

Introduction to Continuous Control Systems

EEME E3601

Week 3

Homayoon Beigi

Homayoon.Beigi@columbia.edu

<https://www.RecoTechnologies.com/beigi>

Mechanical Engineering dept.
&
Electrical Engineering dept.

Columbia University, NYC, NY, U.S.A.

Vector-Induced L_p Norm of a Matrix

$$\|\mathbf{A}\|_p = \sup_{\vec{x} \neq \vec{0}} \frac{\|\mathbf{A}\vec{x}\|_p}{\|\vec{x}\|_p}$$

Infimum is the Greatest Lower Bound
(does not have to be in the set), eg
The smallest positive real number

$$\begin{aligned}\|\mathbf{A}\|_1 &= \sup_{\vec{x} \neq \vec{0}} \frac{\|\mathbf{A}\vec{x}\|_1}{\|\vec{x}\|_1} \\ &= \max_{1 \leq j \leq N} \sum_{i=1}^M |(\mathbf{A})_{[i][j]}|\end{aligned}$$

Supremum is the Least Upper Bound
(does not have to be in the set), eg
The greatest negative real number

$$\|\mathbf{A}\|_\infty = \sup_{\vec{x} \neq \vec{0}} \frac{\|\mathbf{A}\vec{x}\|_\infty}{\|\vec{x}\|_\infty}$$

Maximum of Sum of Absolute
Value of Column Elements

$$= \max_{1 \leq i \leq M} \sum_{j=1}^N |(\mathbf{A})_{[i][j]}|$$

Maximum of Sum of Absolute
Value of Row Elements

Matrix Norm Axioms

In general, all matrix norms satisfy the following four conditions:

For $\mathbf{A}, \mathbf{B} : \mathcal{R}^N \mapsto \mathcal{R}^M$ and $\mathbf{C} : \mathcal{R}^M \mapsto \mathcal{R}^N$,

1. $\|\mathbf{A}\| \geq 0$ and $\|\mathbf{A}\| = 0$ iff $\mathbf{A} = \mathbf{0}$
2. $\|k\mathbf{A}\| = |k| \|\mathbf{A}\|$ where k is any scalar
3. $\|\mathbf{A} + \mathbf{B}\| \leq \|\mathbf{A}\| + \|\mathbf{B}\|$ (Triangular Inequality)
4. $\|\mathbf{AC}\| \leq \|\mathbf{A}\| \|\mathbf{C}\|$ (Schwarz's Inequality)

Unitary, Orthogonal Matrices

Definition 23.11 (Unitary / Orthogonal Matrices). A matrix, $\mathbf{U} : \mathcal{C}^N \mapsto \mathcal{C}^N$ is said to be Unitary if,

$$\mathbf{U}^H \mathbf{U} = \mathbf{U} \mathbf{U}^H = \mathbf{I}_N \quad (23.16)$$

A special case of unitary matrices is $\mathbf{V} : \mathcal{R}^N \mapsto \mathcal{R}^N$ in which case,

$$\mathbf{V}^T \mathbf{V} = \mathbf{V} \mathbf{V}^T = \mathbf{I}_N \quad (23.17)$$

Matrices falling under this special case are called orthogonal.

Conjugacy, Orthogonality, Orthonormality

Definition 23.12 (Conjugacy, Orthogonality, and Orthonormality). Any set of linearly independent vectors,

$$\mathbf{v}_i : \mathbf{v}_i \in \mathcal{R}^N, i \in \{1, 2, \dots, M\}, M \leq N \quad (23.18)$$

is said to be mutually conjugate about a positive definite, full rank matrix, $\mathbf{Q} : \mathcal{R}^N \mapsto \mathcal{R}^N$ such that,

$$\mathbf{v}_i^T \mathbf{Q} \mathbf{v}_j = \begin{cases} a > 0 & \forall i = j \\ 0 & \forall i \neq j \end{cases} \quad (23.19)$$

If $\mathbf{Q} = \mathbf{I}_N$, then the set is a mutually orthogonal set of vectors. If in addition $a = 1$, then the set is mutually orthonormal (i.e., for an orthonormal set of vectors, $\|\mathbf{v}_i\|_{\mathcal{E}} = 1$).

