stands for “GNU’s Not UNIX!” (and is pronounced guh-NEW, by the way).

GNU is a project of the Free Software Foundation, an organization set up by Rich-
ard M. Stallman as a protest against the restrictions of licensed UNIX software.
According to its web site, the Free Software Foundation believes that users should
be free to “run, copy, distribute, study, change and improve” software. The GNU
Project has rewritten much traditional UNIX software from scratch and made it
publicly available at no charge.

GCC and other GNU software are crucial to Linux. Linux itself is only the
“kernel” of an operating system (the part that handles program scheduling and
basic I/O services); the GNU software is necessary to have a fully functional oper-
ating system.

For more information on the GNU Project, visit www.gnu.org.

Q: What’s the big deal about GCC, anyway?
A: GCC is significant for many reasons, not least the fact that it’s free and capable of

compiling a number of languages. It runs under many operating systems and gen-
erates code for many different CPUs, including all the widely used ones. GCC is

continuing a string ➤13.1

C2.FM Page 29 Friday, February 8, 2008 3:12 PM

http://www.gnu.org

30 Chapter 2 C Fundamentals

the primary compiler for many UNIX-based operating systems, including Linux,
BSD, and Mac OS X, and it’s used extensively for commercial software develop-
ment. For more information about GCC, visit gcc.gnu.org.

Q: How good is GCC at finding errors in programs?
A: GCC has various command-line options that control how thoroughly it checks pro-

grams. When these options are used, GCC is quite good at finding potential trouble
spots in a program. Here are some of the more popular options:

-Wall Causes the compiler to produce warning messages when it
detects possible errors. (-W can be followed by codes for
specific warnings; -Wall means “all -W options.”) Should
be used in conjunction with -O for maximum effect.

-W Issues additional warning messages beyond those produced
by -Wall.

-pedantic Issues all warnings required by the C standard. Causes pro-
grams that use nonstandard features to be rejected.

-ansi Turns off features of GCC that aren’t standard C and enables
a few standard features that are normally disabled.

-std=c89
-std=c99 Specifies which version of C the compiler should use to

check the program.

These options are often used in combination:

% gcc -O -Wall -W -pedantic -ansi -std=c99 -o pun pun.c

Q: Why is C so terse? It seems as though programs would be more readable if C
used begin and end instead of { and }, integer instead of int, and so
forth. [p. 12]

A: Legend has it that the brevity of C programs is due to the environment that existed
in Bell Labs at the time the language was developed. The first C compiler ran on a
DEC PDP-11 (an early minicomputer); programmers used a teletype—essentially
a typewriter connected to a computer—to enter programs and print listings.
Because teletypes were very slow (they could print only 10 characters per second),
minimizing the number of characters in a program was clearly advantageous.

Q: In some C books, the main function ends with exit(0) instead of return
0. Are these the same? [p. 14]

A: When they appear inside main, these statements are indeed equivalent: both ter-
minate the program, returning the value 0 to the operating system. Which one to
use is mostly a matter of taste.

Q: What happens if a program reaches the end of the main function without exe-
cuting a return statement? [p. 14]

A: The return statement isn’t mandatory; if it’s missing, the program will still ter-

C2.FM Page 30 Friday, February 8, 2008 3:12 PM

Q & A 31

minate. In C89, the value returned to the operating system is undefined. In C99, if
main is declared to return an int (as in our examples), the program returns 0 to
the operating system; otherwise, the program returns an unspecified value.

Q: Does the compiler remove a comment entirely or replace it with blank space?
A: Some old C compilers deleted all the characters in each comment, making it possi-

ble to write

a/**/b = 0;

and have the compiler interpret it as

ab = 0;

According to the C standard, however, the compiler must replace each comment by
a single space character, so this trick doesn’t work. Instead, we’d end up with the
following (illegal) statement:

a b = 0;

Q: How can I tell if my program has an unterminated comment?
A: If you’re lucky, the program won’t compile because the comment has rendered the

program illegal. If the program does compile, there are several techniques that you
can use. Stepping through the program line by line with a debugger will reveal if
any lines are being skipped. Some IDEs display comments in a distinctive color to
distinguish them from surrounding code. If you’re using such an environment, you
can easily spot unterminated comments, since program text will have a different
color if it’s accidentally included in a comment. A program such as lint can also
help.

Q: Is it legal to nest one comment inside another?
A: Old-style comments (/* … */) can’t be nested. For instance, the following code

is illegal:

/*
 /*** WRONG ***/
*/

The */ symbol on the second line matches the /* symbol on the first line, so the
compiler will flag the */ symbol on the third line as an error.

C’s prohibition against nested comments can sometimes be a problem. Sup-
pose we’ve written a long program containing many short comments. To disable a
portion of the program temporarily (during testing, say), our first impulse is to
“comment out” the offending lines with /* and */. Unfortunately, this method
won’t work if the lines contain old-style comments. C99 comments (those begin-
ning with //) can be nested inside old-style comments, however—another advan-
tage to using this kind of comment.

C99

lint ➤1.2

C99

C2.FM Page 31 Friday, February 8, 2008 3:12 PM

32 Chapter 2 C Fundamentals

In any event, there’s a better way to disable portions of a program, as we’ll see
later.

Q: Where does the float type get its name? [p. 17]
A: float is short for “floating-point,” a technique for storing numbers in which the

decimal point “floats.” A float value is usually stored in two parts: the fraction
(or mantissa) and the exponent. The number 12.0 might be stored as 1.5 × 23, for
example, where 1.5 is the fraction and 3 is the exponent. Some programming lan-
guages call this type real instead of float.

Q: Why do floating-point constants need to end with the letter f? [p. 19]
A: For the full explanation, see Chapter 7. Here’s the short answer: a constant that

contains a decimal point but doesn’t end with f has type double (short for “dou-
ble precision”). double values are stored more accurately than float values.
Moreover, double values can be larger than float values, which is why we
need to add the letter f when assigning to a float variable. Without the f, a
warning may be generated about the possibility of a number being stored into a
float variable that exceeds the capacity of the variable.

*Q: Is it really true that there’s no limit on the length of an identifier? [p. 26]
A: Yes and no. The C89 standard says that identifiers may be arbitrarily long. How-

ever, compilers are only required to remember the first 31 characters (63 characters
in C99). Thus, if two names begin with the same 31 characters, a compiler might
be unable to distinguish between them.

To make matters even more complicated, there are special rules for identifiers
with external linkage; most function names fall into this category. Since these
names must be made available to the linker, and since some older linkers can han-
dle only short names, only the first six characters are significant in C89. Moreover,
the case of letters may not matter. As a result, ABCDEFG and abcdefh might be
treated as the same name. (In C99, the first 31 characters are significant, and the
case of letters is taken into account.)

Most compilers and linkers are more generous than the standard, so these rules
aren’t a problem in practice. Don’t worry about making identifiers too long—
worry about making them too short.

Q: How many spaces should I use for indentation? [p. 28]
A: That’s a tough question. Leave too little space, and the eye has trouble detecting

indentation. Leave too much, and lines run off the screen (or page). Many C pro-
grammers indent nested statements eight spaces (one tab stop), which is probably
too much. Studies have shown that the optimum amount of indentation is three
spaces, but many programmers feel uncomfortable with numbers that aren’t a
power of two. Although I normally prefer to indent three or four spaces, I’ll use
two spaces in this book so that my programs will fit within the margins.

disabling code ➤14.4

C99

external linkage ➤18.2

C99

C2.FM Page 32 Friday, February 8, 2008 3:12 PM

Exercises 33

Exercises

Section 2.1 1. Create and run Kernighan and Ritchie’s famous “hello, world” program:

#include <stdio.h>

int main(void)
{
 printf("hello, world\n");
}

Do you get a warning message from the compiler? If so, what’s needed to make it go away?

Section 2.2 2. Consider the following program:

#include <stdio.h>

int main(void)
{
 printf("Parkinson's Law:\nWork expands so as to ");
 printf("fill the time\n");
 printf("available for its completion.\n");
 return 0;
}

Section 2.4 3. Condense the dweight.c program by (1) replacing the assignments to height,
length, and width with initializers and (2) removing the weight variable, instead cal-
culating (volume + 165) / 166 within the last printf.

4. Write a program that declares several int and float variables—without initializing
them—and then prints their values. Is there any pattern to the values? (Usually there isn’t.)

Section 2.7 5. Which of the following are not legal C identifiers?

6. Why is it not a good idea for an identifier to contain more than one adjacent underscore (as
in current___balance, for example)?

7. Which of the following are keywords in C?

 Answer available on the Web at knking.com/books/c2.

W

W

(a) Identify the directives and statements in this program.
(b) What output does the program produce?

W

W

(a) 100_bottles
(b) _100_bottles
(c) one__hundred__bottles
(d) bottles_by_the_hundred_

(a) for
(b) If
(c) main
(d) printf
(e) while

W

C2.FM Page 33 Friday, February 8, 2008 3:12 PM

34 Chapter 2 C Fundamentals

Section 2.8 8. How many tokens are there in the following statement?

answer=(3*q-p*p)/3;

9. Insert spaces between the tokens in Exercise 8 to make the statement easier to read.

10. In the dweight.c program (Section 2.4), which spaces are essential?

Programming Projects

1. Write a program that uses printf to display the following picture on the screen:

 *
 *
 *
* *
 * *
 *

2. Write a program that computes the volume of a sphere with a 10-meter radius, using the for-
mula v = 4/3πr3. Write the fraction 4/3 as 4.0f/3.0f. (Try writing it as 4/3. What hap-
pens?) Hint: C doesn’t have an exponentiation operator, so you’ll need to multiply r by itself
twice to compute r3.

3. Modify the program of Programming Project 2 so that it prompts the user to enter the radius
of the sphere.

4. Write a program that asks the user to enter a dollars-and-cents amount, then displays the
amount with 5% tax added:

Enter an amount: 100.00
With tax added: $105.00

5. Write a program that asks the user to enter a value for x and then displays the value of the
following polynomial:

3x5 + 2x4 – 5x3 – x2 + 7x – 6

Hint: C doesn’t have an exponentiation operator, so you’ll need to multiply x by itself
repeatedly in order to compute the powers of x. (For example, x * x * x is x cubed.)

6. Modify the program of Programming Project 5 so that the polynomial is evaluated using the
following formula:

((((3x + 2)x – 5)x – 1)x + 7)x – 6

Note that the modified program performs fewer multiplications. This technique for evaluat-
ing polynomials is known as Horner’s Rule.

7. Write a program that asks the user to enter a U.S. dollar amount and then shows how to pay
that amount using the smallest number of $20, $10, $5, and $1 bills:

Enter a dollar amount: 93

$20 bills: 4
$10 bills: 1
 $5 bills: 0
 $1 bills: 3

W

W

C2.FM Page 34 Friday, February 8, 2008 3:12 PM

Programming Projects 35

Hint: Divide the amount by 20 to determine the number of $20 bills needed, and then reduce
the amount by the total value of the $20 bills. Repeat for the other bill sizes. Be sure to use
integer values throughout, not floating-point numbers.

8. Write a program that calculates the remaining balance on a loan after the first, second, and
third monthly payments:

Enter amount of loan: 20000.00
Enter interest rate: 6.0
Enter monthly payment: 386.66

Balance remaining after first payment: $19713.34
Balance remaining after second payment: $19425.25
Balance remaining after third payment: $19135.71

Display each balance with two digits after the decimal point. Hint: Each month, the balance
is decreased by the amount of the payment, but increased by the balance times the monthly
interest rate. To find the monthly interest rate, convert the interest rate entered by the user to
a percentage and divide it by 12.

C2.FM Page 35 Friday, February 8, 2008 3:12 PM

C2.FM Page 36 Friday, February 8, 2008 3:12 PM

37

3 Formatted Input/Output

In seeking the unattainable, simplicity only gets in the way.

scanf and printf, which support formatted reading and writing, are two of the
most frequently used functions in C. As this chapter shows, both are powerful but
tricky to use properly. Section 3.1 describes printf, and Section 3.2 covers
scanf. Neither section gives complete details, which will have to wait until Chap-
ter 22.

3.1 The printf Function

The printf function is designed to display the contents of a string, known as the
format string, with values possibly inserted at specified points in the string. When
it’s called, printf must be supplied with the format string, followed by any val-
ues that are to be inserted into the string during printing:

printf(string, expr1, expr2, …);

The values displayed can be constants, variables, or more complicated expressions.
There’s no limit on the number of values that can be printed by a single call of
printf.

The format string may contain both ordinary characters and conversion speci-
fications, which begin with the % character. A conversion specification is a place-
holder representing a value to be filled in during printing. The information that
follows the % character specifies how the value is converted from its internal form
(binary) to printed form (characters)—that’s where the term “conversion specifica-
tion” comes from. For example, the conversion specification %d specifies that
printf is to convert an int value from binary to a string of decimal digits, while
%f does the same for a float value.

C3.FM Page 37 Friday, February 8, 2008 3:23 PM

38 Chapter 3 Formatted Input/Output

Ordinary characters in a format string are printed exactly as they appear in the
string; conversion specifications are replaced by the values to be printed. Consider
the following example:

int i, j;
float x, y;

i = 10;
j = 20;
x = 43.2892f;
y = 5527.0f;

printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

This call of printf produces the following output:

i = 10, j = 20, x = 43.289200, y = 5527.000000

The ordinary characters in the format string are simply copied to the output line.
The four conversion specifications are replaced by the values of the variables i, j,
x, and y, in that order.

C compilers aren’t required to check that the number of conversion specifications
in a format string matches the number of output items. The following call of
printf has more conversion specifications than values to be printed:

printf("%d %d\n", i); /*** WRONG ***/

printf will print the value of i correctly, then print a second (meaningless) inte-
ger value. A call with too few conversion specifications has similar problems:

printf("%d\n", i, j); /*** WRONG ***/

In this case, printf prints the value of i but doesn’t show the value of j.
Furthermore, compilers aren’t required to check that a conversion specifica-

tion is appropriate for the type of item being printed. If the programmer uses an
incorrect specification, the program will simply produce meaningless output. Con-
sider the following call of printf, in which the int variable i and the float
variable x are in the wrong order:

printf("%f %d\n", i, x); /*** WRONG ***/

Since printf must obey the format string, it will dutifully display a float
value, followed by an int value. Unfortunately, both will be meaningless.

Conversion Specifications

Conversion specifications give the programmer a great deal of control over the
appearance of output. On the other hand, they can be complicated and hard to read.
In fact, describing conversion specifications in complete detail is too arduous a

C3.FM Page 38 Friday, February 8, 2008 3:23 PM

3.1 The printf Function 39

task to tackle this early in the book. Instead, we’ll just take a brief look at some of
their more important capabilities.

In Chapter 2, we saw that a conversion specification can include formatting
information. In particular, we used %.1f to display a float value with one digit
after the decimal point. More generally, a conversion specification can have the
form %m.pX or %-m.pX, where m and p are integer constants and X is a letter.
Both m and p are optional; if p is omitted, the period that separates m and p is also
dropped. In the conversion specification %10.2f, m is 10, p is 2, and X is f. In
the specification %10f, m is 10 and p (along with the period) is missing, but in the
specification %.2f, p is 2 and m is missing.

The minimum field width, m, specifies the minimum number of characters to
print. If the value to be printed requires fewer than m characters, the value is right-
justified within the field. (In other words, extra spaces precede the value.) For
example, the specification %4d would display the number 123 as •123. (In this
chapter, I’ll use • to represent the space character.) If the value to be printed
requires more than m characters, the field width automatically expands to the nec-
essary size. Thus, the specification %4d would display the number 12345 as
12345—no digits are lost. Putting a minus sign in front of m causes left justifica-
tion; the specification %-4d would display 123 as 123•.

The meaning of the precision, p, isn’t as easily described, since it depends on
the choice of X, the conversion specifier. X indicates which conversion should be
applied to the value before it’s printed. The most common conversion specifiers for
numbers are:

� d — Displays an integer in decimal (base 10) form. p indicates the minimum
number of digits to display (extra zeros are added to the beginning of the num-
ber if necessary); if p is omitted, it is assumed to have the value 1. (In other
words, %d is the same as %.1d.)

� e — Displays a floating-point number in exponential format (scientific nota-
tion). p indicates how many digits should appear after the decimal point (the
default is 6). If p is 0, the decimal point is not displayed.

� f — Displays a floating-point number in “fixed decimal” format, without an
exponent. p has the same meaning as for the e specifier.

� g — Displays a floating-point number in either exponential format or fixed
decimal format, depending on the number’s size. p indicates the maximum
number of significant digits (not digits after the decimal point) to be dis-
played. Unlike the f conversion, the g conversion won’t show trailing zeros.
Furthermore, if the value to be printed has no digits after the decimal point, g
doesn’t display the decimal point.

The g specifier is especially useful for displaying numbers whose size can’t be
predicted when the program is written or that tend to vary widely in size. When
used to print a moderately large or moderately small number, the g specifier uses
fixed decimal format. But when used to print a very large or very small number,
the g specifier switches to exponential format so that the number will require fewer
characters.

Q&A

C3.FM Page 39 Friday, February 8, 2008 3:23 PM

40 Chapter 3 Formatted Input/Output

There are many other specifiers besides %d, %e, %f, and %g. I’ll gradually
introduce many of them in subsequent chapters. For the full list, and for a complete
explanation of the other capabilities of conversion specifications, consult Section
22.3.

PROGRAM Using printf to Format Numbers

The following program illustrates the use of printf to print integers and float-
ing-point numbers in various formats.

tprintf.c /* Prints int and float values in various formats */

#include <stdio.h>

int main(void)
{
 int i;
 float x;

 i = 40;
 x = 839.21f;

 printf("|%d|%5d|%-5d|%5.3d|\n", i, i, i, i);
 printf("|%10.3f|%10.3e|%-10g|\n", x, x, x);

 return 0;
}

The | characters in the printf format strings are there merely to help show
how much space each number occupies when printed; unlike % or \, the | charac-
ter has no special significance to printf. The output of this program is:

|40| 40|40 | 040|
| 839.210| 8.392e+02|839.21 |

Let’s take a closer look at the conversion specifications used in this program:

� %d — Displays i in decimal form, using a minimum amount of space.

� %5d — Displays i in decimal form, using a minimum of five characters.
Since i requires only two characters, three spaces were added.

� %-5d — Displays i in decimal form, using a minimum of five characters;
since the value of i doesn’t require five characters, the spaces are added after-
ward (that is, i is left-justified in a field of length five).

� %5.3d — Displays i in decimal form, using a minimum of five characters
overall and a minimum of three digits. Since i is only two digits long, an extra
zero was added to guarantee three digits. The resulting number is only three
characters long, so two spaces were added, for a total of five characters (i is
right-justified).

� %10.3f — Displays x in fixed decimal form, using 10 characters overall,

specifiers for integers ➤7.1

specifiers for floats ➤7.2

specifiers for characters ➤7.3

specifiers for strings ➤13.3

C3.FM Page 40 Friday, February 8, 2008 3:23 PM

3.1 The printf Function 41

with three digits after the decimal point. Since x requires only seven charac-
ters (three before the decimal point, three after the decimal point, and one for
the decimal point itself), three spaces precede x.

� %10.3e — Displays x in exponential form, using 10 characters overall, with
three digits after the decimal point. x requires nine characters altogether
(including the exponent), so one space precedes x.

� %-10g — Displays x in either fixed decimal form or exponential form, using
10 characters overall. In this case, printf chose to display x in fixed deci-
mal form. The presence of the minus sign forces left justification, so x is fol-
lowed by four spaces.

Escape Sequences

The \n code that we often use in format strings is called an escape sequence.
Escape sequences enable strings to contain characters that would otherwise cause
problems for the compiler, including nonprinting (control) characters and charac-
ters that have a special meaning to the compiler (such as "). We’ll provide a com-
plete list of escape sequences later; for now, here’s a sample:

Alert (bell) \a
Backspace \b
New line \n
Horizontal tab \t

When they appear in printf format strings, these escape sequences represent
actions to perform upon printing. Printing \a causes an audible beep on most
machines. Printing \b moves the cursor back one position. Printing \n advances
the cursor to the beginning of the next line. Printing \t moves the cursor to the
next tab stop.

A string may contain any number of escape sequences. Consider the following
printf example, in which the format string contains six escape sequences:

printf("Item\tUnit\tPurchase\n\tPrice\tDate\n");

Executing this statement prints a two-line heading:

Item Unit Purchase
 Price Date

Another common escape sequence is \", which represents the " character.
Since the " character marks the beginning and end of a string, it can’t appear
within a string without the use of this escape sequence. Here’s an example:

printf("\"Hello!\"");

This statement produces the following output:

"Hello!"

escape sequences ➤7.3

Q&A

C3.FM Page 41 Friday, February 8, 2008 3:23 PM

42 Chapter 3 Formatted Input/Output

Incidentally, you can’t just put a single \ character in a string; the compiler
will assume that it’s the beginning of an escape sequence. To print a single \ char-
acter, put two \ characters in the string:

printf("\\"); /* prints one \ character */

3.2 The scanf Function

Just as printf prints output in a specified format, scanf reads input according
to a particular format. A scanf format string, like a printf format string, may
contain both ordinary characters and conversion specifications. The conversions
allowed with scanf are essentially the same as those used with printf.

In many cases, a scanf format string will contain only conversion specifica-
tions, as in the following example:

int i, j;
float x, y;

scanf("%d%d%f%f", &i, &j, &x, &y);

Suppose that the user enters the following input line:

1 -20 .3 -4.0e3

scanf will read the line, converting its characters to the numbers they represent,
and then assign 1, –20, 0.3, and –4000.0 to i, j, x, and y, respectively. “Tightly
packed” format strings like "%d%d%f%f" are common in scanf calls. printf
format strings are less likely to have adjacent conversion specifications.

scanf, like printf, contains several traps for the unwary. When using
scanf, the programmer must check that the number of conversion specifications
matches the number of input variables and that each conversion is appropriate for
the corresponding variable—as with printf, the compiler isn’t required to check
for a possible mismatch. Another trap involves the & symbol, which normally pre-
cedes each variable in a scanf call. The & is usually (but not always) required,
and it’s the programmer’s responsibility to remember to use it.

Forgetting to put the & symbol in front of a variable in a call of scanf will have
unpredictable—and possibly disastrous—results. A program crash is a common
outcome. At the very least, the value that is read from the input won’t be stored in
the variable; instead, the variable will retain its old value (which may be meaning-
less if the variable wasn’t given an initial value). Omitting the & is an extremely
common error—be careful! Some compilers can spot this error and produce a
warning message such as “format argument is not a pointer.” (The term pointer is
defined in Chapter 11; the & symbol is used to create a pointer to a variable.) If you
get a warning, check for a missing &.

C3.FM Page 42 Friday, February 8, 2008 3:23 PM

3.2 The scanf Function 43

Calling scanf is a powerful but unforgiving way to read data. Many profes-
sional C programmers avoid scanf, instead reading all data in character form and
converting it to numeric form later. We’ll use scanf quite a bit, especially in the
early chapters of this book, because it provides a simple way to read numbers. Be
aware, however, that many of our programs won’t behave properly if the user
enters unexpected input. As we’ll see later, it’s possible to have a program test
whether scanf successfully read the requested data (and attempt to recover if it
didn’t). Such tests are impractical for the programs in this book—they would add
too many statements and obscure the point of the examples.

How scanf Works
scanf can actually do much more than I’ve indicated so far. It is essentially a
“pattern-matching” function that tries to match up groups of input characters with
conversion specifications.

Like the printf function, scanf is controlled by the format string. When it
is called, scanf begins processing the information in the string, starting at the
left. For each conversion specification in the format string, scanf tries to locate
an item of the appropriate type in the input data, skipping blank space if necessary.
scanf then reads the item, stopping when it encounters a character that can’t pos-
sibly belong to the item. If the item was read successfully, scanf continues pro-
cessing the rest of the format string. If any item is not read successfully, scanf
returns immediately without looking at the rest of the format string (or the remain-
ing input data).

As it searches for the beginning of a number, scanf ignores white-space
characters (the space, horizontal and vertical tab, form-feed, and new-line charac-
ters). As a result, numbers can be put on a single line or spread out over several
lines. Consider the following call of scanf:

scanf("%d%d%f%f", &i, &j, &x, &y);

Suppose that the user enters three lines of input:

 1
-20 .3
 -4.0e3

scanf sees one continuous stream of characters:

••1¤-20•••.3¤•••-4.0e3¤

(I’m using • to represent the space character and ¤ to represent the new-line char-
acter.) Since it skips over white-space characters as it looks for the beginning of
each number, scanf will be able to read the numbers successfully. In the follow-
ing diagram, an s under a character indicates that it was skipped, and an r indi-
cates it was read as part of an input item:

••1¤-20•••.3¤•••-4.0e3¤
ssrsrrrsssrrssssrrrrrr

detecting errors in scanf ➤22.3

C3.FM Page 43 Friday, February 8, 2008 3:23 PM

44 Chapter 3 Formatted Input/Output

scanf “peeks” at the final new-line character without actually reading it. This
new-line will be the first character read by the next call of scanf.

What rules does scanf follow to recognize an integer or a floating-point
number? When asked to read an integer, scanf first searches for a digit, a plus
sign, or a minus sign; it then reads digits until it reaches a nondigit. When asked to
read a floating-point number, scanf looks for

a plus or minus sign (optional), followed by

a series of digits (possibly containing a decimal point), followed by

an exponent (optional). An exponent consists of the letter e (or E), an optional
sign, and one or more digits.

The %e, %f, and %g conversions are interchangeable when used with scanf; all
three follow the same rules for recognizing a floating-point number.

When scanf encounters a character that can’t be part of the current item, the
character is “put back” to be read again during the scanning of the next input item
or during the next call of scanf. Consider the following (admittedly pathological)
arrangement of our four numbers:

1-20.3-4.0e3¤

Let’s use the same call of scanf as before:

scanf("%d%d%f%f", &i, &j, &x, &y);

Here’s how scanf would process the new input:

� Conversion specification: %d. The first nonblank input character is 1; since
integers can begin with 1, scanf then reads the next character, -. Recogniz-
ing that - can’t appear inside an integer, scanf stores 1 into i and puts the -
character back.

� Conversion specification: %d. scanf then reads the characters -, 2, 0, and .
(period). Since an integer can’t contain a decimal point, scanf stores –20
into j and puts the . character back.

� Conversion specification: %f. scanf reads the characters ., 3, and -. Since a
floating-point number can’t contain a minus sign after a digit, scanf stores
0.3 into x and puts the - character back.

� Conversion specification: %f. Lastly, scanf reads the characters -, 4, ., 0,
e, 3, and ¤ (new-line). Since a floating-point number can’t contain a new-line
character, scanf stores –4.0 × 103 into y and puts the new-line character
back.

In this example, scanf was able to match every conversion specification in the
format string with an input item. Since the new-line character wasn’t read, it will
be left for the next call of scanf.

Q&A

C3.FM Page 44 Friday, February 8, 2008 3:23 PM

3.2 The scanf Function 45

Ordinary Characters in Format Strings

The concept of pattern-matching can be taken one step further by writing format
strings that contain ordinary characters in addition to conversion specifications.
The action that scanf takes when it processes an ordinary character in a format
string depends on whether or not it’s a white-space character.

� White-space characters. When it encounters one or more consecutive white-
space characters in a format string, scanf repeatedly reads white-space char-
acters from the input until it reaches a non-white-space character (which is
“put back”). The number of white-space characters in the format string is
irrelevant; one white-space character in the format string will match any num-
ber of white-space characters in the input. (Incidentally, putting a white-space
character in a format string doesn’t force the input to contain white-space
characters. A white-space character in a format string matches any number of
white-space characters in the input, including none.)

� Other characters. When it encounters a non-white-space character in a format
string, scanf compares it with the next input character. If the two characters
match, scanf discards the input character and continues processing the for-
mat string. If the characters don’t match, scanf puts the offending character
back into the input, then aborts without further processing the format string or
reading characters from the input.

For example, suppose that the format string is "%d/%d". If the input is

•5/•96

scanf skips the first space while looking for an integer, matches %d with 5,
matches / with /, skips a space while looking for another integer, and matches %d
with 96. On the other hand, if the input is

•5•/•96

scanf skips one space, matches %d with 5, then attempts to match the / in the
format string with a space in the input. There’s no match, so scanf puts the space
back; the •/•96 characters remain to be read by the next call of scanf. To allow
spaces after the first number, we should use the format string "%d /%d" instead.

Confusing printf with scanf

Although calls of scanf and printf may appear similar, there are significant
differences between the two functions; ignoring these differences can be hazardous
to the health of your program.

One common mistake is to put & in front of variables in a call of printf:

printf("%d %d\n", &i, &j); /*** WRONG ***/

C3.FM Page 45 Friday, February 8, 2008 3:23 PM

46 Chapter 3 Formatted Input/Output

Fortunately, this mistake is fairly easy to spot: printf will display a couple of
odd-looking numbers instead of the values of i and j.

Since scanf normally skips white-space characters when looking for data
items, there’s often no need for a format string to include characters other than
conversion specifications. Incorrectly assuming that scanf format strings should
resemble printf format strings—another common error—may cause scanf to
behave in unexpected ways. Let’s see what happens when the following call of
scanf is executed:

scanf("%d, %d", &i, &j);

scanf will first look for an integer in the input, which it stores in the variable i.
scanf will then try to match a comma with the next input character. If the next
input character is a space, not a comma, scanf will terminate without reading a
value for j.

Although printf format strings often end with \n, putting a new-line character
at the end of a scanf format string is usually a bad idea. To scanf, a new-line
character in a format string is equivalent to a space; both cause scanf to advance
to the next non-white-space character. For example, if the format string is
"%d\n", scanf will skip white space, read an integer, then skip to the next non-
white-space character. A format string like this can cause an interactive program to
“hang” until the user enters a nonblank character.

PROGRAM Adding Fractions

To illustrate scanf’s ability to match patterns, consider the problem of reading a
fraction entered by the user. Fractions are customarily written in the form numera-
tor/denominator. Instead of having the user enter the numerator and denominator
of a fraction as separate integers, scanf makes it possible to read the entire frac-
tion. The following program, which adds two fractions, illustrates this technique.

addfrac.c /* Adds two fractions */

#include <stdio.h>

int main(void)
{
 int num1, denom1, num2, denom2, result_num, result_denom;

 printf("Enter first fraction: ");
 scanf("%d/%d", &num1, &denom1);

 printf("Enter second fraction: ");
 scanf("%d/%d", &num2, &denom2);

 result_num = num1 * denom2 + num2 * denom1;

C3.FM Page 46 Friday, February 8, 2008 3:23 PM

Q & A 47

 result_denom = denom1 * denom2;
 printf("The sum is %d/%d\n", result_num, result_denom);

 return 0;
}

A session with this program might have the following appearance:

Enter first fraction: 5/6
Enter second fraction: 3/4
The sum is 38/24

Note that the resulting fraction isn’t reduced to lowest terms.

Q & A

*Q: I’ve seen the %i conversion used to read and write integers. What’s the differ-
ence between %i and %d? [p. 39]

A: In a printf format string, there’s no difference between the two. In a scanf for-
mat string, however, %d can only match an integer written in decimal (base 10)
form, while %i can match an integer expressed in octal (base 8), decimal, or hexa-
decimal (base 16). If an input number has a 0 prefix (as in 056), %i treats it as an
octal number; if it has a 0x or 0X prefix (as in 0x56), %i treats it as a hex number.
Using %i instead of %d to read a number can have surprising results if the user
should accidentally put 0 at the beginning of the number. Because of this trap, I
recommend sticking with %d.

Q: If printf treats % as the beginning of a conversion specification, how can I
print the % character?

A: If printf encounters two consecutive % characters in a format string, it prints a
single % character. For example, the statement

printf("Net profit: %d%%\n", profit);

might print

Net profit: 10%

Q: The \t escape is supposed to cause printf to advance to the next tab stop.
How do I know how far apart tab stops are? [p. 41]

A: You don’t. The effect of printing \t isn’t defined in C; it depends on what your
operating system does when asked to print a tab character. Tab stops are typically
eight characters apart, but C makes no guarantee.

Q: What does scanf do if it’s asked to read a number but the user enters nonnu-
meric input?

octal numbers ➤7.1

hexadecimal numbers ➤7.1

C3.FM Page 47 Friday, February 8, 2008 3:23 PM

48 Chapter 3 Formatted Input/Output

A: Let’s look at the following example:

printf("Enter a number: ");
scanf("%d", &i);

Suppose that the user enters a valid number, followed by nonnumeric characters:

Enter a number: 23foo

In this case, scanf reads the 2 and the 3, storing 23 in i. The remaining charac-
ters (foo) are left to be read by the next call of scanf (or some other input func-
tion). On the other hand, suppose that the input is invalid from the beginning:

Enter a number: foo

In this case, the value of i is undefined and foo is left for the next scanf.
What can we do about this sad state of affairs? Later, we’ll see how to test

whether a call of scanf has succeeded. If the call fails, we can have the program
either terminate or try to recover, perhaps by discarding the offending input and
asking the user to try again. (Ways to discard bad input are discussed in the Q&A
section at the end of Chapter 22.)

Q: I don’t understand how scanf can “put back” characters and read them
again later. [p. 44]

A: As it turns out, programs don’t read user input as it is typed. Instead, input is stored
in a hidden buffer, to which scanf has access. It’s easy for scanf to put charac-
ters back into the buffer for subsequent reading. Chapter 22 discusses input buffer-
ing in more detail.

Q: What does scanf do if the user puts punctuation marks (commas, for exam-
ple) between numbers?

A: Let’s look at a simple example. Suppose that we try to read a pair of integers using
scanf:

printf("Enter two numbers: ");
scanf("%d%d", &i, &j);

If the user enters

4,28

scanf will read the 4 and store it in i. As it searches for the beginning of the sec-
ond number, scanf encounters the comma. Since numbers can’t begin with a
comma, scanf returns immediately. The comma and the second number are left
for the next call of scanf.

Of course, we can easily solve the problem by adding a comma to the format
string if we’re sure that the numbers will always be separated by a comma:

printf("Enter two numbers, separated by a comma: ");
scanf("%d,%d", &i, &j);

detecting errors in scanf ➤22.3

C3.FM Page 48 Friday, February 8, 2008 3:23 PM

Exercises 49

Exercises

Section 3.1 1. What output do the following calls of printf produce?

2. Write calls of printf that display a float variable x in the following formats.

Section 3.2 3. For each of the following pairs of scanf format strings, indicate whether or not the two
strings are equivalent. If they’re not, show how they can be distinguished.

*4. Suppose that we call scanf as follows:

scanf("%d%f%d", &i, &x, &j);

If the user enters

10.3 5 6

what will be the values of i, x, and j after the call? (Assume that i and j are int variables
and x is a float variable.)

*5. Suppose that we call scanf as follows:

scanf("%f%d%f", &x, &i, &y);

If the user enters

12.3 45.6 789

what will be the values of x, i, and y after the call? (Assume that x and y are float vari-
ables and i is an int variable.)

6. Show how to modify the addfrac.c program of Section 3.2 so that the user is allowed to
enter fractions that contain spaces before and after each / character.

(a) printf("%6d,%4d", 86, 1040);

(b) printf("%12.5e", 30.253);

(c) printf("%.4f", 83.162);

(d) printf("%-6.2g", .0000009979);

(a) Exponential notation; left-justified in a field of size 8; one digit after the decimal point.
(b) Exponential notation; right-justified in a field of size 10; six digits after the decimal

point.
(c) Fixed decimal notation; left-justified in a field of size 8; three digits after the decimal

point.
(d) Fixed decimal notation; right-justified in a field of size 6; no digits after the decimal

point.

W

(a) "%d" versus " %d"

(b) "%d-%d-%d" versus "%d -%d -%d"

(c) "%f" versus "%f "

(d) "%f,%f" versus "%f, %f"

*Starred exercises are tricky—the correct answer is usually not the obvious one. Read the question
thoroughly, review the relevant section if necessary, and be careful!

W

C3.FM Page 49 Friday, February 8, 2008 3:23 PM

50 Chapter 3 Formatted Input/Output

Programming Projects

1. Write a program that accepts a date from the user in the form mm/dd/yyyy and then dis-
plays it in the form yyyymmdd:

Enter a date (mm/dd/yyyy): 2/17/2011
You entered the date 20110217

2. Write a program that formats product information entered by the user. A session with the
program should look like this:

Enter item number: 583
Enter unit price: 13.5
Enter purchase date (mm/dd/yyyy): 10/24/2010

Item Unit Purchase
 Price Date
583 $ 13.50 10/24/2010

The item number and date should be left justified; the unit price should be right justified.
Allow dollar amounts up to $9999.99. Hint: Use tabs to line up the columns.

3. Books are identified by an International Standard Book Number (ISBN). ISBNs assigned
after January 1, 2007 contain 13 digits, arranged in five groups, such as 978-0-393-97950-3.
(Older ISBNs use 10 digits.) The first group (the GS1 prefix) is currently either 978 or 979.
The group identifier specifies the language or country of origin (for example, 0 and 1 are
used in English-speaking countries). The publisher code identifies the publisher (393 is the
code for W. W. Norton). The item number is assigned by the publisher to identify a specific
book (97950 is the code for this book). An ISBN ends with a check digit that’s used to verify
the accuracy of the preceding digits. Write a program that breaks down an ISBN entered by
the user:

Enter ISBN: 978-0-393-97950-3
GS1 prefix: 978
Group identifier: 0
Publisher code: 393
Item number: 97950
Check digit: 3

Note: The number of digits in each group may vary; you can’t assume that groups have the
lengths shown in this example. Test your program with actual ISBN values (usually found
on the back cover of a book and on the copyright page).

4. Write a program that prompts the user to enter a telephone number in the form (xxx) xxx-
xxxx and then displays the number in the form xxx.xxx.xxx:

Enter phone number [(xxx) xxx-xxxx]: (404) 817-6900
You entered 404.817.6900

5. Write a program that asks the user to enter the numbers from 1 to 16 (in any order) and then
displays the numbers in a 4 by 4 arrangement, followed by the sums of the rows, columns,
and diagonals:

Enter the numbers from 1 to 16 in any order:
16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1

W

W

C3.FM Page 50 Friday, February 8, 2008 3:23 PM

Programming Projects 51

16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1

Row sums: 34 34 34 34
Column sums: 34 34 34 34
Diagonal sums: 34 34

If the row, column, and diagonal sums are all the same (as they are in this example), the
numbers are said to form a magic square. The magic square shown here appears in a 1514
engraving by artist and mathematician Albrecht Dürer. (Note that the middle numbers in the
last row give the date of the engraving.)

6. Modify the addfrac.c program of Section 3.2 so that the user enters both fractions at the
same time, separated by a plus sign:

Enter two fractions separated by a plus sign: 5/6+3/4
The sum is 38/24

C3.FM Page 51 Friday, February 8, 2008 3:23 PM

C3.FM Page 52 Friday, February 8, 2008 3:23 PM

53

4 Expressions

One does not learn computing by using a hand
calculator, but one can forget arithmetic.

One of C’s distinguishing characteristics is its emphasis on expressions—formulas
that show how to compute a value—rather than statements. The simplest expres-
sions are variables and constants. A variable represents a value to be computed as
the program runs; a constant represents a value that doesn’t change. More compli-
cated expressions apply operators to operands (which are themselves expressions).
In the expression a + (b * c), the + operator is applied to the operands a and
(b * c), both of which are expressions in their own right.

Operators are the basic tools for building expressions, and C has an unusually
rich collection of them. To start off, C provides the rudimentary operators that are
found in most programming languages:

� Arithmetic operators, including addition, subtraction, multiplication, and divi-
sion.

� Relational operators to perform comparisons such as “i is greater than 0.”

� Logical operators to build conditions such as “i is greater than 0 and i is less
than 10.”

But C doesn’t stop here; it goes on to provide dozens of other operators. There are
so many operators, in fact, that we’ll need to introduce them gradually over the
first twenty chapters of this book. Mastering so many operators can be a chore, but
it’s essential to becoming proficient at C.

In this chapter, we’ll cover some of C’s most fundamental operators: the arith-
metic operators (Section 4.1), the assignment operators (Section 4.2), and the
increment and decrement operators (Section 4.3). Section 4.1 also explains opera-
tor precedence and associativity, which are important for expressions that contain
more than one operator. Section 4.4 describes how C expressions are evaluated.
Finally, Section 4.5 introduces the expression statement, an unusual feature that
allows any expression to serve as a statement.

C4.FM Page 53 Friday, February 8, 2008 3:27 PM

54 Chapter 4 Expressions

4.1 Arithmetic Operators

The arithmetic operators—operators that perform addition, subtraction, multipli-
cation, and division—are the workhorses of many programming languages, includ-
ing C. Table 4.1 shows C’s arithmetic operators.

The additive and multiplicative operators are said to be binary because they
require two operands. The unary operators require one operand:

i = +1; /* + used as a unary operator */
j = -i; /* - used as a unary operator */

The unary + operator does nothing; in fact, it didn’t even exist in K&R C. It’s used
primarily to emphasize that a numeric constant is positive.

The binary operators probably look familiar. The only one that might not is %,
the remainder operator. The value of i % j is the remainder when i is divided by
j. For example, the value of 10 % 3 is 1, and the value of 12 % 4 is 0.

The binary operators in Table 4.1—with the exception of %—allow either inte-
ger or floating-point operands, with mixing allowed. When int and float oper-
ands are mixed, the result has type float. Thus, 9 + 2.5f has the value 11.5,
and 6.7f / 2 has the value 3.35.

The / and % operators require special care:

� The / operator can produce surprising results. When both of its operands are
integers, the / operator “truncates” the result by dropping the fractional part.
Thus, the value of 1 / 2 is 0, not 0.5.

� The % operator requires integer operands; if either operand is not an integer,
the program won’t compile.

� Using zero as the right operand of either / or % causes undefined behavior.

� Describing the result when / and % are used with negative operands is tricky.
The C89 standard states that if either operand is negative, the result of a divi-
sion can be rounded either up or down. (For example, the value of -9 / 7
could be either –1 or –2). If i or j is negative, the sign of i % j in C89
depends on the implementation. (For example, the value of -9 % 7 could be
either –2 or 5). In C99, on the other hand, the result of a division is always
truncated toward zero (so -9 / 7 has the value –1) and the value of i % j has
the same sign as i (hence the value of -9 % 7 is –2).

Unary Binary

Additive Multiplicative

+ unary plus
- unary minus

+ addition
- subtraction

* multiplication
/ division
% remainder

Table 4.1
Arithmetic Operators

Q&A

undefined behavior ➤4.4

Q&A

C99

C4.FM Page 54 Friday, February 8, 2008 3:27 PM

4.1 Arithmetic Operators 55

Implementation-Defined Behavior

The term implementation-defined will arise often enough that it’s worth taking a
moment to discuss it. The C standard deliberately leaves parts of the language
unspecified, with the understanding that an “implementation”—the software needed
to compile, link, and execute programs on a particular platform—will fill in the
details. As a result, the behavior of the program may vary somewhat from one
implementation to another. The behavior of the / and % operators for negative oper-
ands in C89 is an example of implementation-defined behavior.

Leaving parts of the language unspecified may seem odd or even dangerous,
but it reflects C’s philosophy. One of the language’s goals is efficiency, which often
means matching the way that hardware behaves. Some CPUs yield –1 when –9 is
divided by 7, while others produce –2; the C89 standard simply reflects this fact of
life.

It’s best to avoid writing programs that depend on implementation-defined
behavior. If that’s not possible, at least check the manual carefully—the C standard
requires that implementation-defined behavior be documented.

Operator Precedence and Associativity

When an expression contains more than one operator, its interpretation may not be
immediately clear. For example, does i + j * k mean “add i and j, then multiply
the result by k,” or does it mean “multiply j and k, then add i”? One solution to
this problem is to add parentheses, writing either (i + j) * k or i + (j * k). As
a general rule, C allows the use of parentheses for grouping in all expressions.

What if we don’t use parentheses, though? Will the compiler interpret i + j *
k as (i + j) * k or i + (j * k)? Like many other languages, C uses operator
precedence rules to resolve this potential ambiguity. The arithmetic operators have
the following relative precedence:

Highest: + - (unary)
* / %

Lowest: + - (binary)

Operators listed on the same line (such as + and -) have equal precedence.
When two or more operators appear in the same expression, we can determine

how the compiler will interpret the expression by repeatedly putting parentheses
around subexpressions, starting with high-precedence operators and working down
to low-precedence operators. The following examples illustrate the result:

i + j * k is equivalent to i + (j * k)
-i * -j is equivalent to (-i) * (-j)
+i + j / k is equivalent to (+i) + (j / k)

Operator precedence rules alone aren’t enough when an expression contains two
or more operators at the same level of precedence. In this situation, the associativity

C4.FM Page 55 Friday, February 8, 2008 3:27 PM

56 Chapter 4 Expressions

of the operators comes into play. An operator is said to be left associative if it groups
from left to right. The binary arithmetic operators (*, /, %, +, and -) are all left asso-
ciative, so

i - j - k is equivalent to (i - j) - k
i * j / k is equivalent to (i * j) / k

An operator is right associative if it groups from right to left. The unary arithmetic
operators (+ and -) are both right associative, so

- + i is equivalent to -(+i)

Precedence and associativity rules are important in many languages, but espe-
cially so in C. However, C has so many operators (almost fifty!) that few program-
mers bother to memorize the precedence and associativity rules. Instead, they
consult a table of operators when in doubt or just use plenty of parentheses.

PROGRAM Computing a UPC Check Digit

For a number of years, manufacturers of goods sold in U.S. and Canadian stores
have put a bar code on each product. This code, known as a Universal Product
Code (UPC), identifies both the manufacturer and the product. Each bar code rep-
resents a twelve-digit number, which is usually printed underneath the bars. For
example, the following bar code comes from a package of Stouffer’s French Bread
Pepperoni Pizza:

The digits

0 13800 15173 5

appear underneath the bar code. The first digit identifies the type of item (0 or 7
for most items, 2 for items that must be weighed, 3 for drugs and health-related
merchandise, and 5 for coupons). The first group of five digits identifies the manu-
facturer (13800 is the code for Nestlé USA’s Frozen Food Division). The second
group of five digits identifies the product (including package size). The final digit
is a “check digit,” whose only purpose is to help identify an error in the preceding
digits. If the UPC is scanned incorrectly, the first 11 digits probably won’t be con-
sistent with the last digit, and the store’s scanner will reject the entire code.

Here’s one method of computing the check digit:

Add the first, third, fifth, seventh, ninth, and eleventh digits.
Add the second, fourth, sixth, eighth, and tenth digits.

table of operators ➤Appendix A

C4.FM Page 56 Friday, February 8, 2008 3:27 PM

4.1 Arithmetic Operators 57

Multiply the first sum by 3 and add it to the second sum.
Subtract 1 from the total.
Compute the remainder when the adjusted total is divided by 10.
Subtract the remainder from 9.

Using the Stouffer’s example, we get 0 + 3 + 0 + 1 + 1 + 3 = 8 for the first sum and
1 + 8 + 0 + 5 + 7 = 21 for the second sum. Multiplying the first sum by 3 and add-
ing the second yields 45. Subtracting 1 gives 44. The remainder upon dividing by
10 is 4. When the remainder is subtracted from 9, the result is 5. Here are a couple
of other UPCs, in case you want to try your hand at computing the check digit
(raiding the kitchen cabinet for the answer is not allowed):

Jif Creamy Peanut Butter (18 oz.): 0 51500 24128 ?
Ocean Spray Jellied Cranberry Sauce (8 oz.): 0 31200 01005 ?

The answers appear at the bottom of the page.
Let’s write a program that calculates the check digit for an arbitrary UPC.

We’ll ask the user to enter the first 11 digits of the UPC, then we’ll display the cor-
responding check digit. To avoid confusion, we’ll ask the user to enter the number
in three parts: the single digit at the left, the first group of five digits, and the sec-
ond group of five digits. Here’s what a session with the program will look like:

Enter the first (single) digit: 0
Enter first group of five digits: 13800
Enter second group of five digits: 15173
Check digit: 5

Instead of reading each digit group as a five-digit number, we’ll read it as five
one-digit numbers. Reading the numbers as single digits is more convenient; also,
we won’t have to worry that one of the five-digit numbers is too large to store in an
int variable. (Some older compilers limit the maximum value of an int variable
to 32,767.) To read single digits, we’ll use scanf with the %1d conversion speci-
fication, which matches a one-digit integer.

upc.c /* Computes a Universal Product Code check digit */

#include <stdio.h>

int main(void)
{
 int d, i1, i2, i3, i4, i5, j1, j2, j3, j4, j5,
 first_sum, second_sum, total;

 printf("Enter the first (single) digit: ");
 scanf("%1d", &d);
 printf("Enter first group of five digits: ");
 scanf("%1d%1d%1d%1d%1d", &i1, &i2, &i3, &i4, &i5);
 printf("Enter second group of five digits: ");
 scanf("%1d%1d%1d%1d%1d", &j1, &j2, &j3, &j4, &j5);

The missing check digits are 8 (Jif) and 6 (Ocean Spray).

C4.FM Page 57 Friday, February 8, 2008 3:27 PM

58 Chapter 4 Expressions

 first_sum = d + i2 + i4 + j1 + j3 + j5;
 second_sum = i1 + i3 + i5 + j2 + j4;
 total = 3 * first_sum + second_sum;

 printf("Check digit: %d\n", 9 - ((total - 1) % 10));

 return 0;
}

Note that the expression 9 - ((total - 1) % 10) could have been written
as 9 - (total - 1) % 10, but the extra set of parentheses makes it easier to
understand.

4.2 Assignment Operators

Once the value of an expression has been computed, we’ll often need to store it in
a variable for later use. C’s = (simple assignment) operator is used for that pur-
pose. For updating a value already stored in a variable, C provides an assortment of
compound assignment operators.

Simple Assignment

The effect of the assignment v = e is to evaluate the expression e and copy its value
into v. As the following examples show, e can be a constant, a variable, or a more
complicated expression:

i = 5; /* i is now 5 */
j = i; /* j is now 5 */
k = 10 * i + j; /* k is now 55 */

If v and e don’t have the same type, then the value of e is converted to the type of v
as the assignment takes place:

int i;
float f;

i = 72.99f; /* i is now 72 */
f = 136; /* f is now 136.0 */

We’ll return to the topic of type conversion later.
In many programming languages, assignment is a statement; in C, however,

assignment is an operator, just like +. In other words, the act of assignment pro-
duces a result, just as adding two numbers produces a result. The value of an
assignment v = e is the value of v after the assignment. Thus, the value of i =
72.99f is 72 (not 72.99).

conversion during assignment ➤7.4

C4.FM Page 58 Friday, February 8, 2008 3:27 PM

4.2 Assignment Operators 59

Side Effects

We don’t normally expect operators to modify their operands, since operators in
mathematics don’t. Writing i + j doesn’t modify either i or j; it simply computes
the result of adding i and j.

Most C operators don’t modify their operands, but some do. We say that these
operators have side effects, since they do more than just compute a value. The
simple assignment operator is the first operator we’ve seen that has side effects; it
modifies its left operand. Evaluating the expression i = 0 produces the result 0
and—as a side effect—assigns 0 to i.

Since assignment is an operator, several assignments can be chained together:

i = j = k = 0;

The = operator is right associative, so this assignment is equivalent to

i = (j = (k = 0));

The effect is to assign 0 first to k, then to j, and finally to i.

Watch out for unexpected results in chained assignments as a result of type conver-
sion:

int i;
float f;

f = i = 33.3f;

i is assigned the value 33, then f is assigned 33.0 (not 33.3, as you might think).

In general, an assignment of the form v = e is allowed wherever a value of type
v would be permitted. In the following example, the expression j = i copies i to
j; the new value of j is then added to 1, producing the new value of k:

i = 1;
k = 1 + (j = i);
printf("%d %d %d\n", i, j, k); /* prints "1 1 2" */

Using the assignment operator in this fashion usually isn’t a good idea. For one
thing, “embedded assignments” can make programs hard to read. They can also be
a source of subtle bugs, as we’ll see in Section 4.4.

Lvalues

Most C operators allow their operands to be variables, constants, or expressions
containing other operators. The assignment operator, however, requires an lvalueQ&A

C4.FM Page 59 Friday, February 8, 2008 3:27 PM

60 Chapter 4 Expressions

as its left operand. An lvalue (pronounced “L-value”) represents an object stored in
computer memory, not a constant or the result of a computation. Variables are lval-
ues; expressions such as 10 or 2 * i are not. At this point, variables are the only
lvalues that we know about; other kinds of lvalues will appear in later chapters.

Since the assignment operator requires an lvalue as its left operand, it’s illegal
to put any other kind of expression on the left side of an assignment expression:

12 = i; /*** WRONG ***/
i + j = 0; /*** WRONG ***/
-i = j; /*** WRONG ***/

The compiler will detect errors of this nature, and you’ll get an error message such
as “invalid lvalue in assignment.”

Compound Assignment

Assignments that use the old value of a variable to compute its new value are com-
mon in C programs. The following statement, for example, adds 2 to the value
stored in i:

i = i + 2;

C’s compound assignment operators allow us to shorten this statement and others
like it. Using the += operator, we simply write:

i += 2; /* same as i = i + 2; */

The += operator adds the value of the right operand to the variable on the left.
There are nine other compound assignment operators, including the following:

-= *= /= %=

(We’ll cover the remaining compound assignment operators in a later chapter.) All
compound assignment operators work in much the same way:

v += e adds v to e, storing the result in v
v -= e subtracts e from v, storing the result in v
v *= e multiplies v by e, storing the result in v
v /= e divides v by e, storing the result in v
v %= e computes the remainder when v is divided by e, storing the result in v

Note that I’ve been careful not to say that v += e is “equivalent” to v = v + e. One
problem is operator precedence: i *= j + k isn’t the same as i = i * j + k. There
are also rare cases in which v += e differs from v = v + e because v itself has a side
effect. Similar remarks apply to the other compound assignment operators.

When using the compound assignment operators, be careful not to switch the two
characters that make up the operator. Switching the characters may yield an
expression that is acceptable to the compiler but that doesn’t have the intended
meaning. For example, if you meant to write i += j but typed i =+ j instead, the

other assignment operators ➤20.1

Q&A

C4.FM Page 60 Friday, February 8, 2008 3:27 PM

4.3 Increment and Decrement Operators 61

program will still compile. Unfortunately, the latter expression is equivalent to
i = (+j), which merely copies the value of j into i.

The compound assignment operators have the same properties as the = opera-
tor. In particular, they’re right associative, so the statement

i += j += k;

means

i += (j += k);

4.3 Increment and Decrement Operators

Two of the most common operations on a variable are “incrementing” (adding 1)
and “decrementing” (subtracting 1). We can, of course, accomplish these tasks by
writing

i = i + 1;
j = j - 1;

The compound assignment operators allow us to condense these statements a bit:

i += 1;
j -= 1;

But C allows increments and decrements to be shortened even further, using the ++
(increment) and -- (decrement) operators.

At first glance, the increment and decrement operators are simplicity itself: ++
adds 1 to its operand, whereas -- subtracts 1. Unfortunately, this simplicity is mis-
leading—the increment and decrement operators can be tricky to use. One compli-
cation is that ++ and -- can be used as prefix operators (++i and --i, for
example) or postfix operators (i++ and i--). The correctness of a program may
hinge on picking the proper version.

Another complication is that, like the assignment operators, ++ and -- have
side effects: they modify the values of their operands. Evaluating the expression
++i (a “pre-increment”) yields i + 1 and—as a side effect—increments i:

i = 1;
printf("i is %d\n", ++i); /* prints "i is 2" */
printf("i is %d\n", i); /* prints "i is 2" */

Evaluating the expression i++ (a “post-increment”) produces the result i, but
causes i to be incremented afterwards:

i = 1;
printf("i is %d\n", i++); /* prints "i is 1" */
printf("i is %d\n", i); /* prints "i is 2" */

Q&A

C4.FM Page 61 Friday, February 8, 2008 3:27 PM

62 Chapter 4 Expressions

The first printf shows the original value of i, before it is incremented. The sec-
ond printf shows the new value. As these examples illustrate, ++i means
“increment i immediately,” while i++ means “use the old value of i for now, but
increment i later.” How much later? The C standard doesn’t specify a precise time,
but it’s safe to assume that i will be incremented before the next statement is exe-
cuted.

The -- operator has similar properties:

i = 1;
printf("i is %d\n", --i); /* prints "i is 0" */
printf("i is %d\n", i); /* prints "i is 0" */

i = 1;
printf("i is %d\n", i--); /* prints "i is 1" */
printf("i is %d\n", i); /* prints "i is 0" */

When ++ or -- is used more than once in the same expression, the result can
often be hard to understand. Consider the following statements:

i = 1;
j = 2;
k = ++i + j++;

What are the values of i, j, and k after these statements are executed? Since i is
incremented before its value is used, but j is incremented after it is used, the last
statement is equivalent to

i = i + 1;
k = i + j;
j = j + 1;

so the final values of i, j, and k are 2, 3, and 4, respectively. In contrast, executing
the statements

i = 1;
j = 2;
k = i++ + j++;

will give i, j, and k the values 2, 3, and 3, respectively.
For the record, the postfix versions of ++ and -- have higher precedence than

unary plus and minus and are left associative. The prefix versions have the same
precedence as unary plus and minus and are right associative.

4.4 Expression Evaluation

Table 4.2 summarizes the operators we’ve seen so far. (Appendix A has a similar
table that shows all operators.) The first column shows the precedence of each

Q&A

C4.FM Page 62 Friday, February 8, 2008 3:27 PM

4.4 Expression Evaluation 63

operator relative to the other operators in the table (the highest precedence is 1; the
lowest is 5). The last column shows the associativity of each operator.

Table 4.2 (or its larger cousin in Appendix A) has a variety of uses. Let’s look
at one of these. Suppose that we run across a complicated expression such as

a = b += c++ - d + --e / -f

as we’re reading someone’s program. This expression would be easier to under-
stand if there were parentheses to show how the expression is constructed from
subexpressions. With the help of Table 4.2, adding parentheses to an expression is
easy: after examining the expression to find the operator with highest precedence,
we put parentheses around the operator and its operands, indicating that it should
be treated as a single operand from that point onwards. We then repeat the process
until the expression is fully parenthesized.

In our example, the operator with highest precedence is ++, used here as a
postfix operator, so we put parentheses around ++ and its operand:

a = b += (c++) - d + --e / -f

We now spot a prefix -- operator and a unary minus operator (both prece-
dence 2) in the expression:

a = b += (c++) - d + (--e) / (-f)

Note that the other minus sign has an operand to its immediate left, so it must be a
subtraction operator, not a unary minus operator.

Next, we notice the / operator (precedence 3):

a = b += (c++) - d + ((--e) / (-f))

The expression contains two operators with precedence 4, subtraction and
addition. Whenever two operators with the same precedence are adjacent to an
operand, we’ve got to be careful about associativity. In our example, - and + are
both adjacent to d, so associativity rules apply. The - and + operators group from
left to right, so parentheses go around the subtraction first, then the addition:

a = b += (((c++) - d) + ((--e) / (-f)))

Precedence Name Symbol(s) Associativity
1 increment (postfix)

decrement (postfix)
++
--

left

2 increment (prefix)
decrement (prefix)
unary plus
unary minus

++
--
+
-

right

3 multiplicative * / % left

4 additive + - left

5 assignment = *= /= %= += -= right

Table 4.2
A Partial List of

C Operators

C4.FM Page 63 Friday, February 8, 2008 3:27 PM

64 Chapter 4 Expressions

The only remaining operators are = and +=. Both operators are adjacent to b,
so we must take associativity into account. Assignment operators group from right
to left, so parentheses go around the += expression first, then the = expression:

(a = (b += (((c++) - d) + ((--e) / (-f)))))

The expression is now fully parenthesized.

Order of Subexpression Evaluation

The rules of operator precedence and associativity allow us to break any C expres-
sion into subexpressions—to determine uniquely where the parentheses would go
if the expression were fully parenthesized. Paradoxically, these rules don’t always
allow us to determine the value of the expression, which may depend on the order
in which its subexpressions are evaluated.

C doesn’t define the order in which subexpressions are evaluated (with the
exception of subexpressions involving the logical and, logical or, conditional, and
comma operators). Thus, in the expression (a + b) * (c - d) we don’t know
whether (a + b) will be evaluated before (c - d).

Most expressions have the same value regardless of the order in which their
subexpressions are evaluated. However, this may not be true when a subexpression
modifies one of its operands. Consider the following example:

a = 5;
c = (b = a + 2) - (a = 1);

The effect of executing the second statement is undefined; the C standard doesn’t
say what will happen. With most compilers, the value of c will be either 6 or 2. If
the subexpression (b = a + 2) is evaluated first, b is assigned the value 7 and c is
assigned 6. But if (a = 1) is evaluated first, b is assigned 3 and c is assigned 2.

Avoid writing expressions that access the value of a variable and also modify the
variable elsewhere in the expression. The expression (b = a + 2) - (a = 1)
accesses the value of a (in order to compute a + 2) and also modifies the value of
a (by assigning it 1). Some compilers may produce a warning message such as
“operation on ‘a’ may be undefined” when they encounter such an expression.

To prevent problems, it’s a good idea to avoid using the assignment operators
in subexpressions; instead, use a series of separate assignments. For example, the
statements above could be rewritten as

a = 5;
b = a + 2;
a = 1;
c = b - a;

The value of c will always be 6 after these statements are executed.

logical and and or operators ➤5.1

conditional operator ➤5.2

comma operator ➤6.3

C4.FM Page 64 Friday, February 8, 2008 3:27 PM

4.5 Expression Statements 65

Besides the assignment operators, the only operators that modify their oper-
ands are increment and decrement. When using these operators, be careful that
your expressions don’t depend on a particular order of evaluation. In the following
example, j may be assigned one of two values:

i = 2;
j = i * i++;

It’s natural to assume that j is assigned the value 4. However, the effect of execut-
ing the statement is undefined, and j could just as well be assigned 6 instead.
Here’s the scenario: (1) The second operand (the original value of i) is fetched,
then i is incremented. (2) The first operand (the new value of i) is fetched. (3) The
new and old values of i are multiplied, yielding 6. “Fetching” a variable means to
retrieve the value of the variable from memory. A later change to the variable
won’t affect the fetched value, which is typically stored in a special location
(known as a register) inside the CPU.

Undefined Behavior

According to the C standard, statements such as c = (b = a + 2) - (a = 1); and
j = i * i++; cause undefined behavior, which is different from implementation-
defined behavior (see Section 4.1). When a program ventures into the realm of
undefined behavior, all bets are off. The program may behave differently when com-
piled with different compilers. But that’s not the only thing that can happen. The pro-
gram may not compile in the first place, if it compiles it may not run, and if it does
run, it may crash, behave erratically, or produce meaningless results. In other
words, undefined behavior should be avoided like the plague.

4.5 Expression Statements

C has the unusual rule that any expression can be used as a statement. That is, any
expression—regardless of its type or what it computes—can be turned into a state-
ment by appending a semicolon. For example, we could turn the expression ++i
into a statement:

++i;

When this statement is executed, i is first incremented, then the new value of i is
fetched (as though it were to be used in an enclosing expression). However, since
++i isn’t part of a larger expression, its value is discarded and the next statement
executed. (The change to i is permanent, of course.)

Since its value is discarded, there’s little point in using an expression as a
statement unless the expression has a side effect. Let’s look at three examples. In

registers ➤18.2

Q&A

C4.FM Page 65 Friday, February 8, 2008 3:27 PM

66 Chapter 4 Expressions

the first example, 1 is stored into i, then the new value of i is fetched but not used:

i = 1;

In the second example, the value of i is fetched but not used; however, i is decre-
mented afterwards:

i--;

In the third example, the value of the expression i * j - 1 is computed and then
discarded:

i * j - 1;

Since i and j aren’t changed, this statement has no effect and therefore serves no
purpose.

A slip of the finger can easily create a “do-nothing” expression statement. For
example, instead of entering

i = j;

we might accidentally type

i + j;

(This kind of error is more common than you might expect, since the = and + char-
acters usually occupy the same key.) Some compilers can detect meaningless
expression statements; you’ll get a warning such as “statement with no effect.”

Q & A

Q: I notice that C has no exponentiation operator. How can I raise a number to a
power?

A: Raising an integer to a small positive integer power is best done by repeated multi-
plication (i * i * i is i cubed). To raise a number to a noninteger power, call the
pow function.

Q: I want to apply the % operator to a floating-point operand, but my program
won’t compile. What can I do? [p. 54]

A: The % operator requires integer operands. Try the fmod function instead.

Q: Why are the rules for using the / and % operators with negative operands so
complicated? [p. 54]

A: The rules aren’t as complicated as they may first appear. In both C89 and C99, the
goal is to ensure that the value of (a / b) * b + a % b will always be equal to a

pow function ➤23.3

fmod function ➤23.3

C4.FM Page 66 Friday, February 8, 2008 3:27 PM

Q & A 67

(and indeed, both standards guarantee that this is the case, provided that the value
of a / b is “representable”). The problem is that there are two ways for a / b and
a % b to satisfy this equality if either a or b is negative, as seen in C89, where
either -9 / 7 is –1 and -9 % 7 is –2, or -9 / 7 is –2 and -9 % 7 is 5. In the first
case, (-9 / 7) * 7 + -9 % 7 has the value –1 × 7 + –2 = –9, and in the second
case, (-9 / 7) * 7 + -9 % 7 has the value –2 × 7 + 5 = –9. By the time C99 rolled
around, most CPUs were designed to truncate the result of division toward zero, so
this was written into the standard as the only allowable outcome.

Q: If C has lvalues, does it also have rvalues? [p. 59]
A: Yes, indeed. An lvalue is an expression that can appear on the left side of an assign-

ment; an rvalue is an expression that can appear on the right side. Thus, an rvalue
could be a variable, constant, or more complex expression. In this book, as in the C
standard, we’ll use the term “expression” instead of “rvalue.”

*Q: You said that v += e isn’t equivalent to v = v + e if v has a side effect. Can you
explain? [p. 60]

A: Evaluating v += e causes v to be evaluated only once; evaluating v = v + e causes v
to be evaluated twice. Any side effect caused by evaluating v will occur twice in
the latter case. In the following example, i is incremented once:

a[i++] += 2;

If we use = instead of +=, here’s what the statement will look like:

a[i++] = a[i++] + 2;

The value of i is modified as well as used elsewhere in the statement, so the effect
of executing the statement is undefined. It’s likely that i will be incremented
twice, but we can’t say with certainty what will happen.

Q: Why does C provide the ++ and -- operators? Are they faster than other
ways of incrementing and decrementing, or they are just more convenient? [p.
61]

A: C inherited ++ and -- from Ken Thompson’s earlier B language. Thompson
apparently created these operators because his B compiler could generate a more
compact translation for ++i than for i = i + 1. These operators have become a
deeply ingrained part of C (in fact, many of C’s most famous idioms rely on them).
With modern compilers, using ++ and -- won’t make a compiled program any
smaller or faster; the continued popularity of these operators stems mostly from
their brevity and convenience.

Q: Do ++ and -- work with float variables?
A: Yes; the increment and decrement operations can be applied to floating-point num-

bers as well as integers. In practice, however, it’s fairly rare to increment or decre-
ment a float variable.

C99

C4.FM Page 67 Friday, February 8, 2008 3:27 PM

68 Chapter 4 Expressions

*Q: When I use the postfix version of ++ or --, just when is the increment or dec-
rement performed? [p. 62]

A: That’s an excellent question. Unfortunately, it’s also a difficult one to answer. The
C standard introduces the concept of “sequence point” and says that “updating the
stored value of the operand shall occur between the previous and the next sequence
point.” There are various kinds of sequence points in C; the end of an expression
statement is one example. By the end of an expression statement, all increments
and decrements within the statement must have been performed; the next statement
can’t begin to execute until this condition has been met.

Certain operators that we’ll encounter in later chapters (logical and, logical or,
conditional, and comma) also impose sequence points. So do function calls: the
arguments in a function call must be fully evaluated before the call can be per-
formed. If an argument happens to be an expression containing a ++ or -- opera-
tor, the increment or decrement must occur before the call can take place.

Q: What do you mean when you say that the value of an expression statement is
discarded? [p. 65]

A: By definition, an expression represents a value. If i has the value 5, for example,
then evaluating i + 1 produces the value 6. Let’s turn i + 1 into a statement by
putting a semicolon after it:

i + 1;

When this statement is executed, the value of i + 1 is computed. Since we have
failed to save this value—or at least use it in some way—it is lost.

Q: But what about statements like i = 1;? I don’t see what is being discarded.
A: Don’t forget that = is an operator in C and produces a value just like any other

operator. The assignment

i = 1;

assigns 1 to i. The value of the entire expression is 1, which is discarded. Discard-
ing the expression’s value is no great loss, since the reason for writing the state-
ment in the first place was to modify i.

Exercises

Section 4.1 1. Show the output produced by each of the following program fragments. Assume that i, j,
and k are int variables.

(a) i = 5; j = 3;
printf("%d %d", i / j, i % j);

(b) i = 2; j = 3;
printf("%d", (i + 10) % j);

(c) i = 7; j = 8; k = 9;
printf("%d", (i + 10) % k / j);

C4.FM Page 68 Friday, February 8, 2008 3:27 PM

Exercises 69

*2. If i and j are positive integers, does (-i)/j always have the same value as -(i/j)? Jus-
tify your answer.

3. What is the value of each of the following expressions in C89? (Give all possible values if
an expression may have more than one value.)

4. Repeat Exercise 3 for C99.

5. What is the value of each of the following expressions in C89? (Give all possible values if
an expression may have more than one value.)

6. Repeat Exercise 5 for C99.

7. The algorithm for computing the UPC check digit ends with the following steps:

Subtract 1 from the total.
Compute the remainder when the adjusted total is divided by 10.
Subtract the remainder from 9.

It’s tempting to try to simplify the algorithm by using these steps instead:

Compute the remainder when the total is divided by 10.
Subtract the remainder from 10.

Why doesn’t this technique work?

8. Would the upc.c program still work if the expression 9 - ((total - 1) % 10) were
replaced by (10 - (total % 10)) % 10?

Section 4.2 9. Show the output produced by each of the following program fragments. Assume that i, j,
and k are int variables.

(d) i = 1; j = 2; k = 3;
printf("%d", (i + 5) % (j + 2) / k);

(a) 8 / 5
(b) -8 / 5
(c) 8 / -5
(d) -8 / -5

(a) 8 % 5
(b) -8 % 5
(c) 8 % -5
(d) -8 % -5

W

(a) i = 7; j = 8;
i *= j + 1;
printf("%d %d", i, j);

(b) i = j = k = 1;
i += j += k;
printf("%d %d %d", i, j, k);

(c) i = 1; j = 2; k = 3;
i -= j -= k;
printf("%d %d %d", i, j, k);

(d) i = 2; j = 1; k = 0;
i *= j *= k;
printf("%d %d %d", i, j, k);

W

C4.FM Page 69 Friday, February 8, 2008 3:27 PM

70 Chapter 4 Expressions

10. Show the output produced by each of the following program fragments. Assume that i and
j are int variables.

Section 4.3 *11. Show the output produced by each of the following program fragments. Assume that i, j,
and k are int variables.

12. Show the output produced by each of the following program fragments. Assume that i and
jare int variables.

13. Only one of the expressions ++i and i++ is exactly the same as (i += 1); which is it?
Justify your answer.

Section 4.4 14. Supply parentheses to show how a C compiler would interpret each of the following expres-
sions.

(a) i = 6;
j = i += i;
printf("%d %d", i, j);

(b) i = 5;
j = (i -= 2) + 1;
printf("%d %d", i, j);

(c) i = 7;
j = 6 + (i = 2.5);
printf("%d %d", i, j);

(d) i = 2; j = 8;
j = (i = 6) + (j = 3);
printf("%d %d", i, j);

(a) i = 1;
printf("%d ", i++ - 1);
printf("%d", i);

(b) i = 10; j = 5;
printf("%d ", i++ - ++j);
printf("%d %d", i, j);

(c) i = 7; j = 8;
printf("%d ", i++ - --j);
printf("%d %d", i, j);

(d) i = 3; j = 4; k = 5;
printf("%d ", i++ - j++ + --k);
printf("%d %d %d", i, j, k);

(a) i = 5;
j = ++i * 3 - 2;
printf("%d %d", i, j);

(b) i = 5;
j = 3 - 2 * i++;
printf("%d %d", i, j);

(c) i = 7;
j = 3 * i-- + 2;
printf("%d %d", i, j);

(d) i = 7;
j = 3 + --i * 2;
printf("%d %d", i, j);

W

C4.FM Page 70 Friday, February 8, 2008 3:27 PM

Programming Projects 71

Section 4.5 15. Give the values of i and j after each of the following expression statements has been exe-
cuted. (Assume that i has the value 1 initially and j has the value 2.)

Programming Projects

1. Write a program that asks the user to enter a two-digit number, then prints the number with
its digits reversed. A session with the program should have the following appearance:

Enter a two-digit number: 28
The reversal is: 82

Read the number using %d, then break it into two digits. Hint: If n is an integer, then n % 10
is the last digit in n and n / 10 is n with the last digit removed.

2. Extend the program in Programming Project 1 to handle three-digit numbers.

3. Rewrite the program in Programming Project 2 so that it prints the reversal of a three-digit
number without using arithmetic to split the number into digits. Hint: See the upc.c pro-
gram of Section 4.1.

4. Write a program that reads an integer entered by the user and displays it in octal (base 8):

Enter a number between 0 and 32767: 1953
In octal, your number is: 03641

The output should be displayed using five digits, even if fewer digits are sufficient. Hint: To
convert the number to octal, first divide it by 8; the remainder is the last digit of the octal
number (1, in this case). Then divide the original number by 8 and repeat the process to
arrive at the next-to-last digit. (printf is capable of displaying numbers in base 8, as we’ll
see in Chapter 7, so there’s actually an easier way to write this program.)

5. Rewrite the upc.c program of Section 4.1 so that the user enters 11 digits at one time,
instead of entering one digit, then five digits, and then another five digits.

Enter the first 11 digits of a UPC: 01380015173
Check digit: 5

6. European countries use a 13-digit code, known as a European Article Number (EAN)
instead of the 12-digit Universal Product Code (UPC) found in North America. Each EAN
ends with a check digit, just as a UPC does. The technique for calculating the check digit is
also similar:

Add the second, fourth, sixth, eighth, tenth, and twelfth digits.
Add the first, third, fifth, seventh, ninth, and eleventh digits.
Multiply the first sum by 3 and add it to the second sum.

(a) a * b - c * d + e
(b) a / b % c / d
(c) - a - b + c - + d
(d) a * - b / c - d

(a) i += j;
(b) i--;
(c) i * j / i;
(d) i % ++j;

W

C4.FM Page 71 Friday, February 8, 2008 3:27 PM

72 Chapter 4 Expressions

Subtract 1 from the total.
Compute the remainder when the adjusted total is divided by 10.
Subtract the remainder from 9.

For example, consider Güllüoglu Turkish Delight Pistachio & Coconut, which has an EAN
of 8691484260008. The first sum is 6 + 1 + 8 + 2 + 0 + 0 = 17, and the second sum is 8 + 9 +
4 + 4 + 6 + 0 = 31. Multiplying the first sum by 3 and adding the second yields 82. Subtract-
ing 1 gives 81. The remainder upon dividing by 10 is 1. When the remainder is subtracted
from 9, the result is 8, which matches the last digit of the original code. Your job is to mod-
ify the upc.c program of Section 4.1 so that it calculates the check digit for an EAN. The
user will enter the first 12 digits of the EAN as a single number:

Enter the first 12 digits of an EAN: 869148426000
Check digit: 8

C4.FM Page 72 Friday, February 8, 2008 3:27 PM

73

5 Selection Statements

Programmers are not to be measured by their ingenuity and
 their logic but by the completeness of their case analysis.

Although C has many operators, it has relatively few statements. We’ve encoun-
tered just two so far: the return statement and the expression statement. Most of
C’s remaining statements fall into three categories, depending on how they affect
the order in which statements are executed:

� Selection statements. The if and switch statements allow a program to
select a particular execution path from a set of alternatives.

� Iteration statements. The while, do, and for statements support iteration
(looping).

� Jump statements. The break, continue, and goto statements cause an
unconditional jump to some other place in the program. (The return state-
ment belongs in this category, as well.)

The only other statements in C are the compound statement, which groups several
statements into a single statement, and the null statement, which performs no
action.

This chapter discusses the selection statements and the compound statement.
(Chapter 6 covers the iteration statements, the jump statements, and the null state-
ment.) Before we can write if statements, we’ll need logical expressions: condi-
tions that if statements can test. Section 5.1 explains how logical expressions are
built from the relational operators (<, <=, >, and >=), the equality operators (==
and !=), and the logical operators (&&, ||, and !). Section 5.2 covers the if state-
ment and compound statement, as well as introducing the conditional operator
(?:), which can test a condition within an expression. Section 5.3 describes the
switch statement.

return statement ➤2.2

expression statement ➤4.5

C5.FM Page 73 Friday, February 8, 2008 3:48 PM

74 Chapter 5 Selection Statements

5.1 Logical Expressions

Several of C’s statements, including the if statement, must test the value of an
expression to see if it is “true” or “false.” For example, an if statement might need
to test the expression i < j; a true value would indicate that i is less than j. In
many programming languages, an expression such as i < j would have a special
“Boolean” or “logical” type. Such a type would have only two values, false and
true. In C, however, a comparison such as i < j yields an integer: either 0 (false)
or 1 (true). With this in mind, let’s look at the operators that are used to build logi-
cal expressions.

Relational Operators

C’s relational operators (Table 5.1) correspond to the <, >, ≤, and ≥ operators of
mathematics, except that they produce 0 (false) or 1 (true) when used in expres-
sions. For example, the value of 10 < 11 is 1; the value of 11 < 10 is 0.

The relational operators can be used to compare integers and floating-point
numbers, with operands of mixed types allowed. Thus, 1 < 2.5 has the value 1,
while 5.6 < 4 has the value 0.

The precedence of the relational operators is lower than that of the arithmetic
operators; for example, i + j < k - 1 means (i + j) < (k - 1). The relational
operators are left associative.

The expression

i < j < k

is legal in C, but doesn’t have the meaning that you might expect. Since the < oper-
ator is left associative, this expression is equivalent to

(i < j) < k

In other words, the expression first tests whether i is less than j; the 1 or 0 pro-
duced by this comparison is then compared to k. The expression does not test
whether j lies between i and k. (We’ll see later in this section that the correct
expression would be i < j && j < k.)

Symbol Meaning

<
>
<=
>=

less than
greater than
less than or equal to
greater than or equal to

Table 5.1
Relational Operators

C5.FM Page 74 Friday, February 8, 2008 3:48 PM

5.1 Logical Expressions 75

Equality Operators

Although the relational operators are denoted by the same symbols as in many
other programming languages, the equality operators have a unique appearance
(Table 5.2). The “equal to” operator is two adjacent = characters, not one, since a
single = character represents the assignment operator. The “not equal to” operator
is also two characters: ! and =.

Like the relational operators, the equality operators are left associative and
produce either 0 (false) or 1 (true) as their result. However, the equality operators
have lower precedence than the relational operators. For example, the expression

i < j == j < k

is equivalent to

(i < j) == (j < k)

which is true if i < j and j < k are both true or both false.
Clever programmers sometimes exploit the fact that the relational and equality

operators return integer values. For example, the value of the expression (i >= j)
+ (i == j) is either 0, 1, or 2, depending on whether i is less than, greater than,
or equal to j, respectively. Tricky coding like this generally isn’t a good idea, how-
ever; it makes programs hard to understand.

Logical Operators

More complicated logical expressions can be built from simpler ones by using the
logical operators: and, or, and not (Table 5.3). The ! operator is unary, while &&
and || are binary.

The logical operators produce either 0 or 1 as their result. Often, the operands
will have values of 0 or 1, but this isn’t a requirement; the logical operators treat
any nonzero operand as a true value and any zero operand as a false value.

The logical operators behave as follows:

� !expr has the value 1 if expr has the value 0.

� expr1 && expr2 has the value 1 if the values of expr1 and expr2 are both non-
zero.

Symbol Meaning

==
!=

equal to
not equal to

Table 5.2
Equality Operators

Symbol Meaning

!
&&
||

logical negation
logical and
logical or

Table 5.3
Logical Operators

C5.FM Page 75 Friday, February 8, 2008 3:48 PM

76 Chapter 5 Selection Statements

� expr1 || expr2 has the value 1 if either expr1 or expr2 (or both) has a nonzero
value.

In all other cases, these operators produce the value 0.
Both && and || perform “short-circuit” evaluation of their operands. That is,

these operators first evaluate the left operand, then the right operand. If the value of
the expression can be deduced from the value of the left operand alone, then the
right operand isn’t evaluated. Consider the following expression:

(i != 0) && (j / i > 0)

To find the value of this expression, we must first evaluate (i != 0). If i isn’t
equal to 0, then we’ll need to evaluate (j / i > 0) to determine whether the entire
expression is true or false. However, if i is equal to 0, then the entire expression
must be false, so there’s no need to evaluate (j / i > 0). The advantage of short-
circuit evaluation is apparent—without it, evaluating the expression would have
caused a division by zero.

Be wary of side effects in logical expressions. Thanks to the short-circuit nature of
the && and || operators, side effects in operands may not always occur. Consider
the following expression:

i > 0 && ++j > 0

Although j is apparently incremented as a side effect of evaluating the expression,
that isn’t always the case. If i > 0 is false, then ++j > 0 is not evaluated, so j isn’t
incremented. The problem can be fixed by changing the condition to ++j > 0 &&
i > 0 or, even better, by incrementing j separately.

The ! operator has the same precedence as the unary plus and minus opera-
tors. The precedence of && and || is lower than that of the relational and equality
operators; for example, i < j && k == m means (i < j) && (k == m). The !
operator is right associative; && and || are left associative.

5.2 The if Statement

The if statement allows a program to choose between two alternatives by testing
the value of an expression. In its simplest form, the if statement has the form

Notice that the parentheses around the expression are mandatory; they’re part of
the if statement, not part of the expression. Also note that the word then doesn’t
come after the parentheses, as it would in some programming languages.

if statement if (expression) statement

C5.FM Page 76 Friday, February 8, 2008 3:48 PM

5.2 The if Statement 77

When an if statement is executed, the expression in the parentheses is evalu-
ated; if the value of the expression is nonzero—which C interprets as true—the
statement after the parentheses is executed. Here’s an example:

if (line_num == MAX_LINES)
 line_num = 0;

The statement line_num = 0; is executed if the condition line_num ==
MAX_LINES is true (has a nonzero value).

Don’t confuse == (equality) with = (assignment). The statement

if (i == 0) …

tests whether i is equal to 0. However, the statement

if (i = 0) …

assigns 0 to i, then tests whether the result is nonzero. In this case, the test always
fails.

Confusing == with = is perhaps the most common C programming error,
probably because = means “is equal to” in mathematics (and in certain program-
ming languages). Some compilers issue a warning if they notice = where == would
normally appear.

Often the expression in an if statement will test whether a variable falls
within a range of values. To test whether 0 ≤ i < n, for example, we’d write

idiom if (0 <= i && i < n) …

To test the opposite condition (i is outside the range), we’d write

idiom if (i < 0 || i >= n) …

Note the use of the || operator instead of the && operator.

Compound Statements

In our if statement template, notice that statement is singular, not plural:

if (expression) statement

What if we want an if statement to control two or more statements? That’s where
the compound statement comes in. A compound statement has the form

By putting braces around a group of statements, we can force the compiler to treat
it as a single statement.

Q&A

compound statement { statements }

C5.FM Page 77 Friday, February 8, 2008 3:48 PM

78 Chapter 5 Selection Statements

Here’s an example of a compound statement:

{ line_num = 0; page_num++; }

For clarity, I’ll usually put a compound statement on several lines, with one state-
ment per line:

{
 line_num = 0;
 page_num++;
}

Notice that each inner statement still ends with a semicolon, but the compound
statement itself does not.

Here’s what a compound statement would look like when used inside an if
statement:

if (line_num == MAX_LINES) {
 line_num = 0;
 page_num++;
}

Compound statements are also common in loops and other places where the syntax
of C requires a single statement, but we want more than one.

The else Clause

An if statement may have an else clause:

The statement that follows the word else is executed if the expression in paren-
theses has the value 0.

Here’s an example of an if statement with an else clause:

if (i > j)
 max = i;
else
 max = j;

Notice that both “inner” statements end with a semicolon.
When an if statement contains an else clause, a layout issue arises: where

should the else be placed? Many C programmers align it with the if at the
beginning of the statement, as in the previous example. The inner statements are
usually indented, but if they’re short they can be put on the same line as the if and
else:

if (i > j) max = i;
else max = j;

if statement with
else clause

if (expression) statement else statement

C5.FM Page 78 Friday, February 8, 2008 3:48 PM

5.2 The if Statement 79

There are no restrictions on what kind of statements can appear inside an if
statement. In fact, it’s not unusual for if statements to be nested inside other if
statements. Consider the following if statement, which finds the largest of the
numbers stored in i, j, and k and stores that value in max:

if (i > j)
 if (i > k)
 max = i;
 else
 max = k;
else
 if (j > k)
 max = j;
 else
 max = k;

if statements can be nested to any depth. Notice how aligning each else with the
matching if makes the nesting easier to see. If you still find the nesting confusing,
don’t hesitate to add braces:

if (i > j) {
 if (i > k)
 max = i;
 else
 max = k;
} else {
 if (j > k)
 max = j;
 else
 max = k;
}

Adding braces to statements—even when they’re not necessary—is like using
parentheses in expressions: both techniques help make a program more readable
while at the same time avoiding the possibility that the compiler won’t understand
the program the way we thought it did.

Some programmers use as many braces as possible inside if statements (and
iteration statements as well). A programmer who adopts this convention would
include a pair of braces for every if clause and every else clause:

if (i > j) {
 if (i > k) {
 max = i;
 } else {
 max = k;
 }
} else {
 if (j > k) {
 max = j;
 } else {
 max = k;
 }
}

C5.FM Page 79 Friday, February 8, 2008 3:48 PM

80 Chapter 5 Selection Statements

Using braces even when they’re not required has two advantages. First, the pro-
gram becomes easier to modify, because more statements can easily be added to
any if or else clause. Second, it helps avoid errors that can result from forget-
ting to use braces when adding statements to an if or else clause.

Cascaded if Statements

We’ll often need to test a series of conditions, stopping as soon as one of them is
true. A “cascaded” if statement is often the best way to write such a series of
tests. For example, the following cascaded if statement tests whether n is less
than 0, equal to 0, or greater than 0:

if (n < 0)
 printf("n is less than 0\n");
else
 if (n == 0)
 printf("n is equal to 0\n");
 else
 printf("n is greater than 0\n");

Although the second if statement is nested inside the first, C programmers don’t
usually indent it. Instead, they align each else with the original if:

if (n < 0)
 printf("n is less than 0\n");
else if (n == 0)
 printf("n is equal to 0\n");
else
 printf("n is greater than 0\n");

This arrangement gives the cascaded if a distinctive appearance:

if (expression)
 statement
else if (expression)
 statement
…
else if (expression)
 statement
else
 statement

The last two lines (else statement) aren’t always present, of course. This way of
indenting the cascaded if statement avoids the problem of excessive indentation
when the number of tests is large. Moreover, it assures the reader that the statement
is nothing more than a series of tests.

Keep in mind that a cascaded if statement isn’t some new kind of statement;
it’s just an ordinary if statement that happens to have another if statement as its
else clause (and that if statement has another if statement as its else clause,
ad infinitum).

C5.FM Page 80 Friday, February 8, 2008 3:48 PM

5.2 The if Statement 81

PROGRAM Calculating a Broker’s Commission

When stocks are sold or purchased through a broker, the broker’s commission is
often computed using a sliding scale that depends upon the value of the stocks
traded. Let’s say that a broker charges the amounts shown in the following table:

Transaction size Commission rate
Under $2,500 $30 + 1.7%
$2,500–$6,250 $56 + 0.66%
$6,250–$20,000 $76 + 0.34%
$20,000–$50,000 $100 + 0.22%
$50,000–$500,000 $155 + 0.11%
Over $500,000 $255 + 0.09%

The minimum charge is $39. Our next program asks the user to enter the amount of
the trade, then displays the amount of the commission:

Enter value of trade: 30000
Commission: $166.00

The heart of the program is a cascaded if statement that determines which range
the trade falls into.

broker.c /* Calculates a broker's commission */

#include <stdio.h>

int main(void)
{
 float commission, value;

 printf("Enter value of trade: ");
 scanf("%f", &value);

 if (value < 2500.00f)
 commission = 30.00f + .017f * value;
 else if (value < 6250.00f)
 commission = 56.00f + .0066f * value;
 else if (value < 20000.00f)
 commission = 76.00f + .0034f * value;
 else if (value < 50000.00f)
 commission = 100.00f + .0022f * value;
 else if (value < 500000.00f)
 commission = 155.00f + .0011f * value;
 else
 commission = 255.00f + .0009f * value;

 if (commission < 39.00f)
 commission = 39.00f;

 printf("Commission: $%.2f\n", commission);

 return 0;
}

C5.FM Page 81 Friday, February 8, 2008 3:48 PM

82 Chapter 5 Selection Statements

The cascaded if statement could have been written this way instead (the
changes are indicated in bold):

if (value < 2500.00f)
 commission = 30.00f + .017f * value;
else if (value >= 2500.00f && value < 6250.00f)
 commission = 56.00f + .0066f * value;
else if (value >= 6250.00f && value < 20000.00f)
 commission = 76.00f + .0034f * value;
…

Although the program will still work, the added conditions aren’t necessary. For
example, the first if clause tests whether value is less than 2500 and, if so, com-
putes the commission. When we reach the second if test (value >= 2500.00f
&& value < 6250.00f), we know that value can’t be less than 2500 and
therefore must be greater than or equal to 2500. The condition value >=
2500.00f will always be true, so there’s no point in checking it.

The “Dangling else” Problem

When if statements are nested, we’ve got to watch out for the notorious “dangling
else” problem. Consider the following example:

if (y != 0)
 if (x != 0)
 result = x / y;
else
 printf("Error: y is equal to 0\n");

To which if statement does the else clause belong? The indentation suggests
that it belongs to the outer if statement. However, C follows the rule that an else
clause belongs to the nearest if statement that hasn’t already been paired with an
else. In this example, the else clause actually belongs to the inner if state-
ment, so a correctly indented version would look like this:

if (y != 0)
 if (x != 0)
 result = x / y;
 else
 printf("Error: y is equal to 0\n");

To make the else clause part of the outer if statement, we can enclose the inner
if statement in braces:

if (y != 0) {
 if (x != 0)
 result = x / y;
} else
 printf("Error: y is equal to 0\n");

This example illustrates the value of braces; if we’d used them in the original if
statement, we wouldn’t have gotten into this situation in the first place.

C5.FM Page 82 Friday, February 8, 2008 3:48 PM

5.2 The if Statement 83

Conditional Expressions

C’s if statement allows a program to perform one of two actions depending on the
value of a condition. C also provides an operator that allows an expression to pro-
duce one of two values depending on the value of a condition.

The conditional operator consists of two symbols (? and :), which must be
used together in the following way:

expr1, expr2, and expr3 can be expressions of any type. The resulting expression is
said to be a conditional expression. The conditional operator is unique among C
operators in that it requires three operands instead of one or two. For this reason, it
is often referred to as a ternary operator.

The conditional expression expr1 ? expr2 : expr3 should be read “if expr1
then expr2 else expr3.” The expression is evaluated in stages: expr1 is evaluated
first; if its value isn’t zero, then expr2 is evaluated, and its value is the value of the
entire conditional expression. If the value of expr1 is zero, then the value of expr3
is the value of the conditional.

The following example illustrates the conditional operator:

int i, j, k;

i = 1;
j = 2;
k = i > j ? i : j; /* k is now 2 */
k = (i >= 0 ? i : 0) + j; /* k is now 3 */

The conditional expression i > j ? i : j in the first assignment to k returns the
value of either i or j, depending on which one is larger. Since i has the value 1
and j has the value 2, the i > j comparison fails, and the value of the conditional
is 2, which is assigned to k. In the second assignment to k, the i >= 0 comparison
succeeds; the conditional expression (i >= 0 ? i : 0) has the value 1, which is
then added to j to produce 3. The parentheses are necessary, by the way; the prece-
dence of the conditional operator is less than that of the other operators we’ve dis-
cussed so far, with the exception of the assignment operators.

Conditional expressions tend to make programs shorter but harder to under-
stand, so it’s probably best to avoid them. There are, however, a few places in
which they’re tempting; one is the return statement. Instead of writing

if (i > j)
 return i;
else
 return j;

many programmers would write

return i > j ? i : j;

conditional
expression

expr1 ? expr2 : expr3

C5.FM Page 83 Friday, February 8, 2008 3:48 PM

84 Chapter 5 Selection Statements

Calls of printf can sometimes benefit from condition expressions. Instead of

if (i > j)
 printf("%d\n", i);
else
 printf("%d\n", j);

we could simply write

printf("%d\n", i > j ? i : j);

Conditional expressions are also common in certain kinds of macro definitions.

Boolean Values in C89

For many years, the C language lacked a proper Boolean type, and there is none
defined in the C89 standard. This omission is a minor annoyance, since many pro-
grams need variables that can store either false or true. One way to work around
this limitation of C89 is to declare an int variable and then assign it either 0 or 1:

int flag;

flag = 0;
…
flag = 1;

Although this scheme works, it doesn’t contribute much to program readability.
It’s not obvious that flag is to be assigned only Boolean values and that 0 and 1
represent false and true.

To make programs more understandable, C89 programmers often define mac-
ros with names such as TRUE and FALSE:

#define TRUE 1
#define FALSE 0

Assignments to flag now have a more natural appearance:

flag = FALSE;
…
flag = TRUE;

To test whether flag is true, we can write

if (flag == TRUE) …

or just

if (flag) …

The latter form is better, not only because it’s more concise, but also because it will
still work correctly if flag has a value other than 0 or 1.

To test whether flag is false, we can write

if (flag == FALSE) …

macro definitions ➤14.3

C5.FM Page 84 Friday, February 8, 2008 3:48 PM

5.2 The if Statement 85

or

if (!flag) …

Carrying this idea one step further, we might even define a macro that can be
used as a type:

#define BOOL int

BOOL can take the place of int when declaring Boolean variables:

BOOL flag;

It’s now clear that flag isn’t an ordinary integer variable, but instead represents a
Boolean condition. (The compiler still treats flag as an int variable, of course.)
In later chapters, we’ll discover better ways to set up a Boolean type in C89 by
using type definitions and enumerations.

Boolean Values in C99

The longstanding lack of a Boolean type has been remedied in C99, which pro-
vides the _Bool type. In this version of C, a Boolean variable can be declared by
writing

_Bool flag;

_Bool is an integer type (more precisely, an unsigned integer type), so a
_Bool variable is really just an integer variable in disguise. Unlike an ordinary
integer variable, however, a _Bool variable can only be assigned 0 or 1. In gen-
eral, attempting to store a nonzero value into a _Bool variable will cause the vari-
able to be assigned 1:

flag = 5; /* flag is assigned 1 */

It’s legal (although not advisable) to perform arithmetic on _Bool variables; it’s
also legal to print a _Bool variable (either 0 or 1 will be displayed). And, of
course, a _Bool variable can be tested in an if statement:

if (flag) /* tests whether flag is 1 */
 …

In addition to defining the _Bool type, C99 also provides a new header,
<stdbool.h>, that makes it easier to work with Boolean values. This header
provides a macro, bool, that stands for _Bool. If <stdbool.h> is included,
we can write

bool flag; /* same as _Bool flag; */

The <stdbool.h> header also supplies macros named true and false,
which stand for 1 and 0, respectively, making it possible to write

type definitions ➤7.5

enumerations ➤16.5

C99

Q&A

unsigned integer types ➤7.1

<stdbool.h> header ➤21.5

C5.FM Page 85 Friday, February 8, 2008 3:48 PM

86 Chapter 5 Selection Statements

flag = false;
…
flag = true;

Because the <stdbool.h> header is so handy, I’ll use it in subsequent programs
whenever Boolean variables are needed.

5.3 The switch Statement
In everyday programming, we’ll often need to compare an expression against a
series of values to see which one it currently matches. We saw in Section 5.2 that a
cascaded if statement can be used for this purpose. For example, the following
cascaded if statement prints the English word that corresponds to a numerical
grade:

if (grade == 4)
 printf("Excellent");
else if (grade == 3)
 printf("Good");
else if (grade == 2)
 printf("Average");
else if (grade == 1)
 printf("Poor");
else if (grade == 0)
 printf("Failing");
else
 printf("Illegal grade");

As an alternative to this kind of cascaded if statement, C provides the switch
statement. The following switch is equivalent to our cascaded if:

switch (grade) {
 case 4: printf("Excellent");
 break;
 case 3: printf("Good");
 break;
 case 2: printf("Average");
 break;
 case 1: printf("Poor");
 break;
 case 0: printf("Failing");
 break;
 default: printf("Illegal grade");
 break;
}

When this statement is executed, the value of the variable grade is tested against
4, 3, 2, 1, and 0. If it matches 4, for example, the message Excellent is printed,
then the break statement transfers control to the statement following the
switch. If the value of grade doesn’t match any of the choices listed, the
default case applies, and the message Illegal grade is printed.

break statement ➤6.4

C5.FM Page 86 Friday, February 8, 2008 3:48 PM

5.3 The switch Statement 87

A switch statement is often easier to read than a cascaded if statement.
Moreover, switch statements are often faster than if statements, especially
when there are more than a handful of cases.

In its most common form, the switch statement has the form

The switch statement is fairly complex; let’s look at its components one by one:

� Controlling expression. The word switch must be followed by an integer
expression in parentheses. Characters are treated as integers in C and thus can
be tested in switch statements. Floating-point numbers and strings don’t
qualify, however.

� Case labels. Each case begins with a label of the form

case constant-expression :

A constant expression is much like an ordinary expression except that it can’t
contain variables or function calls. Thus, 5 is a constant expression, and 5 +
10 is a constant expression, but n + 10 isn’t a constant expression (unless n is
a macro that represents a constant). The constant expression in a case label
must evaluate to an integer (characters are also acceptable).

� Statements. After each case label comes any number of statements. No braces
are required around the statements. (Enjoy it—this is one of the few places in
C where braces aren’t required.) The last statement in each group is normally
break.

Duplicate case labels aren’t allowed. The order of the cases doesn’t matter; in par-
ticular, the default case doesn’t need to come last.

Only one constant expression may follow the word case; however, several
case labels may precede the same group of statements:

switch (grade) {
 case 4:
 case 3:
 case 2:
 case 1: printf("Passing");
 break;
 case 0: printf("Failing");
 break;
 default: printf("Illegal grade");
 break;
}

Q&A

switch statement switch (expression) {
 case constant-expression : statements
 …
 case constant-expression : statements
 default : statements
}

characters ➤7.3

C5.FM Page 87 Friday, February 8, 2008 3:48 PM

88 Chapter 5 Selection Statements

To save space, programmers sometimes put several case labels on the same line:

switch (grade) {
 case 4: case 3: case 2: case 1:
 printf("Passing");
 break;
 case 0: printf("Failing");
 break;
 default: printf("Illegal grade");
 break;
}

Unfortunately, there’s no way to write a case label that specifies a range of values,
as there is in some programming languages.

A switch statement isn’t required to have a default case. If default is
missing and the value of the controlling expression doesn’t match any of the case
labels, control simply passes to the next statement after the switch.

The Role of the break Statement

Now, let’s take a closer look at the mysterious break statement. As we’ve seen,
executing a break statement causes the program to “break” out of the switch
statement; execution continues at the next statement after the switch.

The reason that we need break has to do with the fact that the switch state-
ment is really a form of “computed jump.” When the controlling expression is
evaluated, control jumps to the case label matching the value of the switch
expression. A case label is nothing more than a marker indicating a position within
the switch. When the last statement in the case has been executed, control “falls
through” to the first statement in the following case; the case label for the next case
is ignored. Without break (or some other jump statement), control will flow from
one case into the next. Consider the following switch statement:

switch (grade) {
 case 4: printf("Excellent");
 case 3: printf("Good");
 case 2: printf("Average");
 case 1: printf("Poor");
 case 0: printf("Failing");
 default: printf("Illegal grade");
}

If the value of grade is 3, the message printed is

GoodAveragePoorFailingIllegal grade

Forgetting to use break is a common error. Although omitting break is some-
times done intentionally to allow several cases to share code, it’s usually just an
oversight.

C5.FM Page 88 Friday, February 8, 2008 3:48 PM

5.3 The switch Statement 89

Since deliberately falling through from one case into the next is rare, it’s a
good idea to point out any deliberate omission of break:

switch (grade) {
 case 4: case 3: case 2: case 1:
 num_passing++;
 /* FALL THROUGH */
 case 0: total_grades++;
 break;
}

Without the comment, someone might later fix the “error” by adding an unwanted
break statement.

Although the last case in a switch statement never needs a break state-
ment, it’s common practice to put one there anyway to guard against a “missing
break” problem if cases should later be added.

PROGRAM Printing a Date in Legal Form

Contracts and other legal documents are often dated in the following way:

Dated this __________ day of __________ , 20__ .

Let’s write a program that displays dates in this form. We’ll have the user enter the
date in month/day/year form, then we’ll display the date in “legal” form:

Enter date (mm/dd/yy): 7/19/14
Dated this 19th day of July, 2014.

We can get printf to do most of the formatting. However, we’re left with two
problems: how to add “th” (or “st” or “nd” or “rd”) to the day, and how to print the
month as a word instead of a number. Fortunately, the switch statement is ideal
for both situations; we’ll have one switch print the day suffix and another print
the month name.

date.c /* Prints a date in legal form */

#include <stdio.h>

int main(void)
{
 int month, day, year;

 printf("Enter date (mm/dd/yy): ");
 scanf("%d /%d /%d", &month, &day, &year);

 printf("Dated this %d", day);
 switch (day) {
 case 1: case 21: case 31:
 printf("st"); break;
 case 2: case 22:
 printf("nd"); break;

C5.FM Page 89 Friday, February 8, 2008 3:48 PM

90 Chapter 5 Selection Statements

 case 3: case 23:
 printf("rd"); break;
 default: printf("th"); break;
 }
 printf(" day of ");

 switch (month) {
 case 1: printf("January"); break;
 case 2: printf("February"); break;
 case 3: printf("March"); break;
 case 4: printf("April"); break;
 case 5: printf("May"); break;
 case 6: printf("June"); break;
 case 7: printf("July"); break;
 case 8: printf("August"); break;
 case 9: printf("September"); break;
 case 10: printf("October"); break;
 case 11: printf("November"); break;
 case 12: printf("December"); break;
 }

 printf(", 20%.2d.\n", year);
 return 0;
}

Note the use of %.2d to display the last two digits of the year. If we had used
%d instead, single-digit years would be displayed incorrectly (2005 would be
printed as 205).

Q & A

Q: My compiler doesn’t give a warning when I use = instead of ==. Is there some
way to force the compiler to notice the problem? [p. 77]

A: Here’s a trick that some programmers use: instead of writing

if (i == 0) …

they habitually write

if (0 == i) …

Now suppose that the == operator is accidentally written as =:

if (0 = i) …

The compiler will produce an error message, since it’s not possible to assign a
value to 0. I don’t use this trick, because I think it makes programs look unnatural.
Also, it can be used only when one of the operands in the test condition isn’t an
lvalue.

Fortunately, many compilers are capable of checking for suspect uses of the =
operator in if conditions. The GCC compiler, for example, will perform this

C5.FM Page 90 Friday, February 8, 2008 3:48 PM

Q & A 91

check if the -Wparentheses option is used or if -Wall (all warnings) is
selected. GCC allows the programmer to suppress the warning in a particular case
by enclosing the if condition in a second set of parentheses:

if ((i = j)) …

Q: C books seem to use several different styles of indentation and brace place-
ment for compound statements. Which style is best?

A: According to The New Hacker’s Dictionary (Cambridge, Mass.: MIT Press, 1996),
there are four common styles of indentation and brace placement:

� The K&R style, used in Kernighan and Ritchie’s The C Programming Lan-
guage, is the one I’ve chosen for the programs in this book. In the K&R style,
the left brace appears at the end of a line:

if (line_num == MAX_LINES) {
 line_num = 0;
 page_num++;
}

The K&R style keeps programs compact by not putting the left brace on a line
by itself. A disadvantage: the left brace can be hard to find. (I don’t consider
this a problem, since the indentation of the inner statements makes it clear
where the left brace should be.) The K&R style is the one most often used in
Java, by the way.

� The Allman style, named after Eric Allman (the author of sendmail and
other UNIX utilities), puts the left brace on a separate line:

if (line_num == MAX_LINES)
{
 line_num = 0;
 page_num++;
}

This style makes it easy to check that braces come in matching pairs.

� The Whitesmiths style, popularized by the Whitesmiths C compiler, dictates
that braces be indented:

if (line_num == MAX_LINES)
 {
 line_num = 0;
 page_num++;
 }

� The GNU style, used in software developed by the GNU Project, indents the
braces, then further indents the inner statements:

if (line_num == MAX_LINES)
 {
 line_num = 0;
 page_num++;
 }

C5.FM Page 91 Friday, February 8, 2008 3:48 PM

92 Chapter 5 Selection Statements

Which style you use is mainly a matter of taste; there’s no proof that one style
is clearly better than the others. In any event, choosing the right style is less impor-
tant than applying it consistently.

Q: If i is an int variable and f is a float variable, what is the type of the con-
ditional expression (i > 0 ? i : f)?

A: When int and float values are mixed in a conditional expression, as they are
here, the expression has type float. If i > 0 is true, the value of the expression
will be the value of i after conversion to float type.

Q: Why doesn’t C99 have a better name for its Boolean type? [p. 85]
A: _Bool isn’t a very elegant name, is it? More common names, such as bool or

boolean, weren’t chosen because existing C programs might already define
these names, causing older code not to compile.

Q: OK, so why wouldn’t the name _Bool break older programs as well?
A: The C89 standard specifies that names beginning with an underscore followed by

an uppercase letter are reserved for future use and should not be used by program-
mers.

*Q: The template given for the switch statement described it as the “most com-
mon form.” Are there other forms? [p. 87]

A: The switch statement is a bit more general than described in this chapter,
although the description given here is general enough for virtually all programs.
For example, a switch statement can contain labels that aren’t preceded by the
word case, which leads to an amusing (?) trap. Suppose that we accidentally mis-
spell the word default:

switch (…) {
 …
 defualt: …
}

The compiler may not detect the error, since it assumes that defualt is an ordi-
nary label.

Q: I’ve seen several methods of indenting the switch statement. Which way is
best?

A: There are at least two common methods. One is to put the statements in each case
after the case label:

switch (coin) {
 case 1: printf("Cent");
 break;
 case 5: printf("Nickel");
 break;
 case 10: printf("Dime");
 break;

C99

labels ➤6.4

C5.FM Page 92 Friday, February 8, 2008 3:48 PM

Exercises 93

 case 25: printf("Quarter");
 break;
}

If each case consists of a single action (a call of printf, in this example), the
break statement could even go on the same line as the action:

switch (coin) {
 case 1: printf("Cent"); break;
 case 5: printf("Nickel"); break;
 case 10: printf("Dime"); break;
 case 25: printf("Quarter"); break;
}

The other method is to put the statements under the case label, indenting the
statements to make the case label stand out:

switch (coin) {
 case 1:
 printf("Cent");
 break;
 case 5:
 printf("Nickel");
 break;
 case 10:
 printf("Dime");
 break;
 case 25:
 printf("Quarter");
 break;
}

In one variation of this scheme, each case label is aligned under the word switch.
The first method is fine when the statements in each case are short and there

are relatively few of them. The second method is better for large switch state-
ments in which the statements in each case are complex and/or numerous.

Exercises

Section 5.1 1. The following program fragments illustrate the relational and equality operators. Show the
output produced by each, assuming that i, j, and k are int variables.

(a) i = 2; j = 3;
k = i * j == 6;
printf("%d", k);

(b) i = 5; j = 10; k = 1;
printf("%d", k > i < j);

(c) i = 3; j = 2; k = 1;
printf("%d", i < j == j < k);

(d) i = 3; j = 4; k = 5;
printf("%d", i % j + i < k);

C5.FM Page 93 Friday, February 8, 2008 3:48 PM

94 Chapter 5 Selection Statements

2. The following program fragments illustrate the logical operators. Show the output produced
by each, assuming that i, j, and k are int variables.

*3. The following program fragments illustrate the short-circuit behavior of logical expressions.
Show the output produced by each, assuming that i, j, and k are int variables.

*4. Write a single expression whose value is either –1, 0, or +1, depending on whether i is less
than, equal to, or greater than j, respectively.

Section 5.2 *5. Is the following if statement legal?

if (n >= 1 <= 10)
 printf("n is between 1 and 10\n");

If so, what does it do when n is equal to 0?

*6. Is the following if statement legal?

if (n == 1-10)
 printf("n is between 1 and 10\n");

If so, what does it do when n is equal to 5?

7. What does the following statement print if i has the value 17? What does it print if i has the
value –17?

printf("%d\n", i >= 0 ? i : -i);

8. The following if statement is unnecessarily complicated. Simplify it as much as possible.
(Hint: The entire statement can be replaced by a single assignment.)

if (age >= 13)
 if (age <= 19)
 teenager = true;
 else
 teenager = false;
else if (age < 13)
 teenager = false;

(a) i = 10; j = 5;
printf("%d", !i < j);

(b) i = 2; j = 1;
printf("%d", !!i + !j);

(c) i = 5; j = 0; k = -5;
printf("%d", i && j || k);

(d) i = 1; j = 2; k = 3;
printf("%d", i < j || k);

(a) i = 3; j = 4; k = 5;
printf("%d ", i < j || ++j < k);
printf("%d %d %d", i, j, k);

(b) i = 7; j = 8; k = 9;
printf("%d ", i - 7 && j++ < k);
printf("%d %d %d", i, j, k);

(c) i = 7; j = 8; k = 9;
printf("%d ", (i = j) || (j = k));
printf("%d %d %d", i, j, k);

(d) i = 1; j = 1; k = 1;
printf("%d ", ++i || ++j && ++k);
printf("%d %d %d", i, j, k);

W

W

W

C5.FM Page 94 Friday, February 8, 2008 3:48 PM

Programming Projects 95

9. Are the following if statements equivalent? If not, why not?

if (score >= 90) if (score < 60)
 printf("A"); printf("F");
else if (score >= 80) else if (score < 70)
 printf("B"); printf("D");
else if (score >= 70) else if (score < 80)
 printf("C"); printf("C");
else if (score >= 60) else if (score < 90)
 printf("D"); printf("B");
else else
 printf("F"); printf("A");

Section 5.3 *10. What output does the following program fragment produce? (Assume that i is an integer
variable.)

i = 1;
switch (i % 3) {
 case 0: printf("zero");
 case 1: printf("one");
 case 2: printf("two");
}

11. The following table shows telephone area codes in the state of Georgia along with the larg-
est city in each area:

Area code Major city
 229 Albany
 404 Atlanta
 470 Atlanta
 478 Macon
 678 Atlanta
 706 Columbus
 762 Columbus
 770 Atlanta
 912 Savannah

Write a switch statement whose controlling expression is the variable area_code. If the
value of area_code is in the table, the switch statement will print the corresponding
city name. Otherwise, the switch statement will display the message "Area code not
recognized". Use the techniques discussed in Section 5.3 to make the switch state-
ment as simple as possible.

Programming Projects

1. Write a program that calculates how many digits a number contains:

Enter a number: 374
The number 374 has 3 digits

You may assume that the number has no more than four digits. Hint: Use if statements to
test the number. For example, if the number is between 0 and 9, it has one digit. If the num-
ber is between 10 and 99, it has two digits.

W

C5.FM Page 95 Friday, February 8, 2008 3:48 PM

96 Chapter 5 Selection Statements

2. Write a program that asks the user for a 24-hour time, then displays the time in 12-hour
form:

Enter a 24-hour time: 21:11
Equivalent 12-hour time: 9:11 PM

Be careful not to display 12:00 as 0:00.

3. Modify the broker.c program of Section 5.2 by making both of the following changes:

4. Here’s a simplified version of the Beaufort scale, which is used to estimate wind force:

Speed (knots) Description
Less than 1 Calm
1–3 Light air
4–27 Breeze
28–47 Gale
48–63 Storm
Above 63 Hurricane

Write a program that asks the user to enter a wind speed (in knots), then displays the corre-
sponding description.

5. In one state, single residents are subject to the following income tax:

Income Amount of tax
Not over $750 1% of income
$750–$2,250 $7.50 plus 2% of amount over $750
$2,250–$3,750 $37.50 plus 3% of amount over $2,250
$3,750–$5,250 $82.50 plus 4% of amount over $3,750
$5,250–$7,000 $142.50 plus 5% of amount over $5,250
Over $7,000 $230.00 plus 6% of amount over $7,000

Write a program that asks the user to enter the amount of taxable income, then displays the
tax due.

6. Modify the upc.c program of Section 4.1 so that it checks whether a UPC is valid. After
the user enters a UPC, the program will display either VALID or NOT VALID.

7. Write a program that finds the largest and smallest of four integers entered by the user:

Enter four integers: 21 43 10 35
Largest: 43
Smallest: 10

Use as few if statements as possible. Hint: Four if statements are sufficient.

8. The following table shows the daily flights from one city to another:

Departure time Arrival time
 8:00 a.m. 10:16 a.m.
 9:43 a.m. 11:52 a.m.
 11:19 a.m. 1:31 p.m.
 12:47 p.m. 3:00 p.m.

W

(a) Ask the user to enter the number of shares and the price per share, instead of the value
of the trade.

(b) Add statements that compute the commission charged by a rival broker ($33 plus 3¢ per
share for fewer than 2000 shares; $33 plus 2¢ per share for 2000 shares or more). Dis-
play the rival’s commission as well as the commission charged by the original broker.

W

W

C5.FM Page 96 Friday, February 8, 2008 3:48 PM

Programming Projects 97

 2:00 p.m. 4:08 p.m.
 3:45 p.m. 5:55 p.m.
 7:00 p.m. 9:20 p.m.
 9:45 p.m. 11:58 p.m.

Write a program that asks user to enter a time (expressed in hours and minutes, using the 24-
hour clock). The program then displays the departure and arrival times for the flight whose
departure time is closest to that entered by the user:

Enter a 24-hour time: 13:15
Closest departure time is 12:47 p.m., arriving at 3:00 p.m.

Hint: Convert the input into a time expressed in minutes since midnight, and compare it to
the departure times, also expressed in minutes since midnight. For example, 13:15 is 13 ×
60 + 15 = 795 minutes since midnight, which is closer to 12:47 p.m. (767 minutes since
midnight) than to any of the other departure times.

9. Write a program that prompts the user to enter two dates and then indicates which date
comes earlier on the calendar:

Enter first date (mm/dd/yy): 3/6/08
Enter second date (mm/dd/yy): 5/17/07
5/17/07 is earlier than 3/6/08

10. Using the switch statement, write a program that converts a numerical grade into a letter
grade:

Enter numerical grade: 84
Letter grade: B

Use the following grading scale: A = 90–100, B = 80–89, C = 70–79, D = 60–69, F = 0–59.
Print an error message if the grade is larger than 100 or less than 0. Hint: Break the grade
into two digits, then use a switch statement to test the ten’s digit.

11. Write a program that asks the user for a two-digit number, then prints the English word for
the number:

Enter a two-digit number: 45
You entered the number forty-five.

Hint: Break the number into two digits. Use one switch statement to print the word for the
first digit (“twenty,” “thirty,” and so forth). Use a second switch statement to print the
word for the second digit. Don’t forget that the numbers between 11 and 19 require special
treatment.

W

C5.FM Page 97 Friday, February 8, 2008 3:48 PM

C5.FM Page 98 Friday, February 8, 2008 3:48 PM

99

6 Loops

A program without a loop and a structured
variable isn’t worth writing.

Chapter 5 covered C’s selection statements, if and switch. This chapter intro-
duces C’s iteration statements, which allow us to set up loops.

A loop is a statement whose job is to repeatedly execute some other statement
(the loop body). In C, every loop has a controlling expression. Each time the loop
body is executed (an iteration of the loop), the controlling expression is evaluated;
if the expression is true—has a value that’s not zero—the loop continues to exe-
cute.

C provides three iteration statements: while, do, and for, which are cov-
ered in Sections 6.1, 6.2, and 6.3, respectively. The while statement is used for
loops whose controlling expression is tested before the loop body is executed. The
do statement is used if the expression is tested after the loop body is executed. The
for statement is convenient for loops that increment or decrement a counting vari-
able. Section 6.3 also introduces the comma operator, which is used primarily in
for statements.

The last two sections of this chapter are devoted to C features that are used in
conjunction with loops. Section 6.4 describes the break, continue, and goto
statements. break jumps out of a loop and transfers control to the next statement
after the loop, continue skips the rest of a loop iteration, and goto jumps to
any statement within a function. Section 6.5 covers the null statement, which can
be used to create loops with empty bodies.

6.1 The while Statement

Of all the ways to set up loops in C, the while statement is the simplest and most
fundamental. The while statement has the form

C6.FM Page 99 Friday, February 8, 2008 3:51 PM

100 Chapter 6 Loops

The expression inside the parentheses is the controlling expression; the statement
after the parentheses is the loop body. Here’s an example:

while (i < n) /* controlling expression */
 i = i * 2; /* loop body */

Note that the parentheses are mandatory and that nothing goes between the right
parenthesis and the loop body. (Some languages require the word do.)

When a while statement is executed, the controlling expression is evaluated
first. If its value is nonzero (true), the loop body is executed and the expression is
tested again. The process continues in this fashion—first testing the controlling
expression, then executing the loop body—until the controlling expression eventu-
ally has the value zero.

The following example uses a while statement to compute the smallest
power of 2 that is greater than or equal to a number n:

i = 1;
while (i < n)
 i = i * 2;

Suppose that n has the value 10. The following trace shows what happens when
the while statement is executed:

i = 1; i is now 1.
Is i < n? Yes; continue.
i = i * 2; i is now 2.
Is i < n? Yes; continue.
i = i * 2; i is now 4.
Is i < n? Yes; continue.
i = i * 2; i is now 8.
Is i < n? Yes; continue.
i = i * 2; i is now 16.
Is i < n? No; exit from loop.

Notice how the loop keeps going as long as the controlling expression (i < n) is
true. When the expression is false, the loop terminates, and i is greater than or
equal to n, as desired.

Although the loop body must be a single statement, that’s merely a technical-
ity. If we want more than one statement, we can just use braces to create a single
compound statement:

while (i > 0) {
 printf("T minus %d and counting\n", i);
 i--;
}

while statement while (expression) statement

compound statements ➤5.2

C6.FM Page 100 Friday, February 8, 2008 3:51 PM

6.1 The while Statement 101

Some programmers always use braces, even when they’re not strictly necessary:

while (i < n) { /* braces allowed, but not required */
 i = i * 2;
}

As a second example, let’s trace the execution of the following statements,
which display a series of “countdown” messages:

i = 10;
while (i > 0) {
 printf("T minus %d and counting\n", i);
 i--;
}

Before the while statement is executed, the variable i is assigned the value 10.
Since 10 is greater than 0, the loop body is executed, causing the message T
minus 10 and counting to be printed and i to be decremented. The condition
i > 0 is then tested again. Since 9 is greater than 0, the loop body is executed once
more. This process continues until the message T minus 1 and counting is
printed and i becomes 0. The test i > 0 then fails, causing the loop to terminate.

The countdown example leads us to make several observations about the
while statement:

� The controlling expression is false when a while loop terminates. Thus,
when a loop controlled by the expression i > 0 terminates, i must be less than
or equal to 0. (Otherwise, we’d still be executing the loop!)

� The body of a while loop may not be executed at all. Since the controlling
expression is tested before the loop body is executed, it’s possible that the
body isn’t executed even once. If i has a negative or zero value when the
countdown loop is first entered, the loop will do nothing.

� A while statement can often be written in a variety of ways. For example, we
could make the countdown loop more concise by decrementing i inside the
call of printf:

while (i > 0)
 printf("T minus %d and counting\n", i--);

Infinite Loops

A while statement won’t terminate if the controlling expression always has a
nonzero value. In fact, C programmers sometimes deliberately create an infinite
loop by using a nonzero constant as the controlling expression:

idiom while (1) …

A while statement of this form will execute forever unless its body contains a
statement that transfers control out of the loop (break, goto, return) or calls a
function that causes the program to terminate.

Q&A

C6.FM Page 101 Friday, February 8, 2008 3:51 PM

102 Chapter 6 Loops

PROGRAM Printing a Table of Squares

Let’s write a program that prints a table of squares. The program will first prompt
the user to enter a number n. It will then print n lines of output, with each line con-
taining a number between 1 and n together with its square:

This program prints a table of squares.
Enter number of entries in table: 5
 1 1
 2 4
 3 9
 4 16
 5 25

Let’s have the program store the desired number of squares in a variable
named n. We’ll need a loop that repeatedly prints a number i and its square, start-
ing with i equal to 1. The loop will repeat as long as i is less than or equal to n.
We’ll have to make sure to add 1 to i each time through the loop.

We’ll write the loop as a while statement. (Frankly, we haven’t got much
choice, since the while statement is the only kind of loop we’ve covered so far.)
Here’s the finished program:

square.c /* Prints a table of squares using a while statement */

#include <stdio.h>

int main(void)
{
 int i, n;

 printf("This program prints a table of squares.\n");
 printf("Enter number of entries in table: ");
 scanf("%d", &n);

 i = 1;
 while (i <= n) {
 printf("%10d%10d\n", i, i * i);
 i++;
 }

 return 0;
}

Note how square.c displays numbers in neatly aligned columns. The trick
is to use a conversion specification like %10d instead of just %d, taking advantage
of the fact that printf right-justifies numbers when a field width is specified.

PROGRAM Summing a Series of Numbers

As a second example of the while statement, let’s write a program that sums a
series of integers entered by the user. Here’s what the user will see:

C6.FM Page 102 Friday, February 8, 2008 3:51 PM

6.2 The do Statement 103

This program sums a series of integers.
Enter integers (0 to terminate): 8 23 71 5 0
The sum is: 107

Clearly we’ll need a loop that uses scanf to read a number and then adds the
number to a running total.

Letting n represent the number just read and sum the total of all numbers pre-
viously read, we end up with the following program:

sum.c /* Sums a series of numbers */

#include <stdio.h>

int main(void)
{
 int n, sum = 0;

 printf("This program sums a series of integers.\n");
 printf("Enter integers (0 to terminate): ");

 scanf("%d", &n);
 while (n != 0) {
 sum += n;
 scanf("%d", &n);
 }
 printf("The sum is: %d\n", sum);

 return 0;
}

Notice that the condition n != 0 is tested just after a number is read, allowing the
loop to terminate as soon as possible. Also note that there are two identical calls of
scanf, which is often hard to avoid when using while loops.

6.2 The do Statement

The do statement is closely related to the while statement; in fact, the do state-
ment is essentially just a while statement whose controlling expression is tested
after each execution of the loop body. The do statement has the form

As with the while statement, the body of a do statement must be one statement
(possibly compound, of course) and the controlling expression must be enclosed
within parentheses.

When a do statement is executed, the loop body is executed first, then the con-
trolling expression is evaluated. If the value of the expression is nonzero, the loop

do statement do statement while (expression) ;

C6.FM Page 103 Friday, February 8, 2008 3:51 PM

104 Chapter 6 Loops

body is executed again and then the expression is evaluated once more. Execution
of the do statement terminates when the controlling expression has the value 0
after the loop body has been executed.

Let’s rewrite the countdown example of Section 6.1, using a do statement this
time:

i = 10;
do {
 printf("T minus %d and counting\n", i);
 --i;
} while (i > 0);

When the do statement is executed, the loop body is first executed, causing the
message T minus 10 and counting to be printed and i to be decremented.
The condition i > 0 is now tested. Since 9 is greater than 0, the loop body is exe-
cuted a second time. This process continues until the message T minus 1 and
counting is printed and i becomes 0. The test i > 0 now fails, causing the loop
to terminate. As this example shows, the do statement is often indistinguishable
from the while statement. The difference between the two is that the body of a
do statement is always executed at least once; the body of a while statement is
skipped entirely if the controlling expression is 0 initially.

Incidentally, it’s a good idea to use braces in all do statements, whether or not
they’re needed, because a do statement without braces can easily be mistaken for a
while statement:

do
 printf("T minus %d and counting\n", i--);
while (i > 0);

A careless reader might think that the word while was the beginning of a while
statement.

PROGRAM Calculating the Number of Digits in an Integer

Although the while statement appears in C programs much more often than the
do statement, the latter is handy for loops that must execute at least once. To illus-
trate this point, let’s write a program that calculates the number of digits in an inte-
ger entered by the user:

Enter a nonnegative integer: 60
The number has 2 digit(s).

Our strategy will be to divide the user’s input by 10 repeatedly until it
becomes 0; the number of divisions performed is the number of digits. Clearly
we’ll need some kind of loop, since we don’t know how many divisions it will take
to reach 0. But should we use a while statement or a do statement? The do state-
ment turns out to be more attractive, because every integer—even 0—has at least
one digit. Here’s the program:

C6.FM Page 104 Friday, February 8, 2008 3:51 PM

6.3 The for Statement 105

numdigits.c /* Calculates the number of digits in an integer */

#include <stdio.h>

int main(void)
{
 int digits = 0, n;

 printf("Enter a nonnegative integer: ");
 scanf("%d", &n);

 do {
 n /= 10;
 digits++;
 } while (n > 0);

 printf("The number has %d digit(s).\n", digits);

 return 0;
}

To see why the do statement is the right choice, let’s see what would happen if
we were to replace the do loop by a similar while loop:

while (n > 0) {
 n /= 10;
 digits++;
}

If n is 0 initially, this loop won’t execute at all, and the program would print

The number has 0 digit(s).

6.3 The for Statement

We now come to the last of C’s loops: the for statement. Don’t be discouraged by
the for statement’s apparent complexity; it’s actually the best way to write many
loops. The for statement is ideal for loops that have a “counting” variable, but it’s
versatile enough to be used for other kinds of loops as well.

The for statement has the form

where expr1, expr2, and expr3 are expressions. Here’s an example:

for (i = 10; i > 0; i--)
 printf("T minus %d and counting\n", i);

When this for statement is executed, the variable i is initialized to 10, then i is
tested to see if it’s greater than 0. Since it is, the message T minus 10 and

for statement for (expr1 ; expr2 ; expr3) statement

C6.FM Page 105 Friday, February 8, 2008 3:51 PM

106 Chapter 6 Loops

counting is printed, then i is decremented. The condition i > 0 is then tested
again. The loop body will be executed 10 times in all, with i varying from 10
down to 1.

The for statement is closely related to the while statement. In fact, except
in a few rare cases, a for loop can always be replaced by an equivalent while
loop:

expr1;
while (expr2) {
 statement
 expr3;
}

As this pattern shows, expr1 is an initialization step that’s performed only once,
before the loop begins to execute, expr2 controls loop termination (the loop contin-
ues executing as long as the value of expr2 is nonzero), and expr3 is an operation
to be performed at the end of each loop iteration. Applying this pattern to our pre-
vious for loop example, we arrive at the following:

i = 10;
while (i > 0) {
 printf("T minus %d and counting\n", i);
 i--;
}

Studying the equivalent while statement can help us understand the fine
points of a for statement. For example, suppose that we replace i-- by --i in
our for loop example:

for (i = 10; i > 0; --i)
 printf("T minus %d and counting\n", i);

How does this change affect the loop? Looking at the equivalent while loop, we
see that it has no effect:

i = 10;
while (i > 0) {
 printf("T minus %d and counting\n", i);
 --i;
}

Since the first and third expressions in a for statement are executed as statements,
their values are irrelevant—they’re useful only for their side effects. Consequently,
these two expressions are usually assignments or increment/decrement expres-
sions.

for Statement Idioms

The for statement is usually the best choice for loops that “count up” (increment
a variable) or “count down” (decrement a variable). A for statement that counts
up or down a total of n times will usually have one of the following forms:

Q&A

C6.FM Page 106 Friday, February 8, 2008 3:51 PM

6.3 The for Statement 107

� Counting up from 0 to n–1:

idiom for (i = 0; i < n; i++) …

� Counting up from 1 to n:

idiom for (i = 1; i <= n; i++) …

� Counting down from n–1 to 0:

idiom for (i = n - 1; i >= 0; i--) …

� Counting down from n to 1:

idiom for (i = n; i > 0; i--) …

Imitating these patterns will help you avoid some of the following errors,
which beginning C programmers often make:

� Using < instead of > (or vice versa) in the controlling expression. Notice that
“counting up” loops use the < or <= operator, while “counting down” loops
rely on > or >=.

� Using == in the controlling expression instead of <, <=, >, or >=. A control-
ling expression needs to be true at the beginning of the loop, then later become
false so that the loop can terminate. A test such as i == n doesn’t make much
sense, because it won’t be true initially.

� “Off-by-one” errors such as writing the controlling expression as i <= n
instead of i < n.

Omitting Expressions in a for Statement

The for statement is even more flexible than we’ve seen so far. Some for loops
may not need all three of the expressions that normally control the loop, so C
allows us to omit any or all of the expressions.

If the first expression is omitted, no initialization is performed before the loop
is executed:

i = 10;
for (; i > 0; --i)
 printf("T minus %d and counting\n", i);

In this example, i has been initialized by a separate assignment, so we’ve omitted
the first expression in the for statement. (Notice that the semicolon between the
first and second expressions remains. The two semicolons must always be present,
even when we’ve omitted some of the expressions.)

If we omit the third expression in a for statement, the loop body is responsi-
ble for ensuring that the value of the second expression eventually becomes false.
Our for statement example could be written like this:

for (i = 10; i > 0;)
 printf("T minus %d and counting\n", i--);

C6.FM Page 107 Friday, February 8, 2008 3:51 PM

108 Chapter 6 Loops

To compensate for omitting the third expression, we’ve arranged for i to be decre-
mented inside the loop body.

When the first and third expressions are both omitted, the resulting loop is
nothing more than a while statement in disguise. For example, the loop

for (; i > 0;)
 printf("T minus %d and counting\n", i--);

is the same as

while (i > 0)
 printf("T minus %d and counting\n", i--);

The while version is clearer and therefore preferable.
If the second expression is missing, it defaults to a true value, so the for

statement doesn’t terminate (unless stopped in some other fashion). For example,
some programmers use the following for statement to establish an infinite loop:

idiom for (;;) …

for Statements in C99

In C99, the first expression in a for statement can be replaced by a declaration.
This feature allows the programmer to declare a variable for use by the loop:

for (int i = 0; i < n; i++)
 …

The variable i need not have been declared prior to this statement. (In fact, if a
declaration of i already exists, this statement creates a new version of i that will
be used solely within the loop.)

A variable declared by a for statement can’t be accessed outside the body of
the loop (we say that it’s not visible outside the loop):

for (int i = 0; i < n; i++) {
 …
 printf("%d", i); /* legal; i is visible inside loop */
 …
}
printf("%d", i); /*** WRONG ***/

Having a for statement declare its own control variable is usually a good
idea: it’s convenient and it can make programs easier to understand. However, if
the program needs to access the variable after loop termination, it’s necessary to
use the older form of the for statement.

Incidentally, a for statement may declare more than one variable, provided
that all variables have the same type:

for (int i = 0, j = 0; i < n; i++)
 …

Q&A

C99

C6.FM Page 108 Friday, February 8, 2008 3:51 PM

6.3 The for Statement 109

The Comma Operator

On occasion, we might like to write a for statement with two (or more) initializa-
tion expressions or one that increments several variables each time through the
loop. We can do this by using a comma expression as the first or third expression
in the for statement.

A comma expression has the form

where expr1 and expr2 are any two expressions. A comma expression is evaluated
in two steps: First, expr1 is evaluated and its value discarded. Second, expr2 is
evaluated; its value is the value of the entire expression. Evaluating expr1 should
always have a side effect; if it doesn’t, then expr1 serves no purpose.

For example, suppose that i and j have the values 1 and 5, respectively. When
the comma expression ++i, i + j is evaluated, i is first incremented, then i + j
is evaluated, so the value of the expression is 7. (And, of course, i now has the
value 2.) The precedence of the comma operator is less than that of all other opera-
tors, by the way, so there’s no need to put parentheses around ++i and i + j.

Occasionally, we’ll need to chain together a series of comma expressions, just
as we sometimes chain assignments together. The comma operator is left associa-
tive, so the compiler interprets

i = 1, j = 2, k = i + j

as

((i = 1), (j = 2)), (k = (i + j))

Since the left operand in a comma expression is evaluated before the right operand,
the assignments i = 1, j = 2, and k = i + j will be performed from left to right.

The comma operator is provided for situations where C requires a single
expression, but we’d like to have two or more expressions. In other words, the
comma operator allows us to “glue” two expressions together to form a single
expression. (Note the similarity to the compound statement, which allows us to
treat a group of statements as a single statement.)

The need to glue expressions together doesn’t arise that often. Certain macro
definitions can benefit from the comma operator, as we’ll see in a later chapter.
The for statement is the only other place where the comma operator is likely to be
found. For example, suppose that we want to initialize two variables when entering
a for statement. Instead of writing

sum = 0;
for (i = 1; i <= N; i++)
 sum += i;

we can write

comma expression expr1 , expr2

macro definitions ➤14.3

C6.FM Page 109 Friday, February 8, 2008 3:51 PM

110 Chapter 6 Loops

for (sum = 0, i = 1; i <= N; i++)
 sum += i;

The expression sum = 0, i = 1 first assigns 0 to sum, then assigns 1 to i. With
additional commas, the for statement could initialize more than two variables.

PROGRAM Printing a Table of Squares (Revisited)

The square.c program (Section 6.1) can be improved by converting its while
loop to a for loop:

square2.c /* Prints a table of squares using a for statement */

#include <stdio.h>

int main(void)
{
 int i, n;

 printf("This program prints a table of squares.\n");
 printf("Enter number of entries in table: ");
 scanf("%d", &n);

 for (i = 1; i <= n; i++)
 printf("%10d%10d\n", i, i * i);

 return 0;
}

We can use this program to illustrate an important point about the for state-
ment: C places no restrictions on the three expressions that control its behavior.
Although these expressions usually initialize, test, and update the same variable,
there’s no requirement that they be related in any way. Consider the following ver-
sion of the same program:

square3.c /* Prints a table of squares using an odd method */

#include <stdio.h>

int main(void)
{
 int i, n, odd, square;

 printf("This program prints a table of squares.\n");
 printf("Enter number of entries in table: ");
 scanf("%d", &n);

 i = 1;
 odd = 3;
 for (square = 1; i <= n; odd += 2) {
 printf("%10d%10d\n", i, square);
 ++i;

C6.FM Page 110 Friday, February 8, 2008 3:51 PM

6.4 Exiting from a Loop 111

 square += odd;
 }

 return 0;
}

The for statement in this program initializes one variable (square), tests
another (i), and increments a third (odd). i is the number to be squared, square
is the square of i, and odd is the odd number that must be added to the current
square to get the next square (allowing the program to compute consecutive
squares without performing any multiplications).

The tremendous flexibility of the for statement can sometimes be useful;
we’ll find it to be a great help when working with linked lists. The for statement
can easily be misused, though, so don’t go overboard. The for loop in
square3.c would be a lot clearer if we rearranged its pieces so that the loop is
clearly controlled by i.

6.4 Exiting from a Loop

We’ve seen how to write loops that have an exit point before the loop body (using
while and for statements) or after it (using do statements). Occasionally, how-
ever, we’ll need a loop with an exit point in the middle. We may even want a loop
to have more than one exit point. The break statement makes it possible to write
either kind of loop.

After we’ve examined the break statement, we’ll look at a couple of related
statements: continue and goto. The continue statement makes it possible to
skip part of a loop iteration without jumping out of the loop. The goto statement
allows a program to jump from one statement to another. Thanks to the availability
of statements such as break and continue, the goto statement is rarely used.

The break Statement

We’ve already discussed how a break statement can transfer control out of a
switch statement. The break statement can also be used to jump out of a
while, do, or for loop.

Suppose that we’re writing a program that checks whether a number n is
prime. Our plan is to write a for statement that divides n by the numbers between
2 and n – 1. We should break out of the loop as soon as any divisor is found;
there’s no need to try the remaining possibilities. After the loop has terminated, we
can use an if statement to determine whether termination was premature (hence n
isn’t prime) or normal (n is prime):

for (d = 2; d < n; d++)
 if (n % d == 0)
 break;

linked lists ➤17.5

C6.FM Page 111 Friday, February 8, 2008 3:51 PM

112 Chapter 6 Loops

if (d < n)
 printf("%d is divisible by %d\n", n, d);
else
 printf("%d is prime\n", n);

The break statement is particularly useful for writing loops in which the exit
point is in the middle of the body rather than at the beginning or end. Loops that
read user input, terminating when a particular value is entered, often fall into this
category:

for (;;) {
 printf("Enter a number (enter 0 to stop): ");
 scanf("%d", &n);
 if (n == 0)
 break;
 printf("%d cubed is %d\n", n, n * n * n);
}

A break statement transfers control out of the innermost enclosing while,
do, for, or switch statement. Thus, when these statements are nested, the
break statement can escape only one level of nesting. Consider the case of a
switch statement nested inside a while statement:

while (…) {
 switch (…) {
 …
 break;
 …
 }
}

The break statement transfers control out of the switch statement, but not out
of the while loop. I’ll return to this point later.

The continue Statement

The continue statement doesn’t really belong here, because it doesn’t exit from
a loop. It’s similar to break, though, so its inclusion in this section isn’t com-
pletely arbitrary. break transfers control just past the end of a loop, while
continue transfers control to a point just before the end of the loop body. With
break, control leaves the loop; with continue, control remains inside the loop.
There’s another difference between break and continue: break can be used
in switch statements and loops (while, do, and for), whereas continue is
limited to loops.

The following example, which reads a series of numbers and computes their
sum, illustrates a simple use of continue. The loop terminates when 10 nonzero
numbers have been read. Whenever the number 0 is read, the continue state-
ment is executed, skipping the rest of the loop body (the statements sum += i;
and n++;) but remaining inside the loop.

C6.FM Page 112 Friday, February 8, 2008 3:51 PM

6.4 Exiting from a Loop 113

n = 0;
sum = 0;
while (n < 10) {
 scanf("%d", &i);
 if (i == 0)
 continue;
 sum += i;
 n++;
 /* continue jumps to here */
}

If continue were not available, we could have written the example as follows:

n = 0;
sum = 0;
while (n < 10) {
 scanf("%d", &i);
 if (i != 0) {
 sum += i;
 n++;
 }
}

The goto Statement

break and continue are jump statements that transfer control from one point
in the program to another. Both are restricted: the target of a break is a point just
beyond the end of the enclosing loop, while the target of a continue is a point
just before the end of the loop. The goto statement, on the other hand, is capable
of jumping to any statement in a function, provided that the statement has a label.
(C99 places an additional restriction on the goto statement: it can’t be used to
bypass the declaration of a variable-length array.)

A label is just an identifier placed at the beginning of a statement:

A statement may have more than one label. The goto statement itself has the form

Executing the statement goto L; transfers control to the statement that follows
the label L, which must be in the same function as the goto statement itself.

If C didn’t have a break statement, here’s how we might use a goto state-
ment to exit prematurely from a loop:

for (d = 2; d < n; d++)
 if (n % d == 0)
 goto done;

C99
variable-length arrays ➤8.3

labeled statement identifier : statement

goto statement goto identifier ;

C6.FM Page 113 Friday, February 8, 2008 3:51 PM

114 Chapter 6 Loops

done:
if (d < n)
 printf("%d is divisible by %d\n", n, d);
else
 printf("%d is prime\n", n);

The goto statement, a staple of older programming languages, is rarely
needed in everyday C programming. The break, continue, and return state-
ments—which are essentially restricted goto statements—and the exit function
are sufficient to handle most situations that might require a goto in other lan-
guages.

Nonetheless, the goto statement can be helpful once in a while. Consider the
problem of exiting a loop from within a switch statement. As we saw earlier, the
break statement doesn’t quite have the desired effect: it exits from the switch,
but not from the loop. A goto statement solves the problem:

while (…) {
 switch (…) {
 …
 goto loop_done; /* break won't work here */
 …
 }
}
loop_done: …

The goto statement is also useful for exiting from nested loops.

PROGRAM Balancing a Checkbook

Many simple interactive programs are menu-based: they present the user with a list
of commands to choose from. Once the user has selected a command, the program
performs the desired action, then prompts the user for another command. This pro-
cess continues until the user selects an “exit” or “quit” command.

The heart of such a program will obviously be a loop. Inside the loop will be
statements that prompt the user for a command, read the command, then decide
what action to take:

for (;;) {
 prompt user to enter command;
 read command;
 execute command;
}

Executing the command will require a switch statement (or cascaded if state-
ment):

for (;;) {
 prompt user to enter command;
 read command;
 switch (command) {
 case command1: perform operation1; break;

Q&A
exit function ➤9.5

C6.FM Page 114 Friday, February 8, 2008 3:51 PM

6.4 Exiting from a Loop 115

 case command2: perform operation2; break; .
 .
 .
 case commandn: perform operationn; break;
 default: print error message; break;
 }
}

To illustrate this arrangement, let’s develop a program that maintains a check-
book balance. The program will offer the user a menu of choices: clear the account
balance, credit money to the account, debit money from the account, display the
current balance, and exit the program. The choices are represented by the integers
0, 1, 2, 3, and 4, respectively. Here’s what a session with the program will look
like:

*** ACME checkbook-balancing program ***
Commands: 0=clear, 1=credit, 2=debit, 3=balance, 4=exit

Enter command: 1
Enter amount of credit: 1042.56
Enter command: 2
Enter amount of debit: 133.79
Enter command: 1
Enter amount of credit: 1754.32
Enter command: 2
Enter amount of debit: 1400
Enter command: 2
Enter amount of debit: 68
Enter command: 2
Enter amount of debit: 50
Enter command: 3
Current balance: $1145.09
Enter command: 4

When the user enters the command 4 (exit), the program needs to exit from the
switch statement and the surrounding loop. The break statement won’t help,
and we’d prefer not to use a goto statement. Instead, we’ll have the program exe-
cute a return statement, which will cause the main function to return to the
operating system.

checking.c /* Balances a checkbook */

#include <stdio.h>

int main(void)
{
 int cmd;
 float balance = 0.0f, credit, debit;

 printf("*** ACME checkbook-balancing program ***\n");
 printf("Commands: 0=clear, 1=credit, 2=debit, ");
 printf("3=balance, 4=exit\n\n");

C6.FM Page 115 Friday, February 8, 2008 3:51 PM

116 Chapter 6 Loops

 for (;;) {
 printf("Enter command: ");
 scanf("%d", &cmd);
 switch (cmd) {
 case 0:
 balance = 0.0f;
 break;
 case 1:
 printf("Enter amount of credit: ");
 scanf("%f", &credit);
 balance += credit;
 break;
 case 2:
 printf("Enter amount of debit: ");
 scanf("%f", &debit);
 balance -= debit;
 break;
 case 3:
 printf("Current balance: $%.2f\n", balance);
 break;
 case 4:
 return 0;
 default:
 printf("Commands: 0=clear, 1=credit, 2=debit, ");
 printf("3=balance, 4=exit\n\n");
 break;
 }
 }
}

Note that the return statement is not followed by a break statement. A break
immediately following a return can never be executed, and many compilers will
issue a warning message.

6.5 The Null Statement

A statement can be null—devoid of symbols except for the semicolon at the end.
Here’s an example:

i = 0; ; j = 1;

This line contains three statements: an assignment to i, a null statement, and an
assignment to j.

The null statement is primarily good for one thing: writing loops whose bodies
are empty. As an example, recall the prime-finding loop of Section 6.4:

for (d = 2; d < n; d++)
 if (n % d == 0)
 break;

Q&A

C6.FM Page 116 Friday, February 8, 2008 3:51 PM

6.5 The Null Statement 117

If we move the n % d == 0 condition into the loop’s controlling expression, the
body of the loop becomes empty:

for (d = 2; d < n && n % d != 0; d++)
 /* empty loop body */ ;

Each time through the loop, the condition d < n is tested first; if it’s false, the loop
terminates. Otherwise, the condition n % d != 0 is tested, and if that’s false, the
loop terminates. (In the latter case, n % d == 0 must be true; in other words, we’ve
found a divisor of n.)

Note how we’ve put the null statement on a line by itself, instead of writing

for (d = 2; d < n && n % d != 0; d++);

C programmers customarily put the null statement on a line by itself. Otherwise,
someone reading the program might get confused about whether the statement
after the for was actually its body:

for (d = 2; d < n && n % d != 0; d++);
if (d < n)
 printf("%d is divisible by %d\n", n, d);

Converting an ordinary loop into one with an empty body doesn’t buy much:
the new loop is often more concise but usually no more efficient. In a few cases,
though, a loop with an empty body is clearly superior to the alternatives. For exam-
ple, we’ll find these loops to be handy for reading character data.

Accidentally putting a semicolon after the parentheses in an if, while, or for
statement creates a null statement, thus ending the if, while, or for prema-
turely.

� In an if statement, putting a semicolon after the parentheses creates an if
statement that apparently performs the same action regardless of the value of
its controlling expression:

if (d == 0); /*** WRONG ***/
 printf("Error: Division by zero\n");

The call of printf isn’t inside the if statement, so it’s performed regardless
of whether d is equal to 0.

� In a while statement, putting a semicolon after the parentheses may create
an infinite loop:

i = 10;
while (i > 0); /*** WRONG ***/
{
 printf("T minus %d and counting\n", i);
 --i;
}

Q&A

reading characters ➤7.3

C6.FM Page 117 Friday, February 8, 2008 3:51 PM

118 Chapter 6 Loops

Another possibility is that the loop terminates, but the statement that should be
the loop body is executed only once, after the loop has terminated:

i = 11;
while (--i > 0); /*** WRONG ***/
 printf("T minus %d and counting\n", i);

This example prints the message

T minus 0 and counting

� In a for statement, putting a semicolon after the parentheses causes the state-
ment that should be the loop body to be executed only once:

for (i = 10; i > 0; i--); /*** WRONG ***/
 printf("T minus %d and counting\n", i);

This example also prints the message

T minus 0 and counting

Q & A

Q: The following loop appears in Section 6.1:

while (i > 0)
 printf("T minus %d and counting\n", i--);

Why not shorten the loop even more by removing the “> 0” test?

while (i)
 printf("T minus %d and counting\n", i--);

This version will stop when i reaches 0, so it should be just as good as the
original. [p. 101]

A: The new version is certainly more concise, and many C programmers would write
the loop in just this way. It does have drawbacks, though.

First, the new loop is not as easy to read as the original. It’s clear that the loop
will terminate when i reaches 0, but it’s not obvious whether we’re counting up or
down. In the original loop, that information can be deduced from the controlling
expression, i > 0.

Second, the new loop behaves differently than the original if i should happen
to have a negative value when the loop begins to execute. The original loop termi-
nates immediately, but the new loop doesn’t.

Q: Section 6.3 says that, except in rare cases, for loops can be converted to
while loops using a standard pattern. Can you give an example of such a
case? [p. 106]

C6.FM Page 118 Friday, February 8, 2008 3:51 PM

Q & A 119

A: When the body of a for loop contains a continue statement, the while pat-
tern shown in Section 6.3 is no longer valid. Consider the following example from
Section 6.4:

n = 0;
sum = 0;
while (n < 10) {
 scanf("%d", &i);
 if (i == 0)
 continue;
 sum += i;
 n++;
}

At first glance, it looks as though we could convert the while loop into a for
loop:

sum = 0;
for (n = 0; n < 10; n++) {
 scanf("%d", &i);
 if (i == 0)
 continue;
 sum += i;
}

Unfortunately, this loop isn’t equivalent to the original. When i is equal to 0, the
original loop doesn’t increment n, but the new loop does.

Q: Which form of infinite loop is preferable, while (1) or for (;;)? [p. 108]
A: C programmers have traditionally preferred for (;;) for reasons of efficiency;

older compilers would often force programs to test the 1 condition each time
through the while loop. With modern compilers, however, there should be no dif-
ference in performance.

Q: I’ve heard that programmers should never use the continue statement. Is
this true?

A: It’s true that continue statements are rare. Still, continue is handy once in a
while. Suppose we’re writing a loop that reads some input data, checks that it’s
valid, and, if so, processes the input in some way. If there are a number of validity
tests, or if they’re complex, continue can be helpful. The loop would look
something like this:

for (;;) {
 read data;
 if (data fails first test)
 continue;
 if (data fails second test)
 continue;
 .
 .
 .

C6.FM Page 119 Friday, February 8, 2008 3:51 PM

120 Chapter 6 Loops

 if (data fails last test)
 continue;
 process data;
}

Q: What’s so bad about the goto statement? [p. 114]

A: The goto statement isn’t inherently evil; it’s just that we usually have better alter-
natives. Programs that use more than a few goto statements can quickly degener-
ate into “spaghetti code,” with control blithely jumping from here to there.
Spaghetti code is hard to understand and hard to modify.

goto statements make programs hard to read because they can jump either
forward or backward. (In contrast, break and continue only jump forward.) A
program that contains goto statements often requires the reader to jump back and
forth in an attempt to follow the flow of control.

goto statements can make programs hard to modify, since they make it possi-
ble for a section of code to serve more than one purpose. For example, a statement
that is preceded by a label might be reachable either by “falling through” from the
previous statement or by executing one of several goto statements.

Q: Does the null statement have any uses besides indicating that the body of a
loop is empty? [p. 116]

A: Very few. Since the null statement can appear wherever a statement is allowed,
there are many potential uses for the null statement. In practice, however, there’s
only one other use of the null statement, and it’s rare.

Suppose that we need to put a label at the end of a compound statement. A
label can’t stand alone; it must always be followed by a statement. Putting a null
statement after the label solves the problem:

{
 …
 goto end_of_stmt;
 …
 end_of_stmt: ;
}

Q: Are there any other ways to make an empty loop body stand out besides put-
ting the null statement on a line by itself? [p. 117]

A: Some programmers use a dummy continue statement:

for (d = 2; d < n && n % d != 0; d++)
 continue;

Others use an empty compound statement:

for (d = 2; d < n && n % d != 0; d++)
 {}

C6.FM Page 120 Friday, February 8, 2008 3:51 PM

Exercises 121

Exercises

Section 6.1 1. What output does the following program fragment produce?

i = 1;
while (i <= 128) {
 printf("%d ", i);
 i *= 2;
}

Section 6.2 2. What output does the following program fragment produce?

i = 9384;
do {
 printf("%d ", i);
 i /= 10;
} while (i > 0);

Section 6.3 *3. What output does the following for statement produce?

for (i = 5, j = i - 1; i > 0, j > 0; --i, j = i - 1)
 printf("%d ", i);

4. Which one of the following statements is not equivalent to the other two (assuming that the
loop bodies are the same)?

5. Which one of the following statements is not equivalent to the other two (assuming that the
loop bodies are the same)?

6. Translate the program fragment of Exercise 1 into a single for statement.

7. Translate the program fragment of Exercise 2 into a single for statement.

*8. What output does the following for statement produce?

for (i = 10; i >= 1; i /= 2)
 printf("%d ", i++);

9. Translate the for statement of Exercise 8 into an equivalent while statement. You will
need one statement in addition to the while loop itself.

Section 6.4 10. Show how to replace a continue statement by an equivalent goto statement.

11. What output does the following program fragment produce?

(a) for (i = 0; i < 10; i++) …
(b) for (i = 0; i < 10; ++i) …
(c) for (i = 0; i++ < 10;) …

(a) while (i < 10) {…}
(b) for (; i < 10;) {…}
(c) do {…} while (i < 10);

W

W

C6.FM Page 121 Friday, February 8, 2008 3:51 PM

122 Chapter 6 Loops

sum = 0;
for (i = 0; i < 10; i++) {
 if (i % 2)
 continue;
 sum += i;
}
printf("%d\n", sum);

12. The following “prime-testing” loop appeared in Section 6.4 as an example:

for (d = 2; d < n; d++)
 if (n % d == 0)
 break;

This loop isn’t very efficient. It’s not necessary to divide n by all numbers between 2 and
n – 1 to determine whether it’s prime. In fact, we need only check divisors up to the square
root of n. Modify the loop to take advantage of this fact. Hint: Don’t try to compute the
square root of n; instead, compare d * d with n.

Section 6.5 *13. Rewrite the following loop so that its body is empty:

for (n = 0; m > 0; n++)
 m /= 2;

*14. Find the error in the following program fragment and fix it.

if (n % 2 == 0);
 printf("n is even\n");

Programming Projects

1. Write a program that finds the largest in a series of numbers entered by the user. The pro-
gram must prompt the user to enter numbers one by one. When the user enters 0 or a nega-
tive number, the program must display the largest nonnegative number entered:

Enter a number: 60
Enter a number: 38.3
Enter a number: 4.89
Enter a number: 100.62
Enter a number: 75.2295
Enter a number: 0

The largest number entered was 100.62

Notice that the numbers aren’t necessarily integers.

2. Write a program that asks the user to enter two integers, then calculates and displays their
greatest common divisor (GCD):

Enter two integers: 12 28
Greatest common divisor: 4

Hint: The classic algorithm for computing the GCD, known as Euclid’s algorithm, goes as
follows: Let m and n be variables containing the two numbers. If n is 0, then stop: m con-
tains the GCD. Otherwise, compute the remainder when m is divided by n. Copy n into m
and copy the remainder into n. Then repeat the process, starting with testing whether n is 0.

W

W

W

C6.FM Page 122 Friday, February 8, 2008 3:51 PM

Programming Projects 123

3. Write a program that asks the user to enter a fraction, then reduces the fraction to lowest
terms:

Enter a fraction: 6/12
In lowest terms: 1/2

Hint: To reduce a fraction to lowest terms, first compute the GCD of the numerator and
denominator. Then divide both the numerator and denominator by the GCD.

4. Add a loop to the broker.c program of Section 5.2 so that the user can enter more than
one trade and the program will calculate the commission on each. The program should ter-
minate when the user enters 0 as the trade value:

Enter value of trade: 30000
Commission: $166.00

Enter value of trade: 20000
Commission: $144.00

Enter value of trade: 0

5. Programming Project 1 in Chapter 4 asked you to write a program that displays a two-digit
number with its digits reversed. Generalize the program so that the number can have one,
two, three, or more digits. Hint: Use a do loop that repeatedly divides the number by 10,
stopping when it reaches 0.

6. Write a program that prompts the user to enter a number n, then prints all even squares
between 1 and n. For example, if the user enters 100, the program should print the follow-
ing:

4
16
36
64
100

7. Rearrange the square3.c program so that the for loop initializes i, tests i, and incre-
ments i. Don’t rewrite the program; in particular, don’t use any multiplications.

8. Write a program that prints a one-month calendar. The user specifies the number of days in
the month and the day of the week on which the month begins:

Enter number of days in month: 31
Enter starting day of the week (1=Sun, 7=Sat): 3

 1 2 3 4 5
 6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Hint: This program isn’t as hard as it looks. The most important part is a for statement that
uses a variable i to count from 1 to n, where n is the number of days in the month, printing
each value of i. Inside the loop, an if statement tests whether i is the last day in a week; if
so, it prints a new-line character.

9. Programming Project 8 in Chapter 2 asked you to write a program that calculates the
remaining balance on a loan after the first, second, and third monthly payments. Modify the
program so that it also asks the user to enter the number of payments and then displays the
balance remaining after each of these payments.

W

W

W

C6.FM Page 123 Friday, February 8, 2008 3:51 PM

124 Chapter 6 Loops

10. Programming Project 9 in Chapter 5 asked you to write a program that determines which of
two dates comes earlier on the calendar. Generalize the program so that the user may enter
any number of dates. The user will enter 0/0/0 to indicate that no more dates will be entered:

Enter a date (mm/dd/yy): 3/6/08
Enter a date (mm/dd/yy): 5/17/07
Enter a date (mm/dd/yy): 6/3/07
Enter a date (mm/dd/yy): 0/0/0
5/17/07 is the earliest date

11. The value of the mathematical constant e can be expressed as an infinite series:

e = 1 + 1/1! + 1/2! + 1/3! + …

Write a program that approximates e by computing the value of

1 + 1/1! + 1/2! + 1/3! + … + 1/n!

where n is an integer entered by the user.

12. Modify Programming Project 11 so that the program continues adding terms until the cur-
rent term becomes less than ε, where ε is a small (floating-point) number entered by the
user.

C6.FM Page 124 Friday, February 8, 2008 3:51 PM

125

7 Basic Types

Make no mistake about it: Computers process numbers—
not symbols. We measure our understanding (and control)

by the extent to which we can arithmetize an activity.

So far, we’ve used only two of C’s basic (built-in) types: int and float. (We’ve
also seen _Bool, which is a basic type in C99.) This chapter describes the rest of
the basic types and discusses important issues about types in general. Section 7.1
reveals the full range of integer types, which include long integers, short integers,
and unsigned integers. Section 7.2 introduces the double and long double
types, which provide a larger range of values and greater precision than float.
Section 7.3 covers the char type, which we’ll need in order to work with charac-
ter data. Section 7.4 tackles the thorny topic of converting a value of one type to an
equivalent value of another. Section 7.5 shows how to use typedef to define new
type names. Finally, Section 7.6 describes the sizeof operator, which measures
the amount of storage required for a type.

7.1 Integer Types

C supports two fundamentally different kinds of numeric types: integer types and
floating types. Values of an integer type are whole numbers, while values of a
floating type can have a fractional part as well. The integer types, in turn, are
divided into two categories: signed and unsigned.

Signed and Unsigned Integers

The leftmost bit of a signed integer (known as the sign bit) is 0 if the number is
positive or zero, 1 if it’s negative. Thus, the largest 16-bit integer has the binary rep-
resentation

C7.FM Page 125 Friday, February 8, 2008 3:55 PM

126 Chapter 7 Basic Types

0111111111111111

which has the value 32,767 (215 – 1). The largest 32-bit integer is

01111111111111111111111111111111

which has the value 2,147,483,647 (231 – 1). An integer with no sign bit (the left-
most bit is considered part of the number’s magnitude) is said to be unsigned. The
largest 16-bit unsigned integer is 65,535 (216 – 1), and the largest 32-bit unsigned
integer is 4,294,967,295 (232 – 1).

By default, integer variables are signed in C—the leftmost bit is reserved for the
sign. To tell the compiler that a variable has no sign bit, we declare it to be
unsigned. Unsigned numbers are primarily useful for systems programming and
low-level, machine-dependent applications. We’ll discuss typical applications for
unsigned numbers in Chapter 20; until then, we’ll generally avoid them.

C’s integer types come in different sizes. The int type is usually 32 bits, but
may be 16 bits on older CPUs. Since some programs require numbers that are too
large to store in int form, C also provides long integers. At times, we may need to
conserve memory by instructing the compiler to store a number in less space than
normal; such a number is called a short integer.

To construct an integer type that exactly meets our needs, we can specify that
a variable is long or short, signed or unsigned. We can even combine
specifiers (e.g., long unsigned int). However, only the following six combi-
nations actually produce different types:

short int
unsigned short int

int
unsigned int

long int
unsigned long int

Other combinations are synonyms for one of these six types. (For example, long
signed int is the same as long int, since integers are always signed unless
otherwise specified.) Incidentally, the order of the specifiers doesn’t matter;
unsigned short int is the same as short unsigned int.

C allows us to abbreviate the names of integer types by dropping the word
int. For example, unsigned short int may be abbreviated to unsigned
short, and long int may be abbreviated to just long. Omitting int is a
widespread practice among C programmers, and some newer C-based languages
(including Java) actually require the programmer to write short or long rather
than short int or long int. For these reasons, I’ll often omit the word int
when it’s not strictly necessary.

C7.FM Page 126 Friday, February 8, 2008 3:55 PM

7.1 Integer Types 127

The range of values represented by each of the six integer types varies from
one machine to another. However, there are a couple of rules that all compilers
must obey. First, the C standard requires that short int, int, and long int
each cover a certain minimum range of values (see Section 23.2 for details). Sec-
ond, the standard requires that int not be shorter than short int, and long
int not be shorter than int. However, it’s possible that short int represents
the same range of values as int; also, int may have the same range as long
int.

Table 7.1 shows the usual range of values for the integer types on a 16-bit
machine; note that short int and int have identical ranges.

Table 7.2 shows the usual ranges on a 32-bit machine; here int and long int
have identical ranges.

In recent years, 64-bit CPUs have become more common. Table 7.3 shows typical
ranges for the integer types on a 64-bit machine (especially under UNIX).

Once more, let me emphasize that the ranges shown in Tables 7.1, 7.2, and 7.3
aren’t mandated by the C standard and may vary from one compiler to another.
One way to determine the ranges of the integer types for a particular implementa-
tion is to check the <limits.h> header, which is part of the standard library.
This header defines macros that represent the smallest and largest values of each
integer type.

Type Smallest Value Largest Value

short int
unsigned short int
int
unsigned int
long int
unsigned long int

–32,768
0

–32,768
0

–2,147,483,648
0

32,767
65,535
32,767
65,535

2,147,483,647
4,294,967,295

Table 7.1
Integer Types on a

16-bit Machine

Type Smallest Value Largest Value

short int
unsigned short int
int
unsigned int
long int
unsigned long int

–32,768
0

–2,147,483,648
0

–2,147,483,648
0

32,767
65,535

2,147,483,647
4,294,967,295
2,147,483,647
4,294,967,295

Table 7.2
Integer Types on a

32-bit Machine

Type Smallest Value Largest Value

short int
unsigned short int
int
unsigned int
long int
unsigned long int

–32,768
0

–2,147,483,648
0

–9,223,372,036,854,775,808
0

32,767
65,535

2,147,483,647
4,294,967,295

9,223,372,036,854,775,807
18,446,744,073,709,551,615

Table 7.3
Integer Types on a

64-bit Machine

<limits.h> header ➤23.2

C7.FM Page 127 Friday, February 8, 2008 3:55 PM

128 Chapter 7 Basic Types

Integer Types in C99

C99 provides two additional standard integer types, long long int and
unsigned long long int. These types were added because of the growing
need for very large integers and the ability of newer processors to support 64-bit
arithmetic. Both long long types are required to be at least 64 bits wide, so the
range of long long int values is typically –263 (–9,223,372,036,854,775,808)
to 263 – 1 (9,223,372,036,854,775,807), and range of unsigned long long
int values is usually 0 to 264 – 1 (18,446,744,073,709,551,615).

The short int, int, long int, and long long int types (along with
the signed char type) are called standard signed integer types in C99. The
unsigned short int, unsigned int, unsigned long int, and
unsigned long long int types (along with the unsigned char type and
the _Bool type) are called standard unsigned integer types.

In addition to the standard integer types, the C99 standard allows implementa-
tion-defined extended integer types, both signed and unsigned. For example, a
compiler might provide signed and unsigned 128-bit integer types.

Integer Constants

Let’s turn our attention to constants—numbers that appear in the text of a pro-
gram, not numbers that are read, written, or computed. C allows integer constants
to be written in decimal (base 10), octal (base 8), or hexadecimal (base 16).

Octal and Hexadecimal Numbers

An octal number is written using only the digits 0 through 7. Each position in an
octal number represents a power of 8 (just as each position in a decimal number
represents a power of 10). Thus, the octal number 237 represents the decimal num-
ber 2 × 82 + 3 × 81 + 7 × 80 = 128 + 24 + 7 = 159.

A hexadecimal (or hex) number is written using the digits 0 through 9 plus the
letters A through F, which stand for 10 through 15, respectively. Each position in a
hex number represents a power of 16; the hex number 1AF has the decimal value
1 × 162 + 10 × 161 + 15 × 160 = 256 + 160 + 15 = 431.

� Decimal constants contain digits between 0 and 9, but must not begin with a
zero:

15 255 32767

� Octal constants contain only digits between 0 and 7, and must begin with a
zero:

017 0377 077777

C99

signed char type ➤7.3

unsigned char type ➤7.3

_Bool type ➤5.2

C7.FM Page 128 Friday, February 8, 2008 3:55 PM

7.1 Integer Types 129

� Hexadecimal constants contain digits between 0 and 9 and letters between a
and f, and always begin with 0x:

0xf 0xff 0x7fff

The letters in a hexadecimal constant may be either upper or lower case:

0xff 0xfF 0xFf 0xFF 0Xff 0XfF 0XFf 0XFF

Keep in mind that octal and hexadecimal are nothing more than an alternative
way of writing numbers; they have no effect on how the numbers are actually
stored. (Integers are always stored in binary, regardless of what notation we’ve
used to express them.) We can switch from one notation to another at any time, and
even mix them: 10 + 015 + 0x20 has the value 55 (decimal). Octal and hex are
most convenient for writing low-level programs; we won’t use these notations
much until Chapter 20.

The type of a decimal integer constant is normally int. However, if the value
of the constant is too large to store as an int, the constant has type long int
instead. In the unlikely case that the constant is too large to store as a long int,
the compiler will try unsigned long int as a last resort. The rules for deter-
mining the type of an octal or hexadecimal constant are slightly different: the com-
piler will go through the types int, unsigned int, long int, and unsigned
long int until it finds one capable of representing the constant.

To force the compiler to treat a constant as a long integer, just follow it with
the letter L (or l):

15L 0377L 0x7fffL

To indicate that a constant is unsigned, put the letter U (or u) after it:

15U 0377U 0x7fffU

L and U may be used in combination to show that a constant is both long and
unsigned: 0xffffffffUL. (The order of the L and U doesn’t matter, nor does
their case.)

Integer Constants in C99

In C99, integer constants that end with either LL or ll (the case of the two letters
must match) have type long long int. Adding the letter U (or u) before or after
the LL or ll denotes a constant of type unsigned long long int.

C99’s general rules for determining the type of an integer constant are a bit
different from those in C89. The type of a decimal constant with no suffix (U, u, L,
l, LL, or ll) is the “smallest” of the types int, long int, or long long int
that can represent the value of that constant. For an octal or hexadecimal constant,
however, the list of possible types is int, unsigned int, long int,
unsigned long int, long long int, and unsigned long long int, in
that order. Any suffix at the end of a constant changes the list of possible types. For

C99

C7.FM Page 129 Friday, February 8, 2008 3:55 PM

130 Chapter 7 Basic Types

example, a constant that ends with U (or u) must have one of the types unsigned
int, unsigned long int, or unsigned long long int. A decimal con-
stant that ends with L (or l) must have one of the types long int or long long
int. There’s also a provision for a constant to have an extended integer type if it’s
too large to represent using one of the standard integer types.

Integer Overflow

When arithmetic operations are performed on integers, it’s possible that the result
will be too large to represent. For example, when an arithmetic operation is per-
formed on two int values, the result must be able to be represented as an int. If
the result can’t be represented as an int (because it requires too many bits), we
say that overflow has occurred.

The behavior when integer overflow occurs depends on whether the operands
were signed or unsigned. When overflow occurs during an operation on signed
integers, the program’s behavior is undefined. Recall from Section 4.4 that the con-
sequences of undefined behavior may vary. Most likely the result of the operation
will simply be wrong, but the program could crash or exhibit other undesirable
behavior.

When overflow occurs during an operation on unsigned integers, though, the
result is defined: we get the correct answer modulo 2n, where n is the number of
bits used to store the result. For example, if we add 1 to the unsigned 16-bit num-
ber 65,535, the result is guaranteed to be 0.

Reading and Writing Integers

Suppose that a program isn’t working because one of its int variables is over-
flowing. Our first thought is to change the type of the variable from int to long
int. But we’re not done yet; we need to see how the change will affect the rest of
the program. In particular, we must check whether the variable is used in a call of
printf or scanf. If so, the format string in the call will need to be changed,
since the %d conversion works only for the int type.

Reading and writing unsigned, short, and long integers requires several new
conversion specifiers:

� When reading or writing an unsigned integer, use the letter u, o, or x instead
of d in the conversion specification. If the u specifier is present, the number is
read (or written) in decimal notation; o indicates octal notation, and x indi-
cates hexadecimal notation.

unsigned int u;

scanf("%u", &u); /* reads u in base 10 */
printf("%u", u); /* writes u in base 10 */
scanf("%o", &u); /* reads u in base 8 */
printf("%o", u); /* writes u in base 8 */

Q&A

C7.FM Page 130 Friday, February 8, 2008 3:55 PM

7.1 Integer Types 131

scanf("%x", &u); /* reads u in base 16 */
printf("%x", u); /* writes u in base 16 */

� When reading or writing a short integer, put the letter h in front of d, o, u, or
x:

short s;

scanf("%hd", &s);
printf("%hd", s);

� When reading or writing a long integer, put the letter l (“ell,” not “one”) in
front of d, o, u, or x:

long l;

scanf("%ld", &l);
printf("%ld", l);

� When reading or writing a long long integer (C99 only), put the letters ll in
front of d, o, u, or x:

long long ll;

scanf("%lld", &ll);
printf("%lld", ll);

PROGRAM Summing a Series of Numbers (Revisited)

In Section 6.1, we wrote a program that sums a series of integers entered by the
user. One problem with this program is that the sum (or one of the input numbers)
might exceed the largest value allowed for an int variable. Here’s what might
happen if the program is run on a machine whose integers are 16 bits long:

This program sums a series of integers.
Enter integers (0 to terminate): 10000 20000 30000 0
The sum is: -5536

The sum was 60,000, which wouldn’t fit in an int variable, so overflow occurred.
When overflow occurs with signed numbers, the outcome is undefined. In this
case, we got an apparently meaningless number. To improve the program, let’s
switch to long variables.

sum2.c /* Sums a series of numbers (using long variables) */

#include <stdio.h>

int main(void)
{
 long n, sum = 0;

 printf("This program sums a series of integers.\n");

C99

C7.FM Page 131 Friday, February 8, 2008 3:55 PM

132 Chapter 7 Basic Types

 printf("Enter integers (0 to terminate): ");

 scanf("%ld", &n);
 while (n != 0) {
 sum += n;
 scanf("%ld", &n);
 }
 printf("The sum is: %ld\n", sum);

 return 0;
}

The change was fairly simple: we declared n and sum to be long variables
instead of int variables, then we changed the conversion specifications in scanf
and printf to %ld instead of %d.

7.2 Floating Types

The integer types aren’t suitable for all applications. Sometimes we’ll need vari-
ables that can store numbers with digits after the decimal point, or numbers that are
exceedingly large or small. Numbers like these are stored in floating-point format
(so called because the decimal point “floats”). C provides three floating types, cor-
responding to different floating-point formats:

float Single-precision floating-point
double Double-precision floating-point
long double Extended-precision floating-point

float is suitable when the amount of precision isn’t critical (calculating tempera-
tures to one decimal point, for example). double provides greater precision—
enough for most programs. long double, which supplies the ultimate in preci-
sion, is rarely used.

The C standard doesn’t state how much precision the float, double, and
long double types provide, since different computers may store floating-point
numbers in different ways. Most modern computers follow the specifications in
IEEE Standard 754 (also known as IEC 60559), so we’ll use it as an example.

The IEEE Floating-Point Standard

IEEE Standard 754, developed by the Institute of Electrical and Electronics Engi-
neers, provides two primary formats for floating-point numbers: single precision (32
bits) and double precision (64 bits). Numbers are stored in a form of scientific nota-
tion, with each number having three parts: a sign, an exponent, and a fraction.
The number of bits reserved for the exponent determines how large (or small) num-
bers can be, while the number of bits in the fraction determines the precision. In
single-precision format, the exponent is 8 bits long, while the fraction occupies 23

C7.FM Page 132 Friday, February 8, 2008 3:55 PM

7.2 Floating Types 133

bits. As a result, a single-precision number has a maximum value of approximately
3.40 × 1038, with a precision of about 6 decimal digits.

The IEEE standard also describes two other formats, single extended precision
and double extended precision. The standard doesn’t specify the number of bits in
these formats, although it requires that the single extended type occupy at least 43
bits and the double extended type at least 79 bits. For more information about the
IEEE standard and floating-point arithmetic in general, see “What every computer
scientist should know about floating-point arithmetic” by David Goldberg (ACM
Computing Surveys, vol. 23, no. 1 (March 1991): 5–48).

Table 7.4 shows the characteristics of the floating types when implemented
according to the IEEE standard. (The table shows the smallest positive normalized
values. Subnormal numbers can be smaller.) The long double type isn’t shown
in the table, since its length varies from one machine to another, with 80 bits and
128 bits being the most common sizes.

On computers that don’t follow the IEEE standard, Table 7.4 won’t be valid.
In fact, on some machines, float may have the same set of values as double, or
double may have the same values as long double. Macros that define the
characteristics of the floating types can be found in the <float.h> header.

In C99, the floating types are divided into two categories. The float, dou-
ble, and long double types fall into one category, called the real floating
types. Floating types also include the complex types (float _Complex, dou-
ble _Complex, and long double _Complex), which are new in C99.

Floating Constants

Floating constants can be written in a variety of ways. The following constants, for
example, are all valid ways of writing the number 57.0:

57.0 57. 57.0e0 57E0 5.7e1 5.7e+1 .57e2 570.e-1

A floating constant must contain a decimal point and/or an exponent; the exponent
indicates the power of 10 by which the number is to be scaled. If an exponent is
present, it must be preceded by the letter E (or e). An optional + or - sign may
appear after the E (or e).

By default, floating constants are stored as double-precision numbers. In other
words, when a C compiler finds the constant 57.0 in a program, it arranges for the
number to be stored in memory in the same format as a double variable. This
rule generally causes no problems, since double values are converted automati-
cally to float when necessary.

subnormal numbers ➤23.4

Type Smallest Positive Value Largest Value Precision

float
double

1.17549 × 10–38

2.22507 × 10–308
3.40282 × 1038

1.79769 × 10308
6 digits

15 digits

Table 7.4
Floating Type

Characteristics
(IEEE Standard)

<float.h> header ➤23.1

C99

complex types ➤27.3

Q&A

C7.FM Page 133 Friday, February 8, 2008 3:55 PM

134 Chapter 7 Basic Types

On occasion, it may be necessary to force the compiler to store a floating con-
stant in float or long double format. To indicate that only single precision is
desired, put the letter F (or f) at the end of the constant (for example, 57.0F). To
indicate that a constant should be stored in long double format, put the letter L
(or l) at the end (57.0L).

C99 has a provision for writing floating constants in hexadecimal. Such a con-
stant begins with 0x or 0X (like a hexadecimal integer constant). This feature is
rarely used.

Reading and Writing Floating-Point Numbers

As we’ve discussed, the conversion specifications %e, %f, and %g are used for
reading and writing single-precision floating-point numbers. Values of types dou-
ble and long double require slightly different conversions:

� When reading a value of type double, put the letter l in front of e, f, or g:

double d;

scanf("%lf", &d);

Note: Use l only in a scanf format string, not a printf string. In a
printf format string, the e, f, and g conversions can be used to write either
float or double values. (C99 legalizes the use of %le, %lf, and %lg in
calls of printf, although the l has no effect.)

� When reading or writing a value of type long double, put the letter L in
front of e, f, or g:

long double ld;

scanf("%Lf", &ld);
printf("%Lf", ld);

7.3 Character Types

The only remaining basic type is char, the character type. The values of type
char can vary from one computer to another, because different machines may
have different underlying character sets.

Character Sets

Today’s most popular character set is ASCII (American Standard Code for Informa-
tion Interchange), a 7-bit code capable of representing 128 characters. In ASCII,
the digits 0 to 9 are represented by the codes 0110000–0111001, and the upper-
case letters A to Z are represented by 1000001–1011010. ASCII is often extended

C99

Q&A

Q&A

C99

Q&A

ASCII character set ➤Appendix E

C7.FM Page 134 Friday, February 8, 2008 3:55 PM

7.3 Character Types 135

to a 256-character code known as Latin-1 that provides the characters necessary
for Western European and many African languages.

A variable of type char can be assigned any single character:

char ch;

ch = 'a'; /* lower-case a */
ch = 'A'; /* upper-case A */
ch = '0'; /* zero */
ch = ' '; /* space */

Notice that character constants are enclosed in single quotes, not double quotes.

Operations on Characters

Working with characters in C is simple, because of one fact: C treats characters as
small integers. After all, characters are encoded in binary, and it doesn’t take much
imagination to view these binary codes as integers. In ASCII, for example, charac-
ter codes range from 0000000 to 1111111, which we can think of as the integers
from 0 to 127. The character 'a' has the value 97, 'A' has the value 65, '0' has
the value 48, and ' ' has the value 32. The connection between characters and
integers in C is so strong that character constants actually have int type rather
than char type (an interesting fact, but not one that will often matter to us).

When a character appears in a computation, C simply uses its integer value.
Consider the following examples, which assume the ASCII character set:

char ch;
int i;

i = 'a'; /* i is now 97 */
ch = 65; /* ch is now 'A' */
ch = ch + 1; /* ch is now 'B' */
ch++; /* ch is now 'C' */

Characters can be compared, just as numbers can. The following if statement
checks whether ch contains a lower-case letter; if so, it converts ch to upper case.

if ('a' <= ch && ch <= 'z')
 ch = ch - 'a' + 'A';

Comparisons such as 'a' <= ch are done using the integer values of the charac-
ters involved. These values depend on the character set in use, so programs that use
<, <=, >, and >= to compare characters may not be portable.

The fact that characters have the same properties as numbers has some advan-
tages. For example, we can easily write a for statement whose control variable
steps through all the upper-case letters:

for (ch = 'A'; ch <= 'Z'; ch++) …

C7.FM Page 135 Friday, February 8, 2008 3:55 PM

136 Chapter 7 Basic Types

On the other hand, treating characters as numbers can lead to various programming
errors that won’t be caught by the compiler, and lets us write meaningless expres-
sions such as 'a' * 'b' / 'c'. It can also hamper portability, since our pro-
grams may be based on assumptions about the underlying character set. (Our for
loop, for example, assumes that the letters from A to Z have consecutive codes.)

Signed and Unsigned Characters

Since C allows characters to be used as integers, it shouldn’t be surprising that the
char type—like the integer types—exists in both signed and unsigned versions.
Signed characters normally have values between –128 and 127, while unsigned
characters have values between 0 and 255.

The C standard doesn’t specify whether ordinary char is a signed or an
unsigned type; some compilers treat it as a signed type, while others treat it as an
unsigned type. (Some even allow the programmer to select, via a compiler option,
whether char should be signed or unsigned.)

Most of the time, we don’t really care whether char is signed or unsigned.
Once in a while, though, we do, especially if we’re using a character variable to
store a small integer. For this reason, C allows the use of the words signed and
unsigned to modify char:

signed char sch;
unsigned char uch;

portability tip Don’t assume that char is either signed or unsigned by default. If it mat-
ters, use signed char or unsigned char instead of char.

In light of the close relationship between characters and integers, C89 uses the
term integral types to refer to both the integer types and the character types. Enu-
merated types are also integral types.

C99 doesn’t use the term “integral types.” Instead, it expands the meaning of
“integer types” to include the character types and the enumerated types. C99’s
_Bool type is considered to be an unsigned integer type.

Arithmetic Types

The integer types and floating types are collectively known as arithmetic types.
Here’s a summary of the arithmetic types in C89, divided into categories and sub-
categories:

� Integral types

� char

� Signed integer types (signed char, short int, int, long int)

� Unsigned integer types (unsigned char, unsigned short int,
unsigned int, unsigned long int)

Q&A

enumerated types ➤16.5

C99

_Bool type ➤5.2

C7.FM Page 136 Friday, February 8, 2008 3:55 PM

7.3 Character Types 137

� Enumerated types

� Floating types (float, double, long double)

C99 has a more complicated hierarchy for its arithmetic types:

� Integer types

� char

� Signed integer types, both standard (signed char, short int, int,
long int, long long int) and extended

� Unsigned integer types, both standard (unsigned char, unsigned
short int, unsigned int, unsigned long int, unsigned
long long int, _Bool) and extended

� Enumerated types

� Floating types

� Real floating types (float, double, long double)

� Complex types (float _Complex, double _Complex, long dou-
ble _Complex)

Escape Sequences

A character constant is usually one character enclosed in single quotes, as we’ve
seen in previous examples. However, certain special characters—including the
new-line character—can’t be written in this way, because they’re invisible (non-
printing) or because they can’t be entered from the keyboard. So that programs can
deal with every character in the underlying character set, C provides a special nota-
tion, the escape sequence.

There are two kinds of escape sequences: character escapes and numeric
escapes. We saw a partial list of character escapes in Section 3.1; Table 7.5 gives
the complete set.

The \a, \b, \f, \r, \t, and \v escapes represent common ASCII control
characters. The \n escape represents the ASCII line-feed character. The \\ escape
allows a character constant or string to contain the \ character. The \' escape

C99

Name Escape Sequence

Alert (bell)
Backspace
Form feed
New line
Carriage return
Horizontal tab
Vertical tab
Backslash
Question mark
Single quote
Double quote

\a
\b
\f
\n
\r
\t
\v
\\
\?
\'
\"

Table 7.5
Character Escapes

Q&A

C7.FM Page 137 Friday, February 8, 2008 3:55 PM

138 Chapter 7 Basic Types

allows a character constant to contain the ' character, while the \" escape allows a
string to contain the " character. The \? escape is rarely used.

Character escapes are handy, but they have a problem: the list of character
escapes doesn’t include all the nonprinting ASCII characters, just the most com-
mon. Character escapes are also useless for representing characters beyond the
basic 128 ASCII characters. Numeric escapes, which can represent any character,
are the solution to this problem.

To write a numeric escape for a particular character, first look up the charac-
ter’s octal or hexadecimal value in a table like the one in Appendix E. For example,
the ASCII escape character (decimal value: 27) has the value 33 in octal and 1B in
hex. Either of these codes can be used to write an escape sequence:

� An octal escape sequence consists of the \ character followed by an octal
number with at most three digits. (This number must be representable as an
unsigned character, so its maximum value is normally 377 octal.) For exam-
ple, the escape character could be written \33 or \033. Octal numbers in
escape sequences—unlike octal constants—don’t have to begin with 0.

� A hexadecimal escape sequence consists of \x followed by a hexadecimal
number. Although C places no limit on the number of digits in the hexadeci-
mal number, it must be representable as an unsigned character (hence it can’t
exceed FF if characters are eight bits long). Using this notation, the escape
character would be written \x1b or \x1B. The x must be in lower case, but
the hex digits (such as b) can be upper or lower case.

When used as a character constant, an escape sequence must be enclosed in
single quotes. For example, a constant representing the escape character would be
written '\33' (or '\x1b'). Escape sequences tend to get a bit cryptic, so it’s
often a good idea to give them names using #define:

#define ESC '\33' /* ASCII escape character */

Escape sequences can be embedded in strings as well, as we saw in Section 3.1.
Escape sequences aren’t the only special notations for representing charac-

ters. Trigraph sequences provide a way to represent the characters #, [, \,], ^, {,
|, }, and ~, which may not be available on keyboards in some countries. C99
adds universal character names, which resemble escape sequences. Unlike escape
sequences, however, universal character names are allowed in identifiers.

Character-Handling Functions

Earlier in this section, we saw how to write an if statement that converts a lower-
case letter to upper-case:

if ('a' <= ch && ch <= 'z')
 ch = ch - 'a' + 'A';

This isn’t the best method, though. A faster—and more portable—way to convert
case is to call C’s toupper library function:

Q&A

trigraph sequences ➤25.3

C99
universal character names ➤25.4

C7.FM Page 138 Friday, February 8, 2008 3:55 PM

7.3 Character Types 139

ch = toupper(ch); /* converts ch to upper case */

When it’s called, toupper checks whether its argument (ch in this case) is a
lower-case letter. If so, it returns the corresponding upper-case letter. Otherwise,
toupper returns the value of the argument. In our example, we’ve used the
assignment operator to store the return value of toupper back into the ch vari-
able, although we could just as easily have done something else with it—stored it
in another variable, say, or tested it in an if statement:

if (toupper(ch) == 'A') …

Programs that call toupper need to have the following #include directive
at the top:

#include <ctype.h>

toupper isn’t the only useful character-handling function in the C library. Sec-
tion 23.5 describes them all and gives examples of their use.

