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Vector-Induced L, Norm of a Matrix
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Matrix Norm Axioms

In general, all matrix norms satisfy the following four conditions:
For A,B: %" — %™ and C : % — %",

1. ||A]|>0and |A| =0if A=0

2. ||kA| = |k| ||A|| where k is any scalar

3. [|[A+B| < ||A]|+||B|| (Triangular Inequality)
4. [|[AC| < ||A||IC|  (Schwarz’s Inequality)
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Unitary, Orthogonal Matrices

Definition 23.11 (Unitary / Orthogonal Matrices). A matrix, U : €~ — €V is
said to be Unitary if,

v"u=U0U" =1y (23.16)
A special case of unitary matrices is V: Z" — %" in which case,
Viv=vv! =1, (23.17)

Matrices falling under this special case are called orthogonal.
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Conjugacy, Orthogonality, Orthonormality

Definition 23.12 (Conjugacy, Orthogonality, and Orthonormality). Any ser of
linearly independent vectors,

viiv,eZ,ie{1,2,...M},M<N (23.18)

is said to be mutually conjugate about a positive definite, full rank matrix, Q : N
RN such that,

T  Ja>0Vi=j
vi-Qv_f—{ 0 Vi) (23.19)

If Q = 1Ly, then the set is a mutually orthogonal set of vectors. If in addition
a = 1, then the set is mutually orthonormal (i.e., for an orthonormal set of vectors,

ville = 1).
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Singular Values of a Matrix

Definition 23.13 (Singular Values of a Matrix). IfA : € +— €M, then the strictly

positive square roots ©; of the non-zero eigenvalues of A" A (or AAY) are called
the singular values of matrix A.
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Rank of a Matrix

Definition 23.14 (Rank of a Matrix). Matrix A : €V — €M has rank k if it has k

singular values.
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Singular Value Decomposition
of a Matrix

Definition 23.15 (Singular Value Decomposition). If A : €V — €™ has rank k
and its singular values are denoted by 61 > 6, > ... > 0 > 0, then there exist two
unitary matrices,

U=[u,uy,...uy| : €M — M and V=[V1,V2P..,VN] Y | g el
Such that

_ D0 N M o ¥ =]
S = U'AVandA = USVY where, S = [0 0] 6" = 6" and (D)= { 0’ Y 2
Then,
A = USVH is the singular value decomposition of matrix A, where, for 1 <i <k, u; = %
and vi = ASu,- are Eigenvectors of AA™ and A" A respectively, associated with the

k eigenvalues Ufg > 0 and the vectors u; . k+1 <i<Mand v;,k+1<i<N are
Eigenvectors associated with the zero eigenvalues. If A is real, then U and V will
also be real and are therefore orthogonal matrices.
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Vector-Induced L, Norm (Spectral Norm) of a Matrix

|AX]
IAll, = sup==—*
X£0 ||x||2

H
= [|[AAT[,
H
= ||AYA]],
Omax

where 0,4, 1s the largest singular value of A
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Frobenius Norm of a Matrix

Definition 23.10 (Euclidean (Frobenius) Norm of a Matrix). The Euclidean
(Frobenius) norm of a matrix A : Z" — %M is denoted by |A||; or |Al| » and
is defined as,

1Al = l|All5

(zzwﬁm)

i=1 j=I

where (A)0, (1€ {1,2,...M};j € {1,2,...,N}) is the (i, j)*" element of matrix A.

NB: The Euclidean or Frobenius Norm of a Matrix is not the same as its L., Norm (Spectral
Norm) — in contrast with a vector, where the Euclidean Norm and the L, Norm are equivalent.
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Frobenius Norm of a Matrix

1A

M .
2
e = Al z= (Z || Au; |F)

i=1
where u;,i € {1,2,....M} is any orthonormal basis

For a complex Matrix A,
&= Al z=1/tr(ATA) replace AT with A"

where tr (ATA) denotes the trace of (ATA) which is equivalent to the sum of all its
diagonal elements.

[£Y

Therefore the 2-norm (spectral norm) of A is always smaller than its Euclidean
(Frobenius) Norm

1Al

IA

Al 7
Gmax < tr (AHA)

Where equality holds for the case when A is a vector or has rank one.
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Pseudo-Inverse (Moore-Penrose Generalized Inverse)

Definition 23.16 (Pseudo-Inverse (Moore-Penrose Generalized Inverse)). If A :
€N = €M and AT €M — €N, then AT is the pseudo-inverse (Moore-Penrose

generalized inverse) of A iff,

Exists and is A

1. AATA
2 ATAAT Exists and is At
3. A and A" are Hermitian
Then if A = USV# s the SVD of A
the pseudo-inverse of A, A", is given by, AT =VS'U? where ST = [E g] L
| 3 :
SR v —
o *! and k is the rank of A.