Singular Values of a Matrix

Definition 23.13 (Singular Values of a Matrix). *If $\mathbf{A} : \mathcal{C}^N \mapsto \mathcal{C}^M$, then the strictly positive square roots σ_i of the non-zero eigenvalues of $\mathbf{A}^H \mathbf{A}$ (or $\mathbf{A} \mathbf{A}^H$) are called the singular values of matrix \mathbf{A} .*

Rank of a Matrix

Definition 23.14 (Rank of a Matrix). *Matrix $\mathbf{A} : \mathcal{C}^N \mapsto \mathcal{C}^M$ has rank k if it has k singular values.*

Singular Value Decomposition of a Matrix

Definition 23.15 (Singular Value Decomposition). *If $\mathbf{A} : \mathcal{C}^N \mapsto \mathcal{C}^M$ has rank k and its singular values are denoted by $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_k > 0$, then there exist two unitary matrices,*

$$\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_M] : \mathcal{C}^M \mapsto \mathcal{C}^M \quad \text{and} \quad \mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N] : \mathcal{C}^N \mapsto \mathcal{C}^N$$

Such that

$$\mathbf{S} = \mathbf{U}^H \mathbf{A} \mathbf{V} \text{ and } \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^H \text{ where, } \mathbf{S} = \begin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} : \mathcal{C}^N \mapsto \mathcal{C}^M \quad \text{and} \quad (\mathbf{D})_{[i][j]} = \begin{cases} \sigma_i & \forall i = j \\ 0 & \forall i \neq j \end{cases}$$

Then,

$\mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^H$ is the singular value decomposition of matrix \mathbf{A} , where, for $1 \leq i \leq k$, $\mathbf{u}_i = \frac{\mathbf{A} \mathbf{v}_i}{\sigma_i}$ and $\mathbf{v}_i = \frac{\mathbf{A}^H \mathbf{u}_i}{\sigma_i}$ are Eigenvectors of $\mathbf{A} \mathbf{A}^H$ and $\mathbf{A}^H \mathbf{A}$ respectively, associated with the k eigenvalues $\sigma_i^2 > 0$ and the vectors $\mathbf{u}_i, k+1 \leq i \leq M$ and $\mathbf{v}_i, k+1 \leq i \leq N$ are Eigenvectors associated with the zero eigenvalues. If \mathbf{A} is real, then \mathbf{U} and \mathbf{V} will also be real and are therefore orthogonal matrices.

Vector-Induced L_2 Norm (Spectral Norm) of a Matrix

$$\begin{aligned}\|\mathbf{A}\|_2 &= \sup_{\vec{x} \neq \vec{0}} \frac{\|\mathbf{A}\vec{x}\|_2}{\|\vec{x}\|_2} \\ &= \|\mathbf{A}\mathbf{A}^H\|_2 \\ &= \|\mathbf{A}^H\mathbf{A}\|_2 \\ &= \sigma_{max}\end{aligned}$$

where σ_{max} is the largest singular value of \mathbf{A}

Frobenius Norm of a Matrix

Definition 23.10 (Euclidean (Frobenius) Norm of a Matrix). *The Euclidean (Frobenius) norm of a matrix $\mathbf{A} : \mathcal{R}^N \mapsto \mathcal{R}^M$ is denoted by $\|\mathbf{A}\|_{\mathcal{E}}$ or $\|\mathbf{A}\|_{\mathcal{F}}$ and is defined as,*

$$\begin{aligned}\|\mathbf{A}\|_{\mathcal{E}} &= \|\mathbf{A}\|_{\mathcal{F}} \\ &= \left(\sum_{i=1}^M \sum_{j=1}^N (\mathbf{A})_{[i][j]}^2 \right)^{\frac{1}{2}}\end{aligned}$$

where $(\mathbf{A})_{[i][j]}$, $(i \in \{1, 2, \dots, M\}; j \in \{1, 2, \dots, N\})$ is the $(i, j)^{th}$ element of matrix \mathbf{A} .

NB: The Euclidean or Frobenius Norm of a Matrix is not the same as its L_2 Norm (Spectral Norm) – in contrast with a vector, where the Euclidean Norm and the L_2 Norm are equivalent.