Reading and Writing Characters using scanf and printf

The %c conversion specification allows scanf and printf to read and write sin-
gle characters:

char ch;

scanf("%c", &ch); /* reads a single character */
printf("%c", ch); /* writes a single character */

scanf doesn’t skip white-space characters before reading a character. If the
next unread character is a space, then the variable ch in the previous example will
contain a space after scanf returns. To force scanf to skip white space before
reading a character, put a space in its format string just before %c:

scanf(" %c", &ch); /* skips white space, then reads ch */

Recall from Section 3.2 that a blank in a scanf format string means “skip zero or
more white-space characters.”

Since scanf doesn’t normally skip white space, it’s easy to detect the end of
an input line: check to see if the character just read is the new-line character. For
example, the following loop will read and ignore all remaining characters in the
current input line:

do {
 scanf("%c", &ch);
} while (ch != '\n');

When scanf is called the next time, it will read the first character on the next
input line.

C7.FM Page 139 Friday, February 8, 2008 3:55 PM

140 Chapter 7 Basic Types

Reading and Writing Characters using getchar and putchar

C provides other ways to read and write single characters. In particular, we can use
the getchar and putchar functions instead of calling scanf and printf.
putchar writes a single character:

putchar(ch);

Each time getchar is called, it reads one character, which it returns. In order to
save this character, we must use assignment to store it in a variable:

ch = getchar(); /* reads a character and stores it in ch */

getchar actually returns an int value rather than a char value (the reason will
be discussed in later chapters). As a result, it’s not unusual for a variable to have
type int rather than char if it will be used to store a character read by getchar.
Like scanf, getchar doesn’t skip white-space characters as it reads.

Using getchar and putchar (rather than scanf and printf) saves time
when the program is executed. getchar and putchar are fast for two reasons.
First, they’re much simpler than scanf and printf, which are designed to read
and write many kinds of data in a variety of formats. Second, getchar and
putchar are usually implemented as macros for additional speed.

getchar has another advantage over scanf: because it returns the charac-
ter that it reads, getchar lends itself to various C idioms, including loops that
search for a character or skip over all occurrences of a character. Consider the
scanf loop that we used to skip the rest of an input line:

do {
 scanf("%c", &ch);
} while (ch != '\n');

Rewriting this loop using getchar gives us the following:

do {
 ch = getchar();
} while (ch != '\n');

Moving the call of getchar into the controlling expression allows us to condense
the loop:

while ((ch = getchar()) != '\n')
 ;

This loop reads a character, stores it into the variable ch, then tests if ch is not
equal to the new-line character. If the test succeeds, the loop body (which is empty)
is executed, then the loop test is performed once more, causing a new character to
be read. Actually, we don’t even need the ch variable; we can just compare the
return value of getchar with the new-line character:

Q&A

macros ➤14.3

C7.FM Page 140 Friday, February 8, 2008 3:55 PM

7.3 Character Types 141

idiom while (getchar() != '\n') /* skips rest of line */
 ;

The resulting loop is a well-known C idiom that’s cryptic but worth learning.
getchar is useful in loops that skip characters as well as loops that search

for characters. Consider the following statement, which uses getchar to skip an
indefinite number of blank characters:

idiom while ((ch = getchar()) == ' ') /* skips blanks */
 ;

When the loop terminates, ch will contain the first nonblank character that
getchar encountered.

Be careful if you mix getchar and scanf in the same program. scanf has a
tendency to leave behind characters that it has “peeked” at but not read, including
the new-line character. Consider what happens if we try to read a number first, then
a character:

printf("Enter an integer: ");
scanf("%d", &i);
printf("Enter a command: ");
command = getchar();

The call of scanf will leave behind any characters that weren’t consumed during
the reading of i, including (but not limited to) the new-line character. getchar
will fetch the first leftover character, which wasn’t what we had in mind.

PROGRAM Determining the Length of a Message

To illustrate how characters are read, let’s write a program that calculates the
length of a message. After the user enters the message, the program displays the
length:

Enter a message: Brevity is the soul of wit.
Your message was 27 character(s) long.

The length includes spaces and punctuation, but not the new-line character at the
end of the message.

We’ll need a loop whose body reads a character and increments a counter. The
loop will terminate as soon as a new-line character turns up. We could use either
scanf or getchar to read characters; most C programmers would choose
getchar. Using a straightforward while loop, we might end up with the follow-
ing program.

C7.FM Page 141 Friday, February 8, 2008 3:55 PM

142 Chapter 7 Basic Types

length.c /* Determines the length of a message */

#include <stdio.h>

int main(void)
{
 char ch;
 int len = 0;

 printf("Enter a message: ");
 ch = getchar();
 while (ch != '\n') {
 len++;
 ch = getchar();
 }
 printf("Your message was %d character(s) long.\n", len);

 return 0;
}

Recalling our discussion of idioms involving while loops and getchar, we
realize that the program can be shortened:

length2.c /* Determines the length of a message */

#include <stdio.h>

int main(void)
{
 int len = 0;

 printf("Enter a message: ");
 while (getchar() != '\n')
 len++;
 printf("Your message was %d character(s) long.\n", len);

 return 0;
}

7.4 Type Conversion

Computers tend to be more restrictive than C when it comes to arithmetic. For a
computer to perform an arithmetic operation, the operands must usually be of the
same size (the same number of bits) and be stored in the same way. A computer
may be able to add two 16-bit integers directly, but not a 16-bit integer and a 32-bit
integer or a 32-bit integer and a 32-bit floating-point number.

C, on the other hand, allows the basic types to be mixed in expressions. We
can combine integers, floating-point numbers, and even characters in a single
expression. The C compiler may then have to generate instructions that convert

C7.FM Page 142 Friday, February 8, 2008 3:55 PM

7.4 Type Conversion 143

some operands to different types so that the hardware will be able to evaluate the
expression. If we add a 16-bit short and a 32-bit int, for example, the compiler
will arrange for the short value to be converted to 32 bits. If we add an int and
a float, the compiler will arrange for the int to be converted to float format.
This conversion is a little more complicated, since int and float values are
stored in different ways.

Because the compiler handles these conversions automatically, without the
programmer’s involvement, they’re known as implicit conversions. C also allows
the programmer to perform explicit conversions, using the cast operator. I’ll dis-
cuss implicit conversions first, postponing explicit conversions until later in the
section. Unfortunately, the rules for performing implicit conversions are somewhat
complex, primarily because C has so many different arithmetic types.

Implicit conversions are performed in the following situations:

� When the operands in an arithmetic or logical expression don’t have the same
type. (C performs what are known as the usual arithmetic conversions.)

� When the type of the expression on the right side of an assignment doesn’t
match the type of the variable on the left side.

� When the type of an argument in a function call doesn’t match the type of the
corresponding parameter.

� When the type of the expression in a return statement doesn’t match the
function’s return type.

We’ll discuss the first two cases now and save the others for Chapter 9.

The Usual Arithmetic Conversions

The usual arithmetic conversions are applied to the operands of most binary opera-
tors, including the arithmetic, relational, and equality operators. For example, let’s
say that f has type float and i has type int. The usual arithmetic conversions
will be applied to the operands in the expression f + i, because their types aren’t
the same. Clearly it’s safer to convert i to type float (matching f’s type) rather
than convert f to type int (matching i’s type). An integer can always be con-
verted to float; the worst that can happen is a minor loss of precision. Convert-
ing a floating-point number to int, on the other hand, would cost us the fractional
part of the number. Worse still, we’d get a completely meaningless result if the
original number were larger than the largest possible integer or smaller than the
smallest integer.

The strategy behind the usual arithmetic conversions is to convert operands to
the “narrowest” type that will safely accommodate both values. (Roughly speak-
ing, one type is narrower than another if it requires fewer bytes to store.) The types
of the operands can often be made to match by converting the operand of the nar-
rower type to the type of the other operand (this act is known as promotion).
Among the most common promotions are the integral promotions, which convert
a character or short integer to type int (or to unsigned int in some cases).Q&A

C7.FM Page 143 Friday, February 8, 2008 3:55 PM

144 Chapter 7 Basic Types

We can divide the rules for performing the usual arithmetic conversions into
two cases:

� The type of either operand is a floating type. Use the following diagram to
promote the operand whose type is narrower:

That is, if one operand has type long double, then convert the other oper-
and to type long double. Otherwise, if one operand has type double, con-
vert the other operand to type double. Otherwise, if one operand has type
float, convert the other operand to type float. Note that these rules cover
mixtures of integer and floating types: if one operand has type long int, for
example, and the other has type double, the long int operand is converted
to double.

� Neither operand type is a floating type. First perform integral promotion on
both operands (guaranteeing that neither operand will be a character or short
integer). Then use the following diagram to promote the operand whose type
is narrower:

There’s one special case, but it occurs only when long int and unsigned int
have the same length (32 bits, say). Under these circumstances, if one operand has
type long int and the other has type unsigned int, both are converted to
unsigned long int.

When a signed operand is combined with an unsigned operand, the signed operand
is converted to an unsigned value. The conversion involves adding or subtracting a
multiple of n + 1, where n is the largest representable value of the unsigned type.
This rule can cause obscure programming errors.

Suppose that the int variable i has the value –10 and the unsigned int
variable u has the value 10. If we compare i and u using the < operator, we might
expect to get the result 1 (true). Before the comparison, however, i is converted to
unsigned int. Since a negative number can’t be represented as an unsigned
integer, the converted value won’t be –10. Instead, the value 4,294,967,296 is
added (assuming that 4,294,967,295 is the largest unsigned int value), giving

long double
↑

double
↑

float

unsigned long int
↑

long int
↑

unsigned int
↑
int

C7.FM Page 144 Friday, February 8, 2008 3:55 PM

7.4 Type Conversion 145

a converted value of 4,294,967,286. The comparison i < u will therefore produce
0. Some compilers produce a warning message such as “comparison between
signed and unsigned” when a program attempts to compare a signed number with
an unsigned number.

Because of traps like this one, it’s best to use unsigned integers as little as pos-
sible and, especially, never mix them with signed integers.

The following example shows the usual arithmetic conversions in action:

char c;
short int s;
int i;
unsigned int u;
long int l;
unsigned long int ul;
float f;
double d;
long double ld;

i = i + c; /* c is converted to int */
i = i + s; /* s is converted to int */
u = u + i; /* i is converted to unsigned int */
l = l + u; /* u is converted to long int */
ul = ul + l; /* l is converted to unsigned long int */
f = f + ul; /* ul is converted to float */
d = d + f; /* f is converted to double */
ld = ld + d; /* d is converted to long double */

Conversion During Assignment

The usual arithmetic conversions don’t apply to assignment. Instead, C follows the
simple rule that the expression on the right side of the assignment is converted to
the type of the variable on the left side. If the variable’s type is at least as “wide” as
the expression’s, this will work without a snag. For example:

char c;
int i;
float f;
double d;

i = c; /* c is converted to int */
f = i; /* i is converted to float */
d = f; /* f is converted to double */

Other cases are problematic. Assigning a floating-point number to an integer
variable drops the fractional part of the number:

int i;

i = 842.97; /* i is now 842 */
i = -842.97; /* i is now -842 */

C7.FM Page 145 Friday, February 8, 2008 3:55 PM

146 Chapter 7 Basic Types

Moreover, assigning a value to a variable of a narrower type will give a meaning-
less result (or worse) if the value is outside the range of the variable’s type:

c = 10000; /*** WRONG ***/
i = 1.0e20; /*** WRONG ***/
f = 1.0e100; /*** WRONG ***/

A “narrowing” assignment may elicit a warning from the compiler or from tools
such as lint.

It’s a good idea to append the f suffix to a floating-point constant if it will be
assigned to a float variable, as we’ve been doing since Chapter 2:

f = 3.14159f;

Without the suffix, the constant 3.14159 would have type double, possibly
causing a warning message.

Implicit Conversions in C99

The rules for implicit conversions in C99 are somewhat different from the rules in
C89, primarily because C99 has additional types (_Bool, long long types,
extended integer types, and complex types).

For the purpose of defining conversion rules, C99 gives each integer type an
“integer conversion rank.” Here are the ranks from highest to lowest:

1. long long int, unsigned long long int
2. long int, unsigned long int
3. int, unsigned int
4. short int, unsigned short int
5. char, signed char, unsigned char
6. _Bool

For simplicity, I’m ignoring extended integer types and enumerated types.
In place of C89’s integral promotions, C99 has “integer promotions,” which

involve converting any type whose rank is less than int and unsigned int to
int (provided that all values of the type can be represented using int) or else to
unsigned int.

As in C89, the C99 rules for performing the usual arithmetic conversions can
be divided into two cases:

� The type of either operand is a floating type. As long as neither operand has a
complex type, the rules are the same as before. (The conversion rules for com-
plex types will be discussed in Section 27.3.)

� Neither operand type is a floating type. First perform integer promotion on
both operands. If the types of the two operands are now the same, the process
ends. Otherwise, use the following rules, stopping at the first one that applies:

� If both operands have signed types or both have unsigned types, convert the

Q&A

C99

_Bool type ➤5.2

C7.FM Page 146 Friday, February 8, 2008 3:55 PM

7.4 Type Conversion 147

operand whose type has lesser integer conversion rank to the type of the
operand with greater rank.

� If the unsigned operand has rank greater or equal to the rank of the type of
the signed operand, convert the signed operand to the type of the unsigned
operand.

� If the type of the signed operand can represent all of the values of the type
of the unsigned operand, convert the unsigned operand to the type of the
signed operand.

� Otherwise, convert both operands to the unsigned type corresponding to the
type of the signed operand.

Incidentally, all arithmetic types can be converted to _Bool type. The result
of the conversion is 0 if the original value is 0; otherwise, the result is 1.

Casting

Although C’s implicit conversions are convenient, we sometimes need a greater
degree of control over type conversion. For this reason, C provides casts. A cast
expression has the form

type-name specifies the type to which the expression should be converted.
The following example shows how to use a cast expression to compute the

fractional part of a float value:

float f, frac_part;

frac_part = f - (int) f;

The cast expression (int) f represents the result of converting the value of f to
type int. C’s usual arithmetic conversions then require that (int) f be con-
verted back to type float before the subtraction can be performed. The differ-
ence between f and (int) f is the fractional part of f, which was dropped
during the cast.

Cast expressions enable us to document type conversions that would take
place anyway:

i = (int) f; /* f is converted to int */

They also enable us to overrule the compiler and force it to do conversions that we
want. Consider the following example:

float quotient;
int dividend, divisor;

quotient = dividend / divisor;

cast expression (type-name) expression

C7.FM Page 147 Friday, February 8, 2008 3:55 PM

148 Chapter 7 Basic Types

As it’s now written, the result of the division—an integer—will be converted to
float form before being stored in quotient. We probably want dividend
and divisor converted to float before the division, though, so that we get a
more exact answer. A cast expression will do the trick:

quotient = (float) dividend / divisor;

divisor doesn’t need a cast, since casting dividend to float forces the
compiler to convert divisor to float also.

Incidentally, C regards (type-name) as a unary operator. Unary operators
have higher precedence than binary operators, so the compiler interprets

(float) dividend / divisor

as

((float) dividend) / divisor

If you find this confusing, note that there are other ways to accomplish the same
effect:

quotient = dividend / (float) divisor;

or

quotient = (float) dividend / (float) divisor;

Casts are sometimes necessary to avoid overflow. Consider the following
example:

long i;
int j = 1000;

i = j * j; /* overflow may occur */

At first glance, this statement looks fine. The value of j * j is 1,000,000, and i is
a long, so it can easily store values of this size, right? The problem is that when
two int values are multiplied, the result will have int type. But j * j is too
large to represent as an int on some machines, causing an overflow. Fortunately,
using a cast avoids the problem:

i = (long) j * j;

Since the cast operator takes precedence over *, the first j is converted to long
type, forcing the second j to be converted as well. Note that the statement

i = (long) (j * j); /*** WRONG ***/

wouldn’t work, since the overflow would already have occurred by the time of the
cast.

C7.FM Page 148 Friday, February 8, 2008 3:55 PM

7.5 Type Definitions 149

7.5 Type Definitions

In Section 5.2, we used the #define directive to create a macro that could be
used as a Boolean type:

#define BOOL int

There’s a better way to set up a Boolean type, though, using a feature known as a
type definition:

typedef int Bool;

Notice that the name of the type being defined comes last. Note also that I’ve capi-
talized the word Bool. Capitalizing the first letter of a type name isn’t required;
it’s just a convention that some C programmers employ.

Using typedef to define Bool causes the compiler to add Bool to the list
of type names that it recognizes. Bool can now be used in the same way as the
built-in type names—in variable declarations, cast expressions, and elsewhere. For
example, we might use Bool to declare variables:

Bool flag; /* same as int flag; */

The compiler treats Bool as a synonym for int; thus, flag is really nothing
more than an ordinary int variable.

Advantages of Type Definitions

Type definitions can make a program more understandable (assuming that the pro-
grammer has been careful to choose meaningful type names). For example, sup-
pose that the variables cash_in and cash_out will be used to store dollar
amounts. Declaring Dollars as

typedef float Dollars;

and then writing

Dollars cash_in, cash_out;

is more informative than just writing

float cash_in, cash_out;

Type definitions can also make a program easier to modify. If we later decide
that Dollars should really be defined as double, all we need do is change the
type definition:

typedef double Dollars;

Q&A

C7.FM Page 149 Friday, February 8, 2008 3:55 PM

150 Chapter 7 Basic Types

The declarations of Dollars variables need not be changed. Without the type
definition, we would need to locate all float variables that store dollar amounts
(not necessarily an easy task) and change their declarations.

Type Definitions and Portability

Type definitions are an important tool for writing portable programs. One of the
problems with moving a program from one computer to another is that types may
have different ranges on different machines. If i is an int variable, an assignment
like

i = 100000;

is fine on a machine with 32-bit integers, but will fail on a machine with 16-bit
integers.

portability tip For greater portability, consider using typedef to define new names for
integer types.

Suppose that we’re writing a program that needs variables capable of storing
product quantities in the range 0–50,000. We could use long variables for this
purpose (since they’re guaranteed to be able to hold numbers up to at least
2,147,483,647), but we’d rather use int variables, since arithmetic on int values
may be faster than operations on long values; also, int variables may take up
less space.

Instead of using the int type to declare quantity variables, we can define our
own “quantity” type:

typedef int Quantity;

and use this type to declare variables:

Quantity q;

When we transport the program to a machine with shorter integers, we’ll change
the definition of Quantity:

typedef long Quantity;

This technique doesn’t solve all our problems, unfortunately, since changing the
definition of Quantity may affect the way Quantity variables are used. At the
very least, calls of printf and scanf that use Quantity variables will need to
be changed, with %d conversion specifications replaced by %ld.

The C library itself uses typedef to create names for types that can vary
from one C implementation to another; these types often have names that end with
_t, such as ptrdiff_t, size_t, and wchar_t. The exact definitions of these
types will vary, but here are some typical examples:

C7.FM Page 150 Friday, February 8, 2008 3:55 PM

7.6 The sizeof Operator 151

typedef long int ptrdiff_t;
typedef unsigned long int size_t;
typedef int wchar_t;

In C99, the <stdint.h> header uses typedef to define names for integer
types with a particular number of bits. For example, int32_t is a signed integer
type with exactly 32 bits. Using these types is an effective way to make programs
more portable.

7.6 The sizeof Operator

The sizeof operator allows a program to determine how much memory is
required to store values of a particular type. The value of the expression

is an unsigned integer representing the number of bytes required to store a value
belonging to type-name. sizeof(char) is always 1, but the sizes of the other
types may vary. On a 32-bit machine, sizeof(int) is normally 4. Note that
sizeof is a rather unusual operator, since the compiler itself can usually deter-
mine the value of a sizeof expression.

The sizeof operator can also be applied to constants, variables, and expres-
sions in general. If i and j are int variables, then sizeof(i) is 4 on a 32-bit
machine, as is sizeof(i + j). When applied to an expression—as opposed to a
type—sizeof doesn’t require parentheses; we could write sizeof i instead of
sizeof(i). However, parentheses may be needed anyway because of operator
precedence. The compiler would interpret sizeof i + j as (sizeof i) + j,
because sizeof—a unary operator—takes precedence over the binary + opera-
tor. To avoid problems, I always use parentheses in sizeof expressions.

Printing a sizeof value requires care, because the type of a sizeof expres-
sion is an implementation-defined type named size_t. In C89, it’s best to con-
vert the value of the expression to a known type before printing it. size_t is
guaranteed to be an unsigned integer type, so it’s safest to cast a sizeof expres-
sion to unsigned long (the largest of C89’s unsigned types) and then print it
using the %lu conversion:

printf("Size of int: %lu\n", (unsigned long) sizeof(int));

In C99, the size_t type can be larger than unsigned long. However, the
printf function in C99 is capable of displaying size_t values directly, without
needing a cast. The trick is to use the letter z in the conversion specification, fol-
lowed by one of the usual integer codes (typically u):

printf("Size of int: %zu\n", sizeof(int)); /* C99 only */

C99
<stdint.h> header ➤27.1

sizeof expression sizeof (type-name)

Q&A

C99

C7.FM Page 151 Friday, February 8, 2008 3:55 PM

152 Chapter 7 Basic Types

Q & A

Q: Section 7.1 says that %o and %x are used to write unsigned integers in octal
and hex notation. How do I write ordinary (signed) integers in octal or hex?
[p. 130]

A: You can use %o and %x to print a signed integer as long as its value isn’t negative.
These conversions cause printf to treat a signed integer as though it were
unsigned; in other words, printf will assume that the sign bit is part of the num-
ber’s magnitude. As long as the sign bit is 0, there’s no problem. If the sign bit is 1,
printf will print an unexpectedly large number.

Q: But what if the number is negative? How can I write it in octal or hex?
A: There’s no direct way to print a negative number in octal or hex. Fortunately, the

need to do so is pretty rare. You can, of course, test whether the number is negative
and print a minus sign yourself:

if (i < 0)
 printf("-%x", -i);
else
 printf("%x", i);

Q: Why are floating constants stored in double form rather than float form?
[p. 133]

A: For historical reasons, C gives preference to the double type; float is treated
as a second-class citizen. Consider, for instance, the discussion of float in Ker-
nighan and Ritchie’s The C Programming Language: “The main reason for using
float is to save storage in large arrays, or, less often, to save time on machines
where double-precision arithmetic is particularly expensive.” C originally man-
dated that all floating-point arithmetic be done in double precision. (C89 and C99
have no such requirement.)

*Q: What do hexadecimal floating constants look like, and what are they good
for? [p. 134]

A: A hexadecimal floating constant begins with 0x or 0X and must contain an expo-
nent, which is preceded by the letter P (or p). The exponent may have a sign, and
the constant may end with f, F, l, or L. The exponent is expressed in decimal, but
represents a power of 2, not a power of 10. For example, 0x1.Bp3 represents the
number 1.6875 × 23 = 13.5. The hex digit B corresponds to the bit pattern 1011.
The B occurs to the right of the period, so each 1 bit represents a negative power of
2. Summing these powers of 2 (2–1 + 2–3 + 2–4) yields .6875.

Hexadecimal floating constants are primarily useful for specifying constants
that require great precision (including mathematical constants such as e and π).
Hex numbers have a precise binary representation, whereas a constant written in
decimal may be subject to a tiny rounding error when converted to binary. Hexa-

C7.FM Page 152 Friday, February 8, 2008 3:55 PM

Q & A 153

decimal numbers are also useful for defining constants with extreme values, such
as the values of the macros in the <float.h> header. These constants are easy to
write in hex but difficult to write in decimal.

*Q: Why do we use %lf to read a double value but %f to print it? [p. 134]
A: This is a tough question to answer. First, notice that scanf and printf are

unusual functions in that they aren’t restricted to a fixed number of arguments. We
say that scanf and printf have variable-length argument lists. When functions
with variable-length argument lists are called, the compiler arranges for float
arguments to be converted automatically to type double. As a result, printf
can’t distinguish between float and double arguments. This explains why %f
works for both float and double arguments in calls of printf.

scanf, on the other hand, is passed a pointer to a variable. %f tells scanf to
store a float value at the address passed to it, while %lf tells scanf to store a
double value at that address. The distinction between float and double is
crucial here. If given the wrong conversion specification, scanf will likely store
the wrong number of bytes (not to mention the fact that the bit pattern for a float
isn’t the same as that for a double).

Q: What’s the proper way to pronounce char? [p. 134]
A: There’s no universally accepted pronunciation. Some people pronounce char in

the same way as the first syllable of “character.” Others say “char,” as in

char broiled;

Q: When does it matter whether a character variable is signed or unsigned? [p.
136]

A: If we store only 7-bit characters in the variable, it doesn’t matter, since the sign bit
will be zero. If we plan to store 8-bit characters, however, we’ll probably want the
variable to have unsigned char type. Consider the following example:

ch = '\xdb';

If ch has been declared to have type char, the compiler may choose to treat it as a
signed character (many compilers do). As long as ch is used only as a character,
there won’t be any problem. But if ch is ever used in a context that requires the
compiler to convert its value to an integer, we’re likely to have trouble: the result-
ing integer will be negative, since ch’s sign bit is 1.

Here’s another situation: In some kinds of programs, it’s customary to use
char variables to store one-byte integers. If we’re writing such a program, we’ll
have to decide whether each variable should be signed char or unsigned
char, just as we must decide whether ordinary integer variables should have type
int or unsigned int.

Q: I don’t understand how the new-line character can be the ASCII line-feed
character. When a user enters input and presses the Enter key, doesn’t the
program read this as a carriage-return character or a carriage return plus a
line feed? [p. 137]

variable-length argument lists
➤26.1

C7.FM Page 153 Friday, February 8, 2008 3:55 PM

154 Chapter 7 Basic Types

A: Nope. As part of C’s UNIX heritage, it always regards the end of a line as being
marked by a single line-feed character. (In UNIX text files, a single line-feed char-
acter—but no carriage return—appears at the end of each line.) The C library takes
care of translating the user’s keypress into a line-feed character. When a program
reads from a file, the I/O library translates the file’s end-of-line marker (whatever it
may be) into a single line-feed character. The same transformations occur—in
reverse—when output is written to the screen or to a file. (See Section 22.1 for
details.)

Although these translations may seem confusing, they serve an important pur-
pose: insulating programs from details that may vary from one operating system to
another.

*Q: What’s the purpose of the \? escape sequence? [p. 138]
A: The \? escape is related to trigraph sequences, which begin with ??. If you should

put ?? in a string, there’s a possibility that the compiler will mistake it for the
beginning of a trigraph. Replacing the second ? by \? fixes the problem.

Q: If getchar is faster, why would we ever want to use scanf to read individ-
ual characters? [p. 140]

A: Although it’s not as fast as getchar, the scanf function is more flexible. As we
saw previously, the "%c" format string causes scanf to read the next input char-
acter; " %c" causes it to read the next non-white-space character. Also, scanf is
good at reading characters that are mixed in with other kinds of data. Let’s say that
our input data consists of an integer, then a single nonnumeric character, then
another integer. By using the format string "%d%c%d", we can get scanf to read
all three items.

*Q: Under what circumstances do the integral promotions convert a character or
short integer to unsigned int? [p. 143]

A: The integral promotions yield an unsigned int if the int type isn’t large
enough to include all possible values of the original type. Since characters are usu-
ally eight bits long, they are almost always converted to int, which is guaranteed
to be at least 16 bits long. Signed short integers can always be converted to int as
well. Unsigned short integers are problematic. If short integers have the same
length as ordinary integers (as they do on a 16-bit machine), then unsigned short
integers will have to be converted to unsigned int, since the largest unsigned
short integer (65,535 on a 16-bit machine) is larger than the largest int (32,767).

Q: Exactly what happens if I assign a value to a variable that’s not large enough
to hold it? [p. 146]

A: Roughly speaking, if the value is of an integral type and the variable is of an
unsigned type, the extra bits are thrown away; if the variable has a signed type, the
result is implementation-defined. Assigning a floating-point number to a vari-
able—integer or floating—that’s too small to hold it produces undefined behavior:
anything can happen, including program termination.

trigraph sequences ➤25.3

C7.FM Page 154 Friday, February 8, 2008 3:55 PM

Exercises 155

*Q: Why does C bother to provide type definitions? Isn’t defining a BOOL macro
just as good as defining a Bool type using typedef? [p. 149]

A: There are two important differences between type definitions and macro defini-
tions. First, type definitions are more powerful than macro definitions. In particu-
lar, array and pointer types can’t be defined as macros. Suppose that we try to use a
macro to define a “pointer to integer” type:

#define PTR_TO_INT int *

The declaration

PTR_TO_INT p, q, r;

will become

int * p, q, r;

after preprocessing. Unfortunately, only p is a pointer; q and r are ordinary integer
variables. Type definitions don’t have this problem.

Second, typedef names are subject to the same scope rules as variables; a
typedef name defined inside a function body wouldn’t be recognized outside the
function. Macro names, on the other hand, are replaced by the preprocessor wher-
ever they appear.

*Q: You said that compilers “can usually determine the value of a sizeof expres-
sion.” Can’t a compiler always determine the value of a sizeof expression?
[p. 151]

A: In C89, yes. In C99, however, there’s one exception. The compiler can’t determine
the size of a variable-length array, because the number of elements in the array
may change during the execution of the program.

Exercises

Section 7.1 1. Give the decimal value of each of the following integer constants.

Section 7.2 2. Which of the following are not legal constants in C? Classify each legal constant as either
integer or floating-point.

variable-length arrays ➤8.3

(a) 077
(b) 0x77
(c) 0XABC

(a) 010E2
(b) 32.1E+5
(c) 0790
(d) 100_000
(e) 3.978e-2

C7.FM Page 155 Friday, February 8, 2008 3:55 PM

156 Chapter 7 Basic Types

3. Which of the following are not legal types in C?

Section 7.3 4. If c is a variable of type char, which one of the following statements is illegal?

5. Which one of the following is not a legal way to write the number 65? (Assume that the
character set is ASCII.)

6. For each of the following items of data, specify which one of the types char, short, int,
or long is the smallest one guaranteed to be large enough to store the item.

7. For each of the following character escapes, give the equivalent octal escape. (Assume that
the character set is ASCII.) You may wish to consult Appendix E, which lists the numerical
codes for ASCII characters.

8. Repeat Exercise 7, but give the equivalent hexadecimal escape.

Section 7.4 9. Suppose that i and j are variables of type int. What is the type of the expression i / j +
'a'?

10. Suppose that i is a variable of type int, j is a variable of type long, and k is a variable of
type unsigned int. What is the type of the expression i + (int) j * k?

11. Suppose that i is a variable of type int, f is a variable of type float, and d is a variable
of type double. What is the type of the expression i * f / d?

12. Suppose that i is a variable of type int, f is a variable of type float, and d is a variable
of type double. Explain what conversions take place during the execution of the following
statement:

d = i + f;

(a) short unsigned int
(b) short float
(c) long double
(d) unsigned long

W

(a) i += c; /* i has type int */
(b) c = 2 * c - 1;
(c) putchar(c);
(d) printf(c);

(a) 'A'
(b) 0b1000001
(c) 0101
(d) 0x41

(a) Days in a month
(b) Days in a year
(c) Minutes in a day
(d) Seconds in a day

(a) \b
(b) \n
(c) \r
(d) \t

W

W

W

C7.FM Page 156 Friday, February 8, 2008 3:55 PM

Programming Projects 157

13. Assume that a program contains the following declarations:

char c = '\1';
short s = 2;
int i = -3;
long m = 5;
float f = 6.5f;
double d = 7.5;

Give the value and the type of each expression listed below.

14. Does the following statement always compute the fractional part of f correctly (assuming
that f and frac_part are float variables)?

frac_part = f - (int) f;

If not, what’s the problem?

Section 7.5 15. Use typedef to create types named Int8, Int16, and Int32. Define the types so that
they represent 8-bit, 16-bit, and 32-bit integers on your machine.

Programming Projects

1. The square2.c program of Section 6.3 will fail (usually by printing strange answers) if
i * i exceeds the maximum int value. Run the program and determine the smallest value
of n that causes failure. Try changing the type of i to short and running the program
again. (Don’t forget to update the conversion specifications in the call of printf!) Then
try long. From these experiments, what can you conclude about the number of bits used to
store integer types on your machine?

2. Modify the square2.c program of Section 6.3 so that it pauses after every 24 squares and
displays the following message:

Press Enter to continue...

After displaying the message, the program should use getchar to read a character.
getchar won’t allow the program to continue until the user presses the Enter key.

3. Modify the sum2.c program of Section 7.1 to sum a series of double values.

4. Write a program that translates an alphabetic phone number into numeric form:

Enter phone number: CALLATT
2255288

(In case you don’t have a telephone nearby, here are the letters on the keys: 2=ABC, 3=DEF,
4=GHI, 5=JKL, 6=MNO, 7=PRS, 8=TUV, 9=WXY.) If the original phone number contains
nonalphabetic characters (digits or punctuation, for example), leave them unchanged:

Enter phone number: 1-800-COL-LECT
1-800-265-5328

You may assume that any letters entered by the user are upper case.

(a) c * i (c) f / c (e) f - d
(b) s + m (d) d / s (f) (int) f

W

W

W

C7.FM Page 157 Friday, February 8, 2008 3:55 PM

158 Chapter 7 Basic Types

5. In the SCRABBLE Crossword Game, players form words using small tiles, each containing
a letter and a face value. The face value varies from one letter to another, based on the let-
ter’s rarity. (Here are the face values: 1: AEILNORSTU, 2: DG, 3: BCMP, 4: FHVWY, 5: K,
8: JX, 10: QZ.) Write a program that computes the value of a word by summing the values
of its letters:

Enter a word: pitfall
Scrabble value: 12

Your program should allow any mixture of lower-case and upper-case letters in the word.
Hint: Use the toupper library function.

6. Write a program that prints the values of sizeof(int), sizeof(short),
sizeof(long), sizeof(float), sizeof(double) and sizeof(long dou-
ble).

7. Modify Programming Project 6 from Chapter 3 so that the user may add, subtract, multiply,
or divide two fractions (by entering either +, -, *, or / between the fractions).

8. Modify Programming Project 8 from Chapter 5 so that the user enters a time using the 12-
hour clock. The input will have the form hours:minutes followed by either A, P, AM, or PM
(either lower-case or upper-case). White space is allowed (but not required) between the
numerical time and the AM/PM indicator. Examples of valid input:

1:15P
1:15PM
1:15p
1:15pm
1:15 P
1:15 PM
1:15 p
1:15 pm

You may assume that the input has one of these forms; there is no need to test for errors.

9. Write a program that asks the user for a 12-hour time, then displays the time in 24-hour
form:

Enter a 12-hour time: 9:11 PM
Equivalent 24-hour time: 21:11

See Programming Project 8 for a description of the input format.

10. Write a program that counts the number of vowels (a, e, i, o, and u) in a sentence:

Enter a sentence: And that's the way it is.
Your sentence contains 6 vowels.

11. Write a program that takes a first name and last name entered by the user and displays the
last name, a comma, and the first initial, followed by a period:

Enter a first and last name: Lloyd Fosdick
Fosdick, L.

The user’s input may contain extra spaces before the first name, between the first and last
names, and after the last name.

12. Write a program that evaluates an expression:

Enter an expression: 1+2.5*3
Value of expression: 10.5

W

W

C7.FM Page 158 Friday, February 8, 2008 3:55 PM

Programming Projects 159

The operands in the expression are floating-point numbers; the operators are +, -, *, and /.
The expression is evaluated from left to right (no operator takes precedence over any other
operator).

13. Write a program that calculates the average word length for a sentence:

Enter a sentence: It was deja vu all over again.
Average word length: 3.4

For simplicity, your program should consider a punctuation mark to be part of the word to
which it is attached. Display the average word length to one decimal place.

14. Write a program that uses Newton’s method to compute the square root of a positive float-
ing-point number:

Enter a positive number: 3
Square root: 1.73205

Let x be the number entered by the user. Newton’s method requires an initial guess y for the
square root of x (we’ll use y = 1). Successive guesses are found by computing the average of
y and x/y. The following table shows how the square root of 3 would be found:

Note that the values of y get progressively closer to the true square root of x. For greater
accuracy, your program should use variables of type double rather than float. Have the
program terminate when the absolute value of the difference between the old value of y and
the new value of y is less than the product of .00001 and y. Hint: Call the fabs function to
find the absolute value of a double. (You’ll need to include the <math.h> header at the
beginning of your program in order to use fabs.)

15. Write a program that computes the factorial of a positive integer:

Enter a positive integer: 6
Factorial of 6: 720

In cases (e)–(g), the program will display a close approximation of the factorial, not neces-
sarily the exact value.

x y x/y
Average of
y and x/y

3
3
3
3
3

1
2
1.75
1.73214
1.73205

3
1.5
1.71429
1.73196
1.73205

 2
 1.75
 1.73214
 1.73205
 1.73205

(a) Use a short variable to store the value of the factorial. What is the largest value of n
for which the program correctly prints the factorial of n?

(b) Repeat part (a), using an int variable instead.
(c) Repeat part (a), using a long variable instead.
(d) Repeat part (a), using a long long variable instead (if your compiler supports the

long long type).
(e) Repeat part (a), using a float variable instead.
(f) Repeat part (a), using a double variable instead.
(g) Repeat part (a), using a long double variable instead.

C7.FM Page 159 Friday, February 8, 2008 3:55 PM

C7.FM Page 160 Friday, February 8, 2008 3:55 PM

161

8 Arrays

If a program manipulates a large amount of data,
 it does so in a small number of ways.

So far, the only variables we’ve seen are scalar: capable of holding a single data
item. C also supports aggregate variables, which can store collections of values.
There are two kinds of aggregates in C: arrays and structures. This chapter shows
how to declare and use arrays, both one-dimensional (Section 8.1) and multidi-
mensional (Section 8.2). Section 8.3 covers C99’s variable-length arrays. The
focus of the chapter is on one-dimensional arrays, which play a much bigger role
in C than do multidimensional arrays. Later chapters (Chapter 12 in particular)
provide additional information about arrays; Chapter 16 covers structures.

8.1 One-Dimensional Arrays

An array is a data structure containing a number of data values, all of which have
the same type. These values, known as elements, can be individually selected by
their position within the array.

The simplest kind of array has just one dimension. The elements of a one-
dimensional array are conceptually arranged one after another in a single row (or
column, if you prefer). Here’s how we might visualize a one-dimensional array
named a:

To declare an array, we must specify the type of the array’s elements and the
number of elements. For example, to declare that the array a has 10 elements of
type int, we would write

int a[10];

a

C8.FM Page 161 Tuesday, February 12, 2008 4:13 PM

162 Chapter 8 Arrays

The elements of an array may be of any type; the length of the array can be speci-
fied by any (integer) constant expression. Since array lengths may need to be
adjusted when the program is later changed, using a macro to define the length of
an array is an excellent practice:

#define N 10
…
int a[N];

Array Subscripting

To access a particular element of an array, we write the array name followed by an
integer value in square brackets (this is referred to as subscripting or indexing the
array). Array elements are always numbered starting from 0, so the elements of an
array of length n are indexed from 0 to n – 1. For example, if a is an array with 10
elements, they’re designated by a[0], a[1], …, a[9], as the following figure
shows:

Expressions of the form a[i] are lvalues, so they can be used in the same way as
ordinary variables:

a[0] = 1;
printf("%d\n", a[5]);
++a[i];

In general, if an array contains elements of type T, then each element of the array is
treated as if it were a variable of type T. In this example, the elements a[0],
a[5], and a[i] behave like int variables.

Arrays and for loops go hand-in-hand. Many programs contain for loops
whose job is to perform some operation on every element in an array. Here are a
few examples of typical operations on an array a of length N:

idiom for (i = 0; i < N; i++)
 a[i] = 0; /* clears a */

idiom for (i = 0; i < N; i++)
 scanf("%d", &a[i]); /* reads data into a */

idiom for (i = 0; i < N; i++)
 sum += a[i]; /* sums the elements of a */

Notice that we must use the & symbol when calling scanf to read an array ele-
ment, just as we would with an ordinary variable.

constant expressions ➤5.3

Q&A

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

lvalues ➤4.2

C8.FM Page 162 Tuesday, February 12, 2008 4:13 PM

8.1 One-Dimensional Arrays 163

C doesn’t require that subscript bounds be checked; if a subscript goes out of
range, the program’s behavior is undefined. One cause of a subscript going out of
bounds: forgetting that an array with n elements is indexed from 0 to n – 1, not 1 to
n. (As one of my professors liked to say, “In this business, you’re always off by
one.” He was right, of course.) The following example illustrates a bizarre effect
that can be caused by this common blunder:

int a[10], i;

for (i = 1; i <= 10; i++)
 a[i] = 0;

With some compilers, this innocent-looking for statement causes an infinite loop!
When i reaches 10, the program stores 0 into a[10]. But a[10] doesn’t exist,
so 0 goes into memory immediately after a[9]. If the variable i happens to fol-
low a[9] in memory—as might be the case—then i will be reset to 0, causing the
loop to start over.

An array subscript may be any integer expression:

a[i+j*10] = 0;

The expression can even have side effects:

i = 0;
while (i < N)
 a[i++] = 0;

Let’s trace this code. After i is set to 0, the while statement checks whether i is
less than N. If it is, 0 is assigned to a[0], i is incremented, and the loop repeats.
Note that a[++i] wouldn’t be right, because 0 would be assigned to a[1] during
the first loop iteration.

Be careful when an array subscript has a side effect. For example, the following
loop—which is supposed to copy the elements of the array b into the array a—
may not work properly:

i = 0;
while (i < N)
 a[i] = b[i++];

The expression a[i] = b[i++] accesses the value of i and also modifies i else-
where in the expression, which—as we saw in Section 4.4—causes undefined
behavior. Of course, we can easily avoid the problem by removing the increment
from the subscript:

for (i = 0; i < N; i++)
 a[i] = b[i];

C8.FM Page 163 Tuesday, February 12, 2008 4:13 PM

164 Chapter 8 Arrays

PROGRAM Reversing a Series of Numbers

Our first array program prompts the user to enter a series of numbers, then writes
the numbers in reverse order:

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
In reverse order: 31 50 11 23 94 7 102 49 82 34

Our strategy will be to store the numbers in an array as they’re read, then go
through the array backwards, printing the elements one by one. In other words, we
won’t actually reverse the elements in the array, but we’ll make the user think we
did.

reverse.c /* Reverses a series of numbers */

#include <stdio.h>

#define N 10

int main(void)
{
 int a[N], i;

 printf("Enter %d numbers: ", N);
 for (i = 0; i < N; i++)
 scanf("%d", &a[i]);

 printf("In reverse order:");
 for (i = N - 1; i >= 0; i--)
 printf(" %d", a[i]);
 printf("\n");

 return 0;
}

This program shows just how useful macros can be in conjunction with arrays.
The macro N is used four times in the program: in the declaration of a, in the
printf that displays a prompt, and in both for loops. Should we later decide to
change the size of the array, we need only edit the definition of N and recompile
the program. Nothing else will need to be altered; even the prompt will still be cor-
rect.

Array Initialization

An array, like any other variable, can be given an initial value at the time it’s
declared. The rules are somewhat tricky, though, so we’ll cover some of them now
and save others until later.

The most common form of array initializer is a list of constant expressions
enclosed in braces and separated by commas:

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

initializers ➤18.5

C8.FM Page 164 Tuesday, February 12, 2008 4:13 PM

8.1 One-Dimensional Arrays 165

If the initializer is shorter than the array, the remaining elements of the array are
given the value 0:

int a[10] = {1, 2, 3, 4, 5, 6};
 /* initial value of a is {1, 2, 3, 4, 5, 6, 0, 0, 0, 0} */

Using this feature, we can easily initialize an array to all zeros:

int a[10] = {0};
 /* initial value of a is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} */

It’s illegal for an initializer to be completely empty, so we’ve put a single 0 inside
the braces. It’s also illegal for an initializer to be longer than the array it initial-
izes.

If an initializer is present, the length of the array may be omitted:

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

The compiler uses the length of the initializer to determine how long the array is.
The array still has a fixed number of elements (10, in this example), just as if we
had specified the length explicitly.

Designated Initializers

It’s often the case that relatively few elements of an array need to be initialized
explicitly; the other elements can be given default values. Consider the following
example:

int a[15] = {0, 0, 29, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 48};

We want element 2 of the array to be 29, element 9 to be 7, and element 14 to be
48, but the other values are just zero. For a large array, writing an initializer in this
fashion is tedious and error-prone (what if there were 200 zeros between two of the
nonzero values?).

C99’s designated initializers can be used to solve this problem. Here’s how
we could redo the previous example using a designated initializer:

int a[15] = {[2] = 29, [9] = 7, [14] = 48};

Each number in brackets is said to be a designator.
Besides being shorter and easier to read (at least for some arrays), designated

initializers have another advantage: the order in which the elements are listed no
longer matters. Thus, our previous example could also be written in the following
way:

int a[15] = {[14] = 48, [9] = 7, [2] = 29};

Designators must be integer constant expressions. If the array being initialized
has length n, each designator must be between 0 and n – 1. However, if the length
of the array is omitted, a designator can be any nonnegative integer. In the latter
case, the compiler will deduce the length of the array from the largest designator.

C99

C8.FM Page 165 Tuesday, February 12, 2008 4:13 PM

166 Chapter 8 Arrays

In the following example, the fact that 23 appears as a designator will force the
array to have length 24:

int b[] = {[5] = 10, [23] = 13, [11] = 36, [15] = 29};

An initializer may use both the older (element-by-element) technique and the
newer (designated) technique:

int c[10] = {5, 1, 9, [4] = 3, 7, 2, [8] = 6};

This initializer specifies that the array’s first three elements will be 5, 1, and 9. Ele-
ment 4 will have the value 3. The two elements after element 4 will be 7 and 2.
Finally, element 8 will have the value 6. All elements for which no value is speci-
fied will default to zero.

PROGRAM Checking a Number for Repeated Digits

Our next program checks whether any of the digits in a number appear more than
once. After the user enters a number, the program prints either Repeated digit
or No repeated digit:

Enter a number: 28212
Repeated digit

The number 28212 has a repeated digit (2); a number like 9357 doesn’t.
The program uses an array of Boolean values to keep track of which digits

appear in a number. The array, named digit_seen, is indexed from 0 to 9 to
correspond to the 10 possible digits. Initially, every element of the array is false.
(The initializer for digit_seen is {false}, which only initializes the first ele-
ment of the array. However, the compiler will automatically make the remaining
elements zero, which is equivalent to false.)

When given a number n, the program examines n’s digits one at a time, stor-
ing each into the digit variable and then using it as an index into digit_seen.
If digit_seen[digit] is true, then digit appears at least twice in n. On the
other hand, if digit_seen[digit] is false, then digit has not been seen
before, so the program sets digit_seen[digit] to true and keeps going.

repdigit.c /* Checks numbers for repeated digits */

#include <stdbool.h> /* C99 only */
#include <stdio.h>

int main(void)
{
 bool digit_seen[10] = {false};
 int digit;
 long n;

 printf("Enter a number: ");
 scanf("%ld", &n);

Q&A

C8.FM Page 166 Tuesday, February 12, 2008 4:13 PM

8.1 One-Dimensional Arrays 167

 while (n > 0) {
 digit = n % 10;
 if (digit_seen[digit])
 break;
 digit_seen[digit] = true;
 n /= 10;
 }

 if (n > 0)
 printf("Repeated digit\n");
 else
 printf("No repeated digit\n");

 return 0;
}

This program uses the names bool, true, and false, which are defined in
C99’s <stdbool.h> header. If your compiler doesn’t support this header, you’ll
need to define these names yourself. One way to do so is to put the following lines
above the main function:

#define true 1
#define false 0
typedef int bool;

Notice that n has type long, allowing the user to enter numbers up to
2,147,483,647 (or more, on some machines).

Using the sizeof Operator with Arrays

The sizeof operator can determine the size of an array (in bytes). If a is an array
of 10 integers, then sizeof(a) is typically 40 (assuming that each integer
requires four bytes).

We can also use sizeof to measure the size of an array element, such as
a[0]. Dividing the array size by the element size gives the length of the array:

sizeof(a) / sizeof(a[0])

Some programmers use this expression when the length of the array is needed. To
clear the array a, for example, we could write

for (i = 0; i < sizeof(a) / sizeof(a[0]); i++)
 a[i] = 0;

With this technique, the loop doesn’t have to be modified if the array length should
change at a later date. Using a macro to represent the array length has the same
advantage, of course, but the sizeof technique is slightly better, since there’s no
macro name to remember (and possibly get wrong).

One minor annoyance is that some compilers produce a warning message for
the expression i < sizeof(a) / sizeof(a[0]). The variable i probably has

C99
<stdbool.h> header ➤21.5

C8.FM Page 167 Tuesday, February 12, 2008 4:13 PM

168 Chapter 8 Arrays

type int (a signed type), whereas sizeof produces a value of type size_t (an
unsigned type). We know from Section 7.4 that comparing a signed integer with an
unsigned integer is a dangerous practice, although in this case it’s safe because
both i and sizeof(a) / sizeof(a[0]) have nonnegative values. To avoid a
warning, we can add a cast that converts sizeof(a) / sizeof(a[0]) to a
signed integer:

for (i = 0; i < (int) (sizeof(a) / sizeof(a[0])); i++)
 a[i] = 0;

Writing (int) (sizeof(a) / sizeof(a[0])) is a bit unwieldy; defin-
ing a macro that represents it is often helpful:

#define SIZE ((int) (sizeof(a) / sizeof(a[0])))

for (i = 0; i < SIZE; i++)
 a[i] = 0;

If we’re back to using a macro, though, what’s the advantage of sizeof? We’ll
answer that question in a later chapter (the trick is to add a parameter to the
macro).

PROGRAM Computing Interest

Our next program prints a table showing the value of $100 invested at different
rates of interest over a period of years. The user will enter an interest rate and the
number of years the money will be invested. The table will show the value of the
money at one-year intervals—at that interest rate and the next four higher rates—
assuming that interest is compounded once a year. Here’s what a session with the
program will look like:

Enter interest rate: 6
Enter number of years: 5

Years 6% 7% 8% 9% 10%
 1 106.00 107.00 108.00 109.00 110.00
 2 112.36 114.49 116.64 118.81 121.00
 3 119.10 122.50 125.97 129.50 133.10
 4 126.25 131.08 136.05 141.16 146.41
 5 133.82 140.26 146.93 153.86 161.05

Clearly, we can use a for statement to print the first row. The second row is a
little trickier, since its values depend on the numbers in the first row. Our solution
is to store the first row in an array as it’s computed, then use the values in the array
to compute the second row. Of course, this process can be repeated for the third
and later rows. We’ll end up with two for statements, one nested inside the other.
The outer loop will count from 1 to the number of years requested by the user. The
inner loop will increment the interest rate from its lowest value to its highest value.

parameterized macros ➤14.3

C8.FM Page 168 Tuesday, February 12, 2008 4:13 PM

8.2 Multidimensional Arrays 169

interest.c /* Prints a table of compound interest */

#include <stdio.h>

#define NUM_RATES ((int) (sizeof(value) / sizeof(value[0])))
#define INITIAL_BALANCE 100.00

int main(void)
{
 int i, low_rate, num_years, year;
 double value[5];

 printf("Enter interest rate: ");
 scanf("%d", &low_rate);
 printf("Enter number of years: ");
 scanf("%d", &num_years);

 printf("\nYears");
 for (i = 0; i < NUM_RATES; i++) {
 printf("%6d%%", low_rate + i);
 value[i] = INITIAL_BALANCE;
 }
 printf("\n");

 for (year = 1; year <= num_years; year++) {
 printf("%3d ", year);
 for (i = 0; i < NUM_RATES; i++) {
 value[i] += (low_rate + i) / 100.0 * value[i];
 printf("%7.2f", value[i]);
 }
 printf("\n");
 }

 return 0;
}

Note the use of NUM_RATES to control two of the for loops. If we later
change the size of the value array, the loops will adjust automatically.

8.2 Multidimensional Arrays

An array may have any number of dimensions. For example, the following declara-
tion creates a two-dimensional array (a matrix, in mathematical terminology):

int m[5][9];

The array m has 5 rows and 9 columns. Both rows and columns are indexed from 0,
as the following figure shows:

C8.FM Page 169 Tuesday, February 12, 2008 4:13 PM

170 Chapter 8 Arrays

To access the element of m in row i, column j, we must write m[i][j]. The
expression m[i] designates row i of m, and m[i][j] then selects element j in
this row.

Resist the temptation to write m[i,j] instead of m[i][j]. C treats the comma
as an operator in this context, so m[i,j] is the same as m[j].

Although we visualize two-dimensional arrays as tables, that’s not the way
they’re actually stored in computer memory. C stores arrays in row-major order, with
row 0 first, then row 1, and so forth. For example, here’s how the m array is stored:

We’ll usually ignore this detail, but sometimes it will affect our code.
Just as for loops go hand-in-hand with one-dimensional arrays, nested for

loops are ideal for processing multidimensional arrays. Consider, for example, the
problem of initializing an array for use as an identity matrix. (In mathematics, an
identity matrix has 1’s on the main diagonal, where the row and column index are
the same, and 0’s everywhere else.) We’ll need to visit each element in the array in
some systematic fashion. A pair of nested for loops—one that steps through every
row index and one that steps through each column index—is perfect for the job:

#define N 10

double ident[N][N];
int row, col;

for (row = 0; row < N; row++)
 for (col = 0; col < N; col++)
 if (row == col)
 ident[row][col] = 1.0;
 else
 ident[row][col] = 0.0;

Multidimensional arrays play a lesser role in C than in many other program-
ming languages, primarily because C provides a more flexible way to store multi-
dimensional data: arrays of pointers.

0

0

1

1

2

2

3

3

4

4

5 6 7 8

comma operator ➤6.3

m[
0,
0]

m[
0,
8]

m[
1,
0]

m[
1,
8]

m[
4,
0]

m[
4,
8]

row 0 row 1 row 4

.

arrays of pointers ➤13.7

C8.FM Page 170 Tuesday, February 12, 2008 4:13 PM

8.2 Multidimensional Arrays 171

Initializing a Multidimensional Array

We can create an initializer for a two-dimensional array by nesting one-dimen-
sional initializers:

int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},
 {0, 1, 0, 1, 0, 1, 0, 1, 0},
 {0, 1, 0, 1, 1, 0, 0, 1, 0},
 {1, 1, 0, 1, 0, 0, 0, 1, 0},
 {1, 1, 0, 1, 0, 0, 1, 1, 1}};

Each inner initializer provides values for one row of the matrix. Initializers for
higher-dimensional arrays are constructed in a similar fashion.

C provides a variety of ways to abbreviate initializers for multidimensional
arrays:

� If an initializer isn’t large enough to fill a multidimensional array, the remain-
ing elements are given the value 0. For example, the following initializer fills
only the first three rows of m; the last two rows will contain zeros:

int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},
 {0, 1, 0, 1, 0, 1, 0, 1, 0},
 {0, 1, 0, 1, 1, 0, 0, 1, 0}};

� If an inner list isn’t long enough to fill a row, the remaining elements in the
row are initialized to 0:

int m[5][9] = {{1, 1, 1, 1, 1, 0, 1, 1, 1},
 {0, 1, 0, 1, 0, 1, 0, 1},
 {0, 1, 0, 1, 1, 0, 0, 1},
 {1, 1, 0, 1, 0, 0, 0, 1},
 {1, 1, 0, 1, 0, 0, 1, 1, 1}};

� We can even omit the inner braces:

int m[5][9] = {1, 1, 1, 1, 1, 0, 1, 1, 1,
 0, 1, 0, 1, 0, 1, 0, 1, 0,
 0, 1, 0, 1, 1, 0, 0, 1, 0,
 1, 1, 0, 1, 0, 0, 0, 1, 0,
 1, 1, 0, 1, 0, 0, 1, 1, 1};

Once the compiler has seen enough values to fill one row, it begins filling the
next.

Omitting the inner braces in a multidimensional array initializer can be risky, since
an extra element (or even worse, a missing element) will affect the rest of the ini-
tializer. Leaving out the braces causes some compilers to produce a warning mes-
sage such as “missing braces around initializer.”

C99’s designated initializers work with multidimensional arrays. For example,
we could create a 2 × 2 identity matrix as follows:

C99

C8.FM Page 171 Tuesday, February 12, 2008 4:13 PM

172 Chapter 8 Arrays

double ident[2][2] = {[0][0] = 1.0, [1][1] = 1.0};

As usual, all elements for which no value is specified will default to zero.

Constant Arrays

Any array, whether one-dimensional or multidimensional, can be made “constant”
by starting its declaration with the word const:

const char hex_chars[] =
 {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 'A', 'B', 'C', 'D', 'E', 'F'};

An array that’s been declared const should not be modified by the program; the
compiler will detect direct attempts to modify an element.

Declaring an array to be const has a couple of primary advantages. It docu-
ments that the program won’t change the array, which can be valuable information
for someone reading the code later. It also helps the compiler catch errors, by
informing it that we don’t intend to modify the array.

const isn’t limited to arrays; it works with any variable, as we’ll see later.
However, const is particularly useful in array declarations, because arrays may
contain reference information that won’t change during program execution.

PROGRAM Dealing a Hand of Cards

Our next program illustrates both two-dimensional arrays and constant arrays. The
program deals a random hand from a standard deck of playing cards. (In case you
haven’t had time to play games recently, each card in a standard deck has a suit—
clubs, diamonds, hearts, or spades—and a rank—two, three, four, five, six, seven,
eight, nine, ten, jack, queen, king, or ace.) We’ll have the user specify how many
cards should be in the hand:

Enter number of cards in hand: 5
Your hand: 7c 2s 5d as 2h

It’s not immediately obvious how we’d write such a program. How do we pick
cards randomly from the deck? And how do we avoid picking the same card twice?
Let’s tackle these problems separately.

To pick cards randomly, we’ll use several C library functions. The time func-
tion (from <time.h>) returns the current time, encoded in a single number. The
srand function (from <stdlib.h>) initializes C’s random number generator.
Passing the return value of time to srand prevents the program from dealing the
same cards every time we run it. The rand function (also from <stdlib.h>)
produces an apparently random number each time it’s called. By using the % oper-
ator, we can scale the return value from rand so that it falls between 0 and 3 (for
suits) or between 0 and 12 (for ranks).

To avoid picking the same card twice, we’ll need to keep track of which cards
have already been chosen. For that purpose, we’ll use an array named in_hand

const type qualifier ➤18.3

time function ➤26.3

srand function ➤26.2

rand function ➤26.2

C8.FM Page 172 Tuesday, February 12, 2008 4:13 PM

8.2 Multidimensional Arrays 173

that has four rows (one for each suit) and 13 columns (one for each rank). In other
words, each element in the array corresponds to one of the 52 cards in the deck. All
elements of the array will be false to start with. Each time we pick a card at ran-
dom, we’ll check whether the element of in_hand corresponding to that card is
true or false. If it’s true, we’ll have to pick another card. If it’s false, we’ll store
true in that card’s array element to remind us later that this card has already been
picked.

Once we’ve verified that a card is “new”—not already selected—we’ll need to
translate its numerical rank and suit into characters and then display the card. To
translate the rank and suit to character form, we’ll set up two arrays of charac-
ters—one for the rank and one for the suit—and then use the numbers to subscript
the arrays. These arrays won’t change during program execution, so we may as
well declare them to be const.

deal.c /* Deals a random hand of cards */

#include <stdbool.h> /* C99 only */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define NUM_SUITS 4
#define NUM_RANKS 13

int main(void)
{
 bool in_hand[NUM_SUITS][NUM_RANKS] = {false};
 int num_cards, rank, suit;
 const char rank_code[] = {'2','3','4','5','6','7','8',
 '9','t','j','q','k','a'};
 const char suit_code[] = {'c','d','h','s'};

 srand((unsigned) time(NULL));

 printf("Enter number of cards in hand: ");
 scanf("%d", &num_cards);

 printf("Your hand:");
 while (num_cards > 0) {
 suit = rand() % NUM_SUITS; /* picks a random suit */
 rank = rand() % NUM_RANKS; /* picks a random rank */
 if (!in_hand[suit][rank]) {
 in_hand[suit][rank] = true;
 num_cards--;
 printf(" %c%c", rank_code[rank], suit_code[suit]);
 }
 }
 printf("\n");

 return 0;
}

C8.FM Page 173 Tuesday, February 12, 2008 4:13 PM

174 Chapter 8 Arrays

Notice the initializer for the in_hand array:

bool in_hand[NUM_SUITS][NUM_RANKS] = {false};

Even though in_hand is a two-dimensional array, we can use a single pair of
braces (at the risk of possibly incurring a warning from the compiler). Also, we’ve
supplied only one value in the initializer, knowing that the compiler will fill in 0
(false) for the other elements.

8.3 Variable-Length Arrays (C99)

Section 8.1 stated that the length of an array variable must be specified by a con-
stant expression. In C99, however, it’s sometimes possible to use an expression
that’s not constant. The following modification of the reverse.c program (Sec-
tion 8.1) illustrates this ability:

reverse2.c /* Reverses a series of numbers using a variable-length
 array - C99 only */

#include <stdio.h>

int main(void)
{
 int i, n;

 printf("How many numbers do you want to reverse? ");
 scanf("%d", &n);

 int a[n]; /* C99 only - length of array depends on n */

 printf("Enter %d numbers: ", n);
 for (i = 0; i < n; i++)
 scanf("%d", &a[i]);

 printf("In reverse order:");
 for (i = n - 1; i >= 0; i--)
 printf(" %d", a[i]);
 printf("\n");

 return 0;
}

The array a in this program is an example of a variable-length array (or VLA for
short). The length of a VLA is computed when the program is executed, not when
the program is compiled. The chief advantage of a VLA is that the programmer
doesn’t have to pick an arbitrary length when declaring an array; instead, the pro-
gram itself can calculate exactly how many elements are needed. If the program-
mer makes the choice, it’s likely that the array will be too long (wasting memory)
or too short (causing the program to fail). In the reverse2.c program, the num-

C8.FM Page 174 Tuesday, February 12, 2008 4:13 PM

Q & A 175

ber entered by the user determines the length of a; the programmer doesn’t have to
choose a fixed length, unlike in the original version of the program.

The length of a VLA doesn’t have to be specified by a single variable. Arbi-
trary expressions, possibly containing operators, are also legal. For example:

int a[3*i+5];
int b[j+k];

Like other arrays, VLAs can be multidimensional:

int c[m][n];

The primary restriction on VLAs is that they can’t have static storage duration.
(We haven’t yet seen any arrays with this property.) Another restriction is that a
VLA may not have an initializer.

Variable-length arrays are most often seen in functions other than main. One
big advantage of a VLA that belongs to a function f is that it can have a different
length each time f is called. We’ll explore this feature in Section 9.3.

Q & A

Q: Why do array subscripts start at 0 instead of 1? [p. 162]
A: Having subscripts begin at 0 simplifies the compiler a bit. Also, it can make array

subscripting marginally faster.

Q: What if I want an array with subscripts that go from 1 to 10 instead of 0 to 9?
A: Here’s a common trick: declare the array to have 11 elements instead of 10. The

subscripts will go from 0 to 10, but you can just ignore element 0.

Q: Is it possible to use a character as an array subscript?
A: Yes, because C treats characters as integers. You’ll probably need to “scale” the

character before you use it as a subscript, though. Let’s say that we want the
letter_count array to keep track of a count for each letter in the alphabet. The
array will need 26 elements, so we’d declare it in the following way:

int letter_count[26];

However, we can’t use letters to subscript letter_count directly, because their
integer values don’t fall between 0 and 25. To scale a lower-case letter to the
proper range, we can simply subtract 'a'; to scale an upper-case letter, we’ll sub-
tract 'A'. For example, if ch contains a lower-case letter, we’d write

letter_count[ch-'a'] = 0;

to clear the count that corresponds to ch. A minor caveat: this technique isn’t com-
pletely portable, because it assumes that letters have consecutive codes. However,
it works with most character sets, including ASCII.

static storage duration ➤18.2

C8.FM Page 175 Tuesday, February 12, 2008 4:13 PM

176 Chapter 8 Arrays

Q: It seems like a designated initializer could end up initializing an array element
more than once. Consider the following array declaration:

int a[] = {4, 9, 1, 8, [0] = 5, 7};

Is this declaration legal, and if so, what is the length of the array? [p. 166]
A: Yes, the declaration is legal. Here’s how it works: as it processes an initializer list,

the compiler keeps track of which array element is to be initialized next. Normally,
the next element is the one following the element that was last initialized. How-
ever, when a designator appears in the list, it forces the next element be the one
represented by the designator, even if that element has already been initialized.

Here’s a step-by-step look at how the compiler will process the initializer for
the array a:

The 4 initializes element 0; the next element to be initialized is element 1.
The 9 initializes element 1; the next element to be initialized is element 2.
The 1 initializes element 2; the next element to be initialized is element 3.
The 8 initializes element 3; the next element to be initialized is element 4.
The [0] designator causes the next element to become 0, so the 5 initializes

element 0 (replacing the 4 previously stored there). The next element to
be initialized is element 1.

The 7 initializes element 1 (replacing the 9 previously stored there). The next
element to be initialized is element 2 (which is irrelevant since we’re at
the end of the list).

The net effect is the same as if we had written

int a[] = {5, 7, 1, 8};

Thus, the length of this array is four.

Q: The compiler gives me an error message if I try to copy one array into another
by using the assignment operator. What’s wrong?

A: Although it looks quite plausible, the assignment

a = b; /* a and b are arrays */

is indeed illegal. The reason for its illegality isn’t obvious; it has to do with the
peculiar relationship between arrays and pointers in C, a topic we’ll explore in
Chapter 12.

The simplest way to copy one array into another is to use a loop that copies the
elements, one by one:

for (i = 0; i < N; i++)
 a[i] = b[i];

Another possibility is to use the memcpy (“memory copy”) function from the
<string.h> header. memcpy is a low-level function that simply copies bytes
from one place to another. To copy the array b into the array a, use memcpy as
follows:

memcpy function ➤23.6

C8.FM Page 176 Tuesday, February 12, 2008 4:13 PM

Exercises 177

memcpy(a, b, sizeof(a));

Many programmers prefer memcpy, especially for large arrays, because it’s poten-
tially faster than an ordinary loop.

*Q: Section 6.4 mentioned that C99 doesn’t allow a goto statement to bypass the
declaration of a variable-length array. What’s the reason for this restriction?

A: The memory used to store a variable-length array is usually allocated when the
declaration of the array is reached during program execution. Bypassing the decla-
ration using a goto statement could result in a program accessing the elements of
an array that was never allocated.

Exercises

Section 8.1 1. We discussed using the expression sizeof(a) / sizeof(a[0]) to calculate the num-
ber of elements in an array. The expression sizeof(a) / sizeof(t), where t is the type
of a’s elements, would also work, but it’s considered an inferior technique. Why?

2. The Q&A section shows how to use a letter as an array subscript. Describe how to use a
digit (in character form) as a subscript.

3. Write a declaration of an array named weekend containing seven bool values. Include an
initializer that makes the first and last values true; all other values should be false.

4. (C99) Repeat Exercise 3, but this time use a designated initializer. Make the initializer as
short as possible.

5. The Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, …, where each number is the sum of the
two preceding numbers. Write a program fragment that declares an array named
fib_numbers of length 40 and fills the array with the first 40 Fibonacci numbers. Hint:
Fill in the first two numbers individually, then use a loop to compute the remaining num-
bers.

Section 8.2 6. Calculators, watches, and other electronic devices often rely on seven-segment displays for
numerical output. To form a digit, such devices “turn on” some of the seven segments while
leaving others “off”:

 — — — — — — — —
| | | | | | | | | | | | | |
 — — — — — — —
| | | | | | | | | | | | |
 — — — — — — —
Suppose that we want to set up an array that remembers which segments should be “on” for
each digit. Let’s number the segments as follows:

Here’s what the array might look like, with each row representing one digit:

const int segments[10][7] = {{1, 1, 1, 1, 1, 1, 0}, …};

I’ve given you the first row of the initializer; fill in the rest.

W

W

 —
 | |
 —
 | |
—

6

0

1

24
3

5

C8.FM Page 177 Tuesday, February 12, 2008 4:13 PM

178 Chapter 8 Arrays

7. Using the shortcuts described in Section 8.2, shrink the initializer for the segments array
(Exercise 6) as much as you can.

8. Write a declaration for a two-dimensional array named temperature_readings that
stores one month of hourly temperature readings. (For simplicity, assume that a month has
30 days.) The rows of the array should represent days of the month; the columns should rep-
resent hours of the day.

9. Using the array of Exercise 8, write a program fragment that computes the average tempera-
ture for a month (averaged over all days of the month and all hours of the day).

10. Write a declaration for an 8 × 8 char array named chess_board. Include an initializer
that puts the following data into the array (one character per array element):

r n b q k b n r
p p p p p p p p

. . . .

. . . .
P P P P P P P P
R N B Q K B N R

11. Write a program fragment that declares an 8 × 8 char array named checker_board and
then uses a loop to store the following data into the array (one character per array element):

B R B R B R B R
R B R B R B R B
B R B R B R B R
R B R B R B R B
B R B R B R B R
R B R B R B R B
B R B R B R B R
R B R B R B R B

Hint: The element in row i, column j, should be the letter B if i + j is an even number.

Programming Projects

1. Modify the repdigit.c program of Section 8.1 so that it shows which digits (if any)
were repeated:

Enter a number: 939577
Repeated digit(s): 7 9

2. Modify the repdigit.c program of Section 8.1 so that it prints a table showing how
many times each digit appears in the number:

Enter a number: 41271092
Digit: 0 1 2 3 4 5 6 7 8 9
Occurrences: 1 2 2 0 1 0 0 1 0 1

3. Modify the repdigit.c program of Section 8.1 so that the user can enter more than one
number to be tested for repeated digits. The program should terminate when the user enters
a number that’s less than or equal to 0.

W

W

C8.FM Page 178 Tuesday, February 12, 2008 4:13 PM

Programming Projects 179

4. Modify the reverse.c program of Section 8.1 to use the expression (int)
(sizeof(a) / sizeof(a[0])) (or a macro with this value) for the array length.

5. Modify the interest.c program of Section 8.1 so that it compounds interest monthly
instead of annually. The form of the output shouldn’t change; the balance should still be
shown at annual intervals.

6. The prototypical Internet newbie is a fellow named B1FF, who has a unique way of writing
messages. Here’s a typical B1FF communiqué:

H3Y DUD3, C 15 R1LLY C00L!!!!!!!!!!

Write a “B1FF filter” that reads a message entered by the user and translates it into B1FF-
speak:

Enter message: Hey dude, C is rilly cool
In B1FF-speak: H3Y DUD3, C 15 R1LLY C00L!!!!!!!!!!

Your program should convert the message to upper-case letters, substitute digits for certain
letters (A→4, B→8, E→3, I→1, O→0, S→5), and then append 10 or so exclamation marks.
Hint: Store the original message in an array of characters, then go back through the array,
translating and printing characters one by one.

7. Write a program that reads a 5 × 5 array of integers and then prints the row sums and the
column sums:

Enter row 1: 8 3 9 0 10
Enter row 2: 3 5 17 1 1
Enter row 3: 2 8 6 23 1
Enter row 4: 15 7 3 2 9
Enter row 5: 6 14 2 6 0

Row totals: 30 27 40 36 28
Column totals: 34 37 37 32 21

8. Modify Programming Project 7 so that it prompts for five quiz grades for each of five stu-
dents, then computes the total score and average score for each student, and the average
score, high score, and low score for each quiz.

9. Write a program that generates a “random walk” across a 10 × 10 array. The array will con-
tain characters (all '.' initially). The program must randomly “walk” from element to ele-
ment, always going up, down, left, or right by one element. The elements visited by the
program will be labeled with the letters A through Z, in the order visited. Here’s an example
of the desired output:

A
B C D
. F E
H G
I
J Z .
K . . R S T U V Y .
L M P Q . . . W X .
. N O
.

Hint: Use the srand and rand functions (see deal.c) to generate random numbers.
After generating a number, look at its remainder when divided by 4. There are four possible
values for the remainder—0, 1, 2, and 3—indicating the direction of the next move. Before
performing a move, check that (a) it won’t go outside the array, and (b) it doesn’t take us to

W

W

C8.FM Page 179 Tuesday, February 12, 2008 4:13 PM

180 Chapter 8 Arrays

an element that already has a letter assigned. If either condition is violated, try moving in
another direction. If all four directions are blocked, the program must terminate. Here’s an
example of premature termination:

A B G H I
. C F . J K
. D E . M L
. . . . N O
. . W X Y P Q . . .
. . V U T S R . . .
.
.
.
.

Y is blocked on all four sides, so there’s no place to put Z.

10. Modify Programming Project 8 from Chapter 5 so that the departure times are stored in an
array and the arrival times are stored in a second array. (The times are integers, representing
the number of minutes since midnight.) The program will use a loop to search the array of
departure times for the one closest to the time entered by the user.

11. Modify Programming Project 4 from Chapter 7 so that the program labels its output:

Enter phone number: 1-800-COL-LECT
In numeric form: 1-800-265-5328

The program will need to store the phone number (either in its original form or in its
numeric form) in an array of characters until it can be printed. You may assume that the
phone number is no more than 15 characters long.

12. Modify Programming Project 5 from Chapter 7 so that the SCRABBLE values of the letters
are stored in an array. The array will have 26 elements, corresponding to the 26 letters of the
alphabet. For example, element 0 of the array will store 1 (because the SCRABBLE value of
the letter A is 1), element 1 of the array will store 3 (because the SCRABBLE value of the
letter B is 3), and so forth. As each character of the input word is read, the program will use
the array to determine the SCRABBLE value of that character. Use an array initializer to set
up the array.

13. Modify Programming Project 11 from Chapter 7 so that the program labels its output:

Enter a first and last name: Lloyd Fosdick
You entered the name: Fosdick, L.

The program will need to store the last name (but not the first name) in an array of characters
until it can be printed. You may assume that the last name is no more than 20 characters long.

14. Write a program that reverses the words in a sentence:

Enter a sentence: you can cage a swallow can't you?
Reversal of sentence: you can't swallow a cage can you?

Hint: Use a loop to read the characters one by one and store them in a one-dimensional
char array. Have the loop stop at a period, question mark, or exclamation point (the “termi-
nating character”), which is saved in a separate char variable. Then use a second loop to
search backward through the array for the beginning of the last word. Print the last word,
then search backward for the next-to-last word. Repeat until the beginning of the array is
reached. Finally, print the terminating character.

15. One of the oldest known encryption techniques is the Caesar cipher, attributed to Julius Cae-
sar. It involves replacing each letter in a message with another letter that is a fixed number of

C8.FM Page 180 Tuesday, February 12, 2008 4:13 PM

Programming Projects 181

positions later in the alphabet. (If the replacement would go past the letter Z, the cipher
“wraps around” to the beginning of the alphabet. For example, if each letter is replaced by
the letter two positions after it, then Y would be replaced by A, and Z would be replaced by
B.) Write a program that encrypts a message using a Caesar cipher. The user will enter the
message to be encrypted and the shift amount (the number of positions by which letters
should be shifted):

Enter message to be encrypted: Go ahead, make my day.
Enter shift amount (1-25): 3
Encrypted message: Jr dkhdg, pdnh pb gdb.

Notice that the program can decrypt a message if the user enters 26 minus the original key:

Enter message to be encrypted: Jr dkhdg, pdnh pb gdb.
Enter shift amount (1-25): 23
Encrypted message: Go ahead, make my day.

You may assume that the message does not exceed 80 characters. Characters other than let-
ters should be left unchanged. Lower-case letters remain lower-case when encrypted, and
upper-case letters remain upper-case. Hint: To handle the wrap-around problem, use the
expression ((ch - 'A') + n) % 26 + 'A' to calculate the encrypted version of an upper-
case letter, where ch stores the letter and n stores the shift amount. (You’ll need a similar
expression for lower-case letters.)

16. Write a program that tests whether two words are anagrams (permutations of the same let-
ters):

Enter first word: smartest
Enter second word: mattress
The words are anagrams.

Enter first word: dumbest
Enter second word: stumble
The words are not anagrams.

Write a loop that reads the first word, character by character, using an array of 26 integers to
keep track of how many times each letter has been seen. (For example, after the word smart-
est has been read, the array should contain the values 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 2 2 0
0 0 0 0 0, reflecting the fact that smartest contains one a, one e, one m, one r, two s’s and
two t’s.) Use another loop to read the second word, except this time decrementing the corre-
sponding array element as each letter is read. Both loops should ignore any characters that
aren’t letters, and both should treat upper-case letters in the same way as lower-case letters.
After the second word has been read, use a third loop to check whether all the elements in
the array are zero. If so, the words are anagrams. Hint: You may wish to use functions from
<ctype.h>, such as isalpha and tolower.

17. Write a program that prints an n × n magic square (a square arrangement of the numbers
1, 2, …, n2 in which the sums of the rows, columns, and diagonals are all the same). The
user will specify the value of n:

This program creates a magic square of a specified size.
The size must be an odd number between 1 and 99.
Enter size of magic square: 5
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

C8.FM Page 181 Tuesday, February 12, 2008 4:13 PM

182 Chapter 8 Arrays

Store the magic square in a two-dimensional array. Start by placing the number 1 in the mid-
dle of row 0. Place each of the remaining numbers 2, 3, …, n2 by moving up one row and
over one column. Any attempt to go outside the bounds of the array should “wrap around”
to the opposite side of the array. For example, instead of storing the next number in row –1,
we would store it in row n – 1 (the last row). Instead of storing the next number in column n,
we would store it in column 0. If a particular array element is already occupied, put the
number directly below the previously stored number. If your compiler supports variable-
length arrays, declare the array to have n rows and n columns. If not, declare the array to
have 99 rows and 99 columns.

C8.FM Page 182 Tuesday, February 12, 2008 4:13 PM

183

9 Functions

If you have a procedure with ten
parameters, you probably missed some.

We saw in Chapter 2 that a function is simply a series of statements that have been
grouped together and given a name. Although the term “function” comes from
mathematics, C functions don’t always resemble math functions. In C, a function
doesn’t necessarily have arguments, nor does it necessarily compute a value. (In
some programming languages, a “function” returns a value, whereas a “procedure”
doesn’t. C lacks this distinction.)

Functions are the building blocks of C programs. Each function is essentially a
small program, with its own declarations and statements. Using functions, we can
divide a program into small pieces that are easier for us—and others—to under-
stand and modify. Functions can take some of the tedium out of programming by
allowing us to avoid duplicating code that’s used more than once. Moreover, func-
tions are reusable: we can take a function that was originally part of one program
and use it in others.

Our programs so far have consisted of just the main function. In this chapter,
we’ll see how to write functions other than main, and we’ll learn more about
main itself. Section 9.1 shows how to define and call functions. Section 9.2 then
discusses function declarations and how they differ from function definitions.
Next, Section 9.3 examines how arguments are passed to functions. The remainder
of the chapter covers the return statement (Section 9.4), the related issue of pro-
gram termination (Section 9.5), and recursion (Section 9.6).

9.1 Defining and Calling Functions

Before we go over the formal rules for defining a function, let’s look at three sim-
ple programs that define functions.

C9.FM Page 183 Saturday, February 16, 2008 5:26 PM

184 Chapter 9 Functions

PROGRAM Computing Averages

Suppose we often need to compute the average of two double values. The C
library doesn’t have an “average” function, but we can easily define our own.
Here’s what it would look like:

double average(double a, double b)
{
 return (a + b) / 2;
}

The word double at the beginning is average’s return type: the type of data
that the function returns each time it’s called. The identifiers a and b (the func-
tion’s parameters) represent the two numbers that will be supplied when aver-
age is called. Each parameter must have a type (just like every variable has a
type); in this example, both a and b have type double. (It may look odd, but the
word double must appear twice, once for a and once for b.) A function parame-
ter is essentially a variable whose initial value will be supplied later, when the
function is called.

Every function has an executable part, called the body, which is enclosed in
braces. The body of average consists of a single return statement. Executing
this statement causes the function to “return” to the place from which it was called;
the value of (a + b) / 2 will be the value returned by the function.

To call a function, we write the function name, followed by a list of argu-
ments. For example, average(x, y) is a call of the average function. Argu-
ments are used to supply information to a function; in this case, average needs
to know which two numbers to average. The effect of the call average(x, y) is
to copy the values of x and y into the parameters a and b, and then execute the
body of average. An argument doesn’t have to be a variable; any expression of a
compatible type will do, allowing us to write average(5.1, 8.9) or aver-
age(x/2, y/3).

We’ll put the call of average in the place where we need to use the return
value. For example, we could write

printf("Average: %g\n", average(x, y));

to compute the average of x and y and then print it. This statement has the follow-
ing effect:

1. The average function is called with x and y as arguments.
2. x and y are copied into a and b.
3. average executes its return statement, returning the average of a and b.
4. printf prints the value that average returns. (The return value of

average becomes one of printf’s arguments.)

Note that the return value of average isn’t saved anywhere; the program prints it
and then discards it. If we had needed the return value later in the program, we
could have captured it in a variable:

Q&A

C9.FM Page 184 Saturday, February 16, 2008 5:26 PM

9.1 Defining and Calling Functions 185

avg = average(x, y);

This statement calls average, then saves its return value in the variable avg.
Now, let’s use the average function in a complete program. The following

program reads three numbers and computes their averages, one pair at a time:

 Enter three numbers: 3.5 9.6 10.2
 Average of 3.5 and 9.6: 6.55
 Average of 9.6 and 10.2: 9.9
 Average of 3.5 and 10.2: 6.85

Among other things, this program shows that a function can be called as often as
we need.

average.c /* Computes pairwise averages of three numbers */

#include <stdio.h>

double average(double a, double b)
{
 return (a + b) / 2;
}

int main(void)
{
 double x, y, z;

 printf("Enter three numbers: ");
 scanf("%lf%lf%lf", &x, &y, &z);
 printf("Average of %g and %g: %g\n", x, y, average(x, y));
 printf("Average of %g and %g: %g\n", y, z, average(y, z));
 printf("Average of %g and %g: %g\n", x, z, average(x, z));

 return 0;
}

Notice that I’ve put the definition of average before main. We’ll see in Section
9.2 that putting average after main causes problems.

PROGRAM Printing a Countdown

Not every function returns a value. For example, a function whose job is to pro-
duce output may not need to return anything. To indicate that a function has no
return value, we specify that its return type is void. (void is a type with no val-
ues.) Consider the following function, which prints the message T minus n and
counting, where n is supplied when the function is called:

void print_count(int n)
{
 printf("T minus %d and counting\n", n);
}

C9.FM Page 185 Saturday, February 16, 2008 5:26 PM

186 Chapter 9 Functions

print_count has one parameter, n, of type int. It returns nothing, so I’ve
specified void as the return type and omitted the return statement. Since
print_count doesn’t return a value, we can’t call it in the same way we call
average. Instead, a call of print_count must appear in a statement by itself:

print_count(i);

Here’s a program that calls print_count 10 times inside a loop:

countdown.c /* Prints a countdown */

#include <stdio.h>

void print_count(int n)
{
 printf("T minus %d and counting\n", n);
}

int main(void)
{
 int i;

 for (i = 10; i > 0; --i)
 print_count(i);

 return 0;
}

Initially, i has the value 10. When print_count is called for the first time,
i is copied into n, so that n takes on the value 10 as well. As a result, the first call
of print_count will print

T minus 10 and counting

print_count then returns to the point at which it was called, which happens to
be the body of a for statement. The for statement resumes where it left off, dec-
rementing i to 9 and testing whether it’s greater than 0. It is, so print_count is
called again, this time printing

T minus 9 and counting

Each time print_count is called, i is different, so print_count will print
10 different messages.

PROGRAM Printing a Pun (Revisited)

Some functions have no parameters at all. Consider print_pun, which prints a
bad pun each time it’s called:

void print_pun(void)
{
 printf("To C, or not to C: that is the question.\n");
}

C9.FM Page 186 Saturday, February 16, 2008 5:26 PM

9.1 Defining and Calling Functions 187

The word void in parentheses indicates that print_pun has no arguments.
(This time, we’re using void as a placeholder that means “nothing goes here.”)

To call a function with no arguments, we write the function’s name, followed
by parentheses:

print_pun();

The parentheses must be present, even though there are no arguments.
Here’s a tiny program that tests the print_pun function:

pun2.c /* Prints a bad pun */

#include <stdio.h>

void print_pun(void)
{
 printf("To C, or not to C: that is the question.\n");
}

int main(void)
{
 print_pun();
 return 0;
}

The execution of this program begins with the first statement in main, which
happens to be a call of print_pun. When print_pun begins to execute, it in
turn calls printf to display a string. When printf returns, print_pun re-
turns to main.

Function Definitions

Now that we’ve seen several examples, let’s look at the general form of a function
definition:

The return type of a function is the type of value that the function returns. The
following rules govern the return type:

� Functions may not return arrays, but there are no other restrictions on the
return type.

� Specifying that the return type is void indicates that the function doesn’t
return a value.

function definition return-type function-name (parameters)
{
 declarations
 statements
}

C9.FM Page 187 Saturday, February 16, 2008 5:26 PM

188 Chapter 9 Functions

� If the return type is omitted in C89, the function is presumed to return a value
of type int. In C99, it’s illegal to omit the return type of a function.

As a matter of style, some programmers put the return type above the function
name:

double
average(double a, double b)
{
 return (a + b) / 2;
}

Putting the return type on a separate line is especially useful if the return type is
lengthy, like unsigned long int.

After the function name comes a list of parameters. Each parameter is pre-
ceded by a specification of its type; parameters are separated by commas. If the
function has no parameters, the word void should appear between the parenthe-
ses. Note: A separate type must be specified for each parameter, even when several
parameters have the same type:

double average(double a, b) /*** WRONG ***/
{
 return (a + b) / 2;
}

The body of a function may include both declarations and statements. For
example, the average function could be written

double average(double a, double b)
{
 double sum; /* declaration */

 sum = a + b; /* statement */
 return sum / 2; /* statement */
}

Variables declared in the body of a function belong exclusively to that function;
they can’t be examined or modified by other functions. In C89, variable declara-
tions must come first, before all statements in the body of a function. In C99, vari-
able declarations and statements can be mixed, as long as each variable is declared
prior to the first statement that uses the variable. (Some pre-C99 compilers also
allow mixing of declarations and statements.)

The body of a function whose return type is void (which I’ll call a “void
function”) can be empty:

void print_pun(void)
{
}

Leaving the body empty may make sense during program development; we can
leave room for the function without taking the time to complete it, then come back
later and write the body.

C99

Q&A

C99

C9.FM Page 188 Saturday, February 16, 2008 5:26 PM

9.1 Defining and Calling Functions 189

Function Calls

A function call consists of a function name followed by a list of arguments,
enclosed in parentheses:

average(x, y)
print_count(i)
print_pun()

If the parentheses are missing, the function won’t get called:

print_pun; /*** WRONG ***/

The result is a legal (albeit meaningless) expression statement that looks correct,
but has no effect. Some compilers issue a warning such as “statement with no
effect.”

A call of a void function is always followed by a semicolon to turn it into a
statement:

print_count(i);
print_pun();

A call of a non-void function, on the other hand, produces a value that can be
stored in a variable, tested, printed, or used in some other way:

avg = average(x, y);
if (average(x, y) > 0)
 printf("Average is positive\n");
printf("The average is %g\n", average(x, y));

The value returned by a non-void function can always be discarded if it’s not
needed:

average(x, y); /* discards return value */

This call of average is an example of an expression statement: a statement that
evaluates an expression but then discards the result.

Ignoring the return value of average is an odd thing to do, but for some
functions it makes sense. The printf function, for example, returns the number
of characters that it prints. After the following call, num_chars will have the
value 9:

num_chars = printf("Hi, Mom!\n");

Since we’re probably not interested in the number of characters printed, we’ll nor-
mally discard printf’s return value:

printf("Hi, Mom!\n"); /* discards return value */

To make it clear that we’re deliberately discarding the return value of a func-
tion, C allows us to put (void) before the call:

Q&A

expression statements ➤4.5

C9.FM Page 189 Saturday, February 16, 2008 5:26 PM

190 Chapter 9 Functions

(void) printf("Hi, Mom!\n");

What we’re doing is casting (converting) the return value of printf to type
void. (In C, “casting to void” is a polite way of saying “throwing away.”) Using
(void) makes it clear to others that you deliberately discarded the return value,
not just forgot that there was one. Unfortunately, there are a great many functions
in the C library whose values are routinely ignored; using (void) when calling
them all can get tiresome, so I haven’t done so in this book.

PROGRAM Testing Whether a Number Is Prime

To see how functions can make programs easier to understand, let’s write a pro-
gram that tests whether a number is prime. The program will prompt the user to
enter a number, then respond with a message indicating whether or not the number
is prime:

Enter a number: 34
Not prime

Instead of putting the prime-testing details in main, we’ll define a separate func-
tion that returns true if its parameter is a prime number and false if it isn’t.
When given a number n, the is_prime function will divide n by each of the
numbers between 2 and the square root of n; if the remainder is ever 0, we know
that n isn’t prime.

prime.c /* Tests whether a number is prime */

#include <stdbool.h> /* C99 only */
#include <stdio.h>

bool is_prime(int n)
{
 int divisor;

 if (n <= 1)
 return false;
 for (divisor = 2; divisor * divisor <= n; divisor++)
 if (n % divisor == 0)
 return false;
 return true;
}

int main(void)
{
 int n;

 printf("Enter a number: ");
 scanf("%d", &n);
 if (is_prime(n))
 printf("Prime\n");
 else
 printf("Not prime\n");

casting ➤7.4

C9.FM Page 190 Saturday, February 16, 2008 5:26 PM

9.2 Function Declarations 191

 return 0;
}

Notice that main contains a variable named n even though is_prime’s
parameter is also named n. In general, a function may declare a variable with the
same name as a variable in another function. The two variables represent different
locations in memory, so assigning a new value to one variable doesn’t change the
other. (This property extends to parameters as well.) Section 10.1 discusses this
point in more detail.

As is_prime demonstrates, a function may have more than one return
statement. However, we can execute just one of these statements during a given
call of the function, because reaching a return statement causes the function to
return to where it was called. We’ll learn more about the return statement in
Section 9.4.

9.2 Function Declarations

In the programs in Section 9.1, the definition of each function was always placed
above the point at which it was called. In fact, C doesn’t require that the definition
of a function precede its calls. Suppose that we rearrange the average.c pro-
gram by putting the definition of average after the definition of main:

#include <stdio.h>

int main(void)
{
 double x, y, z;

 printf("Enter three numbers: ");
 scanf("%lf%lf%lf", &x, &y, &z);
 printf("Average of %g and %g: %g\n", x, y, average(x, y));
 printf("Average of %g and %g: %g\n", y, z, average(y, z));
 printf("Average of %g and %g: %g\n", x, z, average(x, z));

 return 0;
}

double average(double a, double b)
{
 return (a + b) / 2;
}

When the compiler encounters the first call of average in main, it has no
information about average: it doesn’t know how many parameters average
has, what the types of these parameters are, or what kind of value average
returns. Instead of producing an error message, though, the compiler assumes that
average returns an int value (recall from Section 9.1 that the return type of a

C9.FM Page 191 Saturday, February 16, 2008 5:26 PM

192 Chapter 9 Functions

function is int by default). We say that the compiler has created an implicit dec-
laration of the function. The compiler is unable to check that we’re passing
average the right number of arguments and that the arguments have the proper
type. Instead, it performs the default argument promotions and hopes for the best.
When it encounters the definition of average later in the program, the compiler
notices that the function’s return type is actually double, not int, and so we
get an error message.

One way to avoid the problem of call-before-definition is to arrange the pro-
gram so that the definition of each function precedes all its calls. Unfortunately,
such an arrangement doesn’t always exist, and even when it does, it may make the
program harder to understand by putting its function definitions in an unnatural
order.

Fortunately, C offers a better solution: declare each function before calling it.
A function declaration provides the compiler with a brief glimpse at a function
whose full definition will appear later. A function declaration resembles the first
line of a function definition with a semicolon added at the end:

Needless to say, the declaration of a function must be consistent with the function’s
definition.

Here’s how our program would look with a declaration of average added:

#include <stdio.h>

double average(double a, double b); /* DECLARATION */

int main(void)
{
 double x, y, z;

 printf("Enter three numbers: ");
 scanf("%lf%lf%lf", &x, &y, &z);
 printf("Average of %g and %g: %g\n", x, y, average(x, y));
 printf("Average of %g and %g: %g\n", y, z, average(y, z));
 printf("Average of %g and %g: %g\n", x, z, average(x, z));

 return 0;
}

double average(double a, double b) /* DEFINITION */
{
 return (a + b) / 2;
}

Function declarations of the kind we’ve been discussing are known as func-
tion prototypes to distinguish them from an older style of function declaration in
which the parentheses are left empty. A prototype provides a complete description

default argument promotions ➤9.3

function declaration return-type function-name (parameters) ;

Q&A

Q&A

C9.FM Page 192 Saturday, February 16, 2008 5:26 PM

9.3 Arguments 193

of how to call a function: how many arguments to supply, what their types should
be, and what type of result will be returned.

Incidentally, a function prototype doesn’t have to specify the names of the
function’s parameters, as long as their types are present:

double average(double, double);

It’s usually best not to omit parameter names, since they help document the pur-
pose of each parameter and remind the programmer of the order in which argu-
ments must appear when the function is called. However, there are legitimate
reasons for omitting parameter names, and some programmers prefer to do so.

C99 has adopted the rule that either a declaration or a definition of a function
must be present prior to any call of the function. Calling a function for which the
compiler has not yet seen a declaration or definition is an error.

9.3 Arguments

Let’s review the difference between a parameter and an argument. Parameters
appear in function definitions; they’re dummy names that represent values to be
supplied when the function is called. Arguments are expressions that appear in
function calls. When the distinction between argument and parameter isn’t impor-
tant, I’ll sometimes use argument to mean either.

In C, arguments are passed by value: when a function is called, each argument
is evaluated and its value assigned to the corresponding parameter. Since the
parameter contains a copy of the argument’s value, any changes made to the
parameter during the execution of the function don’t affect the argument. In effect,
each parameter behaves like a variable that’s been initialized to the value of the
matching argument.

The fact that arguments are passed by value has both advantages and disad-
vantages. Since a parameter can be modified without affecting the corresponding
argument, we can use parameters as variables within the function, thereby reduc-
ing the number of genuine variables needed. Consider the following function,
which raises a number x to a power n:

int power(int x, int n)
{
 int i, result = 1;

 for (i = 1; i <= n; i++)
 result = result * x;

 return result;
}

Since n is a copy of the original exponent, we can modify it inside the function,
thus removing the need for i:

Q&A

C99

C9.FM Page 193 Saturday, February 16, 2008 5:26 PM

194 Chapter 9 Functions

int power(int x, int n)
{
 int result = 1;

 while (n-- > 0)
 result = result * x;

 return result;
}

Unfortunately, C’s requirement that arguments be passed by value makes it
difficult to write certain kinds of functions. For example, suppose that we need a
function that will decompose a double value into an integer part and a fractional
part. Since a function can’t return two numbers, we might try passing a pair of
variables to the function and having it modify them:

void decompose(double x, long int_part, double frac_part)
{
 int_part = (long) x; /* drops the fractional part of x */
 frac_part = x - int_part;
}

Suppose that we call the function in the following way:

decompose(3.14159, i, d);

At the beginning of the call, 3.14159 is copied into x, i’s value is copied into
int_part, and d’s value is copied into frac_part. The statements inside
decompose then assign 3 to int_part and .14159 to frac_part, and the
function returns. Unfortunately, i and d weren’t affected by the assignments to
int_part and frac_part, so they have the same values after the call as they
did before the call. With a little extra effort, decompose can be made to work, as
we’ll see in Section 11.4. However, we’ll need to cover more of C’s features first.

Argument Conversions

C allows function calls in which the types of the arguments don’t match the types
of the parameters. The rules governing how the arguments are converted depend on
whether or not the compiler has seen a prototype for the function (or the function’s
full definition) prior to the call:

� The compiler has encountered a prototype prior to the call. The value of
each argument is implicitly converted to the type of the corresponding param-
eter as if by assignment. For example, if an int argument is passed to a func-
tion that was expecting a double, the argument is converted to double
automatically.

� The compiler has not encountered a prototype prior to the call. The compiler
performs the default argument promotions: (1) float arguments are con-
verted to double. (2) The integral promotions are performed, causing char

C9.FM Page 194 Saturday, February 16, 2008 5:26 PM

9.3 Arguments 195

and short arguments to be converted to int. (In C99, the integer promo-
tions are performed.)

Relying on the default argument promotions is dangerous. Consider the following
program:

#include <stdio.h>

int main(void)
{
 double x = 3.0;
 printf("Square: %d\n", square(x));

 return 0;
}

int square(int n)
{
 return n * n;
}

At the time square is called, the compiler hasn’t seen a prototype yet, so it
doesn’t know that square expects an argument of type int. Instead, the com-
piler performs the default argument promotions on x, with no effect. Since it’s
expecting an argument of type int but has been given a double value instead,
the effect of calling square is undefined. The problem can be fixed by casting
square’s argument to the proper type:

printf("Square: %d\n", square((int) x));

Of course, a much better solution is to provide a prototype for square before
calling it. In C99, calling square without first providing a declaration or defini-
tion of the function is an error.

Array Arguments

Arrays are often used as arguments. When a function parameter is a one-dimen-
sional array, the length of the array can be (and is normally) left unspecified:

int f(int a[]) /* no length specified */
{
 …
}

The argument can be any one-dimensional array whose elements are of the proper
type. There’s just one problem: how will f know how long the array is? Unfortu-
nately, C doesn’t provide any easy way for a function to determine the length of an
array passed to it. Instead, we’ll have to supply the length—if the function needs
it—as an additional argument.

C99

C99

Q&A

C9.FM Page 195 Saturday, February 16, 2008 5:26 PM

196 Chapter 9 Functions

Although we can use the sizeof operator to help determine the length of an
array variable, it doesn’t give the correct answer for an array parameter:

int f(int a[])
{
 int len = sizeof(a) / sizeof(a[0]);
 /*** WRONG: not the number of elements in a ***/
 …
}

Section 12.3 explains why.

The following function illustrates the use of one-dimensional array arguments.
When given an array a of int values, sum_array returns the sum of the ele-
ments in a. Since sum_array needs to know the length of a, we must supply it
as a second argument.

int sum_array(int a[], int n)
{
 int i, sum = 0;

 for (i = 0; i < n; i++)
 sum += a[i];

 return sum;
}

The prototype for sum_array has the following appearance:

int sum_array(int a[], int n);

As usual, we can omit the parameter names if we wish:

int sum_array(int [], int);

When sum_array is called, the first argument will be the name of an array,
and the second will be its length. For example:

#define LEN 100

int main(void)
{
 int b[LEN], total;
 …
 total = sum_array(b, LEN);
 …
}

Notice that we don’t put brackets after an array name when passing it to a function:

total = sum_array(b[], LEN); /*** WRONG ***/

C9.FM Page 196 Saturday, February 16, 2008 5:26 PM

9.3 Arguments 197

An important point about array arguments: A function has no way to check
that we’ve passed it the correct array length. We can exploit this fact by telling the
function that the array is smaller than it really is. Suppose that we’ve only stored
50 numbers in the b array, even though it can hold 100. We can sum just the first
50 elements by writing

total = sum_array(b, 50); /* sums first 50 elements */

sum_array will ignore the other 50 elements. (Indeed, it won’t know that they
even exist!)

Be careful not to tell a function that an array argument is larger than it really is:

total = sum_array(b, 150); /*** WRONG ***/

In this example, sum_array will go past the end of the array, causing undefined
behavior.

Another important thing to know is that a function is allowed to change the
elements of an array parameter, and the change is reflected in the corresponding
argument. For example, the following function modifies an array by storing zero
into each of its elements:

void store_zeros(int a[], int n)
{
 int i;

 for (i = 0; i < n; i++)
 a[i] = 0;
}

The call

store_zeros(b, 100);

will store zero into the first 100 elements of the array b. This ability to modify the
elements of an array argument may seem to contradict the fact that C passes argu-
ments by value. In fact, there’s no contradiction, but I won’t be able to explain why
until Section 12.3.

If a parameter is a multidimensional array, only the length of the first dimen-
sion may be omitted when the parameter is declared. For example, if we revise the
sum_array function so that a is a two-dimensional array, we must specify the
number of columns in a, although we don’t have to indicate the number of rows:

#define LEN 10

int sum_two_dimensional_array(int a[][LEN], int n)
{
 int i, j, sum = 0;

Q&A

C9.FM Page 197 Saturday, February 16, 2008 5:26 PM

198 Chapter 9 Functions

 for (i = 0; i < n; i++)
 for (j = 0; j < LEN; j++)
 sum += a[i][j];

 return sum;
}

Not being able to pass multidimensional arrays with an arbitrary number of col-
umns can be a nuisance. Fortunately, we can often work around this difficulty by
using arrays of pointers. C99’s variable-length array parameters provide an even
better solution to the problem.

Variable-Length Array Parameters

C99 adds several new twists to array arguments. The first has to do with variable-
length arrays (VLAs), a feature of C99 that allows the length of an array to be
specified using a non-constant expression. Variable-length arrays can also be
parameters, as it turns out.

Consider the sum_array function discussed earlier in this section. Here’s
the definition of sum_array, with the body omitted:

int sum_array(int a[], int n)
{
 …
}

As it stands now, there’s no direct link between n and the length of the array a.
Although the function body treats n as a’s length, the actual length of the array
could in fact be larger than n (or smaller, in which case the function won’t work
correctly).

Using a variable-length array parameter, we can explicitly state that a’s length
is n:

int sum_array(int n, int a[n])
{
 …
}

The value of the first parameter (n) specifies the length of the second parameter
(a). Note that the order of the parameters has been switched; order is important
when variable-length array parameters are used.

The following version of sum_array is illegal:

int sum_array(int a[n], int n) /*** WRONG ***/
{
 …
}

The compiler will issue an error message at int a[n], because it hasn’t yet seen n.

arrays of pointers ➤13.7

C99

variable-length arrays ➤8.3

C9.FM Page 198 Saturday, February 16, 2008 5:26 PM

9.3 Arguments 199

There are several ways to write the prototype for our new version of
sum_array. One possibility is to make it look exactly like the function defini-
tion:

int sum_array(int n, int a[n]); /* Version 1 */

Another possibility is to replace the array length by an asterisk (*):

int sum_array(int n, int a[*]); /* Version 2a */

The reason for using the * notation is that parameter names are optional in func-
tion declarations. If the name of the first parameter is omitted, it wouldn’t be possi-
ble to specify that the length of the array is n, but the * provides a clue that the
length of the array is related to parameters that come earlier in the list:

int sum_array(int, int [*]); /* Version 2b */

It’s also legal to leave the brackets empty, as we normally do when declaring an
array parameter:

int sum_array(int n, int a[]); /* Version 3a */
int sum_array(int, int []); /* Version 3b */

Leaving the brackets empty isn’t a good choice, because it doesn’t expose the rela-
tionship between n and a.

In general, the length of a variable-length array parameter can be any expres-
sion. For example, suppose that we were to write a function that concatenates two
arrays a and b by copying the elements of a, followed by the elements of b, into a
third array named c:

int concatenate(int m, int n, int a[m], int b[n], int c[m+n])
{
 …
}

The length of c is the sum of the lengths of a and b. The expression used to spec-
ify the length of c involves two other parameters, but in general it could refer to
variables outside the function or even call other functions.

Variable-length array parameters with a single dimension—as in all our exam-
ples so far—have limited usefulness. They make a function declaration or defini-
tion more descriptive by stating the desired length of an array argument. However,
no additional error-checking is performed; it’s still possible for an array argument
to be too long or too short.

It turns out that variable-length array parameters are most useful for multidi-
mensional arrays. Earlier in this section, we tried to write a function that sums the
elements in a two-dimensional array. Our original function was limited to arrays
with a fixed number of columns. If we use a variable-length array parameter, we
can generalize the function to any number of columns:

C9.FM Page 199 Saturday, February 16, 2008 5:26 PM

200 Chapter 9 Functions

int sum_two_dimensional_array(int n, int m, int a[n][m])
{
 int i, j, sum = 0;

 for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
 sum += a[i][j];

 return sum;
}

Prototypes for this function include the following:

int sum_two_dimensional_array(int n, int m, int a[n][m]);
int sum_two_dimensional_array(int n, int m, int a[*][*]);
int sum_two_dimensional_array(int n, int m, int a[][m]);
int sum_two_dimensional_array(int n, int m, int a[][*]);

Using static in Array Parameter Declarations

C99 allows the use of the keyword static in the declaration of array parameters.
(The keyword itself existed before C99. Section 18.2 discusses its traditional uses.)

In the following example, putting static in front of the number 3 indicates
that the length of a is guaranteed to be at least 3:

int sum_array(int a[static 3], int n)
{
 …
}

Using static in this way has no effect on the behavior of the program. The pres-
ence of static is merely a “hint” that may allow a C compiler to generate faster
instructions for accessing the array. (If the compiler knows that an array will
always have a certain minimum length, it can arrange to “prefetch” these elements
from memory when the function is called, before the elements are actually needed
by statements within the function.)

One last note about static: If an array parameter has more than one dimen-
sion, static can be used only in the first dimension (for example, when specify-
ing the number of rows in a two-dimensional array).

Compound Literals

Let’s return to the original sum_array function one last time. When
sum_array is called, the first argument is usually the name of an array (the one
whose elements are to be summed). For example, we might call sum_array in
the following way:

int b[] = {3, 0, 3, 4, 1};
total = sum_array(b, 5);

C99

C99

C9.FM Page 200 Saturday, February 16, 2008 5:26 PM

9.4 The return Statement 201

The only problem with this arrangement is that b must be declared as a variable
and then initialized prior to the call. If b isn’t needed for any other purpose, it can
be mildly annoying to create it solely for the purpose of calling sum_array.

In C99, we can avoid this annoyance by using a compound literal: an
unnamed array that’s created “on the fly” by simply specifying which elements it
contains. The following call of sum_array has a compound literal (shown in
bold) as its first argument:

total = sum_array((int []){3, 0, 3, 4, 1}, 5);

In this example, the compound literal creates an array containing the five integers
3, 0, 3, 4, and 1. We didn’t specify the length of the array, so it’s determined by the
number of elements in the literal. We also have the option of specifying a length
explicitly: (int [4]){1, 9, 2, 1} is equivalent to (int []){1, 9, 2, 1}.

In general, a compound literal consists of a type name within parentheses, fol-
lowed by a set of values enclosed by braces. A compound literal resembles a cast
applied to an initializer. In fact, compound literals and initializers obey the same
rules. A compound literal may contain designators, just like a designated initial-
izer, and it may fail to provide full initialization (in which case any uninitialized
elements default to zero). For example, the literal (int [10]){8, 6} has 10
elements; the first two have the values 8 and 6, and the remaining elements have
the value 0.

Compound literals created inside a function may contain arbitrary expres-
sions, not just constants. For example, we could write

total = sum_array((int []){2 * i, i + j, j * k}, 3);

where i, j, and k are variables. This aspect of compound literals greatly enhances
their usefulness.

A compound literal is an lvalue, so the values of its elements can be changed.
If desired, a compound literal can be made “read-only” by adding the word const
to its type, as in (const int []){5, 4}.

9.4 The return Statement

A non-void function must use the return statement to specify what value it will
return. The return statement has the form

The expression is often just a constant or variable:

return 0;
return status;

designated initializers ➤8.1

lvalues ➤4.2

return statement return expression ;

C9.FM Page 201 Saturday, February 16, 2008 5:26 PM

202 Chapter 9 Functions

More complex expressions are possible. For example, it’s not unusual to see the
conditional operator used in a return expression:

return n >= 0 ? n : 0;

When this statement is executed, the expression n >= 0 ? n : 0 is evaluated first.
The statement returns the value of n if it’s not negative; otherwise, it returns 0.

If the type of the expression in a return statement doesn’t match the func-
tion’s return type, the expression will be implicitly converted to the return type. For
example, if a function is declared to return an int, but the return statement
contains a double expression, the value of the expression is converted to int.

return statements may appear in functions whose return type is void, pro-
vided that no expression is given:

return; /* return in a void function */

Putting an expression in such a return statement will get you a compile-time
error. In the following example, the return statement causes the function to
return immediately when given a negative argument:

void print_int(int i)
{
 if (i < 0)
 return;
 printf("%d", i);
}

If i is less than 0, print_int will return without calling printf.
A return statement may appear at the end of a void function:

void print_pun(void)
{
 printf("To C, or not to C: that is the question.\n");
 return; /* OK, but not needed */
}

Using return is unnecessary, though, since the function will return automatically
after its last statement has been executed.

If a non-void function reaches the end of its body—that is, it fails to execute
a return statement—the behavior of the program is undefined if it attempts to
use the value returned by the function. Some compilers will issue a warning such
as “control reaches end of non-void function” if they detect the possibility of a
non-void function “falling off” the end of its body.

9.5 Program Termination

Since main is a function, it must have a return type. Normally, the return type of
main is int, which is why the programs we’ve seen so far have defined main in
the following way:

conditional operator ➤5.2

Q&A

C9.FM Page 202 Saturday, February 16, 2008 5:26 PM

9.5 Program Termination 203

int main(void)
{
 …
}

Older C programs often omit main’s return type, taking advantage of the fact that
it traditionally defaults to int:

main()
{
 …
}

Omitting the return type of a function isn’t legal in C99, so it’s best to avoid this
practice. Omitting the word void in main’s parameter list remains legal, but—as
a matter of style—it’s best to be explicit about the fact that main has no parame-
ters. (We’ll see later that main sometimes does have two parameters, usually
named argc and argv.)

The value returned by main is a status code that—in some operating sys-
tems—can be tested when the program terminates. main should return 0 if the
program terminates normally; to indicate abnormal termination, main should
return a value other than 0. (Actually, there’s no rule to prevent us from using the
return value for other purposes.) It’s good practice to make sure that every C pro-
gram returns a status code, even if there are no plans to use it, since someone run-
ning the program later may decide to test it.

The exit Function

Executing a return statement in main is one way to terminate a program.
Another is calling the exit function, which belongs to <stdlib.h>. The argu-
ment passed to exit has the same meaning as main’s return value: both indicate
the program’s status at termination. To indicate normal termination, we’d pass 0:

exit(0); /* normal termination */

Since 0 is a bit cryptic, C allows us to pass EXIT_SUCCESS instead (the effect is
the same):

exit(EXIT_SUCCESS); /* normal termination */

Passing EXIT_FAILURE indicates abnormal termination:

exit(EXIT_FAILURE); /* abnormal termination */

EXIT_SUCCESS and EXIT_FAILURE are macros defined in <stdlib.h>.
The values of EXIT_SUCCESS and EXIT_FAILURE are implementation-
defined; typical values are 0 and 1, respectively.

As methods of terminating a program, return and exit are closely related.
In fact, the statement

return expression;

C99

argc and argv ➤13.7

Q&A

<stdlib.h> header ➤26.2

C9.FM Page 203 Saturday, February 16, 2008 5:26 PM

204 Chapter 9 Functions

in main is equivalent to

exit(expression);

The difference between return and exit is that exit causes program termina-
tion regardless of which function calls it. The return statement causes program
termination only when it appears in the main function. Some programmers use
exit exclusively to make it easier to locate all exit points in a program.

9.6 Recursion

A function is recursive if it calls itself. For example, the following function com-
putes n! recursively, using the formula n! = n × (n – 1)!:

int fact(int n)
{
 if (n <= 1)
 return 1;
 else
 return n * fact(n - 1);
}

Some programming languages rely heavily on recursion, while others don’t even
allow it. C falls somewhere in the middle: it allows recursion, but most C program-
mers don’t use it that often.

To see how recursion works, let’s trace the execution of the statement

i = fact(3);

Here’s what happens:

fact(3) finds that 3 is not less than or equal to 1, so it calls
 fact(2), which finds that 2 is not less than or equal to 1, so it calls
 fact(1), which finds that 1 is less than or equal to 1, so it returns 1, causing
 fact(2) to return 2 × 1 = 2, causing
fact(3) to return 3 × 2 = 6.

Notice how the unfinished calls of fact “pile up” until fact is finally passed 1.
At that point, the old calls of fact begin to “unwind” one by one, until the origi-
nal call—fact(3)—finally returns with the answer, 6.

Here’s another example of recursion: a function that computes xn, using the
formula xn = x × xn–1.

int power(int x, int n)
{
 if (n == 0)
 return 1;
 else
 return x * power(x, n - 1);
}

C9.FM Page 204 Saturday, February 16, 2008 5:26 PM

9.6 Recursion 205

The call power(5, 3) would be executed as follows:

power(5, 3) finds that 3 is not equal to 0, so it calls
 power(5, 2), which finds that 2 is not equal to 0, so it calls
 power(5, 1), which finds that 1 is not equal to 0, so it calls
 power(5, 0), which finds that 0 is equal to 0, so it returns 1, causing
 power(5, 1) to return 5 × 1 = 5, causing
 power(5, 2) to return 5 × 5 = 25, causing
power(5, 3) to return 5 × 25 = 125.

Incidentally, we can condense the power function a bit by putting a conditional
expression in the return statement:

int power(int x, int n)
{
 return n == 0 ? 1 : x * power(x, n - 1);
}

Both fact and power are careful to test a “termination condition” as soon as
they’re called. When fact is called, it immediately checks whether its parameter
is less than or equal to 1. When power is called, it first checks whether its second
parameter is equal to 0. All recursive functions need some kind of termination con-
dition in order to prevent infinite recursion.

The Quicksort Algorithm

At this point, you may wonder why we’re bothering with recursion; after all, nei-
ther fact nor power really needs it. Well, you’ve got a point. Neither function
makes much of a case for recursion, because each calls itself just once. Recursion
is much more helpful for sophisticated algorithms that require a function to call
itself two or more times.

In practice, recursion often arises naturally as a result of an algorithm design
technique known as divide-and-conquer, in which a large problem is divided into
smaller pieces that are then tackled by the same algorithm. A classic example of
the divide-and-conquer strategy can be found in the popular sorting algorithm
known as Quicksort. The Quicksort algorithm goes as follows (for simplicity,
we’ll assume that the array being sorted is indexed from 1 to n):

1. Choose an array element e (the “partitioning element”), then rearrange the
array so that elements 1, …, i – 1 are less than or equal to e, element i con-
tains e, and elements i + 1, …, n are greater than or equal to e.

2. Sort elements 1, …, i – 1 by using Quicksort recursively.
3. Sort elements i + 1, …, n by using Quicksort recursively.

After step 1, the element e is in its proper location. Since the elements to the left of
e are all less than or equal to it, they’ll be in their proper places once they’ve been
sorted in step 2; similar reasoning applies to the elements to the right of e.

Step 1 of the Quicksort algorithm is obviously critical. There are various
methods to partition an array, some much better than others. We’ll use a technique

C9.FM Page 205 Saturday, February 16, 2008 5:26 PM

206 Chapter 9 Functions

that’s easy to understand but not particularly efficient. I’ll first describe the parti-
tioning algorithm informally; later, we’ll translate it into C code.

The algorithm relies on two “markers” named low and high, which keep track
of positions within the array. Initially, low points to the first element of the array
and high points to the last element. We start by copying the first element (the parti-
tioning element) into a temporary location elsewhere, leaving a “hole” in the array.
Next, we move high across the array from right to left until it points to an element
that’s smaller than the partitioning element. We then copy the element into the hole
that low points to, which creates a new hole (pointed to by high). We now move
low from left to right, looking for an element that’s larger than the partitioning ele-
ment. When we find one, we copy it into the hole that high points to. The process
repeats, with low and high taking turns, until they meet somewhere in the middle
of the array. At that time, both will point to a hole; all we need do is copy the parti-
tioning element into the hole. The following diagrams illustrate how Quicksort
would sort an array of integers:

low high

12 3 6 18 7 15 10
Let’s start with an array containing seven
elements. low points to the first element;
high points to the last one.

low high

3 6 18 7 15 10 12
The first element, 12, is the partitioning
element. Copying it somewhere else leaves
a hole at the beginning of the array.

low high

3 6 18 7 1510 12
We now compare the element pointed to by
high with 12. Since 10 is smaller than 12,
it’s on the wrong side of the array, so we
move it to the hole and shift low to the
right.

low high

3 6 18 7 1510 12
low points to the number 3, which is less
than 12 and therefore doesn’t need to be
moved. We shift low to the right instead.

low high

3 6 18 7 1510 12
Since 6 is also less than 12, we shift low
again.

low high

3 6 187 1510 12
low now points to 18, which is larger than
12 and therefore out of position. After
moving 18 to the hole, we shift high to the
left.

C9.FM Page 206 Saturday, February 16, 2008 5:26 PM

9.6 Recursion 207

At this point, we’ve accomplished our objective: all elements to the left of the par-
titioning element are less than or equal to 12, and all elements to the right are
greater than or equal to 12. Now that the array has been partitioned, we can use
Quicksort recursively to sort the first four elements of the array (10, 3, 6, and 7)
and the last two (15 and 18).

PROGRAM Quicksort

Let’s develop a recursive function named quicksort that uses the Quicksort
algorithm to sort an array of integers. To test the function, we’ll have main read 10
numbers into an array, call quicksort to sort the array, then print the elements
in the array:

Enter 10 numbers to be sorted: 9 16 47 82 4 66 12 3 25 51
In sorted order: 3 4 9 12 16 25 47 51 66 82

Since the code for partitioning the array is a bit lengthy, I’ll put it in a separate
function named split.

qsort.c /* Sorts an array of integers using Quicksort algorithm */

#include <stdio.h>

#define N 10

void quicksort(int a[], int low, int high);
int split(int a[], int low, int high);

int main(void)
{
 int a[N], i;

 printf("Enter %d numbers to be sorted: ", N);
 for (i = 0; i < N; i++)
 scanf("%d", &a[i]);

low high

3 6 187 1510 12
high points to 15, which is greater than 12
and thus doesn’t need to be moved. We
shift high to the left and continue.

low, high

3 6 187 1510 12
high points to 7, which is out of position.
After moving 7 to the hole, we shift low to
the right.

3 6 187 1510 12
low and high are now equal, so we move
the partitioning element to the hole.

C9.FM Page 207 Saturday, February 16, 2008 5:26 PM

208 Chapter 9 Functions

 quicksort(a, 0, N - 1);

 printf("In sorted order: ");
 for (i = 0; i < N; i++)
 printf("%d ", a[i]);
 printf("\n");

 return 0;
}

void quicksort(int a[], int low, int high)
{
 int middle;

 if (low >= high) return;
 middle = split(a, low, high);
 quicksort(a, low, middle - 1);
 quicksort(a, middle + 1, high);
}

int split(int a[], int low, int high)
{
 int part_element = a[low];

 for (;;) {
 while (low < high && part_element <= a[high])
 high--;
 if (low >= high) break;
 a[low++] = a[high];

 while (low < high && a[low] <= part_element)
 low++;
 if (low >= high) break;
 a[high--] = a[low];
 }

 a[high] = part_element;
 return high;
}

Although this version of Quicksort works, it’s not the best. There are numer-
ous ways to improve the program’s performance, including:

� Improving the partitioning algorithm. Our method isn’t the most efficient.
Instead of choosing the first element in the array as the partitioning element,
it’s better to take the median of the first element, the middle element, and the
last element. The partitioning process itself can also be sped up. In particular,
it’s possible to avoid the low < high tests in the two while loops.

� Using a different method to sort small arrays. Instead of using Quicksort
recursively all the way down to arrays with one element, it’s better to use a
simpler method for small arrays (those with fewer than, say, 25 elements).

C9.FM Page 208 Saturday, February 16, 2008 5:26 PM

Q & A 209

� Making Quicksort nonrecursive. Although Quicksort is a recursive algorithm
by nature—and is easiest to understand in recursive form—it’s actually more
efficient if the recursion is removed.

For details about improving Quicksort, consult a book on algorithm design, such as
Robert Sedgewick’s Algorithms in C, Parts 1–4: Fundamentals, Data Structures,
Sorting, Searching, Third Edition (Boston, Mass.: Addison-Wesley, 1998).

Q & A

Q: Some C books appear to use terms other than parameter and argument. Is
there any standard terminology? [p. 184]

A: As with many other aspects of C, there’s no general agreement on terminology,
although the C89 and C99 standards use parameter and argument. The following
table should help you translate:

This book: Other books:
parameter formal argument, formal parameter
argument actual argument, actual parameter

Keep in mind that—when no confusion would result—I sometimes deliberately
blur the distinction between the two terms, using argument to mean either.

Q: I’ve seen programs in which parameter types are specified in separate decla-
rations after the parameter list, as in the following example:

double average(a, b)
double a, b;
{
 return (a + b) / 2;
}

Is this practice legal? [p. 188]

A: This method of defining functions comes from K&R C, so you may encounter it in
older books and programs. C89 and C99 support this style so that older programs
will still compile. I’d avoid using it in new programs, however, for a couple of rea-
sons.

First, functions that are defined in the older way aren’t subject to the same
degree of error-checking. When a function is defined in the older way—and no
prototype is present—the compiler won’t check that the function is called with the
right number of arguments, nor will it check that the arguments have the proper
types. Instead, it will perform the default argument promotions.

Second, the C standard says that the older style is “obsolescent,” meaning that
its use is discouraged and that it may be dropped from C eventually.

default argument promotions ➤9.3

C9.FM Page 209 Saturday, February 16, 2008 5:26 PM

210 Chapter 9 Functions

Q: Some programming languages allow procedures and functions to be nested
within each other. Does C allow function definitions to be nested?

A: No. C does not permit the definition of one function to appear in the body of
another. Among other things, this restriction simplifies the compiler.

*Q: Why does the compiler allow the use of function names that aren’t followed by
parentheses? [p. 189]

A: We’ll see in a later chapter that the compiler treats a function name not followed by
parentheses as a pointer to the function. Pointers to functions have legitimate uses,
so the compiler can’t automatically assume that a function name without parenthe-
ses is an error. The statement

print_pun;

is legal because the compiler treats print_pun as a pointer and therefore an
expression, making this a valid (although pointless) expression statement.

*Q: In the function call f(a, b), how does the compiler know whether the
comma is punctuation or whether it’s an operator?

A: It turns out that the arguments in a function call can’t be arbitrary expressions.
Instead, they must be “assignment expressions,” which can’t contain commas used
as operators unless they’re enclosed in parentheses. In other words, in the call
f(a, b) the comma is punctuation; in the call f((a, b)) it’s an operator.

Q: Do the names of parameters in a function prototype have to match the names
given later in the function’s definition? [p. 192]

A: No. Some programmers take advantage of this fact by giving long names to param-
eters in the prototype, then using shorter names in the actual definition. Or a
French-speaking programmer might use English names in prototypes, then switch
to more familiar French names in function definitions.

Q: I still don’t understand why we bother with function prototypes. If we just put
definitions of all the functions before main, we’re covered, right?

A: Wrong. First, you’re assuming that only main calls the other functions, which is
unrealistic. In practice, some of the functions will call each other. If we put all
function definitions above main, we’ll have to watch their order carefully. Calling
a function that hasn’t been defined yet can lead to big problems.

But that’s not all. Suppose that two functions call each other (which isn’t as
far-fetched as it may sound). No matter which function we define first, it will end
up calling a function that hasn’t been defined yet.

But there’s still more! Once programs reach a certain size, it won’t be feasible
to put all the functions in one file anymore. When we reach that point, we’ll need
prototypes to tell the compiler about functions in other files.

Q: I’ve seen function declarations that omit all information about parameters:

pointers to functions ➤17.7

expression statements ➤4.5

C9.FM Page 210 Saturday, February 16, 2008 5:26 PM

Q & A 211

double average();

Is this practice legal? [p. 192]
A: Yes. This declaration informs the compiler that average returns a double value

but provides no information about the number and types of its parameters. (Leav-
ing the parentheses empty doesn’t necessarily mean that average has no param-
eters.)

In K&R C, this form of function declaration is the only one allowed; the form
that we’ve been using—the function prototype, in which parameter information is
included—was introduced in C89. The older kind of function declaration is now
obsolescent, although still allowed.

Q: Why would a programmer deliberately omit parameter names in a function
prototype? Isn’t it easier to just leave the names? [p. 193]

A: Omitting parameter names in prototypes is typically done for defensive purposes.
If a macro happens to have the same name as a parameter, the parameter name will
be replaced during preprocessing, thereby damaging the prototype in which it
appears. This isn’t likely to be a problem in a small program written by one person
but can occur in large applications written by many people.

Q: Is it legal to put a function declaration inside the body of another function?
A: Yes. Here’s an example:

int main(void)
{
 double average(double a, double b);
 …
}

This declaration of average is valid only for the body of main; if other func-
tions need to call average, they’ll each have to declare it.

The advantage of this practice is that it’s clearer to the reader which functions
call which other functions. (In this example, we see that main will be calling
average.) On the other hand, it can be a nuisance if several functions need to call
the same function. Even worse, trying to add and remove declarations during pro-
gram maintenance can be a real pain. For these reasons, I’ll always put function
declarations outside function bodies.

Q: If several functions have the same return type, can their declarations be com-
bined? For example, since both print_pun and print_count have void
as their return type, is the following declaration legal?

void print_pun(void), print_count(int n);

A: Yes. In fact, C even allows us to combine function declarations with variable decla-
rations:

double x, y, average(double a, double b);

C9.FM Page 211 Saturday, February 16, 2008 5:26 PM

212 Chapter 9 Functions

Combining declarations in this way usually isn’t a good idea, though; it can easily
cause confusion.

Q: What happens if I specify a length for a one-dimensional array parameter?
[p. 195]

A: The compiler ignores it. Consider the following example:

double inner_product(double v[3], double w[3]);

Other than documenting that inner_product’s arguments are supposed to be
arrays of length 3, specifying a length doesn’t buy us much. The compiler won’t
check that the arguments actually have length 3, so there’s no added security. In
fact, the practice is misleading in that it suggests that inner_product can only
be passed arrays of length 3, when in fact we can pass arrays of arbitrary length.

*Q: Why can the first dimension in an array parameter be left unspecified, but not
the other dimensions? [p. 197]

A: First, we need to discuss how arrays are passed in C. As Section 12.3 explains,
when an array is passed to a function, the function is given a pointer to the first ele-
ment in the array.

Next, we need to know how the subscripting operator works. Suppose that a is
a one-dimensional array passed to a function. When we write

a[i] = 0;

the compiler generates instructions that compute the address of a[i] by multiply-
ing i by the size of an array element and adding the result to the address that a rep-
resents (the pointer passed to the function). This calculation doesn’t depend on the
length of a, which explains why we can omit it when defining the function.

What about multidimensional arrays? Recall that C stores arrays in row-major
order, with the elements in row 0 stored first, then the elements in row 1, and so
forth. Suppose that a is a two-dimensional array parameter and we write

a[i][j] = 0;

The compiler generates instructions to do the following: (1) multiply i by the size
of a single row of a; (2) add this result to the address that a represents; (3) multiply
j by the size of an array element; and (4) add this result to the address computed in
step 2. To generate these instructions, the compiler must know the size of a row in
the array, which is determined by the number of columns. The bottom line: the pro-
grammer must declare the number of columns in a.

Q: Why do some programmers put parentheses around the expression in a
return statement?

A: The examples in the first edition of Kernighan and Ritchie’s The C Programming
Language always have parentheses in return statements, even though they
aren’t required. Programmers (and authors of subsequent books) picked up the
habit from K&R. I don’t use these parentheses, since they’re unnecessary and

C9.FM Page 212 Saturday, February 16, 2008 5:26 PM

Q & A 213

contribute nothing to readability. (Kernighan and Ritchie apparently agree: the
return statements in the second edition of The C Programming Language lack
parentheses.)

Q: What happens if a non-void function attempts to execute a return state-
ment that has no expression? [p. 202]

A: That depends on the version of C. In C89, executing a return statement without
an expression in a non-void function causes undefined behavior (but only if the
program attempts to use the value returned by the function). In C99, such a state-
ment is illegal and should be detected as an error by the compiler.

Q: How can I test main’s return value to see if a program has terminated nor-
mally? [p. 203]

A: That depends on your operating system. Many operating systems allow this value
to be tested within a “batch file” or “shell script” that contains commands to run
several programs. For example, the line

if errorlevel 1 command

in a Windows batch file will execute command if the last program terminated with
a status code greater than or equal to 1.

In UNIX, each shell has its own method for testing the status code. In the
Bourne shell, the variable $? contains the status of the last program run. The C
shell has a similar variable, but its name is $status.

Q: Why does my compiler produce a “control reaches end of non-void function”
warning when it compiles main?

A: The compiler has noticed that main, despite having int as its return type, doesn’t
have a return statement. Putting the statement

return 0;

at the end of main will keep the compiler happy. Incidentally, this is good practice
even if your compiler doesn’t object to the lack of a return statement.

When a program is compiled using a C99 compiler, this warning shouldn’t
occur. In C99, it’s OK to “fall off” the end of main without returning a value; the
standard states that main automatically returns 0 in this situation.

Q: With regard to the previous question: Why not just define main’s return type
to be void?

A: Although this practice is fairly common, it’s illegal according to the C89 standard.
Even if it weren’t illegal, it wouldn’t be a good idea, since it presumes that no one
will ever test the program’s status upon termination.

C99 opens the door to legalizing this practice, by allowing main to be
declared “in some other implementation-defined manner” (with a return type other
than int or parameters other than those specified by the standard). However, any
such usage isn’t portable, so it’s best to declare main’s return type to be int.

C99

C99

C99

C9.FM Page 213 Saturday, February 16, 2008 5:26 PM

214 Chapter 9 Functions

Q: Is it legal for a function f1 to call a function f2, which then calls f1?
A: Yes. This is just an indirect form of recursion in which one call of f1 leads to

another. (But make sure that either f1 or f2 eventually terminates!)

Exercises

Section 9.1 1. The following function, which computes the area of a triangle, contains two errors. Locate
the errors and show how to fix them. (Hint: There are no errors in the formula.)

double triangle_area(double base, height)
double product;
{
 product = base * height;
 return product / 2;
}

2. Write a function check(x, y, n) that returns 1 if both x and y fall between 0 and n – 1,
inclusive. The function should return 0 otherwise. Assume that x, y, and n are all of type
int.

3. Write a function gcd(m, n) that calculates the greatest common divisor of the integers m
and n. (Programming Project 2 in Chapter 6 describes Euclid’s algorithm for computing the
GCD.)

4. Write a function day_of_year(month, day, year) that returns the day of the year
(an integer between 1 and 366) specified by the three arguments.

5. Write a function num_digits(n) that returns the number of digits in n (a positive inte-
ger). Hint: To determine the number of digits in a number n, divide it by 10 repeatedly.
When n reaches 0, the number of divisions indicates how many digits n originally had.

6. Write a function digit(n, k) that returns the kth digit (from the right) in n (a posi-
tive integer). For example, digit(829, 1) returns 9, digit(829, 2) returns 2, and
digit(829, 3) returns 8. If k is greater than the number of digits in n, have the func-
tion return 0.

7. Suppose that the function f has the following definition:

int f(int a, int b) { … }

Which of the following statements are legal? (Assume that i has type int and x has type
double.)

Section 9.2 8. Which of the following would be valid prototypes for a function that returns nothing and has
one double parameter?

W

W

W

(a) i = f(83, 12);
(b) x = f(83, 12);
(c) i = f(3.15, 9.28);
(d) x = f(3.15, 9.28);
(e) f(83, 12);

(a) void f(double x);

W

C9.FM Page 214 Saturday, February 16, 2008 5:26 PM

Exercises 215

Section 9.3 *9. What will be the output of the following program?

#include <stdio.h>

void swap(int a, int b);

int main(void)
{
 int i = 1, j = 2;

 swap(i, j);
 printf("i = %d, j = %d\n", i, j);
 return 0;
}

void swap(int a, int b)
{
 int temp = a;
 a = b;
 b = temp;
}

10. Write functions that return the following values. (Assume that a and n are parameters,
where a is an array of int values and n is the length of the array.)

11. Write the following function:

float compute_GPA(char grades[], int n);

The grades array will contain letter grades (A, B, C, D, or F, either upper-case or lower-
case); n is the length of the array. The function should return the average of the grades
(assume that A = 4, B = 3, C = 2, D = 1, and F = 0).

12. Write the following function:

double inner_product(double a[], double b[], int n);

The function should return a[0] * b[0] + a[1] * b[1] + … + a[n-1] * b[n-1].

13. Write the following function, which evaluates a chess position:

int evaluate_position(char board[8][8]);

board represents a configuration of pieces on a chessboard, where the letters K, Q, R, B, N,
P represent White pieces, and the letters k, q, r, b, n, and p represent Black pieces.
evaluate_position should sum the values of the White pieces (Q = 9, R = 5, B = 3,
N = 3, P = 1). It should also sum the values of the Black pieces (done in a similar way). The
function will return the difference between the two numbers. This value will be positive if
White has an advantage in material and negative if Black has an advantage.

Section 9.4 14. The following function is supposed to return true if any element of the array a has the
value 0 and false if all elements are nonzero. Sadly, it contains an error. Find the error and
show how to fix it:

(b) void f(double);
(c) void f(x);
(d) f(double x);

(a) The largest element in a.
(b) The average of all elements in a.
(c) The number of positive elements in a.

W

C9.FM Page 215 Saturday, February 16, 2008 5:26 PM

216 Chapter 9 Functions

bool has_zero(int a[], int n)
{
 int i;

 for (i = 0; i < n; i++)
 if (a[i] == 0)
 return true;
 else
 return false;
}

15. The following (rather confusing) function finds the median of three numbers. Rewrite the
function so that it has just one return statement.

double median(double x, double y, double z)
{
 if (x <= y)
 if (y <= z) return y;
 else if (x <= z) return z;
 else return x;
 if (z <= y) return y;
 if (x <= z) return x;
 return z;
}

Section 9.6 16. Condense the fact function in the same way we condensed power.

17. Rewrite the fact function so that it’s no longer recursive.

18. Write a recursive version of the gcd function (see Exercise 3). Here’s the strategy to use for
computing gcd(m, n): If n is 0, return m. Otherwise, call gcd recursively, passing n as
the first argument and m % n as the second.

*19. Consider the following “mystery” function:

void pb(int n)
{
 if (n != 0) {
 pb(n / 2);
 putchar('0' + n % 2);
 }
}

Trace the execution of the function by hand. Then write a program that calls the function,
passing it a number entered by the user. What does the function do?

Programming Projects

1. Write a program that asks the user to enter a series of integers (which it stores in an array),
then sorts the integers by calling the function selection_sort. When given an array
with n elements, selection_sort must do the following:

1. Search the array to find the largest element, then move it to the last position in the array.

2. Call itself recursively to sort the first n – 1 elements of the array.

W

W

W

C9.FM Page 216 Saturday, February 16, 2008 5:26 PM

Programming Projects 217

2. Modify Programming Project 5 from Chapter 5 so that it uses a function to compute the
amount of income tax. When passed an amount of taxable income, the function will return
the tax due.

3. Modify Programming Project 9 from Chapter 8 so that it includes the following functions:

void generate_random_walk(char walk[10][10]);
void print_array(char walk[10][10]);

main first calls generate_random_walk, which initializes the array to contain '.'
characters and then replaces some of these characters by the letters A through Z, as
described in the original project. main then calls print_array to display the array on
the screen.

4. Modify Programming Project 16 from Chapter 8 so that it includes the following functions:

void read_word(int counts[26]);
bool equal_array(int counts1[26], int counts2[26]);

main will call read_word twice, once for each of the two words entered by the user. As it
reads a word, read_word will use the letters in the word to update the counts array, as
described in the original project. (main will declare two arrays, one for each word. These
arrays are used to track how many times each letter occurs in the words.) main will then
call equal_array, passing it the two arrays. equal_array will return true if the ele-
ments in the two arrays are identical (indicating that the words are anagrams) and false
otherwise.

5. Modify Programming Project 17 from Chapter 8 so that it includes the following functions:

void create_magic_square(int n, char magic_square[n][n]);
void print_magic_square(int n, char magic_square[n][n]);

After obtaining the number n from the user, main will call create_magic_square,
passing it an n × n array that is declared inside main. create_magic_square will fill
the array with the numbers 1, 2, …, n2 as described in the original project. main will then
call print_magic_square, which will display the array in the format described in the
original project. Note: If your compiler doesn’t support variable-length arrays, declare the
array in main to be 99 × 99 instead of n × n and use the following prototypes instead:

void create_magic_square(int n, char magic_square[99][99]);
void print_magic_square(int n, char magic_square[99][99]);

6. Write a function that computes the value of the following polynomial:

3x5 + 2x4 – 5x3 – x2 + 7x – 6

Write a program that asks the user to enter a value for x, calls the function to compute the
value of the polynomial, and then displays the value returned by the function.

7. The power function of Section 9.6 can be made faster by having it calculate xn in a differ-
ent way. We first notice that if n is a power of 2, then xn can be computed by squaring. For
example, x4 is the square of x2, so x4 can be computed using only two multiplications instead
of three. As it happens, this technique can be used even when n is not a power of 2. If n is
even, we use the formula xn = (xn/2)2. If n is odd, then xn = x × xn–1. Write a recursive func-
tion that computes xn. (The recursion ends when n = 0, in which case the function returns 1.)
To test your function, write a program that asks the user to enter values for x and n, calls
power to compute xn, and then displays the value returned by the function.

8. Write a program that simulates the game of craps, which is played with two dice. On the
first roll, the player wins if the sum of the dice is 7 or 11. The player loses if the sum is 2, 3,

C9.FM Page 217 Saturday, February 16, 2008 5:26 PM

218 Chapter 9 Functions

or 12. Any other roll is called the “point” and the game continues. On each subsequent roll,
the player wins if he or she rolls the point again. The player loses by rolling 7. Any other roll
is ignored and the game continues. At the end of each game, the program will ask the user
whether or not to play again. When the user enters a response other than y or Y, the program
will display the number of wins and losses and then terminate.

You rolled: 8
Your point is 8
You rolled: 3
You rolled: 10
You rolled: 8
You win!

Play again? y

You rolled: 6
Your point is 6
You rolled: 5
You rolled: 12
You rolled: 3
You rolled: 7
You lose!

Play again? y

You rolled: 11
You win!

Play again? n

Wins: 2 Losses: 1

Write your program as three functions: main, roll_dice, and play_game. Here are
the prototypes for the latter two functions:

int roll_dice(void);
bool play_game(void);

roll_dice should generate two random numbers, each between 1 and 6, and return their
sum. play_game should play one craps game (calling roll_dice to determine the out-
come of each dice roll); it will return true if the player wins and false if the player loses.
play_game is also responsible for displaying messages showing the results of the player’s
dice rolls. main will call play_game repeatedly, keeping track of the number of wins and
losses and displaying the “you win” and “you lose” messages. Hint: Use the rand function
to generate random numbers. See the deal.c program in Section 8.2 for an example of
how to call rand and the related srand function.

C9.FM Page 218 Saturday, February 16, 2008 5:26 PM

219

10 Program Organization

As Will Rogers would have said, “There
is no such thing as a free variable.”

Having covered functions in Chapter 9, we’re ready to confront several issues that
arise when a program contains more than one function. The chapter begins with a
discussion of the differences between local variables (Section 10.1) and external
variables (Section 10.2). Section 10.3 then considers blocks (compound statements
containing declarations). Section 10.4 tackles the scope rules that apply to local
names, external names, and names declared in blocks. Finally, Section 10.5 sug-
gests a way to organize function prototypes, function definitions, variable declara-
tions, and the other parts of a C program.

10.1 Local Variables

A variable declared in the body of a function is said to be local to the function. In
the following function, sum is a local variable:

int sum_digits(int n)
{
 int sum = 0; /* local variable */

 while (n > 0) {
 sum += n % 10;
 n /= 10;
 }

 return sum;
}

C10.FM Page 219 Tuesday, February 12, 2008 4:23 PM

220 Chapter 10 Program Organization

By default, local variables have the following properties:

� Automatic storage duration. The storage duration (or extent) of a variable is
the portion of program execution during which storage for the variable exists.
Storage for a local variable is “automatically” allocated when the enclosing
function is called and deallocated when the function returns, so the variable is
said to have automatic storage duration. A local variable doesn’t retain its
value when its enclosing function returns. When the function is called again,
there’s no guarantee that the variable will still have its old value.

� Block scope. The scope of a variable is the portion of the program text in
which the variable can be referenced. A local variable has block scope: it is
visible from its point of declaration to the end of the enclosing function
body. Since the scope of a local variable doesn’t extend beyond the function
to which it belongs, other functions can use the same name for other pur-
poses.

Section 18.2 covers these and other related concepts in more detail.
Since C99 doesn’t require variable declarations to come at the beginning of a

function, it’s possible for a local variable to have a very small scope. In the follow-
ing example, the scope of i doesn’t begin until the line on which it’s declared,
which could be near the end of the function body:

Static Local Variables

Putting the word static in the declaration of a local variable causes it to have
static storage duration instead of automatic storage duration. A variable with
static storage duration has a permanent storage location, so it retains its value
throughout the execution of the program. Consider the following function:

void f(void)
{
 static int i; /* static local variable */
 …
}

Since the local variable i has been declared static, it occupies the same mem-
ory location throughout the execution of the program. When f returns, i won’t
lose its value.

A static local variable still has block scope, so it’s not visible to other func-
tions. In a nutshell, a static variable is a place to hide data from other functions but
retain it for future calls of the same function.

C99

void f(void)
{
 …
 int i;
 … scope of i
}

Q&A

C10.FM Page 220 Tuesday, February 12, 2008 4:23 PM

10.2 External Variables 221

Parameters

Parameters have the same properties—automatic storage duration and block
scope—as local variables. In fact, the only real difference between parameters and
local variables is that each parameter is initialized automatically when a function is
called (by being assigned the value of the corresponding argument).

10.2 External Variables

Passing arguments is one way to transmit information to a function. Functions can
also communicate through external variables—variables that are declared outside
the body of any function.

The properties of external variables (or global variables, as they’re sometimes
called) are different from those of local variables:

� Static storage duration. External variables have static storage duration, just
like local variables that have been declared static. A value stored in an
external variable will stay there indefinitely.

� File scope. An external variable has file scope: it is visible from its point of
declaration to the end of the enclosing file. As a result, an external variable
can be accessed (and potentially modified) by all functions that follow its dec-
laration.

Example: Using External Variables to Implement a Stack

To illustrate how external variables might be used, let’s look at a data structure
known as a stack. (Stacks are an abstract concept, not a C feature; they can be
implemented in most programming languages.) A stack, like an array, can store
multiple data items of the same type. However, the operations on a stack are lim-
ited: we can either push an item onto the stack (add it to one end—the “stack top”)
or pop it from the stack (remove it from the same end). Examining or modifying an
item that’s not at the top of the stack is forbidden.

One way to implement a stack in C is to store its items in an array, which we’ll
call contents. A separate integer variable named top marks the position of the
stack top. When the stack is empty, top has the value 0. To push an item on the
stack, we simply store the item in contents at the position indicated by top,
then increment top. Popping an item requires decrementing top, then using it as
an index into contents to fetch the item that’s being popped.

Based on this outline, here’s a program fragment (not a complete program)
that declares the contents and top variables for a stack and provides a set of
functions that represent operations on the stack. All five functions need access to
the top variable, and two functions need access to contents, so we’ll make
contents and top external.

C10.FM Page 221 Tuesday, February 12, 2008 4:23 PM

222 Chapter 10 Program Organization

#include <stdbool.h> /* C99 only */

#define STACK_SIZE 100

/* external variables */
int contents[STACK_SIZE];
int top = 0;

void make_empty(void)
{
 top = 0;
}

bool is_empty(void)
{
 return top == 0;
}

bool is_full(void)
{
 return top == STACK_SIZE;
}

void push(int i)
{
 if (is_full())
 stack_overflow();
 else
 contents[top++] = i;
}

int pop(void)
{
 if (is_empty())
 stack_underflow();
 else
 return contents[--top];
}

Pros and Cons of External Variables

External variables are convenient when many functions must share a variable or
when a few functions share a large number of variables. In most cases, however,
it’s better for functions to communicate through parameters rather than by sharing
variables. Here’s why:

� If we change an external variable during program maintenance (by altering its
type, say), we’ll need to check every function in the same file to see how the
change affects it.

C10.FM Page 222 Tuesday, February 12, 2008 4:23 PM

10.2 External Variables 223

� If an external variable is assigned an incorrect value, it may be difficult to
identify the guilty function. It’s like trying to solve a murder committed at a
crowded party—there’s no easy way to narrow the list of suspects.

� Functions that rely on external variables are hard to reuse in other programs. A
function that depends on external variables isn’t self-contained; to reuse the
function, we’ll have to drag along any external variables that it needs.

Many C programmers rely far too much on external variables. One common
abuse: using the same external variable for different purposes in different func-
tions. Suppose that several functions need a variable named i to control a for
statement. Instead of declaring i in each function that uses it, some programmers
declare it at the top of the program, thereby making the variable visible to all func-
tions. This practice is poor not only for the reasons listed earlier, but also because
it’s misleading; someone reading the program later may think that the uses of the
variable are related, when in fact they’re not.

When you use external variables, make sure they have meaningful names.
(Local variables don’t always need meaningful names: it’s often hard to think of a
better name than i for the control variable in a for loop.) If you find yourself
using names like i and temp for external variables, that’s a clue that perhaps they
should really be local variables.

Making variables external when they should be local can lead to some rather frus-
trating bugs. Consider the following example, which is supposed to display a 10 ×
10 arrangement of asterisks:

int i;

void print_one_row(void)
{
 for (i = 1; i <= 10; i++)
 printf("*");
}

void print_all_rows(void)
{
 for (i = 1; i <= 10; i++) {
 print_one_row();
 printf("\n");
 }
}

Instead of printing 10 rows, print_all_rows prints only one row. When
print_one_row returns after being called the first time, i will have the value
11. The for statement in print_all_rows then increments i and tests
whether it’s less than or equal to 10. It’s not, so the loop terminates and the func-
tion returns.

C10.FM Page 223 Tuesday, February 12, 2008 4:23 PM

224 Chapter 10 Program Organization

PROGRAM Guessing a Number

To get more experience with external variables, we’ll write a simple game-playing
program. The program generates a random number between 1 and 100, which the
user attempts to guess in as few tries as possible. Here’s what the user will see
when the program is run:

Guess the secret number between 1 and 100.

A new number has been chosen.
Enter guess: 55
Too low; try again.
Enter guess: 65
Too high; try again.
Enter guess: 60
Too high; try again.
Enter guess: 58
You won in 4 guesses!

Play again? (Y/N) y

A new number has been chosen.
Enter guess: 78
Too high; try again.
Enter guess: 34
You won in 2 guesses!

Play again? (Y/N) n

This program will need to carry out several different tasks: initializing the ran-
dom number generator, choosing a secret number, and interacting with the user
until the correct number is picked. If we write a separate function to handle each
task, we might end up with the following program.

guess.c /* Asks user to guess a hidden number */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MAX_NUMBER 100

/* external variable */
int secret_number;

/* prototypes */
void initialize_number_generator(void);
void choose_new_secret_number(void);
void read_guesses(void);

int main(void)
{
 char command;

C10.FM Page 224 Tuesday, February 12, 2008 4:23 PM

10.2 External Variables 225

 printf("Guess the secret number between 1 and %d.\n\n",
 MAX_NUMBER);
 initialize_number_generator();
 do {
 choose_new_secret_number();
 printf("A new number has been chosen.\n");
 read_guesses();
 printf("Play again? (Y/N) ");
 scanf(" %c", &command);
 printf("\n");
 } while (command == 'y' || command == 'Y');

 return 0;
}

/**
 * initialize_number_generator: Initializes the random *
 * number generator using *
 * the time of day. *
 **/
void initialize_number_generator(void)
{
 srand((unsigned) time(NULL));
}

/**
 * choose_new_secret_number: Randomly selects a number *
 * between 1 and MAX_NUMBER and *
 * stores it in secret_number. *
 **/
void choose_new_secret_number(void)
{
 secret_number = rand() % MAX_NUMBER + 1;
}

/**
 * read_guesses: Repeatedly reads user guesses and tells *
 * the user whether each guess is too low, *
 * too high, or correct. When the guess is *
 * correct, prints the total number of *
 * guesses and returns. *
 **/
void read_guesses(void)
{
 int guess, num_guesses = 0;

 for (;;) {
 num_guesses++;
 printf("Enter guess: ");
 scanf("%d", &guess);
 if (guess == secret_number) {
 printf("You won in %d guesses!\n\n", num_guesses);
 return;
 } else if (guess < secret_number)

C10.FM Page 225 Tuesday, February 12, 2008 4:23 PM

226 Chapter 10 Program Organization

 printf("Too low; try again.\n");
 else
 printf("Too high; try again.\n");
 }
}

For random number generation, the guess.c program relies on the time,
srand, and rand functions, which we first used in deal.c (Section 8.2). This
time, we’re scaling the return value of rand so that it falls between 1 and
MAX_NUMBER.

Although guess.c works fine, it relies on an external variable. We made
secret_number external so that both choose_new_secret_number and
read_guesses could access it. If we alter choose_new_secret_number
and read_guesses just a little, we should be able to move secret_number
into the main function. We’ll modify choose_new_secret_number so
that it returns the new number, and we’ll rewrite read_guesses so that
secret_number can be passed to it as an argument.

Here’s our new program, with changes in bold:

guess2.c /* Asks user to guess a hidden number */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MAX_NUMBER 100

/* prototypes */
void initialize_number_generator(void);
int new_secret_number(void);
void read_guesses(int secret_number);

int main(void)
{
 char command;
 int secret_number;

 printf("Guess the secret number between 1 and %d.\n\n",
 MAX_NUMBER);
 initialize_number_generator();
 do {
 secret_number = new_secret_number();
 printf("A new number has been chosen.\n");
 read_guesses(secret_number);
 printf("Play again? (Y/N) ");
 scanf(" %c", &command);
 printf("\n");
 } while (command == 'y' || command == 'Y');

 return 0;
}

time function ➤26.3

srand function ➤26.2

rand function ➤26.2

C10.FM Page 226 Tuesday, February 12, 2008 4:23 PM

10.3 Blocks 227

/**
 * initialize_number_generator: Initializes the random *
 * number generator using *
 * the time of day. *
 **/
void initialize_number_generator(void)
{
 srand((unsigned) time(NULL));
}

/**
 * new_secret_number: Returns a randomly chosen number *
 * between 1 and MAX_NUMBER. *
 **/
int new_secret_number(void)
{
 return rand() % MAX_NUMBER + 1;
}

/**
 * read_guesses: Repeatedly reads user guesses and tells *
 * the user whether each guess is too low, *
 * too high, or correct. When the guess is *
 * correct, prints the total number of *
 * guesses and returns. *
 **/
void read_guesses(int secret_number)
{
 int guess, num_guesses = 0;

 for (;;) {
 num_guesses++;
 printf("Enter guess: ");
 scanf("%d", &guess);
 if (guess == secret_number) {
 printf("You won in %d guesses!\n\n", num_guesses);
 return;
 } else if (guess < secret_number)
 printf("Too low; try again.\n");
 else
 printf("Too high; try again.\n");
 }
}

10.3 Blocks

In Section 5.2, we encountered compound statements of the form

{ statements }

C10.FM Page 227 Tuesday, February 12, 2008 4:23 PM

228 Chapter 10 Program Organization

It turns out that C allows compound statements to contain declarations as well:

I’ll use the term block to describe such a compound statement. Here’s an example
of a block:

if (i > j) {
 /* swap values of i and j */
 int temp = i;
 i = j;
 j = temp;
}

By default, the storage duration of a variable declared in a block is automatic: stor-
age for the variable is allocated when the block is entered and deallocated when the
block is exited. The variable has block scope; it can’t be referenced outside the
block. A variable that belongs to a block can be declared static to give it static
storage duration.

The body of a function is a block. Blocks are also useful inside a function
body when we need variables for temporary use. In our last example, we needed a
variable temporarily so that we could swap the values of i and j. Putting tempo-
rary variables in blocks has two advantages: (1) It avoids cluttering the declara-
tions at the beginning of the function body with variables that are used only briefly.
(2) It reduces name conflicts. In our example, the name temp can be used else-
where in the same function for different purposes—the temp variable is strictly
local to the block in which it’s declared.

C99 allows variables to be declared anywhere within a block, just as it allows
variables to be declared anywhere within a function.

10.4 Scope

In a C program, the same identifier may have several different meanings. C’s scope
rules enable the programmer (and the compiler) to determine which meaning is
relevant at a given point in the program.

Here’s the most important scope rule: When a declaration inside a block
names an identifier that’s already visible (because it has file scope or because it’s
declared in an enclosing block), the new declaration temporarily “hides” the old
one, and the identifier takes on a new meaning. At the end of the block, the identi-
fier regains its old meaning.

Consider the (somewhat extreme) example at the top of the next page, in
which the identifier i has four different meanings:

� In Declaration 1, i is a variable with static storage duration and file scope.

block { declarations statements }

C99

C10.FM Page 228 Tuesday, February 12, 2008 4:23 PM

10.5 Organizing a C Program 229

� In Declaration 2, i is a parameter with block scope.

� In Declaration 3, i is an automatic variable with block scope.

� In Declaration 4, i is also automatic and has block scope.

i is used five times. C’s scope rules allow us to determine the meaning of i in each
case:

� The i = 1 assignment refers to the parameter in Declaration 2, not the variable
in Declaration 1, since Declaration 2 hides Declaration 1.

� The i > 0 test refers to the variable in Declaration 3, since Declaration 3 hides
Declaration 1 and Declaration 2 is out of scope.

� The i = 3 assignment refers to the variable in Declaration 4, which hides Dec-
laration 3.

� The i = 4 assignment refers to the variable in Declaration 3. It can’t refer to
Declaration 4, which is out of scope.

� The i = 5 assignment refers to the variable in Declaration 1.

10.5 Organizing a C Program

Now that we’ve seen the major elements that make up a C program, it’s time to
develop a strategy for their arrangement. For now, we’ll assume that a program

int i ; /* Declaration 1 */

void f(int i) /* Declaration 2 */
{
 i = 1;
}

void g(void)
{
 int i = 2; /* Declaration 3 */

 if (i > 0) {
 int i ; /* Declaration 4 */

 i = 3;
 }

 i = 4;
}

void h(void)
{
 i = 5;
}

C10.FM Page 229 Tuesday, February 12, 2008 4:23 PM

230 Chapter 10 Program Organization

always fits into a single file. Chapter 15 shows how to organize a program that’s
split over several files.

So far, we’ve seen that a program may contain the following:

Preprocessing directives such as #include and #define
Type definitions
Declarations of external variables
Function prototypes
Function definitions

C imposes only a few rules on the order of these items: A preprocessing directive
doesn’t take effect until the line on which it appears. A type name can’t be used
until it’s been defined. A variable can’t be used until it’s declared. Although C isn’t
as picky about functions, I strongly recommend that every function be defined or
declared prior to its first call. (C99 makes this a requirement anyway.)

There are several ways to organize a program so that these rules are obeyed.
Here’s one possible ordering:

#include directives
#define directives
Type definitions
Declarations of external variables
Prototypes for functions other than main
Definition of main
Definitions of other functions

It makes sense to put #include directives first, since they bring in information
that will likely be needed in several places within the program. #define direc-
tives create macros, which are generally used throughout the program. Putting type
definitions above the declarations of external variables is logical, since the declara-
tions of these variables may refer to the type names just defined. Declaring exter-
nal variables next makes them available to all the functions that follow. Declaring
all functions except for main avoids the problems that arise when a function is
called before the compiler has seen its prototype. This practice also makes it possi-
ble to arrange the function definitions in any order whatsoever: alphabetically by
function name or with related functions grouped together, for example. Defining
main before the other functions makes it easier for a reader to locate the pro-
gram’s starting point.

A final suggestion: Precede each function definition by a boxed comment that
gives the name of the function, explains its purpose, discusses the meaning of each
parameter, describes its return value (if any), and lists any side effects it has (such
as modifying external variables).

PROGRAM Classifying a Poker Hand

To show how a C program might be organized, let’s attempt a program that’s a lit-
tle more complex than our previous examples. The program will read and classify

C99

C10.FM Page 230 Tuesday, February 12, 2008 4:23 PM

10.5 Organizing a C Program 231

a poker hand. Each card in the hand will have both a suit (clubs, diamonds, hearts,
or spades) and a rank (two, three, four, five, six, seven, eight, nine, ten, jack, queen,
king, or ace). We won’t allow the use of jokers, and we’ll assume that aces are
high. The program will read a hand of five cards, then classify the hand into one of
the following categories (listed in order from best to worst):

straight flush (both a straight and a flush)
four-of-a-kind (four cards of the same rank)
full house (a three-of-a-kind and a pair)
flush (five cards of the same suit)
straight (five cards with consecutive ranks)
three-of-a-kind (three cards of the same rank)
two pairs
pair (two cards of the same rank)
high card (any other hand)

If a hand falls into two or more categories, the program will choose the best one.
For input purposes, we’ll abbreviate ranks and suits as follows (letters may be

either upper- or lower-case):

Ranks: 2 3 4 5 6 7 8 9 t j q k a
Suits: c d h s

If the user enters an illegal card or tries to enter the same card twice, the program
will ignore the card, issue an error message, and then request another card. Enter-
ing the number 0 instead of a card will cause the program to terminate.

A session with the program will have the following appearance:

Enter a card: 2s
Enter a card: 5s
Enter a card: 4s
Enter a card: 3s
Enter a card: 6s
Straight flush

Enter a card: 8c
Enter a card: as
Enter a card: 8c
Duplicate card; ignored.
Enter a card: 7c
Enter a card: ad
Enter a card: 3h
Pair

Enter a card: 6s
Enter a card: d2
Bad card; ignored.
Enter a card: 2d
Enter a card: 9c
Enter a card: 4h
Enter a card: ts

C10.FM Page 231 Tuesday, February 12, 2008 4:23 PM

232 Chapter 10 Program Organization

High card

Enter a card: 0

From this description of the program, we see that it has three tasks:

Read a hand of five cards.
Analyze the hand for pairs, straights, and so forth.
Print the classification of the hand.

We’ll divide the program into three functions—read_cards, analyze_hand,
and print_result—that perform these three tasks. main does nothing but call
these functions inside an endless loop. The functions will need to share a fairly
large amount of information, so we’ll have them communicate through external
variables. read_cards will store information about the hand into several exter-
nal variables. analyze_hand will then examine these variables, storing its find-
ings into other external variables for the benefit of print_result.

Based on this preliminary design, we can begin to sketch an outline of the pro-
gram:

/* #include directives go here */

/* #define directives go here */

/* declarations of external variables go here */

/* prototypes */
void read_cards(void);
void analyze_hand(void);
void print_result(void);

/**
 * main: Calls read_cards, analyze_hand, and print_result *
 * repeatedly. *
 **/
int main(void)
{
 for (;;) {
 read_cards();
 analyze_hand();
 print_result();
 }
}

/**
 * read_cards: Reads the cards into external variables; *
 * checks for bad cards and duplicate cards. *
 **/
void read_cards(void)
{
 …
}

C10.FM Page 232 Tuesday, February 12, 2008 4:23 PM

10.5 Organizing a C Program 233

/**
 * analyze_hand: Determines whether the hand contains a *
 * straight, a flush, four-of-a-kind, *
 * and/or three-of-a-kind; determines the *
 * number of pairs; stores the results into *
 * external variables. *
 **/
void analyze_hand(void)
{
 …
}

/**
 * print_result: Notifies the user of the result, using *
 * the external variables set by *
 * analyze_hand. *
 **/
void print_result(void)
{
 …
}

The most pressing question that remains is how to represent the hand of cards.
Let’s see what operations read_cards and analyze_hand will perform on
the hand. During the analysis of the hand, analyze_hand will need to know
how many cards are in each rank and each suit. This suggests that we use two
arrays, num_in_rank and num_in_suit. The value of num_in_rank[r]
will be the number of cards with rank r, and the value of num_in_suit[s] will
be the number of cards with suit s. (We’ll encode ranks as numbers between 0 and
12, and suits as numbers between 0 and 3.) We’ll also need a third array,
card_exists, so that read_cards can detect duplicate cards. Each time
read_cards reads a card with rank r and suit s, it checks whether the value of
card_exists[r][s] is true. If so, the card was previously entered; if not,
read_cards assigns true to card_exists[r][s].

Both the read_cards function and the analyze_hand function will need
access to the num_in_rank and num_in_suit arrays, so I’ll make them exter-
nal variables. The card_exists array is used only by read_cards, so it can
be local to that function. As a rule, variables should be made external only if neces-
sary.

Having decided on the major data structures, we can now finish the program:

poker.c /* Classifies a poker hand */

#include <stdbool.h> /* C99 only */
#include <stdio.h>
#include <stdlib.h>

#define NUM_RANKS 13
#define NUM_SUITS 4
#define NUM_CARDS 5

C10.FM Page 233 Tuesday, February 12, 2008 4:23 PM

234 Chapter 10 Program Organization

/* external variables */
int num_in_rank[NUM_RANKS];
int num_in_suit[NUM_SUITS];
bool straight, flush, four, three;
int pairs; /* can be 0, 1, or 2 */

/* prototypes */
void read_cards(void);
void analyze_hand(void);
void print_result(void);

/**
 * main: Calls read_cards, analyze_hand, and print_result *
 * repeatedly. *
 **/
int main(void)
{
 for (;;) {
 read_cards();
 analyze_hand();
 print_result();
 }
}

/**
 * read_cards: Reads the cards into the external *
 * variables num_in_rank and num_in_suit; *
 * checks for bad cards and duplicate cards. *
 **/
void read_cards(void)
{
 bool card_exists[NUM_RANKS][NUM_SUITS];
 char ch, rank_ch, suit_ch;
 int rank, suit;
 bool bad_card;
 int cards_read = 0;

 for (rank = 0; rank < NUM_RANKS; rank++) {
 num_in_rank[rank] = 0;
 for (suit = 0; suit < NUM_SUITS; suit++)
 card_exists[rank][suit] = false;
 }

 for (suit = 0; suit < NUM_SUITS; suit++)
 num_in_suit[suit] = 0;

 while (cards_read < NUM_CARDS) {
 bad_card = false;

 printf("Enter a card: ");

 rank_ch = getchar();
 switch (rank_ch) {

C10.FM Page 234 Tuesday, February 12, 2008 4:23 PM

10.5 Organizing a C Program 235

 case '0': exit(EXIT_SUCCESS);
 case '2': rank = 0; break;
 case '3': rank = 1; break;
 case '4': rank = 2; break;
 case '5': rank = 3; break;
 case '6': rank = 4; break;
 case '7': rank = 5; break;
 case '8': rank = 6; break;
 case '9': rank = 7; break;
 case 't': case 'T': rank = 8; break;
 case 'j': case 'J': rank = 9; break;
 case 'q': case 'Q': rank = 10; break;
 case 'k': case 'K': rank = 11; break;
 case 'a': case 'A': rank = 12; break;
 default: bad_card = true;
 }

 suit_ch = getchar();
 switch (suit_ch) {
 case 'c': case 'C': suit = 0; break;
 case 'd': case 'D': suit = 1; break;
 case 'h': case 'H': suit = 2; break;
 case 's': case 'S': suit = 3; break;
 default: bad_card = true;
 }

 while ((ch = getchar()) != '\n')
 if (ch != ' ') bad_card = true;

 if (bad_card)
 printf("Bad card; ignored.\n");
 else if (card_exists[rank][suit])
 printf("Duplicate card; ignored.\n");
 else {
 num_in_rank[rank]++;
 num_in_suit[suit]++;
 card_exists[rank][suit] = true;
 cards_read++;
 }
 }
}

/**
 * analyze_hand: Determines whether the hand contains a *
 * straight, a flush, four-of-a-kind, *
 * and/or three-of-a-kind; determines the *
 * number of pairs; stores the results into *
 * the external variables straight, flush, *
 * four, three, and pairs. *
 **/
void analyze_hand(void)
{
 int num_consec = 0;
 int rank, suit;

C10.FM Page 235 Tuesday, February 12, 2008 4:23 PM

236 Chapter 10 Program Organization

 straight = false;
 flush = false;
 four = false;
 three = false;
 pairs = 0;

 /* check for flush */
 for (suit = 0; suit < NUM_SUITS; suit++)
 if (num_in_suit[suit] == NUM_CARDS)
 flush = true;

 /* check for straight */
 rank = 0;
 while (num_in_rank[rank] == 0) rank++;
 for (; rank < NUM_RANKS && num_in_rank[rank] > 0; rank++)
 num_consec++;
 if (num_consec == NUM_CARDS) {
 straight = true;
 return;
 }

 /* check for 4-of-a-kind, 3-of-a-kind, and pairs */
 for (rank = 0; rank < NUM_RANKS; rank++) {
 if (num_in_rank[rank] == 4) four = true;
 if (num_in_rank[rank] == 3) three = true;
 if (num_in_rank[rank] == 2) pairs++;
 }
}

/**
 * print_result: Prints the classification of the hand, *
 * based on the values of the external *
 * variables straight, flush, four, three, *
 * and pairs. *
 **/
void print_result(void)
{
 if (straight && flush) printf("Straight flush");
 else if (four) printf("Four of a kind");
 else if (three &&
 pairs == 1) printf("Full house");
 else if (flush) printf("Flush");
 else if (straight) printf("Straight");
 else if (three) printf("Three of a kind");
 else if (pairs == 2) printf("Two pairs");
 else if (pairs == 1) printf("Pair");
 else printf("High card");

 printf("\n\n");
}

Notice the use of the exit function in read_cards (in case '0' of the first
switch statement). exit is convenient for this program because of its ability to
terminate execution from anywhere in the program.

C10.FM Page 236 Tuesday, February 12, 2008 4:23 PM

Q & A 237

Q & A

Q: What impact do local variables with static storage duration have on recursive
functions? [p. 220]

A: When a function is called recursively, fresh copies are made of its automatic vari-
ables for each call. This doesn’t occur for static variables, though. Instead, all calls
of the function share the same static variables.

Q: In the following example, j is initialized to the same value as i, but there are
two variables named i:

int i = 1;

void f(void)
{
 int j = i;
 int i = 2;
 …
}

Is this code legal? If so, what is j’s initial value, 1 or 2?
A: The code is indeed legal. The scope of a local variable doesn’t begin until its decla-

ration. Therefore, the declaration of j refers to the external variable named i. The
initial value of j will be 1.

Exercises

Section 10.4 1. The following program outline shows only function definitions and variable declarations.

int a;

void f(int b)
{
 int c;
}

void g(void)
{
 int d;
 {
 int e;
 }
}

int main(void)
{
 int f;
}

W

C10.FM Page 237 Tuesday, February 12, 2008 4:23 PM

238 Chapter 10 Program Organization

For each of the following scopes, list all variable and parameter names visible in that scope:

2. The following program outline shows only function definitions and variable declarations.

int b, c;

void f(void)
{
 int b, d;
}

void g(int a)
{
 int c;
 {
 int a, d;
 }
}

int main(void)
{
 int c, d;
}

For each of the following scopes, list all variable and parameter names visible in that scope.
If there’s more than one variable or parameter with the same name, indicate which one is
visible.

*3. Suppose that a program has only one function (main). How many different variables named
i could this program contain?

Programming Projects

1. Modify the stack example of Section 10.2 so that it stores characters instead of integers.
Next, add a main function that asks the user to enter a series of parentheses and/or braces,
then indicates whether or not they’re properly nested:

Enter parentheses and/or braces: ((){}{()})
Parentheses/braces are nested properly

Hint: As the program reads characters, have it push each left parenthesis or left brace. When
it reads a right parenthesis or brace, have it pop the stack and check that the item popped is a
matching parenthesis or brace. (If not, the parentheses/braces aren’t nested properly.) When
the program reads the new-line character, have it check whether the stack is empty; if so, the
parentheses/braces are matched. If the stack isn’t empty (or if stack_underflow is ever

(a) The f function
(b) The g function
(c) The block in which e is declared
(d) The main function

(a) The f function
(b) The g function
(c) The block in which a and d are declared
(d) The main function

C10.FM Page 238 Tuesday, February 12, 2008 4:23 PM

Programming Projects 239

called), the parentheses/braces aren’t matched. If stack_overflow is called, have the
program print the message Stack overflow and terminate immediately.

2. Modify the poker.c program of Section 10.5 by moving the num_in_rank and
num_in_suit arrays into main, which will pass them as arguments to read_cards
and analyze_hand.

3. Remove the num_in_rank, num_in_suit, and card_exists arrays from the
poker.c program of Section 10.5. Have the program store the cards in a 5 × 2 array
instead. Each row of the array will represent a card. For example, if the array is named
hand, then hand[0][0] will store the rank of the first card and hand[0][1] will store
the suit of the first card.

4. Modify the poker.c program of Section 10.5 by having it recognize an additional cate-
gory, “royal flush” (ace, king, queen, jack, ten of the same suit). A royal flush ranks higher
than all other hands.

5. Modify the poker.c program of Section 10.5 by allowing “ace-low” straights (ace, two,
three, four, five).

6. Some calculators (notably those from Hewlett-Packard) use a system of writing mathemati-
cal expressions known as Reverse Polish Notation (RPN). In this notation, operators are
placed after their operands instead of between their operands. For example, 1 + 2 would be
written 1 2 + in RPN, and 1 + 2 * 3 would be written 1 2 3 * +. RPN expressions can easily
be evaluated using a stack. The algorithm involves reading the operators and operands in an
expression from left to right, performing the following actions:

When an operand is encountered, push it onto the stack.
When an operator is encountered, pop its operands from the stack, perform the opera-
tion on those operands, and then push the result onto the stack.

Write a program that evaluates RPN expressions. The operands will be single-digit integers.
The operators are +, –, *, /, and =. The = operator causes the top stack item to be displayed;
afterwards, the stack is cleared and the user is prompted to enter another expression. The
process continues until the user enters a character that is not an operator or operand:

Enter an RPN expression: 1 2 3 * + =
Value of expression: 7
Enter an RPN expression: 5 8 * 4 9 - / =
Value of expression: -8
Enter an RPN expression: q

If the stack overflows, the program will display the message Expression is too com-
plex and terminate. If the stack underflows (because of an expression such as 1 2 + +), the
program will display the message Not enough operands in expression and termi-
nate. Hints: Incorporate the stack code from Section 10.2 into your program. Use
scanf(" %c", &ch) to read the operators and operands.

7. Write a program that prompts the user for a number and then displays the number, using
characters to simulate the effect of a seven-segment display:

Enter a number: 491-9014
 _ _ _
|_| |_| | |_| | | | |_|
 | _| | _| |_| | |

Characters other than digits should be ignored. Write the program so that the maximum
number of digits is controlled by a macro named MAX_DIGITS, which has the value 10. If

W

W

C10.FM Page 239 Tuesday, February 12, 2008 4:23 PM

240 Chapter 10 Program Organization

the number contains more than this number of digits, the extra digits are ignored. Hints: Use
two external arrays. One is the segments array (see Exercise 6 in Chapter 8), which stores
data representing the correspondence between digits and segments. The other array, dig-
its, will be an array of characters with 4 rows (since each segmented digit is four charac-
ters high) and MAX_DIGITS * 4 columns (digits are three characters wide, but a space is
needed between digits for readability). Write your program as four functions: main,
clear_digits_array, process_digit, and print_digits_array. Here are
the prototypes for the latter three functions:

void clear_digits_array(void);
void process_digit(int digit, int position);
void print_digits_array(void);

clear_digits_array will store blank characters into all elements of the digits
array. process_digit will store the seven-segment representation of digit into a
specified position in the digits array (positions range from 0 to MAX_DIGITS – 1).
print_digits_array will display the rows of the digits array, each on a single line,
producing output such as that shown in the example.

C10.FM Page 240 Tuesday, February 12, 2008 4:23 PM

241

11 Pointers

The 11th commandment was “Thou Shalt Compute”
or “Thou Shalt Not Compute”—I forget which.

Pointers are one of C’s most important—and most often misunderstood—features.
Because of their importance, we’ll devote three chapters to pointers. In this chap-
ter, we’ll concentrate on the basics; Chapters 12 and 17 cover more advanced uses
of pointers.

We’ll start with a discussion of memory addresses and their relationship to
pointer variables (Section 11.1). Section 11.2 then introduces the address and indi-
rection operators. Section 11.3 covers pointer assignment. Section 11.4 explains
how to pass pointers to functions, while Section 11.5 discusses returning pointers
from functions.

11.1 Pointer Variables

The first step in understanding pointers is visualizing what they represent at the
machine level. In most modern computers, main memory is divided into bytes,
with each byte capable of storing eight bits of information:

Each byte has a unique address to distinguish it from the other bytes in memory. If
there are n bytes in memory, we can think of addresses as numbers that range from
0 to n – 1 (see the figure at the top of the next page).

An executable program consists of both code (machine instructions corre-
sponding to statements in the original C program) and data (variables in the origi-
nal program). Each variable in the program occupies one or more bytes of memory;

0 1 0 1 0 1 10

C11.FM Page 241 Tuesday, February 12, 2008 4:26 PM

242 Chapter 11 Pointers

the address of the first byte is said to be the address of the variable. In the following
figure, the variable i occupies the bytes at addresses 2000 and 2001, so i’s address
is 2000:

Here’s where pointers come in. Although addresses are represented by num-
bers, their range of values may differ from that of integers, so we can’t necessarily
store them in ordinary integer variables. We can, however, store them in special
pointer variables. When we store the address of a variable i in the pointer variable
p, we say that p “points to” i. In other words, a pointer is nothing more than an
address, and a pointer variable is just a variable that can store an address.

Instead of showing addresses as numbers in our examples, I’ll use a simpler
notation. To indicate that a pointer variable p stores the address of a variable i, I’ll
show the contents of p as an arrow directed toward i:

Declaring Pointer Variables

A pointer variable is declared in much the same way as an ordinary variable. The
only difference is that the name of a pointer variable must be preceded by an aster-
isk:

int *p;

.

.

.

0

Address Contents

1

2

3

4

n-1

01010011

01110101

01110011

01100001

01101110

01000011

.

.

.

.

2000
i

2001

.

.

Q&A

p i

C11.FM Page 242 Tuesday, February 12, 2008 4:26 PM

11.2 The Address and Indirection Operators 243

This declaration states that p is a pointer variable capable of pointing to objects of
type int. I’m using the term object instead of variable since—as we’ll see in
Chapter 17—p might point to an area of memory that doesn’t belong to a variable.
(Be aware that “object” will have a different meaning when we discuss program
design in Chapter 19.)

Pointer variables can appear in declarations along with other variables:

int i, j, a[10], b[20], *p, *q;

In this example, i and j are ordinary integer variables, a and b are arrays of inte-
gers, and p and q are pointers to integer objects.

C requires that every pointer variable point only to objects of a particular type
(the referenced type):

int *p; /* points only to integers */
double *q; /* points only to doubles */
char *r; /* points only to characters */

There are no restrictions on what the referenced type may be. In fact, a pointer
variable can even point to another pointer.

11.2 The Address and Indirection Operators

C provides a pair of operators designed specifically for use with pointers. To find
the address of a variable, we use the & (address) operator. If x is a variable, then
&x is the address of x in memory. To gain access to the object that a pointer points
to, we use the * (indirection) operator. If p is a pointer, then *p represents the
object to which p currently points.

The Address Operator

Declaring a pointer variable sets aside space for a pointer but doesn’t make it point
to an object:

int *p; /* points nowhere in particular */

It’s crucial to initialize p before we use it. One way to initialize a pointer variable
is to assign it the address of some variable—or, more generally, lvalue—using the
& operator:

int i, *p;
…
p = &i;

By assigning the address of i to the variable p, this statement makes p point to i:

abstract objects ➤19.1

pointers to pointers ➤17.6

lvalues ➤4.2

p i?

C11.FM Page 243 Tuesday, February 12, 2008 4:26 PM

244 Chapter 11 Pointers

It’s also possible to initialize a pointer variable at the time we declare it:

int i;
int *p = &i;

We can even combine the declaration of i with the declaration of p, provided that
i is declared first:

int i, *p = &i;

The Indirection Operator

Once a pointer variable points to an object, we can use the * (indirection) operator
to access what’s stored in the object. If p points to i, for example, we can print the
value of i as follows:

printf("%d\n", *p);

printf will display the value of i, not the address of i.
The mathematically inclined reader may wish to think of * as the inverse of &.

Applying & to a variable produces a pointer to the variable; applying * to the
pointer takes us back to the original variable:

j = *&i; /* same as j = i; */

As long as p points to i, *p is an alias for i. Not only does *p have the same
value as i, but changing the value of *p also changes the value of i. (*p is an
lvalue, so assignment to it is legal.) The following example illustrates the equiva-
lence of *p and i; diagrams show the values of p and i at various points in the
computation.

p = &i;

i = 1;

printf("%d\n", i); /* prints 1 */
printf("%d\n", *p); /* prints 1 */
*p = 2;

printf("%d\n", i); /* prints 2 */
printf("%d\n", *p); /* prints 2 */

Q&A

Q&A

p i?

p i1

p i2

C11.FM Page 244 Tuesday, February 12, 2008 4:26 PM

11.3 Pointer Assignment 245

Never apply the indirection operator to an uninitialized pointer variable. If a
pointer variable p hasn’t been initialized, attempting to use the value of p in any
way causes undefined behavior. In the following example, the call of printf may
print garbage, cause the program to crash, or have some other effect:

int *p;
printf("%d", *p); /*** WRONG ***/

Assigning a value to *p is particularly dangerous. If p happens to contain a valid
memory address, the following assignment will attempt to modify the data stored
at that address:

int *p;
*p = 1; /*** WRONG ***/

If the location modified by this assignment belongs to the program, it may behave
erratically; if it belongs to the operating system, the program will most likely
crash. Your compiler may issue a warning that p is uninitialized, so pay close
attention to any warning messages you get.

11.3 Pointer Assignment

C allows the use of the assignment operator to copy pointers, provided that they
have the same type. Suppose that i, j, p, and q have been declared as follows:

int i, j, *p, *q;

The statement

p = &i;

is an example of pointer assignment; the address of i is copied into p. Here’s
another example of pointer assignment:

q = p;

This statement copies the contents of p (the address of i) into q, in effect making
q point to the same place as p:

Both p and q now point to i, so we can change i by assigning a new value to
either *p or *q:

p

q

i?

C11.FM Page 245 Tuesday, February 12, 2008 4:26 PM

246 Chapter 11 Pointers

*p = 1;

*q = 2;

Any number of pointer variables may point to the same object.
Be careful not to confuse

q = p;

with

*q = *p;

The first statement is a pointer assignment; the second isn’t, as the following
example shows:

p = &i;
q = &j;
i = 1;

*q = *p;

The assignment *q = *p copies the value that p points to (the value of i) into the
object that q points to (the variable j).

p

q

i1

p

q

i2

i

j

p

q

1

?

i

j

p

q

1

1

C11.FM Page 246 Tuesday, February 12, 2008 4:26 PM

11.4 Pointers as Arguments 247

11.4 Pointers as Arguments

So far, we’ve managed to avoid a rather important question: What are pointers
good for? There’s no single answer to that question, since pointers have several
distinct uses in C. In this section, we’ll see how a pointer to a variable can be use-
ful as a function argument. We’ll discover other uses for pointers in Section 11.5
and in Chapters 12 and 17.

We saw in Section 9.3 that a variable supplied as an argument in a function
call is protected against change, because C passes arguments by value. This prop-
erty of C can be a nuisance if we want the function to be able to modify the vari-
able. In Section 9.3, we tried—and failed—to write a decompose function that
could modify two of its arguments.

Pointers offer a solution to this problem: instead of passing a variable x as the
argument to a function, we’ll supply &x, a pointer to x. We’ll declare the corre-
sponding parameter p to be a pointer. When the function is called, p will have the
value &x, hence *p (the object that p points to) will be an alias for x. Each appear-
ance of *p in the body of the function will be an indirect reference to x, allowing
the function both to read x and to modify it.

To see this technique in action, let’s modify the decompose function by
declaring the parameters int_part and frac_part to be pointers. The defini-
tion of decompose will now look like this:

void decompose(double x, long *int_part, double *frac_part)
{
 *int_part = (long) x;
 *frac_part = x - *int_part;
}

The prototype for decompose could be either

void decompose(double x, long *int_part, double *frac_part);

or

void decompose(double, long *, double *);

We’ll call decompose in the following way:

decompose(3.14159, &i, &d);

Because of the & operator in front of i and d, the arguments to decompose are
pointers to i and d, not the values of i and d. When decompose is called, the
value 3.14159 is copied into x, a pointer to i is stored in int_part, and a
pointer to d is stored in frac_part:

C11.FM Page 247 Tuesday, February 12, 2008 4:26 PM

248 Chapter 11 Pointers

The first assignment in the body of decompose converts the value of x to type
long and stores it in the object pointed to by int_part. Since int_part
points to i, the assignment puts the value 3 in i:

The second assignment fetches the value that int_part points to (the value of
i), which is 3. This value is converted to type double and subtracted from x, giv-
ing .14159, which is then stored in the object that frac_part points to:

When decompose returns, i and d will have the values 3 and .14159, just as we
originally wanted.

Using pointers as arguments to functions is actually nothing new; we’ve been
doing it in calls of scanf since Chapter 2. Consider the following example:

int i;
…
scanf("%d", &i);

We must put the & operator in front of i so that scanf is given a pointer to i; that
pointer tells scanf where to put the value that it reads. Without the &, scanf
would be supplied with the value of i.

Although scanf’s arguments must be pointers, it’s not always true that every
argument needs the & operator. In the following example, scanf is passed a
pointer variable:

i

f

3.14159

int_part

x

frac_part ?

?

d

i

f

3.14159

int_part

x

frac_part ?

3

d

i

f

3.14159

int_part

x

frac_part .14159

3

d

C11.FM Page 248 Tuesday, February 12, 2008 4:26 PM

11.4 Pointers as Arguments 249

int i, *p;
…
p = &i;
scanf("%d", p);

Since p contains the address of i, scanf will read an integer and store it in i.
Using the & operator in the call would be wrong:

scanf("%d", &p); /*** WRONG ***/

scanf would read an integer and store it in p instead of in i.

Failing to pass a pointer to a function when one is expected can have disastrous
results. Suppose that we call decompose without the & operator in front of i and
d:

decompose(3.14159, i, d);

decompose is expecting pointers as its second and third arguments, but it’s been
given the values of i and d instead. decompose has no way to tell the difference,
so it will use the values of i and d as though they were pointers. When decom-
pose stores values in *int_part and *frac_part, it will attempt to change
unknown memory locations instead of modifying i and d.

If we’ve provided a prototype for decompose (as we should always do, of
course), the compiler will let us know that we’re attempting to pass arguments of
the wrong type. In the case of scanf, however, failing to pass pointers often goes
undetected by the compiler, making scanf an especially error-prone function.

PROGRAM Finding the Largest and Smallest Elements in an Array

To illustrate how pointers are passed to functions, let’s look at a function named
max_min that finds the largest and smallest elements in an array. When we call
max_min, we’ll pass it pointers to two variables; max_min will then store its
answers in these variables. max_min has the following prototype:

void max_min(int a[], int n, int *max, int *min);

A call of max_min might have the following appearance:

max_min(b, N, &big, &small);

b is an array of integers; N is the number of elements in b. big and small are
ordinary integer variables. When max_min finds the largest element in b, it stores
the value in big by assigning it to *max. (Since max points to big, an assign-
ment to *max will modify the value of big.) max_min stores the smallest ele-
ment of b in small by assigning it to *min.

