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Lecture 4: Rademacher complexity I
Symmetrization, Bousquet bound, and excess risk bounds

Lecturer: Ben Dai

“There is Nothing More Practical Than A Good Theory.” — Kurt Lewin

1 Introduction
Recall the pre-mentioned aims:

• A1. The asymptotics of

A1 = E sup
f∈F

1
n

n

∑
i=1

(
l
(
Yi, f (Xi)

)
−El

(
Yi, f (Xi)

))
.

• A2′. Find a tight upper bound of

A2 = E sup
f∈F

1
n

n

∑
i=1

(
l
(
Yi, f (Xi)

)
−El

(
Yi, f (Xi)

))2
.

The solution to bound those two empirical processes is to introduce Rademacher complexity
to measure the complexity of the functional space F . The definition of Rademacher complexity
is inspired by the one of the most important properties of the empirical processes, that is, sym-
metrization.

2 Symmetrization
We illustrate with the empirical process in A1. Define random variables D̃n = (X̃i, Ỹi)i=1,··· ,n as

the independent copy of Dn = (Xi,Yi)i=1,··· ,n, that is, (X̃i, Ỹi)
d
= (Xi,Yi) and samples in {Dn,D̃n}
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are all independent.

A1 = E sup
f∈F

1
n

n

∑
i=1

(
l
(
Yi, f (Xi)

)
−El

(
Yi, f (Xi)

))
= E sup

f∈F

1
n

n

∑
i=1

(
l
(
Yi, f (Xi)

)
− Ẽl

(
Ỹ, f (X̃)

))
= E sup

f∈F

(1
n

n

∑
i=1

l
(
Yi, f (Xi)

)
− 1

n

n

∑
i=1

Ẽl
(
Ỹi, f (X̃i)

))
= E sup

f∈F
Ẽ

1
n

n

∑
i=1

(
l
(
Yi, f (Xi)

)
− l

(
Ỹi, f (X̃i)

))
≤ EẼ sup

f∈F

1
n

n

∑
i=1

(
l
(
Yi, f (Xi)

)
− l

(
Ỹi, f (X̃i)

))
(1)

= EẼ sup
f∈F

1
n

n

∑
i=1

ρi

(
l
(
Yi, f (Xi)

)
− l

(
Ỹi, f (X̃i)

))
≤ 2E sup

f∈F

∣∣∣1
n

n

∑
i=1

ρil
(
Yi, f (Xi)

)∣∣∣, (2)

where (ρi)i=1,··· ,n are i.i.d. Rademacher random variables independent with Dn and D̃n, with ρi
taking the values +1 and −1 with probability 1/2 each. The last equality follows from the fact that
(X̃i, Ỹi) is the independent copy of (Xi,Yi), thus the joint distribution of (Dn,D̃n) does not change
by switching (X̃i, Ỹi) and (Xi,Yi). Therefore, the equality holds for arbitrary choice of ρi =+1 or
ρi =−1.

(1) and (2) are so-called symmetrization inequalities, and (2) indicates that the empirical risk
excess process is upper bounded by the Rademacher process. Next, we summarize all the results
for a general empirical process.

Define a general empirical process on i.i.d. samples (Zi)i=1,··· ,n indexed by h ∈ H as:

1
n

n

∑
i=1

(
h(Zi)−Eh(Zi)

)
, h ∈ H .

Its corresponding Rademacher process is defined as:

Radn(h) =
1
n

n

∑
i=1

ρih(Zi), h ∈ H .

Theorem 2.1 (Symmetrization Inequalities). For any function class H :

1
2
E sup

h∈H

∣∣Radn(h̃)| ≤ E sup
h∈H

∣∣∣1
n

n

∑
i=1

(
h(Zi)−Eh(Zi)

)∣∣∣≤ 2E sup
h∈H

∣∣Radn(h)
∣∣∣, (3)

where h̃(Z) = h(Z)−Eh(Z), (Z̃1, · · · , Z̃n) is independent copy of (Z1, · · · ,Zn), Esuph∈H Radn(h)
is the Rademacher complexity of the function class H , the expectation E is taken with respect to
all randomness.
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3 Rademacher complexity
Remark 3.1. Recall the definition of Rademacher process Radn(h), it can be considered as empir-
ical correlation between ρ and h(Z). Suppose h restrains only one constant, say h(z) = 1,

Radn(h) =
1
n

n

∑
i=1

ρi = OP(
1√
n
);

if h is diverse enough, such that h(zi) = ρi:

Radn(h) =
1
n

n

∑
i=1

ρ
2
i = OP(1).

Therefore, the order of Esuph∈H Radn(h) is between O(n−1/2) and O(1), measuring the complex-
ity of the function class H .

In practice, we may want to bound the Rademacher complexity on ϕ ◦ f . For example, in our
case, we tend to investigate the complexity of l(Yi, f (Xi)); f ∈F . Talagrand’s contraction Lemma
is proposed to address this target.

Lemma 3.2 (Talagrand’s contraction Lemma [Ledoux and Talagrand, 1991]). Let ϕ : R→ R be a
L-Lipschitz function, then

E sup
h∈H

∣∣Radn(ϕ ◦h)
∣∣≤ LE sup

h∈H

∣∣Radn(h)
∣∣. (4)

Remark 3.3. Note that ϕ is a Lipschitz function, it is sensible to believe that the complexity of
ϕ ◦H can be controlled by the complexity of H .

