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Nonlinear Control Systems
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Linear Time-Invariant (LTI)
Single-Input Single Output (SISO)

d"y(t) d"Vy(r) d"2y(r)
df(n) + Pn—1 d (n—l) Pn-2 df(n_z) +e pﬂy(r)
d"=Du(t) d"=2u(r)
= er—l dr(n_l) +Qn—2 dl‘(” 2) + + QO“(I)
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Linear Time-Invariant (LTI)
State-Space Representation (SISO & MIMO)

x(r1) = Ax(t)+Bu(t)
y(r) = Cx(z)+Du(r)
A is the System Matrix
B is the Control Matrix

C is the Observation Control
D is the Direct Input Observation
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Time-Variant System

x(t) = A@)x(t)+B(t)u(r)
y(1) = C(2)x(t) +D(t)u(r)

A(t) is the time-dependent System Matrix

B(?) is the time-dependent Control Matrix

C(t) is the time-dependent Observation Control
D(7) is the time-dependent Direct Input Observation
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Generic Control System

Disturbances
v(s)
Desired Output Error Actual Output
Yd(S)l) CEntrOI 7+ e(S) > Control » Actuator : ) P1 Y(i)
aw @_7 Law ﬂ{_ X ant >

Measurement
Device <
(sensor)
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Control Problem Components

Goals

Transient Response
Disturbance Rejection
Steady-State Error Correction

Plant Parameter-Change Sensitivity
Approach

Sensor Selection

Actuator Selection

System Modeling — Developing Equations for the Plant
Dynamics, Sensor Response, and Actuator Dynamics

Controller Design
Evaluation — analytic evaluation, simulation, hardware test

Repetition of the tests to achieve repeatable and acceptable results
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In Engineering and physics
the location does not matter
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In Mathematics, we define a
vector about the origin
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Vector (subtraction)
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Vector (scaling)
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Vector (span of multiple vectors)

Take two 2-D vectors. The Span of two vectors is given by,

5= av) + pi; 10 ; ; . . T T . T
If the two basis vectors are collinear, then only one 3
dimension can be spanned. Otherwise, they will span °r 4{ 4} 1
the whole two-dimensional space. The scaling _
factors are used to allow access to any point on the °r i
spanned plane. -2
T 2| % 1
2 .
= 0
2k .
-4 .
6 .
B .
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Vector (span of multiple vectors)

Take two 2-D vectors. The Span of two vectors is given by,

5= av +ﬁFZ 10

If the two basis vectors are collinear, then only one 3

dimension can be spanned. Otherwise, they will span °r < { 4} 7
the whole two-dimensional space. The scaling

factors are used to allow access to any point on the
spanned plane.

Sep 17, 2025
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Identity Matrix

Definition 23.1 (Identity Matrix). The N dimensional identity matrix is denoted
by Iy (or sometimes 1) and is defined as follows,

Iy : Y — @V is the matrix such that
e
Nj = { 0¥V i 2l

where i, j € { I.2,....N¥ } are the row number and column number of the correspond-
ing element of matrix Iy.
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Matrix Transpose

Definition 23.2 (Transpose of a Matrix). The transpose of a matrix A : Z#" — %M
is given by AT : #M — #" such that,

Aji= A (23.2)

where indices i € {1,2,....M} and j € {1,2,....,N} denote the location of ele-
ments of the matrix such that the first index corresponds to the row and the second
index corresponds to the column number.
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Hermitian Transpose

Definition 23.3 (Hermitian Transpose). The Hermitian transpose of a matrix A :
€N — €M is given by A" . €M — €N such that,

A=Ap+iA (23.3)
AR, A_r : aﬁN — .%M

and

A7 = AL —iA] (23.4)

Matrix A" is also known as the adjoint matrix of matrix A.
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Hermitian Matrix

Definition 23.4 (Hermitian Matrix). A Hermitian matrix A : €~ — €V is the
matrix for which,

A= Al (23.5)
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Determinant of a Square Matrix

det A=A, =|A|
a;  4dp G
|A‘ =| Gy Gy Gy
a;; Gy Qg

Cofactor of a Determinant Element: Given any nth-order determinant | A ‘, the cofac-
tor A, of any element a_ is the determinant obtained by eliminating all elements of the ith row
and jth column and then multiplied by (—1)"". For example, the cofactor of the element all

0f|A‘ in Eq. (A-10) is

da A

. 1+1 22 23 .
A11 - (_1) = a,,05; — 4,505,
a,, 0adi
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Determinant of a Square Matrix

In general, the value of a determinant can be written in terms of the cofactors. Let A be an
n X n matrix, then the determinant of A can be written in terms of the cofactor of any row
or the cofactor of any column. That is,

det A= ZafjAlj (i=1,012;...;0r'1)

=1

or

det A= Z%Ag (j=1,0r2,...,0rn)
i=1
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Determinant of a Square Matrix

Adjoint of a Matrix: Let A be a square matrix of order n. The adjoint matrix of A,
denoted by adj A, is defined as

adjA=[A, of detA]

where A denotes the cofactor of a...
ij ij
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Inverse of a Square Matrix

Definition 23.5 (Inverse of a Square Matrix). The Inverse of a Square Matrix
A BN — RN (if it exists) is denoted by A= : BN — HN and is that unique matrix
such that,