To test max_min, we’ll write a program that reads 10 numbers into an array,
passes the array to max_min, and prints the results:

C11.FM Page 249 Tuesday, February 12, 2008 4:26 PM

250 Chapter 11 Pointers

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31
Largest: 102
Smallest: 7

Here’s the complete program:

maxmin.c /* Finds the largest and smallest elements in an array */

#include <stdio.h>

#define N 10

void max_min(int a[], int n, int *max, int *min);

int main(void)
{
 int b[N], i, big, small;

 printf("Enter %d numbers: ", N);
 for (i = 0; i < N; i++)
 scanf("%d", &b[i]);

 max_min(b, N, &big, &small);

 printf("Largest: %d\n", big);
 printf("Smallest: %d\n", small);

 return 0;
}

void max_min(int a[], int n, int *max, int *min)
{
 int i;

 *max = *min = a[0];
 for (i = 1; i < n; i++) {
 if (a[i] > *max)
 *max = a[i];
 else if (a[i] < *min)
 *min = a[i];
 }
}

Using const to Protect Arguments

When we call a function and pass it a pointer to a variable, we normally assume
that the function will modify the variable (otherwise, why would the function
require a pointer?). For example, if we see a statement like

f(&x);

C11.FM Page 250 Tuesday, February 12, 2008 4:26 PM

11.5 Pointers as Return Values 251

in a program, we’d probably expect f to change the value of x. It’s possible,
though, that f merely needs to examine the value of x, not change it. The reason
for the pointer might be efficiency: passing the value of a variable can waste time
and space if the variable requires a large amount of storage. (Section 12.3 covers
this point in more detail.)

We can use the word const to document that a function won’t change an
object whose address is passed to the function. const goes in the parameter’s
declaration, just before the specification of its type:

void f(const int *p)
{
 *p = 0; /*** WRONG ***/
}

This use of const indicates that p is a pointer to a “constant integer.” Attempting
to modify *p is an error that the compiler will detect.

11.5 Pointers as Return Values

We can not only pass pointers to functions but also write functions that return
pointers. Such functions are relatively common; we’ll encounter several in Chapter
13.

The following function, when given pointers to two integers, returns a pointer
to whichever integer is larger:

int *max(int *a, int *b)
{
 if (*a > *b)
 return a;
 else
 return b;
}

When we call max, we’ll pass pointers to two int variables and store the result in
a pointer variable:

int *p, i, j;
…
p = max(&i, &j);

During the call of max, *a is an alias for i, while *b is an alias for j. If i has a
larger value than j, max returns the address of i; otherwise, it returns the address
of j. After the call, p points to either i or j.

Although the max function returns one of the pointers passed to it as an argu-
ment, that’s not the only possibility. A function could also return a pointer to an
external variable or to a local variable that’s been declared static.

Q&A

C11.FM Page 251 Tuesday, February 12, 2008 4:26 PM

252 Chapter 11 Pointers

Never return a pointer to an automatic local variable:

int *f(void)
{
 int i;
 …
 return &i;
}

The variable i doesn’t exist once f returns, so the pointer to it will be invalid.
Some compilers issue a warning such as “function returns address of local vari-
able” in this situation.

Pointers can point to array elements, not just ordinary variables. If a is an
array, then &a[i] is a pointer to element i of a. When a function has an array
argument, it’s sometimes useful for the function to return a pointer to one of the
elements in the array. For example, the following function returns a pointer to the
middle element of the array a, assuming that a has n elements:

int *find_middle(int a[], int n) {
 return &a[n/2];
}

Chapter 12 explores the relationship between pointers and arrays in considerable
detail.

Q & A

*Q: Is a pointer always the same as an address? [p. 242]
A: Usually, but not always. Consider a computer whose main memory is divided into

words rather than bytes. A word might contain 36 bits, 60 bits, or some other
number of bits. If we assume 36-bit words, memory will have the following
appearance:

001000011001000011001000011001000011

001101110001101110001101110001101110

001100001001100001001100001001100001

001110011001110011001110011001110011

001110101001110101001110101001110101

001010011001010011001010011001010011

.

.

.

0

Address Contents

1

2

3

4

n-1

C11.FM Page 252 Tuesday, February 12, 2008 4:26 PM

Q & A 253

When memory is divided into words, each word has an address. An integer
usually occupies one word, so a pointer to an integer can just be an address. How-
ever, a word can store more than one character. For example, a 36-bit word might
store six 6-bit characters:

or four 9-bit characters:

For this reason, a pointer to a character may need to be stored in a different form
than other pointers. A pointer to a character might consist of an address (the word
in which the character is stored) plus a small integer (the position of the character
within the word).

On some computers, pointers may be “offsets” rather than complete
addresses. For example, CPUs in the Intel x86 family (used in many personal com-
puters) can execute programs in several modes. The oldest of these, which dates
back to the 8086 processor of 1978, is called real mode. In this mode, addresses
are sometimes represented by a single 16-bit number (an offset) and sometimes by
two 16-bit numbers (a segment:offset pair). An offset isn’t a true memory address;
the CPU must combine it with a segment value stored in a special register. To sup-
port real mode, older C compilers often provide two kinds of pointers: near point-
ers (16-bit offsets) and far pointers (32-bit segment:offset pairs). These compilers
usually reserve the words near and far as nonstandard keywords that can be
used to declare pointer variables.

*Q: If a pointer can point to data in a program, is it possible to have a pointer to
program code?

A: Yes. We’ll cover pointers to functions in Section 17.7.

Q: It seems to me that there’s an inconsistency between the declaration

int *p = &i;

and the statement

p = &i;

Why isn’t p preceded by a * symbol in the statement, as it is in the declara-
tion? [p. 244]

A: The source of the confusion is the fact that the * symbol can have different mean-
ings in C, depending on the context in which it’s used. In the declaration

int *p = &i;

the * symbol is not the indirection operator. Instead, it helps specify the type of p,
informing the compiler that p is a pointer to an int. When it appears in a statement,

010011 110101 110011 100001 101110 000011

001010011 001110101 001110011 001100001

C11.FM Page 253 Tuesday, February 12, 2008 4:26 PM

254 Chapter 11 Pointers

however, the * symbol performs indirection (when used as a unary operator). The
statement

*p = &i; /*** WRONG ***/

would be wrong, because it assigns the address of i to the object that p points to,
not to p itself.

Q: Is there some way to print the address of a variable? [p. 244]
A: Any pointer, including the address of a variable, can be displayed by calling the

printf function and using %p as the conversion specification. See Section 22.3
for details.

Q: The following declaration is confusing:

void f(const int *p);

Does this say that f can’t modify p? [p. 251]
A: No. It says that f can’t change the integer that p points to; it doesn’t prevent f

from changing p itself.

void f(const int *p)
{
 int j;

 *p = 0; /*** WRONG ***/
 p = &j; /* legal */
}

Since arguments are passed by value, assigning p a new value—by making it point
somewhere else—won’t have any effect outside the function.

*Q: When declaring a parameter of a pointer type, is it legal to put the word
const in front of the parameter’s name, as in the following example?

void f(int * const p);

A: Yes, although the effect isn’t the same as if const precedes p’s type. We saw in
Section 11.4 that putting const before p’s type protects the object that p points
to. Putting const after p’s type protects p itself:

void f(int * const p)
{
 int j;

 p = 0; / legal */
 p = &j; /*** WRONG ***/
}

This feature isn’t used very often. Since p is merely a copy of another pointer (the
argument when the function is called), there’s rarely any reason to protect it.

An even greater rarity is the need to protect both p and the object it points to,
which can be done by putting const both before and after p’s type:

C11.FM Page 254 Tuesday, February 12, 2008 4:26 PM

Exercises 255

void f(const int * const p)
{
 int j;

 *p = 0; /*** WRONG ***/
 p = &j; /*** WRONG ***/
}

Exercises

Section 11.2 1. If i is a variable and p points to i, which of the following expressions are aliases for i?

Section 11.3 2. If i is an int variable and p and q are pointers to int, which of the following assignments
are legal?

Section 11.4 3. The following function supposedly computes the sum and average of the numbers in the
array a, which has length n. avg and sum point to variables that the function should mod-
ify. Unfortunately, the function contains several errors; find and correct them.

void avg_sum(double a[], int n, double *avg, double *sum)
{
 int i;

 sum = 0.0;
 for (i = 0; i < n; i++)
 sum += a[i];
 avg = sum / n;
}

4. Write the following function:

void swap(int *p, int *q);

When passed the addresses of two variables, swap should exchange the values of the vari-
ables:

swap(&i, &j); /* exchanges values of i and j */

5. Write the following function:

void split_time(long total_sec, int *hr, int *min, int *sec);

total_sec is a time represented as the number of seconds since midnight. hr, min, and
sec are pointers to variables in which the function will store the equivalent time in hours
(0–23), minutes (0–59), and seconds (0–59), respectively.

6. Write the following function:

void find_two_largest(int a[], int n, int *largest,
 int *second_largest);

(a) *p (c) *&p (e) *i (g) *&i
(b) &p (d) &*p (f) &i (h) &*i

(a) p = i; (d) p = &q; (g) p = *q;
(b) *p = &i; (e) p = *&q; (h) *p = q;
(c) &p = q; (f) p = q; (i) *p = *q;

W

W

W

C11.FM Page 255 Tuesday, February 12, 2008 4:26 PM

256 Chapter 11 Pointers

When passed an array a of length n, the function will search a for its largest and second-
largest elements, storing them in the variables pointed to by largest and
second_largest, respectively.

7. Write the following function:

void split_date(int day_of_year, int year,
 int *month, int *day);

day_of_year is an integer between 1 and 366, specifying a particular day within the year
designated by year. month and day point to variables in which the function will store the
equivalent month (1–12) and day within that month (1–31).

Section 11.5 8. Write the following function:

int *find_largest(int a[], int n);

When passed an array a of length n, the function will return a pointer to the array’s largest
element.

Programming Projects

1. Modify Programming Project 7 from Chapter 2 so that it includes the following function:

void pay_amount(int dollars, int *twenties, int *tens,
 int *fives, int *ones);

The function determines the smallest number of $20, $10, $5, and $1 bills necessary to pay
the amount represented by the dollars parameter. The twenties parameter points to a
variable in which the function will store the number of $20 bills required. The tens,
fives, and ones parameters are similar.

2. Modify Programming Project 8 from Chapter 5 so that it includes the following function:

void find_closest_flight(int desired_time,
 int *departure_time,
 int *arrival_time);

This function will find the flight whose departure time is closest to desired_time
(expressed in minutes since midnight). It will store the departure and arrival times of this
flight (also expressed in minutes since midnight) in the variables pointed to by
departure_time and arrival_time, respectively.

3. Modify Programming Project 3 from Chapter 6 so that it includes the following function:

void reduce(int numerator, int denominator,
 int *reduced_numerator,
 int *reduced_denominator);

numerator and denominator are the numerator and denominator of a fraction.
reduced_numerator and reduced_denominator are pointers to variables in
which the function will store the numerator and denominator of the fraction once it has been
reduced to lowest terms.

4. Modify the poker.c program of Section 10.5 by moving all external variables into main
and modifying functions so that they communicate by passing arguments. The
analyze_hand function needs to change the straight, flush, four, three, and
pairs variables, so it will have to be passed pointers to those variables.

C11.FM Page 256 Tuesday, February 12, 2008 4:26 PM

257

12 Pointers and Arrays

Optimization hinders evolution.

Chapter 11 introduced pointers and showed how they’re used as function argu-
ments and as values returned by functions. This chapter covers another application
for pointers. When pointers point to array elements, C allows us to perform arith-
metic—addition and subtraction—on the pointers, which leads to an alternative
way of processing arrays in which pointers take the place of array subscripts.

The relationship between pointers and arrays in C is a close one, as we’ll soon
see. We’ll exploit this relationship in subsequent chapters, including Chapter 13
(Strings) and Chapter 17 (Advanced Uses of Pointers). Understanding the connec-
tion between pointers and arrays is critical for mastering C: it will give you insight
into how C was designed and help you understand existing programs. Be aware,
however, that one of the primary reasons for using pointers to process arrays—effi-
ciency—is no longer as important as it once was, thanks to improved compilers.

Section 12.1 discusses pointer arithmetic and shows how pointers can be com-
pared using the relational and equality operators. Section 12.2 then demonstrates
how we can use pointer arithmetic for processing array elements. Section 12.3
reveals a key fact about arrays—an array name can serve as a pointer to the array’s
first element—and uses it to show how array arguments really work. Section 12.4
shows how the topics of the first three sections apply to multidimensional arrays.
Section 12.5 wraps up the chapter by exploring the relationship between pointers
and variable-length arrays, a C99 feature.

12.1 Pointer Arithmetic

We saw in Section 11.5 that pointers can point to array elements. For example,
suppose that a and p have been declared as follows:

C12.FM Page 257 Tuesday, February 12, 2008 4:31 PM

258 Chapter 12 Pointers and Arrays

int a[10], *p;

We can make p point to a[0] by writing

p = &a[0];

Graphically, here’s what we’ve just done:

We can now access a[0] through p; for example, we can store the value 5 in
a[0] by writing

*p = 5;

Here’s our picture now:

Making a pointer p point to an element of an array a isn’t particularly excit-
ing. However, by performing pointer arithmetic (or address arithmetic) on p, we
can access the other elements of a. C supports three (and only three) forms of
pointer arithmetic:

Adding an integer to a pointer
Subtracting an integer from a pointer
Subtracting one pointer from another

Let’s take a close look at each of these operations. Our examples assume that the
following declarations are in effect:

int a[10], *p, *q, i;

Adding an Integer to a Pointer

Adding an integer j to a pointer p yields a pointer to the element j places after the
one that p points to. More precisely, if p points to the array element a[i], then
p + j points to a[i+j] (provided, of course, that a[i+j] exists).

The following example illustrates pointer addition; diagrams show the values
of p and q at various points in the computation.

a

p

0 1 2 3 4 5 6 7 8 9

a

p

0 1 2 3 4 5 6 7 8 9

5

Q&A

C12.FM Page 258 Tuesday, February 12, 2008 4:31 PM

12.1 Pointer Arithmetic 259

Subtracting an Integer from a Pointer

If p points to the array element a[i], then p - j points to a[i-j]. For example:

Subtracting One Pointer from Another

When one pointer is subtracted from another, the result is the distance (measured
in array elements) between the pointers. Thus, if p points to a[i] and q points to
a[j], then p - q is equal to i - j. For example:

p = &a[2];

a

0 1 2 3 4 5 6 7 8 9

p

q = p + 3;

a

0 1 2 3 4 5 6 7 8 9

p q

p += 6;

a

0 1 2 3 4 5 6 7 8 9

pq

p = &a[8];

a

0 1 2 3 4 5 6 7 8 9

p

q = p - 3;

a

0 1 2 3 4 5 6 7 8 9

pq

p -= 6;

a

0 1 2 3 4 5 6 7 8 9

p q

C12.FM Page 259 Tuesday, February 12, 2008 4:31 PM

260 Chapter 12 Pointers and Arrays

Performing arithmetic on a pointer that doesn’t point to an array element causes
undefined behavior. Furthermore, the effect of subtracting one pointer from
another is undefined unless both point to elements of the same array.

Comparing Pointers

We can compare pointers using the relational operators (<, <=, >, >=) and the
equality operators (== and !=). Using the relational operators to compare two
pointers is meaningful only when both point to elements of the same array. The
outcome of the comparison depends on the relative positions of the two elements
in the array. For example, after the assignments

p = &a[5];
q = &a[1];

the value of p <= q is 0 and the value of p >= q is 1.

Pointers to Compound Literals

It’s legal for a pointer to point to an element within an array created by a com-
pound literal. A compound literal, you may recall, is a C99 feature that can be used
to create an array with no name.

Consider the following example:

int *p = (int []){3, 0, 3, 4, 1};

p points to the first element of a five-element array containing the integers 3, 0, 3,
4, and 1. Using a compound literal saves us the trouble of first declaring an array
variable and then making p point to the first element of that array:

int a[] = {3, 0, 3, 4, 1};
int *p = &a[0];

12.2 Using Pointers for Array Processing

Pointer arithmetic allows us to visit the elements of an array by repeatedly incre-
menting a pointer variable. The following program fragment, which sums the ele-
ments of an array a, illustrates the technique. In this example, the pointer variable

p = &a[5];
q = &a[1];

i = p - q; /* i is 4 */
i = q - p; /* i is -4 */

a

0 1 2 3 4 5 6 7 8 9

pq

C99

compound literals ➤9.3

C12.FM Page 260 Tuesday, February 12, 2008 4:31 PM

12.2 Using Pointers for Array Processing 261

p initially points to a[0]. Each time through the loop, p is incremented; as a
result, it points to a[1], then a[2], and so forth. The loop terminates when p
steps past the last element of a.

#define N 10
…
int a[N], sum, *p;
…
sum = 0;
for (p = &a[0]; p < &a[N]; p++)
 sum += *p;

The following figures show the contents of a, sum, and p at the end of the first
three loop iterations (before p has been incremented).

The condition p < &a[N] in the for statement deserves special mention.
Strange as it may seem, it’s legal to apply the address operator to a[N], even
though this element doesn’t exist (a is indexed from 0 to N – 1). Using a[N] in
this fashion is perfectly safe, since the loop doesn’t attempt to examine its value.
The body of the loop will be executed with p equal to &a[0], &a[1], …,
&a[N-1], but when p is equal to &a[N], the loop terminates.

We could just as easily have written the loop without pointers, of course, using
subscripting instead. The argument most often cited in support of pointer arithmetic
is that it can save execution time. However, that depends on the implementation—
some C compilers actually produce better code for loops that rely on subscripting.

At the end of the first iteration:

a

0 1 2 3 4 5 6 7 8 9

p

sum

11

11

34 82 7 64 98 47 18 79 20

At the end of the second iteration:

a

0 1 2 3 4 5 6 7 8 9

p

sum

11

45

34 82 7 64 98 47 18 79 20

At the end of the third iteration:

a

0 1 2 3 4 5 6 7 8 9

p

sum

11

127

34 82 7 64 98 47 18 79 20

Q&A

C12.FM Page 261 Tuesday, February 12, 2008 4:31 PM

262 Chapter 12 Pointers and Arrays

Combining the * and ++ Operators

C programmers often combine the * (indirection) and ++ operators in statements
that process array elements. Consider the simple case of storing a value into an
array element and then advancing to the next element. Using array subscripting,
we might write

a[i++] = j;

If p is pointing to an array element, the corresponding statement would be

*p++ = j;

Because the postfix version of ++ takes precedence over *, the compiler sees this
as

*(p++) = j;

The value of p++ is p. (Since we’re using the postfix version of ++, p won’t be
incremented until after the expression has been evaluated.) Thus, the value of
*(p++) will be *p—the object to which p is pointing.

Of course, *p++ isn’t the only legal combination of * and ++. We could write
(*p)++, for example, which returns the value of the object that p points to, and
then increments that object (p itself is unchanged). If you find this confusing, the
following table may help:

 Expression Meaning
*p++ or *(p++) Value of expression is *p before increment; increment p later
(*p)++ Value of expression is *p before increment; increment *p later
*++p or *(++p) Increment p first; value of expression is *p after increment
++*p or ++(*p) Increment *p first; value of expression is *p after increment

All four combinations appear in programs, although some are far more common
than others. The one we’ll see most frequently is *p++, which is handy in loops.
Instead of writing

for (p = &a[0]; p < &a[N]; p++)
 sum += *p;

to sum the elements of the array a, we could write

p = &a[0];
while (p < &a[N])
 sum += *p++;

The * and -- operators mix in the same way as * and ++. For an application
that combines * and --, let’s return to the stack example of Section 10.2. The orig-
inal version of the stack relied on an integer variable named top to keep track of
the “top-of-stack” position in the contents array. Let’s replace top by a pointer
variable that points initially to element 0 of the contents array:

int *top_ptr = &contents[0];

C12.FM Page 262 Tuesday, February 12, 2008 4:31 PM

12.3 Using an Array Name as a Pointer 263

Here are the new push and pop functions (updating the other stack functions is
left as an exercise):

void push(int i)
{
 if (is_full())
 stack_overflow();
 else
 *top_ptr++ = i;
}

int pop(void)
{
 if (is_empty())
 stack_underflow();
 else
 return *--top_ptr;
}

Note that I’ve written *--top_ptr, not *top_ptr--, since I want pop to dec-
rement top_ptr before fetching the value to which it points.

12.3 Using an Array Name as a Pointer

Pointer arithmetic is one way in which arrays and pointers are related, but it’s not
the only connection between the two. Here’s another key relationship: The name of
an array can be used as a pointer to the first element in the array. This relationship
simplifies pointer arithmetic and makes both arrays and pointers more versatile.

For example, suppose that a is declared as follows:

int a[10];

Using a as a pointer to the first element in the array, we can modify a[0]:

a = 7; / stores 7 in a[0] */

We can modify a[1] through the pointer a + 1:

(a+1) = 12; / stores 12 in a[1] */

In general, a + i is the same as &a[i] (both represent a pointer to element i of a)
and *(a+i) is equivalent to a[i] (both represent element i itself). In other
words, array subscripting can be viewed as a form of pointer arithmetic.

The fact that an array name can serve as a pointer makes it easier to write
loops that step through an array. Consider the following loop from Section 12.2:

for (p = &a[0]; p < &a[N]; p++)
 sum += *p;

C12.FM Page 263 Tuesday, February 12, 2008 4:31 PM

264 Chapter 12 Pointers and Arrays

To simplify the loop, we can replace &a[0] by a and &a[N] by a + N:

idiom for (p = a; p < a + N; p++)
 sum += *p;

Although an array name can be used as a pointer, it’s not possible to assign it a new
value. Attempting to make it point elsewhere is an error:

while (*a != 0)
 a++; /*** WRONG ***/

This is no great loss; we can always copy a into a pointer variable, then change the
pointer variable:

p = a;
while (*p != 0)
 p++;

PROGRAM Reversing a Series of Numbers (Revisited)

The reverse.c program of Section 8.1 reads 10 numbers, then writes the num-
bers in reverse order. As the program reads the numbers, it stores them in an array.
Once all the numbers are read, the program steps through the array backwards as it
prints the numbers.

The original program used subscripting to access elements of the array. Here’s
a new version in which I’ve replaced subscripting with pointer arithmetic.

reverse3.c /* Reverses a series of numbers (pointer version) */

#include <stdio.h>

#define N 10

int main(void)
{
 int a[N], *p;

 printf("Enter %d numbers: ", N);
 for (p = a; p < a + N; p++)
 scanf("%d", p);

 printf("In reverse order:");
 for (p = a + N - 1; p >= a; p--)
 printf(" %d", *p);
 printf("\n");

 return 0;
}

In the original program, an integer variable i kept track of the current position
within the array. The new version replaces i with p, a pointer variable. The num-

C12.FM Page 264 Tuesday, February 12, 2008 4:31 PM

12.3 Using an Array Name as a Pointer 265

bers are still stored in an array; we’re simply using a different technique to keep
track of where we are in the array.

Note that the second argument to scanf is p, not &p. Since p points to an
array element, it’s a satisfactory argument for scanf; &p, on the other hand,
would be a pointer to a pointer to an array element.

Array Arguments (Revisited)

When passed to a function, an array name is always treated as a pointer. Consider
the following function, which returns the largest element in an array of integers:

int find_largest(int a[], int n)
{
 int i, max;

 max = a[0];
 for (i = 1; i < n; i++)
 if (a[i] > max)
 max = a[i];
 return max;
}

Suppose that we call find_largest as follows:

largest = find_largest(b, N);

This call causes a pointer to the first element of b to be assigned to a; the array
itself isn’t copied.

The fact that an array argument is treated as a pointer has some important con-
sequences:

� When an ordinary variable is passed to a function, its value is copied; any
changes to the corresponding parameter don’t affect the variable. In contrast,
an array used as an argument isn’t protected against change, since no copy is
made of the array itself. For example, the following function (which we first
saw in Section 9.3) modifies an array by storing zero into each of its elements:

void store_zeros(int a[], int n)
{
 int i;

 for (i = 0; i < n; i++)
 a[i] = 0;
}

To indicate that an array parameter won’t be changed, we can include the word
const in its declaration:

int find_largest(const int a[], int n)
{
 …
}

C12.FM Page 265 Tuesday, February 12, 2008 4:31 PM

266 Chapter 12 Pointers and Arrays

If const is present, the compiler will check that no assignment to an element
of a appears in the body of find_largest.

� The time required to pass an array to a function doesn’t depend on the size of
the array. There’s no penalty for passing a large array, since no copy of the
array is made.

� An array parameter can be declared as a pointer if desired. For example,
find_largest could be defined as follows:

int find_largest(int *a, int n)
{
 …
}

Declaring a to be a pointer is equivalent to declaring it to be an array; the
compiler treats the declarations as though they were identical.

Although declaring a parameter to be an array is the same as declaring it to be a
pointer, the same isn’t true for a variable. The declaration

int a[10];

causes the compiler to set aside space for 10 integers. In contrast, the declaration

int *a;

causes the compiler to allocate space for a pointer variable. In the latter case, a is
not an array; attempting to use it as an array can have disastrous results. For exam-
ple, the assignment

*a = 0; /*** WRONG ***/

will store 0 where a is pointing. Since we don’t know where a is pointing, the
effect on the program is undefined.

� A function with an array parameter can be passed an array “slice”—a sequence
of consecutive elements. Suppose that we want find_largest to locate the
largest element in some portion of an array b, say elements b[5], …, b[14].
When we call find_largest, we’ll pass it the address of b[5] and the
number 10, indicating that we want find_largest to examine 10 array
elements, starting at b[5]:

largest = find_largest(&b[5], 10);

Using a Pointer as an Array Name

If we can use an array name as a pointer, will C allow us to subscript a pointer as
though it were an array name? By now, you’d probably expect the answer to be
yes, and you’d be right. Here’s an example:

Q&A

C12.FM Page 266 Tuesday, February 12, 2008 4:31 PM

12.4 Pointers and Multidimensional Arrays 267

#define N 10
…
int a[N], i, sum = 0, *p = a;
…
for (i = 0; i < N; i++)
 sum += p[i];

The compiler treats p[i] as *(p+i), which is a perfectly legal use of pointer
arithmetic. Although the ability to subscript a pointer may seem to be little more
than a curiosity, we’ll see in Section 17.3 that it’s actually quite useful.

12.4 Pointers and Multidimensional Arrays

Just as pointers can point to elements of one-dimensional arrays, they can also
point to elements of multidimensional arrays. In this section, we’ll explore com-
mon techniques for using pointers to process the elements of multidimensional
arrays. For simplicity, I’ll stick to two-dimensional arrays, but everything we’ll do
applies equally to higher-dimensional arrays.

Processing the Elements of a Multidimensional Array

We saw in Section 8.2 that C stores two-dimensional arrays in row-major order; in
other words, the elements of row 0 come first, followed by the elements of row 1,
and so forth. An array with r rows would have the following appearance:

We can take advantage of this layout when working with pointers. If we make a
pointer p point to the first element in a two-dimensional array (the element in row
0, column 0), we can visit every element in the array by incrementing p repeatedly.

As an example, let’s look at the problem of initializing all elements of a two-
dimensional array to zero. Suppose that the array has been declared as follows:

int a[NUM_ROWS][NUM_COLS];

The obvious technique would be to use nested for loops:

int row, col;
…
for (row = 0; row < NUM_ROWS; row++)
 for (col = 0; col < NUM_COLS; col++)
 a[row][col] = 0;

row 0 row 1 row r – 1
.

C12.FM Page 267 Tuesday, February 12, 2008 4:31 PM

268 Chapter 12 Pointers and Arrays

But if we view a as a one-dimensional array of integers (which is how it’s stored),
we can replace the pair of loops by a single loop:

int *p;
…
for (p = &a[0][0]; p <= &a[NUM_ROWS-1][NUM_COLS-1]; p++)
 *p = 0;

The loop begins with p pointing to a[0][0]. Successive increments of p make
it point to a[0][1], a[0][2], a[0][3], and so on. When p reaches
a[0][NUM_COLS-1] (the last element in row 0), incrementing it again makes
p point to a[1][0], the first element in row 1. The process continues until p
goes past a[NUM_ROWS-1][NUM_COLS-1], the last element in the array.

Although treating a two-dimensional array as one-dimensional may seem like
cheating, it works with most C compilers. Whether it’s a good idea to do so is
another matter. Techniques like this one definitely hurt program readability, but—
at least with some older compilers—produce a compensating increase in effi-
ciency. With many modern compilers, though, there’s often little or no speed
advantage.

Processing the Rows of a Multidimensional Array

What about processing the elements in just one row of a two-dimensional array?
Again, we have the option of using a pointer variable p. To visit the elements of
row i, we’d initialize p to point to element 0 in row i in the array a:

p = &a[i][0];

Or we could simply write

p = a[i];

since, for any two-dimensional array a, the expression a[i] is a pointer to the
first element in row i. To see why this works, recall the magic formula that relates
array subscripting to pointer arithmetic: for any array a, the expression a[i] is
equivalent to *(a + i). Thus, &a[i][0] is the same as &(*(a[i] + 0)),
which is equivalent to &*a[i], which is the same as a[i], since the & and *
operators cancel. We’ll use this simplification in the following loop, which clears
row i of the array a:

int a[NUM_ROWS][NUM_COLS], *p, i;
…
for (p = a[i]; p < a[i] + NUM_COLS; p++)
 *p = 0;

Since a[i] is a pointer to row i of the array a, we can pass a[i] to a
function that’s expecting a one-dimensional array as its argument. In other words,
a function that’s designed to work with one-dimensional arrays will also work
with a row belonging to a two-dimensional array. As a result, functions such as

Q&A

C12.FM Page 268 Tuesday, February 12, 2008 4:31 PM

12.4 Pointers and Multidimensional Arrays 269

find_largest and store_zeros are more versatile than you might expect.
Consider find_largest, which we originally designed to find the largest ele-
ment of a one-dimensional array. We can just as easily use find_largest to
determine the largest element in row i of the two-dimensional array a:

largest = find_largest(a[i], NUM_COLS);

Processing the Columns of a Multidimensional Array

Processing the elements in a column of a two-dimensional array isn’t as easy,
because arrays are stored by row, not by column. Here’s a loop that clears column
i of the array a:

int a[NUM_ROWS][NUM_COLS], (*p)[NUM_COLS], i;
…
for (p = &a[0]; p < &a[NUM_ROWS]; p++)
 (*p)[i] = 0;

I’ve declared p to be a pointer to an array of length NUM_COLS whose elements
are integers. The parentheses around *p in (*p)[NUM_COLS] are required;
without them, the compiler would treat p as an array of pointers instead of a
pointer to an array. The expression p++ advances p to the beginning of the next
row. In the expression (*p)[i], *p represents an entire row of a, so (*p)[i]
selects the element in column i of that row. The parentheses in (*p)[i] are
essential, because the compiler would interpret *p[i] as *(p[i]).

Using the Name of a Multidimensional Array as a Pointer

Just as the name of a one-dimensional array can be used as a pointer, so can the
name of any array, regardless of how many dimensions it has. Some care is
required, though. Consider the following array:

int a[NUM_ROWS][NUM_COLS];

a is not a pointer to a[0][0]; instead, it’s a pointer to a[0]. This makes more
sense if we look at it from the standpoint of C, which regards a not as a two-
dimensional array but as a one-dimensional array whose elements are one-
dimensional arrays. When used as a pointer, a has type int (*)[NUM_COLS]
(pointer to an integer array of length NUM_COLS).

Knowing that a points to a[0] is useful for simplifying loops that process the
elements of a two-dimensional array. For example, instead of writing

for (p = &a[0]; p < &a[NUM_ROWS]; p++)
 (*p)[i] = 0;

to clear column i of the array a, we can write

for (p = a; p < a + NUM_ROWS; p++)
 (*p)[i] = 0;

C12.FM Page 269 Tuesday, February 12, 2008 4:31 PM

270 Chapter 12 Pointers and Arrays

Another situation in which this knowledge comes in handy is when we want
to “trick” a function into thinking that a multidimensional array is really one-
dimensional. For example, consider how we might use find_largest to find
the largest element in a. As the first argument to find_largest, let’s try
passing a (the address of the array); as the second, we’ll pass NUM_ROWS *
NUM_COLS (the total number of elements in a):

largest = find_largest(a, NUM_ROWS * NUM_COLS); /* WRONG */

Unfortunately, the compiler will object to this statement, because the type of a is
int (*)[NUM_COLS] but find_largest is expecting an argument of type
int *. The correct call is

largest = find_largest(a[0], NUM_ROWS * NUM_COLS);

a[0] points to element 0 in row 0, and it has type int * (after conversion by the
compiler), so the latter call will work correctly.

12.5 Pointers and Variable-Length Arrays (C99)

Pointers are allowed to point to elements of variable-length arrays (VLAs), a fea-
ture of C99. An ordinary pointer variable would be used to point to an element of a
one-dimensional VLA:

void f(int n)
{
 int a[n], *p;
 p = a;
 …
}

When the VLA has more than one dimension, the type of the pointer de-
pends on the length of each dimension except for the first. Let’s look at the two-
dimensional case:

void f(int m, int n)
{
 int a[m][n], (*p)[n];
 p = a;
 …
}

Since the type of p depends on n, which isn’t constant, p is said to have a variably
modified type. Note that the validity of an assignment such as p = a can’t always
be determined by the compiler. For example, the following code will compile but is
correct only if m and n are equal:

int a[m][n], (*p)[m];
p = a;

Q&A

variable-length arrays ➤8.3

C12.FM Page 270 Tuesday, February 12, 2008 4:31 PM

Q & A 271

If m ≠ n, any subsequent use of p will cause undefined behavior.
Variably modified types are subject to certain restrictions, just as variable-

length arrays are. The most important restriction is that the declaration of a vari-
ably modified type must be inside the body of a function or in a function proto-
type.

Pointer arithmetic works with VLAs just as it does for ordinary arrays.
Returning to the example of Section 12.4 that clears a single column of a two-
dimensional array a, let’s declare a as a VLA this time:

int a[m][n];

A pointer capable of pointing to a row of a would be declared as follows:

int (*p)[n];

The loop that clears column i is almost identical to the one we used in Section
12.4:

for (p = a; p < a + m; p++)
 (*p)[i] = 0;

Q & A

Q: I don’t understand pointer arithmetic. If a pointer is an address, does that
mean that an expression like p + j adds j to the address stored in p? [p. 258]

A: No. Integers used in pointer arithmetic are scaled depending on the type of the
pointer. If p is of type int *, for example, then p + j typically adds 4 × j to p,
assuming that int values are stored using 4 bytes. But if p has type double *,
then p + j will probably add 8 × j to p, since double values are usually 8 bytes
long.

Q: When writing a loop to process an array, is it better to use array subscripting
or pointer arithmetic? [p. 261]

A: There’s no easy answer to this question, since it depends on the machine you’re
using and the compiler itself. In the early days of C on the PDP-11, pointer arith-
metic yielded a faster program. On today’s machines, using today’s compilers,
array subscripting is often just as good, and sometimes even better. The bottom
line: Learn both ways and then use whichever is more natural for the kind of pro-
gram you’re writing.

*Q: I read somewhere that i[a] is the same as a[i]. Is this true?
A: Yes, it is, oddly enough. The compiler treats i[a] as *(i + a), which is the same

as *(a + i). (Pointer addition, like ordinary addition, is commutative.) But
*(a + i) is equivalent to a[i]. Q.E.D. But please don’t use i[a] in programs
unless you’re planning to enter the next Obfuscated C contest.

C12.FM Page 271 Tuesday, February 12, 2008 4:31 PM

272 Chapter 12 Pointers and Arrays

Q: Why is *a the same as a[] in a parameter declaration? [p. 266]
A: Both indicate that the argument is expected to be a pointer. The same operations on

a are possible in both cases (pointer arithmetic and array subscripting, in particu-
lar). And, in both cases, a itself can be assigned a new value within the function.
(Although C allows us to use the name of an array variable only as a “constant
pointer,” there’s no such restriction on the name of an array parameter.)

Q: Is it better style to declare an array parameter as *a or a[]?
A: That’s a tough one. From one standpoint, a[] is the obvious choice, since *a is

ambiguous (does the function want an array of objects or a pointer to a single
object?). On the other hand, many programmers argue that declaring the parameter
as *a is more accurate, since it reminds us that only a pointer is passed, not a copy
of the array. Others switch between *a and a[], depending on whether the func-
tion uses pointer arithmetic or subscripting to access the elements of the array.
(That’s the approach I’ll use.) In practice, *a is more common than a[], so you’d
better get used to it. For what it’s worth, Dennis Ritchie now refers to the a[]
notation as “a living fossil” that “serves as much to confuse the learner as to alert
the reader.”

Q: We’ve seen that arrays and pointers are closely related in C. Would it be accu-
rate to say that they’re interchangeable?

A: No. It’s true that array parameters are interchangeable with pointer parameters, but
array variables aren’t the same as pointer variables. Technically, the name of an
array isn’t a pointer; rather, the C compiler converts it to a pointer when necessary.
To see this difference more clearly, consider what happens when we apply the
sizeof operator to an array a. The value of sizeof(a) is the total number of
bytes in the array—the size of each element multiplied by the number of elements.
But if p is a pointer variable, sizeof(p) is the number of bytes required to store
a pointer value.

Q: You said that treating a two-dimensional array as one-dimensional works
with “most” C compilers. Doesn’t it work with all compilers? [p. 268]

A: No. Some modern “bounds-checking” compilers track not only the type of a
pointer, but—when it points to an array—also the length of the array. For example,
suppose that p is assigned a pointer to a[0][0]. Technically, p points to the first
element of a[0], a one-dimensional array. If we increment p repeatedly in an
effort to visit all the elements of a, we’ll go out of bounds once p goes past the last
element of a[0]. A compiler that performs bounds-checking may insert code to
check that p is used only to access elements in the array pointed to by a[0]; an
attempt to increment p past the end of this array would be detected as an error.

Q: If a is a two-dimensional array, why can we pass a[0]—but not a itself—to
find_largest? Don’t both a and a[0] point to the same place (the begin-
ning of the array)? [p. 270]

A: They do, as a matter of fact—both point to element a[0][0]. The problem is that

C12.FM Page 272 Tuesday, February 12, 2008 4:31 PM

Exercises 273

a has the wrong type. When used as an argument, it’s a pointer to an array, but
find_largest is expecting a pointer to an integer. However, a[0] has type
int *, so it’s an acceptable argument for find_largest. This concern about
types is actually good; if C weren’t so picky, we could make all kinds of horrible
pointer mistakes without the compiler noticing.

Exercises

Section 12.1 1. Suppose that the following declarations are in effect:

int a[] = {5, 15, 34, 54, 14, 2, 52, 72};
int *p = &a[1], *q = &a[5];

*2. Suppose that high, low, and middle are all pointer variables of the same type, and that
low and high point to elements of an array. Why is the following statement illegal, and
how could it be fixed?

middle = (low + high) / 2;

Section 12.2 3. What will be the contents of the a array after the following statements are executed?

#define N 10

int a[N] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int *p = &a[0], *q = &a[N-1], temp;

while (p < q) {
 temp = *p;
 *p++ = *q;
 *q-- = temp;
}

4. Rewrite the make_empty, is_empty, and is_full functions of Section 10.2 to use the
pointer variable top_ptr instead of the integer variable top.

Section 12.3 5. Suppose that a is a one-dimensional array and p is a pointer variable. Assuming that the
assignment p = a has just been performed, which of the following expressions are illegal
because of mismatched types? Of the remaining expressions, which are true (have a nonzero
value)?

6. Rewrite the following function to use pointer arithmetic instead of array subscripting. (In
other words, eliminate the variable i and all uses of the [] operator.) Make as few changes
as possible.

(a) What is the value of *(p+3)?
(b) What is the value of *(q-3)?
(c) What is the value of q - p?
(d) Is the condition p < q true or false?
(e) Is the condition *p < *q true or false?

W

W

(a) p == a[0]
(b) p == &a[0]
(c) *p == a[0]
(d) p[0] == a[0]

W

C12.FM Page 273 Tuesday, February 12, 2008 4:31 PM

274 Chapter 12 Pointers and Arrays

int sum_array(const int a[], int n)
{
 int i, sum;

 sum = 0;
 for (i = 0; i < n; i++)
 sum += a[i];
 return sum;
}

7. Write the following function:

bool search(const int a[], int n, int key);

a is an array to be searched, n is the number of elements in the array, and key is the search
key. search should return true if key matches some element of a, and false if it
doesn’t. Use pointer arithmetic—not subscripting—to visit array elements.

8. Rewrite the following function to use pointer arithmetic instead of array subscripting. (In
other words, eliminate the variable i and all uses of the [] operator.) Make as few changes
as possible.

void store_zeros(int a[], int n)
{
 int i;

 for (i = 0; i < n; i++)
 a[i] = 0;
}

9. Write the following function:

double inner_product(const double *a, const double *b,
 int n);

a and b both point to arrays of length n. The function should return a[0] * b[0] +
a[1] * b[1] + … + a[n-1] * b[n-1]. Use pointer arithmetic—not subscripting—to
visit array elements.

10. Modify the find_middle function of Section 11.5 so that it uses pointer arithmetic to
calculate the return value.

11. Modify the find_largest function so that it uses pointer arithmetic—not subscript-
ing—to visit array elements.

12. Write the following function:

void find_two_largest(const int *a, int n, int *largest,
 int *second_largest);

a points to an array of length n. The function searches the array for its largest and second-
largest elements, storing them in the variables pointed to by largest and
second_largest, respectively. Use pointer arithmetic—not subscripting—to visit array
elements.

Section 12.4 13. Section 8.2 had a program fragment in which two nested for loops initialized the array
ident for use as an identity matrix. Rewrite this code, using a single pointer to step
through the array one element at a time. Hint: Since we won’t be using row and col index
variables, it won’t be easy to tell where to store 1. Instead, we can use the fact that the first
element of the array should be 1, the next N elements should be 0, the next element should

W

C12.FM Page 274 Tuesday, February 12, 2008 4:31 PM

Programming Projects 275

be 1, and so forth. Use a variable to keep track of how many consecutive 0s have been
stored; when the count reaches N, it’s time to store 1.

14. Assume that the following array contains a week’s worth of hourly temperature readings,
with each row containing the readings for one day:

int temperatures[7][24];

Write a statement that uses the search function (see Exercise 7) to search the entire
temperatures array for the value 32.

15. Write a loop that prints all temperature readings stored in row i of the temperatures
array (see Exercise 14). Use a pointer to visit each element of the row.

16. Write a loop that prints the highest temperature in the temperatures array (see Exercise
14) for each day of the week. The loop body should call the find_largest function,
passing it one row of the array at a time.

17. Rewrite the following function to use pointer arithmetic instead of array subscripting. (In
other words, eliminate the variables i and j and all uses of the [] operator.) Use a single
loop instead of nested loops.

int sum_two_dimensional_array(const int a[][LEN], int n)
{
 int i, j, sum = 0;

 for (i = 0; i < n; i++)
 for (j = 0; j < LEN; j++)
 sum += a[i][j];

 return sum;
}

18. Write the evaluate_position function described in Exercise 13 of Chapter 9. Use
pointer arithmetic—not subscripting—to visit array elements. Use a single loop instead of
nested loops.

Programming Projects

1. (a) Write a program that reads a message, then prints the reversal of the message:

Enter a message: Don't get mad, get even.
Reversal is: .neve teg ,dam teg t'noD

Hint: Read the message one character at a time (using getchar) and store the characters in
an array. Stop reading when the array is full or the character read is '\n'.

(b) Revise the program to use a pointer instead of an integer to keep track of the current
position in the array.

2. (a) Write a program that reads a message, then checks whether it’s a palindrome (the letters
in the message are the same from left to right as from right to left):

Enter a message: He lived as a devil, eh?
Palindrome

Enter a message: Madam, I am Adam.
Not a palindrome

W

W

C12.FM Page 275 Tuesday, February 12, 2008 4:31 PM

276 Chapter 12 Pointers and Arrays

Ignore all characters that aren’t letters. Use integer variables to keep track of positions in the
array.

(b) Revise the program to use pointers instead of integers to keep track of positions in the
array.

3. Simplify Programming Project 1(b) by taking advantage of the fact that an array name can
be used as a pointer.

4. Simplify Programming Project 2(b) by taking advantage of the fact that an array name can
be used as a pointer.

5. Modify Programming Project 14 from Chapter 8 so that it uses a pointer instead of an inte-
ger to keep track of the current position in the array that contains the sentence.

6. Modify the qsort.c program of Section 9.6 so that low, high, and middle are pointers
to array elements rather than integers. The split function will need to return a pointer, not
an integer.

7. Modify the maxmin.c program of Section 11.4 so that the max_min function uses a
pointer instead of an integer to keep track of the current position in the array.

W

C12.FM Page 276 Tuesday, February 12, 2008 4:31 PM

277

13 Strings

It’s difficult to extract sense from strings, but
they’re the only communication coin we can count on.

Although we’ve used char variables and arrays of char values in previous chap-
ters, we still lack any convenient way to process a series of characters (a string, in
C terminology). We’ll remedy that defect in this chapter, which covers both string
constants (or literals, as they’re called in the C standard) and string variables,
which can change during the execution of a program.

Section 13.1 explains the rules that govern string literals, including the rules
for embedding escape sequences in string literals and for breaking long string liter-
als. Section 13.2 then shows how to declare string variables, which are simply
arrays of characters in which a special character—the null character—marks the
end of a string. Section 13.3 describes ways to read and write strings. Section 13.4
shows how to write functions that process strings, and Section 13.5 covers some of
the string-handling functions in the C library. Section 13.6 presents idioms that are
often used when working with strings. Finally, Section 13.7 describes how to set
up arrays whose elements are pointers to strings of different lengths. This section
also explains how C uses such an array to supply command-line information to
programs.

13.1 String Literals

A string literal is a sequence of characters enclosed within double quotes:

"When you come to a fork in the road, take it."

We first encountered string literals in Chapter 2; they often appear as format
strings in calls of printf and scanf.

C13.FM Page 277 Tuesday, February 12, 2008 4:35 PM

278 Chapter 13 Strings

Escape Sequences in String Literals

String literals may contain the same escape sequences as character constants.
We’ve used character escapes in printf and scanf format strings for some
time. For example, we’ve seen that each \n character in the string

"Candy\nIs dandy\nBut liquor\nIs quicker.\n --Ogden Nash\n"

causes the cursor to advance to the next line:

Candy
Is dandy
But liquor
Is quicker.
 --Ogden Nash

Although octal and hexadecimal escapes are also legal in string literals, they’re not
as common as character escapes.

Be careful when using octal and hexadecimal escape sequences in string literals.
An octal escape ends after three digits or with the first non-octal character. For
example, the string "\1234" contains two characters (\123 and 4), and the
string "\189" contains three characters (\1, 8, and 9). A hexadecimal escape, on
the other hand, isn’t limited to three digits; it doesn’t end until the first non-hex
character. Consider what happens if a string contains the escape \xfc, which rep-
resents the character ü in the Latin1 character set, a common extension of ASCII.
The string "Z\xfcrich" (“Zürich”) has six characters (Z, \xfc, r, i, c, and
h), but the string "\xfcber" (a failed attempt at “über”) has only two (\xfcbe
and r). Most compilers will object to the latter string, since hex escapes are usually
limited to the range \x0–\xff.

Continuing a String Literal

If we find that a string literal is too long to fit conveniently on a single line, C
allows us to continue it on the next line, provided that we end the first line with a
backslash character (\). No other characters may follow \ on the same line, other
than the (invisible) new-line character at the end:

printf("When you come to a fork in the road, take it. \
--Yogi Berra");

In general, the \ character can be used to join two or more lines of a program into
a single line (a process that the C standard refers to as “splicing”). We’ll see more
examples of splicing in Section 14.3.

The \ technique has one drawback: the string must continue at the beginning
of the next line, thereby wrecking the program’s indented structure. There’s a bet-
ter way to deal with long string literals, thanks to the following rule: when two or
more string literals are adjacent (separated only by white space), the compiler will

escape sequences ➤7.3

Q&A

C13.FM Page 278 Tuesday, February 12, 2008 4:35 PM

13.1 String Literals 279

join them into a single string. This rule allows us to split a string literal over two or
more lines:

printf("When you come to a fork in the road, take it. "
 "--Yogi Berra");

How String Literals Are Stored

We’ve used string literals often in calls of printf and scanf. But when we call
printf and supply a string literal as an argument, what are we actually passing?
To answer this question, we need to know how string literals are stored.

In essence, C treats string literals as character arrays. When a C compiler
encounters a string literal of length n in a program, it sets aside n + 1 bytes of
memory for the string. This area of memory will contain the characters in the
string, plus one extra character—the null character—to mark the end of the string.
The null character is a byte whose bits are all zero, so it’s represented by the \0
escape sequence.

Don’t confuse the null character ('\0') with the zero character ('0'). The null
character has the code 0; the zero character has a different code (48 in ASCII).

For example, the string literal "abc" is stored as an array of four characters
(a, b, c, and \0):

String literals may be empty; the string "" is stored as a single null character:

Since a string literal is stored as an array, the compiler treats it as a pointer of
type char *. Both printf and scanf, for example, expect a value of type
char * as their first argument. Consider the following example:

printf("abc");

When printf is called, it’s passed the address of "abc" (a pointer to where the
letter a is stored in memory).

Operations on String Literals

In general, we can use a string literal wherever C allows a char * pointer. For
example, a string literal can appear on the right side of an assignment:

a b c \0

\0

C13.FM Page 279 Tuesday, February 12, 2008 4:35 PM

280 Chapter 13 Strings

char *p;

p = "abc";

This assignment doesn’t copy the characters in "abc"; it merely makes p point to
the first character of the string.

C allows pointers to be subscripted, so we can subscript string literals:

char ch;

ch = "abc"[1];

The new value of ch will be the letter b. The other possible subscripts are 0 (which
would select the letter a), 2 (the letter c), and 3 (the null character). This property
of string literals isn’t used that much, but occasionally it’s handy. Consider the fol-
lowing function, which converts a number between 0 and 15 into a character that
represents the equivalent hex digit:

char digit_to_hex_char(int digit)
{
 return "0123456789ABCDEF"[digit];
}

Attempting to modify a string literal causes undefined behavior:

char *p = "abc";

*p = 'd'; /*** WRONG ***/

A program that tries to change a string literal may crash or behave erratically.

String Literals versus Character Constants

A string literal containing a single character isn’t the same as a character constant.
The string literal "a" is represented by a pointer to a memory location that con-
tains the character a (followed by a null character). The character constant 'a' is
represented by an integer (the numerical code for the character).

Don’t ever use a character when a string is required (or vice versa). The call

printf("\n");

is legal, because printf expects a pointer as its first argument. The following
call isn’t legal, however:

printf('\n'); /*** WRONG ***/

Q&A

C13.FM Page 280 Tuesday, February 12, 2008 4:35 PM

13.2 String Variables 281

13.2 String Variables

Some programming languages provide a special string type for declaring string
variables. C takes a different tack: any one-dimensional array of characters can be
used to store a string, with the understanding that the string is terminated by a null
character. This approach is simple, but has significant difficulties. It’s sometimes
hard to tell whether an array of characters is being used as a string. If we write our
own string-handling functions, we’ve got to be careful that they deal properly with
the null character. Also, there’s no faster way to determine the length of a string
than a character-by-character search for the null character.

Let’s say that we need a variable capable of storing a string of up to 80 charac-
ters. Since the string will need a null character at the end, we’ll declare the variable
to be an array of 81 characters:

idiom #define STR_LEN 80
…
char str[STR_LEN+1];

We defined STR_LEN to be 80 rather than 81, thus emphasizing the fact that str
can store strings of no more than 80 characters, and then added 1 to STR_LEN in
the declaration of str. This a common practice among C programmers.

When declaring an array of characters that will be used to hold a string, always
make the array one character longer than the string, because of the C convention
that every string is terminated by a null character. Failing to leave room for the null
character may cause unpredictable results when the program is executed, since
functions in the C library assume that strings are null-terminated.

Declaring a character array to have length STR_LEN + 1 doesn’t mean that it
will always contain a string of STR_LEN characters. The length of a string
depends on the position of the terminating null character, not on the length of the
array in which the string is stored. An array of STR_LEN + 1 characters can hold
strings of various lengths, ranging from the empty string to strings of length
STR_LEN.

Initializing a String Variable

A string variable can be initialized at the same time it’s declared:

char date1[8] = "June 14";

C13.FM Page 281 Tuesday, February 12, 2008 4:35 PM

282 Chapter 13 Strings

The compiler will put the characters from "June 14" in the date1 array, then
add a null character so that date1 can be used as a string. Here’s what date1
will look like:

Although "June 14" appears to be a string literal, it’s not. Instead, C views it as
an abbreviation for an array initializer. In fact, we could have written

char date1[8] = {'J', 'u', 'n', 'e', ' ', '1', '4', '\0'};

I think you’ll agree that the original version is easier to read.
What if the initializer is too short to fill the string variable? In that case, the

compiler adds extra null characters. Thus, after the declaration

char date2[9] = "June 14";

date2 will have the following appearance:

This behavior is consistent with C’s treatment of array initializers in general. When
an array initializer is shorter than the array itself, the remaining elements are ini-
tialized to zero. By initializing the leftover elements of a character array to \0, the
compiler is following the same rule.

What if the initializer is longer than the string variable? That’s illegal for
strings, just as it’s illegal for other arrays. However, C does allow the initializer
(not counting the null character) to have exactly the same length as the variable:

char date3[7] = "June 14";

There’s no room for the null character, so the compiler makes no attempt to store
one:

If you’re planning to initialize a character array to contain a string, be sure that the
length of the array is longer than the length of the initializer. Otherwise, the com-
piler will quietly omit the null character, making the array unusable as a string.

The declaration of a string variable may omit its length, in which case the
compiler computes it:

char date4[] = "June 14";

date1 J u n e 1 4 \0

date2 J u n e 1 4 \0 \0

array initializers ➤8.1

date3 J u n e 1 4

C13.FM Page 282 Tuesday, February 12, 2008 4:35 PM

13.2 String Variables 283

The compiler sets aside eight characters for date4, enough to store the characters
in "June 14" plus a null character. (The fact that the length of date4 isn’t spec-
ified doesn’t mean that the array’s length can be changed later. Once the program
is compiled, the length of date4 is fixed at eight.) Omitting the length of a string
variable is especially useful if the initializer is long, since computing the length by
hand is error-prone.

Character Arrays versus Character Pointers

Let’s compare the declaration

char date[] = "June 14";

which declares date to be an array, with the similar-looking

char *date = "June 14";

which declares date to be a pointer. Thanks to the close relationship between
arrays and pointers, we can use either version of date as a string. In particular,
any function expecting to be passed a character array or character pointer will
accept either version of date as an argument.

However, we must be careful not to make the mistake of thinking that the two
versions of date are interchangeable. There are significant differences between
the two:

� In the array version, the characters stored in date can be modified, like the
elements of any array. In the pointer version, date points to a string literal,
and we saw in Section 13.1 that string literals shouldn’t be modified.

� In the array version, date is an array name. In the pointer version, date is a
variable that can be made to point to other strings during program execution.

If we need a string that can be modified, it’s our responsibility to set up an
array of characters in which to store the string; declaring a pointer variable isn’t
enough. The declaration

char *p;

causes the compiler to set aside enough memory for a pointer variable; unfortu-
nately, it doesn’t allocate space for a string. (And how could it? We haven’t indi-
cated how long the string would be.) Before we can use p as a string, it must point
to an array of characters. One possibility is to make p point to a string variable:

char str[STR_LEN+1], *p;

p = str;

p now points to the first character of str, so we can use p as a string. Another
possibility is to make p point to a dynamically allocated string.dynamically allocated strings ➤17.2

C13.FM Page 283 Tuesday, February 12, 2008 4:35 PM

284 Chapter 13 Strings

Using an uninitialized pointer variable as a string is a serious error. Consider the
following example, which attempts to build the string "abc":

char *p;

p[0] = 'a'; /*** WRONG ***/
p[1] = 'b'; /*** WRONG ***/
p[2] = 'c'; /*** WRONG ***/
p[3] = '\0'; /*** WRONG ***/

Since p hasn’t been initialized, we don’t know where it’s pointing. Using the
pointer to write the characters a, b, c, and \0 into memory causes undefined
behavior.

13.3 Reading and Writing Strings

Writing a string is easy using either the printf or puts functions. Reading a
string is a bit harder, primarily because of the possibility that the input string may
be longer than the string variable into which it’s being stored. To read a string in a
single step, we can use either scanf or gets. As an alternative, we can read
strings one character at a time.

Writing Strings Using printf and puts

The %s conversion specification allows printf to write a string. Consider the
following example:

char str[] = "Are we having fun yet?";

printf("%s\n", str);

The output will be

Are we having fun yet?

printf writes the characters in a string one by one until it encounters a null char-
acter. (If the null character is missing, printf continues past the end of the string
until—eventually—it finds a null character somewhere in memory.)

To print just part of a string, we can use the conversion specification %.ps,
where p is the number of characters to be displayed. The statement

printf("%.6s\n", str);

will print

Are we

C13.FM Page 284 Tuesday, February 12, 2008 4:35 PM

13.3 Reading and Writing Strings 285

A string, like a number, can be printed within a field. The %ms conversion will
display a string in a field of size m. (A string with more than m characters will be
printed in full, not truncated.) If the string has fewer than m characters, it will be
right-justified within the field. To force left justification instead, we can put a
minus sign in front of m. The m and p values can be used in combination: a conver-
sion specification of the form %m.ps causes the first p characters of a string to be
displayed in a field of size m.

printf isn’t the only function that can write strings. The C library also pro-
vides puts, which is used in the following way:

puts(str);

puts has only one argument (the string to be printed). After writing the string,
puts always writes an additional new-line character, thus advancing to the begin-
ning of the next output line.

Reading Strings Using scanf and gets

The %s conversion specification allows scanf to read a string into a character
array:

scanf("%s", str);

There’s no need to put the & operator in front of str in the call of scanf; like any
array name, str is treated as a pointer when passed to a function.

When scanf is called, it skips white space, then reads characters and stores
them in str until it encounters a white-space character. scanf always stores a
null character at the end of the string.

A string read using scanf will never contain white space. Consequently,
scanf won’t usually read a full line of input; a new-line character will cause
scanf to stop reading, but so will a space or tab character. To read an entire line
of input at a time, we can use gets. Like scanf, the gets function reads input
characters into an array, then stores a null character. In other respects, however,
gets is somewhat different from scanf:

� gets doesn’t skip white space before starting to read the string (scanf
does).

� gets reads until it finds a new-line character (scanf stops at any white-
space character). Incidentally, gets discards the new-line character instead of
storing it in the array; the null character takes its place.

To see the difference between scanf and gets, consider the following pro-
gram fragment:

char sentence[SENT_LEN+1];

printf("Enter a sentence:\n");
scanf("%s", sentence);

white-space characters ➤3.2

C13.FM Page 285 Tuesday, February 12, 2008 4:35 PM

286 Chapter 13 Strings

Suppose that after the prompt

Enter a sentence:

the user enters the line

 To C, or not to C: that is the question.

scanf will store the string "To" in sentence. The next call of scanf will
resume reading the line at the space after the word To.

Now suppose that we replace scanf by gets:

gets(sentence);

When the user enters the same input as before, gets will store the string

" To C, or not to C: that is the question."

in sentence.

As they read characters into an array, scanf and gets have no way to detect
when it’s full. Consequently, they may store characters past the end of the array,
causing undefined behavior. scanf can be made safer by using the conversion
specification %ns instead of %s, where n is an integer indicating the maximum
number of characters to be stored. gets, unfortunately, is inherently unsafe;
fgets is a much better alternative.

Reading Strings Character by Character

Since both scanf and gets are risky and insufficiently flexible for many appli-
cations, C programmers often write their own input functions. By reading strings
one character at a time, these functions provide a greater degree of control than the
standard input functions.

If we decide to design our own input function, we’ll need to consider the fol-
lowing issues:

� Should the function skip white space before beginning to store the string?

� What character causes the function to stop reading: a new-line character, any
white-space character, or some other character? Is this character stored in the
string or discarded?

� What should the function do if the input string is too long to store: discard the
extra characters or leave them for the next input operation?

Suppose we need a function that doesn’t skip white-space characters, stops
reading at the first new-line character (which isn’t stored in the string), and dis-
cards extra characters. The function might have the following prototype:

int read_line(char str[], int n);

fgets function ➤22.5

C13.FM Page 286 Tuesday, February 12, 2008 4:35 PM

13.4 Accessing the Characters in a String 287

str represents the array into which we’ll store the input, and n is the maximum
number of characters to be read. If the input line contains more than n characters,
read_line will discard the additional characters. We’ll have read_line
return the number of characters it actually stores in str (a number anywhere from
0 to n). We may not always need read_line’s return value, but it doesn’t hurt to
have it available.

read_line consists primarily of a loop that calls getchar to read a char-
acter and then stores the character in str, provided that there’s room left. The loop
terminates when the new-line character is read. (Strictly speaking, we should also
have the loop terminate if getchar should fail to read a character, but we’ll
ignore that complication for now.) Here’s the complete definition of read_line:

int read_line(char str[], int n)
{
 int ch, i = 0;

 while ((ch = getchar()) != '\n')
 if (i < n)
 str[i++] = ch;
 str[i] = '\0'; /* terminates string */
 return i; /* number of characters stored */
}

Note that ch has int type rather than char type, because getchar returns the
character that it reads as an int value.

Before returning, read_line puts a null character at the end of the string.
Standard functions such as scanf and gets automatically put a null character at
the end of an input string; if we’re writing our own input function, however, we
must take on that responsibility.

13.4 Accessing the Characters in a String

Since strings are stored as arrays, we can use subscripting to access the characters
in a string. To process every character in a string s, for example, we can set up a
loop that increments a counter i and selects characters via the expression s[i].

Suppose that we need a function that counts the number of spaces in a string.
Using array subscripting, we might write the function in the following way:

int count_spaces(const char s[])
{
 int count = 0, i;

 for (i = 0; s[i] != '\0'; i++)
 if (s[i] == ' ')
 count++;
 return count;
}

getchar function ➤7.3

Q&A

C13.FM Page 287 Tuesday, February 12, 2008 4:35 PM

288 Chapter 13 Strings

I’ve included const in the declaration of s to indicate that count_spaces
doesn’t change the array that s represents. If s were not a string, the function
would need a second argument specifying the length of the array. Since s is a
string, however, count_spaces can determine where it ends by testing for the
null character.

Many C programmers wouldn’t write count_spaces as we have. Instead,
they’d use a pointer to keep track of the current position within the string. As we
saw in Section 12.2, this technique is always available for processing arrays, but it
proves to be especially convenient for working with strings.

Let’s rewrite the count_spaces function using pointer arithmetic instead
of array subscripting. We’ll eliminate the variable i and use s itself to keep track
of our position in the string. By incrementing s repeatedly, count_spaces can
step through each character in the string. Here’s our new version of the function:

int count_spaces(const char *s)
{
 int count = 0;

 for (; *s != '\0'; s++)
 if (*s == ' ')
 count++;
 return count;
}

Note that const doesn’t prevent count_spaces from modifying s; it’s there to
prevent the function from modifying what s points to. And since s is a copy of the
pointer that’s passed to count_spaces, incrementing s doesn’t affect the origi-
nal pointer.

The count_spaces example raises some questions about how to write
string functions:

� Is it better to use array operations or pointer operations to access the char-
acters in a string? We’re free to use whichever is more convenient; we can
even mix the two. In the second version of count_spaces, treating s as a
pointer simplifies the function slightly by removing the need for the variable
i. Traditionally, C programmers lean toward using pointer operations for pro-
cessing strings.

� Should a string parameter be declared as an array or as a pointer? The two
versions of count_spaces illustrate the options: the first version declares s
to be an array; the second declares s to be a pointer. Actually, there’s no dif-
ference between the two declarations—recall from Section 12.3 that the com-
piler treats an array parameter as though it had been declared as a pointer.

� Does the form of the parameter (s[] or *s) affect what can be supplied as
an argument? No. When count_spaces is called, the argument could be
an array name, a pointer variable, or a string literal—count_spaces can’t
tell the difference.

C13.FM Page 288 Tuesday, February 12, 2008 4:35 PM

13.5 Using the C String Library 289

13.5 Using the C String Library

Some programming languages provide operators that can copy strings, compare
strings, concatenate strings, select substrings, and the like. C’s operators, in con-
trast, are essentially useless for working with strings. Strings are treated as arrays
in C, so they’re restricted in the same ways as arrays—in particular, they can’t be
copied or compared using operators.

Direct attempts to copy or compare strings will fail. For example, suppose that
str1 and str2 have been declared as follows:

char str1[10], str2[10];

Copying a string into a character array using the = operator is not possible:

str1 = "abc"; /*** WRONG ***/
str2 = str1; /*** WRONG ***/

We saw in Section 12.3 that using an array name as the left operand of = is illegal.
Initializing a character array using = is legal, though:

char str1[10] = "abc";

In the context of a declaration, = is not the assignment operator.
Attempting to compare strings using a relational or equality operator is legal

but won’t produce the desired result:

if (str1 == str2) … /*** WRONG ***/

This statement compares str1 and str2 as pointers; it doesn’t compare the con-
tents of the two arrays. Since str1 and str2 have different addresses, the
expression str1 == str2 must have the value 0.

Fortunately, all is not lost: the C library provides a rich set of functions for
performing operations on strings. Prototypes for these functions reside in the
<string.h> header, so programs that need string operations should contain the
following line:

#include <string.h>

Most of the functions declared in <string.h> require at least one string as
an argument. String parameters are declared to have type char *, allowing the
argument to be a character array, a variable of type char *, or a string literal—all
are suitable as strings. Watch out for string parameters that aren’t declared const,
however. Such a parameter may be modified when the function is called, so the
corresponding argument shouldn’t be a string literal.

<string.h> header ➤23.6

C13.FM Page 289 Tuesday, February 12, 2008 4:35 PM

290 Chapter 13 Strings

There are many functions in <string.h>; I’ll cover a few of the most basic.
In subsequent examples, assume that str1 and str2 are character arrays used as
strings.

The strcpy (String Copy) Function

The strcpy function has the following prototype in <string.h>:

char *strcpy(char *s1, const char *s2);

strcpy copies the string s2 into the string s1. (To be precise, we should say
“strcpy copies the string pointed to by s2 into the array pointed to by s1.”)
That is, strcpy copies characters from s2 to s1 up to (and including) the first
null character in s2. strcpy returns s1 (a pointer to the destination string). The
string pointed to by s2 isn’t modified, so it’s declared const.

The existence of strcpy compensates for the fact that we can’t use the
assignment operator to copy strings. For example, suppose that we want to store
the string "abcd" in str2. We can’t use the assignment

str2 = "abcd"; /*** WRONG ***/

because str2 is an array name and can’t appear on the left side of an assignment.
Instead, we can call strcpy:

strcpy(str2, "abcd"); /* str2 now contains "abcd" */

Similarly, we can’t assign str2 to str1 directly, but we can call strcpy:

strcpy(str1, str2); /* str1 now contains "abcd" */

Most of the time, we’ll discard the value that strcpy returns. On occasion,
though, it can be useful to call strcpy as part of a larger expression in order to
use its return value. For example, we could chain together a series of strcpy
calls:

strcpy(str1, strcpy(str2, "abcd"));
 /* both str1 and str2 now contain "abcd" */

In the call strcpy(str1, str2), strcpy has no way to check that the string
pointed to by str2 will actually fit in the array pointed to by str1. Suppose that
str1 points to an array of length n. If the string that str2 points to has no more
than n – 1 characters, then the copy will succeed. But if str2 points to a longer
string, undefined behavior occurs. (Since strcpy always copies up to the first null
character, it will continue copying past the end of the array that str1 points to.)

Calling the strncpy function is a safer, albeit slower, way to copy a string.
strncpy is similar to strcpy but has a third argument that limits the number of
characters that will be copied. To copy str2 into str1, we could use the follow-
ing call of strncpy:

strncpy function ➤23.6

C13.FM Page 290 Tuesday, February 12, 2008 4:35 PM

13.5 Using the C String Library 291

strncpy(str1, str2, sizeof(str1));

As long as str1 is large enough to hold the string stored in str2 (including the
null character), the copy will be done correctly. strncpy itself isn’t without dan-
ger, though. For one thing, it will leave the string in str1 without a terminating
null character if the length of the string stored in str2 is greater than or equal to
the size of the str1 array. Here’s a safer way to use strncpy:

strncpy(str1, str2, sizeof(str1) - 1);
str1[sizeof(str1)-1] = '\0';

The second statement guarantees that str1 is always null-terminated, even if
strncpy fails to copy a null character from str2.

The strlen (String Length) Function

The strlen function has the following prototype:

size_t strlen(const char *s);

size_t, which is defined in the C library, is a typedef name that represents
one of C’s unsigned integer types. Unless we’re dealing with extremely long
strings, this technicality need not concern us—we can simply treat the return value
of strlen as an integer.

strlen returns the length of a string s: the number of characters in s up to,
but not including, the first null character. Here are a few examples:

int len;

len = strlen("abc"); /* len is now 3 */
len = strlen(""); /* len is now 0 */
strcpy(str1, "abc");
len = strlen(str1); /* len is now 3 */

The last example illustrates an important point. When given an array as its argu-
ment, strlen doesn’t measure the length of the array itself; instead, it returns the
length of the string stored in the array.

The strcat (String Concatenation) Function

The strcat function has the following prototype:

char *strcat(char *s1, const char *s2);

strcat appends the contents of the string s2 to the end of the string s1; it
returns s1 (a pointer to the resulting string).

Here are some examples of strcat in action:

strcpy(str1, "abc");
strcat(str1, "def"); /* str1 now contains "abcdef" */

size_t type ➤7.6

C13.FM Page 291 Tuesday, February 12, 2008 4:35 PM

292 Chapter 13 Strings

strcpy(str1, "abc");
strcpy(str2, "def");
strcat(str1, str2); /* str1 now contains "abcdef" */

As with strcpy, the value returned by strcat is normally discarded. The
following example shows how the return value might be used:

strcpy(str1, "abc");
strcpy(str2, "def");
strcat(str1, strcat(str2, "ghi"));
 /* str1 now contains "abcdefghi"; str2 contains "defghi" */

The effect of the call strcat(str1, str2) is undefined if the array pointed to
by str1 isn’t long enough to accommodate the additional characters from str2.
Consider the following example:

char str1[6] = "abc";

strcat(str1, "def"); /*** WRONG ***/

strcat will attempt to add the characters d, e, f, and \0 to the end of the string
already stored in str1. Unfortunately, str1 is limited to six characters, causing
strcat to write past the end of the array.

The strncat function is a safer but slower version of strcat. Like
strncpy, it has a third argument that limits the number of characters it will copy.
Here’s what a call might look like:

strncat(str1, str2, sizeof(str1) - strlen(str1) - 1);

strncat will terminate str1 with a null character, which isn’t included in the
third argument (the number of characters to be copied). In the example, the third
argument calculates the amount of space remaining in str1 (given by the expres-
sion sizeof(str1) - strlen(str1)) and then subtracts 1 to ensure that
there will be room for the null character.

The strcmp (String Comparison) Function

The strcmp function has the following prototype:

int strcmp(const char *s1, const char *s2);

strcmp compares the strings s1 and s2, returning a value less than, equal to, or
greater than 0, depending on whether s1 is less than, equal to, or greater than s2.
For example, to see if str1 is less than str2, we’d write

if (strcmp(str1, str2) < 0) /* is str1 < str2? */
 …

strncat function ➤23.6

Q&A

C13.FM Page 292 Tuesday, February 12, 2008 4:35 PM

13.5 Using the C String Library 293

To test whether str1 is less than or equal to str2, we’d write

if (strcmp(str1, str2) <= 0) /* is str1 <= str2? */
 …

By choosing the proper relational operator (<, <=, >, >=) or equality operator (==,
!=), we can test any possible relationship between str1 and str2.

strcmp compares strings based on their lexicographic ordering, which re-
sembles the way words are arranged in a dictionary. More precisely, strcmp con-
siders s1 to be less than s2 if either one of the following conditions is satisfied:

� The first i characters of s1 and s2 match, but the (i+1)st character of s1 is
less than the (i+1)st character of s2. For example, "abc" is less than "bcd",
and "abd" is less than "abe".

� All characters of s1 match s2, but s1 is shorter than s2. For example,
"abc" is less than "abcd".

As it compares characters from two strings, strcmp looks at the numerical
codes that represent the characters. Some knowledge of the underlying character
set is helpful in order to predict what strcmp will do. For example, here are a few
important properties of the ASCII character set:

� The characters in each of the sequences A–Z, a–z, and 0–9 have consecutive
codes.

� All upper-case letters are less than all lower-case letters. (In ASCII, codes
between 65 and 90 represent upper-case letters; codes between 97 and 122
represent lower-case letters.)

� Digits are less than letters. (Codes between 48 and 57 represent digits.)

� Spaces are less than all printing characters. (The space character has the value
32 in ASCII.)

PROGRAM Printing a One-Month Reminder List

To illustrate the use of the C string library, we’ll now develop a program that prints
a one-month list of daily reminders. The user will enter a series of reminders, with
each prefixed by a day of the month. When the user enters 0 instead of a valid day,
the program will print a list of all reminders entered, sorted by day. Here’s what a
session with the program will look like:

Enter day and reminder: 24 Susan's birthday
Enter day and reminder: 5 6:00 - Dinner with Marge and Russ
Enter day and reminder: 26 Movie - "Chinatown"
Enter day and reminder: 7 10:30 - Dental appointment
Enter day and reminder: 12 Movie - "Dazed and Confused"
Enter day and reminder: 5 Saturday class
Enter day and reminder: 12 Saturday class
Enter day and reminder: 0

ASCII character set ➤Appendix E

C13.FM Page 293 Tuesday, February 12, 2008 4:35 PM

294 Chapter 13 Strings

Day Reminder
 5 Saturday class
 5 6:00 - Dinner with Marge and Russ
 7 10:30 - Dental appointment
 12 Saturday class
 12 Movie - "Dazed and Confused"
 24 Susan's birthday
 26 Movie - "Chinatown"

The overall strategy isn’t very complicated: we’ll have the program read a
series of day-and-reminder combinations, storing them in order (sorted by day),
and then display them. To read the days, we’ll use scanf; to read the reminders,
we’ll use the read_line function of Section 13.3.

We’ll store the strings in a two-dimensional array of characters, with each row
of the array containing one string. After the program reads a day and its associated
reminder, it will search the array to determine where the day belongs, using
strcmp to do comparisons. It will then use strcpy to move all strings below
that point down one position. Finally, the program will copy the day into the array
and call strcat to append the reminder to the day. (The day and the reminder
have been kept separate up to this point.).

Of course, there are always a few minor complications. For example, we want
the days to be right-justified in a two-character field, so that their ones digits will
line up. There are many ways to handle the problem. I’ve chosen to have the pro-
gram use scanf to read the day into an integer variable, then call sprintf to
convert the day back into string form. sprintf is a library function that’s similar
to printf, except that it writes output into a string. The call

sprintf(day_str, "%2d", day);

writes the value of day into day_str. Since sprintf automatically adds a null
character when it’s through writing, day_str will contain a properly null-termi-
nated string.

Another complication is making sure that the user doesn’t enter more than two
digits. We’ll use the following call of scanf for this purpose:

scanf("%2d", &day);

The number 2 between % and d tells scanf to stop reading after two digits, even
if the input has more digits.

With those details out of the way, here’s the program:

remind.c /* Prints a one-month reminder list */

#include <stdio.h>
#include <string.h>

#define MAX_REMIND 50 /* maximum number of reminders */
#define MSG_LEN 60 /* max length of reminder message */

sprintf function ➤22.8

C13.FM Page 294 Tuesday, February 12, 2008 4:35 PM

13.5 Using the C String Library 295

int read_line(char str[], int n);

int main(void)
{
 char reminders[MAX_REMIND][MSG_LEN+3];
 char day_str[3], msg_str[MSG_LEN+1];
 int day, i, j, num_remind = 0;

 for (;;) {
 if (num_remind == MAX_REMIND) {
 printf("-- No space left --\n");
 break;
 }

 printf("Enter day and reminder: ");
 scanf("%2d", &day);
 if (day == 0)
 break;
 sprintf(day_str, "%2d", day);
 read_line(msg_str, MSG_LEN);

 for (i = 0; i < num_remind; i++)
 if (strcmp(day_str, reminders[i]) < 0)
 break;
 for (j = num_remind; j > i; j--)
 strcpy(reminders[j], reminders[j-1]);

 strcpy(reminders[i], day_str);
 strcat(reminders[i], msg_str);

 num_remind++;
 }

 printf("\nDay Reminder\n");
 for (i = 0; i < num_remind; i++)
 printf(" %s\n", reminders[i]);

 return 0;
}

int read_line(char str[], int n)
{
 int ch, i = 0;

 while ((ch = getchar()) != '\n')
 if (i < n)
 str[i++] = ch;
 str[i] = '\0';
 return i;
}

Although remind.c is useful for demonstrating the strcpy, strcat, and
strcmp functions, it lacks something as a practical reminder program. There are

C13.FM Page 295 Tuesday, February 12, 2008 4:35 PM

296 Chapter 13 Strings

obviously a number of improvements needed, ranging from minor tweaks to major
enhancements (such as saving the reminders in a file when the program termi-
nates). We’ll discuss several improvements in the programming projects at the end
of this chapter and in later chapters.

13.6 String Idioms

Functions that manipulate strings are a particularly rich source of idioms. In this
section, we’ll explore some of the most famous idioms by using them to write the
strlen and strcat functions. You’ll never have to write these functions, of
course, since they’re part of the standard library, but you may have to write func-
tions that are similar.

The concise style I’ll use in this section is popular with many C programmers.
You should master this style even if you don’t plan to use it in your own programs,
since you’re likely to encounter it in code written by others.

One last note before we get started. If you want to try out any of the versions
of strlen and strcat in this section, be sure to alter the name of the function
(changing strlen to my_strlen, for example). As Section 21.1 explains,
we’re not allowed to write a function that has the same name as a standard library
function, even when we don’t include the header to which the function belongs. In
fact, all names that begin with str and a lower-case letter are reserved (to allow
functions to be added to the <string.h> header in future versions of the C stan-
dard).

Searching for the End of a String

Many string operations require searching for the end of a string. The strlen
function is a prime example. The following version of strlen searches its string
argument to find the end, using a variable to keep track of the string’s length:

size_t strlen(const char *s)
{
 size_t n;

 for (n = 0; *s != '\0'; s++)
 n++;
 return n;
}

As the pointer s moves across the string from left to right, the variable n keeps
track of how many characters have been seen so far. When s finally points to a null
character, n contains the length of the string.

Let’s see if we can condense the function. First, we’ll move the initialization
of n to its declaration:

C13.FM Page 296 Tuesday, February 12, 2008 4:35 PM

13.6 String Idioms 297

size_t strlen(const char *s)
{
 size_t n = 0;

 for (; *s != '\0'; s++)
 n++;
 return n;
}

Next, we notice that the condition *s != '\0' is the same as *s != 0, because
the integer value of the null character is 0. But testing *s != 0 is the same as test-
ing *s; both are true if *s isn’t equal to 0. These observations lead to our next ver-
sion of strlen:

size_t strlen(const char *s)
{
 size_t n = 0;

 for (; *s; s++)
 n++;
 return n;
}

But, as we saw in Section 12.2, it’s possible to increment s and test *s in the same
expression:

size_t strlen(const char *s)
{
 size_t n = 0;

 for (; *s++;)
 n++;
 return n;
}

Replacing the for statement with a while statement, we arrive at the following
version of strlen:

size_t strlen(const char *s)
{
 size_t n = 0;

 while (*s++)
 n++;
 return n;
}

Although we’ve condensed strlen quite a bit, it’s likely that we haven’t in-
creased its speed. Here’s a version that does run faster, at least with some compilers:

size_t strlen(const char *s)
{
 const char *p = s;

C13.FM Page 297 Tuesday, February 12, 2008 4:35 PM

298 Chapter 13 Strings

 while (*s)
 s++;
 return s - p;
}

This version of strlen computes the length of the string by locating the position
of the null character, then subtracting from it the position of the first character in
the string. The improvement in speed comes from not having to increment n inside
the while loop. Note the appearance of the word const in the declaration of p,
by the way; without it, the compiler would notice that assigning s to p places the
string that s points to at risk.

The statement

idiom while (*s)
 s++;

and the related

idiom while (*s++)
 ;

are idioms meaning “search for the null character at the end of a string.” The first
version leaves s pointing to the null character. The second version is more concise,
but leaves s pointing just past the null character.

Copying a String

Copying a string is another common operation. To introduce C’s “string copy”
idiom, we’ll develop two versions of the strcat function. Let’s start with a
straightforward but somewhat lengthy version:

char *strcat(char *s1, const char *s2)
{
 char *p = s1;

 while (*p != '\0')
 p++;
 while (*s2 != '\0') {
 *p = *s2;
 p++;
 s2++;
 }
 *p = '\0';
 return s1;
}

This version of strcat uses a two-step algorithm: (1) Locate the null character at
the end of the string s1 and make p point to it. (2) Copy characters one by one
from s2 to where p is pointing.

The first while statement in the function implements step (1). p is set to
point to the first character in the s1 string. Assuming that s1 points to the string
"abc", we have the following picture:

C13.FM Page 298 Tuesday, February 12, 2008 4:35 PM

13.6 String Idioms 299

p is then incremented as long as it doesn’t point to a null character. When the loop
terminates, p must be pointing to the null character:

The second while statement implements step (2). The loop body copies one
character from where s2 points to where p points, then increments both p and s2.
If s2 originally points to the string "def", here’s what the strings will look like
after the first loop iteration:

The loop terminates when s2 points to the null character:

After putting a null character where p is pointing, strcat returns.
By a process similar to the one we used for strlen, we can condense the

definition of strcat, arriving at the following version:

char *strcat(char *s1, const char *s2)
{
 char *p = s1;

 while (*p)
 p++;
 while (*p++ = *s2++)
 ;
 return s1;
}

ps1

a b c \0

s1 p

a b c \0

s1 p

a b c d

s2

\0fed

s1 p

a b c d e f

s2

\0fed

C13.FM Page 299 Tuesday, February 12, 2008 4:35 PM

300 Chapter 13 Strings

The heart of our streamlined strcat function is the “string copy” idiom:

idiom while (*p++ = *s2++)
 ;

If we ignore the two ++ operators, the expression inside the parentheses simplifies
to an ordinary assignment:

*p = *s2

This expression copies a character from where s2 points to where p points. After
the assignment, both p and s2 are incremented, thanks to the ++ operators.
Repeatedly executing this expression has the effect of copying a series of charac-
ters from where s2 points to where p points.

But what causes the loop to terminate? Since the primary operator inside the
parentheses is assignment, the while statement tests the value of the assign-
ment—the character that was copied. All characters except the null character test
true, so the loop won’t terminate until the null character has been copied. And
since the loop terminates after the assignment, we don’t need a separate statement
to put a null character at the end of the new string.

13.7 Arrays of Strings

Let’s now turn to a question that we’ll often encounter: what’s the best way to store
an array of strings? The obvious solution is to create a two-dimensional array of
characters, then store the strings in the array, one per row. Consider the following
example:

char planets[][8] = {"Mercury", "Venus", "Earth",
 "Mars", "Jupiter", "Saturn",
 "Uranus", "Neptune", "Pluto"};

(In 2006, the International Astronomical Union demoted Pluto from “planet” to
“dwarf planet,” but I’ve left it in the planets array for old times’ sake.) Note that
we’re allowed to omit the number of rows in the planets array—since that’s
obvious from the number of elements in the initializer—but C requires that we
specify the number of columns.

The figure at the top of the next page shows what the planets array will
look like. Not all our strings were long enough to fill an entire row of the array, so
C padded them with null characters. There’s a bit of wasted space in this array,
since only three planets have names long enough to require eight characters
(including the terminating null character). The remind.c program (Section 13.5)
is a glaring example of this kind of waste. It stores reminders in rows of a two-
dimensional character array, with 60 characters set aside for each reminder. In our
example, the reminders ranged from 18 to 37 characters in length, so the amount of
wasted space was considerable.

C13.FM Page 300 Tuesday, February 12, 2008 4:35 PM

13.7 Arrays of Strings 301

The inefficiency that’s apparent in these examples is common when working
with strings, since most collections of strings will have a mixture of long strings
and short strings. What we need is a ragged array: a two-dimensional array whose
rows can have different lengths. C doesn’t provide a “ragged array type,” but it
does give us the tools to simulate one. The secret is to create an array whose ele-
ments are pointers to strings.

Here’s the planets array again, this time as an array of pointers to strings:

char *planets[] = {"Mercury", "Venus", "Earth",
 "Mars", "Jupiter", "Saturn",
 "Uranus", "Neptune", "Pluto"};

Not much of a change, eh? We simply removed one pair of brackets and put an aster-
isk in front of planets. The effect on how planets is stored is dramatic, though:

Each element of planets is a pointer to a null-terminated string. There are no
longer any wasted characters in the strings, although we’ve had to allocate space
for the pointers in the planets array.

To access one of the planet names, all we need do is subscript the planets
array. Because of the relationship between pointers and arrays, accessing a charac-
ter in a planet name is done in the same way as accessing an element of a two-

M a r s \0 \0 \0 \0

J u p i t e r \0

N e p t u n e \0

P l u t o \0 \0 \0

S a t u r n \0 \0

U r a n u s \0 \0

E a r t h \0 \0 \0

V e n u s \0 \0 \0

M e r c u r y \0

0

0

1

1

2

2

3

3

4

4

5

6

7

8

5 6 7

0

planets

U r a n u s \0

S a t u r n \0

J u p i t e r \0

M a r s \0

E a r t h \0

V e n u s \0

M e r c u r y \0

N e p t u n e \0

P l u t o \0

1

2

3

4

8

6

5

7

C13.FM Page 301 Tuesday, February 12, 2008 4:35 PM

302 Chapter 13 Strings

dimensional array. To search the planets array for strings beginning with the
letter M, for example, we could use the following loop:

for (i = 0; i < 9; i++)
 if (planets[i][0] == 'M')
 printf("%s begins with M\n", planets[i]);

Command-Line Arguments

When we run a program, we’ll often need to supply it with information—a file
name, perhaps, or a switch that modifies the program’s behavior. Consider the
UNIX ls command. If we run ls by typing

ls

at the command line, it will display the names of the files in the current directory.
But if we instead type

ls -l

then ls will display a “long” (detailed) listing of files, showing the size of each file,
the file’s owner, the date and time the file was last modified, and so forth. To modify
the behavior of ls further, we can specify that it show details for just one file:

ls -l remind.c

ls will display detailed information about the file named remind.c.
Command-line information is available to all programs, not just operating sys-

tem commands. To obtain access to these command-line arguments (called pro-
gram parameters in the C standard), we must define main as a function with two
parameters, which are customarily named argc and argv:

int main(int argc, char *argv[])
{
 …
}

argc (“argument count”) is the number of command-line arguments (including
the name of the program itself). argv (“argument vector”) is an array of pointers
to the command-line arguments, which are stored in string form. argv[0] points
to the name of the program, while argv[1] through argv[argc-1] point to
the remaining command-line arguments.

argv has one additional element, argv[argc], which is always a null
pointer—a special pointer that points to nothing. We’ll discuss null pointers in a
later chapter; for now, all we need to know is that the macro NULL represents a null
pointer.

If the user enters the command line

ls -l remind.c

then argc will be 3, argv[0] will point to a string containing the program

Q&A

Q&A

null pointers ➤17.1

C13.FM Page 302 Tuesday, February 12, 2008 4:35 PM

13.7 Arrays of Strings 303

name, argv[1] will point to the string "-l", argv[2] will point to the string
"remind.c", and argv[3] will be a null pointer:

This figure doesn’t show the program name in detail, since it may include a path or
other information that depends on the operating system. If the program name isn’t
available, argv[0] points to an empty string.

Since argv is an array of pointers, accessing command-line arguments is
easy. Typically, a program that expects command-line arguments will set up a loop
that examines each argument in turn. One way to write such a loop is to use an
integer variable as an index into the argv array. For example, the following loop
prints the command-line arguments, one per line:

int i;

for (i = 1; i < argc; i++)
 printf("%s\n", argv[i]);

Another technique is to set up a pointer to argv[1], then increment the pointer
repeatedly to step through the rest of the array. Since the last element of argv is al-
ways a null pointer, the loop can terminate when it finds a null pointer in the array:

char **p;

for (p = &argv[1]; *p != NULL; p++)
 printf("%s\n", *p);

Since p is a pointer to a pointer to a character, we’ve got to use it carefully. Setting
p equal to &argv[1] makes sense; argv[1] is a pointer to a character, so
&argv[1] will be a pointer to a pointer. The test *p != NULL is OK, since *p
and NULL are both pointers. Incrementing p looks good; p points to an array ele-
ment, so incrementing it will advance it to the next element. Printing *p is fine,
since *p points to the first character in a string.

PROGRAM Checking Planet Names

Our next program, planet.c, illustrates how to access command-line argu-
ments. The program is designed to check a series of strings to see which ones are
names of planets. When the program is run, the user will put the strings to be tested
on the command line:

planet Jupiter venus Earth fred

0

argv

program name

- l \0

r e m i n d . c \0

1

2

3

C13.FM Page 303 Tuesday, February 12, 2008 4:35 PM

304 Chapter 13 Strings

The program will indicate whether or not each string is a planet name; if it is, the
program will also display the planet’s number (with planet 1 being the one closest
to the Sun):

Jupiter is planet 5
venus is not a planet
Earth is planet 3
fred is not a planet

Notice that the program doesn’t recognize a string as a planet name unless its first
letter is upper-case and its remaining letters are lower-case.

planet.c /* Checks planet names */

#include <stdio.h>
#include <string.h>

#define NUM_PLANETS 9

int main(int argc, char *argv[])
{
 char *planets[] = {"Mercury", "Venus", "Earth",
 "Mars", "Jupiter", "Saturn",
 "Uranus", "Neptune", "Pluto"};
 int i, j;

 for (i = 1; i < argc; i++) {
 for (j = 0; j < NUM_PLANETS; j++)
 if (strcmp(argv[i], planets[j]) == 0) {
 printf("%s is planet %d\n", argv[i], j + 1);
 break;
 }
 if (j == NUM_PLANETS)
 printf("%s is not a planet\n", argv[i]);
 }

 return 0;
}

The program visits each command-line argument in turn, comparing it with
the strings in the planets array until it finds a match or reaches the end of
the array. The most interesting part of the program is the call of strcmp, in
which the arguments are argv[i] (a pointer to a command-line argument) and
planets[j] (a pointer to a planet name).

Q & A

Q: How long can a string literal be?
A: According to the C89 standard, compilers must allow string literals to be at least

C13.FM Page 304 Tuesday, February 12, 2008 4:35 PM

Q & A 305

509 characters long. (Yes, you read that right—509. Don’t ask.) C99 increases the
minimum to 4095 characters.

Q: Why aren’t string literals called “string constants”?
A: Because they’re not necessarily constant. Since string literals are accessed through

pointers, there’s nothing to prevent a program from attempting to modify the char-
acters in a string literal.

Q: How do we write a string literal that represents “über” if "\xfcber" doesn’t
work? [p. 278]

A: The secret is to write two adjacent string literals and let the compiler join them into
one. In this example, writing "\xfc" "ber" will give us a string literal that rep-
resents the word “über.”

Q: Modifying a string literal seems harmless enough. Why does it cause unde-
fined behavior? [p. 280]

A: Some compilers try to reduce memory requirements by storing single copies of
identical string literals. Consider the following example:

char *p = "abc", *q = "abc";

A compiler might choose to store "abc" just once, making both p and q point to
it. If we were to change "abc" through the pointer p, the string that q points to
would also be affected. Needless to say, this could lead to some annoying bugs.
Another potential problem is that string literals might be stored in a “read-only”
area of memory; a program that attempts to modify such a literal will simply crash.

Q: Should every array of characters include room for a null character?
A: Not necessarily, since not every array of characters is used as a string. Including

room for the null character (and actually putting one into the array) is necessary
only if you’re planning to pass it to a function that requires a null-terminated
string.

You do not need a null character if you’ll only be performing operations on
individual characters. For example, a program might have an array of characters
that it will use to translate from one character set to another:

char translation_table[128];

The only operation that the program will perform on this array is subscripting.
(The value of translation_table[ch] will be the translated version of the
character ch.) We would not consider translation_table to be a string: it
need not contain a null character, and no string operations will be performed on it.

Q: If printf and scanf expect their first argument to have type char *, does
that mean that the argument can be a string variable instead of a string lit-
eral?

C99

C13.FM Page 305 Tuesday, February 12, 2008 4:35 PM

306 Chapter 13 Strings

A: Yes, as the following example shows:

char fmt[] = "%d\n";
int i;
…
printf(fmt, i);

This ability opens the door to some intriguing possibilities—reading a format
string as input, for example.

Q: If I want printf to write a string str, can’t I just supply str as the format
string, as in the following example?

printf(str);

A: Yes, but it’s risky. If str contains the % character, you won’t get the desired result,
since printf will assume it’s the beginning of a conversion specification.

*Q: How can read_line detect whether getchar has failed to read a charac-
ter? [p. 287]

A: If it can’t read a character, either because of an error or because of end-of-file,
getchar returns the value EOF, which has type int. Here’s a revised version of
read_line that tests whether the return value of getchar is EOF. Changes are
marked in bold:

int read_line(char str[], int n)
{
 int ch, i = 0;

 while ((ch = getchar()) != '\n' && ch != EOF)
 if (i < n)
 str[i++] = ch;
 str[i] = '\0';
 return i;
}

Q: Why does strcmp return a number that’s less than, equal to, or greater than
zero? Also, does the exact return value have any significance? [p. 292]

A: strcmp’s return value probably stems from the way the function is traditionally
written. Consider the version in Kernighan and Ritchie’s The C Programming Lan-
guage:

int strcmp(char *s, char *t)
{
 int i;

 for (i = 0; s[i] == t[i]; i++)
 if (s[i] == '\0')
 return 0;
 return s[i] - t[i];
}

EOF macro ➤22.4

C13.FM Page 306 Tuesday, February 12, 2008 4:35 PM

Q & A 307

The return value is the difference between the first “mismatched” characters in the
s and t strings, which will be negative if s points to a “smaller” string than t and
positive if s points to a “larger” string. There’s no guarantee that strcmp is actu-
ally written this way, though, so it’s best not to assume that the magnitude of its
return value has any particular meaning.

Q: My compiler issues a warning when I try to compile the while statement in
the strcat function:

while (*p++ = *s2++)
 ;

What am I doing wrong?
A: Nothing. Many compilers—but not all, by any means—issue a warning if you use

= where == is normally expected. This warning is valid at least 95% of the time,
and it will save you a lot of debugging if you heed it. Unfortunately, the warning
isn’t relevant in this particular example; we actually do mean to use =, not ==. To
get rid of the warning, rewrite the while loop as follows:

while ((*p++ = *s2++) != 0)
 ;

Since the while statement normally tests whether *p++ = *s2++ is not 0, we
haven’t changed the meaning of the statement. The warning goes away, however,
because the statement now tests a condition, not an assignment. With the GCC
compiler, putting a pair of parentheses around the assignment is another way to
avoid a warning:

while ((*p++ = *s2++))
 ;

Q: Are the strlen and strcat functions actually written as shown in Section
13.6?

A: Possibly, although it’s common practice for compiler vendors to write these func-
tions—and many other string functions—in assembly language instead of C. The
string functions need to be as fast as possible, since they’re used often and have to
deal with strings of arbitrary length. Writing these functions in assembly language
makes it possible to achieve great efficiency by taking advantage of any special
string-handling instructions that the CPU may provide.

Q: Why does the C standard use the term “program parameters” instead of
“command-line arguments”? [p. 302]

A: Programs aren’t always run from a command line. In a typical graphical user inter-
face, for example, programs are launched with a mouse click. In such an environ-
ment, there’s no traditional command line, although there may be other ways of
passing information to a program; the term “program parameters” leaves the door
open for these alternatives.

C13.FM Page 307 Tuesday, February 12, 2008 4:35 PM

308 Chapter 13 Strings

Q: Do I have to use the names argc and argv for main’s parameters? [p. 302]
A: No. Using the names argc and argv is merely a convention, not a language

requirement.

Q: I’ve seen argv declared as **argv instead of *argv[]. Is this legal?
A: Certainly. When declaring a parameter, writing *a is always the same as writing

a[], regardless of the type of a’s elements.

Q: We’ve seen how to set up an array whose elements are pointers to string liter-
als. Are there any other applications for arrays of pointers?

A: Yes. Although we’ve focused on arrays of pointers to character strings, that’s not
the only application of arrays of pointers. We could just as easily have an array
whose elements point to any type of data, whether in array form or not. Arrays of
pointers are particularly useful in conjunction with dynamic storage allocation.

Exercises

Section 13.3 1. The following function calls supposedly write a single new-line character, but some are
incorrect. Identify which calls don’t work and explain why.

2. Suppose that p has been declared as follows:

char *p = "abc";

Which of the following function calls are legal? Show the output produced by each legal
call, and explain why the others are illegal.

*3. Suppose that we call scanf as follows:

scanf("%d%s%d", &i, s, &j);

If the user enters 12abc34 56def78, what will be the values of i, s, and j after the
call? (Assume that i and j are int variables and s is an array of characters.)

4. Modify the read_line function in each of the following ways:

dynamic storage allocation ➤17.1

(a) printf("%c", '\n'); (g) putchar('\n');
(b) printf("%c", "\n"); (h) putchar("\n");
(c) printf("%s", '\n'); (i) puts('\n');
(d) printf("%s", "\n"); (j) puts("\n");
(e) printf('\n'); (k) puts("");
(f) printf("\n");

W

(a) putchar(p);
(b) putchar(*p);
(c) puts(p);
(d) puts(*p);

(a) Have it skip white space before beginning to store input characters.
(b) Have it stop reading at the first white-space character. Hint: To determine whether or

not a character is white space, call the isspace function.

W

isspace function ➤23.5

C13.FM Page 308 Tuesday, February 12, 2008 4:35 PM

Exercises 309

Section 13.4 5. (a) Write a function named capitalize that capitalizes all letters in its argument. The
argument will be a null-terminated string containing arbitrary characters, not just letters.
Use array subscripting to access the characters in the string. Hint: Use the toupper func-
tion to convert each character to upper-case.

(b) Rewrite the capitalize function, this time using pointer arithmetic to access the
characters in the string.

6. Write a function named censor that modifies a string by replacing every occurrence of
foo by xxx. For example, the string "food fool" would become "xxxd xxxl". Make
the function as short as possible without sacrificing clarity.

Section 13.5 7. Suppose that str is an array of characters. Which one of the following statements is not
equivalent to the other three?

*8. What will be the value of the string str after the following statements have been executed?

strcpy(str, "tire-bouchon");
strcpy(&str[4], "d-or-wi");
strcat(str, "red?");

9. What will be the value of the string s1 after the following statements have been executed?

strcpy(s1, "computer");
strcpy(s2, "science");
if (strcmp(s1, s2) < 0)
 strcat(s1, s2);
else
 strcat(s2, s1);
s1[strlen(s1)-6] = '\0';

10. The following function supposedly creates an identical copy of a string. What’s wrong with
the function?

char *duplicate(const char *p)
{
 char *q;

 strcpy(q, p);
 return q;
}

11. The Q&A section at the end of this chapter shows how the strcmp function might be writ-
ten using array subscripting. Modify the function to use pointer arithmetic instead.

12. Write the following function:

void get_extension(const char *file_name, char *extension);

(c) Have it stop reading at the first new-line character, then store the new-line character in
the string.

(d) Have it leave behind characters that it doesn’t have room to store.

toupper function ➤23.5

W

(a) *str = 0;
(b) str[0] = '\0';
(c) strcpy(str, "");
(d) strcat(str, "");

W

W

C13.FM Page 309 Tuesday, February 12, 2008 4:35 PM

310 Chapter 13 Strings

file_name points to a string containing a file name. The function should store the exten-
sion on the file name in the string pointed to by extension. For example, if the file name
is "memo.txt", the function will store "txt" in the string pointed to by extension. If
the file name doesn’t have an extension, the function should store an empty string (a single
null character) in the string pointed to by extension. Keep the function as simple as pos-
sible by having it use the strlen and strcpy functions.

13. Write the following function:

void build_index_url(const char *domain, char *index_url);

domain points to a string containing an Internet domain, such as "knking.com". The
function should add "http://www." to the beginning of this string and "/
index.html" to the end of the string, storing the result in the string pointed to by
index_url. (In this example, the result will be "http://www.knking.com/
index.html".) You may assume that index_url points to a variable that is long
enought to hold the resulting string. Keep the function as simple as possible by having it use
the strcat and strcpy functions.

Section 13.6 *14. What does the following program print?

#include <stdio.h>

int main(void)
{
 char s[] = "Hsjodi", *p;

 for (p = s; *p; p++)
 --*p;
 puts(s);
 return 0;
}

*15. Let f be the following function:

int f(char *s, char *t)
{
 char *p1, *p2;

 for (p1 = s; *p1; p1++) {
 for (p2 = t; *p2; p2++)
 if (*p1 == *p2) break;
 if (*p2 == '\0') break;
 }
 return p1 - s;
}

16. Use the techniques of Section 13.6 to condense the count_spaces function of Section
13.4. In particular, replace the for statement by a while loop.

17. Write the following function:

bool test_extension(const char *file_name,
 const char *extension);

W

(a) What is the value of f("abcd", "babc")?
(b) What is the value of f("abcd", "bcd")?
(c) In general, what value does f return when passed two strings s and t?

W

C13.FM Page 310 Tuesday, February 12, 2008 4:35 PM

http://www.knking.com/index.html
http://www.knking.com/index.html

Programming Projects 311

file_name points to a string containing a file name. The function should return true if
the file’s extension matches the string pointed to by extension, ignoring the case of let-
ters. For example, the call test_extension("memo.txt", "TXT") would return
true. Incorporate the “search for the end of a string” idiom into your function. Hint: Use
the toupper function to convert characters to upper-case before comparing them.

18. Write the following function:

void remove_filename(char *url);

url points to a string containing a URL (Uniform Resource Locator) that ends with a file
name (such as "http://www.knking.com/index.html"). The function should
modify the string by removing the file name and the preceding slash. (In this example, the
result will be "http://www.knking.com".) Incorporate the “search for the end of a
string” idiom into your function. Hint: Have the function replace the last slash in the string
by a null character.

Programming Projects

1. Write a program that finds the “smallest” and “largest” in a series of words. After the user
enters the words, the program will determine which words would come first and last if the
words were listed in dictionary order. The program must stop accepting input when the user
enters a four-letter word. Assume that no word is more than 20 letters long. An interactive
session with the program might look like this:

Enter word: dog
Enter word: zebra
Enter word: rabbit
Enter word: catfish
Enter word: walrus
Enter word: cat
Enter word: fish

Smallest word: cat
Largest word: zebra

Hint: Use two strings named smallest_word and largest_word to keep track of the
“smallest” and “largest” words entered so far. Each time the user enters a new word, use
strcmp to compare it with smallest_word; if the new word is “smaller,” use strcpy
to save it in smallest_word. Do a similar comparison with largest_word. Use
strlen to determine when the user has entered a four-letter word.

2. Improve the remind.c program of Section 13.5 in the following ways:

3. Modify the deal.c program of Section 8.2 so that it prints the full names of the cards it
deals:

toupper function ➤23.5

W

(a) Have the program print an error message and ignore a reminder if the corresponding
day is negative or larger than 31. Hint: Use the continue statement.

(b) Allow the user to enter a day, a 24-hour time, and a reminder. The printed reminder list
should be sorted first by day, then by time. (The original program allows the user to
enter a time, but it’s treated as part of the reminder.)

(c) Have the program print a one-year reminder list. Require the user to enter days in the
form month/day.

C13.FM Page 311 Tuesday, February 12, 2008 4:35 PM

http://www.knking.com/index.html
http://www.knking.com

312 Chapter 13 Strings

Enter number of cards in hand: 5
Your hand:
Seven of clubs
Two of spades
Five of diamonds
Ace of spades
Two of hearts

Hint: Replace rank_code and suit_code by arrays containing pointers to strings.

4. Write a program named reverse.c that echoes its command-line arguments in reverse
order. Running the program by typing

reverse void and null

should produce the following output:

null and void

5. Write a program named sum.c that adds up its command-line arguments, which are
assumed to be integers. Running the program by typing

sum 8 24 62

should produce the following output:

Total: 94

Hint: Use the atoi function to convert each command-line argument from string form to
integer form.

6. Improve the planet.c program of Section 13.7 by having it ignore case when comparing
command-line arguments with strings in the planets array.

7. Modify Programming Project 11 from Chapter 5 so that it uses arrays containing pointers to
strings instead of switch statements. For example, instead of using a switch statement
to print the word for the first digit, use the digit as an index into an array that contains the
strings "twenty", "thirty", and so forth.

8. Modify Programming Project 5 from Chapter 7 so that it includes the following function:

int compute_scrabble_value(const char *word);

The function returns the SCRABBLE value of the string pointed to by word.

9. Modify Programming Project 10 from Chapter 7 so that it includes the following function:

int compute_vowel_count(const char *sentence);

The function returns the number of vowels in the string pointed to by the sentence
parameter.

10. Modify Programming Project 11 from Chapter 7 so that it includes the following function:

void reverse_name(char *name);

The function expects name to point to a string containing a first name followed by a last
name. It modifies the string so that the last name comes first, followed by a comma, a space,
the first initial, and a period. The original string may contain extra spaces before the first
name, between the first and last names, and after the last name.

11. Modify Programming Project 13 from Chapter 7 so that it includes the following function:

double compute_average_word_length(const char *sentence);

The function returns the average length of the words in the string pointed to by sentence.

W

atoi function ➤26.2

W

C13.FM Page 312 Tuesday, February 12, 2008 4:35 PM

Programming Projects 313

12. Modify Programming Project 14 from Chapter 8 so that it stores the words in a two-
dimensional char array as it reads the sentence, with each row of the array storing a sin-
gle word. Assume that the sentence contains no more than 30 words and no word is more
than 20 characters long. Be sure to store a null character at the end of each word so that it
can be treated as a string.

13. Modify Programming Project 15 from Chapter 8 so that it includes the following function:

void encrypt(char *message, int shift);

The function expects message to point to a string containing the message to be encrypted;
shift represents the amount by which each letter in the message is to be shifted.

14. Modify Programming Project 16 from Chapter 8 so that it includes the following function:

bool are_anagrams(const char *word1, const char *word2);

The function returns true if the strings pointed to by word1 and word2 are anagrams.

15. Modify Programming Project 6 from Chapter 10 so that it includes the following function:

int evaluate_RPN_expression(const char *expression);

The function returns the value of the RPN expression pointed to by expression.

16. Modify Programming Project 1 from Chapter 12 so that it includes the following function:

void reverse(char *message);

The function reverses the string pointed to by message. Hint: Use two pointers, one ini-
tially pointing to the first character of the string and the other initially pointing to the last
character. Have the function reverse these characters and then move the pointers toward
each other, repeating the process until the pointers meet.

17. Modify Programming Project 2 from Chapter 12 so that it includes the following function:

bool is_palindrome(const char *message);

The function returns true if the string pointed to by message is a palindrome.

18. Write a program that accepts a date from the user in the form mm/dd/yyyy and then dis-
plays it in the form month dd, yyyy, where month is the name of the month:

Enter a date (mm/dd/yyyy): 2/17/2011
You entered the date February 17, 2011

Store the month names in an array that contains pointers to strings.

C13.FM Page 313 Tuesday, February 12, 2008 4:35 PM

C13.FM Page 314 Tuesday, February 12, 2008 4:35 PM

315

14 The Preprocessor

There will always be things we wish to say in our programs
that in all known languages can only be said poorly.

In previous chapters, I’ve used the #define and #include directives without
going into detail about what they do. These directives—and others that we haven’t
yet covered—are handled by the preprocessor, a piece of software that edits C pro-
grams just prior to compilation. Its reliance on a preprocessor makes C (along with
C++) unique among major programming languages.

The preprocessor is a powerful tool, but it also can be a source of hard-to-find
bugs. Moreover, the preprocessor can easily be misused to create programs that are
almost impossible to understand. Although some C programmers depend heavily
on the preprocessor, I recommend that it—like so many other things in life—be
used in moderation.

This chapter begins by describing how the preprocessor works (Section 14.1)
and giving some general rules that affect all preprocessing directives (Section
14.2). Sections 14.3 and 14.4 cover two of the preprocessor’s major capabilities:
macro definition and conditional compilation. (I’ll defer detailed coverage of file
inclusion, the other major capability, until Chapter 15.) Section 14.5 discusses the
preprocessor’s lesser-used directives: #error, #line, and #pragma.

14.1 How the Preprocessor Works

The behavior of the preprocessor is controlled by preprocessing directives: com-
mands that begin with a # character. We’ve encountered two of these directives,
#define and #include, in previous chapters.

The #define directive defines a macro—a name that represents something
else, such as a constant or frequently used expression. The preprocessor responds to
a #define directive by storing the name of the macro together with its definition.

C14.FM Page 315 Tuesday, February 12, 2008 4:49 PM

316 Chapter 14 The Preprocessor

When the macro is used later in the program, the preprocessor “expands” the
macro, replacing it by its defined value.

The #include directive tells the preprocessor to open a particular file and
“include” its contents as part of the file being compiled. For example, the line

#include <stdio.h>

instructs the preprocessor to open the file named stdio.h and bring its contents
into the program. (Among other things, stdio.h contains prototypes for C’s
standard input/output functions.)

The following diagram shows the preprocessor’s role in the compilation pro-
cess:

The input to the preprocessor is a C program, possibly containing directives. The
preprocessor executes these directives, removing them in the process. The output
of the preprocessor is another C program: an edited version of the original pro-
gram, containing no directives. The preprocessor’s output goes directly into the
compiler, which checks the program for errors and translates it to object code
(machine instructions).

To see what the preprocessor does, let’s apply it to the celsius.c program
of Section 2.6. Here’s the original program:

/* Converts a Fahrenheit temperature to Celsius */

#include <stdio.h>

#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f / 9.0f)

int main(void)
{
 float fahrenheit, celsius;

 printf("Enter Fahrenheit temperature: ");
 scanf("%f", &fahrenheit);

 celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR;

Preprocessor

C program

Modified C program

Compiler

Object code

C14.FM Page 316 Tuesday, February 12, 2008 4:49 PM

14.1 How the Preprocessor Works 317

 printf("Celsius equivalent is: %.1f\n", celsius);

 return 0;
}

After preprocessing, the program will have the following appearance:

Blank line
Blank line
Lines brought in from stdio.h
Blank line
Blank line
Blank line
Blank line
int main(void)
{
 float fahrenheit, celsius;

 printf("Enter Fahrenheit temperature: ");
 scanf("%f", &fahrenheit);

 celsius = (fahrenheit - 32.0f) * (5.0f / 9.0f);

 printf("Celsius equivalent is: %.1f\n", celsius);

 return 0;
}

The preprocessor responded to the #include directive by bringing in the con-
tents of stdio.h. The preprocessor also removed the #define directives and
replaced FREEZING_PT and SCALE_FACTOR wherever they appeared later in
the file. Notice that the preprocessor doesn’t remove lines containing directives;
instead, it simply makes them empty.

As this example shows, the preprocessor does a bit more than just execute
directives. In particular, it replaces each comment with a single space character.
Some preprocessors go further and remove unnecessary white-space characters,
including spaces and tabs at the beginning of indented lines.

In the early days of C, the preprocessor was a separate program that fed its
output into the compiler. Nowadays, the preprocessor is often part of the compiler,
and some of its output may not necessarily be C code. (For example, including a
standard header such as <stdio.h> may have the effect of making its functions
available to the program without necessarily copying the contents of the header
into the program’s source code.) Still, it’s useful to think of the preprocessor as
separate from the compiler. In fact, most C compilers provide a way to view the
output of the preprocessor. Some compilers generate preprocessor output when a
certain option is specified (GCC will do so when the -E option is used). Others
come with a separate program that behaves like the integrated preprocessor. Check
your compiler’s documentation for more information.

A word of caution: The preprocessor has only a limited knowledge of C. As
a result, it’s quite capable of creating illegal programs as it executes directives.
Often the original program looks fine, making errors harder to find. In complicated

C14.FM Page 317 Tuesday, February 12, 2008 4:49 PM

318 Chapter 14 The Preprocessor

programs, examining the output of the preprocessor may prove useful for locating
this kind of error.

14.2 Preprocessing Directives
Most preprocessing directives fall into one of three categories:

� Macro definition. The #define directive defines a macro; the #undef
directive removes a macro definition.

� File inclusion. The #include directive causes the contents of a specified
file to be included in a program.

� Conditional compilation. The #if, #ifdef, #ifndef, #elif, #else,
and #endif directives allow blocks of text to be either included in or
excluded from a program, depending on conditions that can be tested by the
preprocessor.

The remaining directives—#error, #line, and #pragma—are more special-
ized and therefore used less often. We’ll devote the rest of this chapter to an in-
depth examination of preprocessing directives. The only directive we won’t dis-
cuss in detail is #include, since it’s covered in Section 15.2.

Before we go further, let’s look at a few rules that apply to all directives:

� Directives always begin with the # symbol. The # symbol need not be at the be-
ginning of a line, as long as only white space precedes it. After the # comes the
name of the directive, followed by any other information the directive requires.

� Any number of spaces and horizontal tab characters may separate the
tokens in a directive. For example, the following directive is legal:

define N 100

� Directives always end at the first new-line character, unless explicitly con-
tinued. To continue a directive to the next line, we must end the current line
with a \ character. For example, the following directive defines a macro that
represents the capacity of a hard disk, measured in bytes:

#define DISK_CAPACITY (SIDES * \
 TRACKS_PER_SIDE * \
 SECTORS_PER_TRACK * \
 BYTES_PER_SECTOR)

� Directives can appear anywhere in a program. Although we usually put
#define and #include directives at the beginning of a file, other directives
are more likely to show up later, even in the middle of function definitions.

� Comments may appear on the same line as a directive. In fact, it’s good prac-
tice to put a comment at the end of a macro definition to explain the meaning
of the macro:

#define FREEZING_PT 32.0f /* freezing point of water */

C14.FM Page 318 Tuesday, February 12, 2008 4:49 PM

14.3 Macro Definitions 319

14.3 Macro Definitions
The macros that we’ve been using since Chapter 2 are known as simple macros,
because they have no parameters. The preprocessor also supports parameterized
macros. We’ll look first at simple macros, then at parameterized macros. After
covering them separately, we’ll examine properties shared by both.

Simple Macros
The definition of a simple macro (or object-like macro, as it’s called in the C stan-
dard) has the form

replacement-list is any sequence of preprocessing tokens, which are similar to the
tokens discussed in Section 2.8. Whenever we use the term “token” in this chapter,
it means “preprocessing token.”

A macro’s replacement list may include identifiers, keywords, numeric con-
stants, character constants, string literals, operators, and punctuation. When it
encounters a macro definition, the preprocessor makes a note that identifier repre-
sents replacement-list; wherever identifier appears later in the file, the preproces-
sor substitutes replacement-list.

Don’t put any extra symbols in a macro definition—they’ll become part of the
replacement list. Putting the = symbol in a macro definition is a common error:

#define N = 100 /*** WRONG ***/
…
int a[N]; /* becomes int a[= 100]; */

In this example, we’ve (incorrectly) defined N to be a pair of tokens (= and 100).
Ending a macro definition with a semicolon is another popular mistake:

#define N 100; /*** WRONG ***/
…
int a[N]; /* becomes int a[100;]; */

Here N is defined to be the tokens 100 and ;.
The compiler will detect most errors caused by extra symbols in a macro defi-

nition. Unfortunately, the compiler will flag each use of the macro as incorrect,
rather than identifying the actual culprit—the macro’s definition—which will have
been removed by the preprocessor.

Simple macros are primarily used for defining what Kernighan and Ritchie
call “manifest constants.” Using macros, we can give names to numeric, character,
and string values:

#define directive
(simple macro)

#define identifier replacement-list

Q&A

C14.FM Page 319 Tuesday, February 12, 2008 4:49 PM

320 Chapter 14 The Preprocessor

#define STR_LEN 80
#define TRUE 1
#define FALSE 0
#define PI 3.14159
#define CR '\r'
#define EOS '\0'
#define MEM_ERR "Error: not enough memory"

Using #define to create names for constants has several significant advantages:

� It makes programs easier to read. The name of the macro—if well-chosen—
helps the reader understand the meaning of the constant. The alternative is a
program full of “magic numbers” that can easily mystify the reader.

� It makes programs easier to modify. We can change the value of a constant
throughout a program by modifying a single macro definition. “Hard-coded”
constants are more difficult to change, especially since they sometimes appear
in a slightly altered form. (For example, a program with an array of length 100
may have a loop that goes from 0 to 99. If we merely try to locate occurrences
of 100 in the program, we’ll miss the 99.)

� It helps avoid inconsistencies and typographical errors. If a numerical con-
stant like 3.14159 appears many times in a program, chances are it will
occasionally be written 3.1416 or 3.14195 by accident.

Although simple macros are most often used to define names for constants,
they do have other applications:

� Making minor changes to the syntax of C. We can—in effect—alter the syn-
tax of C by defining macros that serve as alternate names for C symbols. For
example, programmers who prefer Pascal’s begin and end to C’s { and }
can define the following macros:

#define BEGIN {
#define END }

We could go so far as to invent our own language. For example, we might cre-
ate a LOOP “statement” that establishes an infinite loop:

#define LOOP for (;;)

Changing the syntax of C usually isn’t a good idea, though, since it can make
programs harder for others to understand.

� Renaming types. In Section 5.2, we created a Boolean type by renaming int:

#define BOOL int

Although some programmers use macros for this purpose, type definitions are
a superior way to define type names.

� Controlling conditional compilation. Macros play an important role in con-
trolling conditional compilation, as we’ll see in Section 14.4. For example, the
presence of the following line in a program might indicate that it’s to be com-

type definitions ➤7.5

C14.FM Page 320 Tuesday, February 12, 2008 4:49 PM

14.3 Macro Definitions 321

piled in “debugging mode,” with extra statements included to produce debug-
ging output:

#define DEBUG

Incidentally, it’s legal for a macro’s replacement list to be empty, as this exam-
ple shows.

When macros are used as constants, C programmers customarily capitalize all
letters in their names. However, there’s no consensus as to how to capitalize mac-
ros used for other purposes. Since macros (especially parameterized macros) can
be a source of bugs, some programmers like to draw attention to them by using all
upper-case letters in their names. Others prefer lower-case names, following the
style of Kernighan and Ritchie’s The C Programming Language.

Parameterized Macros

The definition of a parameterized macro (also known as a function-like macro)
has the form

where x1, x2, …, xn are identifiers (the macro’s parameters). The parameters may
appear as many times as desired in the replacement list.

There must be no space between the macro name and the left parenthesis. If space
is left, the preprocessor will assume that we’re defining a simple macro; it will
treat (x1, x2, …, xn) as part of the replacement list.

When the preprocessor encounters the definition of a parameterized macro, it
stores the definition away for later use. Wherever a macro invocation of the form
identifier(y1, y2, …, yn) appears later in the program (where y1, y2, …, yn are
sequences of tokens), the preprocessor replaces it with replacement-list, substitut-
ing y1 for x1, y2 for x2, and so forth.

For example, suppose that we’ve defined the following macros:

#define MAX(x,y) ((x)>(y)?(x):(y))
#define IS_EVEN(n) ((n)%2==0)

(The number of parentheses in these macros may seem excessive, but there’s a rea-
son, as we’ll see later in this section.) Now suppose that we invoke the two macros
in the following way:

i = MAX(j+k, m-n);
if (IS_EVEN(i)) i++;

#define directive
(parameterized macro)

#define identifier(x1 , x2 , … , xn) replacement-list

C14.FM Page 321 Tuesday, February 12, 2008 4:49 PM

322 Chapter 14 The Preprocessor

The preprocessor will replace these lines by

i = ((j+k)>(m-n)?(j+k):(m-n));
if (((i)%2==0)) i++;

As this example shows, parameterized macros often serve as simple functions. MAX
behaves like a function that computes the larger of two values. IS_EVEN behaves
like a function that returns 1 if its argument is an even number and 0 otherwise.

Here’s a more complicated macro that behaves like a function:

#define TOUPPER(c) ('a'<=(c)&&(c)<='z'?(c)-'a'+'A':(c))

This macro tests whether the character c is between 'a' and 'z'. If so, it pro-
duces the upper-case version of c by subtracting 'a' and adding 'A'. If not, it
leaves c unchanged. (The <ctype.h> header provides a similar function named
toupper that’s more portable.)

A parameterized macro may have an empty parameter list. Here’s an example:

#define getchar() getc(stdin)

The empty parameter list isn’t really needed, but it makes getchar resemble a
function. (Yes, this is the same getchar that belongs to <stdio.h>. We’ll see
in Section 22.4 that getchar is usually implemented as a macro as well as a
function.)

Using a parameterized macro instead of a true function has a couple of advan-
tages:

� The program may be slightly faster. A function call usually requires some
overhead during program execution—context information must be saved,
arguments copied, and so forth. A macro invocation, on the other hand,
requires no run-time overhead. (Note, however, that C99’s inline functions
provide a way to avoid this overhead without the use of macros.)

� Macros are “generic.” Macro parameters, unlike function parameters, have
no particular type. As a result, a macro can accept arguments of any type, pro-
vided that the resulting program—after preprocessing—is valid. For example,
we could use the MAX macro to find the larger of two values of type int,
long, float, double, and so forth.

But parameterized macros also have disadvantages:

� The compiled code will often be larger. Each macro invocation causes the
insertion of the macro’s replacement list, thereby increasing the size of the
source program (and hence the compiled code). The more often the macro is
used, the more pronounced this effect is. The problem is compounded when
macro invocations are nested. Consider what happens when we use MAX to
find the largest of three numbers:

n = MAX(i, MAX(j, k));

Here’s the same statement after preprocessing:

n = ((i)>(((j)>(k)?(j):(k)))?(i):(((j)>(k)?(j):(k))));

<ctype.h> header ➤23.5

C99
inline functions ➤18.6

C14.FM Page 322 Tuesday, February 12, 2008 4:49 PM

14.3 Macro Definitions 323

� Arguments aren’t type-checked. When a function is called, the compiler
checks each argument to see if it has the appropriate type. If not, either the
argument is converted to the proper type or the compiler produces an error
message. Macro arguments aren’t checked by the preprocessor, nor are they
converted.

� It’s not possible to have a pointer to a macro. As we’ll see in Section 17.7, C
allows pointers to functions, a concept that’s quite useful in certain program-
ming situations. Macros are removed during preprocessing, so there’s no cor-
responding notion of “pointer to a macro”; as a result, macros can’t be used in
these situations.

� A macro may evaluate its arguments more than once. A function evaluates
its arguments only once; a macro may evaluate its arguments two or more
times. Evaluating an argument more than once can cause unexpected behavior
if the argument has side effects. Consider what happens if one of MAX’s argu-
ments has a side effect:

n = MAX(i++, j);

Here’s the same line after preprocessing:

n = ((i++)>(j)?(i++):(j));

If i is larger than j, then i will be (incorrectly) incremented twice and n will
be assigned an unexpected value.

Errors caused by evaluating a macro argument more than once can be difficult to
find, because a macro invocation looks the same as a function call. To make mat-
ters worse, a macro may work properly most of the time, failing only for certain
arguments that have side effects. For self-protection, it’s a good idea to avoid side
effects in arguments.

Parameterized macros are good for more than just simulating functions. In
particular, they’re often used as patterns for segments of code that we find our-
selves repeating. Suppose that we grow tired of writing

printf("%d\n", i);

every time we need to print an integer i. We might define the following macro,
which makes it easier to display integers:

#define PRINT_INT(n) printf("%d\n", n)

Once PRINT_INT has been defined, the preprocessor will turn the line

PRINT_INT(i/j);

into

printf("%d\n", i/j);

C14.FM Page 323 Tuesday, February 12, 2008 4:49 PM

324 Chapter 14 The Preprocessor

The # Operator

Macro definitions may contain two special operators, # and ##. Neither operator is
recognized by the compiler; instead, they’re executed during preprocessing.

The # operator converts a macro argument into a string literal; it can appear
only in the replacement list of a parameterized macro. (The operation performed
by # is known as “stringization,” a term that I’m sure you won’t find in the dictio-
nary.)

There are a number of uses for #; let’s consider just one. Suppose that we
decide to use the PRINT_INT macro during debugging as a convenient way to
print the values of integer variables and expressions. The # operator makes it pos-
sible for PRINT_INT to label each value that it prints. Here’s our new version of
PRINT_INT:

#define PRINT_INT(n) printf(#n " = %d\n", n)

The # operator in front of n instructs the preprocessor to create a string literal from
PRINT_INT’s argument. Thus, the invocation

PRINT_INT(i/j);

will become

printf("i/j" " = %d\n", i/j);

We saw in Section 13.1 that the compiler automatically joins adjacent string liter-
als, so this statement is equivalent to

printf("i/j = %d\n", i/j);

When the program is executed, printf will display both the expression i/j and
its value. If i is 11 and j is 2, for example, the output will be

i/j = 5

The ## Operator

The ## operator can “paste” two tokens (identifiers, for example) together to form
a single token. (Not surprisingly, the ## operation is known as “token-pasting.”) If
one of the operands is a macro parameter, pasting occurs after the parameter has
been replaced by the corresponding argument. Consider the following macro:

#define MK_ID(n) i##n

When MK_ID is invoked (as MK_ID(1), say), the preprocessor first replaces the
parameter n by the argument (1 in this case). Next, the preprocessor joins i and 1
to make a single token (i1). The following declaration uses MK_ID to create three
identifiers:

int MK_ID(1), MK_ID(2), MK_ID(3);

Q&A

C14.FM Page 324 Tuesday, February 12, 2008 4:49 PM

14.3 Macro Definitions 325

After preprocessing, this declaration becomes

int i1, i2, i3;

The ## operator isn’t one of the most frequently used features of the prepro-
cessor; in fact, it’s hard to think of many situations that require it. To find a realistic
application of ##, let’s reconsider the MAX macro described earlier in this section.
As we observed then, MAX doesn’t behave properly if its arguments have side
effects. The alternative to using the MAX macro is to write a max function. Unfor-
tunately, one max function usually isn’t enough; we may need a max function
whose arguments are int values, one whose arguments are float values, and so
on. All these versions of max would be identical except for the types of the argu-
ments and the return type, so it seems a shame to define each one from scratch.

The solution is to write a macro that expands into the definition of a max func-
tion. The macro will have a single parameter, type, which represents the type of
the arguments and the return value. There’s just one snag: if we use the macro to
create more than one max function, the program won’t compile. (C doesn’t allow
two functions to have the same name if both are defined in the same file.) To solve
this problem, we’ll use the ## operator to create a different name for each version
of max. Here’s what the macro will look like:

#define GENERIC_MAX(type) \
type type##_max(type x, type y) \
{ \
 return x > y ? x : y; \
}

Notice how type is joined with _max to form the name of the function.
Suppose that we happen to need a max function that works with float val-

ues. Here’s how we’d use GENERIC_MAX to define the function:

GENERIC_MAX(float)

The preprocessor expands this line into the following code:

float float_max(float x, float y) { return x > y ? x : y; }

General Properties of Macros

Now that we’ve discussed both simple and parameterized macros, let’s look at
some rules that apply to both:

� A macro’s replacement list may contain invocations of other macros. For
example, we could define the macro TWO_PI in terms of the macro PI:

#define PI 3.14159
#define TWO_PI (2*PI)

When it encounters TWO_PI later in the program, the preprocessor replaces it
by (2*PI). The preprocessor then rescans the replacement list to see if it

C14.FM Page 325 Tuesday, February 12, 2008 4:49 PM

326 Chapter 14 The Preprocessor

contains invocations of other macros (PI, in this case). The preprocessor will
rescan the replacement list as many times as necessary to eliminate all macro
names.

� The preprocessor replaces only entire tokens, not portions of tokens. As a
result, the preprocessor ignores macro names that are embedded in identifiers,
character constants, and string literals. For example, suppose that a program
contains the following lines:

#define SIZE 256

int BUFFER_SIZE;

if (BUFFER_SIZE > SIZE)
 puts("Error: SIZE exceeded");

After preprocessing, these lines will have the following appearance:

int BUFFER_SIZE;

if (BUFFER_SIZE > 256)
 puts("Error: SIZE exceeded");

The identifier BUFFER_SIZE and the string "Error: SIZE exceeded"
weren’t affected by preprocessing, even though both contain the word SIZE.

� A macro definition normally remains in effect until the end of the file in
which it appears. Since macros are handled by the preprocessor, they don’t
obey normal scope rules. A macro defined inside the body of a function isn’t
local to that function; it remains defined until the end of the file.

� A macro may not be defined twice unless the new definition is identical to
the old one. Differences in spacing are allowed, but the tokens in the macro’s
replacement list (and the parameters, if any) must be the same.

� Macros may be “undefined” by the #undef directive. The #undef direc-
tive has the form

where identifier is a macro name. For example, the directive

#undef N

removes the current definition of the macro N. (If N hasn’t been defined as a
macro, the #undef directive has no effect.) One use of #undef is to remove
the existing definition of a macro so that it can be given a new definition.

Parentheses in Macro Definitions

The replacement lists in our macro definitions have been full of parentheses. Is it
really necessary to have so many? The answer is an emphatic yes; if we use fewer

Q&A

#undef directive #undef identifier

C14.FM Page 326 Tuesday, February 12, 2008 4:49 PM

14.3 Macro Definitions 327

parentheses, the macros will sometimes give unexpected—and undesirable—
results.

There are two rules to follow when deciding where to put parentheses in a
macro definition. First, if the macro’s replacement list contains an operator, always
enclose the replacement list in parentheses:

#define TWO_PI (2*3.14159)

Second, if the macro has parameters, put parentheses around each parameter every
time it appears in the replacement list:

#define SCALE(x) ((x)*10)

Without the parentheses, we can’t guarantee that the compiler will treat replace-
ment lists and arguments as whole expressions. The compiler may apply the rules
of operator precedence and associativity in ways that we didn’t anticipate.

To illustrate the importance of putting parentheses around a macro’s replace-
ment list, consider the following macro definition, in which the parentheses are
missing:

#define TWO_PI 2*3.14159
 /* needs parentheses around replacement list */

During preprocessing, the statement

conversion_factor = 360/TWO_PI;

becomes

conversion_factor = 360/2*3.14159;

The division will be performed before the multiplication, yielding a result different
from the one intended.

Putting parentheses around the replacement list isn’t enough if the macro has
parameters—each occurrence of a parameter needs parentheses as well. For exam-
ple, suppose that SCALE is defined as follows:

#define SCALE(x) (x*10) /* needs parentheses around x */

During preprocessing, the statement

j = SCALE(i+1);

becomes

j = (i+1*10);

Since multiplication takes precedence over addition, this statement is equivalent to

j = i+10;

Of course, what we wanted was

j = (i+1)*10;

C14.FM Page 327 Tuesday, February 12, 2008 4:49 PM

328 Chapter 14 The Preprocessor

A shortage of parentheses in a macro definition can cause some of C’s most frus-
trating errors. The program will usually compile and the macro will appear to
work, failing only at the least convenient times.

Creating Longer Macros

The comma operator can be useful for creating more sophisticated macros by
allowing us to make the replacement list a series of expressions. For example, the
following macro will read a string and then print it:

#define ECHO(s) (gets(s), puts(s))

Calls of gets and puts are expressions, so it’s perfectly legal to combine them
using the comma operator. We can invoke ECHO as though it were a function:

ECHO(str); /* becomes (gets(str), puts(str)); */

Instead of using the comma operator in the definition of ECHO, we could have
enclosed the calls of gets and puts in braces to form a compound statement:

#define ECHO(s) { gets(s); puts(s); }

Unfortunately, this method doesn’t work as well. Suppose that we use ECHO in an
if statement:

if (echo_flag)
 ECHO(str);
else
 gets(str);

Replacing ECHO gives the following result:

if (echo_flag)
 { gets(str); puts(str); };
else
 gets(str);

The compiler treats the first two lines as a complete if statement:

if (echo_flag)
 { gets(str); puts(str); }

It treats the semicolon that follows as a null statement and produces an error mes-
sage for the else clause, since it doesn’t belong to any if. We could solve the
problem by remembering not to put a semicolon after each invocation of ECHO,
but then the program would look odd.

The comma operator solves this problem for ECHO, but not for all macros.
Suppose that a macro needs to contain a series of statements, not just a series of
expressions. The comma operator is of no help; it can glue together expressions,

C14.FM Page 328 Tuesday, February 12, 2008 4:49 PM

14.3 Macro Definitions 329

but not statements. The solution is to wrap the statements in a do loop whose con-
dition is false (and which therefore will be executed just once):

do { … } while (0)

Notice that the do statement isn’t complete—it needs a semicolon at the end. To
see this trick (ahem, technique) in action, let’s incorporate it into our ECHO macro:

#define ECHO(s) \
 do { \
 gets(s); \
 puts(s); \
 } while (0)

When ECHO is used, it must be followed by a semicolon, which completes the do
statement:

ECHO(str);
 /* becomes do { gets(str); puts(str); } while (0); */

Predefined Macros

C has several predefined macros. Each macro represents an integer constant or
string literal. As Table 14.1 shows, these macros provide information about the
current compilation or about the compiler itself.

The __DATE__ and __TIME__ macros identify when a program was com-
piled. For example, suppose that a program begins with the following statements:

printf("Wacky Windows (c) 2010 Wacky Software, Inc.\n");
printf("Compiled on %s at %s\n", __DATE__, __TIME__);

Each time it begins to execute, the program will print two lines of the form

Wacky Windows (c) 2010 Wacky Software, Inc.
Compiled on Dec 23 2010 at 22:18:48

This information can be helpful for distinguishing among different versions of the
same program.

We can use the __LINE__ and __FILE__ macros to help locate errors.
Consider the problem of detecting the location of a division by zero. When a C
program terminates prematurely because it divided by zero, there’s usually no indi-
cation of which division caused the problem. The following macro can help us pin-
point the source of the error:

Name Description

__LINE__
__FILE__
__DATE__
__TIME__
__STDC__

Line number of file being compiled
Name of file being compiled
Date of compilation (in the form "Mmm dd yyyy")
Time of compilation (in the form "hh:mm:ss")
1 if the compiler conforms to the C standard (C89 or C99)

Table 14.1
Predefined Macros

C14.FM Page 329 Tuesday, February 12, 2008 4:49 PM

330 Chapter 14 The Preprocessor

#define CHECK_ZERO(divisor) \
 if (divisor == 0) \
 printf("*** Attempt to divide by zero on line %d " \
 "of file %s ***\n", __LINE__, __FILE__)

The CHECK_ZERO macro would be invoked prior to a division:

CHECK_ZERO(j);
k = i / j;

If j happens to be zero, a message of the following form will be printed:

*** Attempt to divide by zero on line 9 of file foo.c ***

Error-detecting macros like this one are quite useful. In fact, the C library has a
general-purpose error-detecting macro named assert.

The __STDC__ macro exists and has the value 1 if the compiler conforms to
the C standard (either C89 or C99). By having the preprocessor test this macro, a
program can adapt to a compiler that predates the C89 standard (see Section 14.4
for an example).

Additional Predefined Macros in C99

C99 provides a few additional predefined macros (Table 14.2).

To understand the meaning of __STDC__HOSTED__, we need some new
vocabulary. An implementation of C consists of the compiler plus other software
necessary to execute C programs. C99 divides implementations into two catego-
ries: hosted and freestanding. A hosted implementation must accept any program
that conforms to the C99 standard, whereas a freestanding implementation
doesn’t have to compile programs that use complex types or standard headers
beyond a few of the most basic. (In particular, a freestanding implementation
doesn’t have to support the <stdio.h> header.) The __STDC__HOSTED__
macro represents the constant 1 if the compiler is a hosted implementation; other-
wise, the macro has the value 0.

The __STDC__VERSION__ macro provides a way to check which version
of the C standard is recognized by the compiler. This macro first appeared in
Amendment 1 to the C89 standard, where its value was specified to be the long

assert macro ➤24.1

C99

Name Description

__STDC__HOSTED__

__STDC__VERSION__
__STDC_IEC_559__†

__STDC_IEC_559_COMPLEX__†

__STDC_ISO_10646__†

1 if this is a hosted implementation; 0 if it is
freestanding
Version of C standard supported
1 if IEC 60559 floating-point arithmetic is
supported
1 if IEC 60559 complex arithmetic is supported
yyyymmL if wchar_t values match the ISO
10646 standard of the specified year and month

†Conditionally defined

Table 14.2
Additional Predefined

Macros in C99

complex types ➤27.3

Q&A

C14.FM Page 330 Tuesday, February 12, 2008 4:49 PM

14.3 Macro Definitions 331

integer constant 199409L (representing the year and month of the amendment). If
a compiler conforms to the C99 standard, the value is 199901L. For each subse-
quent version of the standard (and each amendment to the standard), this macro
will have a different value.

A C99 compiler may (or may not) define three additional macros. Each macro
is defined only if the compiler meets a certain requirement:

� __STDC_IEC_559__ is defined (and has the value 1) if the compiler per-
forms floating-point arithmetic according to the IEC 60559 standard (another
name for the IEEE 754 standard).

� __STDC_IEC_559_COMPLEX__ is defined (and has the value 1) if the
compiler performs complex arithmetic according to the IEC 60559 standard.

� __STDC_ISO_10646__ is defined as an integer constant of the form
yyyymmL (for example, 199712L) if values of type wchar_t are repre-
sented by the codes in the ISO/IEC 10646 standard (with revisions as of the
specified year and month).

Empty Macro Arguments

C99 allows any or all of the arguments in a macro call to be empty. Such a call will
contain the same number of commas as a normal call, however. (That way, it’s easy
to see which arguments have been omitted.)

In most cases, the effect of an empty argument is clear. Wherever the corre-
sponding parameter name appears in the replacement list, it’s replaced by noth-
ing—it simply disappears from the replacement list. Here’s an example:

#define ADD(x,y) (x+y)

After preprocessing, the statement

i = ADD(j,k);

becomes

i = (j+k);

whereas the statement

i = ADD(,k);

becomes

i = (+k);

When an empty argument is an operand of the # or ## operators, special rules
apply. If an empty argument is “stringized” by the # operator, the result is "" (the
empty string):

#define MK_STR(x) #x
…
char empty_string[] = MK_STR();

IEEE floating-point standard ➤7.2

wchar_t type ➤25.2

ISO/IEC 10646 standard ➤25.2

C99

C14.FM Page 331 Tuesday, February 12, 2008 4:49 PM

332 Chapter 14 The Preprocessor

After preprocessing, the declaration will have the following appearance:

char empty_string[] = "";

If one of the arguments of the ## operator is empty, it’s replaced by an invisi-
ble “placemarker” token. Concatenating an ordinary token with a placemarker
token yields the original token (the placemarker disappears). If two placemarker
tokens are concatenated, the result is a single placemarker. Once macro expansion
has been completed, placemarker tokens disappear from the program. Consider the
following example:

#define JOIN(x,y,z) x##y##z
…
int JOIN(a,b,c), JOIN(a,b,), JOIN(a,,c), JOIN(,,c);

After preprocessing, the declaration will have the following appearance:

int abc, ab, ac, c;

The missing arguments were replaced by placemarker tokens, which then disap-
peared when concatenated with any nonempty arguments. All three arguments to
the JOIN macro could even be missing, which would yield an empty result.

Macros with a Variable Number of Arguments

In C89, a macro must have a fixed number of arguments, if it has any at all. C99
loosens things up a bit, allowing macros that take an unlimited number of argu-
ments. This feature has long been available for functions, so it’s not surprising that
macros were finally put on an equal footing.

The primary reason for having a macro with a variable number of arguments is
that it can pass these arguments to a function that accepts a variable number of
arguments, such as printf or scanf. Here’s an example:

#define TEST(condition, ...) ((condition)? \
 printf("Passed test: %s\n", #condition): \
 printf(__VA_ARGS__))

The ... token, known as ellipsis, goes at the end of a macro’s parameter list, pre-
ceded by ordinary parameters, if there are any. __VA_ARGS__ is a special identi-
fier that can appear only in the replacement list of a macro with a variable number
of arguments; it represents all the arguments that correspond to the ellipsis. (There
must be at least one argument that corresponds to the ellipsis, although that argu-
ment may be empty.) The TEST macro requires at least two arguments. The first
argument matches the condition parameter; the remaining arguments match
the ellipsis.

Here’s an example that shows how the TEST macro might be used:

TEST(voltage <= max_voltage,
 "Voltage %d exceeds %d\n", voltage, max_voltage);

The preprocessor will produce the following output (reformatted for readability):

C99

variable-length argument lists
➤26.1

C14.FM Page 332 Tuesday, February 12, 2008 4:49 PM

14.4 Conditional Compilation 333

((voltage <= max_voltage)?
 printf("Passed test: %s\n", "voltage <= max_voltage"):
 printf("Voltage %d exceeds %d\n", voltage, max_voltage));

When the program is executed, the program will display the message

Passed test: voltage <= max_voltage

if voltage is no more than max_voltage. Otherwise, it will display the values
of voltage and max_voltage:

Voltage 125 exceeds 120

The __func__ Identifier

Another new feature of C99 is the __func__ identifier. __func__ has nothing
to do with the preprocessor, so it actually doesn’t belong in this chapter. However,
like many preprocessor features, it’s useful for debugging, so I’ve chosen to dis-
cuss it here.

Every function has access to the __func__ identifier, which behaves like a
string variable that stores the name of the currently executing function. The effect
is the same as if each function contains the following declaration at the beginning
of its body:

static const char __func__[] = "function-name";

where function-name is the name of the function. The existence of this identifier
makes it possible to write debugging macros such as the following:

#define FUNCTION_CALLED() printf("%s called\n", __func__);
#define FUNCTION_RETURNS() printf("%s returns\n", __func__);

Calls of these macros can then be placed inside functions to trace their calls:

void f(void)
{
 FUNCTION_CALLED(); /* displays "f called" */
 …
 FUNCTION_RETURNS(); /* displays "f returns" */
}

Another use of __func__: it can be passed to a function to let it know the name
of the function that called it.

14.4 Conditional Compilation

The C preprocessor recognizes a number of directives that support conditional
compilation—the inclusion or exclusion of a section of program text depending on
the outcome of a test performed by the preprocessor.

C99

C14.FM Page 333 Tuesday, February 12, 2008 4:49 PM

334 Chapter 14 The Preprocessor

The #if and #endif Directives

Suppose we’re in the process of debugging a program. We’d like the program to
print the values of certain variables, so we put calls of printf in critical parts of
the program. Once we’ve located the bugs, it’s often a good idea to let the printf
calls remain, just in case we need them later. Conditional compilation allows us to
leave the calls in place, but have the compiler ignore them.

Here’s how we’ll proceed. We’ll first define a macro and give it a nonzero
value:

#define DEBUG 1

The name of the macro doesn’t matter. Next, we’ll surround each group of
printf calls by an #if-#endif pair:

#if DEBUG
printf("Value of i: %d\n", i);
printf("Value of j: %d\n", j);
#endif

During preprocessing, the #if directive will test the value of DEBUG. Since its
value isn’t zero, the preprocessor will leave the two calls of printf in the pro-
gram (the #if and #endif lines will disappear, though). If we change the value
of DEBUG to zero and recompile the program, the preprocessor will remove all
four lines from the program. The compiler won’t see the calls of printf, so they
won’t occupy any space in the object code and won’t cost any time when the pro-
gram is run. We can leave the #if-#endif blocks in the final program, allowing
diagnostic information to be produced later (by recompiling with DEBUG set to 1)
if any problems turn up.

In general, the #if directive has the form

The #endif directive is even simpler:

When the preprocessor encounters the #if directive, it evaluates the constant
expression. If the value of the expression is zero, the lines between #if and
#endif will be removed from the program during preprocessing. Otherwise, the
lines between #if and #endif will remain in the program to be processed by the
compiler—the #if and #endif will have had no effect on the program.

It’s worth noting that the #if directive treats undefined identifiers as macros
that have the value 0. Thus, if we neglect to define DEBUG, the test

#if DEBUG

#if directive #if constant-expression

#endif directive #endif

Q&A

C14.FM Page 334 Tuesday, February 12, 2008 4:49 PM

14.4 Conditional Compilation 335

will fail (but not generate an error message), while the test

#if !DEBUG

will succeed.

The defined Operator

We encountered the # and ## operators in Section 14.3. There’s just one other
operator, defined, that’s specific to the preprocessor. When applied to an identi-
fier, defined produces the value 1 if the identifier is a currently defined macro; it
produces 0 otherwise. The defined operator is normally used in conjunction
with the #if directive; it allows us to write

#if defined(DEBUG)
…
#endif

The lines between the #if and #endif directives will be included in the program
only if DEBUG is defined as a macro. The parentheses around DEBUG aren’t
required; we could simply write

#if defined DEBUG

Since defined tests only whether DEBUG is defined or not, it’s not neces-
sary to give DEBUG a value:

#define DEBUG

The #ifdef and #ifndef Directives

The #ifdef directive tests whether an identifier is currently defined as a macro:

Using #ifdef is similar to using #if:

#ifdef identifier
Lines to be included if identifier is defined as a macro
#endif

Strictly speaking, there’s no need for #ifdef, since we can combine the #if
directive with the defined operator to get the same effect. In other words, the
directive

#ifdef identifier

is equivalent to

#if defined(identifier)

#ifdef directive #ifdef identifier

Q&A

C14.FM Page 335 Tuesday, February 12, 2008 4:49 PM

336 Chapter 14 The Preprocessor

The #ifndef directive is similar to #ifdef, but tests whether an identifier
is not defined as a macro:

Writing

#ifndef identifier

is the same as writing

#if !defined(identifier)

The #elif and #else Directives

#if, #ifdef, and #ifndef blocks can be nested just like ordinary if state-
ments. When nesting occurs, it’s a good idea to use an increasing amount of inden-
tation as the level of nesting grows. Some programmers put a comment on each
closing #endif to indicate what condition the matching #if tests:

#if DEBUG
…
#endif /* DEBUG */

This technique makes it easier for the reader to find the beginning of the #if block.
For additional convenience, the preprocessor supports the #elif and #else

directives:

#elif and #else can be used in conjunction with #if, #ifdef, or #ifndef
to test a series of conditions:

#if expr1
Lines to be included if expr1 is nonzero
#elif expr2
Lines to be included if expr1 is zero but expr2 is nonzero
#else
Lines to be included otherwise
#endif

Although the #if directive is shown above, an #ifdef or #ifndef directive
can be used instead. Any number of #elif directives—but at most one #else—
may appear between #if and #endif.

#ifndef directive #ifndef identifier

#elif directive #elif constant-expression

#else directive #else

C14.FM Page 336 Tuesday, February 12, 2008 4:49 PM

14.4 Conditional Compilation 337

Uses of Conditional Compilation

Conditional compilation is certainly handy for debugging, but its uses don’t stop
there. Here are a few other common applications:

� Writing programs that are portable to several machines or operating sys-
tems. The following example includes one of three groups of lines depending
on whether WIN32, MAC_OS, or LINUX is defined as a macro:

#if defined(WIN32)
…

#elif defined(MAC_OS)
…

#elif defined(LINUX)
…

#endif

A program might contain many of these #if blocks. At the beginning of the
program, one (and only one) of the macros will be defined, thereby selecting a
particular operating system. For example, defining the LINUX macro might
indicate that the program is to run under the Linux operating system.

� Writing programs that can be compiled with different compilers. Different
compilers often recognize somewhat different versions of C. Some accept a
standard version of C, some don’t. Some provide machine-specific language
extensions; some don’t, or provide a different set of extensions. Conditional
compilation can allow a program to adjust to different compilers. Consider the
problem of writing a program that might have to be compiled using an older,
nonstandard compiler. The __STDC__ macro allows the preprocessor to
detect whether a compiler conforms to the standard (either C89 or C99); if it
doesn’t, we may need to change certain aspects of the program. In particular,
we may have to use old-style function declarations (discussed in the Q&A at
the end of Chapter 9) instead of function prototypes. At each point where
functions are declared, we can put the following lines:

#if __STDC__
Function prototypes
#else
Old-style function declarations
#endif

� Providing a default definition for a macro. Conditional compilation allows
us to check whether a macro is currently defined and, if not, give it a default
definition. For example, the following lines will define the macro
BUFFER_SIZE if it wasn’t previously defined:

#ifndef BUFFER_SIZE
#define BUFFER_SIZE 256
#endif

C14.FM Page 337 Tuesday, February 12, 2008 4:49 PM

338 Chapter 14 The Preprocessor

� Temporarily disabling code that contains comments. We can’t use a /*…*/
comment to “comment out” code that already contains /*…*/ comments.
Instead, we can use an #if directive:

#if 0
Lines containing comments
#endif

Disabling code in this way is often called “conditioning out.”

Section 15.2 discusses another common use of conditional compilation: pro-
tecting header files against multiple inclusion.

14.5 Miscellaneous Directives

To end the chapter, we’ll take a brief look at the #error, #line, and #pragma
directives. These directives are more specialized than the ones we’ve already
examined, and they’re used much less frequently.

The #error Directive

The #error directive has the form

where message is any sequence of tokens. If the preprocessor encounters an
#error directive, it prints an error message which must include message. The
exact form of the error message can vary from one compiler to another; it might be
something like

Error directive: message

or perhaps just

#error message

Encountering an #error directive indicates a serious flaw in the program; some
compilers immediately terminate compilation without attempting to find other
errors.

#error directives are frequently used in conjunction with conditional com-
pilation to check for situations that shouldn’t arise during a normal compilation.
For example, suppose that we want to ensure that a program can’t be compiled on
a machine whose int type isn’t capable of storing numbers up to 100,000. The
largest possible int value is represented by the INT_MAX macro, so all we need
do is invoke an #error directive if INT_MAX isn’t at least 100,000:

Q&A

#error directive #error message

INT_MAX macro ➤23.2

C14.FM Page 338 Tuesday, February 12, 2008 4:49 PM

14.5 Miscellaneous Directives 339

#if INT_MAX < 100000
#error int type is too small
#endif

Attempting to compile the program on a machine whose integers are stored in 16
bits will produce a message such as

Error directive: int type is too small

The #error directive is often found in the #else part of an #if-#elif-
#else series:

#if defined(WIN32)
…
#elif defined(MAC_OS)
…
#elif defined(LINUX)
…
#else
#error No operating system specified
#endif

The #line Directive

The #line directive is used to alter the way program lines are numbered. (Lines
are usually numbered 1, 2, 3, as you’d expect.) We can also use this directive to
make the compiler think that it’s reading the program from a file with a different
name.

The #line directive has two forms. In one form, we specify a line number:

n must be a sequence of digits representing an integer between 1 and 32767
(2147483647 in C99). This directive causes subsequent lines in the program to be
numbered n, n + 1, n + 2, and so forth.

In the second form of the #line directive, both a line number and a file name
are specified:

The lines that follow this directive are assumed to come from file, with line num-
bers starting at n. The values of n and/or the file string can be specified using mac-
ros.

One effect of the #line directive is to change the value of the __LINE__
macro (and possibly the __FILE__ macro). More importantly, most compilers
will use the information from the #line directive when generating error messages.

#line directive
(form 1)

#line n

C99

#line directive
(form 2)

#line n "file"

C14.FM Page 339 Tuesday, February 12, 2008 4:49 PM

340 Chapter 14 The Preprocessor

For example, suppose that the following directive appears at the beginning of the
file foo.c:

#line 10 "bar.c"

Let’s say that the compiler detects an error on line 5 of foo.c. The error message
will refer to line 13 of file bar.c, not line 5 of file foo.c. (Why line 13? The
directive occupies line 1 of foo.c, so the renumbering of foo.c begins at line 2,
which is treated as line 10 of bar.c.)

At first glance, the #line directive is mystifying. Why would we want error
messages to refer to a different line and possibly a different file? Wouldn’t this
make programs harder to debug?

In fact, the #line directive isn’t used very often by programmers. Instead,
it’s used primarily by programs that generate C code as output. The most famous
example of such a program is yacc (Yet Another Compiler-Compiler), a UNIX
utility that automatically generates part of a compiler. (The GNU version of yacc
is named bison.) Before using yacc, the programmer prepares a file that con-
tains information for yacc as well as fragments of C code. From this file, yacc
generates a C program, y.tab.c, that incorporates the code supplied by the pro-
grammer. The programmer then compiles y.tab.c in the usual way. By inserting
#line directives in y.tab.c, yacc tricks the compiler into believing that the
code comes from the original file—the one written by the programmer. As a result,
any error messages produced during the compilation of y.tab.c will refer to
lines in the original file, not lines in y.tab.c. This makes debugging easier,
because error messages refer to the file written by the programmer, not the (more
complicated) file generated by yacc.

The #pragma Directive

The #pragma directive provides a way to request special behavior from the com-
piler. This directive is most useful for programs that are unusually large or that
need to take advantage of the capabilities of a particular compiler.

The #pragma directive has the form

where tokens are arbitrary tokens. #pragma directives can be very simple (a sin-
gle token) or they can be much more elaborate:

#pragma data(heap_size => 1000, stack_size => 2000)

Not surprisingly, the set of commands that can appear in #pragma directives
is different for each compiler; you’ll have to consult the documentation for your
compiler to see which commands it allows and what those commands do. Inciden-
tally, the preprocessor must ignore any #pragma directive that contains an unrec-
ognized command; it’s not permitted to give an error message.

#pragma directive #pragma tokens

C14.FM Page 340 Tuesday, February 12, 2008 4:49 PM

14.5 Miscellaneous Directives 341

In C89, there are no standard pragmas—they’re all implementation-defined.
C99 has three standard pragmas, all of which use STDC as the first token following
#pragma. These pragmas are FP_CONTRACT (covered in Section 23.4),
CX_LIMITED_RANGE (Section 27.4), and FENV_ACCESS (Section 27.6).

The _Pragma Operator

C99 introduces the _Pragma operator, which is used in conjunction with the
#pragma directive. A _Pragma expression has the form

When it encounters such an expression, the preprocessor “destringizes” the string
literal (yes, that’s the term used in the C99 standard!) by removing the double
quotes around the string and replacing the escape sequences \" and \\ by the
characters " and \, respectively. The result is a series of tokens, which are then
treated as though they appear in a #pragma directive. For example, writing

_Pragma("data(heap_size => 1000, stack_size => 2000)")

is the same as writing

#pragma data(heap_size => 1000, stack_size => 2000)

The _Pragma operator lets us work around a limitation of the preprocessor:
the fact that a preprocessing directive can’t generate another directive. _Pragma,
however, is an operator, not a directive, and can therefore appear in a macro defini-
tion. This makes it possible for a macro expansion to leave behind a #pragma
directive.

Let’s look at an example from the GCC manual. The following macro uses the
_Pragma operator:

#define DO_PRAGMA(x) _Pragma(#x)

The macro would be invoked as follows:

DO_PRAGMA(GCC dependency "parse.y")

After expansion, the result will be

#pragma GCC dependency "parse.y"

which is one of the pragmas supported by GCC. (It issues a warning if the date of
the specified file—parse.y in this example—is more recent than the date of the
current file—the one being compiled.) Note that the argument to the call of
DO_PRAGMA is a series of tokens. The # operator in the definition of DO_PRAGMA
causes the tokens to be stringized into "GCC dependency \"parse.y\"";
this string is then passed to the _Pragma operator, which destringizes it, produc-
ing a #pragma directive containing the original tokens.

C99

C99

_Pragma expression _Pragma (string-literal)

C14.FM Page 341 Tuesday, February 12, 2008 4:49 PM

342 Chapter 14 The Preprocessor

Q & A

Q: I’ve seen programs that contain a # on a line by itself. Is this legal?
A: Yes. This is the null directive; it has no effect. Some programmers use null direc-

tives for spacing within conditional compilation blocks:

#if INT_MAX < 100000
#
#error int type is too small
#
#endif

Blank lines would also work, of course, but the # helps the reader see the extent of
the block.

Q: I’m not sure which constants in a program need to be defined as macros. Are
there any guidelines to follow? [p. 319]

A: One rule of thumb says that every numeric constant, other than 0 or 1, should be a
macro. Character and string constants are problematic, since replacing a character
or string constant by a macro doesn’t always improve readability. I recommend
using a macro instead of a character constant or string literal provided that (1) the
constant is used more than once and (2) the possibility exists that the constant
might someday be modified. Because of rule (2), I don’t use macros such as

#define NUL '\0'

although some programmers do.

Q: What does the # operator do if the argument that it’s supposed to “stringize”
contains a " or \ character? [p. 324]

A: It converts " to \" and \ to \\. Consider the following macro:

#define STRINGIZE(x) #x

The preprocessor will replace STRINGIZE("foo") by "\"foo\"".

*Q: I can’t get the following macro to work properly:

#define CONCAT(x,y) x##y

CONCAT(a,b) gives ab, as expected, but CONCAT(a,CONCAT(b,c)) gives
an odd result. What’s going on?

A: Thanks to rules that Kernighan and Ritchie call “bizarre,” macros whose replace-
ment lists depend on ## usually can’t be called in a nested fashion. The problem is
that CONCAT(a,CONCAT(b,c)) isn’t expanded in a “normal” fashion, with
CONCAT(b,c) yielding bc, then CONCAT(a,bc) giving abc. Macro parame-
ters that are preceded or followed by ## in a replacement list aren’t expanded at

C14.FM Page 342 Tuesday, February 12, 2008 4:49 PM

Q & A 343

the time of substitution. As a result, CONCAT(a,CONCAT(b,c)) expands to
aCONCAT(b,c), which can’t be expanded further, since there’s no macro named
aCONCAT.

There’s a way to solve the problem, but it’s not pretty. The trick is to define a
second macro that simply calls the first one:

#define CONCAT2(x,y) CONCAT(x,y)

Writing CONCAT2(a,CONCAT2(b,c)) now yields the desired result. As the
preprocessor expands the outer call of CONCAT2, it will expand CONCAT2(b,c)
as well; the difference is that CONCAT2’s replacement list doesn’t contain ##. If
none of this makes any sense, don’t worry; it’s not a problem that arises often.

The # operator has a similar difficulty, by the way. If #x appears in a replace-
ment list, where x is a macro parameter, the corresponding argument is not
expanded. Thus, if N is a macro representing 10, and STR(x) has the replacement
list #x, expanding STR(N) yields "N", not "10". The solution is similar to the
one we used with CONCAT: defining a second macro whose job is to call STR.

*Q: Suppose that the preprocessor encounters the original macro name during
rescanning, as in the following example:

#define N (2*M)
#define M (N+1)

i = N; /* infinite loop? */

The preprocessor will replace N by (2*M), then replace M by (N+1). Will the
preprocessor replace N again, thus going into an infinite loop? [p. 326]

A: Some old preprocessors will indeed go into an infinite loop, but newer ones
shouldn’t. According to the C standard, if the original macro name reappears dur-
ing the expansion of a macro, the name is not replaced again. Here’s how the
assignment to i will look after preprocessing:

i = (2*(N+1));

Some enterprising programmers take advantage of this behavior by writing
macros whose names match reserved words or functions in the standard library.
Consider the sqrt library function. sqrt computes the square root of its argu-
ment, returning an implementation-defined value if the argument is negative. Per-
haps we would prefer that sqrt return 0 if its argument is negative. Since sqrt is
part of the standard library, we can’t easily change it. We can, however, define a
sqrt macro that evaluates to 0 when given a negative argument:

#undef sqrt
#define sqrt(x) ((x)>=0?sqrt(x):0)

A later call of sqrt will be intercepted by the preprocessor, which expands it into
the conditional expression shown here. The call of sqrt inside the conditional
expression won’t be replaced during rescanning, so it will remain for the compiler

sqrt function ➤23.3

C14.FM Page 343 Tuesday, February 12, 2008 4:49 PM

344 Chapter 14 The Preprocessor

to handle. (Note the use of #undef to undefine sqrt before defining the sqrt
macro. As we’ll see in Section 21.1, the standard library is allowed to have both a
macro and a function with the same name. Undefining sqrt before defining our
own sqrt macro is a defensive measure, in case the library has already defined
sqrt as a macro.)

Q: I get an error when I try to use predefined macros such as __LINE__ and
__FILE__. Is there a special header that I need to include?

A: No. These macros are recognized automatically by the preprocessor. Make sure that
you have two underscores at the beginning and end of each macro name, not one.

Q: What’s the purpose of distinguishing between a “hosted implementation” and
a “freestanding implementation”? If a freestanding implementation doesn’t
even support the <stdio.h> header, what use is it? [p. 330]

A: A hosted implementation is needed for most programs (including the ones in this
book), which rely on the underlying operating system for input/output and other
essential services. A freestanding implementation of C would be used for pro-
grams that require no operating system (or only a minimal operating system). For
example, a freestanding implementation would be needed for writing the kernel of
an operating system (which requires no traditional input/output and therefore
doesn’t need <stdio.h> anyway). Freestanding implementations are also useful
for writing software for embedded systems.

Q: I thought the preprocessor was just an editor. How can it evaluate constant
expressions? [p. 334]

A: The preprocessor is more sophisticated than you might expect; it knows enough
about C to be able to evaluate constant expressions, although it doesn’t do so in
quite the same way as the compiler. (For one thing, the preprocessor treats any
undefined name as having the value 0. The other differences are too esoteric to go
into here.) In practice, the operands in a preprocessor constant expression are usu-
ally constants, macros that represent constants, and applications of the defined
operator.

Q: Why does C provide the #ifdef and #ifndef directives, since we can get
the same effect using the #if directive and the defined operator? [p. 335]

A: The #ifdef and #ifndef directives have been a part of C since the 1970s. The
defined operator, on the other hand, was added to C in the 1980s during stan-
dardization. So the real question is: Why was defined added to the language?
The answer is that defined adds flexibility. Instead of just being able to test the
existence of a single macro using #ifdef or #ifndef, we can now test any
number of macros using #if together with defined. For example, the following
directive checks whether FOO and BAR are defined but BAZ is not defined:

#if defined(FOO) && defined(BAR) && !defined(BAZ)

C14.FM Page 344 Tuesday, February 12, 2008 4:49 PM

Exercises 345

Q: I wanted to compile a program that I hadn’t finished writing, so I “condi-
tioned out” the unfinished part:

#if 0
…
#endif

When I compiled the program, I got an error message referring to one of the
lines between #if and #endif. Doesn’t the preprocessor just ignore these
lines? [p. 338]

A: No, the lines aren’t completely ignored. Comments are processed before prepro-
cessing directives are executed, and the source code is divided into preprocessing
tokens. Thus, an unterminated comment between #if and #endif may cause an
error message. Also, an unpaired single quote or double quote character may cause
undefined behavior.

Exercises

Section 14.3 1. Write parameterized macros that compute the following values.

Do your macros always work? If not, describe what arguments would make them fail.

2. Write a macro NELEMS(a) that computes the number of elements in a one-dimensional
array a. Hint: See the discussion of the sizeof operator in Section 8.1.

3. Let DOUBLE be the following macro:

#define DOUBLE(x) 2*x

4. For each of the following macros, give an example that illustrates a problem with the macro
and show how to fix it.

*5. Let TOUPPER be the following macro:

#define TOUPPER(c) ('a'<=(c)&&(c)<='z'?(c)-'a'+'A':(c))

Let s be a string and let i be an int variable. Show the output produced by each of the fol-
lowing program fragments.

(a) The cube of x.
(b) The remainder when n is divided by 4.
(c) 1 if the product of x and y is less than 100, 0 otherwise.

W

(a) What is the value of DOUBLE(1+2)?
(b) What is the value of 4/DOUBLE(2)?
(c) Fix the definition of DOUBLE.

(a) #define AVG(x,y) (x+y)/2
(b) #define AREA(x,y) (x)*(y)

W

W

(a) strcpy(s, "abcd");
i = 0;
putchar(TOUPPER(s[++i]));

C14.FM Page 345 Tuesday, February 12, 2008 4:49 PM

346 Chapter 14 The Preprocessor

6. (a) Write a macro DISP(f,x) that expands into a call of printf that displays the value
of the function f when called with argument x. For example,

DISP(sqrt, 3.0);

should expand into

printf("sqrt(%g) = %g\n", 3.0, sqrt(3.0));

(b) Write a macro DISP2(f,x,y) that’s similar to DISP but works for functions with
two arguments.

*7. Let GENERIC_MAX be the following macro:

#define GENERIC_MAX(type) \
type type##_max(type x, type y) \
{ \
 return x > y ? x : y; \
}

*8. Suppose we want a macro that expands into a string containing the current line number and
file name. In other words, we’d like to write

const char *str = LINE_FILE;

and have it expand into

const char *str = "Line 10 of file foo.c";

where foo.c is the file containing the program and 10 is the line on which the invocation
of LINE_FILE appears. Warning: This exercise is for experts only. Be sure to read the
Q&A section carefully before attempting!

9. Write the following parameterized macros.

10. Functions can often—but not always—be written as parameterized macros. Discuss what
characteristics of a function would make it unsuitable as a macro.

11. (C99) C programmers often use the fprintf function to write error messages:

fprintf(stderr, "Range error: index = %d\n", index);

stderr is C’s “standard error” stream; the remaining arguments are the same as those for
printf, starting with the format string. Write a macro named ERROR that generates the
call of fprintf shown above when given a format string and the items to be displayed:

ERROR("Range error: index = %d\n", index);

Section 14.4 12. Suppose that the macro M has been defined as follows:

#define M 10

(b) strcpy(s, "0123");
i = 0;
putchar(TOUPPER(s[++i]));

W

(a) Show the preprocessor’s expansion of GENERIC_MAX(long).
(b) Explain why GENERIC_MAX doesn’t work for basic types such as unsigned long.
(c) Describe a technique that would allow us to use GENERIC_MAX with basic types such

as unsigned long. Hint: Don’t change the definition of GENERIC_MAX.

(a) CHECK(x,y,n) – Has the value 1 if both x and y fall between 0 and n – 1, inclusive.
(b) MEDIAN(x,y,z) – Finds the median of x, y, and z.
(c) POLYNOMIAL(x) – Computes the polynomial 3x5 + 2x4 – 5x3 – x2 + 7x – 6.

fprintf function ➤22.3

stderr stream ➤22.1

W

C14.FM Page 346 Tuesday, February 12, 2008 4:49 PM

Exercises 347

Which of the following tests will fail?

13. (a) Show what the following program will look like after preprocessing. You may ignore
any lines added to the program as a result of including the <stdio.h> header.

#include <stdio.h>

#define N 100

void f(void);

int main(void)
{
 f();
#ifdef N
#undef N
#endif
 return 0;
}

void f(void)
{
#if defined(N)
 printf("N is %d\n", N);
#else
 printf("N is undefined\n");
#endif
}

(b) What will be the output of this program?

*14. Show what the following program will look like after preprocessing. Some lines of the pro-
gram may cause compilation errors; find all such errors.

#define N = 10
#define INC(x) x+1
#define SUB (x,y) x-y
#define SQR(x) ((x)*(x))
#define CUBE(x) (SQR(x)*(x))
#define M1(x,y) x##y
#define M2(x,y) #x #y

int main(void)
{
 int a[N], i, j, k, m;

#ifdef N
 i = j;
#else
 j = i;
#endif

 i = 10 * INC(j);

(a) #if M
(b) #ifdef M
(c) #ifndef M
(d) #if defined(M)
(e) #if !defined(M)

W

C14.FM Page 347 Tuesday, February 12, 2008 4:49 PM

348 Chapter 14 The Preprocessor

 i = SUB(j, k);
 i = SQR(SQR(j));
 i = CUBE(j);
 i = M1(j, k);
 puts(M2(i, j));

#undef SQR
 i = SQR(j);
#define SQR
 i = SQR(j);

 return 0;
}

15. Suppose that a program needs to display messages in either English, French, or Spanish.
Using conditional compilation, write a program fragment that displays one of the following
three messages, depending on whether or not the specified macro is defined:

Insert Disk 1 (if ENGLISH is defined)
Inserez Le Disque 1 (if FRENCH is defined)
Inserte El Disco 1 (if SPANISH is defined)

Section 14.5 *16. (C99) Assume that the following macro definitions are in effect:

#define IDENT(x) PRAGMA(ident #x)
#define PRAGMA(x) _Pragma(#x)

What will the following line look like after macro expansion?

IDENT(foo)

C14.FM Page 348 Tuesday, February 12, 2008 4:49 PM

349

15 Writing Large Programs

Around computers it is difficult to find the correct unit
of time to measure progress. Some cathedrals took a

century to complete. Can you imagine the grandeur
and scope of a program that would take as long?

Although some C programs are small enough to be put in a single file, most aren’t.
Programs that consist of more than one file are the rule rather than the exception. In
this chapter, we’ll see that a typical program consists of several source files and
usually some header files as well. Source files contain definitions of functions and
external variables; header files contain information to be shared among source files.
Section 15.1 discusses source files, while Section 15.2 covers header files. Section
15.3 describes how to divide a program into source files and header files. Section
15.4 then shows how to “build” (compile and link) a program that consists of more
than one file, and how to “rebuild” a program after part of it has been changed.

15.1 Source Files

Up to this point, we’ve assumed that a C program consists of a single file. In fact, a
program may be divided among any number of source files. By convention, source
files have the extension .c. Each source file contains part of the program, prima-
rily definitions of functions and variables. One source file must contain a function
named main, which serves as the starting point for the program.

For example, suppose that we want to write a simple calculator program that
evaluates integer expressions entered in Reverse Polish notation (RPN), in which
operators follow operands. If the user enters an expression such as

30 5 - 7 *

we want the program to print its value (175, in this case). Evaluating an RPN
expression is easy if we have the program read the operands and operators, one by
one, using a stack to keep track of intermediate results. If the program reads astacks ➤10.2

C15.FM Page 349 Tuesday, February 12, 2008 5:05 PM

350 Chapter 15 Writing Large Programs

number, we’ll have it push the number onto the stack. If it reads an operator, we’ll
have it pop two numbers from the stack, perform the operation, and then push the
result back onto the stack. When the program reaches the end of the user’s input,
the value of the expression will be on the stack. For example, the program will
evaluate the expression 30 5 - 7 * in the following way:

1. Push 30 onto the stack.
2. Push 5 onto the stack.
3. Pop the top two numbers from the stack, subtract 5 from 30, giving 25, and

then push the result back onto the stack.
4. Push 7 onto the stack.
5. Pop the top two numbers from the stack, multiply them, and then push the

result back onto the stack.

After these steps, the stack will contain the value of the expression (175).
Turning this strategy into a program isn’t hard. The program’s main function

will contain a loop that performs the following actions:

Read a “token” (a number or an operator).
If the token is a number, push it onto the stack.
If the token is an operator, pop its operands from the stack, perform the opera-

tion, and then push the result back onto the stack.

When dividing a program like this one into files, it makes sense to put related func-
tions and variables into the same file. The function that reads tokens could go into
one source file (token.c, say), together with any functions that have to do with
tokens. Stack-related functions such as push, pop, make_empty, is_empty,
and is_full could go into a different file, stack.c. The variables that repre-
sent the stack would also go into stack.c. The main function would go into yet
another file, calc.c.

Splitting a program into multiple source files has significant advantages:

� Grouping related functions and variables into a single file helps clarify the
structure of the program.

� Each source file can be compiled separately—a great time-saver if the pro-
gram is large and must be changed frequently (which is common during pro-
gram development).

� Functions are more easily reused in other programs when grouped in separate
source files. In our example, splitting off stack.c and token.c from the
main function makes it simpler to reuse the stack functions and token func-
tions in the future.

15.2 Header Files
When we divide a program into several source files, problems arise: How can a
function in one file call a function that’s defined in another file? How can a func-

C15.FM Page 350 Tuesday, February 12, 2008 5:05 PM

15.2 Header Files 351

tion access an external variable in another file? How can two files share the same
macro definition or type definition? The answer lies with the #include directive,
which makes it possible to share information—function prototypes, macro defini-
tions, type definitions, and more—among any number of source files.

The #include directive tells the preprocessor to open a specified file and
insert its contents into the current file. Thus, if we want several source files to have
access to the same information, we’ll put that information in a file and then use
#include to bring the file’s contents into each of the source files. Files that are
included in this fashion are called header files (or sometimes include files); I’ll
discuss them in more detail later in this section. By convention, header files have
the extension .h.

Note: The C standard uses the term “source file” to refer to all files written by
the programmer, including both .c and .h files. I’ll use “source file” to refer to
.c files only.

The #include Directive

The #include directive has two primary forms. The first form is used for header
files that belong to C’s own library:

The second form is used for all other header files, including any that we write:

The difference between the two is a subtle one having to do with how the com-
piler locates the header file. Here are the rules that most compilers follow:

� #include <filename>: Search the directory (or directories) in which system
header files reside. (On UNIX systems, for example, system header files are
usually kept in the directory /usr/include.)

� #include "filename": Search the current directory, then search the direc-
tory (or directories) in which system header files reside.

The places to be searched for header files can usually be altered, often by a com-
mand-line option such as -Ipath.

Don’t use brackets when including header files that you have written:

#include <myheader.h> /*** WRONG ***/

The preprocessor will probably look for myheader.h where the system header
files are kept (and, of course, won’t find it).

#include directive
(form 1)

#include <filename>

#include directive
(form 2)

#include "filename"

Q&A

C15.FM Page 351 Tuesday, February 12, 2008 5:05 PM

352 Chapter 15 Writing Large Programs

The file name in an #include directive may include information that helps
locate the file, such as a directory path or drive specifier:

#include "c:\cprogs\utils.h" /* Windows path */

#include "/cprogs/utils.h" /* UNIX path */

Although the quotation marks in the #include directive make file names look
like string literals, the preprocessor doesn’t treat them that way. (That’s fortunate,
since \c and \u—which appear in the Windows example—would be treated as
escape sequences in a string literal.)

portability tip It’s usually best not to include path or drive information in #include
directives. Such information makes it difficult to compile a program when
it’s transported to another machine or, worse, another operating system.

For example, the following Windows #include directives specify drive and/or
path information that may not always be valid:

#include "d:utils.h"
#include "\cprogs\include\utils.h"
#include "d:\cprogs\include\utils.h"

The following directives are better; they don’t mention specific drives, and paths
are relative rather than absolute:

#include "utils.h"
#include "..\include\utils.h"

The #include directive has a third form that’s used less often than the other
two:

where tokens is any sequence of preprocessing tokens. The preprocessor will scan
the tokens and replace any macros that it finds. After macro replacement, the
resulting directive must match one of the other forms of #include. The advan-
tage of the third kind of #include is that the file name can be defined by a macro
rather than being “hard-coded” into the directive itself, as the following example
shows:

#if defined(IA32)
 #define CPU_FILE "ia32.h"
#elif defined(IA64)
 #define CPU_FILE "ia64.h"
#elif defined(AMD64)
 #define CPU_FILE "amd64.h"
#endif

#include CPU_FILE

#include directive
(form 3)

#include tokens

preprocessing tokens ➤14.3

C15.FM Page 352 Tuesday, February 12, 2008 5:05 PM

15.2 Header Files 353

Sharing Macro Definitions and Type Definitions

Most large programs contain macro definitions and type definitions that need to be
shared by several source files (or, in the most extreme case, by all source files).
These definitions should go into header files.

For example, suppose that we’re writing a program that uses macros named
BOOL, TRUE, and FALSE. (There’s no need for these in C99, of course, because
the <stdbool.h> header defines similar macros.) Instead of repeating the defi-
nitions of these macros in each source file that needs them, it makes more sense to
put the definitions in a header file with a name like boolean.h:

#define BOOL int
#define TRUE 1
#define FALSE 0

Any source file that requires these macros will simply contain the line

#include "boolean.h"

In the following figure, two files include boolean.h:

Type definitions are also common in header files. For example, instead of
defining a BOOL macro, we might use typedef to create a Bool type. If we do,
the boolean.h file will have the following appearance:

#define TRUE 1
#define FALSE 0
typedef int Bool;

Putting definitions of macros and types in header files has some clear advan-
tages. First, we save time by not having to copy the definitions into the source files
where they’re needed. Second, the program becomes easier to modify. Changing
the definition of a macro or type requires only that we edit a single header file; we
don’t have to modify the many source files in which the macro or type is used.
Third, we don’t have to worry about inconsistencies caused by source files contain-
ing different definitions of the same macro or type.

boolean.h

#define BOOL int
#define TRUE 1
#define FALSE 0

#include "boolean.h"#include "boolean.h"

C15.FM Page 353 Tuesday, February 12, 2008 5:05 PM

354 Chapter 15 Writing Large Programs

Sharing Function Prototypes

Suppose that a source file contains a call of a function f that’s defined in another
file, foo.c. Calling f without declaring it first is risky. Without a prototype to
rely on, the compiler is forced to assume that f’s return type is int and that the
number of parameters matches the number of arguments in the call of f. The argu-
ments themselves are converted automatically to a kind of “standard form” by the
default argument promotions. The compiler’s assumptions may well be wrong, but
it has no way to check them, since it compiles only one file at a time. If the
assumptions are incorrect, the program probably won’t work, and there won’t be
any clues as to why it doesn’t. (For this reason, C99 prohibits calling a function for
which the compiler has not yet seen a declaration or definition.)

When calling a function f that’s defined in another file, always make sure that the
compiler has seen a prototype for f prior to the call.

Our first impulse is to declare f in the file where it’s called. That solves the
problem but can create a maintenance nightmare. Suppose that the function is
called in fifty different source files. How can we ensure that f’s prototypes are the
same in all the files? How can we guarantee that they match the definition of f in
foo.c? If f should change later, how can we find all the files where it’s used?

The solution is obvious: put f’s prototype in a header file, then include the
header file in all the places where f is called. Since f is defined in foo.c, let’s
name the header file foo.h. In addition to including foo.h in the source files
where f is called, we’ll need to include it in foo.c, enabling the compiler to
check that f’s prototype in foo.h matches its definition in foo.c.

Always include the header file declaring a function f in the source file that con-
tains f’s definition. Failure to do so can cause hard-to-find bugs, since calls of f
elsewhere in the program may not match f’s definition.

If foo.c contains other functions, most of them should be declared in the
same header file as f. After all, the other functions in foo.c are presumably
related to f; any file that contains a call of f probably needs some of the other
functions in foo.c. Functions that are intended for use only within foo.c
shouldn’t be declared in a header file, however; to do so would be misleading.

To illustrate the use of function prototypes in header files, let’s return to the
RPN calculator of Section 15.1. The stack.c file will contain definitions of the
make_empty, is_empty, is_full, push, and pop functions. The following
prototypes for these functions should go in the stack.h header file:

void make_empty(void);
int is_empty(void);

default argument promotions ➤9.3

Q&A

C15.FM Page 354 Tuesday, February 12, 2008 5:05 PM

15.2 Header Files 355

int is_full(void);
void push(int i);
int pop(void);

(To avoid complicating the example, is_empty and is_full will return int
values instead of Boolean values.) We’ll include stack.h in calc.c to allow
the compiler to check any calls of stack functions that appear in the latter file.
We’ll also include stack.h in stack.c so the compiler can verify that the pro-
totypes in stack.h match the definitions in stack.c. The following figure
shows stack.h, stack.c, and calc.c:

Sharing Variable Declarations

External variables can be shared among files in much the same way functions are.
To share a function, we put its definition in one source file, then put declarations in
other files that need to call the function. Sharing an external variable is done in
much the same way.

Up to this point, we haven’t needed to distinguish between a variable’s decla-
ration and its definition. To declare a variable i, we’ve written

int i; /* declares i and defines it as well */

#include "stack.h"

int contents[100];
int top = 0;

void make_empty(void)
{ … }

int is_empty(void)
{ … }

int is_full(void)
{ … }

void push(int i)
{ … }

int pop(void)
{ … }

stack.c

void make_empty(void);
int is_empty(void);
int is_full(void);
void push(int i);
int pop(void);

stack.h

#include "stack.h"

int main(void)
{
 make_empty();
 …
}

calc.c

external variables ➤10.2

C15.FM Page 355 Tuesday, February 12, 2008 5:05 PM

356 Chapter 15 Writing Large Programs

which not only declares i to be a variable of type int, but defines i as well, by
causing the compiler to set aside space for i. To declare i without defining it, we
must put the keyword extern at the beginning of its declaration:

extern int i; /* declares i without defining it */

extern informs the compiler that i is defined elsewhere in the program (most
likely in a different source file), so there’s no need to allocate space for it.

extern works with variables of all types. When we use it in the declaration
of an array, we can omit the length of the array:

extern int a[];

Since the compiler doesn’t allocate space for a at this time, there’s no need for it to
know a’s length.

To share a variable i among several source files, we first put a definition of i
in one file:

int i;

If i needs to be initialized, the initializer would go here. When this file is com-
piled, the compiler will allocate storage for i. The other files will contain declara-
tions of i:

extern int i;

By declaring i in each file, it becomes possible to access and/or modify i within
those files. Because of the word extern, however, the compiler doesn’t allocate
additional storage for i each time one of the files is compiled.

When a variable is shared among files, we’ll face a challenge similar to one
that we had with shared functions: ensuring that all declarations of a variable agree
with the definition of the variable.

When declarations of the same variable appear in different files, the compiler can’t
check that the declarations match the variable’s definition. For example, one file
may contain the definition

int i;

while another file contains the declaration

extern long i;

An error of this kind can cause the program to behave unpredictably.

To avoid inconsistency, declarations of shared variables are usually put in
header files. A source file that needs access to a particular variable can then
include the appropriate header file. In addition, each header file that contains a

extern keyword ➤18.2

Q&A

C15.FM Page 356 Tuesday, February 12, 2008 5:05 PM

15.2 Header Files 357

variable declaration is included in the source file that contains the variable’s defini-
tion, enabling the compiler to check that the two match.

Although sharing variables among files is a long-standing practice in the C
world, it has significant disadvantages. In Section 19.2, we’ll see what the prob-
lems are and learn how to design programs that don’t need shared variables.

Nested Includes

A header file may itself contain #include directives. Although this practice may
seem a bit odd, it can be quite useful in practice. Consider the stack.h file,
which contains the following prototypes:

int is_empty(void);
int is_full(void);

Since these functions return only 0 or 1, it’s a good idea to declare their return type
to be Bool instead of int, where Bool is the type that we defined earlier in this
section:

Bool is_empty(void);
Bool is_full(void);

Of course, we’ll need to include the boolean.h file in stack.h so that the def-
inition of Bool is available when stack.h is compiled. (In C99, we’d include
<stdbool.h> instead of boolean.h and declare the return types of the two
functions to be bool rather than Bool.)

Traditionally, C programmers shun nested includes. (Early versions of C
didn’t allow them at all.) However, the bias against nested includes has largely
faded away, in part because nested includes are common practice in C++.

Protecting Header Files

If a source file includes the same header file twice, compilation errors may result.
This problem is common when header files include other header files. For exam-
ple, suppose that file1.h includes file3.h, file2.h includes file3.h,
and prog.c includes both file1.h and file2.h (see the figure at the top of
the next page). When prog.c is compiled, file3.h will be compiled twice.

Including the same header file twice doesn’t always cause a compilation error.
If the file contains only macro definitions, function prototypes, and/or variable
declarations, there won’t be any difficulty. If the file contains a type definition,
however, we’ll get a compilation error.

Just to be safe, it’s probably a good idea to protect all header files against mul-
tiple inclusion; that way, we can add type definitions to a file later without the risk
that we might forget to protect the file. In addition, we might save some time dur-
ing program development by avoiding unnecessary recompilation of the same
header file.