One important application of Talagrand’s contraction Lemma is to upper bound the “second
moment” of empirical process (A2 in our case).

Corollary 3.4. Suppose that functions in H are uniformly bounded by a constant U, then

E sup
h∈H

∣∣Radn(h2)
∣∣≤ 2UE sup

h∈H

∣∣Radn(h)
∣∣.

Now, we apply the results to A1 and A2. Denote h(Zi) = l(Yi, f (Xi)), and suppose the loss
function l is uniformly bounded by U , then

A1 = E sup
f∈F

1
n

n

∑
i=1

(
h(Zi)−E(h(Zi))

)
≤ 2E sup

f∈F

∣∣Radn(h)
∣∣.
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Denote h̃(Zi) = l(Yi, f (Xi))−El(Yi, f (Xi)), then

A2 = E sup
f∈F

1
n

n

∑
i=1

(
h̃2(Zi)−E(h̃2(Zi))+E(h̃2(Zi))

)
≤ E sup

f∈F

1
n

n

∑
i=1

(
h̃2(Zi)−E(h̃2(Zi))

)
+ sup

f∈F
Eh̃2(Z)

≤ 2E sup
f∈F

∣∣Radn
(
h̃2)∣∣+ sup

f∈F
Eh̃2(Z)≤ 4UE sup

f∈F

∣∣Radn
(
h̃
)∣∣+ sup

f∈F
Var

(
h(Z)

)
≤ 8UA1 + sup

f∈F
Var

(
h(Z)

)
≤ 16UE sup

f∈F

∣∣Radn
(
h
)∣∣+ sup

f∈F
Var

(
h(Z)

)
. (5)

4 Bousquet bound
Now, we combine all results to have a new updated form of Talagrand’s inequality, namely Bous-
quet bound. For simplicity, we denote:

∥∥Pn −P
∥∥

H
= sup

h∈H

1
n

∣∣∣ n

∑
i=1

(
h(Zi)−Eh(Zi)

)∣∣∣.
Theorem 4.1 (Bousquet bound of Talagrand’s inequality [Bousquet, 2002]). Suppose h(Z) is uni-
formly bounded by U almost surely, then for t > 0,

P
(∥∥Pn −P

∥∥
H

≥ E
∥∥Pn −P

∥∥
H

+

√
2t
n

(
σ2

H +UE
∥∥Pn −P

∥∥
H

)
+

Ut
3n

)
≤ e−t ,

where σ2
H is defined as

σ
2
H = sup

h∈H
Var

(
h(Z)

)
.

Theorem 4.1 implies the following corollary.

Corollary 4.2. Suppose h(Z) is uniformly bounded by a constant U almost surely, then for any
εn > 0,

P
(∥∥Pn −P

∥∥
H

−E
∥∥Pn −P

∥∥
H

≥ εn

)
≤ exp

(
− nε2

n

2
(
σ2

H +UE
∥∥Pn −P

∥∥
H

+Uεn/3
)). (6)

Furthermore, if
εn ≥ 4E sup

h∈H
|Radn(h)|, (thus εn ≥ 2E

∥∥Pn −P
∥∥

H
)

we have,

P
(∥∥Pn −P

∥∥
H

≥ εn

)
≤ exp

(
− nε2

n

8
(
σ2

H +2Uεn/3
)).
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Remark 4.3. When H = {h} (only one function), let Wi = h(Zi), then σ2
H = Var(W ) =: σ2, (6)

yields that

P
(1

n

n

∑
i=1

Wi −E(W )≥ εn

)
≤ exp

(
− nε2

n

2
(
σ2 +Uεn/3

)),
which is Bernstein inequality. This fact partially indicates that Bousquet bound of Talagrand’s
inequality is tight.

5 Excess risk bounds
Next, we apply the uniform concentration inequalities to our excess risks. For simplicity, we denote

R̂c
n( f ) = R̂n( f )−R( f ) =

1
n

n

∑
i=1

(
l
(
Yi, f (Xi)

)
−El

(
Yi, f (Xi)

))
Corollary 5.1. Suppose the loss function l(·, ·) is uniformly bounded by a constant U, then for
t > 0,

P
(

sup
f∈F

|R̂c
n( f )| ≥ E sup

f∈F
|R̂c

n( f )|+
√

2t
n

(
σ2

F +UE sup
f∈F

|R̂c
n( f )|

)
+

Ut
3n

)
≤ e−t ,

where σ2
F is defined as

σ
2
F = sup

f∈F
Var

(
l(Y, f (X))

)
.

Alternatively, for any εn > 0,

P
(

sup
f∈F

|R̂c
n( f )|−E sup

f∈F
|R̂c

n( f )| ≥ εn

)
≤ exp

(
− nε2

n

2
(
σ2

F +UEsup f∈F |R̂c
n( f )|+Uεn/3

)).
Furthermore, if

εn ≥ 4E sup
f∈F

|Radn(l • f )|, (l • f )(Z) = l
(
Y, f (X)

)
we have,

P
(

sup
f∈F

|R̂n( f )−R( f )| ≥ εn

)
≤ exp

(
− nε2

n

8
(
σ2

F +2Uεn/3
)).

From Corollary 5.1, to derive a probabilistic bound for an excess risk, it suffices to compute
and upper bound the Rademacher complexity of (l • f )(Z) = l

(
Y, f (X)

)
; f ∈ F .
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