ATTA=AA =1y (23.6)

(A=A
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Inverse of a Square Matrix

Ax =y
x=A"ly
A-! denotes the matrix inverse of A

A 1s a square matrix

A must be nonsingular

If A exists, 1t 1s given by

A~ = adj A
|Al

Some Properties of Matrix Inverse

But if A-! exists, then A"AB=A"AC —> B=C

If A and B are square matrices and are nonsingular, then (AB)" =B'A™’
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Inverse of a Square Matrix

(Example)
A= a,, 4ap,
d, ay
a, —4a,
adJA —a,, a,
A= —
‘A‘ a,d,, —a;,a,,

|A| #0 Ora;; a»n—ap a; # 0
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Inverse of a Square Matrix

) ) (Example)
a, dy 4y
A= a, a4, d,
a3l a32 a33
ar 33 — ar3daz) —(ar1a33 — axzasy) ar|azy — aras]
Cof(A) = | —(ajpa33 — aj3azy) ap1as3 —ajzasz) —(ayya3y —ajzasy)
| (an2azz —aizax)  —(anaxz—aizaz1)  anaxn —apna)
a» a3z — ar3azy —(aypazz —azasy)  (apazz —apzax)
Adj(A) = | —(az1a33 —axzasy) ay1a3s — a|3dasy —(ay1a23 —ayzazy)
| axiaz —axas) —(a1asy —azasy) ajraz —aday|

a,,d

137722 a

a, d

A|=a,a,a,+a,a,.a, +a.a,a, —a L4,

1177227733 1277237731 1377327721 a,,4,;a

31 33 Y Masbs;

Copyright: Homayoon Beigi Sep 17, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Kronecker Product

Definition 23.6 (Kronecker Product). The Kronecker product of two matrices,
A @N — M and B of arbitrary dimension is denoted by A @ B and is defined as

A ¢
follows, % will see this symbol
in in Abstract Algeb d fi
- ( A) B ( A) 2 B ( A) B ;%Siltne 1gtate S"Frrealglsdu%ee:r; El1{75\766:’11(“
[1]1] I[2] (][] see that it is a user-defined product,
(A)[ ][1] B (A) q] B --- (A)[E] [N] B used here for the Kronecker
Product
AQB= ! : : E (23.7)

L(A)pg B (Apg B - (A)pgpw B

Used in Information Theory
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Norms: L, Norm of a Vector

Euclidean norm is a special case
of the L, norm (L, norm)

Definition 23.8 (L,-norm of a vector). The L,-norm of a vector X € AN, where
{p:p€R,p =1}, is denoted by |[x||, and is defined as,

x|l —(ZI If’) (23.9)

where, (X)[!.] A E 1), 2./ N} ixthe i'" element of vector x.

Since p is only on the real-line (does not include
infinity), the infinite norm is computed in the limit
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Norms: Some Special L, Norms

N
LiNorm — [x[[1 =} [ (x)]
i=1

As we said, since p is only the real-line (does not include

L.. Norm x| = ]i_r)n ||| » infinity), the infinite norm is computed in the limit
p (o)
= mj\éx | (X) i | As p goes to infinity, only the maximum will matter
i=1 i
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Norms: Euclidean Norm

Defined for a vector — Coincides

with L2 norm of a vector and its

Frobenius Norm — Not the same
with Matrices

Definition 23.7 (Euclidean Norm of a Vector). The Euclidean norm of a vector
x € Z" is denoted by ||x|| ¢ and is defined as,

1
-

0 (12
&= (X)[f] (23.8)
=1

x|

where, (X)M i€ {1,2,...,N} is the i'" element of vector x.

Euclidean Norm = L, Norm = Frobenius norm for a vector

Euclidean Norm is smooth and has derivatives — desirable
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Linear Dependence

Definition 23.9 (Linear Dependence / Independence). A set of vectors s; €
2N i e {1,2,...,N} is said to be a linearly dependent set if there exist numbers
Ai,i € {1,2,...,N}, not all zero, such that,

_If all are zero, it will be
- always true — trivial case

N
E AiSi =0 < Linearly dependent

Sometimes I use bold lower case for vectors and
sometimes use an arrow above
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Vector-Induced L, Norm of a Matrix

Infimum is the Geatest Lower Bound
H A)_C’H (does not have to be in the set), eg
The smallest positive real number

Al = sup e
x;éO 4 Supremum is the Least Upper Bound
(does not have to be in the set), eg
|| AX || The greatest negative real number
||A||] = Sup ”—»”
720 11Xl
Maxi £S f Absolut
= 13%2! )it Valve o Cotmmn Bomens
AXx
Al = sup 1AMl
o Tl
N
' Maxi fS f Absolut
— 128';}” le | ( )[l] [ J] | alearlIllllllén o(f) RoliVmE(iemerigsu )
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Homework 2

& Read Chapter 23 and start reading Chapter 24 of the textbook

4 Find the rank of these matrices using row echelon normal
form. If matrix is square and has full rank, compute the
inverse using the adjucate (adjoint) method. Show all the
work. Double check your results with matlab’s rank and
inverse functions.

0 43| B[ 2] |3 =
A=1|3 4 5 B=[3 _4] =
6 7 8
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