C15.FM Page 357 Tuesday, February 12, 2008 5:05 PM

358 Chapter 15 Writing Large Programs

To protect a header file, we’ll enclose the contents of the file in an #ifndef-
#endif pair. For example, the boolean.h file could be protected in the follow-
ing way:

#ifndef BOOLEAN_H
#define BOOLEAN_H

#define TRUE 1
#define FALSE 0
typedef int Bool;

#endif

When this file is included the first time, the BOOLEAN_H macro won’t be defined,
so the preprocessor will allow the lines between #ifndef and #endif to stay.
But if the file should be included a second time, the preprocessor will remove the
lines between #ifndef and #endif.

The name of the macro (BOOLEAN_H) doesn’t really matter. However, mak-
ing it resemble the name of the header file is a good way to avoid conflicts with
other macros. Since we can’t name the macro BOOLEAN.H (identifiers can’t con-
tain periods), a name such as BOOLEAN_H is a good alternative.

#error Directives in Header Files

#error directives are often put in header files to check for conditions under
which the header file shouldn’t be included. For example, suppose that a header

prog.c

#include "file1.h"
#include "file2.h"

file2.h

#include "file3.h"

file1.h

#include "file3.h"

file3.h

#error directives ➤14.5

C15.FM Page 358 Tuesday, February 12, 2008 5:05 PM

15.3 Dividing a Program into Files 359

file uses a feature that didn’t exist prior to the original C89 standard. To prevent the
header file from being used with older, nonstandard compilers, it could contain an
#ifndef directive that tests for the existence of the __STDC__ macro:

#ifndef __STDC__
#error This header requires a Standard C compiler
#endif

15.3 Dividing a Program into Files

Let’s now use what we know about header files and source files to develop a sim-
ple technique for dividing a program into files. We’ll concentrate on functions, but
the same principles apply to external variables as well. We’ll assume that the pro-
gram has already been designed; that is, we’ve decided what functions the program
will need and how to arrange the functions into logically related groups. (We’ll dis-
cuss program design in Chapter 19.)

Here’s how we’ll proceed. Each set of functions will go into a separate source
file (let’s use the name foo.c for one such file). In addition, we’ll create a header
file with the same name as the source file, but with the extension .h (foo.h, in
our case). Into foo.h, we’ll put prototypes for the functions defined in foo.c.
(Functions that are designed for use only within foo.c need not—and should
not—be declared in foo.h. The read_char function in our next program is an
example.) We’ll include foo.h in each source file that needs to call a function
defined in foo.c. Moreover, we’ll include foo.h in foo.c so that the compiler
can check that the function prototypes in foo.h are consistent with the definitions
in foo.c.

The main function will go in a file whose name matches the name of the pro-
gram—if we want the program to be known as bar, then main should be in the
file bar.c. It’s possible that there are other functions in the same file as main, so
long as they’re not called from other files in the program.

PROGRAM Text Formatting

To illustrate the technique that we’ve just discussed, let’s apply it to a small text-
formatting program named justify. As sample input to justify, we’ll use a
file named quote that contains the following (poorly formatted) quotation from
“The development of the C programming language” by Dennis M. Ritchie (in His-
tory of Programming Languages II, edited by T. J. Bergin, Jr., and R. G. Gibson,
Jr., Addison-Wesley, Reading, Mass., 1996, pages 671–687):

 C is quirky, flawed, and an
enormous success. Although accidents of history
 surely helped, it evidently satisfied a need

 for a system implementation language efficient

__STDC__ macro ➤14.3

C15.FM Page 359 Tuesday, February 12, 2008 5:05 PM

360 Chapter 15 Writing Large Programs

 enough to displace assembly language,
 yet sufficiently abstract and fluent to describe
 algorithms and interactions in a wide variety
of environments.
 -- Dennis M. Ritchie

To run the program from a UNIX or Windows prompt, we’d enter the com-
mand

justify <quote

The < symbol informs the operating system that justify will read from the file
quote instead of accepting input from the keyboard. This feature, supported by
UNIX, Windows, and other operating systems, is called input redirection. When
given the quote file as input, the justify program will produce the following
output:

C is quirky, flawed, and an enormous success. Although
accidents of history surely helped, it evidently satisfied a
need for a system implementation language efficient enough
to displace assembly language, yet sufficiently abstract and
fluent to describe algorithms and interactions in a wide
variety of environments. -- Dennis M. Ritchie

The output of justify will normally appear on the screen, but we can save it in a
file by using output redirection:

justify <quote >newquote

The output of justify will go into the file newquote.
In general, justify’s output should be identical to its input, except that

extra spaces and blank lines are deleted, and lines are filled and justified. “Filling”
a line means adding words until one more word would cause the line to overflow.
“Justifying” a line means adding extra spaces between words so that each line has
exactly the same length (60 characters). Justification must be done so that the
space between words in a line is equal (or as nearly equal as possible). The last line
of the output won’t be justified.

We’ll assume that no word is longer than 20 characters. (A punctuation mark
is considered part of the word to which it is adjacent.) That’s a bit restrictive, of
course, but once the program is written and debugged we can easily increase this
limit to the point that it would virtually never be exceeded. If the program encoun-
ters a longer word, it must ignore all characters after the first 20, replacing them
with a single asterisk. For example, the word

antidisestablishmentarianism

would be printed as

antidisestablishment*

input redirection ➤22.1

output redirection ➤22.1

C15.FM Page 360 Tuesday, February 12, 2008 5:05 PM

15.3 Dividing a Program into Files 361

Now that we understand what the program should do, it’s time to think about a
design. We’ll start by observing that the program can’t write the words one by one
as they’re read. Instead, it will have to store them in a “line buffer” until there are
enough to fill a line. After further reflection, we decide that the heart of the pro-
gram will be a loop that goes something like this:

for (;;) {
 read word;
 if (can’t read word) {
 write contents of line buffer without justification;
 terminate program;
 }

 if (word doesn’t fit in line buffer) {
 write contents of line buffer with justification;
 clear line buffer;
 }
 add word to line buffer;
}

Since we’ll need functions that deal with words and functions that deal with the
line buffer, let’s split the program into three source files, putting all functions
related to words in one file (word.c) and all functions related to the line buffer in
another file (line.c). A third file (justify.c) will contain the main function.
In addition to these files, we’ll need two header files, word.h and line.h. The
word.h file will contain prototypes for the functions in word.c; line.h will
play a similar role for line.c.

By examining the main loop, we see that the only word-related function
that we’ll need is a read_word function. (If read_word can’t read a word
because it’s reached the end of the input file, we’ll have it signal the main loop
by pretending to read an “empty” word.) Consequently, the word.h file is a
small one:

word.h #ifndef WORD_H
#define WORD_H

/**
 * read_word: Reads the next word from the input and *
 * stores it in word. Makes word empty if no *
 * word could be read because of end-of-file. *
 * Truncates the word if its length exceeds *
 * len. *
 **/
void read_word(char *word, int len);

#endif

Notice how the WORD_H macro protects word.h from being included more than
once. Although word.h doesn’t really need it, it’s good practice to protect all
header files in this way.

C15.FM Page 361 Tuesday, February 12, 2008 5:05 PM

362 Chapter 15 Writing Large Programs

The line.h file won’t be as short as word.h. Our outline of the main loop
reveals the need for functions that perform the following operations:

Write contents of line buffer without justification
Determine how many characters are left in line buffer
Write contents of line buffer with justification
Clear line buffer
Add word to line buffer

We’ll call these functions flush_line, space_remaining, write_line,
clear_line, and add_word. Here’s what the line.h header file will look
like:

line.h #ifndef LINE_H
#define LINE_H

/**
 * clear_line: Clears the current line. *
 **/
void clear_line(void);

/**
 * add_word: Adds word to the end of the current line. *
 * If this is not the first word on the line, *
 * puts one space before word. *
 **/
void add_word(const char *word);

/**
 * space_remaining: Returns the number of characters left *
 * in the current line. *
 **/
int space_remaining(void);

/**
 * write_line: Writes the current line with *
 * justification. *
 **/
void write_line(void);

/**
 * flush_line: Writes the current line without *
 * justification. If the line is empty, does *
 * nothing. *
 **/
void flush_line(void);

#endif

Before we write the word.c and line.c files, we can use the functions
declared in word.h and line.h to write justify.c, the main program. Writ-
ing this file is mostly a matter of translating our original loop design into C.

C15.FM Page 362 Tuesday, February 12, 2008 5:05 PM

15.3 Dividing a Program into Files 363

justify.c /* Formats a file of text */

#include <string.h>
#include "line.h"
#include "word.h"

#define MAX_WORD_LEN 20

int main(void)
{
 char word[MAX_WORD_LEN+2];
 int word_len;

 clear_line();
 for (;;) {
 read_word(word, MAX_WORD_LEN+1);
 word_len = strlen(word);
 if (word_len == 0) {
 flush_line();
 return 0;
 }
 if (word_len > MAX_WORD_LEN)
 word[MAX_WORD_LEN] = '*';
 if (word_len + 1 > space_remaining()) {
 write_line();
 clear_line();
 }
 add_word(word);
 }
}

Including both line.h and word.h gives the compiler access to the function
prototypes in both files as it compiles justify.c.

main uses a trick to handle words that exceed 20 characters. When it calls
read_word, main tells it to truncate any word that exceeds 21 characters. After
read_word returns, main checks whether word contains a string that’s longer
than 20 characters. If so, the word that was read must have been at least 21 charac-
ters long (before truncation), so main replaces the word’s 21st character by an
asterisk.

Now it’s time to write word.c. Although the word.h header file has a pro-
totype for only one function, read_word, we can put additional functions in
word.c if we need to. As it turns out, read_word is easier to write if we add a
small “helper” function, read_char. We’ll assign read_char the task of read-
ing a single character and, if it’s a new-line character or tab, converting it to a
space. Having read_word call read_char instead of getchar solves the
problem of treating new-line characters and tabs as spaces.

Here’s the word.c file:

word.c #include <stdio.h>
#include "word.h"

C15.FM Page 363 Tuesday, February 12, 2008 5:05 PM

364 Chapter 15 Writing Large Programs

int read_char(void)
{
 int ch = getchar();

 if (ch == '\n' || ch == '\t')
 return ' ';
 return ch;
}

void read_word(char *word, int len)
{
 int ch, pos = 0;

 while ((ch = read_char()) == ' ')
 ;
 while (ch != ' ' && ch != EOF) {
 if (pos < len)
 word[pos++] = ch;
 ch = read_char();
 }
 word[pos] = '\0';
}

Before we discuss read_word, a couple of comments are in order concern-
ing the use of getchar in the read_char function. First, getchar returns an
int value instead of a char value; that’s why the variable ch in read_char is
declared to have type int and why the return type of read_char is int. Also,
getchar returns the value EOF when it’s unable to continue reading (usually
because it has reached the end of the input file).

read_word consists of two loops. The first loop skips over spaces, stopping
at the first nonblank character. (EOF isn’t a blank, so the loop stops if it reaches the
end of the input file.) The second loop reads characters until encountering a space
or EOF. The body of the loop stores the characters in word until reaching the len
limit. After that, the loop continues reading characters but doesn’t store them. The
final statement in read_word ends the word with a null character, thereby mak-
ing it a string. If read_word encounters EOF before finding a nonblank charac-
ter, pos will be 0 at the end, making word an empty string.

The only file left is line.c, which supplies definitions of the functions
declared in the line.h file. line.c will also need variables to keep track of the
state of the line buffer. One variable, line, will store the characters in the current
line. Strictly speaking, line is the only variable we need. For speed and conve-
nience, however, we’ll use two other variables: line_len (the number of char-
acters in the current line) and num_words (the number of words in the current
line).

Here’s the line.c file:

line.c #include <stdio.h>
#include <string.h>
#include "line.h"

EOF macro ➤22.4

C15.FM Page 364 Tuesday, February 12, 2008 5:05 PM

15.3 Dividing a Program into Files 365

#define MAX_LINE_LEN 60

char line[MAX_LINE_LEN+1];
int line_len = 0;
int num_words = 0;

void clear_line(void)
{
 line[0] = '\0';
 line_len = 0;
 num_words = 0;
}

void add_word(const char *word)
{
 if (num_words > 0) {
 line[line_len] = ' ';
 line[line_len+1] = '\0';
 line_len++;
 }
 strcat(line, word);
 line_len += strlen(word);
 num_words++;
}

int space_remaining(void)
{
 return MAX_LINE_LEN - line_len;
}

void write_line(void)
{
 int extra_spaces, spaces_to_insert, i, j;

 extra_spaces = MAX_LINE_LEN - line_len;
 for (i = 0; i < line_len; i++) {
 if (line[i] != ' ')
 putchar(line[i]);
 else {
 spaces_to_insert = extra_spaces / (num_words - 1);
 for (j = 1; j <= spaces_to_insert + 1; j++)
 putchar(' ');
 extra_spaces -= spaces_to_insert;
 num_words--;
 }
 }
 putchar('\n');
}

void flush_line(void)
{
 if (line_len > 0)
 puts(line);
}

C15.FM Page 365 Tuesday, February 12, 2008 5:05 PM

366 Chapter 15 Writing Large Programs

Most of the functions in line.c are easy to write. The only tricky one is
write_line, which writes a line with justification. write_line writes the
characters in line one by one, pausing at the space between each pair of words to
write additional spaces if needed. The number of additional spaces is stored in
spaces_to_insert, which has the value extra_spaces / (num_words
- 1), where extra_spaces is initially the difference between the maximum
line length and the actual line length. Since extra_spaces and num_words
change after each word is printed, spaces_to_insert will change as well. If
extra_spaces is 10 initially and num_words is 5, then the first word will be
followed by 2 extra spaces, the second by 2, the third by 3, and the fourth by 3.

15.4 Building a Multiple-File Program

In Section 2.1, we examined the process of compiling and linking a program that
fits into a single file. Let’s expand that discussion to cover multiple-file programs.
Building a large program requires the same basic steps as building a small one:

� Compiling. Each source file in the program must be compiled separately.
(Header files don’t need to be compiled; the contents of a header file are auto-
matically compiled whenever a source file that includes it is compiled.) For
each source file, the compiler generates a file containing object code. These
files—known as object files—have the extension .o in UNIX and .obj in
Windows.

� Linking. The linker combines the object files created in the previous step—
along with code for library functions—to produce an executable file. Among
other duties, the linker is responsible for resolving external references left
behind by the compiler. (An external reference occurs when a function in one
file calls a function defined in another file or accesses a variable defined in
another file.)

Most compilers allow us to build a program in a single step. With the GCC
compiler, for example, we’d use the following command to build the justify
program of Section 15.3:

gcc -o justify justify.c line.c word.c

The three source files are first compiled into object code. The object files are then
automatically passed to the linker, which combines them into a single file. The -o
option specifies that we want the executable file to be named justify.

Makefiles

Putting the names of all the source files on the command line quickly gets tedious.
Worse still, we could waste a lot of time when rebuilding a program if we recom-
pile all source files, not just the ones that were affected by our most recent changes.

C15.FM Page 366 Tuesday, February 12, 2008 5:05 PM

15.4 Building a Multiple-File Program 367

To make it easier to build large programs, UNIX originated the concept of the
makefile, a file containing the information necessary to build a program. A make-
file not only lists the files that are part of the program, but also describes depen-
dencies among the files. Suppose that the file foo.c includes the file bar.h. We
say that foo.c “depends” on bar.h, because a change to bar.h will require us
to recompile foo.c.

Here’s a UNIX makefile for the justify program. The makefile uses GCC
for compilation and linking:

justify: justify.o word.o line.o
 gcc -o justify justify.o word.o line.o

justify.o: justify.c word.h line.h
 gcc -c justify.c

word.o: word.c word.h
 gcc -c word.c

line.o: line.c line.h
 gcc -c line.c

There are four groups of lines; each group is known as a rule. The first line in each
rule gives a target file, followed by the files on which it depends. The second line
is a command to be executed if the target should need to be rebuilt because of a
change to one of its dependent files. Let’s look at the first two rules; the last two
are similar.

In the first rule, justify (the executable file) is the target:

justify: justify.o word.o line.o
 gcc -o justify justify.o word.o line.o

The first line states that justify depends on the files justify.o, word.o,
and line.o; if any one of these three files has changed since the program was
last built, then justify needs to be rebuilt. The command on the following line
shows how the rebuilding is to be done (by using the gcc command to link the
three object files).

In the second rule, justify.o is the target:

justify.o: justify.c word.h line.h
 gcc -c justify.c

The first line indicates that justify.o needs to be rebuilt if there’s been a
change to justify.c, word.h, or line.h. (The reason for mentioning
word.h and line.h is that justify.c includes both these files, so it’s poten-
tially affected by a change to either one.) The next line shows how to update
justify.o (by recompiling justify.c). The -c option tells the compiler to
compile justify.c into an object file but not attempt to link it.

Once we’ve created a makefile for a program, we can use the make utility to
build (or rebuild) the program. By checking the time and date associated with each

Q&A

C15.FM Page 367 Tuesday, February 12, 2008 5:05 PM

368 Chapter 15 Writing Large Programs

file in the program, make can determine which files are out of date. It then invokes
the commands necessary to rebuild the program.

If you want to give make a try, here are a few details you’ll need to know:

� Each command in a makefile must be preceded by a tab character, not a series
of spaces. (In our example, the commands appear to be indented eight spaces,
but it’s actually a single tab character.)

� A makefile is normally stored in a file named Makefile (or makefile).
When the make utility is used, it automatically checks the current directory
for a file with one of these names.

� To invoke make, use the command

make target

where target is one of the targets listed in the makefile. To build the justify
executable using our makefile, we would use the command

make justify

� If no target is specified when make is invoked, it will build the target of the
first rule. For example, the command

make

will build the justify executable, since justify is the first target in our
makefile. Except for this special property of the first rule, the order of rules in
a makefile is arbitrary.

make is complicated enough that entire books have been written about it, so
we won’t attempt to delve further into its intricacies. Let’s just say that real make-
files aren’t usually as easy to understand as our example. There are numerous
techniques that reduce the amount of redundancy in makefiles and make them eas-
ier to modify; at the same time, though, these techniques greatly reduce their read-
ability.

Not everyone uses makefiles, by the way. Other program maintenance tools
are also popular, including the “project files” supported by some integrated devel-
opment environments.

Errors During Linking

Some errors that can’t be detected during compilation will be found during linking.
In particular, if the definition of a function or variable is missing from a program,
the linker will be unable to resolve external references to it, causing a message
such as “undefined symbol” or “undefined reference.”

Errors detected by the linker are usually easy to fix. Here are some of the most
common causes:

� Misspellings. If the name of a variable or function is misspelled, the linker
will report it as missing. For example, if the function read_char is defined

C15.FM Page 368 Tuesday, February 12, 2008 5:05 PM

15.4 Building a Multiple-File Program 369

in the program but called as read_cahr, the linker will report that
read_cahr is missing.

� Missing files. If the linker can’t find the functions that are in file foo.c, it
may not know about the file. Check the makefile or project file to make sure
that foo.c is listed there.

� Missing libraries. The linker may not be able to find all library functions used
in the program. A classic example occurs in UNIX programs that use the
<math.h> header. Simply including the header in a program may not be
enough; many versions of UNIX require that the -lm option be specified
when the program is linked, causing the linker to search a system file that con-
tains compiled versions of the <math.h> functions. Failing to use this option
may cause “undefined reference” messages during linking.

Rebuilding a Program

During the development of a program, it’s rare that we’ll need to compile all its
files. Most of the time, we’ll test the program, make a change, then build the pro-
gram again. To save time, the rebuilding process should recompile only those files
that might be affected by the latest change.

Let’s assume that we’ve designed our program in the way outlined in Section
15.3, with a header file for each source file. To see how many files will need to be
recompiled after a change, we need to consider two possibilities.

The first possibility is that the change affects a single source file. In that case,
only that file must be recompiled. (After that, the entire program will need to be
relinked, of course.) Consider the justify program. Suppose that we decide to
condense the read_char function in word.c (changes are marked in bold):

int read_char(void)
{
 int ch = getchar();

 return (ch == '\n' || ch == '\t') ? ' ' : ch;
}

This modification doesn’t affect word.h, so we need only recompile word.c
and relink the program.

The second possibility is that the change affects a header file. In that case, we
should recompile all files that include the header file, since they could potentially
be affected by the change. (Some of them might not be, but it pays to be conserva-
tive.)

As an example, consider the read_word function in the justify program.
Notice that main calls strlen immediately after calling read_word, in order
to determine the length of the word that was just read. Since read_word already
knows the length of the word (read_word’s pos variable keeps track of the
length), it seems silly to use strlen. Modifying read_word to return the
word’s length is easy. First, we change the prototype of read_word in word.h:

C15.FM Page 369 Tuesday, February 12, 2008 5:05 PM

370 Chapter 15 Writing Large Programs

/**
 * read_word: Reads the next word from the input and *
 * stores it in word. Makes word empty if no *
 * word could be read because of end-of-file. *
 * Truncates the word if its length exceeds *
 * len. Returns the number of characters *
 * stored. *
 **/
int read_word(char *word, int len);

Of course, we’re careful to change the comment that accompanies read_word.
Next, we change the definition of read_word in word.c:

int read_word(char *word, int len)
{
 int ch, pos = 0;

 while ((ch = read_char()) == ' ')
 ;
 while (ch != ' ' && ch != EOF) {
 if (pos < len)
 word[pos++] = ch;
 ch = read_char();
 }
 word[pos] = '\0';
 return pos;
}

Finally, we modify justify.c by removing the include of <string.h> and
changing main as follows:

int main(void)
{
 char word[MAX_WORD_LEN+2];
 int word_len;

 clear_line();
 for (;;) {
 word_len = read_word(word, MAX_WORD_LEN+1);
 if (word_len == 0) {
 flush_line();
 return 0;
 }
 if (word_len > MAX_WORD_LEN)
 word[MAX_WORD_LEN] = '*';
 if (word_len + 1 > space_remaining()) {
 write_line();
 clear_line();
 }
 add_word(word);
 }
}

C15.FM Page 370 Tuesday, February 12, 2008 5:05 PM

15.4 Building a Multiple-File Program 371

Once we’ve made these changes, we’ll rebuild the justify program by recom-
piling word.c and justify.c and then relinking. There’s no need to recompile
line.c, which doesn’t include word.h and therefore won’t be affected by
changes to it. With the GCC compiler, we could use the following command to
rebuild the program:

gcc -o justify justify.c word.c line.o

Note the mention of line.o instead of line.c.
One of the advantages of using makefiles is that rebuilding is handled auto-

matically. By examining the date of each file, the make utility can determine
which files have changed since the program was last built. It then recompiles
these files, together with all files that depend on them, either directly or indirect-
ly. For example, if we make the indicated changes to word.h, word.c, and
justify.c and then rebuild the justify program, make will perform the
following actions:

1. Build justify.o by compiling justify.c (because justify.c and
word.h were changed).

2. Build word.o by compiling word.c (because word.c and word.h
were changed).

3. Build justify by linking justify.o, word.o, and line.o
(because justify.o and word.o were changed).

Defining Macros Outside a Program

C compilers usually provide some method of specifying the value of a macro at the
time a program is compiled. This ability makes it easy to change the value of a
macro without editing any of the program’s files. It’s especially valuable when pro-
grams are built automatically using makefiles.

Most compilers (including GCC) support the -D option, which allows the
value of a macro to be specified on the command line:

gcc -DDEBUG=1 foo.c

In this example, the DEBUG macro is defined to have the value 1 in the program
foo.c, just as if the line

#define DEBUG 1

appeared at the beginning of foo.c. If the -D option names a macro without
specifying its value, the value is taken to be 1.

Many compilers also support the -U option, which “undefines” a macro as if
by using #undef. We can use -U to undefine a predefined macro or one that was
defined earlier in the command line using -D.

predefined macros ➤14.3

C15.FM Page 371 Tuesday, February 12, 2008 5:05 PM

372 Chapter 15 Writing Large Programs

Q & A

Q: You don’t have any examples that use the #include directive to include a
source file. What would happen if we were to do this?

A: That’s not a good practice, although it’s not illegal. Here’s an example of the kind
of trouble you can get into. Suppose that foo.c defines a function f that we’ll
need in bar.c and baz.c, so we put the directive

#include "foo.c"

in both bar.c and baz.c. Each of these files will compile nicely. The problem
comes later, when the linker discovers two copies of the object code for f. Of
course, we would have gotten away with including foo.c if only bar.c had
included it, not baz.c as well. To avoid problems, it’s best to use #include
only with header files, not source files.

Q: What are the exact search rules for the #include directive? [p. 351]
A: That depends on your compiler. The C standard is deliberately vague in its descrip-

tion of #include. If the file name is enclosed in brackets, the preprocessor looks
in a “sequence of implementation-defined places,” as the standard obliquely puts
it. If the file name is enclosed in quotation marks, the file “is searched for in an
implementation-defined manner” and, if not found, then searched as if its name
had been enclosed in brackets. The reason for this waffling is simple: not all oper-
ating systems have hierarchical (tree-like) file systems.

To make matters even more interesting, the standard doesn’t require that
names enclosed in brackets be file names at all, leaving open the possibility that
#include directives using <> are handled entirely within the compiler.

Q: I don’t understand why each source file needs its own header file. Why not
have one big header file containing macro definitions, type definitions, and
function prototypes? By including this file, each source file would have access
to all the shared information it needs. [p. 354]

A: The “one big header file” approach certainly works; a number of programmers use
it. And it does have an advantage: with only one header file, there are fewer files to
manage. For large programs, however, the disadvantages of this approach tend to
outweigh its advantages.

Using a single header file provides no useful information to someone reading
the program later. With multiple header files, the reader can quickly see what other
parts of the program are used by a particular source file.

But that’s not all. Since each source file depends on the big header file, chang-
ing it will cause all source files to be recompiled—a significant drawback in a large
program. To make matters worse, the header file will probably change frequently
because of the large amount of information it contains.

C15.FM Page 372 Tuesday, February 12, 2008 5:05 PM

Exercises 373

Q: The chapter says that a shared array should be declared as follows:

extern int a[];

Since arrays and pointers are closely related, would it be legal to write

extern int *a;

instead? [p. 356]
A: No. When used in expressions, arrays “decay” into pointers. (We’ve noticed this

behavior when an array name is used as an argument in a function call.) In variable
declarations, however, arrays and pointers are distinct types.

Q: Does it hurt if a source file includes headers that it doesn’t really need?
A: Not unless the header has a declaration or definition that conflicts with one in the

source file. Otherwise, the worst that can happen is a minor increase in the time it
takes to compile the source file.

Q: I needed to call a function in the file foo.c, so I included the matching
header file, foo.h. My program compiled, but it won’t link. Why?

A: Compilation and linking are completely separate in C. Header files exist to provide
information to the compiler, not the linker. If you want to call a function in foo.c,
then you have to make sure that foo.c is compiled and that the linker is aware
that it must search the object file for foo.c to find the function. Usually this
means naming foo.c in the program’s makefile or project file.

Q: If my program calls a function in <stdio.h>, does that mean that all func-
tions in <stdio.h> will be linked with the program?

A: No. Including <stdio.h> (or any other header) has no effect on linking. In any
event, most linkers will link only functions that your program actually needs.

Q: Where can I get the make utility? [p. 367]
A: make is a standard UNIX utility. The GNU version, known as GNU Make, is

included in most Linux distributions. It’s also available directly from the Free Soft-
ware Foundation (www.gnu.org/software/make/).

Exercises

Section 15.1 1. Section 15.1 listed several advantages of dividing a program into multiple source files.

Section 15.2 2. Which of the following should not be put in a header file? Why not?

(a) Describe several other advantages.
(b) Describe some disadvantages.

(a) Function prototypes
(b) Function definitions

W

C15.FM Page 373 Tuesday, February 12, 2008 5:05 PM

http://www.gnu.org/software/make/

374 Chapter 15 Writing Large Programs

3. We saw that writing #include <file> instead of #include "file" may not work if file is
one that we’ve written. Would there be any problem with writing #include "file" instead
of #include <file> if file is a system header?

4. Assume that debug.h is a header file with the following contents:

#ifdef DEBUG
#define PRINT_DEBUG(n) printf("Value of " #n ": %d\n", n)
#else
#define PRINT_DEBUG(n)
#endif

Let testdebug.c be the following source file:

#include <stdio.h>

#define DEBUG
#include "debug.h"

int main(void)
{
 int i = 1, j = 2, k = 3;

#ifdef DEBUG
 printf("Output if DEBUG is defined:\n");
#else
 printf("Output if DEBUG is not defined:\n");
#endif

 PRINT_DEBUG(i);
 PRINT_DEBUG(j);
 PRINT_DEBUG(k);
 PRINT_DEBUG(i + j);
 PRINT_DEBUG(2 * i + j - k);

 return 0;
}

Section 15.4 5. Suppose that a program consists of three source files—main.c, f1.c, and f2.c—plus
two header files, f1.h and f2.h. All three source files include f1.h, but only f1.c and
f2.c include f2.h. Write a makefile for this program, assuming that the compiler is gcc
and that the executable file is to be named demo.

6. The following questions refer to the program described in Exercise 5.

(c) Macro definitions
(d) Type definitions

(a) What is the output when the program is executed?
(b) What is the output if the #define directive is removed from testdebug.c?
(c) Explain why the output is different in parts (a) and (b).
(d) Is it necessary for the DEBUG macro to be defined before debug.h is included in order

for PRINT_DEBUG to have the desired effect? Justify your answer.

(a) Which files need to be compiled when the program is built for the first time?
(b) If f1.c is changed after the program has been built, which files need to be recompiled?
(c) If f1.h is changed after the program has been built, which files need to be recompiled?
(d) If f2.h is changed after the program has been built, which files need to be recompiled?

W

C15.FM Page 374 Tuesday, February 12, 2008 5:05 PM

Programming Projects 375

Programming Projects

1. The justify program of Section 15.3 justifies lines by inserting extra spaces between
words. The way the write_line function currently works, the words closer to the end of
a line tend to have slightly wider gaps between them than the words at the beginning. (For
example, the words closer to the end might have three spaces between them, while the
words closer to the beginning might be separated by only two spaces.) Improve the program
by having write_line alternate between putting the larger gaps at the end of the line and
putting them at the beginning of the line.

2. Modify the justify program of Section 15.3 by having the read_word function
(instead of main) store the * character at the end of a word that’s been truncated.

3. Modify the qsort.c program of Section 9.6 so that the quicksort and split func-
tions are in a separate file named quicksort.c. Create a header file named quick-
sort.h that contains prototypes for the two functions and have both qsort.c and
quicksort.c include this file.

4. Modify the remind.c program of Section 13.5 so that the read_line function is in a
separate file named readline.c. Create a header file named readline.h that contains
a prototype for the function and have both remind.c and readline.c include this file.

5. Modify Programming Project 6 from Chapter 10 so that it has separate stack.h and
stack.c files, as described in Section 15.2.

C15.FM Page 375 Tuesday, February 12, 2008 5:05 PM

C15.FM Page 376 Tuesday, February 12, 2008 5:05 PM

377

16 Structures, Unions, and
Enumerations

Functions delay binding: data structures induce binding.
Moral: Structure data late in the programming process.

This chapter introduces three new types: structures, unions, and enumerations. A
structure is a collection of values (members), possibly of different types. A union
is similar to a structure, except that its members share the same storage; as a result,
a union can store one member at a time, but not all members simultaneously. An
enumeration is an integer type whose values are named by the programmer.

Of these three types, structures are by far the most important, so I’ll devote
most of the chapter to them. Section 16.1 shows how to declare structure variables
and perform basic operations on them. Section 16.2 then explains how to define
structure types, which—among other things—allow us to write functions that
accept structure arguments or return structures. Section 16.3 explores how arrays
and structures can be nested. The last two sections are devoted to unions (Section
16.4) and enumerations (Section 16.5).

16.1 Structure Variables

The only data structure we’ve covered so far is the array. Arrays have two impor-
tant properties. First, all elements of an array have the same type. Second, to select
an array element, we specify its position (as an integer subscript).

The properties of a structure are quite different from those of an array. The
elements of a structure (its members, in C parlance) aren’t required to have the
same type. Furthermore, the members of a structure have names; to select a partic-
ular member, we specify its name, not its position.

Structures may sound familiar, since most programming languages provide a
similar feature. In some languages, structures are called records, and members are
known as fields.

C16.FM Page 377 Tuesday, February 12, 2008 5:07 PM

378 Chapter 16 Structures, Unions, and Enumerations

Declaring Structure Variables

When we need to store a collection of related data items, a structure is a logical
choice. For example, suppose that we need to keep track of parts in a warehouse.
The information that we’ll need to store for each part might include a part number
(an integer), a part name (a string of characters), and the number of parts on hand
(an integer). To create variables that can store all three items of data, we might use
a declaration such as the following:

struct {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} part1, part2;

Each structure variable has three members: number (the part number), name (the
name of the part), and on_hand (the quantity on hand). Notice that this declara-
tion has the same form as other variable declarations in C: struct { … } specifies
a type, while part1 and part2 are variables of that type.

The members of a structure are stored in memory in the order in which they’re
declared. In order to show what the part1 variable looks like in memory, let’s
assume that (1) part1 is located at address 2000, (2) integers occupy four bytes,
(3) NAME_LEN has the value 25, and (4) there are no gaps between the members.
With these assumptions, part1 will have the following appearance:

...

...

...

number

name

on_hand

2000

2001

2002

2003

2004

2029

2030

2031

2032

2033

C16.FM Page 378 Tuesday, February 12, 2008 5:07 PM

16.1 Structure Variables 379

Usually it’s not necessary to draw structures in such detail. I’ll normally show
them more abstractly, as a series of boxes:

I may sometimes draw the boxes horizontally instead of vertically:

Member values will go in the boxes later; for now, I’ve left them empty.
Each structure represents a new scope; any names declared in that scope won’t

conflict with other names in a program. (In C terminology, we say that each struc-
ture has a separate name space for its members.) For example, the following decla-
rations can appear in the same program:

struct {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} part1, part2;

struct {
 char name[NAME_LEN+1];
 int number;
 char sex;
} employee1, employee2;

The number and name members in the part1 and part2 structures don’t con-
flict with the number and name members in employee1 and employee2.

Initializing Structure Variables

Like an array, a structure variable may be initialized at the time it’s declared. To
initialize a structure, we prepare a list of values to be stored in the structure and
enclose it in braces:

struct {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} part1 = {528, "Disk drive", 10},
 part2 = {914, "Printer cable", 5};

name

on_hand

number

name on_handnumber

C16.FM Page 379 Tuesday, February 12, 2008 5:07 PM

380 Chapter 16 Structures, Unions, and Enumerations

The values in the initializer must appear in the same order as the members of the
structure. In our example, the number member of part1 will be 528, the name
member will be "Disk drive", and so on. Here’s how part1 will look after
initialization:

Structure initializers follow rules similar to those for array initializers. Expres-
sions used in a structure initializer must be constant; for example, we couldn’t have
used a variable to initialize part1’s on_hand member. (This restriction is re-
laxed in C99, as we’ll see in Section 18.5.) An initializer can have fewer members
than the structure it’s initializing; as with arrays, any “leftover” members are given
0 as their initial value. In particular, the bytes in a leftover character array will be
zero, making it represent the empty string.

Designated Initializers

C99’s designated initializers, which were discussed in Section 8.1 in the context of
arrays, can also be used with structures. Consider the initializer for part1 shown
in the previous example:

{528, "Disk drive", 10}

A designated initializer would look similar, but with each value labeled by the
name of the member that it initializes:

{.number = 528, .name = "Disk drive", .on_hand = 10}

The combination of the period and the member name is called a designator. (Des-
ignators for array elements have a different form.)

Designated initializers have several advantages. For one, they’re easier to read
and check for correctness, because the reader can clearly see the correspondence
between the members of the structure and the values listed in the initializer.
Another is that the values in the initializer don’t have to be placed in the same
order that the members are listed in the structure. Our example initializer could be
written as follows:

{.on_hand = 10, .name = "Disk drive", .number = 528}

Since the order doesn’t matter, the programmer doesn’t have to remember the
order in which the members were originally declared. Moreover, the order of
the members can be changed in the future without affecting designated initializ-
ers.

10

528

Disk drivename

on_hand

number

C99

C99

C16.FM Page 380 Tuesday, February 12, 2008 5:07 PM

16.1 Structure Variables 381

Not all values listed in a designated initializer need be prefixed by a designa-
tor. (This is true for arrays as well, as we saw in Section 8.1.) Consider the follow-
ing example:

{.number = 528, "Disk drive", .on_hand = 10}

The value "Disk drive" doesn’t have a designator, so the compiler assumes
that it initializes the member that follows number in the structure. Any members
that the initializer fails to account for are set to zero.

Operations on Structures

Since the most common array operation is subscripting—selecting an element by
position—it’s not surprising that the most common operation on a structure is
selecting one of its members. Structure members are accessed by name, though,
not by position.

To access a member within a structure, we write the name of the structure first,
then a period, then the name of the member. For example, the following statements
will display the values of part1’s members:

printf("Part number: %d\n", part1.number);
printf("Part name: %s\n", part1.name);
printf("Quantity on hand: %d\n", part1.on_hand);

The members of a structure are lvalues, so they can appear on the left side of
an assignment or as the operand in an increment or decrement expression:

part1.number = 258; /* changes part1's part number */
part1.on_hand++; /* increments part1's quantity on hand */

The period that we use to access a structure member is actually a C operator. It
has the same precedence as the postfix ++ and -- operators, so it takes precedence
over nearly all other operators. Consider the following example:

scanf("%d", &part1.on_hand);

The expression &part1.on_hand contains two operators (& and .). The .
operator takes precedence over the & operator, so & computes the address of
part1.on_hand, as we wished.

The other major structure operation is assignment:

part2 = part1;

The effect of this statement is to copy part1.number into part2.number,
part1.name into part2.name, and so on.

Since arrays can’t be copied using the = operator, it comes as something of a
surprise to discover that structures can. It’s even more surprising when you con-
sider that an array embedded within a structure is copied when the enclosing struc-
ture is copied. Some programmers exploit this property by creating “dummy”
structures to enclose arrays that will be copied later:

lvalues ➤4.2

table of operators ➤Appendix A

C16.FM Page 381 Tuesday, February 12, 2008 5:07 PM

382 Chapter 16 Structures, Unions, and Enumerations

struct { int a[10]; } a1, a2;

a1 = a2; /* legal, since a1 and a2 are structures */

The = operator can be used only with structures of compatible types. Two
structures declared at the same time (as part1 and part2 were) are compatible.
As we’ll see in the next section, structures declared using the same “structure tag”
or the same type name are also compatible.

Other than assignment, C provides no operations on entire structures. In par-
ticular, we can’t use the == and != operators to test whether two structures are
equal or not equal.

16.2 Structure Types

Although the previous section showed how to declare structure variables, it failed
to discuss an important issue: naming structure types. Suppose that a program
needs to declare several structure variables with identical members. If all the vari-
ables can be declared at one time, there’s no problem. But if we need to declare the
variables at different points in the program, then life becomes more difficult. If we
write

struct {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} part1;

in one place and

struct {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} part2;

in another, we’ll quickly run into problems. Repeating the structure information
will bloat the program. Changing the program later will be risky, since we can’t
easily guarantee that the declarations will remain consistent.

But those aren’t the biggest problems. According to the rules of C, part1
and part2 don’t have compatible types. As a result, part1 can’t be assigned to
part2, and vice versa. Also, since we don’t have a name for the type of part1 or
part2, we can’t use them as arguments in function calls.

To avoid these difficulties, we need to be able to define a name that represents
a type of structure, not a particular structure variable. As it turns out, C provides
two ways to name structures: we can either declare a “structure tag” or use
typedef to define a type name.

Q&A

Q&A
type definitions ➤7.5

C16.FM Page 382 Tuesday, February 12, 2008 5:07 PM

16.2 Structure Types 383

Declaring a Structure Tag

A structure tag is a name used to identify a particular kind of structure. The fol-
lowing example declares a structure tag named part:

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
};

Notice the semicolon that follows the right brace—it must be present to terminate
the declaration.

Accidentally omitting the semicolon at the end of a structure declaration can cause
surprising errors. Consider the following example:

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} /*** WRONG: semicolon missing ***/

f(void)
{
 …
 return 0; /* error detected at this line */
}

The programmer failed to specify the return type of the function f (a bit of sloppy
programming). Since the preceding structure declaration wasn’t terminated prop-
erly, the compiler assumes that f returns a value of type struct part. The error
won’t be detected until the compiler reaches the first return statement in the
function. The result: a cryptic error message.

Once we’ve created the part tag, we can use it to declare variables:

struct part part1, part2;

Unfortunately, we can’t abbreviate this declaration by dropping the word struct:

part part1, part2; /*** WRONG ***/

part isn’t a type name; without the word struct, it is meaningless.
Since structure tags aren’t recognized unless preceded by the word struct,

they don’t conflict with other names used in a program. It would be perfectly legal
(although more than a little confusing) to have a variable named part.

Incidentally, the declaration of a structure tag can be combined with the decla-
ration of structure variables:

C16.FM Page 383 Tuesday, February 12, 2008 5:07 PM

384 Chapter 16 Structures, Unions, and Enumerations

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} part1, part2;

Here, we’ve declared a structure tag named part (making it possible to use part
later to declare more variables) as well as variables named part1 and part2.

All structures declared to have type struct part are compatible with one
another:

struct part part1 = {528, "Disk drive", 10};
struct part part2;

part2 = part1; /* legal; both parts have the same type */

Defining a Structure Type

As an alternative to declaring a structure tag, we can use typedef to define a
genuine type name. For example, we could define a type named Part in the fol-
lowing way:

typedef struct {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} Part;

Note that the name of the type, Part, must come at the end, not after the word
struct.

We can use Part in the same way as the built-in types. For example, we
might use it to declare variables:

Part part1, part2;

Since Part is a typedef name, we’re not allowed to write struct Part. All
Part variables, regardless of where they’re declared, are compatible.

When it comes time to name a structure, we can usually choose either to
declare a structure tag or to use typedef. However, as we’ll see later, declaring a
structure tag is mandatory when the structure is to be used in a linked list. I’ll use
structure tags rather than typedef names in most of my examples.

Structures as Arguments and Return Values

Functions may have structures as arguments and return values. Let’s look at two
examples. Our first function, when given a part structure as its argument, prints
the structure’s members:

void print_part(struct part p)
{
 printf("Part number: %d\n", p.number);

Q&A
linked lists ➤17.5

C16.FM Page 384 Tuesday, February 12, 2008 5:07 PM

16.2 Structure Types 385

 printf("Part name: %s\n", p.name);
 printf("Quantity on hand: %d\n", p.on_hand);
}

Here’s how print_part might be called:

print_part(part1);

Our second function returns a part structure that it constructs from its arguments:

struct part build_part(int number, const char *name,
 int on_hand)
{
 struct part p;

 p.number = number;
 strcpy(p.name, name);
 p.on_hand = on_hand;
 return p;
}

Notice that it’s legal for build_part’s parameters to have names that match the
members of the part structure, since the structure has its own name space. Here’s
how build_part might be called:

part1 = build_part(528, "Disk drive", 10);

Passing a structure to a function and returning a structure from a function both
require making a copy of all members in the structure. As a result, these operations
impose a fair amount of overhead on a program, especially if the structure is large.
To avoid this overhead, it’s sometimes advisable to pass a pointer to a structure
instead of passing the structure itself. Similarly, we might have a function return a
pointer to a structure instead of returning an actual structure. Section 17.5 gives
examples of functions that have a pointer to a structure as an argument and/or
return a pointer to a structure.

There are other reasons to avoid copying structures besides efficiency. For
example, the <stdio.h> header defines a type named FILE, which is typically a
structure. Each FILE structure stores information about the state of an open file
and therefore must be unique in a program. Every function in <stdio.h> that
opens a file returns a pointer to a FILE structure, and every function that performs
an operation on an open file requires a FILE pointer as an argument.

On occasion, we may want to initialize a structure variable inside a function to
match another structure, possibly supplied as a parameter to the function. In the
following example, the initializer for part2 is the parameter passed to the f func-
tion:

void f(struct part part1)
{
 struct part part2 = part1;
 …
}

FILE type ➤22.1

C16.FM Page 385 Tuesday, February 12, 2008 5:07 PM

386 Chapter 16 Structures, Unions, and Enumerations

C permits initializers of this kind, provided that the structure we’re initializing
(part2, in this case) has automatic storage duration (it’s local to a function and
hasn’t been declared static). The initializer can be any expression of the proper
type, including a function call that returns a structure.

Compound Literals

Section 9.3 introduced the C99 feature known as the compound literal. In that sec-
tion, compound literals were used to create unnamed arrays, usually for the pur-
pose of passing the array to a function. A compound literal can also be used to
create a structure “on the fly,” without first storing it in a variable. The resulting
structure can be passed as a parameter, returned by a function, or assigned to a
variable. Let’s look at a couple of examples.

First, we can use a compound literal to create a structure that will be passed to
a function. For example, we could call the print_part function as follows:

print_part((struct part) {528, "Disk drive", 10});

The compound literal (shown in bold) creates a part structure containing the
members 528, "Disk drive", and 10, in that order. This structure is then passed
to print_part, which displays it.

Here’s how a compound literal might be assigned to a variable:

part1 = (struct part) {528, "Disk drive", 10};

This statement resembles a declaration containing an initializer, but it’s not the
same—initializers can appear only in declarations, not in statements such as this
one.

In general, a compound literal consists of a type name within parentheses, fol-
lowed by a set of values enclosed by braces. In the case of a compound literal that
represents a structure, the type name can be a structure tag preceded by the word
struct—as in our examples—or a typedef name. A compound literal may
contain designators, just like a designated initializer:

print_part((struct part) {.on_hand = 10,
 .name = "Disk drive",
 .number = 528});

A compound literal may fail to provide full initialization, in which case any unini-
tialized members default to zero.

16.3 Nested Arrays and Structures

Structures and arrays can be combined without restriction. Arrays may have struc-
tures as their elements, and structures may contain arrays and structures as mem-
bers. We’ve already seen an example of an array nested inside a structure (the

automatic storage duration ➤10.1

C99

C16.FM Page 386 Tuesday, February 12, 2008 5:07 PM

16.3 Nested Arrays and Structures 387

name member of the part structure). Let’s explore the other possibilities: struc-
tures whose members are structures and arrays whose elements are structures.

Nested Structures

Nesting one kind of structure inside another is often useful. For example, suppose
that we’ve declared the following structure, which can store a person’s first name,
middle initial, and last name:

struct person_name {
 char first[FIRST_NAME_LEN+1];
 char middle_initial;
 char last[LAST_NAME_LEN+1];
};

We can use the person_name structure as part of a larger structure:

struct student {
 struct person_name name;
 int id, age;
 char sex;
} student1, student2;

Accessing student1’s first name, middle initial, or last name requires two appli-
cations of the . operator:

strcpy(student1.name.first, "Fred");

One advantage of making name a structure (instead of having first,
middle_initial, and last be members of the student structure) is that
we can more easily treat names as units of data. For example, if we were to
write a function that displays a name, we could pass it just one argument—a
person_name structure—instead of three arguments:

display_name(student1.name);

Likewise, copying the information from a person_name structure to the name
member of a student structure would take one assignment instead of three:

struct person_name new_name;
…
student1.name = new_name;

Arrays of Structures

One of the most common combinations of arrays and structures is an array whose
elements are structures. An array of this kind can serve as a simple database. For
example, the following array of part structures is capable of storing information
about 100 parts:

struct part inventory[100];

C16.FM Page 387 Tuesday, February 12, 2008 5:07 PM

388 Chapter 16 Structures, Unions, and Enumerations

To access one of the parts in the array, we’d use subscripting. To print the part
stored in position i, for example, we could write

print_part(inventory[i]);

Accessing a member within a part structure requires a combination of sub-
scripting and member selection. To assign 883 to the number member of
inventory[i], we could write

inventory[i].number = 883;

Accessing a single character in a part name requires subscripting (to select a par-
ticular part), followed by selection (to select the name member), followed by sub-
scripting (to select a character within the part name). To change the name stored in
inventory[i] to an empty string, we could write

inventory[i].name[0] = '\0';

Initializing an Array of Structures

Initializing an array of structures is done in much the same way as initializing a
multidimensional array. Each structure has its own brace-enclosed initializer; the
initializer for the array simply wraps another set of braces around the structure ini-
tializers.

One reason for initializing an array of structures is that we’re planning to treat
it as a database of information that won’t change during program execution. For
example, suppose that we’re working on a program that will need access to the
country codes used when making international telephone calls. First, we’ll set up a
structure that can store the name of a country along with its code:

struct dialing_code {
 char *country;
 int code;
};

Note that country is a pointer, not an array of characters. That could be a prob-
lem if we were planning to use dialing_code structures as variables, but we’re
not. When we initialize a dialing_code structure, country will end up
pointing to a string literal.

Next, we’ll declare an array of these structures and initialize it to contain the
codes for some of the world’s most populous nations:

const struct dialing_code country_codes[] =
 {{"Argentina", 54}, {"Bangladesh", 880},
 {"Brazil", 55}, {"Burma (Myanmar)", 95},
 {"China", 86}, {"Colombia", 57},
 {"Congo, Dem. Rep. of", 243}, {"Egypt", 20},
 {"Ethiopia", 251}, {"France", 33},
 {"Germany", 49}, {"India", 91},

C16.FM Page 388 Tuesday, February 12, 2008 5:07 PM

16.3 Nested Arrays and Structures 389

 {"Indonesia", 62}, {"Iran", 98},
 {"Italy", 39}, {"Japan", 81},
 {"Mexico", 52}, {"Nigeria", 234},
 {"Pakistan", 92}, {"Philippines", 63},
 {"Poland", 48}, {"Russia", 7},
 {"South Africa", 27}, {"South Korea", 82},
 {"Spain", 34}, {"Sudan", 249},
 {"Thailand", 66}, {"Turkey", 90},
 {"Ukraine", 380}, {"United Kingdom", 44},
 {"United States", 1}, {"Vietnam", 84}};

The inner braces around each structure value are optional. As a matter of style,
however, I prefer not to omit them.

Because arrays of structures (and structures containing arrays) are so com-
mon, C99’s designated initializers allow an item to have more than one designator.
Suppose that we want to initialize the inventory array to contain a single part.
The part number is 528 and the quantity on hand is 10, but the name is to be left
empty for now:

struct part inventory[100] =
 {[0].number = 528, [0].on_hand = 10, [0].name[0] = '\0'};

The first two items in the list use two designators (one to select array element 0—
a part structure—and one to select a member within the structure). The last item
uses three designators: one to select an array element, one to select the name
member within that element, and one to select element 0 of name.

PROGRAM Maintaining a Parts Database

To illustrate how nested arrays and structures are used in practice, we’ll now
develop a fairly long program that maintains a database of information about parts
stored in a warehouse. The program is built around an array of structures, with
each structure containing information—part number, name, and quantity—about
one part. Our program will support the following operations:

� Add a new part number, part name, and initial quantity on hand. The pro-
gram must print an error message if the part is already in the database or if the
database is full.

� Given a part number, print the name of the part and the current quantity on
hand. The program must print an error message if the part number isn’t in the
database.

� Given a part number, change the quantity on hand. The program must print
an error message if the part number isn’t in the database.

� Print a table showing all information in the database. Parts must be dis-
played in the order in which they were entered.

� Terminate program execution.

C99

C16.FM Page 389 Tuesday, February 12, 2008 5:07 PM

390 Chapter 16 Structures, Unions, and Enumerations

We’ll use the codes i (insert), s (search), u (update), p (print), and q (quit) to rep-
resent these operations. A session with the program might look like this:

Enter operation code: i
Enter part number: 528
Enter part name: Disk drive
Enter quantity on hand: 10

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 10

Enter operation code: s
Enter part number: 914
Part not found.

Enter operation code: i
Enter part number: 914
Enter part name: Printer cable
Enter quantity on hand: 5

Enter operation code: u
Enter part number: 528
Enter change in quantity on hand: -2

Enter operation code: s
Enter part number: 528
Part name: Disk drive
Quantity on hand: 8

Enter operation code: p
Part Number Part Name Quantity on Hand
 528 Disk drive 8
 914 Printer cable 5

Enter operation code: q

The program will store information about each part in a structure. We’ll limit
the size of the database to 100 parts, making it possible to store the structures in an
array, which I’ll call inventory. (If this limit proves to be too small, we can
always change it later.) To keep track of the number of parts currently stored in the
array, we’ll use a variable named num_parts.

Since this program is menu-driven, it’s fairly easy to sketch the main loop:

for (;;) {
 prompt user to enter operation code;
 read code;
 switch (code) {
 case 'i': perform insert operation; break;
 case 's': perform search operation; break;
 case 'u': perform update operation; break;
 case 'p': perform print operation; break;

C16.FM Page 390 Tuesday, February 12, 2008 5:07 PM

16.3 Nested Arrays and Structures 391

 case 'q': terminate program;
 default: print error message;
 }
}

It will be convenient to have separate functions perform the insert, search,
update, and print operations. Since these functions will all need access to
inventory and num_parts, we might want to make these variables external.
As an alternative, we could declare the variables inside main, and then pass them
to the functions as arguments. From a design standpoint, it’s usually better to make
variables local to a function rather than making them external (see Section 10.2 if
you’ve forgotten why). In this program, however, putting inventory and
num_parts inside main would merely complicate matters.

For reasons that I’ll explain later, I’ve decided to split the program into three
files: inventory.c, which contains the bulk of the program; readline.h,
which contains the prototype for the read_line function; and readline.c,
which contains the definition of read_line. We’ll discuss the latter two files
later in this section. For now, let’s concentrate on inventory.c.

inventory.c /* Maintains a parts database (array version) */

#include <stdio.h>
#include "readline.h"

#define NAME_LEN 25
#define MAX_PARTS 100

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} inventory[MAX_PARTS];

int num_parts = 0; /* number of parts currently stored */

int find_part(int number);
void insert(void);
void search(void);
void update(void);
void print(void);

/**
 * main: Prompts the user to enter an operation code, *
 * then calls a function to perform the requested *
 * action. Repeats until the user enters the *
 * command 'q'. Prints an error message if the user *
 * enters an illegal code. *
 **/
int main(void)
{
 char code;

C16.FM Page 391 Tuesday, February 12, 2008 5:07 PM

392 Chapter 16 Structures, Unions, and Enumerations

 for (;;) {
 printf("Enter operation code: ");
 scanf(" %c", &code);
 while (getchar() != '\n') /* skips to end of line */
 ;
 switch (code) {
 case 'i': insert();
 break;
 case 's': search();
 break;
 case 'u': update();
 break;
 case 'p': print();
 break;
 case 'q': return 0;
 default: printf("Illegal code\n");
 }
 printf("\n");
 }
}

/**
 * find_part: Looks up a part number in the inventory *
 * array. Returns the array index if the part *
 * number is found; otherwise, returns -1. *
 **/
int find_part(int number)
{
 int i;

 for (i = 0; i < num_parts; i++)
 if (inventory[i].number == number)
 return i;
 return -1;
}

/**
 * insert: Prompts the user for information about a new *
 * part and then inserts the part into the *
 * database. Prints an error message and returns *
 * prematurely if the part already exists or the *
 * database is full. *
 **/
void insert(void)
{
 int part_number;

 if (num_parts == MAX_PARTS) {
 printf("Database is full; can't add more parts.\n");
 return;
 }

 printf("Enter part number: ");
 scanf("%d", &part_number);

C16.FM Page 392 Tuesday, February 12, 2008 5:07 PM

16.3 Nested Arrays and Structures 393

 if (find_part(part_number) >= 0) {
 printf("Part already exists.\n");
 return;
 }

 inventory[num_parts].number = part_number;
 printf("Enter part name: ");
 read_line(inventory[num_parts].name, NAME_LEN);
 printf("Enter quantity on hand: ");
 scanf("%d", &inventory[num_parts].on_hand);
 num_parts++;
}

/**
 * search: Prompts the user to enter a part number, then *
 * looks up the part in the database. If the part *
 * exists, prints the name and quantity on hand; *
 * if not, prints an error message. *
 **/
void search(void)
{
 int i, number;

 printf("Enter part number: ");
 scanf("%d", &number);
 i = find_part(number);
 if (i >= 0) {
 printf("Part name: %s\n", inventory[i].name);
 printf("Quantity on hand: %d\n", inventory[i].on_hand);
 } else
 printf("Part not found.\n");
}

/**
 * update: Prompts the user to enter a part number. *
 * Prints an error message if the part doesn't *
 * exist; otherwise, prompts the user to enter *
 * change in quantity on hand and updates the *
 * database. *
 **/
void update(void)
{
 int i, number, change;

 printf("Enter part number: ");
 scanf("%d", &number);
 i = find_part(number);
 if (i >= 0) {
 printf("Enter change in quantity on hand: ");
 scanf("%d", &change);
 inventory[i].on_hand += change;
 } else
 printf("Part not found.\n");
}

C16.FM Page 393 Tuesday, February 12, 2008 5:07 PM

394 Chapter 16 Structures, Unions, and Enumerations

/**
 * print: Prints a listing of all parts in the database, *
 * showing the part number, part name, and *
 * quantity on hand. Parts are printed in the *
 * order in which they were entered into the *
 * database. *
 **/
void print(void)
{
 int i;

 printf("Part Number Part Name "
 "Quantity on Hand\n");
 for (i = 0; i < num_parts; i++)
 printf("%7d %-25s%11d\n", inventory[i].number,
 inventory[i].name, inventory[i].on_hand);
}

In the main function, the format string " %c" allows scanf to skip over
white space before reading the operation code. The space in the format string is
crucial; without it, scanf would sometimes read the new-line character that ter-
minated a previous line of input.

The program contains one function, find_part, that isn’t called from
main. This “helper” function helps us avoid redundant code and simplify the
more important functions. By calling find_part, the insert, search, and
update functions can locate a part in the database (or simply determine if the
part exists).

There’s just one detail left: the read_line function, which the program uses
to read the part name. Section 13.3 discussed the issues that are involved in writing
such a function. Unfortunately, the version of read_line in that section won’t
work properly in the current program. Consider what happens when the user
inserts a part:

Enter part number: 528
Enter part name: Disk drive

The user presses the Enter key after entering the part number and again after enter-
ing the part name, each time leaving an invisible new-line character that the pro-
gram must read. For the sake of discussion, let’s pretend that these characters are
visible:

Enter part number: 528¤
Enter part name: Disk drive¤

When we call scanf to read the part number, it consumes the 5, 2, and 8, but
leaves the ¤ character unread. If we try to read the part name using our original
read_line function, it will encounter the ¤ character immediately and stop
reading. This problem is common when numerical input is followed by character
input. Our solution will be to write a version of read_line that skips white-

C16.FM Page 394 Tuesday, February 12, 2008 5:07 PM

16.3 Nested Arrays and Structures 395

space characters before it begins storing characters. Not only will this solve the
new-line problem, but it also allows us to avoid storing any blanks that precede the
part name.

Since read_line is unrelated to the other functions in inventory.c, and
since it’s potentially reusable in other programs, I’ve decided to separate it from
inventory.c. The prototype for read_line will go in the readline.h
header file:

readline.h #ifndef READLINE_H
#define READLINE_H

/**
 * read_line: Skips leading white-space characters, then *
 * reads the remainder of the input line and *
 * stores it in str. Truncates the line if its *
 * length exceeds n. Returns the number of *
 * characters stored. *
 **/
int read_line(char str[], int n);

#endif

We’ll put the definition of read_line in the readline.c file:

readline.c #include <ctype.h>
#include <stdio.h>
#include "readline.h"

int read_line(char str[], int n)
{
 int ch, i = 0;

 while (isspace(ch = getchar()))
 ;
 while (ch != '\n' && ch != EOF) {
 if (i < n)
 str[i++] = ch;
 ch = getchar();
 }
 str[i] = '\0';
 return i;
}

The expression

isspace(ch = getchar())

controls the first while statement. This expression calls getchar to read a char-
acter, stores the character into ch, and then uses the isspace function to test
whether ch is a white-space character. If not, the loop terminates with ch contain-
ing a character that’s not white space. Section 15.3 explains why ch has type int
instead of char and why it’s good to test for EOF.

isspace function ➤23.5

C16.FM Page 395 Tuesday, February 12, 2008 5:07 PM

396 Chapter 16 Structures, Unions, and Enumerations

16.4 Unions
A union, like a structure, consists of one or more members, possibly of different
types. However, the compiler allocates only enough space for the largest of the
members, which overlay each other within this space. As a result, assigning a new
value to one member alters the values of the other members as well.

To illustrate the basic properties of unions, let’s declare a union variable, u,
with two members:

union {
 int i;
 double d;
} u;

Notice how the declaration of a union closely resembles a structure declaration:

struct {
 int i;
 double d;
} s;

In fact, the structure s and the union u differ in just one way: the members of s are
stored at different addresses in memory, while the members of u are stored at the
same address. Here’s what s and u will look like in memory (assuming that int
values require four bytes and double values take eight bytes):

UnionStructure

d

i

i

d

s

u

C16.FM Page 396 Tuesday, February 12, 2008 5:07 PM

16.4 Unions 397

In the s structure, i and d occupy different memory locations; the total size of s is
12 bytes. In the u union, i and d overlap (i is really the first four bytes of d), so u
occupies only eight bytes. Also, i and d have the same address.

Members of a union are accessed in the same way as members of a structure.
To store the number 82 in the i member of u, we would write

u.i = 82;

To store the value 74.8 in the d member, we would write

u.d = 74.8;

Since the compiler overlays storage for the members of a union, changing one
member alters any value previously stored in any of the other members. Thus, if
we store a value in u.d, any value previously stored in u.i will be lost. (If we
examine the value of u.i, it will appear to be meaningless.) Similarly, changing
u.i corrupts u.d. Because of this property, we can think of u as a place to store
either i or d, not both. (The structure s allows us to store i and d.)

The properties of unions are almost identical to the properties of structures.
We can declare union tags and union types in the same way we declare structure
tags and types. Like structures, unions can be copied using the = operator, passed
to functions, and returned by functions.

Unions can even be initialized in a manner similar to structures. However,
only the first member of a union can be given an initial value. For example, we can
initialize the i member of u to 0 in the following way:

union {
 int i;
 double d;
} u = {0};

Notice the presence of the braces, which are required. The expression inside the
braces must be constant. (The rules are slightly different in C99, as we’ll see in
Section 18.5.)

Designated initializers, a C99 feature that we’ve previously discussed in the
context of arrays and structures, can also be used with unions. A designated initial-
izer allows us to specify which member of a union should be initialized. For exam-
ple, we can initialize the d member of u as follows:

union {
 int i;
 double d;
} u = {.d = 10.0};

Only one member can be initialized, but it doesn’t have to be the first one.
There are several applications for unions. We’ll discuss two of these now.

Another application—viewing storage in different ways—is highly machine-
dependent, so I’ll postpone it until Section 20.3.

C99

C16.FM Page 397 Tuesday, February 12, 2008 5:07 PM

398 Chapter 16 Structures, Unions, and Enumerations

Using Unions to Save Space

We’ll often use unions as a way to save space in structures. Suppose that we’re
designing a structure that will contain information about an item that’s sold
through a gift catalog. The catalog carries only three kinds of merchandise: books,
mugs, and shirts. Each item has a stock number and a price, as well as other infor-
mation that depends on the type of the item:

Books: Title, author, number of pages

Mugs: Design

Shirts: Design, colors available, sizes available

Our first design attempt might result in the following structure:

struct catalog_item {
 int stock_number;
 double price;
 int item_type;
 char title[TITLE_LEN+1];
 char author[AUTHOR_LEN+1];
 int num_pages;
 char design[DESIGN_LEN+1];
 int colors;
 int sizes;
};

The item_type member would have one of the values BOOK, MUG, or SHIRT.
The colors and sizes members would store encoded combinations of colors
and sizes.

Although this structure is perfectly usable, it wastes space, since only part of
the information in the structure is common to all items in the catalog. If an item is
a book, for example, there’s no need to store design, colors, and sizes. By
putting a union inside the catalog_item structure, we can reduce the space
required by the structure. The members of the union will be structures, each con-
taining the data that’s needed for a particular kind of catalog item:

struct catalog_item {
 int stock_number;
 double price;
 int item_type;
 union {
 struct {
 char title[TITLE_LEN+1];
 char author[AUTHOR_LEN+1];
 int num_pages;
 } book;
 struct {
 char design[DESIGN_LEN+1];
 } mug;

C16.FM Page 398 Tuesday, February 12, 2008 5:07 PM

16.4 Unions 399

 struct {
 char design[DESIGN_LEN+1];
 int colors;
 int sizes;
 } shirt;
 } item;
};

Notice that the union (named item) is a member of the catalog_item
structure, and the book, mug, and shirt structures are members of item. If c is
a catalog_item structure that represents a book, we can print the book’s title in
the following way:

printf("%s", c.item.book.title);

As this example shows, accessing a union that’s nested inside a structure can be
awkward: to locate a book title, we had to specify the name of a structure (c), the
name of the union member of the structure (item), the name of a structure mem-
ber of the union (book), and then the name of a member of that structure (title).

We can use the catalog_item structure to illustrate an interesting aspect of
unions. Normally, it’s not a good idea to store a value into one member of a union
and then access the data through a different member, because assigning to one
member of a union causes the values of the other members to be undefined. How-
ever, the C standard mentions a special case: two or more of the members of the
union are structures, and the structures begin with one or more matching members.
(These members need to be in the same order and have compatible types, but need
not have the same name.) If one of the structures is currently valid, then the match-
ing members in the other structures will also be valid.

Consider the union embedded in the catalog_item structure. It contains
three structures as members, two of which (mug and shirt) begin with a match-
ing member (design). Now, suppose that we assign a value to one of the
design members:

strcpy(c.item.mug.design, "Cats");

The design member in the other structure will be defined and have the same value:

printf("%s", c.item.shirt.design); /* prints "Cats" */

Using Unions to Build Mixed Data Structures

Unions have another important application: creating data structures that contain a
mixture of data of different types. Let’s say that we need an array whose elements
are a mixture of int and double values. Since the elements of an array must be
of the same type, it seems impossible to create such an array. Using unions,
though, it’s relatively easy. First, we define a union type whose members represent
the different kinds of data to be stored in the array:

C16.FM Page 399 Tuesday, February 12, 2008 5:07 PM

400 Chapter 16 Structures, Unions, and Enumerations

typedef union {
 int i;
 double d;
} Number;

Next, we create an array whose elements are Number values:

Number number_array[1000];

Each element of number_array is a Number union. A Number union can
store either an int value or a double value, making it possible to store a mixture
of int and double values in number_array. For example, suppose that we
want element 0 of number_array to store 5, while element 1 stores 8.395. The
following assignments will have the desired effect:

number_array[0].i = 5;
number_array[1].d = 8.395;

Adding a “Tag Field” to a Union

Unions suffer from a major problem: there’s no easy way to tell which member of
a union was last changed and therefore contains a meaningful value. Consider the
problem of writing a function that displays the value currently stored in a Number
union. This function might have the following outline:

void print_number(Number n)
{
 if (n contains an integer)
 printf("%d", n.i);
 else
 printf("%g", n.d);
}

Unfortunately, there’s no way for print_number to determine whether n con-
tains an integer or a floating-point number.

In order to keep track of this information, we can embed the union within a
structure that has one other member: a “tag field” or “discriminant,” whose pur-
pose is to remind us what’s currently stored in the union. In the catalog_item
structure discussed earlier in this section, item_type served this purpose.

Let’s convert the Number type into a structure with an embedded union:

#define INT_KIND 0
#define DOUBLE_KIND 1

typedef struct {
 int kind; /* tag field */
 union {
 int i;
 double d;
 } u;
} Number;

C16.FM Page 400 Tuesday, February 12, 2008 5:07 PM

16.5 Enumerations 401

Number has two members, kind and u. The value of kind will be either
INT_KIND or DOUBLE_KIND.

Each time we assign a value to a member of u, we’ll also change kind to
remind us which member of u we modified. For example, if n is a Number vari-
able, an assignment to the i member of u would have the following appearance:

n.kind = INT_KIND;
n.u.i = 82;

Notice that assigning to i requires that we first select the u member of n, then the
i member of u.

When we need to retrieve the number stored in a Number variable, kind will
tell us which member of the union was the last to be assigned a value. The
print_number function can take advantage of this capability:

void print_number(Number n)
{
 if (n.kind == INT_KIND)
 printf("%d", n.u.i);
 else
 printf("%g", n.u.d);
}

It’s the program’s responsibility to change the tag field each time an assignment is
made to a member of the union.

16.5 Enumerations

In many programs, we’ll need variables that have only a small set of meaningful
values. A Boolean variable, for example, should have only two possible values:
“true” and “false.” A variable that stores the suit of a playing card should have only
four potential values: “clubs,” “diamonds,” “hearts,” and “spades.” The obvious
way to deal with such a variable is to declare it as an integer and have a set of codes
that represent the possible values of the variable:

int s; /* s will store a suit */
…
s = 2; /* 2 represents "hearts" */

Although this technique works, it leaves much to be desired. Someone reading the
program can’t tell that s has only four possible values, and the significance of 2
isn’t immediately apparent.

Using macros to define a suit “type” and names for the various suits is a step
in the right direction:

C16.FM Page 401 Tuesday, February 12, 2008 5:07 PM

402 Chapter 16 Structures, Unions, and Enumerations

#define SUIT int
#define CLUBS 0
#define DIAMONDS 1
#define HEARTS 2
#define SPADES 3

Our previous example now becomes easier to read:

SUIT s;
…
s = HEARTS;

This technique is an improvement, but it’s still not the best solution. There’s no
indication to someone reading the program that the macros represent values of the
same “type.” If the number of possible values is more than a few, defining a sepa-
rate macro for each will be tedious. Moreover, the names we’ve defined—CLUBS,
DIAMONDS, HEARTS, and SPADES—will be removed by the preprocessor, so
they won’t be available during debugging.

C provides a special kind of type designed specifically for variables that have
a small number of possible values. An enumerated type is a type whose values are
listed (“enumerated”) by the programmer, who must create a name (an enumera-
tion constant) for each of the values. The following example enumerates the val-
ues (CLUBS, DIAMONDS, HEARTS, and SPADES) that can be assigned to the
variables s1 and s2:

enum {CLUBS, DIAMONDS, HEARTS, SPADES} s1, s2;

Although enumerations have little in common with structures and unions, they’re
declared in a similar way. Unlike the members of a structure or union, however, the
names of enumeration constants must be different from other identifiers declared
in the enclosing scope.

Enumeration constants are similar to constants created with the #define
directive, but they’re not equivalent. For one thing, enumeration constants are sub-
ject to C’s scope rules: if an enumeration is declared inside a function, its constants
won’t be visible outside the function.

Enumeration Tags and Type Names

We’ll often need to create names for enumerations, for the same reasons that we
name structures and unions. As with structures and unions, there are two ways to
name an enumeration: by declaring a tag or by using typedef to create a genuine
type name.

Enumeration tags resemble structure and union tags. To define the tag suit,
for example, we could write

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};

suit variables would be declared in the following way:

enum suit s1, s2;

C16.FM Page 402 Tuesday, February 12, 2008 5:07 PM

16.5 Enumerations 403

As an alternative, we could use typedef to make Suit a type name:

typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;
Suit s1, s2;

In C89, using typedef to name an enumeration is an excellent way to create
a Boolean type:

typedef enum {FALSE, TRUE} Bool;

C99 has a built-in Boolean type, of course, so there’s no need for a C99 program-
mer to define a Bool type in this way.

Enumerations as Integers

Behind the scenes, C treats enumeration variables and constants as integers. By
default, the compiler assigns the integers 0, 1, 2, … to the constants in a particular
enumeration. In our suit enumeration, for example, CLUBS, DIAMONDS,
HEARTS, and SPADES represent 0, 1, 2, and 3, respectively.

We’re free to choose different values for enumeration constants if we like.
Let’s say that we want CLUBS, DIAMONDS, HEARTS, and SPADES to stand for 1,
2, 3, and 4. We can specify these numbers when declaring the enumeration:

enum suit {CLUBS = 1, DIAMONDS = 2, HEARTS = 3, SPADES = 4};

The values of enumeration constants may be arbitrary integers, listed in no particu-
lar order:

enum dept {RESEARCH = 20, PRODUCTION = 10, SALES = 25};

It’s even legal for two or more enumeration constants to have the same value.
When no value is specified for an enumeration constant, its value is one

greater than the value of the previous constant. (The first enumeration constant has
the value 0 by default.) In the following enumeration, BLACK has the value 0,
LT_GRAY is 7, DK_GRAY is 8, and WHITE is 15:

enum EGA_colors {BLACK, LT_GRAY = 7, DK_GRAY, WHITE = 15};

Since enumeration values are nothing but thinly disguised integers, C allows
us to mix them with ordinary integers:

int i;
enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

i = DIAMONDS; /* i is now 1 */
s = 0; /* s is now 0 (CLUBS) */
s++; /* s is now 1 (DIAMONDS) */
i = s + 2; /* i is now 3 */

The compiler treats s as a variable of some integer type; CLUBS, DIAMONDS,
HEARTS, and SPADES are just names for the integers 0, 1, 2, and 3.

C16.FM Page 403 Tuesday, February 12, 2008 5:07 PM

404 Chapter 16 Structures, Unions, and Enumerations

Although it’s convenient to be able to use an enumeration value as an integer, it’s
dangerous to use an integer as an enumeration value. For example, we might acci-
dentally store the number 4—which doesn’t correspond to any suit—into s.

Using Enumerations to Declare “Tag Fields”

Enumerations are perfect for solving a problem that we encountered in Section
16.4: determining which member of a union was the last to be assigned a value. In
the Number structure, for example, we can make the kind member an enumera-
tion instead of an int:

typedef struct {
 enum {INT_KIND, DOUBLE_KIND} kind;
 union {
 int i;
 double d;
 } u;
} Number;

The new structure is used in exactly the same way as the old one. The advantages
are that we’ve done away with the INT_KIND and DOUBLE_KIND macros
(they’re now enumeration constants), and we’ve clarified the meaning of kind—
it’s now obvious that kind has only two possible values: INT_KIND and
DOUBLE_KIND.

Q & A

Q: When I tried using the sizeof operator to determine the number of bytes in
a structure, I got a number that was larger than the sizes of the members
added together. How can this be?

A: Let’s look at an example:

struct {
 char a;
 int b;
} s;

If char values occupy one byte and int values occupy four bytes, how large is
s? The obvious answer—five bytes—may not be the correct one. Some computers
require that the address of certain data items be a multiple of some number of bytes
(typically two, four, or eight, depending on the item’s type). To satisfy this require-
ment, a compiler will “align” the members of a structure by leaving “holes”
(unused bytes) between adjacent members. If we assume that data items must

C16.FM Page 404 Tuesday, February 12, 2008 5:07 PM

Q & A 405

begin on a multiple of four bytes, the a member of the s structure will be followed
by a three-byte hole. As a result, sizeof(s) will be 8.

By the way, a structure can have a hole at the end, as well as holes between
members. For example, the structure

struct {
 int a;
 char b;
} s;

might have a three-byte hole after the b member.

Q: Can there be a “hole” at the beginning of a structure?
A: No. The C standard specifies that holes are allowed only between members or after

the last member. One consequence is that a pointer to the first member of a struc-
ture is guaranteed to be the same as a pointer to the entire structure. (Note, how-
ever, that the two pointers won’t have the same type.)

Q: Why isn’t it legal to use the == operator to test whether two structures are
equal? [p. 382]

A: This operation was left out of C because there’s no way to implement it that would
be consistent with the language’s philosophy. Comparing structure members one
by one would be too inefficient. Comparing all bytes in the structures would be
better (many computers have special instructions that can perform such a compari-
son rapidly). If the structures contain holes, however, comparing bytes could yield
an incorrect answer; even if corresponding members have identical values, leftover
data stored in the holes might be different. The problem could be solved by having
the compiler ensure that holes always contain the same value (zero, say). Initializ-
ing holes would impose a performance penalty on all programs that use structures,
however, so it’s not feasible.

Q: Why does C provide two ways to name structure types (tags and typedef
names)? [p. 382]

A: C originally lacked typedef, so tags were the only technique available for nam-
ing structure types. When typedef was added, it was too late to remove tags.
Besides, a tag is still necessary when a member of a structure points to a structure
of the same type (see the node structure of Section 17.5).

Q: Can a structure have both a tag and a typedef name? [p. 384]
A: Yes. In fact, the tag and the typedef name can even be the same, although that’s

not required:

typedef struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} part;

C16.FM Page 405 Tuesday, February 12, 2008 5:07 PM

406 Chapter 16 Structures, Unions, and Enumerations

Q: How can I share a structure type among several files in a program?
A: Put a declaration of the structure tag (or a typedef, if you prefer) in a header file,

then include the header file where the structure is needed. To share the part struc-
ture, for example, we’d put the following lines in a header file:

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
};

Notice that we’re declaring only the structure tag, not variables of this type.
Incidentally, a header file that contains a declaration of a structure tag or struc-

ture type may need protection against multiple inclusion. Declaring a tag or
typedef name twice in the same file is an error. Similar remarks apply to unions
and enumerations.

Q: If I include the declaration of the part structure into two different files, will
part variables in one file be of the same type as part variables in the other
file?

A: Technically, no. However, the C standard says that the part variables in one file
have a type that’s compatible with the type of the part variables in the other file.
Variables with compatible types can be assigned to each other, so there’s little
practical difference between types being “compatible” and being “the same.”

The rules for structure compatibility in C89 and C99 are slightly different. In
C89, structures defined in different files are compatible if their members have the
same names and appear in the same order, with corresponding members having
compatible types. C99 goes one step further: it requires that either both structures
have the same tag or neither has a tag.

Similar compatibility rules apply to unions and enumerations (with the same
difference between C89 and C99).

Q: Is it legal to have a pointer to a compound literal?
A: Yes. Consider the print_part function of Section 16.2. Currently, the parame-

ter to this function is a part structure. The function would be more efficient if it
were modified to accept a pointer to a part structure instead. Using the function
to print a compound literal would then be done by prefixing the argument with the
& (address) operator:

print_part(&(struct part) {528, "Disk drive", 10});

Q: Allowing a pointer to a compound literal would seem to make it possible to
modify the literal. Is that the case?

A: Yes. Compound literals are lvalues that can be modified, although doing so is rare.

Q: I saw a program in which the last constant in an enumeration was followed by
a comma, like this:

protecting header files ➤15.2

C99

C99

C16.FM Page 406 Tuesday, February 12, 2008 5:07 PM

Exercises 407

enum gray_values {
 BLACK = 0,
 DARK_GRAY = 64,
 GRAY = 128,
 LIGHT_GRAY = 192,
};

Is this practice legal?
A: This practice is indeed legal in C99 (and is supported by some pre-C99 compilers as

well). Allowing a “trailing comma” makes enumerations easier to modify, because
we can add a constant to the end of an enumeration without changing existing lines
of code. For example, we might want to add WHITE to our enumeration:

enum gray_values {
 BLACK = 0,
 DARK_GRAY = 64,
 GRAY = 128,
 LIGHT_GRAY = 192,
 WHITE = 255,
};

The comma after the definition of LIGHT_GRAY makes it easy to add WHITE to
the end of the list.

One reason for this change is that C89 allows trailing commas in initializers,
so it seemed inconsistent not to allow the same flexibility in enumerations. Inci-
dentally, C99 also allows trailing commas in compound literals.

Q: Can the values of an enumerated type be used as subscripts?
A: Yes, indeed. They are integers and have—by default—values that start at 0 and

count upward, so they make great subscripts. In C99, moreover, enumeration con-
stants can be used as subscripts in designated initializers. Here’s an example:

enum weekdays {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};
const char *daily_specials[] = {
 [MONDAY] = "Beef ravioli",
 [TUESDAY] = "BLTs",
 [WEDNESDAY] = "Pizza",
 [THURSDAY] = "Chicken fajitas",
 [FRIDAY] = "Macaroni and cheese"
};

Exercises

Section 16.1 1. In the following declarations, the x and y structures have members named x and y:

struct { int x, y; } x;
struct { int x, y; } y;

Are these declarations legal on an individual basis? Could both declarations appear as
shown in a program? Justify your answer.

C99

C99

C99

C16.FM Page 407 Tuesday, February 12, 2008 5:07 PM

408 Chapter 16 Structures, Unions, and Enumerations

2. (a) Declare structure variables named c1, c2, and c3, each having members real and
imaginary of type double.

(b) Modify the declaration in part (a) so that c1’s members initially have the values 0.0 and
1.0, while c2’s members are 1.0 and 0.0 initially. (c3 is not initialized.)

(c) Write statements that copy the members of c2 into c1. Can this be done in one state-
ment, or does it require two?

(d) Write statements that add the corresponding members of c1 and c2, storing the result
in c3.

Section 16.2 3. (a) Show how to declare a tag named complex for a structure with two members, real
and imaginary, of type double.

(b) Use the complex tag to declare variables named c1, c2, and c3.

(c) Write a function named make_complex that stores its two arguments (both of type
double) in a complex structure, then returns the structure.

(d) Write a function named add_complex that adds the corresponding members of its
arguments (both complex structures), then returns the result (another complex structure).

4. Repeat Exercise 3, but this time using a type named Complex.

5. Write the following functions, assuming that the date structure contains three members:
month, day, and year (all of type int).

(a) int day_of_year(struct date d);

Returns the day of the year (an integer between 1 and 366) that corresponds to the date d.

(b) int compare_dates(struct date d1, struct date d2);

Returns –1 if d1 is an earlier date than d2, +1 if d1 is a later date than d2, and 0 if d1 and
d2 are the same.

6. Write the following function, assuming that the time structure contains three members:
hours, minutes, and seconds (all of type int).

struct time split_time(long total_seconds);

total_seconds is a time represented as the number of seconds since midnight. The
function returns a structure containing the equivalent time in hours (0–23), minutes (0–59),
and seconds (0–59).

7. Assume that the fraction structure contains two members: numerator and denomi-
nator (both of type int). Write functions that perform the following operations on frac-
tions:

The fractions f, f1, and f2 will be arguments of type struct fraction; each function
will return a value of type struct fraction. The fractions returned by the functions in
parts (b)–(e) should be reduced to lowest terms. Hint: You may use the function from part
(a) to help write the functions in parts (b)–(e).

W

W

(a) Reduce the fraction f to lowest terms. Hint: To reduce a fraction to lowest terms, first
compute the greatest common divisor (GCD) of the numerator and denominator. Then
divide both the numerator and denominator by the GCD.

(b) Add the fractions f1 and f2.
(c) Subtract the fraction f2 from the fraction f1.
(d) Multiply the fractions f1 and f2.
(e) Divide the fraction f1 by the fraction f2.

C16.FM Page 408 Tuesday, February 12, 2008 5:07 PM

Exercises 409

8. Let color be the following structure:

struct color {
 int red;
 int green;
 int blue;
};

(a) Write a declaration for a const variable named MAGENTA of type struct color
whose members have the values 255, 0, and 255, respectively.

(b) (C99) Repeat part (a), but use a designated initializer that doesn’t specify the value of
green, allowing it to default to 0.

9. Write the following functions. (The color structure is defined in Exercise 8.)

(a) struct color make_color(int red, int green, int blue);

Returns a color structure containing the specified red, green, and blue values. If any argu-
ment is less than zero, the corresponding member of the structure will contain zero instead.
If any argument is greater than 255, the corresponding member of the structure will contain
255.

(b) int getRed(struct color c);

Returns the value of c’s red member.

(c) bool equal_color(struct color color1, struct color color2);

Returns true if the corresponding members of color1 and color2 are equal.

(d) struct color brighter(struct color c);

Returns a color structure that represents a brighter version of the color c. The structure is
identical to c, except that each member has been divided by 0.7 (with the result truncated to
an integer). However, there are three special cases: (1) If all members of c are zero, the
function returns a color whose members all have the value 3. (2) If any member of c is
greater than 0 but less than 3, it is replaced by 3 before the division by 0.7. (3) If dividing by
0.7 causes a member to exceed 255, it is reduced to 255.

(e) struct color darker(struct color c);

Returns a color structure that represents a darker version of the color c. The structure is
identical to c, except that each member has been multiplied by 0.7 (with the result truncated
to an integer).

Section 16.3 10. The following structures are designed to store information about objects on a graphics
screen:

struct point { int x, y; };
struct rectangle { struct point upper_left, lower_right; };

A point structure stores the x and y coordinates of a point on the screen. A rectangle
structure stores the coordinates of the upper left and lower right corners of a rectangle. Write
functions that perform the following operations on a rectangle structure r passed as an
argument:

(a) Compute the area of r.
(b) Compute the center of r, returning it as a point value. If either the x or y coordinate of

the center isn’t an integer, store its truncated value in the point structure.
(c) Move r by x units in the x direction and y units in the y direction, returning the modi-

fied version of r. (x and y are additional arguments to the function.)
(d) Determine whether a point p lies within r, returning true or false. (p is an addi-

tional argument of type struct point.)

C16.FM Page 409 Tuesday, February 12, 2008 5:07 PM

410 Chapter 16 Structures, Unions, and Enumerations

Section 16.4 11. Suppose that s is the following structure:

struct {
 double a;
 union {
 char b[4];
 double c;
 int d;
 } e;
 char f[4];
} s;

If char values occupy one byte, int values occupy four bytes, and double values occupy
eight bytes, how much space will a C compiler allocate for s? (Assume that the compiler
leaves no “holes” between members.)

12. Suppose that u is the following union:

union {
 double a;
 struct {
 char b[4];
 double c;
 int d;
 } e;
 char f[4];
} u;

If char values occupy one byte, int values occupy four bytes, and double values occupy
eight bytes, how much space will a C compiler allocate for u? (Assume that the compiler
leaves no “holes” between members.)

13. Suppose that s is the following structure (point is a structure tag declared in Exercise 10):

struct shape {
 int shape_kind; /* RECTANGLE or CIRCLE */
 struct point center; /* coordinates of center */
 union {
 struct {
 int height, width;
 } rectangle;
 struct {
 int radius;
 } circle;
 } u;
} s;

If the value of shape_kind is RECTANGLE, the height and width members store the
dimensions of a rectangle. If the value of shape_kind is CIRCLE, the radius member
stores the radius of a circle. Indicate which of the following statements are legal, and show
how to repair the ones that aren’t:

W

(a) s.shape_kind = RECTANGLE;
(b) s.center.x = 10;
(c) s.height = 25;
(d) s.u.rectangle.width = 8;
(e) s.u.circle = 5;
(f) s.u.radius = 5;

C16.FM Page 410 Tuesday, February 12, 2008 5:07 PM

Exercises 411

14. Let shape be the structure tag declared in Exercise 13. Write functions that perform the
following operations on a shape structure s passed as an argument:

Section 16.5 15. (a) Declare a tag for an enumeration whose values represent the seven days of the week.

(b) Use typedef to define a name for the enumeration of part (a).

16. Which of the following statements about enumeration constants are true?

17. Suppose that b and i are declared as follows:

enum {FALSE, TRUE} b;
int i;

Which of the following statements are legal? Which ones are “safe” (always yield a mean-
ingful result)?

18. (a) Each square of a chessboard can hold one piece—a pawn, knight, bishop, rook, queen,
or king—or it may be empty. Each piece is either black or white. Define two enumerated
types: Piece, which has seven possible values (one of which is “empty”), and Color,
which has two.

(b) Using the types from part (a), define a structure type named Square that can store both
the type of a piece and its color.

(c) Using the Square type from part (b), declare an 8 × 8 array named board that can
store the entire contents of a chessboard.

(d) Add an initializer to the declaration in part (c) so that board’s initial value corresponds
to the usual arrangement of pieces at the start of a chess game. A square that’s not occupied
by a piece should have an “empty” piece value and the color black.

19. Declare a structure with the following members whose tag is pinball_machine:

20. Suppose that the direction variable is declared in the following way:

enum {NORTH, SOUTH, EAST, WEST} direction;

(a) Compute the area of s.
(b) Move s by x units in the x direction and y units in the y direction, returning the modi-

fied version of s. (x and y are additional arguments to the function.)
(c) Scale s by a factor of c (a double value), returning the modified version of s. (c is an

additional argument to the function.)

W

W

(a) An enumeration constant may represent any integer specified by the programmer.
(b) Enumeration constants have exactly the same properties as constants created using

#define.
(c) Enumeration constants have the values 0, 1, 2, … by default.
(d) All constants in an enumeration must have different values.
(e) Enumeration constants may be used as integers in expressions.

W

(a) b = FALSE;
(b) b = i;
(c) b++;
(d) i = b;
(e) i = 2 * b + 1;

name – a string of up to 40 characters
year – an integer (representing the year of manufacture)
type – an enumeration with the values EM (electromechanical) and SS (solid state)
players – an integer (representing the maximum number of players)

C16.FM Page 411 Tuesday, February 12, 2008 5:07 PM

412 Chapter 16 Structures, Unions, and Enumerations

Let x and y be int variables. Write a switch statement that tests the value of direc-
tion, incrementing x if direction is EAST, decrementing x if direction is WEST,
incrementing y if direction is SOUTH, and decrementing y if direction is NORTH.

21. What are the integer values of the enumeration constants in each of the following declara-
tions?

22. Let chess_pieces be the following enumeration:

enum chess_pieces {KING, QUEEN, ROOK, BISHOP, KNIGHT, PAWN};

(a) Write a declaration (including an initializer) for a constant array of integers named
piece_value that stores the numbers 200, 9, 5, 3, 3, and 1, representing the value of each
chess piece, from king to pawn. (The king’s value is actually infinite, since “capturing” the
king (checkmate) ends the game, but some chess-playing software assigns the king a large
value such as 200.)

(b) (C99) Repeat part (a), but use a designated initializer to initialize the array. Use the enu-
meration constants in chess_pieces as subscripts in the designators. (Hint: See the last
question in Q&A for an example.)

Programming Projects

1. Write a program that asks the user to enter an international dialing code and then looks it up
in the country_codes array (see Section 16.3). If it finds the code, the program should
display the name of the corresponding country; if not, the program should print an error
message.

2. Modify the inventory.c program of Section 16.3 so that the p (print) operation displays
the parts sorted by part number.

3. Modify the inventory.c program of Section 16.3 by making inventory and
num_parts local to the main function.

4. Modify the inventory.c program of Section 16.3 by adding a price member to the
part structure. The insert function should ask the user for the price of a new item. The
search and print functions should display the price. Add a new command that allows
the user to change the price of a part.

5. Modify Programming Project 8 from Chapter 5 so that the times are stored in a single array.
The elements of the array will be structures, each containing a departure time and the corre-
sponding arrival time. (Each time will be an integer, representing the number of minutes
since midnight.) The program will use a loop to search the array for the departure time clos-
est to the time entered by the user.

6. Modify Programming Project 9 from Chapter 5 so that each date entered by the user is
stored in a date structure (see Exercise 5). Incorporate the compare_dates function of
Exercise 5 into your program.

(a) enum {NUL, SOH, STX, ETX};
(b) enum {VT = 11, FF, CR};
(c) enum {SO = 14, SI, DLE, CAN = 24, EM};
(d) enum {ENQ = 45, ACK, BEL, LF = 37, ETB, ESC};

W

W

C16.FM Page 412 Tuesday, February 12, 2008 5:07 PM

413

17 Advanced Uses of Pointers

One can only display complex information in the mind.
Like seeing, movement or flow or alteration of view is more

important than the static picture, no matter how lovely.

In previous chapters, we’ve seen two important uses of pointers. Chapter 11
showed how using a pointer to a variable as a function argument allows the func-
tion to modify the variable. Chapter 12 showed how to process arrays by perform-
ing arithmetic on pointers to array elements. This chapter completes our coverage
of pointers by examining two additional applications: dynamic storage allocation
and pointers to functions.

Using dynamic storage allocation, a program can obtain blocks of memory as
needed during execution. Section 17.1 explains the basics of dynamic storage allo-
cation. Section 17.2 discusses dynamically allocated strings, which provide more
flexibility than ordinary character arrays. Section 17.3 covers dynamic storage
allocation for arrays in general. Section 17.4 deals with the issue of storage deallo-
cation—releasing blocks of dynamically allocated memory when they’re no longer
needed.

Dynamically allocated structures play a big role in C programming, since they
can be linked together to form lists, trees, and other highly flexible data structures.
Section 17.5 focuses on linked lists, the most fundamental linked data structure.
One of the issues that arises in this section—the concept of a “pointer to a
pointer”—is important enough to warrant a section of its own (Section 17.6).

Section 17.7 introduces pointers to functions, a surprisingly useful concept.
Some of C’s most powerful library functions expect function pointers as argu-
ments. We’ll examine one of these functions, qsort, which is capable of sorting
any array.

The last two sections discuss pointer-related features that first appeared in
C99: restricted pointers (Section 17.8) and flexible array members (Section 17.9).
These features are primarily of interest to advanced C programmers, so both sec-
tions can be safely be skipped by the beginner.

c17.fm Page 413 Sunday, February 17, 2008 9:24 PM

414 Chapter 17 Advanced Uses of Pointers

17.1 Dynamic Storage Allocation

C’s data structures are normally fixed in size. For example, the number of elements
in an array is fixed once the program has been compiled. (In C99, the length of a
variable-length array is determined at run time, but it remains fixed for the rest of
the array’s lifetime.) Fixed-size data structures can be a problem, since we’re
forced to choose their sizes when writing a program; we can’t change the sizes
without modifying the program and compiling it again.

Consider the inventory program of Section 16.3, which allows the user to
add parts to a database. The database is stored in an array of length 100. To en-
large the capacity of the database, we can increase the size of the array and recom-
pile the program. But no matter how large we make the array, there’s always the
possibility that it will fill up. Fortunately, all is not lost. C supports dynamic stor-
age allocation: the ability to allocate storage during program execution. Using dy-
namic storage allocation, we can design data structures that grow (and shrink) as
needed.

Although it’s available for all types of data, dynamic storage allocation is used
most often for strings, arrays, and structures. Dynamically allocated structures are
of particular interest, since we can link them together to form lists, trees, and other
data structures.

Memory Allocation Functions

To allocate storage dynamically, we’ll need to call one of the three memory alloca-
tion functions declared in the <stdlib.h> header:

� malloc—Allocates a block of memory but doesn’t initialize it.

� calloc—Allocates a block of memory and clears it.

� realloc—Resizes a previously allocated block of memory.

Of the three, malloc is the most used. It’s more efficient than calloc, since it
doesn’t have to clear the memory block that it allocates.

When we call a memory allocation function to request a block of memory, the
function has no idea what type of data we’re planning to store in the block, so it
can’t return a pointer to an ordinary type such as int or char. Instead, the func-
tion returns a value of type void *. A void * value is a “generic” pointer—
essentially, just a memory address.

Null Pointers

When a memory allocation function is called, there’s always a possibility that it
won’t be able to locate a block of memory large enough to satisfy our request. If

variable-length arrays ➤8.3

<stdlib.h> header ➤26.2

c17.fm Page 414 Sunday, February 17, 2008 9:24 PM

17.1 Dynamic Storage Allocation 415

that should happen, the function will return a null pointer. A null pointer is a
“pointer to nothing”—a special value that can be distinguished from all valid
pointers. After we’ve stored the function’s return value in a pointer variable, we
must test to see if it’s a null pointer.

It’s the programmer’s responsibility to test the return value of any memory alloca-
tion function and take appropriate action if it’s a null pointer. The effect of attempt-
ing to access memory through a null pointer is undefined; the program may crash
or behave unpredictably.

The null pointer is represented by a macro named NULL, so we can test
malloc’s return value in the following way:

p = malloc(10000);
if (p == NULL) {
 /* allocation failed; take appropriate action */
}

Some programmers combine the call of malloc with the NULL test:

if ((p = malloc(10000)) == NULL) {
 /* allocation failed; take appropriate action */
}

The NULL macro is defined in six headers: <locale.h>, <stddef.h>,
<stdio.h>, <stdlib.h>, <string.h>, and <time.h>. (The C99 header
<wchar.h> also defines NULL.) As long as one of these headers is included in a
program, the compiler will recognize NULL. A program that uses any of the mem-
ory allocation functions will include <stdlib.h>, of course, making NULL
available.

In C, pointers test true or false in the same way as numbers. All non-null
pointers test true; only null pointers are false. Thus, instead of writing

if (p == NULL) …

we could write

if (!p) …

and instead of writing

if (p != NULL) …

we could write

if (p) …

As a matter of style, I prefer the explicit comparison with NULL.

Q&A

C99

c17.fm Page 415 Sunday, February 17, 2008 9:24 PM

416 Chapter 17 Advanced Uses of Pointers

17.2 Dynamically Allocated Strings

Dynamic storage allocation is often useful for working with strings. Strings are
stored in character arrays, and it can be hard to anticipate how long these arrays
need to be. By allocating strings dynamically, we can postpone the decision until
the program is running.

Using malloc to Allocate Memory for a String

The malloc function has the following prototype:

void *malloc(size_t size);

malloc allocates a block of size bytes and returns a pointer to it. Note that
size has type size_t, an unsigned integer type defined in the C library. Unless
we’re allocating a very large block of memory, we can just think of size as an
ordinary integer.

Using malloc to allocate memory for a string is easy, because C guarantees
that a char value requires exactly one byte of storage (sizeof(char) is 1, in
other words). To allocate space for a string of n characters, we’d write

p = malloc(n + 1);

where p is a char * variable. (The argument is n + 1 rather than n to allow room
for the null character.) The generic pointer that malloc returns will be converted
to char * when the assignment is performed; no cast is necessary. (In general, we
can assign a void * value to a variable of any pointer type and vice versa.) Never-
theless, some programmers prefer to cast malloc’s return value:

p = (char *) malloc(n + 1);

When using malloc to allocate space for a string, don’t forget to include room for
the null character.

Memory allocated using malloc isn’t cleared or initialized in any way, so p
will point to an uninitialized array of n + 1 characters:

size_t type ➤7.6

Q&A

0 1 2 3 4 n

p

. . .

c17.fm Page 416 Sunday, February 17, 2008 9:24 PM

17.2 Dynamically Allocated Strings 417

Calling strcpy is one way to initialize this array:

strcpy(p, "abc");

The first four characters in the array will now be a, b, c, and \0:

Using Dynamic Storage Allocation in String Functions

Dynamic storage allocation makes it possible to write functions that return a
pointer to a “new” string—a string that didn’t exist before the function was called.
Consider the problem of writing a function that concatenates two strings without
changing either one. C’s standard library doesn’t include such a function (strcat
isn’t quite what we want, since it modifies one of the strings passed to it), but we
can easily write our own.

Our function will measure the lengths of the two strings to be concatenated,
then call malloc to allocate just the right amount of space for the result. The
function next copies the first string into the new space and then calls strcat to
concatenate the second string.

char *concat(const char *s1, const char *s2)
{
 char *result;

 result = malloc(strlen(s1) + strlen(s2) + 1);
 if (result == NULL) {
 printf("Error: malloc failed in concat\n");
 exit(EXIT_FAILURE);
 }
 strcpy(result, s1);
 strcat(result, s2);
 return result;
}

If malloc returns a null pointer, concat prints an error message and terminates
the program. That’s not always the right action to take; some programs need to
recover from memory allocation failures and continue running.

Here’s how the concat function might be called:

p = concat("abc", "def");

After the call, p will point to the string "abcdef", which is stored in a dynami-
cally allocated array. The array is seven characters long, including the null charac-
ter at the end.

0 1 2 3 4 n

p

a b c \0 . . .

c17.fm Page 417 Sunday, February 17, 2008 9:24 PM

418 Chapter 17 Advanced Uses of Pointers

Functions such as concat that dynamically allocate storage must be used with
care. When the string that concat returns is no longer needed, we’ll want to call
the free function to release the space that the string occupies. If we don’t, the
program may eventually run out of memory.

Arrays of Dynamically Allocated Strings

In Section 13.7, we tackled the problem of storing strings in an array. We found
that storing strings as rows in a two-dimensional array of characters can waste
space, so we tried setting up an array of pointers to string literals. The techniques
of Section 13.7 work just as well if the elements of an array are pointers to dynam-
ically allocated strings. To illustrate this point, let’s rewrite the remind.c pro-
gram of Section 13.5, which prints a one-month list of daily reminders.

PROGRAM Printing a One-Month Reminder List (Revisited)

The original remind.c program stores the reminder strings in a two-dimensional
array of characters, with each row of the array containing one string. After the pro-
gram reads a day and its associated reminder, it searches the array to determine
where the day belongs, using strcmp to do comparisons. It then uses strcpy to
move all strings below that point down one position. Finally, the program copies
the day into the array and calls strcat to append the reminder to the day.

In the new program (remind2.c), the array will be one-dimensional; its ele-
ments will be pointers to dynamically allocated strings. Switching to dynamically
allocated strings in this program will have two primary advantages. First, we can
use space more efficiently by allocating the exact number of characters needed to
store a reminder, rather than storing the reminder in a fixed number of characters
as the original program does. Second, we won’t need to call strcpy to move
existing reminder strings in order to make room for a new reminder. Instead, we’ll
merely move pointers to strings.

Here’s the new program, with changes in bold. Switching from a two-dimen-
sional array to an array of pointers turns out to be remarkably easy: we’ll only need
to change eight lines of the program.

remind2.c /* Prints a one-month reminder list (dynamic string version) */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAX_REMIND 50 /* maximum number of reminders */
#define MSG_LEN 60 /* max length of reminder message */

int read_line(char str[], int n);

free function ➤17.4

c17.fm Page 418 Sunday, February 17, 2008 9:24 PM

17.2 Dynamically Allocated Strings 419

int main(void)
{
 char *reminders[MAX_REMIND];
 char day_str[3], msg_str[MSG_LEN+1];
 int day, i, j, num_remind = 0;

 for (;;) {
 if (num_remind == MAX_REMIND) {
 printf("-- No space left --\n");
 break;
 }

 printf("Enter day and reminder: ");
 scanf("%2d", &day);
 if (day == 0)
 break;
 sprintf(day_str, "%2d", day);
 read_line(msg_str, MSG_LEN);

 for (i = 0; i < num_remind; i++)
 if (strcmp(day_str, reminders[i]) < 0)
 break;
 for (j = num_remind; j > i; j--)
 reminders[j] = reminders[j-1];

 reminders[i] = malloc(2 + strlen(msg_str) + 1);
 if (reminders[i] == NULL) {
 printf("-- No space left --\n");
 break;
 }

 strcpy(reminders[i], day_str);
 strcat(reminders[i], msg_str);

 num_remind++;
 }

 printf("\nDay Reminder\n");
 for (i = 0; i < num_remind; i++)
 printf(" %s\n", reminders[i]);

 return 0;
}

int read_line(char str[], int n)
{
 int ch, i = 0;

 while ((ch = getchar()) != '\n')
 if (i < n)
 str[i++] = ch;
 str[i] = '\0';
 return i;
}

c17.fm Page 419 Sunday, February 17, 2008 9:24 PM

420 Chapter 17 Advanced Uses of Pointers

17.3 Dynamically Allocated Arrays

Dynamically allocated arrays have the same advantages as dynamically allocated
strings (not surprisingly, since strings are arrays). When we’re writing a program,
it’s often difficult to estimate the proper size for an array; it would be more conve-
nient to wait until the program is run to decide how large the array should be. C
solves this problem by allowing a program to allocate space for an array during
execution, then access the array through a pointer to its first element. The close
relationship between arrays and pointers, which we explored in Chapter 12, makes
a dynamically allocated array just as easy to use as an ordinary array.

Although malloc can allocate space for an array, the calloc function is
sometimes used instead, since it initializes the memory that it allocates. The
realloc function allows us to make an array “grow” or “shrink” as needed.

Using malloc to Allocate Storage for an Array

We can use malloc to allocate space for an array in much the same way we used
it to allocate space for a string. The primary difference is that the elements of an
arbitrary array won’t necessarily be one byte long, as they are in a string. As a
result, we’ll need to use the sizeof operator to calculate the amount of space
required for each element.

Suppose we’re writing a program that needs an array of n integers, where n is
to be computed during the execution of the program. We’ll first declare a pointer
variable:

int *a;

Once the value of n is known, we’ll have the program call malloc to allocate
space for the array:

a = malloc(n * sizeof(int));

Always use sizeof when calculating how much space is needed for an array.
Failing to allocate enough memory can have severe consequences. Consider the
following attempt to allocate space for an array of n integers:

a = malloc(n * 2);

If int values are larger than two bytes (as they are on most computers), malloc
won’t allocate a large enough block of memory. When we later try to access ele-
ments of the array, the program may crash or behave erratically.

Once it points to a dynamically allocated block of memory, we can ignore the
fact that a is a pointer and use it instead as an array name, thanks to the relation-

sizeof operator ➤7.6

c17.fm Page 420 Sunday, February 17, 2008 9:24 PM

17.3 Dynamically Allocated Arrays 421

ship between arrays and pointers in C. For example, we could use the following
loop to initialize the array that a points to:

for (i = 0; i < n; i++)
 a[i] = 0;

We also have the option of using pointer arithmetic instead of subscripting to
access the elements of the array.

The calloc Function

Although the malloc function can be used to allocate memory for an array, C
provides an alternative—the calloc function—that’s sometimes better. calloc
has the following prototype in <stdlib.h>:

void *calloc(size_t nmemb, size_t size);

calloc allocates space for an array with nmemb elements, each of which is
size bytes long; it returns a null pointer if the requested space isn’t available.
After allocating the memory, calloc initializes it by setting all bits to 0. For
example, the following call of calloc allocates space for an array of n integers,
which are all guaranteed to be zero initially:

a = calloc(n, sizeof(int));

Since calloc clears the memory that it allocates but malloc doesn’t, we
may occasionally want to use calloc to allocate space for an object other than an
array. By calling calloc with 1 as its first argument, we can allocate space for a
data item of any type:

struct point { int x, y; } *p;

p = calloc(1, sizeof(struct point));

After this statement has been executed, p will point to a structure whose x and y
members have been set to zero.

The realloc Function

Once we’ve allocated memory for an array, we may later find that it’s too large or
too small. The realloc function can resize the array to better suit our needs. The
following prototype for realloc appears in <stdlib.h>:

void *realloc(void *ptr, size_t size);

When realloc is called, ptr must point to a memory block obtained by a previ-
ous call of malloc, calloc, or realloc. The size parameter represents the
new size of the block, which may be larger or smaller than the original size.
Although realloc doesn’t require that ptr point to memory that’s being used as
an array, in practice it usually does.

Q&A

c17.fm Page 421 Sunday, February 17, 2008 9:24 PM

422 Chapter 17 Advanced Uses of Pointers

Be sure that a pointer passed to realloc came from a previous call of malloc,
calloc, or realloc. If it didn’t, calling realloc causes undefined behavior.

The C standard spells out a number of rules concerning the behavior of
realloc:

� When it expands a memory block, realloc doesn’t initialize the bytes that
are added to the block.

� If realloc can’t enlarge the memory block as requested, it returns a null
pointer; the data in the old memory block is unchanged.

� If realloc is called with a null pointer as its first argument, it behaves like
malloc.

� If realloc is called with 0 as its second argument, it frees the memory
block.

The C standard stops short of specifying exactly how realloc works. Still,
we expect it to be reasonably efficient. When asked to reduce the size of a memory
block, realloc should shrink the block “in place,” without moving the data
stored in the block. By the same token, realloc should always attempt to
expand a memory block without moving it. If it’s unable to enlarge the block
(because the bytes following the block are already in use for some other purpose),
realloc will allocate a new block elsewhere, then copy the contents of the old
block into the new one.

Once realloc has returned, be sure to update all pointers to the memory block,
since it’s possible that realloc has moved the block elsewhere.

17.4 Deallocating Storage

malloc and the other memory allocation functions obtain memory blocks from a
storage pool known as the heap. Calling these functions too often—or asking them
for large blocks of memory—can exhaust the heap, causing the functions to return
a null pointer.

To make matters worse, a program may allocate blocks of memory and then
lose track of them, thereby wasting space. Consider the following example:

p = malloc(…);
q = malloc(…);
p = q;

c17.fm Page 422 Sunday, February 17, 2008 9:24 PM

17.4 Deallocating Storage 423

After the first two statements have been executed, p points to one memory block,
while q points to another:

After q is assigned to p, both variables now point to the second memory block:

There are no pointers to the first block (shaded), so we’ll never be able to use it
again.

A block of memory that’s no longer accessible to a program is said to be gar-
bage. A program that leaves garbage behind has a memory leak. Some languages
provide a garbage collector that automatically locates and recycles garbage, but C
doesn’t. Instead, each C program is responsible for recycling its own garbage by
calling the free function to release unneeded memory.

The free Function

The free function has the following prototype in <stdlib.h>:

void free(void *ptr);

Using free is easy; we simply pass it a pointer to a memory block that we no
longer need:

p = malloc(…);
q = malloc(…);
free(p);
p = q;

Calling free releases the block of memory that p points to. This block is now
available for reuse in subsequent calls of malloc or other memory allocation
functions.

The argument to free must be a pointer that was previously returned by a mem-
ory allocation function. (The argument may also be a null pointer, in which case
the call of free has no effect.) Passing free a pointer to any other object (such
as a variable or array element) causes undefined behavior.

p

q

p

q

c17.fm Page 423 Sunday, February 17, 2008 9:24 PM

424 Chapter 17 Advanced Uses of Pointers

The “Dangling Pointer” Problem

Although the free function allows us to reclaim memory that’s no longer needed,
using it leads to a new problem: dangling pointers. The call free(p) deallocates
the memory block that p points to, but doesn’t change p itself. If we forget that p
no longer points to a valid memory block, chaos may ensue:

char *p = malloc(4);
…
free(p);
…
strcpy(p, "abc"); /*** WRONG ***/

Modifying the memory that p points to is a serious error, since our program no
longer has control of that memory.

Attempting to access or modify a deallocated memory block causes undefined
behavior. Trying to modify a deallocated memory block is likely to have disastrous
consequences that may include a program crash.

Dangling pointers can be hard to spot, since several pointers may point to
the same block of memory. When the block is freed, all the pointers are left dan-
gling.

17.5 Linked Lists

Dynamic storage allocation is especially useful for building lists, trees, graphs, and
other linked data structures. We’ll look at linked lists in this section; a discussion
of other linked data structures is beyond the scope of this book. For more informa-
tion, consult a book such as Robert Sedgewick’s Algorithms in C, Parts 1–4: Fun-
damentals, Data Structures, Sorting, Searching, Third Edition (Reading, Mass.:
Addison-Wesley, 1998).

A linked list consists of a chain of structures (called nodes), with each node
containing a pointer to the next node in the chain:

The last node in the list contains a null pointer, shown here as a diagonal line.
In previous chapters, we’ve used an array whenever we’ve needed to store a

collection of data items; linked lists give us an alternative. A linked list is more
flexible than an array: we can easily insert and delete nodes in a linked list, allow-
ing the list to grow and shrink as needed. On the other hand, we lose the “random
access” capability of an array. Any element of an array can be accessed in the same

c17.fm Page 424 Sunday, February 17, 2008 9:24 PM

17.5 Linked Lists 425

amount of time; accessing a node in a linked list is fast if the node is close to the
beginning of the list, slow if it’s near the end.

This section describes how to set up a linked list in C. It also shows how to
perform several common operations on linked lists: inserting a node at the begin-
ning of a list, searching for a node, and deleting a node.

Declaring a Node Type

To set up a linked list, the first thing we’ll need is a structure that represents a sin-
gle node in the list. For simplicity, let’s assume that a node contains nothing but an
integer (the node’s data) plus a pointer to the next node in the list. Here’s what our
node structure will look like:

struct node {
 int value; /* data stored in the node */
 struct node *next; /* pointer to the next node */
};

Notice that the next member has type struct node *, which means that it can
store a pointer to a node structure. There’s nothing special about the name node,
by the way; it’s just an ordinary structure tag.

One aspect of the node structure deserves special mention. As Section 16.2
explained, we normally have the option of using either a tag or a typedef name
to define a name for a particular kind of structure. However, when a structure has a
member that points to the same kind of structure, as node does, we’re required to
use a structure tag. Without the node tag, we’d have no way to declare the type of
next.

Now that we have the node structure declared, we’ll need a way to keep track
of where the list begins. In other words, we’ll need a variable that always points to
the first node in the list. Let’s name the variable first:

struct node *first = NULL;

Setting first to NULL indicates that the list is initially empty.

Creating a Node

As we construct a linked list, we’ll want to create nodes one by one, adding each to
the list. Creating a node requires three steps:

1. Allocate memory for the node.
2. Store data in the node.
3. Insert the node into the list.

We’ll concentrate on the first two steps for now.
When we create a node, we’ll need a variable that can point to the node tem-

porarily, until it’s been inserted into the list. Let’s call this variable new_node:

struct node *new_node;

Q&A

c17.fm Page 425 Sunday, February 17, 2008 9:24 PM

426 Chapter 17 Advanced Uses of Pointers

We’ll use malloc to allocate memory for the new node, saving the return value in
new_node:

new_node = malloc(sizeof(struct node));

new_node now points to a block of memory just large enough to hold a node
structure:

Be careful to give sizeof the name of the type to be allocated, not the name of a
pointer to that type:

new_node = malloc(sizeof(new_node)); /*** WRONG ***/

The program will still compile, but malloc will allocate only enough memory for
a pointer to a node structure. The likely result is a crash later, when the program
attempts to store data in the node that new_node is presumably pointing to.

Next, we’ll store data in the value member of the new node:

(*new_node).value = 10;

Here’s how the picture will look after this assignment:

To access the value member of the node, we’ve applied the indirection operator
* (to reference the structure to which new_node points), then the selection oper-
ator . (to select a member of the structure). The parentheses around *new_node
are mandatory because the . operator would otherwise take precedence over the *
operator.

The -> Operator

Before we go on to the next step, inserting a new node into a list, let’s take a
moment to discuss a useful shortcut. Accessing a member of a structure using a
pointer is so common that C provides a special operator just for this purpose. This
operator, known as right arrow selection, is a minus sign followed by >. Using the
-> operator, we can write

new_node->value = 10;

instead of

new_node

value next

Q&A

new_node

value next

10

table of operators ➤Appendix A

c17.fm Page 426 Sunday, February 17, 2008 9:24 PM

17.5 Linked Lists 427

(*new_node).value = 10;

The -> operator is a combination of the * and . operators; it performs indirection
on new_node to locate the structure that it points to, then selects the value
member of the structure.

The -> operator produces an lvalue, so we can use it wherever an ordi-
nary variable would be allowed. We’ve just seen an example in which
new_node->value appears on the left side of an assignment. It could just as
easily appear in a call of scanf:

scanf("%d", &new_node->value);

Notice that the & operator is still required, even though new_node is a pointer.
Without the &, we’d be passing scanf the value of new_node->value, which
has type int.

Inserting a Node at the Beginning of a Linked List

One of the advantages of a linked list is that nodes can be added at any point in the
list: at the beginning, at the end, or anywhere in the middle. The beginning of a list
is the easiest place to insert a node, however, so let’s focus on that case.

If new_node is pointing to the node to be inserted, and first is pointing to
the first node in the linked list, then we’ll need two statements to insert the node
into the list. First, we’ll modify the new node’s next member to point to the node
that was previously at the beginning of the list:

new_node->next = first;

Second, we’ll make first point to the new node:

first = new_node;

Will these statements work if the list is empty when we insert a node? Yes,
fortunately. To make sure this is true, let’s trace the process of inserting two nodes
into an empty list. We’ll insert a node containing the number 10 first, followed by a
node containing 20. In the figures that follow, null pointers are shown as diagonal
lines.

lvalues ➤4.2

new_node

first
first = NULL;

new_node

first
new_node = malloc(sizeof(struct node));

c17.fm Page 427 Sunday, February 17, 2008 9:24 PM

428 Chapter 17 Advanced Uses of Pointers

Inserting a node into a linked list is such a common operation that we’ll probably
want to write a function for that purpose. Let’s name the function add_to_list.
It will have two parameters: list (a pointer to the first node in the old list) and n
(the integer to be stored in the new node).

struct node *add_to_list(struct node *list, int n)
{
 struct node *new_node;

 new_node = malloc(sizeof(struct node));
 if (new_node == NULL) {
 printf("Error: malloc failed in add_to_list\n");
 exit(EXIT_FAILURE);
 }

10

new_node

first
new_node->value = 10;

10

new_node

first
new_node->next = first;

10

new_node

first
first = new_node;

10

new_node

first
new_node = malloc(sizeof(struct node));

10

new_node

first

20

new_node->value = 20;

10

new_node

first

20

new_node->next = first;

10

new_node

first

20

first = new_node;

c17.fm Page 428 Sunday, February 17, 2008 9:24 PM

17.5 Linked Lists 429

 new_node->value = n;
 new_node->next = list;
 return new_node;
}

Note that add_to_list doesn’t modify the list pointer. Instead, it returns a
pointer to the newly created node (now at the beginning of the list). When we call
add_to_list, we’ll need to store its return value into first:

first = add_to_list(first, 10);
first = add_to_list(first, 20);

These statements add nodes containing 10 and 20 to the list pointed to by first.
Getting add_to_list to update first directly, rather than return a new value
for first, turns out to be tricky. We’ll return to this issue in Section 17.6.

The following function uses add_to_list to create a linked list containing
numbers entered by the user:

struct node *read_numbers(void)
{
 struct node *first = NULL;
 int n;

 printf("Enter a series of integers (0 to terminate): ");
 for (;;) {
 scanf("%d", &n);
 if (n == 0)
 return first;
 first = add_to_list(first, n);
 }
}

The numbers will be in reverse order within the list, since first always points to
the node containing the last number entered.

Searching a Linked List

Once we’ve created a linked list, we may need to search it for a particular piece of
data. Although a while loop can be used to search a list, the for statement is
often superior. We’re accustomed to using the for statement when writing loops
that involve counting, but its flexibility makes the for statement suitable for other
tasks as well, including operations on linked lists. Here’s the customary way to
visit the nodes in a linked list, using a pointer variable p to keep track of the “cur-
rent” node:

idiom for (p = first; p != NULL; p = p->next)
 …

The assignment

p = p->next

c17.fm Page 429 Sunday, February 17, 2008 9:24 PM

430 Chapter 17 Advanced Uses of Pointers

advances the p pointer from one node to the next. An assignment of this form is
invariably used in C when writing a loop that traverses a linked list.

Let’s write a function named search_list that searches a list (pointed to
by the parameter list) for an integer n. If it finds n, search_list will return
a pointer to the node containing n; otherwise, it will return a null pointer. Our first
version of search_list relies on the “list-traversal” idiom:

struct node *search_list(struct node *list, int n)
{
 struct node *p;

 for (p = list; p != NULL; p = p->next)
 if (p->value == n)
 return p;
 return NULL;
}

Of course, there are many other ways to write search_list. One alterna-
tive would be to eliminate the p variable, instead using list itself to keep track of
the current node:

struct node *search_list(struct node *list, int n)
{
 for (; list != NULL; list = list->next)
 if (list->value == n)
 return list;
 return NULL;
}

Since list is a copy of the original list pointer, there’s no harm in changing it
within the function.

Another alternative is to combine the list->value == n test with the
list != NULL test:

struct node *search_list(struct node *list, int n)
{
 for (; list != NULL && list->value != n; list = list->next)
 ;
 return list;
}

Since list is NULL if we reach the end of the list, returning list is correct even
if we don’t find n. This version of search_list might be a bit clearer if we
used a while statement:

struct node *search_list(struct node *list, int n)
{
 while (list != NULL && list->value != n)
 list = list->next;
 return list;
}

c17.fm Page 430 Sunday, February 17, 2008 9:24 PM

17.5 Linked Lists 431

Deleting a Node from a Linked List

A big advantage of storing data in a linked list is that we can easily delete nodes
that we no longer need. Deleting a node, like creating a node, involves three steps:

1. Locate the node to be deleted.
2. Alter the previous node so that it “bypasses” the deleted node.
3. Call free to reclaim the space occupied by the deleted node.

Step 1 is harder than it looks. If we search the list in the obvious way, we’ll end up
with a pointer to the node to be deleted. Unfortunately, we won’t be able to per-
form step 2, which requires changing the previous node.

There are various solutions to this problem. We’ll use the “trailing pointer”
technique: as we search the list in step 1, we’ll keep a pointer to the previous node
(prev) as well as a pointer to the current node (cur). If list points to the list to
be searched and n is the integer to be deleted, the following loop implements step
1:

for (cur = list, prev = NULL;
 cur != NULL && cur->value != n;
 prev = cur, cur = cur->next)
 ;

Here we see the power of C’s for statement. This rather exotic example, with its
empty body and liberal use of the comma operator, performs all the actions needed
to search for n. When the loop terminates, cur points to the node to be deleted,
while prev points to the previous node (if there is one).

To see how this loop works, let’s assume that list points to a list containing
30, 40, 20, and 10, in that order:

Let’s say that n is 20, so our goal is to delete the third node in the list. After
cur = list, prev = NULL has been executed, cur points to the first node in
the list:

The test cur != NULL && cur->value != n is true, since cur is pointing to a
node and the node doesn’t contain 20. After prev = cur, cur = cur->next
has been executed, we begin to see how the prev pointer will trail behind cur:

list 40 2030 10

list 40 2030 10

prev cur

c17.fm Page 431 Sunday, February 17, 2008 9:24 PM

432 Chapter 17 Advanced Uses of Pointers

Again, the test cur != NULL && cur->value != n is true, so prev = cur,
cur = cur->next is executed once more:

Since cur now points to the node containing 20, the condition cur->value !=
n is false and the loop terminates.

Next, we’ll perform the bypass required by step 2. The statement

prev->next = cur->next;

makes the pointer in the previous node point to the node after the current node:

We’re now ready for step 3, releasing the memory occupied by the current node:

free(cur);

The following function, delete_from_list, uses the strategy that we’ve
just outlined. When given a list and an integer n, the function deletes the first node
containing n. If no node contains n, delete_from_list does nothing. In
either case, the function returns a pointer to the list.

struct node *delete_from_list(struct node *list, int n)
{
 struct node *cur, *prev;

 for (cur = list, prev = NULL;
 cur != NULL && cur->value != n;
 prev = cur, cur = cur->next)
 ;

list 40 2030 10

prev cur

list 40 2030 10

prev cur

list 40 2030 10

prev cur

c17.fm Page 432 Sunday, February 17, 2008 9:24 PM

17.5 Linked Lists 433

 if (cur == NULL)
 return list; /* n was not found */
 if (prev == NULL)
 list = list->next; /* n is in the first node */
 else
 prev->next = cur->next; /* n is in some other node */
 free(cur);
 return list;
}

Deleting the first node in the list is a special case. The prev == NULL test checks
for this case, which requires a different bypass step.

Ordered Lists

When the nodes of a list are kept in order—sorted by the data stored inside the
nodes—we say that the list is ordered. Inserting a node into an ordered list is more
difficult (the node won’t always be put at the beginning of the list), but searching is
faster (we can stop looking after reaching the point at which the desired node
would have been located). The following program illustrates both the increased
difficulty of inserting a node and the faster search.

PROGRAM Maintaining a Parts Database (Revisited)

Let’s redo the parts database program of Section 16.3, this time storing the data-
base in a linked list. Using a linked list instead of an array has two major advan-
tages: (1) We don’t need to put a preset limit on the size of the database; it can
grow until there’s no more memory to store parts. (2) We can easily keep the data-
base sorted by part number—when a new part is added to the database, we simply
insert it in its proper place in the list. In the original program, the database wasn’t
sorted.

In the new program, the part structure will contain an additional member (a
pointer to the next node in the linked list), and the variable inventory will be a
pointer to the first node in the list:

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 struct part *next;
};

struct part *inventory = NULL; /* points to first part */

Most of the functions in the new program will closely resemble their counter-
parts in the original program. The find_part and insert functions will be
more complex, however, since we’ll keep the nodes in the inventory list sorted
by part number.

c17.fm Page 433 Sunday, February 17, 2008 9:24 PM

434 Chapter 17 Advanced Uses of Pointers

In the original program, find_part returns an index into the inventory
array. In the new program, find_part will return a pointer to the node that con-
tains the desired part number. If it doesn’t find the part number, find_part will
return a null pointer. Since the inventory list is sorted by part number, the new
version of find_part can save time by stopping its search when it finds a node
containing a part number that’s greater than or equal to the desired part number.
find_part’s search loop will have the form

for (p = inventory;
 p != NULL && number > p->number;
 p = p->next)
 ;

The loop will terminate when p becomes NULL (indicating that the part number
wasn’t found) or when number > p->number is false (indicating that the part
number we’re looking for is less than or equal to a number already stored in a
node). In the latter case, we still don’t know whether or not the desired number is
actually in the list, so we’ll need another test:

if (p != NULL && number == p->number)
 return p;

The original version of insert stores a new part in the next available array
element. The new version must determine where the new part belongs in the list
and insert it there. We’ll also have insert check whether the part number is
already present in the list. insert can accomplish both tasks by using a loop sim-
ilar to the one in find_part:

for (cur = inventory, prev = NULL;
 cur != NULL && new_node->number > cur->number;
 prev = cur, cur = cur->next)
 ;

This loop relies on two pointers: cur, which points to the current node, and prev,
which points to the previous node. Once the loop terminates, insert will check
whether cur isn’t NULL and new_node->number equals cur->number; if
so, the part number is already in the list. Otherwise insert will insert a new node
between the nodes pointed to by prev and cur, using a strategy similar to the one
we employed for deleting a node. (This strategy works even if the new part number
is larger than any in the list; in that case, cur will be NULL but prev will point to
the last node in the list.)

Here’s the new program. Like the original program, this version requires the
read_line function described in Section 16.3; I assume that readline.h
contains a prototype for this function.

inventory2.c /* Maintains a parts database (linked list version) */

#include <stdio.h>
#include <stdlib.h>
#include "readline.h"

c17.fm Page 434 Sunday, February 17, 2008 9:24 PM

17.5 Linked Lists 435

#define NAME_LEN 25

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
 struct part *next;
};

struct part *inventory = NULL; /* points to first part */

struct part *find_part(int number);
void insert(void);
void search(void);
void update(void);
void print(void);

/**
 * main: Prompts the user to enter an operation code, *
 * then calls a function to perform the requested *
 * action. Repeats until the user enters the *
 * command 'q'. Prints an error message if the user *
 * enters an illegal code. *
 **/
int main(void)
{
 char code;

 for (;;) {
 printf("Enter operation code: ");
 scanf(" %c", &code);
 while (getchar() != '\n') /* skips to end of line */
 ;
 switch (code) {
 case 'i': insert();
 break;
 case 's': search();
 break;
 case 'u': update();
 break;
 case 'p': print();
 break;
 case 'q': return 0;
 default: printf("Illegal code\n");
 }
 printf("\n");
 }
}

/**
 * find_part: Looks up a part number in the inventory *
 * list. Returns a pointer to the node *
 * containing the part number; if the part *
 * number is not found, returns NULL. *
 **/

c17.fm Page 435 Sunday, February 17, 2008 9:24 PM

436 Chapter 17 Advanced Uses of Pointers

struct part *find_part(int number)
{
 struct part *p;

 for (p = inventory;
 p != NULL && number > p->number;
 p = p->next)
 ;
 if (p != NULL && number == p->number)
 return p;
 return NULL;
}

/**
 * insert: Prompts the user for information about a new *
 * part and then inserts the part into the *
 * inventory list; the list remains sorted by *
 * part number. Prints an error message and *
 * returns prematurely if the part already exists *
 * or space could not be allocated for the part. *
 **/
void insert(void)
{
 struct part *cur, *prev, *new_node;

 new_node = malloc(sizeof(struct part));
 if (new_node == NULL) {
 printf("Database is full; can't add more parts.\n");
 return;
 }

 printf("Enter part number: ");
 scanf("%d", &new_node->number);

 for (cur = inventory, prev = NULL;
 cur != NULL && new_node->number > cur->number;
 prev = cur, cur = cur->next)
 ;
 if (cur != NULL && new_node->number == cur->number) {
 printf("Part already exists.\n");
 free(new_node);
 return;
 }

 printf("Enter part name: ");
 read_line(new_node->name, NAME_LEN);
 printf("Enter quantity on hand: ");
 scanf("%d", &new_node->on_hand);

 new_node->next = cur;
 if (prev == NULL)
 inventory = new_node;
 else
 prev->next = new_node;
}

c17.fm Page 436 Sunday, February 17, 2008 9:24 PM

17.5 Linked Lists 437

/**
 * search: Prompts the user to enter a part number, then *
 * looks up the part in the database. If the part *
 * exists, prints the name and quantity on hand; *
 * if not, prints an error message. *
 **/
void search(void)
{
 int number;
 struct part *p;

 printf("Enter part number: ");
 scanf("%d", &number);
 p = find_part(number);
 if (p != NULL) {
 printf("Part name: %s\n", p->name);
 printf("Quantity on hand: %d\n", p->on_hand);
 } else
 printf("Part not found.\n");
}

/**
 * update: Prompts the user to enter a part number. *
 * Prints an error message if the part doesn't *
 * exist; otherwise, prompts the user to enter *
 * change in quantity on hand and updates the *
 * database. *
 **/
void update(void)
{
 int number, change;
 struct part *p;

 printf("Enter part number: ");
 scanf("%d", &number);
 p = find_part(number);
 if (p != NULL) {
 printf("Enter change in quantity on hand: ");
 scanf("%d", &change);
 p->on_hand += change;
 } else
 printf("Part not found.\n");
}

/**
 * print: Prints a listing of all parts in the database, *
 * showing the part number, part name, and *
 * quantity on hand. Part numbers will appear in *
 * ascending order. *
 **/
void print(void)
{
 struct part *p;

c17.fm Page 437 Sunday, February 17, 2008 9:24 PM

438 Chapter 17 Advanced Uses of Pointers

 printf("Part Number Part Name "
 "Quantity on Hand\n");
 for (p = inventory; p != NULL; p = p->next)
 printf("%7d %-25s%11d\n", p->number, p->name,
 p->on_hand);
}

Notice the use of free in the insert function. insert allocates memory
for a part before checking to see if the part already exists. If it does, insert
releases the space to avoid a memory leak.

17.6 Pointers to Pointers

In Section 13.7, we came across the notion of a pointer to a pointer. In that section,
we used an array whose elements were of type char *; a pointer to one of the
array elements itself had type char **. The concept of “pointers to pointers” also
pops up frequently in the context of linked data structures. In particular, when an
argument to a function is a pointer variable, we’ll sometimes want the function to
be able to modify the variable by making it point somewhere else. Doing so
requires the use of a pointer to a pointer.

Consider the add_to_list function of Section 17.5, which inserts a node
at the beginning of a linked list. When we call add_to_list, we pass it a
pointer to the first node in the original list; it then returns a pointer to the first node
in the updated list:

struct node *add_to_list(struct node *list, int n)
{
 struct node *new_node;

 new_node = malloc(sizeof(struct node));
 if (new_node == NULL) {
 printf("Error: malloc failed in add_to_list\n");
 exit(EXIT_FAILURE);
 }
 new_node->value = n;
 new_node->next = list;
 return new_node;
}

Suppose that we modify the function so that it assigns new_node to list
instead of returning new_node. In other words, let’s remove the return state-
ment from add_to_list and replace it by

list = new_node;

Unfortunately, this idea doesn’t work. Suppose that we call add_to_list in the
following way:

add_to_list(first, 10);

c17.fm Page 438 Sunday, February 17, 2008 9:24 PM

17.7 Pointers to Functions 439

At the point of the call, first is copied into list. (Pointers, like all arguments,
are passed by value.) The last line in the function changes the value of list, mak-
ing it point to the new node. This assignment doesn’t affect first, however.

Getting add_to_list to modify first is possible, but it requires pass-
ing add_to_list a pointer to first. Here’s the correct version of the func-
tion:

void add_to_list(struct node **list, int n)
{
 struct node *new_node;

 new_node = malloc(sizeof(struct node));
 if (new_node == NULL) {
 printf("Error: malloc failed in add_to_list\n");
 exit(EXIT_FAILURE);
 }
 new_node->value = n;
 new_node->next = *list;
 *list = new_node;
}

When we call the new version of add_to_list, the first argument will be the
address of first:

add_to_list(&first, 10);

Since list is assigned the address of first, we can use *list as an alias for
first. In particular, assigning new_node to *list will modify first.

17.7 Pointers to Functions

We’ve seen that pointers may point to various kinds of data, including variables,
array elements, and dynamically allocated blocks of memory. But C doesn’t
require that pointers point only to data; it’s also possible to have pointers to func-
tions. Pointers to functions aren’t as odd as you might think. After all, functions
occupy memory locations, so every function has an address, just as each variable
has an address.

Function Pointers as Arguments

We can use function pointers in much the same way we use pointers to data. In par-
ticular, passing a function pointer as an argument is fairly common in C. Suppose
that we’re writing a function named integrate that integrates a mathematical
function f between points a and b. We’d like to make integrate as general as
possible by passing it f as an argument. To achieve this effect in C, we’ll declare f
to be a pointer to a function. Assuming that we want to integrate functions that have

c17.fm Page 439 Sunday, February 17, 2008 9:24 PM

440 Chapter 17 Advanced Uses of Pointers

a double parameter and return a double result, the prototype for integrate
will look like this:

double integrate(double (*f)(double), double a, double b);

The parentheses around *f indicate that f is a pointer to a function, not a function
that returns a pointer. It’s also legal to declare f as though it were a function:

double integrate(double f(double), double a, double b);

From the compiler’s standpoint, this prototype is identical to the previous one.
When we call integrate, we’ll supply a function name as the first argu-

ment. For example, the following call will integrate the sin (sine) function from 0
to π/2:

result = integrate(sin, 0.0, PI / 2);

Notice that there are no parentheses after sin. When a function name isn’t fol-
lowed by parentheses, the C compiler produces a pointer to the function instead of
generating code for a function call. In our example, we’re not calling sin; instead,
we’re passing integrate a pointer to sin. If this seems confusing, think of how
C handles arrays. If a is the name of an array, then a[i] represents one element of
the array, while a by itself serves as a pointer to the array. In a similar way, if f is a
function, C treats f(x) as a call of the function but f by itself as a pointer to the
function.

Within the body of integrate, we can call the function that f points to:

y = (*f)(x);

*f represents the function that f points to; x is the argument to the call. Thus, dur-
ing the execution of integrate(sin, 0.0, PI / 2), each call of *f is actu-
ally a call of sin. As an alternative to (*f)(x), C allows us to write f(x) to
call the function that f points to. Although f(x) looks more natural, I’ll stick
with (*f)(x) as a reminder that f is a pointer to a function, not a function name.

The qsort Function

Although it might seem that pointers to functions aren’t relevant to the average
programmer, that couldn’t be further from the truth. In fact, some of the most use-
ful functions in the C library require a function pointer as an argument. One of
these is qsort, which belongs to the <stdlib.h> header. qsort is a general-
purpose sorting function that’s capable of sorting any array, based on any criteria
that we choose.

Since the elements of the array that it sorts may be of any type—even a struc-
ture or union type—qsort must be told how to determine which of two array ele-
ments is “smaller.” We’ll provide this information to qsort by writing a
comparison function. When given two pointers p and q to array elements, the
comparison function must return an integer that is negative if *p is “less than” *q,

sin function ➤23.3

Q&A

c17.fm Page 440 Sunday, February 17, 2008 9:24 PM

17.7 Pointers to Functions 441

zero if *p is “equal to” *q, and positive if *p is “greater than” *q. The terms “less
than,” “equal to,” and “greater than” are in quotes because it’s our responsibility to
determine how *p and *q are compared.

qsort has the following prototype:

void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

base must point to the first element in the array. (If only a portion of the array is
to be sorted, we’ll make base point to the first element in this portion.) In the sim-
plest case, base is just the name of the array. nmemb is the number of elements to
be sorted (not necessarily the number of elements in the array). size is the size of
each array element, measured in bytes. compar is a pointer to the comparison
function. When qsort is called, it sorts the array into ascending order, calling the
comparison function whenever it needs to compare array elements.

To sort the inventory array of Section 16.3, we’d use the following call of
qsort:

qsort(inventory, num_parts, sizeof(struct part), compare_parts);

Notice that the second argument is num_parts, not MAX_PARTS; we don’t want
to sort the entire inventory array, just the portion in which parts are currently
stored. The last argument, compare_parts, is a function that compares two
part structures.

Writing the compare_parts function isn’t as easy as you might expect.
qsort requires that its parameters have type void *, but we can’t access the
members of a part structure through a void * pointer; we need a pointer of type
struct part * instead. To solve the problem, we’ll have compare_parts
assign its parameters, p and q, to variables of type struct part *, thereby con-
verting them to the desired type. compare_parts can now use these variables to
access the members of the structures that p and q point to. Assuming that we want
to sort the inventory array into ascending order by part number, here’s how the
compare_parts function might look:

int compare_parts(const void *p, const void *q)
{
 const struct part *p1 = p;
 const struct part *q1 = q;

 if (p1->number < q1->number)
 return -1;
 else if (p1->number == q1->number)
 return 0;
 else
 return 1;
}

The declarations of p1 and q1 include the word const to avoid getting a warning
from the compiler. Since p and q are const pointers (indicating that the objects

Q&A

c17.fm Page 441 Sunday, February 17, 2008 9:24 PM

442 Chapter 17 Advanced Uses of Pointers

to which they point should not be modified), they should be assigned only to
pointer variables that are also declared to be const.

Although this version of compare_parts works, most C programmers
would write the function more concisely. First, notice that we can replace p1 and
q1 by cast expressions:

int compare_parts(const void *p, const void *q)
{
 if (((struct part *) p)->number <
 ((struct part *) q)->number)
 return -1;
 else if (((struct part *) p)->number ==
 ((struct part *) q)->number)
 return 0;
 else
 return 1;
}

The parentheses around ((struct part *) p) are necessary; without them, the
compiler would try to cast p->number to type struct part *.

We can make compare_parts even shorter by removing the if statements:

int compare_parts(const void *p, const void *q)
{
 return ((struct part *) p)->number -
 ((struct part *) q)->number;
}

Subtracting q’s part number from p’s part number produces a negative result if p
has a smaller part number, zero if the part numbers are equal, and a positive result
if p has a larger part number. (Note that subtracting two integers is potentially
risky because of the danger of overflow. I’m assuming that part numbers are posi-
tive integers, so that shouldn’t happen here.)

To sort the inventory array by part name instead of part number, we’d use
the following version of compare_parts:

int compare_parts(const void *p, const void *q)
{
 return strcmp(((struct part *) p)->name,
 ((struct part *) q)->name);
}

All compare_parts has to do is call strcmp, which conveniently returns a
negative, zero, or positive result.

Other Uses of Function Pointers

Although I’ve emphasized the usefulness of function pointers as arguments to
other functions, that’s not all they’re good for. C treats pointers to functions just
like pointers to data; we can store function pointers in variables or use them as ele-

c17.fm Page 442 Sunday, February 17, 2008 9:24 PM

17.7 Pointers to Functions 443

ments of an array or as members of a structure or union. We can even write func-
tions that return function pointers.

Here’s an example of a variable that can store a pointer to a function:

void (*pf)(int);

pf can point to any function with an int parameter and a return type of void. If
f is such a function, we can make pf point to f in the following way:

pf = f;

Notice that there’s no ampersand preceding f. Once pf points to f, we can call f
by writing either

(*pf)(i);

or

pf(i);

Arrays whose elements are function pointers have a surprising number of
applications. For example, suppose that we’re writing a program that displays a
menu of commands for the user to choose from. We can write functions that imple-
ment these commands, then store pointers to the functions in an array:

void (*file_cmd[])(void) = {new_cmd,
 open_cmd,
 close_cmd,
 close_all_cmd,
 save_cmd,
 save_as_cmd,
 save_all_cmd,
 print_cmd,
 exit_cmd
 };

If the user selects command n, where n falls between 0 and 8, we can subscript the
file_cmd array and call the corresponding function:

(*file_cmd[n])(); /* or file_cmd[n](); */

Of course, we could get a similar effect with a switch statement. Using an array
of function pointers gives us more flexibility, however, since the elements of the
array can be changed as the program is running.

PROGRAM Tabulating the Trigonometric Functions

The following program prints tables showing the values of the cos, sin, and tan
functions (all three belong to <math.h>). The program is built around a function
named tabulate that, when passed a function pointer f, prints a table showing
the values of f.

<math.h> header ➤23.3

c17.fm Page 443 Sunday, February 17, 2008 9:24 PM

444 Chapter 17 Advanced Uses of Pointers

tabulate.c /* Tabulates values of trigonometric functions */

#include <math.h>
#include <stdio.h>

void tabulate(double (*f)(double), double first,
 double last, double incr);

int main(void)
{
 double final, increment, initial;

 printf("Enter initial value: ");
 scanf("%lf", &initial);

 printf("Enter final value: ");
 scanf("%lf", &final);

 printf("Enter increment: ");
 scanf("%lf", &increment);

 printf("\n x cos(x)"
 "\n ------- -------\n");
 tabulate(cos, initial, final, increment);

 printf("\n x sin(x)"
 "\n ------- -------\n");
 tabulate(sin, initial, final, increment);

 printf("\n x tan(x)"
 "\n ------- -------\n");
 tabulate(tan, initial, final, increment);

 return 0;
}

void tabulate(double (*f)(double), double first,
 double last, double incr)
{
 double x;
 int i, num_intervals;

 num_intervals = ceil((last - first) / incr);
 for (i = 0; i <= num_intervals; i++) {
 x = first + i * incr;
 printf("%10.5f %10.5f\n", x, (*f)(x));
 }
}

tabulate uses the ceil function, which also in <math.h>. When given an
argument x of double type, ceil returns the smallest integer that’s greater than
or equal to x.

Here’s what a session with tabulate.c might look like:

c17.fm Page 444 Sunday, February 17, 2008 9:24 PM

17.8 Restricted Pointers (C99) 445

Enter initial value: 0
Enter final value: .5
Enter increment: .1

 x cos(x)
 ------- -------
 0.00000 1.00000
 0.10000 0.99500
 0.20000 0.98007
 0.30000 0.95534
 0.40000 0.92106
 0.50000 0.87758

 x sin(x)
 ------- -------
 0.00000 0.00000
 0.10000 0.09983
 0.20000 0.19867
 0.30000 0.29552
 0.40000 0.38942
 0.50000 0.47943

 x tan(x)
 ------- -------
 0.00000 0.00000
 0.10000 0.10033
 0.20000 0.20271
 0.30000 0.30934
 0.40000 0.42279
 0.50000 0.54630

17.8 Restricted Pointers (C99)

This section and the next discuss two of C99’s pointer-related features. Both are
primarily of interest to advanced C programmers; most readers will want to skip
these sections.

In C99, the keyword restrict may appear in the declaration of a pointer:

int * restrict p;

A pointer that’s been declared using restrict is called a restricted pointer. The
intent is that if p points to an object that is later modified, then that object is not
accessed in any way other than through p. (Alternative ways to access the object
include having another pointer to the same object or having p point to a named
variable.) Having more than one way to access an object is often called aliasing.

Let’s look at an example of the kind of behavior that restricted pointers are
supposed to discourage. Suppose that p and q have been declared as follows:

int * restrict p;
int * restrict q;

c17.fm Page 445 Sunday, February 17, 2008 9:24 PM

446 Chapter 17 Advanced Uses of Pointers

Now suppose that p is made to point to a dynamically allocated block of memory:

p = malloc(sizeof(int));

(A similar situation would arise if p were assigned the address of a variable or an
array element.) Normally it would be legal to copy p into q and then modify the
integer through q:

q = p;
q = 0; / causes undefined behavior */

Because p is a restricted pointer, however, the effect of executing the statement
*q = 0; is undefined. By making p and q point to the same object, we caused *p
and *q to be aliases.

If a restricted pointer p is declared as a local variable without the extern
storage class, restrict applies only to p when the block in which p is declared
is being executed. (Note that the body of a function is a block.) restrict can be
used with function parameters of pointer type, in which case it applies only when
the function is executing. When restrict is applied to a pointer variable with
file scope, however, the restriction lasts for the entire execution of the program.

The exact rules for using restrict are rather complex; see the C99 stan-
dard for details. There are even situations in which an alias created from a
restricted pointer is legal. For example, a restricted pointer p can be legally copied
into another restricted pointer variable q, provided that p is local to a function and
q is defined inside a block nested within the function’s body.

To illustrate the use of restrict, let’s look at the memcpy and memmove
functions, which belong to the <string.h> header. memcpy has the following
prototype in C99:

void *memcpy(void * restrict s1, const void * restrict s2,
 size_t n);

memcpy is similar to strcpy, except that it copies bytes from one object to
another (strcpy copies characters from one string into another). s2 points to the
data to be copied, s1 points to the destination of the copy, and n is the number of
bytes to be copied. The use of restrict with both s1 and s2 indicates that the
source of the copy and the destination shouldn’t overlap. (It doesn’t guarantee that
they don’t overlap, however.)

In contrast, restrict doesn’t appear in the prototype for memmove:

void *memmove(void *s1, const void *s2, size_t n);

memmove does the same thing as memcpy: it copies bytes from one place to
another. The difference is that memmove is guaranteed to work even if the source
and destination overlap. For example, we could use memmove to shift the elements
of an array by one position:

int a[100];
…

extern storage class ➤18.2

blocks ➤10.3

file scope ➤10.2

<string.h> header ➤23.6

c17.fm Page 446 Sunday, February 17, 2008 9:24 PM

17.9 Flexible Array Members (C99) 447

memmove(&a[0], &a[1], 99 * sizeof(int));

Prior to C99, there was no way to document the difference between memcpy and
memmove. The prototypes for the two functions were nearly identical:

void *memcpy(void *s1, const void *s2, size_t n);
void *memmove(void *s1, const void *s2, size_t n);

The use of restrict in the C99 version of memcpy’s prototype lets the pro-
grammer know that s1 and s2 should point to objects that don’t overlap, or else
the function isn’t guaranteed to work.

Although using restrict in function prototypes is useful documentation,
that’s not the primary reason for its existence. restrict provides information to
the compiler that may enable it to produce more efficient code—a process known
as optimization. (The register storage class serves the same purpose.) Not
every compiler attempts to optimize programs, however, and the ones that do nor-
mally allow the programmer to disable optimization. As a result, the C99 standard
guarantees that restrict has no effect on the behavior of a program that con-
forms to the standard: if all uses of restrict are removed from such a program,
it should behave the same.

Most programmers won’t use restrict unless they’re fine-tuning a pro-
gram to achieve the best possible performance. Still, it’s worth knowing about
restrict because it appears in the C99 prototypes for a number of standard
library functions.

17.9 Flexible Array Members (C99)

Every once in a while, we’ll need to define a structure that contains an array of an
unknown size. For example, we might want to store strings in a form that’s differ-
ent from the usual one. Normally, a string is an array of characters, with a null
character marking the end. However, there are advantages to storing strings in
other ways. One alternative is to store the length of the string along with the
string’s characters (but with no null character). The length and the characters could
be stored in a structure such as this one:

struct vstring {
 int len;
 char chars[N];
};

Here N is a macro that represents the maximum length of a string. Using a fixed-
length array such as this is undesirable, however, because it forces us to limit the
length of the string, plus it wastes memory (since most strings won’t need all N
characters in the array).

C programmers have traditionally solved this problem by declaring the length
of chars to be 1 (a dummy value) and then dynamically allocating each string:

register storage class ➤18.2

c17.fm Page 447 Sunday, February 17, 2008 9:24 PM

448 Chapter 17 Advanced Uses of Pointers

struct vstring {
 int len;
 char chars[1];
};
…
struct vstring *str = malloc(sizeof(struct vstring) + n - 1);
str->len = n;

We’re “cheating” by allocating more memory than the structure is declared to have
(in this case, an extra n – 1 characters), and then using the memory to store addi-
tional elements of the chars array. This technique has become so common over
the years that it has a name: the “struct hack.”

The struct hack isn’t limited to character arrays; it has a variety of uses. Over
time, it has become popular enough to be supported by many compilers. Some
(including GCC) even allow the chars array to have zero length, which makes
this trick a little more explicit. Unfortunately, the C89 standard doesn’t guarantee
that the struct hack will work, nor does it allow zero-length arrays.

In recognition of the struct hack’s usefulness, C99 has a feature known as the
flexible array member that serves the same purpose. When the last member of a
structure is an array, its length may be omitted:

struct vstring {
 int len;
 char chars[]; /* flexible array member - C99 only */
};

The length of the chars array isn’t determined until memory is allocated for a
vstring structure, normally using a call of malloc:

struct vstring *str = malloc(sizeof(struct vstring) + n);
str->len = n;

In this example, str points to a vstring structure in which the chars array
occupies n characters. The sizeof operator ignores the chars member when
computing the size of the structure. (A flexible array member is unusual in that it
takes up no space within a structure.)

A few special rules apply to a structure that contains a flexible array member.
The flexible array member must appear last in the structure, and the structure must
have at least one other member. Copying a structure that contains a flexible array
member will copy the other members but not the flexible array itself.

A structure that contains a flexible array member is an incomplete type. An
incomplete type is missing part of the information needed to determine how much
memory it requires. Incomplete types, which are discussed further in one of the
Q&A questions at the end of this chapter and in Section 19.3, are subject to various
restrictions. In particular, an incomplete type (and hence a structure that contains a
flexible array member) can’t be a member of another structure or an element of an
array. However, an array may contain pointers to structures that have a flexible
array member; Programming Project 7 at the end of this chapter is built around
such an array.

c17.fm Page 448 Sunday, February 17, 2008 9:24 PM

Q & A 449

Q & A

Q: What does the NULL macro represent? [p. 415]
A: NULL actually stands for 0. When we use 0 in a context where a pointer would be

required, C compilers treat it as a null pointer instead of the integer 0. The NULL
macro is provided merely to help avoid confusion. The assignment

p = 0;

could be assigning the value 0 to a numeric variable or assigning a null pointer to a
pointer variable; we can’t easily tell which. In contrast, the assignment

p = NULL;

makes it clear that p is a pointer.

*Q: In the header files that come with my compiler, NULL is defined as follows:

#define NULL (void *) 0

What’s the advantage of casting 0 to void *?
A: This trick, which is allowed by the C standard, enables compilers to spot incorrect

uses of the null pointer. For example, suppose that we try to assign NULL to an
integer variable:

i = NULL;

If NULL is defined as 0, this assignment is perfectly legal. But if NULL is defined
as (void *) 0, the compiler can warn us that we’re assigning a pointer to an inte-
ger variable.

Defining NULL as (void *) 0 has a second, more important, advantage.
Suppose that we call a function with a variable-length argument list and pass NULL
as one of the arguments. If NULL is defined as 0, the compiler will incorrectly pass
a zero integer value. (In an ordinary function call, NULL works fine because the
compiler knows from the function’s prototype that it expects a pointer. When a
function has a variable-length argument list, however, the compiler lacks this
knowledge.) If NULL is defined as (void *) 0, the compiler will pass a null
pointer.

To make matters even more confusing, some header files define NULL to be
0L (the long version of 0). This definition, like the definition of NULL as 0, is a
holdover from C’s earlier years, when pointers and integers were compatible. For
most purposes, though, it really doesn’t matter how NULL is defined; just think of
it as a name for the null pointer.

Q: Since 0 is used to represent the null pointer, I guess a null pointer is just an
address with all zero bits, right?

variable-length argument lists
➤26.1

c17.fm Page 449 Sunday, February 17, 2008 9:24 PM

450 Chapter 17 Advanced Uses of Pointers

A: Not necessarily. Each C compiler is allowed to represent null pointers in a different
way, and not all compilers use a zero address. For example, some compilers use a
nonexistent memory address for the null pointer; that way, attempting to access
memory through a null pointer can be detected by the hardware.

How the null pointer is stored inside the computer shouldn’t concern us; that’s
a detail for compiler experts to worry about. The important thing is that, when used
in a pointer context, 0 is converted to the proper internal form by the compiler.

Q: Is it acceptable to use NULL as a null character?
A: Definitely not. NULL is a macro that represents the null pointer, not the null char-

acter. Using NULL as a null character will work with some compilers, but not with
all (since some define NULL as (void *) 0). In any event, using NULL as any-
thing other than a pointer can lead to a great deal of confusion. If you want a name
for the null character, define the following macro:

#define NUL '\0'

*Q: When my program terminates, I get the message “Null pointer assignment.”
What does this mean?

A: This message, which is produced by programs compiled with some older DOS-
based C compilers, indicates that the program has stored data in memory using a
bad pointer (but not necessarily a null pointer). Unfortunately, the message isn’t
displayed until the program terminates, so there’s no clue as to which statement
caused the error. The “Null pointer assignment” message can be caused by a miss-
ing & in scanf:

scanf("%d", i); /* should have been scanf("%d", &i); */

Another possibility is an assignment involving a pointer that’s uninitialized or null:

p = i; / p is uninitialized or null */

*Q: How does a program know that a “null pointer assignment” has occurred?
A: The message depends on the fact that, in the small and medium memory models,

data is stored in a single segment, with addresses beginning at 0. The compiler
leaves a “hole” at the beginning of the data segment—a small block of memory
that’s initialized to 0 but otherwise isn’t used by the program. When the program
terminates, it checks to see if any data in the “hole” area is nonzero. If so, it must
have been altered through a bad pointer.

Q: Is there any advantage to casting the return value of malloc or the other
memory allocation functions? [p. 416]

A: Not usually. Casting the void * pointer that these functions return is unnecessary,
since pointers of type void * are automatically converted to any pointer type
upon assignment. The habit of casting the return value is a holdover from older
versions of C, in which the memory allocation functions returned a char * value,
making the cast necessary. Programs that are designed to be compiled as C++ code

c17.fm Page 450 Sunday, February 17, 2008 9:24 PM

Q & A 451

may benefit from the cast, but that’s about the only reason to do it.
In C89, there’s actually a small advantage to not performing the cast. Suppose

that we’ve forgotten to include the <stdlib.h> header in our program. When
we call malloc, the compiler will assume that its return type is int (the default
return value for any C function). If we don’t cast the return value of malloc, a
C89 compiler will produce an error (or at least a warning), since we’re trying to
assign an integer value to a pointer variable. On the other hand, if we cast the
return value to a pointer, the program may compile, but likely won’t run properly.
With C99, this advantage disappears. Forgetting to include the <stdlib.h>
header will cause an error when malloc is called, because C99 requires that a
function be declared before it’s called.

Q: The calloc function initializes a memory block by setting its bits to zero.
Does this mean that all data items in the block become zero? [p. 421]

A: Usually, but not always. Setting an integer to zero bits always makes the integer
zero. Setting a floating-point number to zero bits usually makes the number zero,
but this isn’t guaranteed—it depends on how floating-point numbers are stored.
The story is the same for pointers; a pointer whose bits are zero isn’t necessary a
null pointer.

*Q: I see how the structure tag mechanism allows a structure to contain a pointer
to itself. But what if two structures each have a member that points to the
other? [p. 425]

A: Here’s how we’d handle that situation:

struct s1; /* incomplete declaration of s1 */

struct s2 {
 …
 struct s1 *p;
 …
};

struct s1 {
 …
 struct s2 *q;
 …
};

The first declaration of s1 creates an incomplete structure type, since we haven’t
specified the members of s1. The second declaration of s1 “completes” the type
by describing the members of the structure. Incomplete declarations of a structure
type are permitted in C, although their uses are limited. Creating a pointer to such a
type (as we did when declaring p) is one of these uses.

Q: Calling malloc with the wrong argument—causing it to allocate too much
memory or too little memory—seems to be a common error. Is there a safer
way to use malloc? [p. 426]

incomplete types ➤19.3

c17.fm Page 451 Sunday, February 17, 2008 9:24 PM

452 Chapter 17 Advanced Uses of Pointers

A: Yes, there is. Some programmers use the following idiom when calling malloc to
allocate memory for a single object:

p = malloc(sizeof(*p));

Since sizeof(*p) is the size of the object to which p will point, this statement
guarantees that the correct amount of memory will be allocated. At first glance,
this idiom looks fishy: it’s likely that p is uninitialized, making the value of *p
undefined. However, sizeof doesn’t evaluate *p, it merely computes its size, so
the idiom works even if p is uninitialized or contains a null pointer.

To allocate memory for an array with n elements, we can use a slightly modi-
fied version of the idiom:

p = malloc(n * sizeof(*p));

Q: Why isn’t the qsort function simply named sort? [p. 440]
A: The name qsort comes from the Quicksort algorithm published by C. A. R.

Hoare in 1962 (and discussed in Section 9.6). Ironically, the C standard doesn’t
require that qsort use the Quicksort algorithm, although many versions of
qsort do.

Q: Isn’t it necessary to cast qsort’s first argument to type void *, as in the fol-
lowing example? [p. 441]

qsort((void *) inventory, num_parts, sizeof(struct part),
 compare_parts);

A: No. A pointer of any type can be converted to void * automatically.

*Q: I want to use qsort to sort an array of integers, but I’m having trouble writ-
ing a comparison function. What’s the secret?

A: Here’s a version that works:

int compare_ints(const void *p, const void *q)
{
 return *(int *)p - *(int *)q;
}

Bizarre, eh? The expression (int *)p casts p to type int *, so *(int *)p
would be the integer that p points to. A word of warning, though: Subtracting two
integers may cause overflow. If the integers being sorted are completely arbitrary,
it’s safer to use if statements to compare *(int *)p with *(int *)q.

*Q: I needed to sort an array of strings, so I figured I’d just use strcmp as the
comparison function. When I passed it to qsort, however, the compiler gave
me a warning. I tried to fix the problem by embedding strcmp in a compari-
son function:

c17.fm Page 452 Sunday, February 17, 2008 9:24 PM

Exercises 453

int compare_strings(const void *p, const void *q)
{
 return strcmp(p, q);
}

Now my program compiles, but qsort doesn’t seem to sort the array. What
am I doing wrong?

A: First, you can’t pass strcmp itself to qsort, since qsort requires a comparison
function with two const void * parameters. Your compare_strings func-
tion doesn’t work because it incorrectly assumes that p and q are strings (char *
pointers). In fact, p and q point to array elements containing char * pointers. To
fix compare_strings, we’ll cast p and q to type char **, then use the *
operator to remove one level of indirection:

int compare_strings(const void *p, const void *q)
{
 return strcmp(*(char **)p, *(char **)q);
}

Exercises

Section 17.1 1. Having to check the return value of malloc (or any other memory allocation function)
each time we call it can be an annoyance. Write a function named my_malloc that serves
as a “wrapper” for malloc. When we call my_malloc and ask it to allocate n bytes, it in
turn calls malloc, tests to make sure that malloc doesn’t return a null pointer, and then
returns the pointer from malloc. Have my_malloc print an error message and terminate
the program if malloc returns a null pointer.

Section 17.2 2. Write a function named duplicate that uses dynamic storage allocation to create a copy
of a string. For example, the call

p = duplicate(str);

would allocate space for a string of the same length as str, copy the contents of str into
the new string, and return a pointer to it. Have duplicate return a null pointer if the
memory allocation fails.

Section 17.3 3. Write the following function:

int *create_array(int n, int initial_value);

The function should return a pointer to a dynamically allocated int array with n members,
each of which is initialized to initial_value. The return value should be NULL if the
array can’t be allocated.

Section 17.5 4. Suppose that the following declarations are in effect:

struct point { int x, y; };
struct rectangle { struct point upper_left, lower_right; };
struct rectangle *p;

W

c17.fm Page 453 Sunday, February 17, 2008 9:24 PM

454 Chapter 17 Advanced Uses of Pointers

Assume that we want p to point to a rectangle structure whose upper left corner is at
(10, 25) and whose lower right corner is at (20, 15). Write a series of statements that allocate
such a structure and initialize it as indicated.

5. Suppose that f and p are declared as follows:

struct {
 union {
 char a, b;
 int c;
 } d;
 int e[5];
} f, *p = &f;

Which of the following statements are legal?

6. Modify the delete_from_list function so that it uses only one pointer variable instead
of two (cur and prev).

7. The following loop is supposed to delete all nodes from a linked list and release the memory
that they occupy. Unfortunately, the loop is incorrect. Explain what’s wrong with it and
show how to fix the bug.

for (p = first; p != NULL; p = p->next)
 free(p);

8. Section 15.2 describes a file, stack.c, that provides functions for storing integers in a
stack. In that section, the stack was implemented as an array. Modify stack.c so that a
stack is now stored as a linked list. Replace the contents and top variables by a single
variable that points to the first node in the list (the “top” of the stack). Write the functions in
stack.c so that they use this pointer. Remove the is_full function, instead having
push return either true (if memory was available to create a node) or false (if not).

9. True or false: If x is a structure and a is a member of that structure, then (&x)->a is the
same as x.a. Justify your answer.

10. Modify the print_part function of Section 16.2 so that its parameter is a pointer to a
part structure. Use the -> operator in your answer.

11. Write the following function:

int count_occurrences(struct node *list, int n);

The list parameter points to a linked list; the function should return the number of times
that n appears in this list. Assume that the node structure is the one defined in Section 17.5.

12. Write the following function:

struct node *find_last(struct node *list, int n);

The list parameter points to a linked list. The function should return a pointer to the last
node that contains n; it should return NULL if n doesn’t appear in the list. Assume that the
node structure is the one defined in Section 17.5.

13. The following function is supposed to insert a new node into its proper place in an ordered
list, returning a pointer to the first node in the modified list. Unfortunately, the function

W

(a) p->b = ' ';
(b) p->e[3] = 10;
(c) (*p).d.a = '*';
(d) p->d->c = 20;

W

W

c17.fm Page 454 Sunday, February 17, 2008 9:24 PM

Exercises 455

doesn’t work correctly in all cases. Explain what’s wrong with it and show how to fix it.
Assume that the node structure is the one defined in Section 17.5.

struct node *insert_into_ordered_list(struct node *list,
 struct node *new_node)
{
 struct node *cur = list, *prev = NULL;
 while (cur->value <= new_node->value) {
 prev = cur;
 cur = cur->next;
 }
 prev->next = new_node;
 new_node->next = cur;
 return list;
}

Section 17.6 14. Modify the delete_from_list function (Section 17.5) so that its first parameter has
type struct node ** (a pointer to a pointer to the first node in a list) and its return type is
void. delete_from_list must modify its first argument to point to the list after the
desired node has been deleted.

Section 17.7 15. Show the output of the following program and explain what it does.

#include <stdio.h>

int f1(int (*f)(int));
int f2(int i);

int main(void)
{
 printf("Answer: %d\n", f1(f2));
 return 0;
}

int f1(int (*f)(int))
{
 int n = 0;

 while ((*f)(n)) n++;
 return n;
}

int f2(int i)
{
 return i * i + i - 12;
}

16. Write the following function. The call sum(g, i, j) should return g(i) + … + g(j).

int sum(int (*f)(int), int start, int end);

17. Let a be an array of 100 integers. Write a call of qsort that sorts only the last 50 elements
in a. (You don’t need to write the comparison function).

18. Modify the compare_parts function so that parts are sorted with their numbers in
descending order.

19. Write a function that, when given a string as its argument, searches the following array of
structures for a matching command name, then calls the function associated with that name.

W

W

c17.fm Page 455 Sunday, February 17, 2008 9:24 PM

456 Chapter 17 Advanced Uses of Pointers

struct {
 char *cmd_name;
 void (*cmd_pointer)(void);
} file_cmd[] =
 {{"new", new_cmd},
 {"open", open_cmd},
 {"close", close_cmd},
 {"close all", close_all_cmd},
 {"save", save_cmd},
 {"save as", save_as_cmd},
 {"save all", save_all_cmd},
 {"print", print_cmd},
 {"exit", exit_cmd}
 };

Programming Projects
1. Modify the inventory.c program of Section 16.3 so that the inventory array is allo-

cated dynamically and later reallocated when it fills up. Use malloc initially to allocate
enough space for an array of 10 part structures. When the array has no more room for new
parts, use realloc to double its size. Repeat the doubling step each time the array
becomes full.

2. Modify the inventory.c program of Section 16.3 so that the p (print) command calls
qsort to sort the inventory array before it prints the parts.

3. Modify the inventory2.c program of Section 17.5 by adding an e (erase) command
that allows the user to remove a part from the database.

4. Modify the justify program of Section 15.3 by rewriting the line.c file so that it
stores the current line in a linked list. Each node in the list will store a single word. The
line array will be replaced by a variable that points to the node containing the first word.
This variable will store a null pointer whenever the line is empty.

5. Write a program that sorts a series of words entered by the user:

Enter word: foo
Enter word: bar
Enter word: baz
Enter word: quux
Enter word:

In sorted order: bar baz foo quux

Assume that each word is no more than 20 characters long. Stop reading when the user
enters an empty word (i.e., presses Enter without entering a word). Store each word in a
dynamically allocated string, using an array of pointers to keep track of the strings, as in the
remind2.c program (Section 17.2). After all words have been read, sort the array (using
any sorting technique) and then use a loop to print the words in sorted order. Hint: Use the
read_line function to read each word, as in remind2.c.

6. Modify Programming Project 5 so that it uses qsort to sort the array of pointers.

7. (C99) Modify the remind2.c program of Section 17.2 so that each element of the
reminders array is a pointer to a vstring structure (see Section 17.9) rather than a
pointer to an ordinary string.

W

W

c17.fm Page 456 Sunday, February 17, 2008 9:24 PM

457

18 Declarations

Making something variable is easy.
Controlling duration of constancy is the trick.

Declarations play a central role in C programming. By declaring variables and
functions, we furnish vital information that the compiler will need in order to
check a program for potential errors and translate it into object code.

Previous chapters have provided examples of declarations without going into
full details; this chapter fills in the gaps. It explores the sophisticated options that
can be used in declarations and reveals that variable declarations and function dec-
larations have quite a bit in common. It also provides a firm grounding in the
important concepts of storage duration, scope, and linkage.

Section 18.1 examines the syntax of declarations in their most general form,
a topic that we’ve avoided up to this point. The next four sections focus on the
items that appear in declarations: storage classes (Section 18.2), type qualifiers
(Section 18.3), declarators (Section 18.4), and initializers (Section 18.5). Section
18.6 discusses the inline keyword, which can appear in C99 function declara-
tions.

18.1 Declaration Syntax

Declarations furnish information to the compiler about the meaning of identifiers.
When we write

int i;

we’re informing the compiler that, in the current scope, the name i represents a
variable of type int. The declaration

float f(float);

C18.FM Page 457 Friday, February 15, 2008 2:47 PM

458 Chapter 18 Declarations

tells the compiler that f is a function that returns a float value and has one argu-
ment, also of type float.

In general, a declaration has the following appearance:

Declaration specifiers describe the properties of the variables or functions being
declared. Declarators give their names and may provide additional information
about their properties.

Declaration specifiers fall into three categories:

� Storage classes. There are four storage classes: auto, static, extern,
and register. At most one storage class may appear in a declaration; if
present, it should come first.

� Type qualifiers. In C89, there are only two type qualifiers: const and vol-
atile. C99 has a third type qualifier, restrict. A declaration may con-
tain zero or more type qualifiers.

� Type specifiers. The keywords void, char, short, int, long, float,
double, signed, and unsigned are all type specifiers. These words may
be combined as described in Chapter 7; the order in which they appear doesn’t
matter (int unsigned long is the same as long unsigned int). Type
specifiers also include specifications of structures, unions, and enumerations
(for example, struct point { int x, y; }, struct { int x, y; }, or
struct point). Type names created using typedef are type specifiers as
well.

(C99 has a fourth kind of declaration specifier, the function specifier, which is
used only in function declarations. This category has just one member, the key-
word inline.) Type qualifiers and type specifiers should follow the storage class,
but there are no other restrictions on their order. As a matter of style, I’ll put type
qualifiers before type specifiers.

Declarators include identifiers (names of simple variables), identifiers fol-
lowed by [] (array names), identifiers preceded by * (pointer names), and identifi-
ers followed by () (function names). Declarators are separated by commas. A
declarator that represents a variable may be followed by an initializer.

Let’s look at a few examples that illustrate these rules. Here’s a declaration
with a storage class and three declarators:

The following declaration has a type qualifier but no storage class. It also has an
initializer:

declaration declaration-specifiers declarators ;

C99

C99

static float x, y, *p;

type specifier

storage class declarators

C18.FM Page 458 Friday, February 15, 2008 2:47 PM

18.2 Storage Classes 459

The following declaration has both a storage class and a type qualifier. It also has
three type specifiers; their order isn’t important:

Function declarations, like variable declarations, may have a storage class, type
qualifiers, and type specifiers. The following declaration has a storage class and a
type specifier:

The next four sections cover storage classes, type qualifiers, declarators, and
initializers in detail.

18.2 Storage Classes

Storage classes can be specified for variables and—to a lesser extent—functions
and parameters. We’ll concentrate on variables for now.

Recall from Section 10.3 that the term block refers to the body of a function
(the part enclosed in braces) or a compound statement, possibly containing decla-
rations. In C99, selection statements (if and switch) and iteration statements
(while, do, and for)—along with the “inner” statements that they control—are
considered to be blocks as well, although this is primarily a technicality.

Properties of Variables

Every variable in a C program has three properties:

� Storage duration. The storage duration of a variable determines when mem-
ory is set aside for the variable and when that memory is released. Storage for
a variable with automatic storage duration is allocated when the surrounding

const char month[] = "January";

type specifier initializer

type qualifier declarator

extern const unsigned long int a[10];

type qualifier declarator

storage class type specifiers

extern int square(int);

type specifier

storage class declarator

C99

Q&A

C18.FM Page 459 Friday, February 15, 2008 2:47 PM

460 Chapter 18 Declarations

block is executed; storage is deallocated when the block terminates, causing
the variable to lose its value. A variable with static storage duration stays at
the same storage location as long as the program is running, allowing it to
retain its value indefinitely.

� Scope. The scope of a variable is the portion of the program text in which the
variable can be referenced. A variable can have either block scope (the vari-
able is visible from its point of declaration to the end of the enclosing block)
or file scope (the variable is visible from its point of declaration to the end of
the enclosing file).

� Linkage. The linkage of a variable determines the extent to which it can be
shared by different parts of a program. A variable with external linkage may
be shared by several (perhaps all) files in a program. A variable with internal
linkage is restricted to a single file, but may be shared by the functions in that
file. (If a variable with the same name appears in another file, it’s treated as a
different variable.) A variable with no linkage belongs to a single function and
can’t be shared at all.

The default storage duration, scope, and linkage of a variable depend on where
it’s declared:

� Variables declared inside a block (including a function body) have automatic
storage duration, block scope, and no linkage.

� Variables declared outside any block, at the outermost level of a program, have
static storage duration, file scope, and external linkage.

The following example shows the default properties of the variables i and j:

For many variables, the default storage duration, scope, and linkage are satis-
factory. When they aren’t, we can alter these properties by specifying an explicit
storage class: auto, static, extern, or register.

The auto Storage Class

The auto storage class is legal only for variables that belong to a block. An auto
variable has automatic storage duration (not surprisingly), block scope, and no
linkage. The auto storage class is almost never specified explicitly, since it’s the
default for variables declared inside a block.

Q&A

Q&A

int i;

void f(void)
{

int j;

}

automatic storage duration
block scope
no linkage

static storage duration
file scope
external linkage

C18.FM Page 460 Friday, February 15, 2008 2:47 PM

18.2 Storage Classes 461

The static Storage Class

The static storage class can be used with all variables, regardless of where
they’re declared, but it has a different effect on a variable declared outside a block
than it does on a variable declared inside a block. When used outside a block, the
word static specifies that a variable has internal linkage. When used inside a
block, static changes the variable’s storage duration from automatic to static.
The following figure shows the effect of declaring i and j to be static:

When used in a declaration outside a block, static essentially hides a vari-
able within the file in which it’s declared; only functions that appear in the same
file can see the variable. In the following example, the functions f1 and f2 both
have access to i, but functions in other files don’t:

static int i;

void f1(void)
{
 /* has access to i */
}

void f2(void)
{
 /* has access to i */
}

This use of static can help implement a technique known as information hid-
ing.

A static variable declared within a block resides at the same storage loca-
tion throughout program execution. Unlike automatic variables, which lose their
values each time the program leaves the enclosing block, a static variable will
retain its value indefinitely. static variables have some interesting properties:

� A static variable in a block is initialized only once, prior to program execu-
tion. An auto variable is initialized every time it comes into existence (pro-
vided, of course, that it has an initializer).

� Each time a function is called recursively, it gets a new set of auto variables.
If it has a static variable, on the other hand, that variable is shared by all
calls of the function.

static int i;

void f(void)
{

static int j;

}

static storage duration
file scope
internal linkage

static storage duration
block scope
no linkage

information hiding ➤19.2

C18.FM Page 461 Friday, February 15, 2008 2:47 PM

462 Chapter 18 Declarations

� Although a function shouldn’t return a pointer to an auto variable, there’s
nothing wrong with it returning a pointer to a static variable.

Declaring one of its variables to be static allows a function to retain infor-
mation between calls in a “hidden” area that the rest of the program can’t access.
More often, however, we’ll use static to make programs more efficient. Con-
sider the following function:

char digit_to_hex_char(int digit)
{
 const char hex_chars[16] = "0123456789ABCDEF";

 return hex_chars[digit];
}

Each time the digit_to_hex_char function is called, the characters
0123456789ABCDEF will be copied into the hex_chars array to initialize it.
Now, let’s make the array static:

char digit_to_hex_char(int digit)
{
 static const char hex_chars[16] = "0123456789ABCDEF";

 return hex_chars[digit];
}

Since static variables are initialized only once, we’ve improved the speed of
digit_to_hex_char.

The extern Storage Class

The extern storage class enables several source files to share the same variable.
Section 15.2 covered the essentials of using extern, so I won’t devote much
space to it here. Recall that the declaration

extern int i;

informs the compiler that i is an int variable, but doesn’t cause it to allocate
memory for i. In C terminology, this declaration is not a definition of i; it merely
informs the compiler that we need access to a variable that’s defined elsewhere
(perhaps later in the same file, or—more often—in another file). A variable can
have many declarations in a program but should have only one definition.

There’s one exception to the rule that an extern declaration of a variable
isn’t a definition. An extern declaration that initializes a variable serves as a def-
inition of the variable. For example, the declaration

extern int i = 0;

is effectively the same as

int i = 0;

C18.FM Page 462 Friday, February 15, 2008 2:47 PM

18.2 Storage Classes 463

This rule prevents multiple extern declarations from initializing a variable in
different ways.

A variable in an extern declaration always has static storage duration. The
scope of the variable depends on the declaration’s placement. If the declaration is
inside a block, the variable has block scope; otherwise, it has file scope:

Determining the linkage of an extern variable is a bit harder. If the variable was
declared static earlier in the file (outside of any function definition), then it has
internal linkage. Otherwise (the normal case), the variable has external linkage.

The register Storage Class

Using the register storage class in the declaration of a variable asks the com-
piler to store the variable in a register instead of keeping it in main memory like
other variables. (A register is a storage area located in a computer’s CPU. Data
stored in a register can be accessed and updated faster than data stored in ordinary
memory.) Specifying the storage class of a variable to be register is a request,
not a command. The compiler is free to store a register variable in memory if
it chooses.

The register storage class is legal only for variables declared in a block. A
register variable has the same storage duration, scope, and linkage as an auto
variable. However, a register variable lacks one property that an auto vari-
able has: since registers don’t have addresses, it’s illegal to use the & operator to
take the address of a register variable. This restriction applies even if the com-
piler has elected to store the variable in memory.

register is best used for variables that are accessed and/or updated fre-
quently. For example, the loop control variable in a for statement is a good candi-
date for register treatment:

int sum_array(int a[], int n)
{
 register int i;
 int sum = 0;

 for (i = 0; i < n; i++)
 sum += a[i];
 return sum;
}

Q&A

extern int i;

void f(void)
{

extern int j;

}

static storage duration
file scope
? linkage

static storage duration
block scope
? linkage

C18.FM Page 463 Friday, February 15, 2008 2:47 PM

464 Chapter 18 Declarations

register isn’t nearly as popular among C programmers as it once was.
Today’s compilers are much more sophisticated than early C compilers; many can
determine automatically which variables would benefit the most from being kept in
registers. Still, using register provides useful information that can help the
compiler optimize the performance of a program. In particular, the compiler knows
that a register variable can’t have its address taken, and therefore can’t be
modified through a pointer. In this respect, the register keyword is related to
C99’s restrict keyword.

The Storage Class of a Function

Function declarations (and definitions), like variable declarations, may include a
storage class, but the only options are extern and static. The word extern
at the beginning of a function declaration specifies that the function has external
linkage, allowing it to be called from other files. static indicates internal link-
age, limiting use of the function’s name to the file in which it’s defined. If no stor-
age class is specified, the function is assumed to have external linkage.

Consider the following function declarations:

extern int f(int i);
static int g(int i);
int h(int i);

f has external linkage, g has internal linkage, and h (by default) has external link-
age. Because it has internal linkage, g can’t be called directly from outside the file
in which it’s defined. (Declaring g to be static doesn’t completely prevent it
from being called in another file; an indirect call via a function pointer is still pos-
sible.)

Declaring functions to be extern is like declaring variables to be auto—it
serves no purpose. For that reason, I don’t use extern in function declarations.
Be aware, however, that some programmers use extern extensively, which cer-
tainly does no harm.

Declaring functions to be static, on the other hand, is quite useful. In fact, I
recommend using static when declaring any function that isn’t intended to be
called from other files. The benefits of doing so include:

� Easier maintenance. Declaring a function f to be static guarantees that f
isn’t visible outside the file in which its definition appears. As a result, some-
one modifying the program later knows that changes to f won’t affect func-
tions in other files. (One exception: a function in another file that’s passed a
pointer to f might be affected by changes to f. Fortunately, that situation is
easy to spot by examining the file in which f is defined, since the function that
passes f must also be defined there.)

� Reduced “name space pollution.” Since functions declared static have
internal linkage, their names can be reused in other files. Although we proba-

C18.FM Page 464 Friday, February 15, 2008 2:47 PM

18.2 Storage Classes 465

bly wouldn’t deliberately reuse a function name for some other purpose, it can
be hard to avoid in large programs. An excessive number of names with exter-
nal linkage can result in what C programmers call “name space pollution”:
names in different files accidentally conflicting with each other. Using
static helps prevent this problem.

Function parameters have the same properties as auto variables: automatic
storage duration, block scope, and no linkage. The only storage class that can be
specified for parameters is register.

Summary

Now that we’ve covered the various storage classes, let’s summarize what we
know. The following program fragment shows all possible ways to include—or
omit—storage classes in declarations of variables and parameters.

int a;
extern int b;
static int c;

void f(int d, register int e)
{
 auto int g;
 int h;
 static int i;
 extern int j;
 register int k;
}

Table 18.1 shows the properties of each variable and parameter in this example.

Of the four storage classes, the most important are static and extern.
auto has no effect, and modern compilers have made register less impor-
tant.

Name Storage Duration Scope Linkage

a
b
c
d
e
g
h
i
j
k

static
static
static

automatic
automatic
automatic
automatic

static
static

automatic

file
file
file

block
block
block
block
block
block
block

external
†

internal
none
none
none
none
none

†
none

†The definitions of b and j aren’t shown, so it’s not
possible to determine the linkage of these variables. In
most cases, the variables will be defined in another file
and will have external linkage.

Table 18.1
Properties of Variables

and Parameters

C18.FM Page 465 Friday, February 15, 2008 2:47 PM

466 Chapter 18 Declarations

18.3 Type Qualifiers

There are two type qualifiers: const and volatile. (C99 has a third type qual-
ifier, restrict, which is used only with pointers.) Since the use of volatile
is limited to low-level programming, I’ll postpone discussing it until Section 20.3.
const is used to declare objects that resemble variables but are “read-only”: a
program may access the value of a const object, but can’t change it. For exam-
ple, the declaration

const int n = 10;

creates a const object named n whose value is 10. The declaration

const int tax_brackets[] = {750, 2250, 3750, 5250, 7000};

creates a const array named tax_brackets.
Declaring an object to be const has several advantages:

� It’s a form of documentation: it alerts anyone reading the program to the read-
only nature of the object.

� The compiler can check that the program doesn’t inadvertently attempt to
change the value of the object.

� When programs are written for certain types of applications (embedded sys-
tems, in particular), the compiler can use the word const to identify data to
be stored in ROM (read-only memory).

At first glance, it might appear that const serves the same role as the
#define directive, which we’ve used in previous chapters to create names for
constants. There are significant differences between #define and const, how-
ever:

� We can use #define to create a name for a numerical, character, or string
constant. const can be used to create read-only objects of any type, including
arrays, pointers, structures, and unions.

� const objects are subject to the same scope rules as variables; constants cre-
ated using #define aren’t. In particular, we can’t use #define to create a
constant with block scope.

� The value of a const object, unlike the value of a macro, can be viewed in a
debugger.

� Unlike macros, const objects can’t be used in constant expressions. For
example, we can’t write

const int n = 10;
int a[n]; /*** WRONG ***/

since array bounds must be constant expressions. (In C99, this example would

C99
restricted pointers ➤17.8

Q&A

C99

C18.FM Page 466 Friday, February 15, 2008 2:47 PM

18.4 Declarators 467

be legal if a has automatic storage duration—it would be treated as a variable-
length array—but not if it has static storage duration.)

� It’s legal to apply the address operator (&) to a const object, since it has an
address. A macro doesn’t have an address.

There are no absolute rules that dictate when to use #define and when to
use const. I recommend using #define for constants that represent numbers or
characters. That way, you’ll be able to use the constants as array dimensions, in
switch statements, and in other places where constant expressions are required.

18.4 Declarators

A declarator consists of an identifier (the name of the variable or function being
declared), possibly preceded by the * symbol or followed by [] or (). By com-
bining *, [], and (), we can create declarators of mind-numbing complexity.

Before we look at the more complicated declarators, let’s review the declara-
tors that we’ve seen in previous chapters. In the simplest case, a declarator is just
an identifier, like i in the following example:

int i;

Declarators may also contain the symbols *, [], and ():

� A declarator that begins with * represents a pointer:

int *p;

� A declarator that ends with [] represents an array:

int a[10];

The brackets may be left empty if the array is a parameter, if it has an initial-
izer, or if its storage class is extern:

extern int a[];

Since a is defined elsewhere in the program, the compiler doesn’t need to
know its length here. (In the case of a multidimensional array, only the first set
of brackets can be empty.) C99 provides two additional options for what goes
between the brackets in the declaration of an array parameter. One option is
the keyword static, followed by an expression that specifies the array’s
minimum length. The other is the * symbol, which can be used in a function
prototype to indicate a variable-length array argument. Section 9.3 discusses
both C99 features.

� A declarator that ends with () represents a function:

int abs(int i);
void swap(int *a, int *b);
int find_largest(int a[], int n);

C99

C18.FM Page 467 Friday, February 15, 2008 2:47 PM

468 Chapter 18 Declarations

C allows parameter names to be omitted in a function declaration:

int abs(int);
void swap(int *, int *);
int find_largest(int [], int);

The parentheses can even be left empty:

int abs();
void swap();
int find_largest();

The declarations in the last group specify the return types of the abs, swap,
and find_largest functions, but provide no information about their argu-
ments. Leaving the parentheses empty isn’t the same as putting the word
void between them, which indicates that there are no arguments. The empty-
parentheses style of function declaration has largely disappeared. It’s inferior
to the prototype style introduced in C89, since it doesn’t allow the compiler to
check whether function calls have the right arguments.

If all declarators were as simple as these, C programming would be a snap.
Unfortunately, declarators in actual programs often combine the *, [], and ()
notations. We’ve seen examples of such combinations already. We know that

int *ap[10];

declares an array of 10 pointers to integers. We know that

float *fp(float);

declares a function that has a float argument and returns a pointer to a float.
And, in Section 17.7, we learned that

void (*pf)(int);

declares a pointer to a function with an int argument and a void return type.

Deciphering Complex Declarations

So far, we haven’t had too much trouble understanding declarators. But what about
declarators like the one in the following declaration?

int *(*x[10])(void);

This declarator combines *, [], and (), so it’s not obvious whether x is a pointer,
an array, or a function.

Fortunately, there are two simple rules that will allow us to understand any
declaration, no matter how convoluted:

� Always read declarators from the inside out. In other words, locate the identi-
fier that’s being declared, and start deciphering the declaration from there.