Frobenius Norm of a Matrix

$$\|\mathbf{A}\|_{\mathcal{E}} = \|\mathbf{A}\|_{\mathcal{F}} = \left(\sum_{i=1}^M \|\mathbf{A}\mathbf{u}_i\|_{\mathcal{E}}^2 \right)^{\frac{1}{2}}$$

where $\mathbf{u}_i, i \in \{1, 2, \dots, M\}$ is any orthonormal basis

$$\|\mathbf{A}\|_{\mathcal{E}} = \|\mathbf{A}\|_{\mathcal{F}} = \sqrt{\text{tr}(\mathbf{A}^T \mathbf{A})}$$

For a complex Matrix \mathbf{A} ,
replace \mathbf{A}^T with \mathbf{A}^H

where $\text{tr}(\mathbf{A}^T \mathbf{A})$ denotes the trace of $(\mathbf{A}^T \mathbf{A})$ which is equivalent to the sum of all its diagonal elements.

Therefore the 2-norm (spectral norm) of \mathbf{A} is always smaller than its Euclidean (Frobenius) Norm

$$\begin{aligned} \|\mathbf{A}\|_2 &\leq \|\mathbf{A}\|_{\mathcal{F}} \\ \sigma_{\max} &\leq \sqrt{\text{tr}(\mathbf{A}^H \mathbf{A})} \end{aligned}$$

Where equality holds for the case when \mathbf{A} is a vector or has rank one.

Pseudo-Inverse (Moore-Penrose Generalized Inverse)

Definition 23.16 (Pseudo-Inverse (Moore-Penrose Generalized Inverse)). If $\mathbf{A} : \mathcal{C}^N \mapsto \mathcal{C}^M$ and $\mathbf{A}^\dagger : \mathcal{C}^M \mapsto \mathcal{C}^N$, then \mathbf{A}^\dagger is the pseudo-inverse (Moore-Penrose generalized inverse) of \mathbf{A} iff,

1. $\mathbf{A}\mathbf{A}^\dagger\mathbf{A}$ Exists and is \mathbf{A}
2. $\mathbf{A}^\dagger\mathbf{A}\mathbf{A}^\dagger$ Exists and is \mathbf{A}^\dagger
3. \mathbf{A} and \mathbf{A}^\dagger are Hermitian

Then if $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^H$ is the SVD of \mathbf{A}

the pseudo-inverse of \mathbf{A} , \mathbf{A}^\dagger , is given by, $\mathbf{A}^\dagger = \mathbf{V}\mathbf{S}^\dagger\mathbf{U}^H$ where $\mathbf{S}^\dagger = \begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} : \mathcal{C}^M \mapsto \mathcal{C}^N$
 \mathbf{E} is the $k \times k$ diagonal matrix such that, $\mathbf{E}_{ij} = \begin{cases} \frac{1}{\sigma_i} & \forall i = j \\ 0 & \forall i \neq j \end{cases}$ and k is the rank of \mathbf{A} .

For a real matrix, \mathbf{A} , \mathbf{A}^\dagger may be written in terms of the following limit

$$\mathbf{A}^\dagger = \lim_{\varepsilon \rightarrow 0} \underbrace{(\mathbf{A}^T \mathbf{A} + \varepsilon \mathbf{I})^{-1}}_{\text{This perturbation will make this term invertible}} \mathbf{A}^T$$

This perturbation will make this term invertible

Positive Definiteness

Definition 23.17 (Positive Definiteness). *Let \mathbf{s} be any vector such that $\mathbf{s} \in \mathcal{R}^N$. A matrix $\mathbf{G} : \mathcal{R}^N \mapsto \mathcal{R}^N$ is said to be positive definite if,*

$$\mathbf{s}^T \mathbf{G} \mathbf{s} > 0 \quad \forall \mathbf{s} \neq \mathbf{0}$$

Ordinary Gram-Schmidt Orthogonalization

Suppose, $\mathbf{v}_i : \mathbf{v}_i \in \mathcal{R}^N, i \in \{1, 2, \dots, M\}, M \leq N$ are a set of unit vectors. Then, the following is the Gram-Schmidt procedure [12] which generates the set of vectors $\mathbf{z}_i, i \in \{1, 2, \dots, M\}$ which form an *orthonormal set* spanning the same space as vectors \mathbf{v}_i ,

$$\mathbf{u}_1 = \mathbf{v}_1$$

$$\mathbf{u}_i = \mathbf{v}_i - \sum_{j=1}^{i-1} (\mathbf{v}_i^T \mathbf{z}_j) \mathbf{z}_j \text{ with } i \in \{1, 2, \dots, M\}$$

$$\mathbf{z}_i = \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|_{\mathcal{E}}} \text{ with } i \in \{1, 2, \dots, M\}$$

