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Symmetrization, Bousquet bound, and excess risk bounds

Lecturer: Ben Dai

“There is Nothing More Practical Than A Good Theory.” — Kurt Lewin

1 Introduction

Recall the pre-mentioned aims:

* Al. The asymptotics of

n 2
A> = E sup %Z (1% (X0)) ~BL(Y1. 7 (X))

The solution to bound those two empirical processes is to introduce Rademacher complexity
to measure the complexity of the functional space .%. The definition of Rademacher complexity
is inspired by the one of the most important properties of the empirical processes, that is, sym-

metrization.

2 Symmetrization

We illustrate with the empirical process in Al. Define random variables 7, = (X;,Y})i=1.... » as
the independent copy of &, = (X;,Y;)i=1... n, that is, (X;,Y;) 4 (X;,Y;) and samples in { Z,, .@n}



are all independent.

n

A; = E sup 12 (l(Y,-,f(Xi)) —Ez(Y,-,f(X,-))) — E sup li (l(Y,-,f(Xi)) —El(?,f(fc))>

fez i3 feF iz
l LI N
—E 1Y, SY RV (K
s (B0 050) = B8, 80)
=IE sup El Y <Z<Yiaf(Xi)) —l(‘?i,f(xi)» < EE sup lz (l(Yiaf<Xi)) - l(?iaf(xi)))
fez N5 feF iz
(1)
=EE sup - Zp,( (Yi, f(Xi)) —l(?i,f(Xi)D < 2E sup ZP: Y, f(X ))’ 2)
feF N feF

where (p;)i1.... » are i.i.d. Rademacher random variables independent with &, and 9,, with pi
taking the values +1 and —1 with probability 1/2 each. The last equality follows from the fact that
(X;,Y;) is the independent copy of (X;,Y;), thus the joint distribution of (Z,,Z,) does not change
by switching (X;,Y;) and (X;,Y;). Therefore, the equality holds for arbitrary choice of p; = +1 or
pi=—

(1) and (2) are so-called symmetrization inequalities, and (2) indicates that the empirical risk
excess process is upper bounded by the Rademacher process. Next, we summarize all the results
for a general empirical process.

Define a general empirical process on i.i.d. samples (Z;);— ... , indexed by h € JZ as:

1 n
) (h(z,-) —Eh(Z,-)), he .
i=1
Its corresponding Rademacher process is defined as:
1 n
Rad, (h) = - Y pih(Z), he .
i=1

Theorem 2.1 (Symmetrization Inequalities). For any function class ¢ :

1 ] 1
~E sup [Rad,(7)| <E sup |- }" (h(z,-) —Eh(Z,-))’ < 2F sup \Radn(h)), 3)
2 hew hes 'V = hest

where W(Z) = W(Z) —Bh(Z), (Z1,--- ,Z,) is independent copy of (Zy,--- ,Z,), Esup,. , Rad,(h)
is the Rademacher complexity of the function class 7, the expectation E is taken with respect to
all randomness.



3 Rademacher complexity

Remark 3.1. Recall the definition of Rademacher process Rad,, (%), it can be considered as empir-
ical correlation between p and h(Z). Suppose h restrains only one constant, say h(z) = 1,

1 n
Rad,(h) = - Y pi = 0n(
if i is diverse enough, such that h(z;) = p;:

1 n
Rad, (h) = Y p? =o0p(1).
i=1

Therefore, the order of Esup,,. ,,» Rad, (k) is between O(n~'/?) and O(1), measuring the complex-
ity of the function class .77.

In practice, we may want to bound the Rademacher complexity on ¢ o f. For example, in our
case, we tend to investigate the complexity of [(Y;, f(X;)); f € -%. Talagrand’s contraction Lemma
is proposed to address this target.

Lemma 3.2 (Talagrand’s contraction Lemma [ . Let : R —Rbea
L-Lipschitz function, then

E sup |Rad,(¢oh)| < LE sup |Rad,(h)|. 4)
hest hest

Remark 3.3. Note that ¢ is a Lipschitz function, it is sensible to believe that the complexity of
@ o .7 can be controlled by the complexity of 7.