C18.FM Page 468 Friday, February 15, 2008 2:47 PM

18.4 Declarators 469

� When there’s a choice, always favor [] and () over *. If * precedes the
identifier and [] follows it, the identifier represents an array, not a pointer.
Likewise, if * precedes the identifier and () follows it, the identifier repre-
sents a function, not a pointer. (Of course, we can always use parentheses to
override the normal priority of [] and () over *.)

Let’s apply these rules to our simple examples first. In the declaration

int *ap[10];

the identifier is ap. Since * precedes ap and [] follows it, we give preference to
[], so ap is an array of pointers. In the declaration

float *fp(float);

the identifier is fp. Since * precedes fp and () follows it, we give preference to
(), so fp is a function that returns a pointer.

The declaration

void (*pf)(int);

is a little trickier. Since *pf is enclosed in parentheses, pf must be a pointer. But
(*pf) is followed by (int), so pf must point to a function with an int argu-
ment. The word void represents the return type of this function.

As the last example shows, understanding a complex declarator often involves
zigzagging from one side of the identifier to the other:

Let’s use this zigzagging technique to decipher the declaration given earlier:

int *(*x[10])(void);

First, we locate the identifier being declared (x). We see that x is preceded by *
and followed by []; since [] have priority over *, we go right (x is an array).
Next, we go left to find out the type of the elements in the array (pointers). Next,
we go right to find out what kind of data the pointers point to (functions with no
arguments). Finally, we go left to see what each function returns (a pointer to an
int). Graphically, here’s what the process looks like:

1. pointer to
2. function with int argument
3. returning void

Type of pf:

3

1
2

1. array of
2. pointers to
3. functions with no arguments
4. returning pointer to int

Type of x:

3
4

1
2

C18.FM Page 469 Friday, February 15, 2008 2:47 PM

470 Chapter 18 Declarations

Mastering C declarations takes time and practice. The only good news is that
there are certain things that can’t be declared in C. Functions can’t return arrays:

int f(int)[]; /*** WRONG ***/

Functions can’t return functions:

int g(int)(int); /*** WRONG ***/

Arrays of functions aren’t possible, either:

int a[10](int); /*** WRONG ***/

In each case, we can use pointers to get the desired effect. A function can’t return an
array, but it can return a pointer to an array. A function can’t return a function, but
it can return a pointer to a function. Arrays of functions aren’t allowed, but an array
may contain pointers to functions. (Section 17.7 has an example of such an array.)

Using Type Definitions to Simplify Declarations

Some programmers use type definitions to help simplify complex declarations.
Consider the declaration of x that we examined earlier in this section:

int *(*x[10])(void);

To make x’s type easier to understand, we could use the following series of type
definitions:

typedef int *Fcn(void);
typedef Fcn *Fcn_ptr;
typedef Fcn_ptr Fcn_ptr_array[10];
Fcn_ptr_array x;

If we read these lines in reverse order, we see that x has type Fcn_ptr_array, a
Fcn_ptr_array is an array of Fcn_ptr values, a Fcn_ptr is a pointer to
type Fcn, and a Fcn is a function that has no arguments and returns a pointer to an
int value.

18.5 Initializers

For convenience, C allows us to specify initial values for variables as we’re declar-
ing them. To initialize a variable, we write the = symbol after its declarator, then
follow that with an initializer. (Don’t confuse the = symbol in a declaration with
the assignment operator; initialization isn’t the same as assignment.)

We’ve seen various kinds of initializers in previous chapters. The initializer
for a simple variable is an expression of the same type as the variable:

int i = 5 / 2; /* i is initially 2 */

C18.FM Page 470 Friday, February 15, 2008 2:47 PM

18.5 Initializers 471

If the types don’t match, C converts the initializer using the same rules as for
assignment:

int j = 5.5; /* converted to 5 */

The initializer for a pointer variable must be a pointer expression of the same type
as the variable or of type void *:

int *p = &i;

The initializer for an array, structure, or union is usually a series of values enclosed
in braces:

int a[5] = {1, 2, 3, 4, 5};

In C99, brace-enclosed initializers can have other forms, thanks to designated ini-
tializers.

To complete our coverage of declarations, let’s take a look at some additional
rules that govern initializers:

� An initializer for a variable with static storage duration must be constant:

#define FIRST 1
#define LAST 100

static int i = LAST - FIRST + 1;

Since LAST and FIRST are macros, the compiler can compute the initial
value of i (100 – 1 + 1 = 100). If LAST and FIRST had been variables, the
initializer would be illegal.

� If a variable has automatic storage duration, its initializer need not be con-
stant:

int f(int n)
{
 int last = n - 1;
 …
}

� A brace-enclosed initializer for an array, structure, or union must contain only
constant expressions, never variables or function calls:

#define N 2

int powers[5] = {1, N, N * N, N * N * N, N * N * N * N};

Since N is a constant, the initializer for powers is legal; if N were a variable,
the program wouldn’t compile. In C99, this restriction applies only if the vari-
able has static storage duration.

� The initializer for an automatic structure or union can be another structure or
union:

conversion during assignment ➤7.4

C99
designated initializers ➤8.1, 16.1

C99

C18.FM Page 471 Friday, February 15, 2008 2:47 PM

472 Chapter 18 Declarations

void g(struct part part1)
{
 struct part part2 = part1;
 …
}

The initializer doesn’t have to be a variable or parameter name, although it
does need to be an expression of the proper type. For example, part2’s ini-
tializer could be *p, where p is of type struct part *, or f(part1),
where f is a function that returns a part structure.

Uninitialized Variables

In previous chapters, we’ve implied that uninitialized variables have undefined val-
ues. That’s not always true; the initial value of a variable depends on its storage
duration:

� Variables with automatic storage duration have no default initial value. The
initial value of an automatic variable can’t be predicted and may be different
each time the variable comes into existence.

� Variables with static storage duration have the value zero by default. Unlike
memory allocated by calloc, which is simply set to zero bits, a static vari-
able is correctly initialized based on its type: integer variables are initialized to
0, floating variables are initialized to 0.0, and pointer variables contain a null
pointer.

As a matter of style, it’s better to provide initializers for static variables rather
than rely on the fact that they’re guaranteed to be zero. If a program accesses a
variable that hasn’t been initialized explicitly, someone reading the program later
can’t easily determine whether the variable is assumed to be zero or whether it’s
initialized by an assignment somewhere in the program.

18.6 Inline Functions (C99)

C99 function declarations have an additional option that doesn’t exist in C89: they
may contain the keyword inline. This keyword is a new breed of declaration
specifier, distinct from storage classes, type qualifiers, and type specifiers. To
understand the effect of inline, we’ll need to visualize the machine instructions
that are generated by a C compiler to handle the process of calling a function and
returning from a function.

At the machine level, several instructions may need to be executed to prepare
for the call, the call itself requires jumping to the first instruction in the function,
and there may be additional instructions executed by the function itself as it begins
to execute. If the function has arguments, they’ll need to be copied (because C
passes its arguments by value). Returning from a function requires a similar

calloc function ➤17.3

C18.FM Page 472 Friday, February 15, 2008 2:47 PM

18.6 Inline Functions (C99) 473

amount of effort on both the part of the function that was called and the one that
called it. The cumulative work required to call a function and later return from it is
often referred to as “overhead,” since it’s extra work above and beyond what the
function is really supposed to accomplish. Although the overhead of a function call
slows the program by only a tiny amount, it may add up in certain situations, such
as when a function is called millions or billions of times, when an older, slower
processor is in use (as might be the case in an embedded system), or when a pro-
gram has to meet very strict deadlines (as in a real-time system).

In C89, the only way to avoid the overhead of a function call is to use a param-
eterized macro. Parameterized macros have certain drawbacks, though. C99 offers
a better solution to this problem: create an inline function. The word “inline” sug-
gests an implementation strategy in which the compiler replaces each call of the
function by the machine instructions for the function. This technique avoids the
usual overhead of a function call, although it may cause a minor increase in the
size of the compiled program.

Declaring a function to be inline doesn’t actually force the compiler to
“inline” the function, however. It merely suggests that the compiler should try to
make calls of the function as fast as possible, perhaps by performing an inline
expansion when the function is called. The compiler is free to ignore this sugges-
tion. In this respect, inline is similar to the register and restrict key-
words, which the compiler may use to improve the performance of a program but
may also choose to ignore.

Inline Definitions

An inline function has the keyword inline as one of its declaration specifiers:

inline double average(double a, double b)
{
 return (a + b) / 2;
}

Here’s where things get a bit complicated. average has external linkage, so other
source files may contain calls of average. However, the definition of average
isn’t considered to be an external definition by the compiler (it’s an inline defini-
tion instead), so attempting to call average from another file will be considered
an error.

There are two ways to avoid this error. One option is to add the word static
to the function definition:

static inline double average(double a, double b)
{
 return (a + b) / 2;
}

average now has internal linkage, so it can’t be called from other files. Other
files may contain their own definitions of average, which might be the same as
this definition or might be different.

parameterized macros ➤14.3

C18.FM Page 473 Friday, February 15, 2008 2:47 PM

474 Chapter 18 Declarations

The other option is to provide an external definition for average so that calls
are permitted from other files. One way to do this is to write the average func-
tion a second time (without using inline) and put the second definition in a dif-
ferent source file. Doing so is legal, but it’s not a good idea to have two versions of
the same function, because we can’t guarantee that they’ll remain consistent when
the program is modified.

Here’s a better approach. First, we’ll put the inline definition of average in a
header file (let’s name it average.h):

#ifndef AVERAGE_H
#define AVERAGE_H

inline double average(double a, double b)
{
 return (a + b) / 2;
}

#endif

Next, we’ll create a matching source file, average.c:

#include "average.h"

extern double average(double a, double b);

Now, any file that needs to call the average function may simply include aver-
age.h, which contains the inline definition of average. The average.c file
contains a prototype for average that uses the extern keyword, which causes
the definition of average included from average.h to be treated as an exter-
nal definition in average.c.

The general rule in C99 is that if all top-level declarations of a function in a
particular file include inline but not extern, then the definition of the function
in that file is inline. If the function is used anywhere in the program (including the
file that contains its inline definition), then an external definition of the function
will need to be provided by some other file. When the function is called, the com-
piler may choose to perform an ordinary call (using the function’s external defini-
tion) or perform inline expansion (using the function’s inline definition). There’s no
way to tell which choice the compiler will make, so it’s crucial that the two defini-
tions be consistent. The technique that we just discussed (using the average.h
and average.c files) guarantees that the definitions are the same.

Restrictions on Inline Functions

Since inline functions are implemented in a way that’s quite different from ordi-
nary functions, they’re subject to different rules and restrictions. Variables with
static storage duration are a particular problem for inline functions with external
linkage. Consequently, C99 imposes the following restrictions on an inline func-
tion with external linkage (but not on one with internal linkage):

C18.FM Page 474 Friday, February 15, 2008 2:47 PM

Q & A 475

� The function may not define a modifiable static variable.

� The function may not contain references to variables with internal linkage.

Such a function is allowed to define a variable that is both static and const,
but each inline definition of the function may create its own copy of the variable.

Using Inline Functions with GCC

Some compilers, including GCC, supported inline functions prior to the C99 stan-
dard. As a result, their rules for using inline functions may vary from the stan-
dard. In particular, the scheme described earlier (using the average.h and
average.c files) may not work with these compilers. Version 4.3 of GCC (not
available at the time this book was written) is expected to support inline func-
tions in the way described in the C99 standard.

Functions that are specified to be both static and inline should work
fine, regardless of the version of GCC. This strategy is legal in C99 as well, so it’s
the safest bet. A static inline function can be used within a single file or
placed in a header file and included into any source file that needs to call the func-
tion.

There’s another way to share an inline function among multiple files that
works with older versions of GCC but conflicts with C99. This technique involves
putting a definition of the function in a header file, specifying that the function is
both extern and inline, then including the header file into any source file that
contains a call of the function. A second copy of the definition—without the words
extern and inline—is placed in one of the source files. (That way, if the com-
piler is unable to “inline” the function for any reason, it will still have a definition.)

A final note about GCC: Functions are “inlined” only when optimization is
requested via the -O command-line option.

Q & A

*Q: Why are selection statements and iteration statements (and their “inner”
statements) considered to be blocks in C99? [p. 459]

A: This rather surprising rule stems from a problem that can occur when compound
literals are used in selection statements and iteration statements. The problem has
to do with the storage duration of compound literals, so let’s take a moment to dis-
cuss that issue first.

The C99 standard states that the object represented by a compound literal has
static storage duration if the compound literal occurs outside the body of a func-
tion. Otherwise, it has automatic storage duration; as a result, the memory occu-
pied by the object is deallocated at the end of the block in which the compound
literal appears. Consider the following function, which returns a point structure
created using a compound literal:

C99

compound literals ➤9.3, 16.2

C18.FM Page 475 Friday, February 15, 2008 2:47 PM

476 Chapter 18 Declarations

struct point create_point(int x, int y)
{
 return (struct point) {x, y};
}

This function works correctly, because the object created by the compound literal
will be copied when the function returns. The original object will no longer exist,
but the copy will remain. Now suppose that we change the function slightly:

struct point *create_point(int x, int y)
{
 return &(struct point) {x, y};
}

This version of create_point suffers from undefined behavior, because it
returns a pointer to an object that has automatic storage duration and won’t exist
after the function returns.

Now let’s return to the question we started with: Why are selection statements
and iteration statements considered to be blocks? Consider the following example:

/* Example 1 - if statement without braces */

double *coefficients, value;

if (polynomial_selected == 1)
 coefficients = (double[3]) {1.5, -3.0, 6.0};
else
 coefficients = (double[3]) {4.5, 1.0, -3.5};
value = evaluate_polynomial(coefficients);

This program fragment apparently behaves in the desired fashion (but read on).
coefficients will point to one of two objects created by compound literals,
and this object will still exist at the time evaluate_polynomial is called.
Now consider what happens if we put braces around the “inner” statements—the
ones controlled by the if statement:

/* Example 2 - if statement with braces */

double *coefficients, value;

if (polynomial_selected == 1) {
 coefficients = (double[3]) {1.5, -3.0, 6.0};
} else {
 coefficients = (double[3]) {4.5, 1.0, -3.5};
}
value = evaluate_polynomial(coefficients);

Now we’re in trouble. Each compound literal causes an object to be created, but
that object exists only within the block formed by the braces that enclose the
statement in which the literal appears. By the time evaluate_polynomial is
called, coefficients points to an object that no longer exists. The result:
undefined behavior.

C18.FM Page 476 Friday, February 15, 2008 2:47 PM

Q & A 477

The creators of C99 were unhappy with this state of affairs, because program-
mers were unlikely to expect that simply adding braces within an if statement
would cause undefined behavior. To avoid the problem, they decided that the inner
statements would always be considered blocks. As a result, Example 1 and Exam-
ple 2 are equivalent, with both exhibiting undefined behavior.

A similar problem can arise when a compound literal is part of the controlling
expression of a selection statement or iteration statement. For this reason, each
entire selection statement and iteration statement is considered to be a block as
well (as though an invisible set of braces surrounds the entire statement). So, for
example, an if statement with an else clause consists of three blocks: each of
the two inner statements is a block, as is the entire if statement.

Q: You said that storage for a variable with automatic storage duration is allo-
cated when the surrounding block is executed. Is this true for C99’s variable-
length arrays? [p. 460]

A: No. Storage for a variable-length array isn’t allocated at the beginning of the sur-
rounding block, because the length of the array isn’t yet known. Instead, it’s allo-
cated when the declaration of the array is reached during the execution of the
block. In this respect, variable-length arrays are different from all other automatic
variables.

Q: What exactly is the difference between “scope” and “linkage”? [p. 460]
A: Scope is for the benefit of the compiler, while linkage is for the benefit of the

linker. The compiler uses the scope of an identifier to determine whether or not it’s
legal to refer to the identifier at a given point in a file. When the compiler translates
a source file into object code, it notes which names have external linkage, eventu-
ally storing these names in a table inside the object file. Thus, the linker has access
to names with external linkage; names with internal linkage or no linkage are
invisible to the linker.

Q: I don’t understand how a name could have block scope but external linkage.
Could you elaborate? [p. 463]

A: Certainly. Suppose that one source file defines a variable i:

int i;

Let’s assume that the definition of i lies outside any function, so i has external
linkage by default. In another file, there’s a function f that needs to access i, so
the body of f declares i as extern:

void f(void)
{
 extern int i;
 …
}

In the first file, i has file scope. Within f, however, i has block scope. If other
functions besides f need access to i, they’ll need to declare it separately. (Or we

C99

C18.FM Page 477 Friday, February 15, 2008 2:47 PM

478 Chapter 18 Declarations

can simply move the declaration of i outside f so that i has file scope.) What’s
confusing about this entire business is that each declaration or definition of i
establishes a different scope; sometimes it’s file scope, and sometimes it’s block
scope.

*Q: Why can’t const objects be used in constant expressions? const means
“constant,” right? [p. 466]

A: In C, const means “read-only,” not “constant.” Let’s look at a few examples that
illustrate why const objects can’t be used in constant expressions.

To start with, a const object might only be constant during its lifetime, not
throughout the execution of the program. Suppose that a const object is declared
inside a function:

void f(int n)
{
 const int m = n / 2;
 …
}

When f is called, m will be initialized to the value of n / 2. The value of m will
then remain constant until f returns. When f is called the next time, m will likely
be given a different value. That’s where the problem arises. Suppose that m appears
in a switch statement:

void f(int n)
{
 const int m = n / 2;
 …
 switch (…) {
 …
 case m: … /*** WRONG ***/
 …
 }
 …
}

The value of m won’t be known until f is called, which violates C’s rule that the
values of case labels must be constant expressions.

Next, let’s look at const objects declared outside blocks. These objects have
external linkage and can be shared among files. If C allowed the use of const
objects in constant expressions, we could easily find ourselves in the following sit-
uation:

extern const int n;
int a[n]; /*** WRONG ***/

n is probably defined in another file, making it impossible for the compiler to
determine a’s length. (I’m assuming that a is an external variable, so it can’t be a
variable-length array.)

C18.FM Page 478 Friday, February 15, 2008 2:47 PM

Exercises 479

If that’s not enough to convince you, consider this: If a const object is also
declared to be volatile, its value may change at any time during execution.
Here’s an example from the C standard:

extern const volatile int real_time_clock;

The real_time_clock variable may not be changed by the program (because
it’s declared const), yet its value may change via some other mechanism
(because it’s declared volatile).

Q: Why is the syntax of declarators so odd?
A: Declarations are intended to mimic use. A pointer declarator has the form *p,

which matches the way the indirection operator will later be applied to p. An array
declarator has the form a[…], which matches the way the array will later be sub-
scripted. A function declarator has the form f(…), which matches the syntax of a
function call. This reasoning extends to even the most complicated declarators.
Consider the file_cmd array of Section 17.7, whose elements are pointers to
functions. The declarator for file_cmd has the form

(*file_cmd[])(void)

and a call of one of the functions has the form

(*file_cmd[n])();

The parentheses, brackets, and * are in identical positions.

Exercises

Section 18.1 1. For each of the following declarations, identify the storage class, type qualifiers, type speci-
fiers, declarators, and initializers.

Section 18.2 2. Answer each of the following questions with auto, extern, register, and/or
static.

3. List the storage duration (static or automatic), scope (block or file), and linkage (internal,
external, or none) of each variable and parameter in the following file:

volatile type qualifier ➤20.3

(a) static char **lookup(int level);
(b) volatile unsigned long io_flags;
(c) extern char *file_name[MAX_FILES], path[];
(d) static const char token_buf[] = "";

(a) Which storage class is used primarily to indicate that a variable or function can be
shared by several files?

(b) Suppose that a variable x is to be shared by several functions in one file but hidden from
functions in other files. Which storage class should x be declared to have?

(c) Which storage classes can affect the storage duration of a variable?

W

C18.FM Page 479 Friday, February 15, 2008 2:47 PM

480 Chapter 18 Declarations

extern float a;

void f(register double b)
{
 static int c;
 auto char d;
}

4. Let f be the following function. What will be the value of f(10) if f has never been called
before? What will be the value of f(10) if f has been called five times previously?

int f(int i)
{
 static int j = 0;
 return i * j++;
}

5. State whether each of the following statements is true or false. Justify each answer.

6. The following function is supposed to print an error message. Each message is preceded by
an integer, indicating the number of times the function has been called. Unfortunately, the
function always displays 1 as the number of the error message. Locate the error and show
how to fix it without making any changes outside the function.

void print_error(const char *message)
{
 int n = 1;
 printf("Error %d: %s\n", n++, message);
}

Section 18.3 7. Suppose that we declare x to be a const object. Which one of the following statements
about x is false?

Section 18.4 8. Write a complete description of the type of x as specified by each of the following declara-
tions.

9. Use a series of type definitions to simplify each of the declarations in Exercise 8.

10. Write declarations for the following variables and functions:

W

(a) Every variable with static storage duration has file scope.
(b) Every variable declared inside a function has no linkage.
(c) Every variable with internal linkage has static storage duration.
(d) Every parameter has block scope.

(a) If x is of type int, it can be used as the value of a case label in a switch statement.
(b) The compiler will check that no assignment is made to x.
(c) x is subject to the same scope rules as variables.
(d) x can be of any type.

(a) char (*x[10])(int);
(b) int (*x(int))[5];
(c) float *(*x(void))(int);
(d) void (*x(int, void (*y)(int)))(int);

(a) p is a pointer to a function with a character pointer argument that returns a character
pointer.

W

W

C18.FM Page 480 Friday, February 15, 2008 2:47 PM

Exercises 481

11. In Section 18.4, we saw that the following declarations are illegal:

int f(int)[]; /* functions can't return arrays */
int g(int)(int); /* functions can't return functions */
int a[10](int); /* array elements can't be functions */

We can, however, achieve similar effects by using pointers: a function can return a pointer to
the first element in an array, a function can return a pointer to a function, and the elements
of an array can be pointers to functions. Revise each of these declarations accordingly.

*12. (a) Write a complete description of the type of the function f, assuming that it’s declared as
follows:

int (*f(float (*)(long), char *))(double);

(b) Give an example showing how f would be called.

Section 18.5 13. Which of the following declarations are legal? (Assume that PI is a macro that represents
3.14159.)

14. Which kind of variables cannot be initialized?

15. Which property of a variable determines whether or not it has a default initial value?

(b) f is a function with two arguments: p, a pointer to a structure with tag t, and n, a long
integer. f returns a pointer to a function that has no arguments and returns nothing.

(c) a is an array of four pointers to functions that have no arguments and return nothing.
The elements of a initially point to functions named insert, search, update, and
print.

(d) b is an array of 10 pointers to functions with two int arguments that return structures
with tag t.

(a) char c = 65;
(b) static int i = 5, j = i * i;
(c) double d = 2 * PI;
(d) double angles[] = {0, PI / 2, PI, 3 * PI / 2};

(a) Array variables
(b) Enumeration variables
(c) Structure variables
(d) Union variables
(e) None of the above

(a) Storage duration
(b) Scope
(c) Linkage
(d) Type

W

W

C18.FM Page 481 Friday, February 15, 2008 2:47 PM

C18.FM Page 482 Friday, February 15, 2008 2:47 PM

483

19 Program Design

Wherever there is modularity there is the potential for misunderstanding:
Hiding information implies a need to check communication.

It’s obvious that real-world programs are larger than the examples in this book, but
you may not realize just how much larger. Faster CPUs and larger main memories
have made it possible to write programs that would have been impractical just a
few years ago. The popularity of graphical user interfaces has added greatly to the
average length of a program. Most full-featured programs today are at least
100,000 lines long. Million-line programs are commonplace, and it’s not unheard-
of for a program to have 10 million lines or more.

Although C wasn’t designed for writing large programs, many large programs
have in fact been written in C. It’s tricky, and it requires a great deal of care, but it
can be done. In this chapter, I’ll discuss techniques that have proved to be helpful
for writing large programs and show which C features (the static storage class,
for example) are especially useful.

Writing large programs (often called “programming-in-the-large”) is quite dif-
ferent from writing small ones—it’s like the difference between writing a term
paper (10 pages double-spaced, of course) and a 1000-page book. A large program
requires more attention to style, since many people will be working on it. It
requires careful documentation. It requires planning for maintenance, since it will
likely be modified many times.

Above all, a large program requires careful design and much more planning
than a small program. As Alan Kay, the designer of the Smalltalk programming
language, puts it, “You can build a doghouse out of anything.” A doghouse can be
built without any particular design, using whatever materials are at hand. A house
for humans, on the other hand, is too complex to just throw together.

Chapter 15 discussed writing large programs in C, but it concentrated on lan-
guage details. In this chapter, we’ll revisit the topic, this time focusing on tech-
niques for good program design. A complete discussion of program design issues
is obviously beyond the scope of this book. However, I’ll try to cover—briefly—

Q&A

C19.FM Page 483 Friday, February 15, 2008 4:06 PM

484 Chapter 19 Program Design

some important concepts in program design and show how to use them to create C
programs that are readable and maintainable.

Section 19.1 discusses how to view a C program as a collection of modules
that provide services to each other. We’ll then see how the concepts of information
hiding (Section 19.2) and abstract data types (Section 19.3) can improve modules.
By focusing on a single example (a stack data type), Section 19.4 illustrates how
an abstract data type can be defined and implemented in C. Section 19.5 describes
some limitations of C for defining abstract data types and shows how to work
around them.

19.1 Modules

When designing a C program (or a program in any other language, for that matter),
it’s often useful to view it as a number of independent modules. A module is a col-
lection of services, some of which are made available to other parts of the program
(the clients). Each module has an interface that describes the available services.
The details of the module—including the source code for the services them-
selves—are stored in the module’s implementation.

In the context of C, “services” are functions. The interface of a module is a
header file containing prototypes for the functions that will be made available to
clients (source files). The implementation of a module is a source file that contains
definitions of the module’s functions.

To illustrate this terminology, let’s look at the calculator program that was
sketched in Sections 15.1 and 15.2. This program consists of the file calc.c,
which contains the main function, and a stack module, which is stored in the files
stack.h and stack.c (see the figure at the top of the next page). calc.c is a
client of the stack module. stack.h is the interface of the stack module; it sup-
plies everything the client needs to know about the module. stack.c is the
implementation of the module; it contains definitions of the stack functions as well
as declarations of the variables that make up the stack.

The C library is itself a collection of modules. Each header in the library
serves as the interface to a module. <stdio.h>, for example, is the interface to a
module containing I/O functions, while <string.h> is the interface to a module
containing string-handling functions.

Dividing a program into modules has several advantages:

� Abstraction. If modules are properly designed, we can treat them as abstrac-
tions; we know what they do, but we don’t worry about the details of how
they do it. Thanks to abstraction, it’s not necessary to understand how the
entire program works in order to make changes to one part of it. What’s more,
abstraction makes it easier for several members of a team to work on the
same program. Once the interfaces for the modules have been agreed upon,
the responsibility for implementing each module can be delegated to a partic-

C19.FM Page 484 Friday, February 15, 2008 4:06 PM

19.1 Modules 485

ular person. Team members can then work largely independently of one
another.

� Reusability. Any module that provides services is potentially reusable in other
programs. Our stack module, for example, is reusable. Since it’s often hard to
anticipate the future uses of a module, it’s a good idea to design modules for
reusability.

� Maintainability. A small bug will usually affect only a single module imple-
mentation, making the bug easier to locate and fix. Once the bug has been
fixed, rebuilding the program requires only a recompilation of the module
implementation (followed by linking the entire program). On a larger scale,
we could replace an entire module implementation, perhaps to improve per-
formance or when transporting the program to a different platform.

Although all these advantages are important, maintainability is the most criti-
cal. Most real-world programs are in service over a period of years, during which
bugs are discovered, enhancements are made, and modifications are made to meet
changing requirements. Designing a program in a modular fashion makes mainte-
nance much easier. Maintaining a program should be like maintaining a car—fixing
a flat tire shouldn’t require overhauling the engine.

#include "stack.h"

int contents[100];
int top = 0;

void make_empty(void)
{ … }

bool is_empty(void)
{ … }

bool is_full(void)
{ … }

void push(int i)
{ … }

int pop(void)
{ … }

stack.c

#include <stdbool.h>

void make_empty(void);
bool is_empty(void);
bool is_full(void);
void push(int i);
int pop(void);

stack.h

#include "stack.h"

int main(void)
{
 make_empty();
 …
}

calc.c

C19.FM Page 485 Friday, February 15, 2008 4:06 PM

486 Chapter 19 Program Design

For an example, we need look no further than the inventory program of
Chapters 16 and 17. The original program (Section 16.3) stored part records in an
array. Suppose that, after using this program for a while, the customer objects to
having a fixed limit on the number of parts that can be stored. To satisfy the cus-
tomer, we might switch to a linked list (as we did in Section 17.5). Making this
change required going through the entire program, looking for all places that
depend on the way parts are stored. If we’d designed the program differently in the
first place—with a separate module dealing with part storage—we would have
only needed to rewrite the implementation of that module, not the entire program.

Once we’re convinced that modular design is the way to go, the process of
designing a program boils down to deciding what modules it should have, what
services each module should provide, and how the modules should be interrelated.
We’ll now look at these issues briefly. For more information about design, consult
a software engineering text, such as Fundamentals of Software Engineering, Sec-
ond Edition, by Ghezzi, Jazayeri, and Mandrioli (Upper Saddle River, N.J.: Pren-
tice-Hall, 2003).

Cohesion and Coupling

Good module interfaces aren’t random collections of declarations. In a well-
designed program, modules should have two properties:

� High cohesion. The elements of each module should be closely related to one
another; we might think of them as cooperating toward a common goal. High
cohesion makes modules easier to use and makes the entire program easier to
understand.

� Low coupling. Modules should be as independent of each other as possible.
Low coupling makes it easier to modify the program and reuse modules.

Does the calculator program have these properties? The stack module is
clearly cohesive: its functions represent operations on a stack. There’s little cou-
pling in the program. The calc.c file depends on stack.h (and stack.c
depends on stack.h, of course), but there are no other apparent dependencies.

Types of Modules

Because of the need for high cohesion and low coupling, modules tend to fall into
certain typical categories:

� A data pool is a collection of related variables and/or constants. In C, a mod-
ule of this type is often just a header file. From a design standpoint, putting
variables in header files isn’t usually a good idea, but collecting related con-
stants in a header file can often be useful. In the C library, <float.h> and
<limits.h> are both data pools.

� A library is a collection of related functions. The <string.h> header, for
example, is the interface to a library of string-handling functions.

<float.h> header ➤23.1

<limits.h> header ➤23.2

C19.FM Page 486 Friday, February 15, 2008 4:06 PM

19.2 Information Hiding 487

� An abstract object is a collection of functions that operate on a hidden data
structure. (In this chapter, the term “object” has a different meaning than in
the rest of the book. In C terminology, an object is simply a block of mem-
ory that can store a value. In this chapter, however, an object is a collection
of data bundled with operations on the data. If the data is hidden, the object
is “abstract.”) The stack module we’ve been discussing belongs to this cate-
gory.

� An abstract data type (ADT) is a type whose representation is hidden. Client
modules can use the type to declare variables, but have no knowledge of the
structure of those variables. For a client module to perform an operation on
such a variable, it must call a function provided by the abstract data type mod-
ule. Abstract data types play a significant role in modern programming; we’ll
return to them in Sections 19.3–19.5.

19.2 Information Hiding

A well-designed module often keeps some information secret from its clients. Cli-
ents of our stack module, for example, have no need to know whether the stack is
stored in an array, in a linked list, or in some other form. Deliberately concealing
information from the clients of a module is known as information hiding. Infor-
mation hiding has two primary advantages:

� Security. If clients don’t know how the stack is stored, they won’t be able to
corrupt it by tampering with its internal workings. To perform operations on
the stack, they’ll have to call functions that are provided by the module
itself—functions that we’ve written and tested.

� Flexibility. Making changes—no matter how large—to a module’s internal
workings won’t be difficult. For example, we could implement the stack as
an array at first, then later switch to a linked list or other representation.
We’ll have to rewrite the implementation of the module, of course, but—if
the module was designed properly—we won’t have to alter the module’s
interface.

In C, the major tool for enforcing information hiding is the static storage
class. Declaring a variable with file scope to be static gives it internal linkage,
thus preventing it from being accessed from other files, including clients of the
module. (Declaring a function to be static is also useful—the function can be
directly called only by other functions in the same file.)

A Stack Module

To see the benefits of information hiding, let’s look at two implementations of a
stack module, one using an array and the other a linked list. The module’s header
file will have the following appearance:

static storage class ➤18.2

C19.FM Page 487 Friday, February 15, 2008 4:06 PM

488 Chapter 19 Program Design

stack.h #ifndef STACK_H
#define STACK_H

#include <stdbool.h> /* C99 only */

void make_empty(void);
bool is_empty(void);
bool is_full(void);
void push(int i);
int pop(void);

#endif

I’ve included C99’s <stdbool.h> header so that the is_empty and is_full
functions can return a bool result rather than an int value.

Let’s first use an array to implement the stack:

stack1.c #include <stdio.h>
#include <stdlib.h>
#include "stack.h"

#define STACK_SIZE 100

static int contents[STACK_SIZE];
static int top = 0;

static void terminate(const char *message)
{
 printf("%s\n", message);
 exit(EXIT_FAILURE);
}

void make_empty(void)
{
 top = 0;
}

bool is_empty(void)
{
 return top == 0;
}

bool is_full(void)
{
 return top == STACK_SIZE;
}

void push(int i)
{
 if (is_full())
 terminate("Error in push: stack is full.");
 contents[top++] = i;
}

C19.FM Page 488 Friday, February 15, 2008 4:06 PM

19.2 Information Hiding 489

int pop(void)
{
 if (is_empty())
 terminate("Error in pop: stack is empty.");
 return contents[--top];
}

The variables that make up the stack (contents and top) are both declared
static, since there’s no reason for the rest of the program to access them
directly. The terminate function is also declared static. This function isn’t
part of the module’s interface; instead, it’s designed for use solely within the
implementation of the module.

As a matter of style, some programmers use macros to indicate which func-
tions and variables are “public” (accessible elsewhere in the program) and which
are “private” (limited to a single file):

#define PUBLIC /* empty */
#define PRIVATE static

The reason for writing PRIVATE instead of static is that the latter has more
than one use in C; PRIVATE makes it clear that we’re using it to enforce informa-
tion hiding. Here’s what the stack implementation would look like if we were to
use PUBLIC and PRIVATE:

PRIVATE int contents[STACK_SIZE];
PRIVATE int top = 0;

PRIVATE void terminate(const char *message) { … }

PUBLIC void make_empty(void) { … }

PUBLIC bool is_empty(void) { … }

PUBLIC bool is_full(void) { … }

PUBLIC void push(int i) { … }

PUBLIC int pop(void) { … }

Now we’ll switch to a linked-list implementation of the stack module:

stack2.c #include <stdio.h>
#include <stdlib.h>
#include "stack.h"

struct node {
 int data;
 struct node *next;
};

static struct node *top = NULL;

C19.FM Page 489 Friday, February 15, 2008 4:06 PM

490 Chapter 19 Program Design

static void terminate(const char *message)
{
 printf("%s\n", message);
 exit(EXIT_FAILURE);
}

void make_empty(void)
{
 while (!is_empty())
 pop();
}

bool is_empty(void)
{
 return top == NULL;
}

bool is_full(void)
{
 return false;
}

void push(int i)
{
 struct node *new_node = malloc(sizeof(struct node));
 if (new_node == NULL)
 terminate("Error in push: stack is full.");

 new_node->data = i;
 new_node->next = top;
 top = new_node;
}

int pop(void)
{
 struct node *old_top;
 int i;

 if (is_empty())
 terminate("Error in pop: stack is empty.");

 old_top = top;
 i = top->data;
 top = top->next;
 free(old_top);
 return i;
}

Note that the is_full function returns false every time it’s called. A linked
list has no limit on its size, so the stack will never be full. It’s possible (but not
likely) that the program might run out of memory, which will cause the push
function to fail, but there’s no easy way to test for that condition in advance.

Our stack example shows clearly the advantage of information hiding: it

C19.FM Page 490 Friday, February 15, 2008 4:06 PM

19.3 Abstract Data Types 491

doesn’t matter whether we use stack1.c or stack2.c to implement the stack
module. Both versions match the module’s interface, so we can switch from one to
the other without having to make changes elsewhere in the program.

19.3 Abstract Data Types
A module that serves as an abstract object, like the stack module in the previous
section, has a serious disadvantage: there’s no way to have multiple instances of
the object (more than one stack, in this case). To accomplish this, we’ll need to go
a step further and create a new type.

Once we’ve defined a Stack type, we’ll be able to have as many stacks as we
want. The following fragment illustrates how we could have two stacks in the same
program:

Stack s1, s2;

make_empty(&s1);
make_empty(&s2);
push(&s1, 1);
push(&s2, 2);
if (!is_empty(&s1))
 printf("%d\n", pop(&s1)); /* prints "1" */

We’re not really sure what s1 and s2 are (structures? pointers?), but it doesn’t
matter. To clients, s1 and s2 are abstractions that respond to certain operations
(make_empty, is_empty, is_full, push, and pop).

Let’s convert our stack.h header so that it provides a Stack type, where
Stack is a structure. Doing so will require adding a Stack (or Stack *) param-
eter to each function. The header will now look like this (changes to stack.h are
in bold; unchanged portions of the header aren’t shown):

#define STACK_SIZE 100

typedef struct {
 int contents[STACK_SIZE];
 int top;
} Stack;

void make_empty(Stack *s);
bool is_empty(const Stack *s);
bool is_full(const Stack *s);
void push(Stack *s, int i);
int pop(Stack *s);

The stack parameters to make_empty, push, and pop need to be pointers, since
these functions modify the stack. The parameter to is_empty and is_full
doesn’t need to be a pointer, but I’ve made it one anyway. Passing these functions a
Stack pointer instead of a Stack value is more efficient, since the latter would
result in a structure being copied.

C19.FM Page 491 Friday, February 15, 2008 4:06 PM

492 Chapter 19 Program Design

Encapsulation

Unfortunately, Stack isn’t an abstract data type, since stack.h reveals what
the Stack type really is. Nothing prevents clients from using a Stack variable as
a structure:

Stack s1;

s1.top = 0;
s1.contents[top++] = 1;

Providing access to the top and contents members allows clients to corrupt the
stack. Worse still, we won’t be able to change the way stacks are stored without
having to assess the effect of the change on clients.

What we need is a way to prevent clients from knowing how the Stack type
is represented. C has only limited support for encapsulating types in this way.
Newer C-based languages, including C++, Java, and C#, are better equipped for
this purpose.

Incomplete Types

The only tool that C gives us for encapsulation is the incomplete type. (Incomplete
types were mentioned briefly in Section 17.9 and in the Q&A section at the end of
Chapter 17.) The C standard describes incomplete types as “types that describe
objects but lack information needed to determine their sizes.” For example, the
declaration

struct t; /* incomplete declaration of t */

tells the compiler that t is a structure tag but doesn’t describe the members of the
structure. As a result, the compiler doesn’t have enough information to determine
the size of such a structure. The intent is that an incomplete type will be completed
elsewhere in the program.

As long as a type remains incomplete, its uses are limited. Since the compiler
doesn’t know the size of an incomplete type, it can’t be used to declare a variable:

struct t s; /*** WRONG ***/

However, it’s perfectly legal to define a pointer type that references an incomplete
type:

typedef struct t *T;

This type definition states that a variable of type T is a pointer to a structure with
tag t. We can now declare variables of type T, pass them as arguments to func-
tions, and perform other operations that are legal for pointers. (The size of a
pointer doesn’t depend on what it points to, which explains why C allows this
behavior.) What we can’t do, though, is apply the -> operator to one of these vari-
ables, since the compiler knows nothing about the members of a t structure.

Q&A

Q&A

C19.FM Page 492 Friday, February 15, 2008 4:06 PM

19.4 A Stack Abstract Data Type 493

19.4 A Stack Abstract Data Type

To illustrate how abstract data types can be encapsulated using incomplete types,
we’ll develop a stack ADT based on the stack module described in Section 19.2. In
the process, we’ll explore three different ways to implement the stack.

Defining the Interface for the Stack ADT

First, we’ll need a header file that defines our stack ADT type and gives prototypes
for the functions that represent stack operations. Let’s name this file stack-
ADT.h. The Stack type will be a pointer to a stack_type structure that stores
the actual contents of the stack. This structure is an incomplete type that will be
completed in the file that implements the stack. The members of this structure will
depend on how the stack is implemented. Here’s what the stackADT.h file will
look like:

stackADT.h
(version 1)

#ifndef STACKADT_H
#define STACKADT_H

#include <stdbool.h> /* C99 only */

typedef struct stack_type *Stack;

Stack create(void);
void destroy(Stack s);
void make_empty(Stack s);
bool is_empty(Stack s);
bool is_full(Stack s);
void push(Stack s, int i);
int pop(Stack s);

#endif

Clients that include stackADT.h will be able to declare variables of type
Stack, each of which is capable of pointing to a stack_type structure. Clients
can then call the functions declared in stackADT.h to perform operations on
stack variables. However, clients can’t access the members of the stack_type
structure, since that structure will be defined in a separate file.

Note that each function has a Stack parameter or returns a Stack value.
The stack functions in Section 19.3 had parameters of type Stack *. The rea-
son for the difference is that a Stack variable is now a pointer; it points to a
stack_type structure that stores the contents of the stack. If a function needs
to modify the stack, it changes the structure itself, not the pointer to the struc-
ture.

Also note the presence of the create and destroy functions. A module

C19.FM Page 493 Friday, February 15, 2008 4:06 PM

494 Chapter 19 Program Design

generally doesn’t need these functions, but an ADT does. create will dynami-
cally allocate memory for a stack (including the memory required for a
stack_type structure), as well as initializing the stack to its “empty” state.
destroy will release the stack’s dynamically allocated memory.

The following client file can be used to test the stack ADT. It creates two
stacks and performs a variety of operations on them.

stackclient.c #include <stdio.h>
#include "stackADT.h"

int main(void)
{
 Stack s1, s2;
 int n;

 s1 = create();
 s2 = create();

 push(s1, 1);
 push(s1, 2);

 n = pop(s1);
 printf("Popped %d from s1\n", n);
 push(s2, n);
 n = pop(s1);
 printf("Popped %d from s1\n", n);
 push(s2, n);

 destroy(s1);

 while (!is_empty(s2))
 printf("Popped %d from s2\n", pop(s2));

 push(s2, 3);
 make_empty(s2);
 if (is_empty(s2))
 printf("s2 is empty\n");
 else
 printf("s2 is not empty\n");

 destroy(s2);

 return 0;
}

If the stack ADT is implemented correctly, the program should produce the follow-
ing output:

Popped 2 from s1
Popped 1 from s1
Popped 1 from s2
Popped 2 from s2
s2 is empty

C19.FM Page 494 Friday, February 15, 2008 4:06 PM

19.4 A Stack Abstract Data Type 495

Implementing the Stack ADT Using a Fixed-Length Array

There are several ways to implement the stack ADT. Our first approach is the sim-
plest. We’ll have the stackADT.c file define the stack_type structure so that
it contains a fixed-length array (to hold the contents of the stack) along with an
integer that keeps track of the top of the stack:

struct stack_type {
 int contents[STACK_SIZE];
 int top;
};

Here’s what stackADT.c will look like:

stackADT.c #include <stdio.h>
#include <stdlib.h>
#include "stackADT.h"

#define STACK_SIZE 100

struct stack_type {
 int contents[STACK_SIZE];
 int top;
};

static void terminate(const char *message)
{
 printf("%s\n", message);
 exit(EXIT_FAILURE);
}

Stack create(void)
{
 Stack s = malloc(sizeof(struct stack_type));
 if (s == NULL)
 terminate("Error in create: stack could not be created.");
 s->top = 0;
 return s;
}

void destroy(Stack s)
{
 free(s);
}

void make_empty(Stack s)
{
 s->top = 0;
}

bool is_empty(Stack s)
{
 return s->top == 0;
}

C19.FM Page 495 Friday, February 15, 2008 4:06 PM

496 Chapter 19 Program Design

bool is_full(Stack s)
{
 return s->top == STACK_SIZE;
}

void push(Stack s, int i)
{
 if (is_full(s))
 terminate("Error in push: stack is full.");
 s->contents[s->top++] = i;
}

int pop(Stack s)
{
 if (is_empty(s))
 terminate("Error in pop: stack is empty.");
 return s->contents[--s->top];
}

The most striking thing about the functions in this file is that they use the -> oper-
ator, not the . operator, to access the contents and top members of the
stack_type structure. The s parameter is a pointer to a stack_type struc-
ture, not a structure itself, so using the . operator would be illegal.

Changing the Item Type in the Stack ADT

Now that we have a working version of the stack ADT, let’s try to improve it. First,
note that items in the stack must be integers. That’s too restrictive; in fact, the item
type doesn’t really matter. The stack items could just as easily be other basic types
(float, double, long, etc.) or even structures, unions, or pointers, for that
matter.

To make the stack ADT easier to modify for different item types, let’s add a
type definition to the stackADT.h header. It will define a type named Item,
representing the type of data to be stored on the stack.

stackADT.h
(version 2)

#ifndef STACKADT_H
#define STACKADT_H

#include <stdbool.h> /* C99 only */

typedef int Item;

typedef struct stack_type *Stack;

Stack create(void);
void destroy(Stack s);
void make_empty(Stack s);
bool is_empty(Stack s);
bool is_full(Stack s);

C19.FM Page 496 Friday, February 15, 2008 4:06 PM

19.4 A Stack Abstract Data Type 497

void push(Stack s, Item i);
Item pop(Stack s);

#endif

The changes to the file are shown in bold. Besides the addition of the Item type,
the push and pop functions have been modified. push now has a parameter of
type Item, and pop returns a value of type Item. We’ll use this version of
stackADT.h from now on; it replaces the earlier version.

The stackADT.c file will need to be modified to match the new stack-
ADT.h. The changes are minimal, however. The stack_type structure will now
contain an array whose elements have type Item instead of int:

struct stack_type {
 Item contents[STACK_SIZE];
 int top;
};

The only other changes are to push (the second parameter now has type Item)
and pop (which returns a value of type Item). The bodies of push and pop are
unchanged.

The stackclient.c file can be used to test the new stackADT.h and
stackADT.c to verify that the Stack type still works (it does!). Now we can
change the item type any time we want by simply modifying the definition of the
Item type in stackADT.h. (Although we won’t have to change the stack-
ADT.c file, we’ll still need to recompile it.)

Implementing the Stack ADT Using a Dynamic Array

Another problem with the stack ADT as it currently stands is that each stack has a
fixed maximum size, which is currently set at 100 items. This limit can be
increased to any number we wish, of course, but all stacks created using the
Stack type will have the same limit. There’s no way to have stacks with different
capacities or to set the stack size as the program is running.

There are two solutions to this problem. One is to implement the stack as a
linked list, in which case there’s no fixed limit on its size. We’ll investigate this
solution in a moment. First, though, let’s try the other approach, which involves
storing stack items in a dynamically allocated array.

The crux of the latter approach is to modify the stack_type structure so
that the contents member is a pointer to the array in which the items are stored,
not the array itself:

struct stack_type {
 Item *contents;
 int top;
 int size;
};

dynamically allocated arrays ➤17.3

C19.FM Page 497 Friday, February 15, 2008 4:06 PM

498 Chapter 19 Program Design

I’ve also added a new member, size, that stores the stack’s maximum size (the
length of the array that contents points to). We’ll use this member to check for
the “stack full” condition.

The create function will now have a parameter that specifies the desired
maximum stack size:

Stack create(int size);

When create is called, it will create a stack_type structure plus an array of
length size. The contents member of the structure will point to this array.

The stackADT.h file will be the same as before, except that we’ll need to
add a size parameter to the create function. (Let’s name the new version
stackADT2.h.) The stackADT.c file will need more extensive modification,
however. The new version appears below, with changes shown in bold.

stackADT2.c #include <stdio.h>
#include <stdlib.h>
#include "stackADT2.h"

struct stack_type {
 Item *contents;
 int top;
 int size;
};

static void terminate(const char *message)
{
 printf("%s\n", message);
 exit(EXIT_FAILURE);
}

Stack create(int size)
{
 Stack s = malloc(sizeof(struct stack_type));
 if (s == NULL)
 terminate("Error in create: stack could not be created.");
 s->contents = malloc(size * sizeof(Item));
 if (s->contents == NULL) {
 free(s);
 terminate("Error in create: stack could not be created.");
 }
 s->top = 0;
 s->size = size;
 return s;
}

void destroy(Stack s)
{
 free(s->contents);
 free(s);
}

C19.FM Page 498 Friday, February 15, 2008 4:06 PM

19.4 A Stack Abstract Data Type 499

void make_empty(Stack s)
{
 s->top = 0;
}

bool is_empty(Stack s)
{
 return s->top == 0;
}

bool is_full(Stack s)
{
 return s->top == s->size;
}

void push(Stack s, Item i)
{
 if (is_full(s))
 terminate("Error in push: stack is full.");
 s->contents[s->top++] = i;
}

Item pop(Stack s)
{
 if (is_empty(s))
 terminate("Error in pop: stack is empty.");
 return s->contents[--s->top];
}

The create function now calls malloc twice: once to allocate a stack_type
structure and once to allocate the array that will contain the stack items. Either call
of malloc could fail, causing terminate to be called. The destroy function
must call free twice to release all the memory allocated by create.

The stackclient.c file can again be used to test the stack ADT. The calls
of create will need to be changed, however, since create now requires an
argument. For example, we could replace the statements

s1 = create();
s2 = create();

with the following statements:

s1 = create(100);
s2 = create(200);

Implementing the Stack ADT Using a Linked List

Implementing the stack ADT using a dynamically allocated array gives us more
flexibility than using a fixed-size array. However, the client is still required to spec-
ify a maximum size for a stack at the time it’s created. If we use a linked-list imple-
mentation instead, there won’t be any preset limit on the size of a stack.

C19.FM Page 499 Friday, February 15, 2008 4:06 PM

500 Chapter 19 Program Design

Our implementation will be similar to the one in the stack2.c file of Sec-
tion 19.2. The linked list will consist of nodes, represented by the following struc-
ture:

struct node {
 Item data;
 struct node *next;
};

The type of the data member is now Item rather than int, but the structure is
otherwise the same as before.

The stack_type structure will contain a pointer to the first node in the list:

struct stack_type {
 struct node *top;
};

At first glance, the stack_type structure seems superfluous; we could just
define Stack to be struct node * and let a Stack value be a pointer to the
first node in the list. However, we still need the stack_type structure so that
the interface to the stack remains unchanged. (If we did away with it, any func-
tion that modified the stack would need a Stack * parameter instead of a
Stack parameter.) Moreover, having the stack_type structure will make it
easier to change the implementation in the future, should we decide to store addi-
tional information. For example, if we later decide that the stack_type struc-
ture should contain a count of how many items are currently stored in the stack,
we can easily add a member to the stack_type structure to store this informa-
tion.

We won’t need to make any changes to the stackADT.h header. (We’ll
use this header file, not stackADT2.h.) We can also use the original stack-
client.c file for testing. All the changes will be in the stackADT.c file.
Here’s the new version:

stackADT3.c #include <stdio.h>
#include <stdlib.h>
#include "stackADT.h"

struct node {
 Item data;
 struct node *next;
};

struct stack_type {
 struct node *top;
};

static void terminate(const char *message)
{
 printf("%s\n", message);
 exit(EXIT_FAILURE);
}

C19.FM Page 500 Friday, February 15, 2008 4:06 PM

19.4 A Stack Abstract Data Type 501

Stack create(void)
{
 Stack s = malloc(sizeof(struct stack_type));
 if (s == NULL)
 terminate("Error in create: stack could not be created.");
 s->top = NULL;
 return s;
}

void destroy(Stack s)
{
 make_empty(s);
 free(s);
}

void make_empty(Stack s)
{
 while (!is_empty(s))
 pop(s);
}

bool is_empty(Stack s)
{
 return s->top == NULL;
}

bool is_full(Stack s)
{
 return false;
}

void push(Stack s, Item i)
{
 struct node *new_node = malloc(sizeof(struct node));
 if (new_node == NULL)
 terminate("Error in push: stack is full.");

 new_node->data = i;
 new_node->next = s->top;
 s->top = new_node;
}

Item pop(Stack s)
{
 struct node *old_top;
 Item i;

 if (is_empty(s))
 terminate("Error in pop: stack is empty.");

 old_top = s->top;
 i = old_top->data;
 s->top = old_top->next;
 free(old_top);
 return i;
}

C19.FM Page 501 Friday, February 15, 2008 4:06 PM

502 Chapter 19 Program Design

Note that the destroy function calls make_empty (to release the memory
occupied by the nodes in the linked list) before it calls free (to release the mem-
ory for the stack_type structure).

19.5 Design Issues for Abstract Data Types

Section 19.4 described a stack ADT and showed several ways to implement it.
Unfortunately, this ADT suffers from several problems that prevent it from being
industrial-strength. Let’s look at each of these problems and discuss possible solu-
tions.

Naming Conventions

The stack ADT functions currently have short, easy-to-understand names: cre-
ate, destroy, make_empty, is_empty, is_full, push, and pop. If we
have more than one ADT in a program, name clashes are likely, with functions
in two modules having the same name. (Each ADT will need its own create
function, for example.) Therefore, we’ll probably need to use function names
that incorporate the name of the ADT itself, such as stack_create instead of
create.

Error Handling

The stack ADT deals with errors by displaying an error message and terminating
the program. That’s not a bad thing to do. The programmer can avoid popping an
empty stack or pushing data onto a full stack by being careful to call is_empty
prior to each call of pop and is_full prior to each call of push, so in theory
there’s no reason for a call of push or pop to fail. (In the linked-list implementa-
tion, however, calling is_full isn’t foolproof; a subsequent call of push can
still fail.) Nevertheless, we might want to provide a way for a program to recover
from these errors rather than terminating.

An alternative is to have the push and pop functions return a bool value to
indicate whether or not they succeeded. push currently has a void return type, so
it would be easy to modify it to return true if the push operation succeeds and
false if the stack is full. Modifying the pop function would be more difficult,
since pop currently returns the value that was popped. However, if pop were to
return a pointer to this value, instead of the value itself, then pop could return
NULL to indicate that the stack is empty.

A final comment about error handling: The C standard library contains a
parameterized macro named assert that can terminate a program if a specified
condition isn’t satisfied. We could use calls of this macro as replacements for the
if statements and calls of terminate that currently appear in the stack ADT.

assert macro ➤24.1

C19.FM Page 502 Friday, February 15, 2008 4:06 PM

19.5 Design Issues for Abstract Data Types 503

Generic ADTs

Midway through Section 19.4, we improved the stack ADT by making it easier to
change the type of items stored in a stack—all we had to do was modify the defini-
tion of the Item type. It’s still somewhat of a nuisance to do so; it would be nicer
if a stack could accommodate items of any type, without the need to modify the
stack.h file. Also note that our stack ADT suffers from a serious flaw: a pro-
gram can’t create two stacks whose items have different types. It’s easy to create
multiple stacks, but those stacks must have items with identical types. To allow
stacks with different item types, we’d have to make copies of the stack ADT’s
header file and source file and modify one set of files so that the Stack type and
its associated functions have different names.

What we’d like to have is a single “generic” stack type from which we could
create a stack of integers, a stack of strings, or any other stack that we might need.
There are various ways to create such a type in C, but none are completely satisfac-
tory. The most common approach uses void * as the item type, which allows
arbitrary pointers to be pushed and popped. With this technique, the stack-
ADT.h file would be similar to our original version; however, the prototypes of the
push and pop functions would have the following appearance:

void push(Stack s, void *p);
void *pop(Stack s);

pop returns a pointer to the item popped from the stack; if the stack is empty, it
returns a null pointer.

There are two disadvantages to using void * as the item type. One is that this
approach doesn’t work for data that can’t be represented in pointer form. Items
could be strings (which are represented by a pointer to the first character in the
string) or dynamically allocated structures but not basic types such as int and
double. The other disadvantage is that error checking is no longer possible. A
stack that stores void * items will happily allow a mixture of pointers of different
types; there’s no way to detect an error caused by pushing a pointer of the wrong
type.

ADTs in Newer Languages

The problems that we’ve just discussed are dealt with much more cleanly in newer
C-based languages, such as C++, Java, and C#. Name clashes are prevented by
defining function names within a class. A stack ADT would be represented by a
Stack class; the stack functions would belong to this class, and would only be
recognized by the compiler when applied to a Stack object. These languages
have a feature known as exception handling that allows functions such as push
and pop to “throw” an exception when they detect an error condition. Code in the
client can then deal with the error by “catching” the exception. C++, Java, and C#
also provide special features for defining generic ADTs. In C++, for example, we
would define a stack template, leaving the item type unspecified.

C19.FM Page 503 Friday, February 15, 2008 4:06 PM

504 Chapter 19 Program Design

Q & A

Q: You said that C wasn’t designed for writing large programs. Isn’t UNIX a
large program? [p. 483]

A: Not at the time C was designed. In a 1978 paper, Ken Thompson estimated that the
UNIX kernel was about 10,000 lines of C code (plus a small amount of assembler).
Other components of UNIX were of comparable size; in another 1978 paper, Den-
nis Ritchie and colleagues put the size of the PDP-11 C compiler at 9660 lines. By
today’s standards, these are indeed small programs.

Q: Are there any abstract data types in the C library?
A: Technically there aren’t, but a few come close, including the FILE type (defined in

<stdio.h>). Before performing an operation on a file, we must declare a vari-
able of type FILE *:

FILE *fp;

The fp variable will then be passed to various file-handling functions.
Programmers are expected to treat FILE as an abstraction. It’s not necessary

to know what a FILE is in order to use the FILE type. Presumably FILE is a
structure type, but the C standard doesn’t even guarantee that. In fact, it’s better not
to know too much about how FILE values are stored, since the definition of the
FILE type can (and often does) vary from one C compiler to another.

Of course, we can always look in the stdio.h file and see what a FILE is.
Having done so, there’s nothing to prevent us from writing code to access the inter-
nals of a FILE. For example, we might discover that FILE is a structure with a
member named bsize (the file’s buffer size):

typedef struct {
 …
 int bsize; /* buffer size */
 …
} FILE;

Once we know about the bsize member, there’s nothing to prevent us from
accessing the buffer size for a particular file:

printf("Buffer size: %d\n", fp->bsize);

Doing so isn’t a good idea, however, because other C compilers might store the
buffer size under a different name, or keep track of it in some entirely different
way. Changing the bsize member is an even worse idea:

fp->bsize = 1024;

Unless we know all the details about how files are stored, this is a dangerous thing
to do. Even if we do know the details, they may change with a different compiler or
the next release of the same compiler.

FILE type ➤22.1

C19.FM Page 504 Friday, February 15, 2008 4:06 PM

Exercises 505

Q: What other incomplete types are there besides incomplete structure types? [p.
492]

A: One of the most common incomplete types occurs when an array is declared with
no specified size:

extern int a[];

After this declaration (which we first encountered in Section 15.2), a has an
incomplete type, because the compiler doesn’t know a’s length. Presumably a is
defined in another file within the program; that definition will supply the missing
length. Another incomplete type occurs in declarations that specify no length for
an array but provide an initializer:

int a[] = {1, 2, 3};

In this example, the array a initially has an incomplete type, but the type is com-
pleted by the initializer.

Declaring a union tag without specifying the members of the union also cre-
ates an incomplete type. Flexible array members (a C99 feature) have an incom-
plete type. Finally, void is an incomplete type. The void type has the unusual
property that it can never be completed, thus making it impossible to declare a
variable of this type.

Q: What other restrictions are there on the use of incomplete types? [p. 492]
A: The sizeof operator can’t be applied to an incomplete type (not surprisingly,

since the size of an incomplete type is unknown). A member of a structure or
union (other than a flexible array member) can’t have an incomplete type. Simi-
larly, the elements of an array can’t have an incomplete type. Finally, a parameter
in a function definition can’t have an incomplete type (although this is allowed in
a function declaration). The compiler “adjusts” each array parameter in a function
definition so that it has a pointer type, thus preventing it from having an incom-
plete type.

Exercises

Section 19.1 1. A queue is similar to a stack, except that items are added at one end but removed from the
other in a FIFO (first-in, first-out) fashion. Operations on a queue might include:

Inserting an item at the end of the queue
Removing an item from the beginning of the queue
Returning the first item in the queue (without changing the queue)
Returning the last item in the queue (without changing the queue)
Testing whether the queue is empty

Write an interface for a queue module in the form of a header file named queue.h.

Section 19.2 2. Modify the stack2.c file to use the PUBLIC and PRIVATE macros.

C99
flexible array members ➤17.9

W

C19.FM Page 505 Friday, February 15, 2008 4:06 PM

506 Chapter 19 Program Design

3. (a) Write an array-based implementation of the queue module described in Exercise 1. Use
three integers to keep track of the queue’s status, with one integer storing the position of the
first empty slot in the array (used when an item is inserted), the second storing the position
of the next item to be removed, and the third storing the number of items in the queue. An
insertion or removal that would cause either of the first two integers to be incremented past
the end of the array should instead reset the variable to zero, thus causing it to “wrap
around” to the beginning of the array.

(b) Write a linked-list implementation of the queue module described in Exercise 1. Use
two pointers, one pointing to the first node in the list and the other pointing to the last node.
When an item is inserted into the queue, add it to the end of the list. When an item is
removed from the queue, delete the first node in the list.

Section 19.3 4. (a) Write an implementation of the Stack type, assuming that Stack is a structure con-
taining a fixed-length array.

(b) Redo the Stack type, this time using a linked-list representation instead of an array.
(Show both stack.h and stack.c.)

5. Modify the queue.h header of Exercise 1 so that it defines a Queue type, where Queue
is a structure containing a fixed-length array (see Exercise 3(a)). Modify the functions in
queue.h to take a Queue * parameter.

Section 19.4 6. (a) Add a peek function to stackADT.c. This function will have a parameter of type
Stack. When called, it returns the top item on the stack but doesn’t modify the stack.

(b) Repeat part (a), modifying stackADT2.c this time.

(c) Repeat part (a), modifying stackADT3.c this time.

7. Modify stackADT2.c so that a stack automatically doubles in size when it becomes full.
Have the push function dynamically allocate a new array that’s twice as large as the old
one and then copy the stack contents from the old array to the new one. Be sure to have
push deallocate the old array once the data has been copied.

Programming Projects

1. Modify Programming Project 1 from Chapter 10 so that it uses the stack ADT described in
Section 19.4. You may use any of the implementations of the ADT described in that section.

2. Modify Programming Project 6 from Chapter 10 so that it uses the stack ADT described in
Section 19.4. You may use any of the implementations of the ADT described in that section.

3. Modify the stackADT3.c file of Section 19.4 by adding an int member named len to
the stack_type structure. This member will keep track of how many items are currently
stored in a stack. Add a new function named length that has a Stack parameter and
returns the value of the len member. (Some of the existing functions in stackADT3.c
will need to be modified as well.) Modify stackclient.c so that it calls the length
function (and displays the value that it returns) after each operation that modifies a stack.

4. Modify the stackADT.h and stackADT3.c files of Section 19.4 so that a stack stores
values of type void *, as described in Section 19.5; the Item type will no longer be used.
Modify stackclient.c so that it stores pointers to strings in the s1 and s2 stacks.

W

C19.FM Page 506 Friday, February 15, 2008 4:06 PM

Programming Projects 507

5. Starting from the queue.h header of Exercise 1, create a file named queueADT.h that
defines the following Queue type:

typedef struct queue_type *Queue;

queue_type is an incomplete structure type. Create a file named queueADT.c that con-
tains the full definition of queue_type as well as definitions for all the functions in
queue.h. Use a fixed-length array to store the items in a queue (see Exercise 3(a)). Create
a file named queueclient.c (similar to the stackclient.c file of Section 19.4) that
creates two queues and performs operations on them. Be sure to provide create and
destroy functions for your ADT.

6. Modify Programming Project 5 so that the items in a queue are stored in a dynamically allo-
cated array whose length is passed to the create function.

7. Modify Programming Project 5 so that the items in a queue are stored in a linked list (see
Exercise 3(b)).

C19.FM Page 507 Friday, February 15, 2008 4:06 PM

C19.FM Page 508 Friday, February 15, 2008 4:06 PM

509

20 Low-Level Programming

A programming language is low level when its
programs require attention to the irrelevant.

Previous chapters have described C’s high-level, machine-independent features.
Although these features are adequate for many applications, some programs need
to perform operations at the bit level. Bit manipulation and other low-level opera-
tions are especially useful for writing systems programs (including compilers and
operating systems), encryption programs, graphics programs, and programs for
which fast execution and/or efficient use of space is critical.

Section 20.1 covers C’s bitwise operators, which provide easy access to both
individual bits and bit-fields. Section 20.2 then shows how to declare structures
that contain bit-fields. Finally, Section 20.3 describes how certain ordinary C fea-
tures (type definitions, unions, and pointers) can help in writing low-level pro-
grams.

Some of the techniques described in this chapter depend on knowledge of how
data is stored in memory, which can vary depending on the machine and the com-
piler. Relying on these techniques will most likely make a program nonportable, so
it’s best to avoid them unless absolutely necessary. If you do need them, try to limit
their use to certain modules in your program; don’t spread them around. And,
above all, be sure to document what you’re doing!

20.1 Bitwise Operators

C provides six bitwise operators, which operate on integer data at the bit level.
We’ll discuss the two bitwise shift operators first, followed by the four other bit-
wise operators (bitwise complement, bitwise and, bitwise exclusive or, and bitwise
inclusive or).

C20.FM Page 509 Friday, February 15, 2008 4:09 PM

510 Chapter 20 Low-Level Programming

Bitwise Shift Operators

The bitwise shift operators can transform the binary representation of an integer by
shifting its bits to the left or right. C provides two shift operators, which are shown
in Table 20.1.

The operands for << and >> may be of any integer type (including char). The
integer promotions are performed on both operands; the result has the type of the
left operand after promotion.

The value of i << j is the result when the bits in i are shifted left by j places.
For each bit that is “shifted off” the left end of i, a zero bit enters at the right. The
value of i >> j is the result when i is shifted right by j places. If i is of an
unsigned type or if the value of i is nonnegative, zeros are added at the left as
needed. If i is a negative number, the result is implementation-defined; some
implementations add zeros at the left end, while others preserve the sign bit by
adding ones.

portability tip For portability, it’s best to perform shifts only on unsigned numbers.

The following examples illustrate the effect of applying the shift operators to
the number 13. (For simplicity, these examples—and others in this section—use
short integers, which are typically 16 bits.)

unsigned short i, j;

i = 13; /* i is now 13 (binary 0000000000001101) */
j = i << 2; /* j is now 52 (binary 0000000000110100) */
j = i >> 2; /* j is now 3 (binary 0000000000000011) */

As these examples show, neither operator modifies its operands. To modify a vari-
able by shifting its bits, we’d use the compound assignment operators <<= and
>>=:

i = 13; /* i is now 13 (binary 0000000000001101) */
i <<= 2; /* i is now 52 (binary 0000000000110100) */
i >>= 2; /* i is now 13 (binary 0000000000001101) */

The bitwise shift operators have lower precedence than the arithmetic operators,
which can cause surprises. For example, i << 2 + 1 means i << (2 + 1), not
(i << 2) + 1.

Symbol Meaning

<<
>>

left shift
right shift

Table 20.1
Bitwise Shift Operators

C20.FM Page 510 Friday, February 15, 2008 4:09 PM

20.1 Bitwise Operators 511

Bitwise Complement, And, Exclusive Or, and Inclusive Or

Table 20.2 lists the remaining bitwise operators.

The ~ operator is unary; the integer promotions are performed on its operand. The
other operators are binary; the usual arithmetic conversions are performed on their
operands.

The ~, &, ^, and | operators perform Boolean operations on all bits in their
operands. The ~ operator produces the complement of its operand, with zeros
replaced by ones and ones replaced by zeros. The & operator performs a Boolean
and operation on all corresponding bits in its two operands. The ^ and | operators
are similar (both perform a Boolean or operation on the bits in their operands);
however, ^ produces 0 whenever both operands have a 1 bit, whereas | produces
1.

Don’t confuse the bitwise operators & and | with the logical operators && and ||.
The bitwise operators sometimes produce the same results as the logical operators,
but they’re not equivalent.

The following examples illustrate the effect of the ~, &, ^, and | operators:

unsigned short i, j, k;

i = 21; /* i is now 21 (binary 0000000000010101) */
j = 56; /* j is now 56 (binary 0000000000111000) */
k = ~i; /* k is now 65514 (binary 1111111111101010) */
k = i & j; /* k is now 16 (binary 0000000000010000) */
k = i ^ j; /* k is now 45 (binary 0000000000101101) */
k = i | j; /* k is now 61 (binary 0000000000111101) */

The value shown for ~i is based on the assumption that an unsigned short
value occupies 16 bits.

The ~ operator deserves special mention, since we can use it to help make
even low-level programs more portable. Suppose that we need an integer whose
bits are all 1. The preferred technique is to write ~0, which doesn’t depend on the
number of bits in an integer. Similarly, if we need an integer whose bits are all 1
except for the last five, we could write ~0x1f.

Symbol Meaning

~
&
^
|

bitwise complement
bitwise and
bitwise exclusive or
bitwise inclusive or

Table 20.2
Other Bitwise Operators

Q&A

C20.FM Page 511 Friday, February 15, 2008 4:09 PM

512 Chapter 20 Low-Level Programming

Each of the ~, &, ^, and | operators has a different precedence:

Highest: ~
&
^

Lowest: |

As a result, we can combine these operators in expressions without having to use
parentheses. For example, we could write i & ~j | k instead of (i & (~j)) | k
and i ^ j & ~k instead of i ^ (j & (~k)). Of course, it doesn’t hurt to use
parentheses to avoid confusion.

The precedence of &, ^, and | is lower than the precedence of the relational and
equality operators. Consequently, statements like the following one won’t have the
desired effect:

if (status & 0x4000 != 0) …

Instead of testing whether status & 0x4000 isn’t zero, this statement will
evaluate 0x4000 != 0 (which has the value 1), then test whether the value of
status & 1 isn’t zero.

The compound assignment operators &=, ^=, and |= correspond to the bit-
wise operators &, ^, and |:

i = 21; /* i is now 21 (binary 0000000000010101) */
j = 56; /* j is now 56 (binary 0000000000111000) */
i &= j; /* i is now 16 (binary 0000000000010000) */
i ^= j; /* i is now 40 (binary 0000000000101000) */
i |= j; /* i is now 56 (binary 0000000000111000) */

Using the Bitwise Operators to Access Bits

When we do low-level programming, we’ll often need to store information as sin-
gle bits or collections of bits. In graphics programming, for example, we may want
to squeeze two or more pixels into a single byte. Using the bitwise operators, we
can extract or modify data that’s stored in a small number of bits.

Let’s assume that i is a 16-bit unsigned short variable. Let’s see how to
perform the most common single-bit operations on i:

� Setting a bit. Suppose that we want to set bit 4 of i. (We’ll assume that the
leftmost—or most significant—bit is numbered 15 and the least significant is
numbered 0.) The easiest way to set bit 4 is to or the value of i with the con-
stant 0x0010 (a “mask” that contains a 1 bit in position 4):

i = 0x0000; /* i is now 0000000000000000 */
i |= 0x0010; /* i is now 0000000000010000 */

More generally, if the position of the bit is stored in the variable j, we can use
a shift operator to create the mask:

table of operators ➤Appendix A

C20.FM Page 512 Friday, February 15, 2008 4:09 PM

20.1 Bitwise Operators 513

idiom i |= 1 << j; /* sets bit j */

For example, if j has the value 3, then 1 << j is 0x0008.

� Clearing a bit. To clear bit 4 of i, we’d use a mask with a 0 bit in position 4
and 1 bits everywhere else:

i = 0x00ff; /* i is now 0000000011111111 */
i &= ~0x0010; /* i is now 0000000011101111 */

Using the same idea, we can easily write a statement that clears a bit whose
position is stored in a variable:

idiom i &= ~(1 << j); /* clears bit j */

� Testing a bit. The following if statement tests whether bit 4 of i is set:

if (i & 0x0010) … /* tests bit 4 */

To test whether bit j is set, we’d use the following statement:

idiom if (i & 1 << j) … /* tests bit j */

To make working with bits easier, we’ll often give them names. For example,
suppose that we want bits 0, 1, and 2 of a number to correspond to the colors blue,
green, and red, respectively. First, we define names that represent the three bit
positions:

#define BLUE 1
#define GREEN 2
#define RED 4

Setting, clearing, and testing the BLUE bit would be done as follows:

i |= BLUE; /* sets BLUE bit */
i &= ~BLUE; /* clears BLUE bit */
if (i & BLUE) … /* tests BLUE bit */

It’s also easy to set, clear, or test several bits at time:

i |= BLUE | GREEN; /* sets BLUE and GREEN bits */
i &= ~(BLUE | GREEN); /* clears BLUE and GREEN bits */
if (i & (BLUE | GREEN)) … /* tests BLUE and GREEN bits */

The if statement tests whether either the BLUE bit or the GREEN bit is set.

Using the Bitwise Operators to Access Bit-Fields

Dealing with a group of several consecutive bits (a bit-field) is slightly more com-
plicated than working with single bits. Here are examples of the two most common
bit-field operations:

� Modifying a bit-field. Modifying a bit-field requires a bitwise and (to clear the
bit-field), followed by a bitwise or (to store new bits in the bit-field). The fol-
lowing statement shows how we might store the binary value 101 in bits 4–6
of the variable i:

C20.FM Page 513 Friday, February 15, 2008 4:09 PM

514 Chapter 20 Low-Level Programming

i = i & ~0x0070 | 0x0050; /* stores 101 in bits 4-6 */

The & operator clears bits 4–6 of i; the | operator then sets bits 6 and 4.
Notice that i |= 0x0050 by itself wouldn’t always work: it would set bits 6
and 4 but not change bit 5. To generalize the example a little, let’s assume that
the variable j contains the value to be stored in bits 4–6 of i. We’ll need to
shift j into position before performing the bitwise or:

i = (i & ~0x0070) | (j << 4); /* stores j in bits 4-6 */

The | operator has lower precedence than & and <<, so we can drop the paren-
theses if we wish:

i = i & ~0x0070 | j << 4;

� Retrieving a bit-field. When the bit-field is at the right end of a number (in the
least significant bits), fetching its value is easy. For example, the following
statement retrieves bits 0–2 in the variable i:

j = i & 0x0007; /* retrieves bits 0-2 */

If the bit-field isn’t at the right end of of i, then we can first shift the bit-field
to the end before extracting the field using the & operator. To extract bits 4–6
of i, for example, we could use the following statement:

j = (i >> 4) & 0x0007; /* retrieves bits 4-6 */

PROGRAM XOR Encryption

One of the simplest ways to encrypt data is to exclusive-or (XOR) each character
with a secret key. Suppose that the key is the & character. If we XOR this key with
the character z, we’ll get the \ character (assuming that we’re using the ASCII
character set):

00100110 (ASCII code for &)
XOR 01111010 (ASCII code for z)

01011100 (ASCII code for \)

To decrypt a message, we just apply the same algorithm. In other words, by
encrypting an already-encrypted message, we’ll recover the original message. If
we XOR the & character with the \ character, for example, we’ll get the original
character, z:

00100110 (ASCII code for &)
XOR 01011100 (ASCII code for \)

01111010 (ASCII code for z)

The following program, xor.c, encrypts a message by XORing each charac-
ter with the & character. The original message can be entered by the user or read
from a file using input redirection; the encrypted message can be viewed on the
screen or saved in a file using output redirection. For example, suppose that the file

ASCII character set ➤Appendix E

input and output redirection ➤22.1

C20.FM Page 514 Friday, February 15, 2008 4:09 PM

20.1 Bitwise Operators 515

msg contains the following lines:

Trust not him with your secrets, who, when left
alone in your room, turns over your papers.
 --Johann Kaspar Lavater (1741-1801)

To encrypt the msg file, saving the encrypted message in newmsg, we’d use the
following command:

xor <msg >newmsg

newmsg will now contain these lines:

rTSUR HIR NOK QORN _IST UCETCRU, QNI, QNCH JC@R
GJIHC OH _IST TIIK, RSTHU IPCT _IST VGVCTU.
 --lINGHH mGUVGT jGPGRCT (1741-1801)

To recover the original message, we’d use the command

xor <newmsg

which will display it on the screen.
As the example shows, our program won’t change some characters, including

digits. XORing these characters with & would produce invisible control characters,
which could cause problems with some operating systems. In Chapter 22, we’ll see
how to avoid problems when reading and writing files that contain control charac-
ters. Until then, we’ll play it safe by using the isprint function to make sure
that both the original character and the new (encrypted) character are printing char-
acters (i.e., not control characters). If either character fails this test, we’ll have the
program write the original character instead of the new character.

Here’s the finished program, which is remarkably short:

xor.c /* Performs XOR encryption */

#include <ctype.h>
#include <stdio.h>

#define KEY '&'

int main(void)
{
 int orig_char, new_char;

 while ((orig_char = getchar()) != EOF) {
 new_char = orig_char ^ KEY;
 if (isprint(orig_char) && isprint(new_char))
 putchar(new_char);
 else
 putchar(orig_char);
 }

 return 0;
}

isprint function ➤23.5

C20.FM Page 515 Friday, February 15, 2008 4:09 PM

516 Chapter 20 Low-Level Programming

20.2 Bit-Fields in Structures

Although the techniques of Section 20.1 allow us to work with bit-fields, these
techniques can be tricky to use and potentially confusing. Fortunately, C provides
an alternative: declaring structures whose members represent bit-fields.

As an example, let’s look at how the MS-DOS operating system (often just
called DOS) stores the date at which a file was created or last modified. Since
days, months, and years are small numbers, storing them as normal integers would
waste space. Instead, DOS allocates only 16 bits for a date, with 5 bits for the day,
4 bits for the month, and 7 bits for the year:

Using bit-fields, we can define a C structure with an identical layout:

struct file_date {
 unsigned int day: 5;
 unsigned int month: 4;
 unsigned int year: 7;
};

The number after each member indicates its length in bits. Since the members all
have the same type, we can condense the declaration if we want:

struct file_date {
 unsigned int day: 5, month: 4, year: 7;
};

The type of a bit-field must be either int, unsigned int, or signed int.
Using int is ambiguous; some compilers treat the field’s high-order bit as a sign
bit, but others don’t.

portability tip Declare all bit-fields to be either unsigned int or signed int.

In C99, bit-fields may also have type _Bool. C99 compilers may allow additional
bit-field types.

We can use a bit-field just like any other member of a structure, as the follow-
ing example shows:

struct file_date fd;

fd.day = 28;
fd.month = 12;
fd.year = 8; /* represents 1988 */

Note that the year member is stored relative to 1980 (the year the world began,

Q&A

15 14 13 12 10 9 8 7 6 5 4 3 2 1 011

year month day

C99

C20.FM Page 516 Friday, February 15, 2008 4:09 PM

20.2 Bit-Fields in Structures 517

according to Microsoft). After these assignments, the fd variable will have the fol-
lowing appearance:

We could have used the bitwise operators to accomplish the same effect; using
these operators might even make the program a little faster. However, having a
readable program is usually more important than gaining a few microseconds.

Bit-fields do have one restriction that doesn’t apply to other members of a
structure. Since bit-fields don’t have addresses in the usual sense, C doesn’t allow
us to apply the address operator (&) to a bit-field. Because of this rule, functions
such as scanf can’t store data directly in a bit-field:

scanf("%d", &fd.day); /*** WRONG ***/

Of course, we can always use scanf to read input into an ordinary variable and
then assign it to fd.day.

How Bit-Fields Are Stored

Let’s take a close look at how a compiler processes the declaration of a structure
that has bit-field members. As we’ll see, the C standard allows the compiler con-
siderable latitude in choosing how it stores bit-fields.

The rules concerning how the compiler handles bit-fields depend on the notion
of “storage units.” The size of a storage unit is implementation-defined; typical
values are 8 bits, 16 bits, and 32 bits. As it processes a structure declaration, the
compiler packs bit-fields one by one into a storage unit, with no gaps between the
fields, until there’s not enough room for the next field. At that point, some compil-
ers skip to the beginning of the next storage unit, while others split the bit-field
across the storage units. (Which one occurs is implementation-defined.) The order
in which bit-fields are allocated (left to right or right to left) is also implementa-
tion-defined.

Our file_date example assumes that storage units are 16 bits long. (An 8-
bit storage unit would also be acceptable, provided that the compiler splits the
month field across two storage units.) We also assume that bit-fields are allocated
from right to left (with the first bit-field occupying the low-order bits).

C allows us to omit the name of any bit-field. Unnamed bit-fields are useful as
“padding” to ensure that other bit fields are properly positioned. Consider the time
associated with a DOS file, which is stored in the following way:

struct file_time {
 unsigned int seconds: 5;
 unsigned int minutes: 6;
 unsigned int hours: 5;
};

0

15

0

14

0

13

1

12

0

10

0

9

1

8

1

7

0

6

0

5

1

4

1

3

1

2

0

1

0

0

0

11

C20.FM Page 517 Friday, February 15, 2008 4:09 PM

518 Chapter 20 Low-Level Programming

(You may be wondering how it’s possible to store the seconds—a number between
0 and 59—in a field with only 5 bits. Well, DOS cheats: it divides the number of
seconds by 2, so the seconds member is actually between 0 and 29.) If we’re not
interested in the seconds field, we can leave out its name:

struct file_time {
 unsigned int : 5; /* not used */
 unsigned int minutes: 6;
 unsigned int hours: 5;
};

The remaining bit-fields will be aligned as if the seconds field were still present.
Another trick that we can use to control the storage of bit-fields is to specify 0

as the length of an unnamed bit-field:

struct s {
 unsigned int a: 4;
 unsigned int : 0; /* 0-length bit-field */
 unsigned int b: 8;
};

A 0-length bit-field is a signal to the compiler to align the following bit-field at the
beginning of a storage unit. If storage units are 8 bits long, the compiler will allo-
cate 4 bits for the a member, skip 4 bits to the next storage unit, and then allocate 8
bits for b. If storage units are 16 bits long, the compiler will allocate 4 bits for a,
skip 12 bits, and then allocate 8 bits for b.

20.3 Other Low-Level Techniques

Some of the language features that we’ve covered in previous chapters are used
often in low-level programming. To wrap up this chapter, we’ll take a look at sev-
eral important examples: defining types that represent units of storage, using
unions to bypass normal type-checking, and using pointers as addresses. We’ll also
cover the volatile type qualifier, which we avoided discussing in Section 18.3
because of its low-level nature.

Defining Machine-Dependent Types

Since the char type—by definition—occupies one byte, we’ll sometimes treat
characters as bytes, using them to store data that’s not necessarily in character
form. When we do so, it’s a good idea to define a BYTE type:

typedef unsigned char BYTE;

Depending on the machine, we may want to define additional types. The x86 archi-
tecture makes extensive use of 16-bit words, so the following definition would be
useful for that platform:

C20.FM Page 518 Friday, February 15, 2008 4:09 PM

20.3 Other Low-Level Techniques 519

typedef unsigned short WORD;

We’ll use the BYTE and WORD types in later examples.

Using Unions to Provide Multiple Views of Data

Although unions can be used in a portable way—see Section 16.4 for examples—
they’re often used in C for an entirely different purpose: viewing a block of mem-
ory in two or more different ways.

Here’s a simple example based on the file_date structure described in
Section 20.2. Since a file_date structure fits into two bytes, we can think of
any two-byte value as a file_date structure. In particular, we could view an
unsigned short value as a file_date structure (assuming that short inte-
gers are 16 bits long). The following union allows us to easily convert a short inte-
ger to a file date or vice versa:

union int_date {
 unsigned short i;
 struct file_date fd;
};

With the help of this union, we could fetch a file date from disk as two bytes, then
extract its month, day, and year fields. Conversely, we could construct a date as
a file_date structure, then write it to disk as a pair of bytes.

As an example of how we might use the int_date union, here’s a function
that, when passed an unsigned short argument, prints it as a file date:

void print_date(unsigned short n)
{
 union int_date u;

 u.i = n;
 printf("%d/%d/%d\n", u.fd.month, u.fd.day, u.fd.year + 1980);
}

Using unions to allow multiple views of data is especially useful when work-
ing with registers, which are often divided into smaller units. x86 processors, for
example, have 16-bit registers named AX, BX, CX, and DX. Each of these regis-
ters can be treated as two 8-bit registers. AX, for example, is divided into registers
named AH and AL. (The H and L stand for “high” and “low.”)

When writing low-level applications for x86-based computers, we may need
variables that represent the contents of the AX, BX, CX, and DX registers. We
want access to both the 16- and 8-bit registers; at the same time, we need to take
their relationships into account (a change to AX affects both AH and AL; changing
AH or AL modifies AX). The solution is to set up two structures, one containing
members that correspond to the 16-bit registers, and the other containing members
that match the 8-bit registers. We then create a union that encloses the two struc-
tures:

C20.FM Page 519 Friday, February 15, 2008 4:09 PM

520 Chapter 20 Low-Level Programming

union {
 struct {
 WORD ax, bx, cx, dx;
 } word;
 struct {
 BYTE al, ah, bl, bh, cl, ch, dl, dh;
 } byte;
} regs;

The members of the word structure will be overlaid with the members of the
byte structure; for example, ax will occupy the same memory as al and ah. And
that, of course, is exactly what we wanted. Here’s an example showing how the
regs union might be used:

regs.byte.ah = 0x12;
regs.byte.al = 0x34;
printf("AX: %hx\n", regs.word.ax);

Changing ah and al affects ax, so the output will be

AX: 1234

Note that the byte structure lists al before ah, even though the AL register
is the “low” half of AX and AH is the “high” half. Here’s the reason. When a data
item consists of more than one byte, there are two logical ways to store it in mem-
ory: with the bytes in the “natural” order (with the leftmost byte stored first) or
with the bytes in reverse order (the leftmost byte is stored last). The first alternative
is called big-endian; the second is known as little-endian. C doesn’t require a spe-
cific byte ordering, since that depends on the CPU on which a program will be exe-
cuted. Some CPUs use the big-endian approach and some use the little-endian
approach. What does this have to do with the byte structure? It turns out that x86
processors assume that data is stored in little-endian order, so the first byte of
regs.word.ax is the low byte.

We don’t normally need to worry about byte ordering. However, programs that
deal with memory at a low level must be aware of the order in which bytes are
stored (as the regs example illustrates). It’s also relevant when working with files
that contain non-character data.

Be careful when using unions to provide multiple views of data. Data that is valid
in its original format may be invalid when viewed as a different type, causing
unexpected problems.

Using Pointers as Addresses

We saw in Section 11.1 that a pointer is really some kind of memory address,
although we usually don’t need to know the details. When we do low-level pro-
gramming, however, the details matter.

Q&A

C20.FM Page 520 Friday, February 15, 2008 4:09 PM

20.3 Other Low-Level Techniques 521

An address often has the same number of bits as an integer (or long integer).
Creating a pointer that represents a specific address is easy: we just cast an integer
into a pointer. For example, here’s how we might store the address 1000 (hex) in a
pointer variable:

BYTE *p;

p = (BYTE *) 0x1000; /* p contains address 0x1000 */

PROGRAM Viewing Memory Locations

Our next program allows the user to view segments of computer memory; it relies
on C’s willingness to allow an integer to be used as a pointer. Most CPUs execute
programs in “protected mode,” however, which means that a program can access
only those portions of memory that belong to the program. This prevents a pro-
gram from accessing (or changing) memory that belongs to another application or
to the operating system itself. As a result, we’ll only be able to use our program to
view areas of memory that have been allocated for use by the program itself. Going
outside these regions will cause the program to crash.

The viewmemory.c program begins by displaying the address of its own
main function as well as the address of one of its variables. This will give the user
a clue as to which areas of memory can be probed. The program next prompts the
user to enter an address (in the form of a hexadecimal integer) plus the number of
bytes to view. The program then displays a block of bytes of the chosen length,
starting at the specified address.

Bytes are displayed in groups of 10 (except for the last group, which may have
fewer than 10 bytes). The address of a group of bytes is displayed at the beginning
of a line, followed by the bytes in the group (displayed as hexadecimal numbers),
followed by the same bytes displayed as characters (just in case the bytes happen to
represent characters, as some of them may). Only printing characters (as deter-
mined by the isprint function) will be displayed; other characters will be
shown as periods.

We’ll assume that int values are stored using 32 bits and that addresses are
also 32 bits long. Addresses are displayed in hexadecimal, as is customary.

viewmemory.c /* Allows the user to view regions of computer memory */

#include <ctype.h>
#include <stdio.h>

typedef unsigned char BYTE;

int main(void)
{
 unsigned int addr;
 int i, n;
 BYTE *ptr;

 printf("Address of main function: %x\n", (unsigned int) main);
 printf("Address of addr variable: %x\n", (unsigned int) &addr);

C20.FM Page 521 Friday, February 15, 2008 4:09 PM

522 Chapter 20 Low-Level Programming

 printf("\nEnter a (hex) address: ");
 scanf("%x", &addr);
 printf("Enter number of bytes to view: ");
 scanf("%d", &n);

 printf("\n");
 printf(" Address Bytes Characters\n");
 printf(" ------- ----------------------------- ----------\n");

 ptr = (BYTE *) addr;
 for (; n > 0; n -= 10) {
 printf("%8X ", (unsigned int) ptr);
 for (i = 0; i < 10 && i < n; i++)
 printf("%.2X ", *(ptr + i));
 for (; i < 10; i++)
 printf(" ");
 printf(" ");
 for (i = 0; i < 10 && i < n; i++) {
 BYTE ch = *(ptr + i);
 if (!isprint(ch))
 ch = '.';
 printf("%c", ch);
 }
 printf("\n");
 ptr += 10;
 }

 return 0;
}

The program is complicated somewhat by the possibility that the value of n
isn’t a multiple of 10, so there may be fewer than 10 bytes in the last group. Two of
the for statements are controlled by the condition i < 10 && i < n. This condi-
tion causes the loops to execute 10 times or n times, whichever is smaller. There’s
also a for statement that compensates for any missing bytes in the last group by
displaying three spaces for each missing byte. That way, the characters that follow
the last group of bytes will align properly with the character groups on previous
lines.

The %X conversion specifier used in this program is similar to %x, which was
discussed in Section 7.1. The difference is that %X displays the hexadecimal digits
A, B, C, D, E, and F as upper-case letters; %x displays them in lower case.

Here’s what happened when I compiled the program using GCC and tested it
on an x86 system running Linux:

Address of main function: 804847c
Address of addr variable: bff41154

Enter a (hex) address: 8048000
Enter number of bytes to view: 40

 Address Bytes Characters
 ------- ----------------------------- ----------
 8048000 7F 45 4C 46 01 01 01 00 00 00 .ELF......
 804800A 00 00 00 00 00 00 02 00 03 00
 8048014 01 00 00 00 C0 83 04 08 34 00 4.
 804801E 00 00 C0 0A 00 00 00 00 00 00

C20.FM Page 522 Friday, February 15, 2008 4:09 PM

20.3 Other Low-Level Techniques 523

I asked the program to display 40 bytes starting at address 8048000, which pre-
cedes the address of the main function. Note the 7F byte followed by bytes repre-
senting the letters E, L, and F. These four bytes identify the format (ELF) in which
the executable file was stored. ELF (Executable and Linking Format) is widely
used by UNIX systems, including Linux. 8048000 is the default address at which
ELF executables are loaded on x86 platforms.

Let’s run the program again, this time displaying a block of bytes that starts at
the address of the addr variable:

Address of main function: 804847c
Address of addr variable: bfec5484

Enter a (hex) address: bfec5484
Enter number of bytes to view: 64

 Address Bytes Characters
 ------- ----------------------------- ----------
BFEC5484 84 54 EC BF B0 54 EC BF F4 6F .T...T...o
BFEC548E 68 00 34 55 EC BF C0 54 EC BF h.4U...T..
BFEC5498 08 55 EC BF E3 3D 57 00 00 00 .U...=W...
BFEC54A2 00 00 A0 BC 55 00 08 55 EC BF U..U..
BFEC54AC E3 3D 57 00 01 00 00 00 34 55 .=W.....4U
BFEC54B6 EC BF 3C 55 EC BF 56 11 55 00 ..<U..V.U.
BFEC54C0 F4 6F 68 00 .oh.

None of the data stored in this region of memory is in character form, so it’s a bit
hard to follow. However, we do know one thing: the addr variable occupies the
first four bytes of this region. When reversed, these bytes form the number
BFEC5484, the address entered by the user. Why the reversal? Because x86 pro-
cessors store data in little-endian order, as we saw earlier in this section.

The volatile Type Qualifier

On some computers, certain memory locations are “volatile”; the value stored at
such a location can change as a program is running, even though the program itself
isn’t storing new values there. For example, some memory locations might hold
data coming directly from input devices.

The volatile type qualifier allows us to inform the compiler if any of the
data used in a program is volatile. volatile typically appears in the declaration
of a pointer variable that will point to a volatile memory location:

volatile BYTE *p; /* p will point to a volatile byte */

To see why volatile is needed, suppose that p points to a memory location
that contains the most recent character typed at the user’s keyboard. This location
is volatile: its value changes each time the user enters a character. We might use the
following loop to obtain characters from the keyboard and store them in a buffer
array:

C20.FM Page 523 Friday, February 15, 2008 4:09 PM

524 Chapter 20 Low-Level Programming

while (buffer not full) {
 wait for input;
 buffer[i] = *p;
 if (buffer[i++] == '\n')
 break;
}

A sophisticated compiler might notice that this loop changes neither p nor *p, so it
could optimize the program by altering it so that *p is fetched just once:

store *p in a register;
while (buffer not full) {
 wait for input;
 buffer[i] = value stored in register;
 if (buffer[i++] == '\n')
 break;
}

The optimized program will fill the buffer with many copies of the same charac-
ter—not exactly what we had in mind. Declaring that p points to volatile data
avoids this problem by telling the compiler that *p must be fetched from memory
each time it’s needed.

Q & A

Q: What do you mean by saying that the & and | operators sometimes produce
the same results as the && and || operators, but not always? [p. 511]

A: Let’s compare i & j with i && j (similar remarks apply to | and ||). As long as
i and j have the value 0 or 1 (in any combination), the two expressions will have
the same value. However, if i and j should have other values, the expressions may
not always match. If i is 1 and j is 2, for example, then i & j has the value 0 (i
and j have no corresponding 1 bits), while i && j has the value 1. If i is 3 and j
is 2, then i & j has the value 2, while i && j has the value 1.

Side effects are another difference. Evaluating i & j++ always increments j
as a side effect, whereas evaluating i && j++ sometimes increments j.

Q: Who cares how DOS stores file dates? Isn’t DOS dead? [p. 516]
A: For the most part, yes. However, there are still plenty of files created years ago

whose dates are stored in the DOS format. In any event, DOS file dates are a good
example of how bit-fields are used.

Q: Where do the terms “big-endian” and “little-endian” come from? [p. 520]
A: In Jonathan Swift’s novel Gulliver’s Travels, the fictional islands of Lilliput and

Blefuscu are perpetually at odds over whether to open boiled eggs on the big end
or the little end. The choice is arbitrary, of course, just like the order of bytes in a
data item.

C20.FM Page 524 Friday, February 15, 2008 4:09 PM

Exercises 525

Exercises

Section 20.1 *1. Show the output produced by each of the following program fragments. Assume that i, j,
and k are unsigned short variables.

2. Describe a simple way to “toggle” a bit (change it from 0 to 1 or from 1 to 0). Illustrate the
technique by writing a statement that toggles bit 4 of the variable i.

*3. Explain what effect the following macro has on its arguments. You may assume that the
arguments have the same type.

#define M(x,y) ((x)^=(y),(y)^=(x),(x)^=(y))

4. In computer graphics, colors are often stored as three numbers, representing red, green, and
blue intensities. Suppose that each number requires eight bits, and we’d like to store all three
values in a single long integer. Write a macro named MK_COLOR with three parameters (the
red, green, and blue intensities). MK_COLOR should return a long in which the last three
bytes contain the red, green, and blue intensities, with the red value as the last byte and the
green value as the next-to-last byte.

5. Write macros named GET_RED, GET_GREEN, and GET_BLUE that, when given a color as
an argument (see Exercise 4), return its 8-bit red, green, and blue intensities.

6. (a) Use the bitwise operators to write the following function:

unsigned short swap_bytes(unsigned short i);

swap_bytes should return the number that results from swapping the two bytes in i.
(Short integers occupy two bytes on most computers.) For example, if i has the value
0x1234 (00010010 00110100 in binary), then swap_bytes should return 0x3412
(00110100 00010010 in binary). Test your function by writing a program that reads a num-
ber in hexadecimal, then writes the number with its bytes swapped:

Enter a hexadecimal number (up to four digits): 1234
Number with bytes swapped: 3412

Hint: Use the %hx conversion to read and write the hex numbers.

(b) Condense the swap_bytes function so that its body is a single statement.

7. Write the following functions:

unsigned int rotate_left(unsigned int i, int n);
unsigned int rotate_right(unsigned int i, int n);

rotate_left should return the result of shifting the bits in i to the left by n places,
with the bits that were “shifted off” moved to the right end of i. (For example, the call

(a) i = 8; j = 9;
printf("%d", i >> 1 + j >> 1);

(b) i = 1;
printf("%d", i & ~i);

(c) i = 2; j = 1; k = 0;
printf("%d", ~i & j ^ k);

(d) i = 7; j = 8; k = 9;
printf("%d", i ^ j & k);

W

W

W

C20.FM Page 525 Friday, February 15, 2008 4:09 PM

526 Chapter 20 Low-Level Programming

rotate_left(0x12345678, 4) should return 0x23456781 if integers are 32 bits
long.) rotate_right is similar, but it should “rotate” bits to the right instead of the left.

8. Let f be the following function:

unsigned int f(unsigned int i, int m, int n)
{
 return (i >> (m + 1 - n)) & ~(~0 << n);
}

9. (a) Write the following function:

int count_ones(unsigned char ch);

count_ones should return the number of 1 bits in ch.

(b) Write the function in part (a) without using a loop.

10. Write the following function:

unsigned int reverse_bits(unsigned int n);

reverse_bits should return an unsigned integer whose bits are the same as those in n
but in reverse order.

11. Each of the following macros defines the position of a single bit within an integer:

#define SHIFT_BIT 1
#define CTRL_BIT 2
#define ALT_BIT 4

The following statement is supposed to test whether any of the three bits have been set, but it
never displays the specified message. Explain why the statement doesn’t work and show
how to fix it. Assume that key_code is an int variable.

if (key_code & (SHIFT_BIT | CTRL_BIT | ALT_BIT) == 0)
 printf("No modifier keys pressed\n");

12. The following function supposedly combines two bytes to form an unsigned short integer.
Explain why the function doesn’t work and show how to fix it.

unsigned short create_short(unsigned char high_byte,
 unsigned char low_byte)
{
 return high_byte << 8 + low_byte;
}

*13. If n is an unsigned int variable, what effect does the following statement have on the
bits in n?

n &= n - 1;

Hint: Consider the effect on n if this statement is executed more than once.

Section 20.2 14. When stored according to the IEEE floating-point standard, a float value consists of a 1-
bit sign (the leftmost—or most significant—bit), an 8-bit exponent, and a 23-bit fraction, in
that order. Design a structure type that occupies 32 bits, with bit-field members correspond-
ing to the sign, exponent, and fraction. Declare the bit-fields to have type unsigned int.
Check the manual for your compiler to determine the order of the bit-fields.

W

(a) What is the value of ~(~0 << n)?
(b) What does this function do?

W

C20.FM Page 526 Friday, February 15, 2008 4:09 PM

Programming Projects 527

*15. (a) Assume that the variable s has been declared as follows:

struct {
 int flag: 1;
} s;

With some compilers, executing the following statements causes 1 to be displayed, but with
other compilers, the output is –1. Explain the reason for this behavior.

s.flag = 1;
printf("%d\n", s.flag);

(b) How can this problem be avoided?

Section 20.3 16. Starting with the 386 processor, x86 CPUs have 32-bit registers named EAX, EBX, ECX,
and EDX. The second half (the least significant bits) of these registers is the same as AX,
BX, CX, and DX, respectively. Modify the regs union so that it includes these registers as
well as the older ones. Your union should be set up so that modifying EAX changes AX and
modifying AX changes the second half of EAX. (The other new registers will work in a sim-
ilar fashion.) You’ll need to add some “dummy” members to the word and byte structures,
corresponding to the other half of EAX, EBX, ECX, and EDX. Declare the type of the new
registers to be DWORD (double word), which should be defined as unsigned long. Don’t
forget that the x86 architecture is little-endian.

Programming Projects

1. Design a union that makes it possible to view a 32-bit value as either a float or the struc-
ture described in Exercise 14. Write a program that stores 1 in the structure’s sign field, 128
in the exponent field, and 0 in the fraction field, then prints the float value stored in the
union. (The answer should be –2.0 if you’ve set up the bit-fields correctly.)

C20.FM Page 527 Friday, February 15, 2008 4:09 PM

C20.FM Page 528 Friday, February 15, 2008 4:09 PM

529

21 The Standard Library

Every program is a part of some other program and rarely fits.

In previous chapters we’ve looked at the C library piecemeal; this chapter focuses
on the library as a whole. Section 21.1 lists general guidelines for using the library.
It also describes a trick found in some library headers: using a macro to “hide” a
function. Section 21.2 gives an overview of each header in the C89 library; Section
21.3 does the same for the new headers in the C99 library.

Later chapters cover the library’s headers in depth, with related headers
grouped together into chapters. The <stddef.h> and <stdbool.h> headers
are very brief, so I’ve chosen to discuss them in this chapter (in Sections 21.4 and
21.5, respectively).

21.1 Using the Library

The C89 standard library is divided into 15 parts, with each part described by a
header. C99 has an additional nine headers, for a total of 24 (see Table 21.1).

Most compilers come with a more extensive library that invariably has many
headers that don’t appear in Table 21.1. The extra headers aren’t standard, of

C99

<assert.h>
<complex.h>†

<ctype.h>
<errno.h>
<fenv.h>†

<float.h>

<inttypes.h>†

<iso646.h>†

<limits.h>
<locale.h>
<math.h>
<setjmp.h>

<signal.h>
<stdarg.h>
<stdbool.h>†

<stddef.h>
<stdint.h>†

<stdio.h>

<stdlib.h>
<string.h>
<tgmath.h>†

<time.h>
<wchar.h>†

<wctype.h>†

†C99 only

Table 21.1
Standard Library Headers

c21.fm Page 529 Saturday, February 16, 2008 2:14 PM

530 Chapter 21 The Standard Library

course, so we can’t count on them to be available with other compilers. These
headers often provide functions that are specific on a particular computer or oper-
ating system (which explains why they’re not standard). They may provide func-
tions that allow more control over the screen and keyboard. Headers that support
graphics or a window-based user interface are also common.

The standard headers consist primarily of function prototypes, type defini-
tions, and macro definitions. If one of our files contains a call of a function
declared in a header or uses one of the types or macros defined there, we’ll need to
include the header at the beginning of the file. When a file includes several stan-
dard headers, the order of #include directives doesn’t matter. It’s also legal to
include a standard header more than once.

Restrictions on Names Used in the Library

Any file that includes a standard header must obey a couple of rules. First, it can’t
use the names of macros defined in that header for any other purpose. If a file
includes <stdio.h>, for example, it can’t reuse NULL, since a macro by that
name is already defined in <stdio.h>. Second, library names with file scope
(typedef names, in particular) can’t be redefined at the file level. Thus, if a file
includes <stdio.h>, it can’t define size_t as a identifier with file scope, since
<stdio.h> defines size_t to be a typedef name.

Although these restrictions are pretty obvious, C has other restrictions that you
might not expect:

� Identifiers that begin with an underscore followed by an upper-case letter or
a second underscore are reserved for use within the library; programs should
never use names of this form for any purpose.

� Identifiers that begin with an underscore are reserved for use as identifiers
and tags with file scope. You should never use such a name for your own pur-
poses unless it’s declared inside a function.

� Every identifier with external linkage in the standard library is reserved for
use as an identifier with external linkage. In particular, the names of all stan-
dard library functions are reserved. Thus, even if a file doesn’t include
<stdio.h>, it shouldn’t define an external function named printf, since
there’s already a function with this name in the library.

These rules apply to every file in a program, regardless of which headers the file
includes. Although these rules aren’t always enforced, failing to obey them can
lead to a program that’s not portable.

The rules listed above apply not just to names that are currently used in the
library, but also to names that are set aside for future use. The complete description
of which names are reserved is rather lengthy; you’ll find it in the C standard under
“future library directions.” As an example, C reserves identifiers that begin with
str followed by a lower-case letter, so that functions with such names can be
added to the <string.h> header.

c21.fm Page 530 Saturday, February 16, 2008 2:14 PM

21.2 C89 Library Overview 531

Functions Hidden by Macros

It’s common for C programmers to replace small functions by parameterized mac-
ros. This practice occurs even in the standard library. The C standard allows head-
ers to define macros that have the same names as library functions, but protects the
programmer by requiring that a true function be available as well. As a result, it’s
not unusual for a library header to declare a function and define a macro with the
same name.

We’ve already seen an example of a macro duplicating a library function.
getchar is a library function declared in the <stdio.h> header. It has the fol-
lowing prototype:

int getchar(void);

<stdio.h> usually defines getchar as a macro as well:

#define getchar() getc(stdin)

By default, a call of getchar will be treated as a macro invocation (since macro
names are replaced during preprocessing).

Most of the time, we’re happy using a macro instead of a true function,
because it will probably make our program run faster. Occasionally, though, we
want a genuine function, perhaps to minimize the size of the executable code.

If the need arises, we can remove a macro definition (thus gaining access to
the true function) by using the #undef directive. For example, we could undefine
the getchar macro after including <stdio.h>:

#include <stdio.h>
#undef getchar

If getchar isn’t a macro, no harm has been done; #undef has no effect when
given a name that’s not defined as a macro.

As an alternative, we can disable individual uses of a macro by putting paren-
theses around its name:

ch = (getchar)(); /* instead of ch = getchar(); */

The preprocessor can’t spot a parameterized macro unless its name is followed by
a left parenthesis. The compiler isn’t so easily fooled, however; it can still recog-
nize getchar as a function.

21.2 C89 Library Overview

We’ll now take a quick look at the headers in the C89 standard library. This section
can serve as a “road map” to help you determine which part of the library you
need. Each header is described in detail later in this chapter or in a subsequent
chapter.

Q&A

#undef directive ➤14.3

c21.fm Page 531 Saturday, February 16, 2008 2:14 PM

532 Chapter 21 The Standard Library

<assert.h> Diagnostics

Contains only the assert macro, which allows us to insert self-checks into a pro-
gram. If any check fails, the program terminates.

<ctype.h> Character Handling

Provides functions for classifying characters and for converting letters from lower
to upper case or vice versa.

<errno.h> Errors

Provides errno (“error number”), an lvalue that can be tested after a call of cer-
tain library functions to see if an error occurred during the call.

<float.h> Characteristics of Floating Types

Provides macros that describe the characteristics of floating types, including their
range and accuracy.

<limits.h> Sizes of Integer Types

Provides macros that describe the characteristics of integer types (including char-
acter types), including their maximum and minimum values.

<locale.h> Localization

Provides functions to help a program adapt its behavior to a country or other geo-
graphic region. Locale-specific behavior includes the way numbers are printed
(such as the character used as the decimal point), the format of monetary values
(the currency symbol, for example), the character set, and the appearance of the
date and time.

<math.h> Mathematics

Provides common mathematical functions, including trigonometric, hyperbolic,
exponential, logarithmic, power, nearest integer, absolute value, and remainder
functions.

<setjmp.h> Nonlocal Jumps

Provides the setjmp and longjmp functions. setjmp “marks” a place in a pro-
gram; longjmp can then be used to return to that place later. These functions

<assert.h> header ➤24.1

<ctype.h> header ➤23.5

<errno.h> header ➤24.2

<float.h> header ➤23.1

<limits.h> header ➤23.2

<locale.h> header ➤25.1

<math.h> header ➤23.3

<setjmp.h> header ➤24.4

c21.fm Page 532 Saturday, February 16, 2008 2:14 PM

21.2 C89 Library Overview 533

make it possible to jump from one function into another, still-active function,
bypassing the normal function-return mechanism. setjmp and longjmp are
used primarily for handling serious problems that arise during program execution.

<signal.h> Signal Handling

Provides functions that deal with exceptional conditions (signals), including inter-
rupts and run-time errors. The signal function installs a function to be called if a
given signal should occur later. The raise function causes a signal to occur.

<stdarg.h> Variable Arguments

Provides tools for writing functions that, like printf and scanf, can have a
variable number of arguments.

<stddef.h> Common Definitions

Provides definitions of frequently used types and macros.

<stdio.h> Input/Output

Provides a large assortment of input/output functions, including operations on both
sequential and random-access files.

<stdlib.h> General Utilities

A “catchall” header for functions that don’t fit into any of the other headers. The
functions in this header can convert strings to numbers, generate pseudo-random
numbers, perform memory management tasks, communicate with the operating
system, do searching and sorting, and perform conversions between multibyte
characters and wide characters.

<string.h> String Handling

Provides functions that perform string operations, including copying, concatena-
tion, comparison, and searching, as well as functions that operate on arbitrary
blocks of memory.

<time.h> Date and Time

Provides functions for determining the time (and date), manipulating times, and
formatting times for display.

<signal.h> header ➤24.3

<stdarg.h> header ➤26.1

<stddef.h> header ➤21.4

<stdio.h> header ➤22.1–22.8

<stdlib.h> header ➤26.2

<string.h> header ➤23.6

<time.h> header ➤26.3

c21.fm Page 533 Saturday, February 16, 2008 2:14 PM

534 Chapter 21 The Standard Library

21.3 C99 Library Changes

Some of the biggest changes in C99 affect the standard library. These changes fall
into three groups:

� Additional headers. The C99 standard library has nine headers that don’t exist
in C89. Three of these (<iso646.h>, <wchar.h>, and <wctype.h>)
were actually added to C in 1995 when the C89 standard was amended. The
other six (<complex.h>, <fenv.h>, <inttypes.h>, <stdbool.h>,
<stdint.h>, and <tgmath.h>) are new in C99.

� Additional macros and functions. The C99 standard adds macros and func-
tions to several existing headers, primarily <float.h>, <math.h>, and
<stdio.h>. The additions to the <math.h> header are so extensive that
they’re covered in a separate section (Section 23.4).

� Enhanced versions of existing functions. Some existing functions, including
printf and scanf, have additional capabilities in C99.

We’ll now take a quick look at the nine additional headers in the C99 standard
library, just as we did in Section 21.2 for the headers in the C89 library.

<complex.h> Complex Arithmetic

Defines the complex and I macros, which are useful when working with com-
plex numbers. Also provides functions for performing mathematical operations on
complex numbers.

<fenv.h> Floating-Point Environment

Provides access to floating-point status flags and control modes. For example, a
program might test a flag to see if overflow occurred during a floating-point opera-
tion or set a control mode to specify how rounding should be done.

<inttypes.h> Format Conversion of Integer Types

Defines macros that can be used in format strings for input/output of the integer
types declared in <stdint.h>. Also provides functions for working with great-
est-width integers.

<iso646.h> Alternative Spellings

Defines macros that represent certain operators (the ones containing the characters
&, |, ~, !, and ^). These macros are useful for writing programs in an environment
where these characters might not be part of the local character set.

<complex.h> header ➤27.4

<fenv.h> header ➤27.6

<inttypes.h> header ➤27.2

<iso646.h> header ➤25.3

c21.fm Page 534 Saturday, February 16, 2008 2:14 PM

21.4 The <stddef.h> Header: Common Definitions 535

<stdbool.h> Boolean Type and Values

Defines the bool, true, and false macros, as well as a macro that can be used
to test whether these macros have been defined.

<stdint.h> Integer Types

Declares integer types with specified widths and defines related macros (such as
macros that specify the maximum and minimum values of each type). Also defines
parameterized macros that construct integer constants with specific types.

<tgmath.h> Type-Generic Math

In C99, there are multiple versions of many math functions in the <math.h> and
<complex.h> headers. The “type-generic” macros in <tgmath.h> can detect
the types of the arguments passed to them and substitute a call of the appropriate
<math.h> or <complex.h> function.

<wchar.h> Extended Multibyte and Wide-Character Utilities

Provides functions for wide-character input/output and wide string manipulation.

<wctype.h> Wide-Character Classification and Mapping Utilities

The wide-character version of <ctype.h>. Provides functions for classifying
and changing the case of wide characters.

21.4 The <stddef.h> Header: Common Definitions

The <stddef.h> header provides definitions of frequently used types and mac-
ros; it doesn’t declare any functions. The types are:

� ptrdiff_t. The type of the result when two pointers are subtracted.

� size_t. The type returned by the sizeof operator.

� wchar_t. A type large enough to represent all possible characters in all sup-
ported locales.

All three are names for integer types; ptrdiff_t must be a signed type, while
size_t must be an unsigned type. For more information about wchar_t, see
Section 25.2.

The <stddef.h> header also defines two macros. One of them is NULL,
which represents the null pointer. The other macro, offsetof, requires two argu-
ments: type (a structure type) and member-designator (a member of the structure).

<stdbool.h> header ➤21.5

<stdint.h> header ➤27.1

<tgmath.h> header ➤27.5

<wchar.h> header ➤25.5

<wctype.h> header ➤25.6

c21.fm Page 535 Saturday, February 16, 2008 2:14 PM

536 Chapter 21 The Standard Library

offsetof computes the number of bytes between the beginning of the structure
and the specified member.

Consider the following structure:

struct s {
 char a;
 int b[2];
 float c;
};

The value of offsetof(struct s, a) must be 0; C guarantees that the first
member of a structure has the same address as the structure itself. We can’t say for
sure what the offsets of b and c are. One possibility is that offsetof(struct
s, b) is 1 (since a is one byte long), and offsetof(struct s, c) is 9
(assuming 32-bit integers). However, some compilers leave “holes”—unused
bytes—in structures (see the Q&A section at the end of Chapter 16), which can
affect the value produced by offsetof. If a compiler should leave a three-byte
hole after a, for example, then the offsets of b and c would be 4 and 12, respec-
tively. But that’s the beauty of offsetof: it produces the correct offsets for any
compiler, enabling us to write portable programs.

There are various uses for offsetof. For example, suppose that we want to
save the first two members of an s structure in a file, ignoring the c member.
Instead of having the fwrite function write sizeof(struct s) bytes, which
would save the entire structure, we’ll tell it to write only offsetof(struct s,
c) bytes.

A final remark: Some of the types and macros defined in <stddef.h>
appear in other headers as well. (The NULL macro, for example, is also defined in
<locale.h>, <stdio.h>, <stdlib.h>, <string.h>, and <time.h>,
as well as in the C99 header <wchar.h>.) As a result, few programs need to
include <stddef.h>.

21.5 The <stdbool.h> Header (C99): Boolean Type
and Values

The <stdbool.h> header defines four macros:

� bool (defined to be _Bool)

� true (defined to be 1)

� false (defined to be 0)

� __bool_true_false_are_defined (defined to be 1)

We’ve seen many examples of how bool, true, and false are used. Potential
uses of the __bool_true_false_are_defined macro are more limited. A
program could use a preprocessing directive (such as #if or #ifdef) to test this
macro before attempting to define its own version of bool, true, or false.

fwrite function ➤22.6

c21.fm Page 536 Saturday, February 16, 2008 2:14 PM

Q & A 537

Q & A

Q: I notice that you use the term “standard header” rather than “standard
header file.” Is there any reason for not using the word “file”?

A: Yes. According to the C standard, a “standard header” need not be a file. Although
most compilers do indeed store standard headers as files, the headers could in fact
be built into the compiler itself.

Q: Section 14.3 described some disadvantages of using parameterized macros in
place of functions. In light of these problems, isn’t it dangerous to provide a
macro substitute for a standard library function? [p. 531]

A: According to the C standard, a parameterized macro that substitutes for a library
function must be “fully protected” by parentheses and must evaluate its arguments
exactly once. These rules avoid most of the problems mentioned in Section 14.3.

Exercises

Section 21.1 1. Locate where header files are kept on your system. Find the nonstandard headers and deter-
mine the purpose of each.

2. Having located the header files on your system (see Exercise 1), find a standard header in
which a macro hides a function.

3. When a macro hides a function, which must come first in the header file: the macro defini-
tion or the function prototype? Justify your answer.

4. Make a list of all reserved identifiers in the “future library directions” section of the C99
standard. Distinguish between identifiers that are reserved for use only when a specific
header is included versus identifiers that are reserved for use as external names.

*5. The islower function, which belongs to <ctype.h>, tests whether a character is a
lower-case letter. Why would the following macro version of islower not be legal,
according to the C standard? (You may assume that the character set is ASCII.)

#define islower(c) ((c) >= 'a' && (c) <= 'z')

6. The <ctype.h> header usually defines most of its functions as macros as well. These
macros rely on a static array that’s declared in <ctype.h> but defined in a separate file. A
portion of a typical <ctype.h> header appears below. Use this sample to answer the fol-
lowing questions.

(a) Why do the names of the “bit” macros (such as _UPPER) and the _ctype array begin
with an underscore?

(b) Explain what the _ctype array will contain. Assuming that the character set is ASCII,
show the values of the array elements at positions 9 (the horizontal tab character), 32 (the
space character), 65 (the letter A), and 94 (the ^ character). See Section 23.5 for a descrip-
tion of what each macro should return.

c21.fm Page 537 Saturday, February 16, 2008 2:14 PM

538 Chapter 21 The Standard Library

(c) What’s the advantage of using an array to implement these macros?

#define _UPPER 0x01 /* upper-case letter */
#define _LOWER 0x02 /* lower-case letter */
#define _DIGIT 0x04 /* decimal digit */
#define _CONTROL 0x08 /* control character */
#define _PUNCT 0x10 /* punctuation character */
#define _SPACE 0x20 /* white-space character */
#define _HEX 0x40 /* hexadecimal digit */
#define _BLANK 0x80 /* space character */

#define isalnum(c) (_ctype[c] & (_UPPER|_LOWER|_DIGIT))
#define isalpha(c) (_ctype[c] & (_UPPER|_LOWER))
#define iscntrl(c) (_ctype[c] & _CONTROL)
#define isdigit(c) (_ctype[c] & _DIGIT)
#define isgraph(c) (_ctype[c] &
 (_PUNCT|_UPPER|_LOWER|_DIGIT))
#define islower(c) (_ctype[c] & _LOWER)
#define isprint(c) (_ctype[c] &
 (_BLANK|_PUNCT|_UPPER|_LOWER|_DIGIT))
#define ispunct(c) (_ctype[c] & _PUNCT)
#define isspace(c) (_ctype[c] & _SPACE)
#define isupper(c) (_ctype[c] & _UPPER)
#define isxdigit(c) (_ctype[c] & (_DIGIT|_HEX))

Section 21.2 7. In which standard header would you expect to find each of the following?

Programming Projects

1. Write a program that declares the s structure (see Section 21.4) and prints the sizes and off-
sets of the a, b, and c members. (Use sizeof to find sizes; use offsetof to find off-
sets.) Have the program print the size of the entire structure as well. From this information,
determine whether or not the structure has any holes. If it does, describe the location and
size of each.

(a) A function that determines the current day of the week
(b) A function that tests whether a character is a digit
(c) A macro that gives the largest unsigned int value
(d) A function that rounds a floating-point number to the next higher integer
(e) A macro that specifies the number of bits in a character
(f) A macro that specifies the number of significant digits in a double value
(g) A function that searches a string for a particular character
(h) A function that opens a file for reading

W

c21.fm Page 538 Saturday, February 16, 2008 2:14 PM

539

22 Input/Output

In man-machine symbiosis, it is man
who must adjust: The machines can’t.

C’s input/output library is the biggest and most important part of the standard
library. As befits its lofty status, we’ll devote an entire chapter (the longest in the
book) to the <stdio.h> header, the primary repository of input/output functions.

We’ve been using <stdio.h> since Chapter 2, and we have experience with
the printf, scanf, putchar, getchar, puts, and gets functions. This
chapter provides more information about these six functions, as well as introduc-
ing a host of new functions, most of which deal with files. Fortunately, many of the
new functions are closely related to functions with which we’re already
acquainted. fprintf, for instance, is the “file version” of the printf function.

We’ll start the chapter with a discussion of some basic issues: the stream con-
cept, the FILE type, input and output redirection, and the difference between text
files and binary files (Section 22.1). We’ll then turn to functions that are designed
specifically for use with files, including functions that open and close files (Section
22.2). After covering printf, scanf, and related functions for “formatted”
input/output (Section 22.3), we’ll look at functions that read and write unformatted
data:

� getc, putc, and related functions, which read and write one character at a
time (Section 22.4).

� gets, puts, and related functions, which read and write one line at a time
(Section 22.5).

� fread and fwrite, which read and write blocks of data (Section 22.6).

Section 22.7 then shows how to perform random access operations on files.
Finally, Section 22.8 describes the sprintf, snprintf, and sscanf func-
tions, variants of printf and scanf that write to a string or read from a string.

This chapter covers all but eight of the functions in <stdio.h>. One of
these eight, the perror function, is closely related to the <errno.h> header, so

C22.FM Page 539 Friday, February 15, 2008 4:33 PM

540 Chapter 22 Input/Output

I’ll postpone it until Section 24.2, which discusses that header. Section 26.1 covers
the remaining functions (vfprintf, vprintf, vsprintf, vsnprintf,
vfscanf, vscanf, and vsscanf). These functions rely on the va_list type,
which is introduced in that section.

In C89, all standard input/output functions belong to <stdio.h>, but such is
not the case in C99, where some I/O functions are declared in the <wchar.h>
header. The <wchar.h> functions deal with wide characters rather than ordinary
characters; the good news is that most of these functions closely resemble those of
<stdio.h>. Functions in <stdio.h> that read or write data are known as byte
input/output functions; similar functions in <wchar.h> are called wide-charac-
ter input/output functions.

22.1 Streams

In C, the term stream means any source of input or any destination for output.
Many small programs, like the ones in previous chapters, obtain all their input
from one stream (usually associated with the keyboard) and write all their output to
another stream (usually associated with the screen).

Larger programs may need additional streams. These streams often represent
files stored on various media (such as hard drives, CDs, DVDs, and flash memory),
but they could just as easily be associated with devices that don’t store files: net-
work ports, printers, and the like. We’ll concentrate on files, since they’re common
and easy to understand. (I may even occasionally use the term file when I should
say stream.) Keep in mind, however, that many of the functions in <stdio.h>
work equally well with all streams, not just the ones that represent files.

File Pointers

Accessing a stream in a C program is done through a file pointer, which has type
FILE * (the FILE type is declared in <stdio.h>). Certain streams are repre-
sented by file pointers with standard names; we can declare additional file pointers
as needed. For example, if a program needs two streams in addition to the standard
ones, it might contain the following declaration:

FILE *fp1, *fp2;

A program may declare any number of FILE * variables, although operating sys-
tems usually limit the number of streams that can be open at one time.

Standard Streams and Redirection

<stdio.h> provides three standard streams (Table 22.1). These streams are
ready to use—we don’t declare them, and we don’t open or close them.

C99
<wchar.h> header ➤25.5

C22.FM Page 540 Friday, February 15, 2008 4:33 PM

22.1 Streams 541

The functions that we’ve used in previous chapters—printf, scanf,
putchar, getchar, puts, and gets—obtain input from stdin and send out-
put to stdout. By default, stdin represents the keyboard; stdout and
stderr represent the screen. However, many operating systems allow these
default meanings to be changed via a mechanism known as redirection.

Typically, we can force a program to obtain its input from a file instead of
from the keyboard by putting the name of the file on the command line, preceded
by the < character:

demo <in.dat

This technique, known as input redirection, essentially makes the stdin stream
represent a file (in.dat, in this case) instead of the keyboard. The beauty of redi-
rection is that the demo program doesn’t realize that it’s reading from in.dat; as
far as it knows, any data it obtains from stdin is being entered at the keyboard.

Output redirection is similar. Redirecting the stdout stream is usually done
by putting a file name on the command line, preceded by the > character:

demo >out.dat

All data written to stdout will now go into the out.dat file instead of appear-
ing on the screen. Incidentally, we can combine output redirection with input redi-
rection:

demo <in.dat >out.dat

The < and > characters don’t have to be adjacent to file names, and the order in
which the redirected files are listed doesn’t matter, so the following examples
would work just as well:

demo < in.dat > out.dat
demo >out.dat <in.dat

One problem with output redirection is that everything written to stdout is
put into a file. If the program goes off the rails and begins writing error messages,
we won’t see them until we look at the file. This is where stderr comes in. By
writing error messages to stderr instead of stdout, we can guarantee that
those messages will appear on the screen even when stdout has been redirected.
(Operating systems often allow stderr itself to be redirected, though.)

Text Files versus Binary Files

<stdio.h> supports two kinds of files: text and binary. The bytes in a text file
represent characters, making it possible for a human to examine the file or edit it.

File Pointer Stream Default Meaning

stdin
stdout
stderr

Standard input
Standard output
Standard error

Keyboard
Screen
Screen

Table 22.1
Standard Streams

Q&A

C22.FM Page 541 Friday, February 15, 2008 4:33 PM

542 Chapter 22 Input/Output

The source code for a C program is stored in a text file, for example. In a binary
file, on the other hand, bytes don’t necessarily represent characters; groups of
bytes might represent other types of data, such as integers and floating-point num-
bers. An executable C program is stored in a binary file, as you’ll quickly realize if
you try to look at the contents of one.

Text files have two characteristics that binary files don’t possess:

� Text files are divided into lines. Each line in a text file normally ends with
one or two special characters; the choice of characters depends on the operat-
ing system. In Windows, the end-of-line marker is a carriage-return character
('\x0d') followed immediately by a line-feed character ('\x0a'). In
UNIX and newer versions of the Macintosh operating system (Mac OS), the
end-of-line marker is a single line-feed character. Older versions of Mac OS
use a single carriage-return character.

� Text files may contain a special “end-of-file” marker. Some operating sys-
tems allow a special byte to be used as a marker at the end of a text file. In
Windows, the marker is '\x1a' (Ctrl-Z). There’s no requirement that Ctrl-Z
be present, but if it is, it marks the end of the file; any bytes after Ctrl-Z are to
be ignored. The Ctrl-Z convention is a holdover from DOS, which in turn
inherited it from CP/M, an early operating system for personal computers.
Most other operating systems, including UNIX, have no special end-of-file
character.

Binary files aren’t divided into lines. In a binary file, there are no end-of-line or
end-of-file markers; all bytes are treated equally.

When we write data to a file, we’ll need to consider whether to store it in text
form or in binary form. To see the difference, consider how we might store the
number 32767 in a file. One option would be to write the number in text form as
the characters 3, 2, 7, 6, and 7. If the character set is ASCII, we’d have the follow-
ing five bytes:

The other option is to store the number in binary, which would take as few as two
bytes:

(The bytes will be reversed on systems that store data in little-endian order.) As
this example shows, storing numbers in binary can often save quite a bit of
space.

When we’re writing a program that reads from a file or writes to a file, we
need to take into account whether it’s a text file or a binary file. A program that dis-
plays the contents of a file on the screen will probably assume it’s a text file. A file-

Q&A

Q&A

’3’ ’2’ ’7’ ’6’ ’7’

0011011100110011 00110010 00110110 00110111

01111111 11111111

little-endian order ➤20.3

C22.FM Page 542 Friday, February 15, 2008 4:33 PM

22.2 File Operations 543

copying program, on the other hand, can’t assume that the file to be copied is a text
file. If it does, binary files containing an end-of-file character won’t be copied
completely. When we can’t say for sure whether a file is text or binary, it’s safer to
assume that it’s binary.

22.2 File Operations

Simplicity is one of the attractions of input and output redirection; there’s no need
to open a file, close a file, or perform any other explicit file operations. Unfortu-
nately, redirection is too limited for many applications. When a program relies on
redirection, it has no control over its files; it doesn’t even know their names. Worse
still, redirection doesn’t help if the program needs to read from two files or write to
two files at the same time.

When redirection isn’t enough, we’ll end up using the file operations that
<stdio.h> provides. In this section, we’ll explore these operations, which
include opening a file, closing a file, changing the way a file is buffered, deleting a
file, and renaming a file.

Opening a File

fopen Opening a file for use as a stream requires a call of the fopen function. fopen’s
first argument is a string containing the name of the file to be opened. (A “file
name” may include information about the file’s location, such as a drive specifier
or path.) The second argument is a “mode string” that specifies what operations we
intend to perform on the file. The string "r", for instance, indicates that data will
be read from the file, but none will be written to it.

Note that restrict appears twice in the prototype for the fopen function.
restrict, which is a C99 keyword, indicates that filename and mode should
point to strings that don’t share memory locations. The C89 prototype for fopen
doesn’t contain restrict but is otherwise identical. restrict has no effect
on the behavior of fopen, so it can usually just be ignored. In this and subsequent
chapters, I’ll italicize restrict as a reminder that it’s a C99 feature.

Windows programmers: Be careful when the file name in a call of fopen includes
the \ character, since C treats \ as the beginning of an escape sequence. The call

fopen("c:\project\test1.dat", "r")

will fail, because the compiler treats \t as a character escape. (\p isn’t a valid
character escape, but it looks like one. The C standard states that its meaning is

FILE *fopen(const char * restrict filename,
 const char * restrict mode);

restrict keyword ➤17.8

C99

escape sequences ➤7.3

C22.FM Page 543 Friday, February 15, 2008 4:33 PM

544 Chapter 22 Input/Output

undefined.) There are two ways to avoid the problem. One is to use \\ instead of
\:

fopen("c:\\project\\test1.dat", "r")

The other technique is even easier—just use the / character instead of \:

fopen("c:/project/test1.dat", "r")

Windows will happily accept / instead of \ as the directory separator.

fopen returns a file pointer that the program can (and usually will) save in a
variable and use later whenever it needs to perform an operation on the file. Here’s
a typical call of fopen, where fp is a variable of type FILE *:

fp = fopen("in.dat", "r"); /* opens in.dat for reading */

When the program calls an input function to read from in.dat later, it will sup-
ply fp as an argument.

When it can’t open a file, fopen returns a null pointer. Perhaps the file
doesn’t exist, or it’s in the wrong place, or we don’t have permission to open it.

Never assume that a file can be opened; always test the return value of fopen to
make sure it’s not a null pointer.

Modes

Which mode string we’ll pass to fopen depends not only on what operations we
plan to perform on the file later but also on whether the file contains text or binary
data. To open a text file, we’d use one of the mode strings in Table 22.2.

When we use fopen to open a binary file, we’ll need to include the letter b in
the mode string. Table 22.3 lists mode strings for binary files.

From Tables 22.2 and 22.3, we see that <stdio.h> distinguishes between
writing data and appending data. When data is written to a file, it normally over-
writes what was previously there. When a file is opened for appending, however,
data written to the file is added at the end, thus preserving the file’s original contents.

By the way, special rules apply when a file is opened for both reading and writ-
ing (the mode string contains the + character). We can’t switch from reading to writ-

String Meaning

"r"
"w"
"a"
"r+"
"w+"
"a+"

Open for reading
Open for writing (file need not exist)
Open for appending (file need not exist)
Open for reading and writing, starting at beginning
Open for reading and writing (truncate if file exists)
Open for reading and writing (append if file exists)

Table 22.2
Mode Strings
for Text Files

Q&A

C22.FM Page 544 Friday, February 15, 2008 4:33 PM

22.2 File Operations 545

ing without first calling a file-positioning function unless the reading operation
encountered the end of the file. Also, we can’t switch from writing to reading with-
out either calling fflush (covered later in this section) or calling a file-positioning
function.

Closing a File

fclose The fclose function allows a program to close a file that it’s no longer using.
The argument to fclose must be a file pointer obtained from a call of fopen or
freopen (discussed later in this section). fclose returns zero if the file was
closed successfully; otherwise, it returns the error code EOF (a macro defined in
<stdio.h>).

To show how fopen and fclose are used in practice, here’s the outline of a
program that opens the file example.dat for reading, checks that it was opened
successfully, then closes it before terminating:

#include <stdio.h>
#include <stdlib.h>

#define FILE_NAME "example.dat"

int main(void)
{
 FILE *fp;

 fp = fopen(FILE_NAME, "r");
 if (fp == NULL) {
 printf("Can't open %s\n", FILE_NAME);
 exit(EXIT_FAILURE);
 }
 …
 fclose(fp);
 return 0;
}

Of course, C programmers being the way they are, it’s not unusual to see the call of
fopen combined with the declaration of fp:

FILE *fp = fopen(FILE_NAME, "r");

String Meaning

"rb"
"wb"
"ab"

"r+b" or "rb+"
"w+b" or "wb+"
"a+b" or "ab+"

Open for reading
Open for writing (file need not exist)
Open for appending (file need not exist)
Open for reading and writing, starting at beginning
Open for reading and writing (truncate if file exists)
Open for reading and writing (append if file exists)

Table 22.3
Mode Strings for

Binary Files

int fclose(FILE *stream);

file-positioning functions ➤22.7

Q&A

C22.FM Page 545 Friday, February 15, 2008 4:33 PM

546 Chapter 22 Input/Output

or the test against NULL:

if ((fp = fopen(FILE_NAME, "r")) == NULL) …

Attaching a File to an Open Stream

freopen freopen attaches a different file to a stream that’s already open. The most com-
mon use of freopen is to associate a file with one of the standard streams
(stdin, stdout, or stderr). To cause a program to begin writing to the file
foo, for instance, we could use the following call of freopen:

if (freopen("foo", "w", stdout) == NULL) {
 /* error; foo can't be opened */
}

After closing any file previously associated with stdout (by command-line redi-
rection or a previous call of freopen), freopen will open foo and associate it
with stdout.

freopen’s normal return value is its third argument (a file pointer). If it can’t
open the new file, freopen returns a null pointer. (freopen ignores the error if
the old file can’t be closed.)

C99 adds a new twist. If filename is a null pointer, freopen attempts to
change the stream’s mode to that specified by the mode parameter. Implementa-
tions aren’t required to support this feature, however; if they do, they may place
restrictions on which mode changes are permitted.

Obtaining File Names from the Command Line

When we’re writing a program that will need to open a file, one problem soon
becomes apparent: how do we supply the file name to the program? Building file
names into the program itself doesn’t provide much flexibility, and prompting the
user to enter file names can be awkward. Often, the best solution is to have the pro-
gram obtain file names from the command line. When we execute a program
named demo, for example, we might supply it with file names by putting them on
the command line:

demo names.dat dates.dat

In Section 13.7, we saw how to access command-line arguments by defining
main as a function with two parameters:

int main(int argc, char *argv[])
{
 …
}

FILE *freopen(const char * restrict filename,
 const char * restrict mode,
 FILE * restrict stream);

C99

Q&A

C22.FM Page 546 Friday, February 15, 2008 4:33 PM

22.2 File Operations 547

argc is the number of command-line arguments; argv is an array of pointers to
the argument strings. argv[0] points to the program name, argv[1] through
argv[argc-1] point to the remaining arguments, and argv[argc] is a null
pointer. In the example above, argc is 3, argv[0] points to a string containing
the program name, argv[1] points to the string "names.dat", and argv[2]
points to the string "dates.dat":

PROGRAM Checking Whether a File Can Be Opened

The following program determines if a file exists and can be opened for reading.
When the program is run, the user will give it a file name to check:

canopen file

The program will then print either file can be opened or file can't be
opened. If the user enters the wrong number of arguments on the command line,
the program will print the message usage: canopen filename to remind the
user that canopen requires a single file name.

canopen.c /* Checks whether a file can be opened for reading */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *fp;

 if (argc != 2) {
 printf("usage: canopen filename\n");
 exit(EXIT_FAILURE);
 }

 if ((fp = fopen(argv[1], "r")) == NULL) {
 printf("%s can't be opened\n", argv[1]);
 exit(EXIT_FAILURE);
 }

 printf("%s can be opened\n", argv[1]);
 fclose(fp);
 return 0;
}

0

argv

program name

n a m e s . d a t \0

d a t e s . d a t \0

1

2

3

C22.FM Page 547 Friday, February 15, 2008 4:33 PM

548 Chapter 22 Input/Output

Note that we can use redirection to discard the output of canopen and simply test
the status value it returns.

Temporary Files

Real-world programs often need to create temporary files—files that exist only as
long as the program is running. C compilers, for instance, often create temporary
files. A compiler might first translate a C program to some intermediate form,
which it stores in a file. The compiler would then read the file later as it translates
the program to object code. Once the program is completely compiled, there’s no
need to preserve the file containing the program’s intermediate form. <stdio.h>
provides two functions, tmpfile and tmpnam, for working with temporary files.

tmpfile tmpfile creates a temporary file (opened in "wb+" mode) that will exist
until it’s closed or the program ends. A call of tmpfile returns a file pointer that
can be used to access the file later:

FILE *tempptr;
…
tempptr = tmpfile(); /* creates a temporary file */

If it fails to create a file, tmpfile returns a null pointer.
Although tmpfile is easy to use, it has a couple of drawbacks: (1) we don’t

know the name of the file that tmpfile creates, and (2) we can’t decide later to
make the file permanent. If these restrictions turn out to be a problem, the alterna-
tive is to create a temporary file using fopen. Of course, we don’t want this file to
have the same name as a previously existing file, so we need some way to generate
new file names; that’s where the tmpnam function comes in.

tmpnam tmpnam generates a name for a temporary file. If its argument is a null
pointer, tmpnam stores the file name in a static variable and returns a pointer to it:

char *filename;
…
filename = tmpnam(NULL); /* creates a temporary file name */

Otherwise, tmpnam copies the file name into a character array provided by the
programmer:

char filename[L_tmpnam];
…
tmpnam(filename); /* creates a temporary file name */

In the latter case, tmpnam also returns a pointer to the first character of this array.
L_tmpnam is a macro in <stdio.h> that specifies how long to make a character
array that will hold a temporary file name.

FILE *tmpfile(void);
char *tmpnam(char *s);

C22.FM Page 548 Friday, February 15, 2008 4:33 PM

22.2 File Operations 549

Be sure that tmpnam’s argument points to an array of at least L_tmpnam charac-
ters. Also, be careful not to call tmpnam too often; the TMP_MAX macro (defined
in <stdio.h>) specifies the maximum number of temporary file names that can
potentially be generated by tmpnam during the execution of a program. If it fails
to generate a file name, tmpnam returns a null pointer.

File Buffering

Transferring data to or from a disk drive is a relatively slow operation. As a result,
it isn’t feasible for a program to access a disk file directly each time it wants to
read or write a byte. The secret to achieving acceptable performance is buffering:
data written to a stream is actually stored in a buffer area in memory; when it’s full
(or the stream is closed), the buffer is “flushed” (written to the actual output
device). Input streams can be buffered in a similar way: the buffer contains data
from the input device; input is read from this buffer instead of the device itself.
Buffering can result in enormous gains in efficiency, since reading a byte from a
buffer or storing a byte in a buffer takes hardly any time at all. Of course, it takes
time to transfer the buffer contents to or from disk, but one large “block move” is
much faster than many tiny byte moves.

The functions in <stdio.h> perform buffering automatically when it seems
advantageous. The buffering takes place behind the scenes, and we usually don’t
worry about it. On rare occasions, though, we may need to take a more active role.
If so, we can use the functions fflush, setbuf, and setvbuf.

fflush When a program writes output to a file, the data normally goes into a buffer
first. The buffer is flushed automatically when it’s full or the file is closed. By call-
ing fflush, however, a program can flush a file’s buffer as often as it wishes. The
call

fflush(fp); /* flushes buffer for fp */

flushes the buffer for the file associated with fp. The call

fflush(NULL); /* flushes all buffers */

flushes all output streams. fflush returns zero if it’s successful and EOF if an
error occurs.

int fflush(FILE *stream);
void setbuf(FILE * restrict stream,
 char * restrict buf);
int setvbuf(FILE * restrict stream,
 char * restrict buf,
 int mode, size_t size);

Q&A

C22.FM Page 549 Friday, February 15, 2008 4:33 PM

550 Chapter 22 Input/Output

setvbuf setvbuf allows us to change the way a stream is buffered and to control the
size and location of the buffer. The function’s third argument, which specifies the
kind of buffering desired, should be one of the following macros:

� _IOFBF (full buffering). Data is read from the stream when the buffer is
empty or written to the stream when it’s full.

� _IOLBF (line buffering). Data is read from the stream or written to the stream
one line at a time.

� _IONBF (no buffering). Data is read from the stream or written to the stream
directly, without a buffer.

(All three macros are defined in <stdio.h>.) Full buffering is the default for
streams that aren’t connected to interactive devices.

setvbuf’s second argument (if it’s not a null pointer) is the address of the
desired buffer. The buffer might have static storage duration, automatic storage
duration, or even be allocated dynamically. Making the buffer automatic allows its
space to be reclaimed automatically at block exit; allocating it dynamically enables
us to free the buffer when it’s no longer needed. setvbuf’s last argument is the
number of bytes in the buffer. A larger buffer may give better performance; a
smaller buffer saves space.

For example, the following call of setvbuf changes the buffering of
stream to full buffering, using the N bytes in the buffer array as the buffer:

char buffer[N];
…
setvbuf(stream, buffer, _IOFBF, N);

setvbuf must be called after stream is opened but before any other operations
are performed on it.

It’s also legal to call setvbuf with a null pointer as the second argument,
which requests that setvbuf create a buffer with the specified size. setvbuf
returns zero if it’s successful. It returns a nonzero value if the mode argument is
invalid or the request can’t be honored.

setbuf setbuf is an older function that assumes default values for the buffering
mode and buffer size. If buf is a null pointer, the call setbuf(stream, buf)
is equivalent to

(void) setvbuf(stream, NULL, _IONBF, 0);

Otherwise, it’s equivalent to

(void) setvbuf(stream, buf, _IOFBF, BUFSIZ);

where BUFSIZ is a macro defined in <stdio.h>. The setbuf function is con-
sidered obsolete; it’s not recommended for use in new programs.

C22.FM Page 550 Friday, February 15, 2008 4:33 PM

22.3 Formatted I/O 551

When using setvbuf or setbuf, be sure to close the stream before its buffer is
deallocated. In particular, if the buffer is local to a function and has automatic stor-
age duration, be sure to close the stream before the function returns.

Miscellaneous File Operations

The functions remove and rename allow a program to perform basic file man-
agement operations. Unlike most other functions in this section, remove and
rename work with file names instead of file pointers. Both functions return zero
if they succeed and a nonzero value if they fail.

remove remove deletes a file:

remove("foo"); /* deletes the file named "foo" */

If a program uses fopen (instead of tmpfile) to create a temporary file, it can
use remove to delete the file before the program terminates. Be sure that the file
to be removed has been closed; the effect of removing a file that’s currently open is
implementation-defined.

rename rename changes the name of a file:

rename("foo", "bar"); /* renames "foo" to "bar" */

rename is handy for renaming a temporary file created using fopen if a program
should decide to make it permanent. If a file with the new name already exists, the
effect is implementation-defined.

If the file to be renamed is open, be sure to close it before calling rename; the
function may fail if asked to rename an open file.

22.3 Formatted I/O

In this section, we’ll examine library functions that use format strings to control
reading and writing. These functions, which include our old friends printf and
scanf, have the ability to convert data from character form to numeric form dur-
ing input and from numeric form to character form during output. None of the
other I/O functions can do such conversions.

int remove(const char *filename);
int rename(const char *old, const char *new);

C22.FM Page 551 Friday, February 15, 2008 4:33 PM

552 Chapter 22 Input/Output

The …printf Functions

fprintf
printf

The fprintf and printf functions write a variable number of data items
to an output stream, using a format string to control the appearance of the output.
The prototypes for both functions end with the ... symbol (an ellipsis), which
indicates a variable number of additional arguments. Both functions return the
number of characters written; a negative return value indicates that an error
occurred.

The only difference between printf and fprintf is that printf always
writes to stdout (the standard output stream), whereas fprintf writes to the
stream indicated by its first argument:

printf("Total: %d\n", total); /* writes to stdout */
fprintf(fp, "Total: %d\n", total); /* writes to fp */

A call of printf is equivalent to a call of fprintf with stdout as the first
argument.

Don’t think of fprintf as merely a function that writes data to disk files,
though. Like many functions in <stdio.h>, fprintf works fine with any out-
put stream. In fact, one of the most common uses of fprintf—writing error
messages to stderr, the standard error stream—has nothing to do with disk files.
Here’s what such a call might look like:

fprintf(stderr, "Error: data file can't be opened.\n");

Writing the message to stderr guarantees that it will appear on the screen even
if the user redirects stdout.

There are two other functions in <stdio.h> that can write formatted output
to a stream. These functions, named vfprintf and vprintf, are fairly
obscure. Both rely on the va_list type, which is declared in <stdarg.h>, so
they’re discussed along with that header.

…printf Conversion Specifications

Both printf and fprintf require a format string containing ordinary charac-
ters and/or conversion specifications. Ordinary characters are printed as is; conver-
sion specifications describe how the remaining arguments are to be converted to
character form for display. Section 3.1 described conversion specifications briefly,
and we added more details in later chapters. We’ll now review what we know
about conversion specifications and fill in the remaining gaps.

A …printf conversion specification consists of the % character, followed by
as many as five distinct items:

int fprintf(FILE * restrict stream,
 const char * restrict format, ...);
int printf(const char * restrict format, ...);

ellipsis ➤26.1

v…printf functions ➤26.1

C22.FM Page 552 Friday, February 15, 2008 4:33 PM

22.3 Formatted I/O 553

Here’s a detailed description of these items, which must appear in the order shown:

� Flags (optional; more than one permitted). The - flag causes left justification
within a field; the other flags affect the way numbers are displayed. Table 22.4
gives a complete list of flags.

� Minimum field width (optional). An item that’s too small to occupy this num-
ber of characters will be padded. (By default, spaces are added to the left of
the item, thus right-justifying it within the field.) An item that’s too large for
the field width will still be displayed in its entirety. The field width is either an
integer or the character *. If * is present, the field width is obtained from the
next argument. If this argument is negative, it’s treated as a positive number
preceded by a - flag.

� Precision (optional). The meaning of the precision depends on the conversion:

d, i, o, u, x, X: minimum number of digits
(leading zeros are added if the number has fewer digits)

a, A, e, E, f, F: number of digits after the decimal point
g, G: number of significant digits
s: maximum number of bytes

The precision is a period (.) followed by an integer or the character *. If * is
present, the precision is obtained from the next argument. (If this argument is
negative, the effect is the same as not specifying a precision.) If only the
period is present, the precision is zero.

% #0 12 .5 L g

flags precision

minimum
field width

length
modifier

conversion
specifier

Flag Meaning

- Left-justify within field. (The default is right justification.)

+ Numbers produced by signed conversions always begin with + or -. (Normally,
only negative numbers are preceded by a sign.)

space Nonnegative numbers produced by signed conversions are preceded by a space.
(The + flag overrides the space flag.)

Octal numbers begin with 0, nonzero hexadecimal numbers with 0x or 0X.
Floating-point numbers always have a decimal point. Trailing zeros aren’t
removed from numbers printed with the g or G conversions.

0
(zero)

Numbers are padded with leading zeros up to the field width. The 0 flag is
ignored if the conversion is d, i, o, u, x, or X and a precision is specified. (The
- flag overrides the 0 flag.)

Table 22.4
Flags for …printf

Functions

C22.FM Page 553 Friday, February 15, 2008 4:33 PM

554 Chapter 22 Input/Output

� Length modifier (optional). The presence of a length modifier indicates that
the item to be displayed has a type that’s longer or shorter than is normal for a
particular conversion specification. (For example, %d normally refers to an
int value; %hd is used to display a short int and %ld is used to display a
long int.) Table 22.5 lists each length modifier, the conversion specifiers
with which it may be used, and the type indicated by the combination of the
two. (Any combination of length modifier and conversion specifier not shown
in the table causes undefined behavior.)

� Conversion specifier. The conversion specifier must be one of the characters
listed in Table 22.6. Notice that f, F, e, E, g, G, a, and A are all designed to
write double values. However, they work fine with float values as well;
thanks to the default argument promotions, float arguments are converted
automatically to double when passed to a function with a variable number of
arguments. Similarly, a character passed to …printf is converted automati-
cally to int, so the c conversion works properly.

Be careful to follow the rules described here; the effect of using an invalid conver-
sion specification is undefined.

Length
Modifier Conversion Specifiers Meaning

hh† d, i, o, u, x, X signed char, unsigned char

n signed char *

h d, i, o, u, x, X short int, unsigned short int

n short int *

l
(ell)

d, i, o, u, x, X long int, unsigned long int

n long int *

c wint_t

s wchar_t *

a, A, e, E, f, F, g, G no effect

ll†

(ell-ell)
d, i, o, u, x, X long long int, unsigned long long int

n long long int *

j† d, i, o, u, x, X intmax_t, uintmax_t

n intmax_t *

z† d, i, o, u, x, X size_t

n size_t *

t† d, i, o, u, x, X ptrdiff_t

n ptrdiff_t *

L a, A, e, E, f, F, g, G long double
†C99 only

Table 22.5
Length Modifiers for
…printf Functions

default argument promotions ➤9.3

C22.FM Page 554 Friday, February 15, 2008 4:33 PM

22.3 Formatted I/O 555

C99 Changes to …printf Conversion Specifications

The conversion specifications for printf and fprintf have undergone a num-
ber of changes in C99:

� Additional length modifiers. C99 adds the hh, ll, j, z, and t length modifi-
ers. hh and ll provide additional length options, j allows greatest-width inte-
gers to be written, and z and t make it easier to write values of type size_t
and ptrdiff_t, respectively.

Conversion
Specifier Meaning

d, i Converts an int value to decimal form.

o, u, x, X Converts an unsigned int value to base 8 (o), base 10 (u), or base 16
(x, X). x displays the hexadecimal digits a–f in lower case; X displays
them in upper case.

f, F† Converts a double value to decimal form, putting the decimal point in
the correct position. If no precision is specified, displays six digits after
the decimal point.

e, E Converts a double value to scientific notation. If no precision is speci-
fied, displays six digits after the decimal point. If e is chosen, the expo-
nent is preceded by the letter e; if E is chosen, the exponent is preceded
by E.

g, G g converts a double value to either f form or e form. e form is selected
if the number’s exponent is less than –4 or greater than or equal to the
precision. Trailing zeros are not displayed (unless the # flag is used); a
decimal point appears only when followed by a digit. G chooses between
F and E forms.

a†, A† Converts a double value to hexadecimal scientific notation using the
form [-]0xh.hhhhp±d, where [-] is an optional minus sign, the h’s rep-
resent hex digits, ± is either a plus or minus sign, and d is the exponent. d
is a decimal number that represents a power of 2. If no precision is speci-
fied, enough digits are displayed after the decimal point to represent the
exact value of the number (if possible). a displays the hex digits a–f in
lower case; A displays them in upper case. The choice of a or A also
affects the case of the letters x and p.

c Displays an int value as an unsigned character.

s Writes the characters pointed to by the argument. Stops writing when the
number of bytes specified by the precision (if present) is reached or a null
character is encountered.

p Converts a void * value to printable form.

n The corresponding argument must point to an object of type int. Stores
in this object the number of characters written so far by this call of
…printf; produces no output.

% Writes the character %.
†C99 only

Table 22.6
Conversion Specifiers for

…printf Functions

C99

greatest-width integers ➤27.1

C22.FM Page 555 Friday, February 15, 2008 4:33 PM

556 Chapter 22 Input/Output

� Additional conversion specifiers. C99 adds the F, a, and A conversion specifi-
ers. F is the same as f except for the way in which infinity and NaN (see
below) are written. The a and A conversion specifications are rarely used.
They’re related to hexadecimal floating constants, which are discussed in the
Q&A section at the end of Chapter 7.

� Ability to write infinity and NaN. The IEEE 754 floating-point standard
allows the result of a floating-point operation to be infinity, negative infinity,
or NaN (“not a number”). For example, dividing 1.0 by 0.0 yields positive
infinity, dividing –1.0 by 0.0 yields negative infinity, and dividing 0.0 by 0.0
yields NaN (because the result is mathematically undefined). In C99, the a, A,
e, E, f, F, g, and G conversion specifiers are capable of converting these spe-
cial values to a form that can be displayed. a, e, f, and g convert positive
infinity to inf or infinity (either one is legal), negative infinity to -inf
or -infinity, and NaN to nan or -nan (possibly followed by a series of
characters enclosed in parentheses). A, E, F, and G are equivalent to a, e, f,
and g, except that upper-case letters are used (INF, INFINITY, NAN).

� Support for wide characters. Another C99 feature is the ability of fprintf
to write wide characters. The %lc conversion specification is used to write a
single wide character; %ls is used for a string of wide characters.

� Previously undefined conversion specifications now allowed. In C89, the
effect of using %le, %lE, %lf, %lg, and %lG is undefined. These conversion
specifications are legal in C99 (the l length modifier is simply ignored).

Examples of …printf Conversion Specifications

Whew! It’s about time for a few examples. We’ve seen plenty of everyday conver-
sion specifications in previous chapters, so we’ll concentrate here on illustrating
some of the more advanced ones. As in previous chapters, I’ll use • to represent
the space character.

Let’s start off by examining the effect of flags on the %d conversion (they have
a similar effect on other conversions). The first line of Table 22.7 shows the effect
of %8d without any flags. The next four lines show the effect of the -, +, space,
and 0 flags (the # flag is never used with %d). The remaining lines show the effect
of combinations of flags.

IEEE floating-point standard ➤23.4

wide characters ➤25.2

Conversion
Specification

Result of Applying
Conversion to 123

Result of Applying
Conversion to –123

 %8d
 %-8d
 %+8d
 % 8d
 %08d
%-+8d
%- 8d
%+08d
% 08d

•••••123
123•••••
••••+123
•••••123
00000123
+123••••
•123••••
+0000123
•0000123

••••-123
-123••••
••••-123
••••-123
-0000123
-123••••
-123••••
-0000123
-0000123

Table 22.7
Effect of Flags on

the %d Conversion

C22.FM Page 556 Friday, February 15, 2008 4:33 PM

22.3 Formatted I/O 557

Table 22.8 shows the effect of the # flag on the o, x, X, g, and G conversions.

In previous chapters, we’ve used the minimum field width and precision
when displaying numbers, so there’s no point in more examples here. Instead,
Table 22.9 shows the effect of the minimum field width and precision on the %s
conversion.

Table 22.10 illustrates how the %g conversion displays some numbers in %e
form and others in %f form. All numbers in the table were written using the %.4g
conversion specification. The first two numbers have exponents of at least 4, so
they’re displayed in %e form. The next eight numbers are displayed in %f form.
The last two numbers have exponents less than –4, so they’re displayed in %e
form.

Conversion
Specification

Result of Applying
Conversion to 123

Result of Applying
Conversion to 123.0

 %8o
%#8o
 %8x
%#8x
 %8X
%#8X
 %8g
%#8g
 %8G
%#8G

•••••173
••••0173
••••••7b
••••0x7b
••••••7B
••••0X7B

•••••123
•123.000
•••••123
•123.000

Table 22.8
Effect of the # Flag

Conversion
Specification

Result of Applying
Conversion to
"bogus"

Result of Applying
Conversion to
"buzzword"

 %6s
 %-6s
 %.4s
 %6.4s
%-6.4s

•bogus
bogus•
bogu
••bogu
bogu••

buzzword
buzzword
buzz
••buzz
buzz••

Table 22.9
Effect of Minimum Field

Width and Precision on
the %s Conversion

Number
Result of Applying %.4g
Conversion to Number

123456.
12345.6
1234.56
123.456
12.3456
1.23456
.123456
.0123456
.00123456
.000123456
.0000123456
.00000123456

1.235e+05
1.235e+04
1235
123.5
12.35
1.235
0.1235
0.01235
0.001235
0.0001235
1.235e-05
1.235e-06

Table 22.10
Examples of the
%g Conversion

C22.FM Page 557 Friday, February 15, 2008 4:33 PM

558 Chapter 22 Input/Output

In the past, we’ve assumed that the minimum field width and precision were
constants embedded in the format string. Putting the * character where either num-
ber would normally go allows us to specify it as an argument after the format
string. For example, the following calls of printf all produce the same output:

printf("%6.4d", i);
printf("%*.4d", 6, i);
printf("%6.*d", 4, i);
printf("%*.*d", 6, 4, i);

Notice that the values to be filled in for the * come just before the value to be dis-
played. A major advantage of *, by the way, is that it allows us to use a macro to
specify the width or precision:

printf("%*d", WIDTH, i);

We can even compute the width or precision during program execution:

printf("%*d", page_width / num_cols, i);

The most unusual specifications are %p and %n. The %p conversion allows us
to print the value of a pointer:

printf("%p", (void *) ptr); /* displays value of ptr */

Although %p is occasionally useful during debugging, it’s not a feature that most
programmers use on a daily basis. The C standard doesn’t specify what a pointer
looks like when printed using %p, but it’s likely to be shown as an octal or hexa-
decimal number.

The %n conversion is used to find out how many characters have been printed
so far by a call of …printf. For example, after the call

printf("%d%n\n", 123, &len);

the value of len will be 3, since printf had written 3 characters (123) by the
time it reached %n. Notice that & must precede len (because %n requires a
pointer) and that len itself isn’t printed.

The …scanf Functions

fscanf
scanf

fscanf and scanf read data items from an input stream, using a format string to
indicate the layout of the input. After the format string, any number of pointers—
each pointing to an object—follow as additional arguments. Input items are con-
verted (according to conversion specifications in the format string) and stored in
these objects.

int fscanf(FILE * restrict stream,
 const char * restrict format, ...);
int scanf(const char * restrict format, ...);

C22.FM Page 558 Friday, February 15, 2008 4:33 PM

22.3 Formatted I/O 559

scanf always reads from stdin (the standard input stream), whereas
fscanf reads from the stream indicated by its first argument:

scanf("%d%d", &i, &j); /* reads from stdin */
fscanf(fp, "%d%d", &i, &j); /* reads from fp */

A call of scanf is equivalent to a call of fscanf with stdin as the first argu-
ment.

The …scanf functions return prematurely if an input failure occurs (no more
input characters could be read) or if a matching failure occurs (the input charac-
ters didn’t match the format string). (In C99, an input failure can also occur
because of an encoding error, which means that an attempt was made to read a
multibyte character, but the input characters didn’t correspond to any valid multi-
byte character.) Both functions return the number of data items that were read and
assigned to objects; they return EOF if an input failure occurs before any data items
can be read.

Loops that test scanf’s return value are common in C programs. The follow-
ing loop, for example, reads a series of integers one by one, stopping at the first
sign of trouble:

idiom while (scanf("%d", &i) == 1) {
 …
}

…scanf Format Strings

Calls of the …scanf functions resemble those of the …printf functions. That
similarity can be misleading, however; the …scanf functions work quite differ-
ently from the …printf functions. It pays to think of scanf and fscanf as
“pattern-matching” functions. The format string represents a pattern that a
…scanf function attempts to match as it reads input. If the input doesn’t match
the format string, the function returns as soon as it detects the mismatch; the input
character that didn’t match is “pushed back” to be read in the future.

A …scanf format string may contain three things:

� Conversion specifications. Conversion specifications in a …scanf format
string resemble those in a …printf format string. Most conversion specifica-
tions skip white-space characters at the beginning of an input item (the excep-
tions are %[, %c, and %n). Conversion specifications never skip trailing white-
space characters, however. If the input contains •123¤, the %d conversion
specification consumes •, 1, 2, and 3, but leaves ¤ unread. (I’m using • to
represent the space character and ¤ to represent the new-line character.)

� White-space characters. One or more consecutive white-space characters in a
…scanf format string match zero or more white-space characters in the input
stream.

� Non-white-space characters. A non-white-space character other than % matches
the same character in the input stream.

C99

multibyte characters ➤25.2

white-space characters ➤3.2

C22.FM Page 559 Friday, February 15, 2008 4:33 PM

560 Chapter 22 Input/Output

For example, the format string "ISBN %d-%d-%ld-%d" specifies that the
input will consist of:

the letters ISBN
possibly some white-space characters
an integer
the - character
an integer (possibly preceded by white-space characters)
the - character
a long integer (possibly preceded by white-space characters)
the - character
an integer (possibly preceded by white-space characters)

…scanf Conversion Specifications
Conversion specifications for …scanf functions are actually a little simpler than
those for …printf functions. A …scanf conversion specification consists of the
character % followed by the items listed below (in the order shown).

� * (optional). The presence of * signifies assignment suppression: an input
item is read but not assigned to an object. Items matched using * aren’t
included in the count that …scanf returns.

� Maximum field width (optional). The maximum field width limits the number
of characters in an input item; conversion of the item ends if this number is
reached. White-space characters skipped at the beginning of a conversion
don’t count.

� Length modifier (optional). The presence of a length modifier indicates that the
object in which the input item will be stored has a type that’s longer or shorter
than is normal for a particular conversion specification. Table 22.11 lists each
length modifier, the conversion specifiers with which it may be used, and the
type indicated by the combination of the two. (Any combination of length mod-
ifier and conversion specifier not shown in the table causes undefined behavior.)

Length
Modifier Conversion Specifiers Meaning

hh† d, i, o, u, x, X, n signed char *, unsigned char *

h d, i, o, u, x, X, n short int *, unsigned short int *

l
(ell)

d, i, o, u, x, X, n long int *, unsigned long int *

a, A, e, E, f, F, g, G double *

c, s, or [wchar_t *

ll†

(ell-ell)
d, i, o, u, x, X, n long long int *,

unsigned long long int *

j† d, i, o, u, x, X, n intmax_t *, uintmax_t *

z† d, i, o, u, x, X, n size_t *

t† d, i, o, u, x, X, n ptrdiff_t *

L a, A, e, E, f, F, g, G long double *
†C99 only

Table 22.11
Length Modifiers for
…scanf Functions

C22.FM Page 560 Friday, February 15, 2008 4:33 PM

22.3 Formatted I/O 561

� Conversion specifier. The conversion specifier must be one of the characters
listed in Table 22.12.

Numeric data items can always begin with a sign (+ or -). The o, u, x, and X
specifiers convert the item to unsigned form, however, so they’re not normally used
to read negative numbers.

The [specifier is a more complicated (and more flexible) version of the s
specifier. A complete conversion specification using [has the form %[set] or
%[^set], where set can be any set of characters. (If] is one of the characters in
set, however, it must come first.) %[set] matches any sequence of characters in set
(the scanset). %[^set] matches any sequence of characters not in set (in other
words, the scanset consists of all characters not in set). For example, %[abc]

Conversion
Specifier Meaning

d Matches a decimal integer; the corresponding argument is assumed to
have type int *.

i Matches an integer; the corresponding argument is assumed to have type
int *. The integer is assumed to be in base 10 unless it begins with 0
(indicating octal) or with 0x or 0X (hexadecimal).

o Matches an octal integer; the corresponding argument is assumed to have
type unsigned int *.

u Matches a decimal integer; the corresponding argument is assumed to
have type unsigned int *.

x, X Matches a hexadecimal integer; the corresponding argument is assumed
to have type unsigned int *.

a†, A†, e, E,
f, F†, g, G

Matches a floating-point number; the corresponding argument is
assumed to have type float *. In C99, the number can be infinity or
NaN.

c Matches n characters, where n is the maximum field width, or one char-
acter if no field width is specified. The corresponding argument is
assumed to be a pointer to a character array (or a character object, if no
field width is specified). Doesn’t add a null character at the end.

s Matches a sequence of non-white-space characters, then adds a null char-
acter at the end. The corresponding argument is assumed to be a pointer
to a character array.

[Matches a nonempty sequence of characters from a scanset, then adds a
null character at the end. The corresponding argument is assumed to be a
pointer to a character array.

p Matches a pointer value in the form that …printf would have written
it. The corresponding argument is assumed to be a pointer to a void *
object.

n The corresponding argument must point to an object of type int. Stores
in this object the number of characters read so far by this call of
…scanf. No input is consumed and the return value of …scanf isn’t
affected.

% Matches the character %.
†C99 only

Table 22.12
Conversion Specifiers for

…scanf Functions

C22.FM Page 561 Friday, February 15, 2008 4:33 PM

562 Chapter 22 Input/Output

matches any string containing only the letters a, b, and c, while %[^abc]
matches any string that doesn’t contain a, b, or c.

Many of the …scanf conversion specifiers are closely related to the numeric
conversion functions in <stdlib.h>. These functions convert strings (like
"-297") to their equivalent numeric values (–297). The d specifier, for example,
looks for an optional + or - sign, followed by a series of decimal digits; this is
exactly the same form that the strtol function requires when asked to convert a
string to a decimal number. Table 22.13 shows the correspondence between con-
version specifiers and numeric conversion functions.

It pays to be careful when writing calls of scanf. An invalid conversion specifica-
tion in a scanf format string is just as bad as one in a printf format string;
either one causes undefined behavior.

C99 Changes to …scanf Conversion Specifications

The conversion specifications for scanf and fscanf have undergone some
changes in C99, but the list isn’t as extensive as it was for the …printf functions:

� Additional length modifiers. C99 adds the hh, ll, j, z, and t length modifi-
ers. These correspond to the length modifiers in …printf conversion specifi-
cations.

� Additional conversion specifiers. C99 adds the F, a, and A conversion specifi-
ers. They’re provided for symmetry with …printf; the …scanf functions
treat them the same as e, E, f, g, and G.

� Ability to read infinity and NaN. Just as the …printf functions can write
infinity and NaN, the …scanf functions can read these values. To be read
properly, they should have the same appearance as values written by the
…printf functions, with case being ignored. (For example, either INF or
inf will be read as infinity.)

� Support for wide characters. The …scanf functions are able to read multi-
byte characters, which are then converted to wide characters for storage. The
%lc conversion specification is used to read a single multibyte character or a

numeric conversion functions ➤26.2

Conversion
Specifier Numeric Conversion Function

d
i
o
u
x, X

a, A, e, E, f, F, g, G

strtol with 10 as the base
strtol with 0 as the base
strtoul with 8 as the base
strtoul with 10 as the base
strtoul with 16 as the base
strtod

Table 22.13
Correspondence between

…scanf Conversion
Specifiers and Numeric

Conversion Functions

C99

C22.FM Page 562 Friday, February 15, 2008 4:33 PM

22.3 Formatted I/O 563

sequence of multibyte characters; %ls is used to read a string of multibyte
characters (a null character is added at the end). The %l[set] and %l[^set]
conversion specifications can also read a string of multibyte characters.

scanf Examples

The next three tables contain sample calls of scanf. Each call is applied to the
input characters shown to its right. Characters printed in strikeout are consumed
by the call. The values of the variables after the call appear to the right of the in-
put.

The examples in Table 22.14 show the effect of combining conversion specifi-
cations, white-space characters, and non-white-space characters. In three cases no
value is assigned to j, so it retains its value from before the call of scanf. The
examples in Table 22.15 show the effect of assignment suppression and specifying
a field width. The examples in Table 22.16 illustrate the more esoteric conversion
specifiers (i, [, and n).

scanf Call Input Variables

n = scanf("%d%d", &i, &j); 12•,•34¤ n: 1
i: 12
j: unchanged

n = scanf("%d,%d", &i, &j); 12•,•34¤ n: 1
i: 12
j: unchanged

n = scanf("%d ,%d", &i, &j); 12•,•34¤ n: 2
i: 12
j: 34

n = scanf("%d, %d", &i, &j); 12•,•34¤ n: 1
i: 12
j: unchanged

Table 22.14
scanf Examples

(Group 1)

scanf Call Input Variables

n = scanf("%*d%d", &i); 12•34¤ n: 1
i: 34

n = scanf("%*s%s", str); My•Fair•Lady¤ n: 1
str: "Fair"

n = scanf("%1d%2d%3d",
 &i, &j, &k);

12345¤ n: 3
i: 1
j: 23
k: 45

n = scanf("%2d%2s%2d",
 &i, str, &j);

123456¤ n: 3
i: 12
str: "34"
j: 56

Table 22.15
scanf Examples

(Group 2)

C22.FM Page 563 Friday, February 15, 2008 4:33 PM

564 Chapter 22 Input/Output

Detecting End-of-File and Error Conditions

If we ask a …scanf function to read and store n data items, we expect its return
value to be n. If the return value is less than n, something went wrong. There are
three possibilities:

� End-of-file. The function encountered end-of-file before matching the format
string completely.

� Read error. The function was unable to read characters from the stream.

� Matching failure. A data item was in the wrong format. For example, the
function might have encountered a letter while searching for the first digit of
an integer.

But how can we tell which kind of failure occurred? In many cases, it doesn’t mat-
ter; something went wrong, and we’ve got to abandon the program. There may be
times, however, when we’ll need to pinpoint the reason for the failure.

Every stream has two indicators associated with it: an error indicator and an
end-of-file indicator. These indicators are cleared when the stream is opened. Not
surprisingly, encountering end-of-file sets the end-of-file indicator, and a read error
sets the error indicator. (The error indicator is also set when a write error occurs on
an output stream.) A matching failure doesn’t change either indicator.

clearerr Once the error or end-of-file indicator is set, it remains in that state until it’s
explicitly cleared, perhaps by a call of the clearerr function. clearerr clears
both the end-of-file and error indicators:

clearerr(fp); /* clears eof and error indicators for fp */

scanf Call Input Variables

n = scanf("%i%i%i", &i, &j, &k); 12•012•0x12¤ n: 3
i: 12
j: 10
k: 18

n = scanf("%[0123456789]", str); 123abc¤ n: 1
str: "123"

n = scanf("%[0123456789]", str); abc123¤ n: 0
str:
unchanged

n = scanf("%[^0123456789]", str); abc123¤ n: 1
str: "abc"

n = scanf("%*d%d%n", &i, &j); 10•20•30¤ n: 1
i: 20
j: 5

Table 22.16
scanf Examples

(Group 3)

void clearerr(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);

C22.FM Page 564 Friday, February 15, 2008 4:33 PM

22.3 Formatted I/O 565

clearerr isn’t needed often, since some of the other library functions clear one
or both indicators as a side effect.

feof
ferror

We can call the feof and ferror functions to test a stream’s indicators to
determine why a prior operation on the stream failed. The call feof(fp) returns
a nonzero value if the end-of-file indicator is set for the stream associated with fp.
The call ferror(fp) returns a nonzero value if the error indicator is set. Both
functions return zero otherwise.

When scanf returns a smaller-than-expected value, we can use feof and
ferror to determine the reason. If feof returns a nonzero value, we’ve reached
the end of the input file. If ferror returns a nonzero value, a read error occurred
during input. If neither returns a nonzero value, a matching failure must have oc-
curred. Regardless of what the problem was, the return value of scanf tells us
how many data items were read before the problem occurred.

To see how feof and ferror might be used, let’s write a function that
searches a file for a line that begins with an integer. Here’s how we intend to call
the function:

n = find_int("foo");

"foo" is the name of the file to be searched. The function returns the value of the
integer that it finds, which is then assigned to n. If a problem arises—the file can’t
be opened, a read error occurs, or no line begins with an integer—find_int will
return an error code (–1, –2, or –3, respectively). I’ll assume that no line in the file
begins with a negative integer.

int find_int(const char *filename)
{
 FILE *fp = fopen(filename, "r");
 int n;

 if (fp == NULL)
 return -1; /* can't open file */

 while (fscanf(fp, "%d", &n) != 1) {
 if (ferror(fp)) {
 fclose(fp);
 return -2; /* read error */
 }
 if (feof(fp)) {
 fclose(fp);
 return -3; /* integer not found */
 }
 fscanf(fp, "%*[^\n]"); /* skips rest of line */
 }

 fclose(fp);
 return n;
}

The while loop’s controlling expression calls fscanf in an attempt to read an
integer from the file. If the attempt fails (fscanf returns a value other than 1),

Q&A

Q&A

C22.FM Page 565 Friday, February 15, 2008 4:33 PM

566 Chapter 22 Input/Output

find_int calls ferror and feof to see if the problem was a read error or end-
of-file. If not, fscanf must have failed because of a matching error, so
find_int skips the rest of the characters on the current line and tries again. Note
the use of the conversion %*[^\n] to skip all characters up to the next new-line.
(Now that we know about scansets, it’s time to show off!)

22.4 Character I/O

In this section, we’ll examine library functions that read and write single charac-
ters. These functions work equally well with text streams and binary streams.

You’ll notice that the functions in this section treat characters as values of type
int, not char. One reason is that the input functions indicate an end-of-file (or
error) condition by returning EOF, which is a negative integer constant.

Output Functions

putchar putchar writes one character to the stdout stream:

putchar(ch); /* writes ch to stdout */

fputc
putc

fputc and putc are more general versions of putchar that write a character to
an arbitrary stream:

fputc(ch, fp); /* writes ch to fp */
putc(ch, fp); /* writes ch to fp */

Although putc and fputc do the same thing, putc is usually implemented
as a macro (as well as a function), while fputc is implemented only as a function.
putchar itself is usually a macro defined in the following way:

#define putchar(c) putc((c), stdout)

It may seem odd that the library provides both putc and fputc. But, as we saw
in Section 14.3, macros have several potential problems. The C standard allows the
putc macro to evaluate the stream argument more than once, which fputc
isn’t permitted to do. Although programmers usually prefer putc, which gives a
faster program, fputc is available as an alternative.

If a write error occurs, all three functions set the error indicator for the stream
and return EOF; otherwise, they return the character that was written.

int fputc(int c, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);

Q&A

C22.FM Page 566 Friday, February 15, 2008 4:33 PM

22.4 Character I/O 567

Input Functions

getchar getchar reads a character from the stdin stream:

ch = getchar(); /* reads a character from stdin */

fgetc
getc

fgetc and getc read a character from an arbitrary stream:

ch = fgetc(fp); /* reads a character from fp */
ch = getc(fp); /* reads a character from fp */

All three functions treat the character as an unsigned char value (which is then
converted to int type before it’s returned). As a result, they never return a nega-
tive value other than EOF.

The relationship between getc and fgetc is similar to that between putc
and fputc. getc is usually implemented as a macro (as well as a function),
while fgetc is implemented only as a function. getchar is normally a macro as
well:

#define getchar() getc(stdin)

For reading characters from a file, programmers usually prefer getc over fgetc.
Since getc is normally available in macro form, it tends to be faster. fgetc can
be used as a backup if getc isn’t appropriate. (The standard allows the getc
macro to evaluate its argument more than once, which may be a problem.)

The fgetc, getc, and getchar functions behave the same if a problem
occurs. At end-of-file, they set the stream’s end-of-file indicator and return EOF. If
a read error occurs, they set the stream’s error indicator and return EOF. To differ-
entiate between the two situations, we can call either feof or ferror.

One of the most common uses of fgetc, getc, and getchar is to read
characters from a file, one by one, until end-of-file occurs. It’s customary to use the
following while loop for that purpose:

idiom while ((ch = getc(fp)) != EOF) {
 …
}

After reading a character from the file associated with fp and storing it in the vari-
able ch (which must be of type int), the while test compares ch with EOF. If
ch isn’t equal to EOF, we’re not at the end of the file yet, so the body of the loop is
executed. If ch is equal to EOF, the loop terminates.

int fgetc(FILE *stream);
int getc(FILE *stream);
int getchar(void);
int ungetc(int c, FILE *stream);

C22.FM Page 567 Friday, February 15, 2008 4:33 PM

568 Chapter 22 Input/Output

Always store the return value of fgetc, getc, or getchar in an int variable,
not a char variable. Testing a char variable against EOF may give the wrong
result.

ungetc There’s one other character input function, ungetc, which “pushes back”
a character read from a stream and clears the stream’s end-of-file indicator.
This capability can be handy if we need a “lookahead” character during input.
For instance, to read a series of digits, stopping at the first nondigit, we could
write

while (isdigit(ch = getc(fp))) {
 …
}
ungetc(ch, fp); /* pushes back last character read */

The number of characters that can be pushed back by consecutive calls of
ungetc—with no intervening read operations—depends on the implementation
and the type of stream involved; only the first call is guaranteed to succeed. Calling
a file-positioning function (fseek, fsetpos, or rewind) causes the pushed-
back characters to be lost.

ungetc returns the character it was asked to push back. However, it returns
EOF if an attempt is made to push back EOF or to push back more characters than
the implementation allows.

PROGRAM Copying a File

The following program makes a copy of a file. The names of the original file and
the new file will be specified on the command line when the program is executed.
For example, to copy the file f1.c to f2.c, we’d use the command

fcopy f1.c f2.c

fcopy will issue an error message if there aren’t exactly two file names on the
command line or if either file can’t be opened.

fcopy.c /* Copies a file */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *source_fp, *dest_fp;
 int ch;

Q&A

isdigit function ➤23.5

file-positioning functions ➤22.7

C22.FM Page 568 Friday, February 15, 2008 4:33 PM

22.5 Line I/O 569

 if (argc != 3) {
 fprintf(stderr, "usage: fcopy source dest\n");
 exit(EXIT_FAILURE);
 }

 if ((source_fp = fopen(argv[1], "rb")) == NULL) {
 fprintf(stderr, "Can't open %s\n", argv[1]);
 exit(EXIT_FAILURE);
 }

 if ((dest_fp = fopen(argv[2], "wb")) == NULL) {
 fprintf(stderr, "Can't open %s\n", argv[2]);
 fclose(source_fp);
 exit(EXIT_FAILURE);
 }

 while ((ch = getc(source_fp)) != EOF)
 putc(ch, dest_fp);

 fclose(source_fp);
 fclose(dest_fp);
 return 0;
}

Using "rb" and "wb" as the file modes enables fcopy to copy both text and
binary files. If we used "r" and "w" instead, the program wouldn’t necessarily be
able to copy binary files.

22.5 Line I/O

We’ll now turn to library functions that read and write lines. These functions are
used mostly with text streams, although it’s legal to use them with binary streams
as well.

Output Functions

puts We encountered the puts function in Section 13.3; it writes a string of characters
to stdout:

puts("Hi, there!"); /* writes to stdout */

After it writes the characters in the string, puts always adds a new-line character.

int fputs(const char * restrict s,
 FILE * restrict stream);
int puts(const char *s);

C22.FM Page 569 Friday, February 15, 2008 4:33 PM

570 Chapter 22 Input/Output

fputs fputs is a more general version of puts. Its second argument indicates the
stream to which the output should be written:

fputs("Hi, there!", fp); /* writes to fp */

Unlike puts, the fputs function doesn’t write a new-line character unless one is
present in the string.

Both functions return EOF if a write error occurs; otherwise, they return a
nonnegative number.

Input Functions

gets The gets function, which we first encountered in Section 13.3, reads a line of
input from stdin:

gets(str); /* reads a line from stdin */

gets reads characters one by one, storing them in the array pointed to by str,
until it reads a new-line character (which it discards).

fgets fgets is a more general version of gets that can read from any stream.
fgets is also safer than gets, since it limits the number of characters that it will
store. Here’s how we might use fgets, assuming that str is the name of a char-
acter array:

fgets(str, sizeof(str), fp); /* reads a line from fp */

This call will cause fgets to read characters until it reaches the first new-line
character or sizeof(str) – 1 characters have been read, whichever happens
first. If it reads the new-line character, fgets stores it along with the other charac-
ters. (Thus, gets never stores the new-line character, but fgets sometimes does.)

Both gets and fgets return a null pointer if a read error occurs or they
reach the end of the input stream before storing any characters. (As usual, we can
call feof or ferror to determine which situation occurred.) Otherwise, both
return their first argument, which points to the array in which the input was stored.
As you’d expect, both functions store a null character at the end of the string.

Now that you know about fgets, I’d suggest using it instead of gets in
most situations. With gets, there’s always the possibility of stepping outside the
bounds of the receiving array, so it’s safe to use only when the string being read is
guaranteed to fit into the array. When there’s no guarantee (and there usually
isn’t), it’s much safer to use fgets. Note that fgets will read from the standard
input stream if passed stdin as its third argument:

fgets(str, sizeof(str), stdin);

char *fgets(char * restrict s, int n,
 FILE * restrict stream);
char *gets(char *s);

C22.FM Page 570 Friday, February 15, 2008 4:33 PM

22.6 Block I/O 571

22.6 Block I/O

The fread and fwrite functions allow a program to read and write large
blocks of data in a single step. fread and fwrite are used primarily with
binary streams, although—with care—it’s possible to use them with text streams
as well.

fwrite fwrite is designed to copy an array from memory to a stream. The first
argument in a call of fwrite is the array’s address, the second argument is the
size of each array element (in bytes), and the third argument is the number of ele-
ments to write. The fourth argument is a file pointer, indicating where the data
should be written. To write the entire contents of the array a, for instance, we
could use the following call of fwrite:

fwrite(a, sizeof(a[0]), sizeof(a) / sizeof(a[0]), fp);

There’s no rule that we have to write the entire array; we could just as easily
write any portion of it. fwrite returns the number of elements (not bytes) actu-
ally written. This number will be less than the third argument if a write error oc-
curs.

fread fread will read the elements of an array from a stream. fread’s arguments
are similar to fwrite’s: the array’s address, the size of each element (in bytes),
the number of elements to read, and a file pointer. To read the contents of a file into
the array a, we might use the following call of fread:

n = fread(a, sizeof(a[0]), sizeof(a) / sizeof(a[0]), fp);

It’s important to check fread’s return value, which indicates the actual number of
elements (not bytes) read. This number should equal the third argument unless the
end of the input file was reached or a read error occurred. The feof and ferror
functions can be used to determine the reason for any shortage.

Be careful not to confuse fread’s second and third arguments. Consider the fol-
lowing call of fread:

fread(a, 1, 100, fp)

We’re asking fread to read 100 one-byte elements, so it will return a value

size_t fread(void * restrict ptr,
 size_t size, size_t nmemb,
 FILE * restrict stream);
size_t fwrite(const void * restrict ptr,
 size_t size, size_t nmemb,
 FILE * restrict stream);

Q&A

C22.FM Page 571 Friday, February 15, 2008 4:33 PM

572 Chapter 22 Input/Output

between 0 and 100. The following call asks fread to read one block of 100
bytes:

fread(a, 100, 1, fp)

fread’s return value in this case will be either 0 or 1.

fwrite is convenient for a program that needs to store data in a file before
terminating. Later, the program (or another program, for that matter) can use
fread to read the data back into memory. Despite appearances, the data doesn’t
need to be in array form; fread and fwrite work just as well with variables of
all kinds. Structures, in particular, can be read by fread or written by fwrite.
To write a structure variable s to a file, for instance, we could use the following
call of fwrite:

fwrite(&s, sizeof(s), 1, fp);

Be careful when using fwrite to write out structures that contain pointer values;
these values aren’t guaranteed to be valid when read back in.

22.7 File Positioning

Every stream has an associated file position. When a file is opened, the file posi-
tion is set at the beginning of the file. (If the file is opened in “append” mode, how-
ever, the initial file position may be at the beginning or end of the file, depending
on the implementation.) Then, when a read or write operation is performed, the file
position advances automatically, allowing us to move through the file in a sequen-
tial manner.

Although sequential access is fine for many applications, some programs need
the ability to jump around within a file, accessing some data here and other data
there. If a file contains a series of records, for example, we might want to jump
directly to a particular record and read it or update it. <stdio.h> supports this
form of access by providing five functions that allow a program to determine the
current file position or to change it.

fseek The fseek function changes the file position associated with the first argu-
ment (a file pointer). The third argument specifies whether the new position is to

int fgetpos(FILE * restrict stream,
 fpos_t * restrict pos);
int fseek(FILE *stream, long int offset, int whence);
int fsetpos(FILE *stream, const fpos_t *pos);
long int ftell(FILE *stream);
void rewind(FILE *stream);

C22.FM Page 572 Friday, February 15, 2008 4:33 PM

22.7 File Positioning 573

be calculated with respect to the beginning of the file, the current position, or the
end of the file. <stdio.h> defines three macros for this purpose:

SEEK_SET Beginning of file
SEEK_CUR Current file position
SEEK_END End of file

The second argument is a (possibly negative) byte count. To move to the beginning
of a file, for example, the seek direction would be SEEK_SET and the byte count
would be zero:

fseek(fp, 0L, SEEK_SET); /* moves to beginning of file */

To move to the end of a file, the seek direction would be SEEK_END:

fseek(fp, 0L, SEEK_END); /* moves to end of file */

To move back 10 bytes, the seek direction would be SEEK_CUR and the byte count
would be –10:

fseek(fp, -10L, SEEK_CUR); /* moves back 10 bytes */

Note that the byte count has type long int, so I’ve used 0L and -10L as argu-
ments. (0 and -10 would also work, of course, since arguments are converted to
the proper type automatically.)