Modified Gram-Schmidt Orthogonalization

The following pseudo-code presents a modified Gram-Schmidt orthogonalization method which, theoretically, gives the same set of vectors as the ordinary procedure (Section 23.3.1), but it is more accurate in its numerical implementation,

1. a. $\mathbf{u}_1 = \mathbf{v}_1$
b. $\mathbf{z}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|_{\mathcal{E}}}$
2. $\mathbf{v}_i^{(1)} = \mathbf{v}_i - (\mathbf{v}_i^T \mathbf{z}_1) \mathbf{z}_1$ for $i = 2, 3, \dots, M$
3. a. $\mathbf{u}_j = \mathbf{v}_j^{(j-1)}$
b. $\mathbf{z}_j = \frac{\mathbf{u}_j}{\|\mathbf{u}_j\|_{\mathcal{E}}}$ for $j = 2, 3, \dots, M$
c. $\mathbf{v}_i^{(j)} = \mathbf{v}_i^{(j-1)} - (\mathbf{v}_i^{(j-1)T} \mathbf{z}_j) \mathbf{z}_j$ for $i = j + 1, \dots, M$

Sherman-Morrison Inversion Formula

If $\mathbf{G}_{k+1}, \mathbf{G}_k : \mathcal{R}^N \mapsto \mathcal{R}^N$, then the rank $M (M \leq N)$ update to \mathbf{G}_k for obtaining \mathbf{G}_{k+1} is,

$$\mathbf{G}_{k+1} = \mathbf{G}_k + \mathbf{R} \mathbf{S} \mathbf{T}^T \quad (23.35)$$

where $\mathbf{R}, \mathbf{T} : \mathcal{R}^M \mapsto \mathcal{R}^N$ and $\mathbf{S} : \mathcal{R}^M \mapsto \mathcal{R}^M$, then the inverse of \mathbf{G}_{k+1} is given by the following,

$$\mathbf{G}_{k+1}^{-1} = \mathbf{G}_k^{-1} - \mathbf{G}_k^{-1} \mathbf{R} \mathbf{U}^{-1} \mathbf{T}^T \mathbf{G}_k^{-1} \quad (23.36)$$

where,

$$\mathbf{U} = \mathbf{S}^{-1} + \mathbf{T}^T \mathbf{G}_k^{-1} \mathbf{R} \quad (23.37)$$

Equation 23.36 is known as the *Sherman-Morrison* formula [6]. It is used to keep track of the change in the inverse of a matrix as the original matrix is updated through 23.35.

Stochastic Matrices

In *probability theory*, we often run across a special type of matrix called a *stochastic matrix*. Here is a formal definition for such matrices.

Definition 23.18 (Stochastic Matrix). A *Stochastic matrix* $\mathbf{A} : \mathcal{R}^N \mapsto \mathcal{R}^M$ is a matrix such that $(\mathbf{A})_{[i][j]} \geq 0$ and

Sum of elements
of each row

$$\sum_{j=1}^N (\mathbf{A})_{[i][j]} = 1 \quad \forall \{i : 1 \leq i \leq M\} \quad (23.45)$$

For example, *stochastic matrices* are used to denote the *transition probabilities* of *Markov chains*.

Complex Variable Theory

Definition 24.1 (Imaginary Number). *i is the imaginary number and is defined as,*