One important application of Talagrand’s contraction Lemma is to upper bound the “second

moment” of empirical process (A; in our case).

Corollary 3.4. Suppose that functions in 7 are uniformly bounded by a constant U, then

E sup |Rad,(h*)| < 2UE sup |Rad,(h)|.
het het

Now, we apply the results to A} and A,. Denote h(Z;) = I(Y;, f(X;)), and suppose the loss
function / is uniformly bounded by U, then

A =Esup ! Y (h(Z:) —E(h(Z;))) < 2E sup |Rad,(h)|.
fez i feF



Denote h(Z;) = [(Y;, f(X;)) — EI(Y;, £(X;)), then

1 - . i
Ay =Esup - Y (W*(Z;) —E(h*(Z:)) + E(F*(Z:)))
feF iz
n

<E sup ! Y (W*(Z;) —E(h*(Z:))) + sup ER*(Z)

feF iz fez
< 2E sup |Rad, (h*)|+ sup Er*(Z) < 4UE sup |Rad, (%) |+ sup Var(h(Z))

fez fes fez fez
< 8UA, + sup Var(h(Z)) < 16UE sup |Rad, (h)|+ sup Var(h(Z)). (5)
fez ez feF

4 Bousquet bound

Now, we combine all results to have a new updated form of Talagrand’s inequality, namely Bous-
quet bound. For simplicity, we denote:

1 n
P,—P| ., = sup —’ (h(z-) —Eh(z-)) ’
B~ = s 1| (20 - Batz
Theorem 4.1 (Bousquet bound of Talagrand’s inequality [ 1. Suppose h(Z) is uni-
formly bounded by U almost surely, then fort > 0,

2t Ut _
P2l = BB~ ], + /% (0% + UB|E, Bl ) + 2F) <o,
where G;f is defined as
65 = sup Var(h(Z)).
he

Theorem 4.1 implies the following corollary.

Corollary 4.2. Suppose h(Z) is uniformly bounded by a constant U almost surely, then for any
& >0,

nez

2(o3, + UE||P, —IP’H%-I-Uen/3)>' ©

P (|2~ B[ ~E|[Ba—Bl| > &) <exp( -

Furthermore, if

€, > 4E sup [Rad,(h)|, (thus &, > 2E||P, —P| )
he

we have,

nez

8(c%, -|—2nU8,,/3) )

P(||P,~P|| , > &) <exp(-



Remark 4.3. When # = {h} (only one function), let W; = h(Z;), then 63, = Var(W) =: 62, (6)

yields that
2

P(; ZIW ~EW) 2 &) <exp(~ 37 f{}em))’

which is Bernstein inequality. This fact partially indicates that Bousquet bound of Talagrand’s
inequality is tight.

5 Excess risk bounds

Next, we apply the uniform concentration inequalities to our excess risks. For simplicity, we denote

n

RS(f) =Ru(f) —R(f) = . Y (I(Yi,f(xi)) —El(Yi,f(Xi))>

i=1
Corollary 5.1. Suppose the loss function I(-,-) is uniformly bounded by a constant U, then for
t >0,

~ = 2t ~ Ut N
IP’( sup [R;,(f)| > I sup |Ry(f)] + \/—(o;« +UE sup |[RS(f)]) + 3—) <e ™,
feF fez n feF n

where q%; is defined as
o% = sup Var(I(Y, f(X))).

feF
Alternatively, for any €, > 0,
P sup [R5(f)] ~ sup [RS()] = &) < exp (- " )
fez fez 2(0% +UEsup ez |R;(f)| +Ue/3)

Furthermore, if

6 2 4E sup [Rad, (1), (1)(2) = (Y. (X)

we have,

ne?

n
0% +2Us,/3) )
From Corollary 5.1, to derive a probabilistic bound for an excess risk, it suffices to compute
and upper bound the Rademacher complexity of (le f)(Z) = (Y, f(X)); f € .Z.

P( sup [Ru(f) ~R(/)| = &) <exp (-~ 8(

fez
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