Normally, fseek returns zero. If an error occurs (the requested position
doesn’t exist, for example), fseek returns a nonzero value.

The file-positioning functions are best used with binary streams, by the way. C
doesn’t prohibit programs from using them with text streams, but care is required
because of operating system differences. fseek in particular is sensitive to
whether a stream is text or binary. For text streams, either (1) offset (fseek’s
second argument) must be zero or (2) whence (its third argument) must be
SEEK_SET and offset a value obtained by a previous call of ftell. (In other
words, we can only use fseek to move to the beginning or end of a text stream or
to return to a place that was visited previously.) For binary streams, fseek isn’t
required to support calls in which whence is SEEK_END.

ftell The ftell function returns the current file position as a long integer. (If an
error occurs, ftell returns -1L and stores an error code in errno.) The value
returned by ftell may be saved and later supplied to a call of fseek, making it
possible to return to a previous file position:

long file_pos;
…
file_pos = ftell(fp); /* saves current position */
…
fseek(fp, file_pos, SEEK_SET); /* returns to old position */

If fp is a binary stream, the call ftell(fp) returns the current file position as a
byte count, where zero represents the beginning of the file. If fp is a text stream,
however, ftell(fp) isn’t necessarily a byte count. As a result, it’s best not to
perform arithmetic on values returned by ftell. For example, it’s not a good

errno variable ➤24.2

C22.FM Page 573 Friday, February 15, 2008 4:33 PM

574 Chapter 22 Input/Output

idea to subtract values returned by ftell to see how far apart two file positions
are.

rewind The rewind function sets the file position at the beginning. The call
rewind(fp) is nearly equivalent to fseek(fp, 0L, SEEK_SET). The dif-
ference? rewind doesn’t return a value but does clear the error indicator for fp.

fgetpos
fsetpos

fseek and ftell have one problem: they’re limited to files whose posi-
tions can be stored in a long integer. For working with very large files, C pro-
vides two additional functions: fgetpos and fsetpos. These functions can
handle large files because they use values of type fpos_t to represent file posi-
tions. An fpos_t value isn’t necessarily an integer; it could be a structure, for
instance.

The call fgetpos(fp, &file_pos) stores the file position associated
with fp in the file_pos variable. The call fsetpos(fp, &file_pos) sets
the file position for fp to be the value stored in file_pos. (This value must have
been obtained by a previous call of fgetpos.) If a call of fgetpos or fsetpos
fails, it stores an error code in errno. Both functions return zero when they suc-
ceed and a nonzero value when they fail.

Here’s how we might use fgetpos and fsetpos to save a file position and
return to it later:

fpos_t file_pos;
…
fgetpos(fp, &file_pos); /* saves current position */
…
fsetpos(fp, &file_pos); /* returns to old position */

PROGRAM Modifying a File of Part Records

The following program opens a binary file containing part structures, reads the
structures into an array, sets the on_hand member of each structure to 0, and then
writes the structures back to the file. Note that the program opens the file in
"rb+" mode, allowing both reading and writing.

invclear.c /* Modifies a file of part records by setting the quantity
 on hand to zero for all records */

#include <stdio.h>
#include <stdlib.h>

#define NAME_LEN 25
#define MAX_PARTS 100

struct part {
 int number;
 char name[NAME_LEN+1];
 int on_hand;
} inventory[MAX_PARTS];

Q&A

C22.FM Page 574 Friday, February 15, 2008 4:33 PM

22.8 String I/O 575

int num_parts;

int main(void)
{
 FILE *fp;
 int i;

 if ((fp = fopen("inventory.dat", "rb+")) == NULL) {
 fprintf(stderr, "Can't open inventory file\n");
 exit(EXIT_FAILURE);
 }

 num_parts = fread(inventory, sizeof(struct part),
 MAX_PARTS, fp);

 for (i = 0; i < num_parts; i++)
 inventory[i].on_hand = 0;

 rewind(fp);
 fwrite(inventory, sizeof(struct part), num_parts, fp);
 fclose(fp);

 return 0;
}

Calling rewind is critical, by the way. After the fread call, the file position is at
the end of the file. If we were to call fwrite without calling rewind first,
fwrite would add new data to the end of the file instead of overwriting the old
data.

22.8 String I/O

The functions described in this section are a bit unusual, since they have nothing to
do with streams or files. Instead, they allow us to read and write data using a string
as though it were a stream. The sprintf and snprintf functions write charac-
ters into a string in the same way they would be written to a stream; the sscanf
function reads characters from a string as though it were reading from a stream.
These functions, which closely resemble printf and scanf, are quite useful.
sprintf and snprintf give us access to printf’s formatting capabilities
without actually having to write data to a stream. Similarly, sscanf gives us
access to scanf’s powerful pattern-matching capabilities. The remainder of this
section covers sprintf, snprintf, and sscanf in detail.

Three similar functions (vsprintf, vsnprintf, and vsscanf) also
belong to <stdio.h>. However, these functions rely on the va_list type,
which is declared in <stdarg.h>. I’ll postpone discussing them until Section
26.1, which covers that header.

C22.FM Page 575 Friday, February 15, 2008 4:33 PM

576 Chapter 22 Input/Output

Output Functions

sprintf The sprintf function is similar to printf and fprintf, except that it writes
output into a character array (pointed to by its first argument) instead of a stream.
sprintf’s second argument is a format string identical to that used by printf
and fprintf. For example, the call

sprintf(date, "%d/%d/%d", 9, 20, 2010);

will write "9/20/2010" into date. When it’s finished writing into a string,
sprintf adds a null character and returns the number of characters stored (not
counting the null character). If an encoding error occurs (a wide character could
not be translated into a valid multibyte character), sprintf returns a negative
value.

sprintf has a variety of uses. For example, we might occasionally want to
format data for output without actually writing it. We can use sprintf to do the
formatting, then save the result in a string until it’s time to produce output.
sprintf is also convenient for converting numbers to character form.

snprintf The snprintf function is the same as sprintf, except for the additional
parameter n. No more than n – 1 characters will be written to the string, not count-
ing the terminating null character, which is always written unless n is zero. (Equiv-
alently, we could say that snprintf writes at most n characters to the string, the
last of which is a null character.) For example, the call

snprintf(name, 13, "%s, %s", "Einstein", "Albert");

will write "Einstein, Al" into name.
snprintf returns the number of characters that would have been written

(not including the null character) had there been no length restriction. If an encod-
ing error occurs, snprintf returns a negative number. To see if snprintf had
room to write all the requested characters, we can test whether its return value was
nonnegative and less than n.

Input Functions

int sprintf(char * restrict s,
 const char * restrict format, ...);
int snprintf(char * restrict s, size_t n,
 const char * restrict format, ...);

Note: In this and subsequent chapters, the prototype for a function that is new in
C99 will be in italics. Also, the name of the function will be italicized when it
appears in the left margin.

int sscanf(const char * restrict s,
 const char * restrict format, ...);

C22.FM Page 576 Friday, February 15, 2008 4:33 PM

Q & A 577

sscanf The sscanf function is similar to scanf and fscanf, except that it reads from
a string (pointed to by its first argument) instead of reading from a stream.
sscanf’s second argument is a format string identical to that used by scanf and
fscanf.

sscanf is handy for extracting data from a string that was read by another
input function. For example, we might use fgets to obtain a line of input, then
pass the line to sscanf for further processing:

fgets(str, sizeof(str), stdin); /* reads a line of input */
sscanf(str, "%d%d", &i, &j); /* extracts two integers */

One advantage of using sscanf instead of scanf or fscanf is that we can
examine an input line as many times as needed, not just once, making it easier to
recognize alternate input forms and to recover from errors. Consider the problem
of reading a date that’s written either in the form month/day/year or month-day-
year. Assuming that str contains a line of input, we can extract the month, day,
and year as follows:

if (sscanf(str, "%d /%d /%d", &month, &day, &year) == 3)
 printf("Month: %d, day: %d, year: %d\n", month, day, year);
else if (sscanf(str, "%d -%d -%d", &month, &day, &year) == 3)
 printf("Month: %d, day: %d, year: %d\n", month, day, year);
else
 printf("Date not in the proper form\n");

Like the scanf and fscanf functions, sscanf returns the number of data
items successfully read and stored. sscanf returns EOF if it reaches the end of
the string (marked by a null character) before finding the first item.

Q & A

Q: If I use input or output redirection, will the redirected file names show up as
command-line arguments? [p. 541]

A: No; the operating system removes them from the command line. Let’s say that we
run a program by entering

demo foo <in_file bar >out_file baz

The value of argc will be 4, argv[0] will point to the program name,
argv[1] will point to "foo", argv[2] will point to "bar", and argv[3]
will point to "baz".

Q: I thought that the end of a line was always marked by a new-line character.
Now you’re saying that the end-of-line marker varies, depending on the oper-
ating system. How you explain this discrepancy? [p. 542]

A: C library functions make it appear as though each line ends with a single new-line

C22.FM Page 577 Friday, February 15, 2008 4:33 PM

578 Chapter 22 Input/Output

character. Regardless of whether an input file contains a carriage-return character,
a line-feed character, or both, a library function such as getc will return a single
new-line character. The output functions perform the reverse translation. If a pro-
gram calls a library function to write a new-line character to a file, the function
will translate the character into the appropriate end-of-line marker. C’s approach
makes programs more portable and easier to write; we can work with text files
without having to worry about how end-of-line is actually represented. Note that
input/output performed on a file opened in binary mode isn’t subject to any char-
acter translation—carriage return and line feed are treated the same as the other
characters.

Q: I’m writing a program that needs to save data in a file, to be read later by
another program. Is it better to store the data in text form or binary form? [p.
542]

A: That depends. If the data is all text to start with, there’s not much difference. If the
data contains numbers, however, the decision is tougher.

Binary form is usually preferable, since it can be read and written quickly.
Numbers are already in binary form when stored in memory, so copying them to a
file is easy. Writing numbers in text form is much slower, since each number must
be converted (usually by fprintf) to character form. Reading the file later will
also take more time, since numbers will have to be converted from text form back
to binary. Moreover, storing data in binary form often saves space, as we saw in
Section 22.1.

Binary files have two disadvantages, however. They’re hard for humans to
read, which can hamper debugging. Also, binary files generally aren’t portable
from one system to another, since different kinds of computers store data in differ-
ent ways. For instance, some machines store int values using two bytes but others
use four bytes. There’s also the issue of byte order (big-endian versus little-
endian).

Q: C programs for UNIX never seem to use the letter b in the mode string, even
when the file being opened is binary. What gives? [p. 544]

A: In UNIX, text files and binary files have exactly the same format, so there’s never
any need to use b. UNIX programmers should still include the b, however, so that
their programs will be more portable to other operating systems.

Q: I’ve seen programs that call fopen and put the letter t in the mode string.
What does t mean?

A: The C standard allows additional characters to appear in the mode string, provided
that they follow r, w, a, b, or +. Some compilers allow the use of t to indicate that
a file is to be opened in text mode instead of binary mode. Of course, text mode is
the default anyway, so t adds nothing. Whenever possible, it’s best to avoid using
t and other nonportable features.

Q: Why bother to call fclose to close a file? Isn’t it true that all open files are
closed automatically when a program terminates? [p. 545]

C22.FM Page 578 Friday, February 15, 2008 4:33 PM

Q & A 579

A: That’s usually true, but not if the program calls abort to terminate. Even when
abort isn’t used, though, there are still good reasons to call fclose. First, it
reduces the number of open files. Operating systems limit the number of files that
a program may have open at the same time; large programs may bump into this
limit. (The macro FOPEN_MAX, defined in <stdio.h>, specifies the minimum
number of files that the implementation guarantees can be open simultaneously.)
Second, the program becomes easier to understand and modify; by looking for the
call of fclose, it’s easier for the reader to determine the point at which a file is
no longer in use. Third, there’s the issue of safety. Closing a file ensures that its
contents and directory entry are updated properly; if the program should crash
later, at least the file will be intact.

Q: I’m writing a program that will prompt the user to enter a file name. How
long should I make the character array that will store the file name? [p. 546]

A: That depends on your operating system. Fortunately, you can use the macro
FILENAME_MAX (defined in <stdio.h>) to specify the size of the array.
FILENAME_MAX is the length of a string that will hold the longest file name that
the implementation guarantees can be opened.

Q: Can fflush flush a stream that was opened for both reading and writing?
[p. 549]

A: According to the C standard, the effect of calling fflush is defined for a stream
that (a) was opened for output, or (b) was opened for updating and whose last oper-
ation was not a read. In all other cases, the effect of calling fflush is undefined.
When fflush is passed a null pointer, it flushes all streams that satisfy either (a)
or (b).

Q: Can the format string in a call of …printf or …scanf be a variable?
A: Sure; it can be any expression of type char *. This property makes the …printf

and …scanf functions even more versatile than we’ve had reason to suspect. Con-
sider the following classic example from Kernighan and Ritchie’s The C Program-
ming Language, which prints a program’s command-line arguments, separated by
spaces:

while (--argc > 0)
 printf((argc > 1) ? "%s " : "%s", *++argv);

The format string is the expression (argc > 1) ? "%s " : "%s", which evalu-
ates to "%s " for all command-line arguments but the last.

Q: Which library functions other than clearerr clear a stream’s error and
end-of-file indicators? [p. 565]

A: Calling rewind clears both indicators, as does opening or reopening the stream.
Calling ungetc, fseek, or fsetpos clears just the end-of-file indicator.

Q: I can’t get feof to work; it seems to return zero even at end-of-file. What am
I doing wrong? [p. 565]

abort function ➤26.2

C22.FM Page 579 Friday, February 15, 2008 4:33 PM

580 Chapter 22 Input/Output

A: feof will only return a nonzero value when a previous read operation has failed;
you can’t use feof to check for end-of-file before attempting to read. Instead, you
should first attempt to read, then check the return value from the input function. If
the return value indicates that the operation was unsuccessful, you can then use
feof to determine whether the failure was due to end-of-file. In other words, it’s
best not to think of calling feof as a way to detect end-of-file. Instead, think of it
as a way to confirm that end-of-file was the reason for the failure of a read opera-
tion.

Q: I still don’t understand why the I/O library provides macros named putc and
getc in addition to functions named fputc and fgetc. According to Sec-
tion 21.1, there are already two versions of putc and getc (a macro and a
function). If we need a genuine function instead of a macro, we can expose the
putc or getc function by undefining the macro. So why do fputc and
fgetc exist? [p. 566]

A: Historical reasons. Prior to standardization, C had no rule that there be a true func-
tion to back up each parameterized macro in the library. putc and getc were tra-
ditionally implemented only as macros; fputc and fgetc were implemented
only as functions.

*Q: What’s wrong with storing the return value of fgetc, getc, or getchar in
a char variable? I don’t see how testing a char variable against EOF could
give the wrong answer. [p. 568]

A: There are two cases in which this test can give the wrong result. To make the fol-
lowing discussion concrete, I’ll assume two’s-complement arithmetic.

First, suppose that char is an unsigned type. (Recall that some compilers
treat char as a signed type but others treat it as an unsigned type.) Now suppose
that getc returns EOF, which we store in a char variable named ch. If EOF rep-
resents –1 (its typical value), ch will end up with the value 255. Comparing ch (an
unsigned character) with EOF (a signed integer) requires converting ch to a signed
integer (255, in this case). The comparison against EOF fails, since 255 is not equal
to –1.

Now assume that char is a signed type instead. Consider what happens if
getc reads a byte containing the value 255 from a binary stream. Storing 255 in
the ch variable gives it the value –1, since ch is a signed character. Testing
whether ch is equal to EOF will (erroneously) give a true result.

Q: The character input functions described in Section 22.4 require that the Enter
key be pressed before they can read what the user has typed. How can I write
a program that responds to individual keystrokes?

A: As you’ve noticed, the getc, fgetc, and getchar functions are buffered; they
don’t start to read input until the user has pressed the Enter key. In order to read
characters as they’re entered—which is important for some kinds of programs—
you’ll need to use a nonstandard library that’s tailored to your operating system. In
UNIX, for example, the curses library often provides this capability.

C22.FM Page 580 Friday, February 15, 2008 4:33 PM

Q & A 581

Q: When I’m reading user input, how can I skip all characters left on the current
input line?

A: One possibility is to write a small function that reads and ignores all characters up
to (and including) the first new-line character:

void skip_line(void)
{
 while (getchar() != '\n')
 ;
}

Another possibility is to ask scanf to skip all characters up to the first new-
line character:

scanf("%*[^\n]"); /* skips characters up to new-line */

scanf will read all characters up to the first new-line character, but not store them
anywhere (the * indicates assignment suppression). The only problem with using
scanf is that it leaves the new-line character unread, so you may have to discard
it separately.

Whatever you do, don’t call the fflush function:

fflush(stdin); /* effect is undefined */

Although some implementations allow the use of fflush to “flush” unread input,
it’s not a good idea to assume that all do. fflush is designed to flush output
streams; the C standard states that its effect on input streams is undefined.

 Q: Why is it not a good idea to use fread and fwrite with text streams? [p.
571]

A: One difficulty is that, under some operating systems, the new-line character
becomes a pair of characters when written to a text file (see Section 22.1 for
details). We must take this expansion into account, or else we’re likely to lose track
of our data. For example, if we use fwrite to write blocks of 80 characters, some
of the blocks may end up occupying more than 80 bytes in the file because of new-
line characters that were expanded.

Q: Why are there two sets of file-positioning functions (fseek/ftell and
fsetpos/fgetpos)? Wouldn’t one set be enough? [p. 574]

A: fseek and ftell have been part of the C library for eons. They have one draw-
back, though: they assume that a file position will fit in a long int value. Since
long int is typically a 32-bit type, this means that fseek and ftell may not
work with files containing more than 2,147,483,647 bytes. In recognition of this
problem, fsetpos and fgetpos were added to <stdio.h> when C89 was
created. These functions aren’t required to treat file positions as numbers, so
they’re not subject to the long int restriction. But don’t assume that you have to
use fsetpos and fgetpos; if your implementation supports a 64-bit long
int type, fseek and ftell are fine even for very large files.

C22.FM Page 581 Friday, February 15, 2008 4:33 PM

582 Chapter 22 Input/Output

Q: Why doesn’t this chapter discuss screen control: moving the cursor, changing
the colors of characters on the screen, and so on?

A: C provides no standard functions for screen control. The C standard addresses only
issues that can reasonably be standardized across a wide range of computers and
operating systems; screen control is outside this realm. The customary way to
solve this problem in UNIX is to use the curses library, which supports screen
control in a terminal-independent manner.

Similarly, there are no standard functions for building programs with a graphi-
cal user interface. However, you can most likely use C function calls to access the
windowing API (application programming interface) for your operating system.

Exercises
Section 22.1 1. Indicate whether each of the following files is more likely to contain text data or binary

data:

Section 22.2 2. Indicate which mode string is most likely to be passed to fopen in each of the following
situations:

3. Find the error in the following program fragment and show how to fix it.

FILE *fp;

if (fp = fopen(filename, "r")) {
 read characters until end-of-file
}
fclose(fp);

Section 22.3 4. Show how each of the following numbers will look if displayed by printf with
%#012.5g as the conversion specification:

5. Is there any difference between the printf conversion specifications %.4d and %04d? If
so, explain what it is.

(a) A file of object code produced by a C compiler
(b) A program listing produced by a C compiler
(c) An email message sent from one computer to another
(d) A file containing a graphics image

(a) A database management system opens a file containing records to be updated.
(b) A mail program opens a file of saved messages so that it can add additional messages to

the end.
(c) A graphics program opens a file containing a picture to be displayed on the screen.
(d) An operating system command interpreter opens a “shell script” (or “batch file”) con-

taining commands to be executed.

W

(a) 83.7361
(b) 29748.6607
(c) 1054932234.0
(d) 0.0000235218

W

C22.FM Page 582 Friday, February 15, 2008 4:33 PM

Exercises 583

*6. Write a call of printf that prints

1 widget

if the widget variable (of type int) has the value 1, and

n widgets

otherwise, where n is the value of widget. You are not allowed to use the if statement or
any other statement; the answer must be a single call of printf.

*7. Suppose that we call scanf as follows:

n = scanf("%d%f%d", &i, &x, &j);

(i, j, and n are int variables and x is a float variable.) Assuming that the input stream
contains the characters shown, give the values of i, j, n, and x after the call. In addition,
indicate which characters were consumed by the call.

8. In previous chapters, we’ve used the scanf format string " %c" when we wanted to skip
white-space characters and read a nonblank character. Some programmers use "%1s"
instead. Are the two techniques equivalent? If not, what are the differences?

Section 22.4 9. Which one of the following calls is not a valid way of reading one character from the stan-
dard input stream?

10. The fcopy.c program has one minor flaw: it doesn’t check for errors as it’s writing to the
destination file. Errors during writing are rare, but do occasionally occur (the disk might
become full, for example). Show how to add the missing error check to the program, assum-
ing that we want it to display a message and terminate immediately if an error occurs.

11. The following loop appears in the fcopy.c program:

while ((ch = getc(source_fp)) != EOF)
 putc(ch, dest_fp);

Suppose that we neglected to put parentheses around ch = getc(source_fp):

while (ch = getc(source_fp) != EOF)
 putc(ch, dest_fp);

Would the program compile without an error? If so, what would the program do when it’s
run?

12. Find the error in the following function and show how to fix it.

int count_periods(const char *filename)
{
 FILE *fp;
 int n = 0;

W

(a) 10•20•30¤
(b) 1.0•2.0•3.0¤
(c) 0.1•0.2•0.3¤
(d) .1•.2•.3¤

W

(a) getch()
(b) getchar()
(c) getc(stdin)
(d) fgetc(stdin)

W

C22.FM Page 583 Friday, February 15, 2008 4:33 PM

584 Chapter 22 Input/Output

 if ((fp = fopen(filename, "r")) != NULL) {
 while (fgetc(fp) != EOF)
 if (fgetc(fp) == '.')
 n++;
 fclose(fp);
 }

 return n;
}

13. Write the following function:

int line_length(const char *filename, int n);

The function should return the length of line n in the text file whose name is filename
(assuming that the first line in the file is line 1). If the line doesn’t exist, the function should
return 0.

Section 22.5 14. (a) Write your own version of the fgets function. Make it behave as much like the real
fgets function as possible; in particular, make sure that it has the proper return value. To
avoid conflicts with the standard library, don’t name your function fgets.

(b) Write your own version of fputs, following the same rules as in part (a).

Section 22.7 15. Write calls of fseek that perform the following file-positioning operations on a binary file
whose data is arranged in 64-byte “records.” Use fp as the file pointer in each case.

Section 22.8 16. Assume that str is a string that contains a “sales rank” immediately preceded by the #
symbol (other characters may precede the # and/or follow the sales rank). A sales rank is a
series of decimal digits possibly containing commas, such as the following examples:

989
24,675
1,162,620

Write a call of sscanf that extracts the sales rank (but not the # symbol) and stores it in a
string variable named sales_rank.

Programming Projects

1. Extend the canopen.c program of Section 22.2 so that the user may put any number of
file names on the command line:

canopen foo bar baz

The program should print a separate can be opened or can't be opened message for
each file. Have the program terminate with status EXIT_FAILURE if one or more of the
files can’t be opened.

2. Write a program that converts all letters in a file to upper case. (Characters other than letters
shouldn’t be changed.) The program should obtain the file name from the command line and
write its output to stdout.

W

(a) Move to the beginning of record n. (Assume that the first record in the file is record 0.)
(b) Move to the beginning of the last record in the file.
(c) Move forward one record.
(d) Move backward two records.

W

W

C22.FM Page 584 Friday, February 15, 2008 4:33 PM

Programming Projects 585

3. Write a program named fcat that “concatenates” any number of files by writing them to
standard output, one after the other, with no break between files. For example, the following
command will display the files f1.c, f2.c, and f3.c on the screen:

fcat f1.c f2.c f3.c

fcat should issue an error message if any file can’t be opened. Hint: Since it has no more
than one file open at a time, fcat needs only a single file pointer variable. Once it’s fin-
ished with a file, fcat can use the same variable when it opens the next file.

4. (a) Write a program that counts the number of characters in a text file.

(b) Write a program that counts the number of words in a text file. (A “word” is any
sequence of non-white-space characters.)

(c) Write a program that counts the number of lines in a text file.

Have each program obtain the file name from the command line.

5. The xor.c program of Section 20.1 refuses to encrypt bytes that—in original or encrypted
form—are control characters. We can now remove this restriction. Modify the program so
that the names of the input and output files are command-line arguments. Open both files in
binary mode, and remove the test that checks whether the original and encrypted characters
are printing characters.

 6. Write a program that displays the contents of a file as bytes and as characters. Have the user
specify the file name on the command line. Here’s what the output will look like when the
program is used to display the pun.c file of Section 2.1:

Offset Bytes Characters
------ ----------------------------- ----------
 0 23 69 6E 63 6C 75 64 65 20 3C #include <
 10 73 74 64 69 6F 2E 68 3E 0D 0A stdio.h>..
 20 0D 0A 69 6E 74 20 6D 61 69 6E ..int main
 30 28 76 6F 69 64 29 0D 0A 7B 0D (void)..{.
 40 0A 20 20 70 72 69 6E 74 66 28 . printf(
 50 22 54 6F 20 43 2C 20 6F 72 20 "To C, or
 60 6E 6F 74 20 74 6F 20 43 3A 20 not to C:
 70 74 68 61 74 20 69 73 20 74 68 that is th
 80 65 20 71 75 65 73 74 69 6F 6E e question
 90 2E 5C 6E 22 29 3B 0D 0A 20 20 .\n");..
 100 72 65 74 75 72 6E 20 30 3B 0D return 0;.
 110 0A 7D .}

Each line shows 10 bytes from the file, as hexadecimal numbers and as characters. The
number in the Offset column indicates the position within the file of the first byte on the
line. Only printing characters (as determined by the isprint function) are displayed;
other characters are shown as periods. Note that the appearance of a text file may vary,
depending on the character set and the operating system. The example above assumes that
pun.c is a Windows file, so 0D and 0A bytes (the ASCII carriage-return and line-feed
characters) appear at the end of each line. Hint: Be sure to open the file in "rb" mode.

7. Of the many techniques for compressing the contents of a file, one of the simplest and fast-
est is known as run-length encoding. This technique compresses a file by replacing
sequences of identical bytes by a pair of bytes: a repetition count followed by a byte to be
repeated. For example, suppose that the file to be compressed begins with the following
sequence of bytes (shown in hexadecimal):

46 6F 6F 20 62 61 72 21 21 21 20 20 20 20 20

The compressed file will contain the following bytes:

W

W

C22.FM Page 585 Friday, February 15, 2008 4:33 PM

586 Chapter 22 Input/Output

01 46 02 6F 01 20 01 62 01 61 01 72 03 21 05 20

Run-length encoding works well if the original file contains many long sequences of identi-
cal bytes. In the worst case (a file with no repeated bytes), run-length encoding can actually
double the length of the file.

(a) Write a program named compress_file that uses run-length encoding to compress
a file. To run compress_file, we’d use a command of the form

compress_file original-file

compress_file will write the compressed version of original-file to original-file.rle.

For example, the command

compress_file foo.txt

will cause compress_file to write a compressed version of foo.txt to a file named
foo.txt.rle. Hint: The program described in Programming Project 6 could be useful
for debugging.

(b) Write a program named uncompress_file that reverses the compression performed
by the compress_file program. The uncompress_file command will have the
form

uncompress_file compressed-file

compressed-file should have the extension .rle. For example, the command

uncompress_file foo.txt.rle

will cause uncompress_file to open the file foo.txt.rle and write an uncom-
pressed version of its contents to foo.txt. uncompress_file should display an error
message if its command-line argument doesn’t end with the .rle extension.

8. Modify the inventory.c program of Section 16.3 by adding two new operations:

� Save the database in a specified file.
� Load the database from a specified file.

Use the codes d (dump) and r (restore), respectively, to represent these operations. The
interaction with the user should have the following appearance:

Enter operation code: d
Enter name of output file: inventory.dat

Enter operation code: r
Enter name of input file: inventory.dat

Hint: Use fwrite to write the array containing the parts to a binary file. Use fread to
restore the array by reading it from a file.

9. Write a program that merges two files containing part records stored by the inventory.c
program (see Programming Project 8). Assume that the records in each file are sorted by
part number, and that we want the resulting file to be sorted as well. If both files have a part
with the same number, combine the quantities stored in the records. (As a consistency
check, have the program compare the part names and print an error message if they don’t
match.) Have the program obtain the names of the input files and the merged file from the
command line.

*10. Modify the inventory2.c program of Section 17.5 by adding the d (dump) and r
(restore) operations described in Programming Project 8. Since the part structures aren’t
stored in an array, the d operation can’t save them all by a single call of fwrite. Instead, it
will need to visit each node in the linked list, writing the part number, part name, and quan-

W

C22.FM Page 586 Friday, February 15, 2008 4:33 PM

Programming Projects 587

tity on hand to a file. (Don’t save the next pointer; it won’t be valid once the program ter-
minates.) As it reads parts from a file, the r operation will rebuild the list one node at a time.

11. Write a program that reads a date from the command line and displays it in the following
form:

September 13, 2010

Allow the user to enter the date as either 9-13-2010 or 9/13/2010; you may assume
that there are no spaces in the date. Print an error message if the date doesn’t have one of the
specified forms. Hint: Use sscanf to extract the month, day, and year from the command-
line argument.

12. Modify Programming Project 2 from Chapter 3 so that the program reads a series of items
from a file and displays the data in columns. Each line of the file will have the following
form:

item,price,mm/dd/yyyy

For example, suppose that the file contains the following lines:

583,13.5,10/24/2005
3912,599.99,7/27/2008

The output of the program should have the following appearance:

Item Unit Purchase
 Price Date
583 $ 13.50 10/24/2005
3912 $ 599.99 7/27/2008

Have the program obtain the file name from the command line.

13. Modify Programming Project 8 from Chapter 5 so that the program obtains departure and
arrival times from a file named flights.dat. Each line of the file will contain a depar-
ture time followed by an arrival time, with one or more spaces separating the two. Times
will be expressed using the 24-hour clock. For example, here’s what flights.dat might
look like if it contained the flight information listed in the original project:

8:00 10:16
9:43 11:52
11:19 13:31
12:47 15:00
14:00 16:08
15:45 17:55
19:00 21:20
21:45 23:58

14. Modify Programming Project 15 from Chapter 8 so that the program prompts the user to
enter the name of a file containing the message to be encrypted:

Enter name of file to be encrypted: message.txt
Enter shift amount (1-25): 3

The program then writes the encrypted message to a file with the same name but an added
extension of .enc. In this example, the original file name is message.txt, so the
encrypted message will be stored in a file named message.txt.enc. There’s no limit on
the size of the file to be encrypted or on the length of each line in the file.

15. Modify the justify program of Section 15.3 so that it reads from one text file and writes
to another. Have the program obtain the names of both files from the command line.

C22.FM Page 587 Friday, February 15, 2008 4:33 PM

588 Chapter 22 Input/Output

16. Modify the fcopy.c program of Section 22.4 so that it uses fread and fwrite to copy
the file in blocks of 512 bytes. (The last block may contain fewer than 512 bytes, of course.)

17. Write a program that reads a series of phone numbers from a file and displays them in a
standard format. Each line of the file will contain a single phone number, but the numbers
may be in a variety of formats. You may assume that each line contains 10 digits, possibly
mixed with other characters (which should be ignored). For example, suppose that the file
contains the following lines:

404.817.6900
(215) 686-1776
312-746-6000
877 275 5273
6173434200

The output of the program should have the following appearance:

(404) 817-6900
(215) 686-1776
(312) 746-6000
(877) 275-5273
(617) 343-4200

Have the program obtain the file name from the command line.

18. Write a program that reads integers from a text file whose name is given as a command-line
argument. Each line of the file may contain any number of integers (including none) sepa-
rated by one or more spaces. Have the program display the largest number in the file, the
smallest number, and the median (the number closest to the middle if the integers were
sorted). If the file contains an even number of integers, there will be two numbers in the
middle; the program should display their average (rounded down). You may assume that the
file contains no more than 10,000 integers. Hint: Store the integers in an array and then sort
the array.

19. (a) Write a program that converts a Windows text file to a UNIX text file. (See Section 22.1
for a discussion of the differences between Windows and UNIX text files.)

(b) Write a program that converts a UNIX text file to a Windows text file.

In each case, have the program obtain the names of both files from the command line. Hint:
Open the input file in "rb" mode and the output file in "wb" mode.

C22.FM Page 588 Friday, February 15, 2008 4:33 PM

589

23 Library Support for Numbers
and Character Data

Prolonged contact with the computer turns
mathematicians into clerks and vice versa.

This chapter describes the five most important library headers that provide support
for working with numbers, characters, and character strings. Sections 23.1 and
23.2 cover the <float.h> and <limits.h> headers, which contain macros
describing the characteristics of numeric and character types. Sections 23.3 and
23.4 describe the <math.h> header, which provides mathematical functions. Sec-
tion 23.3 discusses the C89 version of <math.h>; Section 23.4 covers the C99
additions, which are so extensive that I’ve chosen to cover them separately. Sec-
tions 23.5 and 23.6 are devoted to the <ctype.h> and <string.h> headers,
which provide character functions and string functions, respectively.

C99 adds several headers that also deal with numbers, characters, and strings.
The <wchar.h> and <wctype.h> headers are discussed in Chapter 25. Chap-
ter 27 covers <complex.h>, <fenv.h>, <inttypes.h>, <stdint.h>,
and <tgmath.h>.

23.1 The <float.h> Header: Characteristics of
Floating Types

The <float.h> header provides macros that define the range and accuracy of
the float, double, and long double types. There are no types or functions
in <float.h>.

Two macros apply to all floating types. The FLT_ROUNDS macro represents
the current rounding direction for floating-point addition. Table 23.1 shows the
possible values of FLT_ROUNDS. (Values not shown in the table indicate imple-
mentation-defined rounding behavior.)

rounding direction ➤23.4

c23.fm Page 589 Saturday, February 16, 2008 2:17 PM

590 Chapter 23 Library Support for Numbers and Character Data

Unlike the other macros in <float.h>, which represent constant expressions,
the value of FLT_ROUNDS may change during execution. (The fesetround
function allows a program to change the current rounding direction.) The other
macro, FLT_RADIX, specifies the radix of exponent representation; it has a mini-
mum value of 2 (indicating binary representation).

The remaining macros, which I’ll present in a series of tables, describe the
characteristics of specific types. Each macro begins with either FLT, DBL, or
LDBL, depending on whether it refers to the float, double, or long double
type. The C standard provides extremely detailed definitions of these macros; my
descriptions will be less precise but easier to understand. The tables indicate maxi-
mum or minimum values for some macros, as specified in the standard.

Table 23.2 lists macros that define the number of significant digits guaranteed
by each floating type.

Table 23.3 lists macros having to do with exponents.

Table 23.4 lists macros that describe how large numbers can be, how close to
zero they can get, and how close two consecutive numbers can be.

Value Meaning

-1
 0
 1
 2
 3

Indeterminable
Toward zero
To nearest
Toward positive infinity
Toward negative infinity

Table 23.1
Rounding Directions

fesetround function ➤27.6

Name Value Description

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

Number of significant digits (base FLT_RADIX)

FLT_DIG
DBL_DIG
LDBL_DIG

≥6
≥10
≥10

Number of significant digits (base 10)

Table 23.2
Significant-Digit Macros

in <float.h>

Name Value Description

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

Smallest (most negative) power to which
FLT_RADIX can be raised

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

≤–37
≤–37
≤–37

Smallest (most negative) power to which 10 can be
raised

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

Largest power to which FLT_RADIX can be raised

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

≥+37
≥+37
≥+37

Largest power to which 10 can be raised

Table 23.3
Exponent Macros

in <float.h>

c23.fm Page 590 Saturday, February 16, 2008 2:17 PM

23.2 The <limits.h> Header: Sizes of Integer Types 591

C99 provides two other macros, DECIMAL_DIG and FLT_EVAL_METHOD.
DECIMAL_DIG represents the number of significant digits (base 10) in the wid-
est supported floating type; it has a minimum value of 10. The value of
FLT_EVAL_METHOD indicates whether an implementation will perform float-
ing-point arithmetic using greater range and precision than is strictly necessary. If
this macro has the value 0, for example, then adding two float values would be
done in the normal way. If it has the value 1, however, then the float values
would be converted to double before the addition is performed. Table 23.5 lists
the possible values of FLT_EVAL_METHOD. (Negative values not shown in the
table indicate implementation-defined behavior.)

Most of the macros in <float.h> are of interest only to experts in numeri-
cal analysis, making it probably one of the least-used headers in the standard
library.

23.2 The <limits.h> Header: Sizes of Integer Types

The <limits.h> header provides macros that define the range of each integer
type (including the character types). <limits.h> declares no types or functions.

One set of macros in <limits.h> deals with the character types: char,
signed char, and unsigned char. Table 23.6 lists these macros and shows
the maximum or minimum value of each.

The other macros in <limits.h> deal with the remaining integer types:
short int, unsigned short int, int, unsigned int, long int, and

Name Value Description

FLT_MAX
DBL_MAX
LDBL_MAX

≥10+37

≥10+37

≥10+37

Largest finite value

FLT_MIN
DBL_MIN
LDBL_MIN

≤10–37

≤10–37

≤10–37

Smallest positive value

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

≤10–5

≤10–9

≤10–9

Smallest representable difference between two numbers

Table 23.4
Max, Min, and Epsilon

Macros in <float.h>

C99

Value Meaning

-1 Indeterminable

 0 Evaluate all operations and constants just to the range and precision of the type

 1 Evaluate operations and constants of type float and double to the range
and precision of the double type

 2 Evaluate all operations and constants to the range and precision of the long
double type

Table 23.5
Evaluation Methods

c23.fm Page 591 Saturday, February 16, 2008 2:17 PM

592 Chapter 23 Library Support for Numbers and Character Data

unsigned long int. Table 23.7 lists these macros and shows the maximum or
minimum value of each; the formula used to compute each value is also given.
Note that C99 provides three macros that describe the characteristics of the long
long int types.

The macros in <limits.h> are handy for checking whether a compiler sup-
ports integers of a particular size. For example, to determine whether the int type
can store numbers as large as 100,000, we might use the following preprocessing
directives:

#if INT_MAX < 100000
#error int type is too small
#endif

If the int type isn’t adequate, the #error directive will cause the preprocessor
to display an error message.

Name Value Description

CHAR_BIT
SCHAR_MIN
SCHAR_MAX
UCHAR_MAX
CHAR_MIN
CHAR_MAX
MB_LEN_MAX

≥8
≤–127
≥+127

≥255
†

††
≥1

Number of bits per byte
Minimum signed char value
Maximum signed char value
Maximum unsigned char value
Minimum char value
Maximum char value
Maximum number of bytes per multibyte character
in any supported locale (see Section 25.2)

†CHAR_MIN is equal to SCHAR_MIN if char is treated as a signed type; otherwise,
CHAR_MIN is 0.
††CHAR_MAX has the same value as either SCHAR_MAX or UCHAR_MAX, depending on
whether char is treated as a signed type or an unsigned type.

Table 23.6
Character Macros
in <limits.h>

C99

Name Value Formula Description

SHRT_MIN
SHRT_MAX
USHRT_MAX

INT_MIN
INT_MAX
UINT_MAX

LONG_MIN
LONG_MAX
ULONG_MAX

LLONG_MIN†

LLONG_MAX†

ULLONG_MAX†

≤–32767
≥+32767

≥65535

≤–32767
≥+32767

≥65535

≤–2147483647
≥+2147483647

≥4294967295

≤–9223372036854775807

≥+9223372036854775807

≥18446744073709551615

–(215–1)
215–1
216–1

–(215–1)
215–1
216–1

–(231–1)
231–1
232–1

–(263–1)

263–1

264–1

Minimum short int value
Maximum short int value
Maximum unsigned
short int value
Minimum int value
Maximum int value
Maximum unsigned int
value
Minimum long int value
Maximum long int value
Maximum unsigned long
int value
Minimum long long int
value
Maximum long long int
value
Maximum unsigned long
long int value

†C99 only

Table 23.7
Integer Macros in
<limits.h>

#error directive ➤14.5

c23.fm Page 592 Saturday, February 16, 2008 2:17 PM

23.3 The <math.h> Header (C89): Mathematics 593

Going a step further, we might use the macros in <limits.h> to help a
program choose how to represent a type. Let’s say that variables of type Quan-
tity must be able to hold integers as large as 100,000. If INT_MAX is at least
100,000, we can define Quantity to be int; otherwise, we’ll need to make it
long int:

#if INT_MAX >= 100000
typedef int Quantity;
#else
typedef long int Quantity;
#endif

23.3 The <math.h> Header (C89): Mathematics

The functions in the C89 version of <math.h> fall into five groups:

Trigonometric functions
Hyperbolic functions
Exponential and logarithmic functions
Power functions
Nearest integer, absolute value, and remainder functions

C99 adds a number of functions to these groups as well as introducing other cate-
gories of math functions. The C99 changes to <math.h> are so extensive that
I’ve chosen to cover them in a separate section that follows this one. That way,
readers who are primarily interested in the C89 version of the header—or who are
using a compiler that doesn’t support C99—won’t be overwhelmed by all the C99
additions.

Before we delve into the functions provided by <math.h>, let’s take a brief
look at how these functions deal with errors.

Errors

The <math.h> functions handle errors in a way that’s different from other library
functions. When an error occurs, most <math.h> functions store an error code in
a special variable named errno (declared in the <errno.h> header). In addi-
tion, when the return value of a function would be larger than the largest double
value, the functions in <math.h> return a special value, represented by the macro
HUGE_VAL (defined in <math.h>). HUGE_VAL is of type double, but it isn’t
necessarily an ordinary number. (The IEEE standard for floating-point arithmetic
defines a value named “infinity”—a logical choice for HUGE_VAL.)

The functions in <math.h> detect two kinds of errors:

� Domain error: An argument is outside a function’s domain. If a domain error
occurs, the function’s return value is implementation-defined and EDOM

<errno.h> header ➤24.2

infinity ➤23.4

c23.fm Page 593 Saturday, February 16, 2008 2:17 PM

594 Chapter 23 Library Support for Numbers and Character Data

(“domain error”) is stored in errno. In some implementations of
<math.h>, functions return a special value known as NaN (“not a number”)
when a domain error occurs.

� Range error: The return value of a function is outside the range of double
values. If the return value’s magnitude is too large (overflow), the function
returns positive or negative HUGE_VAL, depending on the sign of the correct
result. In addition, ERANGE (“range error”) is stored in errno. If the return
value’s magnitude is too small to represent (underflow), the function returns
zero; some implementations may also store ERANGE in errno.

We’ll ignore the possibility of error for the remainder of this section. How-
ever, the function descriptions in Appendix D explain the circumstances that lead
to each type of error.

Trigonometric Functions

cos
sin
tan

The cos, sin, and tan functions compute the cosine, sine, and tangent, respec-
tively. If PI is defined to be 3.14159265, passing PI/4 to cos, sin, and tan
produces the following results:

cos(PI/4) ⇒ 0.707107
sin(PI/4) ⇒ 0.707107
tan(PI/4) ⇒ 1.0

Note that arguments to cos, sin, and tan are expressed in radians, not degrees.
acos
asin
atan

acos, asin, and atan compute the arc cosine, arc sine, and arc tangent:

acos(1.0) ⇒ 0.0
asin(1.0) ⇒ 1.5708
atan(1.0) ⇒ 0.785398

Applying acos to a value returned by cos won’t necessarily yield the original
argument to cos, since acos always returns a value between 0 and π. asin and
atan return a value between –π/2 and π/2.

atan2 atan2 computes the arc tangent of y/x, where y is the function’s first argu-
ment and x is its second. The return value of atan2 is between –π and π. The call
atan(x) is equivalent to atan2(x, 1.0).

double acos(double x);
double asin(double x);
double atan(double x);
double atan2(double y, double x);
double cos(double x);
double sin(double x);
double tan(double x);

NaN ➤23.4

underflow ➤23.4

c23.fm Page 594 Saturday, February 16, 2008 2:17 PM

23.3 The <math.h> Header (C89): Mathematics 595

Hyperbolic Functions

cosh
sinh
tanh

The cosh, sinh, and tanh functions compute the hyperbolic cosine, sine, and
tangent:

cosh(0.5) ⇒ 1.12763
sinh(0.5) ⇒ 0.521095
tanh(0.5) ⇒ 0.462117

Arguments to cosh, sinh, and tanh must be expressed in radians, not degrees.

Exponential and Logarithmic Functions

exp The exp function returns e raised to a power:

exp(3.0) ⇒ 20.0855

log
log10

log is the inverse of exp—it computes the logarithm of a number to the base
e. log10 computes the “common” (base 10) logarithm:

log(20.0855) ⇒ 3.0
log10(1000) ⇒ 3.0

Computing the logarithm to a base other than e or 10 isn’t difficult. The following
function, for example, computes the logarithm of x to the base b, for arbitrary x
and b:

double log_base(double x, double b)
{
 return log(x) / log(b);
}

modf The modf and frexp functions decompose a double value into two parts.
modf splits its first argument into integer and fractional parts. It returns the frac-
tional part and stores the integer part in the object pointed to by the second argu-
ment:

double cosh(double x);
double sinh(double x);
double tanh(double x);

double exp(double x);
double frexp(double value, int *exp);
double ldexp(double x, int exp);
double log(double x);
double log10(double x);
double modf(double value, double *iptr);

c23.fm Page 595 Saturday, February 16, 2008 2:17 PM

596 Chapter 23 Library Support for Numbers and Character Data

modf(3.14159, &int_part) ⇒ 0.14159 (int_part is assigned 3.0)

Although int_part must have type double, we can always cast it to int or
long int later.

frexp The frexp function splits a floating-point number into a fractional part f and
an exponent n in such a way that the original number equals f × 2n, where either
0.5 ≤ f < 1 or f = 0. frexp returns f and stores n in the (integer) object pointed to
by the second argument:

frexp(12.0, &exp) ⇒ .75 (exp is assigned 4)
frexp(0.25, &exp) ⇒ 0.5 (exp is assigned –1)

ldexp ldexp undoes the work of frexp by combining a fraction and an exponent
into a single number:

ldexp(.75, 4) ⇒ 12.0
ldexp(0.5, -1) ⇒ 0.25

In general, the call ldexp(x, exp) returns x × 2exp.
The modf, frexp, and ldexp functions are primarily used by other func-

tions in <math.h>. They are rarely called directly by programs.

Power Functions

pow The pow function raises its first argument to the power specified by its second
argument:

pow(3.0, 2.0) ⇒ 9.0
pow(3.0, 0.5) ⇒ 1.73205
pow(3.0, -3.0) ⇒ 0.037037

sqrt sqrt computes the square root:

sqrt(3.0) ⇒ 1.73205

Using sqrt to find square roots is preferable to calling pow, since sqrt is usu-
ally a much faster function.

Nearest Integer, Absolute Value, and Remainder Functions

double pow(double x, double y);
double sqrt(double x);

double ceil(double x);
double fabs(double x);
double floor(double x);
double fmod(double x, double y);

c23.fm Page 596 Saturday, February 16, 2008 2:17 PM

23.4 The <math.h> Header (C99): Mathematics 597

ceil
floor

The ceil (“ceiling”) function returns—as a double value—the smallest integer
that’s greater than or equal to its argument. floor returns the largest integer that’s
less than or equal to its argument:

ceil(7.1) ⇒ 8.0
ceil(7.9) ⇒ 8.0
ceil(-7.1) ⇒ –7.0
ceil(-7.9) ⇒ –7.0

floor(7.1) ⇒ 7.0
floor(7.9) ⇒ 7.0
floor(-7.1) ⇒ –8.0
floor(-7.9) ⇒ –8.0

In other words, ceil “rounds up” to the nearest integer, while floor “rounds
down.” C89 lacks a standard function that rounds to the nearest integer, but we can
easily use ceil and floor to write our own:

double round_nearest(double x)
{
 return x < 0.0 ? ceil(x - 0.5) : floor(x + 0.5);
}

C99 provides several functions that round to the nearest integer, as we’ll see in the
next section.

fabs fabs computes the absolute value of a number:

fabs(7.1) ⇒ 7.1
fabs(-7.1) ⇒ 7.1

fmod fmod returns the remainder when its first argument is divided by its second
argument:

fmod(5.5, 2.2) ⇒ 1.1

C doesn’t allow the % operator to have floating-point operands, but fmod is a
more-than-adequate substitute.

23.4 The <math.h> Header (C99): Mathematics

The C99 version of the <math.h> header includes the entire C89 version, plus a
host of additional types, macros, and functions. The changes to this header are so
numerous that I’ve chosen to cover them separately. There are several reasons why
the standards committee added so many capabilities to <math.h>:

� Provide better support for the IEEE floating-point standard. C99 doesn’t
mandate the use of the IEEE standard; other ways of representing floating-point

C99

c23.fm Page 597 Saturday, February 16, 2008 2:17 PM

598 Chapter 23 Library Support for Numbers and Character Data

numbers are permitted. However, it’s safe to say that the vast majority of C pro-
grams are executed on systems that support this standard.

� Provide more control over floating-point arithmetic. Better control over
floating-point arithmetic may allow programs to achieve greater accuracy and
speed.

� Make C more attractive to Fortran programmers. The addition of many math
functions, along with enhancements elsewhere in C99 (such as support for
complex numbers), was intended to increase C’s appeal to programmers who
might have used other programming languages (primarily Fortran) in the past.

Another reason that I’ve decided to cover C99’s <math.h> header in a sepa-
rate section is that it’s not likely to be of much interest to the average C programmer.
Those using C for its traditional applications, which include systems programming
and embedded systems, probably won’t need the additional functions that C99 pro-
vides. However, programmers developing engineering, mathematics, or science
applications may find these functions to be quite useful.

IEEE Floating-Point Standard

One motivation for the changes to the <math.h> header is better support for
IEEE Standard 754, the most widely used representation for floating-point num-
bers. The full title of the standard is “IEEE Standard for Binary Floating-Point
Arithmetic” (ANSI/IEEE Standard 754-1985). It’s also known as IEC 60559,
which is how the C99 standard refers to it.

Section 7.2 described some of the basic properties of the IEEE standard. We
saw that the standard provides two primary formats for floating-point numbers:
single precision (32 bits) and double precision (64 bits). Numbers are stored in a
form of scientific notation, with each number having three parts: a sign, an expo-
nent, and a fraction. That limited knowledge of the IEEE standard is enough to use
the C89 version of <math.h> effectively. Understanding the C99 version, how-
ever, requires knowing more about the standard. Here’s some additional informa-
tion that we’ll need:

� Positive/negative zero. One of the bits in the IEEE representation of a float-
ing-point number represents the number’s sign. As a result, the number zero
can be either positive or negative, depending on the value of this bit. The fact
that zero has two representations may sometimes require us to treat it differ-
ently from other floating-point numbers.

� Subnormal numbers. When a floating-point operation is performed, the result
may be too small to represent, a condition known as underflow. Think of what
happens if you repeatedly divide a number using a hand calculator: eventually
the result is zero, because it becomes too small to represent using the calcula-
tor’s number representation. The IEEE standard has a way to reduce the
impact of this phenomenon. Ordinary floating-point numbers are stored in a
“normalized” format, in which the number is scaled so that there’s exactly one

c23.fm Page 598 Saturday, February 16, 2008 2:17 PM

23.4 The <math.h> Header (C99): Mathematics 599

digit to the left of the binary point. When a number gets small enough, how-
ever, it’s stored in a different format in which it’s not normalized. These sub-
normal numbers (also known as denormalized numbers or denormals) can
be much smaller than normalized numbers; the trade-off is that they get pro-
gressively less accurate as they get smaller.

� Special values. Each floating-point format allows the representation of three
special values: positive infinity, negative infinity, and NaN (“not a number”).
Dividing a positive number by zero produces positive infinity. Dividing a neg-
ative number by zero yields negative infinity. The result of a mathematically
undefined operation, such as dividing zero by zero, is NaN. (It’s more accurate
to say “the result is a NaN” rather than “the result is NaN,” because the IEEE
standard has multiple representations for NaN. The exponent part of a NaN
value is all 1 bits, but the fraction can be any nonzero sequence of bits.) Spe-
cial values can be operands in subsequent operations. Infinity behaves just as
it does in ordinary mathematics. For example, dividing a positive number by
positive infinity yields zero. (Note that an arithmetic expression could produce
infinity as an intermediate result but have a noninfinite value overall.) Per-
forming any operation on NaN gives NaN as the result.

� Rounding direction. When a number can’t be stored exactly using a floating-
point representation, the current rounding direction (or rounding mode)
determines which floating-point value will be selected to represent the num-
ber. There are four rounding directions: (1) Round toward nearest. Rounds to
the nearest representable value. If a number falls halfway between two values,
it is rounded to the “even” value (the one whose least significant bit is zero).
(2) Round toward zero. (3) Round toward positive infinity. (4) Round toward
negative infinity. The default rounding direction is round toward nearest.

� Exceptions. There are five types of floating-point exceptions: overflow, under-
flow, division by zero, invalid operation (the result of an arithmetic operation
was NaN), and inexact (the result of an arithmetic operation had to be
rounded). When one of these conditions is detected, we say that the exception
is raised.

Types

C99 adds two types, float_t and double_t, to <math.h>. The float_t
type is at least as “wide” as the float type (meaning that it could be the float
type or any wider type, such as double). Similarly, double_t is required to be
at least as wide as the double type. (It must also be at least as wide as
float_t.) These types are provided for the programmer who’s trying to maxi-
mize the performance of floating-point arithmetic. float_t should be the most
efficient floating-point type that’s at least as wide as float; double_t should
be the most efficient floating-point type that’s at least as wide as double.

The float_t and double_t types are related to the FLT_EVAL_METHOD
macro, as shown in Table 23.8.

FLT_EVAL_METHOD ➤23.1

c23.fm Page 599 Saturday, February 16, 2008 2:17 PM

600 Chapter 23 Library Support for Numbers and Character Data

Macros
C99 adds a number of macros to <math.h>. I’ll mention just two of them at this
point. INFINITY represents the float version of positive or unsigned infinity.
(If the implementation doesn’t support infinity, then INFINITY represents a
float value that overflows at compile time.) The NAN macro represents the
float version of “not a number.” More specifically, it represents a “quiet” NaN
(one that doesn’t raise an exception if used in an arithmetic expression). If quiet
NaNs aren’t supported, the NAN macro won’t be defined.

I’ll cover the function-like macros in <math.h> later in the section, along
with ordinary functions. Macros that are relevant only to a specific function will be
described with the function itself.

Errors
For the most part, the C99 version of <math.h> deals with errors in the same
way as the C89 version. However, there are a few twists that we’ll need to discuss.

First, C99 provides several macros that give implementations a choice of how
errors are signaled: via a value stored in errno, via a floating-point exception, or
both. The macros MATH_ERRNO and MATH_ERREXCEPT represent the integer
constants 1 and 2, respectively. A third macro, math_errhandling, represents
an int expression whose value is either MATH_ERRNO, MATH_ERREXCEPT, or
the bitwise OR of the two values. (It’s also possible that math_errhandling
isn’t really a macro; it might be an identifier with external linkage.) The value of
math_errhandling can’t be changed within a program.

Now, let’s see what happens when a domain error occurs during a call of one
of the functions in <math.h>. The C89 standard says that EDOM is stored in
errno. The C99 standard, on the other hand, states that if the expression
math_errhandling & MATH_ERRNO is nonzero (i.e., the MATH_ERRNO bit is
set), then EDOM is stored in errno. If the expression math_errhandling &
MATH_ERREXCEPT is nonzero, the invalid floating-point exception is raised.
Thus, either or both actions are possible, depending on the value of
math_errhandling.

Finally, let’s turn to the actions that take place when a range error is detected
during a function call. There are two cases, based on the magnitude of the func-
tion’s return value.

Overflow. If the magnitude is too large, the C89 standard requires the function
to return positive or negative HUGE_VAL, depending on the sign of the correct

Value of
FLT_EVAL_METHOD

Meaning of
float_t

Meaning of
double_t

0 float double

1 double double

2 long double long double

Other Implementation-defined Implementation-defined

Table 23.8
Relationship between
FLT_EVAL_METHOD
and the float_t and

double_t Types

c23.fm Page 600 Saturday, February 16, 2008 2:17 PM

23.4 The <math.h> Header (C99): Mathematics 601

result. In addition, ERANGE is stored in errno. The C99 standard describes a
more complicated set of actions when overflow occurs:

� If default rounding is in effect or if the return value is an “exact infinity” (such
as log(0.0)), then the function returns either HUGE_VAL, HUGE_VALF, or
HUGE_VALL, depending on the function’s return type. (HUGE_VALF and
HUGE_VALL—the float and long double versions of HUGE_VAL—are
new in C99. Like HUGE_VAL, they may represent positive infinity.) The value
returned has the sign of the correct result.

� If the value of math_errhandling & MATH_ERRNO is nonzero, ERANGE
is stored in errno.

� If the value of math_errhandling & MATH_ERREXCEPT is nonzero, the
divide-by-zero floating-point exception is raised if the mathematical result is
an exact infinity. Otherwise, the overflow exception is raised.

Underflow. If the magnitude is too small to represent, the C89 standard
requires the function to return zero; some implementations may also store
ERANGE in errno. The C99 standard prescribes a somewhat different set of
actions:

� The function returns a value whose magnitude is less than or equal to the
smallest normalized positive number belonging to the function’s return type.
(This value might be zero or a subnormal number.)

� If the value of math_errhandling & MATH_ERRNO is nonzero, an imple-
mentation may store ERANGE in errno.

� If the value of math_errhandling & MATH_ERREXCEPT is nonzero, an
implementation may raise the underflow floating-point exception.

Notice the word “may” in the latter two cases. For reasons of efficiency, an imple-
mentation is not required to modify errno or raise the underflow exception.

Functions
We’re now ready to tackle the functions that C99 adds to <math.h>. I’ll present the
functions in groups, using the same categories as the C99 standard. These categories
differ somewhat from the ones in Section 23.3, which came from the C89 standard.

One of the biggest changes in the C99 version of <math.h> is the addition
of two more versions of most functions. In C89, there’s only a single version of
each math function; typically, it takes at least one argument of type double and/
or returns a double value. In C99, however, there are two additional versions:
one for float and one for long double. The names of these functions are
identical to the name of the original function except for the addition of an f or l
suffix. For example, the original sqrt function, which takes the square root of a
double value, is now joined by sqrtf (the float version) and sqrtl (the
long double version). I’ll list the prototypes for the new versions (in italics, as
is my custom for functions that are new in C99). I won’t describe the functions
further, though, since they’re virtually identical to their C89 counterparts.

c23.fm Page 601 Saturday, February 16, 2008 2:17 PM

602 Chapter 23 Library Support for Numbers and Character Data

The C99 version of <math.h> also includes a number of completely new
functions (and function-like macros). I’ll give a brief description of each one. As in
Section 23.3, I won’t discuss error conditions for these functions, but Appendix
D—which lists all standard library functions in alphabetical order—provides this
information. I won’t list the names of all the new functions in the left margin;
instead, I’ll show just the name of the primary function. For example, there are
three new functions that compute the arc hyperbolic cosine: acosh, acoshf, and
acoshl. I’ll describe acosh and display only its name in the left margin.

Keep in mind that many of the new functions are highly specialized. As a
result, the descriptions of these functions may seem sketchy. A discussion of what
these functions are used for is outside the scope of this book.

Classification Macros

Our first category consists of function-like macros that are used to determine
whether a floating-point value is a “normal” number or a special value such as
infinity or NaN. The macros in this group are designed to accept arguments of any
real floating type (float, double, or long double).

fpclassify The fpclassify macro classifies its argument, returning the value of one
of the number-classification macros shown in Table 23.9. An implementation may
support other classifications by defining additional macros whose names begin
with FP_ and an upper-case letter.

isfinite
isinf

isnan
isnormal

The isfinite macro returns a nonzero value if its argument has a finite
value (zero, subnormal, or normal, but not infinite or NaN). isinf returns a non-
zero value if its argument has the value infinity (positive or negative). isnan
returns a nonzero value if its argument is a NaN value. isnormal returns a non-
zero value if its argument has a normal value (not zero, subnormal, infinite, or
NaN).

signbit The last classification macro is a bit different from the others. signbit
returns a nonzero value if the sign of its argument is negative. The argument need
not be a finite number; signbit also works for infinity and NaN.

int fpclassify(real-floating x);
int isfinite(real-floating x);
int isinf(real-floating x);
int isnan(real-floating x);
int isnormal(real-floating x);
int signbit(real-floating x);

Name Meaning

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

Infinity (positive or negative)
Not a number
Normal (not zero, subnormal, infinite, or NaN)
Subnormal
Zero (positive or negative)

Table 23.9
Number-Classification

Macros

c23.fm Page 602 Saturday, February 16, 2008 2:17 PM

23.4 The <math.h> Header (C99): Mathematics 603

Trigonometric Functions

The only new trigonometric functions in C99 are analogs of C89 functions. For
descriptions, see the corresponding functions in Section 23.3.

Hyperbolic Functions

float acosf(float x); see acos
long double acosl(long double x); see acos

float asinf(float x); see asin
long double asinl(long double x); see asin

float atanf(float x); see atan
long double atanl(long double x); see atan

float atan2f(float y, float x); see atan2
long double atan2l(long double y,
 long double x); see atan2

float cosf(float x); see cos
long double cosl(long double x); see cos

float sinf(float x); see sin
long double sinl(long double x); see sin

float tanf(float x); see tan
long double tanl(long double x); see tan

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

float coshf(float x); see cosh
long double coshl(long double x); see cosh

float sinhf(float x); see sinh
long double sinhl(long double x); see sinh

float tanhf(float x); see tanh
long double tanhl(long double x); see tanh

c23.fm Page 603 Saturday, February 16, 2008 2:17 PM

604 Chapter 23 Library Support for Numbers and Character Data

acosh
asinh
atanh

Six functions in this group correspond to the C89 functions cosh, sinh, and
tanh. The new functions are acosh, which computes the arc hyperbolic cosine;
asinh, which computes the arc hyperbolic sine; and atanh, which computes the
arc hyperbolic tangent.

Exponential and Logarithmic Functions

float expf(float x); see exp
long double expl(long double x); see exp

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

float frexpf(float value, int *exp); see frexp
long double frexpl(long double value,
 int *exp); see frexp

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

float ldexpf(float x, int exp); see ldexp
long double ldexpl(long double x, int exp); see ldexp

float logf(float x); see log
long double logl(long double x); see log

float log10f(float x); see log10
long double log10l(long double x); see log10

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

double log2(double x);
float log2f(float x);
long double log2l(long double x);

double logb(double x);
float logbf(float x);
long double logbl(long double x);

float modff(float value, float *iptr); see modf
long double modfl(long double value,
 long double *iptr); see modf

c23.fm Page 604 Saturday, February 16, 2008 2:17 PM

23.4 The <math.h> Header (C99): Mathematics 605

exp2
expm1

In additional to new versions of exp, frexp, ldexp, log, log10, and modf,
there are several entirely new functions in this category. Two of these, exp2 and
expm1, are variations on the exp function. When applied to the argument x, the
exp2 function returns 2x, and expm1 returns ex – 1.

logb
ilogb

log1p
log2

The logb function returns the exponent of its argument. More precisely, the
call logb(x) returns logr(|x|), where r is the radix of floating-point arithmetic
(defined by the macro FLT_RADIX, which typically has the value 2). The ilogb
function returns the value of logb after it has been cast to int type. The log1p
function returns ln(1 + x) when given x as its argument. The log2 function com-
putes the base-2 logarithm of its argument.

scalbn
scalbln

The scalbn function returns x × FLT_RADIXn, which it computes in an
efficient way (not by explicitly raising FLT_RADIX to the nth power). scalbln
is the same as scalbn, except that its second parameter has type long int
instead of int.

Power and Absolute Value Functions

Several functions in this group are new versions of old ones (fabs, pow, and
sqrt). Only the functions cbrt and hypot (and their variants) are entirely new.

cbrt The cbrt function computes the cube root of its argument. The pow function
can also be used for this purpose, but pow is unable to handle negative arguments

double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);
double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);

Q&A

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

float fabsf(float x); see fabs
long double fabsl(long double x); see fabs

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

float powf(float x, float y); see pow
long double powl(long double x,
 long double y); see pow

float sqrtf(float x); see sqrt
long double sqrtl(long double x); see sqrt

c23.fm Page 605 Saturday, February 16, 2008 2:17 PM

606 Chapter 23 Library Support for Numbers and Character Data

(a domain error occurs). cbrt, on the other hand, is defined for both positive and
negative arguments. When its argument is negative, cbrt returns a negative result.

hypot When applied to arguments x and y, the hypot function returns . In
other words, this function computes the hypotenuse of a right triangle with legs x
and y.

Error and Gamma Functions

erf
erfc

The erf function computes the error function erf (also known as the Gaussian
error function), which is used in probability, statistics and partial differential
equations. The mathematical definition of erf is

erfc computes the complementary error function, erfc(x) = 1 – erf(x).
lgamma
tgamma

The gamma function Γ is an extension of the factorial function that can be
applied to real numbers as well as to integers. When applied to an integer n, Γ(n) =
(n–1)!; the definition of Γ for nonintegers is more complicated. The tgamma func-
tion computes Γ. The lgamma function computes ln(|Γ(x)|), the natural logarithm
of the absolute value of the gamma function. lgamma can sometimes be more use-
ful than the gamma function itself, because Γ grows so quickly that using it in cal-
culations may cause overflow.

Nearest Integer Functions

double erf(double x);
float erff(float x);
long double erfl(long double x);

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

x2 y2+

erf x()
2

π
------- e

t2–
td

0

x

∫=

float ceilf(float x); see ceil
long double ceill(long double x); see ceil

float floorf(float x); see floor
long double floorl(long double x); see floor

Q&A

c23.fm Page 606 Saturday, February 16, 2008 2:17 PM

23.4 The <math.h> Header (C99): Mathematics 607

Besides additional versions of ceil and floor, C99 has a number of new func-
tions that convert a floating-point value to the nearest integer. Be careful when
using these functions: although all of them return an integer, some functions
return it in floating-point format (as a float, double, or long double
value) and some return it in integer format (as a long int or long long int
value).

nearbyint
rint

The nearbyint function rounds its argument to an integer, returning it as a
floating-point number. nearbyint uses the current rounding direction and does
not raise the inexact floating-point exception. rint is the same as nearbyint,
except that it may raise the inexact floating-point exception if the result has a dif-
ferent value than the argument.

lrint
llrint

The lrint function rounds its argument to the nearest integer, according to
the current rounding direction. lrint returns a long int value. llrint is the
same as lrint, except that it returns a long long int value.

round The round function rounds its argument to the nearest integer value, return-
ing it as a floating-point number. round always rounds away from zero (so 3.5 is
rounded to 4.0, for example).

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

double rint(double x);
float rintf(float x);
long double rintl(long double x);

long int lrint(double x);
long int lrintf(float x);
long int lrintl(long double x);
long long int llrint(double x);
long long int llrintf(float x);
long long int llrintl(long double x);

double round(double x);
float roundf(float x);
long double roundl(long double x);

long int lround(double x);
long int lroundf(float x);
long int lroundl(long double x);
long long int llround(double x);
long long int llroundf(float x);
long long int llroundl(long double x);

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

c23.fm Page 607 Saturday, February 16, 2008 2:17 PM

608 Chapter 23 Library Support for Numbers and Character Data

lround
llround

The lround function rounds its argument to the nearest integer value, return-
ing it as a long int value. Like round, it rounds away from zero. llround is
the same as lround, except that it returns a long long int value.

trunc The trunc function rounds its argument to the nearest integer not larger in
magnitude. (In other words, it truncates the argument toward zero.) trunc returns
the result as a floating-point number.

Remainder Functions

Besides additional versions of fmod, this category includes new remainder func-
tions named remainder and remquo.

remainder The remainder function returns x REM y, where REM is a function defined
in the IEEE standard. For y ≠ 0, the value of x REM y is r = x – ny, where n is the
integer nearest the exact value of x/y. (If x/y is halfway between two integers, n
is even.) If r = 0, it has the same sign as x.

remquo The remquo function returns the same value as remainder when given the
same first two arguments. In addition, remquo modifies the object pointed to by
the quo parameter so that it contains n low-order bits of the integer quotient |x/y|,
where n depends on the implementation but must be at least three. The value stored
in this object will be negative if x/y < 0.

Manipulation Functions

float fmodf(float x, float y); see fmod
long double fmodl(long double x,
 long double y); see fmod

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x,
 long double y);

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y,
 int *quo);

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

double nextafter(double x, double y);
float nextafterf(float x, float y);

c23.fm Page 608 Saturday, February 16, 2008 2:17 PM

23.4 The <math.h> Header (C99): Mathematics 609

The mysteriously named “manipulation functions” are all new in C99. They pro-
vide access to the low-level details of floating-point numbers.

copysign The copysign function copies the sign of one number to another number.
The call copysign(x, y) returns a value with the magnitude of x and the sign
of y.

nan The nan function converts a string to a NaN value. The call nan("n-char-
sequence") is equivalent to strtod("NAN(n-char-sequence)", (char**)
NULL). (See the discussion of strtod for a description of the format of n-char-
sequence.) The call nan("") is equivalent to strtod("NAN()", (char**)
NULL). If the argument in a call of nan doesn’t have the value "n-char-
sequence" or "", the call is equivalent to strtod("NAN", (char**) NULL).
If quiet NaNs aren’t supported, nan returns zero. Calls of nanf and nanl are
equivalent to calls of strtof and strtold, respectively. This function is used
to construct a NaN value containing a specific binary pattern. (Recall from earlier
in this section that the fraction part of a NaN value is arbitrary.)

nextafter The nextafter function determines the next representable value of a num-
ber x (if all values of x’s type were listed in order, the number that would come
just before or just after x). The value of y determines the direction: if y < x, then
the function returns the value just before x; if x < y, it returns the value just after x.
If x and y are equal, nextafter returns y.

nexttoward The nexttoward function is the same as nextafter, except that the y
parameter has type long double instead of double. If x and y are equal,
nexttoward returns y converted to the function’s return type. The advantage of
nexttoward is that a value of any (real) floating type can be passed as the second
argument without the danger of it being incorrectly converted to a narrower type.

Maximum, Minimum, and Positive Difference Functions

long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x,
 long double y);

strtod function ➤26.2

Q&A

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

c23.fm Page 609 Saturday, February 16, 2008 2:17 PM

610 Chapter 23 Library Support for Numbers and Character Data

fdim The fdim function computes the positive difference of x and y:

fmax
fmin

The fmax function returns the larger of its two arguments. fmin returns the
value of the smaller argument.

Floating Multiply-Add

fma The fma function multiplies its first two arguments, then adds the third argument.
In other words, we could replace the statement

a = b * c + d;

with

a = fma(b, c, d);

This function was added to C99 because some newer CPUs have a “fused multi-
ply-add” instruction that both multiplies and adds. Calling fma tells the compiler
to use this instruction (if available), which can be faster than performing separate
multiply and add instructions. Moreover, the fused multiply-add instruction per-
forms only one rounding operation, not two, so it may produce a more accurate
result. It’s particularly useful for algorithms that perform a series of multiplications
and additions, such as the algorithms for finding the dot product of two vectors or
multiplying two matrices.

To determine whether calling the fma function is a good idea, a C99 program
can test whether the FP_FAST_FMA macro is defined. If it is, then calling fma
should be faster than—or at least as fast as—performing separate multiply and add
operations. The FP_FAST_FMAF and FP_FAST_FMAL macros play the same
role for the fmaf and fmal functions, respectively.

Performing a combined multiply and add is an example of what the C99 stan-
dard calls “contraction,” where two or more mathematical operations are combined
and performed as a single operation. As we saw with the fma function, contraction
often leads to better speed and greater accuracy. However, programmers may wish
to control whether contraction is done automatically (as opposed to calls of fma,
which are explicit requests for contraction), since contraction can lead to slightly
different results. In extreme cases, contraction can avoid a float-point exception
that would otherwise be raised.

x – y if x > y
+0 if x ≤ y

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y,
 long double z);

c23.fm Page 610 Saturday, February 16, 2008 2:17 PM

23.4 The <math.h> Header (C99): Mathematics 611

C99 provides a pragma named FP_CONTRACT that gives the programmer
control over contraction. Here’s how the pragma is used:

#pragma STDC FP_CONTRACT on-off-switch

The value of on-off-switch is either ON, OFF, or DEFAULT. If ON is selected, the
compiler is allowed to contract expressions; if OFF is selected, the compiler is pro-
hibited from contracting expressions. DEFAULT is useful for restoring the default
setting (which may be either ON or OFF). If the pragma is used at the outer level of
a program (outside any function definitions), it remains in effect until a subsequent
FP_CONTRACT pragma appears in the same file, or until the file ends. If the
pragma is used inside a compound statement (including the body of a function), it
must appear first, before any declarations or statements; it remains in effect until
the end of the statement, unless overridden by another pragma. A program may
still call fma to perform an explicit contraction even when FP_CONTRACT has
been used to prohibit automatic contraction of expressions.

Comparison Macros

Our final category consists of function-like macros that compare two numbers.
These macros are designed to accept arguments of any real floating type.

The comparison macros exist because of a problem that can arise when float-
ing-point numbers are compared using the ordinary relational operators such as <
and >. If either operand (or both) is a NaN, such a comparison may cause the
invalid floating-point exception to be raised, because NaN values—unlike other
floating-point values—are considered to be unordered. The comparison macros
can be used to avoid this exception. These macros are said to be “quiet” versions of
the relational operators because they do their job without raising an exception.

isgreater
isgreaterequal

isless
islessequal

The isgreater, isgreaterequal, isless, and islessequal mac-
ros perform the same operation as the >, >=, <, and <= operators, respectively,
except that they don’t cause the invalid floating-point exception to be raised when
the arguments are unordered.

islessgreater The call islessgreater(x, y) is equivalent to (x) < (y) || (x) >
(y), except that it guarantees not to evaluate x and y twice, and—like the previ-
ous macros—doesn’t cause the invalid floating-point exception to be raised when
x and y are unordered.

isunordered The isunordered macro returns 1 if its arguments are unordered (at least
one of them is a NaN) and 0 otherwise.

int isgreater(real-floating x, real-floating y);
int isgreaterequal(real-floating x, real-floating y);
int isless(real-floating x, real-floating y);
int islessequal(real-floating x, real-floating y);
int islessgreater(real-floating x, real-floating y);
int isunordered(real-floating x, real-floating y);

#pragma directive ➤14.5

c23.fm Page 611 Saturday, February 16, 2008 2:17 PM

612 Chapter 23 Library Support for Numbers and Character Data

23.5 The <ctype.h> Header: Character Handling

The <ctype.h> header provides two kinds of functions: character-classification
functions (like isdigit, which tests whether a character is a digit) and character
case-mapping functions (like toupper, which converts a lower-case letter to
upper case).

Although C doesn’t require that we use the functions in <ctype.h> to test
characters and perform case conversions, it’s a good idea to do so. First, these
functions have been optimized for speed (in fact, many are implemented as mac-
ros). Second, we’ll end up with a more portable program, since these functions
work with any character set. Third, the <ctype.h> functions adjust their behav-
ior when the locale is changed, which helps us write programs that run properly in
different parts of the world.

The functions in <ctype.h> all take int arguments and return int val-
ues. In many cases, the argument is already stored in an int variable (often as a
result of having been read by a call of fgetc, getc, or getchar). If the argu-
ment has char type, however, we need to be careful. C can automatically con-
vert a char argument to int type; if char is an unsigned type or if we’re
using a seven-bit character set such as ASCII, the conversion will go smoothly.
But if char is a signed type and if some characters require eight bits, then con-
verting such a character from char to int will give a negative result. The be-
havior of the <ctype.h> functions is undefined for negative arguments (other
than EOF), potentially causing serious problems. In such a situation, the argu-
ment should be cast to unsigned char for safety. (For maximum portability,
some programmers always cast a char value to unsigned char when pass-
ing it to a <ctype.h> function.)

Character-Classification Functions

int isalnum(int c);
int isalpha(int c);
int isblank(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);

locales ➤25.1

c23.fm Page 612 Saturday, February 16, 2008 2:17 PM

23.5 The <ctype.h> Header: Character Handling 613

Each character-classification function returns a nonzero value if its argument has a
particular property. Table 23.10 lists the property that each function tests.

The C99 definition of ispunct is slightly different than the one in C89. In
C89, ispunct(c) tests whether c is a printing character but not a space or a
character for which isalnum(c) is true. In C99, ispunct(c) tests whether
c is a printing character for which neither isspace(c) nor isalnum(c) is
true.

PROGRAM Testing the Character-Classification Functions

The following program demonstrates the character-classification functions (with
the exception of isblank, which is new in C99) by applying them to the charac-
ters in the string "azAZ0 !\t".

tclassify.c /* Tests the character-classification functions */

#include <ctype.h>
#include <stdio.h>

#define TEST(f) printf(" %c ", f(*p) ? 'x' : ' ')

int main(void)
{
 char *p;

 printf(" alnum cntrl graph print"
 " space xdigit\n"
 " alpha digit lower punct"
 " upper\n");

Function Test

isalnum(c)
isalpha(c)
isblank(c)
iscntrl(c)
isdigit(c)
isgraph(c)
islower(c)
isprint(c)
ispunct(c)
isspace(c)
isupper(c)
isxdigit(c)

Is c alphanumeric?
Is c alphabetic?
Is c a blank?†

Is c a control character?††

Is c a decimal digit?
Is c a printing character (other than a space)?
Is c a lower-case letter?
Is c a printing character (including a space)?
Is c punctuation?†††

Is c a white-space character?††††

Is c an upper-case letter?
Is c a hexadecimal digit?

†The standard blank characters are space and horizontal tab (\t). This
function is new in C99.
††In ASCII, the control characters are \x00 through \x1f plus \x7f.
†††All printing characters except those for which isspace or isalnum
are true are considered punctuation.
††††The white-space characters are space, form feed (\f), new-line (\n),
carriage return (\r), horizontal tab (\t), and vertical tab (\v).

Table 23.10
Character-Classification

Functions

C99

c23.fm Page 613 Saturday, February 16, 2008 2:17 PM

614 Chapter 23 Library Support for Numbers and Character Data

 for (p = "azAZ0 !\t"; *p != '\0'; p++) {
 if (iscntrl(*p))
 printf("\\x%02x:", *p);
 else
 printf(" %c:", *p);
 TEST(isalnum);
 TEST(isalpha);
 TEST(iscntrl);
 TEST(isdigit);
 TEST(isgraph);
 TEST(islower);
 TEST(isprint);
 TEST(ispunct);
 TEST(isspace);
 TEST(isupper);
 TEST(isxdigit);
 printf("\n");
 }

 return 0;
}

The program produces the following output:

 alnum cntrl graph print space xdigit
 alpha digit lower punct upper
 a: x x x x x x
 z: x x x x x
 A: x x x x x x
 Z: x x x x x
 0: x x x x x
 : x x
 !: x x x
\x09: x x

Character Case-Mapping Functions

tolower
toupper

The tolower function returns the lower-case version of a letter passed to it as an
argument, while toupper returns the upper-case version. If the argument to
either function is not a letter, it returns the character unchanged.

PROGRAM Testing the Case-Mapping Functions

The following program applies the case-mapping functions to the characters in the
string "aA0!".

int tolower(int c);
int toupper(int c);

c23.fm Page 614 Saturday, February 16, 2008 2:17 PM

23.6 The <string.h> Header: String Handling 615

tcasemap.c /* Tests the case-mapping functions */

#include <ctype.h>
#include <stdio.h>

int main(void)
{
 char *p;

 for (p = "aA0!"; *p != '\0'; p++) {
 printf("tolower('%c') is '%c'; ", *p, tolower(*p));
 printf("toupper('%c') is '%c'\n", *p, toupper(*p));
 }
 return 0;
}

The program produces the following output:

tolower('a') is 'a'; toupper('a') is 'A'
tolower('A') is 'a'; toupper('A') is 'A'
tolower('0') is '0'; toupper('0') is '0'
tolower('!') is '!'; toupper('!') is '!'

23.6 The <string.h> Header: String Handling

We first encountered the <string.h> header in Section 13.5, which covered the
most basic string operations: copying strings, concatenating strings, comparing
strings, and finding the length of a string. As we’ll see now, there are quite a few
string-handling functions in <string.h>, as well as functions that operate on
character arrays that aren’t necessarily null-terminated. Functions in the latter cate-
gory have names that begin with mem, to suggest that these functions deal with
blocks of memory rather than strings. These memory blocks may contain data of
any type, hence the arguments to the mem functions have type void * rather than
char *.

<string.h> provides five kinds of functions:

� Copying functions. Functions that copy characters from one place in memory
to another place.

� Concatenation functions. Functions that add characters to the end of a string.

� Comparison functions. Functions that compare character arrays.

� Search functions. Functions that search an array for a particular character, a
set of characters, or a string.

� Miscellaneous functions. Functions that initialize a memory block or com-
pute the length of a string.

We’ll now discuss these functions, one group at a time.

c23.fm Page 615 Saturday, February 16, 2008 2:17 PM

616 Chapter 23 Library Support for Numbers and Character Data

Copying Functions

The functions in this category copy characters (bytes) from one place in memory
(the “source”) to another (the “destination”). Each function requires that the first
argument point to the destination and the second point to the source. All copying
functions return the first argument (a pointer to the destination).

memcpy
memmove

memcpy copies n characters from the source to the destination, where n is the
function’s third argument. If the source and destination overlap, the behavior of
memcpy is undefined. memmove is the same as memcpy, except that it works cor-
rectly when the source and destination overlap.

strcpy
strncpy

strcpy copies a null-terminated string from the source to the destination.
strncpy is similar to strcpy, but it won’t copy more than n characters, where
n is the function’s third argument. (If n is too small, strncpy won’t be able to
copy a terminating null character.) If it encounters a null character in the source,
strncpy adds null characters to the destination until it has written a total of n
characters. strcpy and strncpy, like memcpy, aren’t guaranteed to work if the
source and destination overlap.

The following examples illustrate the copying functions; the comments show
which characters are copied.

char source[] = {'h', 'o', 't', '\0', 't', 'e', 'a'};
char dest[7];

memcpy(dest, source, 3); /* h, o, t */
memcpy(dest, source, 4); /* h, o, t, \0 */
memcpy(dest, source, 7); /* h, o, t, \0, t, e, a */

memmove(dest, source, 3); /* h, o, t */
memmove(dest, source, 4); /* h, o, t, \0 */
memmove(dest, source, 7); /* h, o, t, \0, t, e, a */

strcpy(dest, source); /* h, o, t, \0 */

strncpy(dest, source, 3); /* h, o, t */
strncpy(dest, source, 4); /* h, o, t, \0 */
strncpy(dest, source, 7); /* h, o, t, \0, \0, \0, \0 */

Note that memcpy, memmove, and strncpy don’t require a null-terminated
string; they work just as well with any block of memory. The strcpy function, on
the other hand, doesn’t stop copying until it reaches a null character, so it works
only with null-terminated strings.

void *memcpy(void * restrict s1,
 const void * restrict s2, size_t n);
void *memmove(void *s1, const void *s2, size_t n);
char *strcpy(char * restrict s1,
 const char * restrict s2);
char *strncpy(char * restrict s1,
 const char * restrict s2, size_t n);

Q&A

c23.fm Page 616 Saturday, February 16, 2008 2:17 PM

23.6 The <string.h> Header: String Handling 617

Section 13.5 gives examples of how strcpy and strncpy are typically
used. Although neither function is completely safe, strncpy at least provides a
way to limit the number of characters it will copy.

Concatenation Functions

strcat strcat appends its second argument to the end of the first argument. Both argu-
ments must be null-terminated strings; strcat puts a null character at the end of
the concatenated string. Consider the following example:

char str[7] = "tea";

strcat(str, "bag"); /* adds b, a, g, \0 to end of str */

The letter b overwrites the null character after the a in "tea", so that str now
contains the string "teabag". strcat returns its first argument (a pointer).

strncat strncat is the same as strcat, except that its third argument limits the
number of characters it will copy:

char str[7] = "tea";

strncat(str, "bag", 2); /* adds b, a, \0 to str */
strncat(str, "bag", 3); /* adds b, a, g, \0 to str */
strncat(str, "bag", 4); /* adds b, a, g, \0 to str */

As these examples show, strncat always leaves the resulting string properly
null-terminated.

In Section 13.5, we saw that a call of strncat often has the following ap-
pearance:

strncat(str1, str2, sizeof(str1) - strlen(str1) - 1);

The third argument calculates the amount of space remaining in str1 (given by
the expression sizeof(str1) - strlen(str1)) and then subtracts 1 to
ensure that there will be room for the null character.

Comparison Functions

char *strcat(char * restrict s1,
 const char * restrict s2);
char *strncat(char * restrict s1,
 const char * restrict s2, size_t n);

int memcmp(const void *s1, const void *s2, size_t n);
int strcmp(const char *s1, const char *s2);
int strcoll(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2,
 size_t n);
size_t strxfrm(char * restrict s1,
 const char * restrict s2, size_t n);

c23.fm Page 617 Saturday, February 16, 2008 2:17 PM

618 Chapter 23 Library Support for Numbers and Character Data

The comparison functions fall into two groups. Functions in the first group (mem-
cmp, strcmp, and strncmp) compare the contents of two character arrays.
Functions in the second group (strcoll and strxfrm) are used if the locale
needs to be taken into account.

memcmp
strcmp

strncmp

The memcmp, strcmp, and strncmp functions have much in common. All
three expect to be passed pointers to character arrays. The characters in the first
array are then compared one by one with the characters in the second array. All
three functions return as soon as a mismatch is found. Also, all three return a nega-
tive, zero, or positive integer, depending on whether the stopping character in the
first array was less than, equal to, or greater than the stopping character in the sec-
ond.

The differences among the three functions have to do with when to stop com-
paring characters if no mismatch is found. The memcmp function is passed a third
argument, n, that limits the number of comparisons performed; it pays no particu-
lar attention to null characters. strcmp doesn’t have a preset limit, stopping
instead when it reaches a null character in either array. (As a result, strcmp
works only with null-terminated strings.) strncmp is a blend of memcmp and
strcmp; it stops when n comparisons have been performed or a null character is
reached in either array.

The following examples illustrate memcmp, strcmp, and strncmp:

char s1[] = {'b', 'i', 'g', '\0', 'c', 'a', 'r'};
char s2[] = {'b', 'i', 'g', '\0', 'c', 'a', 't'};

if (memcmp(s1, s2, 3) == 0) … /* true */
if (memcmp(s1, s2, 4) == 0) … /* true */
if (memcmp(s1, s2, 7) == 0) … /* false */

if (strcmp(s1, s2) == 0) … /* true */

if (strncmp(s1, s2, 3) == 0) … /* true */
if (strncmp(s1, s2, 4) == 0) … /* true */
if (strncmp(s1, s2, 7) == 0) … /* true */

strcoll The strcoll function is similar to strcmp, but the outcome of the compar-
ison depends on the current locale.

strxfrm Most of the time, strcoll is fine for performing a locale-dependent string
comparison. Occasionally, however, we might need to perform the comparison
more than once (a potential problem, since strcoll isn’t especially fast) or
change the locale without affecting the outcome of the comparison. In these situa-
tions, the strxfrm (“string transform”) function is available as an alternative to
strcoll.

strxfrm transforms its second argument (a string), placing the result in the
array pointed to by the first argument. The third argument limits the number of
characters written to the array, including the terminating null character. Calling
strcmp with two transformed strings should produce the same outcome (nega-
tive, zero, or positive) as calling strcoll with the original strings.

locales ➤25.1

c23.fm Page 618 Saturday, February 16, 2008 2:17 PM

23.6 The <string.h> Header: String Handling 619

strxfrm returns the length of the transformed string. As a result, it’s typi-
cally called twice: once to determine the length of the transformed string and once
to perform the transformation. Here’s an example:

size_t len;
char *transformed;

len = strxfrm(NULL, original, 0);
transformed = malloc(len + 1);
strxfrm(transformed, original, len);

Search Functions

strchr The strchr function searches a string for a particular character. The following
example shows how we might use strchr to search a string for the letter f.

char *p, str[] = "Form follows function.";

p = strchr(str, 'f'); /* finds first 'f' */

strchr returns a pointer to the first occurrence of f in str (the one in the word
follows). Locating multiple occurrences of a character is easy; for example, the
call

p = strchr(p + 1, 'f'); /* finds next 'f' */

finds the second f in str (the one in function). If it can’t locate the desired
character, strchr returns a null pointer.

memchr memchr is similar to strchr, but it stops searching after a set number of
characters instead of stopping at the first null character. memchr’s third argument
limits the number of characters it can examine—a useful capability if we don’t
want to search an entire string or if we’re searching a block of memory that’s not
terminated by a null character. The following example uses memchr to search an
array of characters that lacks a null character at the end:

char *p, str[22] = "Form follows function.";

p = memchr(str, 'f', sizeof(str));

void *memchr(const void *s, int c, size_t n);
char *strchr(const char *s, int c);
size_t strcspn(const char *s1, const char *s2);
char *strpbrk(const char *s1, const char *s2);
char *strrchr(const char *s, int c);
size_t strspn(const char *s1, const char *s2);
char *strstr(const char *s1, const char *s2);
char *strtok(char * restrict s1,
 const char * restrict s2);

c23.fm Page 619 Saturday, February 16, 2008 2:17 PM

620 Chapter 23 Library Support for Numbers and Character Data

Like the strchr function, memchr returns a pointer to the first occurrence of the
character. If it can’t find the desired character, memchr returns a null pointer.

strrchr strrchr is similar to strchr, but it searches the string in reverse order:

char *p, str[] = "Form follows function.";

p = strrchr(str, 'f'); /* finds last 'f' */

In this example, strrchr will first search for the null character at the end of the
string, then go backwards to locate the letter f (the one in function). Like
strchr and memchr, strrchr returns a null pointer if it fails to find the
desired character.

strpbrk strpbrk is more general than strchr; it returns a pointer to the leftmost
character in the first argument that matches any character in the second argument:

char *p, str[] = "Form follows function.";

p = strpbrk(str, "mn"); /* finds first 'm' or 'n' */

In this example, p will point to the letter m in Form. strpbrk returns a null
pointer if no match is found.

strspn
strcspn

The strspn and strcspn functions, unlike the other search functions,
return an integer (of type size_t), representing a position within a string. When
given a string to search and a set of characters to look for, strspn returns the
index of the first character that’s not in the set. When passed similar arguments,
strcspn returns the index of the first character that’s in the set. Here are exam-
ples of both functions:

size_t n;
char str[] = "Form follows function.";

n = strspn(str, "morF"); /* n = 4 */
n = strspn(str, " \t\n"); /* n = 0 */
n = strcspn(str, "morF"); /* n = 0 */
n = strcspn(str, " \t\n"); /* n = 4 */

strstr strstr searches its first argument (a string) for a match with its second
argument (also a string). In the following example, strstr searches for the word
fun:

char *p, str[] = "Form follows function.";

p = strstr(str, "fun"); /* locates "fun" in str */

strstr returns a pointer to the first occurrence of the search string; it returns a
null pointer if it can’t locate the string. After the call above, p will point to the let-
ter f in function.

strtok strtok is the most complicated of the search functions. It’s designed to
search a string for a “token”—a sequence of characters that doesn’t include certain
delimiting characters. The call strtok(s1, s2) scans the s1 string for a non-
empty sequence of characters that are not in the s2 string. strtok marks the end

Q&A

c23.fm Page 620 Saturday, February 16, 2008 2:17 PM

23.6 The <string.h> Header: String Handling 621

of the token by storing a null character in s1 just after the last character in the
token; it then returns a pointer to the first character in the token.

What makes strtok especially useful is that later calls can find additional
tokens in the same string. The call strtok(NULL, s2) continues the search
begun by the previous strtok call. As before, strtok marks the end of the
token with a null character, then returns a pointer to the beginning of the token.
The process can be repeated until strtok returns a null pointer, indicating that no
token was found.

To see how strtok works, we’ll use it to extract a month, day, and year from
a date written in the form

month day, year

where spaces and/or tabs separate the month from the day and the day from the
year. In addition, spaces and tabs may precede the comma. Let’s say that the string
str has the following appearance to start with:

After the call

p = strtok(str, " \t");

str will have the following appearance:

p points to the first character in the month string, which is now terminated by a
null character. Calling strtok with a null pointer as its first argument causes it to
resume the search from where it left off:

p = strtok(NULL, " \t,");

After this call, p points to the first character in the day:

A final call of strtok locates the year:

p = strtok(NULL, " \t");

str A p r 2 8 1 9 8, 9i l \0

p

str A p r 2 8 1 9 8, 9i l \0 \0

p

str A p r 2 8 1 9 8\0 9i l \0 \0

c23.fm Page 621 Saturday, February 16, 2008 2:17 PM

622 Chapter 23 Library Support for Numbers and Character Data

After this call, str will have the following appearance:

When strtok is called repeatedly to break a string into tokens, the second argu-
ment isn’t required to be the same in each call. In our example, the second call of
strtok has the argument " \t," instead of " \t".

strtok has several well-known problems that limit its usefulness; I’ll men-
tion just a couple. First, it works with only one string at a time; it can’t conduct
simultaneous searches through two different strings. Also, strtok treats a
sequence of delimiters in the same way as a single delimiter, making it unsuitable
for applications in which a string contains a series of fields separated by a delimiter
(such as a comma) and some of the fields are empty.

Miscellaneous Functions

memset memset stores multiple copies of a character in a specified area of memory. If p
points to a block of N bytes, for example, the call

memset(p, ' ', N);

will store a space in every byte of the block. One of memset’s uses is initializing
an array to zero bits:

memset(a, 0, sizeof(a));

memset returns its first argument (a pointer).
strlen strlen returns the length of a string, not counting the null character. See

Section 13.5 for examples of strlen calls.
There’s one other miscellaneous string function, strerror, which is cov-

ered along with the <errno.h> header.

Q & A
Q: Why does the expm1 function exist, since all it does is subtract 1 from the

value returned by the exp function? [p. 605]
A: When applied to numbers that are close to zero, the exp function returns a value

that’s very close to 1. The result of subtracting 1 from the value returned by exp
may not be accurate because of round-off error. expm1 is designed to give a more
accurate result in this situation.

void *memset(void *s, int c, size_t n);
size_t strlen(const char *s);

p

str A p r 2 8 1 9 8\0 9i l \0 \0

strerror function ➤24.2

c23.fm Page 622 Saturday, February 16, 2008 2:17 PM

Exercises 623

The log1p function exists for a similar reason. For values of x that are close
to zero, log1p(x) should be more accurate than log(1 + x).

Q: Why is the function that computes the gamma function named tgamma
instead of just gamma? [p. 606]

A: At the time the C99 standard was being written, some compilers provided a func-
tion named gamma, but it computed the log of the gamma function. This function
was later renamed lgamma. Choosing the name gamma for the gamma function
would have conflicted with existing practice, so the C99 committee decided on the
name tgamma (“true gamma”) instead.

Q: Why does the description of the nextafter function say that if x and y are
equal, nextafter returns y? If x and y are equal, what’s the difference
between returning x or y? [p. 609]

A: Consider the call nextafter(-0.0, +0.0), in which the arguments are
mathematically equal. By returning y instead of x, the function has a return value
of +0.0 (rather than –0.0, which would be counterintuitive). Similarly, the call
nextafter(+0.0, -0.0) returns –0.0.

Q: Why does <string.h> provide so many ways to do the same thing? Do we
really need four copying functions (memcpy, memmove, strcpy, and
strncpy)? [p. 616]

A: Let’s start with memcpy and strcpy. These functions are used for different pur-
poses. strcpy will only copy a character array that’s terminated with a null char-
acter (a string, in other words); memcpy can copy a memory block that lacks such
a terminator (an array of integers, for example).

The other functions allow us to choose between safety and performance.
strncpy is safer than strcpy, since it limits the number of characters that can be
copied. We pay a price for safety, however, since strncpy is likely to be slower
than strcpy. Using memmove involves a similar trade-off. memmove will copy
bytes from one region of memory into a possibly overlapping region. memcpy isn’t
guaranteed to work properly in this situation; however, if we can guarantee no over-
lap, memcpy is likely to be faster than memmove.

Q: Why does the strspn function have such an odd name? [p. 620]
A: Instead of thinking of strspn’s return value as the index of the first character

that’s not in a specified set, we could think of it as the length of the longest “span”
of characters that are in the set.

Exercises

Section 23.3 1. Extend the round_nearest function so that it rounds a floating-point number x to n dig-
its after the decimal point. For example, the call round_nearest(3.14159, 3) would

W

c23.fm Page 623 Saturday, February 16, 2008 2:17 PM

624 Chapter 23 Library Support for Numbers and Character Data

return 3.142. Hint: Multiply x by 10n, round to the nearest integer, then divide by 10n. Be
sure that your function works correctly for both positive and negative values of x.

Section 23.4 2. (C99) Write the following function:

double evaluate_polynomial(double a[], int n, double x);

The function should return the value of the polynomial anx
n + an–1x

n–1 + … + a0, where the
ai’s are stored in corresponding elements of the array a, which has length n + 1. Have the
function use Horner’s Rule to compute the value of the polynomial:

((…((anx + an–1)x + an–2)x + …)x + a1)x + a0

Use the fma function to perform the multiplications and additions.

3. (C99) Check the documentation for your compiler to see if it performs contraction on arith-
metic expressions and, if so, under what circumstances.

Section 23.5 4. Using isalpha and isalnum, write a function that checks whether a string has the syn-
tax of a C identifier (it consists of letters, digits, and underscores, with a letter or underscore
at the beginning).

5. Using isxdigit, write a function that checks whether a string represents a valid hexadec-
imal number (it consists solely of hexadecimal digits). If so, the function returns the value of
the number as a long int. Otherwise, the function returns –1.

Section 23.6 6. In each of the following cases, indicate which function would be the best to use: memcpy,
memmove, strcpy, or strncpy. Assume that the indicated action is to be performed by a
single function call.

7. Section 23.6 explains how to call strchr repeatedly to locate all occurrences of a charac-
ter within a string. Is it possible to locate all occurrences in reverse order by calling
strrchr repeatedly?

8. Use strchr to write the following function:

int numchar(const char *s, char ch);

numchar returns the number of times the character ch occurs in the string s.

9. Replace the test condition in the following if statement by a single call of strchr:

if (ch == 'a' || ch == 'b' || ch == 'c') …

10. Replace the test condition in the following if statement by a single call of strstr:

if (strcmp(str, "foo") == 0 || strcmp(str, "bar") == 0 ||
 strcmp(str, "baz") == 0) …

Hint: Combine the string literals into a single string, separating them with a special charac-
ter. Does your solution assume anything about the contents of str?

(a) Moving all elements of an array “down” one position in order to leave room for a new
element in position 0.

(b) Deleting the first character in a null-terminated string by moving all other characters
back one position.

(c) Copying a string into a character array that may not be large enough to hold it. If the
array is too small, assume that the string is to be truncated; no null character is neces-
sary at the end.

(d) Copying the contents of one array variable into another.

W

W

W

c23.fm Page 624 Saturday, February 16, 2008 2:17 PM

Programming Projects 625

11. Write a call of memset that replaces the last n characters in a null-terminated string s with
! characters.

12. Many versions of <string.h> provide additional (nonstandard) functions, such as those
listed below. Write each function using only the features of the C standard.

If you test any of these functions, you may need to alter its name. Functions whose names
begin with str are reserved by the C standard.

13. Use strtok to write the following function:

int count_words(char *sentence);

count_words returns the number of words in the string sentence, where a “word” is
any sequence of non-white-space characters. count_words is allowed to modify the
string.

Programming Projects

1. Write a program that finds the roots of the equation ax2 + bx + c = 0 using the formula

Have the program prompt for the values of a, b, and c, then print both values of x. (If b2 –
4ac is negative, the program should instead print a message to the effect that the roots are
complex.)

2. Write a program that copies a text file from standard input to standard output, removing all
white-space characters from the beginning of each line. A line consisting entirely of white-
space characters will not be copied.

3. Write a program that copies a text file from standard input to standard output, capitalizing
the first letter in each word.

4. Write a program that prompts the user to enter a series of words separated by single spaces,
then prints the words in reverse order. Read the input as a string, and then use strtok to
break it into words.

5. Suppose that money is deposited into a savings account and left for t years. Assume that the
annual interest rate is r and that interest is compounded continuously. The formula A(t) =
Pert can be used to calculate the final value of the account, where P is the original amount
deposited. For example, $1000 left on deposit for 10 years at 6% interest would be worth
$1000 × e.06×10 = $1000 × e.6 = $1000 × 1.8221188 = $1,822.12. Write a program that dis-
plays the result of this calculation after prompting the user to enter the original amount
deposited, the interest rate, and the number of years.

(a) strdup(s) — Returns a pointer to a copy of s stored in memory obtained by calling
malloc. Returns a null pointer if enough memory couldn’t be allocated.

(b) stricmp(s1, s2) — Similar to strcmp, but ignores the case of letters.
(c) strlwr(s) — Converts upper-case letters in s to lower case, leaving other characters

unchanged; returns s.
(d) strrev(s) — Reverses the characters in s (except the null character); returns s.
(e) strset(s, ch) — Fills s with copies of the character ch; returns s.

W

x b b2 4ac–±–
2a

-------------------------------------=

W

c23.fm Page 625 Saturday, February 16, 2008 2:17 PM

626 Chapter 23 Library Support for Numbers and Character Data

6. Write a program that copies a text file from standard input to standard output, replacing each
control character (other than \n) by a question mark.

7. Write a program that counts the number of sentences in a text file (obtained from standard
input). Assume that each sentence ends with a ., ?, or ! followed by a white-space charac-
ter (including \n).

c23.fm Page 626 Saturday, February 16, 2008 2:17 PM

627

24 Error Handling

There are two ways to write error-free
programs; only the third one works.

Although student programs often fail when subjected to unexpected input, com-
mercial programs need to be “bulletproof”—able to recover gracefully from errors
instead of crashing. Making programs bulletproof requires that we anticipate
errors that might arise during the execution of the program, include a check for
each one, and provide a suitable action for the program to perform if the error
should occur.

This chapter describes two ways for programs to check for errors: by using
the assert macro and by testing the errno variable. Section 24.1 covers the
<assert.h> header, where assert is defined. Section 24.2 discusses the
<errno.h> header, to which the errno variable belongs. This section also
includes coverage of the perror and strerror functions. These functions,
which come from <stdio.h> and <string.h>, respectively, are closely re-
lated to the errno variable.

Section 24.3 explains how programs can detect and handle conditions known
as signals, some of which represent errors. The functions that deal with signals are
declared in the <signal.h> header.

Finally, Section 24.4 explores the setjmp/longjmp mechanism, which is
often used for responding to errors. Both setjmp and longjmp belong to the
<setjmp.h> header.

Error detection and handling aren’t among C’s strengths. C indicates run-time
errors in a variety of ways rather than in a single, uniform way. Furthermore, it’s
the programmer’s responsibility to include code to test for errors. It’s easy to over-
look potential errors; if one of these should actually occur, the program often con-
tinues running, albeit not very well. Newer languages such as C++, Java, and C#
have an “exception handling” feature that makes it easier to detect and respond to
errors.

C24.FM Page 627 Saturday, February 16, 2008 2:29 PM

628 Chapter 24 Error Handling

24.1 The <assert.h> Header: Diagnostics

assert assert, which is defined in the <assert.h> header, allows a program to mon-
itor its own behavior and detect possible problems at an early stage.

Although assert is actually a macro, it’s designed to be used like a func-
tion. It has one argument, which must be an “assertion”—an expression that we
expect to be true under normal circumstances. Each time assert is executed, it
tests the value of its argument. If the argument has a nonzero value, assert does
nothing. If the argument’s value is zero, assert writes a message to stderr
(the standard error stream) and calls the abort function to terminate program
execution.

For example, let’s say that the file demo.c declares an array a of length 10.
We’re concerned that the statement

a[i] = 0;

in demo.c might cause the program to fail because i isn’t between 0 and 9. We
can use assert to check this condition before we perform the assignment to
a[i]:

assert(0 <= i && i < 10); /* checks subscript first */
a[i] = 0; /* now does the assignment */

If i’s value is less than 0 or greater than or equal to 10, the program will terminate
after displaying a message like the following one:

Assertion failed: 0 <= i && i < 10, file demo.c, line 109

C99 changes assert in a couple of minor ways. The C89 standard states that
the argument to assert must have int type. The C99 standard relaxes this
requirement, allowing the argument to have any scalar type (hence the word scalar
in the prototype for assert). This change allows the argument to be a floating-
point number or a pointer, for example. Also, C99 requires that a failed assert
display the name of the function in which it appears. (C89 requires only that
assert display the argument—in text form—along with the name of the source
file and the source line number). The suggested form of the message is

Assertion failed: expression, function abc, file xyz, line nnn.

The exact form of the message produced by assert may vary from one com-
piler to another, although it should always contain the information required by the
standard. For example, the GCC compiler produces the following message in the
situation described earlier:

a.out: demo.c:109: main: Assertion `0 <= i && i < 10' failed.

void assert(scalar expression);

stderr stream ➤22.1

abort function ➤26.2

C99

C24.FM Page 628 Saturday, February 16, 2008 2:29 PM

24.2 The <errno.h> Header: Errors 629

assert has one disadvantage: it slightly increases the running time of a pro-
gram because of the extra check it performs. Using assert once in a while prob-
ably won’t have any great effect on a program’s speed, but even this small time
penalty may be unacceptable in critical applications. As a result, many program-
mers use assert during testing, then disable it when the program is finished.
Disabling assert is easy: we need only define the macro NDEBUG prior to
including the <assert.h> header:

#define NDEBUG
#include <assert.h>

The value of NDEBUG doesn’t matter, just the fact that it’s defined. If the program
should fail later, we can reactivate assert by removing NDEBUG’s definition.

Avoid putting an expression that has a side effect—including a function call—
inside an assert; if assert is disabled at a later date, the expression won’t be
evaluated. Consider the following example:

assert((p = malloc(n)) != NULL);

If NDEBUG is defined, assert will be ignored and malloc won’t be called.

24.2 The <errno.h> Header: Errors

Some functions in the standard library indicate failure by storing an error code (a
positive integer) in errno, an int variable declared in <errno.h>. (errno
may actually be a macro. If so, the C standard requires that it represent an lvalue,
allowing us to use it like a variable.) Most of the functions that rely on errno
belong to <math.h>, but there are a few in other parts of the library.

Let’s say that we need to use a library function that signals an error by storing
a value in errno. After calling the function, we can check whether the value of
errno is nonzero; if so, an error occurred during the function call. For example,
suppose that we want to check whether a call of the sqrt (square root) function
has failed. Here’s what the code would look like:

errno = 0;
y = sqrt(x);
if (errno != 0) {
 fprintf(stderr, "sqrt error; program terminated.\n");
 exit(EXIT_FAILURE);
}

When errno is used to detect an error in a call of a library function, it’s important
to store zero in errno before calling the function. Although errno is zero at the
beginning of program execution, it could have been altered by a later function call.
Library functions never clear errno; that’s the program’s responsibility.

lvalues ➤4.2

sqrt function ➤23.3

Q&A

C24.FM Page 629 Saturday, February 16, 2008 2:29 PM

630 Chapter 24 Error Handling

The value stored in errno when an error occurs is often either EDOM or
ERANGE. (Both are macros defined in <errno.h>.) These macros represent the
two kinds of errors that can occur when a math function is called:

� Domain errors (EDOM): An argument passed to a function is outside the func-
tion’s domain. For example, passing a negative number to sqrt causes a
domain error.

� Range errors (ERANGE): A function’s return value is too large to be repre-
sented in the function’s return type. For example, passing 1000 to the exp
function usually causes a range error, because e1000 is too large to represent as
a double on most computers.

Some functions can experience both kinds of errors; by comparing errno to
EDOM or ERANGE, we can determine which error occurred.

C99 adds the EILSEQ macro to <errno.h>. Library functions in certain
headers—especially the <wchar.h> header—store the value of EILSEQ in
errno when an encoding error occurs.

The perror and strerror Functions

We’ll now look at two functions that are related to the errno variable, although
neither function belongs to <errno.h>.

perror When a library function stores a nonzero value in errno, we may want to
display a message that indicates the nature of the error. One way to do this is to call
the perror function (declared in <stdio.h>), which prints the following
items, in the order shown: (1) its argument, (2) a colon, (3) a space, (4) an error
message determined by the value of errno, and (5) a new-line character. perror
writes to the stderr stream, not to standard output.

Here’s how we might use perror:

errno = 0;
y = sqrt(x);
if (errno != 0) {
 perror("sqrt error");
 exit(EXIT_FAILURE);
}

If the call of sqrt fails because of a domain error, perror will generate the fol-
lowing output:

sqrt error: Numerical argument out of domain

The error message that perror displays after sqrt error is implementation-
defined. In this example, Numerical argument out of domain is the mes-

void perror(const char *s); from <stdio.h>
char *strerror(int errnum); from <string.h>

Q&A

exp function ➤23.3

C99
<wchar.h> header ➤25.5

encoding error ➤22.3

stderr stream ➤22.1

C24.FM Page 630 Saturday, February 16, 2008 2:29 PM

24.3 The <signal.h> Header: Signal Handling 631

sage that corresponds to the EDOM error. An ERANGE error usually produces a dif-
ferent message, such as Numerical result out of range.

strerror The strerror function belongs to <string.h>. When passed an error
code, strerror returns a pointer to a string describing the error. For example,
the call

puts(strerror(EDOM));

might print

Numerical argument out of domain

The argument to strerror is usually one of the values of errno, but
strerror will return a string for any integer passed to it.

strerror is closely related to the perror function. The error message that
perror displays is the same message that strerror would return if passed
errno as its argument.

24.3 The <signal.h> Header: Signal Handling

The <signal.h> header provides facilities for handling exceptional conditions,
known as signals. Signals fall into two categories: run-time errors (such as division
by zero) and events caused outside the program. Many operating systems, for
example, allow users to interrupt or kill running programs; these events are treated
as signals in C. When an error or external event occurs, we say that a signal has
been raised. Many signals are asynchronous: they can happen at any time during
program execution, not just at certain points that are known to the programmer.
Since signals may occur at unexpected times, they have to be dealt with in a unique
way.

This section covers signals as they’re described in the C standard. Signals play
a more prominent role in UNIX than you might expect from their limited coverage
here. For information about UNIX signals, consult one of the UNIX programming
books listed in the bibliography.

Signal Macros

<signal.h> defines a number of macros that represent signals; Table 24.1 lists
these macros and their meanings. The value of each macro is a positive integer
constant. C implementations are allowed to provide other signal macros, as long as
their names begin with SIG followed by an upper-case letter. (UNIX implementa-
tions, in particular, provide a large number of additional signal macros.)

The C standard doesn’t require that the signals in Table 24.1 be raised auto-
matically, since not all of them may be meaningful for a particular computer and
operating system. Most implementations support at least some of these signals.

Q&A

C24.FM Page 631 Saturday, February 16, 2008 2:29 PM

632 Chapter 24 Error Handling

The signal Function

signal <signal.h> provides two functions: raise and signal. We’ll start with
signal, which installs a signal-handling function for use later if a given signal
should occur. signal is much easier to use than you might expect from its rather
intimidating prototype. Its first argument is the code for a particular signal; the sec-
ond argument is a pointer to a function that will handle the signal if it’s raised later
in the program. For example, the following call of signal installs a handler for
the SIGINT signal:

signal(SIGINT, handler);

handler is the name of a signal-handling function. If the SIGINT signal occurs
later during program execution, handler will be called automatically.

Every signal-handling function must have an int parameter and a return type
of void. When a particular signal is raised and its handler is called, the handler
will be passed the code for the signal. Knowing which signal caused it to be called
can be useful for a signal handler; in particular, it allows us to use the same handler
for several different signals.

A signal-handling function can do a variety of things. Possibilities include
ignoring the signal, performing some sort of error recovery, or terminating the pro-
gram. Unless it’s invoked by abort or raise, however, a signal handler
shouldn’t call a library function or attempt to use a variable with static storage
duration. (There are a few exceptions to these rules, however.)

If a signal-handling function returns, the program resumes executing from the
point at which the signal occurred, except in two cases: (1) If the signal was
SIGABRT, the program will terminate (abnormally) when the handler returns. (2)
The effect of returning from a function that has handled SIGFPE is undefined. (In
other words, don’t do it.)

Although signal has a return value, it’s often discarded. The return value, a
pointer to the previous handler for the specified signal, can be saved in a variable if
desired. In particular, if we plan to restore the original signal handler later, we need
to save signal’s return value:

void (*orig_handler)(int); /* function pointer variable */
…

Name Meaning

SIGABRT
SIGFPE

SIGILL
SIGINT
SIGSEGV
SIGTERM

Abnormal termination (possibly caused by a call of abort)
Error during an arithmetic operation (possibly division by zero
or overflow)
Invalid instruction
Interrupt
Invalid storage access
Termination request

Table 24.1
Signals

void (*signal(int sig, void (*func)(int)))(int);

abort function ➤26.2

static storage duration ➤18.2

Q&A

C24.FM Page 632 Saturday, February 16, 2008 2:29 PM

24.3 The <signal.h> Header: Signal Handling 633

orig_handler = signal(SIGINT, handler);

This statement installs handler as the handler for SIGINT and then saves a
pointer to the original handler in the orig_handler variable. To restore the
original handler later, we’d write

signal(SIGINT, orig_handler); /* restores original handler */

Predefined Signal Handlers

Instead of writing our own signal handlers, we have the option of using one of the
predefined handlers that <signal.h> provides. There are two of these, each rep-
resented by a macro:

� SIG_DFL. SIG_DFL handles signals in a “default” way. To install
SIG_DFL, we’d use a call such as

signal(SIGINT, SIG_DFL); /* use default handler */

The effect of calling SIG_DFL is implementation-defined, but in most cases it
causes program termination.

� SIG_IGN. The call

signal(SIGINT, SIG_IGN); /* ignore SIGINT signal */

specifies that SIGINT is to be ignored if it should be raised later.

In addition to SIG_DFL and SIG_IGN, the <signal.h> header may provide
other signal handlers; their names must begin with SIG_ followed by an upper-
case letter. At the beginning of program execution, the handler for each signal is
initialized to either SIG_DFL or SIG_IGN, depending on the implementation.

<signal.h> defines another macro, SIG_ERR, that looks like it should be
a signal handler. SIG_ERR is actually used to test for an error when installing a
signal handler. If a call of signal is unsuccessful—it can’t install a handler for
the specified signal—it returns SIG_ERR and stores a positive value in errno.
Thus, to test whether signal has failed, we could write

if (signal(SIGINT, handler) == SIG_ERR) {
 perror("signal(SIGINT, handler) failed");
 …
}

There’s one tricky aspect to the entire signal-handling mechanism: what hap-
pens if a signal is raised by the function that handles that signal? To prevent infinite
recursion, the C89 standard prescribes a two-step process when a signal is raised
for which a signal-handling function has been installed by the programmer. First,
either the handler for that signal is reset to SIG_DFL (the default handler) or else
the signal is blocked from occurring while the handler is executing. (SIGILL is a
special case; neither action is required when SIGILL is raised.) Only then is the
handler provided by the programmer called.

C24.FM Page 633 Saturday, February 16, 2008 2:29 PM

634 Chapter 24 Error Handling

After a signal has been handled, whether or not the handler needs to be reinstalled
is implementation-defined. UNIX implementations typically leave the signal han-
dler installed after it’s been used, but other implementations may reset the handler
to SIG_DFL. In the latter case, the handler can reinstall itself by calling signal
before it returns.

C99 changes the signal-handling process in a few minor ways. When a signal
is raised, an implementation may choose to disable not just that signal but others as
well. If a signal-handling function returns from handling a SIGILL or SIGSEGV
signal (as well as a SIGFPE signal), the effect is undefined. C99 also adds the
restriction that if a signal occurs as a result of calling the abort function or the
raise function, the signal handler itself must not call raise.

The raise Function

raise Although signals usually arise from run-time errors or external events, it’s occa-
sionally handy for a program to cause a signal to occur. The raise function does
just that. The argument to raise specifies the code for the desired signal:

raise(SIGABRT); /* raises the SIGABRT signal */

The return value of raise can be used to test whether the call was successful:
zero indicates success, while a nonzero value indicates failure.

PROGRAM Testing Signals

The following program illustrates the use of signals. First, it installs a custom han-
dler for the SIGINT signal (carefully saving the original handler), then calls
raise_sig to raise that signal. Next, it installs SIG_IGN as the handler for the
SIGINT signal and calls raise_sig again. Finally, it reinstalls the original han-
dler for SIGINT, then calls raise_sig one last time.

tsignal.c /* Tests signals */

#include <signal.h>
#include <stdio.h>

void handler(int sig);
void raise_sig(void);

int main(void)
{
 void (*orig_handler)(int);

int raise(int sig);

C99

C24.FM Page 634 Saturday, February 16, 2008 2:29 PM

24.4 The <setjmp.h> Header: Nonlocal Jumps 635

 printf("Installing handler for signal %d\n", SIGINT);
 orig_handler = signal(SIGINT, handler);
 raise_sig();

 printf("Changing handler to SIG_IGN\n");
 signal(SIGINT, SIG_IGN);
 raise_sig();

 printf("Restoring original handler\n");
 signal(SIGINT, orig_handler);
 raise_sig();

 printf("Program terminates normally\n");
 return 0;
}

void handler(int sig)
{
 printf("Handler called for signal %d\n", sig);
}

void raise_sig(void)
{
 raise(SIGINT);
}

Incidentally, the call of raise doesn’t need to be in a separate function. I
defined raise_sig simply to make a point: regardless of where a signal is
raised—whether it’s in main or in some other function—it will be caught by the
most recently installed handler for that signal.

The output of this program can vary somewhat. Here’s one possibility:

Installing handler for signal 2
Handler called for signal 2
Changing handler to SIG_IGN
Restoring original handler

From this output, we see that our implementation defines SIGINT to be 2 and that
the original handler for SIGINT must have been SIG_DFL. (If it had been
SIG_IGN, we’d also see the message Program terminates normally.)
Finally, we observe that SIG_DFL caused the program to terminate without dis-
playing an error message.

24.4 The <setjmp.h> Header: Nonlocal Jumps

int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);

C24.FM Page 635 Saturday, February 16, 2008 2:29 PM

636 Chapter 24 Error Handling

Normally, a function returns to the point at which it was called. We can’t use a
goto statement to make it go elsewhere, because a goto can jump only to a label
within the same function. The <setjmp.h> header, however, makes it possible
for one function to jump directly to another function without returning.

The most important items in <setjmp.h> are the setjmp macro and the
longjmp function. setjmp “marks” a place in a program; longjmp can then
be used to return to that place later. Although this powerful mechanism has a vari-
ety of potential applications, it’s used primarily for error handling.

setjmp To mark the target of a future jump, we call setjmp, passing it a variable of
type jmp_buf (declared in <setjmp.h>). setjmp stores the current “environ-
ment” (including a pointer to the location of the setjmp itself) in the variable for
later use in a call of longjmp; it then returns zero.

longjmp Returning to the point of the setjmp is done by calling longjmp, passing it
the same jmp_buf variable that we passed to setjmp. After restoring the envi-
ronment represented by the jmp_buf variable, longjmp will—here’s where it
gets tricky—return from the setjmp call. setjmp’s return value this time is
val, the second argument to longjmp. (If val is 0, setjmp returns 1.)

Be sure that the argument to longjmp was previously initialized by a call of
setjmp. It’s also important that the function containing the original call of set-
jmp must not have returned prior to the call of longjmp. If either restriction is
violated, calling longjmp results in undefined behavior. (The program will prob-
ably crash.)

To summarize, setjmp returns zero the first time it’s called; later, longjmp
transfers control back to the original call of setjmp, which this time returns a
nonzero value. Got it? Perhaps we need an example…

PROGRAM Testing setjmp/longjmp

The following program uses setjmp to mark a place in main; the function f2
later returns to that place by calling longjmp.

tsetjmp.c /* Tests setjmp/longjmp */

#include <setjmp.h>
#include <stdio.h>

jmp_buf env;

void f1(void);
void f2(void);

int main(void)
{
 if (setjmp(env) == 0)
 printf("setjmp returned 0\n");

goto statement ➤6.4

Q&A

C24.FM Page 636 Saturday, February 16, 2008 2:29 PM

Q & A 637

 else {
 printf("Program terminates: longjmp called\n");
 return 0;
 }

 f1();
 printf("Program terminates normally\n");
 return 0;
}

void f1(void)
{
 printf("f1 begins\n");
 f2();
 printf("f1 returns\n");
}

void f2(void)
{
 printf("f2 begins\n");
 longjmp(env, 1);
 printf("f2 returns\n");
}

The output of this program will be

setjmp returned 0
f1 begins
f2 begins
Program terminates: longjmp called

The original call of setjmp returns 0, so main calls f1. Next, f1 calls f2,
which uses longjmp to transfer control back to main instead of returning to f1.
When longjmp is executed, control goes back to the setjmp call. This time,
setjmp returns 1 (the value specified in the longjmp call).

Q & A

Q: You said that it’s important to store zero in errno before calling a library
function that may change it, but I’ve seen UNIX programs that test errno
without ever setting it to zero. What’s the story? [p. 629]

A: UNIX programs often contain calls of functions that belong to the operating sys-
tem. These system calls rely on errno, but they use it in a slightly different way
than described in this chapter. When such a call fails, it returns a special value
(such as –1 or a null pointer) in addition to storing a value in errno. Programs
don’t need to store zero in errno before such a call, because the function’s return
value alone indicates that an error occurred. Some functions in the C standard
library work this way as well, using errno not so much to signal an error as to
specify which error it was.

C24.FM Page 637 Saturday, February 16, 2008 2:29 PM

638 Chapter 24 Error Handling

Q: My version of <errno.h> defines other macros besides EDOM and ERANGE.
Is this practice legal? [p. 630]

A: Yes. The C standard allows macros that represent other error conditions, provided
that their names begin with the letter E followed by a digit or an upper-case letter.
UNIX implementations typically define a huge number of such macros.

Q: Some of the macros that represent signals have cryptic names, like SIGFPE
and SIGSEGV. Where do these names come from? [p. 631]

A: The names of these signals date back to the early C compilers, which ran on a DEC
PDP-11. The PDP-11 hardware could detect errors with names like “Floating Point
Exception” and “Segmentation Violation.”

Q: OK, I’m curious. Unless it’s invoked by abort or raise, a signal handler
shouldn’t call a standard library function, but you said there were exceptions
to this rule. What are they? [p. 632]

A: A signal handler is allowed to call the signal function, provided that the first
argument is the signal that it’s handling at the moment. This proviso is important,
because it allows a signal handler to reinstall itself. In C99, a signal handler may
also call the abort function or the _Exit function.

*Q: Following up on the previous question, a signal handler normally isn’t sup-
posed to access variables with static storage duration. What’s the exception to
this rule?

A: That one’s a bit harder. The answer involves a type named sig_atomic_t that’s
declared in the <signal.h> header. sig_atomic_t is an integer type that can
be accessed “as an atomic entity,” according to the C standard. In other words, the
CPU can fetch a sig_atomic_t value from memory or store one in memory
with a single machine instruction, rather than using two or more machine instruc-
tions. sig_atomic_t is often defined to be int, since most CPUs can load or
store an int value in one instruction.

That brings us to the exception to the rule that a signal-handling function isn’t
supposed to access static variables. The C standard allows a signal handler to store
a value in a sig_atomic_t variable—even one with static storage duration—
provided that it’s declared volatile. To see the reason for this arcane rule, con-
sider what might happen if a signal handler were to modify a static variable that’s
of a type that’s wider than sig_atomic_t. If the program had fetched part of
the variable from memory just before the signal occurred, then completed the fetch
after the signal is handled, it could end up with a garbage value. sig_atomic_t
variables can be fetched in a single step, so this problem doesn’t occur. Declaring
the variable to be volatile warns the compiler that the variable’s value may
change at any time. (A signal could suddenly be raised, invoking a signal handler
that modifies the variable.)

Q: The tsignal.c program calls printf from inside a signal handler. Isn’t
that illegal?

C99
_Exit function ➤26.2

volatile type qualifier ➤20.3

C24.FM Page 638 Saturday, February 16, 2008 2:29 PM

Exercises 639

A: A signal-handling function invoked as a result of raise or abort may call
library functions. tsignal.c uses raise to invoke the signal handler.

Q: How can setjmp modify the argument that’s passed to it? I thought that C
always passed arguments by value. [p. 636]

A: The C standard says that jmp_buf must be an array type, so setjmp is actually
being passed a pointer.

Q: I’m having trouble with setjmp. Are there any restrictions on how it can be
used?

A: According to the C standard, there are only two legal ways to use setjmp:

� As the expression in an expression statement (possibly cast to void).

� As part of the controlling expression in an if, switch, while, do, or for
statement. The entire controlling expression must have one of the following
forms, where constexpr is an integer constant expression and op is a relational
or equality operator:

setjmp(…)
!setjmp(…)
constexpr op setjmp(…)
setjmp(…) op constexpr

Using setjmp in any other way causes undefined behavior.

Q: After a program has executed a call of longjmp, what are the values of the
variables in the program?

A: Most variables retain the values they had at the time of the longjmp. However, an
automatic variable inside the function that contains the setjmp has an indetermi-
nate value unless it was declared volatile or it hasn’t been modified since the
setjmp was performed.

Q: Is it legal to call longjmp inside a signal handler?
A: Yes, provided that the signal handler wasn’t invoked because of a signal raised dur-

ing the execution of a signal handler. (C99 removes this restriction.)

Exercises

Section 24.1 1. (a) Assertions can be used to test for two kinds of problems: (1) problems that should never
occur if the program is correct, and (2) problems that are beyond the control of the program.
Explain why assert is best suited for problems in the first category.

(b) Give three examples of problems that are beyond the control of the program.

2. Write a call of assert that causes a program to terminate if a variable named top has the
value NULL.

C99

C24.FM Page 639 Saturday, February 16, 2008 2:29 PM

640 Chapter 24 Error Handling

3. Modify the stackADT2.c file of Section 19.4 so that it uses assert to test for errors
instead of using if statements. (Note that the terminate function is no longer necessary
and can be removed.)

Section 24.2 4. (a) Write a “wrapper” function named try_math_fcn that calls a math function
(assumed to have a double argument and return a double value) and then checks
whether the call succeeded. Here’s how we might use try_math_fcn:

y = try_math_fcn(sqrt, x, "Error in call of sqrt");

If the call sqrt(x) is successful, try_math_fcn returns the value computed by sqrt.
If the call fails, try_math_fcn calls perror to print the message Error in call of
sqrt, then calls exit to terminate the program.

(b) Write a macro that has the same effect as try_math_fcn but builds the error mes-
sage from the function’s name:

y = TRY_MATH_FCN(sqrt, x);

If the call of sqrt fails, the message will be Error in call of sqrt. Hint: Have
TRY_MATH_FCN call try_math_fcn.

Section 24.4 5. In the inventory.c program (see Section 16.3), the main function has a for loop that
prompts the user to enter an operation code, reads the code, and then calls either insert,
search, update, or print. Add a call of setjmp to main in such a way that a subse-
quent call of longjmp will return to the for loop. (After the longjmp, the user will be
prompted for an operation code, and the program will continue normally.) setjmp will
need a jmp_buf variable; where should it be declared?

W

W

C24.FM Page 640 Saturday, February 16, 2008 2:29 PM

641

25 International Features

If your computer speaks English
it was probably made in Japan.

For many years, C wasn’t especially suitable for use in non-English-speaking
countries. C originally assumed that characters were always single bytes and that
all computers recognized the characters #, [, \,], ^, {, |, }, and ~, which are
needed to write programs. Unfortunately, these assumptions aren’t valid in all parts
of the world. As a result, the experts who created C89 added language features and
libraries in an effort to make C a more international language.

In 1994, Amendment 1 to the ISO C standard was approved, creating an
enhanced version of C89 that’s sometimes known as C94 or C95. This amendment
provides additional library support for international programming via the digraph
language feature and the <iso646.h>, <wchar.h>, and <wctype.h> head-
ers. C99 adds even more support for internationalization in the form of universal
character names. This chapter covers all of C’s international features, whether they
come from C89, Amendment 1, or C99. I’ll flag the Amendment 1 changes as C99
changes, although they actually predate C99.

The <locale.h> header (Section 25.1) provides functions that allow a pro-
gram to tailor its behavior to a particular “locale”—often a country or other geo-
graphical area in which a particular language is spoken. Multibyte characters and
wide characters (Section 25.2) enable programs to work with large character sets
such as those found in Asian countries. Digraphs, trigraphs, and the <iso646.h>
header (Section 25.3) make it possible to write programs on computers that lack
some of the characters normally used in C programming. Universal character
names (Section 25.4) allow programmers to embed characters from the Universal
Character Set into the source code of a program. The <wchar.h> header (Section
25.5) supplies functions for wide-character input/output and wide-string manipula-
tion. Finally, the <wctype.h> header (Section 25.6) provides wide-character
classification and case-mapping functions.

c25.fm Page 641 Saturday, February 16, 2008 2:32 PM

642 Chapter 25 International Features

25.1 The <locale.h> Header: Localization

The <locale.h> header provides functions to control portions of the C library
whose behavior varies from one locale to another. (A locale is typically a country
or a region in which a particular language is spoken.)

Locale-dependent aspects of the library include:

� Formatting of numerical quantities. In some locales, for example, the deci-
mal point is a period (297.48), while in others it’s a comma (297,48).

� Formatting of monetary quantities. For example, the currency symbol varies
from country to country.

� Character set. The character set often depends on the language in a particular
locale. Asian countries usually require a much larger character set than West-
ern countries.

� Appearance of date and time. In some locales, it’s customary to put the month
first when writing a date (8/24/2012); in others, the day goes first (24/8/2012).

Categories

By changing locale, a program can adapt its behavior to a different area of the
world. But a locale change can affect many parts of the library, some of which we
might prefer not to alter. Fortunately, we’re not required to change all aspects of a
locale at the same time. Instead, we can use one of the following macros to specify
a category:

� LC_COLLATE. Affects the behavior of two string-comparison functions,
strcoll and strxfrm. (Both functions are declared in <string.h>).

� LC_CTYPE. Affects the behavior of the functions in <ctype.h> (except
isdigit and isxdigit). Also affects the multibyte and wide-character
functions discussed in this chapter.

� LC_MONETARY. Affects the monetary formatting information returned by the
localeconv function.

� LC_NUMERIC. Affects the decimal-point character used by formatted I/O
functions (like printf and scanf) and the numeric conversion functions
(such as strtod) in <stdlib.h>. Also affects the nonmonetary format-
ting information returned by localeconv.

� LC_TIME. Affects the behavior of the strftime function (declared in
<time.h>), which converts a time into a character string. In C99, also
affects the behavior of the wcsftime function.

Implementations are free to provide additional categories and define LC_ macros
not listed above. For example, most UNIX systems provide an LC_MESSAGES
category, which affects the format of affirmative and negative system responses.

<string.h> header ➤23.6

<ctype.h> header ➤23.5

numeric conversion functions ➤26.2

strftime function ➤26.3

C99
wcsftime function ➤25.5

c25.fm Page 642 Saturday, February 16, 2008 2:32 PM

25.1 The <locale.h> Header: Localization 643

The setlocale Function

setlocale The setlocale function changes the current locale, either for a single category
or for all categories. If the first argument is one of the macros LC_COLLATE,
LC_CTYPE, LC_MONETARY, LC_NUMERIC, or LC_TIME, a call of set-
locale affects only a single category. If the first argument is LC_ALL, the call
affects all categories. The C standard defines only two values for the second argu-
ment: "C" and "". Other locales, if any, depend on the implementation.

At the beginning of program execution, the call

setlocale(LC_ALL, "C");

occurs behind the scenes. In the "C" locale, library functions behave in the “nor-
mal” way, and the decimal point is a period.

Changing locale after the program has begun execution requires an explicit
call of setlocale. Calling setlocale with "" as the second argument
switches to the native locale, allowing the program to adapt its behavior to the
local environment. The C standard doesn’t define the exact effect of switching to
the native locale. Some implementations of setlocale check the execution
environment (in the same way as getenv) for an environment variable with a par-
ticular name (perhaps the same as the category macro). Other implementations
don’t do anything at all. (The standard doesn’t require setlocale to have any
effect. Of course, a library whose version of setlocale does nothing isn’t likely
to sell too well in some parts of the world.)

Locales

Locales other than "C" and "" vary from one compiler to another. The GNU C
library, known as glibc, provides a "POSIX" locale, which is the same as the "C"
locale. glibc, which is used by Linux, allows additional locales to be installed if
desired. These locales have the form

language [_territory] [.codeset] [@modifier]

where each bracketed item is optional. Possible values for language are listed in a
standard known as ISO 639, territory comes from another standard (ISO 3166), and
codeset specifies a character set or an encoding of a character set. Here are a few
examples:

"swedish"
"en_GB" (English – United Kingdom)
"en_IE" (English – Ireland)
"fr_CH" (French – Switzerland)

There are several variations on the "en_IE" locale, including "en_IE@euro" (using
the euro currency), "en_IE.iso88591" (using the ISO/IEC 8859-1 character set),

char *setlocale(int category, const char *locale);

getenv function ➤26.2

c25.fm Page 643 Saturday, February 16, 2008 2:32 PM

644 Chapter 25 International Features

"en_IE.iso885915@euro" (using the ISO/IEC 8859-15 character set and the euro
currency), and "en_IE.utf8" (using the UTF-8 encoding of the Unicode character
set).

Linux and other versions of UNIX support the locale command, which can be
used to get locale information. One use of the locale command is to get a list of
all available locales, which can be done by entering

locale -a

at the command line.
Because locale information is becoming increasingly important, the Unicode

Consortium created the Common Locale Data Repository (CLDR) project to estab-
lish a standard set of locales. More information about the CLDR project can be
found at www.unicode.org/cldr/.

When a call of setlocale succeeds, it returns a pointer to a string associ-
ated with the category in the new locale. (The string might be the locale name
itself, for example.) On failure, setlocale returns a null pointer.

setlocale can also be used as a query function. If its second argument is a
null pointer, setlocale returns a pointer to a string associated with the category
in the current locale. This feature is especially useful if the first argument is
LC_ALL, since it allows us to fetch the current settings for all categories. A string
returned by setlocale can be saved (by copying it into a variable) and then
used in a later call of setlocale.

The localeconv Function

localeconv Although we can ask setlocale about the current locale, the information that it
returns isn’t necessarily in the most useful form. To find out highly specific infor-
mation about the current locale (What’s the decimal-point character? What’s the
currency symbol?), we need localeconv, the only other function declared in
<locale.h>.

localeconv returns a pointer to a structure of type struct lconv. The
members of this structure contain detailed information about the current locale.
The structure has static storage duration and may be modified by a later call of
localeconv or setlocale. Be sure to extract the desired information from
the lconv structure before it’s wiped out by one of these functions.

Some members of the lconv structure have char * type; other members
have char type. Table 25.1 lists the char * members. The first three members
describe the formatting of nonmonetary quantities, while the others deal with mon-
etary quantities. The table also shows the value of each member in the "C" locale
(the default); a value of "" means “not available.”

The grouping and mon_grouping members deserve special mention.

struct lconv *localeconv(void);

UTF-8 ➤25.2

Q&A

c25.fm Page 644 Saturday, February 16, 2008 2:32 PM

http://www.unicode.org/cldr/

25.1 The <locale.h> Header: Localization 645

Each character in these strings specifies the size of one group of digits. (Grouping
takes place from right to left, starting at the decimal point.) A value of CHAR_MAX
indicates that no further grouping is to be performed; 0 indicates that the previous
element should be used for the remaining digits. For example, the string "\3" (\3
followed by \0) indicates that the first group should have 3 digits, then all other
digits should be grouped in 3’s as well.

The char members of the lconv structure are divided into two groups. The
members of the first group (Table 25.2) affect the local formatting of monetary
quantities. The members of the second group (Table 25.3) affect the international
formatting of monetary quantities. All but one of the members in Table 25.3 were
added in C99. As Tables 25.2 and 25.3 show, the value of each char member in
the "C" locale is CHAR_MAX, which means “not available.”

Name
Value in

"C" Locale Description

N
on

m
on

et
ar

y decimal_point
thousands_sep

grouping

"."
""

""

Decimal-point character
Character used to separate groups of
digits before decimal point
Sizes of digit groups

M
on

et
ar

y

mon_decimal_point
mon_thousands_sep

mon_grouping
positive_sign
negative_sign
currency_symbol
int_curr_symbol

""
""

""
""
""
""
""

Decimal-point character
Character used to separate groups of
digits before decimal point
Sizes of digit groups
String indicating nonnegative quantity
String indicating negative quantity
Local currency symbol
International currency symbol†

†A three-letter abbreviation followed by a separator (often a space or a period). For example, the
international currency symbols for Switzerland, the United Kingdom, and the United States are
"CHF ", "GBP ", and "USD ", respectively.

Table 25.1
char * Members of

lconv Structure

Name
Value in

"C" Locale Description

frac_digits
p_cs_precedes

n_cs_precedes

p_sep_by_space

n_sep_by_space

p_sign_posn

n_sign_posn

CHAR_MAX
CHAR_MAX

CHAR_MAX

CHAR_MAX

CHAR_MAX

CHAR_MAX

CHAR_MAX

Number of digits after decimal point
1 if currency_symbol precedes
nonnegative quantity; 0 if it succeeds quantity
1 if currency_symbol precedes negative
quantity; 0 if it succeeds quantity
Separation of currency_symbol and sign
string from nonnegative quantity (see Table
25.4)
Separation of currency_symbol and sign
string from negative quantity (see Table 25.4)
Position of positive_sign for
nonnegative quantity (see Table 25.5)
Position of negative_sign for negative
quantity (see Table 25.5)

Table 25.2
char Members of
lconv Structure

(Local Formatting)

C99

c25.fm Page 645 Saturday, February 16, 2008 2:32 PM

646 Chapter 25 International Features

Table 25.4 explains the meaning of the values of the p_sep_by_space,
n_sep_by_space, int_p_sep_by_space, and int_n_sep_by_space
members. The meaning of p_sep_by_space and n_sep_by_space has
changed in C99. In C89, there are only two possible values for these members: 1
(if there’s a space between currency_symbol and a monetary quantity) or 0 (if
there’s not).

Table 25.5 explains the meaning of the values of the p_sign_posn,
n_sign_posn, int_p_sign_posn and int_n_sign_posn members.

To see how the members of the lconv structure might vary from one locale to
another, let’s look at two examples. Table 25.6 shows typical values of the monetary
lconv members for the U.S.A. and Finland (which uses the euro as its currency).

Name
Value in

"C" Locale Description

int_frac_digits
int_p_cs_precedes†

int_n_cs_precedes†

int_p_sep_by_space†

int_n_sep_by_space†

int_p_sign_posn†

int_n_sign_posn†

CHAR_MAX
CHAR_MAX

CHAR_MAX

CHAR_MAX

CHAR_MAX

CHAR_MAX

CHAR_MAX

Number of digits after decimal point
1 if int_curr_symbol precedes
nonnegative quantity; 0 if it succeeds
quantity
1 if int_curr_symbol precedes
negative quantity; 0 if it succeeds
quantity
Separation of int_curr_symbol
and sign string from nonnegative
quantity (see Table 25.4)
Separation of int_curr_symbol
and sign string from negative quantity
(see Table 25.4)
Position of positive_sign for
nonnegative quantity (see Table 25.5)
Position of negative_sign for
negative quantity (see Table 25.5)

†C99 only

Table 25.3
char Members of
lconv Structure

(International Formatting)

C99

Value Meaning

0
1

2

No space separates currency symbol and quantity.
If currency symbol and sign are adjacent, a space separates them from
quantity; otherwise, a space separates currency symbol from quantity.
If currency symbol and sign are adjacent, a space separates them;
otherwise, a space separates sign from quantity.

Table 25.4
Values of

…sep_by_space
Members

Value Meaning

0
1
2
3
4

Parentheses surround quantity and currency symbol
Sign precedes quantity and currency symbol
Sign succeeds quantity and currency symbol
Sign immediately precedes currency symbol
Sign immediately succeeds currency symbol

Table 25.5
Values of

…sign_posn
Members

c25.fm Page 646 Saturday, February 16, 2008 2:32 PM

25.2 Multibyte Characters and Wide Characters 647

Here’s how the monetary quantity 7593.86 would be formatted in the two
locales, depending on the sign of the quantity and whether the formatting is local
or international:

 U.S.A. Finland
Local format (positive) $7,593.86 7 593,86 EUR
Local format (negative) -$7,593.86 - 7 593,86 EUR
International format (positive) USD 7,593.86 7 593,86 EUR
International format (negative) -USD 7,593.86 - 7 593,86 EUR

Keep in mind that none of C’s library functions are able to format monetary quan-
tities automatically. It’s up to the programmer to use the information in the lconv
structure to accomplish the formatting.

25.2 Multibyte Characters and Wide Characters

One of the biggest problems in adapting programs to different locales is the char-
acter-set issue. ASCII and its extensions, which include Latin-1, are the most pop-
ular character sets in North America. Elsewhere, the situation is more complicated.
In many countries, computers employ character sets that are similar to ASCII, but
lack certain characters; we’ll discuss this issue further in Section 25.3. Other coun-
tries, especially those in Asia, face a different problem: written languages that
require a very large character set, usually numbering in the thousands.

Member U.S.A. Finland

mon_decimal_point
mon_thousands_sep
mon_grouping
positive_sign
negative_sign
currency_symbol
frac_digits
p_cs_precedes
n_cs_precedes
p_sep_by_space
n_sep_by_space
p_sign_posn
n_sign_posn
int_curr_symbol
int_frac_digits
int_p_cs_precedes
int_n_cs_precedes
int_p_sep_by_space
int_n_sep_by_space
int_p_sign_posn
int_n_sign_posn

"."
","
"\3"
""
"-"
"$"
2
1
1
0
0
1
1
"USD "
2
1
1
1
1
1
1

","
" "
"\3"
""
"-"
"EUR"
2
0
0
2
2
1
1
"EUR "
2
0
0
2
2
1
1

Table 25.6
Typical Values of
Monetary lconv

Members for
U.S.A. and Finland

Latin-1 ➤7.3

c25.fm Page 647 Saturday, February 16, 2008 2:32 PM

648 Chapter 25 International Features

Changing the meaning of type char to handle larger character sets isn’t pos-
sible, since char values are—by definition—limited to single bytes. Instead, C
allows compilers to provide an extended character set. This character set may be
used for writing C programs (in comments and strings, for example), in the envi-
ronment in which the program is run, or in both places. C provides two techniques
for encoding an extended character set: multibyte characters and wide characters.
It also supplies functions that convert from one kind of encoding to the other.

Multibyte Characters

In a multibyte character encoding, each extended character is represented by a
sequence of one or more bytes. The number of bytes may vary, depending on the
character. C requires that any extended character set include certain essential char-
acters (letters, digits, operators, punctuation, and white-space characters); these
characters must be single bytes. Other bytes can be interpreted as the beginning of
a multibyte character.

Japanese Character Sets
The Japanese employ several different writing systems. The most complex, kanji,
consists of thousands of symbols—far too many to represent in a one-byte encod-
ing. (Kanji symbols actually come from Chinese, which has a similar problem with
large character sets.) There’s no single way to encode kanji; common encodings
include JIS (Japanese Industrial Standard), Shift-JIS (the most popular encoding),
and EUC (Extended UNIX Code).

Some multibyte character sets rely on a state-dependent encoding. In this
kind of encoding, each sequence of multibyte characters begins in an initial shift
state. Certain bytes encountered later (known as a shift sequence) may change the
shift state, affecting the meaning of subsequent bytes. Japan’s JIS encoding, for
example, mixes one-byte codes with two-byte codes; “escape sequences” embed-
ded in strings indicate when to switch between one-byte and two-byte modes. (In
contrast, the Shift-JIS encoding is not state-dependent. Each character requires
either one or two bytes, but the first byte of a two-byte character can always be dis-
tinguished from a one-byte character.)

In any encoding, the C standard requires that a zero byte always represent a
null character, regardless of shift state. Also, a zero byte can’t be the second (or
later) byte of a multibyte character.

The C library provides two macros, MB_LEN_MAX and MB_CUR_MAX, that
are related to multibyte characters. Both macros specify the maximum number of
bytes in a multibyte character. MB_LEN_MAX (defined in <limits.h>) gives the
maximum for any supported locale; MB_CUR_MAX (defined in <stdlib.h>)
gives the maximum for the current locale. (Changing locales may affect the inter-
pretation of multibyte characters.) Obviously, MB_CUR_MAX can’t be larger than
MB_LEN_MAX.

Q&A

c25.fm Page 648 Saturday, February 16, 2008 2:32 PM

25.2 Multibyte Characters and Wide Characters 649

Any string may contain multibyte characters, although the length of such a
string (as determined by the strlen function) is the number of bytes in the string,
not the number of characters. In particular, the format strings in calls of the
…printf and …scanf functions may contain multibyte characters. As a result,
the C99 standard defines the term multibyte string to be a synonym for string.

Wide Characters

The other way to encode an extended character set is to use wide characters. A
wide character is an integer whose value represents a character. Unlike multibyte
characters, which may vary in length, all wide characters supported by a particular
implementation require the same number of bytes. A wide string is a string con-
sisting of wide characters, with a null wide character at the end. (A null wide char-
acter is a wide character whose numerical value is zero.)

Wide characters have the type wchar_t (declared in <stddef.h> and cer-
tain other headers), which must be an integer type able to represent the largest
extended character set for any supported locale. For example, if two bytes are
enough to represent any extended character set, then wchar_t could be defined
as unsigned short int.

C supports both wide character constants and wide string literals. Wide char-
acter constants resemble ordinary character constants but are prefixed by the letter
L:

L'a'

Wide string literals are also prefixed by L:

L"abc"

This string represents an array containing the wide characters L'a', L'b', and
L'c', followed by a null wide character.

Unicode and the Universal Character Set

The differences between multibyte characters and wide characters become appar-
ent when discussing Unicode. Unicode is an enormous character set developed by
the Unicode Consortium, an organization established by a group of computer man-
ufacturers to create an international character set for computer use. The first 256
characters of Unicode are identical to Latin-1 (and therefore the first 128 charac-
ters of Unicode match the ASCII character set). However, Unicode goes far
beyond Latin-1, providing the characters needed for nearly all modern and ancient
languages. Unicode also includes a number of specialized symbols, such as those
used in mathematics and music. The Unicode standard was first published in 1991.

Unicode is closely related to international standard ISO/IEC 10646, which
defines a character encoding known as the Universal Character Set (UCS). UCS
was developed by the International Organization for Standardization (ISO), start-
ing at about the same time that Unicode was initially defined. Although UCS orig-
inally differed from Unicode, the two character sets were later unified. ISO now

C99

c25.fm Page 649 Saturday, February 16, 2008 2:32 PM

650 Chapter 25 International Features

works closely with the Unicode Consortium to ensure that ISO/IEC 10646 remains
consistent with Unicode. Because Unicode and UCS are so similar, I’ll use the two
terms interchangeably.

Unicode was originally limited to 65,536 characters (the number of characters
that can be represented using 16 bits). That limit was later found to be insufficient;
Unicode currently has over 100,000 characters. (For the most recent version, visit
www.unicode.org.) The first 65,536 characters of Unicode—which include the
most frequently used characters—are known as the Basic Multilingual Plane
(BMP).

Encodings of Unicode

Unicode assigns a unique number (known as a code point) to each character. There
are a number of ways to represent these code points using bytes; I’ll mention two
of the simpler techniques. One of these encodings uses wide characters; the other
uses multibyte characters.

UCS-2 is a wide-character encoding in which each Unicode code point is
stored as two bytes. UCS-2 can represent all the characters in the Basic Multilin-
gual Plane (those with code points between 0000 and FFFF in hexadecimal), but it
is unable to represent Unicode characters that don’t belong to the BMP.

A popular alternative is the 8-bit UCS Transformation Format (UTF-8),
which uses multibyte characters. UTF-8 was devised by Ken Thompson and his
Bell Labs colleague Rob Pike in 1992. (Yes, that’s the same Ken Thompson who
designed the B language, the predecessor of C.) UTF-8 has the useful property that
ASCII characters look identical in UTF-8: each character is one byte and has the
same binary encoding. Thus, software designed to read UTF-8 data can also handle
ASCII data with no change. For these reasons, UTF-8 is widely used on the Inter-
net for text-based applications such as web pages and email.

In UTF-8, each code point requires between one and four bytes. UTF-8 is
organized so that the most commonly used characters require fewer bytes, as
shown in Table 25.7.

UTF-8 takes the bits in the code point value, divides them into groups (repre-
sented by the x’s in Table 25.7), and assigns each group to a different byte. The
simplest case is a code point in the range 0–7F (an ASCII character), which is rep-
resented by a 0 followed by the seven bits in the original number.

A code point in the range 80–7FF (which includes all the Latin-1 characters)
would have its bits split into groups of five bits and six bits. The five-bit group is

Q&A

Code Point Range
(Hexadecimal)

UTF-8 Byte Sequence
(Binary)

000000-00007F
000080-0007FF
000800-00FFFF
010000-10FFFF

0xxxxxxx
110xxxxx 10xxxxxx
1110xxxx 10xxxxxx 10xxxxxx
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 25.7
UTF-8 Encoding

c25.fm Page 650 Saturday, February 16, 2008 2:32 PM

http://www.unicode.org

25.2 Multibyte Characters and Wide Characters 651

prefixed by 110 and the six-bit group is prefixed by 10. For example, the code
point for the character ä is E4 (hexadecimal) or 11100100 (binary). In UTF-8, it
would be represented by the two-byte sequence 11000011 10100100. Note how
the underlined portions, when joined together, spell out 00011100100.

Characters whose code points fall in the range 800–FFFF, which includes the
remaining characters in the Basic Multilingual Plane, require three bytes. All other
Unicode characters (most of them rarely used) are assigned four bytes.

UTF-8 has a number of useful properties:

� Each of the 128 ASCII characters is represented by one byte. A string consist-
ing solely of ASCII characters looks exactly the same in UTF-8.

� Any byte in a UTF-8 string whose leftmost bit is 0 must be an ASCII charac-
ter, because all other bytes begin with a 1 bit.

� The first byte of a multibyte character indicates how long the character will be.
If the number of 1 bits at the beginning of the byte is two, the character is two
bytes long. If the number of 1 bits is three or four, the character is three or four
bytes long, respectively.

� Every other byte in a multibyte sequence has 10 as its leftmost bits.

The last three properties are especially important, because they guarantee that no
sequence of bytes within a multibyte character can possibly represent another valid
multibyte character. This makes it possible to search a multibyte string for a partic-
ular character or sequence of characters by simply doing byte comparisons.

So how does UTF-8 stack up against UCS-2? UCS-2 has the advantage that
characters are stored in their most natural form. On the other hand, UTF-8 can han-
dle all Unicode characters (not just those in the BMP), often requires less space
than UCS-2, and retains compatibility with ASCII. UCS-2 isn’t nearly as popular
as UTF-8, although it was used in the Windows NT operating system. A newer
version that uses four bytes (UCS-4) is gradually taking its place. Some systems
extend UCS-2 into a multibyte encoding by allowing a variable number of byte
pairs to represent a character (unlike UCS-2, which uses a single byte pair per
character). This encoding, known as UTF-16, has the advantage that it’s compati-
ble with UCS-2.

Multibyte/Wide-Character Conversion Functions

Although the C89 standard introduced the concepts of multibyte characters and
wide characters, it provides only five functions for working with these kinds of

int mblen(const char *s, size_t n); from <stdlib.h>
int mbtowc(wchar_t * restrict pwc,
 const char * restrict s,
 size_t n); from <stdlib.h>
int wctomb(char *s, wchar_t wc); from <stdlib.h>

c25.fm Page 651 Saturday, February 16, 2008 2:32 PM

652 Chapter 25 International Features

characters. We’ll now describe these functions, which belong to the <stdlib.h>
header. C99’s <wchar.h> and <wctype.h> headers, which are discussed in
Sections 25.5 and 25.6, supply a number of additional multibyte and wide-character
functions.

C89’s multibyte/wide-character functions are divided into two groups. The
first group converts single characters from multibyte form to wide form and vice
versa. The behavior of these functions depends on the LC_CTYPE category of the
current locale. If the multibyte encoding is state-dependent, the behavior also
depends on the current conversion state. The conversion state consists of the cur-
rent shift state as well as the current position within a multibyte character. Calling
any of these functions with a null pointer as the value of its char * parameter
sets the function’s internal conversion state to the initial conversion state, signify-
ing that no multibyte character is yet in progress and that the initial shift state is
in effect. Later calls of the function cause its internal conversion state to be
updated.

mblen The mblen function checks whether its first argument points to a series of
bytes that form a valid multibyte character. If so, the function returns the number
of bytes in the character; if not, it returns –1. As a special case, mblen returns 0 if
the first argument points to a null character. The second argument limits the num-
ber of bytes that mblen will examine; typically, we’ll pass MB_CUR_MAX.

The following function, which comes from P. J. Plauger’s The Standard C
Library, uses mblen to determine whether a string consists of valid multibyte
characters. The function returns zero if s points to a valid string.

int mbcheck(const char *s)
{
 int n;

 for (mblen(NULL, 0); ; s += n)
 if ((n = mblen(s, MB_CUR_MAX)) <= 0)
 return n;
}

Two aspects of the mbcheck function deserve special mention. First, there’s the
mysterious call mblen(NULL, 0), which sets mblen’s internal conversion state
to the initial conversion state (in case the multibyte encoding is state-dependent).
Second, there’s the matter of termination. Keep in mind that s points to an ordi-
nary character string, which is assumed to end with a null character. mblen will
return zero when it reaches this null character, causing mbcheck to return.
mbcheck will return sooner if mblen returns –1 because of an invalid multibyte
character.

mbtowc The mbtowc function converts a multibyte character (pointed to by the sec-
ond argument) into a wide character. The first argument points to a wchar_t vari-
able into which the function will store the result. The third argument limits the
number of bytes that mbtowc will examine. mbtowc returns the same value as
mblen: the number of bytes in the multibyte character if it’s valid, –1 if it’s not,
and zero if the second argument points to a null character.

c25.fm Page 652 Saturday, February 16, 2008 2:32 PM

25.2 Multibyte Characters and Wide Characters 653

wctomb The wctomb function converts a wide character (the second argument) into a
multibyte character, which it stores into the array pointed to by the first argument.
wctomb may store as many as MB_LEN_MAX characters in the array, but doesn’t
append a null character. wctomb returns the number of bytes in the multibyte
character or –1 if the wide character doesn’t correspond to any valid multibyte
character. (Note that wctomb returns 1 if asked to convert a null wide character.)

The following function (also from Plauger’s The Standard C Library) uses
wctomb to determine whether a string of wide characters can be converted to
valid multibyte characters:

int wccheck(wchar_t *wcs)
{
 char buf[MB_LEN_MAX];
 int n;

 for (wctomb(NULL, 0); ; ++wcs)
 if ((n = wctomb(buf, *wcs)) <= 0)
 return -1; /* invalid character */
 else if (buf[n-1] == '\0')
 return 0; /* all characters are valid */
}

Incidentally, all three functions—mblen, mbtowc, and wctomb—can be
used to test whether a multibyte encoding is state-dependent. When passed a null
pointer as its char * argument, each function returns a nonzero value if multibyte
characters have state-dependent encodings or zero if they don’t.

Multibyte/Wide-String Conversion Functions

The remaining C89 multibyte/wide-character functions convert a string containing
multibyte characters to a wide-character string and vice versa. How the conversion
is performed depends on the LC_CTYPE category of the current locale.

mbstowcs The mbstowcs function converts a sequence of multibyte characters into
wide characters. The second argument points to an array containing the multibyte
characters to be converted. The first argument points to a wide-character array; the
third argument limits the number of wide characters that can be stored in the array.
mbstowcs stops when it reaches the limit or encounters a null character (which it
stores in the wide-character array). It returns the number of array elements modi-
fied, not including the terminating null wide character, if any. mbstowcs returns
–1 (cast to type size_t) if it encounters an invalid multibyte character.

size_t mbstowcs(wchar_t * restrict pwcs,
 const char * restrict s,
 size_t n); from <stdlib.h>
size_t wcstombs(char * restrict s,
 const wchar_t * restrict pwcs,
 size_t n); from <stdlib.h>

c25.fm Page 653 Saturday, February 16, 2008 2:32 PM

654 Chapter 25 International Features

wcstombs The wcstombs function is the opposite of mbstowcs: it converts a
sequence of wide characters into multibyte characters. The second argument points
to the wide-character string. The first argument points to the array in which the
multibyte characters are to be stored. The third argument limits the number of
bytes that can be stored in the array. wcstombs stops when it reaches the limit or
encounters a null character (which it stores). It returns the number of bytes stored,
not including the terminating null character, if any. wcstombs returns –1 (cast to
type size_t) if it encounters a wide character that doesn’t correspond to any
multibyte character.

The mbstowcs function assumes that the string to be converted begins in the
initial shift state. The string created by wcstombs always begins in the initial
shift state.

25.3 Digraphs and Trigraphs

Programmers in certain countries have traditionally had trouble entering C pro-
grams because their keyboards lacked some of the characters that are required by C.
This has been especially true in Europe, where older keyboards provided the accent-
ed characters used in European languages in place of the characters that C needs,
such as #, [, \,], ^, {, |, }, and ~. C89 introduced trigraphs—three-character
codes that represent problematic characters—as a solution to this problem. Tri-
graphs proved to be unpopular, however, so Amendment 1 to the standard added
two improvements: digraphs, which are more readable than trigraphs, and the
<iso646.h> header, which defines macros that represent certain C operators.

Trigraphs

A trigraph sequence (or simply, a trigraph) is a three-character code that can be
used as an alternative to an ASCII character. Table 25.8 gives a complete list of tri-
graphs. All trigraphs begin with ??, which makes them, if not exactly attractive, at
least easy to spot.

Trigraph
Sequence

ASCII
Equivalent

??=
??(
??/
??)
??'
??<
??!
??>
??-

#
[
\
]
^
{
|
}
~

Table 25.8
Trigraph Sequences

c25.fm Page 654 Saturday, February 16, 2008 2:32 PM

25.3 Digraphs and Trigraphs 655

Trigraphs can be freely substituted for their ASCII equivalents. For example,
the program

#include <stdio.h>

int main(void)
{
 printf("hello, world\n");
 return 0;
}

could be written

??=include <stdio.h>

int main(void)
??<
 printf("hello, world??/n");
 return 0;
??>

Compilers that conform to the C89 or C99 standards are required to accept tri-
graphs, even though they’re rarely used. Occasionally, this feature can cause prob-
lems.

Be careful about putting ?? in a string literal—it’s possible that the compiler will
treat it as the beginning of a trigraph. If this should happen, turn the second ? char-
acter into an escape sequence by preceding it with a \ character. The resulting ?\?
combination can’t be mistaken for the beginning of a trigraph.

Digraphs

Acknowledging that trigraphs are difficult to read, Amendment 1 to the C89 stan-
dard added an alternative notation known as digraphs. As the name implies, a
digraph requires just two characters instead of three. Digraphs are available as sub-
stitutes for the six tokens shown in Table 25.9.

Digraphs—unlike trigraphs—are token substitutes, not character substitutes.
Thus, digraphs won’t be recognized inside a string literal or character constant. For
example, the string "<::>" has length four; it contains the characters: <, :, :,

C99

tokens ➤2.8

Digraph Token

<:
:>
<%
%>
%:
%:%:

[
]
{
}
#
##

Table 25.9
Digraphs

c25.fm Page 655 Saturday, February 16, 2008 2:32 PM

656 Chapter 25 International Features

and >, not the characters [and]. In contrast, the string "??(??)" has length
two, because the compiler replaces the trigraph ??(by the character [and the tri-
graph ??) by the character].

Digraphs are more limited than trigraphs. First, as we’ve seen, digraphs are of
no use inside a string literal or character constant; trigraphs are still needed in these
situations. Second, digraphs don’t solve the problem of providing alternate repre-
sentations for the characters \, ^, |, and ~. The <iso646.h> header, described
next, helps with this problem.

The <iso646.h> Header: Alternative Spellings

The <iso646.h> header is quite simple. It contains nothing but the definitions
of the eleven macros shown in Table 25.10. Each macro represents a C operator
that contains one of the characters &, |, ~, !, or ^, making it possible to use the
operators listed in the table even when these characters are absent from the key-
board.

The name of the header comes from ISO/IEC 646, an older standard for an
ASCII-like character set. This standard allows for “national variants,” in which
countries substitute local characters for certain ASCII characters, thereby causing
the problem that digraphs and the <iso646.h> header are trying to solve.

25.4 Universal Character Names (C99)

Section 25.2 discussed the Universal Character Set (UCS), which is closely related
to Unicode. C99 provides a special feature, universal character names, that allows
us to use UCS characters in the source code of a program.

A universal character name resembles an escape sequence. However, unlike
ordinary escape sequences, which can appear only in character constants and string
literals, universal character names may also be used in identifiers. This feature
allows programmers to use their native languages when defining names for vari-
ables, functions, and the like.

C99

Macro Value

and
and_eq
bitand
bitor
compl
not

not_eq
or

or_eq
xor

xor_eq

&&
&=
&
|
~
!
!=
||
|=
^
^=

Table 25.10
Macros Defined in

<iso646.h>

c25.fm Page 656 Saturday, February 16, 2008 2:32 PM

25.5 The <wchar.h> Header (C99) 657

There are two ways to write a universal character name (\udddd and
\Udddddddd), where each d is a hexadecimal digit. In the form \Udddddddd, the
d’s form an eight-digit hexadecimal number that identifies the UCS code point of
the desired character. The form \udddd can be used for characters whose code
points have hexadecimal values of FFFF or less, which includes all characters in
the Basic Multilingual Plane.

For example, the UCS code point for the Greek letter β is 000003B2, so the
universal character name for this character is \U000003B2 (or \U000003b2,
since the case of hexadecimal digits doesn’t matter). Because the first four hexa-
decimal digits of the UCS code point are 0, we can also use the \u notation, writ-
ing the character as \u03B2 or \u03b2. The code point values for UCS (which
match those for Unicode) can be found at www.unicode.org/charts/.

Not all universal character names may be used in identifiers; the C99 standard
contains a list of which ones are allowed. Also, an identifier may not begin with a
universal character name that represents a digit.

25.5 The <wchar.h> Header (C99)
Extended Multibyte and Wide-Character Utilities

The <wchar.h> header provides functions for wide-character input/output and
wide-string manipulation. The vast majority of functions in <wchar.h> are
wide-character versions of functions from other headers (primarily <stdio.h>
and <string.h>).

The <wchar.h> header declares several types and macros, including the fol-
lowing:

� mbstate_t — A value of this type can be used to store the conversion state
when a sequence of multibyte characters is converted to a sequence of wide
characters or vice versa.

� wint_t — An integer type whose values represent extended characters.

� WEOF — A macro representing a wint_t value that’s different from any
extended character. WEOF is used in much the same way as EOF, typically to
indicate an error or end-of-file condition.

Note that <wchar.h> provides functions for wide characters but not multi-
byte characters. That’s because C’s ordinary library functions are capable of deal-
ing with multibyte characters, so no special functions are needed. For example, the
fprintf function allows its format string to contain multibyte characters.

Most wide-character functions behave the same as a function that belongs to
another part of the standard library. Usually, the only changes involve arguments
and return values of type wchar_t instead of char (or wchar_t * instead of
char *). In addition, arguments and return values that represent character
counts are measured in wide characters rather than bytes. In the remainder of this
section, I’ll indicate which other library function (if any) corresponds to each

EOF macro ➤22.2

c25.fm Page 657 Saturday, February 16, 2008 2:32 PM

http://www.unicode.org/charts/

658 Chapter 25 International Features

wide-character function. I won’t discuss the wide-character function further un-
less there’s a significant difference between it and its “non-wide” counterpart.

Stream Orientation

Before we look at the input/output functions provided by <wchar.h>, it’s impor-
tant to understand stream orientation, a concept that doesn’t exist in C89.

Every stream is either byte-oriented (the traditional orientation) or wide-
oriented (data is written to the stream as wide characters). When a stream is first
opened, it has no orientation. (In particular, the standard streams stdin, stdout,
and stderr have no orientation at the beginning of program execution.) Perform-
ing an operation on the stream using a byte input/output function causes the stream
to become byte-oriented; performing an operation using a wide-character input/
output function causes the stream to become wide-oriented. The orientation of a
stream can also be selected by calling the fwide function (described later in this
section). A stream retains its orientation as long as it remains open. Calling the
freopen function to reopen the stream will remove its orientation.

When wide characters are written to a wide-oriented stream, they are con-
verted to multibyte characters before being stored in the file that is associated with
the stream. Conversely, when input is read from a wide-oriented stream, the multi-
byte characters found in the stream are converted to wide characters. The multibyte
encoding used in a file is similar to that used for characters and strings within a
program, except that encodings used in files may contain embedded null bytes.

Each wide-oriented stream has an associated mbstate_t object, which keeps
track of the stream’s conversion state. An encoding error occurs when a wide char-
acter written to a stream doesn’t correspond to any multibyte character, or when a
sequence of characters read from a stream doesn’t form a valid multibyte character.
In either case, the value of the EILSEQ macro (defined in the <errno.h> header)
is stored in the errno variable to indicate the nature of the error.

Once a stream is byte-oriented, it’s illegal to apply a wide-character input/out-
put function to that stream. Similarly, it’s illegal to apply a byte input/output func-
tion to a wide-oriented stream. Other stream functions may be applied to streams
of either orientation, although there are a few special considerations for wide-ori-
ented streams:

� Binary wide-oriented streams are subject to the file-positioning restrictions of
both text and binary streams.

� After a file-positioning operation on a wide-oriented stream, a wide-character
output function may end up overwriting part of a multibyte character. Doing
so leaves the rest of the file in an indeterminate state.

� Calling fgetpos for a wide-oriented stream retrieves the stream’s
mbstate_t object as part of the fpos_t object associated with the stream.
A later call of fsetpos using this fpos_t object will restore the
mbstate_t object to its previous value.

standard streams ➤22.1

freopen function ➤22.2

errno variable ➤24.2

fgetpos function ➤22.7

fsetpos function ➤22.7

c25.fm Page 658 Saturday, February 16, 2008 2:32 PM

25.5 The <wchar.h> Header (C99) 659

Formatted Wide-Character Input/Output Functions

The functions in this group are wide-character versions of the formatted input/out-
put functions found in <stdio.h> and described in Section 22.3. The
<wchar.h> functions have arguments of type wchar_t * instead of char *,
but their behavior is mostly the same as the <stdio.h> functions. Table 25.11
shows the correspondence between the <stdio.h> functions and their wide-
character counterparts. Unless mentioned otherwise, each function in the left col-
umn behaves the same as the function(s) to its right.

All functions in this group share several characteristics:

� All have a format string, which consists of wide characters.

� …printf functions, which return the number of characters written, now
return the count in wide characters.

� The %n conversion specifier refers to the number of wide characters written so
far (in the case of a …printf function) or read so far (in the case of a
…scanf function).

int fwprintf(FILE * restrict stream,
 const wchar_t * restrict format, ...);
int fwscanf(FILE * restrict stream,
 const wchar_t * restrict format, ...);
int swprintf(wchar_t * restrict s, size_t n,
 const wchar_t * restrict format, ...);
int swscanf(const wchar_t * restrict s,
 const wchar_t * restrict format, ...);
int vfwprintf(FILE * restrict stream,
 const wchar_t * restrict format,
 va_list arg);
int vfwscanf(FILE * restrict stream,
 const wchar_t * restrict format,
 va_list arg);
int vswprintf(wchar_t * restrict s, size_t n,
 const wchar_t * restrict format,
 va_list arg);
int vswscanf(const wchar_t * restrict s,
 const wchar_t * restrict format,
 va_list arg);
int vwprintf(const wchar_t * restrict format,
 va_list arg);
int vwscanf(const wchar_t * restrict format,
 va_list arg);
int wprintf(const wchar_t * restrict format, ...);
int wscanf(const wchar_t * restrict format, ...);

c25.fm Page 659 Saturday, February 16, 2008 2:32 PM

660 Chapter 25 International Features

fwprintf Additional differences between fwprintf and fprintf include the fol-
lowing:

� The %c conversion specifier is used when the corresponding argument has
type int. If the l length modifier is present (making the conversion %lc), the
argument is assumed to have type wint_t. In either case, the corresponding
argument is written as a wide character.

� The %s conversion specifier is used with a pointer to a character array, which
may contain multibyte characters. (fprintf has no special provision for
multibyte characters.) If the l length modifier is present, as in %ls, the corre-
sponding argument should be an array containing wide characters. In either
case, the characters in the array are written as wide characters. (With
fprintf, the %ls specification also indicates an array of wide characters,
but they’re converted to multibyte characters before being written.)

fwscanf Unlike fscanf, the fwscanf function reads wide characters. The %c, %s,
and %[conversions require special mention. Each of these causes wide characters
to be read and then converted to multibyte characters before being stored in a char-
acter array. fwscanf uses an mbstate_t object to keep track of the state of the
conversion during this process; the object is set to zero at the beginning of each
conversion. If the l length modifier is present (making the conversion %lc, %ls,
or %l[), then the input characters are not converted but instead are stored directly
in an array of wchar_t elements. Thus, it’s necessary to use %ls when reading a
string of wide characters if the intent is to store them as wide characters. If %s is
used instead, wide characters will be read from the input stream but converted to
multibyte characters before being stored.

swprintf swprintf writes wide characters into an array of wchar_t elements. It’s
similar to sprintf and snprintf but not identical to either one. Like
snprintf, it uses the parameter n to limit the number of (wide) characters that it
will write. However, swprintf returns the number of wide characters actually
written, not including the null character. In this respect, it resembles sprintf
rather than snprintf, which returns the number of characters that would have
been written (not including the null character) had there been no length restriction.

<wchar.h> Function <stdio.h> Equivalent

fwprintf
fwscanf
swprintf
swscanf
vfwprintf
vfwscanf
vswprintf
vswscanf
vwprintf
vwscanf
wprintf
wscanf

fprintf
fscanf

snprintf, sprintf
sscanf
vfprintf
vfscanf

vsnprintf, vsprintf
vsscanf
vprintf
vscanf
printf
scanf

Table 25.11
Formatted Wide-Character

Input/Output Functions
and Their <stdio.h>

Equivalents

c25.fm Page 660 Saturday, February 16, 2008 2:32 PM

25.5 The <wchar.h> Header (C99) 661

swprintf returns a negative value if the number of wide characters to be written
is n or more, which differs from the behavior of both sprintf and snprintf.

vswprintf vswprintf is equivalent to swprintf, with arg replacing the variable
argument list of swprintf. Like swprintf, which is similar—but not identi-
cal—to sprintf and snprintf, the vswprintf function is a combination of
vsprintf and vsnprintf. If an attempt is made to write n or more wide char-
acters, vswprintf returns a negative integer, in a manner similar to swprintf.

Wide-Character Input/Output Functions

The functions in this group are wide-character versions of the character input/out-
put functions found in <stdio.h> and described in Section 22.4. Table 25.12
shows the correspondence between the <stdio.h> functions and their wide-
character counterparts. As the table shows, fwide is the only truly new function.

Unless otherwise indicated, you can assume that each <wchar.h> function
listed in Table 25.12 behaves like the corresponding <stdio.h> function. How-
ever, one minor difference is common to most of these functions. To indicate an
error or end-of-file condition, some <stdio.h> character I/O functions return
EOF. The equivalent <wchar.h> functions return WEOF instead.

wint_t fgetwc(FILE *stream);
wchar_t *fgetws(wchar_t * restrict s, int n,
 FILE * restrict stream);
wint_t fputwc(wchar_t c, FILE *stream);
int fputws(const wchar_t * restrict s,
 FILE * restrict stream);
int fwide(FILE *stream, int mode);
wint_t getwc(FILE *stream);
wint_t getwchar(void);
wint_t putwc(wchar_t c, FILE *stream);
wint_t putwchar(wchar_t c);
wint_t ungetwc(wint_t c, FILE *stream);

<wchar.h> Function <stdio.h> Equivalent

fgetwc
fgetws
fputwc
fputws
fwide
getwc

getwchar
putwc

putwchar
ungetwc

fgetc
fgets
fputc
fputs

–
getc

getchar
putc

putchar
ungetc

Table 25.12
Wide-Character Input/
Output Functions and

Their <stdio.h>
Equivalents

c25.fm Page 661 Saturday, February 16, 2008 2:32 PM

662 Chapter 25 International Features

fgetwc
getwc

getwchar
fgetws

There’s another twist that affects the wide-character input functions. A call of
a function that reads a single character (fgetwc, getwc, and getwchar) may
fail because the bytes found in the input stream don’t form a valid wide character
or there aren’t enough bytes available. The result is an encoding error, which
causes the function to store EILSEQ in errno and return WEOF. The fgetws
function, which reads a string of wide characters, may also fail because of an
encoding error, in which case it returns a null pointer.

fputwc
putwc

putwchar
fputws

Wide-character output functions may also encounter encoding errors. Functions
that write a single character (fputwc, putwc, and putwchar) store EILSEQ in
errno and return WEOF if an encoding error occurs. However, the fputws func-
tion, which writes a wide-character string, is different: it returns EOF (not WEOF) if
an encoding error occurs.

fwide The fwide function doesn’t correspond to any C89 function. fwide is used
to determine the current orientation of a stream and, if desired, attempt to set its
orientation. The mode parameter determines the behavior of the function:

� mode > 0. Attempts to make the stream wide-oriented if it has no orientation.
� mode < 0. Attempts to make the stream byte-oriented if it has no orientation.
� mode = 0. The orientation is not changed.

fwide doesn’t change the orientation if the stream already has one.
The value returned by fwide depends on the orientation of the stream after

the call. The return value is positive if the stream has wide orientation, negative if
it has byte orientation, and zero if it has no orientation.

General Wide-String Utilities

The <wchar.h> header provides a number of functions that perform operations
on wide strings. These are wide-character versions of functions that belong to the
<stdlib.h> and <string.h> headers.

Wide-String Numeric Conversion Functions

double wcstod(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr);
float wcstof(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr);
long double wcstold(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr);
long int wcstol(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr,
 int base);
long long int wcstoll(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr,
 int base);

c25.fm Page 662 Saturday, February 16, 2008 2:32 PM

25.5 The <wchar.h> Header (C99) 663

The functions in this group are wide-character versions of the numeric conversion
functions found in <stdlib.h> and described in Section 26.2. The <wchar.h>
functions have arguments of type wchar_t * and wchar_t ** instead of char
* and char **, but their behavior is mostly the same as the <stdlib.h> func-
tions. Table 25.13 shows the correspondence between the <stdlib.h> functions
and their wide-character counterparts.

Wide-String Copying Functions

The functions in this group are wide-character versions of the string copying func-
tions found in <string.h> and described in Section 23.6. The <wchar.h>
functions have arguments of type wchar_t * instead of char *, but their behavior
is mostly the same as the <string.h> functions. Table 25.14 shows the corre-
spondence between the <string.h> functions and their wide-character counter-
parts.

unsigned long int wcstoul(
 const wchar_t * restrict nptr,
 wchar_t ** restrict endptr,
 int base);
unsigned long long int wcstoull(
 const wchar_t * restrict nptr,
 wchar_t ** restrict endptr,
 int base);

<wchar.h> Function <stdlib.h> Equivalent

wcstod
wcstof
wcstold
wcstol
wcstoll
wcstoul
wcstoull

strtod
strtof
strtold
strtol
strtoll
strtoul
strtoull

Table 25.13
Wide-String Numeric

Conversion Functions and
Their <stdlib.h>

Equivalents

wchar_t *wcscpy(wchar_t * restrict s1,
 const wchar_t * restrict s2);
wchar_t *wcsncpy(wchar_t * restrict s1,
 const wchar_t * restrict s2,
 size_t n);
wchar_t *wmemcpy(wchar_t * restrict s1,
 const wchar_t * restrict s2,
 size_t n);
wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2,
 size_t n);

c25.fm Page 663 Saturday, February 16, 2008 2:32 PM

664 Chapter 25 International Features

Wide-String Concatenation Functions

The functions in this group are wide-character versions of the string concatenation
functions found in <string.h> and described in Section 23.6. The <wchar.h>
functions have arguments of type wchar_t * instead of char *, but their behavior
is mostly the same as the <string.h> functions. Table 25.15 shows the corre-
spondence between the <string.h> functions and their wide-character counter-
parts.

Wide-String Comparison Functions

The functions in this group are wide-character versions of the string comparison
functions found in <string.h> and described in Section 23.6. The
<wchar.h> functions have arguments of type wchar_t * instead of char *,
but their behavior is mostly the same as the <string.h> functions. Table 25.16
shows the correspondence between the <string.h> functions and their wide-
character counterparts.

<wchar.h> Function <string.h> Equivalent

wcscpy
wcsncpy
wmemcpy
wmemmove

strcpy
strncpy
memcpy
memmove

Table 25.14
Wide-String Copying

Functions and Their
<string.h>

Equivalents

wchar_t *wcscat(wchar_t * restrict s1,
 const wchar_t * restrict s2);
wchar_t *wcsncat(wchar_t * restrict s1,
 const wchar_t * restrict s2,
 size_t n);

<wchar.h> Function <string.h> Equivalent

wcscat
wcsncat

strcat
strncat

Table 25.15
Wide-String Concatenation

Functions and Their
<string.h> Equivalents

int wcscmp(const wchar_t *s1, const wchar_t *s2);
int wcscoll(const wchar_t *s1, const wchar_t *s2);
int wcsncmp(const wchar_t *s1, const wchar_t *s2,
 size_t n);
size_t wcsxfrm(wchar_t * restrict s1,
 const wchar_t * restrict s2,
 size_t n);
int wmemcmp(const wchar_t * s1, const wchar_t * s2,
 size_t n);

c25.fm Page 664 Saturday, February 16, 2008 2:32 PM

25.5 The <wchar.h> Header (C99) 665

Wide-String Search Functions

The functions in this group are wide-character versions of the string search func-
tions found in <string.h> and described in Section 23.6. The <wchar.h>
functions have arguments of type wchar_t * and wchar_t ** instead of char
* and char **, but their behavior is mostly the same as the <string.h> func-
tions. Table 25.17 shows the correspondence between the <string.h> functions
and their wide-character counterparts.

wcstok The wcstok function serves the same purpose as strtok, but is used some-
what differently, thanks to its third parameter. (strtok has only two parameters.)
To understand how wcstok works, we’ll first need to review the behavior of
strtok.

<wchar.h> Function <string.h> Equivalent

wcscmp
wcscoll
wcsncmp
wcsxfrm
wmemcmp

strcmp
strcoll
strncmp
strxfrm
memcmp

Table 25.16
Wide-String Comparison

Functions and Their
<string.h>

Equivalents

wchar_t *wcschr(const wchar_t *s, wchar_t c);
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcspbrk(const wchar_t *s1,
 const wchar_t *s2);
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcsstr(const wchar_t *s1,
 const wchar_t *s2);
wchar_t *wcstok(wchar_t * restrict s1,
 const wchar_t * restrict s2,
 wchar_t ** restrict ptr);
wchar_t *wmemchr(const wchar_t *s, wchar_t c,
 size_t n);

<wchar.h> Function <string.h> Equivalent

wcschr
wcscspn
wcspbrk
wcsrchr
wcsspn
wcsstr
wcstok
wmemchr

strchr
strcspn
strpbrk
strrchr
strspn
strstr
strtok
memchr

Table 25.17
Wide-String Search
Functions and Their

<string.h>
Equivalents

c25.fm Page 665 Saturday, February 16, 2008 2:32 PM

666 Chapter 25 International Features

We saw in Section 23.6 that strtok searches a string for a “token”—a
sequence of characters that doesn’t include certain delimiting characters. The call
strtok(s1, s2) scans the s1 string for a nonempty sequence of characters
that are not in the s2 string. strtok marks the end of the token by storing a null
character in s1 just after the last character in the token; it then returns a pointer to
the first character in the token.

Later calls of strtok can find additional tokens in the same string. The call
strtok(NULL, s2) continues the search begun by the previous strtok call.
As before, strtok marks the end of the token with a null character, and then
returns a pointer to the beginning of the token. The process can be repeated until
strtok returns a null pointer, indicating that no token was found.

One problem with strtok is that it uses a static variable to keep track of a
search, which makes it impossible to use strtok to conduct simultaneous
searches on two or more strings. Thanks to its extra parameter, wcstok doesn’t
have this problem.

The first two parameters to wcstok are the same as for strtok (except that
they point to wide strings, of course). The third parameter, ptr, will point to a
variable of type wchar_t *. The function will save information in this variable
that enables later calls of wcstok to continue scanning the same string (when the
first argument is a null pointer). When the search is resumed by a subsequent call
of wcstok, a pointer to the same variable should be supplied as the third argu-
ment; the value of this variable must not be changed between calls of wcstok.

To see how wcstok works, let’s redo the example of Section 23.6. Assume
that str, p, and q are declared as follows:

wchar_t str[] = L" April 28,1998";
wchar_t *p, *q;

Our initial call of wcstok will pass str as the first argument:

p = wcstok(str, L" \t", &q);

p now points to the first character in April, which is followed by a null wide
character. Calling wcstok with a null pointer as its first argument and &q as the
third argument causes it to resume the search from where it left off:

p = wcstok(NULL, L" \t,", &q);

After this call, p points to the first character in 28, which is now terminated by a
null wide character. A final call of wcstok locates the year:

p = wcstok(NULL, L" \t", &q);

p now points to the first character in 1998.

Miscellaneous Functions

size_t wcslen(const wchar_t *s);
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

c25.fm Page 666 Saturday, February 16, 2008 2:32 PM

25.5 The <wchar.h> Header (C99) 667

The functions in this group are wide-character versions of the miscellaneous
string functions found in <string.h> and described in Section 23.6. The
<wchar.h> functions have arguments of type wchar_t * instead of char *,
but their behavior is mostly the same as the <string.h> functions. Table 25.18
shows the correspondence between the <string.h> functions and their wide-
character counterparts.

Wide-Character Time-Conversion Functions

wcsftime The wcsftime function is the wide-character version of strftime, which
belongs to the <time.h> header and is described in Section 26.3.

Extended Multibyte/Wide-Character Conversion Utilities

We’ll now examine <wchar.h> functions that perform conversions between
multibyte characters and wide characters. Five of these functions (mbrlen,
mbrtowc, wcrtomb, mbsrtowcs, and wcsrtombs) correspond to the multi-
byte/wide-character and multibyte/wide-string conversion functions declared in
<stdlib.h>. The <wchar.h> functions have an additional parameter, a
pointer to a variable of type mbstate_t. This variable keeps track of the state of
the conversion of a multibyte character sequence to a wide-character sequence (or
vice versa), based on the current locale. As a result, the <wchar.h> functions are
“restartable”; by passing a pointer to an mbstate_t variable modified by a previ-
ous function call, we can “restart” the function using the conversion state from that
call. One advantage of this arrangement is that it allows two functions to share the
same conversion state. For example, calls of mbrtowc and mbsrtowcs that are
used to process a single multibyte character string could share an mbstate_t
variable.