$$i \triangleq \sqrt{-1}$$

René Descartes called it
imaginary to show its uselessness

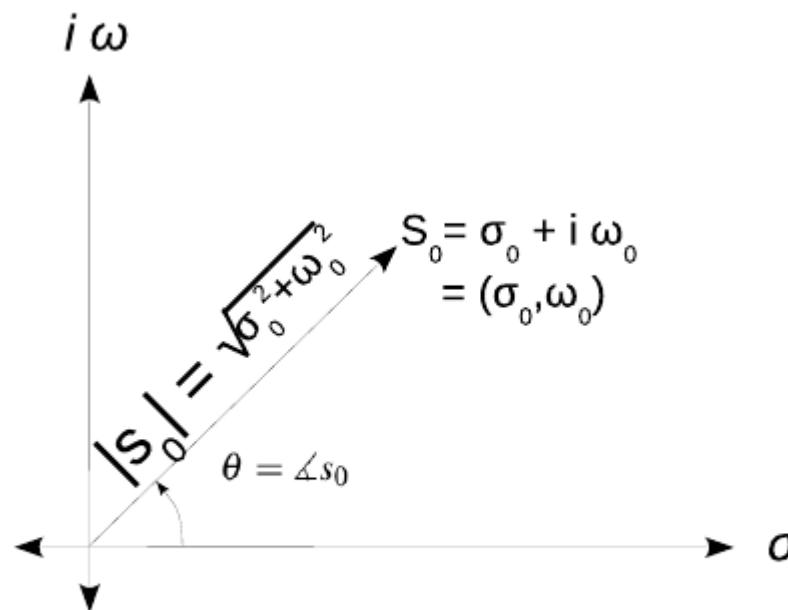


Fig. 24.1: Representation of a Number s_0 in the Complex Plane

Complex Variable Theory

Definition 24.2 (Modulus or Magnitude of a Complex Number). *The Modulus or Magnitude of the complex number, $\{s : s = \sigma + i\omega \in \mathbb{C}\}$, is denoted by $|s|$ and is defined as, $|s| = \sqrt{\sigma^2 + \omega^2}$*

N.B., In the complex plain, size is considered using the modulus, e.g., we cannot say $s_1 < s_2$, but we can say $|s_1| < |s_2|$.

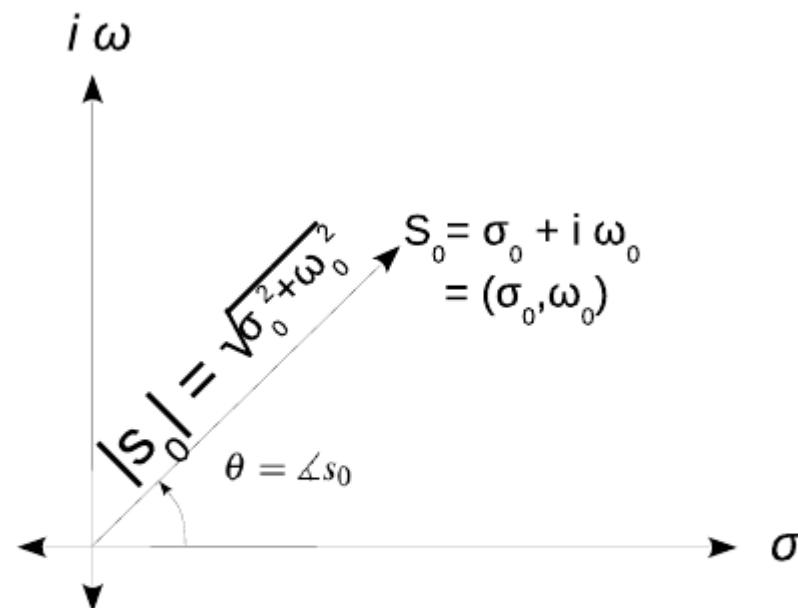


Fig. 24.1: Representation of a Number s_0 in the Complex Plane

Representations of Complex Variables

$\{s_0 : s_0 \in \mathbb{C}\}$ may be represented in polar coordinates as follows,

$$s_0 = \rho_0 e^{i\theta_0} \quad \text{where, } \rho_0 = |s_0| \quad \text{and} \quad \theta = \angle s_0$$

$$= \sin^{-1} \left(\frac{\omega_0}{\rho_0} \right)$$

$$= \cos^{-1} \left(\frac{\sigma_0}{\rho_0} \right)$$

$$= \tan^{-1} \left(\frac{\omega_0}{\sigma_0} \right)$$

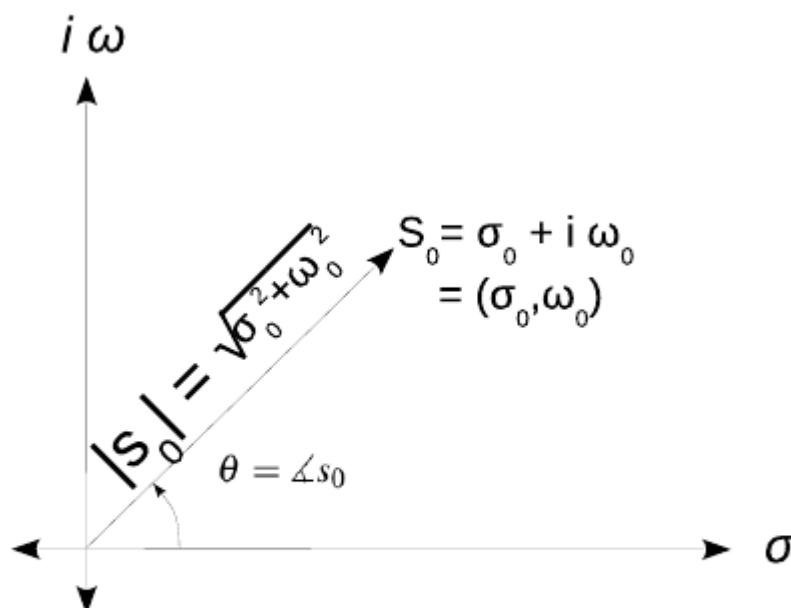


Fig. 24.1: Representation of a Number s_0 in the Complex Plane

Properties of Complex Variables

$$|s| = |\bar{s}|$$

$$|s|^2 = s\bar{s}$$

$$s + \bar{s} = 2\mathcal{R}e\{s\}$$

$$s - \bar{s} = 2\mathcal{I}m\{s\}$$

Property 24.2 (Triangular Inequality in the Complex Plane).

$$|s_1 + s_2| \leq |s_1| + |s_2|$$

Product and Quotient of Complex Variables

Product:

$$\begin{aligned}s_1 s_2 &= \rho_1 e^{i\theta_1} \rho_2 e^{i\theta_2} \\&= \rho_1 \rho_2 e^{i(\theta_1 + \theta_2)} \\&= \rho_1 \rho_2 e^{i(\theta_1 + \theta_2 + 2n\pi)} \quad \text{where } n = \{0, \pm 1, \pm 2, \dots\}\end{aligned}$$

Periodicity

Quotient:

$$\begin{aligned}\frac{s_1}{s_2} &= \frac{\rho_1 e^{i\theta_1}}{\rho_2 e^{i\theta_2}} \\&= \frac{\rho_1}{\rho_2} e^{i(\theta_1 - \theta_2)} \\&= \frac{\rho_1}{\rho_2} e^{i(\theta_1 - \theta_2 + 2n\pi)} \quad \text{where } n = \{0, \pm 1, \pm 2, \dots\}\end{aligned}$$

Periodicity of Complex Variables

Problem:

What is the period of the exponential function,

$$H(s) = e^s$$

Solution:

cos and sin have a period of 2π . Also,

$$\cos(2k\pi) + i \sin(2k\pi) = 1 \tag{S.48}$$

where k in any integer.

Writing Equation S.48 in polar coordinates, we have, $e^{i2k\pi} = 1$. Therefore, since we may multiply 1 by e^s without changing its value, we may write,

$$e^s e^{i2k\pi} = e^s = e^{s+i2k\pi} \tag{S.49}$$

Equation S.49 establishes that the period of e^s is $i2\pi$.

Modulus of Product of Complex Variables

Theorem 24.1 (Modulus of the product of two Complex Numbers). *The modulus of the product of two complex numbers, s_1 and s_2 , is equal to the product of the moduli of the two numbers, namely,*

$$|s_1 s_2| = |s_1| |s_2| \quad (\text{S.29})$$

Proof:

Write the left side of Equation S.29 in terms of the real and imaginary parts of the variables involved,

$$\begin{aligned} |s_1 s_2| &= |(\sigma_1 + i\omega_1)(\sigma_2 + i\omega_2)| \\ &= |\sigma_1 \sigma_2 + i\sigma_1 \omega_2 + i\omega_1 \sigma_2 - \omega_1 \omega_2| \\ &= |(\sigma_1 \sigma_2 - \omega_1 \omega_2) + i(\sigma_1 \omega_2 + \omega_1 \sigma_2)| \\ &= \sqrt{(\sigma_1 \sigma_2 - \omega_1 \omega_2)^2 + (\sigma_1 \omega_2 + \omega_1 \sigma_2)^2} \\ &= \sqrt{\sigma_1^2 \sigma_2^2 + \omega_1^2 \omega_2^2 - \cancel{2\sigma_1 \sigma_2 \omega_1 \omega_2} + \sigma_1^2 \omega_2^2 + \omega_1^2 \sigma_2^2 + \cancel{2\sigma_1 \omega_2 \omega_1 \sigma_2}} \\ &= \sqrt{\sigma_1^2 \sigma_2^2 + \omega_1^2 \omega_2^2 + \sigma_1^2 \omega_2^2 + \omega_1^2 \sigma_2^2} \end{aligned} \quad (\text{S.30})$$