E is the kxk diagonal matrix such that, E;; = e
-5 &
For a real matrix, A, A" may be written in terms of the following limit

AT = lim (ATA+¢el) " AT
e—0

This perturbation will
make this term invertible

Sep 17, 2025
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Positive Definiteness
Definition 23.17 (Positive Definiteness). Let s be any vector such that s € AN, A

matrix G : Z" v %N is said to be positive definite if,

s'Gs>0Vs#£0
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Ordinary Gram-Schmidt Orthogonalization

Suppose, ¥; : Vi £ fﬁf'ﬂ"'r}f e{1.,2,....M}.M < N are a set of unit vectors. Then, the
following 1s the Gram-5chmidt procedure [12] which generates the set of vectors
z;,i € {1,2,.... M} which form an orthonormal set spanning the same space as vec-
Lors v,

Uy = V)
'

u =V, — Z( ng)Zj with 1€ {1,2,..,,M}
3=

u;
Z;

= with i€ {1,2,....M
o {1, }

e
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Modified Gram-Schmidt Orthogonalization

The following pseudo-code presents a modified Gram-Schmidt orthogonalization
method which, theoretically, gives the same set of vectors as the ordinary procedure
(Section 23.3.1), but it is more accurate in its numerical implementation,

1. a. u1 =V
u;

o
I

gl g
; f = V; (szl)zl fori—=2 3. M
vl
3. a u;j= ,;
b. z; = me‘;—23
: . sl
c. v =vy¥~ ”—(vl;" % zj)z;fori=j+1,.M
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Sherman-Morrison Inversion Formula
If Gy, Gy : #N — %N, then the rank M(M < N) update to Gy for obtaining Gy, 1 is,
Gi+1 = Gy +RST! (23.35)

where R, T : ZM +— %N and S : #M + %M, then the inverse of G, is given by
the following,

G, =G' -G 'RUT'T! G} (23.36)
where,
U=S"'+T'G,'R (23.37)

Equation 23.36 1s known as the Sherman-Morrison formula [6]. It 1s used to
keep track of the change in the inverse of a matrix as the original matrix is updated

through 23.35.

Copyright: Homayoon Beigi Sep 17, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

Stochastic Matrices

In probability theory, we often run across a special type of matrix called a stochastic
matrix. Here 1s a formal definition for such matrices.

Definition 23.18 (Stochastic Matrix). A Stochastic matrix A : B — % is a
matrix such that (A)g;; = 0 and

Sum of elements
of each row

N
Y Ay =1 Vi 1<i<m) (23.45)
j=1

For example, stochastic matrices are used to denote the transition probabilities
of Markov chains.
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Complex Variable Theory

Definition 24.1 (Imaginary Number). i is the imaginary number and is defined as,

7 i2y/—1

René Descartes called it
imaginary to show its uselessness

I W
A
e fsnz g, + | w,
’: e :(Gnlmﬂ)
4o
‘-'9\5
\f’} 0 = Lsp
< » J

Y

Fig. 24.1: Representation of a Number
sp in the Complex Plane
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Complex Variable Theory

Definition 24.2 (Modulus or Magnitude of a Complex Number). The Modulus
or Magnitude of the complex number, {s:s = o +iw € C}, is denoted by |s| and is

defined as, 5| = v 02 + w?

N.B., In the complex plain, size is considered using the modulus, e.g., we cannot
say s1 < 2, but we can say |si| < |s2/.

| W
A

o #SD: 'D'ﬂ + i m[}
fx ) g = (Un,mﬂ)
5]

Fig. 24.1: Representation of a Number
sp in the Complex Plane
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Representations of Complex Variables

{s0 : 50 € C} may be represented in polar coordinates as follows,

S0 = pﬂgfet} where, pPg = |.';0| and @ — .»_{.5‘{)

g =) (CUO)
= &K —
| @ Po

= COoS S
Po /
= + |
@Ql fsﬂ U{J Im[} — tan_] @\
WX = (Unlmﬂ) B O
N 0/
v
‘-'9\"
\ ? 0 = Lsp
< » J
Y

Fig. 24.1: Representation of a Number
sp in the Complex Plane
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Properties of Complex Variables

= 55
S+5=2%e{s}
§—5=25m{s}

Property 24.2 (Triangular Inequality in the Complex Plane).

51+ 82| < |s1]|+|s2]
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Product and Quotient of Complex Variables

Product: _ _
518 = ,O[E:B' pze'ez
— plngf{ﬂ]-l—ﬂz}
= plpgei{ﬂlJre?@} where n={0,+1,+2,---}
N\ Periodicity
Quotient:
ST pleiel
59 N pzefel‘
_ Pt i(e1-6y)
P2
= %ei(el_eﬁzm) where n={0,£1,£2,-..}
2
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Periodicity of Complex Variables
Problem:

What is the period of the exponential function,

H(s)=¢

Solution:

cos and sin have a period of 27. Also,
cos(2km) +isin(2km) = 1 (S.48)
where Kk in any integer.