The conversion state stored in an mbstate_t variable consists of the current
shift state plus the current position within a multibyte character. Setting the bytes
of an mbstate_t variable to zero puts it in the initial conversion state, signifying
that no multibyte character is yet in progress and that the initial shift state is in
effect:

mbstate_t state;
…
memset(&state, '\0', sizeof(state));

<wchar.h> Function <string.h> Equivalent

wcslen
wmemset

strlen
memset

Table 25.18
Miscellaneous Wide-String

Functions and Their
<string.h> Equivalents

size_t wcsftime(wchar_t * restrict s, size_t maxsize,
 const wchar_t * restrict format,
 const struct tm * restrict timeptr);

c25.fm Page 667 Saturday, February 16, 2008 2:32 PM

668 Chapter 25 International Features

Passing &state to one of the restartable functions causes the conversion to begin
in the initial conversion state. Once an mbstate_t variable has been altered by
one of these functions, it should not be used to convert a different multibyte char-
acter sequence, nor should it be used to perform a conversion in the opposite direc-
tion. Attempting to perform either action causes undefined behavior. Using the
variable after a change in the LC_CTYPE category of a locale also causes unde-
fined behavior.

Single-Byte/Wide-Character Conversion Functions

The functions in this group convert single-byte characters to wide characters and
vice versa.

btowc The btowc function returns WEOF if c is equal to EOF or if c (when cast to
unsigned char) isn’t a valid single-byte character in the initial shift state. Oth-
erwise, btowc returns the wide-character representation of c.

wctob The wctob function is the opposite of btowc. It returns EOF if c doesn’t
correspond to one multibyte character in the initial shift state. Otherwise, it returns
the single-byte representation of c.

Conversion-State Functions

mbsinit This group consists of a single function, mbsinit, which returns a nonzero value
if ps is a null pointer or it points to an mbstate_t variable that describes an ini-
tial conversion state.

Restartable Multibyte/Wide-Character Conversion Functions

The functions in this group are restartable versions of the mblen, mbtowc, and
wctomb functions, which belong to <stdlib.h> and are discussed in Section
25.2. The newer mbrlen, mbrtowc, and wcrtomb functions differ from their
<stdlib.h> counterparts in several ways:

wint_t btowc(int c);
int wctob(wint_t c);

int mbsinit(const mbstate_t *ps);

size_t mbrlen(const char * restrict s, size_t n,
 mbstate_t * restrict ps);
size_t mbrtowc(wchar_t * restrict pwc,
 const char * restrict s, size_t n,
 mbstate_t * restrict ps);
size_t wcrtomb(char * restrict s, wchar_t wc,
 mbstate_t * restrict ps);

c25.fm Page 668 Saturday, February 16, 2008 2:32 PM

25.5 The <wchar.h> Header (C99) 669

� mbrlen, mbrtowc, and wcrtomb have an additional parameter named ps.
When one of these functions is called, the corresponding argument should
point to a variable of type mbstate_t; the function will store the state of the
conversion in this variable. If the argument corresponding to ps is a null
pointer, the function will use an internal variable to store the conversion state.
(At the beginning of program execution, this variable is set to the initial con-
version state.)

� When the s parameter is a null pointer, the older mblen, mbtowc, and
wctomb functions return a nonzero value if multibyte character encodings
have state-dependent encodings (and zero otherwise). The newer functions
don’t have this behavior.

� mbrlen, mbrtowc, and wcrtomb return a value of type size_t instead of
int, the return type of the older functions.

mbrlen A call of mbrlen is equivalent to the call

mbrtowc(NULL, s, n, ps)

except that if ps is a null pointer, then the address of an internal variable is used
instead.

mbrtowc If s is a null pointer, a call of mbrtowc is equivalent to the call

mbrtowc(NULL, "", 1, ps)

Otherwise, a call of mbrtowc examines up to n bytes pointed to by s to see if they
complete a valid multibyte character. (Note that a multibyte character may already
be in progress prior to the call, as tracked by the mbstate_t variable to which
ps points.) If so, these bytes are converted into a wide character. The wide charac-
ter is stored in the location pointed to by pwc as long as pwc isn’t null. If this char-
acter is the null wide character, the mbstate_t variable used during the call is
left in the initial conversion state.

mbrtowc has a variety of possible return values. It returns 0 if the conversion
produces a null wide character. It returns a number between 1 and n if the conver-
sion produces a wide character other than null, where the value returned is the
number of bytes used to complete the multibyte character. It returns –2 if the n
bytes pointed to by s aren’t enough to complete a multibyte character (although
the bytes themselves were valid). Finally, it returns –1 if an encoding error occurs
(the function encounters bytes that don’t form a valid multibyte character). In the
last case, mbrtowc also stores EILSEQ in errno.

wcrtomb If s is a null pointer, a call of wcrtomb is equivalent to

wcrtomb(buf, L'\0', ps)

where buf is an internal buffer. Otherwise, wcrtomb converts wc from a wide
character into a multibyte character, which it stores in the array pointed to by s.
If wc is a null wide character, wcrtomb stores a null byte, preceded by a shift
sequence if one is necessary to restore the initial shift state. In this case, the

c25.fm Page 669 Saturday, February 16, 2008 2:32 PM

670 Chapter 25 International Features

mbstate_t variable used during the call is left in the initial conversion state.
wcrtomb returns the number of bytes that it stores, including shift sequences. If
wc isn’t a valid wide character, the function returns –1 and stores EILSEQ in
errno.

Restartable Multibyte/Wide-String Conversion Functions

mbsrtowcs
wcsrtombs

The mbsrtowcs and wcsrtombs functions are restartable versions of
mbstowcs and wcstombs, which belong to <stdlib.h> and are discussed in
Section 25.2. mbsrtowcs and wcsrtombs are the same as their <stdlib.h>
counterparts, except for the following differences:

� mbsrtowcs and wcsrtombs have an additional parameter named ps.
When one of these functions is called, the corresponding argument should
point to a variable of type mbstate_t; the function will store the state of the
conversion in this variable. If the argument corresponding to ps is a null
pointer, the function will use an internal variable to store the conversion state.
(At the beginning of program execution, this variable is set to the initial con-
version state.) Both functions update the state as the conversion proceeds. If
the conversion stops because a null character is reached, the mbstate_t
variable will be left in the initial conversion state.

� The src parameter, which represents the array containing characters to be
converted (the source array), is a pointer to a pointer for mbsrtowcs and
wcsrtombs. (In the older mbstowcs and wcstombs functions, the corre-
sponding parameter was simply a pointer.) This change allows mbsrtowcs
and wcsrtombs to keep track of where the conversion stopped. The pointer
to which src points is set to null if the conversion stopped because a null
character was reached. Otherwise, this pointer is set to point just past the last
source character converted.

� The dst parameter may be a null pointer, in which case the converted charac-
ters aren’t stored and the pointer to which src points isn’t modified.

� When either function encounters an invalid character in the source array, it
stores EILSEQ in errno (in addition to returning –1, as the older functions
do).

size_t mbsrtowcs(wchar_t * restrict dst,
 const char ** restrict src,
 size_t len,
 mbstate_t * restrict ps);
size_t wcsrtombs(char * restrict dst,
 const wchar_t ** restrict src,
 size_t len,
 mbstate_t * restrict ps);

c25.fm Page 670 Saturday, February 16, 2008 2:32 PM

25.6 The <wctype.h> Header (C99) 671

25.6 The <wctype.h> Header (C99)
Wide-Character Classification and Mapping Utilities

The <wctype.h> header is the wide-character version of the <ctype.h>
header. <ctype.h> provides two kinds of functions: character-classification
functions (like isdigit, which tests whether a character is a digit) and character
case-mapping functions (like toupper, which converts a lower-case letter to
upper case). <wctype.h> provides similar functions for wide characters,
although it differs from <ctype.h> in one important way: some of the functions
in <wctype.h> are “extensible,” meaning that they can perform custom charac-
ter classification or case mapping.

<wctype.h> declares three types and a macro. The wint_t type and the
WEOF macro were discussed in Section 25.5. The remaining types are wctype_t,
whose values represent locale-specific character classifications, and wctrans_t,
whose values represent locale-specific character mappings.

Most of the functions in <wctype.h> require a wint_t argument. The
value of this argument must be a wide character (a wchar_t value) or WEOF.
Passing any other argument causes undefined behavior.

The behavior of the functions in <wctype.h> is affected by the LC_CTYPE
category of the current locale.

Wide-Character Classification Functions

Each wide-character classification function returns a nonzero value if its argument
has a particular property. Table 25.19 lists the property that each function tests.

The descriptions in Table 25.19 ignore some of the subtleties of wide charac-
ters. For example, the definition of iswgraph in the C99 standard states that it
“tests for any wide character for which iswprint is true and iswspace is false,”

int iswalnum(wint_t wc);
int iswalpha(wint_t wc);
int iswblank(wint_t wc);
int iswcntrl(wint_t wc);
int iswdigit(wint_t wc);
int iswgraph(wint_t wc);
int iswlower(wint_t wc);
int iswprint(wint_t wc);
int iswpunct(wint_t wc);
int iswspace(wint_t wc);
int iswupper(wint_t wc);
int iswxdigit(wint_t wc);

<ctype.h> header ➤23.5

c25.fm Page 671 Saturday, February 16, 2008 2:32 PM

672 Chapter 25 International Features

leaving open the possibility that more than one wide character is considered to be a
“space.” See Appendix D for more detailed descriptions of these functions.

In most cases, the wide-character classification functions are consistent with
the corresponding functions in <ctype.h>: if a <ctype.h> function returns a
nonzero value (indicating “true”) for a particular character, then the corresponding
<wctype.h> function will return true for the wide version of the same character.
The only exception involves white-space wide characters (other than space) that
are also printing characters, which may be classified differently by iswgraph
and iswpunct than by isgraph and ispunct. For example, a character for
which isgraph returns true may cause iswgraph to return false.

Extensible Wide-Character Classification Functions

Each of the wide-character classification functions just discussed is able to test a
single fixed condition. The wctype and iswctype functions—which are de-
signed to be used together—make it possible to test for other conditions as well.

wctype The wctype function is passed a string describing a class of wide characters;
it returns a wctype_t value that represents this class. For example, the call

wctype("upper")

returns a wctype_t value representing the class of upper-case letters. The C99
standard requires that the following strings be allowed as arguments to wctype:

"alnum" "alpha" "blank" "cntrl" "digit" "graph"
"lower" "print" "punct" "space" "upper" "xdigit"

Additional strings may be provided by an implementation. Which strings are legal
arguments to wctype at a given time depends on the LC_CTYPE category of the

Function Test

iswalnum(wc)
iswalpha(wc)
iswblank(wc)
iswcntrl(wc)
iswdigit(wc)
iswgraph(wc)
iswlower(wc)
iswprint(wc)
iswpunct(wc)
iswspace(wc)
iswupper(wc)
iswxdigit(wc)

Is wc alphanumeric?
Is wc alphabetic?
Is wc a blank?†

Is wc a control character?
Is wc a decimal digit?
Is wc a printing character (other than a space)?
Is wc a lower-case letter?
Is wc a printing character (including a space)?
Is wc punctuation?
Is wc a white-space character?
Is wc an upper-case letter?
Is wc a hexadecimal digit?

†The standard blank wide characters are space (L' ') and horizontal tab
(L'\t').

Table 25.19
Wide-Character

Classification Functions

int iswctype(wint_t wc, wctype_t desc);
wctype_t wctype(const char *property);

c25.fm Page 672 Saturday, February 16, 2008 2:32 PM

25.6 The <wctype.h> Header (C99) 673

current locale; the 12 strings listed above are legal in all locales. If wctype is
passed a string that’s not supported in the current locale, it returns zero.

iswctype A call of the iswctype function requires two parameters: wc (a wide char-
acter) and desc (a value returned by wctype). iswctype returns a nonzero
value if wc belongs to the class of characters corresponding to desc. For example,
the call

iswctype(wc, wctype("alnum"))

is equivalent to

iswalnum(wc)

wctype and iswctype are most useful when the argument to wctype is a
string other than the standard ones listed above.

Wide-Character Case-Mapping Functions

towlower
towupper

The towlower and towupper functions are the wide-character counterparts of
tolower and toupper. For example, towlower returns the lower-case ver-
sion of its argument, if the argument is an upper-case letter; otherwise, it returns
the argument unchanged. As usual, there may be quirks when dealing with wide
characters. For example, more than one lower-case version of a letter may exist in
the current locale, in which case towlower is allowed to return any one of them.

Extensible Wide-Character Case-Mapping Functions

The wctrans and towctrans functions are used together to support general-
ized wide-character mapping.

wctrans The wctrans function is passed a string describing a character mapping; it
returns a wctrans_t value that represents the mapping. For example, the call

wctrans("tolower")

returns a wctrans_t value representing the mapping of upper-case letters to low-
er case. The C99 standard requires that the strings "tolower" and "toupper"
be allowed as arguments to wctrans. Additional strings may be provided by an
implementation. Which strings are legal arguments to wctrans at a given time
depends on the LC_CTYPE category of the current locale; "tolower" and
"toupper" are legal in all locales. If wctrans is passed a string that’s not sup-
ported in the current locale, it returns zero.

wint_t towlower(wint_t wc);
wint_t towupper(wint_t wc);

wint_t towctrans(wint_t wc, wctrans_t desc);
wctrans_t wctrans(const char *property);

c25.fm Page 673 Saturday, February 16, 2008 2:32 PM

674 Chapter 25 International Features

towctrans A call of the towctrans function requires two parameters: wc (a wide char-
acter) and desc (a value returned by wctrans). towctrans maps wc to
another wide character based on the mapping specified by desc. For example, the
call

towctrans(wc, wctrans("tolower"))

is equivalent to

towlower(wc)

towctrans is most useful in conjunction with implementation-defined map-
pings.

Q & A

Q: How long is the locale information string returned by setlocale? [p. 644]
A: There’s no maximum length, which raises a question: how can we set aside space

for the string if we don’t know how long it will be? The answer, of course, is
dynamic storage allocation. The following program fragment (based on a similar
example in Harbison and Steele’s C: A Reference Manual) shows how to deter-
mine the amount of memory needed, allocate the memory dynamically, and then
copy the locale information into that memory:

char *temp, *old_locale;

temp = setlocale(LC_ALL, NULL);
if (temp == NULL) {
 /* locale information not available */
}
old_locale = malloc(strlen(temp) + 1);
if (old_locale == NULL) {
 /* memory allocation failed */
}
strcpy(old_locale, temp);

We can now switch to a different locale and then later restore the old locale:

setlocale(LC_ALL, ""); /* switches to native locale */
…
setlocale(LC_ALL, old_locale); /* restores old locale */

Q: Why does C provide both multibyte characters and wide characters?
Wouldn’t either one be enough by itself? [p. 648]

A: The two encodings serve different purposes. Multibyte characters are handy for
input/output purposes, since I/O devices are often byte-oriented. Wide characters,
on the other hand, are more convenient to work with inside a program, since
every wide character occupies the same amount of space. Thus, a program might

c25.fm Page 674 Saturday, February 16, 2008 2:32 PM

Exercises 675

read multibyte characters, convert them to wide characters for manipulation
within the program, and then convert the wide characters back to multibyte form
for output.

Q: Unicode and UCS seem to be pretty much the same. What’s the difference
between the two? [p. 650]

A: Both contain the same characters, and characters are represented by the same code
points in both. Unicode is more than just a character set, though. For example, Uni-
code supports “bidirectional display order.” Some languages, including Arabic and
Hebrew, allow text to be written from right to left instead of left to right. Unicode
is capable of specifying the display order of characters, allowing text to contain
some characters that are to be displayed from left to right along with others that go
from right to left.

Exercises

Section 25.1 1. Determine which locales are supported by your compiler.

Section 25.2 2. The Shift-JIS encoding for kanji requires either one or two bytes per character. If the first
byte of a character is between 0x81 and 0x9f or between 0xe0 and 0xef, a second byte
is required. (Any other byte is treated as a whole character.) The second byte must be
between 0x40 and 0x7e or between 0x80 and 0xfc. (All ranges are inclusive.) For each
of the following strings, give the value that the mbcheck function of Section 25.2 will
return when passed that string as its argument, assuming that multibyte characters are
encoded using Shift-JIS in the current locale.

3. One of the useful properties of UTF-8 is that no sequence of bytes within a multibyte char-
acter can possibly represent another valid multibyte character. Does the Shift-JIS encoding
for kanji (discussed in Exercise 2) have this property?

4. Give a C string literal that represents each of the following phrases. Assume that the charac-
ters à, è, é, ê, î, ô, û, and ü are represented by single-byte Latin-1 characters. (You’ll need to
look up the Latin-1 code points for these characters.) For example, the phrase déjà vu could
be represented by the string "d\xe9j\xe0 vu".

5. Repeat Exercise 4, this time using the UTF-8 multibyte encoding. For example, the phrase
déjà vu could be represented by the string "d\xc3\xa9j\xc3\xa0 vu".

(a) "\x05\x87\x80\x36\xed\xaa"
(b) "\x20\xe4\x50\x88\x3f"
(c) "\xde\xad\xbe\xef"
(d) "\x8a\x60\x92\x74\x41"

(a) Côte d'Azur
(b) crème brûlée
(c) crème fraîche
(d) Fahrvergnügen
(e) tête-à-tête

c25.fm Page 675 Saturday, February 16, 2008 2:32 PM

676 Chapter 25 International Features

Section 25.3 6. Modify the following program fragment by replacing as many characters as possible by tri-
graphs.

while ((orig_char = getchar()) != EOF) {
 new_char = orig_char ^ KEY;
 if (isprint(orig_char) && isprint(new_char))
 putchar(new_char);
 else
 putchar(orig_char);
}

7. (C99) Modify the program fragment in Exercise 6 by replacing as many tokens as possible
by digraphs and macros defined in <iso646.h>.

Programming Projects

1. Write a program that tests whether your compiler’s "" (native) locale is the same as its "C"
locale.

2. Write a program that obtains the name of a locale from the command line and then displays
the values stored in the corresponding lconv structure. For example, if the locale is
"fi_FI" (Finland), the output of the program might look like this:

decimal_point = ","
thousands_sep = " "
grouping = 3
mon_decimal_point = ","
mon_thousands_sep = " "
mon_grouping = 3
positive_sign = ""
negative_sign = "-"
currency_symbol = "EUR"
frac_digits = 2
p_cs_precedes = 0
n_cs_precedes = 0
p_sep_by_space = 2
n_sep_by_space = 2
p_sign_posn = 1
n_sign_posn = 1
int_curr_symbol = "EUR "
int_frac_digits = 2
int_p_cs_precedes = 0
int_n_cs_precedes = 0
int_p_sep_by_space = 2
int_n_sep_by_space = 2
int_p_sign_posn = 1
int_n_sign_posn = 1

For readability, the characters in grouping and mon_grouping should be displayed as
decimal numbers.

W

W

c25.fm Page 676 Saturday, February 16, 2008 2:32 PM

677

26 Miscellaneous Library
Functions

It is the user who should parametrize
procedures, not their creators.

<stdarg.h>, <stdlib.h>, and <time.h>—the only C89 headers that
weren’t covered in previous chapters—are unlike any others in the standard library.
The <stdarg.h> header (Section 26.1) makes it possible to write functions with
a variable number of arguments. <stdlib.h> (Section 26.2) is an assortment of
functions that don’t fit into one of the other headers. The <time.h> header (Sec-
tion 26.3) allows programs to work with dates and times.

26.1 The <stdarg.h> Header: Variable Arguments

Functions such as printf and scanf have an unusual property: they allow any
number of arguments. The ability to handle a variable number of arguments isn’t
limited to library functions, as it turns out. The <stdarg.h> header provides the
tools we’ll need to write our own functions with variable-length argument lists.
<stdarg.h> declares one type (va_list) and defines several macros. In C89,
there are three macros, named va_start, va_arg, and va_end, which can be
thought of as functions with the prototypes shown above. C99 adds a function-like
macro named va_copy.

type va_arg(va_list ap, type);
void va_copy(va_list dest, va_list src);
void va_end(va_list ap);
void va_start(va_list ap, parmN);

C99

c26.fm Page 677 Saturday, February 16, 2008 2:35 PM

678 Chapter 26 Miscellaneous Library Functions

To see how these macros work, we’ll use them to write a function named
max_int that finds the maximum of any number of integer arguments. Here’s
how we might call the function:

max_int(3, 10, 30, 20)

The first argument specifies how many additional arguments will follow. This call
of max_int will return 30 (the largest of the numbers 10, 30, and 20).

Here’s the definition of the max_int function:

int max_int(int n, ...) /* n must be at least 1 */
{
 va_list ap;
 int i, current, largest;

 va_start(ap, n);
 largest = va_arg(ap, int);

 for (i = 1; i < n; i++) {
 current = va_arg(ap, int);
 if (current > largest)
 largest = current;
 }

 va_end(ap);
 return largest;
}

The ... symbol in the parameter list (known as an ellipsis) indicates that the
parameter n is followed by a variable number of additional parameters.

The body of max_int begins with the declaration of a variable of type
va_list:

va_list ap;

Declaring such a variable is mandatory for max_int to be able to access the argu-
ments that follow n.

va_start The statement

va_start(ap, n);

indicates where the variable-length part of the argument list begins (in this case,
after n). A function with a variable number of arguments must have at least one
“normal” parameter; the ellipsis always goes at the end of the parameter list, after
the last normal parameter.

va_arg The statement

largest = va_arg(ap, int);

fetches max_int’s second argument (the one after n), assigns it to largest,
and automatically advances to the next argument. The word int indicates that we
expect max_int’s second argument to have int type. The statement

c26.fm Page 678 Saturday, February 16, 2008 2:35 PM

26.1 The <stdarg.h> Header: Variable Arguments 679

current = va_arg(ap, int);

fetches max_int’s remaining arguments, one by one, as it is executed inside a
loop.

Don’t forget that va_arg always advances to the next argument after fetching the
current one. Because of this property, we couldn’t have written max_int’s loop in
the following way:

for (i = 1; i < n; i++)
 if (va_arg(ap, int) > largest) /*** WRONG ***/
 largest = va_arg(ap, int);

va_end The statement

va_end(ap);

is required to “clean up” before the function returns. (Or, instead of returning, the
function might call va_start and traverse the argument list again.)

va_copy The va_copy macro copies src (a va_list value) into dest (also a
va_list). The usefulness of va_copy lies in the fact that multiple calls of
va_arg may have been made using src before it’s copied into dest, thus pro-
cessing some of the arguments. Calling va_copy allows a function to remember
where it is in the argument list so that it can later return to the same point to reex-
amine an argument (and possibly the arguments that follow it).

Each call of va_start or va_copy must be paired with a call of va_end,
and the calls must appear in the same function. All calls of va_arg must appear
between the call of va_start (or va_copy) and the matching call of va_end.

When a function with a variable argument list is called, the compiler performs the
default argument promotions on all arguments that match the ellipsis. In particular,
char and short arguments are promoted to int, and float values are pro-
moted to double. Consequently, it doesn’t make sense to pass types such as
char, short, or float to va_arg, since arguments—after promotion—will
never have one of those types.

Calling a Function with a Variable Argument List

Calling a function with a variable argument list is an inherently risky proposition.
As far back as Chapter 3, we saw how dangerous it can be to pass the wrong argu-
ments to printf and scanf. Other functions with variable argument lists are
equally sensitive. The primary difficulty is that a function with a variable argument
list has no way to determine the number of arguments or their types. This informa-
tion must be passed into the function and/or assumed by the function. max_int
relies on the first argument to specify how many additional arguments follow; it

default argument promotions ➤9.3

c26.fm Page 679 Saturday, February 16, 2008 2:35 PM

680 Chapter 26 Miscellaneous Library Functions

assumes that the arguments are of type int. Functions such as printf and
scanf rely on the format string, which describes the number of additional argu-
ments and the type of each.

Another problem has to do with passing NULL as an argument. NULL is usu-
ally defined to represent 0. When 0 is passed to a function with a variable argu-
ment list, the compiler assumes that it represents an integer—there’s no way it can
tell that we want it to represent the null pointer. The solution is to add a cast, writ-
ing (void *) NULL or (void *) 0 instead of NULL. (See the Q&A section at
the end of Chapter 17 for more discussion of this point.)

The v…printf Functions

vfprintf
vprintf

vsprintf

The vfprintf, vprintf, and vsprintf functions (the “v…printf func-
tions”) belong to <stdio.h>. We’re discussing them in this section because
they’re invariably used in conjunction with the macros in <stdarg.h>. C99 adds
the vsnprintf function.

The v…printf functions are closely related to fprintf, printf, and
sprintf. Unlike these functions, however, the v…printf functions have a
fixed number of arguments. Each function’s last argument is a va_list value,
which implies that it will be called by a function with a variable argument list. In
practice, the v…printf functions are used primarily for writing “wrapper” func-
tions that accept a variable number of arguments, which are then passed to a
v…printf function.

As an example, let’s say that we’re working on a program that needs to display
error messages from time to time. We’d like each message to begin with a prefix of
the form

** Error n:

where n is 1 for the first error message and increases by one for each subsequent
error. To make it easier to produce error messages, we’ll write a function named
errorf that’s similar to printf, but adds ** Error n: to the beginning of

int vfprintf(FILE * restrict stream,
 const char * restrict format,
 va_list arg); from <stdio.h>
int vprintf(const char * restrict format,
 va_list arg); from <stdio.h>
int vsnprintf(char * restrict s, size_t n,
 const char * restrict format,
 va_list arg); from <stdio.h>
int vsprintf(char * restrict s,
 const char * restrict format,
 va_list arg); from <stdio.h>

C99

c26.fm Page 680 Saturday, February 16, 2008 2:35 PM

26.1 The <stdarg.h> Header: Variable Arguments 681

its output and always writes to stderr instead of stdout. We’ll have errorf
call vfprintf to do most of the actual output. Here’s what errorf might look
like:

int errorf(const char *format, ...)
{
 static int num_errors = 0;
 int n;
 va_list ap;

 num_errors++;
 fprintf(stderr, "** Error %d: ", num_errors);
 va_start(ap, format);
 n = vfprintf(stderr, format, ap);
 va_end(ap);
 fprintf(stderr, "\n");
 return n;
}

The wrapper function—errorf, in our example—is responsible for calling
va_start prior to calling the v…printf function and for calling va_end after
the v…printf function returns. The wrapper function is allowed to call va_arg
one or more times before calling the v…printf function.

vsnprintf The vsnprintf function was added to the C99 version of <stdio.h>. It
corresponds to snprintf (discussed in Section 22.8), which is also a C99 func-
tion.

The v…scanf Functions

vfscanf
vscanf

vsscanf

C99 adds a set of “v…scanf functions” to the <stdio.h> header. vfscanf,
vscanf, and vsscanf are equivalent to fscanf, scanf, and sscanf,
respectively, except that they have a va_list parameter through which a variable
argument list can be passed. Like the v…printf functions, each v…scanf func-
tion is designed to be called by a wrapper function that accepts a variable number
of arguments, which it then passes to the v…scanf function. The wrapper func-
tion is responsible for calling va_start prior to calling the v…scanf function
and for calling va_end after the v…scanf function returns.

int vfscanf(FILE * restrict stream,
 const char * restrict format,
 va_list arg); from <stdio.h>
int vscanf(const char * restrict format,
 va_list arg); from <stdio.h>
int vsscanf(const char * restrict s,
 const char * restrict format,
 va_list arg); from <stdio.h>

C99

c26.fm Page 681 Saturday, February 16, 2008 2:35 PM

682 Chapter 26 Miscellaneous Library Functions

26.2 The <stdlib.h> Header: General Utilities

<stdlib.h> serves as a catch-all for functions that don’t fit into any of the other
headers. The functions in <stdlib.h> fall into eight groups:

Numeric conversion functions
Pseudo-random sequence generation functions
Memory-management functions
Communication with the environment
Searching and sorting utilities
Integer arithmetic functions
Multibyte/wide-character conversion functions
Multibyte/wide-string conversion functions

We’ll look at each group in turn, with three exceptions: the memory management
functions, the multibyte/wide-character conversion functions, and the multibyte/
wide-string conversion functions.

The memory-management functions (malloc, calloc, realloc, and
free) permit a program to allocate a block of memory and then later release it or
change its size. Chapter 17 describes all four functions in some detail.

The multibyte/wide-character conversion functions are used to convert a
multibyte character to a wide character or vice-versa. The multibyte/wide-string
conversion functions perform similar conversions between multibyte strings and
wide strings. Both groups of functions are discussed in Section 25.2.

Numeric Conversion Functions

double atof(const char *nptr);

int atoi(const char *nptr);
long int atol(const char *nptr);
long long int atoll(const char *nptr);

double strtod(const char * restrict nptr,
 char ** restrict endptr);
float strtof(const char * restrict nptr,
 char ** restrict endptr);
long double strtold(const char * restrict nptr,
 char ** restrict endptr);

long int strtol(const char * restrict nptr,
 char ** restrict endptr, int base);

c26.fm Page 682 Saturday, February 16, 2008 2:35 PM

26.2 The <stdlib.h> Header: General Utilities 683

The numeric conversion functions (or “string conversion functions,” as they’re
known in C89) convert strings containing numbers in character form to their
equivalent numeric values. Three of these functions are fairly old, another three
were added when the C89 standard was created, and five more were added in
C99.

All the numeric conversion functions—whether new or old—work in much
the same way. Each function attempts to convert a string (pointed to by the nptr
parameter) to a number. Each function skips white-space characters at the begin-
ning of the string, treats subsequent characters as part of a number (possibly begin-
ning with a plus or minus sign), and stops at the first character that can’t be part of
the number. In addition, each function returns zero if no conversion can be per-
formed (the string is empty or the characters following any initial white space
don’t have the form the function is looking for).

atof
atoi
atol

The old functions (atof, atoi, and atol) convert a string to a double,
int, or long int value, respectively. Unfortunately, these functions lack any
way to indicate how much of the string was consumed during a conversion. More-
over, the functions have no way to indicate that a conversion was unsuccessful.
(Some implementations of these functions may modify the errno variable when a
conversion fails, but that’s not guaranteed.)

strtod
strtol

strtoul

The C89 functions (strtod, strtol, and strtoul) are more sophisti-
cated. For one thing, they indicate where the conversion stopped by modifying the
variable that endptr points to. (The second argument can be a null pointer if
we’re not interested in where the conversion ended.) To check whether a function
was able to consume the entire string, we can just test whether this variable points
to a null character. If no conversion could be performed, the variable that endptr
points to is given the value of nptr (as long as endptr isn’t a null pointer).
What’s more, strtol and strtoul have a base argument that specifies the
base of the number being converted. All bases between 2 and 36 (inclusive) are
supported.

Besides being more versatile than the old functions, strtod, strtol, and
strtoul are better at detecting errors. Each function stores ERANGE in errno
if a conversion produces a value that’s outside the range of the function’s return
type. In addition, the strtod function returns plus or minus HUGE_VAL; the

long long int strtoll(const char * restrict nptr,
 char ** restrict endptr,
 int base);
unsigned long int strtoul(
 const char * restrict nptr,
 char ** restrict endptr, int base);
unsigned long long int strtoull(
 const char * restrict nptr,
 char ** restrict endptr, int base);

C99

errno variable ➤24.2

HUGE_VAL macro ➤23.3

c26.fm Page 683 Saturday, February 16, 2008 2:35 PM

684 Chapter 26 Miscellaneous Library Functions

strtol and strtoul functions return the smallest or largest values of their
respective return types. (strtol returns either LONG_MIN or LONG_MAX, and
strtoul returns ULONG_MAX.)

atoll
strtof

strtold
strtoll

strtoull

C99 adds the atoll, strtof, strtold, strtoll, and strtoull
functions. atoll is the same as the atol function, except that it converts a
string to a long long int value. strtof and strtold are the same as
strtod, except that they convert a string to a float or long double value,
respectively. strtoll is the same as strtol, except that it converts a string to
a long long int value. strtoull is the same as strtoul, except that it
converts a string to an unsigned long long int value. C99 also makes a
small change to the floating-point numeric conversion functions: the string passed
to strtod (as well as its newer cousins, strtof and strtold) may contain a
hexadecimal floating-point number, infinity, or NaN.

PROGRAM Testing the Numeric Conversion Functions

The following program converts a string to numeric form by applying each of the
six numeric conversion functions that exist in C89. After calling the strtod,
strtol, and strtoul functions, the program also shows whether each conver-
sion produced a valid result and whether it was able to consume the entire string.
The program obtains the input string from the command line.

tnumconv.c /* Tests C89 numeric conversion functions */

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

#define CHK_VALID printf(" %s %s\n", \
 errno != ERANGE ? "Yes" : "No ", \
 *ptr == '\0' ? "Yes" : "No")

int main(int argc, char *argv[])
{
 char *ptr;

 if (argc != 2) {
 printf("usage: tnumconv string\n");
 exit(EXIT_FAILURE);
 }

 printf("Function Return Value\n");
 printf("-------- ------------\n");
 printf("atof %g\n", atof(argv[1]));
 printf("atoi %d\n", atoi(argv[1]));
 printf("atol %ld\n\n", atol(argv[1]));

 printf("Function Return Value Valid? "
 "String Consumed?\n"

<limits.h> macros ➤23.2

Q&A

c26.fm Page 684 Saturday, February 16, 2008 2:35 PM

26.2 The <stdlib.h> Header: General Utilities 685

 "-------- ------------ ------ "
 "----------------\n");

 errno = 0;
 printf("strtod %-12g", strtod(argv[1], &ptr));
 CHK_VALID;

 errno = 0;
 printf("strtol %-12ld", strtol(argv[1], &ptr, 10));
 CHK_VALID;

 errno = 0;
 printf("strtoul %-12lu", strtoul(argv[1], &ptr, 10));
 CHK_VALID;

 return 0;
}

If 3000000000 is the command-line argument, the output of the program
might have the following appearance:

Function Return Value
-------- ------------
atof 3e+09
atoi 2147483647
atol 2147483647

Function Return Value Valid? String Consumed?
-------- ------------ ------ ----------------
strtod 3e+09 Yes Yes
strtol 2147483647 No Yes
strtoul 3000000000 Yes Yes

On many machines, the number 3000000000 is too large to represent as a long
integer, although it’s valid as an unsigned long integer. The atoi and atol func-
tions had no way to indicate that the number represented by their argument was out
of range. In the output shown, they returned 2147483647 (the largest long integer),
but the C standard doesn’t guarantee this behavior. The strtoul function per-
formed the conversion correctly; strtol returned 2147483647 (the standard
requires it to return the largest long integer) and stored ERANGE in errno.

If 123.456 is the command-line argument, the output will be

Function Return Value
-------- ------------
atof 123.456
atoi 123
atol 123

Function Return Value Valid? String Consumed?
-------- ------------ ------ ----------------
strtod 123.456 Yes Yes
strtol 123 Yes No
strtoul 123 Yes No

c26.fm Page 685 Saturday, February 16, 2008 2:35 PM

686 Chapter 26 Miscellaneous Library Functions

All six functions treated this string as a valid number, although the integer func-
tions stopped at the decimal point. The strtol and strtoul functions were
able to indicate that they didn’t completely consume the string.

If foo is the command-line argument, the output will be

Function Return Value
-------- ------------
atof 0
atoi 0
atol 0

Function Return Value Valid? String Consumed?
-------- ------------ ------ ----------------
strtod 0 Yes No
strtol 0 Yes No
strtoul 0 Yes No

All the functions looked at the letter f and immediately returned zero. The str…
functions didn’t change errno, but we can tell that something went wrong from
the fact that the functions didn’t consume the string.

Pseudo-Random Sequence Generation Functions

The rand and srand functions support the generation of pseudo-random num-
bers. These functions are useful in simulation programs and game-playing pro-
grams (to simulate a dice roll or the deal in a card game, for example).

rand Each time it’s called, rand returns a number between 0 and RAND_MAX (a
macro defined in <stdlib.h>). The numbers returned by rand aren’t actually
random; they’re generated from a “seed” value. To the casual observer, however,
rand appears to produce an unrelated sequence of numbers.

srand Calling srand supplies the seed value for rand. If rand is called prior to
srand, the seed value is assumed to be 1. Each seed value determines a particular
sequence of pseudo-random numbers; srand allows us to select which sequence
we want.

A program that always uses the same seed value will always get the same
sequence of numbers from rand. This property can sometimes be useful: the pro-
gram behaves the same way each time it’s run, making testing easier. However, we
usually want rand to produce a different sequence each time the program is run.
(A poker-playing program that always deals the same cards isn’t likely to be popu-
lar.) The easiest way to “randomize” the seed values is to call the time function,
which returns a number that encodes the current date and time. Passing time’s
return value to srand makes the behavior of rand vary from one run to the next.
See the guess.c and guess2.c programs (Section 10.2) for examples of this
technique.

int rand(void);
void srand(unsigned int seed);

time function ➤26.3

c26.fm Page 686 Saturday, February 16, 2008 2:35 PM

26.2 The <stdlib.h> Header: General Utilities 687

PROGRAM Testing the Pseudo-Random Sequence Generation Functions

The following program displays the first five values returned by the rand func-
tion, then allows the user to choose a new seed value. The process repeats until the
user enters zero as the seed.

trand.c /* Tests the pseudo-random sequence generation functions */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int i, seed;

 printf("This program displays the first five values of "
 "rand.\n");

 for (;;) {
 for (i = 0; i < 5; i++)
 printf("%d ", rand());
 printf("\n\n");
 printf("Enter new seed value (0 to terminate): ");
 scanf("%d", &seed);
 if (seed == 0)
 break;
 srand(seed);
 }

 return 0;
}

Here’s how a session with the program might look:

This program displays the first five values of rand.
1804289383 846930886 1681692777 1714636915 1957747793

Enter new seed value (0 to terminate): 100
677741240 611911301 516687479 1039653884 807009856

Enter new seed value (0 to terminate): 1
1804289383 846930886 1681692777 1714636915 1957747793

Enter new seed value (0 to terminate): 0

There are many ways to write the rand function, so there’s no guarantee that
every version of rand will generate the numbers shown here. Note that choosing 1
as the seed gives the same sequence of numbers as not specifying the seed at all.

Communication with the Environment

void abort(void);
int atexit(void (*func)(void));

c26.fm Page 687 Saturday, February 16, 2008 2:35 PM

688 Chapter 26 Miscellaneous Library Functions

The functions in this group provide a simple interface to the operating system,
allowing programs to (1) terminate, either normally or abnormally, and return a
status code to the operating system, (2) fetch information from the user’s environ-
ment, and (3) execute operating system commands. One of the functions, _Exit,
is a C99 addition.

exit Performing the call exit(n) anywhere in a program is normally equivalent
to executing the statement return n; in main: the program terminates, and n is
returned to the operating system as a status code. <stdlib.h> defines the mac-
ros EXIT_FAILURE and EXIT_SUCCESS, which can be used as arguments to
exit. The only other portable argument to exit is 0, which has the same mean-
ing as EXIT_SUCCESS. Returning status codes other than these is legal but not
necessarily portable to all operating systems.

atexit When a program terminates, it usually performs a few final actions behind the
scenes, including flushing output buffers that contain unwritten data, closing open
streams, and deleting temporary files. We may have other “clean-up” actions that
we’d like a program to perform at termination. The atexit function allows us to
“register” a function to be called upon program termination. To register a function
named cleanup, for example, we could call atexit as follows:

atexit(cleanup);

When we pass a function pointer to atexit, it stores the pointer away for future
reference. If the program later terminates normally (via a call of exit or a
return statement in the main function), any function registered with atexit
will be called automatically. (If two or more functions have been registered, they’re
called in the reverse of the order in which they were registered.)

_Exit The _Exit function is similar to exit. However, _Exit doesn’t call func-
tions that have been registered with atexit, nor does it call any signal handlers
previously passed to the signal function. Also, _Exit doesn’t necessarily flush
output buffers, close open streams, or delete temporary files—whether these
actions are performed is implementation-defined.

abort abort is also similar to exit, but calling it causes abnormal program termi-
nation. Functions registered with atexit aren’t called. Depending on the imple-
mentation, it may be the case that output buffers containing unwritten data aren’t
flushed, streams aren’t closed, and temporary files aren’t deleted. abort returns
an implementation-defined status code indicating unsuccessful termination.

getenv Many operating systems provide an “environment”: a set of strings that
describe the user’s characteristics. These strings typically include the path to be
searched when the user runs a program, the type of the user’s terminal (in the case
of a multi-user system), and so on. For example, a UNIX search path might look

void exit(int status);
void _Exit(int status);
char *getenv(const char *name);
int system(const char *string);

C99

Q&A

signal function ➤24.3

Q&A

c26.fm Page 688 Saturday, February 16, 2008 2:35 PM

26.2 The <stdlib.h> Header: General Utilities 689

something like this:

PATH=/usr/local/bin:/bin:/usr/bin:.

getenv provides access to any string in the user’s environment. To find the cur-
rent value of the PATH string, for example, we could write

char *p = getenv("PATH");

p now points to the string "/usr/local/bin:/bin:/usr/bin:.". Be care-
ful with getenv: it returns a pointer to a statically allocated string that may be
changed by a later call of the function.

system The system function allows a C program to run another program (possibly
an operating system command). The argument to system is a string containing a
command, similar to one that we’d enter at the operating system prompt. For
example, suppose that we’re writing a program that needs a listing of the files in
the current directory. A UNIX program would call system in the following way:

system("ls >myfiles");

This call invokes the UNIX command ls and asks it to write a listing of the cur-
rent directory into the file named myfiles.

The return value of system is implementation-defined. system typically
returns the termination status code from the program that we asked it to run; test-
ing this value allows us to check whether the program worked properly. Calling
system with a null pointer has a special meaning: the function returns a nonzero
value if a command processor is available.

Searching and Sorting Utilities

bsearch The bsearch function searches a sorted array for a particular value (the “key”).
When bsearch is called, the key parameter points to the key, base points to the
array, nmemb is the number of elements in the array, size is the size of each ele-
ment (in bytes), and compar is a pointer to a comparison function. The compari-
son function is similar to the one required by qsort: when passed pointers to the
key and an array element (in that order), the function must return a negative, zero,
or positive integer depending on whether the key is less than, equal to, or greater
than the array element. bsearch returns a pointer to an element that matches the
key; if it doesn’t find a match, bsearch returns a null pointer.

void *bsearch(const void *key, const void *base,
 size_t nmemb, size_t size,
 int (*compar)(const void *,
 const void *));
void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

c26.fm Page 689 Saturday, February 16, 2008 2:35 PM

690 Chapter 26 Miscellaneous Library Functions

Although the C standard doesn’t require it to, bsearch normally uses the
binary search algorithm to search the array. bsearch first compares the key with
the element in the middle of the array; if there’s a match, the function returns. If
the key is smaller than the middle element, bsearch limits its search to the first
half of the array; if the key is larger, bsearch searches only the last half of the
array. bsearch repeats this strategy until it finds the key or runs out of elements
to search. Thanks to this technique, bsearch is quite fast—searching an array of
1000 elements requires only 10 comparisons at most; searching an array of
1,000,000 elements requires no more than 20 comparisons.

qsort Section 17.7 discusses the qsort function, which can sort any array.
bsearch works only for sorted arrays, but we can always use qsort to sort an
array prior to asking bsearch to search it.

PROGRAM Determining Air Mileage

Our next program computes the air mileage from New York City to various inter-
national cities. The program first asks the user to enter a city name, then displays
the mileage to that city:

Enter city name: Shanghai
Shanghai is 7371 miles from New York City.

The program will store city/mileage pairs in an array. By using bsearch to
search the array for a city name, the program can easily find the corresponding
mileage. (Mileages are from Infoplease.com.)

airmiles.c /* Determines air mileage from New York to other cities */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct city_info {
 char *city;
 int miles;
};

int compare_cities(const void *key_ptr,
 const void *element_ptr);

int main(void)
{
 char city_name[81];
 struct city_info *ptr;
 const struct city_info mileage[] =
 {{"Berlin", 3965}, {"Buenos Aires", 5297},
 {"Cairo", 5602}, {"Calcutta", 7918},
 {"Cape Town", 7764}, {"Caracas", 2132},
 {"Chicago", 713}, {"Hong Kong", 8054},
 {"Honolulu", 4964}, {"Istanbul", 4975},

c26.fm Page 690 Saturday, February 16, 2008 2:35 PM

26.2 The <stdlib.h> Header: General Utilities 691

 {"Lisbon", 3364}, {"London", 3458},
 {"Los Angeles", 2451}, {"Manila", 8498},
 {"Mexico City", 2094}, {"Montreal", 320},
 {"Moscow", 4665}, {"Paris", 3624},
 {"Rio de Janeiro", 4817}, {"Rome", 4281},
 {"San Francisco", 2571}, {"Shanghai", 7371},
 {"Stockholm", 3924}, {"Sydney", 9933},
 {"Tokyo", 6740}, {"Warsaw", 4344},
 {"Washington", 205}};

 printf("Enter city name: ");
 scanf("%80[^\n]", city_name);
 ptr = bsearch(city_name, mileage,
 sizeof(mileage) / sizeof(mileage[0]),
 sizeof(mileage[0]), compare_cities);
 if (ptr != NULL)
 printf("%s is %d miles from New York City.\n",
 city_name, ptr->miles);
 else
 printf("%s wasn't found.\n", city_name);

 return 0;
}

int compare_cities(const void *key_ptr,
 const void *element_ptr)
{
 return strcmp((char *) key_ptr,
 ((struct city_info *) element_ptr)->city);
}

Integer Arithmetic Functions

abs
labs

The abs function returns the absolute value of an int value; the labs function
returns the absolute value of a long int value.

div The div function divides its first argument by its second, returning a div_t
value. div_t is a structure that contains both a quotient member (named quot)
and a remainder member (rem). For example, if ans is a div_t variable, we
could write

ans = div(5, 2);
printf("Quotient: %d Remainder: %d\n", ans.quot, ans.rem);

int abs(int j);
long int labs(long int j);
long long int llabs(long long int j);

div_t div(int numer, int denom);
ldiv_t ldiv(long int numer, long int denom);
lldiv_t lldiv(long long int numer,
 long long int denom);

c26.fm Page 691 Saturday, February 16, 2008 2:35 PM

692 Chapter 26 Miscellaneous Library Functions

ldiv The ldiv function is similar but works with long integers; it returns an ldiv_t
structure, which also has quot and rem members. (The div_t and ldiv_t types
are declared in <stdlib.h>.)

llabs
lldiv

C99 provides two additional functions. The llabs function returns the abso-
lute value of a long long int value. lldiv is similar to div and ldiv, except
that it divides two long long int values and returns an lldiv_t structure.
(The lldiv_t type was also added in C99.)

26.3 The <time.h> Header: Date and Time

The <time.h> header provides functions for determining the time (including the
date), performing arithmetic on time values, and formatting times for display.
Before we explore these functions, however, we need to discuss how times are
stored. <time.h> provides three types, each of which represents a different way
to store a time:

� clock_t: A time value measured in “clock ticks.”

� time_t: A compact, encoded time and date (a calendar time).

� struct tm: A time that has been divided into seconds, minutes, hours, and
so on. A value of type struct tm is often called a broken-down time. Table
26.1 shows the members of the tm structure. All members are of type int.

These types are used for different purposes. A clock_t value is good only
for representing a time duration; time_t and struct tm values can store an
entire date and time. time_t values are tightly encoded, so they occupy little
space. struct tm values require much more space, but they’re often easier to
work with. The C standard states that clock_t and time_t must be “arithmetic
types,” but leaves it at that. We don’t even know if clock_t and time_t values
are stored as integers or floating-point numbers.

We’re now ready to look at the functions in <time.h>, which fall into two
groups: time manipulation functions and time conversion functions.

Q&A

C99

Name Description
Minimum

Value
Maximum

Value

tm_sec
tm_min
tm_hour
tm_mday
tm_mon
tm_year
tm_wday
tm_yday
tm_isdst

Seconds after the minute
Minutes after the hour
Hours since midnight
Day of the month
Months since January
Years since 1900
Days since Sunday
Days since January 1
Daylight Saving Time flag

0
0
0
1
0
0
0
0
††

61†

59
23
31
11
–
6

365
††

†Allows for two extra “leap seconds.” In C99, the maximum value is 60.
††Positive if Daylight Saving Time is in effect, zero if it’s not in effect, and
negative if this information is unknown.

Table 26.1
Members of the

tm Structure

c26.fm Page 692 Saturday, February 16, 2008 2:35 PM

26.3 The <time.h> Header: Date and Time 693

Time Manipulation Functions

clock The clock function returns a clock_t value representing the processor time
used by the program since execution began. To convert this value to seconds, we
can divide it by CLOCKS_PER_SEC, a macro defined in <time.h>.

When clock is used to determine how long a program has been running, it’s
customary to call it twice: once at the beginning of main and once just before the
program terminates:

#include <stdio.h>
#include <time.h>

int main(void)
{
 clock_t start_clock = clock();
 …
 printf("Processor time used: %g sec.\n",
 (clock() - start_clock) / (double) CLOCKS_PER_SEC);
 return 0;
}

The reason for the initial call of clock is that the program will use some proces-
sor time before it reaches main, thanks to hidden “start-up” code. Calling clock
at the beginning of main determines how much time the start-up code requires so
that we can subtract it later.

The C89 standard says only that clock_t is an arithmetic type; the type of
CLOCKS_PER_SEC is unspecified. As a result, the type of the expression

(clock() - start_clock) / CLOCKS_PER_SEC

may vary from one implementation to another, making it difficult to display using
printf. To solve the problem, our example converts CLOCKS_PER_SEC to
double, forcing the entire expression to have type double. In C99, the type of
CLOCKS_PER_SEC is specified to be clock_t, but clock_t is still an imple-
mentation-defined type.

time The time function returns the current calendar time. If its argument isn’t a
null pointer, time also stores the calendar time in the object that the argument
points to. time’s ability to return a time in two different ways is an historical
quirk, but it gives us the option of writing either

cur_time = time(NULL);

or

clock_t clock(void);
double difftime(time_t time1, time_t time0);
time_t mktime(struct tm *timeptr);
time_t time(time_t *timer);

C99

c26.fm Page 693 Saturday, February 16, 2008 2:35 PM

694 Chapter 26 Miscellaneous Library Functions

time(&cur_time);

where cur_time is a variable of type time_t.
difftime The difftime function returns the difference between time0 (the earlier

time) and time1, measured in seconds. Thus, to compute the actual running time
of a program (not the processor time), we could use the following code:

#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t start_time = time(NULL);
 …
 printf("Running time: %g sec.\n",
 difftime(time(NULL), start_time));
 return 0;
}

mktime The mktime function converts a broken-down time (stored in the structure
that its argument points to) into a calendar time, which it then returns. As a side
effect, mktime adjusts the members of the structure according to the following
rules:

� mktime changes any members whose values aren’t within their legal ranges
(see Table 26.1). Those alterations may in turn require changes to other mem-
bers. If tm_sec is too large, for example, mktime reduces it to the proper
range (0–59), adding the extra minutes to tm_min. If tm_min is now too
large, mktime reduces it and adds the extra hours to tm_hour. If necessary,
the process will continue to the tm_mday, tm_mon, and tm_year mem-
bers.

� After adjusting the other members of the structure (if necessary), mktime
sets tm_wday (day of the week) and tm_yday (day of the year) to their cor-
rect values. There’s never any need to initialize the values of tm_wday and
tm_yday before calling mktime; it ignores the original values of these
members.

mktime’s ability to adjust the members of a tm structure makes it useful for
time-related arithmetic. As a example, let’s use mktime to answer the following
question: If the 2012 Olympics begin on July 27 and end 16 days later, what is the
ending date? We’ll start by storing July 27, 2012 in a tm structure:

struct tm t;

t.tm_mday = 27;
t.tm_mon = 6; /* July */
t.tm_year = 112; /* 2012 */

We’ll also initialize the other members of the structure (except tm_wday and
tm_yday) to ensure that they don’t contain undefined values that could affect the
answer:

c26.fm Page 694 Saturday, February 16, 2008 2:35 PM

26.3 The <time.h> Header: Date and Time 695

t.tm_sec = 0;
t.tm_min = 0;
t.tm_hour = 0;
t.tm_isdst = -1;

Next, we’ll add 16 to the tm_mday member:

t.tm_mday += 16;

That leaves 43 in tm_mday, which is out of range for that member. Calling
mktime will bring the members of the structure back into their proper ranges:

mktime(&t);

We’ll discard mktime’s return value, since we’re interested only in the function’s
effect on t. The relevant members of t now have the following values:

Member Value Meaning
tm_mday 12 12
tm_mon 7 August
tm_year 112 2012
tm_wday 0 Sunday
tm_yday 224 225th day of the year

Time Conversion Functions

The time conversion functions make it possible to convert calendar times to bro-
ken-down times. They can also convert times (calendar or broken-down) to string
form. The following figure shows how these functions are related:

char *asctime(const struct tm *timeptr);
char *ctime(const time_t *timer);
struct tm *gmtime(const time_t *timer);
struct tm *localtime(const time_t *timer);
size_t strftime(char * restrict s, size_t maxsize,
 const char * restrict format,
 const struct tm * restrict timeptr);

Character string

localtime

gmtime

ctime

mktime

strftimeasctime

Broken-down time
struct tm

Calendar time
time_t

c26.fm Page 695 Saturday, February 16, 2008 2:35 PM

696 Chapter 26 Miscellaneous Library Functions

The figure includes the mktime function, which the C standard classifies as a
“manipulation” function rather than a “conversion” function.

gmtime
localtime

The gmtime and localtime functions are similar. When passed a pointer
to a calendar time, both return a pointer to a structure containing the equivalent
broken-down time. localtime produces a local time, while gmtime’s return
value is expressed in UTC (Coordinated Universal Time). The return value of
gmtime and localtime points to a statically allocated structure that may be
changed by a later call of either function.

asctime The asctime (ASCII time) function returns a pointer to a null-terminated
string of the form

Sun Jun 3 17:48:34 2007\n

constructed from the broken-down time pointed to by its argument.
ctime The ctime function returns a pointer to a string describing a local time. If

cur_time is a variable of type time_t, the call

ctime(&cur_time)

is equivalent to

asctime(localtime(&cur_time))

The return value of asctime and ctime points to a statically allocated string
that may be changed by a later call of either function.

strftime The strftime function, like the asctime function, converts a broken-
down time to string form. Unlike asctime, however, it gives us a great deal of
control over how the time is formatted. In fact, strftime resembles sprintf
in that it writes characters into a string s (the first argument) according to a for-
mat string (the third argument). The format string may contain ordinary characters
(which are copied into s unchanged) along with the conversion specifiers shown
in Table 26.2 (which are replaced by the indicated strings). The last argument
points to a tm structure, which is used as the source of date and time information.
The second argument is a limit on the number of characters that can be stored in
s.

The strftime function, unlike the other functions in <time.h>, is sensi-
tive to the current locale. Changing the LC_TIME category may affect the behav-
ior of the conversion specifiers. The examples in Table 26.2 are strictly for the "C"
locale; in a German locale, the replacement for %A might be Dienstag instead of
Tuesday.

The C99 standard spells out the exact replacement strings for some of the con-
version specifiers in the "C" locale. (C89 didn’t go into this level of detail.) Table
26.3 lists these conversion specifiers and the strings they’re replaced by.

C99 also adds a number of strftime conversion specifiers, as Table 26.2
shows. One of the reasons for the additional conversion specifiers is the desire to
support the ISO 8601 standard.

Q&A

sprintf function ➤22.8

locales ➤25.1

C99

C99

c26.fm Page 696 Saturday, February 16, 2008 2:35 PM

26.3 The <time.h> Header: Date and Time 697

Conversion Replacement

 %a
 %A
 %b
 %B
 %c
 %C†

 %d
 %D†

 %e†

 %F†

 %g†

 %G†

 %h†

 %H
 %I
 %j
 %m
 %M
 %n†

 %p
 %r†

 %R†

 %S
 %t†

 %T†

 %u†

 %U
 %V†

 %w
 %W
 %x
 %X
 %y
 %Y
 %z†

 %Z
 %%

Abbreviated weekday name (e.g., Sun)
Full weekday name (e.g., Sunday)
Abbreviated month name (e.g., Jun)
Full month name (e.g., June)
Complete day and time (e.g., Sun Jun 3 17:48:34 2007)
Year divided by 100 and truncated to an integer (00–99)
Day of month (01–31)
Equivalent to %m/%d/%y
Day of month (1–31); a single digit is preceded by a space
Equivalent to %Y-%m-%d
Last two digits of ISO 8601 week-based year (00–99)
ISO 8601 week-based year
Equivalent to %b
Hour on 24-hour clock (00–23)
Hour on 12-hour clock (01–12)
Day of year (001–366)
Month (01–12)
Minute (00–59)
New-line character
AM/PM designator (AM or PM)
12-hour clock time (e.g., 05:48:34 PM)
Equivalent to %H:%M
Second (00–61); maximum value in C99 is 60
Horizontal-tab character
Equivalent to %H:%M:%S
ISO 8601 weekday (1–7); Monday is 1
Week number (00–53); first Sunday is beginning of week 1
ISO 8601 week number (01–53)
Weekday (0–6); Sunday is 0
Week number (00–53); first Monday is beginning of week 1
Complete date (e.g., 06/03/07)
Complete time (e.g., 17:48:34)
Last two digits of year (00–99)
Year
Offset from UTC in ISO 8601 format (e.g., -0530 or +0200)
Time zone name or abbreviation (e.g., EST)
%

†C99 only

Table 26.2
Conversion Specifiers for
the strftime Function

Conversion Replacement

%a
%A
%b
%B
%c
%p
%r
%x
%X
%Z

First three characters of %A
One of "Sunday", "Monday", …, "Saturday"
First three characters of %B
One of "January", "February", …, "December"
Equivalent to "%a %b %e %T %Y"
One of "AM" or "PM"
Equivalent to "%I:%M:%S %p"
Equivalent to "%m/%d/%y"
Equivalent to %T
Implementation-defined

Table 26.3
Replacement Strings for
strftime Conversion

Specifiers in the
"C" Locale

c26.fm Page 697 Saturday, February 16, 2008 2:35 PM

698 Chapter 26 Miscellaneous Library Functions

ISO 8601

ISO 8601 is an international standard that describes ways of representing dates
and times. It was originally published in 1988 and later updated in 2000 and 2004.
According to this standard, dates and times are entirely numeric (i.e., months are
not represented by names) and hours are expressed using the 24-hour clock.

There are a number of ISO 8601 date and time formats, some of which are
directly supported by strftime conversion specifiers in C99. The primary ISO
8601 date format (YYYY–MM–DD) and the primary time format (hh:mm:ss) corre-
spond to the %F and %T conversion specifiers, respectively.

ISO 8601 has a system of numbering the weeks of a year; this system is sup-
ported by the %g, %G, and %V conversion specifiers. Weeks begin on Monday, and
week 1 is the week containing the first Thursday of the year. Consequently, the first
few days of January (as many as three) may belong to the last week of the previous
year. For example, consider the calendar for January 2011:

January 6 is the first Thursday of the year, so the week of January 3–9 is week 1.
January 1 and January 2 belong to the last week (week 52) of the previous year. For
these two dates, strftime will replace %g by 10, %G by 2010, and %V by 52. Note
that the last few days of December will sometimes belong to week 1 of the following
year; this happens whenever December 29, 30, or 31 is a Monday.

The %z conversion specifier corresponds to the ISO 8601 time zone specifica-
tion: –hhmm means that a time zone is hh hours and mm minutes behind UTC; the
string +hhmm indicates the amount by which a time zone is ahead of UTC.

C99 allows the use of an E or O character to modify the meaning of certain
strftime conversion specifiers. Conversion specifiers that begin with an E or O
modifier cause a replacement to be performed using an alternative format that
depends on the current locale. If an alternative representation doesn’t exist in the
current locale, the modifier has no effect. (In the "C" locale, E and O are ignored.)
Table 26.4 lists all conversion specifiers that are allowed to have E or O modifiers.

PROGRAM Displaying the Date and Time

Let’s say we need a program that displays the current date and time. The program’s
first step, of course, is to call the time function to obtain the calendar time. The

January 2011

Mo Tu We Th Fr Sa Su Year Week

1 2 2010 52

3 4 5 6 7 8 9 2011 1

10 11 12 13 14 15 16 2011 2

17 18 19 20 21 22 23 2011 3

24 25 26 27 28 29 30 2011 4

31 2011 5

C99

c26.fm Page 698 Saturday, February 16, 2008 2:35 PM

26.3 The <time.h> Header: Date and Time 699

second step is to convert the time to string form and print it. The easiest way to do
the second step is to call ctime, which returns a pointer to a string containing a
date and time, then pass this pointer to puts or printf.

So far, so good. But what if we want the program to display the date and time
in a particular way? Let’s assume that we need the following format, where 06 is
the month and 03 is the day of the month:

06-03-2007 5:48p

The ctime function always uses the same format for the date and time, so it’s no
help. The strftime function is better; using it, we can almost achieve the
appearance that we want. Unfortunately, strftime won’t let us display a one-
digit hour without a leading zero. Also, strftime uses AM and PM instead of a
and p.

When strftime isn’t good enough, we have another alternative: convert the
calendar time to a broken-down time, then extract the relevant information from
the tm structure and format it ourselves using printf or a similar function. We
might even use strftime to do some of the formatting before having other func-
tions complete the job.

The following program illustrates the options. It displays the current date and
time in three formats: the one used by ctime, one close to what we want (created
using strftime), and the desired format (created using printf). The ctime
version is easy to do, the strftime version is a little harder, and the printf
version is the most difficult.

Conversion Replacement

%Ec
%EC
%Ex
%EX
%Ey
%EY
%Od

%Oe

%OH
%OI
%Om
%OM
%OS
%Ou

%OU
%OV
%Ow
%OW
%Oy

Alternative date and time representation
Name of base year (period) in alternative representation
Alternative date representation
Alternative time representation
Offset from %EC (year only) in alternative representation
Full alternative year representation
Day of month, using alternative numeric symbols (filled with leading
zeros or with leading spaces if there is no alternative symbol for zero)
Day of month, using alternative numeric symbols (filled with leading
spaces)
Hour on 24-hour clock, using alternative numeric symbols
Hour on 12-hour clock, using alternative numeric symbols
Month, using alternative numeric symbols
Minute, using alternative numeric symbols
Second, using alternative numeric symbols
ISO 8601 weekday as a number in alternative representation,
where Monday is 1
Week number, using alternative numeric symbols
ISO 8601 week number, using alternative numeric symbols
Weekday as a number, using alternative numeric symbols
Week number, using alternative numeric symbols
Last two digits of year, using alternative numeric symbols

Table 26.4
E- and O-Modified

Conversion Specifiers
for the strftime

Function (C99 only)

c26.fm Page 699 Saturday, February 16, 2008 2:35 PM

700 Chapter 26 Miscellaneous Library Functions

datetime.c /* Displays the current date and time in three formats */

#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t current = time(NULL);
 struct tm *ptr;
 char date_time[21];
 int hour;
 char am_or_pm;

 /* Print date and time in default format */
 puts(ctime(¤t));

 /* Print date and time, using strftime to format */
 strftime(date_time, sizeof(date_time),
 "%m-%d-%Y %I:%M%p\n", localtime(¤t));
 puts(date_time);

 /* Print date and time, using printf to format */
 ptr = localtime(¤t);
 hour = ptr->tm_hour;
 if (hour <= 11)
 am_or_pm = 'a';
 else {
 hour -= 12;
 am_or_pm = 'p';
 }
 if (hour == 0)
 hour = 12;
 printf("%.2d-%.2d-%d %2d:%.2d%c\n", ptr->tm_mon + 1,
 ptr->tm_mday, ptr->tm_year + 1900, hour,
 ptr->tm_min, am_or_pm);

 return 0;
}

The output of datetime.c will have the following appearance:

Sun Jun 3 17:48:34 2007

06-03-2007 05:48PM

06-03-2007 5:48p

Q & A

Q: Although <stdlib.h> provides a number of functions that convert strings
to numbers, there don’t appear to be any functions that convert numbers to
strings. What gives?

c26.fm Page 700 Saturday, February 16, 2008 2:35 PM

Q & A 701

A: Some C libraries supply functions with names like itoa that convert numbers to
strings. Using these functions isn’t a great idea, though: they aren’t part of the C
standard and won’t be portable. The best way to perform this kind of conversion is
to call a function such as sprintf that writes formatted output into a string:

char str[20];
int i;
…
sprintf(str, "%d", i); /* writes i into the string str */

Not only is sprintf portable, but it also provides a great deal of control over the
appearance of the number.

*Q: The description of the strtod function says that C99 allows the string argu-
ment to contain a hexadecimal floating-point number, infinity, or NaN. What
is the format of these numbers? [p. 684]

A: A hexadecimal floating-point number begins with 0x or 0X, followed by one or
more hexadecimal digits (possibly including a decimal-point character), and then
possibly a binary exponent. (See the Q&A at the end of Chapter 7 for a discus-
sion of hexadecimal floating constants, which have a similar—but not identical—
format.) Infinity has the form INF or INFINITY; any or all of the letters may be
lower-case. NaN is represented by the string NAN (again ignoring case), possibly
followed by a pair of parentheses. The parentheses may be empty or they may
contain a series of characters, where each character is a letter, digit, or under-
score. The characters may be used to specify some of the bits in the binary repre-
sentation of the NaN value, but their exact meaning is implementation-defined.
The same kind of character sequence—which the C99 standard calls an n-char-
sequence—is also used in calls of the nan function.

*Q: You said that performing the call exit(n) anywhere in a program is nor-
mally equivalent to executing the statement return n; in main. When would
it not be equivalent? [p. 688]

A: There are two issues. First, when the main function returns, the lifetime of its
local variables ends (assuming that they have automatic storage duration, as they
will unless they’re declared to be static), which isn’t true if the exit function
is called. A problem will occur if any action that takes place at program termina-
tion—such as calling a function previously registered using atexit or flushing
an output stream buffer—requires access to one of these variables. In particular, a
program might have called setvbuf and used one of main’s variables as a
buffer. Thus, in rare cases a program may behave improperly if it attempts to return
from main but work if it calls exit instead.

The other issue occurs only in C99, which makes it legal for main to have a
return type other than int if an implementation explicitly allows the programmer
to do so. In these circumstances, the call exit(n) isn’t necessarily equivalent to
executing return n; in main. In fact, the statement return n; may be illegal
(if main is declared to return void, for example).

sprintf function ➤22.8

nan function ➤23.4

automatic storage duration ➤18.2

setvbuf function ➤22.2

C99

c26.fm Page 701 Saturday, February 16, 2008 2:35 PM

702 Chapter 26 Miscellaneous Library Functions

*Q: Is there a relationship between the abort function and SIGABRT signal? [p.
688]

A: Yes. A call of abort actually raises the SIGABRT signal. If there’s no handler for
SIGABRT, the program terminates abnormally as described in Section 26.2. If a
handler has been installed for SIGABRT (by a call of the signal function), the
handler is called. If the handler returns, the program then terminates abnormally.
However, if the handler doesn’t return (it calls longjmp, for example), then the
program doesn’t terminate.

Q: Why do the div and ldiv functions exist? Can’t we just use the / and %
operators? [p. 692]

A: div and ldiv aren’t quite the same as / and %. Recall from Section 4.1 that
applying / and % to negative operands doesn’t give a portable result in C89. If i or
j is negative, whether the value of i / j is rounded up or down is implementation-
defined, as is the sign of i % j. The answers computed by div and ldiv, on the
other hand, don’t depend on the implementation. The quotient is rounded toward
zero; the remainder is computed according to the formula n = q × d + r, where n is
the original number, q is the quotient, d is the divisor, and r is the remainder. Here
are a few examples:

n d q r
7 3 2 1

–7 3 –2 –1
7 –3 –2 1

–7 –3 2 –1

In C99, the / and % operators are guaranteed to produce the same result as div
and ldiv.

Efficiency is the other reason that div and ldiv exist. Many machines have
an instruction that can compute both the quotient and remainder, so calling div or
ldiv may be faster than using the / and % operators separately.

Q: Where does the name of the gmtime function come from? [p. 696]
A: The name gmtime stands for Greenwich Mean Time (GMT), referring to the local

(solar) time at the Royal Observatory in Greenwich, England. In 1884, GMT was
adopted as an international reference time, with other time zones expressed as
hours “behind GMT” or “ahead of GMT.” In 1972, Coordinated Universal Time
(UTC)—a system based on atomic clocks rather than solar observations—replaced
GMT as the international time reference. By adding a “leap second” once every
few years, UTC is kept synchronized with GMT to within 0.9 second, so for all but
the most precise time measurements the two systems are identical.

Exercises
Section 26.1 1. Rewrite the max_int function so that, instead of passing the number of integers as the first

argument, we must supply 0 as the last argument. Hint: max_int must have at least one

signal function ➤24.3

longjmp function ➤24.4

C99

c26.fm Page 702 Saturday, February 16, 2008 2:35 PM

Exercises 703

“normal” parameter, so you can’t remove the parameter n. Instead, assume that it represents
one of the numbers to be compared.

2. Write a simplified version of printf in which the only conversion specification is %d, and
all arguments after the first are assumed to have int type. If the function encounters a %
character that’s not immediately followed by a d character, it should ignore both characters.
The function should use calls of putchar to produce all output. You may assume that the
format string doesn’t contain escape sequences.

3. Extend the function of Exercise 2 so that it allows two conversion specifications: %d and
%s. Each %d in the format string indicates an int argument, and each %s indicates a char
* (string) argument.

4. Write a function named display that takes any number of arguments. The first argument
must be an integer. The remaining arguments will be strings. The first argument specifies
how many strings the call contains. The function will print the strings on a single line, with
adjacent strings separated by one space. For example, the call

display(4, "Special", "Agent", "Dale", "Cooper");

will produce the following output:

Special Agent Dale Cooper

5. Write the following function:

char *vstrcat(const char *first, ...);

All arguments of vstrcat are assumed to be strings, except for the last argument, which
must be a null pointer (cast to char * type). The function returns a pointer to a dynamically
allocated string containing the concatenation of the arguments. vstrcat should return a
null pointer if not enough memory is available. Hint: Have vstrcat go through the argu-
ments twice: once to determine the amount of memory required for the returned string and
once to copy the arguments into the string.

6. Write the following function:

char *max_pair(int num_pairs, ...);

The arguments of max_pair are assumed to be “pairs” of integers and strings; the value of
num_pairs indicates how many pairs will follow. (A pair consists of an int argument
followed by a char * argument). The function searches the integers to find the largest one;
it then returns the string argument that follows it. Consider the following call:

max_pair(5, 180, "Seinfeld", 180, "I Love Lucy",
 39, "The Honeymooners", 210, "All in the Family",
 86, "The Sopranos")

The largest int argument is 210, so the function returns "All in the Family", which
follows it in the argument list.

Section 26.2 7. Explain the meaning of the following statement, assuming that value is a variable of type
long int and p is a variable of type char *:

value = strtol(p, &p, 10);

8. Write a statement that randomly assigns one of the numbers 7, 11, 15, or 19 to the variable n.

9. Write a function that returns a random double value d in the range 0.0 ≤ d < 1.0.

10. Convert the following calls of atoi, atol, and atoll into calls of strtol, strtol,
and strtoll, respectively.

W

W

W

c26.fm Page 703 Saturday, February 16, 2008 2:35 PM

704 Chapter 26 Miscellaneous Library Functions

11. Although the bsearch function is normally used with a sorted array, it will sometimes
work correctly with an array that is only partially sorted. What condition must an array sat-
isfy to guarantee that bsearch works properly for a particular key? Hint: The answer
appears in the C standard.

Section 26.3 12. Write a function that, when passed a year, returns a time_t value representing 12:00 a.m.
on the first day of that year.

13. Section 26.3 described some of the ISO 8601 date and time formats. Here are a few more:

Give strftime strings that correspond to each of these formats.

Programming Projects

1. (a) Write a program that calls the rand function 1000 times, printing the low-order bit of
each value it returns (0 if the return value is even, 1 if it’s odd). Do you see any patterns?
(Often, the last few bits of rand’s return value aren’t especially random.)

(b) How can we improve the randomness of rand for generating numbers within a small
range?

2. Write a program that tests the atexit function. The program should have two functions
(in addition to main), one of which prints That's all, and the other folks!. Use the
atexit function to register both to be called at program termination. Make sure they’re
called in the proper order, so that we see the message That's all, folks! on the
screen.

3. Write a program that uses the clock function to measure how long it takes qsort to sort
an array of 1000 integers that are originally in reverse order. Run the program for arrays of
10000 and 100000 integers as well.

4. Write a program that prompts the user for a date (month, day, and year) and an integer n,
then prints the date that’s n days later.

5. Write a program that prompts the user to enter two dates, then prints the difference between
them, measured in days. Hint: Use the mktime and difftime functions.

6. Write programs that display the current date and time in each of the following formats. Use
strftime to do all or most of the formatting.

(a) atoi(str)
(b) atol(str)
(c) atoll(str)

(a) Year followed by day of year: YYYY–DDD, where DDD is a number between 001 and
366

(b) Year, week, and day of week: YYYY–Www–D, where ww is a number between 01 and
53, and D is a digit between 1 through 7, beginning with Monday and ending with Sun-
day

(c) Combined date and time: YYYY–MM–DDThh:mm:ss

W

(a) Sunday, June 3, 2007 05:48p
(b) Sun, 3 Jun 07 17:48
(c) 06/03/07 5:48:34 PM

W

W

W

c26.fm Page 704 Saturday, February 16, 2008 2:35 PM

705

27 Additional C99 Support for
Mathematics

Simplicity does not precede complexity, but follows it.

This chapter completes our coverage of the standard library by describing five
headers that are new in C99. These headers, like some of the older ones, provide
support for working with numbers. However, the new headers are more specialized
than the old ones. Some of them will appeal primarily to engineers, scientists, and
mathematicians, who may need complex numbers as well as greater control over
the representation of numbers and the way floating-point arithmetic is performed.

The first two sections discuss headers related to the integer types. The
<stdint.h> header (Section 27.1) declares integer types that have a specified
number of bits. The <inttypes.h> header (Section 27.2) provides macros that
are useful for reading and writing values of the <stdint.h> types.

The next two sections describe C99’s support for complex numbers. Section
27.3 includes a review of complex numbers as well as a discussion of C99’s com-
plex types. Section 27.4 then covers the <complex.h> header, which supplies
functions that perform mathematical operations on complex numbers.

The headers discussed in the last two sections are related to the floating types.
The <tgmath.h> header (Section 27.5) provides type-generic macros that make
it easier to call library functions in <complex.h> and <math.h>. The func-
tions in the <fenv.h> header (Section 27.6) give programs access to floating-
point status flags and control modes.

27.1 The <stdint.h> Header (C99): Integer Types

The <stdint.h> header declares integer types containing a specified number
of bits. In addition, it defines macros that represent the minimum and maxi-
mum values of these types as well as of integer types declared in other headers.

c27.fm Page 705 Saturday, February 16, 2008 2:51 PM

706 Chapter 27 Additional C99 Support for Mathematics

(These macros augment the ones in the <limits.h> header.) <stdint.h>
also defines parameterized macros that construct integer constants with specific
types. There are no functions in <stdint.h>.

The primary motivation for the <stdint.h> header lies in an observation
made in Section 7.5, which discussed the role of type definitions in making pro-
grams portable. For example, if i is an int variable, the assignment

i = 100000;

is fine if int is a 32-bit type but will fail if int is a 16-bit type. The problem is
that the C standard doesn’t specify exactly how many bits an int value has. The
standard does guarantee that the values of the int type must include all numbers
between –32767 and +32767 (which requires at least 16 bits), but that’s all it has to
say on the matter. In the case of the variable i, which needs to be able to store
100000, the traditional solution is to declare i to be of some type T, where T is a
type name created using typedef. The declaration of T can then be adjusted
based on the sizes of integers in a particular implementation. (On a 16-bit machine,
T would need to be long int, but on a 32-bit machine, it can be int.) This is the
strategy that Section 7.5 discusses.

If your compiler supports C99, there’s a better technique. The <stdint.h>
header declares names for types based on the width of the type (the number of bits
used to store values of the type, including the sign bit, if any). The typedef
names declared in <stdint.h> may refer to basic types (such as int, un-
signed int, and long int) or to extended integer types that are supported by a
particular implementation.

<stdint.h> Types

The types declared in <stdint.h> fall into five groups:

� Exact-width integer types. Each name of the form intN_t represents a
signed integer type with N bits, stored in two’s-complement form. (Two’s
complement, a technique used to represent signed integers in binary, is nearly
universal among modern computers.) For example, a value of type int16_t
would be a 16-bit signed integer. A name of the form uintN_t represents an
unsigned integer type with N bits. An implementation is required to provide
both intN_t and uintN_t for N = 8, 16, 32, and 64 if it supports integers
with these widths.

� Minimum-width integer types. Each name of the form int_leastN_t rep-
resents a signed integer type with at least N bits. A name of the form
uint_leastN_t represents an unsigned integer type with N or more bits.
<stdint.h> is required to provide at least the following minimum-width
types:

int_least8_t uint_least8_t
int_least16_t uint_least16_t

<limits.h> header ➤23.2

sign bit ➤7.1

c27.fm Page 706 Saturday, February 16, 2008 2:51 PM

27.1 The <stdint.h> Header (C99): Integer Types 707

int_least32_t uint_least32_t
int_least64_t uint_least64_t

� Fastest minimum-width integer types. Each name of the form
int_fastN_t represents the fastest signed integer type with at least N bits.
(The meaning of “fastest” is up to the implementation. If there’s no reason to
classify a particular type as the fastest, the implementation may choose any
signed integer type with at least N bits.) Each name of the form
uint_fastN_t represents the fastest unsigned integer type with N or more
bits. <stdint.h> is required to provide at least the following fastest mini-
mum-width types:

int_fast8_t uint_fast8_t
int_fast16_t uint_fast16_t
int_fast32_t uint_fast32_t
int_fast64_t uint_fast64_t

� Integer types capable of holding object pointers. The intptr_t type repre-
sents a signed integer type that can safely store any void * value. More pre-
cisely, if a void * pointer is converted to intptr_t type and then back to
void *, the resulting pointer and the original pointer will compare equal. The
uintptr_t type is an unsigned integer type with the same property as
intptr_t. The <stdint.h> header isn’t required to provide either type.

� Greatest-width integer types. intmax_t is a signed integer type that
includes all values that belong to any signed integer type. uintmax_t is an
unsigned integer type that includes all values that belong to any unsigned inte-
ger type. <stdint.h> is required to provide both types, which might be
wider than long long int.

The names in the first three groups are declared using typedef.
An implementation may provide exact-width integer types, minimum-width

integer types, and fastest minimum-width integer types for values of N in addition
to the ones listed above. Also, N isn’t required to be a power of 2 (although it will
normally be a multiple of 8). For example, an implementation might provide types
named int24_t and uint24_t.

Limits of Specified-Width Integer Types

For each signed integer type declared in <stdint.h>, the header defines macros
that specify the type’s minimum and maximum values. For each unsigned integer
type, <stdint.h> defines a macro that specifies the type’s maximum value. The
first three rows of Table 27.1 show the values of these macros for the exact-width
integer types. The remaining rows show the constraints imposed by the C99 stan-
dard on the minimum and maximum values of the other <stdint.h> types. (The
precise values of these macros are implementation-defined.) All macros in the
table represent constant expressions.

c27.fm Page 707 Saturday, February 16, 2008 2:51 PM

708 Chapter 27 Additional C99 Support for Mathematics

Limits of Other Integer Types

When the C99 committee created the <stdint.h> header, they decided that it
would be a good place to put macros describing the limits of integer types besides
the ones declared in <stdint.h> itself. These types are ptrdiff_t, size_t,
and wchar_t (which belong to <stddef.h>), sig_atomic_t (declared in
<signal.h>), and wint_t (declared in <wchar.h>). Table 27.2 lists these
macros and shows the value of each (or any constraints on the value imposed by
the C99 standard). In some cases, the constraints on the minimum and maximum
values of a type depend on whether the type is signed or unsigned. The macros in
Table 27.2, like the ones in Table 27.1, represent constant expressions.

Macros for Integer Constants

The <stdint.h> header also provides function-like macros that are able to con-
vert an integer constant (expressed in decimal, octal, or hexadecimal, but without a
U and/or L suffix) into a constant expression belonging to a minimum-width inte-
ger type or greatest-width integer type.

For each int_leastN_t type declared in <stdint.h>, the header
defines a parameterized macro named INTN_C that converts an integer constant to
this type (possibly using the integer promotions). For each uint_leastN_t
type, there’s a similar parameterized macro named UINTN_C. These macros are
useful for initializing variables, among other things. For example, if i is a variable
of type int_least32_t, writing

Name Value Description

INTN_MIN
INTN_MAX
UINTN_MAX

–(2N–1)
2N–1–1

2N–1

Minimum intN_t value
Maximum intN_t value
Maximum uintN_t value

INT_LEASTN_MIN
INT_LEASTN_MAX
UINT_LEASTN_MAX

≤–(2N–1–1)
≥2N–1–1

≥2N–1

Minimum int_leastN_t value
Maximum int_leastN_t value
Maximum uint_leastN_t value

INT_FASTN_MIN
INT_FASTN_MAX
UINT_FASTN_MAX

≤–(2N–1–1)
≥2N–1–1

≥2N–1

Minimum int_fastN_t value
Maximum int_fastN_t value
Maximum uint_fastN_t value

INTPTR_MIN

INTPTR_MAX

UINTPTR_MAX

≤–(215–1)
≥215–1
≥216–1

Minimum intptr_t value
Maximum intptr_t value
Maximum uintptr_t value

INTMAX_MIN

INTMAX_MAX

UINTMAX_MAX

≤–(263–1)
≥263–1
≥264–1

Minimum intmax_t value
Maximum intmax_t value
Maximum uintmax_t value

Table 27.1
<stdint.h> Limit

Macros for Specified-
Width Integer Types

<stddef.h> header ➤21.4

<signal.h> header ➤24.3

<wchar.h> header ➤25.5

integer constants ➤7.1

integer promotions ➤7.4

c27.fm Page 708 Saturday, February 16, 2008 2:51 PM

27.2 The <inttypes.h> Header (C99) 709

i = 100000;

is problematic, because the constant 100000 might be too large to represent using
type int (if int is a 16-bit type). However, the statement

i = INT32_C(100000);

is safe. If int_least32_t represents the int type, then INT32_C(100000)
has type int. But if int_least32_t corresponds to long int, then
INT32_C(100000) has type long int.

<stdint.h> has two other parameterized macros. INTMAX_C converts an
integer constant to type intmax_t, and UINTMAX_C converts an integer con-
stant to type uintmax_t.

27.2 The <inttypes.h> Header (C99)
Format Conversion of Integer Types

The <inttypes.h> header is closely related to the <stdint.h> header, the
topic of Section 27.1. In fact, <inttypes.h> includes <stdint.h>, so pro-
grams that include <inttypes.h> don’t need to include <stdint.h> as well.
The <inttypes.h> header extends <stdint.h> in two ways. First, it defines
macros that can be used in …printf and …scanf format strings for input/output
of the integer types declared in <stdint.h>. Second, it provides functions for
working with greatest-width integers.

Name Value Description

PTRDIFF_MIN
PTRDIFF_MAX

≤–65535
≥+65535

Minimum ptrdiff_t value
Maximum ptrdiff_t value

SIG_ATOMIC_MIN
≤–127

0
 (if signed)
 (if unsigned) Minimum sig_atomic_t value

SIG_ATOMIC_MAX
≥+127

≥255
 (if signed)
 (if unsigned) Maximum sig_atomic_t value

SIZE_MAX ≥65535 Maximum size_t value

WCHAR_MIN
≤–127

0
 (if signed)
 (if unsigned) Minimum wchar_t value

WCHAR_MAX
≥+127

≥255
 (if signed)
 (if unsigned) Maximum wchar_t value

WINT_MIN
≤–32767

0
 (if signed)
 (if unsigned) Minimum wint_t value

WINT_MAX
≥+32767

≥65535
 (if signed)
 (if unsigned) Maximum wint_t value

Table 27.2
<stdint.h> Limit

Macros for Other
Integer Types

Q&A

c27.fm Page 709 Saturday, February 16, 2008 2:51 PM

710 Chapter 27 Additional C99 Support for Mathematics

Macros for Format Specifiers

The types declared in the <stdint.h> header can be used to make programs more
portable, but they create new headaches for the programmer. Consider the problem
of displaying the value of the variable i, where i has type int_least32_t. The
statement

printf("i = %d\n", i);

may not work, because i doesn’t necessarily have int type. If int_least32_t
is another name for the long int type, then the correct conversion specification is
%ld, not %d. In order to use the …printf and …scanf functions in a portable
manner, we need a way to write conversion specifications that correspond to each
of the types declared in <stdint.h>. That’s where the <inttypes.h> header
comes in. For each <stdint.h> type, <inttypes.h> provides a macro that
expands into a string literal containing the proper conversion specifier for that type.

Each macro name has three parts:

� The name begins with either PRI or SCN, depending on whether the macro
will be used in a call of a …printf function or a …scanf function.

� Next comes a one-letter conversion specifier (d or i for a signed type; o, u, x,
or X for an unsigned type).

� The last part of the name indicates which <stdint.h> type is involved. For
example, the name of a macro that corresponds to the int_leastN_t type
would end with LEASTN.

Let’s return to our previous example, which involved displaying an integer of
type int_least32_t. Instead of using d as the conversion specifier, we’ll
switch to the PRIdLEAST32 macro. To use the macro, we’ll split the printf
format string into three pieces and replace the d in %d by PRIdLEAST32:

printf("i = %" PRIdLEAST32 "\n", i);

The value of PRIdLEAST32 is probably either "d" (if int_least32_t is the
same as the int type) or "ld" (if int_least32_t is the same as long int).
Let’s assume that it’s "ld" for the sake of discussion. After macro replacement,
the statement becomes

printf("i = %" "ld" "\n", i);

Once the compiler joins the three string literals into one (which it will do automat-
ically), the statement will have the following appearance:

printf("i = %ld\n", i);

Note that we can still include flags, a field width, and other options in our conver-
sion specification; PRIdLEAST32 supplies only the conversion specifier and pos-
sibly a length modifier, such as the letter l.

Table 27.3 lists the <inttypes.h> macros.

c27.fm Page 710 Saturday, February 16, 2008 2:51 PM

27.2 The <inttypes.h> Header (C99) 711

Functions for Greatest-Width Integer Types

In addition to defining macros, the <inttypes.h> header provides functions for
working with greatest-width integers, which were introduced in Section 27.1. A
greatest-width integer has type intmax_t (the widest signed integer type sup-
ported by an implementation) or uintmax_t (the widest unsigned integer type).
These types might be the same width as the long long int type, but they could
be wider. For example, long long int might be 64 bits wide and intmax_t
and uintmax_t might be 128 bits wide.

imaxabs
imaxdiv

The imaxabs and imaxdiv functions are greatest-width versions of the
integer arithmetic functions declared in <stdlib.h>. The imaxabs function
returns the absolute value of its argument. Both the argument and the return value
have type intmax_t. The imaxdiv function divides its first argument by its

…printf Macros for Signed Integers

PRIdN
PRIiN

PRIdLEASTN
PRIiLEASTN

PRIdFASTN
PRIiFASTN

PRIdMAX
PRIiMAX

PRIdPTR
PRIiPTR

…printf Macros for Unsigned Integers

PRIoN
PRIuN
PRIxN
PRIXN

PRIoLEASTN
PRIuLEASTN
PRIxLEASTN
PRIXLEASTN

PRIoFASTN
PRIuFASTN
PRIxFASTN
PRIXFASTN

PRIoMAX
PRIuMAX
PRIxMAX
PRIXMAX

PRIoPTR
PRIuPTR
PRIxPTR
PRIXPTR

…scanf Macros for Signed Integers

SCNdN
SCNiN

SCNdLEASTN
SCNiLEASTN

SCNdFASTN
SCNiFASTN

SCNdMAX
SCNiMAX

SCNdPTR
SCNiPTR

…scanf Macros for Unsigned Integers

SCNoN
SCNuN
SCNxN

SCNoLEASTN
SCNuLEASTN
SCNxLEASTN

SCNoFASTN
SCNuFASTN
SCNxFASTN

SCNoMAX
SCNuMAX
SCNxMAX

SCNoPTR
SCNuPTR
SCNxPTR

Table 27.3
Format-Specifier Macros

in <inttypes.h>

intmax_t imaxabs(intmax_t j);
imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);
intmax_t strtoimax(const char * restrict nptr,
 char ** restrict endptr,
 int base);
uintmax_t strtoumax(const char * restrict nptr,
 char ** restrict endptr,
 int base);
intmax_t wcstoimax(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr,
 int base);
uintmax_t wcstoumax(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr,
 int base);

<stdlib.h> header ➤26.2

c27.fm Page 711 Saturday, February 16, 2008 2:51 PM

712 Chapter 27 Additional C99 Support for Mathematics

second, returning an imaxdiv_t value. imaxdiv_t is a structure that contains
both a quotient member (named quot) and a remainder member (rem); both
members have type intmax_t.

strtoimax
strtoumax

The strtoimax and strtoumax functions are greatest-width versions of
the numeric conversion functions of <stdlib.h>. The strtoimax function is
the same as strtol and strtoll, except that it returns a value of type int-
max_t. The strtoumax function is equivalent to strtoul and strtoull,
except that it returns a value of type uintmax_t. Both strtoimax and str-
toumax return zero if no conversion could be performed. Both functions store
ERANGE in errno if a conversion produces a value that’s outside the range of the
function’s return type. In addition, strtoimax returns the smallest or largest
intmax_t value (INTMAX_MIN or INTMAX_MAX); strtoumax returns the
largest uintmax_t value, UINTMAX_MAX.

wcstoimax
wcstoumax

The wcstoimax and wcstoumax functions are greatest-width versions of
the wide-string numeric conversion functions of <wchar.h>. The wcstoimax
function is the same as wcstol and wcstoll, except that it returns a value of
type intmax_t. The wcstoumax function is equivalent to wcstoul and wcs-
toull, except that it returns a value of type uintmax_t. Both wcstoimax and
wcstoumax return zero if no conversion could be performed. Both functions
store ERANGE in errno if a conversion produces a value that’s outside the range
of the function’s return type. In addition, wcstoimax returns the smallest or larg-
est intmax_t value (INTMAX_MIN or INTMAX_MAX); wcstoumax returns
the largest uintmax_t value, UINTMAX_MAX.

27.3 Complex Numbers (C99)

Complex numbers are used in scientific and engineering applications as well as
in mathematics. C99 provides several complex types, allows operators to have
complex operands, and adds a header named <complex.h> to the standard
library. There’s a catch, though: complex numbers aren’t supported by all im-
plementations of C99. Section 14.3 discussed the difference between a hosted
C99 implementation and a freestanding implementation. A hosted implementa-
tion must accept any program that conforms to the C99 standard, whereas a
freestanding implementation doesn’t have to compile programs that use com-
plex types or standard headers other than <float.h>, <iso646.h>, <lim-
its.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, and <stdint.h>.
Thus, a freestanding implementation may lack both complex types and the
<complex.h> header.

We’ll start with a review of the mathematical definition of complex numbers
and complex arithmetic. We’ll then look at C99’s complex types and the operations
that can be performed on values of these types. Coverage of complex numbers con-
tinues in Section 27.4, which describes the <complex.h> header.

<wchar.h> header ➤25.5

c27.fm Page 712 Saturday, February 16, 2008 2:51 PM

27.3 Complex Numbers (C99) 713

Definition of Complex Numbers

Let i be the square root of –1 (a number such that i2 = –1). i is known as the imagi-
nary unit; engineers often represent it by the symbol j instead of i. A complex
number has the form a + bi, where a and b are real numbers. a is said to be the real
part of the number, and b is the imaginary part. Note that the complex numbers
include the real numbers as a special case (when b = 0).

Why are complex numbers useful? For one thing, they allow solutions to prob-
lems that are otherwise unsolvable. Consider the equation x2 + 1 = 0, which has no
solution if x is restricted to the real numbers. If complex numbers are allowed,
there are two solutions: x = i and x = –i.

Complex numbers can be thought of as points in a two-dimensional space
known as the complex plane. Each complex number—a point in the complex
plane—is represented by Cartesian coordinates, where the real part of the number
corresponds to the x-coordinate of the point, and the imaginary part corresponds
to the y-coordinate. For example, the complex numbers 2 + 2.5i, 1 – 3i, –3 – 2i,
and –3.5 + 1.5i can be plotted as follows:

An alternative system known as polar coordinates can also be used to specify
a point on the complex plane. With polar coordinates, a complex number z is repre-
sented by the values r and θ, where r is the length of a line segment from the origin
to z, and θ is the angle between this segment and the real axis:

Imaginary

–3 2 3–2 –1 1

1

2

3

–1

–2

–3

2 + 2.5i

1 – 3i

–3.5 + 1.5i

–3 – 2i

axis

Real
axis

Imaginary

z = a + bi

axis

Real
axisa

b

θ

r

c27.fm Page 713 Saturday, February 16, 2008 2:51 PM

714 Chapter 27 Additional C99 Support for Mathematics

r is called the absolute value of z. (The absolute value is also known as the norm,
modulus, or magnitude.) θ is said to be the argument (or phase angle) of z. The
absolute value of a + bi is given by the following equation:

For additional information about converting from Cartesian coordinates to
polar coordinates and vice versa, see the Programming Projects at the end of the
chapter.

Complex Arithmetic

The sum of two complex numbers is found by separately adding the real parts of
the two numbers and the imaginary parts. For example,

(3 – 2i) + (1.5 + 3i) = (3 + 1.5) + (–2 + 3)i = 4.5 + i

The difference of two complex numbers is computed in a similar manner, by sepa-
rately subtracting the real parts and the imaginary parts. For example,

(3 – 2i) – (1.5 + 3i) = (3 – 1.5) + (–2 – 3)i = 1.5 – 5i

Multiplying complex numbers is done by multiplying each term of the first
number by each term of the second and then summing the products:

(3 – 2i) × (1.5 + 3i) = (3 × 1.5) + (3 × 3i) + (–2i × 1.5) + (–2i × 3i)
 = 4.5 + 9i – 3i – 6i2 = 10.5 + 6i

Note that the identity i2 = –1 is used to simplify the result.
Dividing complex numbers is a bit harder. First, we need the concept of the

complex conjugate of a number, which is found by switching the sign of the num-
ber’s imaginary part. For example, 7 – 4i is the conjugate of 7 + 4i, and 7 + 4i is the
conjugate of 7 – 4i. We’ll use z* to denote the conjugate of a complex number z.

The quotient of two complex numbers y and z is given by the formula

y/z = yz*/zz*

It turns out that zz* is always a real number, so dividing zz* into yz* is easy (just
divide both the real part and the imaginary part of yz* separately). The following
example shows how to divide 10.5 + 6i by 3 – 2i:

Complex Types in C99

C99 has considerable built-in support for complex numbers. Without including any
library headers, we can declare variables that represent complex numbers and then
perform arithmetic and other operations on these variables.

a bi+ a2 b2+=

10.5 6i+
3 2i–

--------------------- 10.5 6i+() 3 2i+()
3 2i–() 3 2i+()

-- 19.5 39i+
13

------------------------ 1.5 3i+= = =

c27.fm Page 714 Saturday, February 16, 2008 2:51 PM

27.3 Complex Numbers (C99) 715

C99 provides three complex types, which were first introduced in Section 7.2:
float _Complex, double _Complex, and long double _Complex.
These types can be used in the same way as other types in C: to declare variables,
parameters, return types, array elements, members of structures and unions, and so
forth. For example, we could declare three variables as follows:

float _Complex x;
double _Complex y;
long double _Complex z;

Each of these variables is stored just like an array of two ordinary floating-point
numbers. Thus, y is stored as two adjacent double values, with the first value
containing the real part of y and the second containing the imaginary part.

C99 also allows implementations to provide imaginary types (the keyword
_Imaginary is reserved for this purpose) but doesn’t make this a requirement.

Operations on Complex Numbers

Complex numbers may be used in expressions, although only the following opera-
tors allow complex operands:

� Unary + and -

� Logical negation (!)

� sizeof

� Cast

� Multiplicative (* and / only)

� Additive (+ and -)

� Equality (== and !=)

� Logical and (&&)

� Logical or (||)

� Conditional (?:)

� Simple assignment (=)

� Compound assignment (*=, /=, +=, and -= only)

� Comma (,)

Some notable omissions from the list include the relational operators (<, <=, >,
and >=), along with the increment (++) and decrement (--) operators.

Conversion Rules for Complex Types

Section 7.4 described the C99 rules for type conversion, but without covering the
complex types. It’s now time to rectify that situation. Before we get to the conver-
sion rules, though, we’ll need some new terminology. For each floating type there is
a corresponding real type. In the case of the real floating types (float, double,
and long double), the corresponding real type is the same as the original type.

c27.fm Page 715 Saturday, February 16, 2008 2:51 PM

716 Chapter 27 Additional C99 Support for Mathematics

For the complex types, the corresponding real type is the original type without the
word _Complex. (The corresponding real type for float _Complex is float,
for example.)

We’re now ready to discuss the general rules that govern type conversions
involving complex types. I’ll group them into three categories.

� Complex to complex. The first rule concerns conversions from one complex
type to another, such as converting from float _Complex to double
_Complex. In this situation, the real and imaginary parts are converted sepa-
rately, using the rules for the corresponding real types (see Section 7.4). In our
example, the real part of the float _Complex value would be converted to
double, yielding the real part of the double _Complex value; the imagi-
nary part would be converted to double in a similar fashion.

� Real to complex. When a value of a real type is converted to a complex type,
the real part of the number is converted using the rules for converting from one
real type to another. The imaginary part of the result is set to positive or
unsigned zero.

� Complex to real. When a value of a complex type is converted to a real type,
the imaginary part of the number is discarded; the real part is converted using
the rules for converting from one real type to another.

One particular set of type conversions, known as the usual arithmetic conver-
sions, are automatically applied to the operands of most binary operators. There
are special rules for performing the usual arithmetic conversions when at least one
of the two operands has a complex type:

1. If the corresponding real type of either operand is long double, convert
the other operand so that its corresponding real type is long double.

2. Otherwise, if the corresponding real type of either operand is double,
convert the other operand so that its corresponding real type is double.

3. Otherwise, one of the operands must have float as its corresponding real
type. Convert the other operand so that its corresponding real type is also
float.

A real operand still belongs to a real type after conversion, and a complex operand
still belongs to a complex type.

Normally, the goal of the usual arithmetic conversions is to convert both
operands to a common type. However, when a real operand is mixed with a com-
plex operand, performing the usual arithmetic conversions causes the operands to
have a common real type, but not necessarily the same type. For example, add-
ing a float operand and a double _Complex operand causes the float
operand to be converted to double rather than double _Complex. The type
of the result will be the complex type whose corresponding real type matches the
common real type. In our example, the type of the result will be double
_Complex.

c27.fm Page 716 Saturday, February 16, 2008 2:51 PM

27.4 The <complex.h> Header (C99): Complex Arithmetic 717

27.4 The <complex.h> Header (C99): Complex
Arithmetic

As we saw in Section 27.3, C99 has significant built-in support for complex num-
bers. The <complex.h> header provides additional support in the form of math-
ematical functions on complex numbers, as well as some very useful macros and a
pragma. Let’s look at the macros first.

<complex.h> Macros

The <complex.h> header defines the macros shown in Table 27.4.

complex serves as an alternative name for the awkward _Complex keyword.
We’ve seen a situation like this before with the Boolean type: the C99 committee
chose a new keyword (_Bool) that shouldn’t break existing programs, but pro-
vided a better name (bool) as a macro defined in the <stdbool.h> header.
Programs that include <complex.h> may use complex instead of _Complex,
just as programs that include <stdbool.h> may use bool rather than _Bool.

The I macro plays an important role in C99. There’s no special language fea-
ture for creating a complex number from its real part and imaginary part. Instead, a
complex number can be constructed by multiplying the imaginary part by I and
adding the real part:

double complex dc = 2.0 + 3.5 * I;

The value of the variable dc is 2 + 3.5i.
Note that both _Complex_I and I represent the imaginary unit i. Presum-

ably most programmers will use I rather than _Complex_I. However, since I
might already be used in existing code for some other purpose, _Complex_I is
available as a backup. If the name I causes a conflict, it can always be undefined:

#include <complex.h>
#undef I

The programmer might then define a different—but still short—name for i, such as
J:

#define J _Complex_I

Name Value

complex
_Complex_I
I

_Complex
Imaginary unit; has type const float _Complex
_Complex_I

Table 27.4
<complex.h> Macros

<stdbool.h> header ➤21.5

c27.fm Page 717 Saturday, February 16, 2008 2:51 PM

718 Chapter 27 Additional C99 Support for Mathematics

Also note that the type of _Complex_I (and hence the type of I) is float
_Complex, not double _Complex. When it’s used in expressions, I will auto-
matically be widened to double _Complex or long double _Complex if
necessary.

The CX_LIMITED_RANGE Pragma

The <complex.h> header provides a pragma named CX_LIMITED_RANGE
that allows the compiler to use the following standard formulas for multiplication,
division, and absolute value:

Using these formulas may cause anomalous results in some cases because of over-
flow or underflow; moreover, the formulas don’t handle infinities properly.
Because of these potential problems, C99 doesn’t use the formulas without the
programmer’s permission.

The CX_LIMITED_RANGE pragma has the following appearance:

#pragma STDC CX_LIMITED_RANGE on-off-switch

where on-off-switch is either ON, OFF, or DEFAULT. If the pragma is used with the
value ON, it allows the compiler to use the formulas listed above. The value OFF
causes the compiler to perform the calculations in a way that’s safer but possibly
slower. The default setting, indicated by the DEFAULT choice, is equivalent to
OFF.

The duration of the CX_LIMITED_RANGE pragma depends on where it’s
used in a program. When it appears at the top level of a source file, outside any
external declarations, it remains in effect until the next CX_LIMITED_RANGE
pragma or the end of the file. The only other place that a CX_LIMITED_RANGE
pragma might appear is at the beginning of a compound statement (possibly the
body of a function); in that case, the pragma remains in effect until the next
CX_LIMITED_RANGE pragma (even one inside a nested compound statement) or
the end of the compound statement. At the end of a compound statement, the state
of the switch returns to its value before the compound statement was entered.

<complex.h> Functions

The <complex.h> header provides functions similar to those in the C99 version
of <math.h>. The <complex.h> functions are divided into groups, just as they
were in <math.h>: trigonometric, hyperbolic, exponential and logarithmic, and
power and absolute-value. The only functions that are unique to complex numbers
are the manipulation functions, the last group discussed in this section.

#pragma directive ➤14.5

a bi+() c di+()× ac bd–() bc ad+()i+=

a bi+() c di+()⁄ ac bd+() bc ad–()i+[] c2 d2+()⁄=

a bi+ a2 b2+=

c27.fm Page 718 Saturday, February 16, 2008 2:51 PM

27.4 The <complex.h> Header (C99): Complex Arithmetic 719

Each <complex.h> function comes in three versions: a float complex
version, a double complex version, and a long double complex version.
The name of the float complex version ends with f, and the name of the
long double complex version ends with l.

Before we delve into the <complex.h> functions, a few general comments
are in order. First, as with the <math.h> functions, the <complex.h> functions
expect angle measurements to be in radians, not degrees. Second, when an error
occurs, the <complex.h> functions may store a value in the errno variable,
but aren’t required to.

There’s one last thing we’ll need before tackling the <complex.h> func-
tions. The term branch cut often appears in descriptions of functions that might
conceivably have more than one possible return value. In the realm of complex
numbers, choosing which value to return creates a branch cut: a curve (often just a
line) in the complex plane around which a function is discontinuous. Branch cuts
are usually not unique, but rather are determined by convention. An exact definition
of branch cuts takes us further into complex analysis than I’d like to go, so I’ll sim-
ply reproduce the restrictions from the C99 standard without further explanation.

Trigonometric Functions

cacos The cacos function computes the complex arc cosine, with branch cuts outside the
interval [–1, +1] along the real axis. The return value lies in a strip mathematically
unbounded along the imaginary axis and in the interval [0, π] along the real axis.

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

errno variable ➤24.2

c27.fm Page 719 Saturday, February 16, 2008 2:51 PM

720 Chapter 27 Additional C99 Support for Mathematics

casin The casin function computes the complex arc sine, with branch cuts outside
the interval [–1, +1] along the real axis. The return value lies in a strip mathemati-
cally unbounded along the imaginary axis and in the interval [–π/2, +π/2] along the
real axis.

catan The catan function computes the complex arc tangent, with branch cuts out-
side the interval [–i, +i] along the imaginary axis. The return value lies in a strip math-
ematically unbounded along the imaginary axis and in the interval [–π/2, +π/2] along
the real axis.

ccos
csin
ctan

The ccos function computes the complex cosine, the csin function com-
putes the complex sine, and the ctan function computes the complex tangent.

Hyperbolic Functions

cacosh The cacosh function computes the complex arc hyperbolic cosine, with a branch
cut at values less than 1 along the real axis. The return value lies in a half-strip of
nonnegative values along the real axis and in the interval [–iπ, +iπ] along the imag-
inary axis.

casinh The casinh function computes the complex arc hyperbolic sine, with branch
cuts outside the interval [–i, +i] along the imaginary axis. The return value lies in a
strip mathematically unbounded along the real axis and in the interval [–iπ/2,
+iπ/2] along the imaginary axis.

catanh The catanh function computes the complex arc hyperbolic tangent, with
branch cuts outside the interval [–1, +1] along the real axis. The return value lies in

double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

c27.fm Page 720 Saturday, February 16, 2008 2:51 PM

27.4 The <complex.h> Header (C99): Complex Arithmetic 721

a strip mathematically unbounded along the real axis and in the interval [–iπ/2,
+iπ/2] along the imaginary axis.

ccosh
csinh
ctanh

The ccosh function computes the complex hyperbolic cosine, the csinh
function computes the complex hyperbolic sine, and the ctanh function com-
putes the complex hyperbolic tangent.

Exponential and Logarithmic Functions

cexp The cexp function computes the complex base-e exponential value.
clog The clog function computes the complex natural (base-e) logarithm, with a

branch cut along the negative real axis. The return value lies in a strip mathemati-
cally unbounded along the real axis and in the interval [–iπ, +iπ] along the imagi-
nary axis.

Power and Absolute-Value Functions

cabs The cabs function computes the complex absolute value.
cpow The cpow function returns x raised to the power y, with a branch cut for the

first parameter along the negative real axis.
csqrt The csqrt function computes the complex square root, with a branch cut

along the negative real axis. The return value lies in the right half-plane (including
the imaginary axis).

double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

double complex cpow(double complex x,
 double complex y);
float complex cpowf(float complex x,
 float complex y);
long double complex cpowl(long double complex x,
 long double complex y);

double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

c27.fm Page 721 Saturday, February 16, 2008 2:51 PM

722 Chapter 27 Additional C99 Support for Mathematics

Manipulation Functions

carg The carg function returns the argument (phase angle) of z, with a branch cut
along the negative real axis. The return value lies in the interval [–π, +π].

cimag The cimag function returns the imaginary part of z.
conj The conj function returns the complex conjugate of z.

cproj The cproj function computes a projection of z onto the Riemann sphere.
The return value is equal to z unless one of its parts is infinite, in which case
cproj returns INFINITY + I * copysign(0.0, cimag(z)).

creal The creal function returns the real part of z.

PROGRAM Finding the Roots of a Quadratic Equation

The roots of the quadratic equation

ax2 + bx + c = 0

are given by the quadratic formula:

In general, the value of x will be a complex number, because the square root of b2 –
4ac is imaginary if b2 – 4ac (known as the discriminant) is less than 0.

For example, suppose that a = 5, b = 2, and c = 1, which gives us the equation

5x2 + 2x + 1 = 0

The value of the discriminant is 4 – 20 = –16, so the roots of the equation will be

double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

x b b2 4ac–±–
2a

------------------------------------=

c27.fm Page 722 Saturday, February 16, 2008 2:51 PM

27.5 The <tgmath.h> Header (C99): Type-Generic Math 723

complex numbers. The following program, which uses several <complex.h>
functions, computes and displays the roots.

quadratic.c /* Finds the roots of the equation 5x**2 + 2x + 1 = 0 */

#include <complex.h>
#include <stdio.h>

int main(void)
{
 double a = 5, b = 2, c = 1;
 double complex discriminant_sqrt = csqrt(b * b - 4 * a * c);
 double complex root1 = (-b + discriminant_sqrt) / (2 * a);
 double complex root2 = (-b - discriminant_sqrt) / (2 * a);

 printf("root1 = %g + %gi\n", creal(root1), cimag(root1));
 printf("root2 = %g + %gi\n", creal(root2), cimag(root2));

 return 0;
}

Here’s the output of the program:

root1 = -0.2 + 0.4i
root2 = -0.2 + -0.4i

The quadratic.c program shows how to display a complex number by
extracting the real and imaginary parts and then writing each as a floating-point
number. printf lacks conversion specifiers for complex numbers, so there’s no
easier technique. There’s also no shortcut for reading complex numbers; a program
will need to obtain the real and imaginary parts separately and then combine them
into a single complex number.

27.5 The <tgmath.h> Header (C99): Type-Generic
Math

The <tgmath.h> header provides parameterized macros with names that match
functions in <math.h> and <complex.h>. These type-generic macros can
detect the types of the arguments passed to them and substitute a call of the appro-
priate version of a <math.h> or <complex.h> function.

In C99, there are multiple versions of many math functions, as we saw in Sec-
tions 23.3, 23.4, and 27.4. For example, the sqrt function comes in a double
version (sqrt), a float version (sqrtf), and a long double version
(sqrtl), as well as three versions for complex numbers (csqrt, csqrtf, and
csqrtl). By using <tgmath.h>, the programmer can simply invoke sqrt
without having to worry about which version is needed: the call sqrt(x) could
be a call of any of the six versions of sqrt, depending on the type of x.

c27.fm Page 723 Saturday, February 16, 2008 2:51 PM

724 Chapter 27 Additional C99 Support for Mathematics

One advantage of using <tgmath.h> is that calls of math functions become
easier to write (and read!). More importantly, a call of a type-generic macro won’t
have to be modified in the future should the type of its argument(s) change.

The <tgmath.h> header includes both <math.h> and <complex.h>, by
the way, so including <tgmath.h> provides access to the functions in both headers.

Type-Generic Macros
The type-generic macros defined in the <tgmath.h> header fall into three
groups, depending on whether they correspond to functions in <math.h>,
<complex.h>, or both headers.

Table 27.5 lists the type-generic macros that correspond to functions in both
<math.h> and <complex.h>. Note that the name of each type-generic macro
matches the name of the “unsuffixed” <math.h> function (acos as opposed to
acosf or acosl, for example).

The macros in the second group (Table 27.6) correspond only to functions in
<math.h>. Each macro has the same name as the unsuffixed <math.h> func-
tion. Passing a complex argument to any of these macros causes undefined behavior.

<math.h>
Function

<complex.h>
Function

Type-Generic
Macro

 acos
 asin
 atan
 acosh
 asinh
 atanh
 cos
 sin
 tan
 cosh
 sinh
 tanh
 exp
 log
 pow
 sqrt
 fabs

 cacos
 casin
 catan
 cacosh
 casinh
 catanh
 ccos
 csin
 ctan
 ccosh
 csinh
 ctanh
 cexp
 clog
 cpow
 csqrt
 cabs

 acos
 asin
 atan
 acosh
 asinh
 atanh
 cos
 sin
 tan
 cosh
 sinh
 tanh
 exp
 log
 pow
 sqrt
 fabs

Table 27.5
Type-Generic Macros in
<tgmath.h> (Group 1)

atan2
cbrt
ceil
copysign
erf
erfc
exp2
expm1
fdim
floor

fma
fmax
fmin
fmod
frexp
hypot
ilogb
ldexp
lgamma
llrint

llround
log10
log1p
log2
logb
lrint
lround
nearbyint
nextafter
nexttoward

remainder
remquo
rint
round
scalbn
scalbln
tgamma
trunc

Table 27.6
Type-Generic Macros in
<tgmath.h> (Group 2)

c27.fm Page 724 Saturday, February 16, 2008 2:51 PM

27.5 The <tgmath.h> Header (C99): Type-Generic Math 725

The macros in the final group (Table 27.7) correspond only to functions in
<complex.h>.

Between the three tables, all functions in <math.h> and <complex.h>
that have multiple versions are accounted for, with the exception of modf.

Invoking a Type-Generic Macro
To understand what happens when a type-generic macro is invoked, we first need
the concept of a generic parameter. Consider the prototypes for the three versions
of the nextafter function (from <math.h>):

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

The types of both x and y change depending on the version of nextafter, so
both parameters are generic. Now consider the prototypes for the three versions of
the nexttoward function:

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

The first parameter is generic, but the second is not (it always has type long
double). Generic parameters always have type double (or double complex)
in the unsuffixed version of a function.

When a type-generic macro is invoked, the first step is to determine whether it
should be replaced by a <math.h> function or a <complex.h> function. (This
step doesn’t apply to the macros in Table 27.6, which are always replaced by a
<math.h> function, or the macros in Table 27.7, which are always replaced by a
<complex.h> function.) The rule is simple: if any argument corresponding to a
generic parameter is complex, then a <complex.h> function is chosen; other-
wise, a <math.h> function is selected.

The next step is to deduce which version of the <math.h> function or
<complex.h> function is being called. Let’s assume that the function being
called belongs to <math.h>. (The rules for the <complex.h> case are analo-
gous.) The following rules are used, in the order listed:

1. If any argument corresponding to a generic parameter has type long dou-
ble, the long double version of the function is called.

2. If any argument corresponding to a generic parameter has type double or
any integer type, the double version of the function is called.

3. Otherwise, the float version of the function is called.

Rule 2 is a little unusual: it states that an integer argument causes the double ver-
sion of a function to be called, not the float version, which you might expect.

carg
cimag

conj
cproj

crealTable 27.7
Type-Generic Macros in
<tgmath.h> (Group 3)

Q&A

Q&A

c27.fm Page 725 Saturday, February 16, 2008 2:51 PM

726 Chapter 27 Additional C99 Support for Mathematics

As an example, assume that the following variables have been declared:

int i;
float f;
double d;
long double ld;
float complex fc;
double complex dc;
long double complex ldc;

For each macro invocation in the left column below, the corresponding function
call appears in the right column:

Note that writing sqrt(i) causes the double version of sqrt to be called, not
the float version.

These rules also cover macros with more than one parameter. For example, the
macro invocation pow(ld, f) will be replaced by the call powl(ld, f). Both
of pow’s parameters are generic; because one of the arguments has type long
double, rule 1 states that the long double version of pow will be called.

27.6 The <fenv.h> Header (C99): Floating-Point
Environment

IEEE Standard 754 is the most widely used representation for floating-point num-
bers. (This standard is also known as IEC 60559, which is how the C99 standard
refers to it.) The purpose of the <fenv.h> header is to give programs access to
the floating-point status flags and control modes specified in the IEEE standard.
Although <fenv.h> was designed in a general fashion that allows it to work with
other floating-point representations, supporting the IEEE standard was the reason
for the header’s creation.

A discussion of why programs might need access to status flags and control
modes is beyond the scope of this book. For good examples, see “What every com-
puter scientist should know about floating-point arithmetic” by David Goldberg
(ACM Computing Surveys, vol. 23, no. 1 (March 1991): 5–48), which can be found
on the Web.

Macro
Invocation

Equivalent
Function Call

sqrt(i)
sqrt(f)
sqrt(d)
sqrt(ld)
sqrt(fc)
sqrt(dc)
sqrt(ldc)

sqrt(i)
sqrtf(f)
sqrt(d)
sqrtl(ld)
csqrtf(fc)
csqrt(dc)
csqrtl(ldc)

c27.fm Page 726 Saturday, February 16, 2008 2:51 PM

27.6 The <fenv.h> Header (C99): Floating-Point Environment 727

Floating-Point Status Flags and Control Modes

Section 7.2 discussed some of the basic properties of IEEE Standard 754. Sec-
tion 23.4, which covered the C99 additions to the <math.h> header, gave addi-
tional detail. Some of that discussion, particularly concerning exceptions and
rounding directions, is directly relevant to the <fenv.h> header. Before we con-
tinue, let’s review some of the material from Section 23.4 as well as define a few
new terms.

A floating-point status flag is a system variable that’s set when a floating-
point exception is raised. In the IEEE standard, there are five types of floating-
point exceptions: overflow, underflow, division by zero, invalid operation (the
result of an arithmetic operation was NaN), and inexact (the result of an arithmetic
operation had to be rounded). Each exception has a corresponding status flag.

The <fenv.h> header declares a type named fexcept_t that’s used for
working with the floating-point status flags. An fexcept_t object represents
the collective value of these flags. Although fexcept_t can simply be an inte-
ger type, with single bits representing individual flags, the C99 standard doesn’t
make this a requirement. Other alternatives exist, including the possibility that
fexcept_t is a structure, with one member for each exception. This member
could store additional information about the corresponding exception, such as the
address of the floating-point instruction that caused the exception to be raised.

A floating-point control mode is a system variable that may be set by a pro-
gram to change the future behavior of floating-point arithmetic. The IEEE standard
requires a “directed-rounding” mode that controls the rounding direction when a
number can’t be represented exactly using a floating-point representation. There
are four rounding directions: (1) Round toward nearest. Rounds to the nearest rep-
resentable value. If a number falls halfway between two values, it’s rounded to the
“even” value (the one whose least significant bit is zero). (2) Round toward zero.
(3) Round toward positive infinity. (4) Round toward negative infinity. The default
rounding direction is round toward nearest. Some implementations of the IEEE
standard provide two additional control modes: a mode that controls rounding pre-
cision and a “trap enablement” mode that determines whether a floating-point pro-
cessor will trap (or stop) when an exception is raised.

The term floating-point environment refers to the combination of floating-
point status flags and control modes supported by a particular implementation. A
value of type fenv_t represents an entire floating-point environment. The
fenv_t type, like the fexcept_t type, is declared in <fenv.h>.

<fenv.h> Macros

The <fenv.h> header potentially defines the macros listed in Table 27.8. Only
two of these macros (FE_ALL_EXCEPT and FE_DFL_ENV) are required, how-
ever. An implementation may define additional macros not listed in the table; the
names of these macros must begin with FE_ and an uppercase letter.

c27.fm Page 727 Saturday, February 16, 2008 2:51 PM

728 Chapter 27 Additional C99 Support for Mathematics

The FENV_ACCESS Pragma

The <fenv.h> header provides a pragma named FENV_ACCESS that’s used to
notify the compiler of a program’s intention to use the functions provided by this
header. Knowing which portions of a program will use the capabilities of
<fenv.h> is important for the compiler, because some common optimizations
can’t be performed if control modes don’t have their customary settings or may
change during program execution.

The FENV_ACCESS pragma has the following appearance:

#pragma STDC FENV_ACCESS on-off-switch

where on-off-switch is either ON, OFF, or DEFAULT. If the pragma is used with the
value ON, it informs the compiler that the program might test floating-point status
flags or alter a floating-point control mode. The value OFF indicates that flags
won’t be tested and default control modes are in effect. The meaning of DEFAULT
is implementation-defined; it represents either ON or OFF.

The duration of the FENV_ACCESS pragma depends on where it’s used in a
program. When it appears at the top level of a source file, outside any external dec-
larations, it remains in effect until the next FENV_ACCESS pragma or the end of
the file. The only other place that an FENV_ACCESS pragma might appear is at
the beginning of a compound statement (possibly the body of a function); in that
case, the pragma remains in effect until the next FENV_ACCESS pragma (even
one inside a nested compound statement) or the end of the compound statement. At
the end of a compound statement, the state of the switch returns to its value before
the compound statement was entered.

It’s the programmer’s responsibility to use the FENV_ACCESS pragma to
indicate regions of a program in which low-level access to floating-point hardware

Name Value Description

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

Integer constant
expressions whose
bits do not overlap

Defined only if the corresponding floating-
point exception is supported by the imple-
mentation. An implementation may define
additional macros that represent floating-
point exceptions.

FE_ALL_EXCEPT See description Bitwise or of all floating-point exception
macros defined by the implementation. Has
the value 0 if no such macros are defined.

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

Integer constant
expressions with
distinct nonnega-
tive values

Defined only if the corresponding rounding
direction can be retrieved and set via the
fegetround and fesetround func-
tions. An implementation may define addi-
tional macros that represent rounding
directions.

FE_DFL_ENV A value of type
const fenv_t *

Represents the default (program start-up)
floating-point environment. An implemen-
tation may define additional macros that
represent floating-point environments.

Table 27.8
<fenv.h> Macros

#pragma directive ➤14.5

c27.fm Page 728 Saturday, February 16, 2008 2:51 PM

27.6 The <fenv.h> Header (C99): Floating-Point Environment 729

is needed. Undefined behavior occurs if a program tests floating-point status flags
or runs under non-default control modes in a region for which the value of the
pragma switch is OFF.

Typically, an FENV_ACCESS pragma that specifies the ON switch would be
placed at the beginning of a function body:

void f(double x, double y)
{
 #pragma STDC FENV_ACCESS ON
 …
}

The function f may test floating-point status flags or change control modes as
needed. At the end of f’s body, the pragma switch will return to its previous state.

When a program goes from an FENV_ACCESS “off” region to an “on” region
during execution, the floating-point status flags have unspecified values and the
control modes have their default settings.

Floating-Point Exception Functions

The <fenv.h> functions are divided into three groups. Functions in the first
group deal with the floating-point status flags. Each of the five functions has an
int parameter named excepts, which is the bitwise or of one or more of the
floating-point exception macros (the first group of macros listed in Table 27.8). For
example, the argument passed to one of these functions might be FE_INVALID |
FE_OVERFLOW | FE_UNDERFLOW, to represent the combination of these three
status flags. The argument may also be zero, to indicate that no flags are selected.

feclearexcept The feclearexcept function attempts to clear the floating-point excep-
tions represented by excepts. It returns zero if excepts is zero or if all
specified exceptions were successfully cleared; otherwise, it returns a nonzero
value.

fegetexceptflag The fegetexceptflag function attempts to retrieve the states of the
floating-point status flags represented by excepts. This data is stored in the
fexcept_t object pointed to by flagp. The fegetexceptflag function
returns zero if the states of the status flags were successfully stored; otherwise, it
returns a nonzero value.

feraiseexcept The feraiseexcept function attempts to raise supported floating-point
exceptions represented by excepts. It is implementation-defined whether
feraiseexcept also raises the inexact floating-point exception whenever it

int feclearexcept(int excepts);
int fegetexceptflag(fexcept_t *flagp, int excepts);
int feraiseexcept(int excepts);
int fesetexceptflag(const fexcept_t *flagp,
 int excepts);
int fetestexcept(int excepts);

c27.fm Page 729 Saturday, February 16, 2008 2:51 PM

730 Chapter 27 Additional C99 Support for Mathematics

raises the overflow or underflow exception. (Implementations that conform to the
IEEE standard will have this property.) feraiseexcept returns zero if
excepts is zero or if all specified exceptions were successfully raised; otherwise,
it returns a nonzero value.

fesetexceptflag The fesetexceptflag function attempts to set the floating-point status
flags represented by excepts. The states of the flags are stored in the
fexcept_t object pointed to by flagp; this object must have been set by a pre-
vious call of fegetexceptflag. Moreover, the second argument in the prior
call of fegetexceptflag must have included all floating-point exceptions rep-
resented by excepts. The fesetexceptflag function returns zero if
excepts is zero or if all specified exceptions were successfully set; otherwise, it
returns a nonzero value.

fetestexcept The fetestexcept function tests only those floating-point status flags
represented by excepts. It returns the bitwise or of the floating-point excep-
tion macros corresponding to the flags that are currently set. For example, if the
value of excepts is FE_INVALID | FE_OVERFLOW | FE_UNDERFLOW, the
fetestexcept function might return FE_INVALID | FE_UNDERFLOW, in-
dicating that, of the exceptions represented by FE_INVALID, FE_OVERFLOW,
and FE_UNDERFLOW, only the flags for FE_INVALID and FE_UNDERFLOW
are currently set.

Rounding Functions

The fegetround and fesetround functions are used to determine the round-
ing direction and modify it. Both functions rely on the rounding-direction macros
(the third group in Table 27.8).

fegetround The fegetround function returns the value of the rounding-direction macro
that matches the current rounding direction. If the current rounding direction can’t
be determined or doesn’t match any rounding-direction macro, fegetround
returns a negative number.

fesetround When passed the value of a rounding-direction macro, the fesetround
function attempts to establish the corresponding rounding direction. If the call is
successful, fesetround returns zero; otherwise, it returns a nonzero value.

Environment Functions

int fegetround(void);
int fesetround(int round);

int fegetenv(fenv_t *envp);
int feholdexcept(fenv_t *envp);
int fesetenv(const fenv_t *envp);
int feupdateenv(const fenv_t *envp);

c27.fm Page 730 Saturday, February 16, 2008 2:51 PM

Q & A 731

The last four functions in <fenv.h> deal with the entire floating-point environ-
ment, not just the status flags or control modes. Each function returns zero if it suc-
ceeds at the operation it was asked to perform. Otherwise, it returns a nonzero
value.

fegetenv The fegetenv function attempts to retrieve the current floating-point envi-
ronment from the processor and store it in the object pointed to by envp.

feholdexcept The feholdexcept function (1) stores the current floating-point environ-
ment in the object pointed to by envp, (2) clears the floating-point status flags,
and (3) attempts to install a non-stop mode—if available—for all floating-point
exceptions (so that future exceptions won’t cause a trap or stop).

fesetenv The fesetenv function attempts to establish the floating-point environment
represented by envp, which either points to a floating-point environment stored
by a previous call of fegetenv or feholdexcept, or is equal to a floating-
point environment macro such as FE_DFL_ENV. Unlike the feupdateenv
function, fesetenv doesn’t raise any exceptions. If a call of fegetenv is used
to save the current floating-point environment, then a later call of fesetenv can
restore the environment to its previous state.

feupdateenv The feupdateenv function attempts to (1) save the currently raised float-
ing-point exceptions, (2) install the floating-point environment pointed to by
envp, and (3) raise the saved exceptions. envp either points to a floating-point
environment stored by a previous call of fegetenv or feholdexcept, or is
equal to a floating-point environment macro such as FE_DFL_ENV.

Q & A

Q: If the <inttypes.h> header includes the <stdint.h> header, why do we
need the <stdint.h> header at all? [p. 709]

A: The primary reason that <stdint.h> exists as a separate header is so that pro-
grams in a freestanding implementation may include it. (C99 requires conforming
implementations—both hosted and freestanding—to provide the <stdint.h>
header, but <inttypes.h> is required only for hosted implementations.) Even
in a hosted environment, it may be advantageous to include <stdint.h> rather
than <inttypes.h> to avoid defining all the macros that belong to the latter.

*Q: There are three versions of the modf function in <math.h>, so why isn’t
there a type-generic macro named modf? [p. 725]

A: Let’s take a look at the prototypes for the three versions of modf:

double modf(double value, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);

modf is unusual in that it has a pointer parameter, and the type of the pointer isn’t
the same among the three versions of the function. (frexp and remquo have a

freestanding implementation ➤14.3

c27.fm Page 731 Saturday, February 16, 2008 2:51 PM

732 Chapter 27 Additional C99 Support for Mathematics

pointer parameter, but it always has int * type.) Having a type-generic macro for
modf would pose some difficult problems. For example, the meaning of modf(d,
&f), where d has type double and f has type float, is unclear: are we calling
the modf function or the modff function? Rather than develop a complicated set
of rules for a single function (and probably taking into account that modf isn’t a
very popular function), the C99 committee chose not to provide a type-generic
modf macro.

Q: When a <tgmath.h> macro is invoked with an integer argument, the double
version of the corresponding function is called. Shouldn’t the float version be
called, according to the usual arithmetic conversions? [p. 725]

A: We’re dealing with a macro, not a function, so the usual arithmetic conversions
don’t come into play. The C99 committee had to create a rule for determining
which version of a function would be called when an integer argument is passed to
a <tgmath.h> macro. Although the committee at one point considered having
the float version called (for consistency with the usual arithmetic conversions),
they eventually decided that choosing the double version was better. First, it’s
safer: converting an integer to float may cause a loss of accuracy, especially for
integer types whose width is 32 bits or more. Second, it causes fewer surprises for
the programmer. Suppose that i is an integer variable. If the <tgmath.h> header
isn’t included, the call sin(i) calls the sin function. On the other hand, if
<tgmath.h> is included, the call sin(i) invokes the sin macro; because i is
an integer, the preprocessor replaces the sin macro with the sin function, and the
end result is the same.

Q: When a program invokes one of the type-generic macros in <tgmath.h>,
how does the implementation determine which function to call? Is there a way
for a macro to test the types of its arguments?

A: One unusual aspect of <tgmath.h> is that its macros need to be able to test the
types of the arguments that are passed to them. C has no features for testing types,
so it would normally be impossible to write such a macro. The <tgmath.h>
macros rely on special facilities provided by a particular compiler to make such
testing possible. We don’t know what these facilities are, and they’re not guaran-
teed to be portable from one compiler to another.

Exercises

Section 27.1 1. (C99) Locate the declarations of the intN_t and uintN_t types in the <stdint.h>
header installed on your system. Which values of N are supported?

2. (C99) Write the parameterized macros INT32_C(n), UINT32_C(n), INT64_C(n),
and UINT64_C(n), assuming that the int type and long int types are 32 bits wide and
the long long int type is 64 bits wide. Hint: Use the ## preprocessor operator to attach

usual arithmetic conversions ➤7.4

c27.fm Page 732 Saturday, February 16, 2008 2:51 PM

Programming Projects 733

a suffix to n containing a combination of L and/or U characters. (See Section 7.1 for a dis-
cussion of how to use the L and U suffixes with integer constants.)

Section 27.2 3. (C99) In each of the following statements, assume that the variable i has the indicated orig-
inal type. Using macros from the <inttypes.h> header, modify each statement so that it
will work correctly if the type of i is changed to the indicated new type.

Section 27.5 4. (C99) Assume that the following variable declarations are in effect:

int i;
float f;
double d;
long double ld;
float complex fc;
double complex dc;
long double complex ldc;

Each of the following is an invocation of a macro in <tgmath.h>. Show what it will look
like after preprocessing, when the macro has been replaced by a function from <math.h>
or <complex.h>.

Programming Projects

1. (C99) Make the following modifications to the quadratic.c program of Section 27.4:

(a) Have the user enter the coefficients of the polynomial (the values of the variables a, b,
and c).

(b) Have the program test the discriminant before displaying the values of the roots. If the
discriminant is negative, have the program display the roots in the same way as before. If it’s
nonnegative, have the program display the roots as real numbers (without an imaginary part).
For example, if the quadratic equation is x2 + x – 2 = 0, the output of the program would be

root1 = 1
root2 = -2

(a) printf("%d", i); Original type: int New type: int8_t
(b) printf("%12.4d", i); Original type: int New type: int32_t
(c) printf("%-6o", i); Original type: unsigned int New type: uint16_t
(d) printf("%#x", i); Original type: unsigned int New type: uint64_t

(a) tan(i)
(b) fabs(f)
(c) asin(d)
(d) exp(ld)
(e) log(fc)
(f) acosh(dc)
(g) nexttoward(d, ld)
(h) remainder(f, i)
(i) copysign(d, ld)
(j) carg(i)
(k) cimag(f)
(l) conj(ldc)

c27.fm Page 733 Saturday, February 16, 2008 2:51 PM

734 Chapter 27 Additional C99 Support for Mathematics

(c) Modify the program so that it displays a complex number with a negative imaginary
part as a – bi instead of a + –bi. For example, the output of the program with the original
coefficients would be

root1 = -0.2 + 0.4i
root2 = -0.2 - 0.4i

2. (C99) Write a program that converts a complex number in Cartesian coordinates to polar
form. The user will enter a and b (the real and imaginary parts of the number); the program
will display the values of r and θ.

3. (C99) Write a program that converts a complex number in polar coordinates to Cartesian
form. After the user enters the values of r and θ, the program will display the number in the
form a + bi, where

a = r cos θ
b = r sin θ

4. (C99) Write a program that displays the nth roots of unity when given a positive integer n.
The nth roots of unity are given by the formula e2πik/n, where k is an integer between 0 and
n – 1.

c27.fm Page 734 Saturday, February 16, 2008 2:51 PM

735

APPENDIX A
C Operators

Precedence Name Symbol(s) Associativity

1
1
1
1
1

Array subscripting
Function call
Structure and union member
Increment (postfix)
Decrement (postfix)

[]
()
. ->
++
--

Left
Left
Left
Left
Left

2
2
2
2
2
2
2
2
2

Increment (prefix)
Decrement (prefix)
Address
Indirection
Unary plus
Unary minus
Bitwise complement
Logical negation
Size

++
--
&
*
+
-
~
!
sizeof

Right
Right
Right
Right
Right
Right
Right
Right
Right

3 Cast () Right

4 Multiplicative * / % Left

5 Additive + - Left

6 Bitwise shift << >> Left

7 Relational < > <= >= Left

8 Equality == != Left

9 Bitwise and & Left

10 Bitwise exclusive or ^ Left

11 Bitwise inclusive or | Left

12 Logical and && Left

13 Logical or || Left

14 Conditional ?: Right

15 Assignment = *= /= %=
+= -= <<= >>=
&= ^= |=

Right

16 Comma , Left

APPENA.FM Page 735 Saturday, February 16, 2008 2:54 PM

APPENA.FM Page 736 Saturday, February 16, 2008 2:54 PM

737

APPENDIX B
C99 versus C89

This appendix lists many of the most significant differences between C89 and C99.
(The smaller differences are too numerous to mention here.) The headings indicate
which chapter contains the primary discussion of each C99 feature. Some of the
changes attributed to C99 actually occurred earlier, in Amendment 1 to the C89
standard; these changes are marked “Amendment 1.”

2 C Fundamentals

// comments C99 adds a second kind of comment, which begins with //.

identifiers C89 requires compilers to remember the first 31 characters of identifiers; in C99,
the requirement is 63 characters. Only the first six characters of names with external
linkage are significant in C89. Moreover, the case of letters may not matter. In C99,
the first 31 characters are significant, and the case of letters is taken into account.

keywords Five keywords are new in C99: inline, restrict, _Bool, _Complex, and
_Imaginary.

returning from main In C89, if a program reaches the end of the main function without executing a
return statement, the value returned to the operating system is undefined. In C99,
if main is declared to return an int, the program returns 0 to the operating system.

4 Expressions

/ and % operators The C89 standard states that if either operand is negative, the result of an integer
division can be rounded either up or down. Moreover, if i or j is negative, the sign
of i % j depends on the implementation. In C99, the result of a division is always
truncated toward zero and the value of i % j has the same sign as i.

APPENB.FM Page 737 Saturday, February 16, 2008 2:59 PM

738 Appendix B C99 versus C89

5 Selection Statements

_Bool type C99 provides a Boolean type named _Bool; C89 has no Boolean type.

6 Loops

for statements In C99, the first expression in a for statement can be replaced by a declaration,
allowing the statement to declare its own control variable(s).

7 Basic Types

long long
integer types

C99 provides two additional standard integer types, long long int and un-
signed long long int.

extended integer types In addition to the standard integer types, C99 allows implementation-defined
extended signed and unsigned integer types.

long long integer
constants

C99 provides a way to indicate that an integer constant has type long long int
or unsigned long long int.

types of integer
constants

C99’s rules for determining the type of an integer constant are different from those
in C89.

hexadecimal floating
constants

C99 provides a way to write floating constants in hexadecimal.

implicit conversions The rules for implicit conversions in C99 are somewhat different from the rules in
C89, primarily because of C99’s additional basic types.

8 Arrays

designated initializers C99 supports designated initializers, which can be used to initialize arrays, struc-
tures, and unions.

variable-length arrays In C99, the length of an array may be specified by an expression that’s not con-
stant, provided that the array doesn’t have static storage duration and its declara-
tion doesn’t contain an initializer.

9 Functions

no default return type If the return type of a function is omitted in C89, the function is presumed to return
a value of type int. In C99, it’s illegal to omit the return type of a function.

mixed declarations
and statements

In C89, declarations must precede statements within a block (including the body of
a function). In C99, declarations and statements can be mixed, as long as each vari-
able is declared prior to the first statement that uses the variable.

APPENB.FM Page 738 Saturday, February 16, 2008 2:59 PM

Appendix B C99 versus C89 739

declaration or definition
required prior to

function call

C99 requires that either a declaration or a definition of a function be present prior
to any call of the function. C89 doesn’t have this requirement; if a function is
called without a prior declaration or definition, the compiler assumes that the func-
tion returns an int value.

variable-length
array parameters

C99 allows variable-length array parameters. In a function declaration, the * sym-
bol may appear inside brackets to indicate a variable-length array parameter.

static array
parameters

C99 allows the use of the word static in the declaration of an array parameter,
indicating a minimum length for the first dimension of the array.

compound literals C99 supports the use of compound literals, which allow the creation of unnamed
array and structure values.

declaration of main C99 allows main to be declared in an implementation-defined manner, with a
return type other than int and/or parameters other than those specified by the
standard.

return statement
without expression

In C89, executing a return statement without an expression in a non-void func-
tion causes undefined behavior (but only if the program attempts to use the value
returned by the function). In C99, such a statement is illegal.

14 The Preprocessor

additional predefined
macros

C99 provides several new predefined macros.

empty macro
arguments

C99 allows any or all of the arguments in a macro call to be empty, provided that
the call contains the correct number of commas.

macros with a variable
number of arguments

In C89, a macro must have a fixed number of arguments, if it has any at all. C99
allows macros that take an unlimited number of arguments.

__func__ identifier In C99, the __func__ identifier behaves like a string variable that stores the
name of the currently executing function.

standard pragmas In C89, there are no standard pragmas. C99 has three: CX_LIMITED_RANGE,
FENV_ACCESS, and FP_CONTRACT.

_Pragma operator C99 provides the _Pragma operator, which is used in conjunction with the
#pragma directive.

16 Structures, Unions, and Enumerations

structure type
compatibility

In C89, structures defined in different files are compatible if their members have
the same names and appear in the same order, with corresponding members having

APPENB.FM Page 739 Saturday, February 16, 2008 2:59 PM

740 Appendix B C99 versus C89

compatible types. C99 also requires that either both structures have the same tag or
neither has a tag.

trailing comma in
enumerations

In C99, the last constant in an enumeration may be followed by a comma.

17 Advanced Uses of Pointers

restricted pointers C99 has a new keyword, restrict, that can appear in the declaration of a pointer.

flexible array members C99 allows the last member of a structure to be an array of unspecified length.

18 Declarations

block scopes for
selection and iteration

statements

In C99, selection statements (if and switch) and iteration statements (while,
do, and for)—along with the “inner” statements that they control—are consid-
ered to be blocks.

array, structure, and
union initializers

In C89, a brace-enclosed initializer for an array, structure, or union must contain
only constant expressions. In C99, this restriction applies only if the variable has
static storage duration.

inline functions C99 allows functions to be declared inline.

21 The Standard Library

<stdbool.h> header The <stdbool.h> header, which defines the bool, true, and false macros,
is new in C99.

22 Input/Output

…printf conversion
specifications

The conversion specifications for the …printf functions have undergone a num-
ber of changes in C99, with new length modifiers, new conversion specifiers, the
ability to write infinity and NaN, and support for wide characters. Also, the %le,
%lE, %lf, %lg, and %lG conversions are legal in C99; they caused undefined
behavior in C89.

…scanf conversion
specifications

In C99, the conversion specifications for the …scanf functions have new length
modifiers, new conversion specifiers, the ability to read infinity and NaN, and sup-
port for wide characters.

snprintf function C99 adds the snprintf function to the <stdio.h> header.

23 Library Support for Numbers and Character Data

additional macros in
<float.h> header

C99 adds the DECIMAL_DIG and FLT_EVAL_METHOD macros to the
<float.h> header.

APPENB.FM Page 740 Saturday, February 16, 2008 2:59 PM

Appendix B C99 versus C89 741

additional macros in
<limits.h> header

In C99, the <limits.h> header contains three new macros that describe the
characteristics of the long long int types.

math_errhandling

macro
C99 gives implementations a choice of how to inform a program that an error
has occurred in a mathematical function: via a value stored in errno, via a
floating-point exception, or both. The value of the math_errhandling mac-
ro (defined in <math.h>) indicates how errors are signaled by a particular
implementation.

additional functions in
<math.h> header

C99 adds two new versions of most <math.h> functions, one for float and one
for long double. C99 also adds a number of completely new functions and
function-like macros to <math.h>.

24 Error Handling

EILSEQ macro C99 adds the EILSEQ macro to the <errno.h> header.

25 International Features

digraphs Digraphs, which are two-character symbols that can be used as substitutes for the
[,], {, }, #, and ## tokens, are new in C99. (Amendment 1)

<iso646.h> header The <iso646.h> header, which defines macros that represent operators contain-
ing the characters &, |, ~, !, and ^, is new in C99. (Amendment 1)

universal character
names

Universal character names, which provide a way to embed UCS characters in the
source code of a program, are new in C99.

<wchar.h> header The <wchar.h> header, which provides functions for wide-character input/out-
put and wide string manipulation, is new in C99. (Amendment 1)

<wctype.h> header The <wctype.h> header, the wide-character version of <ctype.h>, is new in
C99. <wctype.h> provides functions for classifying and changing the case of
wide characters. (Amendment 1)

26 Miscellaneous Library Functions

va_copy macro C99 adds a function-like macro named va_copy to the <stdarg.h> header.

additional functions in
<stdio.h> header

C99 adds the vsnprintf, vfscanf, vscanf, and vsscanf functions to the
<stdio.h> header.

additional functions in
<stdlib.h> header

C99 adds five numeric conversion functions, the _Exit function, and long long
versions of the abs and div functions to the <stdlib.h> header.

additional strftime
conversion specifiers

C99 adds a number of new strftime conversion specifiers. It also allows the use
of an E or O character to modify the meaning of certain conversion specifiers.

APPENB.FM Page 741 Saturday, February 16, 2008 2:59 PM

742 Appendix B C99 versus C89

27 Additional C99 Support for Mathematics

<stdint.h> header The <stdint.h> header, which declares integer types with specified widths, is
new in C99.

<inttypes.h> header The <inttypes.h> header, which provides macros that are useful for input/out-
put of the integer types in <stdint.h>, is new in C99.

complex types C99 provides three complex types: float _Complex, double _Complex,
and long double _Complex.

<complex.h> header The <complex.h> header, which provides functions that perform mathematical
operations on complex numbers, is new in C99.

<tgmath.h> header The <tgmath.h> header, which provides type-generic macros that make it easier
to call library functions in <math.h> and <complex.h>, is new in C99.

<fenv.h> header The <fenv.h> header, which gives programs access to floating-point status flags
and control modes, is new in C99.

APPENB.FM Page 742 Saturday, February 16, 2008 2:59 PM

743

APPENDIX C
C89 versus K&R C

This appendix lists most of the significant differences between C89 and K&R C
(the language described in the first edition of Kernighan and Ritchie’s The C Pro-
gramming Language). The headings indicate which chapter of this book discusses
each C89 feature. This appendix doesn’t address the C library, which has changed
much over the years. For other (less important) differences between C89 and K&R
C, consult Appendices A and C in the second edition of K&R.

Most of today’s C compilers can handle all of C89, but this appendix is useful
if you to happen to encounter older programs that were originally written for pre-
C89 compilers.

2 C Fundamentals

identifiers In K&R C, only the first eight characters of an identifier are significant.

keywords K&R C lacks the keywords const, enum, signed, void, and volatile. In
K&R C, the word entry is a keyword.

4 Expressions

unary + K&R C doesn’t support the unary + operator.

5 Selection Statements

switch In K&R C, the controlling expression (and case labels) in a switch statement
must have type int after promotion. In C89, the expression and labels may be of
any integral type, including unsigned int and long int.

APPENC.FM Page 743 Saturday, February 16, 2008 3:02 PM

744 Appendix C C89 versus K&R C

7 Basic Types

unsigned types K&R C provides only one unsigned type (unsigned int).

signed K&R C doesn’t support the signed type specifier.

number suffixes K&R C doesn’t support the U (or u) suffix to specify that an integer constant is
unsigned, nor does it support the F (or f) suffix to indicate that a floating constant
is to be stored as a float value instead of a double value. In K&R C, the L (or
l) suffix can’t be used with floating constants.

long float K&R C allows the use of long float as a synonym for double; this usage
isn’t legal in C89.

long double K&R C doesn’t support the long double type.

escape sequences The escape sequences \a, \v, and \? don’t exist in K&R C. Also, K&R C doesn’t
support hexadecimal escape sequences.

size_t In K&R C, the sizeof operator returns a value of type int; in C89, it returns a
value of type size_t.

usual arithmetic
conversions

K&R C requires that float operands be converted to double. Also, K&R C
specifies that combining a shorter unsigned integer with a longer signed integer
always produces an unsigned result.

9 Functions

function definitions In a C89 function definition, the types of the parameters are included in the param-
eter list:

double square(double x)
{
 return x * x;
}

K&R C requires that the types of parameters be specified in separate lists:

double square(x)
double x;
{
 return x * x;
}

function declarations A C89 function declaration (prototype) specifies the types of the function’s param-
eters (and the names as well, if desired):

double square(double x);
double square(double); /* alternate form */
int rand(void); /* no parameters */

APPENC.FM Page 744 Saturday, February 16, 2008 3:02 PM

Appendix C C89 versus K&R C 745

A K&R C function declaration omits all information about parameters:

double square();
int rand();

function calls When a K&R C definition or declaration is used, the compiler doesn’t check that
the function is called with arguments of the proper number and type. Furthermore,
the arguments aren’t automatically converted to the types of the corresponding
parameters. Instead, the integral promotions are performed, and float arguments
are converted to double.

void K&R C doesn’t support the void type.

12 Pointers and Arrays

pointer subtraction Subtracting two pointers produces an int value in K&R C but a ptrdiff_t
value in C89.

13 Strings

string literals In K&R C, adjacent string literals aren’t concatenated. Also, K&R C doesn’t pro-
hibit the modification of string literals.

string initialization In K&R C, an initializer for a character array of length n is limited to n – 1 charac-
ters (leaving room for a null character at the end). C89 allows the initializer to have
length n.

14 The Preprocessor

#elif, #error,
#pragma

K&R C doesn’t support the #elif, #error, and #pragma directives.

#, ##, defined K&R C doesn’t support the #, ##, and defined operators.

16 Structures, Unions, and Enumerations

structure and union
members and tags

In C89, each structure and union has its own name space for members; structure
and union tags are kept in a separate name space. K&R C uses a single name space
for members and tags, so members can’t have the same name (with some excep-
tions), and members and tags can’t overlap.

whole-structure
operations

K&R C doesn’t allow structures to be assigned, passed as arguments, or returned
by functions.

enumerations K&R C doesn’t support enumerations.

APPENC.FM Page 745 Saturday, February 16, 2008 3:02 PM

746 Appendix C C89 versus K&R C

17 Advanced Uses of Pointers

void * In C89, void * is used as a “generic” pointer type; for example, malloc returns
a value of type void *. In K&R C, char * is used for this purpose.

pointer mixing K&R C allows pointers of different types to be mixed in assignments and compar-
isons. In C89, pointers of type void * can be mixed with pointers of other types,
but any other mixing isn’t allowed without casting. Similarly, K&R C allows the
mixing of integers and pointers in assignments and comparisons; C89 requires
casting.

pointers to functions If pf is a pointer to a function, C89 permits using either (*pf)(…) or pf(…) to
call the function. K&R C allows only (*pf)(…).

18 Declarations

const and volatile K&R C doesn’t support the const and volatile type qualifiers.

initialization of arrays,
structures, and unions

K&R C doesn’t allow the initialization of automatic arrays and structures, nor does
it allow initialization of unions (regardless of storage duration).

25 International Features

wide characters K&R C doesn’t support wide character constants and wide string literals.

trigraph sequences K&R C doesn’t support trigraph sequences.

26 Miscellaneous Library Functions

variable arguments K&R C doesn’t provide a portable way to write functions with a variable number
of arguments, and it lacks the ... (ellipsis) notation.

APPENC.FM Page 746 Saturday, February 16, 2008 3:02 PM

747

APPENDIX D
Standard Library Functions

This appendix describes all library functions supported by C89 and C99.* When
using this appendix, please keep the following points in mind:

� In the interest of brevity and clarity, I’ve omitted many details. Some functions
(notably printf and scanf and their variants) are covered in depth else-
where in the book, so their descriptions here are minimal. For more informa-
tion about a function (including examples of how it’s used), see the section(s)
listed in italic at the lower right corner of the function’s description.

� As in other parts of the book, italics are used to indicate C99 differences. The
names and prototypes of functions that were added in C99 are shown in italics.
Changes to C89 prototypes (the addition of the word restrict to the decla-
ration of certain parameters) are also italicized.

� Function-like macros are included in this appendix (with the exception of the
type-generic macros in <tgmath.h>). Each prototype for a macro is fol-
lowed by the word macro.

� In C99, some <math.h> functions have three versions (one each for float,
double, and long double). All three are grouped into a single entry,
under the name of the double version. For example, there’s only one entry
(under acos) for the acos, acosf, and acosl functions. The name of each
additional version (acosf and acosl, in this example) appears to the left of
its prototype. The <complex.h> functions, which also come in three ver-
sions, are treated in a similar fashion.

� Most of the <wchar.h> functions are wide-character versions of functions
found in other headers. Unless there’s a significant difference in behavior, the

*This material is adapted from international standard ISO/IEC 9899:1999.

APPEND.FM Page 747 Saturday, February 16, 2008 3:06 PM

748 Appendix D Standard Library Functions

description of each wide-character function simply refers the reader to the cor-
responding function found elsewhere.

� If some aspect of a function’s behavior is described as implementation-
defined, that means that it depends on how the C library is implemented. The
function will always behave consistently, but the results may vary from one
system to another. (In other words, check the manual to see what happens.)
Undefined behavior, on the other hand, is bad news: not only may the behavior
vary between systems, but the program may act strangely or even crash.

� The descriptions of many <math.h> functions refer to the terms domain
error and range error. The way in which these errors are indicated changed
between C89 and C99. For the C89 treatment of these errors, see Section 23.3.
For the C99 treatment, see Section 23.4.

� The behavior of the following functions is affected by the current locale:

<ctype.h> All functions
<stdio.h> Formatted input/output functions
<stdlib.h> Multibyte/wide-character conversion functions, numeric

conversion functions
<string.h> strcoll, strxfrm
<time.h> strftime
<wchar.h> wcscoll, wcsftime, wcsxfrm, formatted input/output

functions, numeric conversion functions, extended
multibyte/wide-character conversion functions

<wctype.h> All functions

The isalpha function, for example, usually checks whether a character lies
between a and z or A and Z. In some locales, other characters are considered
alphabetic as well.

abort Abort Program <stdlib.h>

void abort(void);

Raises the SIGABRT signal. If the signal isn’t caught (or if the signal handler re-
turns), the program terminates abnormally and returns an implementation-defined
code indicating unsuccessful termination. Whether output buffers are flushed, open
streams are closed, or temporary files are removed is implementation-defined.

26.2

abs Integer Absolute Value <stdlib.h>

int abs(int j);

Returns Absolute value of j. The behavior is undefined if the absolute value of j can’t be
represented. 26.2

acos Arc Cosine <math.h>

double acos(double x);
acosf float acosf(float x);
acosl long double acosl(long double x);

APPEND.FM Page 748 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 749

Returns Arc cosine of x; the return value is in the range 0 to π. A domain error occurs if x
isn’t between –1 and +1. 23.3

acosh Arc Hyperbolic Cosine (C99) <math.h>

double acosh(double x);
acoshf float acoshf(float x);
acoshl long double acoshl(long double x);

Returns Arc hyperbolic cosine of x; the return value is in the range 0 to +∞. A domain error
occurs if x is less than 1. 23.4

asctime Convert Broken-Down Time to String <time.h>

char *asctime(const struct tm *timeptr);

Returns A pointer to a null-terminated string of the form

Sun Jun 3 17:48:34 2007\n

constructed from the broken-down time in the structure pointed to by timeptr.
26.3

asin Arc Sine <math.h>

double asin(double x);
asinf float asinf(float x);
asinl long double asinl(long double x);

Returns Arc sine of x; the return value is in the range –π/2 to +π/2. A domain error occurs
if x isn’t between –1 and +1. 23.3

asinh Arc Hyperbolic Sine (C99) <math.h>

double asinh(double x);
asinhf float asinhf(float x);
asinhl long double asinhl(long double x);

Returns Arc hyperbolic sine of x. 23.4

assert Assert Truth of Expression <assert.h>

void assert(scalar expression); macro

If the value of expression is nonzero, assert does nothing. If the value is
zero, assert writes a message to stderr (specifying the text of expression,
the name of the source file containing the assert, and the line number of the
assert); it then terminates the program by calling abort. To disable assert,
define the macro NDEBUG before including <assert.h>. C99 changes: The
argument is allowed to have any scalar type; C89 specifies that the type is int.
Also, C99 requires that the message written by assert include the name of the
function in which the assert appears; C89 doesn’t have this requirement. 24.1

atan Arc Tangent <math.h>

double atan(double x);
atanf float atanf(float x);

APPEND.FM Page 749 Saturday, February 16, 2008 3:06 PM

750 Appendix D Standard Library Functions

atanl long double atanl(long double x);

Returns Arc tangent of x; the return value is in the range –π/2 to +π/2. 23.3

atan2 Arc Tangent of Quotient <math.h>

double atan2(double y, double x);
atan2f float atan2f(float y, float x);
atan2l long double atan2l(long double y, long double x);

Returns Arc tangent of y/x; the return value is in the range –π to +π. A domain error may
occur if x and y are both zero. 23.3

atanh Arc Hyperbolic Tangent (C99) <math.h>

double atanh(double x);
atanhf float atanhf(float x);
atanhl long double atanhl(long double x);

Returns Arc hyperbolic tangent of x. A domain error occurs if x is not between –1 and +1.
A range error may occur if x is equal to –1 or +1. 23.4

atexit Register Function to Be Called at Program Exit <stdlib.h>

int atexit(void (*func)(void));

Registers the function pointed to by func as a termination function. The function
will be called if the program terminates normally (via return or exit but not
abort).

Returns Zero if successful, nonzero if unsuccessful (an implementation-dependent limit
has been reached). 26.2

atof Convert String to Floating-Point Number <stdlib.h>

double atof(const char *nptr);

Returns A double value corresponding to the longest initial part of the string pointed to
by nptr that has the form of a floating-point number. Returns zero if no conver-
sion could be performed. The function’s behavior is undefined if the number can’t
be represented. 26.2

atoi Convert String to Integer <stdlib.h>

int atoi(const char *nptr);

Returns An int value corresponding to the longest initial part of the string pointed to by
nptr that has the form of an integer. Returns zero if no conversion could be per-
formed. The function’s behavior is undefined if the number can’t be represented.

26.2

atol Convert String to Long Integer <stdlib.h>

long int atol(const char *nptr);

Returns A long int value corresponding to the longest initial part of the string point-
ed to by nptr that has the form of an integer. Returns zero if no conversion

APPEND.FM Page 750 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 751

could be performed. The function’s behavior is undefined if the number can’t be
represented. 26.2

atoll Convert String to Long Long Integer (C99) <stdlib.h>

long long int atoll(const char *nptr);

Returns A long long int value corresponding to the longest initial part of the string
pointed to by nptr that has the form of an integer. Returns zero if no conversion
could be performed. The function’s behavior is undefined if the number can’t be
represented. 26.2

bsearch Binary Search <stdlib.h>

void *bsearch(const void *key, const void *base,
 size_t memb, size_t size,
 int (*compar)(const void *,
 const void *));

Searches for the value pointed to by key in the sorted array pointed to by base.
The array has nmemb elements, each size bytes long. compar is a pointer to a
comparison function. When passed pointers to the key and an array element, in
that order, the comparison function must return a negative, zero, or positive inte-
ger, depending on whether the key is less than, equal to, or greater than the array
element.

Returns A pointer to an array element that tests equal to the key. Returns a null pointer if
the key isn’t found. 26.2

btowc Convert Byte to Wide Character (C99) <wchar.h>

wint_t btowc(int c);

Returns Wide-character representation of c. Returns WEOF if c is equal to EOF or if c
(when cast to unsigned char) isn’t a valid single-byte character in the initial
shift state. 25.5

cabs Complex Absolute Value (C99) <complex.h>

double cabs(double complex z);
cabsf float cabsf(float complex z);
cabsl long double cabsl(long double complex z);

Returns Complex absolute value of z. 27.4

cacos Complex Arc Cosine (C99) <complex.h>

double complex cacos(double complex z);
cacosf float complex cacosf(float complex z);
cacosl long double complex cacosl(long double complex z);

Returns Complex arc cosine of z, with branch cuts outside the interval [–1, +1] along the
real axis. The return value lies in a strip mathematically unbounded along the
imaginary axis and in the interval [0, π] along the real axis. 27.4

APPEND.FM Page 751 Saturday, February 16, 2008 3:06 PM

752 Appendix D Standard Library Functions

cacosh Complex Arc Hyperbolic Cosine (C99) <complex.h>

double complex cacosh(double complex z);
cacoshf float complex cacoshf(float complex z);
cacoshl long double complex cacoshl(long double complex z);

Returns Complex arc hyperbolic cosine of z, with a branch cut at values less than 1 along
the real axis. The return value lies in a half-strip of nonnegative values along the
real axis and in the interval [–iπ, +iπ] along the imaginary axis. 27.4

calloc Allocate and Clear Memory Block <stdlib.h>

void *calloc(size_t nmemb, size_t size);

Allocates a block of memory for an array with nmemb elements, each with size
bytes. The block is cleared by setting all bits to zero.

Returns A pointer to the beginning of the block. Returns a null pointer if a block of the
requested size can’t be allocated. 17.3

carg Complex Argument (C99) <complex.h>

double carg(double complex z);
cargf float cargf(float complex z);
cargl long double cargl(long double complex z);

Returns Argument (phase angle) of z, with a branch cut along the negative real axis. The
return value lies in the interval [–π, +π]. 27.4

casin Complex Arc Sine (C99) <complex.h>

double complex casin(double complex z);
casinf float complex casinf(float complex z);
casinl long double complex casinl(long double complex z);

Returns Complex arc sine of z, with branch cuts outside the interval [–1, +1] along the real
axis. The return value lies in a strip mathematically unbounded along the imagi-
nary axis and in the interval [–π/2, +π/2] along the real axis. 27.4

casinh Complex Arc Hyperbolic Sine (C99) <complex.h>

double complex casinh(double complex z);
casinhf float complex casinhf(float complex z);
casinhl long double complex casinhl(long double complex z);

Returns Complex arc hyperbolic sine of z, with branch cuts outside the interval [–i, +i]
along the imaginary axis. The return value lies in a strip mathematically unbounded
along the real axis and in the interval [–iπ/2, +iπ/2] along the imaginary axis. 27.4

catan Complex Arc Tangent (C99) <complex.h>

double complex catan(double complex z);
catanf float complex catanf(float complex z);
catanl long double complex catanl(long double complex z);

APPEND.FM Page 752 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 753

Returns Complex arc tangent of z, with branch cuts outside the interval [–i, +i] along the
imaginary axis. The return value lies in a strip mathematically unbounded along
the imaginary axis and in the interval [–π/2, +π/2] along the real axis. 27.4

catanh Complex Arc Hyperbolic Tangent (C99) <complex.h>

double complex catanh(double complex z);
catanhf float complex catanhf(float complex z);
catanhl long double complex catanhl(long double complex z);

Returns Complex arc hyperbolic tangent of z, with branch cuts outside the interval [–1, +1]
along the real axis. The return value lies in a strip mathematically unbounded
along the real axis and in the interval [–iπ/2, +iπ/2] along the imaginary axis. 27.4

cbrt Cube Root (C99) <math.h>

double cbrt(double x);
cbrtf float cbrtf(float x);
cbrtl long double cbrtl(long double x);

Returns Real cube root of x. 23.4

ccos Complex Cosine (C99) <complex.h>

double complex ccos(double complex z);
ccosf float complex ccosf(float complex z);
ccosl long double complex ccosl(long double complex z);

Returns Complex cosine of z. 27.4

ccosh Complex Hyperbolic Cosine (C99) <complex.h>

double complex ccosh(double complex z);
ccoshf float complex ccoshf(float complex z);
ccoshl long double complex ccoshl(long double complex z);

Returns Complex hyperbolic cosine of z. 27.4

ceil Ceiling <math.h>

double ceil(double x);
ceilf float ceilf(float x);
ceill long double ceill(long double x);

Returns Smallest integer that is greater than or equal to x. 23.3

cexp Complex Base-e Exponential (C99) <complex.h>

double complex cexp(double complex z);
cexpf float complex cexpf(float complex z);
cexpl long double complex cexpl(long double complex z);

Returns Complex base-e exponential of z. 27.4

cimag Imaginary Part of Complex Number (C99) <complex.h>

double cimag(double complex z);

APPEND.FM Page 753 Saturday, February 16, 2008 3:06 PM

754 Appendix D Standard Library Functions

cimagf float cimagf(float complex z);
cimagl long double cimagl(long double complex z);

Returns Imaginary part of z. 27.4

clearerr Clear Stream Error <stdio.h>

void clearerr(FILE *stream);

Clears the end-of-file and error indicators for the stream pointed to by stream.
22.3

clock Processor Clock <time.h>

clock_t clock(void);

Returns Elapsed processor time (measured in “clock ticks”) since the beginning of program
execution. (To convert into seconds, divide by CLOCKS_PER_SEC.) Returns
(clock_t)(–1) if the time is unavailable or can’t be represented. 26.3

clog Complex Natural Logarithm (C99) <complex.h>

double complex clog(double complex z);
clogf float complex clogf(float complex z);
clogl long double complex clogl(long double complex z);

Returns Complex natural (base-e) logarithm of z, with a branch cut along the negative real
axis. The return value lies in a strip mathematically unbounded along the real axis
and in the interval [–iπ, +iπ] along the imaginary axis. 27.4

conj Complex Conjugate (C99) <complex.h>

double complex conj(double complex z);
conjf float complex conjf(float complex z);
conjl long double complex conjl(long double complex z);

Returns Complex conjugate of z. 27.4

copysign Copy Sign (C99) <math.h>

double copysign(double x, double y);
copysignf float copysignf(float x, float y);
copysignl long double copysignl(long double x, long double y);

Returns A value with the magnitude of x and the sign of y. 23.4

cos Cosine <math.h>

double cos(double x);
cosf float cosf(float x);
cosl long double cosl(long double x);

Returns Cosine of x (measured in radians). 23.3

cosh Hyperbolic Cosine <math.h>

double cosh(double x);
coshf float coshf(float x);

APPEND.FM Page 754 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 755

coshl long double coshl(long double x);

Returns Hyperbolic cosine of x. A range error occurs if the magnitude of x is too large.
23.3

cpow Complex Power (C99) <complex.h>

double complex cpow(double complex x,
 double complex y);

cpowf float complex cpowf(float complex x,
 float complex y);

cpowl long double complex cpowl(long double complex x,
 long double complex y);

Returns x raised to the power y, with a branch cut for the first parameter along the negative
real axis. 27.4

cproj Complex Projection (C99) <complex.h>

double complex cproj(double complex z);
cprojf float complex cprojf(float complex z);
cprojl long double complex cprojl(long double complex z);

Returns Projection of z onto the Riemann sphere. z is returned unless one of its parts is
infinite, in which case the return value is INFINITY + I * copysign(0.0,
cimag(z)). 27.4

creal Real Part of Complex Number (C99) <complex.h>

double creal(double complex z);
crealf float crealf(float complex z);
creall long double creall(long double complex z);

Returns Real part of z. 27.4

csin Complex Sine (C99) <complex.h>

double complex csin(double complex z);
csinf float complex csinf(float complex z);
csinl long double complex csinl(long double complex z);

Returns Complex sine of z. 27.4

csinh Complex Hyperbolic Sine (C99) <complex.h>

double complex csinh(double complex z);
csinhf float complex csinhf(float complex z);
csinhl long double complex csinhl(long double complex z);

Returns Complex hyperbolic sine of z. 27.4

csqrt Complex Square Root (C99) <complex.h>

double complex csqrt(double complex z);
csqrtf float complex csqrtf(float complex z);
csqrtl long double complex csqrtl(long double complex z);

APPEND.FM Page 755 Saturday, February 16, 2008 3:06 PM

756 Appendix D Standard Library Functions

Returns Complex square root of z, with a branch cut along the negative real axis. The
return value lies in the right half-plane (including the imaginary axis). 27.4

ctan Complex Tangent (C99) <complex.h>

double complex ctan(double complex z);
ctanf float complex ctanf(float complex z);
ctanl long double complex ctanl(long double complex z);

Returns Complex tangent of z. 27.4

ctanh Complex Hyperbolic Tangent (C99) <complex.h>

double complex ctanh(double complex z);
ctanhf float complex ctanhf(float complex z);
ctanhl long double complex ctanhl(long double complex z);

Returns Complex hyperbolic tangent of z. 27.4

ctime Convert Calendar Time to String <time.h>

char *ctime(const time_t *timer);

Returns A pointer to a string describing a local time equivalent to the calendar time pointed
to by timer. Equivalent to asctime(localtime(timer)). 26.3

difftime Time Difference <time.h>

double difftime(time_t time1, time_t time0);

Returns Difference between time0 (the earlier time) and time1, measured in seconds.
26.3

div Integer Division <stdlib.h>

div_t div(int numer, int denom);

Returns A div_t structure containing members named quot (the quotient when numer
is divided by denom) and rem (the remainder). The behavior is undefined if either
part of the result can’t be represented. 26.2

erf Error Function (C99) <math.h>

double erf(double x);
erff float erff(float x);
erfl long double erfl(long double x);

Returns erf(x), where erf is the Gaussian error function. 23.4

erfc Complementary Error Function (C99) <math.h>

double erfc(double x);
erfcf float erfcf(float x);
erfcl long double erfcl(long double x);

Returns erfc(x) = 1 – erf(x), where erf is the Gaussian error function. A range error occurs
if x is too large. 23.4

APPEND.FM Page 756 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 757

exit Exit from Program <stdlib.h>

void exit(int status);

Calls all functions registered with atexit, flushes all output buffers, closes all
open streams, removes any files created by tmpfile, and terminates the pro-
gram. The value of status indicates whether the program terminated normally.
The only portable values for status are 0 and EXIT_SUCCESS (both indicate
successful termination) plus EXIT_FAILURE (unsuccessful termination).

9.5, 26.2

_Exit Exit from Program (C99) <stdlib.h>

void _Exit(int status);

Causes normal program termination. Doesn’t call functions registered with
atexit or signal handlers registered with signal. The status returned is deter-
mined in the same way as for exit. Whether output buffers are flushed, open
streams are closed, or temporary files are removed is implementation-defined.

26.2

exp Base-e Exponential <math.h>

double exp(double x);
expf float expf(float x);
expl long double expl(long double x);

Returns e raised to the power x. A range error occurs if the magnitude of x is too large.
23.3

exp2 Base-2 Exponential (C99) <math.h>

double exp2(double x);
exp2f float exp2f(float x);
exp2l long double exp2l(long double x);

Returns 2 raised to the power x. A range error occurs if the magnitude of x is too large.
23.4

expm1 Base-e Exponential Minus 1 (C99) <math.h>

double expm1(double x);
expm1f float expm1f(float x);
expm1l long double expm1l(long double x);

Returns e raised to the power x, minus 1. A range error occurs if x is too large. 23.4

fabs Floating Absolute Value <math.h>

double fabs(double x);
fabsf float fabsf(float x);
fabsl long double fabsl(long double x);

Returns Absolute value of x. 23.3

APPEND.FM Page 757 Saturday, February 16, 2008 3:06 PM

758 Appendix D Standard Library Functions

fclose Close File <stdio.h>

int fclose(FILE *stream);

Closes the stream pointed to by stream. Flushes any unwritten output remaining
in the stream’s buffer. Deallocates the buffer if it was allocated automatically.

Returns Zero if successful, EOF if an error was detected. 22.2

fdim Positive Difference (C99) <math.h>

double fdim(double x, double y);
fdimf float fdimf(float x, float y);
fdiml long double fdiml(long double x, long double y);

Returns Positive difference of x and y:

A range error may occur. 23.4

feclearexcept Clear Floating-Point Exceptions (C99) <fenv.h>

int feclearexcept(int excepts);

Attempts to clear the floating-point exceptions represented by excepts.

Returns Zero if excepts is zero or if all specified exceptions were successfully cleared;
otherwise, returns a nonzero value. 27.6

fegetenv Get Floating-Point Environment (C99) <fenv.h>

int fegetenv(fenv_t *envp);

Attempts to store the current floating-point environment in the object pointed to by
envp.

Returns Zero if the environment was successfully stored; otherwise, returns a nonzero
value. 27.6

fegetexceptflag Get Floating-Point Exception Flags (C99) <fenv.h>

int fegetexceptflag(fexcept_t *flagp, int excepts);

Attempts to retrieve the states of the floating-point status flags represented by
excepts and store them in the object pointed to by flagp.

Returns Zero if the states of the status flags were successfully stored; otherwise, returns a
nonzero value. 27.6

fegetround Get Floating-Point Rounding Direction (C99) <fenv.h>

int fegetround(void);

Returns Value of the rounding-direction macro that represents the current rounding direc-
tion. Returns a negative value if the current rounding direction can’t be determined
or doesn’t match any rounding-direction macro. 27.6

x – y if x > y
+0 if x ≤ y

APPEND.FM Page 758 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 759

feholdexcept Save Floating-Point Environment (C99) <fenv.h>

int feholdexcept(fenv_t *envp);

Saves the current floating-point environment in the object pointed to by envp,
clears the floating-point status flags, and attempts to install a non-stop mode for all
floating-point exceptions.

Returns Zero if non-stop floating-point exception handling was successfully installed; oth-
erwise, returns a nonzero value. 27.6

feof Test for End-of-File <stdio.h>

int feof(FILE *stream);

Returns A nonzero value if the end-of-file indicator is set for the stream pointed to by
stream; otherwise, returns zero. 22.3

feraiseexcept Raise Floating-Point Exceptions (C99) <fenv.h>

int feraiseexcept(int excepts);

Attempts to raise supported floating-point exceptions represented by excepts.

Returns Zero if excepts is zero or if all specified exceptions were successfully raised;
otherwise, returns a nonzero value. 27.6

ferror Test for File Error <stdio.h>

int ferror(FILE *stream);

Returns A nonzero value if the error indicator is set for the stream pointed to by stream;
otherwise, returns zero. 22.3

fesetenv Set Floating-Point Environment (C99) <fenv.h>

int fesetenv(const fenv_t *envp);

Attempts to establish the floating-point environment represented by the object
pointed to by envp.

Returns Zero if the environment was successfully established; otherwise, returns a nonzero
value. 27.6

fesetexceptflag Set Floating-Point Exception Flags (C99) <fenv.h>

int fesetexceptflag(const fexcept_t *flagp,
 int excepts);

Attempts to set the floating-point status flags represented by excepts to the
states stored in the object pointed to by flagp.

Returns Zero if excepts is zero or if all specified exceptions were successfully set; other-
wise, returns a nonzero value. 27.6

fesetround Set Floating-Point Rounding Direction (C99) <fenv.h>

int fesetround(int round);

APPEND.FM Page 759 Saturday, February 16, 2008 3:06 PM

760 Appendix D Standard Library Functions

Attempts to establish the rounding direction represented by round.

Returns Zero if the requested rounding direction was established; otherwise, returns a non-
zero value. 27.6

fetestexcept Test Floating-Point Exception Flags (C99) <fenv.h>

int fetestexcept(int excepts);

Returns Bitwise or of the floating-point exception macros corresponding to the currently
set flags for the exceptions represented by excepts. 27.6

feupdateenv Update Floating-Point Environment (C99) <fenv.h>

int feupdateenv(const fenv_t *envp);

Attempts to save the currently raised floating-point exceptions, install the floating-
point environment represented by the object pointed to by envp, and then raise the
saved exceptions.

Returns Zero if all actions were successfully carried out; otherwise, returns a nonzero
value. 27.6

fflush Flush File Buffer <stdio.h>

int fflush(FILE *stream);

Writes any unwritten data in the buffer associated with stream, which points to a
stream that was opened for output or updating. If stream is a null pointer,
fflush flushes all streams that have unwritten data stored in a buffer.

Returns Zero if successful, EOF if a write error occurs. 22.2

fgetc Read Character from File <stdio.h>

int fgetc(FILE *stream);

Reads a character from the stream pointed to by stream.

Returns Character read from the stream. If fgetc encounters the end of the stream, it sets
the stream’s end-of-file indicator and returns EOF. If a read error occurs, fgetc
sets the stream’s error indicator and returns EOF. 22.4

fgetpos Get File Position <stdio.h>

int fgetpos(FILE * restrict stream,
 fpos_t * restrict pos);

Stores the current position of the stream pointed to by stream in the object
pointed to by pos.

Returns Zero if successful. If the call fails, returns a nonzero value and stores an implemen-
tation-defined positive value in errno. 22.7

fgets Read String from File <stdio.h>

char *fgets(char * restrict s, int n,
 FILE * restrict stream);

APPEND.FM Page 760 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 761

Reads characters from the stream pointed to by stream and stores them in the
array pointed to by s. Reading stops at the first new-line character (which is stored
in the string), when n – 1 characters have been read, or at end-of-file. fgets
appends a null character to the string.

Returns s (a pointer to the array in which the input is stored). Returns a null pointer if a
read error occurs or fgets encounters the end of the stream before it has stored
any characters. 22.5

fgetwc Read Wide Character from File (C99) <wchar.h>

wint_t fgetwc(FILE *stream);

Wide-character version of fgetc. 25.5

fgetws Read Wide String from File (C99) <wchar.h>

wchar_t *fgetws(wchar_t * restrict s, int n,
 FILE * restrict stream);

Wide-character version of fgets. 25.5

floor Floor <math.h>

double floor(double x);
floorf float floorf(float x);
floorl long double floorl(long double x);

Returns Largest integer that is less than or equal to x. 23.3

fma Floating Multiply-Add (C99) <math.h>

double fma(double x, double y, double z);
fmaf float fmaf(float x, float y, float z);
fmal long double fmal(long double x, long double y,

 long double z);

Returns (x × y) + z. The result is rounded only once, using the rounding mode correspond-
ing to FLT_ROUNDS. A range error may occur. 23.4

fmax Floating Maximum (C99) <math.h>

double fmax(double x, double y);
fmaxf float fmaxf(float x, float y);
fmaxl long double fmaxl(long double x, long double y);

Returns Maximum of x and y. If one argument is a NaN and the other is numeric, the
numeric value is returned. 23.4

fmin Floating Minimum (C99) <math.h>

double fmin(double x, double y);
fminf float fminf(float x, float y);
fminl long double fminl(long double x, long double y);

Returns Minimum of x and y. If one argument is a NaN and the other is numeric, the
numeric value is returned. 23.4

APPEND.FM Page 761 Saturday, February 16, 2008 3:06 PM

762 Appendix D Standard Library Functions

fmod Floating Modulus <math.h>

double fmod(double x, double y);
fmodf float fmodf(float x, float y);
fmodl long double fmodl(long double x, long double y);

Returns Remainder when x is divided by y. If y is zero, either a domain error occurs or
zero is returned. 23.3

fopen Open File <stdio.h>

FILE *fopen(const char * restrict filename,
 const char * restrict mode);

Opens the file whose name is pointed to by filename and associates it with a
stream. mode specifies the mode in which the file is to be opened. Clears the error
and end-of-file indicators for the stream.

Returns A file pointer to be used when performing subsequent operations on the file.
Returns a null pointer if the file can’t be opened. 22.2

fpclassify Floating-Point Classification (C99) <math.h>

int fpclassify(real-floating x); macro

Returns Either FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL, or FP_ZERO,
depending on whether x is infinity, not a number, normal, subnormal, or zero,
respectively. 23.4

fprintf Formatted File Write <stdio.h>

int fprintf(FILE * restrict stream,
 const char * restrict format, ...);

Writes output to the stream pointed to by stream. The string pointed to by
format specifies how subsequent arguments will be displayed.

Returns Number of characters written. Returns a negative value if an error occurs. 22.3

fputc Write Character to File <stdio.h>

int fputc(int c, FILE *stream);

Writes the character c to the stream pointed to by stream.

Returns c (the character written). If a write error occurs, fputc sets the stream’s error
indicator and returns EOF. 22.4

fputs Write String to File <stdio.h>

int fputs(const char * restrict s,
 FILE * restrict stream);

Writes the string pointed to by s to the stream pointed to by stream.

Returns A nonnegative value if successful. Returns EOF if a write error occurs. 22.5

APPEND.FM Page 762 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 763

fputwc Write Wide Character to File (C99) <wchar.h>

wint_t fputwc(wchar_t c, FILE *stream);

Wide-character version of fputc. 25.5

fputws Write Wide String to File (C99) <wchar.h>

int fputws(const wchar_t * restrict s,
 FILE * restrict stream);

Wide-character version of fputs. 25.5

fread Read Block from File <stdio.h>

size_t fread(void * restrict ptr, size_t size,
 size_t nmemb, FILE * restrict stream);

Attempts to read nmemb elements, each size bytes long, from the stream pointed
to by stream and store them in the array pointed to by ptr.

Returns Number of elements actually read. This number will be less than nmemb if fread
encounters end-of-file or a read error occurs. Returns zero if either nmemb or
size is zero. 22.6

free Free Memory Block <stdlib.h>

void free(void *ptr);

Releases the memory block pointed to by ptr. (If ptr is a null pointer, the call
has no effect.) The block must have been allocated by a call of calloc, malloc,
or realloc. 17.4

freopen Reopen File <stdio.h>

FILE *freopen(const char * restrict filename,
 const char * restrict mode,
 FILE * restrict stream);

Closes the file associated with stream, then opens the file whose name is pointed
to by filename and associates it with stream. The mode parameter has the
same meaning as in a call of fopen. C99 change: If filename is a null pointer,
freopen attempts to change the stream’s mode to that specified by mode.

Returns Value of stream if the operation succeeds. Returns a null pointer if the file can’t
be opened. 22.2

frexp Split into Fraction and Exponent <math.h>

double frexp(double value, int *exp);
frexpf float frexpf(float value, int *exp);
frexpl long double frexpl(long double value, int *exp);

Splits value into a fractional part f and an exponent n in such a way that

value = f × 2n

APPEND.FM Page 763 Saturday, February 16, 2008 3:06 PM

764 Appendix D Standard Library Functions

f is normalized so that either 0.5 ≤ f < 1 or f = 0. Stores n in the object pointed to by
exp.

Returns f, the fractional part of value. 23.3

fscanf Formatted File Read <stdio.h>

int fscanf(FILE * restrict stream,
 const char * restrict format, ...);

Reads input items from the stream pointed to by stream. The string pointed to by
format specifies the format of the items to be read. The arguments that follow
format point to objects in which the items are to be stored.

Returns Number of input items successfully read and stored. Returns EOF if an input fail-
ure occurs before any items can be read. 22.3

fseek File Seek <stdio.h>

int fseek(FILE *stream, long int offset, int whence);

Changes the file position indicator for the stream pointed to by stream. If
whence is SEEK_SET, the new position is the beginning of the file plus offset
bytes. If whence is SEEK_CUR, the new position is the current position plus
offset bytes. If whence is SEEK_END, the new position is the end of the file
plus offset bytes. The value of offset may be negative. For text streams,
either offset must be zero or whence must be SEEK_SET and offset a
value obtained by a previous call of ftell. For binary streams, fseek may not
support calls in which whence is SEEK_END.

Returns Zero if the operation is successful, nonzero otherwise. 22.7

fsetpos Set File Position <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

Sets the file position indicator for the stream pointed to by stream according to
the value pointed to by pos (obtained from a previous call of fgetpos).

Returns Zero if successful. If the call fails, returns a nonzero value and stores an implemen-
tation-defined positive value in errno. 22.7

ftell Determine File Position <stdio.h>

long int ftell(FILE *stream);

Returns Current file position indicator for the stream pointed to by stream. If the call
fails, returns -1L and stores an implementation-defined positive value in errno.

22.7

fwide Get and Set Stream Orientation (C99) <wchar.h>

int fwide(FILE *stream, int mode);

Determines the current orientation of a stream and, if desired, attempts to set its
orientation. If mode is greater than zero, fwide tries to make the stream wide-
oriented if it has no orientation. If mode is less than zero, it tries to make the

APPEND.FM Page 764 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 765

stream byte-oriented if it has no orientation. If mode is zero, the orientation is not
changed.

Returns A positive value if the stream has wide orientation after the call, a negative value if
it has byte orientation, or zero if it has no orientation. 25.5

fwprintf Wide-Character Formatted File Write (C99) <wchar.h>

int fwprintf(FILE * restrict stream,
 const wchar_t * restrict format, ...);

Wide-character version of fprintf. 25.5

fwrite Write Block to File <stdio.h>

size_t fwrite(const void * restrict ptr, size_t size,
 size_t nmemb, FILE * restrict stream);

Writes nmemb elements, each size bytes long, from the array pointed to by ptr
to the stream pointed to by stream.

Returns Number of elements actually written. This number will be less than nmemb if a
write error occurs. In C99, returns zero if either nmemb or size is zero. 22.6

fwscanf Wide-Character Formatted File Read (C99) <wchar.h>

int fwscanf(FILE * restrict stream,
 const wchar_t * restrict format, ...);

Wide-character version of fscanf. 25.5

getc Read Character from File <stdio.h>

int getc(FILE *stream);

Reads a character from the stream pointed to by stream. Note: getc is normally
implemented as a macro; it may evaluate stream more than once.

Returns Character read from the stream. If getc encounters the end of the stream, it sets
the stream’s end-of-file indicator and returns EOF. If a read error occurs, getc sets
the stream’s error indicator and returns EOF. 22.4

getchar Read Character <stdio.h>

int getchar(void);

Reads a character from the stdin stream. Note: getchar is normally imple-
mented as a macro.

Returns Character read from the stream. If getchar encounters the end of the stream, it
sets the stream’s end-of-file indicator and returns EOF. If a read error occurs,
getchar sets the stream’s error indicator and returns EOF. 7.3, 22.4

getenv Get Environment String <stdlib.h>

char *getenv(const char *name);

Searches the operating system’s environment list to see if any string matches the
one pointed to by name.

APPEND.FM Page 765 Saturday, February 16, 2008 3:06 PM

766 Appendix D Standard Library Functions

Returns A pointer to the string associated with the matching name. Returns a null pointer if
no match is found. 26.2

gets Read String <stdio.h>

char *gets(char *s);

Reads characters from the stdin stream and stores them in the array pointed to
by s. Reading stops at the first new-line character (which is discarded) or at end-
of-file. gets appends a null character to the string.