Modulus of Product of Complex Variables

Theorem 24.1 (Modulus of the product of two Complex Numbers). *The modulus of the product of two complex numbers, s_1 and s_2 , is equal to the product of the moduli of the two numbers, namely,*

$$|s_1 s_2| = |s_1| |s_2| \quad (\text{S.29})$$

Proof (continued):

Now do the same for the right hand side of Equation S.29,

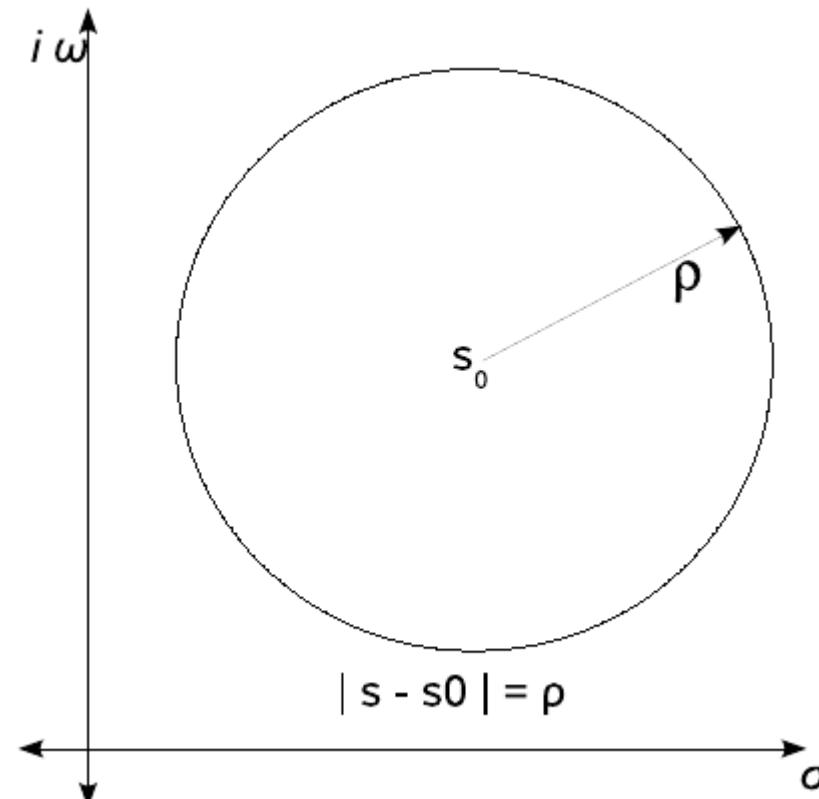
$$\begin{aligned} |s_1| |s_2| &= |\sigma_1 + i\omega_1| |\sigma_2 + i\omega_2| \\ &= \sqrt{(\sigma_1^2 + \omega_1^2)} \sqrt{(\sigma_2^2 + \omega_2^2)} \\ &= \sqrt{\sigma_1^2 \sigma_2^2 + \sigma_1^2 \omega_2^2 + \omega_1^2 \sigma_2^2 + \omega_1^2 \omega_2^2} \end{aligned} \quad (\text{S.31})$$

We have arrived at the same expression in Equations S.30 and S.31, proving Equation S.29, hence proving Theorem 24.1.

A Circle in the Complex Plane

Definition 24.3 (A Circle in the Complex Plane). A circle is defined by its center, s_0 and its radius, ρ . In the complex place, such a circle is defined by,

$$|s - s_0| = \rho \quad (24.16)$$



Sample Application: the Cauchy Residue Theorem

Euler's Formula and de Moivre's Theorem

Euler's Formula:

$$\begin{aligned} e^{i\theta} &= \cos(\theta) + i \sin(\theta) \\ e^{-i\theta} &= \cos(\theta) - i \sin(\theta) \end{aligned} \implies \text{Euler's Identity: } \begin{aligned} e^{i\pi} + 1 &= 0 \\ e^{i\pi} &= -1 \end{aligned}$$

De Moivre's Theorem:

$$(\cos \theta + i \sin(\theta))^n = \cos(n\theta) + i \sin(n\theta) \quad n = \{0, \pm 1, \pm 2, \dots\}$$

Proof:

Using the Euler's formula

$$\begin{aligned} s &= \rho [\cos \theta + i \sin \theta] \\ &= \rho e^{i\theta} \end{aligned} \implies \begin{aligned} s^n &= \rho^n [\cos \theta + i \sin \theta]^n \\ &= \rho^n e^{in\theta} \end{aligned}$$

□

Sample Application: Solution to Differential Equations and Integral Transforms

A Hermitian Function

Definition 24.5 (A Hermitian Function). *A function $H(s) = U(\sigma, \omega) + iV(\sigma, \omega)$, $\{s \in \mathbb{C}, \sigma \in \mathbb{R}, \omega \in \mathbb{R}, s = \sigma + i\omega\}$, is called a Hermitian function if*

$$\begin{aligned} H(-s) &= \overline{H(s)} \\ &= U(\sigma, \omega) - iV(\sigma, \omega) \end{aligned}$$

Sample Application: Cauchy-Riemann Conditions
and the Cauchy-Riemann Theorem

Limits – Limit of a Sequence

Definition 24.6 (Limit of a Sequence of Numbers).

$$\lim_{n \rightarrow \infty} S_n = A$$

A is the limit of sequence S_n as $n \rightarrow \infty$. Examples are,

$$\lim_{n \rightarrow \infty} \frac{2n}{n+1} = 2$$

and

$$\lim_{n \rightarrow \infty} \left(1 + \frac{1}{n}\right)^n = e \quad \text{Sample Application: Financial Interest, music (tonal theory)}$$

Sample Application: Convergence of Fourier and Power Series, as well as in the Probability Theory

Limits – One-Sided Limit of a Function

Definition 24.7 (One Sided Limit of a Function – Right Hand Limit).

$$\lim_{t \rightarrow t_0^+} h(t) = A$$

The limit exists if

Implies that given $\varepsilon > 0$, $\exists \delta(\varepsilon) > 0 : |h(t) - A| < \varepsilon$ if $t_0 < t < t_0 + \delta$

Definition 24.8 (One Sided Limit of a Function – Left Hand Limit).

$$\lim_{t \rightarrow t_0^-} h(t) = A$$

The limit exists if

Implies that given $\varepsilon > 0$, $\exists \delta(\varepsilon) > 0 : |h(t) - A| < \varepsilon$ if $t_0 - \delta < t < t_0$

Limits – Limit of a Function of a Continuous Variable

Definition 24.9 (Limit of a Function of a Continuous Variable).

$$\lim_{t \rightarrow t_0} h(t) = A$$

Implies that given $\varepsilon > 0$, $\exists \delta(\varepsilon) > 0 : |h(t) - A| < \varepsilon$ when $0 < |t - t_0| < \delta$

Note that all the points lying inside a circle of radius ε and center t_0 are in an ε neighborhood of t_0 .

$$\exists \lim_{t \rightarrow t_0} h(t) = A \iff \lim_{t \rightarrow t_0^+} h(t) = \lim_{t \rightarrow t_0^-} h(t) = A.$$

↑
If and Only If

Limits – Existence of a Limit

Example 24.1 (Existence of the Limit).

Take the following question: If

$$h(t) = 1 + \frac{|t|}{t} \quad (24.28)$$

does the limit, $\lim_{t \rightarrow 0} h(t)$ exist?

The right hand limit of 24.28 is,

$$\lim_{t \rightarrow 0^+} 1 + \frac{|t|}{t} = 1 + 1 = 2 \quad (|t| = t) \quad (24.29)$$

The left hand limit of 24.28 is,

$$\lim_{t \rightarrow 0^-} 1 + \frac{|t|}{t} = 1 - 1 = 0 \quad (|t| = -t) \quad (24.30)$$

Therefore, the limit, $\lim_{t \rightarrow 0} h(t)$ does not exist since the left hand and right hand limits are not equal.

Limits – Infinite Limits

Definition 24.10 (Positive Infinite Limit). *If $\forall M > 0 \exists \delta > 0 : h(t) > M$ when $0 < |t - t_0| < \delta$, then,*

$$\lim_{t \rightarrow t_0} h(t) = \infty$$

Definition 24.11 (Negative Infinite Limit). *If $\forall M > 0 \exists \delta > 0 : h(t) < -M$ when $0 < |t - t_0| < \delta$, then,*

$$\lim_{t \rightarrow t_0} h(t) = -\infty$$