Writing Equation S.48 in polar coordinates, we have, ¢**" = 1. Therefore, since

we may multiply 1 by ¢’ without changing its value, we may write,
E.s'EiZkiT el o= E.s‘—l—iZkiT (S 49)

Equation S.49 establishes that the period of ¢* is i27.
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Modulus of Product of Complex Variables

Theorem 24.1 (Modulus of the product of two Complex Numbers). The modulus
of the product of two complex numbers, s; and sy, is equal to the product of the
moduli of the two numbers, namely,

s152| = |s1]|s2] (S.29)

Proof:
Write the left side of Equation S.29 in terms of the real and imaginary parts of the
variables involved,
|5152| = (U[ —|—f£t}1)(62 +i&)2)|
= |0102 + 1010, + i 0, — 01 0|
= |(0102 — w1 ) + (0102 + 0 02)|

= \/(6162 — W )%+ (010 + 0,07)?

= \/ 670} + 0] 02 — 20162077 + G203 + 0703 + 201076707
— \/leal?erfa)zerafm%erfU% (S.30)
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Modulus of Product of Complex Variables

Theorem 24.1 (Modulus of the product of two Complex Numbers). The modulus
of the product of two complex numbers, s; and sy, is equal to the product of the
moduli of the two numbers, namely,

s152| = |s1]|s2] (S.29)

Proof (continued):

Now do the same for the right hand side of Equation §.29,

51| |$2| = |O) +i@y | |G + ian|

= x,a“"ﬂ'llaf + ol 0] + ©io; + O 0 (8.31)

We have arrived at the same expression in Equations S.30 and S.31, proving Equa-
tion S.29, hence proving Theorem 24.1.

Copyright: Homayoon Beigi Sep 17, 2025


https://www.recotechnologies.com/beigi
mailto:homayoon.beigi@columbia.edu

Intro. to Continuous Control

homayoon.beigi @ columbia.edu

A Circle in the Complex Plane

Definition 24.3 (A Circle in the Complex Plane). A circle is defined by its center,

so and its radius, p. In the complex place, such a circle is defined by,

ls—sol=p (24.16)
. A
i w
|s-sO|=p

Sample Application: the Cauchy Residue Theorem
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Euler’s Formula and de Moivre’s Theorem

Euler’s Formula:

0 r '

— cos(0) +1i sin(0 e +1=0
e " ( ) I ( ) =  Fuler’s Identll‘y EI'IJ'T |
s _

e 'Y = cos(B)—isin(0)

De Moivre’s Theorem:

(cos @ +isin(0))" = cos(nB) +isin(nO) n={0,+1,42,-..}
Proof:
Using the Euler’s formula

s = p[cosO +isin O] . s" = p"[cos O +isinB]"

n _in@

=p€18 = pe

Sample Application: Solution to Differential Equations and Integral Transforms
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A Hermitian Function

Definition 24.5 (A Hermitian Function). A function H(s) = U(c,w)+iV(0o,w),
{seC,ce R, € R,s=0+iw}, is called a Hermitian function if

H(—s) = H(s)
=U(o,w)—iV(o,m)

Sample Application: Cauchy-Riemann Conditions
and the Cauchy-Riemann Theorem
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Limits — Limit of a Sequence

Definition 24.6 (Limit of a Sequence of Numbers).

lmS,=A

n—oe

A is the limit of sequence S,, as n — oo. Examples are,

2
lim =" =9
n—ee 4 1
and

1 I
lim | 1+ — — ¢ Sample Application: Financial Interest,
n—roo n music (tonal theory)

Sample Application: Convergence of Fourier and
Power Series, as well as in the Probability Theory
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Limits — One-Sided Limit of a Function

Definition 24.7 (One Sided Limit of a Function — Right Hand Limit).

lim A(t) = A

I —}IU,_

The limit exists if

Implies that given€ >0, 38(e) >0 : |h(t)—Al<eifto<t<to+

Definition 24.8 (One Sided Limit of a Function — Left Hand Limit).

lim A(t) = A

P—t C
0 The limit exists if

Implies that given € >0, 30(€) >0 : |h(t)—A| <eiftg—0 <t <ty
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Limits — Limit of a Function of a Continuous Variable

Definition 24.9 (Limit of a Function of a Continuous Variable).

lim h(t) = A

t—ipy

Implies that given € >0, 30(€) >0 : |h(t)—A| <ewhen 0 < |t —1ty| <O
Note that all the points lying inside a circle of radius € and center ty are in an €

neighborhood of ty.
Elrli)l%h(t) =A < rl—1>1%1+ h(t) = IE{?_ h(t) = A.
If and Only If
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Limits — Existence of a Limit

Example 24.1 (Existence of the Limit).
Take the following question: If

h(t) =1+ |§—| (24.28)

does the limit, limh(t) exist?
t—0

The right hand limit of 24.28 is,

t
liml—l—||

t—0+ t

=141=2 (|t|=1¢) (24.29)
The left hand limit of 24.28 is,

im 1+ 21120 (|t| = —t) (24.30)

t—0- [

Therefore, the limit, limﬂ h(t) does not exist since the left hand and right hand
-

limits are not equal.
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Limits — Infinite Limits

Definition 24.10 (Positive Infinite Limit). /f VM >030 >0 : h(t) > M
when 0 < |t —to| < 9, then,

}LT}MI) =

Definition 24.11 (Negative Infinite Limit). If V M > 0 38 > 0:h(t) <-M
when 0 < |t —to| < 0, then,

rli}l}il}h(f) = —o0
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