Returns s (a pointer to the array in which the input is stored). Returns a null pointer if a
read error occurs or gets encounters the end of the stream before it has stored any
characters. 13.3, 22.5

getwc Read Wide Character from File (C99) <wchar.h>

wint_t getwc(FILE *stream);

Wide-character version of getc. 25.5

getwchar Read Wide Character (C99) <wchar.h>

wint_t getwchar(void);

Wide-character version of getchar. 25.5

gmtime Convert Calendar Time to Broken-Down UTC Time <time.h>

struct tm *gmtime(const time_t *timer);

Returns A pointer to a structure containing a broken-down UTC time equivalent to the cal-
endar time pointed to by timer. Returns a null pointer if the calendar time can’t
be converted to UTC. 26.3

hypot Hypotenuse (C99) <math.h>

double hypot(double x, double y);
hypotf float hypotf(float x, float y);
hypotl long double hypotl(long double x, long double y);

Returns (the hypotenuse of a right triangle with legs x and y). A range error may
occur. 23.4

ilogb Unbiased Exponent (C99) <math.h>

int ilogb(double x);
ilogbf int ilogbf(float x);
ilogbl int ilogbl(long double x);

Returns Exponent of x as a signed integer; equivalent to calling the corresponding logb
function and casting the returned value to type int. Returns FP_ILOGB0 if x is
zero, INT_MAX if x is infinite, and FP_ILOGBNAN if x is a NaN; a domain error
or range error may occur in these cases. 23.4

imaxabs Greatest-Width Integer Absolute Value (C99) <inttypes.h>

intmax_t imaxabs(intmax_t j);

x2 y2+

APPEND.FM Page 766 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 767

Returns Absolute value of j. The behavior is undefined if the absolute value of j can’t be
represented. 27.2

imaxdiv Greatest-Width Integer Division (C99) <inttypes.h>

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

Returns A structure of type imaxdiv_t containing members named quot (the quotient
when numer is divided by denom) and rem (the remainder). The behavior is
undefined if either part of the result can’t be represented. 27.2

isalnum Test for Alphanumeric <ctype.h>

int isalnum(int c);

Returns A nonzero value if c is alphanumeric and zero otherwise. (c is alphanumeric if
either isalpha(c) or isdigit(c) is true.) 23.5

isalpha Test for Alphabetic <ctype.h>

int isalpha(int c);

Returns A nonzero value if c is alphabetic and zero otherwise. In the "C" locale, c is
alphabetic if either islower(c) or isupper(c) is true. 23.5

isblank Test for Blank (C99) <ctype.h>

int isblank(int c);

Returns A nonzero value if c is a blank character that is used to separate words within a
line of text. In the "C" locale, the blank characters are space (' ') and horizontal
tab ('\t'). 23.5

iscntrl Test for Control Character <ctype.h>

int iscntrl(int c);

Returns A nonzero value if c is a control character and zero otherwise. 23.5

isdigit Test for Digit <ctype.h>

int isdigit(int c);

Returns A nonzero value if c is a decimal digit and zero otherwise. 23.5

isfinite Test for Finite Number (C99) <math.h>

int isfinite(real-floating x); macro

Returns A nonzero value if x is finite (zero, subnormal, or normal, but not infinite or NaN)
and zero otherwise. 23.4

isgraph Test for Graphical Character <ctype.h>

int isgraph(int c);

Returns A nonzero value if c is a printing character (except a space) and zero otherwise.
23.5

isgreater Test for Greater Than (C99) <math.h>

int isgreater(real-floating x, real-floating y); macro

APPEND.FM Page 767 Saturday, February 16, 2008 3:06 PM

768 Appendix D Standard Library Functions

Returns (x) > (y). Unlike the > operator, isgreater doesn’t raise the invalid floating-
point exception if one or both of the arguments is a NaN. 23.4

isgreaterequal Test for Greater Than or Equal (C99) <math.h>

int isgreaterequal(real-floating x, real-floating y); macro

Returns (x) >= (y). Unlike the >= operator, isgreaterequal doesn’t raise the
invalid floating-point exception if one or both of the arguments is a NaN. 23.4

isinf Test for Infinity (C99) <math.h>

int isinf(real-floating x); macro

Returns A nonzero value if x is infinity (positive or negative) and zero otherwise. 23.4

isless Test for Less Than (C99) <math.h>

int isless(real-floating x, real-floating y); macro

Returns (x) < (y). Unlike the < operator, isless doesn’t raise the invalid floating-
point exception if one or both of the arguments is a NaN. 23.4

islessequal Test for Less Than or Equal (C99) <math.h>

int islessequal(real-floating x, real-floating y); macro

Returns (x) <= (y). Unlike the <= operator, islessequal doesn’t raise the invalid
floating-point exception if one or both of the arguments is a NaN. 23.4

islessgreater Test for Less Than or Greater Than (C99) <math.h>

int islessgreater(real-floating x, real-floating y); macro

Returns (x) < (y) || (x) > (y). Unlike this expression, islessgreater doesn’t
raise the invalid floating-point exception if one or both of the arguments is a NaN;
also, x and y are evaluated only once. 23.4

islower Test for Lower-Case Letter <ctype.h>

int islower(int c);

Returns A nonzero value if c is a lower-case letter and zero otherwise. 23.5

isnan Test for NaN (C99) <math.h>

int isnan(real-floating x); macro

Returns A nonzero value if x is a NaN value and zero otherwise. 23.4

isnormal Test for Normal Number (C99) <math.h>

int isnormal(real-floating x); macro

Returns A nonzero value if x has a normal value (not zero, subnormal, infinite, or NaN)
and zero otherwise. 23.4

isprint Test for Printing Character <ctype.h>

int isprint(int c);

APPEND.FM Page 768 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 769

Returns A nonzero value if c is a printing character (including a space) and zero otherwise.
23.5

ispunct Test for Punctuation Character <ctype.h>

int ispunct(int c);

Returns A nonzero value if c is a punctuation character and zero otherwise. All printing
characters except the space (' ') and the alphanumeric characters are considered
punctuation. C99 change: In the "C" locale, all printing characters except those
for which isspace or isalnum is true are considered punctuation. 23.5

isspace Test for White-Space Character <ctype.h>

int isspace(int c);

Returns A nonzero value if c is a white-space character and zero otherwise. In the "C"
locale, the white-space characters are space (' '), form feed ('\f'), new-line
('\n'), carriage return ('\r'), horizontal tab ('\t'), and vertical tab ('\v').

23.5

isunordered Test for Unordered (C99) <math.h>

int isunordered(real-floating x, real-floating y); macro

Returns 1 if x and y are unordered (at least one is a NaN) and 0 otherwise. 23.4

isupper Test for Upper-Case Letter <ctype.h>

int isupper(int c);

Returns A nonzero value if c is an upper-case letter and zero otherwise. 23.5

iswalnum Test for Alphanumeric Wide Character (C99) <wctype.h>

int iswalnum(wint_t wc);

Returns A nonzero value if wc is alphanumeric and zero otherwise. (wc is alphanumeric if
either iswalpha(wc) or iswdigit(wc) is true.) 25.6

iswalpha Test for Alphabetic Wide Character (C99) <wctype.h>

int iswalpha(wint_t wc);

Returns A nonzero value if wc is alphabetic and zero otherwise. (wc is alphabetic if
iswupper(wc) or iswlower(wc) is true, or if wc is one of a locale-specific
set of alphabetic wide characters for which none of iswcntrl, iswdigit,
iswpunct, or iswspace is true.) 25.6

iswblank Test for Blank Wide Character (C99) <wctype.h>

int iswblank(wint_t wc);

Returns A nonzero value if wc is a standard blank wide character or one of a locale-specific
set of wide characters for which iswspace is true and that are used to separate
words within a line of text. In the "C" locale, iswblank returns true only for the
standard blank characters: space (L' ') and horizontal tab (L'\t'). 25.6

APPEND.FM Page 769 Saturday, February 16, 2008 3:06 PM

770 Appendix D Standard Library Functions

iswcntrl Test for Control Wide Character (C99) <wctype.h>

int iswcntrl(wint_t wc);

Returns A nonzero value if wc is a control wide character and zero otherwise. 25.6

iswctype Test Type of Wide Character (C99) <wctype.h>

int iswctype(wint_t wc, wctype_t desc);

Returns A nonzero value if the wide character wc has the property described by desc.
(desc must be a value returned by a call of wctype; the current setting of the
LC_CTYPE category must be the same during both calls.) Returns zero otherwise.

25.6

iswdigit Test for Digit Wide Character (C99) <wctype.h>

int iswdigit(wint_t wc);

Returns A nonzero value if wc corresponds to a decimal digit and zero otherwise. 25.6

iswgraph Test for Graphical Wide Character (C99) <wctype.h>

int iswgraph(wint_t wc);

Returns A nonzero value if iswprint(wc) is true and iswspace(wc) is false.
Returns zero otherwise. 25.6

iswlower Test for Lower-Case Wide Character (C99) <wctype.h>

int iswlower(wint_t wc);

Returns A nonzero value if wc corresponds to a lower-case letter or is one of a locale-
specific set of wide characters for which none of iswcntrl, iswdigit,
iswpunct, or iswspace is true. Returns zero otherwise. 25.6

iswprint Test for Printing Wide Character (C99) <wctype.h>

int iswprint(wint_t wc);

Returns A nonzero value if wc is a printing wide character and zero otherwise. 25.6

iswpunct Test for Punctuation Wide Character (C99) <wctype.h>

int iswpunct(wint_t wc);

Returns A nonzero value if wc is a printing wide character that is one of a locale-specific
set of punctuation wide characters for which neither iswspace nor iswalnum
is true. Returns zero otherwise. 25.6

iswspace Test for White-Space Wide Character (C99) <wctype.h>

int iswspace(wint_t wc);

Returns A nonzero value if wc is one of a locale-specific set of white-space wide characters
for which none of iswalnum, iswgraph, or iswpunct is true. Returns zero
otherwise. 25.6

APPEND.FM Page 770 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 771

iswupper Test for Upper-Case Wide Character (C99) <wctype.h>

int iswupper(wint_t wc);

Returns A nonzero value if wc corresponds to an upper-case letter or is one of a locale-
specific set of wide characters for which none of iswcntrl, iswdigit,
iswpunct, or iswspace is true. Returns zero otherwise. 25.6

iswxdigit Test for Hexadecimal-Digit Wide Character (C99) <wctype.h>

int iswxdigit(wint_t wc);

Returns A nonzero value if wc corresponds to a hexadecimal digit (0–9, a–f, A–F) and
zero otherwise. 25.6

isxdigit Test for Hexadecimal Digit <ctype.h>

int isxdigit(int c);

Returns A nonzero value if c is a hexadecimal digit (0–9, a–f, A–F) and zero otherwise.
23.5

labs Long Integer Absolute Value <stdlib.h>

long int labs(long int j);

Returns Absolute value of j. The behavior is undefined if the absolute value of j can’t be
represented. 26.2

ldexp Combine Fraction and Exponent <math.h>

double ldexp(double x, int exp);
ldexpf float ldexpf(float x, int exp);
ldexpl long double ldexpl(long double x, int exp);

Returns x × 2exp. A range error may occur. 23.3

ldiv Long Integer Division <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

Returns An ldiv_t structure containing members named quot (the quotient when
numer is divided by denom) and rem (the remainder). The behavior is undefined
if either part of the result can’t be represented. 26.2

lgamma Logarithm of Gamma Function (C99) <math.h>

double lgamma(double x);
lgammaf float lgammaf(float x);
lgammal long double lgammal(long double x);

Returns ln(|Γ(x)|), where Γ is the gamma function. A range error occurs if x is too large
and may occur if x is a negative integer or zero. 23.4

llabs Long Long Integer Absolute Value (C99) <stdlib.h>

long long int llabs(long long int j);

APPEND.FM Page 771 Saturday, February 16, 2008 3:06 PM

772 Appendix D Standard Library Functions

Returns Absolute value of j. The behavior is undefined if the absolute value of j can’t be
represented. 26.2

lldiv Long Long Integer Division (C99) <stdlib.h>

lldiv_t lldiv(long long int numer,
 long long int denom);

Returns An lldiv_t structure containing members named quot (the quotient when
numer is divided by denom) and rem (the remainder). The behavior is undefined
if either part of the result can’t be represented. 26.2

llrint Round to Long Long Integer Using Current Direction (C99) <math.h>

long long int llrint(double x);
llrintf long long int llrintf(float x);
llrintl long long int llrintl(long double x);

Returns x rounded to the nearest integer using the current rounding direction. If the
rounded value is outside the range of the long long int type, the result is
unspecified and a domain or range error may occur. 23.4

llround Round to Nearest Long Long Integer (C99) <math.h>

long long int llround(double x);
llroundf long long int llroundf(float x);
llroundl long long int llroundl(long double x);

Returns x rounded to the nearest integer, with halfway cases rounded away from zero. If
the rounded value is outside the range of the long long int type, the result is
unspecified and a domain or range error may occur. 23.4

localeconv Get Locale Conventions <locale.h>

struct lconv *localeconv(void);

Returns A pointer to a structure containing information about the current locale. 25.1

localtime Convert Calendar Time to Broken-Down Local Time <time.h>

struct tm *localtime(const time_t *timer);

Returns A pointer to a structure containing a broken-down local time equivalent to the cal-
endar time pointed to by timer. Returns a null pointer if the calendar time can’t
be converted to local time. 26.3

log Natural Logarithm <math.h>

double log(double x);
logf float logf(float x);
logl long double logl(long double x);

Returns Logarithm of x to the base e. A domain error occurs if x is negative. A range error
may occur if x is zero. 23.3

APPEND.FM Page 772 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 773

log10 Common Logarithm <math.h>

double log10(double x);
log10f float log10f(float x);
log10l long double log10l(long double x);

Returns Logarithm of x to the base 10. A domain error occurs if x is negative. A range
error may occur if x is zero. 23.3

log1p Natural Logarithm of 1 Plus Argument (C99) <math.h>

double log1p(double x);
log1pf float log1pf(float x);
log1pl long double log1pl(long double x);

Returns Logarithm of 1 + x to the base e. A domain error occurs if x is less than –1. A
range error may occur if x is equal to –1. 23.4

log2 Base-2 Logarithm (C99) <math.h>

double log2(double x);
log2f float log2f(float x);
log2l long double log2l(long double x);

Returns Logarithm of x to the base 2. A domain error occurs if x is negative. A range error
may occur if x is zero. 23.4

logb Radix-Independent Exponent (C99) <math.h>

double logb(double x);
logbf float logbf(float x);
logbl long double logbl(long double x);

Returns logr(|x|), where r is the radix of floating-point arithmetic (defined by the macro
FLT_RADIX, which typically has the value 2). A domain error or range error may
occur if x is zero. 23.4

longjmp Nonlocal Jump <setjmp.h>

void longjmp(jmp_buf env, int val);

Restores the environment stored in env and returns from the call of setjmp that
originally saved env. If val is nonzero, it will be setjmp’s return value; if val
is 0, setjmp returns 1. 24.4

lrint Round to Long Integer Using Current Direction (C99) <math.h>

long int lrint(double x);
lrintf long int lrintf(float x);
lrintl long int lrintl(long double x);

Returns x rounded to the nearest integer using the current rounding direction. If the
rounded value is outside the range of the long int type, the result is unspecified
and a domain or range error may occur. 23.4

APPEND.FM Page 773 Saturday, February 16, 2008 3:06 PM

774 Appendix D Standard Library Functions

lround Round to Nearest Long Integer (C99) <math.h>

long int lround(double x);
lroundf long int lroundf(float x);
lroundl long int lroundl(long double x);

Returns x rounded to the nearest integer, with halfway cases rounded away from zero. If
the rounded value is outside the range of the long int type, the result is unspeci-
fied and a domain or range error may occur. 23.4

malloc Allocate Memory Block <stdlib.h>

void *malloc(size_t size);

Allocates a block of memory with size bytes. The block is not cleared.

Returns A pointer to the beginning of the block. Returns a null pointer if a block of the
requested size can’t be allocated. 17.2

mblen Length of Multibyte Character <stdlib.h>

int mblen(const char *s, size_t n);

Returns If s is a null pointer, returns a nonzero or zero value, depending on whether or not
multibyte characters have state-dependent encodings. If s points to a null charac-
ter, returns zero. Otherwise, returns the number of bytes in the multibyte character
pointed to by s; returns –1 if the next n or fewer bytes don’t form a valid multibyte
character. 25.2

mbrlen Length of Multibyte Character – Restartable (C99) <wchar.h>

size_t mbrlen(const char * restrict s, size_t n,
 mbstate_t * restrict ps);

Determines the number of bytes in the array pointed to by s that are required to
complete a multibyte character. ps should point to an object of type mbstate_t
that contains the current conversion state. A call of mbrlen is equivalent to

mbrtowc(NULL, s, n, ps)

except that if ps is a null pointer, the address of an internal object is used instead.

Returns See mbrtowc. 25.5

mbrtowc Convert Multibyte Character to Wide Character – Restartable <wchar.h>
(C99)

size_t mbrtowc(wchar_t * restrict pwc,
 const char * restrict s, size_t n,
 mbstate_t * restrict ps);

If s is a null pointer, a call of mbrtowc is equivalent to

mbrtowc(NULL, "", 1, ps)

Otherwise, mbrtowc examines up to n bytes in the array pointed to by s to see if

APPEND.FM Page 774 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 775

they complete a valid multibyte character. If so, the multibyte character is con-
verted into a wide character. If pwc isn’t a null pointer, the wide character is stored
in the object pointed to by pwc. The value of ps should be a pointer to an object of
type mbstate_t that contains the current conversion state. If ps is a null pointer,
mbrtowc uses an internal object to store the conversion state. If the result of the
conversion is the null wide character, the mbstate_t object used during the call
is left in the initial conversion state.

Returns 0 if the conversion produces a null wide character. Returns a number between 1
and n if the conversion produces a wide character other than null, where the value
returned is the number of bytes used to complete the multibyte character. Returns
(size_t)(-2) if the n bytes pointed to by s weren’t enough to complete a
multibyte character. Returns (size_t)(-1) and stores EILSEQ in errno if an
encoding error occurs. 25.5

mbsinit Test for Initial Conversion State (C99) <wchar.h>

int mbsinit(const mbstate_t *ps);

Returns A nonzero value if ps is a null pointer or it points to an mbstate_t object that
describes an initial conversion state; otherwise, returns zero. 25.5

mbsrtowcs Convert Multibyte String to Wide String – Restartable (C99) <wchar.h>

size_t mbsrtowcs(wchar_t * restrict dst,
 const char ** restrict src,
 size_t len, mbstate_t * restrict ps);

Converts a sequence of multibyte characters from the array indirectly pointed to
by src into a sequence of corresponding wide characters. ps should point to an
object of type mbstate_t that contains the current conversion state. If the argu-
ment corresponding to ps is a null pointer, mbsrtowcs uses an internal object to
store the conversion state. If dst isn’t a null pointer, the converted characters are
stored in the array that it points to. Conversion continues up to and including a ter-
minating null character, which is also stored. Conversion stops earlier if a
sequence of bytes is encountered that doesn’t form a valid multibyte character
or—if dst isn’t a null pointer—when len wide characters have been stored in
the array. If dst isn’t a null pointer, the object pointed to by src is assigned
either a null pointer (if a terminating null character was reached) or the address
just past the last multibyte character converted (if any). If the conversion ends at a
null character and if dst isn’t a null pointer, the resulting state is the initial con-
version state.

Returns Number of multibyte characters successfully converted, not including any termi-
nating null character. Returns (size_t)(-1) and stores EILSEQ in errno if
an invalid multibyte character is encountered. 25.5

mbstowcs Convert Multibyte String to Wide String <stdlib.h>

size_t mbstowcs(wchar_t * restrict pwcs,
 const char * restrict s, size_t n);

APPEND.FM Page 775 Saturday, February 16, 2008 3:06 PM

776 Appendix D Standard Library Functions

Converts the sequence of multibyte characters pointed to by s into a sequence of
wide characters, storing at most n wide characters in the array pointed to by pwcs.
Conversion ends if a null character is encountered; it is converted into a null wide
character.

Returns Number of array elements modified, not including the null wide character, if any.
Returns (size_t)(-1) if an invalid multibyte character is encountered. 25.2

mbtowc Convert Multibyte Character to Wide Character <stdlib.h>

int mbtowc(wchar_t * restrict pwc,
 const char * restrict s, size_t n);

If s isn’t a null pointer, converts the multibyte character pointed to by s into a wide
character; at most n bytes will be examined. If the multibyte character is valid and
pwc isn’t a null pointer, stores the value of the wide character in the object pointed
to by pwc.

Returns If s is a null pointer, returns a nonzero or zero value, depending on whether or not
multibyte characters have state-dependent encodings. If s points to a null charac-
ter, returns zero. Otherwise, returns the number of bytes in the multibyte character
pointed to by s; returns –1 if the next n or fewer bytes don’t form a valid multibyte
character. 25.2

memchr Search Memory Block for Character <string.h>

void *memchr(const void *s, int c, size_t n);

Returns A pointer to the first occurrence of the character c among the first n characters of
the object pointed to by s. Returns a null pointer if c isn’t found. 23.6

memcmp Compare Memory Blocks <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

Returns A negative, zero, or positive integer, depending on whether the first n characters of
the object pointed to by s1 are less than, equal to, or greater than the first n char-
acters of the object pointed to by s2. 23.6

memcpy Copy Memory Block <string.h>

void *memcpy(void * restrict s1,
 const void * restrict s2, size_t n);

Copies n characters from the object pointed to by s2 into the object pointed to by
s1. The behavior is undefined if the objects overlap.

Returns s1 (a pointer to the destination). 23.6

memmove Copy Memory Block <string.h>

void *memmove(void *s1, const void *s2, size_t n);

Copies n characters from the object pointed to by s2 into the object pointed to by
s1. Will work properly if the objects overlap.

Returns s1 (a pointer to the destination). 23.6

APPEND.FM Page 776 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 777

memset Initialize Memory Block <string.h>

void *memset(void *s, int c, size_t n);

Stores c in each of the first n characters of the object pointed to by s.

Returns s (a pointer to the object). 23.6

mktime Convert Broken-Down Local Time to Calendar Time <time.h>

time_t mktime(struct tm *timeptr);

Converts a broken-down local time (stored in the structure pointed to by time-
ptr) into a calendar time. The members of the structure aren’t required to be
within their legal ranges; also, the values of tm_wday (day of the week) and
tm_yday (day of the year) are ignored. mktime stores values in tm_wday and
tm_yday after adjusting the other members to bring them into their proper
ranges.

Returns A calendar time corresponding to the structure pointed to by timeptr. Returns
(time_t)(-1) if the calendar time can’t be represented. 26.3

modf Split into Integer and Fractional Parts <math.h>

double modf(double value, double *iptr);
modff float modff(float value, float *iptr);
modfl long double modfl(long double value, long double *iptr);

Splits value into integer and fractional parts; stores the integer part in the object
pointed to by iptr.

Returns Fractional part of value. 23.3

nan Create NaN (C99) <math.h>

double nan(const char *tagp);
nanf float nanf(const char *tagp);
nanl long double nanl(const char *tagp);

Returns A “quiet” NaN whose binary pattern is determined by the string pointed to by
tagp. Returns zero if quiet NaNs aren’t supported. 23.4

nearbyint Round to Integral Value Using Current Direction (C99) <math.h>

double nearbyint(double x);
nearbyintf float nearbyintf(float x);
nearbyintl long double nearbyintl(long double x);

Returns x rounded to an integer (in floating-point format) using the current rounding direc-
tion. Doesn’t raise the inexact floating-point exception. 23.4

nextafter Next Number After (C99) <math.h>

double nextafter(double x, double y);
nextafterf float nextafterf(float x, float y);
nextafterl long double nextafterl(long double x, long double y);

APPEND.FM Page 777 Saturday, February 16, 2008 3:06 PM

778 Appendix D Standard Library Functions

Returns Next representable value after x in the direction of y. Returns the value just before
x if y < x or the value just after x if x < y. Returns y if x equals y. A range error
may occur if the magnitude of x is the largest representable finite value and the
result is infinite or not representable. 23.4

nexttoward Next Number Toward (C99) <math.h>

double nexttoward(double x, long double y);
nexttowardf float nexttowardf(float x, long double y);
nexttowardl long double nexttowardl(long double x, long double y);

Returns Next representable value after x in the direction of y (see nextafter). Returns
y converted to the function’s type if x equals y. 23.4

perror Print Error Message <stdio.h>

void perror(const char *s);

Writes the following message to the stderr stream:

string: error-message

string is the string pointed to by s and error-message is an implementation-defined
message that matches the one returned by the call strerror(errno). 24.2

pow Power <math.h>

double pow(double x, double y);
powf float powf(float x, float y);
powl long double powl(long double x, long double y);

Returns x raised to the power y. A domain or range error may occur in certain cases, which
vary between C89 and C99. 23.3

printf Formatted Write <stdio.h>

int printf(const char * restrict format, ...);

Writes output to the stdout stream. The string pointed to by format specifies
how subsequent arguments will be displayed.

Returns Number of characters written. Returns a negative value if an error occurs. 3.1, 22.3

putc Write Character to File <stdio.h>

int putc(int c, FILE *stream);

Writes the character c to the stream pointed to by stream. Note: putc is nor-
mally implemented as a macro; it may evaluate stream more than once.

Returns c (the character written). If a write error occurs, putc sets the stream’s error indi-
cator and returns EOF. 22.4

putchar Write Character <stdio.h>

int putchar(int c);

Writes the character c to the stdout stream. Note: putchar is normally imple-
mented as a macro.

APPEND.FM Page 778 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 779

Returns c (the character written). If a write error occurs, putchar sets the stream’s error
indicator and returns EOF. 7.3, 22.4

puts Write String <stdio.h>

int puts(const char *s);

Writes the string pointed to by s to the stdout stream, then writes a new-line
character.

Returns A nonnegative value if successful. Returns EOF if a write error occurs. 13.3, 22.5

putwc Write Wide Character to File (C99) <wchar.h>

wint_t putwc(wchar_t c, FILE *stream);

Wide-character version of putc. 25.5

putwchar Write Wide Character (C99) <wchar.h>

wint_t putwchar(wchar_t c);

Wide-character version of putchar. 25.5

qsort Sort Array <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

Sorts the array pointed to by base. The array has nmemb elements, each size
bytes long. compar is a pointer to a comparison function. When passed pointers
to two array elements, the comparison function must return a negative, zero, or
positive integer, depending on whether the first array element is less than, equal to,
or greater than the second. 17.7, 26.2

raise Raise Signal <signal.h>

int raise(int sig);

Raises the signal whose number is sig.

Returns Zero if successful, nonzero otherwise. 24.3

rand Generate Pseudo-Random Number <stdlib.h>

int rand(void);

Returns A pseudo-random integer between 0 and RAND_MAX (inclusive). 26.2

realloc Resize Memory Block <stdlib.h>

void *realloc(void *ptr, size_t size);

ptr is assumed to point to a block of memory previously obtained from calloc,
malloc, or realloc. realloc allocates a block of size bytes, copying the
contents of the old block if necessary.

Returns A pointer to the beginning of the new memory block. Returns a null pointer if a
block of the requested size can’t be allocated. 17.3

APPEND.FM Page 779 Saturday, February 16, 2008 3:06 PM

780 Appendix D Standard Library Functions

remainder Remainder (C99) <math.h>

double remainder(double x, double y);
remainderf float remainderf(float x, float y);
remainderl long double remainderl(long double x, long double y);

Returns x – ny, where n is the integer nearest the exact value of x/y. (If x/y is halfway
between two integers, n is even.) If x – ny = 0, the return value has the same sign
as x. If y is zero, either a domain error occurs or zero is returned. 23.4

remove Remove File <stdio.h>

int remove(const char *filename);

Deletes the file whose name is pointed to by filename.

Returns Zero if successful, nonzero otherwise. 22.2

remquo Remainder and Quotient (C99) <math.h>

double remquo(double x, double y, int *quo);
remquof float remquof(float x, float y, int *quo);
remquol long double remquol(long double x, long double y,

 int *quo);

Computes both the remainder and the quotient when x is divided by y. The object
pointed to by quo is modified so that it contains n low-order bits of the integer
quotient |x/y|, where n is implementation-defined but must be at least three. The
value stored in this object will be negative if x/y < 0.

Returns Same value as the corresponding remainder function. If y is zero, either a
domain error occurs or zero is returned. 23.4

rename Rename File <stdio.h>

int rename(const char *old, const char *new);

Changes the name of a file. old and new point to strings containing the old name
and new name, respectively.

Returns Zero if the renaming is successful. Returns a nonzero value if the operation fails
(perhaps because the old file is currently open). 22.2

rewind Rewind File <stdio.h>

void rewind(FILE *stream);

Sets the file position indicator for the stream pointed to by stream to the begin-
ning of the file. Clears the error and end-of-file indicators for the stream. 22.7

rint Round to Integral Value Using Current Direction (C99) <math.h>

double rint(double x);
rintf float rintf(float x);
rintl long double rintl(long double x);

Returns x rounded to an integer (in floating-point format) using the current rounding direc-

APPEND.FM Page 780 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 781

tion. May raise the inexact floating-point exception if the result has a different
value than x. 23.4

round Round to Nearest Integral Value (C99) <math.h>

double round(double x);
roundf float roundf(float x);
roundl long double roundl(long double x);

Returns x rounded to the nearest integer (in floating-point format). Halfway cases are
rounded away from zero. 23.4

scalbln Scale Floating-Point Number Using Long Integer (C99) <math.h>

double scalbln(double x, long int n);
scalblnf float scalblnf(float x, long int n);
scalblnl long double scalblnl(long double x, long int n);

Returns x × FLT_RADIXn, computed in an efficient way. A range error may occur. 23.4

scalbn Scale Floating-Point Number Using Integer (C99) <math.h>

double scalbn(double x, int n);
scalbnf float scalbnf(float x, int n);
scalbnl long double scalbnl(long double x, int n);

Returns x × FLT_RADIXn, computed in an efficient way. A range error may occur. 23.4

scanf Formatted Read <stdio.h>

int scanf(const char * restrict format, ...);

Reads input items from the stdin stream. The string pointed to by format spec-
ifies the format of the items to be read. The arguments that follow format point
to objects in which the items are to be stored.

Returns Number of input items successfully read and stored. Returns EOF if an input fail-
ure occurs before any items can be read. 3.2, 22.3

setbuf Set Buffer <stdio.h>

void setbuf(FILE * restrict stream,
 char * restrict buf);

If buf isn’t a null pointer, a call of setbuf is equivalent to:

(void) setvbuf(stream, buf, _IOFBF, BUFSIZ);

Otherwise, it’s equivalent to:

(void) setvbuf(stream, NULL, _IONBF, 0); 22.2

setjmp Prepare for Nonlocal Jump <setjmp.h>

int setjmp(jmp_buf env); macro

Stores the current environment in env for use in a later call of longjmp.

Returns Zero when called directly. Returns a nonzero value when returning from a call of
longjmp. 24.4

APPEND.FM Page 781 Saturday, February 16, 2008 3:06 PM

782 Appendix D Standard Library Functions

setlocale Set Locale <locale.h>

char *setlocale(int category, const char *locale);

Sets a portion of the program’s locale. category indicates which portion is
affected. locale points to a string representing the new locale.

Returns If locale is a null pointer, returns a pointer to the string associated with cate-
gory for the current locale. Otherwise, returns a pointer to the string associated
with category for the new locale. Returns a null pointer if the operation fails.

25.1

setvbuf Set Buffer <stdio.h>

int setvbuf(FILE * restrict stream,
 char * restrict buf,
 int mode, size_t size);

Changes the buffering of the stream pointed to by stream. The value of mode
can be either _IOFBF (full buffering), _IOLBF (line buffering), or _IONBF (no
buffering). If buf is a null pointer, a buffer is automatically allocated if needed.
Otherwise, buf points to a memory block that can be used as the buffer; size is
the number of bytes in the block. Note: setvbuf must be called after the stream
is opened but before any other operations are performed on it.

Returns Zero if the operation is successful. Returns a nonzero value if mode is invalid or
the request can’t be honored. 22.2

signal Install Signal Handler <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

Installs the function pointed to by func as the handler for the signal whose num-
ber is sig. Passing SIG_DFL as the second argument causes default handling for
the signal; passing SIG_IGN causes the signal to be ignored.

Returns A pointer to the previous handler for this signal; returns SIG_ERR and stores a
positive value in errno if the handler can’t be installed. 24.3

signbit Sign Bit (C99) <math.h>

int signbit(real-floating x); macro

Returns A nonzero value if the sign of x is negative and zero otherwise. The value of x may
be any number, including infinity and NaN. 23.4

sin Sine <math.h>

double sin(double x);
sinf float sinf(float x);
sinl long double sinl(long double x);

Returns Sine of x (measured in radians). 23.3

sinh Hyperbolic Sine <math.h>

double sinh(double x);

APPEND.FM Page 782 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 783

sinhf float sinhf(float x);
sinhl long double sinhl(long double x);

Returns Hyperbolic sine of x. A range error occurs if the magnitude of x is too large. 23.3

snprintf Bounded Formatted String Write (C99) <stdio.h>

int snprintf(char * restrict s, size_t n,
 const char * restrict format, ...);

Equivalent to fprintf, but stores characters in the array pointed to by s instead
of writing them to a stream. No more than n – 1 characters will be written to the
array. The string pointed to by format specifies how subsequent arguments will
be displayed. Stores a null character in the array at the end of output.

Returns Number of characters that would have been stored in the array (not including the
null character) had there been no length restriction. Returns a negative value if an
encoding error occurs. 22.8

sprintf Formatted String Write <stdio.h>

int sprintf(char * restrict s,
 const char * restrict format, ...);

Equivalent to fprintf, but stores characters in the array pointed to by s instead
of writing them to a stream. The string pointed to by format specifies how subse-
quent arguments will be displayed. Stores a null character in the array at the end of
output.

Returns Number of characters stored in the array, not including the null character. In C99,
returns a negative value if an encoding error occurs. 22.8

sqrt Square Root <math.h>

double sqrt(double x);
sqrtf float sqrtf(float x);
sqrtl long double sqrtl(long double x);

Returns Nonnegative square root of x. A domain error occurs if x is negative. 23.3

srand Seed Pseudo-Random Number Generator <stdlib.h>

void srand(unsigned int seed);

Uses seed to initialize the sequence of pseudo-random numbers produced by call-
ing rand. 26.2

sscanf Formatted String Read <stdio.h>

int sscanf(const char * restrict s,
 const char * restrict format, ...);

Equivalent to fscanf, but reads characters from the string pointed to by s instead
of reading them from a stream. The string pointed to by format specifies the for-
mat of the items to be read. The arguments that follow format point to objects in
which the items are to be stored.

APPEND.FM Page 783 Saturday, February 16, 2008 3:06 PM

784 Appendix D Standard Library Functions

Returns Number of input items successfully read and stored. Returns EOF if an input fail-
ure occurs before any items could be read. 22.8

strcat String Concatenation <string.h>

char *strcat(char * restrict s1,
 const char * restrict s2);

Appends characters from the string pointed to by s2 to the string pointed to by s1.

Returns s1 (a pointer to the concatenated string). 13.5, 23.6

strchr Search String for Character <string.h>

char *strchr(const char *s, int c);

Returns A pointer to the first occurrence of the character c in the string pointed to by s.
Returns a null pointer if c isn’t found. 23.6

strcmp String Comparison <string.h>

int strcmp(const char *s1, const char *s2);

Returns A negative, zero, or positive integer, depending on whether the string pointed to by
s1 is less than, equal to, or greater than the string pointed to by s2. 13.5, 23.6

strcoll String Comparison Using Locale-Specific Collating <string.h>
Sequence

int strcoll(const char *s1, const char *s2);

Returns A negative, zero, or positive integer, depending on whether the string pointed to by
s1 is less than, equal to, or greater than the string pointed to by s2. The comparison
is performed according to the rules of the current locale’s LC_COLLATE category.

23.6

strcpy String Copy <string.h>

char *strcpy(char * restrict s1,
 const char * restrict s2);

Copies the string pointed to by s2 into the array pointed to by s1.

Returns s1 (a pointer to the destination). 13.5, 23.6

strcspn Search String for Initial Span of Characters Not in Set <string.h>

size_t strcspn(const char *s1, const char *s2);

Returns Length of the longest initial segment of the string pointed to by s1 that doesn’t
contain any character in the string pointed to by s2. 23.6

strerror Convert Error Number to String <string.h>

char *strerror(int errnum);

Returns A pointer to a string containing an error message corresponding to the value of
errnum. 24.2

APPEND.FM Page 784 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 785

strftime Write Formatted Date and Time to String <time.h>

size_t strftime(char * restrict s, size_t maxsize,
 const char * restrict format,
 const struct tm * restrict timeptr);

Stores characters in the array pointed to by s under control of the string pointed to
by format. The format string may contain ordinary characters, which are copied
unchanged, and conversion specifiers, which are replaced by values from the struc-
ture pointed to by timeptr. The maxsize parameter limits the number of char-
acters (including the null character) that can be stored.

Returns Number of characters stored (not including the terminating null character). Returns
zero if the number of characters to be stored (including the null character) exceeds
maxsize. 26.3

strlen String Length <string.h>

size_t strlen(const char *s);

Returns Length of the string pointed to by s, not including the null character. 13.5, 23.6

strncat Bounded String Concatenation <string.h>

char *strncat(char * restrict s1,
 const char * restrict s2, size_t n);

Appends characters from the array pointed to by s2 to the string pointed to by
s1. Copying stops when a null character is encountered or n characters have been
copied.

Returns s1 (a pointer to the concatenated string). 13.5, 23.6

strncmp Bounded String Comparison <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

Returns A negative, zero, or positive integer, depending on whether the first n characters of
the array pointed to by s1 are less than, equal to, or greater than the first n charac-
ters of the array pointed to by s2. Comparison stops if a null character is encoun-
tered in either array. 23.6

strncpy Bounded String Copy <string.h>

char *strncpy(char * restrict s1,
 const char * restrict s2, size_t n);

Copies the first n characters of the array pointed to by s2 into the array pointed to
by s1. If it encounters a null character in the array pointed to by s2, strncpy
adds null characters to the array pointed to by s1 until a total of n characters have
been written.

Returns s1 (a pointer to the destination). 13.5, 23.6

APPEND.FM Page 785 Saturday, February 16, 2008 3:06 PM

786 Appendix D Standard Library Functions

strpbrk Search String for One of a Set of Characters <string.h>

char *strpbrk(const char *s1, const char *s2);

Returns A pointer to the leftmost character in the string pointed to by s1 that matches any
character in the string pointed to by s2. Returns a null pointer if no match is found.

23.6

strrchr Search String in Reverse for Character <string.h>

char *strrchr(const char *s, int c);

Returns A pointer to the last occurrence of the character c in the string pointed to by s.
Returns a null pointer if c isn’t found. 23.6

strspn Search String for Initial Span of Characters in Set <string.h>

size_t strspn(const char *s1, const char *s2);

Returns Length of the longest initial segment in the string pointed to by s1 that consists
entirely of characters in the string pointed to by s2. 23.6

strstr Search String for Substring <string.h>

char *strstr(const char *s1, const char *s2);

Returns A pointer to the first occurrence in the string pointed to by s1 of the sequence of
characters in the string pointed to by s2. Returns a null pointer if no match is
found. 23.6

strtod Convert String to Double <stdlib.h>

double strtod(const char * restrict nptr,
 char ** restrict endptr);

Skips white-space characters in the string pointed to by nptr, then converts subse-
quent characters into a double value. If endptr isn’t a null pointer, strtod
modifies the object pointed to by endptr so that it points to the first leftover char-
acter. If no double value is found, or if it has the wrong form, strtod stores
nptr in the object pointed to by endptr. If the number is too large or small to
represent, it stores ERANGE in errno. C99 changes: The string pointed to by
nptr may contain a hexadecimal floating-point number, infinity, or NaN.
Whether ERANGE is stored in errno when the number is too small to represent is
implementation-defined.

Returns The converted number. Returns zero if no conversion could be performed. If the
number is too large to represent, returns plus or minus HUGE_VAL, depending on
the number’s sign. Returns zero if the number is too small to represent. C99
change: If the number is too small to represent, strtod returns a value whose
magnitude is no greater than the smallest normalized positive double. 26.2

strtof Convert String to Float (C99) <stdlib.h>

float strtof(const char * restrict nptr,
 char ** restrict endptr);

APPEND.FM Page 786 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 787

strtof is identical to strtod, except that it converts a string to a float value.

Returns The converted number. Returns zero if no conversion could be performed. If the
number is too large to represent, returns plus or minus HUGE_VALF, depending on
the number’s sign. If the number is too small to represent, returns a value whose
magnitude is no greater than the smallest normalized positive float. 26.2

strtoimax Convert String to Greatest-Width Integer (C99) <inttypes.h>

intmax_t strtoimax(const char * restrict nptr,
 char ** restrict endptr, int base);

strtoimax is identical to strtol, except that it converts a string to a value of
type intmax_t (the widest signed integer type).

Returns The converted number. Returns zero if no conversion could be performed. If the
number can’t be represented, returns INTMAX_MAX or INTMAX_MIN, depending
on the number’s sign. 27.2

strtok Search String for Token <string.h>

char *strtok(char * restrict s1,
 const char * restrict s2);

Searches the string pointed to by s1 for a “token” consisting of characters not in
the string pointed to by s2. If a token exists, the character following it is changed
to a null character. If s1 is a null pointer, a search begun by the most recent call of
strtok is continued; the search begins immediately after the null character at the
end of the previous token.

Returns A pointer to the first character of the token. Returns a null pointer if no token could
be found. 23.6

strtol Convert String to Long Integer <stdlib.h>

long int strtol(const char * restrict nptr,
 char ** restrict endptr, int base);

Skips white-space characters in the string pointed to by nptr, then converts subse-
quent characters into a long int value. If base is between 2 and 36, it is used as
the radix of the number. If base is zero, the number is assumed to be decimal
unless it begins with 0 (octal) or with 0x or 0X (hexadecimal). If endptr isn’t a
null pointer, strtol modifies the object pointed to by endptr so that it points
to the first leftover character. If no long int value is found, or if it has the wrong
form, strtol stores nptr in the object pointed to by endptr. If the number
can’t be represented, it stores ERANGE in errno.

Returns The converted number. Returns zero if no conversion could be performed. If the
number can’t be represented, returns LONG_MAX or LONG_MIN, depending on the
number’s sign. 26.2

strtold Convert String to Long Double (C99) <stdlib.h>

long double strtold(const char * restrict nptr,
 char ** restrict endptr);

APPEND.FM Page 787 Saturday, February 16, 2008 3:06 PM

788 Appendix D Standard Library Functions

strtold is identical to strtod, except that it converts a string to a long dou-
ble value.

Returns The converted number. Returns zero if no conversion could be performed. If the num-
ber is too large to represent, returns plus or minus HUGE_VALL, depending on the
number’s sign. If the number is too small to represent, returns a value whose mag-
nitude is no greater than the smallest normalized positive long double. 26.2

strtoll Convert String to Long Long Integer (C99) <stdlib.h>

long long int strtoll(const char * restrict nptr,
 char ** restrict endptr,
 int base);

strtoll is identical to strtol, except that it converts a string to a long long
int value.

Returns The converted number. Returns zero if no conversion could be performed. If the
number can’t be represented, returns LLONG_MAX or LLONG_MIN, depending on
the number’s sign. 26.2

strtoul Convert String to Unsigned Long Integer <stdlib.h>

unsigned long int strtoul(const char * restrict nptr,
 char ** restrict endptr,
 int base);

strtoul is identical to strtol, except that it converts a string to an
unsigned long int value.

Returns The converted number. Returns zero if no conversion could be performed. If the
number can’t be represented, returns ULONG_MAX. 26.2

strtoull Convert String to Unsigned Long Long Integer (C99) <stdlib.h>

unsigned long long int strtoull(
 const char * restrict nptr,
 char ** restrict endptr, int base);

strtoull is identical to strtol, except that it converts a string to an
unsigned long long int value.

Returns The converted number. Returns zero if no conversion could be performed. If the
number can’t be represented, returns ULLONG_MAX. 26.2

strtoumax Convert String to Unsigned Greatest-Width Integer (C99) <inttypes.h>

uintmax_t strtoumax(const char * restrict nptr,
 char ** restrict endptr,
 int base);

strtoumax is identical to strtol, except that it converts a string to a value of
type uintmax_t (the widest unsigned integer type).

Returns The converted number. Returns zero if no conversion could be performed. If the
number can’t be represented, returns UINTMAX_MAX. 27.2

APPEND.FM Page 788 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 789

strxfrm Transform String <string.h>

size_t strxfrm(char * restrict s1,
 const char * restrict s2, size_t n);

Transforms the string pointed to by s2, placing the first n characters of the
result—including the null character—in the array pointed to by s1. Calling
strcmp with two transformed strings should produce the same outcome (nega-
tive, zero, or positive) as calling strcoll with the original strings. If n is zero,
s1 is allowed to be a null pointer.

Returns Length of the transformed string. If this value is n or more, the contents of the
array pointed to by s1 are indeterminate. 23.6

swprintf Wide-Character Formatted String Write (C99) <wchar.h>

int swprintf(wchar_t * restrict s, size_t n,
 const wchar_t * restrict format, ...);

Equivalent to fwprintf, but stores wide characters in the array pointed to by s
instead of writing them to a stream. The string pointed to by format specifies
how subsequent arguments will be displayed. No more than n wide characters will
be written to the array, including a terminating null wide character.

Returns Number of wide characters stored in the array, not including the null wide charac-
ter. Returns a negative value if an encoding error occurs or the number of wide
characters to be written is n or more. 25.5

swscanf Wide-Character Formatted String Read (C99) <wchar.h>

int swscanf(const wchar_t * restrict s,
 const wchar_t * restrict format, ...);

Wide-character version of sscanf. 25.5

system Perform Operating-System Command <stdlib.h>

int system(const char *string);

Passes the string pointed to by string to the operating system’s command pro-
cessor (shell) to be executed. Program termination may occur as a result of execut-
ing the command.

Returns If string is a null pointer, returns a nonzero value if a command processor is
available. If string isn’t a null pointer, system returns an implementation-
defined value (if it returns at all). 26.2

tan Tangent <math.h>

double tan(double x);
tanf float tanf(float x);
tanl long double tanl(long double x);

Returns Tangent of x (measured in radians). 23.3

APPEND.FM Page 789 Saturday, February 16, 2008 3:06 PM

790 Appendix D Standard Library Functions

tanh Hyperbolic Tangent <math.h>

double tanh(double x);
tanhf float tanhf(float x);
tanhl long double tanhl(long double x);

Returns Hyperbolic tangent of x. 23.3

tgamma Gamma Function (C99) <math.h>

double tgamma(double x);
tgammaf float tgammaf(float x);
tgammal long double tgammal(long double x);

Returns Γ(x), where Γ is the gamma function. A domain error or range error may occur if x
is a negative integer or zero. A range error may occur if the magnitude of x is too
large or too small. 23.4

time Current Time <time.h>

time_t time(time_t *timer);

Returns Current calendar time. Returns (time_t)(-1) if the calendar time isn’t avail-
able. If timer isn’t a null pointer, also stores the return value in the object pointed
to by timer. 26.3

tmpfile Create Temporary File <stdio.h>

FILE *tmpfile(void);

Creates a temporary file that will automatically be removed when it’s closed or the
program ends. Opens the file in "wb+" mode.

Returns A file pointer to be used when performing subsequent operations on the file.
Returns a null pointer if a temporary file can’t be created. 22.2

tmpnam Generate Temporary File Name <stdio.h>

char *tmpnam(char *s);

Generates a name for a temporary file. If s is a null pointer, tmpnam stores the file
name in a static object. Otherwise, it copies the file name into the character array
pointed to by s. (The array must be long enough to store L_tmpnam characters.)

Returns A pointer to the file name. Returns a null pointer if a file name can’t be generated.
22.2

tolower Convert to Lower Case <ctype.h>

int tolower(int c);

Returns If c is an upper-case letter, returns the corresponding lower-case letter. If c isn’t an
upper-case letter, returns c unchanged. 23.5

toupper Convert to Upper Case <ctype.h>

int toupper(int c);

APPEND.FM Page 790 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 791

Returns If c is a lower-case letter, returns the corresponding upper-case letter. If c isn’t a
lower-case letter, returns c unchanged. 23.5

towctrans Transliterate Wide Character (C99) <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);

Returns Mapped value of wc using the mapping described by desc. (desc must be a
value returned by a call of wctrans; the current setting of the LC_CTYPE cate-
gory must be the same during both calls.) 25.6

towlower Convert Wide Character to Lower Case (C99) <wctype.h>

wint_t towlower(wint_t wc);

Returns If iswupper(wc) is true, returns a corresponding wide character for which
iswlower is true in the current locale, if such a character exists. Otherwise,
returns wc unchanged. 25.6

towupper Convert Wide Character to Upper Case (C99) <wctype.h>

wint_t towupper(wint_t wc);

Returns If iswlower(wc) is true, returns a corresponding wide character for which
iswupper is true in the current locale, if such a character exists. Otherwise,
returns wc unchanged. 25.6

trunc Truncate to Nearest Integral Value (C99) <math.h>

double trunc(double x);
truncf float truncf(float x);
truncl long double truncl(long double x);

Returns x rounded to the integer (in floating-point format) nearest to it but no larger in
magnitude. 23.4

ungetc Unread Character <stdio.h>

int ungetc(int c, FILE *stream);

Pushes the character c back onto the stream pointed to by stream and clears the
stream’s end-of-file indicator. The number of characters that can be pushed back
by consecutive calls of ungetc varies; only the first call is guaranteed to succeed.
Calling a file positioning function (fseek, fsetpos, or rewind) causes the
pushed-back character(s) to be lost.

Returns c (the pushed-back character). Returns EOF if an attempt is made to push back
EOF or to push back too many characters without a read or file positioning opera-
tion. 22.4

ungetwc Unread Wide Character (C99) <wchar.h>

wint_t ungetwc(wint_t c, FILE *stream);

Wide-character version of ungetc. 25.5

APPEND.FM Page 791 Saturday, February 16, 2008 3:06 PM

792 Appendix D Standard Library Functions

va_arg Fetch Argument from Variable Argument List <stdarg.h>

type va_arg(va_list ap, type); macro

Fetches an argument in the variable argument list associated with ap, then modi-
fies ap so that the next use of va_arg fetches the following argument. ap must
have been initialized by va_start (or va_copy in C99) prior to the first use of
va_arg.

Returns Value of the argument, assuming that its type (after the default argument promo-
tions have been applied) is compatible with type. 26.1

va_copy Copy Variable Argument List (C99) <stdarg.h>

void va_copy(va_list dest, va_list src); macro

Copies src into dest. The value of dest will be the same as if va_start had
been applied to dest followed by the same sequence of va_arg applications that
was used to reach the present state of src. 26.1

va_end End Processing of Variable Argument List <stdarg.h>

void va_end(va_list ap); macro

Ends the processing of the variable argument list associated with ap. 26.1

va_start Start Processing of Variable Argument List <stdarg.h>

void va_start(va_list ap, parmN); macro

Must be invoked before accessing a variable argument list. Initializes ap for later
use by va_arg and va_end. parmN is the name of the last ordinary parameter
(the one followed by , ...). 26.1

vfprintf Formatted File Write Using Variable Argument List <stdio.h>

int vfprintf(FILE * restrict stream,
 const char * restrict format,
 va_list arg);

Equivalent to fprintf with the variable argument list replaced by arg.

Returns Number of characters written. Returns a negative value if an error occurs. 26.1

vfscanf Formatted File Read Using Variable Argument List (C99) <stdio.h>

int vfscanf(FILE * restrict stream,
 const char * restrict format,
 va_list arg);

Equivalent to fscanf with the variable argument list replaced by arg.

Returns Number of input items successfully read and stored. Returns EOF if an input fail-
ure occurs before any items can be read. 26.1

vfwprintf Wide-Character Formatted File Write Using Variable <wchar.h>
Argument List (C99)

APPEND.FM Page 792 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 793

int vfwprintf(FILE * restrict stream,
 const wchar_t * restrict format,
 va_list arg);

Wide-character version of vfprintf. 25.5

vfwscanf Wide-Character Formatted File Read Using Variable <wchar.h>
Argument List (C99)

int vfwscanf(FILE * restrict stream,
 const wchar_t * restrict format,
 va_list arg);

Wide-character version of vfscanf. 25.5

vprintf Formatted Write Using Variable Argument List <stdio.h>

int vprintf(const char * restrict format, va_list arg);

Equivalent to printf with the variable argument list replaced by arg.

Returns Number of characters written. Returns a negative value if an error occurs. 26.1

vscanf Formatted Read Using Variable Argument List (C99) <stdio.h>

int vscanf(const char * restrict format, va_list arg);

Equivalent to scanf with the variable argument list replaced by arg.

Returns Number of input items successfully read and stored. Returns EOF if an input fail-
ure occurs before any items can be read. 26.1

vsnprintf Bounded Formatted String Write Using Variable Argument <stdio.h>
List (C99)

int vsnprintf(char * restrict s, size_t n,
 const char * restrict format,
 va_list arg);

Equivalent to snprintf with the variable argument list replaced by arg.

Returns Number of characters that would have been stored in the array pointed to by s (not
including the null character) had there been no length restriction. Returns a nega-
tive value if an encoding error occurs. 26.1

vsprintf Formatted String Write Using Variable Argument List <stdio.h>

int vsprintf(char * restrict s,
 const char * restrict format,
 va_list arg);

Equivalent to sprintf with the variable argument list replaced by arg.

Returns Number of characters stored in the array pointed to by s, not including the null
character. In C99, returns a negative value if an encoding error occurs. 26.1

APPEND.FM Page 793 Saturday, February 16, 2008 3:06 PM

794 Appendix D Standard Library Functions

vsscanf Formatted String Read Using Variable Argument List (C99) <stdio.h>

int vsscanf(const char * restrict s,
 const char * restrict format,
 va_list arg);

Equivalent to sscanf with the variable argument list replaced by arg.

Returns Number of input items successfully read and stored. Returns EOF if an input fail-
ure occurs before any items can be read. 26.1

vswprintf Wide-Character Formatted String Write Using Variable <wchar.h>
Argument List (C99)

int vswprintf(wchar_t * restrict s, size_t n,
 const wchar_t * restrict format,
 va_list arg);

Equivalent to swprintf with the variable argument list replaced by arg.

Returns Number of wide characters stored in the array pointed to by s, not including the
null wide character. Returns a negative value if an encoding error occurs or the
number of wide characters to be written is n or more. 25.5

vswscanf Wide-Character Formatted String Read Using Variable <wchar.h>
Argument List (C99)

int vswscanf(const wchar_t * restrict s,
 const wchar_t * restrict format,
 va_list arg);

Wide-character version of vsscanf. 25.5

vwprintf Wide-Character Formatted Write Using Variable Argument <wchar.h>
List (C99)

int vwprintf(const wchar_t * restrict format,
 va_list arg);

Wide-character version of vprintf. 25.5

vwscanf Wide-Character Formatted Read Using Variable Argument <wchar.h>
List (C99)

int vwscanf(const wchar_t * restrict format,
 va_list arg);

Wide-character version of vscanf. 25.5

wcrtomb Convert Wide Character to Multibyte Character – Restartable <wchar.h>
(C99)

size_t wcrtomb(char * restrict s, wchar_t wc,
 mbstate_t * restrict ps);

If s is a null pointer, a call of wcrtomb is equivalent to

wcrtomb(buf, L'\0', ps)

APPEND.FM Page 794 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 795

where buf is an internal buffer. Otherwise, wcrtomb converts wc from a wide
character into a multibyte character (possibly including shift sequences), which it
stores in the array pointed to by s. The value of ps should be a pointer to an object
of type mbstate_t that contains the current conversion state. If ps is a null
pointer, wcrtomb uses an internal object to store the conversion state. If wc is a
null wide character, wcrtomb stores a null byte, preceded by a shift sequence if
necessary to restore the initial shift state, and the mbstate_t object used during
the call is left in the initial conversion state.

Returns Number of bytes stored in the array, including shift sequences. If wc isn’t a valid
wide character, returns (size_t)(-1) and stores EILSEQ in errno. 25.5

wcscat Wide-String Concatenation (C99) <wchar.h>

wchar_t *wcscat(wchar_t * restrict s1,
 const wchar_t * restrict s2);

Wide-character version of strcat. 25.5

wcschr Search Wide String for Character (C99) <wchar.h>

wchar_t *wcschr(const wchar_t *s, wchar_t c);

Wide-character version of strchr. 25.5

wcscmp Wide-String Comparison (C99) <wchar.h>

int wcscmp(const wchar_t *s1, const wchar_t *s2);

Wide-character version of strcmp. 25.5

wcscoll Wide-String Comparison Using Locale-Specific Collating <wchar.h>
Sequence (C99)

int wcscoll(const wchar_t *s1, const wchar_t *s2);

Wide-character version of strcoll. 25.5

wcscpy Wide-String Copy (C99) <wchar.h>

wchar_t *wcscpy(wchar_t * restrict s1,
 const wchar_t * restrict s2);

Wide-character version of strcpy. 25.5

wcscspn Search Wide String for Initial Span of Characters Not in Set <wchar.h>
(C99)

size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

Wide-character version of strcspn. 25.5

wcsftime Write Formatted Date and Time to Wide String (C99) <wchar.h>

size_t wcsftime(wchar_t * restrict s, size_t maxsize,
 const wchar_t * restrict format,
 const struct tm * restrict timeptr);

Wide-character version of strftime. 25.5

APPEND.FM Page 795 Saturday, February 16, 2008 3:06 PM

796 Appendix D Standard Library Functions

wcslen Wide-String Length (C99) <wchar.h>

size_t wcslen(const wchar_t *s);

Wide-character version of strlen. 25.5

wcsncat Bounded Wide-String Concatenation (C99) <wchar.h>

wchar_t *wcsncat(wchar_t * restrict s1,
 const wchar_t * restrict s2,
 size_t n);

Wide-character version of strncat. 25.5

wcsncmp Bounded Wide-String Comparison (C99) <wchar.h>

int wcsncmp(const wchar_t *s1, const wchar_t *s2,
 size_t n);

Wide-character version of strncmp. 25.5

wcsncpy Bounded Wide-String Copy (C99) <wchar.h>

wchar_t *wcsncpy(wchar_t * restrict s1,
 const wchar_t * restrict s2,
 size_t n);

Wide-character version of strncpy. 25.5

wcspbrk Search Wide String for One of a Set of Characters (C99) <wchar.h>

wchar_t *wcspbrk(const wchar_t *s1,
 const wchar_t *s2);

Wide-character version of strpbrk. 25.5

wcsrchr Search Wide String in Reverse for Character (C99) <wchar.h>

wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

Wide-character version of strrchr. 25.5

wcsrtombs Convert Wide String to Multibyte String – Restartable (C99) <wchar.h>

size_t wcsrtombs(char * restrict dst,
 const wchar_t ** restrict src,
 size_t len,
 mbstate_t * restrict ps);

Converts a sequence of wide characters from the array indirectly pointed to by
src into a sequence of corresponding multibyte characters that begins in the con-
version state described by the object pointed to by ps. If ps is a null pointer,
wcsrtombs uses an internal object to store the conversion state. If dst isn’t a
null pointer, the converted characters are then stored in the array pointed to by
dst. Conversion continues up to and including a terminating null wide character,
which is also stored. Conversion stops earlier if a wide character is reached that
doesn’t correspond to a valid multibyte character or—if dst isn’t a null pointer—

APPEND.FM Page 796 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 797

when the next multibyte character would exceed the limit of len total bytes to be
stored in the array pointed to by dst. If dst isn’t a null pointer, the object pointed
to by src is assigned either a null pointer (if a terminating null wide character was
reached) or the address just past the last wide character converted (if any). If the
conversion ends at a null wide character, the resulting state is the initial conversion
state.

Returns Number of bytes in the resulting multibyte character sequence, not including any
terminating null character. Returns (size_t)(-1) and stores EILSEQ in
errno if a wide character is encountered that doesn’t correspond to a valid multi-
byte character. 25.5

wcsspn Search Wide String for Initial Span of Characters in Set (C99) <wchar.h>

size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

Wide-character version of strspn. 25.5

wcsstr Search Wide String for Substring (C99) <wchar.h>

wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

Wide-character version of strstr. 25.5

wcstod Convert Wide String to Double (C99) <wchar.h>

double wcstod(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr);

Wide-character version of strtod. 25.5

wcstof Convert Wide String to Float (C99) <wchar.h>

float wcstof(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr);

Wide-character version of strtof. 25.5

wcstoimax Convert Wide String to Greatest-Width Integer (C99) <inttypes.h>

intmax_t wcstoimax(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr,
 int base);

Wide-character version of strtoimax. 27.2

wcstok Search Wide String for Token (C99) <wchar.h>

wchar_t *wcstok(wchar_t * restrict s1,
 const wchar_t * restrict s2,
 wchar_t ** restrict ptr);

Searches the wide string pointed to by s1 for a “token” consisting of wide charac-
ters not in the wide string pointed to by s2. If a token exists, the character follow-
ing it is changed to a null wide character. If s1 is a null pointer, a search begun by
a previous call of wcstok is continued; the search begins immediately after the
null wide character at the end of the previous token. ptr points to an object of

APPEND.FM Page 797 Saturday, February 16, 2008 3:06 PM

798 Appendix D Standard Library Functions

type wchar_t * that wcstok modifies to keep track of its progress. If s1 is a
null pointer, this object must be the same one used in a previous call of wcstok; it
determines which wide string is to be searched and where the search is to begin.

Returns A pointer to the first wide character of the token. Returns a null pointer if no token
could be found. 25.5

wcstol Convert Wide String to Long Integer (C99) <wchar.h>

long int wcstol(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr, int base);

Wide-character version of strtol. 25.5

wcstold Convert Wide String to Long Double (C99) <wchar.h>

long double wcstold(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr);

Wide-character version of strtold. 25.5

wcstoll Convert Wide String to Long Long Integer (C99) <wchar.h>

long long int wcstoll(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr,
 int base);

Wide-character version of strtoll. 25.5

wcstombs Convert Wide String to Multibyte String <stdlib.h>

size_t wcstombs(char * restrict s,
 const wchar_t * restrict pwcs,
 size_t n);

Converts a sequence of wide characters into corresponding multibyte characters.
pwcs points to an array containing the wide characters. The multibyte characters
are stored in the array pointed to by s. Conversion ends if a null character is stored
or if storing a multibyte character would exceed the limit of n bytes.

Returns Number of bytes stored, not including the terminating null character, if any.
Returns (size_t)(-1) if a wide character is encountered that doesn’t corre-
spond to a valid multibyte character. 25.2

wcstoul Convert Wide String to Unsigned Long Integer (C99) <wchar.h>

unsigned long int wcstoul(
 const wchar_t * restrict nptr,
 wchar_t ** restrict endptr, int base);

Wide-character version of strtoul. 25.5

wcstoull Convert Wide String to Unsigned Long Long Integer (C99) <wchar.h>

unsigned long long int wcstoull(
 const wchar_t * restrict nptr,
 wchar_t ** restrict endptr, int base);

Wide-character version of strtoull. 25.5

APPEND.FM Page 798 Saturday, February 16, 2008 3:06 PM

Appendix D Standard Library Functions 799

wcstoumax Convert Wide String to Unsigned Greatest-Width Integer <inttypes.h>
(C99)

uintmax_t wcstoumax(const wchar_t * restrict nptr,
 wchar_t ** restrict endptr,
 int base);

Wide-character version of strtoumax. 27.2

wcsxfrm Transform Wide String (C99) <wchar.h>

size_t wcsxfrm(wchar_t * restrict s1,
 const wchar_t * restrict s2, size_t n);

Wide-character version of strxfrm. 25.5

wctob Convert Wide Character to Byte (C99) <wchar.h>

int wctob(wint_t c);

Returns Single-byte representation of c as an unsigned char converted to int. Returns
EOF if c doesn’t correspond to one multibyte character in the initial shift state.

25.5

wctomb Convert Wide Character to Multibyte Character <stdlib.h>

int wctomb(char *s, wchar_t wc);

Converts the wide character stored in wc into a multibyte character. If s isn’t a null
pointer, stores the result in the array that s points to.

Returns If s is a null pointer, returns a nonzero or zero value, depending on whether or not
multibyte characters have state-dependent encodings. Otherwise, returns the num-
ber of bytes in the multibyte character that corresponds to wc; returns –1 if wc
doesn’t correspond to a valid multibyte character. 25.2

wctrans Define Wide-Character Mapping (C99) <wctype.h>

wctrans_t wctrans(const char *property);

Returns If property identifies a valid mapping of wide characters according to the
LC_CTYPE category of the current locale, returns a nonzero value that can be used
as the second argument to the towctrans function; otherwise, returns zero.

25.6

wctype Define Wide-Character Class (C99) <wctype.h>

wctype_t wctype(const char *property);

Returns If property identifies a valid class of wide characters according to the
LC_CTYPE category of the current locale, returns a nonzero value that can be used
as the second argument to the iswctype function; otherwise, returns zero. 25.6

wmemchr Search Wide-Character Memory Block for Character (C99) <wchar.h>

wchar_t *wmemchr(const wchar_t *s, wchar_t c,
 size_t n);

Wide-character version of memchr. 25.5

APPEND.FM Page 799 Saturday, February 16, 2008 3:06 PM

800 Appendix D Standard Library Functions

wmemcmp Compare Wide-Character Memory Blocks (C99) <wchar.h>

int wmemcmp(const wchar_t * s1, const wchar_t * s2,
 size_t n);

Wide-character version of memcmp. 25.5

wmemcpy Copy Wide-Character Memory Block (C99) <wchar.h>

wchar_t *wmemcpy(wchar_t * restrict s1,
 const wchar_t * restrict s2,
 size_t n);

Wide-character version of memcpy. 25.5

wmemmove Copy Wide-Character Memory Block (C99) <wchar.h>

wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2,
 size_t n);

Wide-character version of memmove. 25.5

wmemset Initialize Wide-Character Memory Block (C99) <wchar.h>

wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

Wide-character version of memset. 25.5

wprintf Wide-Character Formatted Write (C99) <wchar.h>

int wprintf(const wchar_t * restrict format, ...);

Wide-character version of printf. 25.5

wscanf Wide-Character Formatted Read (C99) <wchar.h>

int wscanf(const wchar_t * restrict format, ...);

Wide-character version of scanf. 25.5

APPEND.FM Page 800 Saturday, February 16, 2008 3:06 PM

801

APPENDIX E
ASCII Character Set

Escape Sequence

Decimal Oct Hex Char Character

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

\0
\1
\2
\3
\4
\5
\6
\7
\10
\11
\12
\13
\14
\15
\16
\17
\20
\21
\22
\23
\24
\25
\26
\27
\30
\31
\32
\33
\34
\35
\36
\37

\x00
\x01
\x02
\x03
\x04
\x05
\x06
\x07
\x08
\x09
\x0a
\x0b
\x0c
\x0d
\x0e
\x0f
\x10
\x11
\x12
\x13
\x14
\x15
\x16
\x17
\x18
\x19
\x1a
\x1b
\x1c
\x1d
\x1e
\x1f

\a
\b
\t
\n
\v
\f
\r

nul
soh
stx
etx
eot
enq
ack
bel
bs
ht
lf
vt
ff
cr
so
si
dle
dc1
dc2
dc3
dc4
nak
syn
etb
can
em
sub
esc
fs
gs
rs
us

(^A)
(^B)
(^C)
(^D)
(^E)
(^F)
(^G)
(^H)
(^I)
(^J)
(^K)
(^L)
(^M)
(^N)
(^O)
(^P)
(^Q)
(^R)
(^S)
(^T)
(^U)
(^V)
(^W)
(^X)
(^Y)
(^Z)

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

!
"
#
$
%
&
'
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

del

APPENE.FM Page 801 Saturday, February 16, 2008 3:09 PM

APPENE.FM Page 802 Saturday, February 16, 2008 3:09 PM

803

BIBLIOGRAPHY

The best book on programming for the layman is
“Alice in Wonderland”; but that’s because it’s

the best book on anything for the layman.

C Programming
Feuer, A. R., The C Puzzle Book, Revised Printing, Addison-Wesley, Reading,

Mass., 1999. Contains numerous “puzzles”—small C programs whose output
the reader is asked to predict. The book shows the correct output of each pro-
gram and provides a detailed explanation of how it works. Good for testing
your C knowledge and reviewing the fine points of the language.

Harbison, S. P., III, and G. L. Steele, Jr., C: A Reference Manual, Fifth Edition,
Prentice-Hall, Upper Saddle River, N.J., 2002. The ultimate C reference—
essential reading for the would-be C expert. Covers both C89 and C99 in con-
siderable detail, with frequent discussions of implementation differences
found in C compilers. Not a tutorial—assumes that the reader is already well
versed in C.

Kernighan, B. W., and D. M. Ritchie, The C Programming Language, Second Edi-
tion, Prentice-Hall, Englewood Cliffs, N.J., 1988. The original C book, affec-
tionately known as K&R or simply “the White Book.” Includes both a tutorial
and a complete C reference manual. The second edition reflects the changes
made in C89.

Koenig, A., C Traps and Pitfalls, Addison-Wesley, Reading, Mass., 1989. An
excellent compendium of common (and some not-so-common) C pitfalls.
Forewarned is forearmed.

Plauger, P. J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J.,
1992. Not only explains all aspects of the C89 standard library, but provides
complete source code! There’s no better way to learn the library than to study
this book. Even if your interest in the library is minimal, the book is worth get-
ting just for the opportunity to study C code written by a master.

BIB.FM Page 803 Saturday, February 16, 2008 3:17 PM

804 Bibliography

Ritchie, D. M., The development of the C programming language, in History of
Programming Languages II, edited by T. J. Bergin, Jr., and R. G. Gibson, Jr.,
Addison-Wesley, Reading, Mass., 1996, pages 671–687. A brief history of C
written by the language’s designer for the Second ACM SIGPLAN History of
Programming Languages Conference, which was held in 1993. The article is
followed by transcripts of Ritchie’s presentation at the conference and the
question-and-answer session with the audience.

Ritchie, D. M., S. C. Johnson, M. E. Lesk, and B. W. Kernighan, UNIX time-
sharing system: the C programming language, Bell System Technical Journal
57, 6 (July–August 1978), 1991–2019. A famous article that discusses the
origins of C and describes the language as it looked in 1978.

Rosler, L., The UNIX system: the evolution of C—past and future, AT&T Bell
Laboratories Technical Journal 63, 8 (October 1984), 1685–1699. Traces the
evolution of C from 1978 to 1984 and beyond.

Summit, S., C Programming FAQs: Frequently Asked Questions, Addison-Wesley,
Reading, Mass., 1996. An expanded version of the FAQ list that has appeared
for years in the Usenet comp.lang.c newsgroup.

van der Linden, P., Expert C Programming, Prentice-Hall, Englewood Cliffs, N.J.,
1994. Written by one of the C wizards at Sun Microsystems, this book man-
ages to entertain and inform in equal amounts. With its profusion of anecdotes
and jokes, it makes learning the fine points of C seem almost fun.

UNIX Programming

Rochkind, M. J., Advanced UNIX Programming, Second Edition, Addison-Wesley,
Boston, Mass., 2004. Covers UNIX system calls in considerable detail. This
book, along with the one by Stevens and Rago, is a must-have for C program-
mers who use the UNIX operating system or one of its variants.

Stevens, W. R., and S. A. Rago, Advanced Programming in the UNIX Environment,
Second Edition, Addison-Wesley, Upper Saddle River, N.J., 2005. An excel-
lent follow-up to this book for programmers working under the UNIX operat-
ing system. Focuses on using UNIX system calls, including standard C library
functions as well as functions that are specific to UNIX.

Programming in General

Bentley, J., Programming Pearls, Second Edition, Addison-Wesley, Reading,
Mass., 2000. This updated version of Bentley’s classic programming book
emphasizes writing efficient programs, but touches on other topics that are
crucial for the professional programmer. The author’s light touch makes the
book as enjoyable to read as it is informative.

BIB.FM Page 804 Saturday, February 16, 2008 3:17 PM

Bibliography 805

Kernighan, B. W., and R. Pike, The Practice of Programming, Addison-Wesley,
Reading, Mass., 1999. Read this book for advice on programming style, choos-
ing the right algorithm, testing and debugging, and writing portable programs.
Examples are drawn from C, C++, and Java.

McConnell, S., Code Complete, Second Edition, Microsoft Press, Redmond, Wash.,
2004. Tries to bridge the gap between programming theory and practice by pro-
viding down-to-earth coding advice based on proven research. Includes plenty
of examples in a variety of programming languages. Highly recommended.

Raymond, E. S., ed., The New Hacker’s Dictionary, Third Edition, MIT Press, Cam-
bridge, Mass., 1996. Explains much of the jargon that programmers use, and it’s
great fun to read as well.

Web Resources

ANSI eStandards Store (webstore.ansi.org). The C99 standard (ISO/IEC
9899:1999) can be purchased at this site. Each set of corrections to the stan-
dard (known as a Technical Corrigendum) can be downloaded for free.

comp.lang.c Frequently Asked Questions (c-faq.com). Steve Summit’s FAQ list for
the comp.lang.c newsgroup is a must-read for any C programmer.

Dinkumware (www.dinkumware.com). Dinkumware is owned by P. J. Plauger, the
acknowledged master of the C and C++ standard libraries. The web site in-
cludes a handy C99 library reference, among other things.

Google Groups (groups.google.com). One of the best ways to find answers to pro-
gramming questions is to search the Usenet newsgroups using the Google
Groups search engine. If you have a question, it’s likely that someone else has
already asked the question on a newsgroup and the answer has been posted.
Groups of particular interest to C programmers include alt.comp.lang.learn.c-
c++ (for C and C++ beginners), comp.lang.c (the primary C language group),
and comp.std.c (devoted to discussion of the C standard).

International Obfuscated C Code Contest (www.ioccc.org). Home of an annual con-
test in which participants vie to see who can write the most obscure C programs.

ISO/IEC JTC1/SC22/WG14 (www.open-std.org/jtc1/sc22/wg14/). The official web
site of WG14, the international working group that created the C99 standard
and is responsible for updating it. Of particular interest among the many docu-
ments available at the site is the rationale for C99, which explains the reasons
for the changes made in the standard.

Lysator (www.lysator.liu.se/c/). A collection of links to C-related web sites main-
tained by Lysator, an academic computer society located at Sweden’s Lin-
köping University.

BIB.FM Page 805 Saturday, February 16, 2008 3:17 PM

http://www.dinkumware.com
http://www.ioccc.org
http://www.open-std.org/jtc1/sc22/wg14/
http://www.lysator.liu.se/c

BIB.FM Page 806 Saturday, February 16, 2008 3:17 PM

807

INDEX

\a alert (bell) escape sequence, 41, 137
\\ backslash escape sequence, 42, 137
\b backspace escape sequence, 41, 137
\r carriage-return escape sequence, 137, 542
\" double-quote escape sequence, 41, 138
\f form-feed escape sequence, 137
\xd…d hexadecimal escape sequence, 138
\t horizontal-tab escape sequence, 41, 47, 137
\n new-line escape sequence, 14–15, 41, 137, 542,

577–78
\0 null character, 279, 281, 305, 450
\d…d octal escape sequence, 138
\? question-mark escape sequence, 138, 154, 655
\' single-quote escape sequence, 137
\Ud…d universal character name (C99), 657
\ud…d universal character name (C99), 657
\v vertical-tab escape sequence, 137

+= addition assignment operator, 60
+ addition operator, 54
& address operator, 243–44
[] array subscript operator, 162–63, 170, 175, 212,

261, 263, 268, 271, 280
&= bitwise and assignment operator, 512
& bitwise and operator, 511–12
~ bitwise complement operator, 511–12
^= bitwise exclusive or assignment operator, 512

^ bitwise exclusive or operator, 511–12
|= bitwise inclusive or assignment operator, 512
| bitwise inclusive or operator, 511–512
() cast operator, 147–48, 190
, comma operator, 109–10, 210, 328
?: conditional operator, 83–84, 92
-- decrement operator, 61–62, 67–68
/= division assignment operator, 60
/ division operator, 54, 66–67, 702
== equal-to operator, 75, 90–91, 405
> greater-than operator, 74
>= greater-than-or-equal-to operator, 74
++ increment operator, 61–62, 67–68, 262–63
* indirection operator, 244–45, 253–54, 262–63
<<= left-shift assignment operator, 510
<< left-shift operator, 510
< less-than operator, 74
<= less-than-or-equal-to operator, 74
&& logical and operator, 75
! logical negation operator, 75
|| logical or operator, 75
*= multiplication assignment operator, 60
* multiplication operator, 54
!= not-equal-to operator, 75
preprocessing operator, 324, 342, 343
preprocessing operator, 324–25, 342–43
%= remainder assignment operator, 60

Note: In C99, some <math.h> functions have three versions (one each for float, double, and long double). This
index contains a single entry for such functions, using the name of the double version. For example, there’s only one
entry (under acos) for the acos, acosf, and acosl functions. The <complex.h> functions, which also come in
three versions, are treated in a similar fashion.

CBookIX.fm Page 807 Tuesday, February 26, 2008 10:50 PM

808 Index

% remainder operator, 54, 66–67, 702
-> right-arrow selection operator, 426–27
>>= right-shift assignment operator, 510
>> right-shift operator, 510
= simple assignment operator, 18–19, 58–59,

176–77, 381–82, 397
. structure/union member operator, 381, 397
-= subtraction assignment operator, 60
- subtraction operator, 54
- unary minus operator, 54
+ unary plus operator, 54

\ backslash, 278
{} braces, 12, 28, 91–92
/* */ comment delimiters, 15–16
// comment delimiter (C99), 16–17, 31
" double quote, 14
... ellipsis, 332, 552, 678
#… preprocessing directives, 10, 12, 315, 318
; semicolon, 14
' single quote, 135, 138
??c trigraph sequences, 654–55
_ underscore, 25

Abnormal program termination, 688
Abnormal termination signal, 632, 702
abort function, 688, 702, 748
abs function, 691, 748
Absolute value

of a complex number, 714
of a floating-point number, 597
of a greatest-width integer, 711
of a long integer, 691
of a long long integer, 692
of an integer, 691

Absolute value functions
C99 additions, 605–6
complex, 721

Abstract data types, 487, 491–92, 504
design issues, 502–3
encapsulating, 492
error handling, 502
generic, 503
naming conventions, 502
in newer languages, 503
stack example, 493–502

Abstractions, 484–85
Abstract objects, 487
acos function, 594, 748–49
acos type-generic macro (C99), 724
acosh function (C99), 604, 749
acosh type-generic macro (C99), 724
Addition, of an integer and a pointer, 258–59
Addition assignment operator +=, 60

Addition operator +, 54
Additive operators, 54
Address arithmetic, see Pointer arithmetic
Addresses, 241–42, 449–50

versus pointers, 252–53
using pointers as, 520–21

Address operator &, 243–44
in calls of scanf, 42, 248–49

Aggregate variables, 161
Alert (bell) escape sequence \a, 41, 137
Algol 60, 2
Aliases, 244, 445–46
Alignment, of structure members, 404
Alphabetic characters, testing for, 613, 672
Alphanumeric characters, testing for, 613, 672
Amendment 1, to C89 standard, 3, 641
American National Standards Institute (ANSI), 2
and macro (C99), 656
and_eq macro (C99), 656
ANSI (American National Standards Institute), 2
ANSI/ISO C, 3
ANSI C, 3
ANSI X3.159-1989 standard for C, 2
Arc cosine, 594
Arc hyperbolic cosine (C99), 604
Arc hyperbolic sine (C99), 604
Arc hyperbolic tangent (C99), 604
Arc sine, 594
Arc tangent, 594
argc parameter, 302, 308
Argument, of a complex number (C99), 714, 722
Argument lists, variable-length, 153, 332–33, 449,

677–81
Arguments, function, 184, 193–200, 209

array, 195–200, 212, 265–66, 272–73
conversion of, 194–95
function pointers as, 439–40
passed by value, 193–94
pointer, 247–51
string, 288
structure, 384–86
union, 397
using const to protect, 250–51, 254–55, 265–66
See also Parameters, function

Arguments, macro, 321–23, 331–33
argv parameter, 302, 308
Arithmetic, 54–58

complex, 714, 717–23
pointer, 257–60, 271, 288

Arithmetic error signal, 632
Arithmetic operators, 54–58
Arithmetic types, 136–37
Array arguments, 195–200, 265–66, 272–73

multidimensional, 197–98, 212

CBookIX.fm Page 808 Tuesday, February 26, 2008 10:50 PM

Index 809

Array names, used as pointers, 263–67, 269–70
Array parameters, 195–200, 212, 265–66, 272–73

variable-length, 198–200
Arrays

combined with structures, 386–95
constant, 172
copying, 176–77
declarators for, 467
declaring, 161–62, 169, 174–75, 373
dynamically allocated, 420–22
elements of, 161–62
flexible, 447–48
with incomplete types, 505
initializing, 164–66, 171–72, 388–89, 471
multidimensional, see Multidimensional arrays
one-dimensional, 161–69
and pointers, 260–63, 267–71, 272–73
of pointers, 301–2, 308
ragged, 301
storage of, 170
of strings, 300–304, 418
of structures, 387–89
variable-length, 174–75, 177, 477

Arrays, character, 279, 281, 305
versus character pointers, 283–84

Array subscript operator [], 162–63, 170, 175, 212, 261,
263, 268, 271, 280

ASCII character set, 134, 293, 801
asctime function, 696, 749
asin function, 594, 749
asin type-generic macro (C99), 724
asinh function (C99), 604, 749
asinh type-generic macro (C99), 724
<assert.h> header, 532, 628–29
Assertions, 628–29
assert macro, 502, 628–29, 749
Assignment, 18–19, 176–77

in a controlling expression, 307
conversion during, 145–46
overflow during, 154
of pointers, 245–46
of structures, 381–82
of unions, 397

Assignment operators, 58–61
compound, 60–61, 67, 510, 512
simple, 18–19, 58–59, 176–77, 381–82, 397

Assignment suppression, in conversion specifications, 560
Associativity, operator, 55–56
atan function, 594, 749–50
atan type-generic macro (C99), 724
atan2 function, 594, 750
atan2 type-generic macro (C99), 724
atanh function (C99), 604, 750
atanh type-generic macro (C99), 724

atexit function, 688, 750
atof function, 683, 750
atoi function, 683, 750
atol function, 683, 750–51
atoll function (C99), 684, 751
Automatic storage duration, 220, 459
auto storage class, 460

B (programming language), 2
Backslash \, 278
Backslash escape sequence \\, 42, 137
Backspace escape sequence \b, 41, 137
Basic Multilingual Plane (BMP), in Unicode, 650, 657
Basic types, 125
BCPL, 2
Big-endian byte order, 520, 524
Binary files, 541–43, 578
Binary operators, 54
Binary search, 689–90
bitand macro (C99), 656
Bit-fields, 513–14

modifying, 513–14
retrieving, 514
storage of, 517–18
in structures, 516–18

bitor macro (C99), 656
Bits

clearing, 513
most significant, 512
setting, 512–13
testing, 513

Bitwise operators, 509–15
and &, 511–12
and assignment &=, 512
complement ~, 511–12
exclusive or ^, 511–12
exclusive or assignment ^=, 512
idioms, 512–14
inclusive or |, 511–12
inclusive or assignment |=, 512
versus logical operators, 524
shift, 510

Blank characters, testing for, 613, 672
Block I/O, 571–72
Blocks, 227–28, 475–77
Block scope, 220, 460, 477–78
Body

of a function, 184, 188
of a loop, see Loop body

Boolean values
in C89, 84–85
in C99, 85–86
pointers used as, 415

bool macro (C99), 85, 536

CBookIX.fm Page 809 Tuesday, February 26, 2008 10:50 PM

810 Index

__bool_true_false_are_defined macro (C99),
536

_Bool type (C99), 85, 92
Braces {}, 12, 28

placement in compound statements, 91–92
Branch cuts, 719
break statements, 88–89, 111–12
Broken-down times, 692

converting calendar times to, 696
converting to calendar times, 694–95
converting to strings, 696–98

bsearch function, 689–90, 751
btowc function (C99), 668, 751
Buffering, file, 549–51
BUFSIZ macro, 550
Building programs, 366–71
Byte input/output functions, 540
Byte order, 520
Byte-oriented streams, 658
Bytes, converting to wide characters, 668

C
effective use of, 6–7
history of, 1–3
implementation of, 330, 712, 731
obfuscated, 6
philosophy of, 4
pitfalls, 6
portability of, 4
standardization of, 2–3
strengths, 4–5
terseness of, 30
weaknesses, 5–6
writing large programs in, 504

C#, 3
C++, 3, 503
C89, 2

Amendment 1, 3, 641
versus C99, 737–42
versus K&R C, 743–46
overview of standard library, 531–33

C90, 2
C94, 641
C95, 641
C99, 3

versus C89, 737–42
overview of standard library changes, 534–35

cabs function (C99), 721, 751
cacos function (C99), 719, 751
cacosh function (C99), 720, 752
Calendar times, 692

converting broken-down times to, 694–95
converting to broken-down times, 696
converting to strings, 696

determining, 693–94
Call, of a function, 14, 184, 187, 189–90, 679–80
calloc function, 414, 421, 451, 752
carg function (C99), 722, 752
carg type-generic macro (C99), 725
Carriage-return escape sequence \r, 137, 542
Cascaded if statements, 80
Case labels, in a switch statement, 87–88
Case-mapping functions

character, 614–15
wide-character, 673

Case sensitivity, 25
casin function (C99), 720, 752
casinh function (C99), 720, 752
Cast expressions, 147–48, 190
Cast operator (), 147–48, 190
catan function (C99), 720, 752–53
catanh function (C99), 720–21, 753
Categories, of a locale, 642
C-based languages, 3
cbrt function (C99), 605–6, 753
cbrt type-generic macro (C99), 724
cc compiler, 11
%c conversion specification, 139
ccos function (C99), 720, 753
ccosh function (C99), 721, 753
ceil function, 597, 753
ceil type-generic macro (C99), 724
Ceiling, 597
cexp function (C99), 721, 753
CHAR_BIT macro, 592
CHAR_MAX macro, 592
CHAR_MIN macro, 592
Character case-mapping functions, 614–15
Character-classification functions, 612–14
Character constants, 135, 138

versus string literals, 280
for wide characters, 649

Character escapes, 41–42, 137–38
Character-handling functions, 138–39, 612–15
Character I/O, 566–69, 580
Characters

arrays of, 279, 281, 305
largest, 592
line-feed, 153–54
multibyte, see Multibyte characters
new-line, 14–15, 153–54
null, 279, 281, 305, 450
operations on, 135–36
reading, 139–41, 154, 567–68, 580–81
signed, 136, 153
size of, in bits, 592
smallest, 592
unsigned, 136, 153

CBookIX.fm Page 810 Tuesday, February 26, 2008 10:50 PM

Index 811

used as array subscripts, 175
used as integers, 135–36, 153
white-space, see White-space characters
wide, see Wide characters
writing, 139–41, 566

Character sets, 134–35, 647–48
ASCII, 134, 293, 801
extended, 648
Japanese, 648
Latin-1, 135
UCS, 649–51, 656–57, 675
Unicode, 649–51, 675

Character types, 134–42
largest values of, 591–92
smallest values of, 591–92

char type, 134, 153
cimag function (C99), 722, 753–54
cimag type-generic macro (C99), 725
Classes, in programming languages, 503
Classification macros, for floating-point numbers (C99),

602
clearerr function, 564–65, 579, 754
Clients, of a module, 484
"C" locale, 643
clock function, 693, 754
CLOCKS_PER_SEC macro, 693
Clock ticks, 692
clock_t type, 692, 693
clog function (C99), 721, 754
Closing a file, 545–46, 578–79
Code points, in Unicode, 650
Cohesion, in module design, 486
Comma expressions, 109–10
Command-line arguments, 302–4, 307–8, 546–47, 577
Command processor, 689
Commands, in makefiles, 367
Comma operator ,, 109–10, 210

in macro definitions, 328
Comments, 15–17, 31–32, 338

nested, 31
in preprocessing directives, 318
unterminated, 31

Comparison functions
for bsearch, 689
for qsort, 440, 452–53

Comparison macros, for floating-point numbers (C99), 611
Compilation, conditional, 318, 333–38, 345
Compilers, 10
Compiling a program, 10–11, 366
Complementary error function (C99), 606
<complex.h> header (C99), 534, 717–23
_Complex_I macro (C99), 717–18
Complex functions (C99)

absolute value, 721

arc cosine, 719
arc hyperbolic cosine, 720
arc hyperbolic sine, 720
arc hyperbolic tangent, 720–21
arc sine, 720
arc tangent, 720
argument, 722
conjugate, 714, 722
cosine, 720
exponential, 721
hyperbolic cosine, 721
hyperbolic sine, 721
hyperbolic tangent, 721
imaginary part, 722
logarithm, 721
power, 721
projection, 722
real part, 722
sine, 720
square root, 721
tangent, 720

complex macro (C99), 717
Complex numbers (C99), 712–16

arithmetic on, 714, 717–23
definition of, 713–14
manipulation functions, 722
operations on, 715

Complex plane, 713
Complex types (C99), 133, 714–15

conversions, 715–16
_Complex type specifier (C99), 715
compl macro (C99), 656
Compound assignment operators, 60–61, 67, 510, 512
Compound literals (C99), 475–77

for arrays, 200–201
pointers to, 260, 406
for structures, 386

Compound statements, 77–78, 100, 227–28
indentation in, 91–92
in macro definitions, 328

Conditional compilation, 318, 333–38, 345
Conditional expressions, 83–84, 92
Conditional operator ?:, 83–84, 92
Conditioning out, 338, 345
conj function (C99), 722, 754
conj type-generic macro (C99), 725
Constant arrays, 172
Constant expressions, 87

evaluated by preprocessor, 344
Constants, 18–19

character, 135, 138, 280
enumeration, 402–3
floating, 32, 133–34, 152
hexadecimal floating, 134, 152–53

CBookIX.fm Page 811 Tuesday, February 26, 2008 10:50 PM

812 Index

Constants (continued)
hexadecimal integer, 129
integer, 128–30, 708–9
octal, 128
using #define to create, 23–25, 319–20, 342
wide-character, 649
See also Literals

const objects, 466–67, 478–79
versus macros, 466–67

const type qualifier, 172, 250–51, 254–55, 265–66,
466–67, 478–79

Continuation
of preprocessing directives, 318
of string literals, 278–79

continue statements, 112–13, 119–20
Contraction, of floating-point operations, 610–11
Control characters, testing for, 613, 672
Controlling expression

in a do statement, 103–4
in a for statement, 105–6
in a loop, 99
in a switch statement, 87
in a while statement, 100–101

Conversion ranks (C99), 146
Conversions, 142–48

argument, 194–95
default argument promotions, 192, 194–95, 679
during assignment, 145–46
explicit, 143
of function return value, 202
implicit, 143, 146–47
integer promotions, 146
integral promotions, 143, 154
involving complex types, 715–16
promotions, 143
usual arithmetic, 143–45, 146–47, 716, 732

Conversion specifications
assignment suppression in, 560
examples of, 40–41
flags in, 553
length modifiers in, 554, 555, 560, 562
maximum field width in, 560
minimum field width in, 39, 553
precision in, 39, 553
in …printf format strings, 37–41, 552–58
in …scanf format strings, 560–64
scansets in, 561

Conversion specifiers, 39–40, 554, 561
added in C99, 556, 562
for characters, 139
for double values, 134
for floating-point numbers, 19, 22, 39, 44, 153, 557
for integers, 19, 22, 39, 47, 152, 556
for long double values, 134

for long integers, 131
for long long integers, 131
for pointers, 254, 558
for short integers, 131
for size_t values, 151
for specified-width integers, 710–11
for strftime function, 696–98
for strings, 284–285, 285–86, 557, 561–62
for unsigned integers, 130

Conversion states, 652, 667–68
Coordinated Universal Time (UTC), 696, 702
copysign function (C99), 609, 754
copysign type-generic macro (C99), 724
Corresponding real type, of a floating type, 715–16
cos function, 594, 754
cos type-generic macro (C99), 724
cosh function, 595, 754–55
cosh type-generic macro (C99), 724
Cosine, 594
Coupling, in module design, 486
cpow function (C99), 721, 755
C Programming Language, The, 2
cproj function (C99), 722, 755
cproj type-generic macro (C99), 725
creal function (C99), 722, 755
creal type-generic macro (C99), 725
csin function (C99), 720, 755
csinh function (C99), 721, 755
csqrt function (C99), 721, 755–56
ctan function (C99), 720, 756
ctanh function (C99), 721, 756
ctime function, 696, 756
<ctype.h> header, 532, 612–15
Cube root (C99), 605–6
curses library (UNIX), 580, 582
CX_LIMITED_RANGE pragma (C99), 718

Dangling else problem, 82
Dangling pointers, 424
Data pools, 486
__DATE__ macro, 329
Date formats, ISO 8601, 698
DBL_DIG macro, 590
DBL_EPSILON macro, 591
DBL_MANT_DIG macro, 590
DBL_MAX macro, 591
DBL_MAX_10_EXP macro, 590
DBL_MAX_EXP macro, 590
DBL_MIN macro, 591
DBL_MIN_10_EXP macro, 590
DBL_MIN_EXP macro, 590
%d conversion specification, 19, 22, 39, 47, 556
Deallocation, of dynamically allocated storage, 422–24
Debugger, 6

CBookIX.fm Page 812 Tuesday, February 26, 2008 10:50 PM

Index 813

DECIMAL_DIG macro (C99), 591
Decimal integer constants, 128
Declarations

of arrays, 161–62, 169, 174–75, 373
deciphering, 468–70
versus definitions, 462
function, see Function declarations
of pointer variables, 242–43, 253–54
of string variables, 281
of structure tags, 383–84, 451
of structure variables, 378–79, 383–84
syntax of, 457–59
of types, 149–51
of union variables, 396–97
using type definitions to simplify, 470
of variables, 17–18, 188

Declaration specifiers, 458
Declarators, 458, 467–70, 479
Decrement operator --, 61–62, 67–68
Default argument promotions, 192, 194–95, 679
default case, in a switch statement, 87–88
#define directives, 315–16, 319, 321, 466–67
defined preprocessing operator, 335, 344
Definitions

versus declarations, 462
of functions, see Function definitions
of machine-dependent types, 518–19
of macros, see Macro definitions
of structure types, 384
of variables, 355–57

Deleting a file, 551
Denormalized numbers, see Subnormal numbers
Dependencies, in makefiles, 367
Designated initializers (C99)

for arrays, 165–66, 171–72, 176, 407
for arrays of structures, 389
for structures, 380–81
for unions, 397

Designators (C99)
for array elements, 165–66, 201
for arrays of structures, 389
for structure members, 380

Difference, between times, 694
difftime function, 694, 756
Digits, testing for, 613, 672
Digraphs (C99), 655–56
Directives, preprocessing, see Preprocessing directives
Discriminant, in quadratic formula, 722
Discriminants, see Tag fields
div function, 691, 702, 756
Divide-and-conquer, 205
Division assignment operator /=, 60
Division functions, 691–92, 702, 711–12
Division operator /, 54, 66–67, 702

div_t type, 691
Domain errors, 593–94, 600, 630
DOS operating system, 516, 524
do statements, 103–5

in macro definitions, 329
double _Complex type (C99), 715
Double quote ", 14
Double-quote escape sequence \", 41, 138
double_t type (C99), 599
double type, 132, 152
Dynamic storage allocation, 414–15

for arrays, 420–22
functions, 414, 450–51
in string functions, 417–18
for strings, 416–19
using calloc, 421
using malloc, 416–17, 420–21, 451–52
using realloc, 421–22

%e conversion specification, 39
EDOM macro, 593, 600, 630, 638
EILSEQ macro (C99), 630
Elements, of an array, 161–62

pointers to, 252
#elif directives, 336
Ellipsis ..., 332, 552, 678
else clause, in an if statement, 78–80
#else directives, 336
Empty loop body, 116–17, 120
Empty macro arguments (C99), 331–32
Encapsulation, 492
Encoding errors (C99), 559, 630
#endif directives, 334–35
End-of-file, detecting, 564–66
End-of-file indicator, for a stream, 564

clearing, 564–65, 579
testing, 565–66, 579–80

End-of-file marker, 542
Enumerated types, 402–3
Enumeration constants, 402–3

used as subscripts, 407
Enumerations, 401–4

as integers, 403–4
trailing comma in declarations of, 406–7
using to declare tag fields, 404

Enumeration tags, 402–3
Environment strings, 688–89
EOF macro, 306, 566–68, 580
Equality, of structures, 405
Equality operators, 75

applied to pointers, 260
Equal-to operator ==, 75, 90–91, 405
ERANGE macro, 594, 601, 630, 638
erfc function (C99), 606, 756

CBookIX.fm Page 813 Tuesday, February 26, 2008 10:50 PM

814 Index

erfc type-generic macro (C99), 724
erf function (C99), 606, 756
erf type-generic macro (C99), 724
<errno.h> header, 532, 629–31, 638
errno variable, 593, 629–31, 637
#error directives, 338–39

in header files, 358–59
Error detection

using assert, 628–29
using errno, 629–31
using signals, 631–35

Error function (C99), 606
Error indicator, for a stream, 564

clearing, 564–65, 579
testing, 565–66

Errors
converting to messages, 630–31
domain, 593–94, 600, 630
during I/O, 559, 564–66
during linking, 368–69, 373
encoding, 559, 630
range, 594, 600–601, 630
when calling mathematical functions, 593–94, 600–601

Escape sequences, 41–42, 137–38, 278
character, 41–42, 137–38
hexadecimal, 138
numeric, 137–38
octal, 138

EUC (Extended UNIX Code) character encoding, 648
Evaluation, of expressions, 62–65
Exact-width integer types (C99), 706
Exception handling, in programming languages, 503
Exceptions, during floating-point arithmetic, 599, 727,

729–30
EXIT_FAILURE macro, 203, 688
EXIT_SUCCESS macro, 203, 688
Exit from the middle of a loop, 111–16
_Exit function (C99), 688, 757
exit function, 30, 114, 203–4, 688, 701, 757
exp function, 595, 622, 757
exp type-generic macro (C99), 724
exp2 function (C99), 605, 757
exp2 type-generic macro (C99), 724
Explicit conversions, 143
expm1 function (C99), 605, 622, 757
expm1 type-generic macro (C99), 724
Exponent, of a floating-point number, 32, 132
Exponential functions, 595–96

C99 additions, 604–5
complex, 721

Exponentiation, 66
Expressions, 19, 53

cast, 147–48, 190
comma, 109–10

conditional, 83–84, 92
constant, 87
evaluation of, 62–65
logical, 74–76
printing, 22
side effects in, 59

Expression statements, 65–66, 68, 189
Extended character sets, 648
Extended integer types (C99), 128
Extended multibyte/wide-character conversion utilities

(C99), 667–70
Extended multibyte and wide-character utilities (C99),

657–70
Extended-precision floating constants, 134
Extended UNIX Code (EUC) character encoding, 648
Extensible wide-character case-mapping functions (C99),

673–74
Extensible wide-character classification functions (C99),

672–73
Extent, of a variable, see Storage duration
External linkage, 460, 477–78
External variables, 221–27

pros and cons of, 222–23
scope of, 221
storage duration of, 221

extern storage class, 356, 462–63, 464

fabs function, 597, 757
fabs type-generic macro (C99), 724
false macro (C99), 85, 536
Far pointers (Intel x86), 253
Fastest minimum-width integer types (C99), 707
fclose function, 545–46, 578–79, 758
%f conversion specification, 19, 22, 39, 153
fdim function (C99), 610, 758
fdim type-generic macro (C99), 724
FE_ALL_EXCEPT macro (C99), 728
FE_DFL_ENV macro (C99), 728
FE_DIVBYZERO macro (C99), 728
FE_DOWNWARD macro (C99), 728
FE_INEXACT macro (C99), 728
FE_INVALID macro (C99), 728
FE_OVERFLOW macro (C99), 728
FE_TONEAREST macro (C99), 728
FE_TOWARDZERO macro (C99), 728
FE_UNDERFLOW macro (C99), 728
FE_UPWARD macro (C99), 728
feclearexcept function (C99), 729, 758
fegetenv function (C99), 731, 758
fegetexceptflag function (C99), 729, 758
fegetround function (C99), 730, 758
feholdexcept function (C99), 731, 759
<fenv.h> header (C99), 534, 726–31
FENV_ACCESS pragma (C99), 728–29

CBookIX.fm Page 814 Tuesday, February 26, 2008 10:50 PM

Index 815

fenv_t type (C99), 727
feof function, 565–66, 579–80, 759
feraiseexcept function (C99), 729–30, 759
ferror function, 565–66, 759
fesetenv function (C99), 731, 759
fesetexceptflag function (C99), 730, 759
fesetround function (C99), 730, 759–60
fetestexcept function (C99), 730, 760
feupdateenv function (C99), 731, 760
fexcept_t type (C99), 727
fflush function, 549, 579, 581, 760
fgetc function, 567–68, 580, 760
fgetpos function, 574, 581, 658, 760
fgets function, 570, 760–61
fgetwc function (C99), 662, 761
fgetws function (C99), 662, 761
Fields, of a structure or union, see Members
__FILE__ macro, 329, 339
File buffers, 549–51, 579, 581
File inclusion, 316, 318, 351–52, 372, 373
FILENAME_MAX macro, 579
File names

maximum length of, 579
obtained from command line, 546–47

File pointers, 540
File-positioning functions, 572–75, 581
File positions, 572

changing, 572–74
determining, 573–74

Files
attaching to streams, 546
binary, 541–43, 578
buffering, 549–51
closing, 545–46, 578–79
deleting, 551
dividing a program into, 359–66
header, see Header files
object, 366
opening, 543–45, 578
renaming, 551
source, 349–50, 372
temporary, 548–49
text, 541–43, 578, 581

File scope, 221, 460
FILE type, 504, 540
Flags, in conversion specifications, 553
Flexible array members (C99), 447–48
<float.h> header, 133, 532, 589–91
float _Complex type (C99), 715
Floating constants, 32, 133–34, 152

extended-precision, 134
hexadecimal, 134, 152–53
single-precision, 32, 134

Floating multiply-add (C99), 610–11

Floating-point addition, rounding modes for, 589
Floating-point control modes, 727
Floating-point environment functions (C99), 730–31
Floating-point environments, 727
Floating-point exception functions (C99), 729–30
Floating-point numbers, 132

classifying, 602
comparison macros for, 611
exponent of, 32, 132
fraction of, 32, 132
hexadecimal, 701
IEEE standard for, see IEEE floating-point standard
manipulation functions for, 608–9
mantissa of, 32
reading, 22, 44, 134, 153
sign of, 132
writing, 19–20, 39, 134, 153, 557

Floating-point rounding functions (C99), 730
Floating-point status flags, 727, 729–30
Floating types, 17, 132–34

characteristics of, 589–91
corresponding real type of, 715–16
evaluation method, 591, 599
largest values of, 590
limits on exponents, 590
number of significant decimal digits, 591
radix of exponent representation, 590
real, 133
significant digits, 590
smallest difference between values of, 590
smallest positive values of, 590

float_t type (C99), 599
float type, 17, 32, 132, 152
Floor, 597
floor function, 597, 761
floor type-generic macro (C99), 724
FLT_DIG macro, 590
FLT_EPSILON macro, 591
FLT_EVAL_METHOD macro (C99), 591, 599
FLT_MANT_DIG macro, 590
FLT_MAX macro, 591
FLT_MAX_10_EXP macro, 590
FLT_MAX_EXP macro, 590
FLT_MIN macro, 591
FLT_MIN_10_EXP macro, 590
FLT_MIN_EXP macro, 590
FLT_RADIX macro, 590
FLT_ROUNDS macro, 589
Flushing, file buffer, 549, 579, 581
fma function (C99), 610, 761
fma type-generic macro (C99), 724
fmax function (C99), 610, 761
fmax type-generic macro (C99), 724
fmin function (C99), 610, 761

CBookIX.fm Page 815 Tuesday, February 26, 2008 10:50 PM

816 Index

fmin type-generic macro (C99), 724
fmod function, 597, 762
fmod type-generic macro (C99), 724
fopen function, 543–45, 578, 762
FOPEN_MAX macro, 579
Format strings, 305–6

in calls of …printf, 37–42
in calls of …scanf, 22, 42–46, 559–60
variables as, 579

Formatted I/O, 551–66, 680–81
matching failure during, 559, 564

Formatted wide-character I/O (C99), 659–61
Form-feed escape sequence \f, 137
for statements, 105–11, 118–19

in C99, 108
idioms, 106–7, 108, 162, 264, 429
omitting expressions in, 107–8

FP_CONTRACT pragma (C99), 611
FP_FAST_FMAF macro (C99), 610
FP_FAST_FMAL macro (C99), 610
FP_FAST_FMA macro (C99), 610
FP_ILOGB0 macro (C99), 766
FP_ILOGBNAN macro (C99), 766
FP_INFINITE macro (C99), 602
FP_NAN macro (C99), 602
FP_NORMAL macro (C99), 602
FP_SUBNORMAL macro (C99), 602
FP_ZERO macro (C99), 602
fpclassify macro (C99), 602, 762
fpos_t type, 574
fprintf function, 552–58, 762

C99 changes to conversion specifications, 555–56
fputc function, 566, 580, 762
fputs function, 570, 762
fputwc function (C99), 662, 763
fputws function (C99), 662, 763
Fraction, of a floating-point number, 32, 132
fread function, 571–72, 581, 763
free function, 423, 763
Free Software Foundation, 29
Freestanding implementation, 330, 344, 712, 731
freopen function, 546, 658, 763
frexp function, 596, 763–64
frexp type-generic macro (C99), 724
fscanf function, 558–66, 764

C99 changes to conversion specifications, 562–63
fseek function, 572–73, 579, 581, 764
fsetpos function, 574, 579, 581, 658, 764
F (or f) suffix, on a floating constant, 32, 134
ftell function, 573–74, 581, 764
__func__ identifier (C99), 333
Function arguments, see Arguments, function
Function body, 184, 188
Function declarations, 191–93, 210–12

implicit, 192
in K&R C, 210–11, 468

Function definitions, 187–88, 210
inline, 473–74
in K&R C, 209

Function-like macros, see Parameterized macros
Function parameters, see Parameters, function
Function pointers, 210, 253, 439–45

as arguments, 439–40
as array elements, 442–43
stored in variables, 442–43

Function prototypes, 192–93, 194, 210–12
in header files, 354–55

Functions, 13–14, 183
calling, 14, 184, 187, 189–90, 679–80
declarators for, 467–68
discarding return value of, 189
inline, 472–75
library, 13
main, see main function
versus parameterized macros, 322–23, 537
pointers to, see Function pointers
recursive, 204–9, 214, 237
return type of, see Return type, of a function
storage class of, 464–65
with variable-length argument lists, 153, 449, 677–81

Function specifiers (C99), 458
Fused multiply-add instruction, 610
fwide function (C99), 658, 662, 764–65
fwprintf function (C99), 660, 765
fwrite function, 571–72, 581, 765
fwscanf function (C99), 660, 765

Gamma function (C99), 606, 623
Garbage, 423
Garbage collection, 423
Gaussian error function (C99), 606
GCC, 11, 29–30

command-line options, 30, 371
using inline functions with, 475

%g conversion specification, 39, 557
Generic parameter, of a type-generic macro (C99), 725
getc function, 567–68, 580, 765
getchar function, 140–41, 154, 287, 306, 567–68, 580,

765
getenv function, 688–89, 765–66
gets function, 285–86, 570, 766
getwc function (C99), 662, 766
getwchar function (C99), 662, 766
glibc, 643
Global variables, see External variables
gmtime function, 696, 702, 766
GNU, 29
goto statements, 113–14, 120, 177

CBookIX.fm Page 816 Tuesday, February 26, 2008 10:50 PM

Index 817

Graphical user interfaces, 582
Greater-than operator >, 74
Greater-than-or-equal-to operator >=, 74
Greatest-width integer types (C99), 707, 709

functions for, 711–12
Greenwich Mean Time, 702

Header files, 350–59, 372
#error directives in, 358–59
function prototypes in, 354–55
#include directives in, 357
macro definitions in, 353
protecting against multiple inclusion, 357–58, 406
structure types defined in, 406
type definitions in, 353
variable declarations in, 355–57, 373

Headers, standard, 12, 530, 537
<assert.h>, 532, 628–29
<complex.h> (C99), 534, 717–23
<ctype.h>, 532, 612–15
<errno.h>, 532, 629–31, 638
<fenv.h> (C99), 534, 726–31
<float.h>, 133, 532, 589–91
<inttypes.h> (C99), 534, 709–12, 731
<iso646.h> (C99), 534, 656
<limits.h>, 127, 532, 591–93
<locale.h>, 532, 642–47
<math.h>, 532, 593–11
<setjmp.h>, 532, 635–37
<signal.h>, 533, 631–35
<stdarg.h>, 533, 677–81
<stdbool.h> (C99), 85, 535, 536
<stddef.h>, 533, 535–36
<stdint.h> (C99), 151, 535, 705–9, 731
<stdio.h>, 533, 539–82
<stdlib.h>, 533, 682–92
<string.h>, 289, 533, 615–22
<tgmath.h> (C99), 535, 723–26, 731–32
<time.h>, 533, 692–700
<wchar.h> (C99), 535, 540, 657–70
<wctype.h> (C99), 535, 671–74

Heap, 422
Hexadecimal digits, testing for, 613, 672
Hexadecimal escape sequence \xd…d, 138
Hexadecimal floating constants (C99), 134, 152–53
Hexadecimal floating-point numbers (C99), 701
Hexadecimal integer constants, 129
Hexadecimal numbers, 128
Holes, in structures, 404–5
Horizontal-tab escape sequence \t, 41, 47, 137
Horner’s Rule, 34, 624
Hosted implementation, 330, 344, 712, 731
HUGE_VALF macro (C99), 601
HUGE_VALL macro (C99), 601

HUGE_VAL macro, 593, 600–601
Hyperbolic functions, 595

C99 additions, 603–4
complex, 720–21
cosine, 595
sine, 595
tangent, 595

Hypotenuse (C99), 606
hypot function (C99), 606, 766
hypot type-generic macro (C99), 724

%i conversion specification, 47
Identifiers, 25–27

length of, 32
Idioms

bitwise operators, 512–14
clearing a bit, 513
copying a string, 300
declaring a string variable, 281
for statements, 106–7, 108, 162, 264, 429
if statements, 77
modifying a bit-field, 513–14
processing array elements, 162
reading characters from a file, 567
retrieving a bit-field, 514
searching a linked list, 429
searching for end of string, 298
setting a bit, 512–13
skipping characters, 141
for string-handling, 296–300
testing a bit, 513
using a pointer to step through an array, 264
using scanf to read integers, 559
while statements, 101, 141, 298, 300, 559, 567

IEC 60559, see IEEE floating-point standard
IEEE floating-point standard, 132–33, 598–99, 726–27

exceptions, 599, 727, 729–30
NaN, 594, 599, 609, 611, 701
negative infinity, 599
negative zero, 598
positive infinity, 593, 599
positive zero, 598
rounding direction, 599, 727, 730
special values, 599
subnormal numbers, 598–99

#ifdef directives, 335–36, 344
#if directives, 334–35, 344
#ifndef directives, 335–36, 344
if statements, 76–86

cascaded, 80
dangling else problem, 82
else clauses in, 78–80
idioms, 77

ilogb function (C99), 605, 766

CBookIX.fm Page 817 Tuesday, February 26, 2008 10:50 PM

818 Index

ilogb type-generic macro (C99), 724
I macro (C99), 717–18
_Imaginary keyword (C99), 715
Imaginary part, of a complex number (C99), 713, 722
Imaginary unit, 713
imaxabs function (C99), 711, 766–67
imaxdiv function (C99), 711–12, 767
imaxdiv_t type (C99), 712
Implementation, of a module, 484
Implementation, of the C language, 330, 712, 731
Implementation-defined behavior, 55
Implicit conversions, 143

in C99, 146–47
Implicit declaration, of a function, 192
#include directives, 316, 351–52, 372

in header files, 357
Include files, see Header files
Incomplete structure declarations, 451
Incomplete types, 448, 451, 492, 505
Increment operator ++, 61–62, 67–68, 262–63
Indentation, 28, 32

in compound statements, 91–92
in switch statements, 92–93

Indexing, see Subscripting, array
Indirection operator *, 244–45, 253–54, 262–63
Infinite loops, 101, 108, 119
Infinity, 593, 599

reading, 562
writing, 556

INFINITY macro (C99), 600
Information hiding, 487–91
Initial conversion state, 652, 668
Initializers, 21, 470–72

array, 164–66, 171–72, 388–89, 471
for automatic variables, 471
designated, see Designated initializers
for pointer variables, 471
for static variables, 471
string, 281–83
structure, 379–80, 385–86, 471–72
union, 397, 471–72

Initial shift state, of a state-dependent encoding, 648
Inline definition, of a function (C99), 473–74
Inline functions (C99), 472–75

restrictions on, 474–75
using with GCC, 475

inline function specifier (C99), 472–75
Input/output, 539–82

block, 571–72
byte, 540
character, 566–69, 580
end-of-file during, 564–66
errors during, 559, 564–66
formatted, 551–66, 680–81

formatted wide-character, 659–61
line, 569–70
pointer, 254, 558
string, 14–15, 284–87, 306, 557, 561–62, 569–70
wide-character, 540, 556, 562–63, 661–62

Input failure, 559
Input redirection, 360, 541
INT_FASTN_MAX macros (C99), 708
INT_FASTN_MIN macros (C99), 708
int_fastN_t types (C99), 707
INT_LEASTN_MAX macros (C99), 708
INT_LEASTN_MIN macros (C99), 708
int_leastN_t types (C99), 706
INT_MAX macro, 592
INT_MIN macro, 592
Integer arithmetic functions, 691–92, 711–12
Integer constants, 128–30, 708–9

in C99, 129
Integer conversion ranks (C99), 146
Integer overflow, 130
Integer promotions (C99), 146
Integers

long, 126
long long, 128
reading, 22, 44, 47, 130–31
short, 126
sign bit of, 125
signed, 125–26
unsigned, 125–26
writing, 19–20, 39, 47, 130–31, 152, 556

Integer types, 17, 125–32
in C99, 128
capable of holding object pointers, 707
exact-width, 706
extended, 128
fastest minimum-width, 707
format conversion of, 709–12
greatest-width, 707, 709, 711–12
largest values of, 591–92, 707–8
minimum-width, 706–7, 708–9
sizes of, 591–93
smallest values of, 591–92, 707–8
specified-width, 705–9, 710–11
standard signed, 128
standard unsigned, 128
width of, 706

Integral promotions, 143, 154
Integral types, 136
Integrated development environments, 11
Intel x86 architecture, 253
Interface, of a module, 484
Internal linkage, 460
International features

alternative spellings, 656

CBookIX.fm Page 818 Tuesday, February 26, 2008 10:50 PM

Index 819

digraphs, 655–56
extended multibyte and wide-character utilities, 657–70
localization, 642–47
multibyte characters, see Multibyte characters
trigraph sequences, 654–55
universal character names, 25, 656–57
wide-character classification and mapping utilities,

671–74
wide characters, see Wide characters

International Obfuscated C Code Contest, 6
International Organization for Standardization (ISO), 2,

649
Interrupt signal, 632
INTMAX_C macro (C99), 709
INTMAX_MAX macro (C99), 708
INTMAX_MIN macro (C99), 708
intmax_t type (C99), 707, 711
INTN_C macros (C99), 708
INTN_MAX macros (C99), 708
INTN_MIN macros (C99), 708
intN_t types (C99), 706
INTPTR_MAX macro (C99), 708
INTPTR_MIN macro (C99), 708
intptr_t type (C99), 707
int type, 17, 126
<inttypes.h> header (C99), 534, 709–12, 731
Invalid instruction signal, 632
Invalid storage access signal, 632
Invocation, macro, 321
_IOFBF macro, 550
_IOLBF macro, 550
_IONBF macro, 550
isalnum function, 613, 767
isalpha function, 613, 767
isblank function (C99), 613, 767
iscntrl function, 613, 767
isdigit function, 613, 767
isfinite macro (C99), 602, 767
isgraph function, 613, 767
isgreaterequal macro (C99), 611, 768
isgreater macro (C99), 611, 767–68
isinf macro (C99), 602, 768
islessequal macro (C99), 611, 768
islessgreater macro (C99), 611, 768
isless macro (C99), 611, 768
islower function, 613, 768
isnan macro (C99), 602, 768
isnormal macro (C99), 602, 768
ISO (International Organization for Standardization), 2,

649
ISO/IEC 10646, 649–50
ISO/IEC 646, 656
ISO/IEC 9899

1990 standard for C, 2

1999 standard for C, 3
<iso646.h> header (C99), 534, 656
ISO 8601, 698
ISO C, 3
isprint function, 613, 768–69
ispunct function, 613, 769
isspace function, 613, 769
isunordered macro (C99), 611, 769
isupper function, 613, 769
iswalnum function (C99), 672, 769
iswalpha function (C99), 672, 769
iswblank function (C99), 672, 769
iswcntrl function (C99), 672, 770
iswctype function (C99), 673, 770
iswdigit function (C99), 672, 770
iswgraph function (C99), 672, 770
iswlower function (C99), 672, 770
iswprint function (C99), 672, 770
iswpunct function (C99), 672, 770
iswspace function (C99), 672, 770
iswupper function (C99), 672, 771
iswxdigit function (C99), 672, 771
isxdigit function, 613, 771
Iteration, of a loop, 99
Iteration statements, 73, 99, 475–77

Japanese character sets, 648
Japanese Industrial Standard (JIS) character encoding, 648
Java, 3
JIS (Japanese Industrial Standard) character encoding, 648
jmp_buf type, 636, 639
Jumps, nonlocal, 635–37
Jump statements, 73

K&R, 2
K&R C, 3

versus C89, 743–46
function declarations, 210–11, 468
function definitions, 209

Kanji characters, 648
Keywords, 26

L_tmpnam macro, 548
Labels, case, 87–88
Labels, statement, 113
labs function, 691, 771
Latin-1 character set, 135
Layout, of programs, 27–29, 32
LC_ALL macro, 643
LC_COLLATE macro, 642
LC_CTYPE macro, 642
LC_MONETARY macro, 642
LC_NUMERIC macro, 642
LC_TIME macro, 642

CBookIX.fm Page 819 Tuesday, February 26, 2008 10:50 PM

820 Index

lconv structure type, 644–47
LDBL_DIG macro, 590
LDBL_EPSILON macro, 591
LDBL_MANT_DIG macro, 590
LDBL_MAX macro, 591
LDBL_MAX_10_EXP macro, 590
LDBL_MAX_EXP macro, 590
LDBL_MIN macro, 591
LDBL_MIN_10_EXP macro, 590
LDBL_MIN_EXP macro, 590
ldexp function, 596, 771
ldexp type-generic macro (C99), 724
ldiv function, 692, 702, 771
ldiv_t type, 692
Left associativity, 56
Left-shift assignment operator <<=, 510
Left-shift operator <<, 510
Length modifiers, in conversion specifications, 554, 560

added in C99, 555, 562
Less-than operator <, 74
Less-than-or-equal-to operator <=, 74
Lexicographic ordering, of strings, 293
lgamma function (C99), 606, 771
lgamma type-generic macro (C99), 724
Libraries, 486
Library, standard, 504, 529–31

alternative spellings, 534, 656
Boolean type and values, 535, 536
character handling, 532, 612–15
characteristics of floating types, 532, 589–91
common definitions, 533, 535–36
complex arithmetic, 534, 717–23
date and time, 533, 692–700
diagnostics, 532, 628–29
errors, 532, 629–31, 638
extended multibyte and wide-character utilities, 535,

657–70
floating-point environment, 534, 726–31
format conversion of integer types, 534, 709–12
general utilities, 533, 682–92
headers, see Headers, standard
input/output, 533, 539–82
integer types, 535, 705–9
localization, 532, 642–47
mathematics, 532, 593–611
nonlocal jumps, 532, 635–37
overview of C89 headers, 531–33
overview of C99 changes, 534–35
restrictions on names in, 530
signal handling, 533, 631–35
sizes of integer types, 532, 591–93
string handling, 289–96, 533, 615–22
type-generic math, 535, 723–26, 731–32

variable arguments, 533, 677–81
wide-character classification and mapping utilities, 535,

671–74
Library functions, 13

hidden by macros, 531, 537
<limits.h> header, 127, 532, 591–93
__LINE__ macro, 329, 339
#line directives, 339–40
Line-feed character, 153–54
Line-feed escape sequence \n, 542, 577–78
Line I/O, 569–70
Lines, in text files, 542, 577–78
Linkage, 460

external, 460, 477–78
internal, 460
versus scope, 477

Linked lists, 424–38
deleting nodes from, 431–33
inserting nodes into, 427–29
ordered, 433
searching, 429–30

Linkers, 10
Linking a program, 10–11, 366, 373

errors during, 368–69, 373
lint, 6, 8, 31
Literals

compound, 200–201, 260, 386, 406, 475–77
string, 14, 277–80, 304–5
wide string, 649
See also Constants

Little-endian byte order, 520, 524
llabs function (C99), 692, 771–72
lldiv function (C99), 692, 772
lldiv_t type (C99), 692
LLONG_MAX macro (C99), 592
LLONG_MIN macro (C99), 592
llrint function (C99), 607, 772
llrint type-generic macro (C99), 724
llround function (C99), 608, 772
llround type-generic macro (C99), 724
LL (or ll) suffix, on an integer constant (C99), 129
<locale.h> header, 532, 642–47
localeconv function, 644–47, 772
Locale-dependent string comparison, 618
Locales, 642
"C", 643
categories of, 642
changing, 643–44
in Linux, 643–44
native, 643
and numeric formatting, 644–47

Localization, 642–47
localtime function, 696, 772

CBookIX.fm Page 820 Tuesday, February 26, 2008 10:50 PM

Index 821

Local variables, 219–21
scope of, 220, 237
storage duration of, 220, 237

Logarithmic functions, 595
C99 additions, 604–5
complex, 721

logb function (C99), 605, 773
logb type-generic macro (C99), 724
log function, 595, 772
log type-generic macro (C99), 724
log10 function, 595, 773
log10 type-generic macro (C99), 724
log1p function (C99), 605, 623, 773
log1p type-generic macro (C99), 724
log2 function (C99), 605, 773
log2 type-generic macro (C99), 724
Logical expressions, 74–76
Logical operators, 75–76

and &&, 75
versus bitwise operators, 524
negation !, 75
or ||, 75
and short-circuit evaluation, 76

LONG_MAX macro, 592
LONG_MIN macro, 592
long double _Complex type (C99), 715
long double type, 132
Long integer constants, 129
Long integers, 126
long int type, 126
longjmp function, 635–36, 639, 773
Long long integer constants (C99), 129
Long long integers (C99), 128
long long int type (C99), 128
long type specifier, 126
Loop body, 99

in a do statement, 103–4
empty, 116–17, 120
in a for statement, 105–6
in a while statement, 100–101

Loops, 99
with exit in the middle, 111–16
infinite, 101, 108, 119

Lower-case letters
converting to, 614
testing for, 613, 672

L prefix, on a character constant or string literal, 649
lrint function (C99), 607, 773
lrint type-generic macro (C99), 724
lround function (C99), 608, 774
lround type-generic macro (C99), 724
L (or l) suffix

on a floating constant, 134

on an integer constant, 129
Lvalues, 59–60, 67, 381, 427

Machine-dependent types, 518–19
Macro arguments, 321–23, 331–33

empty, 331–32
Macro definitions, 24, 315–16, 318, 319–33

comma operators in, 328
compound statements in, 328
do statements in, 329
in header files, 353
parentheses in, 24, 326–28
outside programs, 371
versus type definitions, 155

Macro parameters, 321–23, 331–33
Macros

versus const objects, 466–67
empty arguments, 331–32
versus enumeration constants, 402
general properties of, 325–26
invoking, 321
parameterized, 321–23, 331–33
predefined, see Predefined macros
redefining, 326
replacement list of, 319, 321
rescanning during replacement of, 325, 343–44
scope of, 326
simple, 319–21
type-generic, 723–26, 731–32
undefining, 326
used as type names, 155
used to hide functions, 531, 537
uses of, 319–21, 322, 323
with variable-length argument lists, 332–33

Magic squares, 51
Magnitude, of a complex number, 714
main function, 13, 18, 213

parameters, 302, 308
return type, 13–14, 202–3, 213, 701

Makefiles, 366–68, 371
make utility, 367–68, 371, 373
malloc function, 414, 416–17, 420–21, 451–52, 774
Manipulation functions (C99)

for complex numbers, 722
for floating-point numbers, 608–9

Mantissa, of a floating-point number, 32
Matching failure, during formatted input, 559, 564
<math.h> header, 532, 593–611

C89 version, 593–97
C99 version, 597–611

MATH_ERREXCEPT macro (C99), 600
math_errhandling macro (C99), 600
MATH_ERRNO macro (C99), 600

CBookIX.fm Page 821 Tuesday, February 26, 2008 10:50 PM

822 Index

Mathematical functions, 593–611
Matrices, see Multidimensional arrays
Maximum field width, in conversion specifications, 560
Maximum functions (C99), 609–10
MB_CUR_MAX macro, 648
MB_LEN_MAX macro, 592, 648
mblen function, 652, 774
mbrlen function (C99), 669, 774
mbrtowc function (C99), 669, 774–75
mbsinit function (C99), 668, 775
mbsrtowcs function (C99), 670, 775
mbstate_t type (C99), 657, 658, 667–68
mbstowcs function, 653, 775–76
mbtowc function, 652, 776
Members

alignment of, 404
flexible array, 447–48
offsets of, 535–36
scope of, 379
selection of, 381, 397
of a structure, 377
of a union, 396–97

memchr function, 619–20, 776
memcmp function, 618, 776
memcpy function, 176–77, 446–47, 616, 623, 776
memmove function, 446–47, 616, 623, 776
Memory, initializing, 622, 667
Memory allocation functions, 414, 450–51
Memory leak, 423
memset function, 622, 777
Minimum field width, in conversion specifications, 39,

553
Minimum functions (C99), 609–10
Minimum-width integer types (C99), 706–7, 708–9
mktime function, 694–95, 777
Mode string, in call of fopen, 544–45, 578
modf function, 595–96, 731–32, 777
Modules, 484–87

advantages of, 484–86
clients of, 484
cohesion of, 486
coupling of, 486
design of, 486
implementation of, 484
interface of, 484
maintainability of, 485
reusability of, 485
stack example, 487–91

Module types, 486–87
abstract data types, see Abstract data types
abstract objects, 487
data pools, 486
libraries, 486

Modulus, of a complex number, 714

Most significant bit, 512
MS-DOS operating system, 516, 524
Multibyte/wide-character conversion functions, 651–53

extended, 667–70
restartable, 668–70

Multibyte/wide-string conversion functions, 653–54
restartable, 670

Multibyte characters, 648–49
converting to wide characters, 652, 669
determining length of, 652, 669
maximum number of bytes in, 648
number of bytes in, 592
state-dependent encoding of, 648
versus wide characters, 674–75

Multibyte strings, 649
converting to wide strings, 653, 670

Multidimensional arrays, 169–74
as function arguments, 197–98, 212
and pointers, 267–70
processing columns of, 269
processing elements of, 267–68, 272
processing rows of, 268–69

Multiplication assignment operator *=, 60
Multiplication operator *, 54
Multiplicative operators, 54

Name spaces, 379
pollution of, 464–65

NaN (Not a Number), 594, 599, 609, 611, 701
reading, 562
writing, 556

nan function (C99), 609, 701, 777
NAN macro (C99), 600
Native locale, 643
NB, 2
%n conversion specification, 558
NDEBUG macro, 629
nearbyint function (C99), 607, 777
nearbyint type-generic macro (C99), 724
Nearest integer functions, 596–97

C99 additions, 606–8
Near pointers (Intel x86), 253
Negative infinity, 599
Negative zero, 598
New-line character, 14–15, 153–54
New-line escape sequence \n, 14–15, 41, 137, 542,

577–78
nextafter function (C99), 609, 623, 777–78
nextafter type-generic macro (C99), 724
nexttoward function (C99), 609, 778
nexttoward type-generic macro (C99), 724
Nodes, in a linked list, 424

creating, 425–26
declaring type of, 425

CBookIX.fm Page 822 Tuesday, February 26, 2008 10:50 PM

Index 823

deleting, 431–33
inserting, 427–29

Nonlocal jumps, 635–37
Norm, of a complex number, 714
not_eq macro (C99), 656
Not-equal-to operator !=, 75
not macro (C99), 656
Null character \0, 279, 281, 305, 450
Null directives, 342
NULL macro, 302, 415, 449–50, 535, 680
Null pointer assignment, 450
Null pointers, 302, 414–15, 449–50, 680
Null statements, 116–18, 120
Null wide character, 649
Numbers, converting to strings, 700–701
Numeric conversion functions, 682–86, 712

and conversion specifiers, 562
for wide strings, 662–63, 712

Numeric escapes, 137–38

Object code, 10
Object files, 366
Object-like macros, see Simple macros
Objects, 243
Objects, abstract, 487
%o conversion specification, 130, 152
Octal escape sequence \d…d, 138
Octal integer constants, 128
Octal numbers, 128
Offset, of an Intel x86 address, 253
offsetof macro, 535–36
One-dimensional arrays, 161–69
Opening a file, 543–45, 578
Operating-system commands, executing using system,

689
Operators

addition, 54
addition assignment, 60
additive, 54
address, 243–44
arithmetic, 54–58
array subscript, 162–63, 170, 175, 212, 261, 263, 268,

271, 280
assignment, 58–61
associativity of, 55–56
binary, 54
bitwise, 509–15
bitwise and, 511–12
bitwise and assignment, 512
bitwise complement, 511–12
bitwise exclusive or, 511–12
bitwise exclusive or assignment, 512
bitwise inclusive or, 511–12
bitwise inclusive or assignment, 512

bitwise shift, 510
cast, 147–48, 190
comma, 109–10, 210, 328
with complex operands, 715
compound assignment, 60–61, 67, 510, 512
conditional, 83–84, 92
decrement, 61–62, 67–68
division, 54, 66–67, 702
division assignment, 60
equality, 75, 260
equal to, 75, 90–91, 405
greater than, 74
greater than or equal to, 74
increment, 61–62, 67–68, 262–63
indirection, 244–45, 253–54, 262–63
left shift, 510
left-shift assignment, 510
less than, 74
less than or equal to, 74
logical, 75–76
logical and, 75
logical negation, 75
logical or, 75
multiplication, 54
multiplication assignment, 60
multiplicative, 54
not equal to, 75
postfix, 61
precedence of, 55–56
prefix, 61
preprocessing, see Preprocessing operators
relational, 74, 260
remainder, 54, 66–67, 702
remainder assignment, 60
right-arrow selection, 426–27
right shift, 510
right-shift assignment, 510
simple assignment, 18–19, 58–59, 176–77, 381–82,

397
sizeof, 151, 155, 167–68, 196, 404–5, 420
structure/union member, 381, 397
subtraction, 54
subtraction assignment, 60
table of, 735
ternary, 83
unary, 54
unary minus, 54
unary plus, 54

Optimization, of a program, 447
Ordered lists, 433
Organizing programs, 229–36
Orientation, of a stream (C99), 658
or macro (C99), 656
or_eq macro (C99), 656

CBookIX.fm Page 823 Tuesday, February 26, 2008 10:50 PM

824 Index

Output redirection, 360, 541
Overflow

during assignment, 154
during call of mathematical function, 600–601
during integer arithmetic, 130

Parameterized macros, 321–23, 331–33
versus functions, 322–23, 537
uses of, 322, 323

Parameters, function, 184, 188, 193, 209
array, 195–200, 212, 265–66, 272–73
scope of, 221
storage class of, 465
storage duration of, 221
string, 288
variable-length array, 198–200
See also Arguments, function

Parameters, generic (C99), 725
Parameters, macro, 321–23, 331–33
Parentheses ()

in function calls, 189
in macro definitions, 24, 326–28

%p conversion specification, 254, 558
Perl, 3
perror function, 630–31, 778
Phase angle, of a complex number (C99), 714, 722
Pike, Rob, 650
Pointer arithmetic, 257–60, 271, 288
Pointers

versus addresses, 252–53
to array elements, 252
from array names, 263–67, 269–70
and arrays, 260–63, 267–71, 272–73
arrays of, 308
assignment of, 245–46
comparison of, 260
to compound literals, 260, 406
dangling, 424
declarators for, 467
as function arguments, 247–51
to functions, 210, 253, 439–45
and multidimensional arrays, 267–70
null, 302, 414–15, 449–50, 680
to pointers, 438–39
restricted, 445–47
returned by functions, 251–52
used as Boolean values, 415
using as addresses, 520–21
using as array names, 266–67
and variable-length arrays, 270–71
void *, 414, 450–51, 503
writing, 254, 558

Pointers, character, versus character arrays, 283–84

Pointer variables, 241–43, 253–54, 442–43
initializing, 471

Polar coordinates, 713–14
Positive difference functions (C99), 609–10
Positive infinity, 593, 599
Positive zero, 598
Postfix operators, 61
Power functions, 596

C99 additions, 605–6
complex, 721

pow function, 596, 778
pow type-generic macro (C99), 724
#pragma directives, 340–41
_Pragma preprocessing operator (C99), 341
Pragmas, standard (C99), 341
CX_LIMITED_RANGE, 718
FENV_ACCESS, 728–29
FP_CONTRACT, 611

Precedence, operator, 55–56
Precision, in conversion specifications, 39, 553
Predefined macros, 329–31, 344
__DATE__, 329
__FILE__, 329, 339
__LINE__, 329, 339
__STDC__, 330, 337
__STDC_HOSTED__, 330
__STDC_IEC_559__, 331
__STDC_IEC_559_COMPLEX__, 331
__STDC_ISO_10646__, 331
__STDC_VERSION__, 330–31
__TIME__, 329

Prefix operators, 61
Preprocessing directives, 10, 12, 315, 318

comments in, 318
continuation of, 318
#define, 315–16, 319, 321, 466–67
#elif, 336
#else, 336
#endif, 334–35
#error, 338–39, 358–59
#if, 334–35, 344
#ifdef, 335–36, 344
#ifndef, 335–36, 344
#include, 316, 351–52, 357, 372
#line, 339–40
null, 342
placement of, 318
#pragma, 340–41
#undef, 326
white space in, 318

Preprocessing operators
#, 324, 342, 343
##, 324–25, 342–43

CBookIX.fm Page 824 Tuesday, February 26, 2008 10:50 PM

Index 825

defined, 335, 344
_Pragma, 341

Preprocessing tokens, 319
Preprocessor, 10, 315–18
PRIcFASTN macros (C99), 710–11
PRIcLEASTN macros (C99), 710–11
PRIcMAX macros (C99), 710–11
PRIcN macros (C99), 710–11
PRIcPTR macros (C99), 710–11
printf function, 14–15, 19–20, 22, 37–42, 284–85,

305–6, 552–58, 778
C99 changes to conversion specifications, 555–56
confusing with scanf function, 45–46
examples of use, 40–41, 556–58
how to print % character, 47
using to write characters, 139

Printing characters, testing for, 613, 672
Procedures, see Functions
Processor time, determining, 693
Program design

abstraction in, 484–85
information hiding, 487–91
modules, 484–87

Program parameters, see Command-line arguments
Programs

building, 366–71
compiling, 10–11, 366
dividing into files, 359–66
general form of, 12–15
layout of, 27–29, 32
linking, 10–11, 366, 373
optimizing, 447
organizing, 229–36
rebuilding, 369–71
simple, 9–11

Programs, example
adding fractions, 46–47
balancing a checkbook, 114–16
calculating a broker’s commission, 81–82
calculating the number of digits in an integer, 104–5
checking a number for repeated digits, 166–67
checking planet names, 303–4
checking whether a file can be opened, 547–48
classifying a poker hand, 230–36
computing a UPC check digit, 56–58
computing averages, 184–85
computing interest, 168–69
computing the dimensional weight of a box, 20–21
computing the dimensional weight of a box (revisited),

22–23
converting from Fahrenheit to Celsius, 24–25
copying a file, 568–69
dealing a hand of cards, 172–74

determining air mileage, 690–91
determining the length of a message, 141–42
displaying the date and time, 698–700
finding the largest and smallest elements in an array,

249–50
finding the roots of a quadratic equation, 722–23
guessing a number, 224–27
maintaining a parts database, 389–95
maintaining a parts database (revisited), 433–38
modifying a file of part records, 574–75
printing a countdown, 185–86
printing a date in legal form, 89–90
printing a one-month reminder list, 293–96
printing a one-month reminder list (revisited), 418–19
printing a pun, 9–10
printing a pun (revisited), 186–87
printing a table of squares, 102
printing a table of squares (revisited), 110–11
Quicksort, 207–9
reversing a series of numbers, 164
reversing a series of numbers (revisited), 264–65
summing a series of numbers, 102–3
summing a series of numbers (revisited), 131–32
tabulating the trigonometric functions, 443–45
testing setjmp/longjmp, 636–37
testing signals, 634–35
testing the case-mapping functions, 614–15
testing the character-classification functions, 613–14
testing the numeric conversion functions, 684–86
testing the pseudo-random sequence generation

functions, 687
testing whether a number is prime, 190–91
text formatting, 359–66
using printf to format numbers, 40–41
viewing memory locations, 521–23
XOR encryption, 514–15

Program termination, 30, 202–4, 213, 688, 701
Projection, of a complex number (C99), 722
Promotions, 143

default argument, 192, 194–95, 679
integer, 146
integral, 143, 154

Prototypes, function, 192–93, 194, 210–12, 354–55
Pseudo-random sequence generation functions, 686–87
PTRDIFF_MAX macro (C99), 709
PTRDIFF_MIN macro (C99), 709
ptrdiff_t type, 535, 708
Punctuation characters, testing for, 613, 672
putc function, 566, 580, 778
putchar function, 140, 566, 778–79
puts function, 285, 569, 779
putwc function (C99), 662, 779
putwchar function (C99), 662, 779

CBookIX.fm Page 825 Tuesday, February 26, 2008 10:50 PM

826 Index

qsort function, 440–42, 452–53, 690, 779
Quadratic formula, 722
Question-mark escape sequence \?, 138, 154, 655
Queues, 505
Quicksort algorithm, 205–9

Ragged arrays, 301
raise function, 634, 779
RAND_MAX macro, 686
rand function, 172, 686, 779
Random number generation, 686–87
Range errors, 594, 600–601, 630
Read error, 564
Real floating types, 133
realloc function, 414, 421–22, 779
Real mode (Intel x86), 253
Real part, of a complex number (C99), 713, 722
Rebuilding programs, 369–71
Records, see Structures
Recursion, 204–9, 214, 237
Redirection, stream, 360, 541, 577
Referenced type, of a pointer, 243
Registers, 65, 463
register storage class, 463–64
Relational operators, 74

applied to pointers, 260
Remainder assignment operator %=, 60
remainder function (C99), 608, 780
Remainder functions, 597

C99 additions, 608
remainder type-generic macro (C99), 724
Remainder operator %, 54, 66–67, 702
remove function, 551, 780
remquo function (C99), 608, 780
remquo type-generic macro (C99), 724
rename function, 551, 780
Renaming a file, 551
Replacement list, of a macro, 319, 321
Restricted pointers (C99), 445–47
restrict type qualifier (C99), 445–47, 543
return statements, 13, 30, 201–2, 203–4, 212–13
Return type, of a function, 184, 187–88

default, 188
pointer, 251–52
structure, 384–86
union, 397
void, 185, 187

Return type, of main, 13–14, 202–3, 213, 701
rewind function, 574, 579, 780
Right-arrow selection operator ->, 426–27
Right associativity, 56
Right-shift assignment operator >>=, 510
Right-shift operator >>, 510
rint function (C99), 607, 780–81

rint type-generic macro (C99), 724
Ritchie, Dennis, 1–2
round function (C99), 607, 781
round type-generic macro (C99), 724
Rounding direction, for floating-point arithmetic, 599, 727,

730
Row-major order, for storing multidimensional arrays, 170
Rules, in makefiles, 367
Run-length encoding, 585–86
Rvalues, see Expressions

Scalar variables, 161
scalbln function (C99), 605, 781
scalbln type-generic macro (C99), 724
scalbn function (C99), 605, 781
scalbn type-generic macro (C99), 724
scanf function, 22–23, 42–47, 47–48, 285–86, 305–6,

558–66, 781
C99 changes to conversion specifications, 562–63
examples of use, 563–64
using & in calls of, 42, 248–49
using to read array elements, 162
using to read characters, 139, 154
using to skip characters, 581

Scansets, in conversion specifications, 561
SCHAR_MAX macro, 592
SCHAR_MIN macro, 592
SCNcFASTN macros (C99), 710–11
SCNcLEASTN macros (C99), 710–11
SCNcMAX macros (C99), 710–11
SCNcN macros (C99), 710–11
SCNcPTR macros (C99), 710–11
%s conversion specification, 284–85, 285–86, 557
Scope, 460

block, 220, 460, 477–78
examples, 228–29
of external variables, 221
file, 221, 460
of function parameters, 221
versus linkage, 477
of local variables, 220, 237
of macros, 326
of members, 379
of typedef names, 155
of variables in a block, 228

Screen control, functions for, 582
Searching and sorting utilities, 689–91
SEEK_CUR macro, 573
SEEK_END macro, 573
SEEK_SET macro, 573
Segment:offset pair (Intel x86), 253
Selection statements, 73, 475–77
Semicolon ;, 14
setbuf function, 550–51, 781

CBookIX.fm Page 826 Tuesday, February 26, 2008 10:50 PM

Index 827

<setjmp.h> header, 532, 635–37
setjmp macro, 635–36, 639, 781
setlocale function, 643–44, 674, 782
setvbuf function, 550–51, 782
Shift-JIS character encoding, 648
Shift sequence, in a state-dependent encoding, 648
Short-circuit evaluation, of logical expressions, 76
Short integers, 126
short int type, 126
short type specifier, 126
SHRT_MAX macro, 592
SHRT_MIN macro, 592
Side effects, 59

in array subscripts, 67, 163
in comma expressions, 109
in macro arguments, 323

SIG_ATOMIC_MAX macro (C99), 709
SIG_ATOMIC_MIN macro (C99), 709
sig_atomic_t type, 638, 708
SIG_DFL macro, 633
SIG_ERR macro, 633
SIG_IGN macro, 633
SIGABRT macro, 632, 702
SIGFPE macro, 632, 638
SIGILL macro, 632
SIGINT macro, 632
Sign, of a floating-point number, 132
<signal.h> header, 533, 631–35
signal function, 632–34, 782
Signal handlers, 632–34, 638–39

predefined, 633
Signals, 631

C99 changes to, 634
installing a handler for, 632–34
macros for, 631–32, 638
raising, 631, 634

Sign bit, of an integer, 125
signbit macro (C99), 602, 782
signed char type, 136, 153
Signed integers, 125–26
Signed types

character, 136, 153
integer, 126

signed type specifier, 126, 136, 153
SIGSEGV macro, 632, 638
SIGTERM macro, 632
Simple assignment operator =, 18–19, 58–59, 176–77,

381–82, 397
Simple macros, 319–21
Sine, 594
sin function, 594, 782
sin type-generic macro (C99), 724
Single-precision floating constants, 32, 134
Single quote ', 135, 138

Single-quote escape sequence \', 137
sinh function, 595, 782–83
sinh type-generic macro (C99), 724
SIZE_MAX macro (C99), 709
size_t type, 151, 416, 535, 708
sizeof operator, 151, 155, 196, 404–5, 420

using with arrays, 167–68
snprintf function (C99), 576, 783
Sorting, 690
Source files, 349–50, 372
Special values, of floating-point numbers, 599
Specified-width integer types (C99), 705–9

input/output of, 710–11
limits of, 707–8

Splicing, of lines in a program, 278
splint, 8
sprintf function, 294, 576, 701, 783
sqrt function, 596, 783
sqrt type-generic macro (C99), 724
Square root, 596
srand function, 172, 686, 783
sscanf function, 577, 783–84
Stack abstract data type, 493–502

changing item type, 496–97
implementing using a dynamic array, 497–99
implementing using a fixed-length array, 495–96
implementing using a linked list, 499–502
interface for, 493–94

Stacks
implemented using external variables, 221–22
module implementation, 487–91

Standard error stream, 540–41
Standard headers, see Headers, standard
Standard input stream, 540–41
Standard library, see Library, standard
Standard output stream, 540–41
Standard pragmas, see Pragmas, standard
Standard signed integer types, 128
Standard streams, 540–41, 658
Standard unsigned integer types, 128
State-dependent encoding, of multibyte characters, 648
Statement labels, 113
Statements, 14

block, 227–28, 475–77
break, 88–89, 111–12
compound, 77–78, 91–92, 100, 227–28
continue, 112–13, 119–20
do, 103–5
expression, 65–66, 68, 189
for, see for statements
goto, 113–14, 120, 177
if, 76–86
iteration, 73, 99, 475–77
jump, 73

CBookIX.fm Page 827 Tuesday, February 26, 2008 10:50 PM

828 Index

Statements (continued)
null, 116–18, 120
return, 13, 30, 201–2, 203–4, 212–13
selection, 73, 475–77
switch, 86–90, 92–93
while, 99–103, 118

static, in array parameter declarations (C99), 200
static storage class, 220, 461–62, 464–65, 487
Static storage duration, 220, 221, 237, 460
<stdarg.h> header, 533, 677–81
<stdbool.h> header (C99), 85, 535, 536
__STDC__ macro, 330, 337
__STDC_HOSTED__ macro (C99), 330
__STDC_IEC_559__ macro (C99), 331
__STDC_IEC_559_COMPLEX__ macro (C99), 331
__STDC_ISO_10646__ macro (C99), 331
__STDC_VERSION__ macro (C99), 330–31
<stddef.h> header, 533, 535–36
stderr stream, 540–41
stdin stream, 540–41
<stdint.h> header (C99), 151, 535, 705–9, 731
<stdio.h> header, 533, 539–82
<stdlib.h> header, 533, 682–92
stdout stream, 540–41
Storage

of arrays, 170
of bit-fields in a structure, 517–18
of floating-point numbers, 132–33
of string literals, 279
of structures, 404–5
of unions, 397

Storage, deallocating, 422–24
Storage allocation, dynamic, see Dynamic storage

allocation
Storage classes, 458, 459–65
auto, 460
extern, 356, 462–63, 464
for function parameters, 465
for functions, 464–65
register, 463–64
static, 220, 461–62, 464–65, 487
summary of, 465

Storage duration, 459–60
automatic, 220, 459
of external variables, 221
of function parameters, 221
of local variables, 220, 237
static, 220, 221, 237, 460
of variables in a block, 228

strcat function, 291–92, 298–300, 307, 617, 784
strchr function, 619, 784
strcmp function, 292–93, 306–7, 452–53, 618, 784
strcoll function, 618, 784
strcpy function, 290, 616–17, 623, 784

strcspn function, 620, 784
Streams, 540–43

attaching files to, 546
buffering of, 550–51
byte-oriented, 658
end-of-file indicator for, 564
error indicator for, 564
file position associated with, 572
orientation of, 658
redirecting, 360, 541, 577
standard, 540–41, 658
using strings as, 575–77
wide-oriented, 658

strerror function, 622, 630–31, 784
strftime function, 696–98, 785
<string.h> header, 289, 533, 615–22
String conversion functions, see Numeric conversion

functions
String-handling functions, 289–96, 615–22

dynamic storage allocation in, 417–18
String idioms, 296–300
Stringization, see # preprocessing operator
String literals, 14, 277–80, 304–5

versus character constants, 280
concatenation of, 278–79
containing wide characters, 649
continuation of, 278–79
escape sequences in, 278
length of, 304–5
modifying, 280, 305
operations on, 279–80
storage of, 279

Strings
accessing characters in, 287–88
arrays of, 300–304, 418
comparing, 289, 292–93, 617–19
computing length of, 291, 622
concatenating, 291–92, 617
converting numbers to, 700–701
converting to numbers, 682–86, 712
copying, 289, 290–91, 298–300, 616–17, 623
dynamically allocated, 416–19
lexicographic ordering of, 293
multibyte, 649, 653, 670
reading, 285–86, 561–62, 570
reading character by character, 286–87
reading input from, 577
searching, 619–22
searching for end of, 296–98
termination of, 281, 305
wide, see Wide strings
writing, 14–15, 284–85, 306, 557, 569–70
writing output into, 576

String variables, 281–84

CBookIX.fm Page 828 Tuesday, February 26, 2008 10:50 PM

Index 829

initializing, 281–83
strlen function, 291, 296–98, 307, 622, 785
strncat function, 292, 617, 785
strncmp function, 618, 785
strncpy function, 290–91, 616–17, 623, 785
strpbrk function, 620, 786
strrchr function, 620, 786
strspn function, 620, 623, 786
strstr function, 620, 786
strtod function, 609, 683–84, 701, 786
strtof function (C99), 684, 786–87
strtoimax function (C99), 712, 787
strtok function, 620–22, 665–66, 787
strtold function (C99), 684, 787–88
strtol function, 683–84, 787
strtoll function (C99), 684, 788
strtoul function, 683–84, 788
strtoull function (C99), 684, 788
strtoumax function (C99), 712, 788
Struct hack, 448
Structure/union member operator ., 381, 397
Structures, 377

arrays of, 387–89
assignment of, 381–82
bit-fields in, 516–18
combined with arrays, 386–95
equality of, 405
flexible array members, 447–48
as function arguments, 384–86
holes in, 404–5
incomplete declarations of, 451
members of, 377
nested, 387
operations on, 381–82
returned by functions, 384–86
size of, 404–5
storage of, 404–5
with union members, 399

Structure tags, 383–84, 405, 425, 451
Structure types, 382–86, 405

defined in header files, 406
Structure variables, 377–82

compatibility of, 406
declaring, 378–79, 383–84
initializing, 379–80, 385–86, 471–72

strxfrm function, 618–19, 789
Subnormal numbers, 598–99
Subroutines, see Functions
Subscripting, array, 162–63, 170, 175

See also Array subscript operator
Subtraction, 54

of an integer from a pointer, 259
of one pointer from another, 259–60

Subtraction assignment operator -=, 60

Subtraction operator -, 54
switch statements, 86–90, 92–93
swprintf function (C99), 660–61, 789
swscanf function (C99), 660, 789
System calls, UNIX, 637
system function, 689, 789

Tag fields, 400–401, 404
Tags

enumeration, 402–3
structure, 383–84, 405, 425, 451
union, 397

tan function, 594, 789
tan type-generic macro (C99), 724
Tangent, 594
tanh function, 595, 790
tanh type-generic macro (C99), 724
Targets, in makefiles, 367
Templates, in C++, 503
Temporary files, 548–49
Termination, of a program, 30, 202–4, 213, 688, 701
Termination request signal, 632
Ternary operators, 83
Text files, 541–43, 578, 581

end-of-file marker, 542
lines in, 542, 577–78

tgamma function (C99), 606, 623, 790
tgamma type-generic macro (C99), 724
<tgmath.h> header (C99), 535, 723–26, 731–32
Thompson, Ken, 1–2, 650
<time.h> header, 533, 692–700
__TIME__ macro, 329
time_t type, 692
Time-conversion functions, 695–98
Time differences, 694
Time formats, ISO 8601, 698
time function, 172, 693–94, 790
Time-manipulation functions, 693–95
Time values, representation of, 692
TMP_MAX macro, 549
tmpfile function, 548, 790
tmpnam function, 548–49, 790
tm structure type, 692
Token-pasting, see ## preprocessing operator
Tokens, 27–29, 655

preprocessing, 319
tolower function, 614, 790
toupper function, 138–39, 614, 790–91
towctrans function (C99), 674, 791
towlower function (C99), 673, 791
towupper function (C99), 673, 791
Trigonometric functions, 594

C99 additions, 603
complex, 719–20

CBookIX.fm Page 829 Tuesday, February 26, 2008 10:50 PM

830 Index

Trigraph sequences ??c, 654–55
true macro (C99), 85, 536
Truncation, during division, 20, 25, 54
trunc function (C99), 608, 791
trunc type-generic macro (C99), 724
Type conversions, see Conversions
Type definitions, 149–51

in header files, 353
versus macro definitions, 155
using to simplify declarations, 470

typedef names, scope of, 155
typedef specifier, 149, 384, 403, 405
Type-generic macros (C99), 723–26, 731–32

invoking, 725–26, 732
Type qualifiers, 458, 466–67
const, 172, 250–51, 254–55, 265–66, 466–67,

478–79
restrict, 445–47, 543
volatile, 523–24, 638

Types, 17
arithmetic, 136–37
basic, 125
Boolean, 85, 92
character, 134–42
complex, 133, 714–15
enumerated, 402–3
exact-width, 706
fastest minimum-width, 707
floating, see Floating types
greatest-width, 707, 709, 711–12
incomplete, 448, 451, 492, 505
integer, see Integer types
integral, 136
machine-dependent, 518–19
minimum-width, 706–7, 708–9
real floating, 133
signed, 126, 136, 153
structure, 382–86, 405
union, 397
unsigned, 126, 136, 153
using #define to rename, 320
variably modified, 270–71

Type specifiers, 458
_Bool, 85, 92
char, 134, 153
_Complex, 715
double, 132, 152, 715
float, 17, 32, 132, 152, 715
int, 17, 126
long, 126
short, 126
signed, 126, 136, 153
unsigned, 126, 136, 153
void, 185, 187, 189, 505

UCHAR_MAX macro, 592
%u conversion specification, 130
UCS, see Universal Character Set
UCS-2 character encoding, 650–51
UCS-4 character encoding, 651
UINT_FASTN_MAX macros (C99), 708
uint_fastN_t types (C99), 707
UINT_LEASTN_MAX macros (C99), 708
uint_leastN_t types (C99), 706
UINT_MAX macro, 592
UINTMAX_C macro (C99), 709
UINTMAX_MAX macro (C99), 708
uintmax_t type (C99), 707, 711
UINTN_C macros (C99), 708
UINTN_MAX macros (C99), 708
uintN_t types (C99), 706
UINTPTR_MAX macro (C99), 708
uintptr_t type (C99), 707
ULLONG_MAX macro (C99), 592
ULONG_MAX macro, 592
Unary minus operator -, 54
Unary operators, 54
Unary plus operator +, 54
#undef directives, 326
Undefined behavior, 65
Underflow, 598, 601
Underscore _, 25
ungetc function, 568, 579, 791
ungetwc function (C99), 661, 791
Unicode, 649–51

Basic Multilingual Plane (BMP), 650, 657
code points, 650
encodings of, 650–51
versus UCS, 675

Unicode Consortium, 649–50
Uninitialized variables, 21, 472
Unions, 396–401

adding tag fields to, 400–401, 404
assignment of, 397
as function arguments, 397
incomplete declarations of, 505
members of, 396–97
as members of structures, 399
returned by functions, 397
storage of, 397
using to build mixed data structures, 399–400
using to provide multiple views of data, 519–20
using to save space, 398–99

Union tags, 397
Union types, 397
Union variables

declaring, 396–97
initializing, 397, 471–72

Universal character names (C99), 25, 656–57

CBookIX.fm Page 830 Tuesday, February 26, 2008 10:50 PM

Index 831

Universal Character Set (UCS), 649–51, 656–57
versus Unicode, 675

UNIX operating system, 1–2
UNIX system calls, 637
unsigned char type, 136, 153
Unsigned integer constants, 129
Unsigned integers, 125–26
unsigned int type, 126
unsigned long int type, 126
unsigned long long int type (C99), 128
unsigned short int type, 126
Unsigned types

character, 136, 153
integer, 126

unsigned type specifier, 126, 136, 153
Upper-case letters

converting to, 614
testing for, 613, 672

USHRT_MAX macro, 592
Usual arithmetic conversions, 143–45, 716, 732

in C99, 146–47
U (or u) suffix, on an integer constant, 129
UTC (Coordinated Universal Time), 696, 702
UTF-16 character encoding, 651
UTF-8 character encoding, 650–51

va_arg macro, 677–79, 792
__VA_ARGS__ identifier (C99), 332
va_copy macro (C99), 679, 792
va_end macro, 677–79, 792
va_list type, 677–79
va_start macro, 677–79, 792
Variable declarations, 17–18

in header files, 355–57, 373
order of, 188

Variable definitions, 355–57
Variable-length argument lists

functions with, 153, 449, 677–81
macros with, 332–33

Variable-length array parameters (C99), 198–200
Variable-length arrays (C99), 174–75, 177, 477

and pointers, 270–71
Variables, 17–22

aggregate, 161
auto, 460
default value of, 472
extern, 462–63
external, 221–27
initializers for, see Initializers
linkage of, 460
local, 219–21
pointer, 241–43, 253–54, 442–43
register, 463–64
scalar, 161

scope of, 220, 221, 228, 237, 460
static, 461–62
storage duration of, see Storage duration
string, 281–84
structure, see Structure variables
uninitialized, 21, 472
union, 396–97
visibility of, 108

Variably modified types (C99), 270–71
Vertical-tab escape sequence \v, 137
vfprintf function, 552, 680–81, 792
vfscanf function (C99), 681, 792
vfwprintf function (C99), 660, 792–93
vfwscanf function (C99), 660, 793
void

in a cast expression, 189
function return type, 185, 187
in a parameter list, 187

void * type, 414, 450–51, 503
void type, 505
volatile type qualifier, 523–24, 638
vprintf function, 552, 680, 793
vscanf function (C99), 681, 793
vsnprintf function (C99), 575, 681, 793
vsprintf function, 575, 680, 793
vsscanf function (C99), 575, 681, 794
vswprintf function (C99), 661, 794
vswscanf function (C99), 660, 794
vwprintf function (C99), 660, 794
vwscanf function (C99), 660, 794

<wchar.h> header (C99), 535, 540, 657–70
WCHAR_MAX macro (C99), 709
WCHAR_MIN macro (C99), 709
wchar_t type, 535, 649, 708
wcrtomb function (C99), 669–70, 794–95
wcscat function (C99), 664, 795
wcschr function (C99), 665, 795
wcscmp function (C99), 665, 795
wcscoll function (C99), 665, 795
wcscpy function (C99), 664, 795
wcscspn function (C99), 665, 795
wcsftime function (C99), 667, 795
wcslen function (C99), 667, 796
wcsncat function (C99), 664, 796
wcsncmp function (C99), 665, 796
wcsncpy function (C99), 664, 796
wcspbrk function (C99), 665, 796
wcsrchr function (C99), 665, 796
wcsrtombs function (C99), 670, 796–97
wcsspn function (C99), 665, 797
wcsstr function (C99), 665, 797
wcstod function (C99), 663, 797
wcstof function (C99), 663, 797

CBookIX.fm Page 831 Tuesday, February 26, 2008 10:50 PM

832 Index

wcstoimax function (C99), 712, 797
wcstok function (C99), 665–66, 797–98
wcstold function (C99), 663, 798
wcstol function (C99), 663, 798
wcstoll function (C99), 663, 798
wcstombs function, 654, 798
wcstoul function (C99), 663, 798
wcstoull function (C99), 663, 798
wcstoumax function (C99), 712, 799
wcsxfrm function (C99), 665, 799
wctob function (C99), 668, 799
wctomb function, 653, 799
wctrans function (C99), 673, 799
wctrans_t type (C99), 673
<wctype.h> header (C99), 535, 671–74
wctype function (C99), 672–73, 799
wctype_t type (C99), 672
WEOF macro (C99), 657
while statements, 99–103, 118

idioms, 101, 141, 298, 300, 559, 567
White Book, 2
White-space characters, 43

in preprocessing directives, 318
in …scanf format strings, 43, 559
testing for, 613, 672

Wide-character case-mapping functions (C99), 673
extensible, 673–74

Wide-character classification functions (C99), 671–72
extensible, 672–73

Wide-character constants, 649
Wide characters, 649

converting to bytes, 668
converting to multibyte characters, 653, 669–70
formatted input/output, 659–61
input/output, 540, 556, 562–63, 661–62
versus multibyte characters, 674–75
null, 649

Wide-character time-conversion functions (C99), 667
Wide-oriented streams (C99), 658
Wide string literals, 649
Wide strings, 649

comparing, 664–65
computing length of, 667
concatenating, 664
converting to multibyte strings, 654, 670
converting to numbers, 662–63, 712
copying, 663–64
searching, 665–66

WINT_MAX macro (C99), 709
WINT_MIN macro (C99), 709
wint_t type (C99), 657, 708
wmemchr function (C99), 665, 799
wmemcmp function (C99), 665, 800
wmemcpy function (C99), 664, 800

wmemmove function (C99), 664, 800
wmemset function (C99), 667, 800
wprintf function (C99), 660, 800
wscanf function (C99), 660, 800

%x conversion specification, 130, 152
xor macro (C99), 656
xor_eq macro (C99), 656

CBookIX.fm Page 832 Tuesday, February 26, 2008 10:50 PM

	C Programming (Second Edition)
	Title Page
	Copyright Information
	Brief Contents
	Contents
	Preface��������������
	1. INTRODUCING C
	1.1 History of C�����������������������
	Origins��������������
	Standardization����������������������
	C-Based Languages������������������������

	1.2 Strengths and Weaknesses of C��
	Strengths����������������
	Weaknesses�����������������
	Effective Use of C�������������������������

	2. C FUNDAMENTALS
	2.1 Writing a Simple Program�����������������������������������
	Program: Printing a Pun������������������������������
	Compiling and Linking����������������������������
	Integrated Development Environments��

	2.2 The General Form of a Simple Program���
	Directives�����������������
	Functions����������������
	Statements�����������������
	Printing Strings�����������������������

	2.3 Comments�������������������
	2.4 Variables and Assignment�����������������������������������
	Types������������
	Declarations�������������������
	Assignment�����������������
	Printing the Value of a Variable���������������������������������������
	Program: Computing the Dimensional Weight of a Box���
	Initialization���������������������
	Printing Expressions���������������������������

	2.5 Reading Input������������������������
	Program: Computing the Dimensional Weight of a Box (Revisited)

	2.6 Defining Names for Constants���������������������������������������
	Program: Converting from Fahrenheit to Celsius���

	2.7 Identifiers����������������������
	Keywords���������������

	2.8 Layout of a C Program��������������������������������

	3. FORMATTED INPUT/OUTPUT
	3.1 The printf Function������������������������������
	Conversion Specifications��������������������������������
	Program: Using printf to Format Numbers��
	Escape Sequences�����������������������

	3.2 The scanf Function�����������������������������
	How scanf Works����������������������
	Ordinary Characters in Format Strings��
	Confusing printf with scanf����������������������������������
	Program: Adding Fractions��������������������������������

	4. EXPRESSIONS
	4.1 Arithmetic Operators�������������������������������
	Operator Precedence and Associativity��
	Program: Computing a UPC Check Digit���

	4.2 Assignment Operators�������������������������������
	Simple Assignment������������������������
	Lvalues��������������
	Compound Assignment��������������������������

	4.3 Increment and Decrement Operators��
	4.4 Expression Evaluation��������������������������������
	Order of Subexpression Evaluation��

	4.5 Expression Statements��������������������������������

	5. SELECTION STATEMENTS
	5.1 Logical Expressions������������������������������
	Relational Operators���������������������������
	Equality Operators�������������������������
	Logical Operators������������������������

	5.2 The if Statement���������������������������
	Compound Statements��������������������������
	The else Clause����������������������
	Cascaded if Statements�����������������������������
	Program: Calculating a Broker’s Commission���
	The “Dangling else” Problem����������������������������������
	Conditional Expressions������������������������������
	Boolean Values in C89����������������������������
	Boolean Values in C99����������������������������

	5.3 The switch Statement�������������������������������
	The Role of the break Statement��������������������������������������
	Program: Printing a Date in Legal Form���

	6. LOOPS
	6.1 The while Statement������������������������������
	Infinite Loops���������������������
	Program: Printing a Table of Squares���
	Program: Summing a Series of Numbers���

	6.2 The do Statement���������������������������
	Program: Calculating the Number of Digits in an Integer��

	6.3 The for Statement����������������������������
	for Statement Idioms���������������������������
	Omitting Expressions in a for Statement��
	for Statements in C99����������������������������
	The Comma Operator�������������������������
	Program: Printing a Table of Squares (Revisited)

	6.4 Exiting from a Loop������������������������������
	The break Statement��������������������������
	The continue Statement�����������������������������
	The goto Statement�������������������������
	Program: Balancing a Checkbook�������������������������������������

	6.5 The Null Statement�����������������������������

	7. BASIC TYPES
	7.1 Integer Types������������������������
	Integer Types in C99���������������������������
	Integer Constants������������������������
	Integer Constants in C99�������������������������������
	Integer Overflow�����������������������
	Reading and Writing Integers�����������������������������������
	Program: Summing a Series of Numbers (Revisited)

	7.2 Floating Types�������������������������
	Floating Constants�������������������������
	Reading and Writing Floating-Point Numbers���

	7.3 Character Types��������������������������
	Operations on Characters�������������������������������
	Signed and Unsigned Characters�������������������������������������
	Arithmetic Types�����������������������
	Escape Sequences�����������������������
	Character-Handling Functions�����������������������������������
	Reading and Writing Characters using scanf and printf��
	Reading and Writing Characters using getchar and putchar
	Program: Determining the Length of a Message���

	7.4 Type Conversion��������������������������
	The Usual Arithmetic Conversions���������������������������������������
	Conversion During Assignment�����������������������������������
	Implicit Conversions in C99����������������������������������
	Casting��������������

	7.5 Type Definitions���������������������������
	Advantages of Type Definitions�������������������������������������
	Type Definitions and Portability���������������������������������������

	7.6 The sizeof Operator������������������������������

	8. ARRAYS
	8.1 One-Dimensional Arrays���������������������������������
	Array Subscripting�������������������������
	Program: Reversing a Series of Numbers���
	Array Initialization���������������������������
	Designated Initializers������������������������������
	Program: Checking a Number for Repeated Digits���
	Using the sizeof Operator with Arrays��
	Program: Computing Interest����������������������������������

	8.2 Multidimensional Arrays����������������������������������
	Initializing a Multidimensional Array��
	Constant Arrays����������������������
	Program: Dealing a Hand of Cards���������������������������������������

	8.3 Variable-Length Arrays (C99)

	9. FUNCTIONS
	9.1 Defining and Calling Functions���
	Program: Computing Averages����������������������������������
	Program: Printing a Countdown������������������������������������
	Program: Printing a Pun (Revisited)
	Function Definitions���������������������������
	Function Calls���������������������
	Program: Testing Whether a Number Is Prime���

	9.2 Function Declarations��������������������������������
	9.3 Arguments��������������������
	Argument Conversions���������������������������
	Array Arguments����������������������
	Variable-Length Array Parameters���������������������������������������
	Using static in Array Parameter Declarations���
	Compound Literals������������������������

	9.4 The return Statement�������������������������������
	9.5 Program Termination������������������������������
	The exit Function������������������������

	9.6 Recursion��������������������
	The Quicksort Algorithm������������������������������
	Program: Quicksort�������������������������

	10. PROGRAM ORGANIZATION
	10.1 Local Variables���������������������������
	Static Local Variables�����������������������������
	Parameters�����������������

	10.2 External Variables������������������������������
	Example: Using External Variables to Implement a Stack���
	Pros and Cons of External Variables��
	Program: Guessing a Number���������������������������������

	10.3 Blocks������������������
	10.4 Scope�����������������
	10.5 Organizing a C Program����������������������������������
	Program: Classifying a Poker Hand��

	11. POINTERS
	11.1 Pointer Variables�����������������������������
	Declaring Pointer Variables����������������������������������

	11.2 The Address and Indirection Operators���
	The Address Operator���������������������������
	The Indirection Operator�������������������������������

	11.3 Pointer Assignment������������������������������
	11.4 Pointers as Arguments���������������������������������
	Program: Finding the Largest and Smallest Elements in an Array
	Using const to Protect Arguments���������������������������������������

	11.5 Pointers as Return Values�������������������������������������

	12. POINTERS AND ARRAYS
	12.1 Pointer Arithmetic������������������������������
	Adding an Integer to a Pointer�������������������������������������
	Subtracting an Integer from a Pointer��
	Subtracting One Pointer from Another���
	Comparing Pointers�������������������������
	Pointers to Compound Literals������������������������������������

	12.2 Using Pointers for Array Processing���
	Combining the * and ++ Operators���������������������������������������

	12.3 Using an Array Name as a Pointer��
	Program: Reversing a Series of Numbers (Revisited��
	Array Arguments (Revisited)
	Using a Pointer as an Array Name���������������������������������������

	12.4 Pointers and Multidimensional Arrays��
	Processing the Elements of a Multidimensional Array��
	Processing the Rows of a Multidimensional Array��
	Processing the Columns of a Multidimensional Array���
	Using the Name of a Multidimensional Array as a Pointer��

	12.5 Pointers and Variable-Length Arrays (C99)

	13. STRINGS
	13.1 String Literals���������������������������
	Escape Sequences in String Literals��
	Continuing a String Literal����������������������������������
	How String Literals Are Stored�������������������������������������
	Operations on String Literals������������������������������������
	String Literals versus Character Constants���

	13.2 String Variables����������������������������
	Initializing a String Variable�������������������������������������
	Character Arrays versus Character Pointers���

	13.3 Reading and Writing Strings���������������������������������������
	Writing Strings Using printf and puts��
	Reading Strings Using scanf and gets���
	Reading Strings Character by Character���

	13.4 Accessing the Characters in a String��
	13.5 Using the C String Library��������������������������������������
	The strcpy (String Copy) Function��
	The strlen (String Length) Function��
	The strcat (String Concatenation) Function���
	The strcmp (String Comparison) Function��
	Program: Printing a One-Month Reminder List��

	13.6 String Idioms�������������������������
	Searching for the End of a String��
	Copying a String�����������������������

	13.7 Arrays of Strings�����������������������������
	Command-Line Arguments�����������������������������
	Program: Checking Planet Names�������������������������������������

	14. THE PREPROCESSOR
	14.1 How the Preprocessor Works��������������������������������������
	14.2 Preprocessing Directives������������������������������������
	14.3 Macro Definitions�����������������������������
	Simple Macros��������������������
	Parameterized Macros���������������������������
	The # Operator���������������������
	The ## Operator����������������������
	General Properties of Macros�����������������������������������
	Parentheses in Macro Definitions���������������������������������������
	Creating Longer Macros�����������������������������
	Predefined Macros������������������������
	Additional Predefined Macros in C99��
	Empty Macro Arguments����������������������������
	Macros with a Variable Number of Arguments���
	The __func__ Identifier������������������������������

	14.4 Conditional Compilation�����������������������������������
	The #if and #endif Directives������������������������������������
	The defined Operator���������������������������
	The #ifdef and #ifndef Directives��
	The #elif and #else Directives�������������������������������������
	Uses of Conditional Compilation��������������������������������������

	14.5 Miscellaneous Directives������������������������������������
	The #error Directive���������������������������
	The #line Directive��������������������������
	The #pragma Directive����������������������������
	The _Pragma Operator���������������������������

	15. WRITING LARGE PROGRAMS
	15.1 Source Files������������������������
	15.2 Header Files������������������������
	The #include Directive�����������������������������
	Sharing Macro Definitions and Type Definitions���
	Sharing Function Prototypes����������������������������������
	Sharing Variable Declarations������������������������������������
	Nested Includes����������������������
	Protecting Header Files������������������������������
	#error Directives in Header Files��

	15.3 Dividing a Program into Files���
	Program: Text Formatting�������������������������������

	15.4 Building a Multiple-File Program��
	Makefiles����������������
	Errors During Linking����������������������������
	Rebuilding a Program���������������������������
	Defining Macros Outside a Program��

	16. STRUCTURES, UNIONS, AND ENUMERATIONS
	16.1 Structure Variables�������������������������������
	Declaring Structure Variables������������������������������������
	Initializing Structure Variables���������������������������������������
	Designated Initializers������������������������������
	Operations on Structures�������������������������������

	16.2 Structure Types���������������������������
	Declaring a Structure Tag��������������������������������
	Defining a Structure Type��������������������������������
	Structures as Arguments and Return Values��
	Compound Literals������������������������

	16.3 Nested Arrays and Structures��
	Nested Structures������������������������
	Arrays of Structures���������������������������
	Initializing an Array of Structures��
	Program: Maintaining a Parts Database��

	16.4 Unions������������������
	Using Unions to Save Space���������������������������������
	Using Unions to Build Mixed Data Structures��
	Adding a “Tag Field” to a Union��������������������������������������

	16.5 Enumerations������������������������
	Enumeration Tags and Type Names��������������������������������������
	Enumerations as Integers�������������������������������
	Using Enumerations to Declare “Tag Fields”

	17. ADVANCED USES OF POINTERS
	17.1 Dynamic Storage Allocation��������������������������������������
	Memory Allocation Functions����������������������������������
	Null Pointers��������������������

	17.2 Dynamically Allocated Strings���
	Using malloc to Allocate Memory for a String���
	Using Dynamic Storage Allocation in String Functions���
	Arrays of Dynamically Allocated Strings��
	Program: Printing a One-Month Reminder List (Revisited)

	17.3 Dynamically Allocated Arrays��
	Using malloc to Allocate Storage for an Array��
	The calloc Function��������������������������
	The realloc Function���������������������������

	17.4 Deallocating Storage��������������������������������
	The free Function������������������������
	The “Dangling Pointer” Problem�������������������������������������

	17.5 Linked Lists������������������������
	Declaring a Node Type����������������������������
	Creating a Node����������������������
	The -> Operator����������������������
	Inserting a Node at the Beginning of a Linked List���
	Searching a Linked List������������������������������
	Deleting a Node from a Linked List���
	Ordered Lists��������������������
	Program: Maintaining a Parts Database (Revisited)

	17.6 Pointers to Pointers��������������������������������
	17.7 Pointers to Functions���������������������������������
	Function Pointers as Arguments�������������������������������������
	The qsort Function�������������������������
	Other Uses of Function Pointers��������������������������������������
	Program: Tabulating the Trigonometric Functions��

	17.8 Restricted Pointers (C99)
	17.9 Flexible Array Members (C99)

	18. DECLARATIONS
	18.1 Declaration Syntax������������������������������
	18.2 Storage Classes���������������������������
	Properties of Variables������������������������������
	The auto Storage Class�����������������������������
	The static Storage Class�������������������������������
	The extern Storage Class�������������������������������
	The register Storage Class���������������������������������
	The Storage Class of a Function��������������������������������������
	Summary��������������

	18.3 Type Qualifiers���������������������������
	18.4 Declarators�����������������������
	Deciphering Complex Declarations���������������������������������������
	Using Type Definitions to Simplify Declarations��

	18.5 Initializers������������������������
	Uninitialized Variables������������������������������

	18.6 Inline Functions (C99)
	Inline Definitions�������������������������
	Restrictions on Inline Functions���������������������������������������
	Using Inline Functions with GCC��������������������������������������

	19. PROGRAM DESIGN
	19.1 Modules�������������������
	Cohesion and Coupling����������������������������
	Types of Modules�����������������������

	19.2 Information Hiding������������������������������
	A Stack Module���������������������

	19.3 Abstract Data Types�������������������������������
	Encapsulation��������������������
	Incomplete Types�����������������������

	19.4 A Stack Abstract Data Type��������������������������������������
	Defining the Interface for the Stack ADT���
	Implementing the Stack ADT Using a Fixed-Length Array��
	Changing the Item Type in the Stack ADT��
	Implementing the Stack ADT Using a Dynamic Array���
	Implementing the Stack ADT Using a Linked List���

	19.5 Design Issues for Abstract Data Types���
	Naming Conventions�������������������������
	Error Handling���������������������
	Generic ADTs�������������������
	ADTs in Newer Languages������������������������������

	20. LOW-LEVEL PROGRAMMING
	20.1 Bitwise Operators�����������������������������
	Bitwise Shift Operators������������������������������
	Bitwise Complement, And, Exclusive Or, and Inclusive Or��
	Using the Bitwise Operators to Access Bits���
	Using the Bitwise Operators to Access Bit-Fields���
	Program: XOR Encryption������������������������������

	20.2 Bit-Fields in Structures������������������������������������
	How Bit-Fields Are Stored��������������������������������

	20.3 Other Low-Level Techniques��������������������������������������
	Defining Machine-Dependent Types���������������������������������������
	Using Unions to Provide Multiple Views of Data���
	Using Pointers as Addresses����������������������������������
	Program: Viewing Memory Locations��
	The volatile Type Qualifier����������������������������������

	21. THE STANDARD LIBRARY
	21.1 Using the Library�����������������������������
	Restrictions on Names Used in the Library��
	Functions Hidden by Macros���������������������������������

	21.2 C89 Library Overview��������������������������������
	21.3 C99 Library Changes�������������������������������
	21.4 The <stddef.h> Header: Common Definitions���
	21.5 The <stdbool.h> Header (C99): Boolean Type and Values

	22. INPUT/OUTPUT
	22.1 Streams�������������������
	File Pointers��������������������
	Standard Streams and Redirection���������������������������������������
	Text Files versus Binary Files�������������������������������������

	22.2 File Operations���������������������������
	Opening a File���������������������
	Modes������������
	Closing a File���������������������
	Attaching a File to an Open Stream���
	Obtaining File Names from the Command Line���
	Program: Checking Whether a File Can Be Opened���
	Temporary Files����������������������
	File Buffering���������������������
	Miscellaneous File Operations������������������������������������

	22.3 Formatted I/O�������������������������
	The …printf Functions����������������������������
	…printf Conversion Specifications��
	C99 Changes to …printf Conversion Specifications���
	Examples of …printf Conversion Specifications��
	The …scanf Functions���������������������������
	…scanf Format Strings����������������������������
	…scanf Conversion Specifications���������������������������������������
	C99 Changes to …scanf Conversion Specifications��
	scanf Examples���������������������
	Detecting End-of-File and Error Conditions���

	22.4 Character I/O�������������������������
	Output Functions�����������������������
	Input Functions����������������������
	Program: Copying a File������������������������������

	22.5 Line I/O��������������������
	Output Functions�����������������������
	Input Functions����������������������

	22.6 Block I/O���������������������
	22.7 File Positioning����������������������������
	Program: Modifying a File of Part Records��

	22.8 String I/O����������������������
	Output Functions�����������������������
	Input Functions����������������������

	23. LIBRARY SUPPORT FOR NUMBERS AND CHARACTER DATA
	23.1 The <float.h> Header: Characteristics of Floating Types
	23.2 The <limits.h> Header: Sizes of Integer Types���
	23.3 The <math.h> Header (C89): Mathematics��
	Errors�������������
	Trigonometric Functions������������������������������
	Hyperbolic Functions���������������������������
	Exponential and Logarithmic Functions��
	Power Functions����������������������
	Nearest Integer, Absolute Value, and Remainder Functions���

	23.4 The <math.h> Header (C99): Mathematics��
	IEEE Floating-Point Standard�����������������������������������
	Types������������
	Macros�������������
	Errors�������������
	Functions����������������
	Classification Macros����������������������������
	Trigonometric Functions������������������������������
	Hyperbolic Functions���������������������������
	Exponential and Logarithmic Functions��
	Power and Absolute Value Functions���
	Error and Gamma Functions��������������������������������
	Nearest Integer Functions��������������������������������
	Remainder Functions��������������������������
	Manipulation Functions�����������������������������
	Maximum, Minimum, and Positive Difference Functions��
	Floating Multiply-Add����������������������������
	Comparison Macros������������������������

	23.5 The <ctype.h> Header: Character Handling��
	Character-Classification Functions���
	Program: Testing the Character-Classification Functions��
	Character Case-Mapping Functions���������������������������������������
	Program: Testing the Case-Mapping Functions��

	23.6 The <string.h> Header: String Handling��
	Copying Functions������������������������
	Concatenation Functions������������������������������
	Comparison Functions���������������������������
	Search Functions�����������������������
	Miscellaneous Functions������������������������������

	24. ERROR HANDLING
	24.1 The <assert.h> Header: Diagnostics��
	24.2 The <errno.h> Header: Errors��
	The perror and strerror Functions��

	24.3 The <signal.h> Header: Signal Handling��
	Signal Macros��������������������
	The signal Function��������������������������
	Predefined Signal Handlers���������������������������������
	The raise Function�������������������������
	Program: Testing Signals�������������������������������

	24.4 The <setjmp.h> Header: Nonlocal Jumps���
	Program: Testing setjmp/longjmp��������������������������������������

	25. INTERNATIONAL FEATURES
	25.1 The <locale.h> Header: Localization���
	Categories�����������������
	The setlocale Function�����������������������������
	The localeconv Function������������������������������

	25.2 Multibyte Characters and Wide Characters��
	Multibyte Characters���������������������������
	Wide Characters����������������������
	Unicode and the Universal Character Set��
	Encodings of Unicode���������������������������
	Multibyte/Wide-Character Conversion Functions��
	Multibyte/Wide-String Conversion Functions���

	25.3 Digraphs and Trigraphs����������������������������������
	Trigraphs����������������
	Digraphs���������������
	The <iso646.h> Header: Alternative Spellings���

	25.4 Universal Character Names (C99)
	25.5 The <wchar.h> Header (C99): Extended Multibyte and Wide-Character Utilities
	Stream Orientation�������������������������
	Formatted Wide-Character Input/Output Functions��
	Wide-Character Input/Output Functions��
	General Wide-String Utilities������������������������������������
	Wide-Character Time-Conversion Functions���
	Extended Multibyte/Wide-Character Conversion Utilities���

	25.6 The <wctype.h> Header (C99): Wide-Character Classification and Mapping Utilities
	Wide-Character Classification Functions��
	Extensible Wide-Character Classification Functions���
	Wide-Character Case-Mapping Functions��
	Extensible Wide-Character Case-Mapping Functions���

	26. MISCELLANEOUS LIBRARY FUNCTIONS
	26.1 The <stdarg.h> Header: Variable Arguments���
	Calling a Function with a Variable Argument List���
	The v…printf Functions�����������������������������
	The v…scanf Functions����������������������������

	26.2 The <stdlib.h> Header: General Utilities��
	Numeric Conversion Functions�����������������������������������
	Program: Testing the Numeric Conversion Functions��
	Pseudo-Random Sequence Generation Functions��
	Program: Testing the Pseudo-Random Sequence Generation Functions
	Communication with the Environment���
	Searching and Sorting Utilities��������������������������������������
	Program: Determining Air Mileage���������������������������������������
	Integer Arithmetic Functions�����������������������������������

	26.3 The <time.h> Header: Date and Time��
	Time Manipulation Functions����������������������������������
	Time Conversion Functions��������������������������������
	Program: Displaying the Date and Time��

	27. ADDITIONAL C99 SUPPORT FOR MATHEMATICS
	27.1 The <stdint.h> Header (C99): Integer Types��
	<stdint.h> Types�����������������������
	Limits of Specified-Width Integer Types��
	Limits of Other Integer Types������������������������������������
	Macros for Integer Constants�����������������������������������

	27.2 The <inttypes.h> Header (C99): Format Conversion of Integer Types
	Macros for Format Specifiers�����������������������������������
	Functions for Greatest-Width Integer Types���

	27.3 Complex Numbers (C99)
	Definition of Complex Numbers������������������������������������
	Complex Arithmetic�������������������������
	Complex Types in C99���������������������������
	Operations on Complex Numbers������������������������������������
	Conversion Rules for Complex Types���

	27.4 The <complex.h> Header (C99): Complex Arithmetic��
	<complex.h> Macros�������������������������
	The CX_LIMITED_RANGE Pragma����������������������������������
	<complex.h> Functions����������������������������
	Trigonometric Functions������������������������������
	Hyperbolic Functions���������������������������
	Exponential and Logarithmic Functions��
	Power and Absolute-Value Functions���
	Manipulation Functions�����������������������������
	Program: Finding the Roots of a Quadratic Equation���

	27.5 The <tgmath.h> Header (C99): Type-Generic Math��
	Type-Generic Macros��������������������������
	Invoking a Type-Generic Macro������������������������������������

	27.6 The <fenv.h> Header (C99): Floating-Point Environment���
	Floating-Point Status Flags and Control Modes��
	<fenv.h> Macros����������������������
	The FENV_ACCESS Pragma�����������������������������
	Floating-Point Exception Functions���
	Rounding Functions�������������������������
	Environment Functions����������������������������

	Appendix A. C Operators
	Appendix B. C99 versus C89
	Appendix C. C89 versus K&R C
	Appendix D. Standard Library Functions
	Appendix E. ASCII Character Set
	Bibliography�������������������
	Index������������

