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PREFACE 

In computing, turning the obvious into the useful 
is a living definition of the word “frustration." 

Let me get this off my chest right at the start: I’ve had a love/hate relationship with 

C for years. I love the ease with which I can write C programs. I love the develop¬ 

ment environments that come with many of today’s C compilers. But I hate the 

ease with which I can make mistakes. I hate the attention to picky details that C 

programming often requires. And, above all, I hate the way many C programmers 

disparage other languages. Let’s face it: C isn’t the ultimate programming lan¬ 

guage. (C++ isn’t, either.) It is, however, a language with which every software 

developer should become familiar. It has become, for better or for worse, the lin¬ 

gua franca of the computer world. 

I first used C in 1975, when it was new and somewhat immature. I then lost 

touch with the language for some years. Once C was standardized, I decided to 

take another look at it. To my relief, I found that some of its worst flaws had been 

corrected during standardization. (Of course, there are enough left to keep life 

interesting!) I decided to write a book that would take a fresh look at C, while at 

the same time tapping into the collective wisdom that C programmers have accu¬ 

mulated over the past quarter of a century. 

Goals 

Here are some of the goals I’ve tried to accomplish in this book: 

■ Be clear, readable, and possibly even entertaining. Many C books are too 

concise for the average reader. Others are badly written or just plain dull. I’ve 

tried to give clear, thorough explanations, leavened with enough humor to 

hold the reader’s interest. 

■ Be accessible to a broad range of readers. I assume that the reader has a min¬ 

imal amount of previous programming experience, but I don’t assume knowl- 
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edge of a particular language. I’ve tried to keep jargon to a minimum and to 

define the terms that I use. I’ve also attempted to separate advanced material 

from more elementary topics, so that the beginner won’t get discouraged. 

■ Be authoritative without being pedantic. To avoid reader frustration, I’ve 

tried to cover all the features of the Standard C language and library, including 

signals, set jmp/longjmp, variable-length argument lists, and international 

features. At the same time, I’ve tried to avoid burdening the reader with 

unnecessary detail. 

■ Be organized for easy learning. My experience in teaching C underscores the 

importance of presenting the features of C gradually. I use a spiral approach, 

in which difficult topics are introduced briefly, then revisited one or more 

times later in the book with details added each time. Pacing is deliberate, with 

each chapter building gradually on what has come before. For most students, 

this is probably the best approach: it avoids the extremes of boredom on the 

one hand, or “information overload” on the other. 

■ Motivate language features. Instead of just describing each feature of the lan¬ 

guage and giving a few simple examples of how the feature is used, I’ve tried 

to motivate each feature and discuss how it’s used in practical situations. 

■ Emphasize style. It’s important for every C programmer to develop a consis¬ 

tent style. Rather than dictating what this style should be, though, I usually 

describe a few possibilities and let the reader chose the one that’s most appeal¬ 

ing. Knowing alternative styles is a big help when reading other people’s pro¬ 

grams (which programmers often spend a great deal of time doing). 

■ Avoid dependence on a particular machine, compiler, or operating system. 

Since C is available on such a wide variety of platforms. I’ve tried to avoid 

dependence on any particular machine, compiler, or operating system. Of 

course, with a language like C, it’s impossible to skip machine details com¬ 

pletely. When such discussions are unavoidable, I give examples for both 16- 

bit and 32-bit architectures. When examples depend on a particular operating 

system, I discuss both DOS and UNIX. 

■ Use illustrations to clarify key concepts. I’ve tried to put in as many figures 

as I could, since I think these are crucial for understanding many aspects of C. 

In particular. I’ve tried to “animate” algorithms whenever possible by show¬ 

ing snapshots of data at different points in the computation. 

What’s So Modern about A Modem Approach? 

One of my most important goals has been to take a “modern approach” to C. Here 

are some of the ways I’ve tried to achieve this goal: 

■ Put C in perspective. Instead of treating C as the only programming language 

worth knowing, I treat it as one of many useful languages. I discuss what kind 

of applications C is best suited for; I also show how to capitalize on C’s 

strengths while minimizing its weaknesses. 



Preface XXI 

■ Emphasize Standard C. I pay minimal attention to older versions of the lan¬ 

guage. There are just a few scattered references to Classic (K&R) C in the 

chapters, mostly in Q&A sections. Appendix C lists the major differences 
between Standard C and Classic C. 

■ Debunk myths. Today’s compilers are often at odds with commonly held 

assumptions about C. I don’t hesitate to debunk some of the myths about C or 

challenge beliefs that have long been part of the C folklore (for example, the 

belief that pointer arithmetic is always faster than array subscripting). I’ve re¬ 

examined the old conventions of C, keeping the ones that are still helpful. 

■ Emphasize software engineering. I treat C as a mature software engineering 

tool, emphasizing how to use it to cope with issues that arise during program- 

ming-in-the-large. I stress making programs readable, maintainable, reliable, 

and portable, and I put special emphasis on information hiding. 

■ Postpone C’s low-level features. These features, although handy for the kind 

of systems programming originally done in C, are not as relevant now that C 

is used for a great variety of applications. Instead of introducing them in the 

early chapters, as most C books do, I postpone them until Chapter 20. 

■ De-emphasize “manual optimization.” Many books teach the reader to write 

nonobvious code in order to gain small savings in program efficiency. With 

today’s abundance of optimizing C compilers, these techniques are often no 

longer necessary; in fact, they can result in programs that are less efficient. 

■ Emphasize compatibility with C++. I’ll have more to say about this later. 

Q&A Sections 

Each chapter ends with a “Q&A section”—a series of questions and answers 

related to material covered in the chapter. Topics addressed in these sections 

include: 

■ Frequently asked questions. I’ve tried to answer questions that come up fre¬ 

quently in my own courses, in other books, and on newsgroups related to C. 

■ Additional discussion and clarification of tricky issues. Although readers 

with experience in a variety of languages may be satisfied with a brief expla¬ 

nation and a couple of examples, readers with less experience need more. 

■ Side issues that don’t belong in the main flow. Some questions raise techni¬ 

cal issues that won’t be of interest to all readers. 

■ Material too advanced or too esoteric to interest the average reader. Ques¬ 

tions of this nature are marked with an asterisk (*). Curious readers with a fair 

bit of programming experience may wish to delve into these questions imme¬ 

diately; others should definitely skip them on a first reading. Warning: These 

questions often refer to topics covered in later chapters. 

■ Common differences among C compilers. I discuss some frequently used 

(but nonstandard) features that are provided by DOS and UNIX compilers. 
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Q&A 

A 
cross-references >Preface 

idiom 

portability tip 

Some questions in Q&A sections relate directly to specific places in the chap¬ 

ter; these places are marked by a special icon to signal the reader that additional 

information is available. 

Other Features 

In addition to Q&A sections, I’ve included a number of useful features, many of 

which are marked with simple but distinctive icons (shown at left). 

■ Warnings alert readers to common pitfalls. C is famous for its traps; docu¬ 

menting them all is a hopeless—if not impossible—task. I’ve tried to pick out 

the pitfalls that are most common and/or most important. 

■ Cross-references provide a hypertext-like ability to locate information. Al¬ 

though many of these are pointers to topics covered later in the book, some 

point to previous topics that the reader may wish to review. 

■ Idioms—code patterns frequently seen in C programs—are marked for quick 

reference. 

■ Portability tips give hints for writing programs that are independent of a par¬ 

ticular machine, compiler, or operating system. 

■ Sidebars cover topics that aren’t strictly part of C but that every knowledge¬ 

able C programmer should be aware of, including unsigned integers, the IEEE 

floating-point standard, and Unicode. (See “Source Code” at the bottom of 

this page for an example of a sidebar.) 

■ Appendices provide valuable reference information. 

Programs 

Choosing illustrative programs isn’t an easy job. If programs are too brief and arti¬ 

ficial, readers won’t get any sense of how the features are used in the real world. 

On the other hand, if a program is too realistic, its point can easily be lost in a for¬ 

est of details. I’ve chosen a middle course, using small, simple examples to make 

concepts clear when they’re first introduced, then gradually building up to com¬ 

plete programs. I haven’t included programs of great length; it’s been my experi¬ 

ence that instructors don’t have the time to cover them and students don’t have the 

patience to read them. I don’t ignore the issues that arise in the creation of large 

programs, though—Chapter 15 (Writing Large Programs) and Chapter 19 (Pro¬ 

gram Design) cover them in detail. 

Source Code 

Source code for all programs in this book is available via the World-Wide Web at 
http://www.gsu.edu/~matknk/cbook. Updates, corrections, and news about the 
book are also available through this Web page. 
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Coverage of C++ 

C Programming: A Modern Approach was designed from the beginning to be com¬ 

pletely compatible with C++, so that readers won’t develop habits they must un¬ 

learn later. It prepares readers for C++ in three ways: 

C++ 

■ By stressing modern design principles such as information hiding. 

■ By scattering brief discussions of C++—each tagged with a special “C++” 

icon—throughout the text. 

■ By providing a detailed overview of C++ in Chapter 19. 

C++ is complex enough to warrant its own book. Coincidentally, I just happen 

to have one in preparation. For more information, feel free to contact me, or watch 

my Web page for news. 

Audience 

This book is designed as a primary text for a C course at the undergraduate level. 

Previous programming experience in a high-level language or assembler is helpful, 

but not necessary for a computer-literate reader (an “adept beginner,” as my editor 

likes to put it). 

Since the book is self-contained and usable for reference as well as learning, it 

makes an excellent companion text for a course in data structures, compiler design, 

operating systems, computer graphics, or other courses that use C for project work. 

It’s also suitable for use as one of several books in a “survey of programming lan¬ 

guages” course. 
Thanks to its Q&A sections and emphasis on practical problems, the book will 

also appeal to readers who are enrolled in a training class or who are learning C by 

self-study. 

Organization 

The book is divided into four parts: 

■ Basic Features of C. Chapters 1-10 cover enough of C to allow the reader to 

write single-file programs using arrays and functions. 

■ Advanced Features of C. Chapters 11-20 build on the material in the earlier 

chapters. The topics become a little harder in these chapters, which provide in- 

depth coverage of pointers, strings, the preprocessor, structures, unions, enu¬ 

merations, and low-level features of C. In addition, two chapters (15 and 19) 

offer guidance on program design. 

■ The Standard C Library. Chapters 21-26 focus on the C library, a large col¬ 

lection of functions that come with every compiler. These chapters are most 

likely to be used as reference material, although portions are suitable for lec¬ 

tures. 



■ Reference. Appendix A covers the complete syntax of C, with annotations to 

explain some of the more obscure points. Appendix B gives a complete list of 

C operators. Appendix C describes the differences between Standard C and 

Classic C. Appendix D is an alphabetical listing of all functions in the C 

library, with a thorough description of each. Appendix E lists the ASCII char¬ 

acter set. An annotated bibliography points the reader toward other sources of 

information. 

A full-blown course on C should cover Chapters 1-20 in sequence, with topics 

from Chapters 21-26 added as needed. A shorter course can omit the following 

topics without losing continuity: Section 9.6 (recursive functions), Section 12.4 

(pointers and multidimensional arrays), Section 14.5 (miscellaneous directives), 

Section 17.7 (pointers to functions), Chapter 19 (program design). Section 20.2 

(bit-fields in structures), and Section 20.3 (other low-level techniques). 

Exercises 

Having a variety of good exercises is obviously essential for a textbook. I’ve pro¬ 

vided over 300 exercises at a variety of skill levels. Some are brief drill questions. 

Although these exercises aren’t the most exciting (in fact, they can be downright 

boring), I consider them essential for developing skill in C, in the same way that 

vocabulary drill is needed in a foreign-language text or math problems in an alge¬ 

bra text. In addition to drill questions, I’ve included a number of short-answer 

questions and programming exercises. Short-answer questions require more 

thought than drill questions, although answers are usually brief. Programming 

exercises ask the reader to write a short program or a piece of a larger program. 

A few exercises have nonobvious answers (some individuals uncharitably call 

these “trick questions”—the nerve!). Since C programs often contain abundant 

examples of such code, I feel it’s necessary to provide some practice. However, I’ll 

play fair by marking these exercises with an asterisk (*). Be careful with a starred 

exercise: either pay close attention and think hard or skip it entirely. 

Errors, Lack of (?) 

I’ve taken great pains to ensure the accuracy of this book. Inevitably, however, any 

book of this size contains a few errors. If you spot one, please send e-mail to 

knking@gsu.edu or write to me at the following address: 

K. N. King 
Department of Mathematics and Computer Science 
Georgia State University 
University Plaza 
Atlanta, GA 30303-3083 

I’d also appreciate hearing about which features you found especially helpful, 

which ones you could do without, and what you’d like to see added. 
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Introducing C 

When someone says “I want a programming language in which 
I need only say what I wish done,” give him a lollipop. * 

What is C? The simple answer—a widely used programming language developed 

in the early 1970s at Bell Laboratories—conveys little of C’s special flavor. Before 

we become immersed in the details of the language, let’s take a look at where C 

came from, what it was designed for, and how it has changed over the years (Sec¬ 

tion 1.1). We’ll also discuss C’s strengths and weaknesses and see how to get the 

most out of the language (Section 1.2). 

1.1 History of C 

The history of C dates back to the computing field’s Paleozoic era: the late 1960s. 

Let’s take a quick look at C’s history, from its origins at Bell Laboratories, to its 

coming of age as a standardized language, to its influence on recent languages. 

Origins 

C is a by-product of the UNIX operating system, which was developed at Bell 

Laboratories by Ken Thompson, Dennis Ritchie, and others. Thompson single- 

handedly wrote the original version of UNIX, which ran on the DEC PDP-7 com¬ 

puter, an early minicomputer with only 8K words of main memory (this was 1969, 

after all!). 
Like other operating systems of the time, UNIX was written in assembly lan¬ 

guage. Programs written in assembly language are usually painful to debug and 

*The epigrams at the beginning of each chapter are from “Epigrams on Programming” by Alan J. Perlis 

{ACM SIGPLAN Notices (September, 1982): 7-13). 

1 
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hard to enhance, and UNIX was no exception. Thompson decided that a higher 

level language was needed for the further development of UNIX, so he designed a 

small language named B. Thompson based B on BCPL, a systems programming 

language developed in the mid-1960s. BCPL, in turn, traces its ancestry to Algol 

60, one of the earliest (and most influential) programming languages. 
Ritchie soon joined the UNIX project and began programming in B. In 1970, 

Bell Labs acquired a PDP-11 for the UNIX project. Once B was up and running on 

the PDP-11, Thompson rewrote a portion of UNIX in B. By 1971, it became 

apparent that B was not well-suited to the PDP-11, so Ritchie began to develop an 

extended version of B. He called his language NB (“New B”) at first, and then, as 

it began to diverge more from B, he changed the name to C. The language was sta¬ 

ble enough by 1973 that UNIX could be rewritten in C. The switch to C provided 

an important benefit: portability. By writing C compilers for other computers at 

Bell Labs, the team could get UNIX running on those machines as well. 

Standardization 

C continued to evolve during the 1970s, especially between 1977 and 1979. It was 

during this period that the first book on C appeared. The C Programming Lan¬ 

guage, written by Brian Kernighan and Dennis Ritchie and published in 1978, 

quickly became the bible of C programmers. In the absence of an official standard 

for C, this book—known as K&R or the “White Book” to aficionados—served as a 

de facto standard. 
During the 1970s, there were relatively few C programmers, and most of them 

were UNIX users. By the 1980s, however, C had expanded beyond the narrow 

confines of the UNIX world. C compilers became available on a variety of 

machines running under different operating systems. In particular, C began to 

establish itself on the fast-growing IBM PC platform. 
With C’s increasing popularity came problems. Programmers who wrote new 

C compilers relied on K&R as a reference. Unfortunately, K&R was fuzzy about 

some language features, so compilers often treated these features differently. Also, 

K&R failed to make a clear distinction between which features belonged to C and 

which were part of UNIX. To make matters worse, C continued to change after 

K&R was published, with new features being added and a few older features 

removed. 
The need for a thorough, precise, and up-to-date description of the language 

soon became apparent. Without such a standard, numerous dialects would have 

arisen, threatening one of C’s major strengths—program portability. 

The development of a U.S. standard for C began in 1983 under the auspices of 

the American National Standards Institute (ANSI). After many revisions, the stan¬ 

dard was completed in 1988 and formally approved in December 1989 as ANSI 

standard X3.159-1989. In 1990, it was approved by the International Standards 

Organization (ISO) as international standard ISO/IEC 9899-1990. The language 

described in these standards is known as “ANSI C,” “ANSI/ISO C,” or just “Stan¬ 

dard C,” the term we’ll use in this book. 
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Although the version of C described in the first edition of K&R is often called 

K&R C, this name is no longer appropriate since the second edition of K&R, pub¬ 

lished in 1988, reflects the changes made in the ANSI standard. We’ll refer to the 

older language as “Classic C”; this terminology (a play on “Coke Classic”) is 
becoming common in the C world. 

The description of C in this book is based on the ANSI/ISO standard. How¬ 

ever, we can’t completely ignore Classic C, since many of the “real-world” pro¬ 

grams written in the older language are still in use. Appendix C lists the major 

differences between Standard C and Classic C; if you should encounter older C 

programs, this appendix will help you understand them. 

C++ 

Although C itself hasn’t changed since the ANSI/ISO standard was adopted, its 

evolution continues, in a sense, with the creation of newer languages based on C. 

Of these languages, which include Concurrent C and Objective C, the most notable 

is C++. C++, designed by Bjarne Stroustrup of Bell Labs, extends C in a variety of 

ways. In particular, C++ adds features to support object-oriented programming. 

C++ is rapidly gaining popularity; there’s an excellent chance that you’ll be 

writing in C++ in the future. In that case, why bother to learn C? First, C++ is 

much harder to learn than C; it’s best to master C before tackling the complexities 

of C++ (or any of the other languages derived from C). Second, there’s a lot of C 

code around; it’s likely that you’ll need to read and maintain this code. Third, not 

everyone is likely to switch to C++. People who write relatively small programs, 

for example, will derive little benefit from C++. 

The primary argument in favor of learning C++ first is that you’ll avoid pick¬ 

ing up C habits that have to be “unlearned” when using C++. You'll find that this 

book sidesteps the problem by emphasizing data abstraction, information hiding, 

and other principles that play a large role in C++. C++ includes all of the features 

of C, so you’ll be able to use everything you learn from this book when you later 

tackle C++. 
We won’t ignore C++, although it’s not a major focus of this book. Brief refer¬ 

ences to C++ will crop up from time to time, marked with the QQ symbol. We’ll 

also take a detailed look at C++ in Section 19.4. 

1.2 Strengths and Weaknesses of C 

Like any other programming language, C has strengths and weaknesses. Both stem 

from the language’s intended use (writing operating systems and other systems 

software) and its underlying philosophy: 

■ C is a low-level language. To serve as a suitable language for systems pro¬ 

gramming, C provides access to machine-level concepts (bytes and addresses, 
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for example) that other programming languages try to hide. Moreover, C pro¬ 

vides operations that correspond closely to a computer’s built-in instructions, 

so that programs can be fast. Since application programs rely on it for input/ 

output, storage management, and numerous other services, an operating sys¬ 

tem can’t afford to be slow. 

■ C is a small language. C provides a more limited set of features than many 

languages. (The reference manual in the second edition of K&R covers the 

entire language in 49 pages.) To keep the number of features small, C relies 

heavily on a “library” of standard functions. (A “function” is similar to what 

other programming languages would call a ‘ procedure or subroutine. ) 

■ C is a permissive language. C assumes that you know what you re doing, so it 

allows you a wider degree of latitude than many languages. Moreover, C 

doesn’t mandate the detailed error-checking found in other languages. 

Strengths 

C’s strengths help explain why the language has become so popular: 

■ Efficiency. Efficiency has been one of C’s advantages from the beginning. 

Since C was intended for applications where assembly language had tradition¬ 

ally been used, it was crucial that C programs could run quickly and in limited 

amounts of memory. 

■ Portability. Although program portability wasn’t a primary goal of C, it has 

turned out to be one of the language’s strengths. When a program must run on 

computers ranging from PCs to supercomputers, it is often written in C. One 

reason for the portability of C programs is that—thanks to C’s early associa¬ 

tion with UNIX and the later ANSI/ISO standard—the language hasn’t splin¬ 

tered into incompatible dialects. Another is that C compilers are small and 

easily written, which has helped make them widely available. Finally, C itself 

has features that support portability (although there’s nothing to prevent pro¬ 

grammers from writing nonportable programs). 

■ Power. C’s large collection of data types and operators help make it a power¬ 

ful language. In C, it is often possible to accomplish quite a bit in just a few 

lines of code. 

■ Flexibility. Although C was originally designed for systems programming, it 

has no inherent restrictions that limit it to this arena. C is now used for appli¬ 

cations of all kinds, from embedded systems to commercial data processing. 

Moreover, C imposes very few restrictions on the use of its features; opera¬ 

tions that would be illegal in other languages are often permitted in C. For 

example, C allows a character to be added to an integer value (or, for that mat¬ 

ter, a floating-point number). This flexibility can make programming easier, 

although it may allow some bugs to slip through. 
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■ Standard library. One of C’s great strengths is its standard library, which con¬ 

tains hundreds of functions for input/output, string handling, storage alloca¬ 
tion, and other useful operations. 

■ Integration with UNIX. C is particularly powerful in combination with 

UNIX. In fact, some UNIX tools assume that the user knows C. 

Weaknesses 

C’s weaknesses arise from the same source as many of its strengths: C’s closeness 

to the machine. If we think of languages like Pascal or Ada as “high-level lan¬ 

guages,” then C is more accurately described as a “low-level language” or even a 
“structured assembly language.” 

Here are a few of C’s most notorious problems: 

■ C programs can be error-prone. C’s flexibility makes it an error-prone lan¬ 

guage. Programming mistakes that would be caught in many other languages 

can’t be detected by a C compiler. In this respect, C is a lot like assembly lan¬ 

guage, where most errors aren’t detected until the program is run. To make 

matters worse, C contains a number of pitfalls for the unwary. In later chap¬ 

ters, we’ll see how an extra semicolon can create an infinite loop or a missing 

& can cause a program crash. 

■ C programs can be difficult to understand. Although C is a small language 

by most measures, it has a number of features that aren’t found in other com¬ 

mon languages (and consequently are often misunderstood). These features 

can be combined in a great variety of ways, many of which—although obvi¬ 

ous to the original author of a program—can be hard for others to understand. 

Another problem is the terse nature of C programs. C was designed at a time 

when interactive communication with computers was tedious at best. As a 

result, C was purposefully kept terse to minimize the time required to enter 

and edit programs. C’s flexibility can also be a negative factor; programmers 

who are too clever for their own good can make programs almost impossible 

to understand. 

■ C programs can be difficult to modify. Large programs written in C can be 

hard to change if they haven’t been designed with maintenance in mind. Mod¬ 

ern programming languages usually provide a language feature called a “mod¬ 

ule” (or “unit” or “package”) that supports the division of a large program into 

more manageable pieces. C, unfortunately, lacks such a feature. 

Obfuscated C 

Even C’s most ardent admirers admit that C code can be hard to read. The annual 
International Obfuscated C Code Contest actually encourages contestants to write 
the most confusing C programs possible. The winners are truly baffling, as 1991 ’s 
“Best Small Program” shows: 
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int v,i,j,k,l,s,a[99]; 
main() 

for(scanf("%d",&s);*a-s;v=a[j*=v]-a[i],k=i<s,j+= 
(v=j<s&& ( !k&& ! Iprintf (2 + " \n\n%c" - ( ! 1« ! j ) , " #Q" [l^v? ( 
1Aj)&1:2])&&+ + 1| |a[i]<s&&v&&v-i + j &&v+i-j&&v+i-j))&&! ( 

l% = s) ,v| | (i==j ?a[i+=k]=0:++a[i])>=s*k&&++a[--i]) 

} 

This program, written by Doron Osovlanski and Baruch Nissenbaum, prints ail solu¬ 
tions to the Eight Queens problem (the problem of placing eight queens on a chess¬ 
board in such a way that no queen attacks any other queen). In fact, it works for any 
number of queens between four and 99. Other winning programs can be found in 
the book Obfuscated C and Other Mysteries by Don Libes (New York: Wiley, 1993). 

Effective Use of C 

Using C effectively requires taking advantage of C’s strengths while avoiding its 

weaknesses. Here are a few suggestions: 

■ Learn how to avoid C pitfalls. Hints for avoiding pitfalls are scattered 

throughout this book—just look for the A symbol. For a more extensive list 

of pitfalls, see Andrew Koenig’s C Traps and Pitfalls (Reading, Mass.: Addi- 

son-Wesley, 1989). Modern compilers will detect common pitfalls and issue 

warnings, but no compiler spots them all. 

■ Use software tools to make programs more reliable. C programmers are pro¬ 

lific tool builders (and users). One of the most famous C tools is named lint, 

lint, which is traditionally provided with UNIX, can subject a program to a 

more extensive error analysis than most C compilers. If lint (or a similar 

program) is available, it’s a good idea to use it. Another useful tool is a debug¬ 

ger. Because of the nature of C, many bugs can’t be detected by a C compiler; 

these show up instead in the form of run-time errors or incorrect output. Con¬ 

sequently, using a good debugger is practically mandatory for C programmers. 

■ Take advantage of existing code libraries. One of the benefits of using C is 

that so many other people also use it; it’s a good bet that they’ve written code 

you can employ in your own programs. C code is often bundled into libraries 

(collections of functions); obtaining a suitable library is a good way to reduce 

errors—and save considerable programming effort. Libraries for common 

tasks, including user-interface development, graphics, communications, data¬ 

base management, and networking, are readily available. Some libraries are in 

the public domain while others are sold commercially. 

■ Adopt a sensible set of coding conventions. A coding convention is a style 

rule that a programmer has decided to adopt even though it is not enforced by 

the language. Well-chosen conventions help make programs more uniform, 

easier to read, and easier to modify. Conventions are important when using 
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any programming language, but especially so with C. As noted above, C’s 

highly flexible nature makes it possible for programmers to write code that is 

all but unreadable. The programming examples in this book follow one set of 

conventions, but there are other, equally valid, conventions in use. (We’ll dis¬ 

cuss some of the alternatives from time to time.) Which set you use is less 

important than adopting some conventions and sticking to them. 

■ Avoid “tricks” and overly complex code. C encourages programming tricks. 

There are usually several ways to accomplish a given task in C; programmers 

are often tempted to choose the method that’s most concise. Don’t get carried 

away; the shortest solution is often the hardest to comprehend. In this book, 

I’ll illustrate a style that’s reasonably concise but still understandable. 

■ Use Standard C rather than Classic C. Standard C is more than just a better- 

defined version of Classic C. It actually adds features that allow compilers to 

detect errors that go unnoticed in Classic C. 

■ Avoid nonportable features. Most C compilers provide features and library 

functions that aren’t part of the C standard. It’s best to avoid using these unless 
they’re absolutely necessary. 

Q&A 

Q: What is this Q&A section anyway? 

A: Glad you asked. The Q&A section, which appears at the end of each chapter, 

serves several purposes. 

The primary purpose of Q & A is to tackle questions that are frequently asked 

by students learning C. The reader can participate in a dialogue (more or less) with 

the author, much the same as if you were attending one of my C classes. 

Another purpose of Q & A is to provide additional information about topics 

covered in the chapter. Readers of this book will likely have widely varying back¬ 

grounds. Some will be experienced in other programming languages, while others 

will be learning to program for the first time. Readers with experience in a variety 

of languages may be satisfied with a brief explanation and a couple of examples, 

while readers with less experience need more. The bottom line: If you find the cov¬ 

erage of a topic to be sketchy, check Q & A for more details. 

Some of the questions in Q&A cover material too advanced or too esoteric to 

interest the average reader; questions of this nature are marked with an asterisk (*). 

Warning: These questions often refer to material covered in later chapters. Curious 

readers with a fair bit of programming experience may wish to delve into these 

questions immediately; others should definitely skip them on a first reading. 

On occasion, Q&A will discuss common differences among C compilers. 

For example, we’ll cover some frequently used (but nonstandard) features that are 

provided by DOS and UNIX compilers. 
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Q: Besides C, are there any other modern-day descendants of Algol 60? [p. 2] 

A: Yes. Algol 60 is the ancestor of Pascal, Ada, and Modula-2, among others. These 

languages are the cousins of C; although they may look different from C, they have 

much in common with it. 

Q: What does lint do? [p. 6] 

A: lint checks a C program for potential errors. It produces a list of diagnostic mes¬ 

sages, which the programmer must then sift through. The advantage of using 

lint is that it can detect errors that are missed by the compiler. On the other hand, 

you’ve got to remember to use lint; it’s all too easy to forget about it. Worse still, 

lint can produce messages by the hundreds, of which only a fraction refer to 

actual errors. 

Q: Where did lint get its name? 

A: Unlike the names of many other UNIX tools, lint isn’t an acronym; it got its 

name from the way it picks up pieces of “fluff’ from a program. 

Q: How do I get a copy of lint? 

A: If you’re using UNIX, then you automatically have access to lint, which is a 

standard UNIX utility. If you rely on another operating system, then you probably 

don’t have lint. Fortunately, versions of lint are available from third parties. 

*Q: I’ve heard that gcc (the GNU C compiler) can check a program as thor¬ 

oughly as lint. Is this true? 

A: When it’s run with the -Wall option, gcc does indeed perform a thorough check 

of the program. It still misses some problems that lint can spot, however. 

*Q: I’m interested in making my program as reliable as possible. Are there any 

other tools available besides lint and debuggers? 

A: Yes. Other common tools include “bounds-checkers” and “leak-finders.” C doesn’t 

require that array subscripts be checked; a bounds-checker adds this capability. A 

leak-finder helps locate “memory leaks”: blocks of memory that are dynamically 

allocated but never deallocated. 



C Fundamentals 

One man’s constant is another man’s variable. 

This chapter introduces several basic concepts, including preprocessor directives, 

functions, variables, and statements, that we’ll need in order to write even the 

simplest programs. Later chapters will cover these topics in much greater detail. 

To start off, Section 2.1 presents a small C program and describes how to com¬ 

pile and link it. Section 2.2 then discusses how to generalize the program, and Sec¬ 

tion 2.3 shows how to add explanatory remarks, known as comments. Section 2.4 

introduces variables, which store data that may change during the execution of a 

program, and Section 2.5 shows how to use the scanf function to read data into 

variables. Constants—data that won’t change during program execution—can be 

given names, as Section 2.6 shows. Finally, Section 2.7 explains C’s rules for cre¬ 

ating names (identifiers) and Section 2.8 gives the rules for laying out a program. 

■■■■■Pi 

2.1 Writing a Simple Program 

In contrast to programs written in some languages, C programs require little “boil¬ 

erplate”—a complete program can be as short as a few lines. 

PROGRAM Printing a Pun 

The first program in Kernighan and Ritchie’s classic The C Programming Lan¬ 

guage is extremely short; it does nothing but write the message hello, world. 

Unlike other C authors, I won’t use this program as my first example. I will, how¬ 

ever, uphold another C tradition: the bad pun. Here’s the pun: 

To C, or not to C: that is the question. 

9 
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The following program, which we’ll name pun.c, displays this message each 

time it is run. 

pun.C ttinclude <stdio.h> 

main() 

printf("To C, or not to C: that is the question.\n"); 

} 

Section 2.2 explains the form of this program in some detail. For now, I’ll just 

make a few brief observations. The line 

#include <stdio.h> 

is necessary to “include” information about the C standard input/output library. 

The program’s executable code goes inside main, which represents the “main” 

program. The only line inside main is a command to display the desired message, 

printf is a function from the standard I/O library that can produce nicely for¬ 

matted output. The \n code tells printf to advance to the next line after printing 

the message. 

Compiling and Linking 

Despite its brevity, getting pun. c to run is more involved than you might expect. 

First, we need to create a file named pun. c containing the program (any editor 

will do). The name of the file doesn’t matter, but the . c extension is often required 

by compilers. 
Next, we’ve got to convert the program to a form that the machine can exe¬ 

cute. For a C program, that usually involves three steps: 

■ Preprocessing. The program is first given to a preprocessor, which obeys 

commands that begin with # (known as directives). A preprocessor is a bit like 

an editor; it can add things to the program and make modifications. 

■ Compiling. The modified program now goes to a compiler, which translates it 

into machine instructions (object code). The program isn’t quite ready to run 

yet, though. 

■ Linking. In the final step, a linker combines the object code produced by the 

compiler with any additional code needed to yield a complete executable pro¬ 

gram. This additional code includes library functions (like printf) that are 

used in the program. 

Fortunately, this process is often automated, so you won’t find it too onerous. In 

fact, the preprocessor is usually integrated with the compiler, so you probably 

won’t even notice it at work. 
The commands necessary to compile and link vary, depending on the compiler 

and operating system. Under UNIX, the C compiler is usually named cc. To com¬ 

pile and link the pun. c program, enter the following command: 
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% cc pun.c 

(The % character is the UNIX prompt.) Linking is automatic when using cc; no 

separate link command is necessary. 

After compiling and linking the program, cc leaves the executable program in 

a file named a . out by default, cc has many options; one of them (the -o option) 

allows us to choose the name of the file containing the executable program. For 

example, if we want the executable version of pun. c to be named pun, we would 

enter the following command: 

% cc -o pun pun.c 

The GNU C Compiler 

One of the most popular UNIX compilers is gcc (“GNU C compiler”), which is avail¬ 

able for a wide variety of platforms, gcc comes from the Free Software Foundation, 

an organization set up by Richard M. Stallman as a protest against the restrictions 

(and high cost) of licensed UNIX software. The Foundation’s GNU project has 

rewritten much traditional UNIX software from scratch and made it publicly available 

at no charge. GNU, which stands for “GNU’s Not UNIX!,” is pronounced guh-new, 
by the way. 

If you’re using gcc, it’s a good idea to use the -Wall option when compiling: 

% gcc -Wall -o pun pun.c 

The -wall option causes gcc to check the program more thoroughly than usual 

and warn of possible problems. 

On a personal computer, there are often at least two ways to compile and link 

a program: we can either use the command line as in UNIX or we can use an “inte¬ 

grated development environment” that allows us to edit, compile, link, execute, 

and even debug a program without leaving the environment. 

2.2 The General Form of a Simple Program 

Let’s take a closer look at pun. c and see how we can generalize it a bit. Simple C 

programs have the form 

directives 

main() 

{ 
statements 

} 
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In this template, and in similar templates elsewhere in this book, items printed in 

Courier would appear in a C program exactly as shown; items in italics repre¬ 

sent text to be supplied by the programmer. 
Notice how the braces show where main begins and ends. C uses { and } in 

much the same way that other languages use words like begin and end. This 

illustrates a general point about C: it relies heavily on abbreviations and special 

symbols, one reason that C programs are concise (or—less charitably—cryptic). 

Even the simplest C programs rely on three key language features: directives 

(editing commands that modify the program prior to compilation), functions 

(named blocks of executable code, of which main is an example), and statements 

(commands to be performed when the program is run). We’ll take a closer look at 

these features now. 

Directives 

Before a C program is compiled, it is first edited by a preprocessor. Commands 

intended for the preprocessor are called directives. We’ll cover these in detail later. 

For now, we’re interested only in the #include directive. 

The pun. c program begins with the line 

#include <stdio.h> 

This directive states that the information in <stdio ,h> is to be “included” into 

the program before it is compiled. <stdio.h> contains information about C’s 

headers >15.2 standard input/output library. C has a number of headers like <s tdio . h>; each 

contains information about some part of the standard library. The reason we re 

including <stdio.h> is that C, unlike many programming languages, has no 

built-in “read” and “write” commands. The ability to perform I/O is provided 

instead by functions in the standard library. 
Directives always begin with a # character, which distinguishes them from 

other items in a C program. By default, directives are one line long; there’s no 

semicolon or other special marker at the end of a directive. 

Functions 

Functions are like “procedures” or “subroutines” in other programming lan¬ 

guages—they’re the building blocks from which programs are constructed. In fact, 

a C program is little more than a collection of functions. Functions fall into two 

categories: those written by the programmer and those provided as part of the C 

implementation. I’ll refer to the latter as library functions, since they belong to a 

“library” of functions that are supplied with the compiler. 

The term “function” comes from mathematics, where a function is a rule for 

computing a value when given one or more arguments: 

f(x) = x+ 1 

gCy, z) = y2- z2 
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A 

return value of main >9.5 

Q&A 

Q&A 

C uses the term “function” more loosely. In C, a function is simply a series of 

statements that have been grouped together and given a name. Some functions 

compute a value; some don’t. A function that computes a value uses the return 

statement to specify what value it “returns.” For example, a function that adds 1 to 

its argument might execute the statement 

return x + 1; 

while a function that computes the difference of the squares of its arguments might 

execute the statement 

return y * y - z * z; 

Although a C program may consist of many functions, only the main func¬ 

tion is mandatory, main is special: it gets called automatically when the program 

is executed. Until Chapter 9, where we’ll learn how to write other functions, main 

will be the only function in our programs. 

The name main is critical; it can’t be begin or start or even MAIN. 

If main is a function, does it return a value? Yes: it returns a status code that 

is given to the operating system when the program terminates. We’ll have more to 

say about main’s return value in a later chapter. For now, we’ll always have main 

return the value 0, which indicates normal program termination. 

In the interest of simplicity, I omitted the return statement from the original 

version of pun. c. Here’s the program with return added: 

#include <stdio.h> 

main() 

{ 
printf("To C, or not to C: that is the question.\n"); 

return 0; 

} 

It’s a good idea to end main with a return statement such as this one; some 

compilers will generate a warning message otherwise. 

Statements 

A statement is a command to be executed when the program runs. We’ll be explor¬ 

ing statements later in the book, primarily in Chapters 5 and 6. The pun. c pro¬ 

gram uses only two kinds of statements. One is the return statement; the other is 

the function call. Asking a function to perform its assigned task is known as call¬ 

ing the function. The pun. c program, for example, calls the print f function to 

display a string on the screen: 

printf("To C, or not to C: that is the question.\n"); 
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C requires that each statement end with a semicolon. (As with any good rule, 

compound statement > 5.2 there’s one exception: the compound statement, which we’ll encounter later.) The 
semicolon shows the compiler where the statement ends; since statements can con¬ 

tinue over several lines, it’s not always obvious where they end. Directives, on the 

other hand, are one line long, and they don’t end with a semicolon. 

Printing Strings 

printf is a powerful function that we’ll explore in Chapter 3. So far, we’ve only 

used printf to display a string literal—a series of characters enclosed in double 

quotation marks. When printf displays a string literal, it doesn’t show the quo¬ 

tation marks. 
printf doesn’t automatically advance to the next output line when it fin¬ 

ishes printing. To instruct printf to advance one line, we must include \n (the 

new-line character) in the string to be printed. Writing a new-line character termi¬ 

nates the current output line; subsequent output goes onto the next line. To illus¬ 

trate this point, consider the effect of replacing the statement 

printf("To C, or not to C: that is the question.\n"); 

by two calls of printf: 

printf("To C, or not to C: "); 

printf("that is the question.\n"); 

The first call of printf writes To C, or not to C : . The second call writes 

that is the question, and advances to the next line. The net effect is the 

same as the original printf; the user can’t tell the difference. 
The new-line character can appear more than once in a string literal. To dis¬ 

play the message 

Brevity is the soul of wit. 

--Shakespeare 

we could write 

printf("Brevity is the soul of wit.\n —Shakespeare\n"); 

2.3 Comments 

Our pun. c program still lacks something important: documentation. Every pro¬ 

gram should contain identifying information: the program name', the date written, 

the author, the purpose of the program, and so forth. In C, this information is 

placed in comments. The symbol /* marks the beginning of a comment and the 

symbol * / marks the end: 

/* This is a comment */ 
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Comments may appear almost anywhere in a program, either on separate lines 

or on the same lines as other program text. Here’s what pun. c might look like 
with comments added at the beginning: 

/* Name: pun.c */ 

/* Purpose: Prints a bad pun. */ 

/* Author: K. N. King */ 

/* Date written: 5/21/95 */ 

#include <stdio.h> 

main() 

{ 
printf("To C, or not to C: that is the question.\n"); 
return 0; 

} 

Comments can extend over more than one line; once it has seen the / * sym¬ 

bol, the compiler reads (and ignores) whatever follows until it encounters the */ 

symbol. If we like, we can combine a series of short comments into one long com¬ 

ment: 

/* Name: pun.c 

Purpose: Prints a bad pun. 

Author: K. N. King 

Date written: 5/21/95 */ 

A comment like this can be hard to read, though: someone reading the program 

can’t easily tell where the comment ends. Putting * / on a line by itself helps: 

/* Name: pun.c 

Purpose: Prints a bad pun. 

Author: K. N. King 

Date written: 5/21/95 

*/ 

Even better, we can form a “box” around the comment to make it stand out: 

/********************************************************** 
* Name: pun.c * 

* Purpose: Prints a bad pun. * 

* Author: K. N. King * 

* Date written: 5/21/95 * 
******★***************************************************/ 

Some programmers simplify boxed comments by omitting three of the sides: 

/* 
* Name: pun.c 

* Purpose: Prints a bad pun. 

* Author: K. N. King 

* Date written: 5/21/95 

*/ 



16 Chapter 2 C Fundamentals 

A short comment can go on the same line with other program code: 

main() /* Beginning of main program */ 

A comment like this is sometimes called a “winged comment.” 

Forgetting to terminate a comment may cause the compiler to ignore part of your 
program. Consider the following example: 

printf("My "); /* forgot to close this comment... 

printf("cat "); 

printf("has "); /* so it ends here */ 

printf("fleas"); 

Because we’ve neglected to terminate the first comment, this example prints My 
fleas; the compiler ignores the middle two statements. 

2.4 Variables and Assignment 

Few programs are as simple as the one in Section 2.1. Most programs need to per¬ 

form a series of calculations before producing output, and thus need a way to store 

data temporarily during program execution. In C, as in most programming lan¬ 

guages, these storage locations are called variables. 

Types 

range of int values > 7.1 

Q&A 

Every variable must have a type, which specifies what kind of data it will hold. C 

has a wide variety of types. For now, we’ll limit ourselves to just two: int and 

float. Choosing the proper type is critical, since the type affects how the vari¬ 

able is stored and what operations can be performed on the variable. The type of a 

numeric variable determines the largest and smallest numbers that the variable can 

store; it also determines whether or not digits are allowed after the decimal point. 

A variable of type int (short for integer) can store a whole number, like 0, 1, 

392, or -2553. The range of possible values is limited, though. On some comput¬ 

ers, the largest int value is only 32,767. 

A variable of type float (short for floating-point) can store much larger 

numbers than an int variable. Furthermore, a float variable can store numbers 

with digits after the decimal point, like 379.125. float variables have draw¬ 

backs, however. They require more space than int variables. Arithmetic on 

float numbers is usually slower than arithmetic on int numbers. Moreover, the 

value of a float variable is often just an approximation of the number that was 

stored in it. If we store 9,999,999,999 in a float variable, we may later find that 

the variable has the value 10,000,000,000, thanks to rounding error. 
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Declarations 

Variables must be declared—described for the benefit of the compiler—before 

they can be used. To declare a variable, we first specify the type of the variable, 

then its name. (Variable names are chosen by the programmer, subject to the rules 

described in Section 2.7.) For example, we might declare variables height and 

profit as follows: 

int height; 

float profit; 

The first declaration states that height is a variable of type int, meaning that 

height can store an integer value. The second declaration says that profit is a 

variable of type float. 

If several variables have the same type, their declarations can be combined: 

int height, length, width, volume; 

float profit, loss; 

Notice that each complete declaration ends with a semicolon. 

Our first template for main didn’t include declarations. When main contains 

declarations, these must precede the statements: 

main() 

{ 
declarations 
statements 

} 

As a matter of style, it’s a good idea to leave a blank line between the declarations 

and the statements. 

Assignment 

A variable can be given a value by means of assignment. For example, the state¬ 

ments 

height = 8; 

length = 12; 

width = 10; 

assign the values 8, 12, and 10 to height, length, and width, respectively. 

Once a variable has been assigned a value, it can be used to help compute the 

value of another variable: 

volume = height * length * width; 

In C, * represents the multiplication operator, so this statement multiplies the val¬ 

ues stored in height, length, and width, then assigns the result to the vari¬ 

able volume. In general, the right side of an assignment can be a formula (or 

expression, in C terminology) involving constants, variables, and operators. 
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Printing the Value of a Variable 

We can use printf to display the current value of a variable. For example, to 

write the message 

Height: n 

where n is the current value of the height variable, we’d use the following call 

of printf: 

printf("Height: %d\n", height); 

%d is a placeholder indicating where the value of height is to be filled in during 

printing. Note the placement of \n just after %d, so that printf will advance to 

the next line after printing the value of height. 

%d works only for int variables; to print a float variable, we’d use %f 

instead. By default, %f displays a number with six digits after the decimal point. 

To force %f to display n digits after the decimal point, we can put . n between % 

and f. For example, to print the line 

Profit: $2150.48 

we’d call printf as follows: 

printf("Profit: $%.2f\n", profit); 

There’s no limit to the number of variables that can be printed by a single call 

of printf. To display the values of both the height and length variables, we 

could use the following call of printf: 

printf("Height: %d Length: %d\n", height, length); 

PROGRAM Computing the Dimensional Weight of a Box 

Shipping companies don’t especially like boxes that are large but very light, since 

they take up valuable space in a truck or airplane. In fact, companies often charge 

extra for such a box, basing the fee on its volume instead of its weight. The usual 

method is to divide the volume by 166 (the allowable number of cubic inches per 

pound). If this number—the box’s “dimensional” or “volumetric” weight— 

exceeds its actual weight, the shipping fee is based on the dimensional weight. 

Let’s say that you’ve been hired by a shipping company to write a program 

that computes the dimensional weight of a box. Since you’re new to C, you decide 

to start off by writing a program that calculates the dimensional weight of a partic¬ 

ular box that’s 12" x 10" x 8". Division is represented by / in C, so the obvious 

way to compute the dimensional weight would be 

weight = volume / 166; 

where weight and volume are integer variables representing the box’s weight 

and volume. Unfortunately, this formula isn’t quite what we need. In C, when one 
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integer is divided by another, the answer is “truncated”: all digits after the decimal 

point are lost. The volume of a 12" x 10” x 8” box will be 960 cubic inches. Divid¬ 

ing by 166 gives the answer 5 instead of 5.783, so we have in effect rounded down 

to the next lowest pound; the shipping company expects us to round up. One solu¬ 
tion is to add 165 to the volume before dividing by 166: 

weight = (volume + 165) / 166; 

A volume of 166 would give a weight of 331/166, or 1, while a volume of 167 

would yield 332/166, or 2. Calculating the weight in this fashion gives us the fol¬ 
lowing program. 

dweight.C /* Computes the dimensional weight of a 12" x 10" x 8" box */ 

ttinclude <stdio.h> 

main() 

{ 
int height, length, width, volume, weight; 

height = 8; 

length = 12; 

width = 10; 

volume = height * length * width; 

weight = (volume + 165) / 166; 

printf("Dimensions: %dx%dx%d\n", length, width, height); 

printf("Volume (cubic inches); %d\n", volume); 

printf("Dimensional weight (pounds): %d\n", weight); 

return 0; 

} 

The output of the program is 

Dimensions: 12x10x8 

Volume (cubic inches): 960 

Dimensional weight (pounds): 6 

Initialization 

variable initialization >18.5 Some variables are automatically set to zero when a program begins to execute, 

but most are not. As a result, we can’t usually predict what the value of a variable 

will be initially; it might be 2568, -30891, or some equally strange number. 

We can always give a variable an initial value by using assignment, of course. 

But there’s an easier way: put the initial value of the variable in its declaration. For 

example, we can declare the height variable and initialize it in one step: 

int height = 8; 

In C jargon, the value 8 is said to be an initializer. 
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Any number of variables can be initialized in the same declaration: 

int height = 8, length = 12, width = 10; 

Notice that each variable requires its own initializer. In the following example, the 

initializer 10 is good only for the variable width, not for height or length 

(whose values remain unknown): 

int height, length, width = 10; 

Printing Expressions 

printf isn’t limited to displaying numbers stored in variables; it can display the 

value of any numeric expression. Taking advantage of this property can simplify a 

program and reduce the number of variables. For instance, the statements 

volume = height * length * width; 
printf("%d\n", volume); 

could be replaced by 

printf("%d\n", height * length * width); 

printf’s ability to print expressions illustrates one of C’s general principles: 

Wherever a value is needed, any expression of the same type will do. 

2.5 Reading Input 

The dweight.c program isn’t especially useful, since it only calculates the 

dimensional weight of one box. To improve the program, we’ll need to allow the 

user to enter the dimensions. 
To obtain input, we’ll use the scanf function, the C library’s counterpart to 

printf. The f in scanf, like the f in printf, stands for “formatted”; both 

scanf and printf require the use of a format string to specify the appearance 

of the input or output data, scanf needs to know what form the input data will 

take, just as printf needs to know how to display output data. 

To read an int value, we’d use scanf as follows: 

scanf("%d", &i); /* reads an integer; stores into i */ 

The " %d" string tells scanf to read input that represents an integer; i is an int 

& operator >11.2 variable into which we want scanf to store the input. The & symbol is hard to 

explain at this point; for now, I’ll just note that it is usually (but not always) 

required when using scanf. 

Reading a float value requires a slightly different call of scanf: 

scanf("%f", &x); /* reads a float value; stores into x */ 



2.6 Defining Constants 21 

%f works only with variables of type float, so I’m assuming that x is a float 

variable. The " %f" string tells scanf to look for an input value in float format 

(the number may contain a decimal point, but doesn’t have to). 

PROGRAM Computing the Dimensional Weight of a Box (Revisited) 

Here’s an improved version of the dimensional weight program in which the user 

enters the dimensions. Note that each call of scanf is immediately preceded by a 

call of print f. That way, the user will know when to enter input and what input 

to enter. 

dweight2.c /* Computes the dimensional weight of a box */ 

/* from input provided by the user */ 

#include <stdio.h> 

main() 

{ 
int height, length, width, volume, weight; 

printf("Enter height of box: "); 

scanf("%d", kheight); 

printf("Enter length of box: "); 

scanf ("%d", Sclength) ; 

printf("Enter width of box: "); 

scanf("%d", kwidth); 

volume = height * length * width; 

weight = (volume + 165) / 166; 

printf("Volume (cubic inches): %d\n", volume); 

printf("Dimensional weight (pounds): %d\n", weight); 

return 0; 

} 

The output of the program has the following appearance (input entered by the user 

is underlined): 

Enter height of box: 8^ 

Enter length of box: 12_ 

Enter width of box: 10 

Volume (cubic inches): 960 

Dimensional weight (pounds): 6 

2.6 Defining Constants 

When a program contains constants—values that don’t change during execution— 

it’s often a good idea to give them names. The dweight. c and dweight2 . c 
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parentheses in macros >14.3 

PROGRAM 

celsius.c 

programs rely on the constant 166, whose meaning may not be at all clear to some¬ 

one reading the program later. Using a feature known as macro definition, we can 

name this constant: 

#define CUBIC_IN_PER_LB 166 

#def ine is a preprocessor directive, just as #include is, so there’s no semico¬ 

lon at the end of the line. 
When a program is compiled, the preprocessor replaces each macro by the 

value that it represents. For example, the statement 

weight = (volume + CUBIC_IN_PER_LB - 1) / CUBIC_IN_PER_LB; 

will become 

weight = (volume + 166 - 1) / 166; 

giving the same effect as if we’d written the latter statement in the first place. 

A macro can also be defined in terms of an expression: 

#define SCALE_FACTOR (5.0 / 9.0) 

When it contains operators, the expression should be enclosed in parentheses. 

Notice that we’ve used only upper-case letters in names of constants. This is a 

convention that most C programmers follow, not a requirement of the language. 

(Still, C programmers have been doing this for decades; you wouldn’t want to be 

the first to deviate.) 

Converting from Fahrenheit to Celsius 

The following program prompts the user to enter a Fahrenheit temperature; it then 

prints the equivalent Celsius temperature. The output of the program will have the 

following appearance (as usual, input entered by the user is underlined): 

Enter Fahrenheit temperature: 212 

Celsius equivalent: 100.0 

The program will allow temperatures that aren’t integers; that’s why the Celsius 

temperature is displayed as 100.0 instead of 10 0. Let’s look first at the entire 

program, then see how it’s put together. 

/* Converts a Fahrenheit temperature to Celsius */ 

ttinclude <stdio.h> 

#define FREEZING_PT 32.0 

#define SCALE_FACTOR (5.0 / 9.0) 

main() 

{ 
float fahrenheit, Celsius; 
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printf("Enter Fahrenheit temperature: "); 

scant ("%f", Scfahrenheit) ; 

Celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR; 

printf("Celsius equivalent: %.lf\n", Celsius); 

return 0; 

} 

The statement 

Celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR; 

converts the Fahrenheit temperature to Celsius. Since FREEZING_PT stands for 

3 2.0 and SCALE_FACTOR stands for (5.0 / 9.0), the compiler sees this 

statement as 

Celsius = (fahrenheit - 32.0) * (5.0 / 9.0); 

Defining SCALE_FACTOR to be (5.0 / 9.0) instead of (5 / 9) is important, 

because C truncates the result when two integers are divided. The value of (5 / 

9 ) would be 0, which definitely isn’t what we want. 

The call of printf writes the Celsius temperature: 

printf("Celsius equivalent: %.lf\n", Celsius); 

Notice the use of % . If to display Celsius with just one digit after the decimal 

point. 

2.7 Identifiers 

As we’re writing a program, we’ll have to choose names for variables, functions, 

macros, and other entities. These names are called identifiers. In C, an identifier 

may contain letters, digits, and underscores, but must begin with a letter or under¬ 

score. Here are some examples of legal identifiers: 

times10 get_next_char _done 

The following are not legal identifiers: 

lOtimes get-next-char 

The symbol 10times begins with a digit, not a letter or underscore, get-next- 

char contains minus signs, not underscores. 
C is case-sensitive: it distinguishes between upper-case and lower-case letters 

in identifiers. For example, the following identifiers are all different: 

job joB job jOB Job JoB JOb JOB 
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Q&A 

Table 2.1 

Keywords 

A 
restrictions on identifiers >21.1 

These eight identifiers could all be used simultaneously, each for a completely dif¬ 

ferent purpose. (Talk about obfuscation!) Sensible programmers try to make iden¬ 

tifiers look different unless they’re somehow related. 
Since case matters in C, many programmers follow the convention of using 

only lower-case letters in identifiers (other than macros), with underscores inserted 

when necessary for legibility: 

symbol_table current_page name_and_address 
* 

Other programmers avoid underscores, instead using an upper-case letter to begin 

each word in an identifier: 

SymbolTable CurrentPage NameAndAddress 

Other reasonable conventions exist; just be sure to capitalize an identifier the same 

way each time it appears in a program. 
Standard C places no limit on the maximum length of an identifier, so don’t be 

afraid to use long, descriptive names. A name such as current_page is a lot 

easier to understand than a name like cp. 

Keywords 

In Standard C, the keywords in Table 2.1 have special significance to the compiler 

and therefore can’t be used as identifiers. 

auto double int struct 

break else long switch 

case enum register typedef 

char extern return union 

const float short unsigned 

continue for signed void 

default goto sizeof volatile 

do if static while 

Because of C’s case-sensitivity, keywords must appear in programs exactly as 

shown in Table 2.1, with all letters in lower case. Names of functions in the stan¬ 

dard library (such as printf) contain only lower-case letters also. Avoid the 

plight of the unfortunate programmer who enters an entire program in upper case, 

only to find that the compiler can’t recognize keywords and calls of library func¬ 

tions. 

Watch out for other restrictions on identifiers. Some compilers treat certain identi¬ 
fiers (asm, far, and near, for example) as additional keywords. Identifiers that 
belong to the standard library are restricted as well. Accidentally using one of 
these names can cause an error during compilation or linking. Identifiers that begin 
with an underscore are also restricted. 
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2.8 Layout of a C Program 

tokens > Appendix a We can think of a C program as a series of tokens: groups of characters that can’t 

be split up without changing their meaning. Identifiers and keywords are tokens. 

So are operators like + and punctuation marks such as the comma and semico¬ 

lon, and string literals. For example, the statement 

printf("Height: %d\n", height); 

consists of seven tokens: 

printf ( "Height; %d\n" , height ) ; 

© © ® © © © © 

Tokens © and © are identifiers, token © is a string literal, and tokens ©, ©, ©, and 
© are punctuation. 

The amount of space between tokens in a program isn’t critical in most cases. 

At one extreme, tokens can be crammed together with no space between them at 

all, except where this would cause two tokens to merge into a third token. For 

example, we could delete most of the space in the celsius . c program of Sec¬ 

tion 2.6, provided that we leave space between tokens such as float and fahr- 

enhei t. 

/* Converts a Fahrenheit temperature to Celsius */ 

#include <stdio.h> 

♦define FREEZING_PT 32.0 

♦ define SCALE_FACTOR (5.0/9.0) 

main(){float fahrenheit,Celsius;printf( 

"Enter Fahrenheit temperature: ");scanf("%f", kfahrenheit); 

celsius=(fahrenheit-FREEZING_PT)* SCALE_FACTOR; 

printf("Celsius equivalent: %.lf\n", Celsius);return 0;} 

In fact, if the page were wider, we could put the entire main function on a single 

line. We can’t put the whole program on one line, though, because each preproces¬ 

sor directive requires a separate line. 
Compressing programs in this fashion isn’t a good idea. In fact, adding spaces 

and blank lines to a program can make it easier to read and understand. Fortu¬ 

nately, C allows us to insert any amount of space—blanks, tabs, and new-line char¬ 

acters—between tokens. This rule has several important consequences for program 

layout: 

■ Statements can be divided over any number of lines. The following statement, 

for example, is so long that it would be hard to squeeze it onto a single line: 

printf("Dimensional weight (pounds): %d\n", 

(volume + CUBIC_IN_PER_LB - 1) / CUBIC_IN_PER_LB); 
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Q&A 

■ Space between tokens makes it easier for the eye to separate them. For this 

reason, I usually put a space before and after each operator: 

volume = height * length * width; 

I also put a space after each comma. Some programmers go even further, put¬ 

ting spaces around parentheses and other punctuation. 

b Indentation can make nesting easier to spot. For example, we should indent 

declarations and statements to make it clear that they’re nested inside main, 

a Blank lines can divide a program into logical units, making it easier for the 

reader to discern the program’s structure. A program with no blank lines is as 

hard to read as a book with no chapters. 

The Celsius. c program of Section 2.6 illustrates several of these guide¬ 

lines. Let’s take a closer look at the main function in that program: 

main() 

{ 
float fahrenheit, Celsius; 

printf("Enter Fahrenheit temperature: "); 

scanf("%f", kfahrenheit); 

Celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR; 

printf("Celsius equivalent: %.lf\n", Celsius); 

return 0; 

} 

First, observe how the space around =, -, and * makes these operators stand out. 

Second, notice how the indentation of declarations and statements makes it obvi¬ 

ous that they all belong to main. Finally, note how blank lines divide main into 

five parts: (1) declaring the fahrenheit and Celsius variables; (2) obtaining 

the Fahrenheit temperature; (3) calculating the value of Celsius; (4) printing the 

Celsius temperature; and (5) returning to the operating system. 

While we’re on the subject of program layout, notice how I’ve placed the { 

token underneath main () and put the matching } on a separate line, aligned with 

{. Putting } on a separate line lets us insert or delete statements at the end of the 

function; aligning it with { makes it easy to spot the end of main. 

A final note: Although extra spaces can be added between tokens, it’s not pos¬ 

sible to add space within a token without changing the meaning of the program or 

causing an error. Writing 

fl oat fahrenheit, Celsius; /*** WRONG ***/ 

or 

fl 
oat fahrenheit, Celsius; /*** WRONG ***/ 
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produces an error when the program is compiled. Putting a space inside a string lit¬ 

eral is allowed, although it changes the meaning of the string. Putting a new-line 

character in a string (in other words, splitting the string over two lines) is illegal, 
though: 

printf("To C, or not to C: 

that is the question.\n"); /*** WRONG ***/ 

Continuing a string from one line to the next requires a special technique that we’ll 
continuing a string >-13. i learn in a later chapter. 

Q&A 

Q: Why is C so terse? It seems as though programs would be more readable if C 
used begin and end instead of { and }, integer instead of int, and so 
forth, [p. 12] 

A: Legend has it that the brevity of C programs is due to the environment that existed 

in Bell Labs at the time the language was developed. The first C compiler ran on a 

DEC PDP-11 (an early minicomputer); programmers used a teletype—essentially 

a typewriter connected to a computer—to enter programs and print listings. Since 

teletypes were very slow (they could print only 10 characters per second), mini¬ 

mizing the number of characters in a program was clearly advantageous. 

Q: In some C books, the main function ends with exit (0) instead of return 
0. Are these the same? [p. 13] 

A: When they appear inside main, these statements are indeed equivalent: both ter¬ 

minate the program, returning the value 0 to the operating system. Which one to 

use is mostly a matter of taste. 

Q: What happens if a program terminates without executing a return state¬ 
ment? [p. 13] 

A: Some value will be returned to the operating system, but there’s no guarantee what 

it will be. As long as the program’s status is never tested once it terminates, there 

shouldn’t be any problem. 

Q: Does the compiler remove a comment entirely or replace it with blank space? 

A: Some older C compilers simply delete all the characters in each comment, making 

it possible to write 

a/**/b = 0; 

and have the compiler interpret it as 

ab = 0; 
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Q: 

A: 

lint >1.2 

Q: 

A: 

disabling code >14.4 

Q: 

A: 

Q: 

A: 

According to the C standard, however, the compiler must replace each comment 

by a single space character, so this trick doesn’t work. Instead, we’d end up with 

the following (illegal) statement: 

a b = 0 ; 

How can I tell if my program has an unterminated comment? 

If you’re lucky, the program won’t compile because the comment has rendered the 

program illegal. If the program does compile, there are several techniques that you 

can use. Stepping through the program line by line with a debugger will reveal if 

any lines are being skipped. Some development environments display programs in 

color, with comments in a different color to distinguish them from the surrounding 

code. If you’re using such an environment, you can easily spot unterminated com¬ 

ments, since program text will have a different color if it’s accidentally included in 

a comment. A program such as lint can also help. 

Is it legal to nest one comment inside another? 

Not in Standard C. For instance, the following code is illegal: 

/* 
/*** WRONG ***/ 

*/ 

The * / symbol on the second line matches the / * symbol on the first line, so the 

compiler will flag the * / symbol on the third line as an error. 

C’s prohibition against nested comments can sometimes be a problem. Sup¬ 

pose we’ve written a long program containing many short comments. To disable a 

portion of the program temporarily (during testing, say), our first impulse is to 

“comment out” the offending lines with /* and */. Unfortunately, this method 

won’t work if the lines contain comments. As we’ll see later, there’s a better way 

to disable portions of a program. 

I’ve seen C programs containing comments that begin with // instead of /*, 

and don’t have * / at the end: 

// This is a comment. 

Is this practice legal? 

Not in Standard C. Using / /to begin a comment is a C++ practice that some C 

compilers also allow. Avoid the urge to use / /; other compilers may not support it, 

so you’ll end up with a nonportable program. 

Where does the float type get its name? [p. 16] 

float is short for “floating-point,” a technique for storing numbers in which the 

decimal point “floats.” A float value is usually stored in two parts: tht fraction 

(or mantissa) and the exponent. The number 12.0 might be stored as 1.5 x 23, for 

example, where 1.5 is the fraction and 3 is the exponent. Some programming lan¬ 

guages call this type real instead of float. 
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*Q: 

A: 

external linkage >-18.2 

Q: 
A: 

Section 2.1 1 

Section 2.2 2. 

Is it really true that there’s no limit on the length of an identifier? [p. 24] 

Yes and no. The C standard says that identifiers may be arbitrarily long. However, 

compilers are only required to remember the first 31 characters. Thus, if two 

names begin with the same 31 characters, a compiler might be unable to distin¬ 
guish between them. 

To make matters even more complicated, the C standard has special rules for 

identifiers with external linkage; most function names fall into this category. Since 

these names must be made available to the linker, and since some older linkers can 

handle only short names, the standard says that only the first six characters are sig¬ 

nificant. Moreover, the case of letters doesn’t matter. As a result, ABCDEFG and 

abcdefh might be treated as the same name. 

Most compilers and linkers are more generous than the standard, so these 

rules aren’t a problem in practice. Don’t worry about making identifiers too long— 

worry about making them too short. 

How many spaces should I use for indentation? [p. 26] 

That’s a tough question. Leave too little space, and the eye has trouble detecting 

indentation. Leave too much, and lines run off the screen (or page). Many C pro¬ 

grammers indent nested statements eight spaces (one tab stop), but four is also 

common. Indenting eight spaces is probably too much, especially when some 

screens and printers are limited to 80 columns. Studies have shown that the opti¬ 

mum amount of indentation is three spaces. I’ll use two spaces in this book, how¬ 

ever, so that programs will fit within the margins. 

Exercises 

Create and run Kernighan and Ritchie’s famous “hello, world” program: 

#include <stdio.h> 

main() 

{ 
printf("hello, world\n"); 

} 

Do you get a warning message from the compiler? If so, what’s needed to make it go away? 

Consider the following program: 

#include <stdio.h> 

main() 

{ 
printf("Parkinson's Law:\nWork expands so as to "); 

printf("fill the time\n"); 
printf("available for its completion.\n"); 

return 0; 

} 
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Section 2.4 

Section 2.5 

Section 2.6 

Section 2.7 

Section 2.8 

(a) Identify the directives and statements in this program. 

(b) What output does the program produce? 

3. Write a program that uses printf to display the following picture on the screen: 

★ 

★ 

* 

★ * 

* * 

★ 

4. Condense the dweight.c program by (1) replacing the assignments to height, 
length, and width with initializers and (2) removing the weight variable, instead cal¬ 
culating (volume + 165) / 166 within the last printf. 

5. Write a program that computes the volume of a sphere with a 10-meter radius, using the for¬ 
mula v = 4/37tA Write the fraction 4/3 as 4.0/3 . 0. (Try writing it as 4/3. What hap¬ 

pens?) 

6. Write a program that declares several int and float variables—without initializing 
them—and then prints their values. Is there any pattern to the values? (Usually there isn’t.) 

7. Modify the program of Exercise 5 so that it prompts the user to enter the radius of the 

sphere. 

8. Write a program that asks the user to enter a dollar amount, then displays the amount with 

5% tax added: 

Enter a dollar amount: 100.00 

With 5% tax added: 105.00 

9. Modny Exercise 7 by making PI a macro that represents the value of n. 

10. Which of the following are not legal C identifiers? 

(a) 100_bottles 

(b) _100_bottles 

(c) one_hundred_bottles 

(d) bottles_by_the_hundred_ 

11. Which of the following are keywords in C? 

(a) for 

(b) If 
(c) main 

(d) printf 

(e) while 

12. How many tokens are there in the following statement? 

a=(3 *q-p*p)/3 ; 

13. Insert spaces between the tokens in Exercise 12 to make the statement easier to read. 
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In seeking the unattainable, simplicity only gets in the way. 

scanf and printf, which support formatted reading and writing, are two of the 

most frequently used functions in C. As this chapter shows, both are powerful but 

tricky to use properly. Section 3.1 describes printf, and Section 3.2 covers 

scanf. Neither section gives complete details, which will have to wait until 
Chapter 22. 

3.1 The printf Function 

The printf function is designed to display the contents of a string, the format 

string, with values possibly inserted at specified points in the string. When it is 

called, printf must be supplied with the format string, followed by any values 

that are to be inserted into the string during printing: 

printf (string, expr], expr2, ...) ; 

The values displayed can be constants, variables, or more complicated expres¬ 

sions. There’s no limit on the number of values that can be printed by a single call 

of printf. 
The format string may contain both ordinary characters and conversion speci¬ 

fications, which begin with the % character. A conversion specification is a place¬ 

holder representing a value to be filled in during printing. The information that 

follows the % character specifies how the value is converted from its internal form 

(binary) to printed form (characters)—that’s where the term “conversion specifica¬ 

tion” comes from. For example, the conversion specification %d specifies that 

printf is to convert an int value from binary to a string of decimal digits, 

while %f does the same for a float value. 

31 
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Ordinary characters in a format string are printed exactly as they appear in the 

string; conversion specifications are replaced by the values to be printed. Consider 

the following example: 

int i, j ; 
float x, y; 

i = 10; 
j =20; 

x = 43.2892; 
y = 5527. 0; 

printf("i = %d, j = %d, x = %f, y = %f\n", i, j , x, y) ; 

This call of printf produces the following output: 

i = 10, j = 20, x = 43.289200, y = 5527.000000 

The ordinary characters in the format string are simply copied to the output line. 

The four conversion specifications are replaced by the values of the variables i, j, 

x, and y, in that order. 

AC compilers don’t check that the number of conversion specifications in a format 
string matches the number of output items. The following call of printf has 
more conversion specifications than values to be printed: 

printf("%d %d\n”, i); /*** WRONG ***/ 

printf will print the value of i correctly, then print a second (meaningless) inte¬ 
ger value. A call with too few conversion specifications has similar problems: 

printf("%d\n", i, j); /*** WRONG ***/ 

In this case, printf prints the value of i but doesn’t show the value of j . 

Furthermore, there’s no check that a conversion specification is appropriate 
for the type of item being printed. If the programmer uses an incorrect specifica¬ 
tion, the program will simply produce meaningless output. Consider the following 
call of printf, in which the int variable i and the float variable x are in the 
wrong order: 

printf("%f %d\n", i, x); /*** WRONG ***/ 

Since printf must obey the format string, it will dutifully display a float 
value, followed by an int value. Unfortunately, both will be meaningless. 

Conversion Specifications 

Conversion specifications give the programmer a great deal of control over the 

appearance of output. On the other hand, they can be complicated and hard to read. 

In fact, describing conversion specifications in complete detail is too arduous a 
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task to tackle this early in the book. Instead, we’ll just take a brief look at some of 
their more important capabilities. 

In Chapter 2, we saw that a conversion specification can include formatting 

information. In particular, we used % . If to display a float value with one digit 

after the decimal point. More generally, a conversion specification can have the 

form %m.pX or %-m.pX, where m and p are integer constants and X is a letter. 

Both m and p are optional; if p is omitted, the period that separates m and p is also 

dropped. In the conversion specification %10.2f, m is 10, p is 2, and X is f. In 

the specification %10f, m is 10 and p (along with the period) is missing, but in the 

specification % . 2 f, p is 2 and m is missing. 

The minimum field width, m, specifies the minimum number of characters to 

print. If the value to be printed requires fewer than m characters, the value is right- 

justified within the field. (In other words, extra spaces precede the value.) For 

example, the specification %4d would display the number 123 as *123. (I’m 

using • to represent the space character.) If the value to be printed requires more 

than m characters, the field width automatically expands to the necessary size. 

Thus, the specification %4d would display the number 12345 as 123 45—no dig¬ 

its are lost. Putting a minus sign in front of m causes left justification; the specifi¬ 

cation % - 4 d would display 123 as 12 3 •. 

The meaning of the precision, p, isn’t as easily described, since it depends on 

the choice of X, the conversion specifier. X indicates which conversion should be 

applied to the value before it is printed. The most common conversion specifiers 

for numbers are: 

Q&A ■ d—displays an integer in decimal (base 10) form, p indicates the minimum 

number of digits to display (extra zeros are added to the beginning of the num¬ 

ber if necessary); if p is omitted, it is assumed to have the value 1. 

■ e—displays a floating-point number in exponential format (scientific nota¬ 

tion). p indicates how many digits should appear after the decimal point (the 

default is 6). If p is 0, the decimal point is not displayed. 

■ f—displays a floating-point number in “fixed decimal” format, without an 

exponent, p has the same meaning as for the e specifier. 

■ g—displays a floating-point number in either exponential format or fixed dec¬ 

imal format, depending on the number’s size, p indicates the maximum num¬ 

ber of significant digits (not digits after the decimal point) to be displayed. 

Unlike the f conversion, the g conversion won’t show trailing zeros. Further¬ 

more, if the value to be printed has no digits after the decimal point, g doesn’t 

display the decimal point. 

The g specifier is especially useful for displaying numbers whose size can’t be 

predicted when the program is written or that tend to vary widely in size. When 

used to print a moderately large or moderately small number, the g specifier uses 

fixed decimal format. But when used to print a very large or very small number, 

the g specifier switches to exponential format so that the number will require 

fewer characters. 
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specifiers for integers >7.1 

specifiers for floats >7.2 

specifiers for characters >7.3 

specifiers for strings > 13.3 

PROGRAM 

tprintf.c 

There are many other specifiers besides %d, %e, %f, and %g. I’ll gradually 

introduce many of them in subsequent chapters. For the full list, and for a complete 

explanation of the other capabilities of conversion specifications, consult Section 

22.3. 

Using print f to Format Numbers 

The following program illustrates the use of printf to print integers and float¬ 

ing-point numbers in various formats. 

/* Prints int and float values in various formats */ 

♦include <stdio.h> 

main() 

{ 
int i; 

float x; 

i = 40; 

x = 839.21; 

printf("|%d|%5d|%-5d|%5.3d|\n", i, i, i, i); 

printf("|%10.3f|%10.3e|%-10g|\n", x, x, x); 

return 0; 

} 

The | characters in the printf format strings are there merely to help show 

how much space each number occupies when printed; unlike % or \ , the | charac¬ 

ter has no special significance to printf. The output of this program is: 

|40| 40|40 | 040| 

j 839.210| 8.3 92e+02|83 9.21 | 

Let’s take a closer look at the conversion specifications used in this program: 

■ %d—displays i in decimal form, using a minimum amount of space. 

■ %5d—displays i in decimal form, using a minimum of five characters. Since 

i requires only two characters, three spaces were added. 

■ %-5d—displays i in decimal form, using a minimum of five characters; since 

the value of i doesn’t require five characters, the spaces are added afterward 

(that is, i is left-justified in a field of length five). 

■ %5.3d—displays i in decimal form, using a minimum of five characters 

overall and a minimum of three digits. Since i is only two digits long, an extra 

zero was added to guarantee three digits. The resulting number is only three 

characters long, so two spaces were added, for a total of five characters (i is 

right-justified). 
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escape sequences >7.3 

Q&A 

■ % 10.3 f—displays x in fixed decimal form, using ten characters overall, with 

three digits after the decimal point. Since x requires only seven characters 

(three before the decimal point, three after the decimal point, and one for the 
decimal point itself), three spaces precede x. 

■ %10.3e—displays x in exponential form, using ten characters overall, with 

three digits after the decimal point, x requires nine characters altogether 
(including the exponent), so one space precedes x. 

■ %-10g—displays x in either fixed decimal form or exponential form, using 

ten characters overall. In this case, printf chose to display x in fixed deci¬ 

mal form. The presence of the minus sign forces left justification, so x is fol¬ 
lowed by four spaces. 

Escape Sequences 

The \n code that we often use in format strings is called an escape sequence. 

Escape sequences enable strings to contain characters that would otherwise cause 

problems for the compiler, including nonprinting (control) characters and charac¬ 

ters that have a special meaning to the compiler (such as ")■ We’ll provide a com¬ 

plete list of escape sequences later; for now, here’s a sample: 

alert (bell) \a 

backspace \b 

new line \n 
horizontal tab \t 

When they appear in printf format strings, these escape sequences represent 

actions to perform upon printing. Printing \a causes an audible beep on most 

machines. Printing \b moves the cursor back one position. Printing \n advances 

the cursor to the beginning of the next line. Printing \t moves the cursor to the 

next tab stop. 

A string may contain any number of escape sequences. Consider the following 

printf example, in which the format string contains six escape sequences: 

printf("Item\tUnit\tPurchase\n\tPrice\tDate\n"); 

Executing this statement prints a two-line heading: 

Item Unit Purchase 

Price Date 

Another common escape sequence is \", which represents the " character. 

Since the " character marks the beginning and end of a string, it can’t appear 

within a string without the use of this escape sequence. Elere’s an example: 

printf("\"Hello!\"") ; 

This statement produces the following output: 

"Hello!" 
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Incidentally, you can’t just put a single \ character in a string; the compiler 

will assume that it’s the beginning of an escape sequence. To print a single \ char¬ 

acter, put two \ characters in the string: 

printf("\\"); /* prints one \ character */ 

3.2 The scanf Function 

Just as printf prints output in a specified format, scanf reads input according 

to a particular format. A scanf format string, like a printf format string, may 

contain both ordinary characters and conversion specifications. The conversions 

allowed with scanf are essentially the same as those used with printf. 
In many cases, a scanf format string will contain only conversion specifica¬ 

tions, as in the following example: 

int i, j ; 

float x, y; 

scanf("%d%d%f%f", &i, & j , &x, &y); 

Suppose that the user enters the following input line: 

1 -20 .3 -4.0e3 

scanf will read the line, converting its characters to the numbers they represent, 

and then assign 1, -20, 0.3, and -4000.0 to i, j, x, and y, respectively. “Tightly 

packed” format strings like " %d%d%f %f" are common in scanf calls, printf 

format strings are less likely to have adjacent conversion specifications. 
scanf, like printf, contains several traps for the unwary. When using 

scanf, the programmer must check that the number of conversion specifications 

matches the number of input variables and that each conversion is appropriate for 

the corresponding variable—as with printf, the compiler doesn’t check for a 

possible mismatch. Another trap involves the & symbol, which normally precedes 

each variable in a scanf call. The & is usually (but not always) required, and it’s 

the programmer’s responsibility to remember to use it. 

Forgetting to put the & symbol in front of a variable in a call of scanf will have 
unpredictable—and possibly disastrous—results. A program crash is a common 
outcome. At the very least, the value that is read from the input won’t be stored in 
the variable; instead, the variable will retain its old value (which may be meaning¬ 
less if the variable wasn’t given an initial value). Omitting the.& is an extremely 
common error—be careful! Some compilers can spot this error, but usually not all 
the time. If the variable that is missing the & (i, say) hasn’t yet been assigned a 
value, you may get a warning such as "Possible use of ‘i’ before definition. ” If you 

get this warning, check for a missing &. 
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Calling scanf is a powerful but unforgiving way to read data. Many profes¬ 

sional C programmers avoid scanf, instead reading all data in character form and 

converting it to numeric form later. We’ll use scanf quite a bit, especially in the 

early chapters of this book, because it provides a simple way to read numbers. Be 

aware, however, that many of our programs won’t behave properly if the user 

enters unexpected input. As we’ll see later, it’s possible to have a program test 
detecting errors in scanf >22.3 whether scanf successfully read the requested data (and attempt to recover if it 

didn’t). Such tests are impractical for the programs in this book—they would add 

too many statements and obscure the point of the examples. 

How scanf Works 

scanf can actually do much more than I’ve indicated so far. It is essentially a 

“pattern-matching” function that tries to match up groups of input characters with 

conversion specifications. 

Like printf, scanf is controlled by the format string. When it is called, 

scanf begins processing the information in the string, starting at the left. For 

each conversion specification in the format string, scanf tries to locate an item of 

the appropriate type in the input data, skipping blank space if necessary, scanf 

then reads the item, stopping when it encounters a character that can’t possibly 

belong to the item. If the item was read successfully, scanf continues processing 

the rest of the format string. If any item is not read successfully, scanf returns 

immediately without looking at the rest of the format string (or the remaining input 

data). 

As it searches for the beginning of a number, scanf ignores white-space 

characters (the space, horizontal and vertical tab, form-feed, and new-line charac¬ 

ters). As a result, numbers can be put on a single line or spread out over several 

lines. Consider the following call of scanf: 

scanf("%d%d%f%f", &i, &j, &x, &y); 

Suppose that the user enters three lines of input: 

1 
-20 .3 

-4.0e3 

scanf sees one continuous stream of characters: 

• •la-20* ••.3n•••-4.0e3a 

(I’m using • to represent the space character and a to represent the new-line char¬ 

acter.) Since it skips over white-space characters as it looks for the beginning of 

each number, scanf will be able to read the numbers successfully. In the follow¬ 

ing diagram, an s under a character indicates that it was skipped, and an r indi¬ 

cates it was read as part of an input item: 
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Q&A 

.3n•••-4.0e3n 
ssrsrrrsssrrssssrrrrrr 

scanf “peeks” at the final new-line character without actually reading it. This 

new-line will be the first character read by the next call of scanf. 

What rules does scanf follow to recognize an integer or a floating-point 

number? When asked to read an integer, scanf first searches for a digit, plus sign, 

or minus sign; it then reads digits until it reaches a nondigit. When asked to read a 

floating-point number, scanf looks for 

a plus or minus sign (optional), followed by 

a series of digits (possibly containing a decimal point), followed by 

an exponent (optional). An exponent consists of the letter e (or E), an optional 

sign, and one or more digits. 

The %e, %f, and %g conversions are interchangeable when used with scanf; all 

three follow the same rules for recognizing a floating-point number. 

When scanf encounters a character that can’t be part of the current item, the 

character is “put back” to be read again during the scanning of the next input item 

or during the next call of scanf. Consider the following (admittedly pathological) 

arrangement of our four numbers: 

1-20.3-4.0e3n 

Let’s use the same call of scanf as before: 

scanf("%d%d%f%f", &i, &j, &x, &y); 

Here’s how scanf would process the new input: 

■ Conversion specification: %d. The first nonblank input character is 1; since 

integers can begin with 1, scanf then reads the next character, -. Recogniz¬ 

ing that - can’t appear inside an integer, scanf stores 1 into i and puts the - 

character back. 

■ Conversion specification: %d. scanf then reads the characters -, 2, 0, and . 

(period). Since an integer can’t contain a decimal point, scanf stores -20 

into j and puts the . character back. 

■ Conversion specification: %f. scanf reads the characters ., 3, and -. Since a 

floating-point number can’t contain a minus sign after a digit, scanf stores 

0.3 into x and puts the - character back. 

■ Conversion specification: %f. Lastly, scanf reads the characters -, 4, ., 0, 

e, 3, and h (new-line). Since a floating-point number can’t contain a new-line 

character, scanf stores -4.0 x 103 into y and puts the new-line character 
back. 

In this example, scanf was able to match every conversion specification in the 

format string with an input item. Since the new-line character wasn’t read, it will 
be left for the next call of scanf. 
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Ordinary Characters in Format Strings 

The concept of pattern-matching can be taken one step further by writing format 

strings that contain ordinary characters in addition to conversion specifications. 

The action that scanf takes when it processes an ordinary character in a format 

string depends on whether or not it is a white-space character. 

■ White-space characters. When it encounters one or more consecutive white- 

space characters in a format string, scanf repeatedly reads white-space char¬ 

acters from the input until it reaches a non-white-space character (which is 

“put back”). The number of white-space characters in the format string is 

irrelevant; one white-space character in the format string will match any num¬ 

ber of white-space characters in the input. In a format string, all white-space 

characters are equivalent; a space character or white-space escape sequence in 

a format string can match any number of spaces, new-lines, or other white- 

space characters. 

■ Other characters. When it encounters a non-white-space character in a format 

string, scanf compares it with the next input character. If the two characters 

match, scanf discards the input character and continues processing the for¬ 

mat string. If the characters don’t match, scanf puts the offending character 

back into the input, then aborts without further processing the format string or 

reading characters from the input. 

For example, suppose that the format string is " %d/%d". If the input is 

• 5/• 96 

scanf skips the first space while looking for an integer, matches %d with 5, 

matches / with /, skips a space while looking for another integer, and matches %d 

with 9 6. On the other hand, if the input is 

• 5•/*96 

scanf skips one space, matches %d with 5, then attempts to match the / in the 

format string with a space in the input. There’s no match, so scanf puts the space 

back; the • / • 96 characters remain to be read by the next call of scanf. To allow 

spaces after the first number, we should use the format string " %d /%d" instead. 

Confusing printf with scanf 

Although calls of scanf and printf may appear similar, there are significant 

differences between the two functions; ignoring these differences can be hazardous 

to the health of your program. 
One common mistake is to put & in front of variables in a call of print f: 

printf("%d %d\n", &i, &j); /*** WRONG ***/ 

Fortunately, this mistake is fairly easy to spot: printf will display a couple of 

odd-looking numbers instead of the values of i and j . 
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Since scanf normally skips white-space characters when looking for data 

items, there’s often no need for a format string to include characters other than 

conversion specifications. Incorrectly assuming that scanf format strings should 

resemble printf format strings—another common error—may cause scanf to 

behave in unexpected ways. Let’s see what happens when the following call of 

scanf is executed: 

scanf("%d, %d", &i, &j); 

scanf will first look for an integer in the input, which it stores in the variable i. 

scanf will then try to match a comma with the next input character. If the next 

input character is a space, not a comma, scanf will terminate without reading a 

value for j. 

Although printf format strings often end with \n, putting a new-line character 
at the end of a scanf format string is usually a bad idea. To scanf, a new-line 
character in a format string is equivalent to a space; both cause scanf to advance 
to the next non-white-space character. For example, if the format string is 
" %d\n", scanf will skip white space, read an integer, then skip to the next non- 
white-space character. A format string like this can cause an interactive program to 
“hang” until the user enters a nonblank character. 

PROGRAM Computing the Value of Stock Holdings 

Stock prices are usually expressed as dollar amounts, possibly including a fraction: 

4 1/2, 63 17/32, and the like. If we own 100 shares, each worth 4 1/2, the value of 

our holdings would be $450. If we own 1000 shares at 63 17/32, our holdings are 

worth $63,531.25. The following program uses scanf to read a stock price and a 

number of shares, then it displays the value of the stock holdings. 

stocks.C /* Computes the value of stock holdings */ 

ttinclude <stdio.h> 

main() 

{ 
int price, shares; 

float num, denom, value; 

printf("Enter share price (must include a fraction): "); 

scanf("%d%f/%f", &price, &num, kdenom); 

printf("Enter number of shares: "); 

scanf("%d", kshares); 

value = (price + num / denom) * shares; 

printf("Value of holdings: $%.2f\n", value); 

return 0; 
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A session with this program might have the following appearance: 

Enter share price (must include a fraction): 63 17/32 

Enter number of shares: 1000 

Value of holdings: $63531.25 

Note that the user must enter a fraction as part of the stock price. Note also that 

num and denom are declared to be float rather than int. Treating num and 

denom as integers would cause a problem, since the / operator truncates when 

dividing integers; 17/32 would have the value 0. 

Q & A 

Q: I’ve seen the %i conversion used to read and write integers. What’s the differ¬ 
ence between %i and %d? [p. 33] 

A: When used in a printf format string, there’s no difference. In a scanf format 

string, however, %d can only match an integer written in decimal (base 10) form, 

while %i can match an integer expressed in octal (base 8), decimal, or hexadeci¬ 

mal (base 16). If an input number has a 0 prefix (as in 056), %i treats it as an octal 

number; if it has a Ox or OX prefix (as in 0x5 6), %i treats it as a hex number. 

Using %i instead of %d to read a number can have surprising results if the user 

should accidentally put 0 at the beginning of the number. Because of this trap, I 

recommend sticking with %d. 

Q: If printf treats % as the beginning of a conversion specification, how can I 

print the % character? 

A: If print f encounters two consecutive % characters in a format string, it prints a 

single % character. For example, the statement 

printf("Net profit: %d%%\n", profit); 

might print 

Net profit: 10% 

Q: The \t escape is supposed to cause print f to advance to the next tab stop. 

How do I know how far apart tab stops are? [p. 35] 

A: You don’t. The effect of printing \t isn’t defined in Standard C; it depends on 

what your operating system does when asked to print a tab character. Tab stops are 

typically eight characters apart, but C makes no guarantee. 

Q: What does scanf do if it’s asked to read a number but the user enters nonnu¬ 

meric input? 

A: Let’s look at the following example: 
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detecting errors in scant >22.3 

Q: 

A: 

Q: 

A: 

printf("Enter a number: "); 

scanf("%d", &i); 

Suppose that the user enters a valid number, followed by nonnumeric characters: 

Enter a number: 23foo 

In this case, scanf reads the 2 and the 3, storing 23 in i. The remaining charac¬ 

ters (f oo) are left to be read by the next call of scanf (or some other input func¬ 

tion). On the other hand, suppose that the input is invalid from the beginning: 

Enter a number: foo 

In this case, the value of i is undefined and f oo is left for the next scanf. 
What can we do about this sad state of affairs? Later, we’ll see how to test 

whether a call of scanf has succeeded. If the call fails, we can have the program 

either terminate or try to recover, perhaps by discarding the offending input and 

asking the user to try again. (Ways to discard bad input are discussed in the Q&A 

section at the end of Chapter 22.) 

I don’t understand how scanf can “put back” characters and read them 

again later, [p. 38] 

As it turns out, programs don’t read user input as it is typed. Instead, input is stored 

in a hidden buffer, to which scanf has access. It’s easy for scanf to put charac¬ 

ters back into the buffer for subsequent reading. Chapter 22 discusses input buffer¬ 

ing in more detail. 

What does scanf do if the user puts punctuation marks (commas, for exam¬ 

ple) between numbers? 

Let’s look at a simple example. Suppose that we try to read a pair of integers using 

scanf: 

printf("Enter two numbers: "); 

scanf("%d%d", &i, &j); 

If the user enters 

4,28 

scanf will read the 4 and store it in i. As it searches for the beginning of the sec¬ 

ond number, scanf encounters the comma. Since numbers can’t begin with a 

comma, scanf returns immediately. The comma and the second number are left 

for the next call of scanf. 

Of course, we can easily solve the problem by adding a comma to the format 

string if we’re sure that the numbers will always be separated by a comma: 

printf("Enter two numbers, separated by a comma: "); 

scanf("%d,%d", &i, &j); 
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Exercises 

Section 3.1 

Section 3.2 

1. What output do the following calls of printf produce? 

(a) printf("%6d,%4d", 86, 1040); 

(b) printf ("%12.5e” , 30.253); 

(c) printf ("%.4f" , 83.162) ; 

(d) printf ("%-6.2g" , .0000009979); 

2. Write calls of printf that display a float variable x in the following formats. 

(a) Exponential notation; left-justified in a field of size 8; one digit after the decimal point. 

(b) Exponential notation; right-justified in a field of size 10; six digits after the decimal 
point. 

(c) Fixed decimal notation; left-justified in a field of size 8; three digits after the decimal 
point. 

(d) Fixed decimal notation; right-justified in a field of size 6; no digits after the decimal 
point. 

3. For each of the following pairs of scanf format strings, indicate whether or not the two 
strings are equivalent. If they’re not, show how they can be distinguished. 

(a) " %d" versus " %d 

(b) " %d-%d-%d." versus "%d 

(c) " % f" versus " %f 

(d) "%f,%f" versus "%f, 

4. Write a program that accepts a date from the user in the form mm/dd/yy and then displays 
it in the form yymmdd: 

Enter a date (mm/dd/yy): 2/17/96 

You entered the date 960217 

5. Write a program that formats product information entered by the user. A session with the 
program should look like this: 

Enter item number: 583 

Enter unit price: 13.5 

Enter purchase date (mm/dd/yy): 10/24/95 

Item Unit Purchase 

Price Date 

583 $ 13.50 10/24/95 

The item number and date should be left justified; the unit price should be right justified. 
Allow dollar amounts up to $9999.99. Hint: Use tabs to line up the columns. 

6. Books are identified by an International Standard Book Number (ISBN) such as 0-393- 
30375-6. The first digit specifies the language in which the book was written (for example, 
0 is English and 3 is German). The next group of digits designates the publisher (393 is the 
code for W. W. Norton), and the one after it is a number assigned by the publisher to identify 
the book (30375 is the code for Stephen Jay Gould’s The Flamingo’s Smile). The number 
ends with a “check digit’’ that is used to verify the accuracy of the preceding digits. Write a 
program that breaks down an ISBN entered by the user: 
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Enter ISBN: 0-393-30375-6 

Language: 0 

Publisher: 393 

Book number: 30375 

Check digit: 6 

Test your program with actual ISBN values (usually found on the back cover of a book and 

on the copyright page). 

*7. Suppose that we call scanf as follows: 

scant("%d%f%d", &i, &x, &j); 

If the user enters 

10.3 5 6 

what will be the values of i, x, and j after the call? (Assume that i and j are int variables 

and x is a float variable.) 

*8. Suppose that we call scanf as follows: 

scanf("%f%d%f", &x, &i, &y); 

If the user enters 

12.3 45.6 789 

what will be the values of x, i, and y after the call? (Assume that x and y are float vari¬ 

ables and i is an int variable.) 

’•‘Starred exercises are tricky—the correct answer is usually not the obvious one. Read the question 

thoroughly, review the relevant section if necessary, and be careful! 



Expressions 

One does not learn computing by using a hand 
calculator, but one can forget arithmetic. 

One of C’s distinguishing characteristics is its emphasis on expressions—formulas 

that show how to compute a value—rather than statements. The simplest expres¬ 

sions are variables and constants. A variable represents a value to be computed as 

the program runs; a constant represents a value that doesn’t change. More compli¬ 

cated expressions apply operators to operands (which are themselves expressions). 

In the expression a + (b * c), the + operator is applied to the operands a and 

(b * c), both of which are expressions in their own right. 

Operators are the basic tools for building expressions, and C has an unusually 

rich collection of them. To start off, C provides the rudimentary operators that are 

found in most programming languages: 

■ Arithmetic operators, including addition, subtraction, multiplication, and 

division. 

■ Relational operators to perform comparisons such as “i is greater than 0.” 

■ Logical operators to build conditions such as “i is greater than 0 and i is less 

than 10.” 

But C doesn’t stop here; it goes on to provide dozens of other operators. There are 

so many operators, in fact, that we’ll need to introduce them gradually over the 

first twenty chapters of this book. Mastering so many operators can be a chore, but 

it’s essential to become proficient at C. 

In this chapter, we’ll cover some of C’s most fundamental operators: the arith¬ 

metic operators (Section 4.1), the assignment operators (Section 4.2), and the 

increment and decrement operators (Section 4.3). In addition to discussing the 

arithmetic operators, Section 4.1 explains operator precedence and associativity, 

which are important for expressions that contain more than one operator. Section 

4.4 describes how C expressions are evaluated; in some cases—which I’ll discuss 
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how to avoid—the value of an expression may depend on which C compiler you 

use. Finally, Section 4.5 introduces the expression statement, an unusual feature 

that allows any expression to serve as a statement. 

4.1 Arithmetic Operators 

The arithmetic operators—operators that perform addition, subtraction, multipli¬ 

cation, and division—are the workhorse of many programming languages, includ¬ 

ing C. Table 4.1 shows C’s arithmetic operators. 

Table 4.1 
Arithmetic Operators 

Unary Binary 

+ unary plus 
- unary minus 

Additive Multiplicative 

+ addition 
- subtraction 

* multiplication 
/ division 
% remainder 

The additive and multiplicative operators are said to be binary because they 

require two operands. The unary operators require one operand: 

i = +1; /* + used as a unary operator */ 
j = -i; /* - used as a unary operator */ 

Q&A 

The unary + operator does nothing; in fact, it doesn’t exist in Classic C. It’s used 

primarily to emphasize that a numeric constant is positive. 
The binary operators probably look familiar. The only one that might not is %, 

the remainder operator; in other programming languages, % often has a name such 

as mod (modulus) or rem (remainder). The value of i % j is the remainder when i 

is divided by j. For example, the value of 10 % 3 is 1, and the value of 12 % 4 is 0. 

The binary operators in Table 4.1—with the exception of %—allow either inte¬ 

ger or floating-point operands, with mixing allowed. When int and float oper¬ 

ands are mixed, the result has type float. Thus, 9 + 2.5 has the value 11.5, and 

6.7/2 has the value 3.35. 
The / and % operators require special care: 

■ The / operator can produce surprising results. When both of its operands are 

integers, / truncates the result by dropping the fractional part. Thus, the value 

of 1 / 2 is 0, not 0.5. 

■ The % operator requires integer operands; if either operand is not an integer, 

the program won’t compile. 

■ When / and % are used with negative operands, the result depends on the 

implementation. If either operand is negative, the result of a division can be 

rounded either up or down. (For example, the value of -9 / 7 could be either 

-1 or-2). If i or j is negative, the sign of i % j depends on the implementa¬ 

tion. (For example, the value of -9 % 7 could be either 2 or -2). 
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“Implementation-Defined” 

The term implementation-defined will arise often enough that it’s worth taking a 

moment to discuss it. The C standard deliberately leaves parts of the language un¬ 

specified, with the understanding that an “implementation”—the software needed to 

compile, link, and execute programs on a particular platform—will fill in the details. 

As a result, the behavior of the program may vary somewhat from one implementa¬ 

tion to another. The behavior of the / and % operators for negative operands is an 

example of implementation-defined behavior. 

Leaving parts of the language unspecified may seem odd or even dangerous, 

but it reflects C’s philosophy. One of the language’s goals is to achieve efficiency, 

which often means matching the way that hardware behaves. Some machines may 

yield -1 when -9 is divided by 7, while others produce -2; the standard simply 

reflects this fact of life. 

It’s best to avoid writing programs that depend on implementation-defined 

behavior. If that’s not possible, at least check the manual carefully—the C standard 

requires that implementation-defined behavior be documented. 

Operator Precedence and Associativity 

When an expression contains more than one operator, its interpretation may not be 

immediately clear. For example, does i + j * k mean “add i and j, then multiply 

the result by k,” or does it mean “multiply j and k, then add i”? One solution to 

this problem is to add parentheses, writing either (i + j) * k or i + (j *k).As 

a general rule, C allows the use of parentheses for grouping in all expressions. 

What if we don’t use parentheses, though? Will the compiler interpret i + j * 

kas (i + j) * k or i + (j * k) ? C, like many other languages, uses operator 

precedence rules to resolve this potential ambiguity. The arithmetic operators have 

the following relative precedence: 

highest: + - (unary) 

* / % 

lowest: + - (binary) 

When two or more operators appear in the same expression, we can determine how 

the compiler will interpret the expression by repeatedly putting parentheses around 

subexpressions, starting with high-precedence operators and working down to 

low-precedence operators. The following examples illustrate the result: 

i + j * k is equivalent to i + (j * k) 

-i * -j is equivalent to (-i) * (-j) 

+ i + j / k is equivalent to (+i) + (j / k) 

Operator precedence rules alone aren’t enough when an expression contains 

two or more operators at the same level of precedence. In this situation, the asso¬ 

ciativity of the operators comes into play. An operator is said to be left associative 
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if it groups from left to right. The binary arithmetic operators (*,/,%,+, and -) 

are all left associative, so 

i - j - k is equivalent to (i - j) - k 

i * j / k is equivalent to (i * j ) / k 

An operator is right associative if it groups from right to left. The unary arithmetic 

operators (+ and -) are both right associative, so 

- + i is equivalent to -(+i) 

Precedence and associativity rules are important in many languages, but espe¬ 

cially so in C. However, C has so many operators (almost fifty!) that few program¬ 

mers bother to memorize the precedence and associativity rules. Instead, they 

table of operators >Appendix b consult a table of operators when in doubt or just use plenty of parentheses. 

PROGRAM Computing a UPC Check Digit 

For a number of years, manufacturers of goods sold in supermarkets have put a bar 

code on each product. This code, known as the Universal Product Code (UPC), 

identifies both the manufacturer and the product. By scanning the bar code on a 

product, a supermarket can determine what price to charge for the item. Each bar 

code represents a twelve-digit number, which is usually printed underneath the 

bars. For example, the 26-ounce package of Morton iodized salt has the digits 

0 24600 01003 0 

underneath its bar code. The first digit identifies the type of item (0 for most gro¬ 

cery items, 2 for items that must be weighed, 3 for drugs and health-related mer¬ 

chandise, and 5 for coupons). The first group of five digits identifies the 

manufacturer. The second group of five digits identifies the product (including 

package size). The final digit is a “check digit,” whose only purpose is to help 

identify an error in the preceding digits. If the UPC is scanned incorrectly, the first 

11 digits probably won’t be consistent with the last digit, and the supermarket 

scanner will reject the entire code. 

Here’s one method of computing the check digit: 

Add the first, third, fifth, seventh, ninth, and eleventh digits. 

Add the second, fourth, sixth, eighth, and tenth digits. 

Multiply the first sum by 3 and add it to the second sum. 

Subtract 1 from the total. 

Compute the remainder when the adjusted total is divided by 10. 

Subtract the remainder from 9. 

Using the Morton salt example, we get 0 + 4 + 0 + 0 + 0 + 3 = 7 for the first sum 

and 2 + 6 + 0 + 1 + 0 = 9 for the second sum. Multiplying the first sum by 3 and 

adding the second yields 30. Subtracting 1 gives 29. The remainder upon dividing 

by 10 is 9. When the remainder is subtracted from 9, the result is 0. Here are a cou- 
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pie of other UPCs, in case you want to try your hand at computing the check digit 

(raiding the kitchen cabinet for the answer is not allowed): 

Jif creamy peanut butter (18 oz.): 0 37000 00407 ? 
Ocean Spray jellied cranberry sauce (8 oz.): 0 31200 01005 ? 

The answers appear at the bottom of the page. 

Let’s write a program that calculates the check digit for an arbitrary UPC. 

We’ll ask the user to enter the first 11 digits of the UPC, then we’ll display the cor¬ 

responding check digit. To avoid confusion, we’ll ask the user to enter the number 

in three parts: the single digit at the left, the first group of five digits, and the sec¬ 

ond group of five digits. Here’s what a session with the program will look like: 

Enter the first (single) digit: _0 
Enter first group of five digits: 24600 
Enter second group of five digits: 01003 
Check digit: 0 

Instead of reading each digit group as a five-digit number, we’ll read it as five 

one-digit numbers. Reading the numbers as single digits is more convenient; also, 

we won’t have to worry that one of the five-digit numbers is too large to store in an 

int variable. (Some compilers limit int variables to 32,767.) To read single dig¬ 

its, we’ll use scanf with the %ld conversion specification, which matches a one¬ 

digit integer. 

upc.C /* Computes a Universal Product Code check digit */ 

#include <stdio.h> 

main() 

{ 
int d, il, i2, i3, i4, i5, jl, j2, j3, j4, j5, 

first_sum, second_sum, total; 

printf("Enter the first (single) digit: "); 

scanf("%ld", &d); 

printf("Enter first group of five digits: "); 

scanf("%ld%ld%ld%ld%ld", &il, &i2, &i3, &i4, &i5); 

printf("Enter second group of five digits: "); 

scanf("%ld%ld%ld%ld%ld", &jl, &j2, &j3, &j4, &j5) ; 

first_sum =d+ i2 + i4 + jl + j3 + j5; 

second_sum = il + i3 + i5 + j2 + j4; 

total = 3 * first_sum + second_sum; 

printf("Check digit: %d\n", 9 - ((total - 1) % 10)); 

return 0; 

} 

The missing check digits are 3 (Jif) and 6 (Ocean Spray). 
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4.2 Assignment Operators 

Once the value of an expression has been computed, we’ll often need to store it in 

a variable for later use. C’s = (simple assignment) operator is used for that pur¬ 

pose. For updating a value already stored in a variable, C provides an assortment 

of compound assignment operators. 

Simple Assignment 

The effect of the assignment v = e is to evaluate the expression e and copy its value 

into v. As the following examples show, e can be a constant, a variable, or a more 

complicated expression: 

i = 5; /* i is now 5 */ 

j = i ; /* j is now 5 */ 

k = 10 * i + j; /* k is now 55 */ 

If v and e don’t have the same type, then the value of e is converted to the type of v 

as the assignment takes place: 

int i ; 

float f; 

i = 72.99; /* i is now 72 */ 

f = 136; /* f is now 136.0 */ 

conversion during assignment >7.5 We’ll return to the topic of type conversion later. 
In many programming languages, assignment is a statement, in C, however, 

assignment is an operator, just like +. In other words, the act of assignment pro¬ 

duces a result, just as adding two numbers produces a result. The value of an 

assignment v = e is the value of v after the assignment. Thus, the value of i = 

72.99 is 72 (not 72.99). 

Side Effects 

We don’t normally expect operators to modify their operands, since operators in 

mathematics don’t. Writing i + j doesn’t modify either i or j; it simply computes 

the result of adding i and j. 

Most C operators don’t modify their operands, but some do. We say that these 

operators have side effects, since they do more than just compute a value. The 

simple assignment operator is the first operator we’ve seen that has side effects; it 

modifies its left operand. Evaluating the expression i = 0 produces the result 0 

and—as a side effect—assigns 0 to i. 
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Since assignment is an operator, several assignments can be chained together: 

i = j = k = 0; 

The = operator is right associative, so this assignment is equivalent to 

i = (j = (k = 0)) ; 

The effect is to assign 0 first to k, then to j, and finally to i. 

Watch out for unexpected results in chained assignments as a result of type conver¬ 
sion: 

int i ; 

float f; 

f = i = 33.3; 

i is assigned the value 33, then f is assigned 33.0 (not 33.3, as you might think). 

In general, an assignment of the form v = e is allowed wherever a value of 

type v would be permitted. In the following example, the expression j = i copies 

i to j ; the new value of j is then added to 1, producing the new value of k: 

i = 1; 
k = 1 + (j = i) ; 

printf("%d %d %d\n", i, j, k); /* prints "1 1 2" */ 

Using the assignment operator in this fashion usually isn’t a good idea, though. For 

one thing, “embedded assignments” can make programs hard to read. They can 

also be a source of subtle bugs, as we’ll see in Section 4.4. 

Lvalues 

Q&A 

Most C operators allow their operands to be variables, constants, or expressions 

containing other operators. The assignment operator, however, requires an lvalue 

as its left operand. An lvalue (pronounced “L-value”) represents an object stored in 

computer memory, not a constant or the result of a computation. Variables are lval¬ 

ues; expressions such as 10 or 2 * i are not. At this point, variables are the only 

lvalues that we know about; other kinds of lvalues will appear in later chapters. 

Since the assignment operator requires an lvalue as its left operand, it’s illegal 

to put any other kind of expression on the left side of an assignment expression: 

12 = i; /*** WRONG ***/ 

i + j = 0; /*** WRONG ***/ 

-i = j; /*** WRONG ***/ 

The compiler will detect errors of this nature, and you’ll get an error message such 

as “Lvalue required. ” 
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other assignment operators >20.1 

Q&A 

A 

Compound Assignment 

Assignments that use the old value of a variable to compute its new value are com¬ 

mon in C programs. The following statement, for example, adds 2 to the value 

stored in i: 

i = i + 2 ; 

C’s compound assignment operators allow us to shorten this statement and others 

like it. Using the += operator, we simply write: 

i += 2; /* same as i = i + 2; */ 

The += operator adds the value of the right operand to the variable on the left. 

There are nine other compound assignment operators, including the following: 

-= *= /= %= 

(We’ll cover the remaining compound assignment operators in a later chapter.) All 

compound assignment operators work in much the same way: 

v += e adds v to e, storing the result in v 

v - = e subtracts e from v, storing the result in v 

v *= e multiplies v by e, storing the result in v 

v /= e divides v by e, storing the result in v 

v %= e computes the remainder when v is divided by e, storing the result in v 

Note that I’ve been careful not to say that v += e is “equivalent” to v = v + e. One 

problem is operator precedence: i *= j + k isn’t the same as i = i * j + k. There 

are also rare cases in which v += e differs from v = v + e because v itself has a side 

effect. Similar remarks apply to the other compound assignment operators. 

When using the compound assignment operators, be careful not to switch the two 
characters that make up the operator. Switching the characters may yield an 
expression that is acceptable to the compiler but that doesn’t have the intended 
meaning. For example, if you meant to write i += j but typed i =+ j instead, the 
program will still compile. Unfortunately, the latter expression is equivalent to 
i = (+ j ), which merely copies the value of j into i. 

The compound assignment operators have the same properties as the = opera¬ 

tor. In particular, they’re right associative, so the statement 

i += j += k; 

means 

i += (j += k); 
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4.3 Increment and Decrement Operators 

Two of the most common operations on a variable are “incrementing” (adding 1) 

and “decrementing” (subtracting 1). We can, of course, accomplish these tasks by 
writing 

i = i + 1 ; 

j = j - 1; 

The compound assignment operators allow us to condense these statements a bit: 

i += 1; 

j -= 1; 

Q&A 

But C allows increments and decrements to be shortened even further, using the 

+ + (increment) and -- (decrement) operators. 

At first glance, the increment and decrement operators are simplicity itself: + + 

adds 1 to its operand, while -- subtracts 1. Unfortunately, this simplicity is mis¬ 

leading—the increment and decrement operators can be tricky to use. One compli¬ 

cation is that ++ and -- can be used as prefix operators (++i and --i, for 

example) or postfix operators (i++ and i--). The correctness of a program may 

hinge on picking the proper version. 

Another complication is that, like the assignment operators, ++ and -- have 

side effects: they modify the values of their operands. Evaluating the expression 

+ + i (a “pre-increment”) yields i + 1 and—as a side effect—increments i: 

i = 1; 

printf("i is %d\n", ++i); /* prints "i is 2" */ 

printf("i is %d\n", i); /* prints "i is 2“ */ 

Evaluating the expression i + + (a “post-increment”) produces the result i, but 

causes i to be incremented afterwards: 

i = 1 ; 

printf("i is %d\n", i++); /* prints "i is 1" */ 

printf("i is %d\n", i); /* prints "i is 2" */ 

Q&A 

The first print f shows the original value of i, before it is incremented. The sec¬ 

ond printf shows the new value. As these examples illustrate, + + i means 

“increment i immediately,” while i + + means “use the old value of i for now, but 

increment i later.” How much later? The C standard doesn’t specify a precise 

time, but it’s safe to assume that i will be incremented before the next statement is 

executed. 
The -- operator has similar properties: 

i = 1 ; 
printf("i is %d\n", —i); /* prints "i is 0" */ 

printf("i is %d\n", i); /* prints "i is 0” */ 
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i = 1; 
printf("i is %d\n", i—); /* prints "i is 1" */ 

printf("i is %d\n", i); /* prints "i is 0" */ 

When ++ or -- is used more than once in the same expression, the result can 

often be hard to understand. Consider the following statements: 

i = 1; 
j = 2; 
k = + + i + j + +; 

What are the values of i, j, and k after these statements are executed? Since i is 

incremented before its value is used, but j is incremented after it is used, the last 

statement is equivalent to 

i = i + 1; 

k = i + j ; 

j = j + 1; 

so the final values of i, j, and k are 2, 3, and 4, respectively. In contrast, executing 

the statements 

i = 1; 

j = 2; 
k = i++ + j++; 

will give i, j, and k the values 2, 3, and 3, respectively. 

For the record, the postfix versions of ++ and -- have higher precedence than 

unary plus and minus and are left associative. The prefix versions have the same 

precedence as unary plus and minus and are right associative. 

4.4 Expression Evaluation 

Table 4.2 summarizes the operators we’ve seen so far. (Appendix B has a similar 

table that shows all operators.) The first column shows the precedence of each 

Table 4.2 
A Partial List of C 

Operators 

Precedence Name Symbol(s) Associativity 

1 increment (postfix) + + left 
decrement (postfix) -- 

2 increment (prefix) ++ right 
decrement (prefix) — 

unary plus + 
unary minus - 

3 multiplicative * / % left 

4 additive + - left 

5 assignment = *= /= %= += - = right 
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operator relative to the other operators in the table (the highest precedence is 1; the 

lowest is 5). The last column shows the associativity of each operator. 

Table 4.2 (or its larger cousin in Appendix B) has a variety of uses. Let’s look 

at one of these. Suppose that we run across a complicated expression such as 

a = b += C++ - d + —e / -f 

as we’re reading someone’s program. This expression would be easier to under¬ 

stand if there were parentheses to show how the expression is constructed from 

subexpressions. With the help of Table 4.2, adding parentheses to an expression is 

easy: After examining the expression to find the operator with highest precedence, 

we put parentheses around the operator and its operands, indicating that it should 

be treated as a single operand from that point onwards. We then repeat the process 

until the expression is fully parenthesized. 

In our example, the operator with highest precedence is ++, used here as a 

postfix operator, so we put parentheses around ++ and its operand: 

a = b += (c++) - d + --e / -f 

We now spot a prefix -- operator and a unary minus operator (both prece¬ 

dence 2) in the expression: 

a = b += (c++) - d + (--e) / (-f) 

Note that the other minus sign has an operand to its immediate left, so it must be a 

subtraction operator, not a unary minus operator. 

Next, we notice the / operator (precedence 3): 

a = b += (c++) - d + ((—e) / (-f)) 

The expression contains two operators with precedence 4, subtraction and 

addition. Whenever two operators with the same precedence are adjacent to an 

operand, we’ve got to be careful about associativity. In our example, - and + are 

both adjacent to d, so associativity rules apply. The - and + operators group from 

left to right, so parentheses go around the subtraction first, then the addition: 

a = b += (((c++) - d) + ((--e) / (-f))) 

The only remaining operators are = and + = . Both operators are adjacent to b, 

so we must take associativity into account. Assignment operators group from right 

to left, so parentheses go around the += expression first, then the = expression: 

(a = (b += (((C + +) - d) + ((—e) / (-f) ) ) ) ) 

The expression is now fully parenthesized. 

Order of Subexpression Evaluation 

The rules of operator precedence and associativity allow us to break any C expres¬ 

sion into subexpressions—to determine uniquely where the parentheses would go 
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logical andand or operators >5.1 

conditional operator >5.2 

comma operator >6.3 

if the expression were fully parenthesized. Paradoxically, these rules don’t always 

allow us to determine the value of the expression, which may depend on the order 

in which its subexpressions are evaluated. 
C doesn’t define the order in which subexpressions are evaluated (with the 

exception of subexpressions involving the logical and, logical or, conditional, and 

comma operators). Thus, in the expression (a + b) * (c - d) we don’t know 

whether (a + b) will be evaluated before (c - d). 
Most expressions have the same value regardless of the order in which their 

subexpressions are evaluated. However, this may not be true when a subexpression 

modifies one of its operands. Consider the following example: 

a = 5; 
c = (b = a + 2) - (a = 1) ; 

After these statements have been executed, the value of c will be either 6 or 2. If 

the subexpression (b = a + 2 ) is evaluated first, b is assigned the value 7 and c is 

assigned 6. But if (a = 1) is evaluated first, b is assigned 3 and c is assigned 2. 

An expression whose value depends on the order in which its subexpressions are 
evaluated is a sort of time bomb set to go off in the future. The program may work 
as expected when originally written but misbehave when compiled later with a dif¬ 

ferent compiler. 

To prevent problems, it’s a good idea to avoid using the assignment operators 

in subexpressions; instead, use a series of separate assignments. For example, the 

statements above could be rewritten as 

a = 5 ; 

b=a+2; 

a = l; 
c = b - a ; 

The value of c will always be 6 after these statements are executed. 

Besides the assignment operators, the only operators that modify their oper¬ 

ands are increment and decrement. When using these operators, be careful that 

your expressions don’t depend on a particular order of evaluation. In the following 

example, j may be assigned one of two values: 

i = 2; 

j = i * i++; 

It’s natural to assume that j is assigned the value 4. However, j could just as well 

be assigned 6 instead. Here’s the scenario: (1) The second operand (the original 

value of i) is fetched, then i is incremented. (2) The first operand (the new value 

of i) is fetched. (3) The new and old values of i are multiplied, yielding 6. 
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4.5 Expression Statements 

C has the unusual rule that any expression can be used as a statement. That is, any 

expression—regardless of its type or what it computes—can be turned into a state¬ 

ment by appending a semicolon. For example, we could turn the expression + + i 
into a statement: 

++1; 

Q&A 

When this statement is executed, i is first incremented, then the new value of i is 

fetched (as though it were to be used in an enclosing expression). However, since 

+ + i isn’t part of a larger expression, its value is discarded and the next statement 

executed. (The change to i is permanent, of course.) 

Since its value is discarded, there’s little point in using an expression as a 

statement unless the expression has a side effect. Let’s look at three examples. In 

the first example, 1 is stored into i, then the new value of i is fetched but not 

used: 

i = 1; 

In the second example, the value of i is fetched but not used; however, i is decre¬ 

mented afterwards: 

i — ; 

In the third example, the value of the expression i * j - 1 is computed and then 

discarded: 

i * j - 1; 

Since i and j aren’t changed, this statement has no effect. 

A slip of the finger can easily create a “do-nothing” expression statement. For 
example, instead of entering 

i = j ; 

we might accidentally type 

i + j ; 

(This kind of error is more common than you might expect, since the = and + char¬ 
acters usually occupy the same key.) Some compilers can detect meaningless 
expression statements; you’ll get a warning such as ‘‘Code has no effect. ” 
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Q & A 

Q: 

A: 

pow function >23.3 

Q: 

fmod function >23.3 Al 

Q: 

A: 

*Q: 

A: 

Q: 

A: 

Q: 

A: 

I notice that C has no exponentiation operator. How can I raise a number to a 

power? 

Raising an integer to a small positive integer power is best done by repeated multi¬ 

plication (i * i * i is i cubed). To raise a number to a noninteger power, call the 

pow function. 

I want to apply the % operator to a floating-point operand, but my program 

won’t compile. What can I do? [p. 46] 

The % operator requires integer operands. Try the fmod function instead. 

If C has lvalues, does it also have rvalues? [p. 51] 

Yes, indeed. An /value is an expression that can appear on the left side of an 

assignment; an rvalue is an expression that can appear on the right side. Thus, an 

rvalue could be a variable, constant, or more complex expression. In this book, as 

in the C standard, we’ll use the term “expression” instead of “rvalue.” 

You said that v += e isn’t equivalent to v = v + e if v has a side effect. Can you 

explain? [p. 52] 

Evaluating v += e causes v to be evaluated only once; evaluating v = v + e causes v 

to be evaluated twice. Any side effect caused by evaluating v will occur twice in 

the latter case. In the following example, i is incremented once: 

a[i + +] + = 2 ; 

If we use = instead of +=, however, i is incremented twice: 

a[i++] — a[i++] + 2; 

Why does C provide the ++ and -- operators? Are they faster than other 

ways of incrementing and decrementing, or they are just more convenient? 

[p. 53] 

C inherited ++ and -- from Ken Thompson’s earlier B language. Thompson 

apparently created these operators because his B compiler could generate a more 

compact translation for + + i than for i = i + 1. These operators have became a 

deeply ingrained part of C (in fact, many of C’s most famous idioms rely on them). 

With modern compilers, using ++ and -- won’t make a compiled program any 

smaller or faster; the continued popularity of these operators stems mostly from 

their brevity and convenience. 

Do ++ and -- work with float variables? 

Yes; the increment and decrement operations are defined for all numeric types. In 

practice, however, it’s fairly rare to increment or decrement a float variable. 



Q&A 59 

*Q: When I use the postfix version of ++ or just when is the increment or dec¬ 
rement performed? [p. 53] 

A: That’s an excellent question. Unfortunately, it’s also a difficult one to answer. The 

C standard introduces the concept of “sequence point” and says that “updating the 

stored value of the operand shall occur between the previous and the next sequence 

point.” There are various kinds of sequence points in C; statements are one variety. 

By the end of a statement, all increments and decrements within the statement 

must have been performed; the next statement can’t begin to execute until this con¬ 
dition has been met. 

Consider the following example: 

i = 1; 
j = i++ + i++; 

By the time the second statement has been executed, i will have been incremented 

twice. However, we don’t know whether both increments were done after i was 

added to itself (giving j the value 2), or whether one of the occurrences of i was 

incremented earlier (giving j the value 3). 

Certain operators that we’ll encounter in later chapters (logical and, logical or, 

conditional, and comma) also impose sequence points. So do function calls: the 

arguments in a function call must be fully evaluated before the call can be per¬ 

formed. If an argument happens to be an expression containing a ++ or -- opera¬ 

tor, the increment or decrement must occur before the call can take place. 

Q: What do you mean when you say that the value of an expression statement is 

discarded? [p. 57] 

A: By definition, an expression represents a value. If i has the value 5, for example, 

then evaluating i + 1 produces the value 6. Let’s turn i + 1 into a statement by 

putting a semicolon after it: 

i + 1; 

When this statement is executed, the value of i + 1 is computed. Since we have 

failed to save this value—or at least use it in some way—it is lost. 

Q: But what about statements like i = 1; ? I don’t see what is being discarded. 

A: Don’t forget that = is an operator in C and produces a value just like any other 

operator. The assignment 

i = 1 ; 

assigns 1 to i. The value of the entire expression is 1, which is discarded. Discard¬ 

ing the expression’s value is no great loss, since the reason for writing the state¬ 

ment in the first place was to modify i. 
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Section 4.1 

Section 4.2 

Section 4.3 

Exercises 

i. Show the output produced by 
k are int variables. 

(a) i = 5; j = 3 ; 
printf("%d %d", i 

(b) i = 2; j = 3; 
printf("%d", (i + 

(c) i = 7; j =8; k = 
printf("%d" , (i + 

(d) i = 1; j = 2; k - 
printf("%d", (i + 

each of the following code fragments. Assume that i, j, and 

/ j , i % j) ; 

10) % j); 

9; 
10) % k / j) ; 
3; 
5) % (j + 2) / k) ; 

*2. If i and j are positive integers, does (-i)/j always have the same value as - ( i/ j ) ? 
Justify your answer. 

3. Write a program that asks the user to enter a two-digit number, then prints the number with 
its digits reversed. A session with the program should have the following appearance: 

Enter a two-digit number: 28 
The reversal is: 82 

Read the number using %d, then break it into two digits. Hint: If n is an integer, then n % 10 
is the last digit in n and n / 10 is n with the last digit removed. 

4. Extend the program in Exercise 3 to handle three-digit numbers. 

5. Rewrite the program in Exercise 4 so that it prints the reversal of a three-digit number with¬ 
out using arithmetic to split the number into digits. Hint: Review the upc . c program. 

6. Show the output produced by each of the following code fragments. Assume that i, j, and 
k are int variables. 

(a) i = 7; j = 8 ; 
i * = j + 1 ; 
printf("%d %d", i, j); 

(b) i = j = k = 1; 
i += j += k; 
printf("%d %d %d", i, j, k); 

(c) i = 1; j = 2; k = 3 ; 
i -= j -= k; 
printf("%d %d %d", i, j, k); 

(d) i = 2; j = 1; k = 0; 
i *= j *- k; 
printf("%d %d %d", i, j, k); 

*7. Show the output produced by each of the following code fragments. Assume that i, j, and 
k are int variables. 

(a) i = 1 ; 
printf("%d ", i++ - 1); 
printf("%d", i); 
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(b) i = 10; j = 5; 
printf("%d ", i++ - ++j); 
printf("%d %d", i, j); 

(c) i = 7; j = 8; 
printf("%d ", i++ - --j); 
printf("%d %d", i, j); 

(d) i = 3; j =4; k = 5; 
printf("%d ", i++ - j++ + --k) ; 

printf("%d %d %d", i, j, k); 

8. Only one of the expressions + + i and i++ is exactly the same as (i += 1); which is it? 
Justify your answer. 

Section 4.4 9. Supply parentheses to show how a C compiler would interpret each of the following expres¬ 
sions. 

(a) a*b-c*d + e 
(b) a / b % c / d 
(c) -a-b + c- + d 
(d) a * - b / c-d 

*10. How many possible values are there for the expression (i++) + (i--)? What are those 
values, assuming that i has the value 1 initially? 

Section 4.5 11. Describe the effect of executing each of the following expression statements. (Assume that 
i has the value 1 initially and j has the value 2.) 

(a) i += j ; 
(b) i—; 
(c) i * j / i ; 
(d) i % ++j ; 
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return statement >-2.2 

expression statement >4.5 

Programmers are not to be measured by their ingenuity and 
their logic but by the completeness of their case analysis. 

Although C has many operators, it has relatively few statements. We’ve encoun¬ 

tered just two so far: the return statement and the expression statement. Most of 

C’s remaining statements fall into one of three categories, depending on how they 

affect the order in which statements are executed: 

■ Selection statements. The if and switch statements allow a program to 

select a particular execution path from a set of alternatives. 

■ Iteration statements. The while, do, and for statements support iteration 

(looping). 

■ Jump statements. The break, continue, and goto statements cause an 

unconditional jump to some other place in the program. (The return state¬ 

ment belongs in this category, as well.) 

The only other statements in C are the compound statement, which groups several 

statements into a single statement, and the null statement, which performs no 

action. 
This chapter discusses the selection statements and the compound statement. 

(Chapter 6 covers the iteration statements, the jump statements, and the null state¬ 

ment.) Section 5.2 explains the if statement and compound statement, as well as 

introducing the conditional operator (?:), which can test a condition within an 

expression. Section 5.3 describes the switch statement. Before we can use the 

if statement, however, we’ll need logical expressions: conditions that if state¬ 

ments can test. Section 5.1 explains how logical expressions are built from the 

relational operators (<, <=, >, and >=), the equality operators (== and ! =), and 

the logical operators (&&, | |, and !). 

63 



Chapter 5 Selection Statements 

5.1 Logical Expressions 

Several of C’s statements, including the if statement, must test the value of an 

expression to see if it’s “true” or “false.” For example, an if statement might need 

to test the expression i < j; a true value would indicate that i is less than j. In 

many programming languages, an expression such as i < j would have a special 

“Boolean” or “logical” type. Such a type would have only two values, false and 

true. C has no such type. Instead, a comparison such as i < j yields an integer: 

either 0 (false) or 1 (true). With this in mind, let’s look at the operators that are 

used to build logical expressions. 

Relational Operators 

C’s relational operators (Table 5.1) correspond to the <, >, < and > operators of 

Table 5.1 

Relational Operators 

mathematics, except that they produce 0 (false) or 1 (true) when used in expres¬ 

sions. For example, the value of 10 < 11 is 1; the value of 11 < 10 is 0. 

The relational operators can be used to compare integers and floating-point 

numbers, with operands of mixed types allowed. Thus, 1 < 2.5 has the value 1, 

while 5.6 < 4 has the value 0. 

The precedence of the relational operators is lower than that of the arithmetic 

operators; for example, i + j < k - 1 means (i + j) < (k-1). The relational 

operators are left associative. 

Symbol Meaning 

< less than 
> greater than 

< = less than or equal to 
> = greater than or equal to 

The expression 

i < j < k 

is legal in C, but doesn’t have the meaning that you might expect. Since the < oper¬ 

ator is left associative, this expression is equivalent to 

(i < j) < k 

In other words, the expression first tests whether i is less than j; the 1 or 0 pro¬ 

duced by this comparison is then compared to k. The expression does not test 

whether j lies between i and k. (We’ll see later in this section that the correct 

expression would be i < j && j < k.) 
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Equality Operators 

Although the relational operators are denoted by the same symbols as in many 

other programming languages, the equality operators have a unique appearance 

(Table 5.2). The “equal to” operator is two adjacent = characters, not one, since a 

Tbble 5.2 
Equality Operators 

single = character represents the assignment operator. The “not equal to” operator 

is also two characters: ! and =. 

Like the relational operators, the equality operators are left associative and 

produce either 0 (false) or 1 (true) as their result. However, the equality operators 

have lower precedence than the relational operators. For example, the expression 

i < j == j < k 

is equivalent to 

(i < j) == (j < k) 

which is true if i < j and j < k are both true or both false. 

Clever programmers sometimes exploit the fact that the relational and equality 

operators return integer values. For example, the value of the expression ( i >= j ) 

+ ( i == j ) is either 0, 1, or 2, depending on whether i is less than, greater than, 

or equal to j, respectively. Tricky coding like this generally isn’t a good idea, how¬ 

ever; it makes programs hard to understand. 

Logical Operators 

More complicated logical expressions can be built from simpler ones by using the 

logical operators: and, or, and not (Table 5.3). The ! operator is unary, while && 

and | | are binary. 

Table 5.3 
Logical Operators 

The logical operators produce either 0 or 1 as their result. Often, the operands 

will have values of 0 or 1, but this isn’t a requirement; the logical operators treat 

any nonzero operand as a true value and any zero operand as a false value. 

The logical operators behave as follows: 

■ ! expr has the value 1 if expr has the value 0. 

■ exprl Sc& expr2 has the value 1 if the values of exprl and expr2 are both non- 

Symbol Meaning 

! logical negation 
&& logical and 

; | logical or 

Symbol Meaning 

== equal to 
! = not equal to 

zero. 
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m exprl | | expr2 has the value 1 if either exprl or expr2 (or both) has a nonzero 

value. 

In all other cases, these operators produce the value 0. 
Both Sc Sc and | | perform “short-circuit” evaluation of their operands. That is, 

these operators first evaluate the left operand, then the right operand. If the value 

of the expression can be deduced from the value of the left operand alone, then the 

right operand isn’t evaluated. Consider the following expression. 

(i != 0) && (j / i > 0) 

To find the value of this expression, we must first evaluate ( i ! = 0). If i isn’t 

equal to 0, then we’ll need to evaluate (j / i > 0) to determine whether the entire 

expression is true or false. However, if i is equal to 0, then the entire expression 

must be false, so there’s no need to evaluate (j / i > 0). The advantage of short- 

circuit evaluation is apparent—without it, evaluating the expression would have 

caused a division by zero. 

Be wary of side effects in logical expressions. Thanks to the short-circuit nature of 
the ScSc and | | operators, side effects in operands may not always occur. Consider 

the following expression: 

i > 0 && > 0 

Although j is apparently incremented as a side effect of evaluating the expression, 
that isn’t always the case. If i > 0 is false, then + +j > 0 is not evaluated, so j isn t 
incremented. The problem can be fixed by changing the condition to + +j > 0 && 

i > 0 or, even better, by incrementing j separately. 

The ! operator has the same precedence as the unary plus and minus opera¬ 

tors. The precedence of && and | | is lower than that of the relational and equality 

operators; for example, i < j && k == m means (i < j ) && (k == m). The ! 

operator is right associative; && and | | are left associative. 

5.2 The if Statement 

The if statement allows a program to choose between two alternatives by testing 

the value of an expression. In its simplest form, the if statement has the form 

if statement if ( expression ) statement 

Notice that the parentheses around the expression are mandatory; they’re part of 

the if statement, not part of the expression. Also note that the word then doesn’t 

come after the parentheses, as it would in some languages. 
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When an if statement is executed, the expression in the parentheses is evalu¬ 

ated; if the value of the expression is nonzero—which C interprets as true—the 

statement after the parentheses is executed. Here’s an example: 

if (line_num == MAX_LINES) 

1ine_num = 0; 

The statement line_num =0; is executed if the condition line_num == 

MAX_LINES is true (has a nonzero value). 

Don’t confuse == (equality) with = (assignment). The statement 

if (i == 0) ... 

tests whether i is equal to 0. However, the statement 

if (i = 0) ... 

Q&A 

assigns 0 to i, then tests whether the result is nonzero. In this case, the test always 

fails. 

Confusing == with = is perhaps the most common C programming error, 

probably because = means “is equal to” in mathematics (and in many other pro¬ 

gramming languages). Some compilers issue a warning such as “Possibly incorrect 

assignment” if they notice = where == would normally appear. 

Often the expression in an if statement will test whether a variable falls 

within a range of values. To test whether 0 < i < n, for example, we’d write 

idiom if (0 <= i && i < n) ... 

To test the opposite condition (i is outside the range), we’d write 

idiom if (i < 0 || i >= n) ... 

Note the use of the | | operator instead of the && operator. 

Compound Statements 

In our if statement template, notice that statement is singular, not plural: 

i f ( expression ) statement 

What if we want an if statement to control two statements or more? That’s where 

the compound statement comes in. A compound statement has the form 

compound statement { statements } 

By putting braces around a group of statements, we can force the compiler to treat 

it as a single statement. 
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Here’s an example of a compound statement: 

{ 1ine_num = 0; page_num++; } 

For clarity, I’ll usually put a compound statement on several lines, with one state¬ 

ment per line: 

{ 
line_num = 0; 

page_num++; 

} 

Notice that each inner statement still ends with a semicolon, but the compound 

statement itself does not. 

Here’s what a compound statement would look like when used inside an i f 

statement: 

if (line_num == MAX_LINES) { 

line_num = 0; 

page_num++; 

} 

Compound statements are also common in loops and other places where the syntax 

of C requires a single statement, but we want more than one. 

The else Clause 

An if statement may have an else clause: 

if statement with if ( expression ) statement else statement 

else clause 

The statement that follows the word else is executed if the expression in paren¬ 

theses has the value 0. 

Here’s an example of an if statement with an else clause: 

if (i > j) 

max = i; 

else 

max = j; 

Notice that both “inner” statements end with a semicolon. 

When an if statement contains an else clause, a layout issue arises: where 

should the else be placed? Many C programmers align it with the if at the 

beginning of the statement, as in the previous example. The inner statements are 

usually indented, but if they’re short they can be put on the same line as the i f and 

else: 

if (i > j) max = i; 

else max = j; 
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There are no restrictions on what kind of statements can appear inside an if 

statement. In fact, it’s not unusual for i f statements to be nested inside other i f 

statements: 

if (i > j) 

if (i > k) 

max = i; 

else 

max = k; 

else 

if (j > k) 

max = j; 

else 

max = k; 

if statements can be nested to any depth. Notice how aligning each else with 

the matching if makes the nesting easier to see. If you still find the nesting con¬ 

fusing, don’t hesitate to add braces: 

if (i > j) { 
if (i > k) 

max = i; 

else 

max = k; 

} else { 

if (j > k) 

max = j; 

else 

max = k; 

} 

Adding braces to statements—even when they’re not necessary—is like using 

parentheses in expressions: both techniques help make a program more readable 

while at the same time avoiding the possibility that the compiler won’t understand 

the program the way we thought it did. 

Cascaded if Statements 

We’ll often need to test a series of conditions, stopping as soon as one of them is 

true. A “cascaded” if statement is often the best way to write such a series of 

tests. For example, the following cascaded if statement tests whether n is less 

than 0, equal to 0, or greater than 0: 

if (n < 0) 

printf("n is less than 0\n"); 

else 

if (n == 0) 

printf("n is equal to 0\n"); 

else 

printf("n is greater than 0\n"); 
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Although the second if statement is nested inside the first, C programmers don’t 

usually indent it. Instead, they align each else with the original if: 

if (n < 0) 

printf("n is less than 0\n“); 

else if (n == 0) 

printf("n is equal to 0\n"); 

else 
printf("n is greater than 0\n"); 

This arrangement gives the cascaded i f a distinctive appearance: 

if ( expression ) 

statement 

else if ( expression ) 

statement 

else if ( expression ) 

statement 

else 

statement 

The last two lines (else statement) aren’t always present, of course. This way of 

indenting the cascaded if statement avoids the problem of excessive indentation 

when the number of tests is large. Moreover, it assures the reader that the statement 

is nothing more than a series of tests. 
Keep in mind that a cascaded if statement is not some new kind of statement; 

it’s just an ordinary if statement that happens to have another if statement as its 

else alternative (and that if statement has another if statement as its else 

alternative, ad infinitum). 

PROGRAM Calculating a Broker’s Commission 

When stocks are sold or purchased through a broker, the broker’s commission is 

often computed using a sliding scale that depends upon the value of the stocks 

traded. Let’s say that a broker charges the amounts shown in the following table: 

Transaction size 

Under $2,500 

$2,500-$6,250 

$6,250-$20,000 

$20,000-$50,000 

$50,000-$500,000 

Over $500,000 

Commission rate 

$30+ 1.7% 

$56 + 0.66% 

$76 + 0.34% 

$100 + 0.22% 

$155 + 0.11% 

$255 + 0.09% 

The minimum charge is $39. Our next program asks the user to enter the amount of 

the trade, then displays the amount of the commission: 

Enter value of trade: 30000 

Commission: $166.00 
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broker.c 

The heart of the program is a cascaded if statement that determines which range 
the trade falls into. 

/* Calculates a broker's commission */ 

tinclude <stdio.h> 

main() 

{ 
float commission, value; 

printf("Enter value of trade: "); 

scanf("%f", &value); 

if (value < 2500.00) 

commission = 30.00 + .017 * value; 

else if (value 

commission = 

else if (value 

commission = 

else if (value 

commission = 

else if (value 

commission = 

< 6250.00) 

56.00 + .0066 * value; 

< 20000.00) 
76.00 + .0034 * value; 

< 50000.00) 

100.00 + .0022 * value; 

< 500000.00) 

155.00 + .0011 * value; 

else 

commission = 255.00 + .0009 * value; 

if (commission 

commission = 

< 39.00) 

39.00; 

printf("Commission: $%.2f\n", commission); 

return 0; 

} 

The “Dangling else” Problem 

When if statements are nested, we’ve got to watch out for the notorious “dan¬ 

gling else” problem. Consider the following example: 

if (y != 0) 

if (x != 0) 

result = x / y; 

else 

printf("Error: y is equal to 0\n"); 

To which if statement does the else clause belong? The indentation suggests 

that it belongs to the outer if statement. However, C follows the rule that an 

else clause belongs to the nearest if statement that hasn’t already been paired 

with an else. In this example, the else clause actually belongs to the inner if 

statement, so a correctly indented version would look like this: 
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if (y != 0) 

if (x != 0) 

result = x / y; 

else 
printf("Error: y is equal to 0\n"); 

To make the else clause part of the outer if statement, we can enclose the inner 

if statement in braces: 

if (y != 0) { 

if (x != 0) 

result = x / y; 

} else 
printf("Error: y is equal to 0\n"); 

This example illustrates the value of braces; if we’d used them in the original if 

statement, we wouldn’t have gotten into this situation in the first place. 

Conditional Expressions 

C’s if statement allows a program to perform one of two actions depending on the 

value of a condition. C also provides an operator that allows an expression to pro¬ 

duce one of two values depending on the value of a condition. 
The conditional operator consists of the symbols ? and :, which must be 

used together in the following way: 

conditional exprl ? expr2 : expr3 

expression 

exprl, expr2, and expr3 can be expressions of any type. The resulting expression is 

said to be a conditional expression. The conditional operator is unique among C 

operators in that it requires three operands instead of one or two. For this reason, it 

is often referred to as a ternary operator. 
The conditional expression exprl ? expr2 : expr3 should be read “if exprl 

then expr2 else expr3.” The expression is evaluated in stages: exprl is evaluated 

first; if its value isn’t zero, then expr2 is evaluated, and its value is the value of the 

entire conditional. If the value of exprl is zero, then the value of expr3 is the value 

of the entire conditional. 
The following example illustrates the conditional operator: 

int i, j, k; 

i = 1 ; 

j = 2; 
k=i>j?i:j; /* k is now 2 */ 

k= (i >= 0 ? i : 0) + j; /* k is now 3 */ 

In the first assignment to k, the i > j comparison fails, so the value of the condi¬ 

tional expression i > j ? i : j is 2, which is assigned to k. In the second assign- 
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conditional expressions in 
macro definitions >-14.3 

C++ 

macros >2.6 

ment to k, the i >= 0 comparison succeeds; the conditional expression (i >= 0 ? 

i : 0) has the value 1, which is then added to j to produce 3. The parentheses are 

necessary, by the way; the precedence of the conditional operator is less than that 

of the other operators we’ve discussed so far, with the exception of the assignment 
operators. 

Conditional expressions tend to make programs shorter but harder to under¬ 

stand, so it’s probably best to avoid them. There are, however, a few places in 

which they’re tempting; one is the return statement. Instead of writing 

if (i > j) 

return i; 

else 

return j; 

many programmers would write 

return (i > j ? i : j) ; 

Calls of print f can sometimes benefit from condition expressions. Instead of 

if (i > j) 
printf("%d\n", i); 

else 
printf("%d\n", j); 

we could simply write 

printf("%d\n", i > j ? i : j); 

Conditional expressions are also common in certain kinds of macro definitions. 

Boolean Values 

C’s lack of a proper Boolean type can be annoying, since many programs need 

variables that can store either false or true. (Recognizing this problem, newer ver¬ 

sions of C++ provide a built-in Boolean type.) We can always simulate a Boolean 

variable by declaring an int variable, then assigning it 0 or 1: 

int flag; 

flag = 0; 

flag = 1; 

Although this scheme works, it doesn’t contribute much to program readability. 

It’s not obvious that flag is to be assigned only Boolean values and that 0 and 1 

represent false and true. 
To make programs more understandable, it’s a good idea to define macros 

with names such as TRUE and FALSE: 

#define TRUE 1 

#define FALSE 0 
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Assignments to flag now have a more natural appearance: 

flag = FALSE; 

flag = TRUE; 

To test whether flag is true, we can write 

if (flag == TRUE) ... 

or just 

if (flag) ... 

To test whether flag is false, we can write 

if (flag == FALSE) ... 

or 

if ( ! flag) ... 

Carrying this idea one step further, we might even define a macro that can be 

used as a type: 

tdefine BOOL int 

BOOL can take the place of int when declaring Boolean variables: 

BOOL flag; 

It’s now clear that flag isn’t an ordinary integer variable, but instead represents a 

Boolean condition. (The compiler still treats flag as an int variable, of course.) 

type definitions >7.6 In later chapters, we’ll discover better ways to set up a Boolean type. 

enumerations >16.5 

5.3 The switch Statement 

In everyday programming, we’ll often need to compare an expression against a 

series of values to see which one it currently matches. We saw in Section 5.2 that a 

cascaded if statement can be used for this purpose. For example, the following 

cascaded if statement prints the English word that corresponds to a numerical 

grade: 

if (grade == 4) 

printf("Excellent"); 

else if (grade == 3) 

printf("Good"); 

else if (grade == 2) 

printf("Average"); 

else if (grade == 1) 
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printf("Poor"); 
else if (grade == 0) 

printf("Failing"); 
else 

printf("Illegal grade"); 

As an alternative to this kind of cascaded if statement, C provides the switch 

statement. The following switch is equivalent to our cascaded if: 

switch (grade) { 
case 4: printf("Excellent"); 

break; 

case 3 : printf("Good"); 

break; 

case 2 : printf("Average' 

break; 
'); 

case 1; printf("Poor") ; 

break; 

case 0: printf("Failing1 

break; 
') ; 

default: printf("Illegal 

break; 

grade") 

} 

break statement >6.4 

Q&A 

When this statement is executed, the value of the variable grade is tested against 

4, 3, 2, 1, and 0. If it matches 4, for example, the message Excellent is printed, 

then the break statement transfers control to the statement following the 

switch. If the value of grade doesn’t match any of the choices listed, the 

default case applies, and the message Illegal grade is printed. 

A switch statement is often easier to read than a cascaded if statement. 

Moreover, switch statements are often faster than if statements, especially 

when there are more than a handful of cases. 

In its most common form, the switch statement has the form 

switch statement switch ( expression ) { 

case constant-expression : : statements 

case constant-expression : : statements 

default ; statements 

} 

The switch statement is fairly complex; let’s look at its components one by one: 

■ Controlling expression. The word switch must be followed by an integer 

characters >7.3 expression in parentheses. Characters are treated as integers in C and thus can 

be tested in switch statements. Floating-point numbers and strings don’t 

qualify, however. 

■ Case labels. Each case begins with a label of the form 

case constant-expression : 
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A constant expression is much like an ordinary expression except that it can t 

contain variables or function calls. Thus, 5 is a constant expression, and 5 + 

10 is a constant expression, but n + 10 isn’t a constant expression (unless n is 

a macro that represents a constant). The constant expression in a case label 

must evaluate to an integer (characters are also acceptable). 

■ Statements. After each case label comes any number of statements. No braces 

are required around the statements. (Enjoy it—this is one of the few places in 

C where braces aren’t required.) The last statement in each group is normally 

break. 

Duplicate case labels aren’t allowed. The order of the cases doesn t matter, in par¬ 

ticular, the default case doesn’t need to come last. 
Only one constant expression may follow the word case; however, several 

case labels may precede the same group of statements: 

switch (grade) { 

case 4: 

case 3: 

case 2: 
case 1: printf("Passing"); 

break; 

case 0: printf("Failing"); 

break; 

default: printf("Illegal grade"); 

break; 

} 

To save space, programmers sometimes put several case labels on the same line: 

switch (grade) { 

case 4: case 3: case 2: case 1: 

printf("Passing"); 

break; 

case 0: printf("Failing"); 

break; 

default: printf("Illegal grade"); 

break; 

} 

Unfortunately, there’s no way to write a case label that specifies a range of values, 

as there is in some programming languages. 
A switch statement isn’t required to have a default case. If default is 

missing and the value of the controlling expression doesn’t match any of the case 

labels, control simply passes to the next statement after the switch. 

The Role of the break Statement 

Now, let’s take a closer look at the mysterious break statement. As we’ve seen, 

executing a break statement causes the program to "break out of the switch 

statement; execution continues at the next statement after the switch. 
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The reason that we need break has to do with the fact that the switch state¬ 

ment is really a form of “computed jump.” When the controlling expression is 

evaluated, control jumps to the case label matching the value of the switch 

expression. A case label is nothing more than a marker indicating a position within 

the switch. When the last statement in the case has been executed, control “falls 

through” to the first statement in the following case; the case label for the next case 

is ignored. Without break (or some other jump statement), control will flow from 

one case into the next. Consider the following switch statement: 

switch (grade) { 

case 4: printf("Excellent"); 

case 3: printf("Good"); 

case 2: printf("Average"); 

case 1: printf("Poor"); 

case 0: printf("Failing"); 

default: printf("Illegal grade"); 

} 

If the value of grade is 3, the message printed is 

GoodAveragePoorFailingIllegal grade 

Forgetting to use break is a common error. Although omitting break is some¬ 
times done intentionally to allow several cases to share code, it’s usually just an 
oversight. 

Since deliberately falling through from one case into the next is rare, it’s a 

good idea to point out any deliberate omission of break: 

switch (grade) { 

case 4: case 3: case 2: case 1: 

num__passing++ ; 

/* FALL THROUGH */ 

case 0: total_grades++; 

Without the comment, someone might later fix the “error” by adding an unwanted 

break statement. 
Although the last case in a switch statement never needs a break state¬ 

ment, it’s common practice to put one there anyway to guard against a “missing 

break” problem if cases should later be added. 

PROGRAM Printing a Date in Legal Form 

Contracts and other legal documents are often dated in the following way: 

Dated this_day of_, 19_. 
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Let’s write a program that displays dates in this form. We’ll have the user enter the 

date in month/day/year form, then we’ll display the date in legal form. 

Enter date (mm/dd/yy): 7/19/96 

Dated this 19th day of July, 1996. 

We can get printf to do most of the formatting. However, we’re left with two 

problems: how to add “th” (or “st” or “nd” or “rd”) to the day, and how to print the 

month as a word instead of a number. Fortunately, the switch statement is ideal 

for both situations; we’ll have one switch print the day suffix and another print 

the month name. 

date.C /* Prints a date in legal form */ 

#include <stdio.h> 

main() 

{ 
int month, day, year; 

printf("Enter date (mm/dd/yy): "); 

scanf("%d /%d /%d", &month, &day, &year); 

printf("Dated this %d", day); 

switch (day) { 

case 1: case 21: case 31: 

printf("st"); break; 

case 2: case 22: 

printf("nd"); break; 

case 3: case 23: 

printf("rd"); break; 

default: printf("th"); break; 

} 
printf(" day of "); 

switch (month) { 

case 1: printf( 'January"); break; 

case 2 printf( 'February"); break; 

case 3 printf( ’March"); break; 

case 4 printf( 'April"); break; 

case 5 printf( "May"); break; 

case 6 printf( "June"); break; 

case 7 printf( "July"); break; 

case 8 printf( "August"); break; 

case 9 printf( "September") ; break; 

case 10 : printf( "October"); break; 

case 11: printf( "November"); break; 

case 12 : printf( "December"); break; 

} 

printf(", 19%.2d.\n", year); 

return 0; 

} 
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Note the use of % . 2d to display the last two digits of the year. If we had used 

%d instead, single-digit years would be displayed incorrectly (1900 would be 
printed as 19 0). 

Q&A 

Q: My compiler doesn’t give a warning when I use = instead of ==. Is there some 

way to force the compiler to notice the problem? [p. 67] 

A: Here’s a trick that some programmers use: instead of writing 

if (i == 0) ... 

they habitually write 

if (0 == i) ... 

Now suppose that the == operator is accidentally written as =: 

if (0 = i) ... 

The compiler will produce an error message, since it’s not possible to assign a 

value to 0. I don’t use this trick, because I think it makes programs look unnatural. 

Also, it can be used only when one of the operands in the test condition isn’t an 

lvalue. 

Q: C books seem to use several different styles of indentation and brace place¬ 

ment for compound statements. Which style is best? 

A: According to The New Hacker’s Dictionary (Cambridge, Mass.: MIT Press, 1993), 

there are four common styles of indentation and brace placement: 

■ The K&R style, used in Kernighan and Ritchie’s The C Programming Lan¬ 

guage, is the one I’ve chosen for the programs in this book. In the K&R style, 

the left brace appears at the end of a line: 

if (line_num == MAX_LINES) { 

1ine_num = 0; 

page_num++; 

} 

The K&R style keeps programs compact by not putting the left brace on a line 

by itself. It’s also similar to indentation styles used in many modern lan¬ 

guages. A disadvantage: the left brace can be hard to find. (I don’t consider 

this a problem, since the indentation of the inner statements makes it clear 

where the left brace should be.) 

■ The Allman style, named after Eric Allman (the author of sendmail and 

other UNIX utilities), resembles the way programs are laid out in Pascal: 
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if (line_num == MAX_LINES) 

{ 
line_num = 0; 

page_num++; 

} 

Each brace is on a separate line, making it easy to check that they match. 

■ The Whitesmiths style, popularized by the Whitesmiths C compiler, dictates 

that braces be indented: 

if (line_num == MAX_LINES) 

{ 
line_num = 0; 

page_num++; 

} 

■ The GNU style, used in the GNU software distributed by the Free Software 

Foundation, indents the braces, then further indents the inner statements: 

if (line_num = = MAX_LINES) 

{ 
1ine_num = 0; 

page_num++; 

} 

Which style you use is mainly a matter of taste; there’s no proof that one style 

is clearly better than the others. In any event, choosing the right style is less impor¬ 

tant than applying it consistently. 
The New Hacker’s Dictionary claims that the Allman and Whitesmiths styles 

are the most widely used, followed by the K&R style; the GNU style is the rarest. 

Arguments over style can still be found in the C community, although they often 

degenerate into “holy wars.” Fans of the K&R style, for example, often refer to it 

as the “One True Brace Style.” 

Q: If i is an int variable and f is a float variable, what is the type of the con¬ 

ditional expression (i > 0 ? i : f) ? 

A: When int and float values are mixed in a conditional expression, as they are 

here, the expression has type float. If i > 0 is true, the value of the expression 

will be the value of i after conversion to float type. 

Q: The template given for the switch statement described it as the “most com¬ 

mon form,” Are there other forms? [p. 75] 

A: The switch statement is a bit more general than described in this chapter. For 

labels>6.4 example, it can contain labels that aren’t preceded by the word case, which leads 

to an amusing (?) trap. Suppose that we accidentally misspell the word default: 

switch (...) { 

defualt: ... 

} 
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The compiler won’t detect the error, since it assumes that defualt is an ordinary 

label. 

Although I’ve omitted a few details about the switch statement, the form 

described in the chapter is general enough for virtually all programs. Appendix A 

gives a more precise description of the statement. 

Q: I’ve seen several methods of indenting the switch statement. Which way is 

best? 

A: There are at least two common methods. One is to put the statements in each case 

after the case label: 

switch (coin) { 

case 1: printf("Cent"); 

break; 

case 5: printf("Nickel"); 

break; 

case 10: printf("Dime"); 

break; 

case 25: printf("Quarter"); 

If each case consists of a single action (a call of printf, in this example), the 

break statement could even go on the same line as the action: 

switch (coin) { 

case 1: printf("Cent"); break; 

case 5: printf("Nickel"); break; 

case 10: printf("Dime"); break; 

case 25: printf("Quarter"); break; 

} 

The other method is to put the statements under the case label, indenting the 

statements to make the case label stand out: 

switch (coin) { 

case 1: 

printf("Cent"); 

break; 

case 5: 

printf("Nickel"); 

break; 

case 10: 

printf("Dime"); 

break; 

case 25: 

printf("Quarter") ; 

break; 

} 

In one variation of this scheme, each case label is aligned under the word 

switch. 
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Section 5.1 

Selection Statements 

The first method is fine when the statements in each case are short and there 

are relatively few of them. The second method is better for large switch state¬ 

ments in which the statements in each case are complex and/or numerous. 

Exercises 

1 The following code fragments illustrate the relational and equality operators. Show the out¬ 

put produced by each, assuming that i, j, and k are int variables. 

(a) i = 2; j = 3 ; 

k = i * j == 6; 

printf("%d", k); 

(b) i = 5; j = 10; k = 1; 

printf("%d", k > i < j); 

(c) i = 3; j = 2; k = 1 ; 

printf("%d", i < j == j <k); 

(d) i = 3; j = 4; k = 5 ; 

printf("%d", i % j + i < k); 

2. The following code fragments illustrate the logical operators. Show the output produced by 

each, assuming that i, j, and k are int variables. 

(a) i = 10; j = 5; 

printf("%d", !i < j); 

(b) i = 2; j =1; 

printf("%d", !!i + !j); 

(c) i = 5; j = 0; k = -5; 

printf("%d", i && j || k); 

(d) i = l;j=2;k = 3; 

printf("%d", i < j || k); 

*3. The following code fragments illustrate the short-circuit behavior of logical expressions. 

Show the output produced by each, assuming that i, j, and k are int variables. 

(a) i = 3; j = 4; k = 5; 

printf("%d ", i < j || ++j < k) ; 

printf("%d %d %d", i, j, k) ; 

(b) i = 7; j - 8; k = 9; 

printf("%d ", i - 7 && j++ < k); 

printf("%d %d %d", i, j, k); 

(C) i = 7; j = 8; k = 9; 

printf("%d ", (i = j) || (j - k)); 

printf("%d %d %d", i, j, k); 

(d) i = 1; j = 1; k = 1; 
printf("%d ", ++i || ++j && ++k); 

printf("%d %d %d", i, j, k); 

*4. Write a single expression whose value is either -1, 0, or +1, depending on whether i is less 
than, equal to, or greater than j, respectively. 
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Section 5.2 5. Write a program that determines the number of digits in a number: 

Enter a number: 374 

The number 374 has 3 digits 

You may assume that the number has no more than four digits. Hint: Use if statements to 
test the number. For example, if the number is between 0 and 9, it has one digit. If the num¬ 
ber is between 10 and 99, it has two digits. 

6. Write a program that asks the user for a 24-hour time, then displays the time in 12-hour 
form: 

Enter a 24-hour time: 21:11 

Equivalent 12-hour time: 9:11 PM 

Be careful not to display 12:00 as 0:00. 

7. Modify the broker. c program by making both of the following changes: 

(a) Ask the user to enter the number of shares and the price per share, instead of the value 
of the trade. 

(b) Add statements that compute the commission charged by a rival broker ($33 plus 30 per 
share for fewer than 2000 shares; $33 plus 20 per share for 2000 shares or more). Dis¬ 
play the rival’s commission as well as the commission charged by the original broker. 

8. Here’s a simplified version of the Beaufort scale, which is used to measure wind force: 

Velocity (knots) 
Less than 1 
1-3 
4-27 
28-47 
48-63 
Above 63 

Description 
Calm 
Light air 
Breeze 
Gale 
Storm 
Hurricane 

Write a program that asks the user to enter a wind velocity (in knots), then displays the cor¬ 
responding description. 

9. In one state, single residents are subject to the following income tax: 

Income Amount of tax 
Not over $750 1% of income 
$750-$2,250 $7.50 
$2,250-$3,750 $37.50 
$3,750-$5,250 $82.50 
$5,250-$7,000 $142.50 
Over $7,000 $230.00 

plus 2% of amount over $750 
plus 3% of amount over $2,250 
plus 4% of amount over $3,750 
plus 5% of amount over $5,250 
plus 6% of amount over $7,000 

Write a program that asks the user to enter the amount of taxable income, then displays the 
tax due. 

10. Modify the upc . c program of Section 4.1 so that it checks whether a UPC is valid. After 
the user enters a UPC, the program will display either VALID or NOT VALID. 

Is the following if statement legal in C? 

if (n >= 1 <= 10) 
printf("n is between 1 and 10\n"); 

If so, what does it do when n is equal to 0? 

*11. 
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Section 5.3 

* 12. Is the following i f statement legal in C? 

if (n == 1-10) 
printf("n is between 1 and 10\n"); 

If so, what does it do when n is equal to 5? 

13. What does the following statement print if i has the value 17? What does it print if i has the 

value -17? 

printf("%d\n", i >= 0 ? i : -i); 

14. Using the switch statement, write a program that converts a numerical grade into a letter 

grade: 

Enter numerical grade: J34 

Letter grade: B 

Use the following grading scale: A = 90-100, B = 80-89, C = 70-79, D = 60-69, F = 0-59. 
Print an error message if the grade is larger than 100 or less than 0. Hint: Break the grade 
into two digits, then use a switch statement to test the ten’s digit. 

15. Write a program that asks the user for a two-digit number, then prints the English word for 
the number: 

Enter a two-digit number: 45 

You entered the number forty-five. 

Hint: Break the number into two digits. Use one switch statement to print the word for the 
first digit (“twenty,” “thirty,” and so forth). Use a second switch statement to print the 
word for the second digit. Don’t forget that the numbers between 11 and 19 require special 
treatment. 

*16. What output does the following program fragment produce? (Assume that i is an integer 
variable.) 

i = 1; 
switch (i % 3) { 

case 0 : printf("zero" 

case 1: printf("one") 

case 2 : printf("two") 

} 



6 Loops 

A program without a loop and a structured 
variable isn’t worth writing. 

Chapter 5 covered C’s selection statements, if and switch. In this chapter, we’ll 

introduce C’s iteration statements, which allow us to set up loops. 

A loop is a statement whose job is to repeatedly execute some other statement 

(the loop body). In C, every loop has a controlling expression. Each time the loop 

body is executed (an iteration of the loop), the controlling expression is evaluated; 

if the expression is true—has a value that’s not zero—the loop continues to exe¬ 

cute. 

C provides three iteration statements: while, do, and for, which are cov¬ 

ered in Sections 6.1, 6.2, and 6.3, respectively. The while statement is used for 

loops whose controlling expression is tested before the loop body is executed. The 

do statement is used if the expression is tested after the loop body is executed. The 

for statement is convenient for loops that increment or decrement a counting 

variable. Section 6.3 also introduces the comma operator, which is used primarily 

in for statements. 

The last two sections of this chapter are devoted to C features that are used in 

conjunction with loops. Section 6.4 describes the break, continue, and goto 

statements, break jumps out of a loop and transfers control to the next statement 

after the loop, continue skips the rest of a loop iteration, and goto jumps to 

any statement within a function. Section 6.5 covers the null statement, which can 

be used to create loops with empty bodies. 

6.1 The while Statement 

Of all the ways to set up loops in C, the while statement is the simplest and most 

fundamental. The while statement has the form 

85 
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while statement while ( expression ) statement 

The expression inside the parentheses is the controlling expression; the statement 

after the parentheses is the loop body. Here’s an example: 

while (i < n) /* controlling expression */ 

i = i * 2; /* loop body */ 

Note that the parentheses are mandatory and that nothing goes between the right 

parenthesis and the loop body. (Some languages require the word do.) 
When awhile statement is executed, the controlling expression is evaluated 

first. If its value is nonzero (true), the loop body is executed and the expression is 

tested again. The process continues in this fashion—first testing the controlling 

expression, then executing the loop body—until the controlling expression eventu¬ 

ally has the value zero. 
The following example uses a while statement to compute the smallest 

power of 2 that’s greater than or equal to a number n: 

i = 1 ; 
while (i < n) 

i = i * 2; 

Suppose that n has the value 10. The following trace shows what happens when 

the while statement is executed: 

i = 1 ; 

Is i < n? 

i = i * 2 ; 

Is i < n? 

i = i * 2 ; 

Is i < n? 

i = i * 2 ; 

Is i < n? 

i = i * 2 ; 

Is i < n? 

i is now 1. 

Yes; continue, 

i is now 2. 

Yes; continue, 

i is now 4. 

Yes; continue, 

i is now 8. 

Yes; continue, 

i is now 16. 

No; exit from loop. 

Notice how the loop keeps going as long as the controlling expression (i < n) is 

true. When the expression is false, the loop terminates, and i is greater than or 

equal to n, as desired. 
Although the loop body must be a single statement, that’s merely a technical¬ 

ity; if we want more than one statement, we can just use braces to create a single 

compound statement: 

while (i > 0) { 

printf("T minus %d and counting\n", i); 

i—; 
} 
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Some programmers always use braces, even when they’re not strictly necessary: 

while (i < n) { /* braces allowed, but not required */ 

i = i * 2; 

} 

As a second example, let’s trace the execution of the following statements, 

which display a series of “countdown” messages: 

i = 10; 

while (i > 0) { 

printf("T minus %d and counting\n", i); 

Before the while statement is executed, the variable i is assigned the value 10. 

Since 10 is greater than 0, the loop body is executed, causing the message T 

minus 10 and counting to be printed and i to be decremented. The condition 

i > 0 is then tested again. Since 9 is greater than 0, the loop body is executed once 

more. This process continues until the message T minus 1 and counting is 

printed and i becomes 0. The test i > 0 then fails, causing the loop to terminate. 

The “countdown” example leads us to make several observations about the 

while statement: 

Q&A 

■ The controlling expression is false when a while loop terminates. Thus, 

when a loop controlled by the expression i > 0 terminates, i must be less 

than or equal to 0. (Otherwise, we’d still be executing the loop!) 

■ The body of a while loop may not be executed at all. Since the controlling 

expression is tested before the loop body is executed, it’s possible that the 

body isn’t executed even once. If i has a negative or zero value when the 

“countdown” loop is first entered, the loop will do nothing. 

■ A while statement can often be written in a variety of ways. For example, 

we could make the “countdown” loop more concise by decrementing i inside 

the call of print f: 

while (i > 0) printf("T minus %d and counting\n", i--); 

Infinite Loops 

A while statement won’t terminate if the controlling expression always has a 

nonzero value. In fact, C programmers sometimes deliberately create an infinite 

loop by using a nonzero constant as the controlling expression: 

idiom while (1) ... 

A while statement of this form will execute forever unless its body contains a 

statement that transfers control out of the loop (break, goto, return) or calls a 

function that causes the program to terminate. 
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PROGRAM 

square.c 

PROGRAM 

Printing a Table of Squares 

Let’s write a program that prints a table of squares. The program will first prompt 

the user to enter a number n. It will then print n lines of output, with each line con¬ 

taining a number between 1 and n together with its square: 

This program prints a table of squares. 
Enter number of entries in table: 5 

1 1 
2 4 

3 9 
4 16 

5 25 

Let’s have the program store the desired number of squares in a variable 

named n. We’ll need a loop that repeatedly prints a number i and its square, start¬ 

ing with i equal to 1. The loop will repeat as long as i is less than or equal to n. 

We’ll have to make sure to add 1 to i each time through the loop. 
We’ll write the loop as a while statement. (Frankly, we haven’t got much 

choice, since the while statement is the only kind of loop we ve covered so far.) 

Here’s the finished program: 

/* Prints a table of squares using a while statement */ 

#include <stdio.h> 

main() 

{ 
int i, n; 

printf("This program prints a table of squares.\n"); 
printf("Enter number of entries in table: "); 

scanf (11 %d" , &n) ; 

i = 1; 
while (i <= n) { 

printf("%10d%10d\n", i, i * i); 

i + +; 

} 

return 0; 

} 

Note how square . c displays numbers in neatly aligned columns. The trick 

is to use a conversion specification like %10d instead of just %d, taking advantage 

of the fact that printf right-justifies numbers a field width is specified. 

Summing a Series of Numbers 

As a second example of the while statement, let’s write a program that sums a 

series of integers entered by the user. Here’s what the user will see: 
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This program sums a series of integers. 

Enter integers (0 to terminate): 8 23 71 5 0 
The sum is: 107 

Clearly we’ll need a loop that uses scanf to read a number and then adds the 
number to a running total. 

Letting n represent the number just read and sum the total of all numbers pre¬ 
viously read, we end up with the following program: 

Sum.C /* Sums a series of numbers */ 

#include <stdio.h> 

main() 

{ 
int n, sum = 0; 

printf("This program sums a series of integers.\n"); 

printf("Enter integers (0 to terminate): "); 

scanf("%d", &n); 

while (n != 0) { 

sum += n; 

scanf("%d", &n); 

} 
printf(”The sum is: %d\n", sum); 

return 0; 

} 

Notice that the condition n ! = 0 is tested just after a number is read, allowing the 

loop to terminate as soon as possible. 

6.2 The do Statement 

The do statement is closely related to the while statement; in fact, the do state¬ 

ment is essentially just a while statement whose controlling expression is tested 

after each execution of the loop body. The do statement has the form 

do statement do statement while ( expression ) ; 

As with the while statement, the body of a do statement must be one statement 

(possibly compound, of course) and the controlling expression requires parenthe¬ 

ses. 
When a do statement is executed, the loop body is executed first, then the 

controlling expression is evaluated. If the value of the expression is nonzero, the 

loop body is executed again and then the expression is evaluated once more. Exe- 
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cution of the do statement terminates when the controlling expression has the 

value 0 after the loop body has been executed. 
Let’s rewrite our “counting down” example, using a do statement this time. 

i = 10; 

do { 
printf("T minus %d and counting\n", i); 

--i; 
} whi1e (i > 0 ) ; 

When the do statement is executed, the loop body is first executed, causing the 

message T minus 10 and counting to be printed and i to be decremented. 

The condition i > 0 is now tested. Since 9 is greater than 0, the loop body is exe¬ 

cuted a second time. This process continues until the message T minus 1 and 

counting is printed and i becomes 0. The test i > 0 now fails, causing the loop 

to terminate. As this example shows, the do statement is often indistinguishable 

from the while statement. The difference between the two is that the body of a 

do statement is always executed at least once; the body of a while statement is 

skipped entirely if the controlling expression is 0 initially. 
Incidentally, many C programmers use braces in all do statements, whether or 

not they’re needed, because a do statement without braces can easily be mistaken 

for a while statement: 

do printf("T minus %d and counting\n", i—); 

while (i > 0); 

A careless reader might think that the word while was the beginning of a while 

statement. 

PROGRAM Calculating the Number of Digits in an Integer 

Although the while statement appears in C programs much more often than the 

do statement, the latter is handy for loops that must execute at least once. To illus¬ 

trate this point, let’s write a program that calculates the number of digits in an inte¬ 

ger entered by the user: 

Enter a nonnegative integer; 6_0 

The number has 2 digit(s). 

Our strategy will be to divide the user’s input by 10 repeatedly until it 

becomes 0; the number of divisions performed is the number of digits. Clearly 

we’ll need some kind of loop, since we don’t know how many divisions it will take 

to reach 0. But should we use a while statement or a do statement? The do state¬ 

ment turns out to be more attractive, because every integer—even 0—has at least 

one digit. Here’s the program: 

numdigit.C /* Calculates the number of digits in an integer */ 

ttinclude <stdio.h> 
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main() 

{ 
int digits =0, n; 

printf("Enter a nonnegative integer: "); 

scant("%d”, &n); 

do { 

n /* 10; 

digits++; 

} while (n > 0) ; 

printf("The number has %d digit(s).\n", digits); 

return 0; 

} 

To see why the do statement is the right choice, let’s see what would happen if 

we were to replace the do loop by a similar while loop: 

while (n > 0) { 

n /= 10; 

digits++; 

} 

If n is 0 initially, this loop won’t execute at all, and the program would print 

The number has 0 digit(s). 

6.3 The for Statement 

We now come to the last, and most powerful, of C’s loops: the for statement. 

Don’t be discouraged by the for statement’s apparent complexity; it’s actually the 

best way to write many loops. The for statement is ideal for loops that have a 

“counting” variable, but it’s versatile enough to be used for other kinds of loops as 

well. 

The for statement has the form 

for statement for ( exprl ; expr2 ; expr3 ) statement 

where exprl, expr2, and expr3 are expressions. Here’s an example: 

for (i = 10; i > 0; i--) 

printf("T minus %d and counting\n", i); 

When this for statement is executed, the variable i is initialized to 10, then i is 

tested to see if it’s greater than 0. Since it is, the message T minus 10 and 

counting is printed, then i is decremented. The condition i > 0 is then tested 
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Q&A 

again. The loop body will be executed 10 times in all, with i varying from 10 

down to 1. 
The for statement is closely related to the while statement. In fact, except 

in a few rare cases, a for loop can always be replaced by an equivalent while 

loop: 

exprl ; 

while ( expr2 ) { 

statement 

expr3 ; 

} 

As this expansion shows, exprl is an initialization step that’s performed only once, 

before the loop begins to execute, expr2 controls loop termination (the loop contin¬ 

ues executing as long as the value of expr2 is nonzero), and expr3 is an operation 

to be performed at the end of each loop iteration. Applying this expansion to our 

previous for loop example, we arrive at the following. 

i = 10; 

while (i > 0) { 
printf("T minus %d and counting\n", i); 

i--; 

} 

Studying the equivalent while statement can help us understand the fine 

points of a for statement. For example, suppose that we replace i— by --i in 

our for loop example: 

for (i = 10; i > 0; —i) 
printf("T minus %d and counting\n", i); 

How does this change affect the loop? Looking at the equivalent while loop, we 

see that it has no effect: 

i = 10; 

while (i > 0) { 
printf("T minus %d and counting\n", i); 

--i; 

} 

Since the first and third expressions in a for statement are executed as statements, 

their values are irrelevant—they’re useful only for their side effects. Consequently, 

these two expressions are usually assignments or increment/decrement expres¬ 

sions. 

for Statement Idioms 

The for statement is usually the best choice for loops that “count up” (increment 

a variable) or “count down” (decrement a variable). A for statement that counts 

up or down a total of n times will usually have one of the following forms: 



6.3 The for Statement 93 

idiom 

idiom 

idiom 

idiom 

■ Counting up from 0 to n-1: 

for (i = 0; i < n; i + +) ... 

■ Counting up from 1 to n: 

for (i = 1; i <= n; i + +) ... 

■ Counting down from n-1 to 0: 

for (i = n-1; i >= 0; i--) ... 

■ Counting down from n to 1: 

for (i = n; i > 0; i--) ... 

Imitating these patterns will help you avoid some of the errors that beginning 
C programmers often make: 

■ Using < instead of > (or vice versa) in the controlling expression. Notice that 

“counting up” loops use the < or <= operator, while “counting down” loops 
rely on > or >=. 

■ Using == in the controlling expression instead of <, <=, >, or >=. A control¬ 

ling expression needs to be true at the beginning of the loop, then later become 

false so that the loop can terminate. A test such as i == n doesn’t make much 

sense, because it won’t be true initially. 

■ “Off-by-one” errors such as writing the controlling expression as i <= n 

instead of i < n. 

Omitting Expressions in a for Statement 

The for statement is even more flexible than we’ve seen so far. Some for loops 

may not need all three of the expressions that normally control the loop, so C 

allows us to omit any or all of the expressions. 

If the first expression is omitted, no initialization is performed before the loop 

is executed: 

i = 10; 

for (; i > 0; --i) 

printf("T minus %d and counting\n", i); 

In this example, i has been initialized by a separate assignment, so we’ve omitted 

the first expression in the for statement. (Notice that the semicolon between the 

first and second expressions remains. The two semicolons must always be present, 

even when we’ve omitted some of the expressions.) 

If we omit the third expression in a for statement, the loop body is responsi¬ 

ble for ensuring that the value of the second expression eventually becomes false. 

Our for statement example could be written like this: 

for (i = 10; i > 0;) 

printf("T minus %d and counting\n", i--); 
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To compensate for omitting the third expression, we’ve arranged for i to be decre¬ 

mented inside the loop body. 
When the first and third expressions are both omitted, the resulting loop is 

nothing more than awhile statement in disguise. For example, the loop 

for (; i > 0;) 
printf("T minus %d and counting\n", i ); 

is the same as 

Q&A 

while (i > 0) 
printf("T minus %d and counting\n", i—); 

The while version is clearer and therefore preferable. 
If the second expression is missing, it defaults to a true value, so the for 

statement doesn’t terminate (unless stopped in some other fashion). For example, 

some programmers use the following for statement to establish an infinite loop. 

idiom for ( ; ; ) 

The Comma Operator 

On occasion, we might like to write a for statement with two (or more) initializa¬ 

tion expressions or one that increments several variables each time through the 

loop. We can do this by using a comma expression as the first or third expression 

in the for statement. 
A comma expression has the form 

comma expression efffr 1 > ^xpr2 

where exprl and expr2 are any two expressions. A comma expression is evaluated 

in two steps: First, exprl is evaluated and its value discarded. Second, expr2 is 

evaluated; its value is the value of the entire expression. Evaluating expr 1 should 

always have a side effect; if it doesn’t, then exprl serves no purpose. 
For example, suppose that i and j have the values 1 and 5, respectively. 

When the comma expression + + i, i + j is evaluated, i is first incremented, then 

i + j is evaluated, so the value of the expression is 7. (And, of course, i now has 

the value 2.) The precedence of the comma operator is less than that of all other 

operators, by the way, so there’s no need to put parentheses around + + i and i + j . 

Occasionally, we’ll need to chain together a series of comma expressions, just 

as we sometimes chain assignments together. The comma operator is left associa¬ 

tive, so the compiler interprets 

i = 1, j = 2, k=i+j 

as 

( (i = 1) , (j = 2)), (k = (i + j) ) 
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As a result, we’re guaranteed that the expressions i = 1, j = 2, and k = i + j are 

evaluated from left to right. 

The comma operator is provided for situations where C requires a single 

expression, but we’d like to have two or more expressions. In other words, the 

comma operator allows us to “glue” two expressions together to form a single 

expression. (Note the similarity to the compound statement, which allows us to 

treat a group of statements as a single statement.) 

The need to glue expressions together doesn’t arise that often. Certain kinds of 

macros>i4.3 macros can benefit from the comma operator, as we’ll see in a later chapter. The 

for statement is the only other place where the comma operator is likely to be 

found. For example, suppose that we want to initialize two variables when entering 

a for statement. Instead of writing 

sum = 0; 

for (i = 1; i <= N; i++) 

sum += i; 

we can write 

for (sum =0, i = 1; i <= N; i++) 

sum += i; 

The expression sum = 0, i = 1 first assigns 0 to sum, then assigns 1 to i. With 

additional commas, the for statement could initialize more than two variables. 

PROGRAM Printing a Table of Squares (Revisited) 

The square . c program (Section 6.1) can be improved by converting its while 

loop to a for loop: 

square2.C /* Prints a table of squares using a for statement */ 

#include <stdio.h> 

main() 

{ 
int i, n; 

printf("This program prints a table of squares.\n"); 

printf("Enter number of entries in table: "); 

scanf("%d", &n); 

for (i = 1; i <= n; i++) 

printf("%10d%10d\n", i, i * i); 

return 0; 

} 

We can use this program to illustrate an important point about the for state¬ 

ment. The for statement in C is more powerful than the for statement in similar 
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programming languages—and potentially more confusing—because C places no 

restrictions on the three expressions that control its behavior. Although these 

expressions usually initialize, test, and update the same variable, there’s no 

requirement that they be related in any way. Consider the following version of the 

same program: 

square3.C /* Prints a table of squares using an odd method */ 

#include <stdio.h> 

main() 

{ 
int i, n, odd, square; 

printf("This program prints a table of squares.\n ); 

printf("Enter number of entries in table: "); 

scanf("%d", &n); 

i = 1 ; 

odd = 3; 
for (square =1; i <= n; odd +- 2) { 

printf("%10d%10d\n", i, square); 

++i; 
square += odd; 

} 

return 0; 

} 

The for statement in this program initializes one variable (square), tests 

another (i), and increments a third (odd), i is the number to be squared, square 

is the square of i, and odd is the odd number that must be added to the current 

square to get the next square (allowing the program to compute consecutive 

squares without performing any multiplications). 

The tremendous flexibility of the for statement can sometimes be useful; 

linked lists >17.5 we’ll find it to be a great help when working with linked lists. The for statement 

can easily be misused, though, so don’t go overboard. The for loop in 

square3 . c would be a lot clearer if we rearranged its pieces so that the loop is 

clearly controlled by i; in fact, you’re asked to do just that in an exercise. 

6.4 Exiting from a Loop 

We’ve seen how to write loops that have an exit point before the loop body (using 

while and for statements) or after it (using do statements). Occasionally, how¬ 

ever, we’ll need a loop with an exit point in the middle. We may even want a loop 

to have more than one exit point. The break statement makes it possible to write 

either kind of loop. 
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After we’ve examined the break statement, we’ll look at a couple of related 

statements: continue and goto. The continue statement makes it possible to 

skip part of a loop iteration without jumping out of the loop. The goto statement 

allows a program to jump from one statement to another. Thanks to the availability 

of statements such as break and continue, the goto statement is rarely used. 

The break Statement 

We’ve already discussed how a break statement can transfer control out of a 

switch statement. The break statement can also be used to jump out of a 

while, do, or for loop. 

Suppose that we’re writing a program that checks whether a number n is 

prime. Our plan is to write a for statement that divides n by the numbers between 

2 and n - 1. We can break out of the loop as soon as any divisor is found; there’s 

no need to try the remaining possibilities. After the loop has terminated, we can 

use an if statement to determine whether termination was premature (hence n 

isn’t prime) or normal (n is prime): 

for (d = 2; d < n; d++) 

if (n % d == 0) break; 

if (d < n) 

printf("%d is divisible by %d\n", n, d); 

else 

printf("%d is prime\n", n); 

The break statement is particularly useful for writing loops in which the exit 

point is in the middle of the body rather than at the beginning or end. Loops that 

read user input, terminating when a particular value is entered, often fall into this 

category: 

for (;;) { 

printf("Enter a number (enter 0 to stop); "); 

scanf("%d", &n); 

if (n == 0) break; 

printf("%d cubed is %d\n", n, n*n*n); 

} 

A break statement transfers control out of the innermost enclosing while, 

do, for, or switch statement. Thus, when these statements are nested, the 

break statement can escape only one level of nesting. Consider the case of a 

switch statement nested inside a while statement: 

while (...) { 

switch (...) { 

break; 

} 
} 
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The break statement transfers control out of the switch statement, but not out 

of the while loop. I’ll return to this point later. 

The continue Statement 

The continue statement doesn’t really belong here, because it doesn t. exit from 

a loop. It’s similar to break, though, so its inclusion in this section isn t com¬ 

pletely arbitrary, break transfers control just past the end of a loop, while 

continue transfers control to a point just before the end of the loop body. With 

break, control leaves the loop; with continue, control remains inside the loop. 

There’s another difference between break and continue: break can be used 

in switch statements and loops (while, do, and for), whereas contrnue is 

limited to loops. 
The following example, which reads a series of numbers and computes their 

sum, illustrates a simple use of continue. The loop terminates when 10 nonzero 

numbers have been read. Whenever the number 0 is read, the continue state¬ 

ment is executed, skipping the rest of the loop body (the statements sum +- i; 

and n++;) but remaining inside the loop. 

n = 0; 

sum = 0; 

while (n < 10) { 

scanf("%d", &i); 
if (i == 0) continue; 

sum += i; 

n++ ; 
/* continue jumps to here */ 

} 

If continue were not available, we could have written the example as follows: 

n = 0 ; 

sum = 0; 

while (n < 10) { 

scanf("%d", &i); 

if (i != 0) { 

sum += i; 

n++; 

} 
i 

The goto Statement 

break and continue are jump statements: they transfer control from one point 

in the program to another. Both are restricted, however; the target of a break is a 

point just beyond the end of the enclosing loop, while the target of a continue is 

a point just before the end of the loop. The goto statement, on the other hand, is 

capable of jumping to any statement in a function, provided that the statement has 

a label. 
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labeled statement 

goto statement 

Q&A 

exit function >9.5 

PROGRAM 

A label is just an identifier placed at the beginning of a statement: 

identifier : statement 

A statement may have more than one label. The goto statement itself has the form 

goto identifier ; 

Executing a goto statement transfers control to the statement that follows the 

label, which must be in the same function as the goto statement itself. 

If C didn’t have a break statement, here’s how we might use a goto state¬ 
ment to exit prematurely from a loop: 

for (d = 2; d < n; d++) 

if (n % d == 0) goto done; 

done: 

if (d < n) 

printf("%d is divisible by %d\n", n, d); 

else 

printf("%d is prime\n", n) ; 

The goto statement, a staple of older programming languages, is rarely 

needed in everyday C programming. The break, continue, and return state¬ 

ments—which are essentially restricted goto statements—and the exit function 

are sufficient to handle most situations that might require a goto in other pro¬ 

gramming languages. 

Nonetheless, the goto statement can be helpful once in a while. Consider the 

problem of exiting a loop from within a switch statement. As we saw earlier, the 

break statement doesn’t quite have the desired effect: it exits from the switch, 

but not from the loop. A goto statement solves the problem: 

while (...) { 

switch (...) { 

goto loop_done; /* break won't work here */ 

} 
} 
loop_done: ... 

The goto statement is also useful for exiting from nested loops. 

Balancing a Checkbook 

Many simple interactive programs are menu-based: they present the user with a list 

of commands to choose from. Once the user has selected a command, the program 
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performs the desired action, then prompts the user for another command. This pro¬ 

cess continues until the user selects an “exit” or “quit” command. 
The heart of such a program will obviously be a loop. Inside the loop will be 

statements that prompt the user for a command, read the command, then decide 

what action to take: 

for (; ; ) { 
prompt user to enter command; 

read command ; 

execute command ; 

} 

Executing the command will require a switch statement (or cascaded if state¬ 

ment): 

for (; ; ) { 
prompt user to enter command; 

read command; 

switch (command) { 
case commandperform operationx; break; 

case command2: perform operation^, break; 

case commandn: perform operation^, break; 

default: print error message; break ; 

} 
} 

To illustrate this arrangement, let’s develop a program that maintains a check¬ 

book balance. The program will offer the user a menu of choices: clear the account 

balance, credit money to the account, debit money from the account, display the 

current balance, and exit the program. The choices are represented by the integers 

0, 1,2, 3, and 4, respectively. Here’s what a session with the program will look 

like: 

*** ACME checkbook-balancing program *** 

Commands: 0=clear, l=credit, 2=debit, 3=balance, 4=exit 

Enter command: ^ 

Enter amount of credit: 1042.56 

Enter command: 2^ 

Enter amount of debit: 133.79 

Enter command: 1 

Enter amount of credit: 1754.32 

Enter command: 2 
Enter amount of debit: 1400 

Enter command: 2 

Enter amount of debit: 6_8 

Enter command: 2 
Enter amount of debit: 5JD 

Enter command: 2_ 
Current balance: $1145.09 

Enter command: 4 
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checking.c 

When the user enters the command 4 (exit), the program needs to exit from 

the switch statement and the surrounding loop. The break statement won’t 

help, and we’d prefer not to use a goto statement. Instead, we’ll have the program 

execute a return statement, which will cause it to terminate and return to the 
operating system. 

/* Balances a checkbook */ 

#include <stdio.h> 

main() 

{ 
int cmd; 

float balance = 0.0, credit, debit; 

printf("*** ACME checkbook-balancing program ***\n"); 

printf ("Commands: 0=clear, l=credit, 2=debit, "),- 

printf("3=balance, 4=exit\n\n"); 

for ( ;;) { 

printf("Enter command: "); 

scanf("%d", &cmd); 

switch (cmd) { 

case 0: 

balance = 0.0; 

break; 

case 1: 

printf("Enter amount of credit: "); 

scanf("%f", &credit); 

balance += credit; 

break; 

case 2: 

printf("Enter amount of debit: "); 

scanf("%f", Scdebit) ; 

balance -= debit; 

break; 

case 3: 

printf("Current balance: $%.2f\n", balance); 

break; 

case 4: 

return 0; 

default: 

printf("Commands: 0=clear, l=credit, 2=debit, "); 

printf("3=balance, 4=exit\n\n"); 

break; 

} 
} 

} 

Note that the return statement is not followed by a break statement. A break 

immediately following a return can never be executed, and many compilers will 

issue a warning message. 
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6.5 The Null Statement 

A statement can be ««//—devoid of symbols except for the semicolon at the end. 

Here’s an example: 

Q&A 

i = 0; ; j = 1; 

This line contains three statements: an assignment to i, a null statement, and an 

assignment to j. 
The null statement is primarily good for one thing: writing loops whose bodies 

are empty. As an example, recall the prime-finding loop of Section 6.4. 

for (d = 2; d < n; d++) 

if (n % d == 0) break; 

If we move the n % d == 0 condition into the loop’s controlling expression, the 

body of the loop becomes empty: 

for (d = 2; d < n && n % d !=0; d++) 

; /* empty body */ 

Each time through the loop, the condition d < n is tested first; if it is false, the loop 

terminates. Otherwise, the condition n % d ! = 0 is tested, and if it is false, the loop 

terminates. (In the latter case, n % d == 0 must be true; in other words, we ve 

found a divisor of n.) 

Note how we’ve put the null statement on a line by itself, instead of writing 

Q&A 

foir (d — 2; d < n Sc Sc n % d I— 0; d++) ; 

C programmers customarily put the null statement on a line by itself. Otherwise, 

someone reading the program might get confused about whether the statement 

after the for was actually its body: 

for (d = 2; d<n&&n%d 1—0; d++); 

if (d < n) 
printf("%d is divisible by %d\n", n, d); 

Converting an ordinary loop into one with an empty body doesn t buy much: 

the new loop is often more concise but usually no more efficient. In a few cases, 

though, a loop with an empty body is clearly superior to the alternatives. For 

reading characters >7.3 example, we’ll find these loops to be handy for reading character data. 

The null statement is responsible for an entire class of pitfalls. Accidentally putting 
a semicolon after the parentheses in an if, while, or for statement ends the 
statement prematurely; the compiler can’t detect an error of this kind. 
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■ In an if statement, putting a semicolon after the parentheses creates an if 

statement that apparently performs the same action regardless of the value of 
its controlling expression: 

if (d == 0); /*** WRONG ***/ 

printf("Error: Division by zero\n"); 

The call of printf isn’t inside the if statement, so it’s performed regardless 
of whether d is equal to 0. 

■ In a while statement, putting a semicolon after the parentheses may create 
an infinite loop: 

i = 10; 

while (i > 0); /*** WRONG ***/ 

{ 
printf("T minus %d and counting\n", i); 

— i; 

} 

Another possibility is that the loop terminates, but the statement that should be 

the loop body is executed only once, after the loop has terminated: 

i = 11; 

while (—i > 0); /*** WRONG ***/ 

printf("T minus %d and counting\n" , i); 

This example prints the message 

T minus 0 and counting 

■ In a for statement, putting a semicolon after the parentheses causes the state¬ 

ment that should be the loop body to be executed only once: 

for (i = 10; i > 0; i--); /*** WRONG ***/ 

printf("T minus %d and counting\n", i); 

This example also prints the message 

T minus 0 and counting 

Q & A 

Q: The following loop appears in Section 6.1: 

while (i > 0) printf("T minus %d and counting\n", i--); 

Why not shorten the loop even more by removing the “> 0” test? 

while (i) printf("T minus %d and counting\n", i--); 
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This version will stop when i reaches 0, so it should be just as good as the 

original, [p. 87] 
A: The new version is certainly more concise, and many C programmers would write 

the loop in just this way. It does have drawbacks, though. 

First the new loop is not as easy to read as the original. It’s clear that the loop 

will terminate when i reaches 0, but it’s not obvious whether we’re counting up or 

down. In the original loop, that information can be deduced from the controlling 

expression, i > 0. 
Second, the new loop behaves differently than the original if i should happen 

to have a negative value when the loop begins to execute. The original loop termi¬ 

nates immediately, but the new loop doesn t. 

Q: Section 6.3 says that most for loops can be converted to while loops using a 

standard pattern. Why isn’t this true for all for loops? [p. 92] 

A: When the body of a for loop contains a continue statement, the while pat¬ 

tern shown in Section 6.3 is no longer valid. Consider the following example from 

Section 6.4: 

n = 0; 

sum = 0; 

while (n < 10) { 

scanf("%d", &i); 
if (i == 0) continue; 

sum += i; 

n++ ; 

} 

At first glance, it looks as though we could convert the while loop into a for 

loop: 

sum = 0 ; 

for (n = 0; n < 10; n++) { 

scanf("%d", &i); 

if (i == 0) continue; 

sum += i; 

} 

Unfortunately, this loop isn’t equivalent to the original. When i is equal to 0, the 

original loop doesn’t increment n, but the new loop does. 

Q: Which form of infinite loop is preferable, while (1) or for (; ?) ? [p. 94] 

A: C programmers have traditionally preferred for ( ; ; ) for reasons of efficiency, 

older compilers would often force programs to test the 1 condition each time 

through the while loop. With modern compilers, however, there should be no dif¬ 

ference in performance. 

Q: I’ve heard that programmers should never use the continue statement. Is 

this true? 
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A: It’s true that continue statements are rare. Still, continue is handy once in a 

while. Suppose we’re writing a loop that reads some input data, checks that it’s 

valid, and, if so, processes the input in some way. If there are a number of validity 

tests, or if they’re complex, continue can be helpful. The loop would look 
something like this: 

for (;;) { 

read data ; 

i f (data fails first test) 

continue; 

i f (data fails second test) 

continue; 

i f (data fails last test) 

continue; 

process data ; 

} 

Q: What’s so bad about the goto statement? [p. 99] 

A: The goto statement isn’t inherently evil; it’s just that we usually have better alter¬ 

natives. Programs that use more than a few goto statements can quickly degener¬ 

ate into “spaghetti code,” with control blithely jumping from here to there. 

Spaghetti code is hard to understand and hard to modify. 

goto statements make programs hard to read because they can jump either 

forward or backward. (In contrast, break and continue only jump forward.) A 

program that contains goto statements often requires the reader to jump back and 

forth in an attempt to follow the flow of control. 

goto statements can make programs hard to modify, since they make it possi¬ 

ble for a section of code to serve more than one purpose. For example, a statement 

that is preceded by a label might be reachable either by “falling through” from the 

previous statement or by executing one of several goto statements. 

Q: Does the null statement have any uses besides indicating that the body of a 

loop is empty? [p. 102] 

A: Very few. Since the null statement can appear wherever a statement is allowed, 

there are many potential uses for the null statement. In practice, however, there’s 

only one other use of the null statement, and it’s rare. 
Suppose that we need to put a label at the end of a compound statement. A 

label can’t stand alone; it must always be followed by a statement. Putting a null 

statement after the label solves the problem: 

{ 

goto end_of_stmt; 

end_o f_s tmt: ; 

} 
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Q: Are there any other ways to make an empty loop body stand out besides put¬ 

ting the null statement on a line by itself? [p. 102] 

A: Some programmers use a dummy continue statement: 

for (d = 2; d < n && n % d != 0; d++) 

continue; 

Others use an empty compound statement: 

for (d = 2; d < n && n % d != 0; d++) 

U 

Section 6.1 

Exercises 

1 Write a program that finds the largest in a series of numbers entered by the user. The pro¬ 
gram must prompt the user to enter numbers one by one. When the user enters 0 or a nega¬ 
tive number, the program must display the largest nonnegative number entered: 

Enter a number: 60 

Enter a number: 38.3 

Enter a number: 4.89 

Enter a number: 100.62 

Enter a number: 75.2295 

Enter a number: 0 

The largest number entered was 100.62 

Notice that the numbers aren’t necessarily integers. 

2. Write a program that asks the user to enter two integers, then calculates and displays their 

greatest common divisor (GCD): 

Enter two integers: 12 28 

Greatest common divisor: 4 

Hint: The classic algorithm for computing the GCD, known as Euclid’s algorithm, goes as 
follows: Let m and n be variables containing the two numbers. Divide m by n. Save the divi¬ 
sor in m, and save the remainder in n. If n is 0, then stop: m contains the GCD. Otherwise, 

repeat the process, starting with the division of m by n. 

3. Write a program that asks the user to enter a fraction, then converts the fraction to lowest 

terms: 

Enter a fraction: 6/12 

In lowest terms: 1/2 

Hint: To convert a fraction to lowest terms, first compute the GCD of the numerator and 
denominator. Then divide both the numerator and denominator by the GCD. 

4. Add a loop to the broker . c program of Section 5.2 so that the user can enter more than 
one trade and the program will calculate the commission on each. The program should ter¬ 

minate when the user enters 0 as the trade value: 

Enter value of trade: 30000 

Commission: $166.00 
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Section 6.2 

Section 6.3 

Enter value of trade: 20000 

Commission: $144.00 

Enter value of trade: 0^ 

5. Exercise 3 in Chapter 4 asked you to write a program that displays a two-digit number with 
its digits reversed. Generalize the program so that the number can have one, two, three, or 
more digits. Hint: Use a do loop that repeatedly divides the number by 10, stopping when it 
reaches 0. 

6. Write a program that prompts the user to enter a number n, then prints all even squares 
between 1 and n. For example, if the user enters 100, the program should print the follow¬ 
ing: 

4 
16 

36 

64 

100 

7. Rearrange the square3 . c program so that the for loop initializes i, tests i, and incre¬ 
ments i. Don’t rewrite the program; in particular, don’t use any multiplications. 

8. Write a program that prints a one-month calendar. The user specifies the number of days in 
the month and the day of the week on which the month begins: 

Enter number of days in month: 31 

Enter starting day of the week (l = Sun, 7 = Sat) : _3 

1 2 3 4 5 

6 7 8 9 10 11 12 

13 14 15 16 17 18 19 

20 21 22 23 24 25 26 

27 28 29 3 0 31 

Hint: This program isn’t as hard as it looks. The most important part is a for statement that 
uses a variable i to count from 1 to n, where n is the number of days in the month, printing 
each value of i. Inside the loop, an if statement tests whether i is the last day in a week; if 
so, it prints a new-line character. 

*9. What output does the following for statement produce? 

for (i = 5, j = i - 1; i > 0, j>0; --i, j=i-l) 

printf("%d ", i); 

10. Which one of the following statements is not equivalent to the other two (assuming that the 

loop bodies are the same)? 

(a) for (i = 0; i < 10; i++ 

(b) for (i = 0; i < 10; ++i 

(c) for (i = 0; i + + <10; ) 

11. Which one of the following statements is not equivalent to the other two (assuming that the 

loop bodies are the same)? 

(a) while (i < 10) (...) 

(b) for (; i < 10;) (...) 

(c) do (...) while (i < 10); 
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Section 6.4 

Section 6.5 

Loops 

12. Show how to replace a continue statement by an equivalent goto statement. 

13. What output does the following program fragment produce? 

sum = 0; 
for (i = 0; i < 10? i++) { 

if (i % 2) continue; 

sum += i; 

} 
printf("%d\n", sum); 

14. The following “prime-testing” loop appeared in Section 6.4 as an example: 

for (d = 2; d < n; d++) 
if (n % d == 0) break; 

This loop isn’t very efficient. It’s not necessary to divide n by all numbers between 2 and 
n - 1 to determine whether it’s prime. In fact, we need only check divisors up to the square 
root of n. Modify the loop to take advantage of this fact. Hint: Don’t try to compute the 

square root of n; instead, compare d * d with n. 

*15. Rewrite the following loop so that its body is empty: 

for (n = 0; m > 0; n++) 
m / = 2 ; 

* 16. Find the error in the following program fragment and fix it. 

if (n % 2 == 0); 

printf ("n is evenin''); 



Basic Types 

Make no mistake about it: Computers process numbers— 

not symbols. We measure our understanding (and control) 
by the extent to which we can arithmetize an activity. 

So far, we’ve used only two of C’s basic (built-in) types: int and float. This 

chapter describes the rest of the basic types and, in the process, provides additional 

information about the int and float types. Section 7.1 reveals the full range of 

integer types, including long integers, short integers, and unsigned integers. Sec¬ 

tion 7.2 introduces the double and long double types, which provide a larger 

range of values and greater precision than float. Section 7.3 covers the char 

(character) type, which we’ll need in order to work with character data. Section 7.4 

describes the sizeof operator, which measures the amount of storage required 

for a type. Section 7.5 tackles the important issue of converting a value of one type 

to an equivalent value of another. Finally, Section 7.6 shows how to use typedef 

to define new type names. 

7.1 Integer Types 

C supports two fundamentally different kinds of numeric types: integer types and 

floating types. Values of an integer type are whole numbers, while values of a 

floating type can have a fractional part as well. The integer types, in turn, are 

divided into two categories: signed and unsigned. 

Signed and Unsigned Integers 

Integers are typically stored in either 16 bits or 32 bits. In a signed number, the left¬ 
most bit (the sign bit) is 0 if the number is positive or zero, 1 if it’s negative. Thus, 
the largest 16-bit integer has the binary representation 

109 
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0111111111111111 

which has the value 32,767 (215 - 1). The largest 32-bit integer is 

01111111111111111111111H1111111 

which has the value 2,147,483,647 (231 - 1). An integer with no sign bit (the left¬ 

most bit is considered part of the number’s magnitude) is said to be unsigned, i he 

largest 16-bit unsigned integer is 65,535 (216 - 1), and the largest 32-bit unsigned 

integer is 4,294,967,295 (232 - 1). 
By default, integer variables are signed in C—the leftmost bit is reserved for 

the sign. To tell the compiler that a variable has no sign bit, we declare it to be 

unsigned. Unsigned numbers are primarily useful for systems programming and 

low-level, machine-dependent applications. We’ll discuss typical applications for 

unsigned numbers in Chapter 20; until then, we’ll generally avoid them. 

C’s integer types come in different sizes. The int type is the “natural size” 

for integers on a given computer (usually 16 bits or 32 bits). Since a 16-bit inte¬ 

ger—with its upper limit of 32,767—may be too limited for many applications, C 

also provides long integers. At times, we may need to save space by instructing the 

compiler to store a number in less space than normal; such a number is called a 

short integer. 
To construct an integer type that exactly meets our needs, we can specify that 

a variable is long or short, signed or unsigned. We can even combine 

specifiers (e.g., long unsigned int). However, only the following six combi¬ 

nations actually produce different types: 

short int 

unsigned short int 

int 

unsigned int 

long int 

unsigned long int 

Other combinations are synonyms for one of these six types. (For example, long 

signed int is the same as long int, since integers are always signed unless 

otherwise specified.) Incidentally, the order of the specifiers doesn’t matter; 

unsigned short int is the same as short unsigned int. 

C allows us to abbreviate the names of integer types by dropping the word 

int. For example, unsigned short int may be abbreviated to unsigned 

short, and long int may be abbreviated to just long. 

The range of values represented by each of the six integer types varies from 

one machine to another. However, there are a couple of rules that all compilers 

must obey. First, the C standard requires that short int, int, and long int 

each cover a certain minimum range of values. Second, the standard requires that 

int not be shorter than short int, and long int not be shorter than int. 
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Table 7.1 

Integer Types on a 

16-bit Machine 

Table 7.2 

Integer Types on a 

32-bit Machine 

limits . h> header >23.2 

portability tip 

However, it’s possible that short int represents the same range of values as 

int; also, int may have the same range as long int. 

Table 7.1 shows the usual range of values for the integer types on a 16-bit 

Type Smallest Value Largest Value 

short int -32,768 32,767 
unsigned short int 0 65,535 
int -32,768 32,767 
unsigned int 0 65,535 
long int -2,147,483,648 2,147,483,647 
unsigned long int 0 4,294,967,295 

machine; note that short int and int have identical ranges. Table 7.2 shows 

Type Smallest Value Largest Value 

shortint -32,768 32,767 
unsigned short int 0 65,535 
int -2,147,483,648 2,147,483,647 
unsigned int 0 4,294,967,295 
long int -2,147,483,648 2,147,483,647 
unsigned long int 0 4,294,967,295 

the usual ranges on a 32-bit machine; here int and long int have identical 

ranges. Macros that define the smallest and largest values of each integer type can 

be found in the <limits . h> header, which is part of the standard library. 

Notice that the short and long integer types have the same ranges for both 

16-bit and 32-bit machines. This observation leads to our first portability tip: 

For maximum portability, use int (or short int)/or integers that 

won’t exceed 32,767 and long int for all other integers. 

Don’t use long integers indiscriminately, however, since operations on long inte¬ 

gers may require more time than operations on smaller integers. 

Integer Constants 

Let’s turn our attention to constants—numbers that appear in the text of a pro¬ 

gram, not numbers that are read, written, or computed. C allows integer constants 

to be written in decimal (base 10), octal (base 8), or hexadecimal (base 16). 

Octal and Hexadecimal Numbers 

An octal number is written using only the digits 0 through 7. Each position in an 

octal number represents a power of 8 (just as each position in a decimal number 

represents a power of 10). Thus, the octal number 237 represents the decimal num- 

ber2 x 82 + 3 x 81 + 7x 8° = 128 + 24 + 7 = 159. 
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A hexadecimal (or hex) number is written using the digits 0 through 9 plus the 

letters A through F, which stand for 10 through 15, respectively. Each position in a 

hex number represents a power of 16; the hex number 1AF has the decimal value 1 

x162 + 10 X161 + 15x16° = 256 + 160+ 15 = 431. 

■ Decimal constants contain digits between 0 and 9, but must not begin with a 

zero: 

15 255 32767 

■ Octal constants contain only digits between 0 and 7, and must begin with a 

zero: 

017 0377 077777 

■ Hexadecimal constants contain digits between 0 and 9 and letters between a 

and f, and always begin with Ox: 

Oxf Oxff 0x7fff 

The letters in a hexadecimal constant may be either upper or lower case: 

Oxff OxfF OxFf OxFF OXff OXfF OXFf OXFF 

Keep in mind that octal and hexadecimal are nothing more than an alternative 

way of writing numbers; they have no effect on how the numbers are actually 

stored. (Integers are always stored in binary, regardless of what notation we’ve 

used to express them.) We can switch from one notation to another at any time, and 

even mix them: 10 + 015 + 0x2 0 has the value 55 (decimal). Octal and hex are 

most convenient for writing low-level programs; we won t use these notations 

much until Chapter 20. 

When an integer constant appears in a program, the compiler treats it as an 

ordinary integer if it falls within the range of the int type and as a long integer 

otherwise. To force the compiler to treat a constant as a long integer, just follow it 

with the letter L (or 1): 

15L 0377L 0x7 f f fL 

To indicate that a constant is unsigned, put the letter U (or u) after it: 

15U 0377U 0x7 fffU 

L and U may be used in combination to show that a constant is both long and 

unsigned: Oxf f f f f f f fUL. (The order of the L and U doesn’t matter, nor does 

their case.) 

Q&A 

Reading and Writing Integers 

Suppose that we’ve got a program that’s not working because one of its int vari¬ 

ables is “overflowing”—the program is assigning the variable a value that’s too 
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Q&A 

PROGRAM 

large to be stored in an int. Our first thought is to change the type of the variable 

from int to long int. But we’re not done yet; we’ve got to see how the change 

will affect the rest of the program. In particular, we’ll need to check whether the 

variable is used in a call of printf or scant. If so, the format string in the call 

will need to be changed, since the %d conversion works only for int values. 

Reading and writing unsigned, short, and long integers requires several new 

conversion specifiers: 

■ When reading or writing an unsigned integer, use the letter u, o, or x instead 

of d in the conversion specification. If the u specifier is present, the number is 

read (or written) in decimal notation; o indicates octal notation, and x indi¬ 

cates hexadecimal notation. 

unsigned int u; 

scanf (11 %u" , &u) ; /* 
printf("%u" u) ; /* 
scanf (" %o'', &u) ; /* 
printf("%o" u) ; /* 
scanf("%x", &u) ; /* 
printf("%x" u) ; /* 

reads u in base 10 */ 

writes u in base 10 */ 

reads u in base 8 */ 

writes u in base 8 */ 

reads u in base 16 */ 

writes u in base 16 */ 

■ When reading or writing a short integer, put the letter h in front of d, o, u, or 

x: 

short int s; 

scant("%hd", &s); 

printf("%hd", s); 

■ When reading or writing a long integer, put the letter 1 in front of d, o, u, or 

x: 

long int 1; 

scanf("%ld", &1); 

printf("%ld", 1); 

Summing a Series of Numbers (Revisited) 

In Section 6.1, we wrote a program that sums a series of integers entered by the 

user. One problem with this program is that the sum (or one of the input numbers) 

might exceed the largest value allowed for an int variable. Here’s what might 

happen if the program is run on a machine whose integers are 16 bits long: 

This program sums a series of integers. 

Enter integers (0 to terminate): 10000 20000 30000 0 

The sum is: -5536 

The sum was 60,000, which wouldn’t fit in an int variable, so we got a nonsense 

answer instead. To improve the program, let’s switch to long int variables. 
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SUm2.C /* Sums a series of numbers (using long int variables) */ 

#include <stdio.h> 

main() 

{ 
long int n, sum = 0; 

printf("This program sums a series of integers.\n" ) ; 

printf("Enter integers (0 to terminate): "); 

scanf("%ld", &n); 

while (n != 0) { 

sum += n; 

scanf("%ld", &n); 

} 
printf("The sum is: %ld\n", sum) ; 

return 0; 

} 

The change was fairly simple: we declared n and sum to be long int variables 

instead of int variables, then we changed the conversion specifications in scanf 

and printf to %ld instead of %d. 

7.2 Floating Types 

The integer types aren’t suitable for all applications. Sometimes we’ll need vari¬ 

ables that can store numbers with digits after the decimal point, or numbers that are 

exceedingly large or small. Numbers like these are stored in floating-point format 

(so called because the decimal point “floats”). C provides three floating types, cor¬ 

responding to different floating point formats: 

float single-precision floating-point 

double double-precision floating-point 

long double extended-precision floating-point 

Which type to use depends on the amount of precision (and the magnitude) 

required, float is suitable when the amount of precision isn’t critical (calculating 

temperatures to one decimal point, for example), double provides greater preci¬ 

sion—enough for most programs, long double, which supplies the ultimate in 

precision, is rarely used. 

The C standard doesn’t state how much precision the float, double, and 

long double types provide, since different computers may store floating-point 

numbers in different ways. Most modern PCs and workstations follow the specifi¬ 

cations in IEEE Standard 754, so we’ll use it as an example. 
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The IEEE Floating-Point Standard 

The IEEE standard, developed by the Institute of Electrical and Electronics Engi¬ 

neers, provides two primary formats for floating-point numbers: single precision (32 

bits) and double precision (64 bits). Numbers are stored in a form of scientific nota¬ 

tion, with each number having three parts: a sign, an exponent, and a fraction. 
The number of bits reserved for the exponent determines how large (or small) num¬ 

bers can be, while the number of bits in the fraction determines the precision. In 

single-precision format, the exponent is 8 bits long, while the fraction occupies 23 

bits. As a result, a single-precision number has a maximum value of approximately 

3.40 x 1038, with a precision of about 6 decimal digits. 

The IEEE standard also describes two other formats, single extended precision 

and double extended precision. The standard doesn’t specify the number of bits in 

these formats, although it requires that the single extended type occupy at least 43 

bits and the double extended type at least 79 bits. For more information about the 

IEEE standard and floating-point arithmetic in general, see “What every computer 

scientist should know about floating-point arithmetic” by David Goldberg (ACM 
Computing Surveys, vol. 23, no. 1 (March 1991): 5-48). 

Table 7.3 shows the characteristics of the floating types when implemented 

Table 7.3 

Floating Type 

Characteristics 

(IEEE Standard) 

<f loat. h> header >23.1 

Type Smallest Positive Value Largest Value Precision 

float 
double 

i.i7x icr38 
2.22 x icr308 

3.40 x 1038 
1.79 x 10308 

6 digits 
15 digits 

according to the IEEE standard. The long double type isn’t shown in the table, 

since its length varies from one machine to another, with 80 bits and 128 bits being 

the most common sizes. On computers that don’t follow the IEEE standard, Table 

7.3 won’t be valid. In fact, on some machines, float may have the same set of 

values as double, or double may have the same values as long double. 

Macros that define the characteristics of the floating types can be found in the 

< float. h> header. 

Floating Constants 

Floating constants can be written in a variety of ways. The following constants, for 

example, are all valid ways of writing the number 57.0: 

57.0 57. 57.OeO 57E0 5.7el 5.7e+l ,57e2 570.e-1 

A floating constant must contain a decimal point and/or an exponent; the exponent 

indicates the power of 10 by which the number is to be scaled. If an exponent is 

present, it must be preceded by the letter E (or e). An optional + or - sign may 

appear after the E (or e). 

By default, floating constants are stored as double-precision numbers. In other 

words, when a C compiler finds the constant 57.0 in a program, it arranges for the 
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number to be stored in memory in the same format as a double variable. This 

rule generally causes no problems, since double values are converted automati¬ 

cally to float when necessary. 
On rare occasions, it may be necessary to force the compiler to store a floating 

constant in float or long double format. To indicate that only single preci¬ 

sion is desired, put the letter F (or f) at the end of the constant (for example, 

57 . OF). To indicate that a constant should be stored in long double format, put 

the letter L (or 1) at the end (57 . OL). 

Reading and Writing Floating-Point Numbers 

As we’ve discussed, the conversion specifications %e, %f, and %g are used for 

reading and writing single-precision floating-point numbers. Values of types dou¬ 

ble and long double require slightly different conversions: 

■ When reading a value of type double, put the letter 1 in front of e, f, or g: 

double d; 

Q&A 

scanf("%lf", &d) ; 

Note: Use 1 only in a scanf format string, not a printf string. In a 

print f format string, the e, f, and g conversions can be used to write either 

float or double values. 

■ When reading or writing a value of type long double, put the letter L in 

front of e, f, or g: 

long double Id; 

scanf("%Lf", &ld); 

printf("%Lf", Id); 

7.3 Character Types 

Q&A The only remaining basic type is char, the character type. The values of type 

char can vary from one computer to another, because different machines may 

have different underlying character sets. 

Character Sets 

ascii character set >APPendixE Today’s most popular character set is ASCII (American Standard Code for Informa¬ 

tion Interchange), a 7-bit code capable of representing 128 characters. In ASCII, 

the digits 0 to 9 are represented by the codes 0110000-0111001, and the upper¬ 

case letters A to Z are represented by 1000001-1011010. Some computers extend 

ASCII to an 8-bit code so that it can represent 256 characters. 
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Unicode >25.2 

Other computers use entirely different character sets. IBM mainframes, for 

example, rely on an older code named EBCDIC. Future machines may use Uni¬ 

code, a 16-bit code capable of representing 65,536 characters. 

A variable of type char can be assigned any character that the computer can 

represent: 

char ch; 

ch = 'a1; /* lower-case a */ 

ch = 'A'; /* upper-case A */ 

ch = 'O'; /* zero */ 

ch = ' '; /* space */ 

Notice that character constants are enclosed in single quotes, not double quotes. 

Working with characters in C is simple, because of one fact: C treats charac¬ 

ters as small integers. After all, characters are encoded in binary, and it doesn’t 

take much imagination to view these binary codes as integers. In ASCII, for exam¬ 

ple, character codes range from 0000000 to 1111111, which we can think of as the 

integers from 0 to 127. The character ' a ' has the value 97, ' A' has the value 65, 

' 0 ' has the value 48, and ' ' has the value 32. 

When a character appears in a computation, C simply uses its integer value. 

Consider the following examples, which assume the ASCII character set: 

char ch; 

int i ; 

i = 'a'; /* i is now 97 */ 

ch = 65; /* ch is now 'A' */ 

ch = ch + 1; /* ch is now 'B' */ 

ch++; /* ch is now ■C' */ 

Characters can be compared, just as numbers can. The following if statement 

checks whether ch contains a lower-case letter; if so, it converts ch to upper case. 

if ('a' <= ch && ch <= 'z') 
ch = ch - 'a' + 'A'; 

Comparisons such as ' a ' <= ch are done using the integer values of the charac¬ 

ters involved. These values vary depending on the character set in use, so pro¬ 

grams that use <, <=, >, and >= to compare characters may not be portable. 

The fact that characters have the same properties as numbers has some advan¬ 

tages. For example, we can easily write a for statement whose control variable 

steps through all the upper-case letters: 

for (ch = 'A'; ch <= 'Z'; ch++) ... 

On the other hand, treating characters as numbers can lead to various programming 

errors that won’t be caught by the compiler, and lets us write meaningless expres¬ 

sions such as 1 a 1 * 1 b ’ / ’ c '. It can also hamper portability, since our pro- 
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grams may be based on assumptions about the underlying character set. (Our for 

loop, for example, assumes that the letters A to Z have consecutive codes.) 

Since C allows characters to be used as integers, it shouldn’t be surprising that 

the char type—like the integer types—exists in both signed and unsigned ver¬ 

sions. Signed characters normally have values between -128 and 127, while 

unsigned characters have values between 0 and 255. 

The C standard doesn’t specify whether ordinary char is a signed or an 

unsigned type; some compilers treat it as a signed type, while others treat it as an 

unsigned type. (Some even allow the programmer to select, via a compiler option, 

whether char should be signed or unsigned.) 

Most of the time, we don’t really care whether char is signed or unsigned. 

Once in a while, though, we do, especially if we’re using a character variable to 

store a small integer. For this reason, Standard C allows the use of the words 

signed and unsigned to modify char: 

signed char sch; 

unsigned char uch; 

portability tip Don’t assume that char is either signed or unsigned by default. If it mat¬ 

ters, use signed char or unsigned char instead o/char. 

In light of the close relationship between characters and integers, I’ll use the 

term integral types to include both the integer types and the character types. 

Escape Sequences 

Q&A 

Q&A 

A character constant is usually one character enclosed in single quotes, as we’ve 

seen in previous examples. However, certain special characters—including the 

new-line character—can’t be written in this way, because they’re invisible (non¬ 

printing) or because they can’t be entered from the keyboard. So that programs can 

deal with every character in the underlying character set, C provides a special nota¬ 

tion, the escape sequence. 

There are two kinds of escape sequences: character escapes and numeric 

escapes. We saw a partial list of character escapes in Section 3.1; Table 7.4 gives 

the complete set. The \a, \b, \f, \r, \t, and \v escapes represent common 

ASCII control characters. The \n escape represents the ASCII line-feed character. 

The \ \ escape allows a character constant or string to contain the \ character. The 

\ ' escape allows a character constant to contain the ' character, while the \" 

escape allows a string to contain the " character. The \ ? escape is rarely used. 

Character escapes are easy to use, but they have a problem: the list of charac¬ 

ter escapes doesn’t include all the nonprinting ASCII characters, just the most 

common. Character escapes are also useless for representing characters beyond the 

basic 128 ASCII characters. (Some computers—the IBM PC family is a notable 

example—provide an extended ASCII character set.) Numeric escapes, which can 

represent any character, are the solution to this problem. 
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Table 7.4 
Character Escapes 

trigraph sequences >25.3 

multibyte characters >25.2 

wide characters >25.2 

Name Escape Sequence 

Alert (bell) \a 
Backspace \b 
Form feed \f 
New line \n 
Carriage return \r 
Horizontal tab \t 
Vertical tab \v 
Backslash \\ 
Question mark \? 
Single quote V 
Double quote \" 

To write a numeric escape for a particular character, first look up the charac¬ 

ter’s octal or hexadecimal value in a table like the one in Appendix E. For exam¬ 

ple, the ASCII escape character (decimal value: 27) has the value 33 in octal and 

IB in hex. Either of these codes can be used to write an escape sequence: 

■ An octal escape sequence consists of the \ character followed by an octal 

number with at most three digits. (This number must be representable as an 

unsigned character, so its maximum value is normally 377 octal.) For exam¬ 

ple, the escape character could be written \33 or \033. Octal numbers in 

escape sequences—unlike octal numbers in general—don’t have to begin with 

0. 

■ A hexadecimal escape sequence consists of \x followed by a hexadecimal 

number. Although Standard C places no limit on the number of digits in the 

hexadecimal number, it must be representable as an unsigned character (hence 

it can’t exceed FF if characters are eight bits long). Using this notation, the 

escape character would be written \xlb or \xlB. The x must be in lower 

case, but the hex digits (such as b) can be upper or lower case. 

When used as a character constant, an escape sequence must be enclosed in 

single quotes. For example, a constant representing the escape character would be 

written ' \ 33 ' (or ' \xlb 1). Escape sequences tend to get a bit cryptic, so it’s 

often a good idea to give them names using #def ine: 

♦define ESC '\331 /* ASCII escape character */ 

Escape sequences can be embedded in strings as well, as we saw in Section 3.1. 

Escape sequences aren’t the only special notations used for representing char¬ 

acters. Several others were added to C in the 1980s as part of an effort to make it a 

more international language. Trigraph sequences are codes for ASCII characters 

that are unavailable on some computers outside the U.S. Multibyte characters and 

wide characters are used for character sets whose codes are too large to store in a 

single byte. 
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Character-Handling Functions 

Earlier in this section, we saw how to write an if statement that converts a lower¬ 

case letter to upper-case: 

if ('a' <= ch && ch <= 'z') 
ch = ch - 1 a' + 1A1; 

This isn’t the best method, though. A faster—and more portable—way to convert 

case is to call C’s toupper library function: 

ch = toupper(ch); /* converts ch to upper case */ 

When it’s called, toupper checks whether its argument (ch in this case) is a 

lower-case letter. If so, it returns the corresponding upper-case letter. Otherwise, 

toupper returns the value of the argument. In our example, we’ve used the 

assignment operator to store the return value of toupper back into the ch vari¬ 

able, although we could just as easily have done something else with it—stored it 

in another variable, say, or tested it in an if statement: 

if (toupper(ch) == 'A') ... 

Programs that call toupper need to have the following #include directive 

at the top: 

♦include <ctype.h> 

toupper isn’t the only useful character-handling function in the C library. Sec¬ 

tion 23.4 describes them all and gives examples of their use. 

Reading and Writing Characters 

The %c conversion specification allows scanf and printf to read and write 

single characters: 

char ch; 

scanf("%c", &ch); /* reads a single character */ 
printf("%c", ch); /* writes a single character */ 

scanf doesn’t skip white-space characters before reading a character. If the 

next unread character is a space, then the variable ch in the previous example will 

contain a space after scanf returns. To force scanf to skip white space before 

reading a character, put a space in its format string just before %c: 

scanf(" %c", &ch); /* skips white space, then peads ch */ 

Recall from Section 3.2 that a blank in a scanf format string means “skip zero or 
more white-space characters.” 

Since scanf doesn’t normally skip white space, it’s easy to detect the end of 

an input line: check to see if the character just read is the new-line character. For 
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example, the following loop will read and ignore all remaining characters in the 
current input line: 

do { 
scanf("%c", &ch); 

} while (ch != 1\n'); 

When scanf is called the next time, it will read the first character on the next 
input line. 

C provides other ways to read and write single characters. In particular, we 

can use the getchar and putchar functions instead of calling scanf and 

printf. Each time getchar is called, it reads one character, which it returns. In 

order to save the character that getchar returns, we must use assignment to store 
it in a variable: 

ch = getchar(); /* reads a character and stores it in ch */ 

Like scanf, getchar doesn’t skip white-space characters as it reads, putchar 

writes a single character: 

putchar(ch); 

Using getchar and putchar (rather than scanf and printf) saves time 

when the program is executed, getchar and putchar are fast for two reasons. 

First, they’re much simpler than scanf and printf, which are designed to read 

and write many kinds of data in a variety of formats. Second, getchar and 

putchar are usually implemented as macros for additional speed. 

getchar has another advantage over scanf: because it returns the charac¬ 

ter that it reads, getchar lends itself to various C idioms, including loops that 

search for a character or skip over all occurrences of a character. Consider the 

scanf loop that we used to skip the rest of an input line: 

do { 
scanf("%c", &ch); 

} while (ch != '\n1); 

Rewriting this loop using getchar gives us the following: 

do { 
ch = getchar(); 

} while (ch != '\n'); 

Moving the call of getchar into the controlling expression allows us to condense 

the loop: 

while ((ch = getchar()) != '\n') 

This loop reads a character, stores it into the variable ch, then tests if ch is not 

equal to the new-line character. If the test succeeds, the loop body (which is 

empty) is executed, then the loop test is performed once more, causing a new char- 
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acter to be read. Actually, we don’t even need the ch variable; we can just com¬ 

pare the return value of getchar with the new-line character: 

idiom while (getchar () != ' \n' ) /* skips rest of line */ 

The resulting loop is a well-known C idiom that’s cryptic but worth learning. 

getchar is useful in loops that skip characters as well as loops that search 

for characters. Consider the following statement, which uses getchar to skip an 

indefinite number of blank characters: 

idiom while ( (ch = getchar () ) == ' ' ) /* skips blanks */ 

/ 

When the loop terminates, ch will contain the first nonblank character that 

getchar encountered. 

Be careful if you mix getchar and scant in the same program, scant has a 
tendency to leave behind characters that it has “peeked” at but not read, including 
the new-line character. Consider what happens if we try to read a number first, 
then a character: 

printf("Enter an integer: "); 

scanf("%d", &i); 

printf("Enter a command: "); 

command = getchar(); 

The call of scanf will leave behind any characters that weren’t consumed during 
the reading of i, including (but not limited to) the new-line character, getchar 
will fetch the first leftover character, which wasn’t what we had in mind. 

PROGRAM Determining the Length of a Message 

To illustrate how characters are read, let’s write a program that calculates the 

length of a message. After the user enters the message, the program displays the 

length: 

Enter a message: Brevity is the soul of wit. 

Your message was 27 character(s) long. 

The length includes spaces and punctuation, but not the new-line character at the 

end of the message. 

We’ll need a loop whose body reads a character and increments a counter. The 

loop will terminate as soon as a new-line character turns up. We could use either 

scanf or getchar to read characters; most C programmers would choose 

getchar. Using a straightforward while loop, we might end up with the follow¬ 

ing program: 
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tength.c /* Determines the length of a message */ 

♦include <stdio.h> 

Iength2.c 

main() 

{ 

char ch; 

int len = 0; 

printf("Enter a message: "); 

ch = getchar(); 

while (ch != '\n') { 

len++; 

ch = getchar(); 

} 

printf("Your message was %d character(s) long.\n", len); 

return 0; 

} 

Recalling our discussion of idioms involving while loops and getchar, we 
realize that the program can be shortened: 

/* Determines the length of a message */ 

♦include <stdio.h> 

main() 

{ 

int len = 0; 

printf("Enter a message: "); 

while (getchar() != '\n') 

len++; 

printf("Your message was %d character(s) long.\n", len); 

return 0; 

} 

7.4 The sizeof Operator 

The sizeof operator allows a program to determine how much memory is 

required to store values of a particular type. The value of the expression 

sizeof expression sizeof ( type-name ) 

is an unsigned integer representing the number of bytes required to store a value 

belonging to type-name. 
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The following example uses sizeof to print the sizes of several common 

types: 

printf("Size of char: %u\n”, sizeof(char)); 

printf("Size of int: %u\n", sizeof(int)); 
printf("Size of long int: %u\n", sizeof(long int)); 

If we execute these statements on a 16-bit machine, we’ll probably find that 

sizeof (char) is 1, sizeof (int) is 2, and sizeof (long int) is 4. On 

most 32-bit machines, sizeof (char) is 1, sizeof (int) is 4, and 
sizeof (long int) is 4. Note that sizeof is a rather unusual operator, since 

the value of a sizeof expression is a constant that can be computed by the com¬ 

piler before the program is actually run. 
The sizeof operator can also be applied to constants, variables, and expres¬ 

sions in general. If i and j are int variables, then sizeof (i) is 2 on a 16-bit 

machine, as is sizeof ( i +j ). When applied to an expression—as opposed to a 

type—sizeof doesn’t require parentheses; we could write sizeof i instead of 

sizeof (i). However, parentheses may be needed anyway because of operator 

precedence. The compiler would interpret sizeof i + j as (sizeof i) + j, 

because sizeof—a unary operator—takes precedence over the binary + opera¬ 

tor. To avoid problems, I always use parentheses in sizeof expressions. 

7.5 Type Conversion 

Computers tend to be more restrictive than C when it comes to arithmetic. For a 

computer to perform an arithmetic operation, the operands must usually be of the 

same size (the same number of bits) and be stored in the sa*ne way. A computer 

may be able to add two 16-bit integers directly, but not a 16-bit integer and a 32-bit 

integer or a 32-bit integer and a 32-bit floating-point number. 

C, on the other hand, allows the basic types to be mixed in expressions. We 

can combine integers, floating-point numbers, and even characters in a single 

expression. The C compiler may then have to generate instructions that convert 

some operands to different types so that the hardware will be able to evaluate the 

expression. If we add a 16-bit int and a 32-bit long int, for example, the com¬ 

piler will arrange for the int value to be converted to 32 bits. If we add an int 

and a float, the compiler will arrange for the int to be converted to float for¬ 

mat. This conversion is a little more complicated, since int and float values 

are stored in different ways. 

Since the compiler handles these conversions automatically,, without the pro¬ 

grammer’s involvement, they’re known as implicit conversions. C also allows the 

programmer to perform explicit conversions, using the cast operator. I’ll discuss 

implicit conversions first, postponing explicit conversions until later in the section. 

Unfortunately, the rules for performing implicit conversions are somewhat com- 
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plex, primarily because C has so many different basic types (six integer types and 

three floating types, not to mention the character types). 

Implicit conversions are performed on the following occasions: 

■ When the operands in an arithmetic or logical expression don’t have the same 

type. (C performs what are known as the usual arithmetic conversions.) 

■ When the type of the expression on the right side of an assignment doesn’t 

match the type of the variable on the left side. 

■ When the type of an argument in a function call doesn’t match the type of the 
corresponding parameter. 

■ When the type of the expression in a return statement doesn’t match the 

function’s return type. 

We’ll discuss the first two cases now and save the others for Chapter 9. 

The Usual Arithmetic Conversions 

The usual arithmetic conversions are applied to the operands of most binary opera¬ 

tors, including the arithmetic, relational, and equality operators. For example, let’s 

say that x has type float and i has type int. The usual arithmetic conversions 

will be applied to the operands in the expression x + i, because their types aren’t 

the same. Clearly it’s safer to convert i to type float (matching x’s type) rather 

than convert x to type int (matching i’s type). An integer can always be con¬ 

verted to float; the worst that can happen is a minor loss of precision. Convert¬ 

ing a floating-point number to int, on the other hand, would cost us the fractional 

part of the number. Worse still, we’d get a completely meaningless result if the 

original number were larger than the largest possible integer or smaller than the 

smallest integer. 
The strategy behind the usual arithmetic conversions is to convert operands to 

the “narrowest” type that will safely accommodate both values. (Roughly speak¬ 

ing, one type is narrower than another if it requires fewer bytes to store.) The types 

of the operands can often be made to match by converting the operand of the nar¬ 

rower type to the type of the other operand (this act is known as promotion). 

Among the most common promotions are the integral promotions, which convert 

a character or short integer to type int (or to unsigned int in some cases). 

We can divide the rules for performing the usual arithmetic conversions into 

two cases: 

■ The type of either operand is a floating type. Use the following diagram to 

promote the operand whose type is narrower: 

long double 

T 
double 

T 
float 
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That is, if one operand has type long double, then convert the other oper¬ 

and to type long double. Otherwise, if one operand has type double, con¬ 

vert the other operand to type double. Otherwise, if one operand has type 

float, convert the other operand to type float. Note that these rules cover 

mixtures of integer and floating types: if one operand has type long int, for 

example, and the other has type double, the long int operand is converted 

to double. 

■ Neither operand type is a floating type. First perform integral promotion on 

both operands (guaranteeing that neither operand will be a character or short 

integer). Then use the following diagram to promote the operand whose type 

is narrower: 

unsigned long int 

t 
long int 

T 
unsigned int 

T 
int 

There’s one special case, but it occurs only when long int and unsigned int 

have the same length (32 bits, say). Under these circumstances, if one operand has 

type long int and the other has type unsigned int, both are converted to 

unsigned long int. 

When a signed operand is combined with an unsigned operand, the signed operand 
is “converted” to an unsigned value by treating the sign bit as part of the number’s 
magnitude. This rule can cause obscure programming errors. 

Suppose that the int variable i has the value -10 and the unsigned int 

variable u has the value 10. If we compare i and u using the < operator, we might 

expect to get the result 1 (true). Before the comparison, however, i is converted to 

unsigned int. Since a negative number can’t be represented as an unsigned 

integer, the converted value won’t be -10, but a large positive number (the result of 

interpreting the bits in i as an unsigned number). The comparison i < u will 

therefore produce 0. 
Because of traps like this one, it’s best to use unsigned integers as little as pos¬ 

sible and, especially, never mix them with signed integers. 

The following example shows the usual arithmetic conversions in action: 

char c; 

short int s; 

int i ; 

unsigned int u; 

long int 1; 

unsigned long int ul; 
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float f; 

double d; 

long double Id; 

i = i + c; /* c is converted to int */ 
i = i + s; /* s is converted to int */ 
u u + i; /* i is converted to unsigned int */ 
i = 1 + u; /* u is converted to long int */ 
ul ul + 1; /* 1 is converted to unsigned long int * / 

f = f + ul; /* ul is converted i tc i float */ 
d = d + f ; /* f is converted to double */ 
Id = Id + d; /* d is converted to long double */ 

Conversion During Assignment 

The usual arithmetic conversions don’t apply to assignment. Instead, C follows the 

simple rule that the expression on the right side of the assignment is converted to 

the type of the variable on the left side. If the variable’s type is at least as “wide” as 

the expression’s, this will work without a snag. For example: 

char c; 

int i ; 

float f; 

double d; 

i = c; /* c is converted to int */ 

f = i; /* i is converted to float */ 

d = f; /* f is converted to double */ 

Other cases are problematic. Assigning a floating-point number to an integer vari¬ 

able drops the fractional part of the number: 

int i; 

i = 842.97; /* i is now 842 */ 

i = -842.97; /* i is now -842 */ 

Q&A 

Moreover, assigning a value to a variable of a narrower type will give a meaning¬ 

less result (or worse) if the value is outside the range of the variable’s type: 

c = 10000; 

i = 1.0e2 0; 

f = l.OelOO; 

/ * ** WRONG ★ ★ ★ 

/ * * * WRONG ★ ~k ★ 

/ * * * WRONG 

An assignment of this kind may elicit a warning from the compiler or from lint. 

Casting 

Although C’s implicit conversions are convenient, we sometimes need a greater 

degree of control over type conversion. For this reason, C provides casts. A cast 

expression has the form 
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cast expression ( type-name ) expression 

type-name specifies the type to which the expression should be converted. 

The following example shows how to use a cast expression to compute the 

fractional part of a float value: 

float f, frac_part; 

frac_part - f - (int) f; 

The cast expression ( int) f represents the result of converting the value of f to 

type int. C’s usual arithmetic conversions then require that (int) f be con¬ 

verted back to type float before the subtraction can be performed. The differ¬ 

ence between f and (int) f is the fractional part of f, which was dropped 

during the cast. 
Cast expressions enable us to document type conversions that would take 

place anyway: 

i = (int) f; /* f is converted to int */ 

They also enable us to overrule the compiler and force it to do conversions that we 

want. Consider the following example: 

float quotient; 

int dividend, divisor; 

quotient = dividend / divisor; 

As it’s now written, the result of the division—an integer—will be converted to 

float form before being stored in quotient. We probably want dividend 

and divisor .converted to float before the division, though, so that we get a 

more exact answer. A cast expression will do the trick: 

quotient = (float) dividend / divisor; 

divisor doesn’t need a cast, since casting dividend to float forces the 

compiler to convert divisor to float also. 

Incidentally, C regards ( type-name ) as a unary operator. Unary operators 

have higher precedence than binary operators, so the compiler interprets 

(float) dividend / divisor 

as 

((float) dividend) / divisor 

If you find this confusing, note that there are other ways to accomplish the same 

effect: 

quotient = dividend / (float) divisor; 
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or 

quotient = (float) dividend / (float) divisor; 

Casts are sometimes necessary to avoid overflow. Consider the following 
example: 

long int i; 

int j = 1000; 

i = j * j; /*** WRONG * * * / 

At first glance, this statement looks fine. The value of j * j is 1,000,000, and i is 

a long int, so it can easily store values of this size, right? The problem is that 

when two int values are multiplied, the result will have int type. But j * j is 

too large to represent as an int on some machines. On such a machine, i would 

be assigned a nonsense value. Fortunately, using a cast avoids the problem: 

i = (long int) j * j; 

Since the cast operator takes precedence over *, the first j is converted to long 

int type, forcing the second j to be converted as well. Note that the statement 

i = (long int) (j * j); /*** WRONG ***/ 

wouldn’t work, since the overflow would already have occurred by the time of the 

cast. 

7.6 Type Definitions 

In Section 5.2, we used the #define directive to create a macro that could be 

used as a Boolean type: 

#define BOOL int 

There’s a better way to set up a Boolean type, though, using a feature known as a 

tyPe definition: 

typedef int Bool; 

Notice that the name of the type being defined comes last. Note also that I’ve cap¬ 

italized the word Bool. Capitalizing the first letter of a type name isn’t required; 

it’s just a convention that some C programmers employ. 

Using typedef to define Bool causes the compiler to add Bool to the list 

of type names that it recognizes. Bool can now be used in the same way as the 

built-in type names—in variable declarations, cast expressions, and elsewhere. For 

example, we might use Bool to declare variables: 

Bool flag; /* same as int flag; */ 
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portability tip 

The compiler treats Bool as a synonym for int; thus, flag is really nothing 

more than an ordinary int variable. 
Type definitions can make a program more understandable (assuming that the 

programmer has been careful to choose meaningful type names). For example, 

suppose that the variables cash_in and cash_out will be used to store dollar 

amounts. Declaring Dollars as 

typedef float Dollars; 

and then writing 

Dollars cash_in, cash_out; 

is more informative than just writing 

float cash_in, cash_out; 

Type definitions can also make a program easier to modify. If we later decide 

that Dollars should really be defined as double, all we need do is change the 

type definition: 

typedef double Dollars; 

The declarations of Dollars variables need not be changed. Without the type 

definition, we would need to locate all float variables that store dollar amounts 

(not necessarily an easy task) and change their declarations. 
Type definitions are an important tool for writing portable programs. One of 

the problems with moving a program from one computer to another is that types 

may have different ranges on different machines. If i is an int variable, an 

assignment like 

i = 100000; 

is fine on a machine with 32-bit integers, but will fail on a machine with 16-bit 

integers. 

For greater portability, consider using typedef to define new names 

for integer types. 

Suppose that we’re writing a program that needs variables capable of storing 

product quantities in the range 0-50,000. We could use long int variables for 

this purpose (since they’re guaranteed to be able to hold numbers up to at least 

2,147,483,647), but we’d rather use int variables, since arithmetic on int values 

may be faster than operations on long int values; also, int variables may take 

up less space. 
Instead of using the int type to declare quantity variables, we can define our 

own “quantity” type: 

typedef int Quantity; 
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and use this type to declare variables: 

Quantity q; 

When we transport the program to a machine with shorter integers, we’ll change 

the definition of Quantity: 

typedef long int Quantity; 

This technique doesn’t solve all our problems, unfortunately, since changing the 

definition of Quantity may affect the way Quantity variables are used. At 

the very least, calls of printf and scanf that use Quantity variables will 

need to be changed, with %d conversion specifications replaced by %ld. 

The C library itself uses typedef to create names for types that can vary 

from one C implementation to another; these types often have names that end with 

_t, such as ptrdif f_t, size_t, and wchar_t. One compiler might have the 

following type definitions in its library: 

typedef int ptrdiff_t; 

typedef unsigned size_t; 

typedef char wchar_t; 

Other compilers might define these types in different ways; for example, 

ptrdif f_t might be long int on some machines. 

Q&A 

Q: What happens if “overflow” occurs—for example, we add two numbers and 

the result is too large to store? [p. 112] 

A: That depends on whether the numbers were signed or unsigned. When overflow 

occurs during an operation on signed numbers, the result is “undefined,” according 

to the C standard. We can’t reliably say what the result is, since that depends on the 

behavior of the machine. The program could even abort (a typical response to divi¬ 

sion by zero). 
When overflow occurs during an operation on unsigned numbers, though, the 

result is defined: we get the correct answer modulo 2", where n is the number of 

bits used to store the result. For example, if we add I to the unsigned 16-bit num¬ 

ber 65,535, the result is guaranteed to be 0. 

Q: Section 7.1 says that %o and %x are used to write unsigned integers in octal 

and hex notation. How do I write ordinary (signed) integers in octal or hex? 

[p. 113] 

A: You can use %o and %x to print a signed integer as long as its value isn’t negative. 

These conversions cause printf to treat a signed integer as though it were 

unsigned; in other words, printf will assume that the sign bit is part of the num- 
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ber’s magnitude. As long as the sign bit is 0, there’s no problem. If the sign bit is 1, 

printf will print an unexpectedly large number. 

Q: But what if the number is negative? How can I write it in octal or hex? 

A: There’s no direct way to print a negative number in octal or hex. Fortunately, the 

need to do so is pretty rare. You can, of course, test whether the number is negative 

and print a minus sign yourself: 

if (i < 0) 
printf("-%x", -i); 

else 
printf("%x", i); 

Q: Why are floating constants stored in double form rather than float form? 

[p. 116] 

A: For historical reasons, C gives preference to the double type; float is treated 

as a second-class citizen. Consider, for instance, the discussion of float in Ker- 

nighan and Ritchie’s The C Programming Language: “The main reason for using 

float is to save storage in large arrays, or, less often, to save time on machines 
where double-precision arithmetic is particularly expensive.” Classic C goes so far 

as to mandate that all floating-point arithmetic be done in double precision. (Stan¬ 

dard C has no such requirement.) 

variable-length argument lists 
>26.1 

Why do we use %lf to read a double value but %£ to print it? [p. 116] 

This is a tough question to answer. First, notice that scanf and printf are 

unusual functions in that they aren’t restricted to a fixed number of arguments. We 

say that scanf and printf have variable-length argument lists. When func¬ 

tions with variable-length argument lists are called, the compiler arranges for 

float arguments to be converted automatically to type double. As a result, 

printf can’t distinguish between float and double arguments. This explains 

why %f works for both float and double arguments in calls of printf. 

scanf, on the other hand, is passed a pointer to a variable. %f tells scanf to 

store a float value at the address passed to it, while %lf tells scanf to store a 

double value at that address. The distinction between float and double is 

crucial here. If given the wrong conversion specification, scanf will likely store 

the wrong number of bytes (not to mention the fact that the bit pattern for a float 

probably isn’t the same as that for a double). 

Q: What’s the proper way to pronounce char? [p. 116] 

A: There’s no universally accepted pronunciation. Some people pronounce char in 

the same way as the first syllable of “character.” Others say “char,” as in 

char broiled; 
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Q: When does it matter whether a character variable is signed or unsigned? 

[p. 118] 

A: If we store only 7-bit characters in the variable, it doesn’t matter, since the sign bit 

will be zero. If we plan to store 8-bit characters, however, we’ll probably want the 

variable to have unsigned char type. Consider the following example: 

ch = '\xdb1; 

If ch has been declared to have type char, the compiler may choose to treat it as 

a signed character (many compilers do). As long as ch is used only as a character, 

there won’t be any problem. But if ch is ever used in a context that requires the 

compiler to convert its value to an integer, we’re likely to have trouble: the result¬ 

ing integer will be negative, since ch’s sign bit is 1. 

Here’s another situation: In some kinds of programs, it’s customary to use 

char variables to store one-byte integers. If we’re writing such a program, we’ll 

have to decide whether each variable should be signed char or unsigned 

char, just as we must decide whether ordinary integer variables should have type 

int or unsigned int. 

Q: I don’t understand how the new-line character can be the ASCII line-feed 

character. When a user enters input and presses the return key, doesn’t the 

program read this as a carriage return character or a carriage return plus a 

line feed? [p. 118] 

A: Nope. As part of C’s UNIX heritage, it always regards the end of a line as being 

marked by a single line-feed character. (In UNIX text files, a single line-feed char¬ 

acter—but no carriage return—appears at the end of each line.) The C library takes 

care of translating the user’s keypress into a line-feed character. When a program 

reads from a file, the I/O library translates the file’s end-of-line marker (whatever 

it may be) into a single line-feed character. The same transformations occur—in 

reverse—when output is written to the screen or to a file. (See Section 22.1 for 

details.) 
Although these translations may seem confusing, they serve an important pur¬ 

pose: insulating programs from details that may vary from one operating system to 

another. 

*Q: What’s the purpose of the \? escape sequence? [p. 118] 

A: The \ ? escape is related to trigraph sequences, which begin with ? ?. If you should 

trigraph sequences >-25.3 put ? ? in a string, there’s a possibility that the compiler will mistake it for the 
beginning of a trigraph. Replacing the second ? by \ ? fixes the problem. 

Q: If getchar is faster, why would we ever want to use scanf to read individ¬ 

ual characters? [p. 121] 

A: Although it’s not as fast as getchar, the scanf function is more flexible. As we 

saw previously, the " %c" format string causes scanf to read the next input char¬ 

acter; " %c" causes it to read the next non-white-space character. Also, scanf is 
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good at reading characters that are mixed in with other kinds of data. Let’s say that 

our input data consists of an integer, then a single nonnumeric character, then 

another integer. By using the format string " %d%c%d", we can get scanf to read 

all three items. 

*Q: Under what circumstances do the integral promotions convert a character or 

short integer to unsigned int? [p. 125] 

A: The integral promotions yield an unsigned int if the int type isn’t large 

enough to include all possible values of the original type. Since characters are usu¬ 

ally eight bits long, they are almost always converted to int, which is guaranteed 

to be at least 16 bits long. Signed short integers can always be converted to int as 

well. Unsigned short integers are problematic. If short integers have the same 

length as ordinary integers (as they do on a 16-bit machine), then unsigned short 

integers will have to be converted to unsigned int, since the largest unsigned 

short integer (65,535 on a 16-bit machine) is larger than the largest int (32,767). 

Q: Exactly what happens if I assign a value to a variable that’s not large enough 

to hold it? [p. 127] 

A: Roughly speaking, if the value is of an integral type and the variable is of an 

unsigned type, the extra bits are thrown away; if the variable has a signed type, the 

result is implementation-defined. Assigning a floating-point number to a vari¬ 

able—integer or floating—that’s too small to hold it produces undefined behavior: 

anything can happen, including program termination. 

*Q: Why does C bother to provide type definitions? Isn’t defining a BOOL macro 

just as good as defining a Bool type using typedef ? [p. 129] 

A: There are two important differences between type definitions and macro defini¬ 

tions. First, type definitions are more powerful than macro definitions. In particu¬ 

lar, array and pointer types can’t be defined as macros. Suppose that we try to use a 

macro to define a “pointer to integer” type: 

#define PTR_TO_INT int * 

The declaration 

PTR_TO_INT p, q, r; 

will become 

int * p, q, r; 

after preprocessing. Unfortunately, only p is a pointer; q and r are ordinary integer 

variables. Type definitions don’t have this problem. 
Second, typedef names are subject to the same scope rules as variables; a 

typedef name defined inside a function body wouldn’t be recognized outside 

the function. Macro names, on the other hand, are replaced by the preprocessor 

wherever they appear. 
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Exercises 

Section 7.1 

Section 7.2 

Section 7.3 

1. Give the decimal value of each of the following integer constants. 

(a) 077 

(b) 0x77 

(c) OXABC 

2. The square2 . c program of Section 6.3 will fail (usually by printing strange answers) if 
i * i exceeds the maximum int value. Run the program and determine the smallest value 
of n that causes failure. Try changing the type of i to short int and running the program 
again. (Don’t forget to update the conversion specifications in the call of printf!) Then 
try long int. From these experiments, what can you conclude about the number of bits 
used to store integer types on your machine? 

3. Which of the following are not legal numbers in C? Classify each legal number as either 
integer or floating-point. 

(a) 010E2 

(b) 32.1E+5 

(c) 0790 

(d) 100_000 

(e) 3.97 8e-2 

4. Which of the following are not legal types in C? 

(a) short unsigned int 

(b) short float 

(c) long double 

(d) unsigned long 

5. Modify the sum2 . c program (Section 7.1) to sum a series of double values. 

6. If c is a variable of type char, which one of the following statements is illegal? 

(a) i += c; /* i has type int */ 

(b) c = 2 * c - 1; 

(c) putchar(c) 

(d) printf (c) ; 

7. Which one of the following is not a legal way to write the number 65? (Assume that the 

character set is ASCII.) 

(a) 1A' 

(b) OblOOOOOl 

(c) 0101 

(d) 0x41 

8. Modify the square2 . c program of Section 6.3 so that it pauses after every 24 squares and 

displays the following message: 

Press Enter to continue... 

After displaying the message, the program should use getchar to read a character. 
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Section 7.4 

Section 7.5 

getchar won’t allow the program to continue until the user presses the Enter (or Return) 

key. 

9. Write a program that translates an alphabetic phone number into numeric form: 

Enter phone number: CALLATT 

In numeric form: 2255288 

(In case you don’t have a telephone nearby, here are the letters on the keys. 2=ABC, 3—DEF, 
4=GHI, 5=JKL, 6=MNO, 7=PRS, 8=TUV, 9=WXY.) If the original phone number contains 
nonalphabetic characters (digits or punctuation, for example), leave them unchanged: 

Enter phone number: 1-800-CQL-LECT 

In numeric form: 1-800-265-5328 

You may assume that any letters entered by the user are upper case. 

10. In the SCRABBLE Crossword Game, players form words using small tiles, each containing 
a letter and a face value. The face value varies from one letter to another, based on the let¬ 
ter’s rarity. (Here are the face values: 1: AEILNORSTU, 2: DG, 3: BCMP, 4: FHVWY, 5: K, 
8: JX, 10: QZ.) Write a program that computes the value of a word by summing the values 

of its letters: 

Enter a word: pitfall 

Scrabble value: 12 

Your program should allow any mixture of lower-case and upper-case letters in the word. 

Hint: Use the toupper library function. 

11. Airline tickets are assigned lengthy identifying numbers, such as 47715497443. To be valid, 
the last digit of the number must match the reminder when the other digits—as a group—are 
divided by 7. (For example, 4771549744 divided by 7 yields the remainder 3.) Write a pro¬ 
gram that checks whether or not an airline ticket number is valid: 

Enter ticket number: 47715497443 

VALID 

Hint: Don’t attempt to read the number in a single step. Instead, use getchar to obtain its 
digits one by one. Carry out the division one digit at a time, being careful not to include the 

last digit in the division. 

12. Write a program that prints the values of sizeof(int), sizeof (short int), 

sizeof(long int), sizeof(float), sizeof(double) and sizeof(long 

double). 

! 3. Suppose that i and j are variables of type int. What is the type of the expression i / j + 

' a1 ? 

14. Suppose that i is a variable of type int, j is a variable of type long int, and k is a vari¬ 
able of type unsigned int. What is the type of the expression i + ( int) j * k? 

15. Suppose that i is a variable of type int, f is a variable of type float, and d is a variable 
of type double. What is the type of the expression i * f / d? 

16. Suppose that i is a variable of type int, f is a variable of type float, and d is a variable 
of type double. Explain what conversions take place during the execution of the following 

statement: 

d = i + f; 
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Section 7.6 

17. Assume that a program contains the following declarations: 

char c = '\1'; 

short int s = 2; 

int i = -3; 

long int m = 5; 
float f = 6.5; 
double d = 7.5; 

Give the value and the type of each expression listed below. 

(a) c * i (c) f / c (e) f - d 

(b) s + m (d) d / s (f) (int) f 

18. Does the following statement always compute the fractional part of f correctly (assuming 
that f and frac_part are float variables)? 

frac_part = f - (int) f; 

If not, what’s the problem? 

19. Use typedef to create types named Int8, Inti6, and Int32. Define the types so that 
they represent 8-bit, 16-bit, and 32-bit integers on your machine. 
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8 Arrays 

If a program manipulates a large amount of data, 
it does so in a small number of ways. 

So far, the only variables we’ve seen are scalar: capable of holding a single data 

item. C also supports aggregate variables, which can store collections of values, 

structures >16.1 There are two kinds of aggregates in C: arrays and structures (records). This chap¬ 

ter shows how to declare and use arrays, both one-dimensional (Section 8.1) and 

multidimensional (Section 8.2). We’ll focus on one-dimensional arrays, which 

play a much bigger role in C than do multidimensional arrays. Later chapters 

(Chapter 12 in particular) provide additional information about arrays; Chapter 16 

covers structures. 

8.1 One-Dimensional Arrays 

An array is a data structure containing a number of data values, all of which have 

the same type. These values, known as elements, can be individually selected by 

their position within the array. 

The simplest kind of array has just one dimension. The elements of a one¬ 

dimensional array are conceptually arranged one after another in a single row (or 

column, if you prefer). Here’s how we might visualize a one-dimensional array 

named a: 

a 

To declare an array, we must specify the type of the array’s elements and the 

number of elements. For example, to declare that the array a has 10 elements of 

type int, we would write 

139 
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int a[10]; 

The elements of an array may be of any type; the length of the array can be speci- 

constant expressions >5.3 fied by any (integer) constant expression. Since array lengths may need to be 
adjusted when the program is later changed, using a macro to define the length of 

an array is an excellent practice: 

#define N 10 

int a[N] ; 

Q&A 

Array Subscripting 

To access a particular element of an array, we write the array name followed by an 

integer value in square brackets (this is referred to as subscripting or indexing the 

array). Array elements are always numbered starting from 0, so the elements of an 

array of length n are indexed from 0 to n - 1. For example, if a is an array with ten 

elements, they’re designated by a [ 0 ], a [ 1 ], ..., a [ 9 ], as the following figure 

shows: 

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

lvalues >4.2 Expressions of the form a [ i ] are lvalues, so they can be used in the same way as 

ordinary variables: 

a[0] = 1; 

printf("%d\n", a[5]); 

++a[i]; 

Arrays and for loops go hand-in-hand. Many programs contain for loops 

whose job is to perform some operation on every element in an array. Here are a 

few examples of typical operations on an array a of length N: 

idiom for (i = 

a[i] = 

0; i 

0; 

< N; i + + ) 

/* clears a */ 

idiom for (i = 

scanf( 

0; i 

" %d" , 

< N; 

&a [ i ] 
i++) 

) ; /* reads data into a */ 

idiom for (i = 

sum += 

0; i 

a[i] 

< N; i + +) 

/* sums the elements of a 

Notice that we must use the & symbol when calling scanf to read an array ele¬ 

ment, just as we would with an ordinary variable. 

C doesn’t require that subscript bounds be checked; when a subscript goes out of 
range, the program may behave unpredictably. One cause of a subscript going out 
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of bounds: forgetting that an array with n elements is indexed from 0 to n - 1, not 1 
to n. (As one of my professors liked to say, “In this business, you’re always off by 
one.” He was right, of course.) The following example illustrates a bizarre effect 
that can be caused by this common blunder: 

int a[10], i; 

for (i = 1; i <= 10; i++) 
a [ i ] = 0 ; 

With some compilers, this innocent-looking for statement causes an infinite loop! 
When i reaches 10, the program stores 0 into a [ 10 ]. But a [ 10 ] doesn’t exist, 
so 0 goes into memory immediately after a [ 9 ]. If the variable i follows a [ 9 ] in 
memory—as might be the case—then i will be reset to 0, causing the loop to start 
over. 

An array subscript may be any integer expression: 

a[i+j *10] = 0; 

The expression can even have side effects: 

1 = 0; 

while (i < N) 

a [ i++] = 0; 

Let’s trace this code. After i is set to 0, the while statement checks whether i is 

less than N. If it is, 0 is assigned to a [ 0 ], i is incremented, and the loop repeats. 

Note that a [ + + i ] wouldn’t be right, because 0 would be assigned to a [ 1 ] during 

the first loop iteration. 

Be careful when an array subscript has a side effect. For example, the following 
loop—which is supposed to copy the array b into the array a—may not work prop¬ 
erly: 

1 = 0; 

while (i < N) 

a[i] = b[i++]; 

Before each assignment to a [ i ], the memory locations corresponding to a [ i ] 
and b[i + +] must be determined. If we’re lucky, the location corresponding to 
a [ i ] will be determined first, so that b [ i ] is copied to a [ i ]. If we’re not, the 
location corresponding to b[i + +] is determined first, i is incremented, and 
b [ i ] is copied to a [ i + 1 ]. Of course, we can easily avoid the problem by remov¬ 
ing the increment from the subscript: 

for (i = 0; i < N; i++) 

a [ i ] = b [ i ] ; 
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PROGRAM Reversing a Series of Numbers 

Our first array program prompts the user to enter a series of numbers, then writes 

the numbers in reverse order: 

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31 

In reverse order: 31 50 11 23 94 7 102 49 82 34 

Our strategy will be to store the numbers in an array as they’re read, then go 

through the array backwards, printing the elements one by one. In other words, we 

won’t actually reverse the elements in the array, but we’ll make the user think we 

did. 

reverse.C /* Reverses a series of numbers */ 

♦include <stdio.h> 

♦define N 10 

main() 

{ 
int a[N], i; 

printf("Enter %d numbers: ", N) ; 

for (i = 0; i < N; i++) 

scanf("%d", &a[i]); 

printf("In reverse order:"); 

for (i = N - 1; i >= 0; i--) 

printf(" %d", a[i]); 

printf("\n"); 

return 0; 

} 

This program shows just how useful macros can be in conjunction with arrays. 

The macro N is used four times in the program: in the declaration of a, in the 

printf that displays a prompt, and in both for loops. Should we later decide to 

change the size of the array, we need only edit the definition of N and recompile 

the program. Nothing else will need to be altered; even the prompt will still be cor¬ 

rect. 

Array Initialization 

An array, like any other variable, can be given an initial valpe at the time it’s 

declared. The rules are somewhat tricky, though, so we’ll cover some of them now 

initializers >18.5 and save others until later. 

The most common form of array initializer is a list of constant expressions 

enclosed in braces and separated by commas: 

int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10); 
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If the initializer is shorter than the array, the remaining elements of the array are 
given the value 0: 

int a[10] = {1, 2, 3, 4, 5, 6}; 

/* initial value of a is {1, 2, 3, 4, 5, 6, 0, 0, 0, 0} */ 

Using this feature, we can easily initialize an array to all zeros: 

int a[10] = {0}; 

/* initial value of a is {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} */ 

It’s illegal for initializer to be completely empty, so we’ve put a single 0 inside the 

braces. It’s also illegal for an initializer to be longer than the array it initializes. 

If an initializer is present, the length of the array may be omitted: 

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; 

The compiler uses the length of the initializer to determine how long the array is. 

The array still has a fixed number of elements (ten, in this example), just as if we 

had specified the length explicitly. 

PROGRAM Checking a Number for Repeated Digits 

Our next program checks whether any of the digits in a number appear more than 

once. After the user enters a number, the program prints either Repeated digit 

or No repeated digit: 

Enter a number: 28212 

Repeated digit 

The number 28212 has a repeated digit (2); a number like 9357 doesn’t. 

The program uses an array of Boolean values to keep track of which digits 

appear in a number. The array, named digit_seen, is indexed from 0 to 9 to 

correspond to the ten possible digits. Initially, every element of the array is 0 

(false). When given a number n, the program examines n’s digits one at a time, 

storing each into the digit variable and then using it as an index into 

digit_seen. If digit_seen [digit ] is true, then digit appears at least 

twice in n. On the other hand, if digit_seen [digit ] is false, then digit 

hasn’t been seen before, so the program sets digit_seen [digit ] to TRUE 

and keeps going. 

repdigit.C /* Checks numbers for repeated digits */ 

#include <stdio.h> 

#define TRUE 1 

#define FALSE 0 

typedef int Bool; 
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main() 

{ 
Bool digit_seen[10] = {0}; 

int digit; 

long int n; 

printf("Enter a number: "); 

scant("%ld", &n); 

while (n > 0) { 

digit = n % 10; 

if (digit_seen[digit]) 

break; 

digit_seen[digit] = TRUE; 

n /= 10; 

} 

if (n > 0) 

printf("Repeated digit\n\n"); 

else 
printf("No repeated digit\n\n"); 

return 0; 

} 

Notice that n has type long int, allowing the user to enter numbers up to 

2,147,483,647 (or more, on some machines). 

Using the sizeof Operator with Arrays 

The sizeof operator can determine the size of an array (in bytes). If a is an array 

of ten integers, then sizeof (a) is typically either 20 (if integers are 16 bits 

long) or 40 (if integers are 32 bits long). 
We can also use sizeof to measure the size of an array element. Dividing 

the array size by the element size gives the length of the array: 

sizeof(a) / sizeof(a[0]) 

Some programmers use this expression when the length of the array is needed. To 

clear the array a, for example, we could write 

for (i =0; i < sizeof(a) / sizeof(a[0]); i++) 

a[i] = 0; 

With this technique, the loop doesn’t have to be modified if the array length should 

change at a later date. Using a macro to represent the array length has the same 

advantage, of course, but the sizeof technique is slightly better, since there’s no 

macro name to remember (and possibly get wrong). 
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parameterized macros >-14.3 

PROGRAM 

interest, c 

The expression sizeof (a) / sizeof (a [ 0 ] ) is a bit unwieldy; defining 
a macro that represents it is often helpful: 

ttdefine SIZE (sizeof(a) / sizeof(a[0])) 

for (i = 0; i < SIZE; i++) 
a [ i ] = 0 ; 

If we’re back to using a macro, though, what’s the advantage of sizeof? We’ll 

answer that question in a later chapter (the trick is to add a “parameter” to the 
macro). 

Computing Interest 

Our next program prints a table showing the value of $100 invested at different 

rates of interest over a period of years. The user will enter an interest rate and the 

number of years the money will be invested. The table will show the value of the 

money at one-year intervals—at that interest rate and the next four higher rates— 

assuming that interest is compounded once a year. Here’s what a session with the 
program will look like: 

Enter interest rate: 6 
Enter number of years: 

6% 7% 8% 9% 10% 
106. 00 107 . 00 108 . 00 109 . 00 110 . 00 
112 . 36 114. 49 116 . 64 118 . 81 121. 00 
119 . 10 122 . 50 125 . 97 129 . 50 133 . 10 
126 . 25 131. 08 136 . 05 141. 16 146 . 41 
133 . 82 140. 26 146. 93 153 . 86 161. 05 

Clearly, we can use a for statement to print the first row. The second row is a 

little trickier, since its values depend on the numbers in the first row. Our solution 

is to store the first row in an array as it’s computed, then use the values in the array 

to compute the second row. Of course, this process can be repeated for the third 

and later rows. We’ll end up with two for statements, one nested inside the other. 

The outer loop will count from 1 to the number of years requested by the user. The 

inner loop will increment the interest rate from its lowest value to its highest value. 

/* Prints a table of compound interest */ 

#include <stdio.h> 

#define NUM_RATES (sizeof(value)/sizeof(value[0])) 
ttdefine INITIAL_BALANCE 100.00 

main() 

{ 
int i, low_rate, num_years, year; 
float value[5]; 
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printf("Enter interest rate: "); 

scant("%d", &low_rate); 

printf("Enter number of years: "); 

scant("%d", &num_years); 

printf("\nYears"); 

for (i = 0; i < NUM_RATES; i++) { 

printf("%6d%", low_rate+i); 

value[i] = INITIAL_BALANCE; 

} 
printf("\n"); 

for (year = 1; year <= num_years; year++) { 

printf("%3d ", year); 

for (i = 0; i < NUMERATES; i++) { 

value[i] += (low_rate+i) / 100.0 * value[i]; 

printf("%7.2f", value[i]); 

} 
printf("\n"); 

return 0; 

} 

Note the use of NUM_RATES to control two of the for loops. If we later 

change the size of the value array, the loops will adjust automatically. 

8.2 Multidimensional Arrays 

An array may have any number of dimensions. For example, the following decla¬ 

ration creates a two-dimensional array (or matrix, in mathematical terminology): 

int m[5][9]; 

The array m has 5 rows and 9 columns. Rows and columns are both indexed from 
0, as the following figure shows: 

012345678 

0 

1 

2 

3 

4 
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A 
comma operator >6.3 

arrays of pointers >13.7 

To access the element of m in row i, column j, we must write m [ i ] [ j ]. The 

expression m [ i ] designates row i of m, and m [ i ] [ j ] then selects element j in 
this row. 

Resist the temptation to write m [ i , j ] instead of m [ i ] [ j ]. C treats the comma 
as an operator in this context, so m [ i , j ] is the same as m [ j ]. 

Although we visualize two-dimensional arrays as tables, that’s not the way 

they’re actually stored in computer memory. C stores arrays in row-major order, 

with row 0 first, then row 1, and so forth. For example, here’s how the m array is 

stored: 

row 0 row 1 row 4 

9^ 0s & & 9^ 
V?' 4?' 4?' 

We’ll usually ignore this detail, but sometimes it will affect our code. 

Just as for loops go hand-in-hand with one-dimensional arrays, nested for 

loops are ideal for processing multidimensional arrays. Consider, for example, the 

problem of initializing an array for use as an identity matrix. (In mathematics, an 

identity matrix has l’s on the main diagonal, where the row and column index are 

the same, and 0’s everywhere else.) We’ll need to visit each element in the array in 

some systematic fashion. A pair of nested for loops—one that steps through 

every row index and one that steps through each column index—is perfect for the 

job: 

#define N 10 

float ident[N][N]; 
int row, col; 

for (row = 0; row < N; row++) 
for (col = 0; col < N; col++) 

if (row == col) 
ident[row][col] = 1.0; 

else 
ident[row][col] = 0.0; 

Multidimensional arrays play a lesser role in C than in many other program¬ 

ming languages, primarily because C provides a more flexible way to store multi¬ 

dimensional data: arrays of pointers. 

Initializing a Multidimensional Array 

We can create an initializer for a two-dimensional array by nesting one-dimen¬ 

sional initializers: 
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{{1, 1, 1, 1, 1, o. 1, 1, 1}, 
(0, 1, 0, 1, o. 1, 0, 1, 0}, 
(o. 1, o, 1, 1, o, 0, 1, 0}, 
(1, 1, 0, 1, 0, o, o, 1, 0), 
(1, 1, 0, 1, o, 0, 1, 1, 1}} 

Each inner initializer provides values for one row of the matrix. Initializers for 

higher-dimensional arrays are constructed in a similar fashion. 

C provides a variety of ways to abbreviate initializers for multidimensional 

arrays: 

■ If an initializer isn’t large enough to fill a multidimensional array, the remain¬ 

ing elements are given the value 0. For example, the following initializer fills 

only the first three rows of m; the last two rows will contain zeros: 

{{1, 1, 1, 1, 1, 0, 1, 1, 1}, 
{0, 1, 0, 1, 0, 1, 0, 1, 0}, 
{0, 1, 0, 1, 1, 0, o. 1, 0}} 

■ If an inner list isn’t long enough to fill a row, the remaining elements in the 

row are initialized to 0: 

int m [ 5 ] [9] n h->
 

h->
 

1, 0, 1, 1, 1}, 

O
 

O
 

0, 1, 0, 1}, 
{0, 1, 0, 1, 1, 0, 0, 1}, 
{1, 1, o, 1, 0, o. 0, 1}, 
{1, 1, o, 1, 0, 0, 1, 1, 1}} 

■ We can even omit the inner braces: 

int m[5] [9] = (1, 1, 1, 1, 1, 0, 1, 1, 1, 
0, 1, 0, 1, 0, 1, 0, 1, 0, 

o
 

h-1
 

O
 

1, 0, 0, 1, 0, 
1, 1, o, 1, 0, 0, 0, 1, 0, 
1, 1, 0, 1, 0, 0, 1, 1, 1}; 

Once the compiler has seen enough values to fill one row, it begins filling the 

next. 

Omitting the inner braces in a multidimensional array initializer can be risky, since 
an extra element (or even worse, a missing element) will affect the rest of the ini¬ 
tializer. Leaving out the braces causes some compilers to produce a warning mes¬ 
sage such as “Initialization is only partially bracketed. ” 

Constant Arrays 

Any array, whether one-dimensional or multidimensional, can be made “constant” 
by starting its declaration with the word const: 
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const type qualifier >18.3 

PROGRAM 

time function >26.3 

srand function >26.2 

rand function >26.2 

const int months[] = 
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31); 

An array that’s been declared const should not be modified by the program; the 

compiler will detect direct attempts to modify an element. 

Declaring an array to be const has a couple of primary advantages. It docu¬ 

ments that the program won’t change the array, which can be valuable information 

for someone reading the program later. It also helps the compiler catch errors, by 

informing it that we don’t intend to modify the array. 

const isn’t limited to arrays; it works with any variable, as we’ll see later. 

However, const is frequently used in conjunction with arrays, because they often 

contain reference information that won’t change during program execution. 

Dealing a Hand of Cards 

Our next program illustrates both two-dimensional arrays and constant arrays. The 

program deals a random hand from a standard deck of playing cards. (In case you 

haven’t had time to play games recently, each card in a standard deck has a suit— 

clubs, diamonds, hearts, or spades—and a rank—two, three, four, five, six, seven, 

eight, nine, ten, jack, queen, king, or ace.) We’ll have the user specify how many 

cards should be in the hand: 

Enter number of cards in hand: 5 

Your hand: 7c 2s 5d as 2h 

It’s not immediately obviously how we’d write such a program. How do we pick 

cards randomly from the deck? And how do we avoid picking the same card 

twice? Let’s tackle these problems separately. 

To pick cards randomly, we’ll use several C library functions. The time func¬ 

tion (from <time . h>) returns the current time, encoded in a single number. The 

srand function (from <stdlib.h>) initializes C’s random number generator. 

Passing the return value of time to srand prevents the program from dealing the 

same cards every time we run it. The rand function (from <stdlib.h>) pro¬ 

duces an apparently random number each time it’s called. By using the % operator, 

we can scale the return value from rand so that it falls between 0 and 3 (for suits) 

or between 0 and 12 (for ranks). 

To avoid picking the same card twice, we’ll need to keep track of which cards 

have already been chosen. For that purpose, we’ll use an array named in_hand 

that has four rows (one for each suit) and 13 columns (one for each rank). In other 

words, each element in the array corresponds to one of the 52 cards in the deck. All 

elements of the array will be 0 (false) to start with. Each time we pick a card at ran¬ 

dom, we’ll check whether the element of in_hand corresponding to that card is 

true or false. If it’s true, we’ll have to pick another card. If it’s false, we’ll store 1 in 

that card’s array element to remind us later that this card has already been picked. 

Once we’ve verified that a card is “new”-—not already selected—we’ll need to 

translate its numerical rank and suit into characters and then display the card. To 
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translate the rank and suit to character form, we’ll set up two arrays of charac¬ 

ters—one for the rank and one for the suit—then use the numbers to subscript the 

arrays. These arrays won’t change during program execution, so we may as well 

declare them to be const. 

deal.C /* Deals a random hand of cards */ 

\ 

[[include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

#define NUM_SUITS 4 

#define NUM_RANKS 13 

#define TRUE 1 

#define FALSE 0 

typedef int Bool; 

main() 

{ 
Bool in_hand[NUM_SUITS] [NUM_RANKS] = {0 >; 

int num_cards, rank, suit; 

const char rank_ _code[] = = {'2\ ' 3 ' ■ j . ’4' , , ’ 5 ' , ’ 6 ' , 1 7 ' , ’ 8 

■ 9 ' , , ' t' , ■ ' j ' , ' q' , 'H' , ' a' } ; 

const char suit. _code[] = - { ' c ' , , 1 d ’ , , 1 h' , .'s' }; 

srand((unsigned) time(NULL)); 

printf("Enter number of cards in hand: "); 

scanf("%d", &num_cards); 

printf("Your hand:"); 

while (num_cards >0) { 

suit = rand() % NUM_SUITS; /* picks a random suit */ 

rank = rand() % NUM_RANKS; /* picks a random rank */ 

if (!in_hand[suit][rank]) { 

in_hand[suit][rank] = TRUE; 

num_cards— ; 

printf(" %c%c", rank_code[rank], suit_code[suit]); 

} 
} 
printf("\n"); 

return 0; 

} 

Notice the initializer for the in_hand array: 

Bool in_hand[NUM_SUITS][NUM_RANKS] = {0}; 

Even though in_hand is a two-dimensional array, C allows us to use a single pair 

of braces. Also, we’ve supplied only one value in the initializer, knowing that C 
will fill in 0 for the other elements. 
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Q: 
A: 

Q: 
A: 

Q: 
A: 

Q: 

A: 

memcpy function >23.5 

Q&A 

Why do array subscripts start at 0 instead of 1? [p. 140] 

Having subscripts begin at 0 simplifies the compiler a bit. Also, it can make array 
subscripting marginally faster. 

What if I want an array with subscripts that go from 1 to 10 instead of 0 to 9? 

Here’s a common trick: declare the array to have 11 elements instead of 10. The 

subscripts will go from 0 to 10, but you can just ignore element 0. 

Is it possible to use a character as an array subscript? 

Yes, because C treats characters as integers. You’ll probably need to “scale” the 

character before you use it as a subscript, though. Let’s say that we want the 

letter_count array to keep track of a count for each letter in the alphabet. The 

array will need 26 elements, so we’d declare it in the following way: 

int letter_count[26]; 

However, we can’t use letters to subscript letter_count directly, because their 

integer values don’t fall between 0 and 25. To scale a lower-case letter to the 

proper range, we can simply subtract ' a 1; to scale an upper-case letter, we’ll sub¬ 

tract 1 A'. For example, if ch contains a lower-case letter, we’d write 

letter_count[ch-1 a'] = 0; 

to clear the count that corresponds to ch. 

The compiler gives me an error message if I try to copy one array into another 
by using the assignment operator. What’s wrong? 

Although it looks quite plausible, the assignment 

a = b; /* a and b are arrays */ 

is indeed illegal. The reason for its illegality isn’t obvious; it has to do with the 

peculiar relationship between arrays and pointers in C, a topic we’ll explore in 

Chapter 12. 
The simplest way to copy one array into another is to use a loop that copies the 

elements, one by one: 

for (i = 0; i < N; i++) 

a [ i ] = b [ i ] ; 

Another possibility is to use the memcpy (“memory copy”) function from the 

<string.h> header, memcpy is a low-level function that simply copies bytes 

from one place to another. To copy the array b into the array a, use memcpy as 

follows: 
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memcpy(a, b, sizeof(a)); 

Many programmers prefer memcpy, especially for large arrays, because it’s poten¬ 

tially faster than an ordinary loop. 

Section 8.1 

Section 8.2 

Exercises 

1. Modify the repdigit. c program so that it shows which digits (if any) were repeated: 

Enter a number: 939577 
Repeated digit(s): 7 9 

2. Modify the repdigit. c program so that it prints a table showing how many times each 

digit appears in the number: 

Enter a number: 41271092 
Digit: 0123456789 
Occurrences: 1220100101 

3. Modify the repdigit. c program so that the user can enter more than one number to be 
tested for repeated digits. The program should terminate when the user enters a number that 

less than or equal to 0. 

4. We discussed using the expression sizeof (a) / sizeof (a [0] ) to calculate the num¬ 
ber of elements in an array. The expression sizeof (a) / sizeof (?), where t is the type 
of a’s elements, would also work, but it’s considered an inferior technique. Why? 

5. Modify the reverse . c program to use the expression sizeof (a) / sizeof (a [0]) 

(or a macro with this value) for the array length. 

6. Modify the interest. c program so that it compounds interest monthly instead of annu¬ 

ally. The form of the output shouldn’t change; the balance should still be shown at annual 

intervals. 

7. One of the celebrities of the on-line movement is a fellow named BIFF, who has a unique 
way of writing messages. Here’s a typical BIFF communique: 

H3Y DUD3, C 15 RlLLY COOL! !!!!!!!!! 

Write a “BIFF filter” that reads a message entered by the user and translates it into B1FF- 
speak: 

Enter message: Hey dude, C is rilly cool 
In BlFF-speak: H3Y DUD3, C 15 RILLY COOL! !!!!!!!!! 

Your program should convert the message to upper-case letters, substitute digits for certain 
letters (A-»4, B—>8, E—>3, I—>1, O—>0, S—>5), and then append ten or so exclamation 
marks. Hint: Store the original message in an array of characters, then go back through the 
array, translating and printing characters one by one. 

8. The Q&A section shows how to use a letter as an array subscript. Describe how to use a 
digit (in character form) as a subscript. 

9. Calculators, watches, and other electronic devices often rely on seven-segment displays for 
numerical output. To form a digit, such devices “turn on” some of the seven segments while 
leaving others “off’: 
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Suppose that we want to set up an array that remembers which segments should be “on” for 
each digit. Let’s number the segments as follows: 

0 

Here’s what the array might look like, with each row representing one digit: 

const int segments [ 10 ] [7 ] = {{1, 1, 1, 1, 1, 1, 0}, ...} ; 

I’ve given you the first row of the initializer; fill in the rest. 

10. Using the shortcuts described in Section 8.2, shrink the initializer for the segments array 
(Exercise 9) as much as you can. 

11. Write a program that reads a 5 x 5 array of integers and then prints the row sums and the 
column sums: 

Enter row 1 8 3 9 0 10 
Enter row 2 3 5 17 1 1 
Enter row 3 2 8 6 23 1 
Enter row 4 15 7 3 2 9 
Enter row 5 6 14 2 6 0 

Row totals: 30 27 40 36 28 
Column totals: 34 37 37 32 21 

12. Modify Exercise 11 so that it prompts for five quiz grades for each of five students, then 
computes the total score and average score for each student, and the average score, high 
score, and low score for each quiz. 

13. Write a program that generates a “random walk” across a 10 x 10 array. The array will con¬ 
tain characters (all ' . ' initially). The program must randomly “walk” from element to ele¬ 
ment, always going up, down, left, or right by one element. The elements visited by the 
program will be labeled with the letters A though Z, in the order visited. Here’s an example 
of the desired output: 

A. 
BCD. 
. F E. 

H G. 
I. 

J.Z . 
K . . R S T U V Y . 
L M P Q . . . W X . 
.NO. 

Hint: Use the srand and rand functions (see deal.c) to generate random numbers. 
After generating a number, look at its remainder when divided by 4. There are four possible 
values for the remainder—0, 1, 2, and 3—indicating the direction of the next move. Before 
performing a move, check that (a) it won’t go outside the array, and (b) it doesn’t take us to 
an element that already has a letter assigned. If either condition is violated, try moving in 
another direction. If all four directions are blocked, the program must terminate. Here’s an 
example of premature termination: 
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A B G H I . . 

. C F . J K . 

. D E . M L . 

. . . .NO. 

. . W X Y P Q 

. . V U T S R 

Y is blocked on all four sides, so there’s no place to put z. 



Functions 

If you have a procedure with ten 
parameters, you probably missed some. 

We saw in Chapter 2 that a function is simply a series of statements that have been 

grouped together and given a name. Although the term “function” comes from 

mathematics, C functions don’t always resemble math functions. In C, a function 

doesn’t necessarily have arguments, nor does it necessarily compute a value. (In 

some programming languages, a “function” returns a value, whereas a “procedure” 

doesn’t. C lacks this distinction.) 

Functions are the building blocks of C programs. Each function is essentially 

a small program, with its own declarations and statements. Using functions, we 

can divide a program into small pieces that are easier for us—and others—to 

understand and modify. Functions can take some of the tedium out of program¬ 

ming by allowing us to avoid duplicating code that’s used more than once. More¬ 

over, functions are reusable: we can take a function that was originally part of one 

program and use it in others. 

Our programs so far have consisted of just one function—main—although 

they’ve called library functions. In this chapter, we’ll focus on writing our own 

functions. Section 9.1 shows how to define and call functions. Section 9.2 then dis¬ 

cusses function declarations and how they differ from function definitions. Next, 

Section 9.3 examines how arguments are passed to functions. The remainder of the 

chapter covers the return statement (Section 9.4), the related issue of program 

termination (Section 9.5), and functions that are recursive (Section 9.6). 

9.1 Defining and Calling Functions 

Before we go over the formal rules for defining a function, let’s look at three sim¬ 

ple programs that define functions. 

155 
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PROGRAM Computing Averages 

Suppose we often need to compute the average of two float values. The C 

library doesn’t have an “average” function, but we can easily define our own. 

Here’s what it would look like: 

float average(float a, float b) 

{ 
return (a + b) / 2; 

} 

Q&A 

The word float at the beginning is average’s return type: the type of data that 

the function returns each time it’s called. The identifiers a and b (the function’s 

parameters) represent the two numbers that will be supplied when average is 

called. Each parameter must have a type (just like every variable has a type); 

we’ve selected float as the type of a and b. (I know it looks odd, but the word 

float must appear twice, once for a and once for b.) A function parameter is 

essentially a variable whose initial value will be supplied later, when the function 

is called. 

Every function has an executable part, called the body, which is enclosed in 

braces. The body of average consists of a single return statement. Executing 

this statement causes the function to “return” to the place from which it was called; 

the value of (a + b) / 2 will be the value returned by the function. 

To activate (call) a function, we write the function name, followed by a list of 

arguments: average (x, y), for example. Arguments are used to supply infor¬ 

mation to a function; in this case, average needs to know which two numbers to 

average. The effect of the call average (x, y) is to copy the values of x and y 

into the parameters a and b, then execute the body of average. An argument 

doesn’t have to be a variable, by the way; any expression of the proper type will 

do, allowing us to write average (5.1, 8.9) or average (x/ 2 , y/ 3 ). 

We’ll put the call of average in the place where we need to use the return 

value. For example, we could write 

printf("Average: %g\n", average(x, y)); 

to compute the average of x and y and then print it. This statement has the follow¬ 

ing effect: 

1. It calls the average function, passing x and y as arguments. 

2. average executes its return statement, returning the average of x and 

Y- 
3. printf prints the value that average returns. (The return value of 

average becomes one of printf’s arguments.) 

Note that the return value of average isn’t saved anywhere; the program prints it 

and then discards it. If we had needed the return value later in the program, we 

could have captured it in a variable: 

avg = average(x, y); 
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average.c 

PROGRAM 

This statement calls average, then saves its return value in the variable avg. 

Now, let’s use the average function in a complete program. The following 

program reads three numbers and computes their averages, one pair at a time: 

Enter three numbers: 3.5 9.6 10.2 
Average of 3.5 and 9.6: 6.55 
Average of 9.6 and 10.2: 9.9 
Average of 3.5 and 10.2: 6.85 

Among other things, this program shows that a function can be called as often as 
we need. 

/* Computes pairwise averages of three numbers */ 

#include <stdio.h> 

float average(float a, float b) 
{ 

return (a + b) / 2; 

} 

main() 

{ 
float x, y, z; 

printf("Enter three numbers: "); 
scanf("%f%f%f", &x, &y, &z); 
printf("Average of %g and %g: %g\n", x, y, average(x, y)) ; 
printf("Average of %g and %g: %g\n", y, z, average(y, z) ) ; 
printf("Average of %g and %g: %g\n", X, Z, average(x, z) ) ; 

return 0; 

} 

Notice that I’ve put the definition of average before main. We’ll see in Section 

9.2 that putting average after main causes problems. For now, we’ll simply 

play it safe and define our functions before main. 

Printing a Countdown 

Not every function returns a value. For example, a function whose job is to pro¬ 

duce output may not need to return anything. To indicate that a function has no 

return value, we specify that its return type is void. (In C, the word void is used 

as a placeholder, much like the message “This page intentionally left blank” found 

in computer manuals.) Consider the following function, which prints the message 

T minus n and counting, where n is supplied when the function is called: 

void print_count(int n) 

{ 
printf("T minus %d and counting\n", n); 

} 
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print_count has one parameter, n, of type int. It returns nothing, so we’ve 

specified void as the return type and omitted the return statement. Since 

print_count doesn’t return a value, we can’t call it in the same way we call 

average. A call of print_count must be a statement, not an expression: 

print_count(i); 

Here’s a program that calls print_count ten times inside a loop: 

countdwn.c /* Prints a countdown */ 

#include <stdio.h> 

void print_count(int n) 

{ 
printf("T minus %d and counting\n", n) ; 

} 

main() 

{ 
int i ; 

for (i = 10; i > 0; --i) 

print_count(i) ; 

return 0; 

} 

Initially, i has the value 10. As the call of print_count begins, i is copied 

into n, so that n takes on the value 10 as well. As a result, the first call of 

print_count will print 

T minus 10 and counting 

print_count then returns to the point at which it was called, which happens to 

be the body of a for statement. The for statement resumes where it left off, dec¬ 

rementing i to 9 and testing whether it’s greater than 0. It is, so print_count is 

called again, this time printing 

T minus 9 and counting 

Each time print_count is called, i is different, so print_count will print 

ten different messages. 

PROGRAM Printing a Pun (Revisited) 

Some functions have no parameters at all. Consider print_pun, which prints a 

bad pun each time it’s called: 

void print_pun(void) 

{ 
printf("To C, or not to C: that is the question.\n"); 

} 
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pun2.c 

function definition 

The word void in parentheses indicates that print_pun has no arguments. 

(Again, we’re using void as a placeholder that means “nothing goes here.”) 

To call a function with no arguments, we write the function’s name, followed 

by parentheses: 

print_pun(); 

The parentheses must be present, even though there are no arguments. 

Here’s a tiny program that tests the print_pun function: 

/* Prints a bad pun */ 

#include <stdio.h> 

void print_pun(void) 

{ 
printf("To C, or not to C: that is the question.\n"); 

} 

main() 

{ 
print_pun(); 

return 0; 

} 

The execution of this program begins with the first statement in main, which 

happens to be a call of print_pun. print_pun now begins to execute, calling 

printf to display a string. When printf returns, print_pun returns to 

main. 

Function Definitions 

Now that we’ve seen several examples, let’s look at the general form of a function 

definition: 

return-type function-name ( parameters ) 

{ 
declarations 

statements 

} 

The “return type” of a function is the type of value that the function returns. 

The following rules govern the return type: 

■ Functions may not return arrays, but there are no other restrictions on the 

return type. 

■ If the return type is omitted, the function is presumed to return a value of type 

int. 
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Q&A 

■ Specifying that the return type is void indicates that the function doesn’t 

return a value. 

It’s good practice to specify an explicit return type for every function. Classic 

C lacked the concept of void, so programmers would often omit the return type if 

there was no return value: 

print_count(int n) 

{ 
printf("T minus %d and counting\n", n); 

} 

I’d recommend that you avoid this practice, since it’s not immediately clear 

whether the function returns nothing or whether it actually returns an int value. 

By the way, some programmers put the return type above the function name: 

float 
average(float a, float b) 

{ 
return (a + b) / 2; 

} 

Putting the return type on a separate line is especially useful if the return type is 

lengthy, like unsigned long int. 

After the function name comes a list of parameters. Each parameter is pre¬ 

ceded by a specification of its type; parameters are separated by commas. If the 

function has no parameters, the word void should appear between the parenthe¬ 

ses. Note: A separate type must be specified for each parameter, even when several 

parameters have the same type: 

float average(float a, b) /*** WRONG ***/ 

{ 
return (a + b) / 2; 

} 

The body of a function may include both declarations and statements. For 

example, the average function could be written 

float average(float a, float b) 

{ 
float sum; /* declaration */ 

sum = a + b; /* statement */ 

return sum / 2; /* statement */ 

} 

Variables declared in the body of a function belong exclusively to that function; 

they can’t be examined or modified by other functions. 

The body of a function can be empty: 

void print_pun(void) 

{ 
} 
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Q&A 
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Leaving the body empty may make sense during program development; we can 

leave room for the function without taking the time to complete it, then come back 
later and write the body. 

Function Calls 

A function call consists of a function name followed by a list of arguments, 

enclosed in parentheses: 

average(x, y) 
print_count(i) 
print_pun() 

If the parentheses are missing, the function won’t get called: 

print_pun; /*** WRONG ***/ 

The result is a legal (albeit meaningless) expression statement that looks correct, 
but has no effect. Some compilers issue a warning such as “Code has no effect. ” 

A call of a void function is a statement, so it’s always followed by a semico¬ 

lon: 

print_count(i); 

print_pun(); 

A call of a non-void function, on the other hand, is an expression—it produces a 

value that can be stored in a variable, tested, printed, or used in some other way: 

avg = average(x, y) ; 

if (average(x, y) >0) printf("Average is positive\n"); 

printf("The average is %g\n", average(x, y)); 

The value returned by a non-void function can always be discarded if 

desired: 

averagefx, y); /* discards return value */ 

This call of average is an example of an expression statement: a statement that 

computes a value, but doesn’t save it. 
Discarding the return value of average is an odd thing to do, of course, 

since that’s what we were after when we called the function. In some cases, how¬ 

ever, it makes sense to discard a function’s return value. The printf function, for 

example, returns the number of characters that it prints. After the following call, 

num_chars will have the value 9: 

num_chars = printf("Hi, Mom!\n"); 

Since we’re probably not interested in the number of characters printed, we’ll nor¬ 

mally discard printf’s return value: 
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PROGRAM 

prime.c 

printf("Hi, Mom!\n"); /* discards return value */ 

To make it clear that we’re deliberately discarding the return value of a func¬ 

tion, C allows us to put (void) before the call: 

(void) printf("Hi, Mom!\n"); 

What we’re doing is casting (converting) the return value of printf to type 

void. (In C, “casting to void” is a polite way of saying “throwing away. ) Using 

(void) makes it clear to others that you deliberately discarded the return value, 

not just forgot that there was one. Unfortunately, there are a great many functions 

in the C library whose values are routinely discarded; using (void) when calling 

them all can get tiresome, so I haven’t done so in this book. 

Testing Whether a Number Is Prime 

To see how functions can make programs easier to understand, let’s write a pro¬ 

gram that tests whether a number is prime. The program will prompt the user to 

enter the number, then respond with a message indicating whether or not the num¬ 

ber is prime: 

Enter a number: 3_4 

Not prime 

Instead of putting the prime-testing details in main, we’ll define a separate func¬ 

tion that returns TRUE if its parameter is a prime number, FALSE if it isn’t. When 

given a number n, the is_prime function will divide n by each of the numbers 

between 2 and the square root of n; if the remainder is ever 0, we know that n isn’t 

prime. 

/* Tests whether a number is prime */ 

♦include <stdio.h> 

♦define TRUE 1 

♦define FALSE 0 

typedef int Bool; 

Bool is_prime(int n) 

{ 
int divisor; 

if (n <= 1) return FALSE; 

for (divisor = 2; divisor * divisor <= n; divisor++) 

if (n % divisor == 0) 

return FALSE; 

return TRUE; 

} 
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main() 

{ 
int n; 

printf("Enter a number: "); 

scant("%d", &n); 

if (is_prime(n)) 

printf("Prime\n"); 

else 

printf("Not prime\n"); 

return 0; 

} 

Notice that main contains a variable named n even though is_prime’s 

parameter is named n. An identifier used as the name of a parameter or variable in 

one function can be reused in other functions; the uses need not be related. (Sec¬ 

tion 10.1 discusses this issue in more detail.) 

As this program demonstrates, a function may have more than one return 

statement. Of course, we can execute just one return statement during a given 

call of the function. 

9.2 Function Declarations 

In our programs in Section 9.1, we were always careful to put the definition of a 

function above the point at which it was called. Actually, C doesn’t require that 

the definition of a function precede its calls. Suppose that we rearrange the 

average. c program (Section 9.1) by putting the definition of average after 

the definition of main; 

ttinclude <stdio.h> 

main() 

{ 
float x / Y, z; 

printf( "Enter three numbers: ") ; 
scanf(" %f%f%f", &x, &y, & z) ; 

printf( "Average of %g and %g: %g\n", X, y/ average(x, y)) 

printf( "Average of %g and %g: %g\n", Y, z. average(y, z)) 

printf( "Average of %g and %g: %g\n", x. z. average(x, z)) 

return 0; 

} 

float average(float a, float b) 

{ 
return (a + b) / 2; 

} 
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When the compiler encounters the first call of average in main, it has no infor¬ 

mation about average: it doesn’t know how many parameters average has, 

what the types of these parameters are, or what kind of value average returns. 

Instead of producing an error message, though, the compiler instead makes a few 

assumptions about average. It assumes that average returns an int value 

(recall from Section 9.1 that the return type of a function is int by default). It 

assumes that we’re passing average the right number of arguments. Finally, it 

default argument promotions >9.3 assumes that the arguments—after promotion—have the proper type. Since some 
of these assumptions about average are wrong, the program won’t work. 

One way to avoid the problem of call-before-definition is to arrange the pro¬ 

gram so that the definition of each function precedes all its calls. Unfortunately, 

such an arrangement doesn’t always exist, and even when it does, it may make the 

program harder to understand by putting its function definitions in an unnatural 

order. 
Fortunately, C offers a better solution: declare each function before calling it. 

A function declaration provides the compiler with a brief glimpse at a function 

whose full definition will appear later. A function declaration resembles the first 

line of a function definition with a semicolon added at the end: 

function declaration return-type function-name ( parameters ) ; 

Q&A 
Needless to say, the declaration of a function must be consistent with the function’s 

definition. 
Here’s how our program would look with a declaration of average added: 

#include <stdio.h> 

float average(float a, float b); /* DECLARATION */ 

main() 

{ 
float x, y, z; 

printf("Enter three numbers: "); 

scanf("%f%f%f", &x, &y, &z); 

printf("Average of %g and %g: %g\n", x, y, averagefx, y) ) ; 

printf("Average of %g and %g: %g\n", y, z, average(y, z)); 

printf("Average of %g and %g: %g\n", x, z, average(x, z)); 

return 0; 

} 

float average(float a( float b) /* DEFINITION */ 

{ 
return (a + b) / 2; 

} 
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Function declarations of the kind we’ve been discussing are known as func¬ 

tion prototypes to distinguish them from Classic C’s function declarations. A pro¬ 

totype provides a complete description of how to call a function: how many 

arguments to supply, what their types should be, and what type of result will be 
returned. 

Incidentally, a function prototype doesn’t have to specify the names of the 

function’s parameters, as long as their types are present: 

float average(float, float); 

It’s usually best not to omit the parameter names, however, since they help docu¬ 

ment the purpose of each parameter and remind the programmer of the order in 

which arguments must appear when the function is called. 

9.3 Arguments 

Let’s review the difference between a parameter and an argument. Parameters 

appear in function definitions; they’re dummy names that represent values to be 

supplied when the function is called. Arguments are expressions that appear in 

function calls. When the distinction between argument and parameter isn’t impor¬ 

tant, I’ll sometimes use argument to mean either. 

In C, arguments are passed by value: when a function is called, each argument 

is evaluated and its value assigned to the corresponding parameter. Changes made 

to the parameter during the execution of the function don’t affect the value of the 

argument. In effect, each parameter behaves like a variable initialized to the value 

of the matching argument. 

The fact that arguments are passed by value has both advantages and disad¬ 

vantages. Since a parameter can be modified without affecting the corresponding 

argument, we can use parameters as variables within the function, thereby reduc¬ 

ing the number of genuine variables needed. Consider the following function, 

which raises a number x to a power n: 

int power(int x, int n) 

{ 
int i, result = 1; 

for (i = 1; i <= n; i++) 

result = result * x; 

return result; 

} 

Since n is a copy of the original exponent, we can modify it inside the function, 

thus removing the need for i: 
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int power(int x, int n) 

{ 
int result = 1; 

while (n-- > 0) 

result = result * x; 

return result; 

} 

Unfortunately, C’s requirement that arguments be passed by value makes it 

difficult to write certain kinds of functions. For example, suppose that we need a 

function that will decompose a float value into an integer part and a fractional 

part. Since a function can’t return two numbers, we might try passing a pair of 

variables to the function and having it modify them: 

void decompose(float x, int int_part, float frac_part) 

{ 
int_part = (int) x; /* drops the fractional part of x */ 

frac_part = x - int_part; 

} 

Suppose that we call the function in the following way: 

decompose(3.14159, i, f) ; 

At the beginning of the call, 3.14159 is copied into x, i’s value is copied into 

int_part, and f’s value is copied into frac_part. The statements inside 

decompose then assign 3 to int_part and .14159 to frac_part, and the 

function returns. Unfortunately, i and f weren’t affected by the assignments to 

int_part and f rac_part, so they have the same values after the call as they 

did before the call. With a little extra effort, decompose can be made to work, as 

we’ll see in Section 11.4. However, we’ll need to cover more of C’s features first. 

Argument Conversions 

C allows function calls in which the types of the arguments don’t match the types 

of the parameters. The rules governing how the arguments are converted depend 

on whether or not the compiler has seen a prototype for the function (or the func¬ 

tion’s full definition) prior to the call: 

■ The compiler has encountered a prototype prior to the call. The value of 

each argument is implicitly converted to the type of the corresponding param¬ 

eter as if by assignment. For example, if an int argument is passed to a func¬ 

tion that was expecting a float, the argument is converted to float 

automatically. 

■ The compiler has not encountered a prototype prior to the call. The compiler 

performs the default argument promotions: (1) float arguments are con¬ 

verted to double. (2) The integral promotions are performed (char and 

short arguments are converted to int). 
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A The default argument promotions may not produce the desired result. Consider the 
following example: 

main() 

{ 
int i; 

printf("Enter number to be squared: "); 

scant("%d", &i); 

printf("The answer is %g\n", square(i)); /*** WRONG ***/ 

return 0; 

} 

double square(double x) 

{ 
return x * x; 

} 

At the time square is called, the compiler hasn’t seen a prototype yet, so it 
doesn’t know that square expects an argument of type double. Instead, the 
compiler performs the default argument promotions on i, with no effect. Since it’s 
expecting an argument of type double but has been given an int value instead, 
square will produce an invalid result. The problem can be fixed by declaring 
square before calling it or by casting i to the proper type: 

printf("The answer is %g\n", square((double) i)); 

The fact that the default argument promotions don’t always have the desired effect 
makes it even more imperative that we always declare functions before calling 
them. 

Array Arguments 

Q&A 

Arrays are often used as arguments. When a parameter is a one-dimensional array, 

the length of the array can be (and is normally) left unspecified: 

int f(int a[]) /* no length specified */ 

{ 

} 

The argument can be any one-dimensional array whose elements are of the proper 

type. There’s just one problem: how will f know how long the array is? Unfortu¬ 

nately, C doesn’t provide any easy way for a function to determine the length of an 

array passed to it. Instead, we’ll have to supply the length—if the function needs 

it—as an additional argument. 
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Although we can use the sizeof operator to help determine the length of an 
array variable, it doesn’t give the correct answer for an array parameter: 

int f(int a[]) 

{ 
int len = sizeof(a) / sizeof(a[0]); /*** WRONG ***/ 

} 

Section 12.3 explains why. 

The following function illustrates the use of one-dimensional array arguments. 

When given an array a of int values, sum_array returns the sum of the ele¬ 

ments in a. Since sum_array needs to know the length of a, we must supply it 

as a second argument. 

int sum_array(int a[], int n) 

{ 
int i, sum = 0; 

for (i = 0; i < n; i++) 

sum += a[i]; 

return sum; 

} 

The prototype for sum_array has the following appearance: 

int sum_array(int a[], int n); 

As usual, we can omit the parameter names if we wish: 

int sum_array(int [], int); 

When sum_array is called, the first argument will be the name of an array, 

and the second will be its length. For example: 

tdefine LEN 100 

main() 

{ 
int b[LEN], total; 

total = sum_array(b, LEN); 

} 

Notice that we don’t put brackets after an array name when passing it to a function: 

total = sum_array(b[], LEN); /*** WRONG ***/ 
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Q&A 

arrays of pointers >13.7 

9.4 

An important point about array arguments: A function has no way to check 

that we’ve passed it the correct array length. We can exploit this fact by telling the 

function that the array is smaller than it really is. Suppose that we’ve only stored 

50 numbers in the b array, even though it can hold 100. We can sum just the first 
50 elements by writing 

total = sum_array(b, 50); /* sums first 50 elements */ 

sum_array will ignore the other 50 elements. (Indeed, it won’t know that they 
even exist!) 

Be careful not to tell a function that an array argument is larger than it really is: 

total = sum_array(b, 150); /*** WRONG ***/ 

In this example, sum_array will go past the end of the array; as a result, total 
will include the values of 50 nonexistent array elements. 

When a parameter is a multidimensional array, only the length of the first 

dimension may be omitted. For example, if we revise the sum_array function so 

that a is a two-dimensional array, we must specify the number of columns in a, 

although we don’t have to indicate the number of rows: 

ttdefine LEN 10 

int sum_array(int a[][LEN], int n) 

{ 
int i, 3 , , sum = 0; 

for (i = 0; i < n; i + +) 

for (j = 0; j < LEN; j++) 

sum += a[i][j]; 

return sum; 

} 

Not being able to pass multidimensional arrays with an arbitrary number of col¬ 

umns can be a nuisance. Fortunately, we can often work around this difficulty by 

using arrays of pointers. 

The return Statement 

A non-void function must use the return statement to specify what value it 

will return. The return statement has the form 

return statement return expression ; 
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The expression is often just a constant or variable: 

return 0; 

return status; 

More complex expressions are possible. It’s not unusual to see the conditional 

operator used in a return expression: 

return i > j ? i : j; 

If the type of the expression in a return statement doesn’t match the func¬ 

tion’s return type, the expression will be implicitly converted to the return type. 

For example, if a function is declared to return an int, but the return statement 

contains a float expression, the value of the expression is converted to int. 

return statements may appear in functions whose return type is void, pro¬ 

vided that no expression is given: 

return.; /* return in a void function */ 

(Putting an expression in such a return statement will get you a compile-time 

error.) In the following example, the return statement causes the function to 

return immediately when given a negative argument: 

void print_int(int i) 

{ 
if (i < 0) return; 

printf("%d", i); 

} 

A return statement at the end of a void function causes no harm: 

void print_pun(void) 

{ 
printf("To C, or not to C: that is the question.\n"); 

return; /* OK, but not needed */ 

} 

Using return is unnecessary, though, since a function will return automatically 

after its last statement has been executed. 

If a non-void function should ever reach the end of its body, the value 

returned is undefined. Needless to say, this practice is not recommended. Some 

compilers will issue a message such as “Function should return a value’’ if they 

detect the possibility of a non-void function “falling off’ the end of its body. 

9.5 Program Termination 

Since main is a function, it must have a return type. We’ve never specified 

main’s return type, which means that it’s int by default. We can make the return 

type explicit if we choose: 
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int main() 

{ 

} 

Q&A 
The value returned by main is a status code that—in some operating systems— 

can be tested when the program terminates, main should return 0 if the program 

terminates normally; to indicate abnormal termination, main should return a value 

other than 0. (Actually, there’s no rule to prevent us from using the return value for 

other purposes.) It’s good practice to make sure that every C program returns a sta¬ 

tus code, even if there are no plans to use it, since someone running the program 

later may decide to test it. 

The exit Function 

Executing a return statement in main is one way to terminate a program. 

Another is calling the exit function, which belongs to <stdlib.h>. The argu¬ 

ment passed to exit has the same meaning as main’s return value: both indicate 

the program’s status at termination. To indicate normal termination, we’d pass 0: 

exit(0); /* normal termination */ 

Since 0 is a bit cryptic, C allows us to pass EXIT_SUCCESS instead (the effect is 

the same): 

exit(EXIT_SUCCESS); /* normal termination */ 

Passing EXIT_FAILURE indicates abnormal termination: 

exit(EXIT_FAILURE); /* abnormal termination */ 

EXIT_SUCCESS and EXIT_FAILURE are macros defined in <stdlib.h>. 

The value of EXIT_SUCCESS is always 0; the value of EX I T_F AI LURE is 

implementation-defined, but typically 1. 

As methods of terminating a program, return and exit are closely related. 

In fact, the statement 

return expression; 

in main is equivalent to 

exit [expression) ; 

The difference between return and exit is that exit can be called from any 

function, not just from main. Some programmers use exit exclusively so that a 

pattern-matching program can easily locate all exit points in a program. 
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9.6 Recursive Functions 

A function is recursive if it calls itself. For example, the following function com¬ 

putes n\ recursively, using the formula «!=nx(n-l)!: 

int fact(int n) 
{ 

if (n <= 1) 
return 1; 

else 
return n * fact(n-l); 

} 

Some programming languages rely heavily on recursion, while others don’t even 

allow it. C falls somewhere in the middle: it allows recursion, but most C program¬ 

mers don’t use it that often. 
To see how recursion works, let’s trace the execution of the statement 

i = fact(3); 

Here’s what happens: 

f act (3 ) finds that 3 is not less than or equal to 1, so it calls 
f ac t (2 ), which finds that 2 is not less than or equal to 1, so it calls 

f act (1), which finds that 1 is less than or equal to 1, so it returns 1, causing 
fact (2 ) to return 2x1=2, causing 

fact (3 ) to return 3x2 = 6. 

Notice how the unfinished calls of fact “pile up” until fact is finally passed 1. 

At that point, the old calls of fact begin to “unwind” one by one, until the origi¬ 

nal call—fact (3 ) —finally returns with the answer, 6. 

Here’s another example of recursion: a function that computes x", using the 

formula jr" = x x x"-1. 

int power(int x, int n) 
{ 

if (n == 0) 
return 1; 

else 
return x * power(x, n-1); 

} 

The call power (5,3) would be executed as follows: 

power (5,3) finds that 3 is not equal to 0, so it calls 
power (5 , 2 ), which finds that 2 is not equal to 0, so it calls 

power (5 , 1), which finds that 1 is not equal to 0, so it calls 
power (5 , 0), which finds that 0 is equal to 0, so it returns 1, causing 

power (5 , 1) to return 5x1=5, causing 
power (5 , 2 ) to return 5 x 5 = 25, causing 

power (5, 3 ) to return 5 x 25 = 125. 
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Incidentally, we can condense the power function a bit by putting a conditional 
expression in the return statement: 

int power(int x, int n) 

{ 
return n == 0 ? 1 : x * power(x, n-1); 

} 

Both fact and power are careful to test a “termination condition” as soon as 

they’re called. When fact is called, it immediately checks whether its parameter 

is less than or equal to 1. When power is called, it first checks whether its second 

parameter is equal to 0. All recursive functions need some kind of termination con¬ 

dition in order to prevent infinite recursion. 

The Quicksort Algorithm 

At this point, you may wonder why we’re bothering with recursion; after all, nei¬ 

ther fact nor power really needs it. Well, you’ve got a point. Neither function 

makes much of a case for recursion, because each calls itself just once. Recursion 

is much more helpful for sophisticated algorithms that require a function to call 

itself two or more times. 

In practice, recursion often arises naturally as a result of an algorithm design 

technique known as divide-and-conquer, in which a large problem is divided into 

smaller pieces that are then tackled by the same algorithm. A classic example of 

the divide-and-conquer strategy can be found in the popular sorting algorithm 

known as Quicksort. The Quicksort algorithm goes as follows (for simplicity, 

we’ll assume that the array being sorted is indexed from 1 to n): 

1. Choose an array element e (the “partitioning element”), then rearrange the 

array so that elements 1, 1 are less than or equal to e, element i con¬ 

tains e, and elements i+ 1, ..., n are greater than or equal to e. 

2. Sort elements 11 by using Quicksort recursively. 

3. Sort elements i+ 1, ..., n by using Quicksort recursively. 

After step 1, the element e is in its proper location. Since the elements to the left of 

e are all less than or equal to it, they’ll be in their proper places once they’ve been 

sorted in step 2; similar reasoning applies to the elements to the right of e. 

Step 1 of the Quicksort algorithm is obviously critical. There are various 

methods to partition an array, some much better than others. We’ll use a technique 

that’s easy to understand but not particularly efficient. We’ll first describe the par¬ 

titioning algorithm informally; later, we’ll translate it into C code. 

The algorithm relies on two “markers” named low and high, which keep track 

of positions within the array. Initially, low points to the first element of the array 

and high points to the last element. We start by copying the first element (the parti¬ 

tioning element) into a temporary location elsewhere, leaving a “hole” in the array. 

Next, we move high across the array from right to left until it points to a number 

that’s smaller than the partitioning element. We then copy the number into the hole 
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that low points to, which creates a a new hole (pointed to by high). We now move 

low from left to right, looking for an element that’s larger than the partitioning ele¬ 

ment. When we find one, we copy it into the hole that high points to. The process 

repeats, with low and high taking turns, until they meet somewhere in the middle 

of the array. At that time, both will point to a hole; all we need do is copy the parti¬ 

tioning element into the hole. The following diagrams illustrate the process: 

Let’s start with an array containing seven 
elements, low points to the first element; 
high points to the last one. 

The first element, 12, is the partitioning 
element. Copying it somewhere else leaves 
a hole at the beginning of the array. 

We now compare the element pointed to by 
high with 12. Since 10 is smaller than 12, 
it’s on the wrong side of the array, so we 
move it to the hole and shift low to the 
right. 

low points to the number 3, which is less 
than 12 and therefore doesn’t need to be 
moved. We shift low to the right instead. 

Since 6 is also less than 12, we shift low 
again. 

low now points to 18, which is larger than 
12 and therefore out of position. After 
moving 18 to the hole, we shift high to the 
left. 

high points to 15, which is greater than 12 
and thus doesn’t need to be moved. We 
shift high to the left and continue. 

high points to 7, which is out of position. 
After moving 7 to the hole, we shift low to 
the right. 
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low and high are now equal, so we move 
the partitioning element to the hole. 
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10 3 6 7 12 15 18 

At this point, we’ve accomplished our objective: all elements to the left of the par¬ 

titioning element are less than or equal to 12, and all elements to the right are 

greater than or equal to 12. Now that the array has been partitioned, we can use 

Quicksort recursively to sort the first four elements of the array (10, 3, 6, and 7) 

and the last two (15 and 18). 

PROGRAM Quicksort 

Let’s develop a recursive function named quicksort that uses the Quicksort 

algorithm to sort the elements of an array. To test the function, we’ll have main 

read 10 numbers into an array, call quicksort to sort the array, then print the 

elements in the array: 

Enter 10 numbers to be sorted: 9 16 47 82 4 66 12 3 25 51 

In sorted order: 3 4 9 12 16 25 47 51 66 82 

Since the code for partitioning the array is a bit lengthy, we’ll put it in a separate 

function named split. 

qsort.c /* Sorts an array of integers using Quicksort algorithm */ 

((include <stdio.h> 

((define N 10 

void quicksort(int a[], int low, int high); 

int split(int a[], int low, int high); 

main() 

{ 
int a[N], i; 

printf("Enter %d numbers to be sorted: ", N); 

for (i = 0; i < N; i + +) 

scanf("%d", &a[i]); 

quicksorts, 0, N - 1) ; 

printf("In sorted order: "); 

for (i = 0; i < N; i++) 

printf("%d ", a[i]); 

printf("\n"); 

return 0; 

} 
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void quicksort (int a [ ] , int low, int. high) 

{ 
int middle; 

if (low >= high) return; 

middle = split(a, low, high); 

quicksorts, low, middle - 1); 

quicksorts, middle + 1, high); 

int split(int a[], int low, int high) 

{ 
int part_element = a[low]; 

for (;;) { 

while (low < high && part_element <= a[high]) 

high--; 

if (low >= high) break; 

a[low++] = a[high]; 

while (low < high && a[low] <= part_element) 

low++; 

if (low >= high) break; 

a[high--] = a[low]; 

} 

a[high] = part_element; 

return high; 

Although this version of Quicksort works, it’s not the best. There are numer¬ 

ous ways to improve the program’s performance, including: 

■ Improving the partitioning algorithm. Our method isn’t the most efficient. 

Instead of choosing the first element in the array as the partitioning element, 

it’s better to take the median of the first element, the middle element, and the 

last element. The partitioning process itself can also be sped up. In particular, 

it’s possible to avoid the low < high tests in the two while loops. 

■ Using a different method to sort small arrays. Instead of using Quicksort 

recursively all the way down to arrays with one element, it’s better to use a 

simpler method for small arrays (those with fewer than, say, 25 elements). 

■ Making Quicksort nonrecursive. Although Quicksort is a recursive algorithm 

by nature—and is easiest to understand in recursive form—it’s actually more 
efficient if the recursion is removed. 

For details about improving Quicksort, consult a book on algorithm design, such 

as Robert Sedgewick’s Algorithms in C (Reading, Mass.: Addison-Wesley, 1990). 
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Q: 

A: 

Q: 

A: 

default argument promotions >9.3 

Q: 

A: 

*Q: 

Q&A 

Some C books appear to use terms other than parameter and argument. Is 

there any standard terminology? [p. 156] 

As with many other aspects of C, there’s no general agreement on terminology, 

although the C standard uses parameter and argument. The following table should 

help you translate: 

This book: Other books: 

parameter formal argument, formal parameter 

argument actual argument, actual parameter 

Keep in mind that—when no confusion would result—I sometimes deliberately 

blur the distinction between the two terms, using argument to mean either. 

I’ve seen programs in which parameter types are specified in separate decla¬ 

rations, just after the parameter list: 

float average(a, b) 

float a, b; 

{ 
return (a + b) / 2; 

} 

Is this practice legal? [p. 160] 

This method of defining functions comes from Classic C, so you may encounter it 

in older books and programs. Standard C supports this style so that older programs 

will still compile. I’d avoid using it in new programs, however, for a couple of rea¬ 

sons. 
First, functions that are defined in the Classic way aren’t subject to the same 

degree of error-checking as the new-style functions. When a function is defined in 

the Classic way—and no prototype is present—the compiler won’t check that the 

function is called with the right number of arguments, nor will it check that the 

arguments have the proper types. Instead, it will perform the default argument pro¬ 

motions. 
Second, the C standard says that the Classic style is “obsolescent,” meaning 

that its use is discouraged and that it may be dropped from C eventually. 

Some programming languages allow procedures and functions to be nested 

within each other. Does C allow function definitions to be nested? 

No. C does not permit the definition of one function to appear in the body of 

another. Among other things, this restriction simplifies the compiler. 

Why does the compiler permit function names that aren’t followed by paren¬ 

theses? [p. 161] 
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A: We’ll see in a later chapter that the compiler treats a function name not followed by 

parentheses as a pointer to the function. Pointers to functions have legitimate uses, 

so the compiler can’t automatically assume that a function name without parenthe¬ 

ses is an error. 

*Q: Something’s bothering me. In the function call f (a, b), how does the com¬ 

piler know whether the comma is punctuation or whether it’s an operator? 

A: It turns out that the arguments in a function call can’t be arbitrary expressions. 

Instead, they must be “assignment expressions,” which can’t have commas used 

as operators unless they’re enclosed in parentheses. In other words, in the call 

f (a, b) the comma is punctuation; in the call f ( (a, b) ) it’s an operator. 

Q: Do the names of parameters in a function prototype have to match the names 

given later in the function’s definition? [p. 164] 

A: No. Some programmers take advantage of this capability by giving long names to 

parameters in the prototype, then using shorter names in the actual definition. Or a 

French-speaking programmer might use English names in prototypes, then switch 

to more familiar French names in function definitions. 

Q: I still don’t understand why we bother with function prototypes. If we just put 

definitions of all the functions before main, we’re covered, right? 

A: Wrong. First, you’re assuming that only main calls the other functions, which is 

unrealistic. In practice, some of the functions will call each other. If we put all 

function definitions above main, we’ll have to watch their order carefully. Calling 

a function that hasn’t been defined yet can lead to big problems. 
But that’s not all. Suppose that two functions call each other (which isn’t as 

far-fetched as it may sound). No matter which function we define first, it will end 

up calling a function that hasn’t been defined yet. 
But there’s still more! Once programs reach a certain size, it won’t be feasible 

to put all the functions in one file anymore. When we reach that point, we’ll need 

prototypes to tell the compiler about functions in other files. 

Q: I’ve seen function declarations that omit all information about parameters: 

float average(); 

Is this practice legal? [p. 165] 

A: Yes. This declaration informs the compiler that average returns a float value 

but provides no information about the number and types of its parameters. (Leav¬ 

ing the parentheses empty doesn’t necessarily mean that average has no param¬ 

eters.) 

In Classic C, this form of function declaration is the only one allowed; the 

form that we’ve been using—the function prototype, in which parameter informa¬ 

tion is included—is a new feature of Standard C. The older kind of function decla¬ 

ration is now obsolescent, although still allowed. In this book, I’ll use function 

prototypes exclusively. 
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Q: Is it legal to put a function declaration inside the body of another function? 

A: Yes. Here’s an example: 

main() 

{ 
float average(float a, float b); 

} 

This declaration of average is valid only for the body of main; if other func¬ 

tions need to call average, they’ll each have to declare it. 

The advantage of this practice is that it’s clearer to the reader which functions 

call which other functions. (In this example, we see that main will be calling 

average.) On the other hand, it can be a nuisance if several functions need to call 

the same function. Even worse, trying to add and remove declarations during pro¬ 

gram modification can be a real pain. For these reasons, I’ll always put function 

declarations outside function bodies. 

Q: If several functions have the same return type, can their declarations be com¬ 

bined? For example, since both print_pun and print_count have void 

as their return type, is the following declaration legal? 

void print_pun(void), print_count(int n); 

A: Yes. In fact, C even allows us to combine function declarations with variable dec¬ 

larations: 

float x, y, average(float a, float b); 

Combining declarations in this way usually isn’t a good idea, though; it can make 

programs a bit confusing. 

Q: What happens if I specify a length for a one-dimensional array parameter? 

[p. 167] 

A: The compiler ignores it. Consider the following example: 

float inner_product(float v[3], float w[3]); 

Other than documenting that inner_product’s arguments are supposed to be 

arrays of length 3, specifying a length doesn’t buy you much. The compiler won’t 

check that the arguments actually have length 3, so there’s no added security. In 

fact, the practice is misleading in that it suggests that inner_product can only 

be passed arrays of length 3, when in fact we can pass arrays of arbitrary length. 

*Q: Why can the first dimension in an array parameter be left unspecified, but 

not the other dimensions? [p. 169] 

A: First, you need to know how arrays are passed in C. As Section 12.2 explains, 

when an array is passed to a function, the function is given a pointer to the first ele¬ 

ment in the array. 
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Next, you need to know how the subscripting operator works. Suppose that a 

is a one-dimensional array passed to a function. When we write 

a [ i ] = 0; 

the compiler computes the address of a [ i ] by multiplying i by the size of each 

array element and adding the result to the address that a represents (the pointer 

passed to the function). This calculation doesn’t depend on the length of a, which 

explains why we can omit it when defining the function. , 
What about multidimensional arrays? Recall that C stores arrays in row-major 

order, with the elements in row 0 stored first, then the elements in row 1, and so 

forth. Suppose that a is a two-dimensional array parameter and we write 

a [ i ] [ j ] = 0 ; 

The compiler generates instructions to do the following: (1) multiply i by the size 

of each row in a; (2) add this result to the address that a represents; (3) multiply j 

by the size of each array element; and (4) add this result to the address computed in 

step 2. To generate these instructions, the compiler must know the size of each row 

in the array, which is determined by the number of columns. The bottom line: the 

programmer must declare how many columns a has. 

Q: Why do some programmers put parentheses around the expression in a 

return statement? 

A: The examples in the first edition of Kernighan and Ritchie’s The C Programming 

Language always have parentheses in return statements, even though they 

aren’t required. Programmers (and authors of subsequent books) picked up the 

habit from K&R. I don’t use these parentheses, since they’re unnecessary and con¬ 

tribute nothing to readability. (Kernighan and Ritchie apparently agree: the 

return statements in the second edition of The C Programming Language lack 

parentheses.) 

Q: How can I test main’s return value to see if a program has terminated nor¬ 

mally? [p. 171] 

A: That depends on your operating system. Many operating systems allow this value 

to be tested within a “batch” or “shell” file that contains commands to run several 

programs. For example, the line 

if errorlevel 1 ... 

in a DOS batch file tests whether the last program terminated with a status code 

greater than or equal to 1. 

In UNIX, each shell has its own method for testing the status code. In the 

Bourne shell, the variable $? contains the status of the last program run. The C 

shell has a similar variable, but its name is $ status. 

Q: Why does my compiler produce a “Function should return a value” warning 

when it compiles main? 



Exercises 181 

Section 9.1 

A: The compiler has noticed that main, despite having int as its return type, doesn’t 
have a return statement. Putting the statement 

return 0; 

at the end of main will keep the compiler happy. Incidentally, this is good practice 

even if your compiler doesn’t object to the lack of a return statement. 

Q: With regard to the previous question: Why not just define main’s return type 
to be void? 

A: Although this practice is fairly common, it’s illegal according to the C standard. 

Even if it weren’t illegal, it wouldn’t be a good idea, since it presumes that no one 

will ever test the program’s status upon termination. 

Q: Is it legal for a function f 1 to call a function f 2, which then calls f 1? 

A: Yes. This is just an indirect form of recursion in which one call of f 1 leads to 

another. (But make sure that either f 1 or f 2 eventually terminates!) 

Exercises 

1. The following function, which computes the area of a triangle, contains two errors. Locate 
the errors and show how to fix them. (Hint: There are no errors in the formula.) 

float triangle_area(float base, height) 
float product; 
{ 

product = base * height; 
return (product / 2); 

} 

2. Write a function check (x, y, n) that returns 1 if both x and y fall between 0 and n - 1, 
inclusive. The function should return 0 otherwise. Assume that x, y, and n are all of type 
int. 

3. Write a function gcd (m, n) that calculates the greatest common divisor of the integers m 
and n. (Exercise 2 in Chapter 6 describes Euclid’s algorithm for computing the GCD.) 

4. Write a function day_of_year (month, day, year) that returns the day of the year 
(an integer between 1 and 366) specified by the three arguments. 

5. Write a function num_digits (n) that returns the number of digits in a positive integer n. 
Hint: To determine the number of digits in a number n, divide it by 10 repeatedly. When n 
reaches 0, the number of divisions indicates how many digits n originally had. 

6. Write a function digit (n, k) that returns the k'h digit (from the right) in the positive 
integer n. For example, digit(829, 1) returns 9, digit(829, 2) returns 2, and 
digit (829, 3 ) returns 8. If k is greater than the number of digits in n, have the function 
return -1. 
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Section 9.2 

Section 9.3 

7. Suppose that the function f has the following definition: 

int f(int a, int b) { ... } 

Which of the following statements are legal? (Assume that i has type int and x has type 
float.) 

(a) i = f (83, 12) ; 

(b) x = f (83, 12) ; 

(c) i - f (3.15, 9.28) ; 

(d) x = f (3.15, 9.28) ; 

(e) f (83, 12) ; 

8. Which of the following would be valid prototypes for a function that returns nothing and has 
one float parameter? 

(a) void f (float x) ; 

(b) void f (float); 

(c) void f (x) ; 

(d) f (float x) ; 

*9. What will be the output of the following program? 

#include <stdio.h> 

void swap(int a, int b); 

main() 

{ 
int x = 1, y = 2; 

swap(x, y); 
printf("x = %d, y = %d\n", x, y) ; 

return 0; 

} 

void swap(int a, int b) 

{ 
int temp; 

temp = a; 
a = b; 
b = temp; 

} 

10. Write functions that return the following values. (Assume that a and n are parameters, 
where a is an array of int values and n is the length of the array.) 

(a) The largest element in a. 

(b) The average of all elements in a. 

(c) The number of positive elements in a. 

Section 9.4 11. The following function is supposed to return TRUE if any element of the array a has the 
value 0 and FALSE if all elements are nonzero. Sadly, it contains an error. Find the error and 
show how to fix it: 
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Section 9.6 

Bool has_zero(int a[], int n) 

{ 
int i ; 

for (i = 0; i < n; i++) 

if (a[i] == 0) 

return TRUE; 

else 

return FALSE; 

} 

12. The following (rather confusing) function finds the median of three numbers. Rewrite the 
function so that it has just one return statement. 

float median(float x, float y, float z) 

{ 
if (x <= y) 

if (y <= z) return y; 

else if (x <= z) return z; 

else return x; 

if (z <- y) return y; 

if (x <= z) return x; 

return z; 

} 

13. Condense the fact function in same way we condensed power. 

14. Rewrite the fact function so that it’s no longer recursive. 

15. Write a recursive version of the gcd function (see Exercise 3). Here’s the strategy to use for 
computing gcd(m, n): If n is 0, return m. Otherwise, call gcd recursively, passing n as 
the first argument and m % n as the second. 

* 16. Consider the following “mystery” function: 

void pb(int n) 

{ 
if (n != 0) { 

pb(n / 2); 

putchar('O' + n % 2); 

} 
} 

Trace the execution of the function by hand. Then write a program that calls the function, 
passing it a number entered by the user. What does the function do? 

17. Write a program that asks the user to enter a series of integers (which it stores in an array), 
then sorts the integers by calling the function selection_sort. When given an array 
with n elements, selection_sort must do the following: 

1. Search the array to find the largest element, then move it to the last position in the array. 

2. Call itself recursively to sort the first n - 1 elements of the array. 
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Program Organization 

As Will Rogers would have said, “There 
is no such thing as a free variable. ” 

Having covered functions in Chapter 9, we’re ready to confront several issues that 

arise when a program contains more than one function. The first two sections dis¬ 

cuss the differences between local variables and external variables. Section 10.3 

then considers blocks (compound statements containing declarations). Section 

10.4 tackles the scope rules that apply to local names, external names, and names 

declared in blocks. Finally, Section 10.5 suggests a method of organizing proto¬ 

types, function definitions, variable declarations, and other parts of a C program. 

10.1 Local Variables 

A variable declared in the body of a function is said to be local to the function. In 

the following function, log is a local variable: 

int log2(int n) 

{ 
int log =0; /* local variable */ 

while (n > 1) { 

n /= 2; 

log++; 

} 
return log; 

> 

By default, local variables have the following properties: 

■ Automatic storage duration. The storage duration (or extent) of a variable is 

the portion of program execution during which storage for the variable exists. 

185 
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Storage for a local variable is “automatically” allocated when the enclosing 

function is called and deallocated when the function returns, so the variable is 

said to have automatic storage duration. A local variable doesn’t retain its 

value when its enclosing function returns. When the function is called again, 

there’s no guarantee that the variable will still have its old value. 

■ Block scope. The scope of a variable is the portion of the program text in 

which the variable can be referenced. A local variable has block scope: it is 

visible from its point of declaration to the end of the enclosing function body. 

Since the scope of a local variable doesn’t extend beyond the function to 

which it belongs, other functions can use the same name for other purposes. 

Section 18.2 covers these and other related concepts in more detail. 
Putting the word static in the declaration of a local variable causes it to 

have static storage duration instead of automatic storage duration. A variable with 

static storage duration has a permanent storage location, so it retains its value 

throughout the execution of the program. Consider the following function: 

void f(void) 

{ 
static int i; 

} 

Q&A 

Since the local variable i has been declared static, it occupies the same mem¬ 

ory location throughout the execution of the program. When f returns, i won’t 

lose its value. 
A static local variable still has block scope, so it’s not visible to other func¬ 

tions. In a nutshell, a static variable is a place to hide data from other functions but 

retain it for future calls of the same function. 

Parameters 

Parameters have the same properties—automatic storage duration and block 

scope—as local variables. In fact, the only real difference between parameters and 

local variables is that parameters are initialized automatically each time the func¬ 

tion is called (by being assigned the values of the arguments in the call). 

10.2 External Variables 

Passing arguments is one way to transmit information to a function. Functions can 

also communicate through external variables—variables that are declared outside 

the body of any function. 

The properties of external variables (or global variables, as they’re sometimes 

called) are different from those of local variables: 
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■ Static storage duration. External variables have static storage duration, just 

like local variables that have been declared static. A value stored in an 
external variable will stay there indefinitely. 

■ File scope. An external variable has file scope: it is visible from its point of 

declaration to the end of the enclosing file. As a result, an external variable 

can be accessed by all functions that follow its declaration. 

Example: Using External Variables to Implement a Stack 

To illustrate how external variables might be used, let’s look at a data structure 

known as a stack. (Stacks are an abstraction, not a C feature; they can be imple¬ 

mented in most programming languages.) A stack, like an array, can store multiple 

data items of the same type. However, the operations on the items in a stack are 

quite restricted: we can push an item onto the stack (add it to one end—the “stack 

top”) or pop it from the stack (remove it from the same end). For obvious reasons, 

a stack is often said to be a LIFO (last-in, first-out) data structure. Examining or 

modifying an item that’s not at the top of the stack is forbidden. 

One way to implement a stack in C is to store its elements in an array, which 

we’ll call contents. A separate integer variable named top marks the position 

of the stack top. When the stack is empty, top has the value 0. To push an item on 

the stack, we simply store the item in contents at the position marked by top, 

then increment top. Popping an item requires decrementing top, then using it as 

an index into contents to fetch the item that’s being popped. 

Based on this outline, here’s a code fragment (not a complete program) that 

sets aside variables for a stack and provides a set of functions that represent opera¬ 

tions on the stack. All five functions need access to the top variable, and two 

functions need access to contents, so we’ll make contents and top exter¬ 

nal. 

#define STACK_SIZE 100 

♦define TRUE 1 

♦define FALSE 0 

typedef int Bool; 

int contents[STACK_SIZE]; /* external */ 

int top =0; /* external */ 

void make_empty(void) 

{ 
top = 0; 

} 

Bool is_empty(void) 

{ 
return top == 0; 

} 
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Bool is_full(void) 

{ 
return top == STACK_SIZE; 

} 

void push(int i) 

{ 
if (is_full()) 

stack_overflow(); 

else 

contents[top++] = i; 

} 

int pop(void) 

{ 
if (is_empty()) 

stack_underflow(); 

else 

return contents[--top]; 

} 

Pros and Cons of External Variables 

External variables are convenient when many functions must share a variable or 

when a few functions share a large number of variables. In most cases, however, 

it’s better for functions to communicate through parameters rather than by sharing 

variables. Here’s why: 

■ If we change an external variable during program modification (by altering its 

type, say), we’ll need to check every function in the same file to see how the 

change affects it. 

■ If an external variable is assigned an incorrect value, it may be difficult to 

identify the guilty function. It’s like trying to solve a murder committed at a 

crowded party—there’s no easy way to narrow the list of suspects. 

■ Functions that rely on external variables are hard to reuse in other programs. 

A function that depends on external variables isn’t “self-contained”; to use the 

function in another program, we’ll have to drag along any external variables 

that it needs. 

Many C programmers rely far too much on external variables. One common 

abuse: using the same external variable for different purposes in different func¬ 

tions. Suppose that several functions need a variable (i, say) to control a for 

statement. Instead of declaring i in each function that uses it, some programmers 

declare it at the top of the program, thereby making the variable visible to all func¬ 

tions. This practice is poor not only for the reasons listed earlier, but also because 

it’s misleading; someone reading the program later may think that the uses of the 

variable are related, when in fact they’re not. 

When you use external variables, make sure they have meaningful names. 

(Local variables don’t always need meaningful names: it’s often hard to think of a 
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good name for the control variable in a for loop.) If you find yourself using 

names like i and temp for external variables, that’s a clue that perhaps they 
should really be local variables. 

Making variables external when they should be local can lead to some rather frus¬ 
trating bugs. Consider the following example, which is supposed to display a 10 x 
10 arrangement of asterisks: 

int i; 

void print_row(void) 

{ 
for (i = 1; i <= 10; i++) 

printf("*"); 

} 

void print_matrix(void) 

{ 
for (i = 1; i <= 10; i++) { 

print_row(); 

printf("\n"); 

} 
} 

Instead of printing ten rows, print_matrix prints only one row. When 
print_row returns after being called the first time, i will have the value 11. The 
for statement in print_matrix then increments i and compares it with 10, 
causing the loop to terminate and print_matrix to return. 

PROGRAM Guessing a Number 

To get more experience with external variables, we’ll write a simple game-playing 

program. The program generates a random number between 1 and 100, which the 

user attempts to guess in as few tries as possible. Here’s what the user will see 

when the program is run: 

Guess the secret number between 1 and 100. 

A new number has been chosen. 

Enter guess: ^5 

Too low; try again. 

Enter guess: ^5 

Too high; try again. 

Enter guess: ^0 

Too high; try again. 

Enter guess: 5_8 

You won in 4 guesses! 

Play again? (Y/N) y 
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A new number has been chosen. 

Enter guess : 7_8 

Too high; try again. 

Enter guess : 3_4 

You won in 2 guesses! 

Play again? (Y/N) n 

This program will need to carry out several different tasks: initializing the ran¬ 

dom number generator, choosing a secret number, and interacting with the user 

until the correct number is picked. If we write a separate function to handle each 

task, we might end up with the following program. 

guess.C /* Asks user to guess a hidden number */ 

#include <stdio.h> 

♦include <stdlib.h> 

♦include <time.h> 

♦define MAX_NUMBER 100 

int secret_number; 

void initialize_number_generator(void); 

void choose_new_secret_number(void); 

void read_guesses(void); 

main() 

{ 
char command; 

printf("Guess the secret number between 1 and %d.\n\n", 

MAX_NUMBER); 

initialize_number_generator(); 

do { 

choose_new_secret_number(); 

printf("A new number has been chosen.\n"); 

read_guesses(); 

printf("Play again? (Y/N) "); 

scanf(" %c", ^command); 

printf("\n"); 

} while (command == 'y’ || command == 'Y'); 

return 0; 

} 

/********************************************************** 
* initialize_number_generator: Initializes the random * 

* number generator.using * 

* the time of day. * 
**********************************************************/ 

void initialize_number_generator(void) 

{ 
srand((unsigned) time(NULL)); 

} 
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time function >26.3 

srand function >26.2 

rand function >26.2 

guess2.c 

/********************************************************** 
* choose_new_secret_number: Randomly selects a number * 

* between 1 and MAX_NUMBER and * 

* stores it in secret_number. * 
********************************************************** j 

void choose_new_secret_number(void) 

{ 
secret_number = rand() % MAX_NUMBER + 1; 

} 

/********************************************************** 
* read_guesses: Repeatedly reads user guesses and tells * 

* the user whether each guess is too low, * 

* too high, or correct. When the guess is * 

* correct, prints the total number of * 

* guesses and returns. * 

void read_guesses(void) 

{ 
int guess, num_guesses = 0; 

for (; ; ) { 

num_guesses + + ; 

printf("Enter guess: "); 

scanf("%d", kguess); 

if (guess == secret_number) { 

printf("You won in %d guesses!\n\n", num_guesses); 

return; 

} else if (guess < secret_number) 

printf("Too low; try again.\n"); 

else 

printf("Too high; try again.\n"); 

} 
} 

For random number generation, the guess . c program relies on the time, 

srand, and rand functions, which we first used in deal. c (Section 8.2). This 

time, we’re scaling the return value of rand so that it falls between 1 and 

MAX_NUMBER. 

Although guess .c works fine, it relies on an external variable. We made 

secret_number external so that both choose_new_secret_number and 

read_guesses could access it. If we alter choose_new_secret_number 

and read_guesses just a little, we should be able to move secret_number 

into the main function. We’ll modify choose_new_secret_number so that 

it returns the new number, and we’ll rewrite read_guesses so that 

secret_number can be passed to it as an argument. 

Here’s our new program, with changes in bold: 

/* Asks user to guess a hidden number */ 

ttinclude <stdio.h> 

#include <stdlib.h> 
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#include <time.h> 

#define MAX_NUMBER 100 

void initialize_number_generator(void); 

int new_secret_number(void); 

void read_guesses(int secret_number); 

main() 

{ 
char command; 

int secret_number; 

printf("Guess the secret number between 1 and %d.\n\n", 

MAX_NUMBER); 

initialize_number_generator() ; 

do { 
secret_number = new_secret_number(); 

printf("A new number has been chosen.\n"); 

read_guesses(secret_number); 

printf("Play again? (Y/N) "); 

scanf(" %c"( ^command); 

printf("\n"); 

} while (command == 'y' || command == 'Y'); 

return 0; 

} 

/********************************************************** 
* initialize_number_generator: Initializes the random * 

* number generator using * 

* the time of day. * 
********************************************************** ^ 

void initialize_number_generator(void) 

{ 
srand((unsigned) time(NULL)); 

} 

/********************************************************** 
* new_secret_number: Returns a randomly chosen number * 

* between 1 and MAX_NUMBER. * 
********************************************************** i 

int new_secret_number(void) 

{ 
return rand() % MAX_NUMBER + 1; 

} 

/****★*★*★★★*****★★*★************★**★*★★★****★★ -k'-k ********** 

* read_guesses: Repeatedly reads user guesses and tells * 

* the user whether each guess is too low, * 

* too high, or correct. When the guess is * 

* correct, prints the total number of * 

* guesses and returns. * 
********************************************************** j 
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void read_guesses(int secret_number) 

{ 
int guess, num_guesses = 0; 

for (;;) { 

num_guesses++; 

printf("Enter guess: "); 

scant("%d", &guess); 

if (guess == secret_number) { 

printf("You won in %d guesses!\n\n", num_guesses); 
return; 

} else if (guess < secret_number) 

printf("Too low; try again.\n") ; 
else 

printf("Too high; try again.\n"); 

} 
} 

10.3 Blocks 

In Section 5.2, we encountered compound statements of the form 

{ statements } 

It turns out that C allows compound statements to contain declarations as well: 

block { declarations statements } 

I’ll use the term block to describe such a compound statement. Here’s an example 

of a block: 

if (i > j) { 
int temp; 

temp = i; /* swaps values of i and j */ 

i = j ; 
j = temp; 

} 

By default, the storage duration of a variable declared in a block is automatic: stor¬ 

age for the variable is allocated when the block is entered and deallocated when 

the block is exited. The variable has block scope; it can’t be referenced outside the 

block. 
The body of a function is a block. Blocks are also useful inside a function 

body when we need variables for temporary use. In our last example, we needed a 

variable temporarily so that we could exchange the values of i and j. Putting tem¬ 

porary variables in blocks has two advantages: (1) It avoids cluttering the declara¬ 

tions at the beginning of the function body with variables that are used only briefly. 
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(2) It reduces name conflicts. In our example, the name temp can be used else¬ 

where in the same function for different purposes—the variable temp declared in 

the block is strictly local to the block. 

10.4 Scope 

In a C program, the same identifier may have several different meanings. C’s scope 

rules enable the programmer (and the compiler) to determine which meaning is 

relevant at a given point in the program. 
Here’s the most important scope rule: When a declaration inside a block 

names an identifier that’s already visible (because it has file scope or because it’s 

declared in an enclosing block), the new declaration temporarily “hides” the old 

one, and the identifier takes on a new meaning. At the end of the block, the identi¬ 

fier regains its old meaning. 
Consider the following (somewhat extreme) example, in which the identifier 

i has four different meanings: 

/* Declaration 1 */ 

/* Declaration 2 */ 

/* Declaration 3 */ 

/* Declaration 4 */ 

■ In Declaration 1, i is a variable with static storage duration and file scope. 

■ In Declaration 2, i is a parameter with block scope. 

■ In Declaration 3, i is an automatic variable with block scope. 

■ In Declaration 4, i is also automatic and has block scope. 
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i is used five times. C’s scope rules allow us to determine the meaning of i in 
each case: 

■ The i = 1 assignment refers to the parameter in Declaration 2, not the variable 

in Declaration 1, since Declaration 2 hides Declaration 1. 

■ The i > 0 test refers to the variable in Declaration 3, since Declaration 3 hides 

Declaration 1 and Declaration 2 is out of scope. 

■ The i = 3 assignment refers to the variable in Declaration 4, which hides Dec¬ 
laration 3. 

■ The i = 4 assignment refers to the variable in Declaration 3. It can’t refer to 
Declaration 4, which is out of scope. 

■ The i = 5 assignment refers to the variable in Declaration 1. 

10.5 Organizing a C Program 

Now that we’ve seen the major elements that make up a C program, it’s time to 

develop a strategy for their arrangement. For now, we’ll assume that a program 

always fits into a single file. Chapter 15 shows how to organize a program that is 

split over several files. 

So far, we’ve seen that a program may contain 

Preprocessor directives such as #include and #def ine 

Type definitions 

Declarations of functions and external variables 

Function definitions 

C imposes only a few rules on the order of these items: A preprocessor directive 

doesn’t take effect until the line at which it appears. A type name can’t be used 

until it’s been defined. A variable can’t be used until it’s declared. Although C isn’t 

as picky about functions, I strongly recommend that every function be defined or 

declared prior to its first call. 

There are several ways to organize a program so that these rules are obeyed. 

Here’s one possible ordering: 

#include directives 

#define directives 

Type definitions 

Declarations of external variables 

Prototypes for functions other than main 

Definition of main 

Definitions of other functions 

It makes sense to put #include directives first, since they bring in information 

that will likely be needed in several places within the program. #define direc¬ 

tives create macros, which are generally used throughout the program. Putting type 
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definitions above the declarations of external variables is logical, since the declara¬ 

tions of these variables may refer to the type names just defined. Declaring exter¬ 

nal variables next makes them available to all the functions that follow. Declaring 

all functions except for main avoids the problems that arise when a function is 

called before the compiler has seen its prototype. This practice also makes it possi¬ 

ble to arrange the function definitions in any order whatsoever: alphabetically by 

function name or with related functions grouped together, for example. Defining 

main before the other functions makes it easier for the reader to locate the pro¬ 

gram’s starting point. 
A final suggestion: Precede each function definition by a boxed comment that 

gives the name of the function, describes its purpose, discusses the meaning of 

each parameter, describes the return value, and lists any side effects. 

PROGRAM Classifying a Poker Hand 

To show how a C program might be organized, let’s attempt a program that’s a lit¬ 

tle more complex than our previous examples. The program will read and classify 

a poker hand. Each card in the hand will have both a suit (clubs, diamonds, hearts, 

or spades) and a rank (two, three, four, five, six, seven, eight, nine, ten, jack, 

queen, king, or ace). We won’t allow the use of jokers, and we’ll assume that aces 

are high. The program will read a hand of five cards, then classify the hand into 

one of the following categories (listed in order from best to worst): 

straight flush (both a straight and a flush) 

four-of-a-kind (four cards of the same rank) 

full house (a three-of-a-kind and a pair) 

flush (five cards of the same suit) 

straight (five cards with consecutive ranks) 

three-of-a-kind (three cards of the same rank) 

two pairs 

pair (two cards of the same rank) 

high card (any other hand) 

If a hand falls into two or more categories, the program will choose the best one. 

For input purposes, we’ll abbreviate ranks and suits as follows (letters may be 

either upper- or lower-case): 

Ranks: 23456789tjqka 

Suits: c d h s 

If the user enters an illegal card or tries to enter the same card twice, the program 

will ignore the card, issue an error message, and then request another card. Enter¬ 

ing the number 0 instead of a card will cause the program to terminate. 

A session with the program will have the following appearance: 

Enter a card: 2s 
Enter a card: 5s 
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Enter a card: 4s 
Enter a card: 3s 
Enter a card: 6s 
Straight flush 

Enter a card: 8c 
Enter a card: as 
Enter a card: 8c 
Duplicate card; 
Enter a card: 7c 
Enter a card: ad 
Enter a card: 3h 
Pair 

Enter a card: 6s 
Enter a card: d2 
Bad card; ignore 
Enter a card: 2d 
Enter a card: 9c 
Enter a card: 4h 
Enter a card: ts 
High card 

Enter a card: 0 

From this description of the program, we see that it has three tasks: 

Read a hand of five cards. 

Analyze the hand for pairs, straights, and so forth. 

Print the classification of the hand. 

We’ll divide the program into three functions—read_cards, analyze_hand, 

and print_resul t—that perform these three tasks, main does nothing but call 

these functions inside an endless loop. The functions will need to share a fairly 

large amount of information, so we’ll have them communicate through external 

variables. read_cards will store information about the hand into several exter¬ 

nal variables. analyze_hand will then examine these variables, storing its find¬ 

ings into other external variables for the benefit of print_result. 

Based on this preliminary design, we can begin to sketch an outline of the pro¬ 

gram: 

/* #include directives */ 

/* #define directives */ 

/* declarations of external variables */ 

void read_cards(void); 
void analyze_hand(void); 
void print_result(void); 



198 Chapter 10 Program Organization 

/********************************************************** 
* main: Calls read_cards, analyze_hand, and print_result * 

* repeatedly. 
**********************************************************/ 

main() 

{ 
for (;;) { 

read_cards(); 

analyze_hand(); 

print_result(); 

/* infinite loop */ 

} 
} 

/********************************************************** 
* read_cards: Reads the cards into external variables; * 

* checks for bad cards and duplicate cards. * 
**********************************************************/ 

void read_cards(void) 

{ 

} 

/********************************************************** 
* analyze_hand: Determines whether the hand contains a * 

* straight, a flush, four-of-a-kind, * 

* and/or a three-of-a-kind; determines the * 

* number of pairs; stores the results into * 

* external variables. * 
**********************************************************/ 

void analyze_hand(void) 

{ 

} 

/********************************************************** 
* print_result: Notifies the user of the result, using * 

* the external variables set by * 

* analyze_hand. * 
********************************************************** I 

void print_result(void) 

{ 

} 

The most pressing question that remains is how to represent the hand of cards. 

Let’s see what operations read_cards and analyze_hand will perform on 

the hand. During the analysis of the hand, analyze_hand will need to know 

how many cards are in each rank and each suit. This suggests that we use two 

arrays, num_in_rank and num_in_suit. The value of num_in_rank [ r ] 

will be the number of cards with rank r, and the value of num_in_sui t [ s ] will 

be the number of cards with suit s. (We’ll encode ranks as numbers between 0 and 

12, suits as numbers between 0 and 3.) We’ll also need a third array, 
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card_exists, so that read_cards can detect duplicate cards. Each time 

read_cards reads a card with rank r and suit s, it checks whether the value of 

card_exists [r] [s] is TRUE. If so, the card was previously entered; if not, 

read_cards assigns TRUE to card_exists [r] [s]. 

Both read_cards and analyze_hand need access to the 

num_in_rank and num_in_suit arrays, so they must be external variables. 

The card_exists array, however, is used only by read_cards, so we’ll 

make it local to that function. As a rule, variables should be made external only if 
necessary. 

Having decided on the major data structures, we can now finish the program: 

poker.C /* Classifies a poker hand */ 

#include <stdio.h> 

#include <stdlib.h> 

#define NUM_RANKS 13 

#define NUM_SUITS 4 

#define NUM_CARDS 5 

#define TRUE 1 

ttdefine FALSE 0 

typedef int Bool; 

int num_in_rank[NUM_RANKS]; 

int num_in_suit[NUM_SUITS]; 

Bool straight, flush, four, three; 

int pairs; /* can be 0, 1, or 2 */ 

void read_cards(void); 

void analyze_hand(void); 

void print_result(void); 

/************★******************★*★************************ 
* main: Calls read_cards, analyze_hand, and print_result * 

* repeatedly. * 
********************************************************** j 

main() 

{ 
for (;;) { /* infinite loop */ 

read_cards(); 

analyze_hand(); 

print_result(); 

} 
} 

/********************************************************** 

* read_cards: Reads the cards into the external * 

* variables num_in_rank and num_in_suit; * 

* checks for bad cards and duplicate cards. * 
************************************'*****'**'***************/ 
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void read_cards(void) 

{ 
Bool card_exists[NUM_RANKS][NUM_SUITS]; 

char ch, rank_ch, suit_ch; 

int rank, suit; 

Bool bad_card; 

int cards_read = 0; 

for (rank = 0; rank < NUM_RANKS; rank++) { 

num_in_rank[rank] = 0; 

for (suit = 0; suit < NUM_SUITS; suit++) 

card_exists[rank][suit] = FALSE; 

} 

for (suit = 0; suit < NUM_SUITS; suit++) 

num_in_suit[suit] = 0; 

while (cards_read < NUM_CARDS) { 

bad_card = FALSE; 

printf("Enter a card: "); 

rank_ch = getchar(); 

switch (rank_ch) { 

case ' 0 ' exit (EXIT .SUCCESS 

case ' 2 1 rank = 0; break; 

case ' 3 ' rank 1; break; 

case ' 4 ' rank = 2; break; 

case ' 5 ' rank = 3; break; 

case 1 6 ' rank = 4; break; 

case '7 ' rank 5; break; 

case ' 8 ' rank = 6; break; 

case ' 9 1 rank = 7; break; 

case ' t' case ' T' : rank = 8; break; 

case ' j ' case 1 J' : rank = 9; break; 

case 'q' case ' Q' : rank = 10 ; break; 

case ' k' case 'K' : rank = 11 ; break; 

case 'a' case 'A' : rank 12 ; break; 

default: 

} 

bad_ card = TRUE; 

suit_ch = getchar 0 ; 

switch (suit_ch) { 

case ' c' case 1 C' : suit = 0; break; 

case ' d' case ' D ' : suit = 1; break; 

case 'h' case 1 H' : suit = 2; break; 

case' ' s 1 case 'S': suit = 3; break; 

default: 

} 

bad_ card = TRUE; 

while ( (ch = getchar( ) ! = 
1 \n' ) 

if (ch != ' ') bad_card = TRUE; 
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if (bad_card) 

printf("Bad card; ignored.\n"); 

else if (card_exists[rank][suit]) 

printf("Duplicate card; ignored.\n"); 

else { 

num_in_rank[rank]+ +; 

num_in_suit[suit]++; 

card_exists[rank][suit] = TRUE; 

cards_read++; 

} 
} 

} 

/********************************************************** 
* analyze_hand: Determines whether the hand contains a * 

* straight, a flush, four-of-a-kind, * 

* and/or a three-of-a-kind; determines the * 

* number of pairs; stores the results into * 

* the external variables straight, flush, * 

* four, three, and pairs. * 
********************************************************** j 

void analyze_hand(void) 

{ 
int num_consec = 0; 

int rank, suit; 

straight = FALSE; 

flush = FALSE; 

four = FALSE; 

three = FALSE; 

pairs = 0; 

/* check for flush */ 

for (suit = 0; suit < NUMJ3UITS; suit++) 

if (num_in_suit[suit] == NUM_CARDS) 

flush = TRUE; 

/* check for straight */ 

rank = 0; 

while (num_in_rank[rank] == 0) rank++; 

for (; rank < NUM_RANKS && num_in_rank[rank]; rank++) 

num_consec++; 

if (num_consec == NUM_CARDS) { 

straight = TRUE; 

return; 

} 

/* check for 4-of-a-kind, 3-of-a-kind, and pairs */ 

for (rank = 0; rank < NUM_RANKS; rank++) { 

if (num_in_rank[rank] == 4) four = TRUE; 

if (num_in_rank[rank] == 3) three = TRUE; 

if (num_in_rank[rank] == 2) pairs++; 

} 
} 
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/********************************************************** 
* print_result: Notifies the user of the result, using * 

* the external variables straight, flush, * 

* four, three, and pairs. * 
**********************************************************/ 

void print_result(void) 

{ 
if (straight && flush) 

else if (four) 

else if (three && 

pairs == 1) 

else if (flush) 

else if (straight) 

else if (three) 

else if (pairs == 2) 

else if (pairs == 1) 

else 

printf("Straight flush\n\n"); 

printf("Four of a kind\n\n"); 

printf("Full house\n\n"); 

printf("Flush\n\n"); 

printf("Straight\n\n"); 

printf("Three of a kind\n\n"); 

printf("Two pairs\n\n"); 

printf("Pair\n\n"); 

printf("High card\n\n"); 

Notice the use of the exit function in read_cards. exit is convenient 

for this program because of its ability to terminate program execution from any 

function. 

Q & A 

*Q: If local variables have static storage duration, what impact does this have on 

recursive functions? [p. 186] 

A: When a function is recursive, fresh copies are made of its automatic variables each 

time its called. This doesn’t occur for static variables, though. Instead, all calls of 

the function share the same static variables. 

Q: In the following example, j is initialized to the same value as i, but there are 

two variables named i: 

int i = 1; 

void f(void) 

{ 
int j = i; 

int i = 2; 

} 

Is this code legal? If so, what is j’s initial value, 1 or 2? 

A: The scope of a local variable doesn’t begin until its declaration. Therefore, the dec¬ 

laration of j refers to the external variable named i. The initial value of j will be 
1. 
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Section 10.2 

Section 10.4 

Section 10.5 

Exercises 

1. Modify the stack example so that it stores characters instead of integers. Next, add a main 
function that asks the user to enter a series of parentheses and/or braces, then indicates 
whether or not they’re properly nested: 

Enter parentheses and/or braces: ((){}{()}) 
Parentheses/braces are nested properly 

Hint: As the program reads characters, have it push each left parenthesis or left brace. When 
it reads a right parenthesis or brace, have it pop the stack and check that the item popped is a 
matching parenthesis or brace. (If not, the parentheses/braces aren’t nested properly.) When 
the program reads the new-line character, have it check whether the stack is empty; if so, the 
parentheses/braces are matched. If the stack isn’t empty (or if stack_underf low is ever 
called), the parentheses/braces aren’t matched. If stack_overflow is called, have the 
program print the message Stack overflow and terminate immediately. 

2. The following program outline shows only function definitions and variable declarations, 

int a ; 

void f(int b) 

{ 
int c ; 

} 

void g(void) 

{ 
int d ; 

{ 
int e ; 

> 
} 

main() 

{ 
int f ; 

} 

For each of the following scopes, list all variable and parameter names visible in that scope: 

(a) The f function. 

(b) The g function. 

(c) The block in which e is declared. 

(d) The main function. 

3. Modify the poker. c program by moving all the external variables into main and modify¬ 
ing the functions so that they communicate by passing arguments. 

4. Remove the num_in_rank, num_in_suit, and card_exists arrays from the 
poker . c program. Have the program store the cards in a 5 x 2 array instead. 

5. Modify the poker . c program by having it recognize an additional category, “royal flush” 
(ace, king, queen, jack, ten of the same suit). A royal flush ranks higher than all other hands. 

6. Modify the poker . c program by allowing “ace-low” straights (ace, two, three, four, five). 





11 Pointers 

The 11th commandment was “Thou Shalt Compute” 
or ‘Thou Shalt Not Compute”—I forget which. 

Pointers are one of C’s most important—and most often misunderstood—features. 

Because of their importance, we’ll devote three chapters to pointers. In this chap¬ 

ter, we’ll concentrate on the basics; Chapters 12 and 17 cover more advanced uses 

of pointers. 

We’ll start with a discussion of machine addresses and their relationship to 

pointer variables (Section 11.1). Section 11.2 then introduces the address and indi¬ 

rection operators. Section 11.3 covers pointer assignment. Section 11.4 explains 

how to pass pointers to functions, while Section 11.5 discusses returning pointers 

from functions. 

11.1 Pointer Variables 

The first step in understanding pointers is visualizing what they represent at the 

machine level. In most modern computers, main memory is divided into bytes, 

with each byte capable of storing eight bits of information: 

-1-i-1-1-1-1-1- 

01010011 

A machine with 16 megabytes of main memory has 16,777,216 of these bytes. 

Each byte has a unique address to distinguish it from the other bytes in memory. If 

there are n bytes in memory, we can think of addresses as numbers that range from 

0 to n - 1 (see the figure at the top of the next page). 

An executable program consists of both code (machine instructions corre¬ 

sponding to statements in the original C program) and data (variables in the origi- 
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Q&A 

Address Contents 

0 

1 

2 

3 

4 

n-1 

nal program). Each variable in the program occupies one or more bytes of 

memory; the address of the first byte is said to be the address of the variable. In the 

following figure, the variable i occupies the bytes at addresses 2000 and 2001, so 

i’s address is 2000: 

01010011 

01110101 

01110011 

01100001 

01101110 

01000011 

Here’s where pointers come in. Although addresses are represented by num¬ 

bers, their range of values may differ from that of integers, so we can’t necessarily 

store them in ordinary integer variables. We can, however, store them in special 

pointer variables. When we store the address of a variable i in the pointer variable 

p, we say that p “points to” i. In other words, a pointer is nothing more than an 

address, and a pointer variable is just a variable that can store an address. 

Instead of showing addresses as numbers in our examples, I’ll use a simpler 

notation. To indicate that a pointer variable p stores the address of a variable i, I’ll 

show the contents of p as an arrow directed toward i: 

P 

Declaring Pointer Variables 

A pointer variable is declared in much the same way as an ordinary variable. The 

only difference is that the name of a pointer variable must be preceded by an aster¬ 
isk: 
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abstract objects >19.1 

pointers to pointers >17.6 

11.2 

lvalues >4.2 

int *p; 

This declaration states that p is a pointer variable capable of pointing to objects of 

type int. We’re using the term object instead of variable since—as we’ll see in 

Chapter 17—p might point to an area of memory that’s not used as a variable. (Be 

aware that “object” will have a different meaning when we discuss program design 

later.) 

Pointer variables can appear in declarations along with other variables: 

int i, j, a[10] , b[20], *p, *q; 

In this example, i and j are ordinary integer variables, a and b are arrays of inte¬ 

gers, and p and q are pointers to integer objects. 

C requires that every pointer variable point only to objects of a particular type 

(the referenced type): 

int *p; /* points only to integers */ 

float *q; /* points only to floats */ 

char *r; /* points only to characters */ 

There are no restrictions on what the referenced type may be. (A pointer variable 

can even point to another pointer.) 

The Address and Indirection Operators 

C provides a pair of operators designed specifically for use with pointers. To find 

the address of a variable, we use the & (address) operator. If x is a variable, then 

&x is the address of x in memory. To gain access to the object that a pointer points 

to, we use the * (indirection) operator. If p is a pointer, then *p represents the 

object to which p currently points. 

The Address Operator 

Declaring a pointer variable sets aside space for a pointer but doesn’t make it point 

to an object: 

int *p; /* points nowhere in particular */ 

(In this respect, pointers are no different than other variables.) It is crucial to ini¬ 

tialize p before we use it. One way to initialize a pointer variable is to assign it the 

address of some variable—or, more generally, lvalue—using the & operator: 

int i, *p; 

p = &i; 

By assigning the address of i to the variable p, this statement makes p point to i: 



208 Chapter 11 Pointers 

The assignment of &i to p doesn’t affect the value of i, by the way. 

The address operator can appear in declarations, so it’s possible to initialize a 

pointer at the time we declare it: 

int i ; 

int *p = &i; 

We can even combine the declaration of i with the declaration of p, provided that 

i comes first: 

int i, *p = &i; 

The Indirection Operator 

Once a pointer variable points to an object, we can use the * (indirection) operator 

to access what’s stored in the object. If p points to i, for example, we can print the 

value of i as follows: 

printf("%d\n", *p); 

printf will display the value of i, not the address of i. 

The mathematically inclined reader may wish to think of * as the inverse of &. 

Applying & to a variable produces a pointer to the variable; applying * to the 

pointer takes us back to the original variable: 

j = *&i; /* same as j = i; */ 

As long as p points to i, *p is an alias for i. Not only does *p have the same 

value as i, but changing the value of *p also changes the value of i. (*p is an 

lvalue, so assignment to it is legal.) The following example illustrates the equiva¬ 

lence of *p and i; diagrams show the values of p and i at various points in the 

computation. 

P = &i; 

printf("%d\n", i); 
printf("%d\n", *p); 
*P = 2; 

/* prints 1 */ 
/* prints 1 */ 
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printf("%d\n", i); /* prints 2 */ 

printf("%d\n", *p); /* prints 2 */ 

Never apply the indirection operator to an uninitialized pointer variable. If a 
pointer variable p hasn’t been initialized, the value of *p is undefined: 

int *p; 

printf("%d", *p); /* prints garbage */ 

Assigning a value to *p is even worse; p might point anywhere in memory, so the 
assignment modifies some unknown memory location: 

int *p; 

*p = 1; /*** WRONG ***/ 

The location modified by this assignment might belong to the program (perhaps 
causing it to behave erratically) or to the operating system (possibly causing a sys¬ 
tem crash). 

11.3 Pointer Assignment 

C allows the use of the assignment operator to copy pointers, provided that they 

have the same type. Suppose that i, j, p, and q have been declared as follows: 

int i, j, *p, *q; 

The statement 

p = &i; 

is an example of pointer assignment; the address of i is copied into p. Here’s 

another example of pointer assignment: 

q = p; 

This statement copies the contents of p (the address of i) into q, in effect making 

q point to the same place as p: 

q 



Chapter 11 Pointers 

Both p and q now point to i, so we can change i by assigning a new value to 

either *p or *q: 

*P = 1; 

*q 2; 

P 

q 

p 

q 

Any number of pointer variables may point to the same object. 

Be careful not to confuse 

q = p; 

with 

*q = *p; 

The first statement is a pointer assignment; the second isn’t, as the following 

example shows: 

p = &i; 
q = & j ; 
i = 1 ; 

The assignment *q = *p copies the value that p points to (the value of i) into the 

location that q points to (the variable j). 
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11.4 Pointers as Arguments 

So far, we’ve managed to avoid a rather important question: What are pointers 

good for? There’s no single answer to that question, since pointers have several 

distinct uses in C. In this section, we’ll look at just one application: by passing a 

pointer to a variable when calling a function, it becomes possible for the function 

to change the variable’s value. 

We saw in Section 9.3 that a variable supplied as an argument in a function 

call is protected against change, because C passes arguments by value. This prop¬ 

erty of C can be a nuisance if we want the function to be able to modify the vari¬ 

able. In Section 9.3, we were unable to write a decompose function that could 

modify two of its arguments. 

Pointers offer a solution to this problem: instead of passing a variable x as the 

argument to a function, we’ll supply &x, a pointer to x. We’ll declare the corre¬ 

sponding parameter p to be a pointer. When the function is called, p will have the 

value &x, hence *p (the object that p points to) will be an alias for x. Each appear¬ 

ance of *p in the body of the function will be an indirect reference to x, allowing 

the function both to read x and to modify it. 

To see this method in action, let’s modify the decompose function by declar¬ 

ing the parameters int_part and f rac_part to be pointers. The definition of 

decompose will now look like this: 

void decompose(float x, int *int_part, float *frac_part) 
{ 

*int_part = (int) x; 
*frac_part = x - *int__part; 

} 

The prototype for decompose could be either 

void decompose(float x, int *int_part, float *frac_part); 

or 

void decompose(float, int *, float *); 

We’ll call decompose in the following way: 

decompose(3.14159, &i, &f); 

Because of the & operator in front of i and f, the arguments to decompose are 

pointers to i and f, not the values of i and f. When decompose is called, the 

value 3.14159 is copied into x, a pointer to i is stored in int_part, and a 

pointer to f is stored in f rac_part: 
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X 3.14159 

int_part -► :1 
frac_part 

The first assignment in the body of decompose converts the value of x to type 

int and stores it into the location pointed to by int_part. Since int_part 

points to i, the assignment puts the value 3 in i: 

x 3.14159 

int_part 

frac_part 

The second assignment fetches the value that int_part points to (the value of 

i), which is 3. This value is converted to type float and subtracted from x, giv¬ 

ing .14159, which is then stored in the location that frac_part points to: 

x 3.14159 

int__part 

frac_part 

3 

► .14159 

When decompose returns, i and f will have the values 3 and .14159, just as we 
originally wanted. 

Using pointers as arguments to functions is actually nothing new; we’ve been 

doing it in calls of scanf since Chapter 2. Consider the following example: 

int i ; 

scanf("%d", &i); 

We must put the & operator in front of i so that scanf is given a pointer to i; that 

pointer tells scanf where to put the value that it reads. Without the &, scanf 
would be supplied with the value of i. 

Although scanf’s arguments need to be pointers, it’s not always true that 

every argument needs the & operator. In the following example, scanf is passed a 
pointer variable: 
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int i, *p; 

P = &i; 
scanf("%d", p); 

Since p contains the address of i, scanf will read an integer and store it in i. 

Using the & operator in the call would be wrong: 

scanf("%d", &p); /*** WRONG ***/ 

scanf would read an integer and store it in p instead of in i. 

Failing to pass a pointer to a function when one is expected can have disastrous 
results. Suppose that we call decompose without the & operator in front of i and 
f: 

decompose(3.1415 9, i, f) ; 

decompose is expecting pointers as its second and third arguments, but it’s been 
given the values of i and f instead, decompose has no way to tell the difference, 
so it will use the values of i and f as though they were pointers. When decom¬ 
pose stores values into *int_part and *frac_part, it will write to 
unknown memory locations instead of modifying i and f. 

If we’ve provided a prototype for decompose (as we should always do, of 
course), the compiler will let us know that we’re attempting to pass the wrong type 
of arguments. In the case of scanf, however, failing to pass pointers usually goes 
undetected by the compiler, making scanf an especially error-prone function. 

C++ C++ provides a way for functions to modify arguments without the need to 

pass pointers. Section 19.4 gives details. 

PROGRAM Finding the Largest and Smallest Elements in an Array 

To illustrate how pointers are passed to functions, let’s look at a function named 

max_min that finds the largest and smallest elements in an array. When we call 

max_min, we’ll pass it pointers to two variables; max_min will then store its 

answers in these variables. max_min has the following prototype: 

void max_min(int a[], int n, int *max, int *min); 

A call of max_min might have the following appearance: 

max_min(b, N, &big, ksmall); 

b is an array of integers, and N is the number of elements in b. big and small 

are ordinary integer variables. When max_min finds the largest element in b, it 

stores the value in big by assigning it to *max. (Since max points to big, an 

assignment to *max will modify the value of big.) max_min stores the smallest 

element of b in small by assigning it to *min. 
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maxmin.c 

To test max_min, we’ll write a program that reads ten numbers into an array, 

passes the array to max_min, and prints the results: 

Enter 10 numbers: 34 82 49 102 7 94 23 11 50 31 

Largest: 102 

Smallest: 7 

Here’s the complete program: 

/* Finds the largest and smallest elements in an array */ 

#include <stdio.h> 

#define N 10 

void max_min(int a[], int n, int *max, int *min); 

main() 

{ 
int b[N], i, big, small; 

printf("Enter %d numbers: ", N) ; 

for (i = 0; i < N; i++) 

scanf("%d", &b[i]); 

max_min(b, N, &big, &small); 

printf("Largest: %d\n", big); 

printf("Smallest: %d\n", small); 

return 0; 

} 

void max_min(int a[], int n, int *max, int *min) 

{ 
int i ; 

*max = *min = a[0]; 

for (i = 1; i < n; i++) { 

if (a[i] > *max) 

*max = a [ i ] ; 

else if (a[i] < *min) 

*min = a[i]; 

} 

Using const to Protect Arguments 

When we call a function and pass it a pointer to a variable, we normally assume 

that the function will modify the variable (otherwise, why would the function 
require a pointer?). For example, if we see a statement like 

f(&x); 
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Q&A 

in a program, we’d probably expect f to change the value of x. It’s possible, 

though, that f merely needs to examine the value of x, not change it. The reason 

for the pointer might be efficiency: passing the value of a variable can waste time 

and space if the variable requires a large amount of storage. (Section 12.3 covers 

this point in more detail.) 

We can use the word const to document that a function won’t change an 

object whose pointer is passed to the function. To allow f to examine—but not 

change—an argument whose pointer has been passed, we’d put const in the 

parameter’s declaration, just before the specification of its type: 

void f(const int *p) 

{ 
*p = 0; /*** WRONG ***/ 

} 

This use of const indicates that p is a pointer to a “constant integer.” Attempting 

to change *p will provoke a message from the compiler. 

11.5 Pointers as Return Values 

We can not only pass pointers to functions, but also write functions that return 

pointers. For example, we may want a function to return the location of an answer 

instead of returning its value. Functions that return pointers are relatively common; 

in Chapter 13, we’ll encounter several. 

The following function, when given pointers to two integers, returns a pointer 

to whichever integer is larger: 

int *max(int *a, int *b) 

{ 
if (*a > *b) 

return a; 

else 

return b; 

} 

When we call max, we’ll pass pointers to two int variables and store the result in 

a pointer variable: 

int *p, x, y; 

p = max(&x, &y); 

During the call of max, * a is an alias for x, while *b is an alias for y. If x has a 

larger value than y, max returns the address of x; otherwise, it returns the address 

of y. After the call, p points to either x or y. 
Although the max function returns one of the pointers passed to it as an argu¬ 

ment, that’s not the only thing a function can return. Some functions return a 
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pointer to one element of an array passed as an argument. Another possibility is to 

return a pointer to an external variable or to a local variable that’s been declared 

static. 

Never return a pointer to an automatic local variable: 

int *f(void) 

{ 
int i ; 

return &i; 

} 

The variable i doesn’t exist once f returns, so the pointer to it will be invalid. 

Q & A 

*Q: Is a pointer always the same as an address? [p. 206] 

A: Usually, but not always. Consider a computer whose main memory is divided into 

words rather than bytes. A word might contain 36 bits, 60 bits, or some other num¬ 

ber. If we assume 36-bit words, memory will have the following appearance: 

Address 

o 

1 

2 

3 

4 

n-1 

Contents 

001010011001010011001010011001010011 

001110101001110101001110101001110101 

001110011001110011001110011001110011 

001100001001100001001100001001100001 

001101110001101110001101110001101110 

001000011001000011001000011001000011 

When memory is divided into words, each word has an address. An integer 

usually occupies one word, so a pointer to an integer can just be an address. How¬ 

ever, a word can store more than one character. For example, a 36-bit word could 

store six 6-bit characters: 

010011 110101 110011 100001 101110 000011-| 

or four 9-bit characters: 

001010011 001110101 001110011 001100001 | 
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For this reason, a pointer to a character may need to be stored in a different form 

than other pointers. A pointer to a character might consist of an address (the word 

in which the character is stored) plus a small integer (the position of the character 

within the word). 

On some computers, pointers may be “offsets” rather than complete ad¬ 

dresses. For example, Intel microprocessors (used in IBM PCs and their clones) 

have a complicated scheme in which addresses are sometimes represented by a 

single 16-bit number (an offset) and sometimes by two 16-bit numbers (a seg¬ 

ment .'offset pair). An offset isn’t a true memory address; the CPU must combine it 

with a segment value stored in a special register. 

C compilers for the IBM PC family deal with Intel’s segmented architecture 

by providing two kinds of pointers: near pointers (16-bit offsets) and far pointers 

(32-bit segment:offset pairs). For this reason, PC compilers usually reserve the 

words near and far for use in declaring pointer variables. 

*Q: If a pointer can point to data in a program, is it possible to have a pointer to 

program code? 

A: Yes. We’ll cover pointers to functions in Section 17.7. 

Q: Is there some way to print the value of a pointer? 

A: Call printf, using the %p conversion in the format string; see Section 22.3 for 

details. 

Q: The following declaration is confusing: 

void f(const int *p); 

Does this say that we can’t modify p? 

A: No. It says that we can’t change the integer that p points to', it doesn’t prevent us 

from changing p itself. 

void f(const int *p) 

{ 
int j ; 

p = &j; /* legal */ 

} 

Since arguments are passed by value, assigning p a new value—by making it point 

somewhere else—won’t have any effect outside the function. 

*Q: When declaring a parameter of a pointer type, is it legal to put the word 

const in front of the parameter name, as in the following example? [p. 215] 

void f(int const p); 
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Section 11.2 

Section 11.3 

Section 11.4 

A: Yes, although the effect isn’t the same as if const precedes p’s type. We saw in 

Section 11.4 that putting const before p’s type protects the object that p points 

to. Putting const after p’s type protects p itself: 

void f(int * const p) 

{ 
int j ; 

*p = 0; /* legal */ 
p = &j; /*** WRONG ***/ 

} 

This feature isn’t used very often. Since p is merely a copy of another pointer (the 

argument when the function is called), there’s rarely any reason to protect it. 

An even greater rarity is the need to protect both p and the object it points to, 

which can be done by putting const both before and after p’s type: 

void f(const int * const p) 

{ 
int j ; 

*p = 0; /*** WRONG ***/ 

p = &j; /*** WRONG ***/ 

Exercises 

1. If i is a variable and p points to i, which of the following expressions are aliases for i? 

(a) *p (c) *&p (e) *i (g) *&i 

(b) &p (d) &*p (f) & i (h) & * i 

2. If i is an int variable and p and q are pointers to int, which of the following assignments 
are legal? 

(a) p = i; (d) p = &q; (g) p = *q; 

(b) *p = &i; (e) p = *&q; (h) *p = q; 

(c) &p = q; (f) P = q; (i) *P = *q; 

3. The following function supposedly computes the sum and average of the numbers in the 
array a, which has length n. avg and sum point to variables that the function should mod¬ 
ify. Unfortunately, the function contains several errors; find and correct them. 

void avg_sum(float a[], int n, float *avg, float *sum) 

{ 
int i; 

sum = 0.0; 

for (i = 0; i < n; i++) 

sum += a [ i] ; 

avg = sum / n; 

} 
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Section 11.5 

4. Write the following function: 

void swap(int *p, int *q); 

When passed the addresses of two variables, swap should exchange their values: 

swap(&x, &y); /* exchanges values of x and y */ 

Using this function, modify the program in Exercise 9 of Chapter 9 so that it works. 

5. Write the following function: 

void split_time(long int total_sec, 
int *hr, int *min, int *sec); 

total_sec is a time measured in number of seconds since midnight, hr, min, and sec 
are pointers to variables into which the function will store the equivalent time in hours CO- 
23), minutes (0-59), and seconds (0-59), respectively. 

6. Write the following function: 

void find_two_largest(int a[], int n, int *largest, 
int *second_largest); 

When passed an array a of length n, the function will search a for its largest and second- 
largest elements, storing them in the variables pointed to by largest and 
second_largest, respectively. 

7. Write the following function: 

int *find_middle(int a[], int n); 

When passed an array a of length n, the function will return a pointer to the array’s middle 
element. (If n is even, choose the middle element with the larger index; for example, if n = 
4, the middle element is a [ 2 ], not a [ 1 ].) 
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Optimization hinders evolution. 

Chapter 11 introduced pointers and showed how they’re used as function argu¬ 

ments and as values returned by functions. This chapter covers another application 

for pointers. When pointers point to array elements, C allows us to perform arith¬ 

metic—addition and subtraction—on the pointers, which leads to an alternative 

way of processing arrays in which pointers take the place of array subscripts. 

The relationship between pointers and arrays in C is a close one, as we’ll see 

in this chapter. We’ll exploit this relationship in subsequent chapters, including 

Chapter 13 (Strings) and Chapter 17 (Advanced Uses of Pointers). Understanding 

the connection between pointers and arrays is critical for mastering C: it will give 

you insight into how C was designed and help you understand existing programs. 

Be aware, however, that one of the primary reasons for using pointers to process 

arrays—efficiency—is no longer as important as it once was, thanks to improved 

compilers. 

Section 12.1 discusses pointer arithmetic and shows how pointers can be com¬ 

pared using the relational and equality operators. Section 12.2 then demonstrates 

how we can use pointer arithmetic for processing array elements. Section 12.3 

reveals a key fact about arrays—an array name can serve as a pointer to the array’s 

first element—and uses it to show how array arguments really work. To wrap up 

the chapter, Section 12.4 shows how the topics of the first three sections apply to 

multidimensional arrays. 

12.1 Pointer Arithmetic 

Pointers can point to array elements, not just ordinary variables. For example, sup¬ 

pose that a and p have been declared as follows: 

221 
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int a[10], *p; 

We can make p point to a [ 0 ] by writing 

p = &a[0]; 

Graphically, here’s what we’ve just done: 

We can now access a [ 0 ] through p; for example, we can store the value 5 in 

a [ 0 ] by writing 

*p = 5 ; 

Here’s our picture now: 

a 5 

0123456789 

Making a pointer p point to an element of an array a isn’t particularly excit¬ 

ing. However, by performing pointer arithmetic (or address arithmetic) on p, we 

can access the other elements of a. C supports three (and only three) forms of 

pointer arithmetic: 

adding an integer to a pointer 

subtracting an integer from a pointer 

subtracting two pointers 

Let’s take a close look at each of these operations. Our examples assume the fol¬ 

lowing declarations: 

int a[10], *p, *q, i; 

Adding an Integer to a Pointer 

Q&A 

Adding an integer j to a pointer p yields a pointer to the element that is j places 

after the one that p points to. More precisely, if p points to the array element 

a [ i ], then p + j points to a [ i +j ] (provided, of course, that a't i+j ] exists). 

The following example illustrates pointer addition; diagrams show the values 

of p and q at various points in the computation. 
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] 

n
 

0123456789 

0123456789 

P + = 6 ; ■m pl j 
a 

0123456789 

Subtracting an Integer from a Pointer 

If p points to the array element a [ i ], then p - j points to a [ i - j ]. For example: 

p = &a[8]; 

q = p - 3; 

p -= 6; 

0123456789 

Subtracting Pointers 

When two pointers are subtracted, the result is the distance (measured in array ele¬ 

ments) between the pointers. Thus, if p points to a [ i ] and q points to a [ j ], then 

p - q is equal to i - j. For example: 
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p = &a[5]; 

q = &a[l]; 

i = p - q; /* i is 4 */ 

i = q - p; /* i is -4 */ 

0123456789 

Q&A 

Note: Performing arithmetic on a pointer p gives a meaningful result only 

when p points to an array element. Furthermore, subtracting two pointers is mean¬ 

ingful only when both point to elements of the same array. 

Comparing Pointers 

We can compare pointers using the relational operators (<, <=, >, >=) and the 

equality operators (== and ! =). Using the relational operators to compare two 

pointers is meaningful only when both point to elements of the same array. The 

outcome of the comparison depends on the relative position of the two elements in 

the array. For example, after the assignments 

p = &a[5]; 

q = &a[1]; 

the value of p <= q is 0 and the value of p >= q is 1. 

12.2 Using Pointers for Array Processing 

Pointer arithmetic allows us to visit the elements of an array by repeatedly incre¬ 

menting a pointer variable. The following program fragment, which sums the ele¬ 

ments of an array a, illustrates the technique. In this example, the pointer variable 

p initially points to a [ 0 ]. Each time through the loop, p is incremented; as a 

result, it points to a [ 1 ], then a [ 2 ], and so forth. The loop terminates when p 

steps past the last element of a. 

#define N 10 

int a[N], sum, *p; 

sum = 0; 

for (p = &a[0]; p < &a[N]; p++) 

sum += *p; 

The following figures show the contents of a, sum, and p at the end of the first 

three loop iterations (before p has been incremented). 
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At the end of the first iteration: 

At the end of the second iteration: 

At the end of the third iteration: 

11 34 82 7 I 64 98 47 18 79 20 

0 1 2 3 4 5 6 7 8 9 

li 

a 

sum 

p : 
a 11 34 82 7 64 98 47 18 79 20 

0 1 3 4 5 6 7 8 9 

P L P 
11 34 82 7 64 98 | 47 18 79 20 

0123456789 

45 

sum 

Q&A 

The condition p < &a [N] in the for statement deserves special mention. In 

Standard C, it’s legal to apply the address operator to a [N], even though this ele¬ 

ment doesn’t exist (a is indexed from 0 to N - 1). Using a [N] in this fashion is 

perfectly safe, since the loop doesn’t attempt to examine its value. The body of the 

loop will be executed with p equal to &a[0], &a [ 1 ], ..., &a [N-1 ], but when p 

is equal to &a [N], the loop terminates. 

We could just as easily have written the loop without pointers, of course, using 

subscripting instead. The argument most often cited in support of pointer arith¬ 

metic is that it can save execution time. However, that depends on the implementa¬ 

tion—some C compilers actually produce better code for loops that rely on 

subscripting. 

Combining the * and ++ Operators 

C programmers often combine the * (indirection) and ++ operators in statements 

that process array elements. Consider the simple case of storing a value into an 

array element, then advancing to the next element. Using array subscripting, we 

might write 

a [ i + + ] = j ; 

If p is pointing to an array element, the corresponding statement would be 

*p++ = j; 
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Because the postfix version of ++ takes precedence over *, the compiler sees this 

as 

*(p++) = j; 

The value of p++ is p. (Since we’re using the postfix version of ++, p won’t be 

incremented until after the expression has been evaluated.) Thus, the value of 

* (p+ + ) will be *p—the object to which p is pointing. 
Of course, *p+ + isn’t the only legal combination of * and + + . We could write 

( *p) ++, for example, which returns the value of the object that p points to, then 

increments that object (p itself is unchanged). If you find this confusing, the fol¬ 

lowing table may help: 

Expression 
*p++ or * (p++) 

(*p)++ 
*++p or *(++p) 

++*p or ++(*p) 

Meaning 
Value of expression is *p before increment; increment p later 
Value of expression is *p before increment; increment *p later 
Increment p first; value of expression is *p after increment 
Increment *p first; value of expression is *p after increment 

All four combinations appear in programs, although some are far more common 

than others. The one we’ll see most frequently is *p+ + , which is handy in loops. 

Instead of writing 

for (p = &a[0]; p < &a[N]; p++) 

sum += *p; 

to sum the elements of the array a, we could write 

p = &a[0]; 

while (p < &a[N]) 

sum += *p++; 

The * and -- operators mix in the same way as * and + + . For an application 

that combines * and let’s return to the stack example of Section 10.2. The 

original version of the stack relied on an integer variable named top to keep track 

of the “top-of-stack” position in the contents array. Let’s replace top by a 

pointer variable that points initially to element 0 of the contents array: 

int *top_ptr = &contents[0]; 

Here are the new push and pop functions (updating the other stack functions is 

left as an exercise): 

void push(int i) 

{ 
if (is_full()) 

stack_overflow(); 

else 

*top_ptr++ = i; 

} 
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12.3 

idiom 

A 

int pop(void) 

{ 
if (is_empty()) 

stack_underflow(); 

else 

return *--top_ptr; 

} 

Note that I’ve written *--top_ptr, not * top_ptr--, since I want pop to dec¬ 

rement top_ptr before fetching the value to which it points. 

Using an Array Name as a Pointer 

Pointer arithmetic is one way in which arrays and pointers are related, but it’s not 

the only connection between the two. Here’s another key relationship: The name of 

an array can be used as a pointer to the first element in the array. This relationship 

simplifies pointer arithmetic and makes both arrays and pointers more versatile. 

For example, suppose that a is declared as follows: 

int a[10]; 

Using a as a pointer to the first element in the array, we can modify a [ 0 ]: 

*a = 7; /* stores 7 in a[0] */ 

We can modify a [ 1 ] through the pointer a + 1: 

*(a+l) = 12; /* stores 12 in a[l] */ 

In general, a + i is the same as &a [ i ] (both represent a pointer to element i of a) 

and * (a+i) is equivalent to a [ i ] (both represent element i itself). In other 

words, array subscripting can be viewed as a form of pointer arithmetic. 

The fact that an array name can serve as a pointer makes it easier to write 

loops that step through an array. Consider the following loop from Section 12.2: 

for (p = &a[0]; p < &a[N]; p++) 

sum += *p; 

To simplify the loop, we can replace &a [ 0 ] by a and &a [N] by a + N: 

for (p = a; p < a + N; p++) 

sum += *p; 

Although an array name can be used as a pointer, it’s not possible to assign it a new 
value. Attempting to make it point elsewhere is an error: 

while (*a != 0) 

a++; /*** WRONG ***/ 
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This is no great loss; we can always copy a into a pointer variable, then change the 

pointer variable: 

p = a; 

while (*p != 0) 

P++ ; 

PROGRAM Reversing a Series of Numbers (Revisited) 

The reverse . c program of Section 8.1 reads ten numbers, then writes the num¬ 

bers in reverse order. As the program reads the numbers, it stores them in an array. 

Once all the numbers are read, the program steps through the array backwards as it 

prints the numbers. 
The original program used subscripting to access elements of the array. Here’s 

a new version in which I’ve replaced subscripting with pointer arithmetic. 

reverse2.C /* Reverses a series of numbers (pointer version) */ 

ttinclude <stdio.h> 

ttdefine N 10 

main() 

{ 
int a[N], *p; 

printf("Enter %d numbers: ", N); 

for (p = a; p < a + N; p++) 

scanf("%d", p); 

printf("In reverse order:"); 

for (p = a + N - 1; p >= a; p--) 

printf(" %d", *p); 

printf("\n"); 

return 0; 

} 

In the original program, an integer variable i kept track of the current position 

within the array. Our new version replaces i with p, a pointer variable. The num¬ 

bers are still stored in an array; we’re simply using a different technique to keep 

track of where we are in the array. 

Note that the second argument to scanf is p, not &p. Since p points to an 

array element, it’s a satisfactory argument for scanf; &p, on the other hand, 

would be a pointer to a pointer to an array element. 
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Array Arguments (Revisited) 

When passed to a function, an array name is always treated as a pointer. Consider 

the following function, which returns the largest element in an array of integers: 

int find_largest(int a[], int n) 

{ 
int i, max; 

max = a[0]; 

for (i = 1; i < n; i++) 

if (a[i] > max) 

max = a[i]; 

return max; 

} 

Suppose that we call f ind_largest as follows: 

largest = find_largest(b, N); 

This call causes a pointer to the first element of b to be assigned to a; the array 

itself isn’t copied. 

The fact that an array parameter is treated as a pointer has some important 

consequences: 

■ When an ordinary variable is passed to a function, its value is copied; any 

changes to the corresponding parameter don’t affect the variable. In contrast, 

an array used as an argument isn’t protected against change, since no copy is 

made of the array itself. For example, the following function modifies an array 

by storing zero into each of its elements: 

void store_zeros(int a[], int n) 

{ 
int i ; 

for (i = 0; i < n; i++) 

a [ i] = 0; 

} 

To indicate that an array parameter won’t be changed, we can include the 

word const in its declaration: 

int find_largest(const int a[], int n) 

{ 

} 

If const is present, the compiler will check that no assignment to an element 

of a appears in the body of f ind_largest. 

■ The time required to pass an array to a function doesn’t depend on the size of 

the array. There’s no penalty for passing a large array, since no copy of the 

array is made. 
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Q&A 

An array parameter can be declared as a pointer if desired. For example, 

find_largest could be defined as follows: 

int find_largest(int *a, int n) 

{ 

} 

Declaring a to be a pointer is equivalent to declaring it to be an array; the 

compiler treats the declarations as though they were identical. 

Although declaring a parameter to be an array is the same as declaring it to be a 
pointer, the same is not true for a variable. The declaration 

int a[10]; 

causes the compiler to set aside space for ten integers. In contrast, the declaration 

int *a; 

causes the compiler to allocate space for a pointer variable. In the latter case, a is 

not an array; attempting to use it as an array can have disastrous results. For exam¬ 

ple, the assignment 

* a = 0; /*** WRONG ***/ 

will store 0 where a is pointing. Since we don’t know where a is pointing, the 
effect on the program is unpredictable. 

■ A function with an array parameter can be passed an array “slice”—a 

sequence of consecutive elements. Suppose that we want f ind_largest to 

locate the largest element in some portion of an array b, say elements b [ 5 ], 

..., b [ 14 ]. When we call f ind_largest, we’ll pass it the address of 

b [ 5] and the number 10, indicating that we want f ind_largest to exam¬ 

ine ten array elements, starting at b [ 5 ]: 

largest = find_largest(&b[5], 10); 

Using a Pointer as an Array Name 

If we can use an array name as a pointer, will C allow us to subscript a pointer as 

though it were an array name? By now, you’d probably expect the answer to be 

yes, and you’d be right. Here’s an example: 

#define N 100 

int a[N], i, sum =0, *p = a; 

for (i = 0; i < N; i++) 

sum += p[i]; 
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The compiler treats p[i] as * (p+i), which is a perfectly legal use of pointer 

arithmetic. Although the ability to subscript a pointer may seem to be little more 

than a curiosity, we’ll see in Section 17.3 that it’s actually quite useful. 

12.4 Pointers and Multidimensional Arrays 

Just as pointers can point to elements of one-dimensional arrays, they can also 

point to elements of multidimensional arrays. In this section, we’ll explore com¬ 

mon techniques for using pointers to process the elements of multidimensional 

arrays. For simplicity, we’ll stick to two-dimensional arrays, but everything we’ll 

do applies equally to higher-dimensional arrays. 

Processing the Elements of a Multidimensional Array 

We saw in Section 8.2 that C always stores two-dimensional arrays in row-major 

order; in other words, the elements of row 0 come first, followed by the elements 

of row 1, and so forth. An array with r rows would have the following appearance: 

row 0 row 1 row r-1 

We can take advantage of this layout when working with pointers. If we make a 

pointer p point to the first element in a two-dimensional array (the element in row 

0, column 0), we can visit every element in the array by incrementing p repeatedly. 

As an example, let’s look at the problem of initializing all elements of a two- 

dimensional array to zero. Suppose that the array has been declared as follows: 

int a[NUM_ROWS][NUM_COLS]; 

The obvious technique would be to use nested for loops: 

int row, col; 

for (row = 0; row < N; row++) 

for (col = 0; col < N; col++) 

a[row][col] = 0; 

But if we view a as a one-dimensional array of integers (which is how it’s stored), 

we can replace the pair of loops by a single loop: 

int *p; 

for (p = &a[0][0]; p <= &a[NUM_ROWS-l][NUM_COLS-l]; p++) 

*p = 0; 
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The loop begins with p pointing to a [ 0 ] [ 0 ]. Successive increments of p make it 

point to a [ 0 ] [ 1 ], a [ 0 ] [2], and so on. When p reaches a [ 0 ] [NUM_COLS- 

1 ] (the last element in row 0), incrementing it again makes p point to a [ 1 ] [ 0 ], 

the first element in row 1. The process continues until p goes past a [NUM_ROWS- 

1] [NUM_COLS-l], the last element in the array. 

Although treating a two-dimensional array as one-dimensional may seem like 

cheating, it’s perfectly legal in C. Whether it’s a good idea to do so is another mat¬ 

ter. Techniques like this one definitely hurt program readability, but—at least with 

some older compilers—produce a compensating increase in efficiency. With many 

modern compilers, though, there’s often little or no speed advantage. 

Processing the Rows of a Multidimensional Array 

What about processing the elements in just one row of a two-dimensional array? 

Again, we have the option of using a pointer variable p. To visit the elements of 

row i, we’d initialize p to point to element 0 in row i in the array a: 

p = &a[i][0]; 

Or we could simply write 

P = a [ i ] ; 

since, for any two-dimensional array a, the expression a [ i ] is a pointer to the 

first element in row i. To see why this works, recall the magic formula that relates 

array subscripting to pointer arithmetic: for any array a, the expression a [i] is 

equivalent to * (a + i). Thus, &a [ i ] [ 0 ] is the same as & ( * (a [ i ] +0)), 

which is equivalent to &*a [ i ], which is the same as a [ i ], since the & and * 

operators cancel. We’ll use this simplification in the following loop, which clears 

row i of the array a: 

int a[NUM_ROWS][NUM_COLS], *p, i; 

for (p = a[i]; p < a[i] + NUM_COLS; p++) 

*P = 0; 

Since a [ i ] is a pointer to row i of the array a, we can pass a [ i ] to a func¬ 

tion that’s expecting a one-dimensional array as its argument. In other words, a 

function that’s designed to work with one-dimensional arrays will also work with a 

row belonging to a two-dimensional array. As a result, functions such as 

f ind_largest and store_zeros are more versatile than you might expect. 

Consider f ind_largest, which we originally designed to find the largest ele¬ 

ment of a one-dimensional array. We can just as easily use f ipd_largest to 

determine the largest element in one row of a two-dimensional array: 

largest = find_largest(a[i], NUM_COLS); 
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Using the Name of a Multidimensional Array as a Pointer 

Just as the name of a one-dimensional array can be used as a pointer, so can the 

name of any array, regardless of how many dimensions it has. Some care is 
required, though. Consider the following arrays: 

int a[10], b[10][10]; 

Although we can use a as a pointer to the element a [ 0 ], it’s not the case that b is 

a pointer to b [ 0 ] [ 0 ]; instead, it’s a pointer to b [ 0 ]. This makes more sense if 

we look at it from the standpoint of C, which regards b not as a two-dimensional 

array but as a one-dimensional array whose elements are one-dimensional arrays. 

In terms of types, a can be used as a pointer of type int *, whereas b—when 

used as a pointer—has type int * * (pointer to pointer to int). 

For example, consider how we might use f ind_largest to find the largest 
element in the following two-dimensional array: 

int a[NUM_ROWS][NUM_COLS]; 

Our plan is to trick f ind_largest into thinking that a is one-dimensional. As 

the first argument to find_largest, we’ll try passing a (the address of the 

array); as the second, we’ll pass NUM_ROWS * NUM_COLS (the total number of 
elements in a): 

Q&A 

largest = find_largest(a, NUM_ROWS * NUM_COLS); /* WRONG */ 

This statement won’t compile, because a has type int ** and f ind_largest 

is expecting an argument of type int *. The correct call is 

largest = find_largest(a[0], NUM_ROWS * NUM_COLS); 

a [ 0 ] points to element 0 in row 0, and it has type int *, so the call will work 

correctly. 

Q&A 

Q: I don’t understand pointer arithmetic. If a pointer is an address, does that 

mean that an expression like p + j adds j to the address stored in p? [p. 222] 

A: No. Integers used in pointer arithmetic are scaled depending on the type of the 

pointer. If p is of type int *, for example, then p + j typically adds either 2 x j 

or 4 x j to p, depending on whether int values require 2 bytes or 4 bytes. But if p 

has type double *, then p + j will probably add 8 x j to p, since double val¬ 

ues are usually 8 bytes long. 

Q: What do you mean when you say that pointer arithmetic is meaningful only 

for pointers to array elements? [p. 224] 
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A: Performing arithmetic on a pointer that doesn’t point to an array element is “unde¬ 

fined,” according to the C standard. That doesn’t mean you can’t do it; it just 

means that there’s no guarantee about what will happen. 

Q: When writing a loop to process an array, is it better to use array subscripting 

or pointer arithmetic? [p. 225] 

A: There’s no easy answer to this question, since it depends on the machine you’re 

using and the compiler itself. In the early days of C on the PDP-11, pointer arith¬ 

metic yielded a faster program. On today’s machines, using today’s compilers, 

array subscripting is often just as good, and sometimes even better. The bottom 

line: Learn both ways and then use whichever is more natural for the kind of pro¬ 

gram you’re writing. 

*Q: I read somewhere that i [a] is the same as a [i]. Is this true? 

A: Yes, it is, oddly enough. The compiler treats i [ a ] as*(i + a), which is the same 

as *(a + i). (Pointer addition, like ordinary addition, is commutative.) But 

* (a + i) is equivalent to a [ i ]. Q.E.D. But please don’t use i [ a ] in programs 

unless you’re planning to enter the next Obfuscated C contest. 

Q: Why is *a the same as a [ ] in a parameter declaration? [p. 230] 

A: Both indicate that the argument is expected to be a pointer. The same operations on 

a are possible in both cases (pointer arithmetic and array subscripting, in particu¬ 

lar). And, in both cases, a itself can be assigned a new value within the function. 

(Although C allows us to use the name of an array variable only as a “constant 

pointer,” there’s no such restriction on the name of an array parameter.) 

Q: When a function has an array parameter a, is it better style to declare the 

parameter as *a or a [ ] ? 

A: That’s a tough one. From one standpoint, a [ ] is the obvious choice, since *a is 

ambiguous (does the function want an array of objects or a pointer to a single 

object?). On the other hand, many programmers argue that declaring the parameter 

as *a is more accurate, since it reminds us that only a pointer is passed, not a copy 

of the array. Others switch between *a and a [ ], depending on whether the func¬ 

tion uses pointer arithmetic or subscripting to access the elements of the array. 

(That’s the approach I’ll use.) In practice, *a is more common than a [ ], so you’d 

better get used to it. For what it’s worth, Dennis Ritchie now refers to the a [ ] 

notation as “a living fossil” that “serves as much to confuse the learner as to alert 
the reader.” 

Q: We’ve seen that arrays and pointers are closely related in C. Would it be accu¬ 

rate to say that they’re interchangeable? 

A: No. It’s true that array parameters are interchangeable with pointer parameters, but 

array variables are not the same as pointer variables. Technically, the name of an 

array is not a pointer; rather, the C compiler converts it to a pointer when neces¬ 

sary. To see this difference more clearly, consider what happens when we apply the 
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sizeof operator to an array a. The value of sizeof (a) is the total number of 

bytes in the array—the size of each element multiplied by the number of elements. 

But if p is a pointer variable, sizeof (p) is the number of bytes required to store 
a pointer value. 

*Q: You showed how to use a pointer to process the elements in a row of a two- 

dimensional array. Is it possible to use a similar technique to process the ele¬ 

ments in a column? 

A: Yes, but it’s not as easy, since arrays are stored by row, not by column. Here’s a 

loop that clears the elements of column i in the array a: 

int a[NUM_ROWS][NUM_COLS], i, (*p)[NUM_COLS]; 

for (p = a; p <= &a[NUM_ROWS-l]; p++) 

(*P)[il = 0; 

I’ve declared p to be a pointer to an array of length NUM_COLS whose elements 

are integers. The parentheses around *p in (*p) [NUM_COLS] are required; 

without them, the compiler would treat p as an array of pointers instead of a 

pointer to an array. The expression p++ advances p to the beginning of the next 

row. In the expression (*p) [ i ], *p represents an entire row of a, so ( *p) [ i ] 

selects the element in column i of that row. The parentheses in (*p) [i] are 

essential, since the compiler would interpret *p [ i ] as * (p [ i ] ). 

Q: If a is a two-dimensional array, why can we pass a [0]—but not a itself—to 

f ind_largest? Don’t both a and a [0] point to the same place (the begin¬ 

ning of the array)? [p. 233] 

A: They do, as a matter of fact—both point to element a [ 0 ] [ 0 ]. However, the com¬ 

piler notices that a has type int ** (not what find_largest was expecting) 

but a [ 0 ] has type int *. This concern about types is actually good; if C weren’t 

so picky, we could make all kinds of horrible pointer mistakes without the com¬ 

piler noticing. 

Exercises 

1. Suppose that the following declarations are in effect: 

int a[] = {5, 15, 34, 54, 14, 2, 52, 72); 

int *p = &a[l], *q = &a[5]; 

(a) What is the value of * (p+3 ) ? 

(b) What is the value of * (q- 3 ) ? 

(c) What is the value of q - p? 

(d) Is the condition p < q true or false? 

(e) Is the condition *p < *q true or false? 
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*2. Suppose that high, low, and middle are all pointers of the same type, and that low and 
high point to elements of an array. Why is the following statement illegal, and how could it 

be fixed? 

middle = (low + high) / 2; 

3. What will be the contents of the a array after the following statements are executed? 

#define N 10 

int a[N] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; 

int *p = &a[0], *q = &a[N-l], temp; 

while (p < q) { 

temp = *p; 

*p++ = *q; 

*q-- = temp; 

} 

4. (a) Write a program that reads a message, then prints the reversal of the message. The out¬ 
put of the program should look like this: 

Enter a message: Don't get mad, get even. 

Reversal is: .neve teg ,dam teg t1noD 

Hint: Read the message one character at a time (using getchar) and store the characters in 
an array. Stop reading when the array is full or the character read is ' \n1. 

(b) Revise the program to use a pointer instead of an integer to keep track of the current 
position in the array. 

5. (a) Write a program that reads a message, then checks whether it’s a palindrome (the letters 
in the message are the same from left to right as from right to left): 

Enter a message: He lived as a devil, eh? 

Palindrome 

Enter a message: Madam, I am Adam. 

Not a palindrome 

Ignore all characters that aren’t letters. Use integer variables to keep track of positions 
within the array. 

(b) Revise the program to use pointers instead of integers to keep track of positions in the 
array. 

6. Rewrite the stack functions make_empty, is_empty, and is_full (Section 10.2) to 
use the pointer variable top_ptr instead of the integer variable top. 

7. Suppose that a is a one-dimensional array and p is a pointer variable. Assuming that the 
assignment p = a has just been performed, which of the following expressions are illegal 
because of mismatched types? Of the remaining expressions, which are true (have a nonzero 
value)? 

(a) p == a [ 0 ] 

(b) p == &a[0] 

(c) *p == a [ 0 ] 

(d) p[0] == a [ 0 ] 
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8. Simplify the program of Exercise 4(b) by taking advantage of the fact that an array name 
can be used as a pointer. 

9. Simplify the program of Exercise 5(b) by taking advantage of the fact that an array name 
can be used as a pointer. 

10. Rewrite the following function to use pointer arithmetic instead of array subscripting. (In 
other words, eliminate the variable i and all uses of the [ ] operator.) Make as few changes 
as possible. 

int sum_array(int a[], int n) 

{ 
int i, sum; 

sum = 0; 

for (i = 0; i < n; i++) 

sum += a[i]; 

return sum; 

} 

11. Write the following function: 

Bool search(int a[], int n, int key); 

a is an array to be searched, n is the number of elements in the array, and key is the search 
key. search should return TRUE if key matches some element of a, FALSE if it doesn’t. 
Use pointer arithmetic—not subscripting—to visit array elements. 

12. Section 8.2 had a code fragment in which two nested for loops initialized the array ident 
for use as an identity matrix. Rewrite this code, using a single pointer to step through the 
array one element at a time. Hint: Since we won’t be using row and col index variables, it 
won’t be easy to tell where to store 1. Instead, we can use the fact that the first element of 
the array should be 1, the next N elements should be 0, the next element should be 1, and so 
forth. Use a variable that keeps track of how many consecutive Os have been stored; when 
the count reaches N, it’s time to store 1. 

13. Assume that the following array contains a week’s worth of hourly temperature readings, 
with each row containing the readings for one day: 

int temperatures[7][24]; 

Write a statement that uses the search function (Exercise 11) to search the entire tem¬ 
peratures array for the value 32. 

14. Write a loop that prints all temperature readings stored in row i of the temperatures 
array (Exercise 13). Use a pointer to visit each element of the row. 

15. Write a loop that prints the highest temperature in the temperatures array (Exercise 13) 
for each day of the week. The loop body should call the f ind_largest function, passing 
it one row of the array at a time. 
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It’s difficult to extract sense from strings, but 
they’re the only communication coin we can count on. 

Although we’ve used char variables and arrays of char values in previous chap¬ 

ters, we still lack any convenient way to process a series of characters (or string, in 

C terminology). We’ll remedy that defect in this chapter, which covers both string 

constants (or literals, as they’re called in the C standard) and string variables, 

which can change during the execution of a program. 

Section 13.1 explains the rules that govern string literals, including the rules 

for embedding escape sequences in string literals and for breaking long string liter¬ 

als. Section 13.2 then shows how to declare string variables, which are little more 

than arrays of characters in which a special character—the null character—marks 

the end of a string. Section 13.3 describes ways to read and write strings. Section 

13.4 discusses ways to write functions that process strings, and Section 13.5 covers 

some of the string-handling functions in the C library. Section 13.6 presents idioms 

that are often used when working with strings. Finally, Section 13.7 describes how 

to set up arrays whose elements are pointers to strings of different lengths. This 

section also explains how C uses such an array to supply command-line informa¬ 

tion to programs. 

13.1 String Literals 

A string literal is a sequence of characters enclosed within double quotes: 

"Put a disk in drive A, then press any key to continue\n" 

We first encountered string literals in Chapter 2; they often appear as format 

strings in calls of printf and scanf. 

Strings 

239 
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A 

Escape Sequences in String Literals 

String literals may contain the same escape sequences as character constants. 

We’ve used character escapes in printf and scanf format strings for some 

time. For example, we’ve seen that each \n character in the string 

"Candy\nls dandy\nBut liquor\nIs quicker.\n —Ogden Nash\n" 

causes the cursor to advance to the next line: 

Candy 

Is dandy 

But liquor 

Is quicker. 

--Ogden Nash 

Although octal and hexadecimal escapes are also legal in string literals, they’re not 
as common as character escapes. 

Be careful when using octal and hexadecimal escape sequences in string literals. 
An octal escape ends after three digits or with the first non-octal character. For 
example, the string "\1234" contains two characters (\123 and 4), and the 
string " \189 " contains three characters (\ 1, 8, and 9). A hexadecimal escape, on 
the other hand, isn’t limited to three digits; it doesn’t end until the first non-hex 
character. Consider what happens if a string contains the escape \x81, which rep¬ 
resents the character u. on IBM-compatible personal computers. The string 
" Z\x81rich" (“Zurich”) has six characters (Z, \x81, r, i, c, and h), but the 
string " \x81ber" (a failed attempt at “iiber”) has only two (\x81be and r). 
Most compilers will reject the latter string, since computers normally limit hex 
escapes to the range \x0-\x7 f (or possibly \xO-\xf f). 

Continuing a String Literal 

If we find that a string literal is too long to fit conveniently on a single line, C 

allows us to continue it on the next line, provided that we end the first line with a \ 

character. No other characters may follow \ on the same line, other than the (invis¬ 
ible) new-line character at the end: 

printf("Put a disk in drive A, then \ 

press any key to continue\n"); 

Incidentally, the \ character can be used to break any long symbol, not just strings 
(although that’s how it’s normally used). 

The \ technique has one drawback: the string must continue at the beginning 

of the next line, thereby wrecking the program’s indented structure. A better way 

to deal with long string literals was added to C when the language was standard¬ 

ized. According to the C standard, when two or more string literals are adjacent 
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(separated only by white space), the compiler must join them into a single string. 

This rule allows us to split a string literal over two or more lines: 

printf("Put a disk in drive A, then " 

"press any key to continue\n"); 

How String Literals Are Stored 

We’ve used string literals often in calls of print f and scanf. But when we call 

printf and supply a string literal as an argument, what are we actually passing? 

To answer this question, we need to know how string literals are stored. 

In essence, C treats string literals as character arrays. When a C compiler 

encounters a string literal of length n in a program, it sets aside n + 1 characters of 

memory for the string. This area of memory will contain the characters in the 

string, plus one extra character—the null character—to mark the end of the string. 

The null character is the very first character in the ASCII character set, so it’s rep¬ 

resented by the \ 0 escape sequence. 

Don’t confuse the null character (' \0 ') with the zero character (' 0 '). The null 
character has the ASCII code 0; the zero character has the code 48. 

For example, the string literal " abc" is stored as an array of four characters 

(a, b, c, and \0): 

String literals may be empty; the string "" is stored as a single null character: 

Since a string literal is stored as an array, the compiler treats it as a pointer of 

type char *. Both printf and scanf, for example, expect a value of type 

char * as their first argument. Consider the following example: 

printf("abc"); 

When printf is called, it is passed the address of " abc" (a pointer to where the 

letter a is stored in memory). 

Operations on String Literals 

In general, we can use a string literal wherever C allows a char * pointer. For 

example, a string literal can appear on the right side of an assignment: 
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char *p; 

p = "abc"; 

This assignment doesn’t copy the characters in " abc "; it merely makes p point to 
the first character of the string. 

C allows pointers to be subscripted, so we can subscript string literals: 

char ch; 

ch = "abc" [1] ; 

The new value of ch will be the letter b. The other possible subscripts are 0 

(which would select the letter a), 2 (the letter c), and 3 (the null character). This 

property of string literals isn’t used that much, but occasionally we’ll find it useful. 

Consider the following function, which converts a number between 0 and 15 into 
the character form of the equivalent hex digit: 

char digit_to_hex_char(int digit) 

{ 
return "0123456789ABCDEF"[digit]; 

} 

Q&A 

Changing the characters in a string literal is possible, but not recommended: 

char *p = "abc"; 

*p = 'b'; /* string literal is now "bbc" */ 

With some compilers, changing a string literal may cause programs to behave 
erratically. 

String Literals versus Character Constants 

A string literal containing a single character isn’t the same as a character constant. 

The string literal " a" is represented by a pointer to a memory location that con¬ 

tains the character a (followed by a null character). The character constant ' a ' is 
represented by an integer (the ASCII code for the character). 

Don’t ever use a character when a string is required (or vice versa). The call 

printf("\n"); 

is legal, because printf expects a pointer as its first argument. The following 
call isn’t legal, however: 

printf(1\n'); /*** WRONG ***/ 
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13.2 

idiom 

A 

String Variables 

Some programming languages provide a special string type for declaring string 

variables. C takes a different tack: any one-dimensional array of characters can be 

used to store a string, with the understanding that the string is terminated by a null 

character. This approach is simple, but has significant difficulties. It’s sometimes 

hard to tell whether an array of characters is being used as a string. If we write our 

own string-handling functions, we’ve got to be careful that they deal properly with 

the null character. Also, there’s no faster way to determine the length of a string 

than a character-by-character search for the null character. 

Let’s say that we need a variable capable of storing a string of up to 80 charac¬ 

ters. Since the string will need a null character at the end, we’ll declare the variable 

to be an array of 81 characters: 

#define STR_LEN 80 

char str[STR_LEN+1]; 

Notice that we defined STR_LEN to be 8 0 rather than 81, thus emphasizing the 

fact that str can store strings of no more than 80 characters. Adding 1 to the 

macro in this way is a common practice among C programmers. 

When declaring an array of characters that will be used to hold a string, always 
make the array one character longer than the string, because of the C convention 
that every string is terminated by a null character. Failing to leave room for the null 
character may cause unpredictable results when the program is executed, since 
functions in the C library assume that strings are null-terminated. 

Declaring a character array to have length STR_LEN + 1 doesn’t mean that it 

will always contain a string of STR_LEN characters. The length of a string 

depends on the position of the terminating null character, not on the length of the 

array in which the string is stored. An array of STR_LEN + 1 characters can hold 

strings of various lengths, ranging from the empty string to strings of length 

STR_LEN. 

Initializing a String Variable 

A string variable can be initialized at the point of declaration: 

char datel[8] = "June 14"; 

The compiler will copy the characters from "June 14" into the datel array, 

then add a null character so that datel can be used as a string. Here’s what 

datel will look like: 
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A 

J u n e i 4 \0 

Although "June 14" appears to be a string literal, it’s not. Instead, C views it as 

an abbreviation for an array initializer. In fact, we could have written 

char datel [ 8 ] = {'J\ 'u\ 'n', 'e\ ' '1', '4', ' \ 0' } ; 

I think you’ll agree that the original version is easier to read. 

What if the initializer is too short to fill the string variable? In that case, the 

compiler adds extra null characters. Thus, after the declaration 

char date2[9] = "June 14"; 

date2 will have the following appearance: 

date2 J u n e i 4 \o \0 

This behavior is consistent with C’s treatment of array initializers in general. When 

an array initializer is shorter than the array itself, the remaining elements are ini¬ 

tialized to 0. By initializing the extra elements of a character array to \0, the com¬ 
piler is following the same rule. 

What if the initializer is longer than the string variable? That’s illegal for 

strings, just as it’s illegal for other arrays. However, C does allow the initializer 

(not counting the null character) to have exactly the same length as the variable: 

char date3[7] = "June 14"; 

The compiler simply copies the characters from the initializer into date3: 

J U n e i l 
There’s no room for the null character, so the compiler makes no attempt to store 
one. 

If you’re planning to initialize a character array to contain a string, be sure that the 
length of the array is longer than the length of the initializer. Otherwise, the com¬ 
piler will quietly omit the null character, making the array unusable as a string. 

The declaration of a string variable may omit its length, in which case the 
compiler computes it: 

char date4[] = "June 14"; 

The compiler sets aside eight characters for date4, enough to store the characters 

in "June 14 " plus a null character. (The fact that the length of date4 isn’t spec- 
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ified doesn’t mean that the array can change its length later. Once the program is 

compiled, the length of date4 is fixed at eight.) Omitting the length of a string 

variable is especially useful if the initializer is long, since computing the length by 
hand can be error-prone. 

Character Arrays versus Character Pointers 

Let’s compare the declaration 

char date[] = "June 14"; 

which declares date to be an array of characters, with the similar-looking 

char *date = "June 14"; 

which declares date to be a pointer to a string literal. Thanks to the close rela¬ 

tionship between arrays and pointers, we can use either version of date as a 

string. In particular, any function expecting to be passed a character array or char¬ 

acter pointer will accept either version of date as an argument. 

However, we must be careful not to make the mistake of thinking that the two 

versions of date are interchangeable. There are significant differences between 

the two: 

■ In the array version, the characters stored in date can be modified, like the 

elements of any array. In the pointer version, date points to a string literal, 

and we saw in Section 13.1 that string literals shouldn’t be modified. 

■ In the array version, date is an array name. In the pointer version, date is a 

variable that can be made to point to other strings during program execution. 

If we need a string that can be modified, it’s our responsibility to set up an 

array of characters in which to store the string; declaring a pointer variable isn’t 

enough. The declaration 

char *p; 

causes the compiler to set aside enough memory for a pointer variable; unfortu¬ 

nately, it doesn’t allocate space for a string. (And how could it? We haven’t indi¬ 

cated how long the string would be.) Before we can use p as a string, it must point 

to an array of characters. One possibility is to make p point to a string variable that 

already exists: 

char str[STR_LEN+1], *p; 

p = str; 

p now points to the first character of str, so we can use p as a string. 

Using an uninitialized pointer variable as a string is a serious error. Consider the 
following example, which attempts to build the string " abc": 
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char *p ; 

P 10 ] = ' a 1 ; / * * * WRONG ~k ~k -k / 

P [ 1 ] = 1 b ' ; / * * * WRONG * * * / 

P [2] = 1 c ' ; / * * * WRONG •k * * / 

P [3] = 'VO'; / * * * WRONG k * * / 

Since p hasn’t been initialized, we don’t know where it’s pointing. Writing the 
characters a, b, c, and \0 into memory at that location will have an unknown 
effect on the program. The program may continue without problems, or it may 
crash or behave erratically. 

13.3 Reading and Writing Strings 

Writing a string is easy using either the printf or puts functions. Reading a 

string is a bit harder, primarily because of the possibility that the input string may 

be longer than the string variable into which it’s being stored. To read a string in a 

single step, we can use either scant or gets. As an alternative, we can read 
strings one character at a time. 

Writing Strings Using printf and puts 

The %s conversion specification allows printf to write a string. Consider the 
following example: 

char str[] = "Are we having fun yet?"; 

printf("Value of str: %s\n", str); 

The output will be 

Value of str: Are we having fun yet? 

printf writes the characters in a string one by one until it encounters a null char¬ 

acter. (If the null character is missing, printf continues past the end of the string 

until—eventually—it finds a null character somewhere in memory.) 

To print just part of a string, we can use the conversion specification %nc, 
where n is the number of characters to be displayed. The statement 

printf("%6c\n", str); 

will print 

Are we 
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A When using %nc to print a string, be sure to supply a field width; %c by itself 
won’t work. Use %c only to write a single value of type char. 

printf isn’t the only function that can write strings. The C library also pro¬ 
vides puts, which is used in the following way: 

puts(str) ; 

puts has only one argument, the string to be printed; there is no format string. 

After writing a string, puts always writes an additional new-line character, thus 

advancing to the beginning of the next output line. 

Reading Strings Using scanf and gets 

The %s conversion specification allows scanf to read a string: 

scanf("%s", str); 

There’s no need to put the & operator in front of str in the call of scanf; since 

str is an array name, it’s treated as a pointer automatically. 

When scanf is called, it skips white space, then reads characters and stores 

them into str until it encounters a white-space character, scanf always stores a 

null character at the end of the string. 

A string read using scanf will never contain white space. Consequently, 

scanf won’t usually read a full line of input; a new-line character will cause 

scanf to stop reading, but so will a space or tab character. To read an entire line 

of input at a time, we can use gets. Like scanf, the gets function reads input 

characters into an array, then stores a null character. In other respects, however, 

gets is somewhat different from scanf: 

■ gets doesn’t skip white space before starting to read the string (scanf 

does). 

■ gets reads until it finds a new-line character (scanf stops at any white- 

space character). Incidentally, gets discards the new-line character instead of 

storing it in the array; the null character takes the place of the new-line charac¬ 

ter. 

To see the difference between scanf and gets, consider the following pro¬ 

gram fragment: 

char sentence[SENT_LEN+1]; 

printf("Enter a sentence:\n"); 
scanf("%s", sentence); 

Suppose that after the prompt 
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A 

fgets function >22.5 

Enter a sentence: 

the user enters the line 

To C, or not to C: that is the question. 

scanf will store the string "To" into sentence. The next call of scant will 

resume reading the line at the space after the word To. 

Now suppose that we replace scanf by gets: 

gets(sentence); 

When the user enters the same input as before, gets will store the string 

" To C, or not to C: that is the question." 

into sentence. 

As they read characters into an array, scanf and gets have no way to detect 

when they’ve filled the array. Consequently, they may store characters past the end 

of the array, causing the program to behave erratically, scanf can be made safer 

by using the conversion specification %ns instead of %s, where n is a number indi¬ 

cating the maximum number of characters to be stored, gets, unfortunately, is 

inherently unsafe; fgets is a safer alternative. 

A final note about gets and puts: Since these functions are simpler than 

scanf and print f, they’re usually faster as well. 

Reading Strings Character by Character 

Since both scanf and gets are risky and insufficiently flexible for many appli¬ 

cations, C programmers often write their own input functions. By reading strings 

one character at a time, these functions provide a greater degree of control than the 

standard input functions. 

If we decide to design our own input function, we’ll need to consider the fol¬ 

lowing issues: 

■ Should the function skip white space before beginning to store the string? 

■ What character causes the function to stop reading: a new-line character, any 

white-space character, or some other character? Is this character stored in the 

string or discarded? 

■ What should the function do if the input string is too long to store: discard the 

extra characters or leave them for the next input operation? ■ 

Suppose we need a function that doesn’t skip white-space characters, stops 

reading at the first new-line character (which isn’t stored in the string), and dis¬ 

cards extra characters. The function will have the following prototype: 

int read_line(char str[], int n); 
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str represents the array into which we’ll store the input, and n is the maximum 

number of characters to be read. If the input line contains more than n characters, 

read_line will discard the additional characters. We’ll have read_line 

return the number of characters it actually stores into str (a number anywhere 

from 0 to n). We may not always need read_line’s return value, but it doesn’t 
hurt to have it available. 

read_line consists primarily of a loop that reads characters one by one and 

stores them, provided that there’s room left in str. The loop terminates when the 

new-line character is read. (Strictly speaking, we should also have the loop termi¬ 

nate if get char should fail to read a character, but we’ll ignore that complication 

for now.) Here’s the complete definition of read_line: 

int read_line(char str[], int n) 

{ 
char ch; 

int i = 0; 

while ((ch = getchar()) != '\n1) 

if (i < n) 

str[i++] = ch; 

str[i] = '\0'; 

return i; 

} 

Before returning, read_line puts a null character at the end of the string. 

Standard functions such as scant and gets automatically put a null character at 

the end of an input string; if we’re writing our own input function, however, we 

must take on that responsibility. 

/* terminates string */ 

/* number of characters stored */ 

13.4 Accessing the Characters in a String 

Since strings are stored as arrays, we can use subscripting to access the characters 

in a string. To process every character in a string s, for example, we can set up a 

loop that increments a counter i and selects characters via the expression s [ i ]. 

Suppose that we need a function that counts the number of spaces in a string. 

Using array subscripting, we might write the function in the following way: 

int count_spaces(const char s[]) 

{ 
int count =0, i; 

for (i = 0; s[i] != '\0'; i++) 

if (s[i] == ' ' ) 

count++; 

return count; 
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I’ve included const in the declaration of s to indicate that count_spaces 

doesn’t change the array. If s were not a string, count_spaces would need a 

second argument specifying the length of the array. Since s is a string, however, 

count_spaces can locate the end of s by testing for the null character. 

Many C programmers wouldn’t write count_spaces as we have. Instead, 

they’d use a pointer to keep track of the current position within the string. As we 

saw in Section 12.2, this technique is always available for processing arrays, but it 

proves to be especially convenient for working with strings. 
Let’s rewrite the count_spaces function using pointer arithmetic instead 

of array subscripting. We’ll eliminate the variable i and use s itself to keep track 

of our position in the string. By incrementing s repeatedly, count_spaces can 

step through each character in the string. Here’s our new version of 

count_spaces: 

int count_spaces(const char *s) 

{ 
int count = 0; 

for (; *s != '\0'; s++) 

if (*s == ' ' ) 
count++; 

return count; 

} 

Note that const doesn’t prevent count_spaces from modifying s; it’s there 

to prevent the function from modifying what s points to. And since s is a copy of 

the argument that’s passed to count_spaces, incrementing s doesn’t affect that 

argument. 

The count_spaces function raises some questions about how to write 

string functions: 

■ Is it better to use array operations or pointer operations to access the char¬ 

acters in a string? We’re free to use whichever is more convenient; we can 

even mix the two. In the second version of count_spaces, treating s as a 

pointer simplifies the function slightly by removing the need for the variable 

i. Traditionally, C programmers lean toward using pointer operations for pro¬ 

cessing strings. 

■ Should a string parameter be declared as an array or as a pointer? The two 

versions of count_spaces illustrate the options: the first version of 

count_spaces declares s to be an array; the second version declares s to 

be a pointer. Actually, there’s no difference between the two declarations— 

recall from Section 12.3 that the compiler treats an array parameter as though 

it had been declared as a pointer. 

■ Does the form of the parameter (s [ ] or * s) affect what can be supplied as 

an argument? No. When count_spaces is called, the argument could be 

an array name, a pointer variable, or a string literal—count_spaces can’t 
tell the difference. 
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13.5 Using the C String Library 

Some programming languages provide operators that can copy strings, compare 

strings, concatenate strings, select substrings, and the like. C’s operators, in con¬ 

trast, are essentially useless for working with strings. Strings are treated as arrays 

in C, so they’re restricted in the same ways as arrays—in particular, they can’t be 
copied or compared using C’s operators. 

Direct attempts to copy or compare strings will fail. For example, suppose that 
strl and str2 have been declared as follows: 

char strl[10], str2[10]; 

Copying a string into a character array using the = operator is not possible: 

strl = "abc"; /*** WRONG ***/ 

str2 = strl; /*** WRONG ***/ 

C interprets these statements as (illegal) assignments of one pointer to another. Ini¬ 

tializing a character array using = is legal, though: 

char strl[10] = "abc"; 

In the context of a declaration, = is not the assignment operator. 
Attempting to compare strings using a relational or equality operator is legal, 

but won’t produce the desired result: 

if (strl == str2) ... /*** WRONG ***/ 

This statement compares strl and str2 as pointers', it doesn’t compare the con¬ 
tents of the two arrays. Since strl and str2 have different addresses, the 
expression strl == str2 must have the value 0. 

Fortunately, all is not lost: the C library provides a rich set of functions for 

performing operations on strings. Prototypes for these functions reside in the 

<string.h>header>23.5 header <string. h>, so programs that need string operations should contain the 

following line: 

♦include <string.h> 

Each function declared in <string.h> requires at least one string as an 

argument. String parameters are declared to have type char *, allowing the argu¬ 

ment to be a character array, a variable of type char *, or a string literal—all are 

suitable as strings. Watch out for string parameters that aren’t declared const, 

however. Such a parameter will be modified when the function is called, so the 

corresponding argument shouldn’t be a string literal. 
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strncpy function >23.5 

There are many functions in <string . h>; I’ll cover four of the more widely 

used. In subsequent examples, assume that strl and str2 are character arrays 

used as strings. 

The strcpy (String Copy) Function 

The strcpy function has the following prototype in <string. h>: 

char *strcpy(char *sl, const char *s2); 

strcpy copies the string s2 into the string si. (To be precise, we should say 

“strcpy copies the string pointed to by s2 into the array pointed to by si,” but 

that’s a bit long-winded.) That is, strcpy copies characters from s2 to si up to 

(and including) the first null character in s2. strcpy returns si (a pointer to the 

destination string). The string pointed to by s2 isn’t modified, so it’s declared 

const. 
The existence of strcpy compensates for the fact that we can’t use the 

assignment operator to copy strings. For example, suppose that we want to store 

the string " abed" in strl. We can’t use the assignment 

strl = "abed"; /*** WRONG ***/ 

because strl is an array name and can’t appear on the left side of an assignment. 

Instead, we can call strcpy: 

strcpy(strl, "abed"); /* strl now contains "abed" */ 

Similarly, we can’t assign strl to str2 directly, but we can call strcpy: 

strcpy(str2, strl); /* str2 now contains "abed" */ 

In the call strcpy (str2 , strl), strcpy has no way to check that the string 
pointed to by strl will actually fit in the array pointed to by str2. Suppose that 
str2 points to an array of length n. If the string that strl points to has no more 
than n - 1 characters, then the copy will succeed. But if strl points to a longer 
string, the result is unpredictable. (Since strcpy always copies up to the first null 
character, it will continue copying past the end of the array that str2 points to. 
Whatever was previously stored in memory after that array will be overwritten.) 
Calling the strncpy function is a safer, albeit slower, way to copy a string. 

Most of the time, we’ll discard strepy’s return value. On occasion, though, 

it can be useful to call strcpy as part of a larger expression in order to use its 

return value. For example, we could chain together a series of strcpy calls to get 

the same effect as a multiple assignment: 

strcpy(str2, strcpy(strl, "abed")); 
/* both strl and str2 now contain "abed" */ 
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The strcat (String Concatenate) Function 

The strcat function has the following prototype: 

char *strcat(char *sl, const char *s2); 

strcat appends the contents of the string s2 to the end of the string si; it 
returns si (a pointer to the resulting string). 

Here are some examples of strcat in action: 

strcpy(strl, "abc"); 

strcat(strl, "def"); /* strl now contains "abcdef" */ 

strcpy(strl, "abc"); 

strcpy(str2, "def"); 

strcat(strl, str2); /* strl now contains "abcdef" */ 

As with strcpy, the value returned by strcat is normally discarded. The 

following example shows how the return value might be used: 

strcpy(strl, "abc"); 

strcpy(str2, "def"); 

strcat(strl, strcat(str2, "ghi")); 

/* strl now contains "abcdefghi"; str2 contains "defghi" */ 

The effect of the call strcat (strl, str2) is unpredictable if the array 
pointed to by strl isn’t long enough to accommodate the characters in the string 
pointed to by str2. Consider the following example: 

char strl[6] = "abc"; 

strcat(strl, "def"); /*** WRONG ***/ 

strcat will attempt to add the characters d, e, f, and \ 0 to the end of the string 
already stored in strl. Unfortunately, strl is limited to six characters, causing 
strcat to write past the end of the array. 

The strcmp (String Compare) Function 

Q&A 

The strcmp function has the following prototype: 

int strcmp(const char *sl, const char *s2); 

strcmp compares the strings si and s2, returning a value less than, equal to, or 

greater than 0, depending on whether si is less than, equal to, or greater than s2. 

For example, to see if strl is less than str2, we’d write 

if (strcmp(strl, str2) < 0) /* is strl < str2? */ 
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size_t type >21.3 

To test whether strl is less than or equal to str2, we’d write 

if (strcmp(strl, str2) <= 0) /* is strl <= str2? */ 

By choosing the proper relational operator (<, <=, >, >=) or equality operator (==, 

! =), we can test any possible relationship between strl and str2. 

strcmp compares strings using lexicographic ordering, which resembles the 

way words are arranged in a dictionary. More precisely, strcmp considers si to 

be less than s2 if either one of the following conditions is satisfied: 

■ The first i characters of si and s2 match, but the (z'+l)st character of si is 

less than the (z'+l)st character of s2. For example, "abc" is less than "bed", 

and "abd" is less than "abe". 

■ All characters of si match s2, but si is shorter than s2. For example, 

" abc" is less than " abed". 

As it compares characters from two strings, strcmp looks at the numerical 

codes that represent the characters. Some knowledge of the underlying character 

set is helpful in order to predict what strcmp will do. Assuming that our machine 

uses the ASCII character set, here are some of the rules that strcmp will follow: 

■ All upper-case letters are less than all lower-case letters. (In ASCII, codes 

between 65 and 90 represent upper-case letters; codes between 97 and 122 

represent lower-case letters.) 

■ Digits are less than letters. (Codes between 48 and 57 represent digits.) 

■ Spaces are less than all printing characters. (The space character has the value 

32 in ASCII.) 

The strlen (String Length) Function 

The strlen function has the following prototype: 

size_t strlen(const char *s); 

size_t, which is defined in the C library, is an unsigned integer type (usually 

unsigned int or unsigned long int). Unless we’re dealing with extremely 

long strings, this technicality need not concern us—we simply treat the return 

value of strlen as an integer. 

strlen returns the length of a string s. More precisely, strlen returns the 

number of characters in s up to, but not including, the first null character. For 
example: 

int len; 

len = strlen("abc"); /* len is now 3 */ 
len = strlen(""); /* len is now 0 */ 
strcpy(strl, "abc"); 
len = strlen(strl); /* len is now 3 */ 
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The last example illustrates an important point: When given an array as its argu¬ 

ment, strlen doesn’t measure the length of the array itself; instead, it returns the 
length of the string stored in the array. 

PROGRAM Printing a One-Month Reminder List 

To illustrate the use of the C string library, we’ll now look at a program that prints 

a one-month list of daily reminders. The user will enter a series of reminders, with 

each prefixed by a day of the month. When the user enters 0 instead of a valid day, 

the program will print a list of all reminders entered, sorted by day. Here’s what a 

session with the program will look like: 

Enter day and reminder: 24 Susan's birthday 

Enter day and reminder: 5 6:00 - Dinner with Marge and Russ 

Enter day and reminder: 26 Movie - "Chinatown" 

Enter day and reminder: 7 10:30 - Dental appointment 

Enter day and reminder: 12 Movie - "Dazed and Confused" 

Enter day and reminder: 5 Saturday class 

Enter day and reminder: 12 Saturday class 

Enter day and reminder: 0 

Day Reminder 

5 Saturday class 

5 6:00 - Dinner with Marge and Russ 

7 10:30 - Dental appointment 

12 Saturday class 

12 Movie - "Dazed and Confused" 

24 Susan's birthday 

26 Movie - "Chinatown" 

The overall strategy isn’t very complicated: we’ll have the program read a 

series of day-and-reminder combinations, storing them in order (sorted by day), 

and then display them. To read the days, we’ll use scanf; to read the reminders, 

we’ll use the read_line function (Section 13.3). 

We’ll store the strings in a two-dimensional array of characters, with each row 

of the array containing one string. After the program reads a day and its associated 

reminder, it will search the array to determine where the day belongs, using 

strcmp to do comparisons. It will then use strcpy to move all strings below 

that point down one position. Finally, the program will copy the day into the array 

and call streat to append the reminder to the day. (The day and the reminder 

have been kept separate up to this point.). 

Of course, there are always a few minor complications. For example, we want 

the days to be right-justified in a two-character field, so that their ones digits will 

line up. There are many ways to handle the problem. I’ve chosen to have the pro- 

sprintf function>22.8 gram use scanf to read the day into an integer variable, then call sprintf to 
convert the day back into string form, sprintf is a library function that’s similar 

to print f, except that it writes output into a string. The call 

sprintf(day_str, "%2d", day); 
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remind.c 

writes the value of day into day_str. Since sprint f automatically adds a null 

character when it’s through writing, day_str will contain a properly null-termi¬ 

nated string. 
Another complication is making sure that the user doesn’t enter more than two 

digits. We’ll use the following call of scanf for this purpose: 

scant("%2d", &day); 

The number 2 between % and d tells scanf to stop reading after two digits, even 

if the input has more digits. 
With those details out of the way, here’s the program: 

/* Prints a one-month reminder list */ 

#include <stdio.h> 

#include <string.h> 

ttdefine MAX_REMIND 50 

#define MSG_LEN 60 

int read_line(char str[], int n) ; 

main() 

{ 
char reminders[MAX_REMIND][MSG_LEN+3]; 

char day_str[3], msg_str[MSG_LEN+1]; 

int day, i, j, num_remind = 0; 

for (;;) { 
if (num_remind == MAX_REMIND) { 

printff"-- No space left --\n"); 

break; 

} 

printf("Enter day and reminder: "); 

scanf("%2d", &day); 

if (day == 0) 

break; 

sprintf(day_str, "%2d", day); 

read_line(msg_str, MSG_LEN); 

for (i = 0; i < num_remind; i++) 

if (strcmp(day_str, reminders[i]) < 0) 

break; 

for (j = num_remind; j > i; j--) 

strcpy(reminders[j], reminders(j-1]); 

strcpy(reminders[i], day_str); 

strcat(reminders[i], msg_str); 

num_remind++; 

} 
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printf("\nDay Reminder\n"); 

for (i = 0; i < num_remind; i++) 

printf(" %s\n", reminders[i]); 

return 0; 

} 

int read_line(char str[], int n) 

{ 
char ch; 

int i = 0; 

while ((ch = getchar()) != '\n') 

if (i < n) 

str[i++] = ch; 

str[i] = 1\0'; 

return i; 

} 

Although the remind, c program is a good illustration of the strcpy, 

streat, and stremp functions, it lacks something as a practical reminder pro¬ 

gram. There are obviously a number of improvements needed, ranging from minor 

tweaks to major enhancements (such as saving the database in a file when the pro¬ 

gram terminates). We’ll discuss some of these improvements in the exercises at the 

end of this chapter and in later chapters. 

13.6 String Idioms 

Functions that manipulate strings are a particularly rich source of idioms. In this 

section, we’ll explore two of the most famous idioms by using them to write the 

strlen and streat functions. (You’ll never have to write these functions, of 

course, since they’re part of the standard library. But you may have to write func¬ 

tions that are similar.) 

The concise style I’ll use in this section is popular with many C programmers. 

You should master this style even if you don’t plan to use it in your own programs, 

since you’re likely to encounter it in programs written by others. 

Searching for the End of a String 

Many string operations require searching for the end of a string. The strlen 

function is a prime example. The following version of strlen searches its string 

argument to find the end, using a variable to keep track of the string’s length: 
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size_t strlen(const char *s) 

{ 
size_t n; 

for (n = 0; *s != '\0'; s++) 

n+ +; 

return n; 

} 

As the pointer s moves across the string from left to right, the variable n keeps 

track of how many characters have been seen so far. When s finally points to a null 

character, n contains the length of the string. 
Let’s see if we can condense the definition of strlen. First, we’ll move the 

initialization of n to its declaration: 

size_t strlen(const char *s) 

{ 
size_t n = 0; 

for (; *s != ' \0 ' ; s++) 

n++ ; 

return n; 

} 

Next, we notice that the condition *s ! = ' \0 ' is the same as *s ! = 0, because 

the ASCII code for the null character is 0. But testing *s != 0 is the same as test¬ 

ing *s; both are true if *s isn’t equal to 0. These observations lead to our next ver¬ 

sion of strlen: 

size_t strlen(const char *s) 

{ 
size_t n = 0; 

for (; *s; s++) 
n++ ; 

return n; 

} 

But, as we saw in Section 12.2, it’s possible to increment s and test *s in the same 

expression: 

size_t strlenfconst char *s) 

{ 
size_t n = 0; 

for (; * s + +;) 
n++; 

return n; 

} 

Replacing the for statement by a while statement, we arrive at the following 

version of strlen: 
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size_t strlen(const char *s) 

{ 
size_t n = 0; 

while (*s++) 

n++ ; 

return n; 

} 

Although we’ve condensed strlen quite a bit, it’s likely that we haven’t 

increased its speed. Here’s a version that does run faster, at least with some com¬ 

pilers: 

size_t strlen(const char *s) 

{ 
const char *p = s; 

while (*s) 

s++; 

return s - p; 

} 

This version of strlen computes the length of the string by locating the position 

of the null character, then subtracting from it the position of the first character in 

the string. The improvement in speed comes from not having to increment n inside 

the while loop. Note the appearance of the word const in the declaration of p, 

by the way; without it, the compiler would notice that assigning s to p places the 

string that s points to at risk. 

The statement 

idiom while (*s) 

s++ ; 

and the related 

idiom while (*s++) 

/ 

are idioms meaning “search for the null character at the end of a string.” The first 

version leaves s pointing to the null character. The second version is more concise, 

but leaves s pointing just past the null character. 

Copying a String 

Copying a string is another common operation. To introduce C’s “string copy” 

idiom, we’ll develop a version of the s treat function. Let’s start with a straight¬ 

forward but somewhat lengthy version of streat: 
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char *strcat(char *sl, const char *s2) 

{ 
char *p; 

p = si; 
while (*p != 1\0') 

P++ ; 

while (*s2 != '\0 ' ) { 

*p = *s2; 

P++; 

s 2 + + ; 

} 
*p = '\0'; 

return si; 

} 

This version of strcat uses a two-step algorithm: (1) Locate the null character at 

the end of the string si and make p point to it. (2) Copy characters one by one 

from s2 to where p is pointing. 
The first while statement in the function implements step (1). p is set to 

point to the first character in si. Assuming that si points to the string " abc", we 

have the following picture: 

p is then incremented as long as it doesn’t point to a null character. When the loop 

terminates, p must be pointing to the null character: 

The second while statement implements step (2). The loop body copies one 

character from where s2 points to where p points, then increments both p and s2. 

If s2 originally points to the string "def", here’s what the strings will look like 

after the first loop iteration: 

X 

d e f \0 
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The loop terminates when s2 points to the null character: 

s2 

d | e f \0 

After putting a null character where p is pointing, s treat returns. 

By a process similar to the one we used for strlen, we can condense the 

definition of streat, arriving at the following version: 

char *strcat(char *sl, const char *s2) 
{ 

char *p = si; 

while (*p) 
p++ ; 

while (*p++ = *s2++) 
/ 

return si; 
} 

The heart of our streamlined s treat function is the “string copy” idiom: 

idiom while (*p++ = *s2 + + ) 

If we ignore the two ++ operators, the expression inside the parentheses simplifies 

to an ordinary assignment: 

*p = *s2 

This expression copies a character from where s2 points to where p points. After 

the assignment, both p and s2 are incremented, thanks to the two ++ operators. 

Repeatedly executing this expression has the effect of copying a series of charac¬ 

ters from where s2 points to where p points. 

But what causes the loop to terminate? Since the primary operator inside the 

parentheses is assignment, the while statement tests the value of the assign¬ 

ment—the character that was copied. All characters except the null character test 

true, so the loop won’t terminate until the null character has been copied. And 

since the loop terminates after the assignment, we don’t need a separate statement 

to put a null character at the end of the new string. 

13.7 Arrays of Strings 

Let’s now turn to a common problem that we’ll encounter when working with 

strings: What’s the best way to store an array of strings? The obvious solution is to 
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create a two-dimensional array of characters, then store the strings in the array, one 

per row. Consider the following example: 

char planets[][8] = {"Mercury", "Venus", "Earth", 
"Mars", "Jupiter", "Saturn", 

"Uranus", "Neptune", "Pluto"}; 

Although we’re allowed to omit the number of rows in the planets array (since 

that’s obvious from the number of elements in the initializer), C requires that we 

specify the number of columns. Here’s what the array would look like: 

0 1 2 3 4 5 6 7 

0 M e r c u r y \0 

1 V e n u s \0 \0 \0 

2 E a r t h \0 \0 \0 

3 M a r s \o \0 \0 \0 

4 J u P i t e r \0 

5 S a t u r n \0 \0 

6 U r a n u s \0 \0 

7 N e P t u n e \0 

8 P 1 u t o \0 \0 \0 

Not all our strings were long enough to fill an entire row of the array, so C padded 

them with null characters. There’s a bit of wasted space in this array, since only 

three planets have names long enough to require eight characters (including the 

terminating null character). The remind, c program (Section 13.5) is a glaring 

example of this kind of waste. It stores reminders in rows of a two-dimensional 

character array, with 60 characters set aside for each reminder. In our example, the 

reminders ranged from 14 to 33 characters in length, so the amount of wasted 

space was considerable. 
The inefficiency that’s apparent in these examples is common when working 

with strings, since most collections of strings will have a mixture of long strings 

and short strings. What we need is a ragged array: an array whose rows can have 

different lengths. C doesn’t provide a “ragged array type,” but it does give us the 

tools to simulate one. The secret is to create an array whose elements are pointers 

to strings. 
Here’s the planets array again, this time as an array of pointers to strings: 

char *planets[] = ("Mercury", "Venus", "Earth", 

"Mars", "Jupiter", "Saturn", 

"Uranus", "Neptune", "Pluto"'); 

Not much of a change, eh? We simply removed one pair of brackets and put an 

asterisk in front of planets. The effect on how planets is stored is dramatic, 

though: 
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planets 

M e r c u r y \°| 

V e n u s \0 
i 

E a r t h \0 i 
M a r s \0 1 
J u P i t e r no] 

S a t u r n °l 
» r a n u s xoj 

N e P t u n e 
EJ 

P i u t o 
E) 

Each element of planets is a pointer to a null-terminated string. There are no 

longer any wasted characters in the strings, although we’ve had to allocate space 

for the pointers in the planets array. 

To access one of the planet names, all we need do is subscript the planets 

array. Accessing a character in a planet name is done in the same way as accessing 

an element of a two-dimensional array, thanks to the close relationship between 

pointers and arrays. To search the planets array for strings beginning with the 

letter M, for example, we might use the following loop: 

for (i = 0; i < 9; i++) 

if (planets[i][0] == 'M') 

printf("%s begins with M\n", planets[i]); 

Command-Line Arguments 

When we run a program, we’ll often need to supply it with information—a file 

name, perhaps, or a switch that modifies the program’s behavior. Consider the 

UNIX Is command. If we run Is by typing 

Is 

it will display the names of the files in the current directory. (The corresponding 

DOS command is dir.) But if we instead type 

Is m* 

then Is will display all files whose names begin with m. If any subdirectories have 

names beginning with m, their files are displayed as well. To modify the behavior 

of Is further, we can supply options as part of the command line: 

Is -Id m* 

Specifying - Id (a combination of the -1 and -d options) causes Is to display a 

“long” (detailed) listing of files and subdirectories whose names begin with m, 

with subdirectories shown by name only. 
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Q&A 

Q&A 

Command-line information is available to all programs, not just operating sys¬ 

tem commands. To obtain access to these command-line arguments (called pro¬ 

gram parameters in the standard), we must define main as a function with two 

parameters, which are customarily named argc and argv: 

main(int argc, char *argv[]) 

{ 

} 

argc (“argument count”) is the number of command-line arguments (including 

the name of the program itself), argv (“argument vector”) is an array of pointers 

to the command-line arguments, which are stored in string form, argv [ 0 ] points 

to the name of the program, while argv[l] through argv[argc-1] point to 

the remaining command-line arguments. 
argv has one additional element, argv [argc], which is always a null 

pointer—a special pointer that points to nothing. We’ll discuss null pointers in a 

null pointers >17.1 later chapter; for now, all we need to know is that the macro NULL represents the 

null pointer. 
If the user enters the command line 

Is -Id m* 

then argc will be 3, argv[0] will point to a string containing the program 

name, argv [1] will point to the string "-Id", argv [2 ] will point to the string 

"m* ", and argv [ 3 ] will be a null pointer: 

0 

1 

2 

3 

argv 

Our diagram doesn’t show the program name in detail, since it may include a path 

or other information that depends on the operating system. If the program name 

isn’t available, argv [ 0 ] points to an empty string. 

Since argv is an array of pointers, we already know how to access command¬ 

line arguments. Typically, a program that expects command-line arguments will set 

up a loop that examines each argument in turn. One way to set up such a loop is to 

use an integer variable as an index into the argv array. For example, the following 

loop prints the command-line arguments, one per line: 

int i ; 

for (i = 1; i < argc; i++) 

printf("%s\n", argvfi]); 
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Another technique is to set up a pointer to argv [ 1 ], then increment the pointer 

repeatedly to step through the rest of the array. Since the last element of argv is 

always a null pointer, the loop can terminate when it finds a null pointer in the 
array: 

char * *p; 

for (p = &argv[l]; *p != NULL; p++) 

printf("%s\n", *p); 

Since p is a pointer to a pointer to a character, we’ve got to use it carefully. Setting 

p equal to kargv [ 1 ] makes sense; argv [ 1 ] is a pointer to a character, so 

&argv [ 1 ] will be a pointer to a pointer. The test *p ! = NULL is OK, since *p 

and NULL are both pointers. Incrementing p looks good; p points to an array ele¬ 

ment, so incrementing it will advance it to the next element. Printing *p is fine, 

since *p is a pointer to a character. 

PROGRAM Checking Planet Names 

Our next program, planet, c, illustrates how to access command-line argu¬ 

ments. The program is designed to check a series of strings to see which ones are 

names of planets. When the program is run, the user will put the strings to be tested 

on the command line: 

planet Jupiter venus Earth fred 

The program will indicate whether or not each string is a planet name; if it is, the 

program will also display the planet’s number (with planet 1 being the one closest 

to the sun): 

Jupiter is planet 5 

venus is not a planet 

Earth is planet 3 

fred is not a planet 

Notice that the program doesn’t recognize a string as a planet name unless its first 

letter is upper-case and its remaining letters are lower-case. 

planet.C /* Checks planet names */ 

#include <stdio.h> 

tinclude <string.h> 

#define NUM_PLANETS 9 

main(int argc, char *argv[]) 

{ 
char *planets[] = {"Mercury", "Venus”, "Earth", 

"Mars", "Jupiter", "Saturn", 

"Uranus", "Neptune", "Pluto"}; 

int i, j; 
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for (i = 1; i < argc; i++) { 

for (j = 0; j < NUM_PLANETS; j++) 

if (strcmp(argv[i], planets[j]) == 0) { 

printf("%s is planet %d\n", argv[i], j+1); 

break; 

} 
if (j == NUM_PLANETS) 

printf("%s is not a planet\n", argv[i]); 

} 

return 0; 

} 

The program visits each command-line argument in turn, comparing it with 

the strings in the planets array until it finds a match or reaches the end of 

the array. The most interesting part of the program is the call of strcmp, in 

which the arguments are argv [ i ] (a pointer to a command-line argument) and 

planets [ j ] (a pointer to a planet name). 

Q&A 

Q: How long can a string literal be? 

A: According to the C standard, compilers must allow string literals to be at least 509 

characters long. (Yes, you read that right—509. Don’t ask.) Many compilers will 

allow string literals of much greater length. 

Q: Why aren’t string literals called “string constants”? 

A: Because they’re not necessarily constant. Since string literals are accessed through 

pointers, there’s nothing to prevent a program from modifying the characters in a 

string literal. 

Q: Changing a string literal seems harmless enough. Why does Standard C dis¬ 
courage this practice? [p. 242] 

A: Some compilers try to reduce memory requirements by storing single copies of 

identical string literals. Consider the following example: 

char *p = "abc", *q = "abc"; 

Some compilers will store " abc" just once, making both p and q point to it. If we 

were to change " abc" through the pointer p, the string that q points to would also 

be affected. Needless to say, this could lead to some annoying bugs. 

Despite Standard C’s injunction against modifying string literals, some pro¬ 

grammers do so anyway, knowing that their compiler stores string literals 

uniquely. I recommend avoiding this practice, however, since it reduces the porta¬ 
bility of the program. 
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Q: 
A: 

Q: 

A: 

Q: 

A: 

*Q: 

A: 

EOF macro >22.4 

Should every array of characters include room for a null character? 

Not necessarily, since not every array of characters is used as a string. Including 

room for the null character (and actually putting one into the array) is necessary 

only if you’re planning to call a function that requires a null-terminated string. 

You do not need a null character if you’ll only be performing operations on 

individual characters. For example, we might have an array of characters that we’ll 

use as a translation table: 

char translation_table[128]; 

The only operation we’ll perform on this array is subscripting. We don’t view 

translation_table as a string, and we won’t perform any string operations 

on it. 

If print f and scant expect their first argument to be of type char *, does 

that mean that the argument can be a string variable instead of a string lit¬ 

er all 

Yes, as the following example shows: 

char fmt[] = "%d\n"; 

int i ; 

printf(fmt, i); 

This ability opens the door to some intriguing possibilities—reading a format 

string as input, for example. 

If I want print f to write a string str, can’t I just supply str as the format 

string, as in the following example? 

printf(str); 

Yes, but it’s risky. If str contains the % character, you won’t get the desired result, 

since printf will assume the % is the beginning of a conversion specification. 

How can read_line detect whether getchar has failed to read a charac¬ 

ter? [p. 249] 

If it can’t read a character, either because of an error or because of end-of-file, 

getchar returns the value EOF, which has type int. Here’s a revised version of 

read_line that tests the return value of getchar for EOF. Changes are marked 

in bold: 

int read_line(char str[], int n) 

{ 
int ch; 

int i = 0; 

while ((ch = getchar()) != '\n' && ch != EOF) 

if (i < n) 

str[i++] = ch; 
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str[i] = 1\0 1 ; 
return i; 

} 

Q: Why does strcmp return a number that’s less than, equal to, or greater than 

zero? Does the return value have any significance? [p. 253] 

A: strcmp’s return value probably stems from the way the function is traditionally 

written. Consider the version in Kernighan and Ritchie’s The C Programming Lan¬ 

guage: 

int strcmp(char *s, char *t) 
{ 

int i ; 

for (i = 0; s[i] == t [i]; i++) 
if (s [i] == '\0 ' ) 

return 0; 
return s[i] - t[i]; 

} 

The return value is the difference between the first “mismatched” characters in the 

s and t strings, which will be negative if s points to a “smaller” string than t and 

positive if s points to a “larger” string. There’s no guarantee that strcmp is actu¬ 

ally written this way, though, so it’s best not to assume that the magnitude of its 

return value has any particular meaning. 

Q: My compiler gives the warning “Possibly incorrect assignment” when I try to 

compile the while statement in the strcat function: 

while (*p+ + = *s2++) 
I 

What am I doing wrong? 

A: Nothing. Many compilers—but not all, by any means—issue a warning if you use 

= where == is normally expected. This warning is valid at least 95% of the time, 

and it will save you a lot of debugging if you heed it. Unfortunately, the warning 

isn’t relevant in this particular example; we actually do mean to use =, not ==. To 

get rid of the warning, rewrite the while loop as follows: 

while ((*p++ = *s2++) != 0) 
/ 

Since the while statement normally tests whether *p+ + = *s2 + + is not 0, we 

haven’t changed the meaning of the while statement. The warning goes away, 

however, since the statement now tests a condition, not an assignment. 

Q: Are the strlen and strcat functions actually written as shown in Section 
13.6? 

A: Possibly, although it’s common practice for compiler vendors to write these func¬ 

tions—and many other string functions—in assembly language instead of C. The 
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Q: 

A: 

Q: 
A: 

Q: 
A: 

Q: 

A: 

dynamic storage allocation >17.1 

Section 13.3 1. 

string functions need to be as fast as possible, since they’re used often and have to 

deal with strings of arbitrary length. Writing these functions in assembly language 

makes it possible to achieve great efficiency by taking advantage of any special 

string-handling instructions that the CPU may provide. 

Why does the C standard use the term “program parameters” instead of 

“command-line arguments”? [p. 264] 

Programs aren’t always run from a command line. In a windowing environment, 

for example, programs are launched with a mouse click. In such an environment, 

there’s no traditional command line, although there may be other ways of passing 

information to a program; the term “program parameters” leaves the door open for 

these alternatives. 

Do I have to use the names argc and argv for main’s parameters? [p. 264] 

No. Using the names argc and argv is merely a convention, not a language 

requirement. 

I’ve seen argv declared as **argv instead of *argv [ ]. Is this legal? 

Certainly. When declaring a parameter, writing *a is always the same as writing 

a [ ], regardless of the type of a’s elements. 

We’ve seen how to set up an array whose elements are pointers to string liter¬ 

als. Are there any other applications for arrays of pointers? 

Yes. Although we’ve focused on arrays of pointers to character strings, that’s not 

the only application of arrays of pointers. We could just as easily have an array 

whose elements point to any type of data, whether in array form or not. Arrays of 

pointers are particularly useful in conjunction with dynamic storage allocation. 

Exercises 

The following function calls supposedly write a single new-line character, but some are 
incorrect. Identify which calls don’t work and explain why. 

(a) printf("%c", '\n'); (g) 
(b) printf("%c", "\n"); (h) 

(c) printf("%s", '\n'); 0) 
(d) printf("%s", "\n"); (j) 
(e) printf('\n1) ; (k) 

(f) printf("\n") r 

putchar('\n'); 

putchar("\n"); 

puts('\n'); 

puts("\n"); 

puts(""); 

Suppose that p is defined as follows: 

char *p = "abc"; 

Which of the following function calls are legal? Show the output produced by each legal 
call, and explain why the others are illegal. 
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*3. 

4. 

isspace function >23.4 

Section 13.4 5. 

toupper function >23.4 

6. 

*7 

(a) putchar(p); 

(b) putchar(*p); 

(c) puts (p) ; 

(d) puts ( *p) ; 

Suppose that we call scant as follows: 

scant("%d%s%d", &i, s, & j ) ; 

If the user enters 12abc34 56def7 8, what will the values of i, s, and j be after the 
call? (Assume that i and j are int variables and s is an array of characters.) 

Write each of the following variations on the read_line function: 

(a) Have it skip white space before beginning to store input characters. 

(b) Have it stop reading at the first white-space character. Hint: To determine whether or 
not a character is white space, call the isspace function. 

(c) Have it stop reading at the first new-line character, then store the new-line character in 
the string. 

(d) Have it leave behind characters that it doesn’t have room to store. 

(a) Write a function named strcap that capitalizes all letters in its argument. The argu¬ 
ment will be a null-terminated string containing any ASCII characters, not just letters. Use 
array subscripting to access the characters in the string. Hint: Use the toupper function to 
convert each character to upper-case. 

(b) Rewrite the strcap function, this time using pointer arithmetic to access the charac¬ 
ters in the string. 

Write a function named censor that modifies a string by replacing every occurrence of the 
letters foo by xxx. For example, the string " food fool" would become "xxxd xxxl". 
Make the function as short as possible without sacrificing clarity. 

What does the following program print? 

♦include <stdio.h> 

main() 

{ 
char s[] = "Hsjodi", *p; 

for (p = &s [5] ; p >= s; p—) --*p; 
puts(s); 
return 0; 

} 

Let f be the following function: 

int f(char *s, char *t) 

{ 
char *pl, *p2; 

for (pi = s; *pl; pl++) { 
for (p2 = t; *p2; p2++) 

if (*pl == *p2) break; 
if (*p2 == '\0') break; 

} 
return pi - s; 

} 
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(a) What is the value of f (" abed" , " babe") ? 

(b) What is the value of f ("abed" , "bed")? 

(c) In general, what value does f return when passed two strings s and t? 

9. Suppose that str is an array of characters. Which one of the following statements is not 
equivalent to the other three? 

(a) *str = 0; 

(b) str [0] = ' \ 0 1 ; 

(c) strepy(str, 

(d) s treat (str, 

*10. What will be the value of the string str after the following statements have been executed? 

strcpy(str, "tire-bouchon"); 
strepy(&str[4], "d-or-wi"); 
streatfstr, "red?"); 

11. What will be the values of the strings si and s2 after the following statements have been 
executed? 

strepy(si, "computer"); 
strepy(s2, "science"); 
if (strcmp(sl, s2) < 0) 

streat(si, s2); 
else 

streat (s2, si); 
s2[strlen(s2)-6] = '\0'; 

12. The following function supposedly creates an identical copy of a string. What’s wrong with 
the function? 

char *strdup(const char *p) 

{ 
char *q; 

strepy(q, p); 
return q; 

} 

13. The Q&A section at the end of this chapter shows how the stremp function might be writ¬ 
ten using array subscripting. Modify the function to use pointer arithmetic instead. 

14. Write a program that finds the “smallest” and “largest” in a series of words. After the user 
enters the words, the program will determine which words would come first and last if the 
words were listed in dictionary order. The program must stop accepting input when the user 
enters a four-letter word. Assume that no word is more than 20 letters long. An interactive 
session with the program might look like this: 

Enter word: dog 
Enter word: zebra 
Enter word: rabbit 
Enter word: catfish 
Enter word: walrus 
Enter word: cat 
Enter word: fish 
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15. 

Smallest word: cat 
Largest word: zebra 

Hint: Use two strings named smallest_word and largest_word to keep track of the 
“smallest” and “largest” words entered so far. Each time the user enters a new word, use 
strcmp to compare it with smallest_word; if the new word is “smaller,” use strcpy 
to save it in smallest_word. Do a similar comparison with largest_word. Use 
strlen to determine when the user has entered a four-letter word. 

Improve the remind. c program in the following ways: 

(a) Have the program print an error message and ignore a reminder if the corresponding 
day is negative or larger than 31. Hint: Use the continue statement. 

(b) Allow the user to enter a day, a 24-hour time (possibly blank), and a reminder. The 
printed reminder list should be sorted first by day, then by time. (The original 
remind. c program allows the user to enter a time, but it’s treated as part of the 
reminder.) 

(c) Have the program print a on e-year reminder list. Require the user to enter days in the 
form month /day. 

Section 13.6 16. Use the techniques of Section 13.6 to condense the count_spaces function (Section 
13.4). In particular, replace the for statement by a while loop. 

Section 13.7 17. Modify the deal. c program of Section 8.2 so that it prints the full names of the cards it 
deals: 

Enter number of cards in hand: 5 
Your hand: 
Seven of clubs 
Two of spades 
Five of diamonds 
Ace of spades 
Two of hearts 

Hint: Replace the rank_code and suit_code arrays by arrays containing pointers to 
strings. 

18. Write a program named reverse, c that echoes its command-line arguments in reverse 
order. Running the program by typing 

reverse void and null 

should produce the following output: 

null and void 

19. Write a program named sum.c that adds up its command-line arguments, which are 
assumed to be integers. Running the program by typing 

sum 8 24 62 

should produce the following output: 

Total: 94 

atoi function >26.2 Hint: Use the atoi function to convert each command-line argument from string form to 
integer form. 

20. Improve the planet. c program by having it ignore case when comparing command-line 
arguments with strings in the planets array. 
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There will always be things we wish to say in our programs 
that in all known languages can only be said poorly. 

C++ 

In previous chapters, I’ve used the #def ine and #include directives without 

going into detail about what they do. These directives—and others that we haven’t 

yet covered—are handled by the preprocessor, a piece of software that edits C pro¬ 

grams just prior to compilation. Its reliance on a preprocessor makes C (along with 

C++) unique among major programming languages. 

The preprocessor is a powerful tool, but it also can be a source of hard-to-find 

bugs. Moreover, the preprocessor can easily be misused to create programs that are 

almost impossible to understand. Although some C programmers depend heavily 

on the preprocessor, I recommend that it—like so many other things in life—be 

used in moderation. Modern C programming style calls for decreased reliance on 

the preprocessor. In C++, language changes make it possible to limit use of the 

preprocessor to an even greater degree. 

This chapter begins by describing how the preprocessor works (Section 14.1) 

and giving some general rules that affect all preprocessor directives (Section 14.2). 

Sections 14.3 and 14.4 cover two of the preprocessor’s major capabilities: macro 

definition and conditional compilation. (I’ll defer detailed coverage of file inclu¬ 

sion, the other major capability, until Chapter 15.) Section 14.5 discusses the pre¬ 

processor’s lesser-used directives: terror, #line, and tpragma. 

14.1 How the Preprocessor Works 

The behavior of the preprocessor is controlled by directives: commands that begin 

with a # character. We’ve encountered two of these directives, #define and 

#include, in previous chapters. 

273 
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The #def ine directive defines a macro—a name that represents something 

else, typically a constant of some kind. The preprocessor responds to a #def ine 

directive by storing the name of the macro together with its definition. When the 

macro is used later in the program, the preprocessor “expands” the macro, replac¬ 

ing it by its defined value. 
The #include directive tells the preprocessor to open a particular file and 

“include” its contents as part of the file being compiled. For example, the line 

#include <stdio.h> 

instructs the preprocessor to open the file named s tdio . h and bring its contents 

into the program. (Among other things, stdio.h contains prototypes for C’s 

standard input/output functions.) 

The following diagram shows the preprocessor’s role in the compilation pro¬ 

cess: 

C program 

T 
Preprocessor 

I 
Modified C program 

1_ 

Compiler 

-T- 
Object code 

The input to the preprocessor is a C program, possibly containing directives. The 

preprocessor executes these directives, removing them in the process. The output 

of the preprocessor is another C program: an edited version of the original pro¬ 

gram, containing no directives. The preprocessor’s output goes directly into the 

compiler, which checks the program for errors and translates it to object code 
(machine instructions). 

To see what the preprocessor does, let’s apply it to the Celsius . c program 
from Section 2.6. Here’s the original program: 

/* Converts a Fahrenheit temperature to Celsius */ 

#include <stdio.h> 

#define FREEZING_PT 32.0 

#define SCALE_FACTOR (5.0 / 9.0) 

main() 

{ 
float fahrenheit, Celsius; 
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printf("Enter Fahrenheit temperature: "); 

scant ("%f", Scfahrenheit) ; 

Celsius = (fahrenheit - FREEZING_PT) * SCALE_FACTOR; 

printf("Celsius equivalent is: %.lf\n", Celsius); 

return 0; 

} 

After preprocessing, the program will have the following appearance: 

Blank line 

Blank line 

Lines brought in from stdio.h 

Blank line 

Blank line 

Blank line 

Blank line 

main() 

{ 
float fahrenheit, Celsius; 

printf("Enter Fahrenheit temperature: "); 

scant ("%f", Scfahrenheit); 

Celsius = (fahrenheit - 32.0) * (5.0 / 9.0); 

printf("Celsius equivalent is: %.lf\n", Celsius); 

return 0; 

} 

The preprocessor responded to the #include directive by bringing in the con¬ 

tents of stdio .h, which is not shown here because of its length. The preproces¬ 

sor also removed the #define directives and replaced FREEZING_PT and 

SCALE_FACTOR wherever they appeared later in the file. Notice that the prepro¬ 

cessor doesn’t remove lines containing directives; instead, it simply makes them 

empty. 

As this example shows, the preprocessor does a bit more than just execute 

directives. In particular, it replaces each comment with a single space character. 

Some preprocessors go further and remove unnecessary white-space characters, 

including spaces and tabs at the beginning of indented lines. 

In the early days of C, the preprocessor was a separate program that fed its 

output into the compiler. Nowadays, the preprocessor is often integrated with the 

compiler (to improve compilation speed); nevertheless, we still think of the two as 

separate programs. In fact, most C compilers provide a way to view the output of 

the preprocessor. Some compilers generate preprocessor output when a certain 

option is specified (usually -P under UNIX). Others come with a stand-alone pro¬ 

gram that behaves just like the integrated preprocessor. Check your compiler’s 

documentation for more information. 
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A word of caution: The preprocessor has only a limited knowledge of C. As a 

result, it’s quite capable of creating illegal programs as it executes directives. 

Often the original program looks fine, making errors harder to find. In complicated 

programs, examining the output of the preprocessor may prove useful for locating 

this kind of error. 

14.2 Preprocessor Directives 

Most preprocessor directives fall into one of three categories: 

■ Macro definition. The #define directive defines a macro; the #undef 

directive removes a macro definition. 

■ File inclusion. The #include directive causes the contents of a specified 

file to be included in a program. 

■ Conditional compilation. The #if, #ifdef, #ifndef, #elif, #else, 

and #endif directives allow blocks of text to be either included in or 

excluded from a program, depending on conditions that can be tested by the 

preprocessor. 

The remaining directives—terror, #line, and tpragma—are more special¬ 

ized and therefore used less often. We’ll devote the rest of this chapter to an in- 

depth examination of preprocessor directives. The only directive we won’t discuss 

in detail is ttinclude, since it’s covered in Section 15.2. 

Before we go further, though, let’s look at a few rules that apply to all direc¬ 

tives: 

■ Directives always begin with the # symbol. The # symbol need not be at the 

beginning of a line, as long as only white space precedes it. After the # comes 

the name of the directive, followed by any other information the directive 

requires. 

■ Any number of spaces and horizontal tab characters may separate the 

tokens in a directive. For example, the following directive is legal: 

# define N 100 

■ Directives always end at the first new-line character, unless explicitly con¬ 

tinued. To continue a directive to the next line, we must end the current line 

with a \ character. For example, the following directive defines a macro that 

represents the capacity of a hard disk, measured in bytes: 

♦define DISK_CAPACITY (SIDES * \ 

TRACKS_PER_SIDE * \ 

SECTORS_PER_TRACK * \ 

BYTES_PER_SECTOR) 
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14.3 

#def ine directive 
(simple macro) 

A 

■ Directives can appear anywhere in a program. Although we usually put 

#define and #include directives at the beginning of a file, other direc¬ 

tives are more likely to show up later, even in the middle of function defini¬ 
tions. 

■ Comments may appear on the same line as a directive. In fact, it’s good prac¬ 

tice to put a comment at the end of a macro definition to explain the macro’s 
significance: 

ttdefine FREEZING_PT 32.0 /* Freezing point of water */ 

Macro Definition 

The macros that we’ve been using since Chapter 2 are known as simple macros: 

they have no parameters. The preprocessor also supports parameterized macros. 

We’ll look first at simple macros, then at parameterized macros. After covering 

them separately, we’ll examine properties shared by both. 

Simple Macros 

The definition of a simple macro has the form 

7 ,.;v ■ % . ' •; ■ .. 

#define identifier replacement-list 

replacement-list is any sequence of C tokens; it may include identifiers, keywords, 

numbers, character constants, string literals, operators, and punctuation. When it 

encounters a macro definition, the preprocessor makes a note that identifier repre¬ 

sents replacement-list, wherever identifier appears later in the file, the preproces¬ 

sor substitutes replacement-list. 

Don’t put any extra symbols in a macro definition—they’ll become part of the 
replacement list. Putting the = symbol in a macro definition is a common error: 

#define N = 100 /*** WRONG ***/ 

int a[N]; /* becomes int a[= 100]; */ 

In this example, we’ve (incorrectly) defined N to be a pair of tokens (= and 100). 

Ending a macro definition with a semicolon is another popular mistake: 

#define N 100; /*** WRONG ***/ 

int a[N]; /* becomes int a[100;]; */ 

Here N is defined to be the tokens 100 and ;. 
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The compiler will detect most errors caused by extra symbols in a macro defi¬ 
nition. Unfortunately, the compiler will flag each use of the macro as incorrect, 
rather than identifying the actual culprit—the macro’s definition—which will have 
been removed by the preprocessor. 

Simple macros are primarily used for defining what Kernighan and Ritchie 

call “manifest constants.” Using macros, we can give names to numeric, character, 

and string values: 

#define STR_LEN 80 

#define TRUE 1 

ttdefine FALSE 0 

#define PI 3.14159 

#define CR ' \r 1 

#define EOS ' \0 1 

#define MEM_ERR "Error: not enough memory" 

Using #def ine to create names for constants has several significant advantages: 

■ It makes programs easier to read. The name of the macro—if well-chosen— 

helps the reader understand the meaning of the constant. The alternative is a 

program full of “magic numbers” that can easily mystify the reader. 

■ It makes programs easier to modify. We can change the value of a constant 

throughout a program by modifying a single macro definition. “Hard-coded” 

constants are much harder to change, especially since they sometimes appear 

in a slightly altered form. (For example, a program with an array of length 100 

may have a loop that goes from 0 to 99. If we merely try to locate occurrences 

of 10 0 in the program, we’ll miss the 9 9.) 

■ It helps avoid inconsistencies and typographical errors. If a numerical con¬ 

stant like 3.14159 appears many times in a program, chances are it will 

occasionally be written 3.1416 or 3.14195 by accident. 

Although simple macros are most often used to define names for constants, 
they do have other applications: 

■ Making minor changes to the syntax of C. We can—in effect—alter the syn¬ 

tax of C by defining macros that serve as alternate names for C symbols. For 

example, programmers who prefer Pascal’s begin and end to C’s { and } 
can define the following macros: 

#define BEGIN { 

#define END } 

We could go so far as to invent our own language. For example, we might cre¬ 

ate a LOOP “statement” that establishes an infinite loop: 

ttdefine LOOP for (;;) 

Changing the syntax of C usually isn’t a good idea, though, since it can make 
programs harder for others to understand. 
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type definitions >7.6 

#def ine directive 
(parameterized macro) 

A 

■ Renaming types. In Section 5.2, we created a Boolean type by renaming int: 

#define BOOL int 

Although some programmers use macros for this purpose, type definitions are 
a superior way to define new types. 

■ Controlling conditional compilation. Macros play an important role in con¬ 

trolling conditional compilation, as we’ll see in Section 14.4. For example, the 

presence of the following line in a program might indicate that it’s to be com¬ 

piled in “debugging mode,” with extra statements included to produce debug¬ 
ging output: 

♦define DEBUG 

Incidentally, it’s legal for a macro’s replacement list to be empty, as this exam¬ 
ple shows. 

When macros are used as constants, C programmers customarily use only 

upper-case letters in their names. However, there’s no consensus as to how to capi¬ 

talize macros used for other purposes. Since macros (especially parameterized 

macros) can be a source of bugs, some programmers like to draw attention to them 

by writing their names in upper-case letters. Others prefer lower-case, following 

the style of Kernighan and Ritchie’s The C Programming Language. 

Parameterized Macros 

The definition of a parameterized macro has the form 

♦ define identifier ( x1 x2 , ... , xn ) replacement-list 

where xu x2, ..., xn are identifiers (the macro’s parameters). The parameters may 

appear as many times as desired in the replacement list. 

There must be no space between the macro name and the left parenthesis. If space 
is left, the preprocessor will assume that we’re defining a simple macro, with [xx, 

x2, ■■■, xn) part of replacement-list. 

When the preprocessor encounters the definition of a parameterized macro, it 

stores the definition away for later use. Wherever a macro invocation of the form 

identifier(yx, y2, ..., yn) appears later in the program (where y,, y2, ..., yn are 

sequences of tokens), the preprocessor replaces it with replacement-list, substitut¬ 

ing yx for X], y2 for x2, and so forth. 

For example, suppose that we’ve defined the following macros: 

♦ define MAX(x,y) ( (x) > (y) ? (x) : (y) ) 

♦define IS_EVEN(n) ((n)%2==0) 
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Now suppose that the following statements appear later in the program: 

i = MAX(j +k, m-n) ; 

if (IS_EVEN(i)) i++; 

The preprocessor will replace these lines by 

i = ((j+k)>(m-n)?(j+k):(m-n)); 

if (((i)%2==0)) i++; 

As this example shows, parameterized macros often serve as simple functions. 

MAX behaves like a function that computes the larger of two values. IS_EVEN 

behaves like a function that returns 1 if its argument is an even number and 0 oth¬ 

erwise. 
Here’s a more complicated macro that behaves like a function: 

#define TOUPPER(c) (1 a'<=(c)&&(c)<=1z1?(c)-'a' + 'A' : (c)) 

This macro tests whether the character c is between ' a ' and ' z '. If so, it pro¬ 

duces the upper-case version of c by subtracting ' a ' and adding ' A'. If not, it 

leaves c unchanged. Character-handling macros like this one are so useful that the 

<ctype.h> header >23.4 C library provides a collection of them in <ctype .h>; one of them, toupper, 

behaves the same as our TOUPPER example (but is more efficient and more porta¬ 

ble). 
A parameterized macro may have an empty parameter list. Here’s an example: 

#define getchar() getc(stdin) 

The empty parameter list isn’t really needed, but it makes getchar resemble a 

function. (Yes, this is the same getchar that belongs to <stdio .h>. And yes, 

getchar is really a macro, not a function, although it behaves like a function.) 

Using a parameterized macro instead of a true function has a couple of advan¬ 

tages: 

■ The program may be slightly faster. A function call usually requires some 

overhead during program execution—context information must be saved, 

arguments copied, and so forth. A macro invocation, on the other hand, 

requires no run-time overhead. 

■ Macros are “generic.” Macro parameters, unlike function parameters, have 

no particular type. As a result, a macro can accept arguments of any type, pro¬ 

vided that the resulting program—after preprocessing—is valid. For example, 

we could use the MAX macro to find the larger of two values of type int, 

long int, float, double, and so forth. 

But parameterized macros have their disadvantages: 

■ The compiled code will often be larger. Each macro invocation causes the 

insertion of the macro’s replacement list, thereby increasing the size of the 

source program (and hence the compiled code). The more often the macro is 

used, the more pronounced this effect is. The problem is compounded when 
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macro invocations are nested. Consider what happens when we use MAX to 

find the largest of three numbers: 

n = MAX(i, MAX(j, k)); 

Here’s the same statement after preprocessing: 

n = ((i)>(((j)>(k)?(j):(k)))?(i):(((j)>(k)?(j):(k)))); 

■ Arguments aren’t type-checked. When a function is called, the compiler 

checks each argument to see if it has the appropriate type. If not, either the 

argument is converted to the proper type or the compiler produces an error 

message. Macro arguments aren’t checked by the preprocessor, nor are they 

converted. 

■ It’s not possible to have a pointer to a macro. As we’ll see in Section 17.7, C 

allows pointers to functions, a concept that’s quite useful in certain program¬ 

ming situations. Macros are removed during preprocessing, so there’s no cor¬ 

responding notion of “pointer to a macro”; as a result, macros can’t be used in 

these situations. 

■ A macro may evaluate its arguments more than once. A function evaluates 

its arguments only once; a macro may evaluate its arguments two or more 

times. Evaluating an argument more than once can cause unexpected behavior 

if the argument has side effects. Consider what happens if one of MAX’S argu¬ 

ments has a side effect: 

n = MAX(i++, j); 

Here’s the same line after preprocessing: 

n = ((i + +)>(j)? (i + +) : (j)); 

If i is larger than j, then i will be (incorrectly) incremented twice, and n may 

be assigned the wrong value. 

Errors caused by evaluating a macro argument more than once can be difficult to 
find, because a macro invocation looks the same as a function call. To make mat¬ 
ters worse, a macro may work properly most of the time, failing only when certain 
arguments have side effects. For self-protection, it’s a good idea to avoid side 
effects in arguments. 

Parameterized macros are good for more than just simulating functions. In 

particular, they’re often used as patterns for segments of code that we find our¬ 

selves repeating. Suppose that we grow tired of writing 

printf("%d\n", x); 

every time we need to print an integer x. We might define the following macro, 

which makes it easier to display integers: 
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ttdefine PRINT_INT(x) printf("%d\n", x) 

Once PRINT_INT has been defined, the preprocessor will turn the line 

PRINT_INT( i / j ) ; 

into 

printf("%d\n", i/j ) ; 

The # Operator 

Macro definitions may contain two special operators, # and ##. Neither operator is 

recognized by the compiler; instead, they’re executed during preprocessing. 

The # operator converts a macro argument into a string literal; it can appear 

only in the replacement list of a parameterized macro. (Some C programmers refer 

to the # operation as “stringization”; others feel that this term is too great an abuse 

of the English language.) 
There are a number of uses for #; let’s consider just one. Suppose that we 

decide to use the PRINT_INT macro during debugging as a convenient way to 

print the values of integer variables and expressions. The # operator makes it pos¬ 

sible for PRINT_INT to label each value that it prints. Here’s an improved version 

of PRINT_INT: 

#define PRINT_INT(x) printf(#x " = %d\n", x) 

The # operator in front of x instructs the preprocessor to create a string literal from 

PRINT_INT’s argument. Thus, the invocation 

PRINT_INT(i/j); 

will become 

printf("i/j" " = %d\n", i/j); 

Adjacent string literals are concatenated in C, so this statement is equivalent to 

printf("i/j = %d\n", i/j); 

When the program is executed, printf will display both the expression i/j and 

its value. If i is 11 and j is 2, for example, the output will be 

i/j =5 

The ## Operator 

The ## operator can “paste” two tokens (identifiers, for example) together to form 

a single token. (Not surprisingly, the ## operation is known as “token-pasting.”) If 

one of the operands is a macro parameter, pasting occurs after the parameter has 

been replaced by the corresponding argument. Consider the following macro: 
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ttdefine MK_ID(n) i##n 

When MK_ID is invoked (as MK_ID (1), say), the preprocessor first replaces the 

parameter n by the argument (1 in this case). Next, the preprocessor joins i and 1 

to make a single token (il). The following declaration uses MK_ID to create three 
identifiers: 

int MK_ID(1) , MK_ID(2), MK_ID(3); 

After preprocessing, this declaration becomes 

int il, i2, i3; 

The ## operator isn’t one of the most frequently used features of the prepro¬ 

cessor; in fact, it’s hard to think of many situations that require it. To find a realistic 

application of ##, let’s reconsider the MAX macro described earlier in this section. 

As we observed then, MAX doesn’t behave properly if its arguments have side 

effects. The alternative to using the MAX macro is to write a max function. Unfor¬ 

tunately, one max function usually isn’t enough; we may need a max function 

whose arguments are int values, one whose arguments are float values, and so 

on. All these versions of max would be identical except for the types of the argu¬ 

ments and the return type, so it seems a shame to define each one from scratch. 

The solution is to write a macro that expands into the definition of a max 

function. The macro will have a single parameter, type, which represents the type 

of the arguments and the return value. There’s just one snag: if we use the macro to 

create more than one max function, the program won’t compile. (C doesn’t allow 

two functions to have the same name if both are defined in the same file.) To solve 

this problem, we’ll use the ## operator to create a different name for each version 

of max. Here’s what the macro will look like: 

#define GENERIC_MAX(type) \ 

type type##_max(type x, type y) \ 

{ \ 
return x > y ? x : y; \ 

} 

Notice how type is joined with _max to form the name of the new function. 

Now, let’s say that we need a max function that works with float values. 

Here’s how we’d use GENERIC_MAX to define the function: 

GENERIC_MAX(float) 

The preprocessor expands this line into the following code: 

float float_max(float x, float y) { return x > y ? x : y; } 

General Properties of Macros 

Now that we’ve discussed both simple and parameterized macros, let’s look at 

some rules that apply to both: 
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#undef directive 

■ A macro's replacement list may contain invocations of other macros. For 

example, we could define the macro TWO_PI in terms of the macro PI: 

#define PI 3.14159 

#define TWO_PI (2*PI) 

When the preprocessor encounters TWO_PI later in the program, it replaces it 

by (2 * PI). The preprocessor then rescans the replacement list to see if it 

contains invocations of other macros (PI in this case). The preprocessor will 

rescan the replacement list as many times as necessary to eliminate all macro 

names. 

■ The preprocessor replaces only entire tokens, not portions of tokens. As a 

result, the preprocessor ignores macro names that are embedded in identifiers, 

character constants, and string literals. For example, suppose that a program 

contains the following lines: 

tdefine SIZE 256 

int BUFFER_SIZE; 

if (BUFFER_SIZE > SIZE) 

puts("Error: SIZE exceeded"); 

After preprocessing, these lines will have the following appearance: 

int BUFFER_SIZE; 

if (BUFFER_SIZE > 256) 

puts("Error: SIZE exceeded"); 

The identifier BUFFER_SIZE and the string "Error : SIZE exceeded" 

weren’t affected by preprocessing, even though both contain the word SIZE. 

■ A macro definition normally remains in effect until the end of the file in 

which it appears. Since macros are handled by the preprocessor, they don’t 

obey normal scope rules. A macro defined inside a function definition isn’t 

local to that function; it remains defined until the end of the file. 

■ A macro may not be defined twice unless the new definition is identical to 

the old one. Minor differences in spacing are allowed, but the tokens in the 

macro’s replacement list (and the parameters, if any) must be the same. 

■ Macros may be “undefined” by the #undef directive. The #undef direc¬ 

tive has the form 

#undef identifier 

where identifier is a macro name. For example, the directive 

tundef N 
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removes the current definition of the macro N. (If N hasn’t been defined as a 

macro, the #undef directive has no effect.) One use of #undef is to remove 

the existing definition of a macro so that it can be given a new definition. 

Parentheses in Macro Definitions 

The replacement lists in our macro definitions have been full of parentheses. Is it 

really necessary to have so many? The answer is an emphatic yes; if we use fewer 

parentheses, the macros will sometimes give unexpected—and undesirable— 
results. 

There are two rules to follow when deciding where to put parentheses in a 

macro definition. First, if the macro’s replacement list contains an operator, always 

enclose the replacement list in parentheses: 

#define TWO_PI (2*3.14159) 

Second, if the macro has parameters, put parentheses around each parameter every 

time it appears in the replacement list: 

#define SCALE(x) ((x)*10) 

Without the parentheses, we can’t guarantee that the compiler will treat replace¬ 

ment lists and arguments as whole expressions. The compiler may apply the rules 

of operator precedence and associativity in ways that we didn’t anticipate. 

To illustrate the importance of putting parentheses around the replacement list, 

consider the following macro definition, in which the parentheses are missing: 

#define TWO_PI 2*3.14159 

/* needs parentheses around replacement list */ 

During preprocessing, the statement 

conversion_factor = 360/TWO_PI; 

becomes 

conversion_factor = 360/2*3.14159; 

The division will be performed before the multiplication, yielding a result different 

from the one intended. 

Putting parentheses around the replacement list isn’t enough if the macro has 

parameters—each occurrence of a parameter needs parentheses as well. For exam¬ 

ple, suppose that SCALE is defined as follows: 

#define SCALE(x) (x*10) /* needs parentheses around x */ 

During preprocessing, the statement 

j = SCALE(i+1); 

becomes 
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j = (i+l*10); 

Since multiplication takes precedence over addition, this statement is equivalent to 

j = i+10; 

Of course, what we wanted was 

j = (i +1) *10; 

A shortage of parentheses in a macro definition can cause some of C’s most frus¬ 
trating errors. The program will usually compile and the macro will appear to 
work, failing only at the least convenient times. 

Creating Longer Macros 

The comma operator can be useful for creating more sophisticated macros. In par¬ 

ticular, we can use the comma operator to make the replacement list a series of 

expressions. For example, the following macro will read a string and then print it: 

#define ECHO(s) (gets(s), puts(s)) 

Calls of gets and puts are expressions, so it’s perfectly legal to combine them 

using the comma operator. We can use ECHO as though it were a function: 

ECHO(str); /* becomes (gets(str), puts(str)); */ 

Instead of using the comma operator, we could have enclosed the calls of 

gets and puts in braces to form a compound statement: 

#define ECHO(s) { gets(s); puts(s); } 

Unfortunately, this method doesn’t work as well. Suppose that we use ECHO in an 

if statement: 

if (echo_flag) 

ECHO(str); 

else 

gets(str); 

Replacing ECHO gives the following result: 

if (echo_flag) 

{ gets(str); puts(str); }; 

else 

gets(str); 

The compiler treats the first two lines as a complete if statement: 

if (echo_flag) 

{ gets(str); puts(str); } 
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It treats the semicolon that follows as a null statement and produces an error mes¬ 

sage for the else clause, since it doesn’t belong to any if. We could solve the 

problem by remembering not to put a semicolon after each invocation of ECHO, 

but then the program would look odd. 

The comma operator solves this problem for ECHO, but not for all macros. 

Suppose that a macro needs to contain a series of statements, not just a series of 

expressions. The comma operator is of no help; it can glue together expressions, 

but not statements. The solution is to wrap the statements in a do loop whose con¬ 
dition is false: 

do { ... } while (0) 

A do loop must always be followed by a semicolon, so we won’t run into prob¬ 

lems when using the macro in i f statements. To see this trick (ahem, technique) in 
action, let’s incorporate it into our ECHO macro: 

#define ECHO(s) \ 

do { \ 

gets(s); \ 

puts(s); \ 

} while (0) 

When ECHO is used, it must be followed by a semicolon: 

ECHO(Str); 

/* becomes do { gets(str); puts(str); } while (0); */ 

Predefined Macros 

Several handy macros are predefined in C. As Table 14.1 shows, these macros pri¬ 

marily provide information about the current compilation. The LINE_ and 

_STDC_macros represent integer constants, while the other three macros rep¬ 

resent string literals. We’ll encounter uses for_STDC_later in the chapter, so 

let’s focus on the other macros for now. 

Table 14.1 
Predefined Macros 

The_DATE_and_TIME_macros identify when a program was com¬ 

piled. For example, suppose that a program begins with the following statements: 

printf("Wacky Windows (c) 1996 Wacky Software, Inc.\n"); 

printf("Compiled on %s at %s\n", _DATE_, _TIME_); 

Each time it begins to execute, the program will print two lines of the form 

Name Description 

_LINE_ Line number of file being compiled 
_FILE_ Name of file being compiled 
_DATE_ Date of compilation (in the form "Mmm dd yyyy") 

_TIME_ Time of compilation (in the form " hh:mm: ss") 
_STDC_ 1 if the compiler accepts Standard C 
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Wacky Windows (c) 1996 Wacky Software, Inc. 

Compiled on Dec 23 1996 at 22:18:48 

This information can be helpful for distinguishing among different versions of the 

same program. 
We can use the_LINE_and _FILE_macros to help locate errors. 

Consider the problem of detecting the location of a division by zero. When a C 

program terminates prematurely because of a division by zero, there’s usually no 

indication of which division caused the problem. The following macro can help us 

pinpoint the source of the error: 

#define CHECK_ZERO(divisor) \ 

if (divisor == 0) \ 

printf("*** Attempt to divide by zero on line %d " \ 

"of file %s ***\n" , _LINE_, _FILE_) 

The CHECK_ZERO macro would be invoked prior to a division: 

CHECK_ZERO(j ) ; 

k = i / j ; 

If j happens to be zero, a message of the following form will be printed: 

*** Attempt to divide by zero on line 9 of file FOO.C *** 

Error-detecting macros like this one are quite useful. In fact, the C library provides 

assert macro >24.1 a general-purpose error-detecting macro named assert. 

14.4 Conditional Compilation 

The C preprocessor recognizes a number of directives that support conditional 

compilation—the inclusion or exclusion of a section of program text depending on 

the outcome of a test performed by the preprocessor. 

The #if and #endif Directives 

Suppose we’re in the process of debugging a program. We’d like the program to 

print the values of certain variables, so we put calls of print f in critical parts of 

the program. Once we’ve located the bugs, it’s often a good idea to let the print f 

calls remain, just in case we need them later. Conditional compilation allows us to 

leave the calls in place, but have the compiler ignore them. 

Here’s how we’ll proceed. We’ll first define a macro and give it a nonzero 

value: 

#define DEBUG 1 

The name of the macro doesn’t matter. Next, we’ll surround each group of 

printf calls by an #if-#endif pair: 
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#if directive 

#endif directive 

Q&A 

#if DEBUG 

printf("Value of i: %d\n", i); 

printf("Value of j: %d\n", j); 

#endif 

During preprocessing, the #if directive will test the value of DEBUG. Since its 

value isn’t zero, the preprocessor will leave the two calls of printf in the pro¬ 

gram (the #if and #endif lines will disappear, though). If we change the value 

of DEBUG to zero and recompile the program, the preprocessor will remove all 

four lines from the program. The compiler won’t see the calls of printf, so they 

won’t occupy any space in the object code and won’t cost any time when the pro¬ 

gram is run. We can leave the #if-#endif blocks in the final program, allowing 

diagnostic information to be produced later (by recompiling with DEBUG set to 1) 

if errors should arise during the operation of the program. 

In general, the #if directive has the form 

# i f constant-expression 

The #endif directive is even simpler: 

#endif 

When the preprocessor encounters the #if directive, it evaluates the constant 

expression. If the value of the expression is zero, the lines between #if and 

#endif will be removed from the program during preprocessing. Otherwise, the 

lines between #if and #endif will remain in the program to be processed by the 

compiler—the #if and #endif will have had no effect on the program. 

It’s worth noting that the #if directive treats undefined identifiers as macros 

that have the value 0. Thus, if we neglect to define DEBUG, the test 

#if DEBUG 

will fail (but not generate an error message), while the test 

#if !DEBUG 

will succeed. 

The defined Operator 

We encountered the # and ## operators in Section 14.3. There’s just one other 

operator, defined, that’s specific to the preprocessor. When applied to an identi¬ 

fier, defined produces the value 1 if the identifier is a currently defined macro; it 

produces 0 otherwise. The defined operator is normally used in conjunction 

with the #if directive; it allows us to write 
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#ifdef directive 

Q&A 

#ifndef directive 

#if defined(DEBUG) 

#endif 

The lines between the # i f and #endi f directives will be included in the program 

only if DEBUG is defined as a macro. The parentheses around DEBUG aren’t 

required; we could simply write 

#if defined DEBUG 

Since defined tests only whether DEBUG is defined or not, it’s not neces¬ 

sary to give DEBUG a value: 

#define DEBUG 

The #if def and #ifndef Directives 

The #ifdef directive tests whether an identifier is currently defined as a macro: 

#ifdef identifier 

Using #ifdef is similar to using #if: 

# i fde f identifier 
lines to be included if identifier is defined as a macro 

#endif 

Strictly speaking, there’s no need for #ifdef, since we can combine the #if 

directive with the defined operator to get the same effect. In other words, the 

directive 

#ifdef identifier 

is equivalent to 

#if defined {identifier) 

The #ifndef directive is similar to #ifdef, but tests whether an identifier 

is not defined as a macro: 

#ifndef identifier 

Writing 

ttifndef identifier 

is the same as writing 

#if ! defined {identifier) 
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The #elif and #else Directives 

#if, #ifdef, and #ifndef blocks can be nested just like ordinary if state¬ 

ments. When nesting occurs, it’s a good idea to use an increasing amount of inden¬ 

tation as the level of nesting grows. Some programmers put a comment on each 

closing #endif to indicate what condition the matching #if tests: 

#if DEBUG 

#endif /* DEBUG */ 

This technique makes it easier for the reader to find the beginning of the #if 

block. 

For additional convenience, the preprocessor provides the #elif and #else 

directives: 

#elif directive #elif expr 

#else directive #else 

#elif and #else can be used in conjunction with #if, #ifdef, or #ifndef 

to test a series of conditions: 

# i f exprl 
lines to be included if exprl is nonzero 
#elif expr2 
lines to be included if exprl is zero but expr2 is nonzero 

#else 

lines to be included otherwise 
#endif 

Although the #if directive is shown above, the #ifdef or #ifndef directive 

can be used instead. Any number of #elif directives—but at most one #else— 

may appear between #if and #endif. 

Uses of Conditional Compilation 

Conditional compilation is certainly handy for debugging, but its uses don’t stop 

there. Here are a few other common applications: 

■ Writing programs that are portable to several machines or operating sys¬ 

tems. The following example includes one of three groups of lines depending 

on whether WINDOWS, DOS, or OS2 is defined as a macro: 

#if defined(WINDOWS) 

#elif defined(DOS) 
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#elif defined(0S2) 

#endif 

A program might contain many of these #if blocks. At the beginning of the 

program, one (and only one) of the macros will be defined, thereby selecting a 

particular operating system. For example, defining the OS2 macro might indi¬ 

cate that the program is to run under the OS/2 operating system. 

■ Writing programs that can be compiled with different compilers. Different 

compilers often recognize somewhat different versions of C. Some accept 

Standard C, some don’t. Some provide machine-specific language extensions; 

some don’t, or provide a different set of extensions. Conditional compilation 

can allow a program to adjust to different compilers. Consider the problem of 

writing a program that may or may not be compiled using a Standard C com¬ 

piler. The_STDC_macro allows the preprocessor to detect whether a com¬ 

piler recognizes Standard C; if it doesn’t, we may have to change certain 

aspects of a program. In particular, we may have to use Classic C function 

declarations instead of Standard C’s function prototypes. At each point where 

functions are declared, we can put the following lines: 

#if _STDC_ 

Standard C function prototypes 
#else 

Classic C function declarations 
#endif 

■ Providing a default definition for a macro. Conditional compilation allows 

us to check whether a macro is currently defined and, if not, give it a default 

definition. For example, the following lines will define the macro 

BUFFER_SIZE if it wasn’t previously defined: 

#ifndef BUFFER_SIZE 

#define BUFFER_SIZE 256 

#endif 

■ Temporarily disabling code that contains comments. Since comments can’t 

be nested in Standard C, it’s not possible to “comment out” code that contains 

comments. Instead, we can use an #if directive: 

#if 0 

lines containing comments 
#endif 

Q&A Disabling code in this way is often called “conditioning out.” 

Section 15.2 discusses another common use of conditional compilation: pro¬ 

tecting header files against multiple inclusion. 
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14.5 

terror directive 

INT_MAX macro >23.2 

Miscellaneous Directives 

To end the chapter, we’ll take a brief look at the #error, #line, and Ipragma 

directives. These directives have one thing in common: they’re not used much by 

beginning C programmers. In fact, none of the programs in this book use these 

directives, so you can safely skip this section for now. Later, when you’re ready to 

become a C wizard, you’ll need to become familiar with these directives. 

The #error Directive 

The #error directive has the form 

terror message 

where message is any sequence of C tokens. If the preprocessor encounters an 

terror directive, it prints an error message which must include message. The 

exact form of the error message can vary from one compiler to another; here’s a 

typical example: 

Error directive: message 

Encountering an terror directive is indicative of a serious flaw in the program; 

most compilers immediately terminate compilation without attempting to find 

other errors. 

terror directives are often used in conjunction with conditional compilation 

to check for situations that shouldn’t arise during a normal compilation. For exam¬ 

ple, suppose that we want to ensure that a program can’t be compiled on a machine 

whose int type isn’t capable of storing numbers up to 100,000. The largest possi¬ 

ble int value is represented by the INT_MAX macro, so all we need do is invoke 

an terror directive if INT_MAX isn’t at least 100,000: 

#if INT_MAX < 100000 

terror int type is too small 

tendif 

Attempting to compile the program on a machine whose integers are stored in 16 

bits will produce a message such as 

Error directive: int type is too small 

The terror directive is often found in the #else part of an #if-#elif- 

telse series: 

#if defined(WINDOWS) 
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#line directive 
(form 1) 

#line directive 
(form 2) 

#elif defined(DOS) 

#elif defined(OS2) 

#else 
terror No operating system specified 

tendif 

The #line Directive 

The #line directive is used to alter the way program lines are numbered. (Lines 

are usually numbered 1, 2, 3, as you’d expect.) We can also use this directive to 

make the compiler think that it’s reading the program from a file with a different 

name. 
The #line directive has two forms. In one form, we specify a line number: 

#line n 

n must be an integer between 1 and 32,767. This directive causes subsequent lines 

in the program to be numbered n, n + 1, n + 2, and so forth. 

In the second form of the #line directive, both a line number and a file name 

are specified: 

#line n "file" 

The lines that follow this directive are assumed to come from file, with line num¬ 

bers starting at n. 
One effect of the #line directive is to change the values of the_LINE_ 

macro (and possibly the_FILE_macro). More importantly, most compilers 

will use the information from the #line directive when generating error mes¬ 

sages. For example, suppose that the following directive appears at the beginning 

of the file f oo . c: 

#line 10 "bar.c" 

Now, let’s say that the compiler detects an error on line 5 of foo.c. The error 

message will refer to line 13 of file bar . c, not line 5 of file f oo . c. (Why line 

13? The directive occupies line 1 of f oo . c, so the renumbering of f oo . c begins 

at line 2, which is treated as line 10 of bar . c.) 

At first glance, the #line directive is mystifying. Why would we want error 

messages to refer to a different line and possibly a different file? Wouldn’t this 

make programs harder to debug? 

In fact, the #line directive isn’t used very often by programmers. Instead, 

it’s used primarily by programs that generate C code as output. The most famous 

example of such a program is yacc (Yet Another Compiler-Compiler), a UNIX 

utility that automatically generates part of a compiler. Before using yacc, the pro- 
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#pragma directive 

Q: 
A: 

grammer prepares a file that contains information for yacc as well as fragments 

of C code. From this file, yacc generates a C program, y. tab. c, incorporating 

the code supplied by the programmer. The programmer then compiles y. tab. c 

in the normal way. By inserting #line directives in y. tab. c, yacc tricks the 

compiler into believing that the code comes from the original file—the one written 

by the programmer. As a result, any error messages produced during the compila¬ 

tion of y. tab. c will refer to lines in the original file, not lines in y. tab. c. The 

net result: debugging is easier, because error messages refer to the file written by 

the programmer, not the (more complicated) file generated by yacc. 

The #pragma Directive 

The #pragma directive provides a way to request special behavior from the com¬ 

piler. This directive is most useful for programs that are unusually large or that 

need to take advantage of the capabilities of a particular compiler. 

The #pragma directive has the form 

#pragma tokens 

where tokens are normal C tokens. #pragma is usually followed by a single 

token, which represents a command for the compiler to obey. 

Some compilers allow #pragma directives to contain more than just simple 

commands. In particular, some allow #pragma directives to have arguments: 

#pragma data(heap_size => 1000, stack_size => 2000) 

Not surprisingly, the set of commands that can appear in #pragma directives 

is different for each compiler; you’ll have to consult the documentation for your 

compiler to see which commands it allows and what those commands do. Inciden¬ 

tally, the preprocessor must ignore any #pragma directive that contains an unrec¬ 

ognized command; it’s not permitted to give an error message. 

Q&A 

I’ve seen programs that contain a # on a line by itself. Is this legal? 

Yes. This is the null directive; it has no effect. Some programmers use null direc¬ 

tives for spacing within conditional compilation blocks: 

#if INT_MAX < 100000 

# 
#error int type is too small 

# 
#endif 
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Blank lines would also work, of course, but the # helps the reader see the extent of 

the block. 

Q: I’m not sure which constants in a program need to be defined as macros. Are 

there any guidelines to follow? [p. 278] 

A: One rule of thumb says that every numeric constant, other than 0 or 1, should be a 

macro. Character and string constants are problematic, since replacing a character 

or string constant by a macro doesn’t always improve readability. I recommend 

using a macro instead of a character constant or string literal provided that (1) the 

constant is used more than once and (2) the possibility exists that the constant 

might someday be modified. Because of rule (2), I don’t use macros such as 

#define NUL '\0' 

although some programmers do. 

*Q: What does the # operator do if the argument that it’s supposed to “stringize” 

contains a " or \ character? [p. 282] 

A: It converts " to \ " and \ to \ \ . Consider the following macro: 

#define STRINGIZE(x) #x 

The preprocessor will replace STRINGIZE (" foo") by " \ " foo\ " ". 

*Q: I can’t get the following macro to work properly: 

#define CONCAT(x,y) x##y 

CONCAT (a, b) gives ab, as expected, but CONCAT (a, CONCAT (b, c) ) gives 

an odd result. What’s going on? 

A: Thanks to rules that even Kernighan and Ritchie admit are “bizarre,” macros 

whose replacement lists depend on ## usually can’t be called in a nested fashion. 

The problem is that CONCAT (a, CONCAT (b, c) ) isn’t expanded in a “normal” 

fashion, with CONCAT (b,c) yielding be, then CONCAT (a, be) giving abc. 

The C standard specifies that macro parameters that are preceded or followed by 

## in a replacement list aren’t expanded at the time of substitution. As a result, 

CONCAT (a, CONCAT (b, c) ) expands to aCONCAT (b, c), which can’t be ex¬ 

panded further, since there’s no macro named aCONCAT. 

There’s a way to solve the problem, but it’s not pretty. The trick is to define a 

second macro that simply calls the first one: 

#define CONCAT2(x,y) CONCAT(x,y) 

Writing CONCAT2 (a,CONCAT2 (b,c) ) gives us the desired result. As it ex¬ 

pands the outer call of CONCAT2, the preprocessor will expand CONCAT2 (b, c) 

as well; the difference is that CONCAT2’s replacement list doesn’t contain ##. If 

none of this makes any sense, don’t worry; it’s not a problem that arises often. 
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The # operator has a similar difficulty, by the way. If #x appears in a replace¬ 

ment list, where x is a macro parameter, the corresponding argument is not 

expanded. Thus, if N is a macro representing 10, and STR (x) has the replacement 

list #x, expanding STR(N) yields "N", not "10". The solution is similar to the 

one we used with CONCAT: defining a second macro whose job is call STR. 

*Q: Suppose that the preprocessor encounters the original macro name during 

rescanning, as in the following example: 

#define N (2*M) 

#define M (N+l) 

i = N; /* infinite loop? */ 

The preprocessor will replace N by (2*M), then replace M by (N+l). Will the 

preprocessor replace N again, thus going into an infinite loop? [p. 284] 

A: Some older preprocessors will indeed go into an infinite loop, but preprocessors 

that conform to Standard C shouldn’t. According to the standard, if the original 

macro name reappears during the expansion of a macro, the name is not replaced 

again. Here’s how the assignment to i will look after preprocessing: 

i = (2*(N+l)); 

Some enterprising programmers take advantage of this behavior by writing 

macros whose names match reserved words or functions in the standard library, 

sqrt function >23.3 Consider the sqrt library function, sqrt computes the square root of its argu¬ 

ment, returning an implementation-defined value if the argument is negative. Per¬ 

haps we want sqrt to return 0 if its argument is negative. Since sqrt is part of 

the standard library, we can’t easily change it. We can, however, define a sqrt 

macro that evaluates to 0 when given a negative argument: 

#define sqrt(x) ((x)>=0 ? sqrt(x) : 0) 

A call of sqrt will be intercepted by the preprocessor, which expands it into the 

conditional expression shown here. The call of sqrt inside the conditional 

expression won’t be replaced during rescanning, so it will remain for the compiler 

to handle. 

Q: I thought the preprocessor was just an editor. How can it evaluate constant 

expressions? [p. 289] 

A: The preprocessor is more sophisticated than you might expect; it knows enough 

about C to be able to evaluate constant expressions, although it doesn’t do so in 

quite the same way as the compiler. (For one thing, the preprocessor treats any 

undefined name as having the value 0. The other differences are too esoteric to go 

into here.) In practice, the operands in a preprocessor constant expression are usu¬ 

ally constants, macros that represent constants, and applications of the defined 

operator. 
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Q: Why does C provide the ttifdef and ttifndef directives, since we can get 
the same effect using the #if directive and the defined operator? [p. 290] 

A: The #ifdef and #ifndef directives have been a part of C since the 1970s. The 

defined operator, on the other hand, was added to C in the 1980s during stan¬ 

dardization. So the real question is: Why was defined added to the language? 

The answer is that defined adds flexibility. Instead of just being able to test the 

existence of a single macro using #ifdef or #ifndef, we can now test any 

number of macros using #if together with defined. For example, the following 

directive checks whether FOO and BAR are defined but BAZ is not defined: 

#if defined(FOO) && defined(BAR) && !defined(BAZ) 

Q: I wanted to compile a program that I hadn’t finished writing, so I “condi¬ 
tioned out” the unfinished part. I put a message at the beginning as a 
reminder to complete the program later: 

#if 0 
Haven't finished this part yet. 

#endif 

Why did I get an error message during compilation? Doesn’t the preprocessor 
just ignore all lines between #if and #endif ? [p. 292] 

A: The lines between # i f and #endi f must consist of preprocessing tokens, which 

preprocessing tokens > Appendix a are similar to ordinary C tokens (identifiers, operators, numbers, and the like). As 
it tried to break the first line into tokens, the preprocessor encountered Haven (a 

legal identifier), followed by ' t (an illegal character constant). Some preproces¬ 

sors skip all lines between #if and #endif without attempting to check for pre¬ 

processing tokens, but they’re not enforcing the rules of the C standard. 

Exercises 

Section 14.3 1. Write macros that compute the following values. 

(a) The cube of x. 

(b) The remainder when x is divided by 4. 

(c) 1 if the product of x and y is less than 100, 0 otherwise. 

Do your macros always work? If not, describe what arguments would make them fail. 

2. Write a macro NELEMS (a) that computes the number of elements in a one-dimensional 
array a. Hint: Use the sizeof operator. 

3. Let double be the following macro: 

#define DOUBLE(x) 2*x 

(a) What is the value of DOUBLE (1+2 ) ? 

(b) What is the value of 4 / DOUBLE (2 ) ? 

(c) Fix the definition of DOUBLE. 
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4. For each of the following macros, give an example that illustrates a problem with the macro 
and show how to fix it. 

(a) #define AVG(x,y) (x+y)/2 

(b) #define AREA(x,y) (x) * (y) 

*5. The following macro definition has a subtle problem: 

ttdefine ABS(a) ((a)<0?-(a):a) 

Give an example that shows why ABS doesn’t work, and show how to fix the problem. You 
may assume that the argument to ABS doesn’t have a side effect. 

6. Let TOUPPER be the following macro: 

#define TOUPPER(c) (,a'<=(c)&&(c)<='z,?(c)-,a'+'A,:(c)) 

Let s be a string and let i be an int variable. Show the output produced by each of the fol¬ 
lowing code fragments. 

(a) strcpy(s, "abed"); 
i = 0; 
putchar(TOUPPER(s[++i])); 

(b) strcpy(s, "0123"); 
i = 0; 
putchar(TOUPPER(s[++i])); 

7. (a) Write a macro DISP (f, x) that expands into a call of printf that displays the value 
of the function f when called with argument x. For example 

DISP(sqrt, 3.0); 

should expand into 

printf("sqrt(%g) = %g\n", 3.0, sqrt(3.0)); 

(b) Write a macro DISP2 (f ,x,y) that’s similar to DISP but works for functions with 
two arguments. 

*8. Let GENERIC_MAX be the following macro: 

#define GENERIC_MAX(type) \ 
type type##_max(type x, type y) \ 

{ \ 
return x > y ? x : y; \ 

} 

(a) Show the preprocessor’s expansion of GENERIC_MAX (long). 

(b) Explain why GENERIC_MAX doesn’t work for basic types such as unsigned long. 

(c) How could we make GENERIC_MAX work with any basic type? Hint: Don’t change 
the definition of GENERIC_MAX. 

*9. Suppose we want a macro that expands into a string containing the current line number and 
file name. In other words, we’d like to write 

const char *str = LINE_FILE; 

and have it expand into 

const char *str = "Line 10 of file foo.c"; 

where foo . c is the file containing the program and 10 is the line on which the invocation 
of LINE_FILE appears. Warning: This exercise is for experts only. Be sure to read the 
Q&A section carefully before attempting! 
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Section 14.4 10. Suppose that the macro M has been defined as follows: 

#define M 10 

Which of the following tests will fail? 

(a) #if M 

(b) #ifdef M 

(c) #ifndef M 

(d) #if defined (M) 

(e) #if ! defined (M) 

11. (a) Show what the following program will look like after preprocessing, 

tdefine N 100 

void f(void); 

main() 

{ 
f 0 ; 

#ifdef N 

#undef N 

#endif 

return 0; 

} 

void f(void) 

{ 
#if defined(N) 

printf("N is %d\n", N) ; 
#else 

printf("N is undefined\n"); 

#endif 

} 

(b) What will be the output of this program? 

*12. Show what the following program will look like after preprocessing. Some lines of the pro¬ 
gram may cause compilation errors; find all such errors. 

#define N = 10 

#define INC(x) x+1 

ttdefine SUB (x,y) x - y 

#define SQR(x) ((x)*(x)) 

#define CUBE(x) (SQR(x)*(x)) 

#define Ml(x,y) x##y 

ttdefine M2(x,y) #x #y 

main() 

{ 
int a [N] , i, j, k, m; 

#ifdef N 

i = j; 
#else 

j = i; 
#endif 
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i = 10 * INC(j); 

i = SUB(j, k); 
i - SQR(SQR(j ++) ) ; 
i = CUBE(j); 
i = Ml(j, k); 
puts(M2(i, j)); 

#undef SQR 

i = SQR(j); 

#define SQR 

i = SQR(j); 

return 0; 

} 



■ 



15 Writing Large Programs 

Around computers it is difficult to find the correct unit 
of time to measure progress. Some cathedrals took a 

century to complete. Can you imagine the grandeur 
and scope of a program that would take as long? 

Although some C programs are small enough to be put in a single file, most aren’t. 

Programs that consist of more than one file are the rule rather than the exception. 

In this chapter, we’ll see that a typical program consists of several source files and 

usually some header files as well. Source files contain definitions of functions and 

external variables; header files contain information to be shared among source 

files. Section 15.1 discusses source files, while Section 15.2 covers header files in 

detail. Section 15.3 describes how to divide a program into source files and header 

files. Section 15.4 then shows how to “build” (compile and link) a program that 

consists of more than one file, and how to “rebuild” a program after part of it has 

been changed. 

15.1 Source Files 

Up to this point, we’ve assumed that a C program consists of a single file. In fact, a 

program may be divided among any number of source files. By convention, source 

files have the extension . c. Each source file contains part of the program, prima¬ 

rily definitions of functions and variables. One source file must contain a function 

named main, which serves as the starting point for the program. 

For example, suppose that we want to write a simple calculator program that 

evaluates integer expressions entered in Reverse Polish notation (RPN), in which 

operators follow operands. If the user enters an expression such as 

30 5 - 7 * 

we want the program to print its value (175, in this case). Evaluating an RPN 

expression is easy if we have the program read the operands and operators, one by 
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one, using a stack to keep track of intermediate results. If the program reads a 

number, we’ll have it push the number onto the stack. If it reads an operator, we’ll 

have it pop two numbers from the stack, perform the operation, then push the 

result back onto the stack. When the program reaches the end of the user’s input, 

the value of the expression will be on the stack. For example, the program will 

evaluate the expression 3 0 5 - 7 * in the following way: 

1. Push 30 onto the stack. 

2. Push 5 onto the stack. 
3. Pop the top two numbers from the stack, subtract 5 from 30, giving 25, and 

then push the result back onto the stack. 

4. Push 7 onto the stack. 
5. Pop the top two numbers from the stack, multiply them, and then push the 

result back onto the stack. 

After these steps, the stack will contain the value of the expression (175). 

Turning this strategy into a program isn’t hard. The program’s main function 

will contain a loop that performs the following actions: 

Read a “token” (a number or an operator). 

If the token is a number, push it on a stack. 

If the token is an operator, pop its operands from the stack, perform the opera¬ 

tion, and push the result back onto the stack. 

When dividing a program like this one into files, it makes sense to put related func¬ 

tions and variables into the same file. The function that reads tokens could go into 

one source file (token. c, say), together with any functions that have to do with 

tokens. Stack-related functions such as push, pop, make_empty, is_empty, 

and is_full could go into a different file, stack, c. The variables that repre¬ 

sent the stack would also go into stack. c. The main function would go into yet 

another file, calc . c. 

Splitting a program into multiple source files has significant advantages: 

■ Grouping related functions and variables into a single file helps clarify the 

structure of the program. 

■ Each source file can be compiled separately—a great time-saver if the pro¬ 

gram is large and must be changed frequently (which is common during pro¬ 

gram development). 

■ Functions are more easily reused in other programs when grouped in separate 

source files. In our example, splitting off stack. c and token. c from the 

main function makes it simpler to reuse the stack functions and token func¬ 

tions in the future. 
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15.2 

#include directive 
(form 1) 

#include directive 
(form 2) 

Q&A 

V' Ii 

Header Files 

When we divide a program into several source files, problems arise: How can a 

function in one file call a function that’s defined in another file? How can a func¬ 

tion access an external variable in another file? How can two files share the same 

macro definition or type definition? The answer lies with the #include direc¬ 

tive, which makes it possible to share information—function prototypes, macro 

definitions, type definitions, and more—among any number of source files. 

The #include directive tells the preprocessor to open a specified file and 

insert its contents into the current file. Thus, if we want several source files to have 

access to the same information, we’ll put that information in a file and then use 

#include to bring the file’s contents into each of the source files. Files that are 

included in this fashion are called header files (or sometimes include files)-, I’ll 

discuss them in more detail later in this section. By convention, header files have 

the extension . h. 

Note: The C standard uses the term “source file” to refer to all files written by 

the programmer, including both . c and . h files. I’ll use “source file” to refer to 

. c files only. 

The #include Directive 

The #include directive has two forms. The first form is used for header files 

that belong to C’s own library: 

#include <filename> 

The second form is used for all other header files, including any that we write: 

#include "filename" 

The difference between the two is a subtle one having to do with how the 

compiler locates the header file. Here are the rules that most compilers follow: 

■ #include <filename>: Search the directory (or directories) in which system 

header files reside. (On UNIX systems, for example, system header files are 

usually kept in the directory /usr/include.) 

■ #include "filename": Search the current directory, then search the direc¬ 

tory (or directories) in which system header files reside. 

The places to be searched for header files can usually be altered, often by a com¬ 

mand-line option such as - Ipath. 
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Don’t use brackets when including header files that you have written: 

#include <myheader.h> /*** WRONG ***/ 

The preprocessor will probably look for myheader. h where the system header 
files are kept (and, of course, won’t find it). 

The file name in an #include directive may include information that helps 

locate the file, such as a directory path or drive specifier: 

♦include "c:\cprogs\utils.h" /* DOS path */ 

♦include "/cprogs/utils.h" /* UNIX path */ 

Although the quotation marks in the #include directive make file names look 

like string literals, the preprocessor doesn’t treat them that way. (That’s fortunate, 

since \c and \u—which appear in the DOS example—would be treated as escape 

sequences in a string literal.) 

portability tip It’s usually best not to include path or drive information in #include 

directives. Such information makes it difficult to compile a program when 

it’s transported to another machine or, worse, another operating system. 

For example, the following #include directives specify drive and/or path infor¬ 

mation that may not always be valid: 

♦include "d:utils.h" 

♦include "\cprogs\utils.h" 

♦include "d:\cprogs\utils.h" 

The following directives are better; they’re not restricted to a particular drive, and 

directories are specified relative to the current directory: 

♦include <sys\stat.h> 

♦include "utils.h" 

♦include "..\include\utils.h" 

Sharing Macro Definitions and Type Definitions 

Most large programs contain macro definitions and type definitions that need to be 

shared by several source files (or, in the most extreme case, by all source files). 

These definitions should go into header files. 

For example, suppose that we’re writing a program that uses macros named 

BOOL, TRUE, and FALSE. Instead of repeating the definitions of these macros in 

each source file that needs them, it makes more sense to put the definitions in a 
header file with a name like boolean. h: 
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tdefine BOOL int 

ttdefine TRUE 1 

ttdefine FALSE 0 

Any source file that requires these macros will simply contain the line 

#include "boolean.h" 

In the following figure, two files include boolean. h: 

Type definitions are also common in header files. For example, instead of 

defining a BOOL macro, we might use typedef to create a Bool type. If we do, 

the boolean. h file will have the following appearance: 

tdefine TRUE 1 

tdefine FALSE 0 

typedef int Bool; 

Putting definitions of macros and types in header files has some obvious 

advantages. First, we save time by not having to copy the definitions into the 

source files where they’re needed. Second, the program becomes easier to modify. 

Changing the definition of a macro or type requires only that we edit a single 

header file; we don’t have to modify the many source files in which the macro or 

type is used. Third, we don’t have to worry about inconsistencies caused by source 

files containing different definitions of the same macro or type. 

Sharing Function Prototypes 

Suppose that a source file contains a call of a function f that’s defined in another 

file, foo.c. Calling f without declaring it first is risky. Without a prototype to 

rely on, the compiler is forced to assume that f’s return type is int and that the 

number of parameters matches the number of arguments in the call of f. The argu¬ 

ments themselves are converted automatically to a kind of “standard form” by the 

default argument promotions. The compiler’s assumptions may well be wrong, but 
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it has no way to check them, since it compiles only one file at a time. If the 

assumptions are incorrect, the program probably won’t work, and there won’t be 

any clues as to the reason. 

When calling a function f that’s defined in another file, always make sure that the 
compiler has seen a prototype for f prior to the call. 

Q&A 

Our first impulse is to declare f in the file where it’s called. That solves the 

problem but can create a maintenance nightmare. Suppose that the function is 

called in fifty different source files. How can we ensure that f’s prototypes are the 

same in all the files? How can we guarantee that they match the definition of f in 

f oo . c? If f should change later, how can we find all the files where it’s used? 

The solution is obvious: put f’s prototype in a header file, then include the 

header file in all the places where f is called. Since f is defined in f oo. c, let’s 

name the header file foo.h. In addition to including foo.h in the source files 

where f is called, we’ll need to include it in foo.c, enabling the compiler to 

check that f’s prototype in f oo . h matches its definition in f oo . c. 

A Always include the header file declaring a function f in the source file that con¬ 
tains f’s definition. Failure to do so can cause hard-to-find bugs, since calls of f 
elsewhere in the program may not match f’s definition. 

If foo.c contains other functions, most of them should be declared in the 

same header file as f. After all, the other functions in foo.c are presumably 

related to f; any file that contains a call of f probably needs some of the other 

functions in foo.c. Functions that are intended for use only within foo.c 

shouldn’t be declared in a header file, however; to do so would be misleading. 

To illustrate the use of function prototypes in header files, let’s return to the 

RPN calculator of Section 15.1. The file stack, c will contain definitions of the 

make_empty, is_empty, is_full, push, and pop functions. Prototypes for 

these functions should go in the header file stack. h: 

void make_empty(void); 

int is_empty(void); 

int is_full(void); 

void push(int i); 

int pop(void); 

(To avoid complicating the example, is_empty and is_full will return int 

values instead of Bool values.) We’ll include stack.h in calc.c so that the 

compiler will know each function’s return type and the number and type of its 

parameters. We’ll also include stack. h in stack. c so the compiler can check 

that the prototypes in stack. h match the definitions in stack . c. The following 

figure shows stack.h, stack, c, and calc . c: 
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stack.c 

Sharing Variable Declarations 

Variables can be shared among files in much the same way functions are. To share 

a function, we put its definition in one source file, then put declarations in other 

files that need to call the function. Sharing a variable is done in much the same 

way. 

Up to this point, we haven’t needed to distinguish between a variable’s decla¬ 

ration and its definition. To declare a variable i, we’ve written 

int i; /* declares i and defines it as well */ 

which not only declares i to be a variable of type int, but defines i as well, by 

causing the compiler to set aside space for i. To declare i without defining it, we 

must put the keyword extern at the beginning of its declaration: 

extern int i; /* declares i without defining it */ 

extern informs the compiler that i is defined elsewhere in the program (most 

likely in a different source file), so there’s no need to allocate space for it. 

extern works with variables of all types, by the way. When we use it in the 

declaration of an array, we can omit the length of the array: 
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extern int a[]; 

Q&A 

Since the compiler doesn’t allocate space for a at this time, there’s no need for it to 

know a’s length. 

To share a variable i among several source files, we first put a definition of i 

in one file: 

int i ; 

If i needs to be initialized, the initializer would go here. When this file is com¬ 

piled, the compiler will allocate storage for i. The other files will contain declara¬ 

tions of i: 

extern int i; 

By declaring i in each file, it becomes possible to access and/or modify i within 

those files. Because of the word extern, however, the compiler doesn’t allocate 

additional storage for i each time one of the files is compiled. 

When a variable is shared among files, we’ll face a challenge similar to one 

that we had with shared functions: ensuring that all declarations of a variable agree 

with the definition of the variable. 

When declarations of the same variable appear in different files, the compiler can’t 
check that the declarations match the variable’s definition. For example, one file 
may contain the definition 

int i ; 

while another file contains the declaration 

extern long int i; 

An error of this kind can cause the program to behave unpredictably. 

To avoid inconsistency, declarations of shared variables are usually put in 

header files. A source file that needs access to a particular variable can then 

include the appropriate header file. In addition, each header file that contains a 

variable declaration is included in the source file that contains the variable’s defi¬ 
nition, enabling the compiler to check that the two match. 

Although sharing variables among files is a long-standing practice in the C 

world, it has significant disadvantages. In Section 19.2, we’ll see what the prob¬ 

lems are and learn how to design programs that don’t need shared variables. 

Nested Includes 

A header file may itself contain # include directives. Although this practice may 

seem a bit odd, it can be quite useful in practice. Consider the stack.h file, 
which contains the following prototypes: 
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int is_empty(void); 

int is_full(void); 

Since these functions return only 0 or 1, it’s a good idea to declare their return type 
to be Bool instead of int: 

Bool is_empty(void); 

Bool is_full(void); 

C++ 

Of course, we’ll need to include the file boolean. h in stack. h so that the def¬ 

inition of Bool is available when stack. h is compiled. 

Traditionally, C programmers shun nested includes. (Early versions of C 

didn’t allow them at all.) However, the bias against nested includes is gradually 

fading away. One reason is that nested includes are common practice in C++. 

Protecting Header Files 

If a source file includes the same header file twice, compilation errors may result. 

This problem is common when header files include other header files. For exam¬ 

ple, suppose that fi lei. h includes file3.h, file2 . h includes file3.h, 

and prog. c includes both f ilel. h and f ile2 .h: 

prog.c 

When prog. c is compiled, f ile3 . h will be compiled twice. 

Including the same header file twice doesn’t always cause a compilation error. 

If the file contains only macro definitions, function prototypes, and/or variable 
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declarations, there won’t be any difficulty. If the file contains a type definition, 

however, we’ll get a compilation error. 
Just to be safe, it’s probably a good idea to protect all header files; that way, 

we can add type definitions to a file later without the risk that we might forget to 

protect the file. In addition, we might save some time during program development 

by avoiding unnecessary recompilation of the same header file. 

To protect a header file against multiple inclusion, we’ll enclose the contents 

of the file in an #ifndef-#endif pair. For example, the boolean. h file could 

be protected in the following way: 

ftifndef BOOLEAN_H 

#define BOOLEAN_H 

#define TRUE 1 

#define FALSE 0 

typedef int Bool; 

ttendif 

When this file is included the first time, the BOOLEAN_H macro won’t be defined, 

so the preprocessor will allow the lines between ftifndef and #endif to stay. 

But if the file should be included a second time, the preprocessor will remove the 

lines between ftifndef and ttendif. 

The name of the macro (BOOLEAN_H) doesn’t really matter. However, mak¬ 

ing it resemble the name of the header file is a good way to avoid conflicts with 

other macros. Since we can’t name the macro BOOLEAN. H (identifiers can’t con¬ 

tain periods), a name such as BOOLEAN_H is a good alternative. 

#error Directives in Header Files 

terror directives are often put in header files to check for conditions under 

which the header file shouldn’t be included. For example, suppose that a header 

file contains prototypes for graphics functions that work properly only in DOS 

programs. To guarantee that it is included only in DOS programs, the header file 

could contain an ttifdef (or ttif) directive to test for a macro indicating that 

DOS is the operating system: 

ftifndef DOS 

terror Graphics supported only under DOS 

ttendif 

If a non-DOS program attempted to include this header file, compilation would 

halt at the # error directive. 
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15.3 Dividing a Program into Files 

Let’s now use what we know about header files and source files to develop a sim¬ 

ple technique for dividing a program into files. We’ll concentrate on functions, but 

the same principles apply to external variables as well. We’ll assume that the pro¬ 

gram has already been designed; that is, we’ve decided what functions the program 

will need and how to arrange the functions into logically related groups. (Program 

design is an entire topic in itself; we’ll discuss it in Chapter 19.) 

Here’s how we’ll proceed. Each set of functions will go into a separate source 

file (let’s use the name f oo . c for one such file). In addition, we’ll create a header 

file with the same name as the source file, but with the extension . h (f oo . h, in 

our case). Into f oo . h, we’ll put prototypes for the functions defined in f oo . c. 

(Functions that are designed for use only within f oo. c need not—and should 

not—be declared in f oo . h.) We’ll include f oo . h in each source file that needs 

to call a function defined in f oo . c. Moreover, we’ll include f oo . h in f oo . c so 

that the compiler can check that the function prototypes in foo . h are consistent 

with the definitions in foo . c. 

The main function will go in a file whose name matches the name of the pro¬ 

gram—if we want the program to be known as bar, then main should be in the 

file bar . c. It’s possible that there are other functions in the same file as main, so 

long as they’re not called from other files in the program. 

PROGRAM Text Formatting 

To illustrate the technique that we’ve just discussed, let’s apply it to a small text¬ 

formatting program. We’ll name the program fmt, since some operating systems 

already have a program named format. As sample input to fmt, we’ll use the 

file quote, which we’ll assume contains the following (poorly formatted) quota¬ 

tion from “The Development of the C Language” by Dennis M. Ritchie (ACM 

SIGPLAN Notices (March 1993): 207): 

c 
enormous 

surely 

is quirky, flawed, and an 

success. While accidents of 

helped, it evidently satisfied 

history 

a need 

for a system implementation language efficient 

enough to displace assembly language, 

yet sufficiently abstract and fluent to describe 

algorithms and interactions in a wide variety 

of environments. 
Dennis M. Ritchie 

To run the program from a UNIX or DOS prompt, we’d enter the command 

fmt <quote 
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output redirection >22.1 

The < symbol informs the operating system that fmt will read from the file 

quote instead of accepting input from the keyboard. This feature, supported by 

UNIX, DOS, and other operating systems, is called input redirection. When given 

the quote file as input, the fmt program will produce the following output: 

C is quirky, flawed, and an enormous success. While 

accidents of history surely helped, it evidently satisfied a 

need for a system implementation language efficient enough 

to displace assembly language, yet sufficiently abstract and 

fluent to describe algorithms and interactions in a wide 

variety of environments. -- Dennis M. Ritchie 

The output of fmt will normally appear on the screen, but we can save it in a file 

by using output redirection: 

fmt <quote >newquote 

The output of fmt will go into the file newquote. 

In general, fmt’s output should be identical to its input, except that extra 

spaces and blank lines are deleted, and lines are filled and justified. “Filling” a line 

means adding words until one more word would cause the line to overflow. “Justi¬ 

fying” a line means adding extra spaces between words so that each line has 

exactly the same length (60 characters). Justification must be done so that the 

space between words in a line is equal (or as nearly equal as possible). The last line 

of the output won’t be justified. 
We’ll assume that no word is longer than 20 characters. (A punctuation mark 

is considered part of the word to which it is adjacent.) That’s a bit. restrictive, of 

course, but once the program is written and debugged we can easily increase this 

limit to the point that it would virtually never be exceeded. If the program encoun¬ 

ters a longer word, it must ignore all characters after the first 20, replacing them 

with a single asterisk. For example, the word 

antidisestablishmentarianism 

would be printed as 

antidisestablishment* 

Now that we understand what the program should do, it’s time to think about a 

design. We’ll start by observing that the program can’t write the words one by one 

as they’re read. Instead, it will have to store them in a “line buffer” until there are 

enough to fill a line. After further reflection, we decide that the heart of the pro¬ 

gram will be a loop that goes something like this: 

for (;;) { 

read word ; 
if (can’t read word) { 

write contents of line buffer without justification ; 
terminate program ; 

} 
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if (word doesn’tfit in line buffer) { 
write contents of line buffer with justification; 
clear line buffer; 

} 
add word to line buffer; 

} 

Since we’ll need functions that deal with words and functions that deal with the 

line buffer, let’s split the program into three source files, putting all functions 

related to words in one file (word. c) and all functions related to the line buffer in 

another file (line. c). A third file (fmt. c) will contain the main function. In 

addition to these files, we’ll need two header files, word.h and line.h. The 

word.h file will contain prototypes for the functions in word.c; line.h will 

play a similar role for line . c. 

By examining the main loop, we see that the only word-related function that 

we’ll need is a read_word function. (If read_word can’t read a word because 

it’s reached the end of the input file, we’ll have it signal the main loop by pretend¬ 

ing to read an “empty” word.) Consequently, the word. h file is a small one: 

word.h #ifndef WORD_H 

#define WORD_H 

/*****★**************&******************************* ****** 
* read_word: Reads the next word from the input and * 

* stores it in word. Makes word empty if no * 

* word could be read because of end-of-file. * 

* Truncates the word if its length exceeds * 

* len. * 
**********************************************************/ 

void read_word(char *word, int len); 

#endif 

Notice how the WORD_H macro protects word. h from being included more than 

once. Although word. h doesn’t really need it, it’s good practice to protect all 

header files in this way. 
The line . h file won’t be as short as word. h. Our outline of the main loop 

reveals the need for functions that perform the following operations: 

Write contents of line buffer without justification 

Check whether word fits in line buffer 

Write contents of line buffer with justification 

Clear line buffer 

Add word to line buffer 

We’ll call these functions flush_line, space_remaining, write_line, 

clear_line, and add_word. Here’s the line . h header file: 
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line.h #ifndef LINE_H 

♦define LINE_H 

/********************************************************** 
* clear_line: Clears the current line. * 
**********************************************************/ 

void clear_line(void); 

/********************************************************** 
* add_word: Adds word to the end of the current line. * 

* If this is not the first word on the line, * 

* puts one space before word. * 
**********************************************************/ 

void add_word(const char *word); 

/********************************************************** 
* space_remaining: Returns the number of characters left * 

* in the current line. * 
*******************************************'***************'/ 

int space_remaining(void); 

/********************************************************** 
* write_line: Writes the current line with * 

* justification. * 
******* **************************** k********************** I 

void write_line(void); 

/********************************************************** 
* flush_line: Writes the current line without * 

* justification. If the line is empty, does * 

* nothing. * 
********************^********************************* i 

void flush_line(void); 

#endif 

Before we write the word.c and line.c files, we can use the functions 

declared in word. h and line . h to write fmt. c, the main program. Writing this 

file is mostly a matter of translating our original loop design into C. 

fmt.c /* Formats a file of text */ 

♦include 

♦include 

♦include 

<string.h> 

"line.h" 

"word.h" 

♦define MAX_WORD_LEN 20 

main() 

{ 
char word[MAX_WORD_LEN+2]; 

int word_len; 
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clear_line(); 

for ( ; ; ) { 

read_word(word, MAX_WORD_LEN+1); 

word_len = strlen(word); 

if (word_len == 0) { 

flush_line(); 

return 0; 

} 
if (word_len > MAX_WORD_LEN) 

word[MAX_WORD_LEN] = 

if (word_len + 1 > space_remaining()) { 

write_line(); 

clear_line(); 

} 
add_word(word); 

} 
} 

Including both line.h and word.h gives the compiler access to the function 

prototypes in both files as it compiles fmt. c. 

main uses a trick to handle words that exceed 20 characters. When it calls 

read_word, main tells it to truncate any word that exceeds 21 characters. After 

read_word returns, main checks whether word contains a string that’s longer 

than 20 characters. If so, the word that was read must have been at least 21 charac¬ 

ters long (before truncation), so main replaces the word’s 21st character by an 

asterisk. 

Now it’s time to write word. c. Although the word. h header file has a pro¬ 

totype for only one function, read_word, we can put additional functions in 

word. c if we need to. As it turns out, read_word is easier to write if we add a 

small “helper” function, read_char. read_char’s job is to read a single char¬ 

acter and, if it’s a new-line character or tab, convert it to a space. By calling 

read_char instead of getchar, read_word will automatically treat new-line 

characters and tabs as spaces. 

Here’s the word. c file: 

WOrd.C ttinclude <stdio.h> 

#include "word.h" 

int read_char(void) 

{ 
int ch = getchar(); 

if (ch == '\n' || ch == '\t') 

return ' '; 

return ch; 

} 

void read_word(char *word, int len) 

{ 
int ch, pos = 0; 
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while ((ch = read_char()) == ' ') 

while (ch != ' ' && ch != EOF) { 

if (pos < len) 

word[pos++] = ch; 

ch = read_char(); 

) 

word[pos] = '\0'; 

} 

Before we discuss read_word, a couple of comments are in order concern¬ 

ing getchar. First, getchar actually returns an int value instead of a char 

value; that’s why the variable ch in read_char is declared to have type int. 

eof macro >22.4 Also, getchar returns the value EOF when it’s unable to continue reading (usu¬ 

ally because it has reached the end of the input file). 
read_word consists of two loops. The first loop skips over spaces, stopping 

at the first nonblank character. (EOF isn’t a blank, so the loop stops if it reaches the 

end of the input file.) The second loop reads characters until encountering a space 

or EOF. The body of the loop stores the characters into word until reaching the 

len limit. After that, the loop continues reading characters but doesn’t store them. 

The final statement in read_word ends the word with a null character, thereby 

making it a string. If read_word encounters EOF before finding a nonblank 

character, pos will be 0 at the end, making word an empty string. 

The only file left is line.c, which supplies definitions of the functions 

declared in the line . h file, line . c will also need variables to keep track of the 

state of the line buffer. One variable, line, will store the characters in the current 

line. Strictly speaking, line is the only variable we need. For speed and conve¬ 

nience, however, we’ll use two other variables: line_len (the number of charac¬ 

ters in the current line) and num_words (the number of words in the current line). 

Here’s the line . c file: 

line.C #include <stdio.h> 

ttinclude <string.h> 

#include "line.h" 

#define MAX_LINE_LEN 60 

char line[MAX_LINE_LEN+1]; 

int line_len - 0; 

int num_words = 0; 

void clear_line(void) 

{ 
1ine[0] = '\0'; 

line_len = 0; 

num_words = 0; 

} 
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void add_word(const char *word) 

{ 

if (num_words >0) { 

line[line_len] = ' 

line[line_len+l] = '\0'; 

line_len++; 

} 
strcat(line, word); 

line_len += strlen(word); 

num_words++■ 

int space_remaining(void) 

{ 
return MAX_LINE_LEN - line_len; 

} 

void write_line(void) 

{ 
int extra_spaces, spaces_to_insert, i, j; 

extra_spaces = MAX_LINE_LEN - line_len; 

for (i = 0; i < line_len; i++) { 

if (line(i] != ' 1) 

putchar(line[i]); 

else { 

spaces_to_insert = extra_spaces / (num_words - 1); 

for (j = 1; j <= spaces_to_insert + 1; j++) 

putchar(' 1); 

extra_spaces -= spaces_to_insert; 

num_words--; 

} 
} 
putchar('\n'); 

void flush_line(void) 

{ 
if (line_len > 0) 

puts(line); 

} 

Most of the functions in line.c are easy to write. The only tricky one is 

write_line, which writes a line with justification. write_line writes the 

characters in line one by one, pausing at the space between each pair of words to 

write additional spaces if needed. The number of additional spaces is stored in 

spaces_to_insert, which has the value extra_spaces / (num_words 

- 1), where extra_spaces is initially the difference between the maximum 

line length and the actual line length. Since extra_spaces and num_words 

change after each word is printed, spaces_to_insert will change as well. If 

extra_spaces is 10 initially and num_words is 5, then the first word will be 

followed by 2 extra spaces, the second by 2, the third by 3, and the fourth by 3. 
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15.4 Building a Multiple-File Program 

In Section 2.1, we examined the process of compiling and linking a program that 

fits into a single file. Let’s expand that discussion to cover multiple-file programs. 

Building a large program requires the same basic steps as building a small one: 

■ Compiling. Each source file in the program must be compiled separately. 

(Header files don’t need to be compiled; a header file is automatically com¬ 

piled whenever a source file that includes it is compiled.) The compiler gener¬ 

ates a file containing object code from each source file. These files—known 

as object files—have the extension . o in UNIX and . ob j in DOS. 

■ Linking. The linker combines the object files created in the previous step— 

along with code for library functions—to produce an executable program. 

Among other duties, the linker is responsible for resolving external references 

left behind by the compiler. (An external reference occurs when a function in 

one file calls a function defined in another file or accesses a variable defined 

in another file.) 

Most compilers allow us to build a program in a single step. With the UNIX 

cc compiler, for example, we’d use the following command line to build the fmt 

program from Section 15.3: 

% cc -o fmt fmt.c line.c word.c 

(The % character is the UNIX prompt.) The three source files are first compiled 

into object code and stored in files named fmt. o, line . o, and word. o. The 

object files are then automatically passed to the linker, which combines them into a 

single file. The -o option tells the compiler that we want the executable file to be 

named fmt. 

Makefiles 

Putting the names of all the source files on the command line quickly gets tedious. 

Worse still, we could waste a lot of time when rebuilding a program if we recom¬ 

pile all source files, not just the ones that were affected by our most recent 

changes. 
To make it easier to build large programs, UNIX originated the concept of the 

makefile, a file containing the information necessary to build a program. A make¬ 

file not only lists the files that are part of the program, but also describes depen¬ 

dencies among the files. Suppose that the file f oo . c includes the file bar . h. We 

say that f oo . c “depends” on bar . h, because a change to bar . h will require us 

to recompile f oo . c. 

Here’s a UNIX makefile for the fmt program: 
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fmt: fmt.o word.o line.o 
cc -o fmt fmt.o word.o line.o 

fmt.o: fmt.c word.h line.h 
cc -c fmt.c 

word.o: word.c word.h 
cc -c word.c 

line.o: line.c line.h 
cc -c line.c 

There are four groups of lines. The first line in each group gives a target file, fol¬ 

lowed by the files on which it depends. The second line is a command to be exe¬ 

cuted if the target should need to be rebuilt because of a change to one of its 

dependent files. Let’s look at the first two groups; the last two are similar. 

In the first group, fmt (the executable program) is the target: 

fmt: fmt.o word.o line.o 
cc -o fmt fmt.o word.o line.o 

The first line states that fmt depends on the files fmt. o, word. o, and line . o; 

if any one of these three files has changed since the program was last built, then 

fmt needs to be rebuilt. The command on the following line shows how the 

rebuilding is to be done (by using cc to link the three object files). 

In the second group, fmt. o is the target: 

fmt.o: fmt.c word.h line.h 
cc -c fmt.c 

The first line indicates that fmt. o needs to be rebuilt if there’s been a change to 

fmt. c, word. h, or line . h. (The reason for mentioning word. h and line . h 

is that fmt. c includes both these files, so it’s potentially affected by a change to 

either one.) The next line shows how to update fmt. o (by recompiling fmt. c). 

The -c option tells the compiler to compile fmt.c, but not attempt to link it, 

since it’s not a complete program. 

Makefiles for other operating systems are similar, although not identical. If we 

were using Borland’s bcc compiler, for example, we’d use a slightly different 

makefile: 

fmt.exe: fmt.obj word.obj line.obj 
bcc fmt.obj word.obj line.obj 

fmt.obj: fmt.c word.h line.h 
bcc -c fmt.c 

word.obj: word.c word.h 
bcc -c word.c 

line.obj: line.c line.h 
bcc -c line.c 
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The compiler is bcc instead of cc, the object files have the extension . ob j 

instead of . o, and the executable file is fmt. exe instead of fmt. Also, we don’t 

need the -o option, because the name of the first object file—fmt. obj—deter¬ 

mines the name of the executable file. 
Once we’ve created a makefile for a program, we can use the make utility to 

build (or rebuild) the program. By checking the time and date associated with each 

file in the program, make can determine which files are out of date. It then auto¬ 

matically invokes the compiler and linker as needed to rebuild the program. 
make is complicated enough to warrant a book of its own (Tondo, Nathanson, 

and Yount, Mastering MAKE, second edition, Prentice-Hall, 1994), so we won’t 

attempt to delve any further into its intricacies. Let’s just say that real makefiles 

aren’t usually as easy to understand as the examples shown here. There are numer¬ 

ous techniques that reduce the amount of redundancy in makefiles and make them 

easier to modify; at the same time, though, these techniques greatly reduce their 

readability. 
Not everyone uses makefiles, by the way. Other program maintenance tools 

are becoming popular, including the “project files” supported by some integrated 

development environments. Check the documentation for your system to see 

whether it supports makefiles, project files, or both. 

Errors During Linking 

Some errors that can’t be detected during compilation will be found during linking. 

In particular, if the definition of a function or variable is missing from a program, 

the linker will be unable to resolve external references to it, causing a message 

such as “Undefined symbol” or “Unresolved external reference. ” 

Errors detected by the linker are usually easy to fix. Here are some of the most 

common causes: 

■ Misspellings. If the name of a variable or function is misspelled, the linker 

will report it as missing. For example, if the function read_char is defined 

in the program but called as read_cahr, the linker will report that 

read_cahr is missing. 

■ Missing files. If the linker can’t find the functions that are in file f oo . c, it 

may not know about the file. Check the makefile or project file to make sure 

that f oo . c is listed there. 

■ Missing libraries. The linker may not be able to find all library functions used 

in the program. A classic example occurs in UNIX, where the math library 

won’t be searched during linking unless the -lm option is present. Check the 

documentation for your system to see what options are available for the linker. 

Rebuilding a Program 

During the development of a program, it’s rare that we’ll need to compile all its 

files. Most of the time, we’ll test the program, make a change, then build the pro- 



15.4 Building a Multiple-File Program 323 

gram again. To save time, the rebuilding process should recompile only those files 
that might be affected by the latest change. 

Let’s assume that we’ve designed our program in the way outlined in Section 

15.3, with a header file for each source file. To see how many files will need to be 

recompiled after a change, we need to consider two possibilities. 

The first possibility is that the change affects a single source file. In that case, 

only that file must be recompiled. (After that, the entire program will need to be 

relinked, of course.) Consider the fmt program. Suppose that we decide to con¬ 

dense the read_char function in word. c (changes are marked in bold): 

int read_char(void) 

{ 
int ch = getchar(); 

return (ch = = '\n' || ch == 1\t' ? ' ' : ch); 

} 

This modification doesn’t affect the way read_char is called, so there’s no need 

to modify word. h. After making the change, we need only recompile word. c 

and relink the program. 

The second possibility is that the change affects a header file. In that case, we 

should recompile all files that include the header file, since they could potentially 

be affected by the change. (Some of them might not be, but it pays to be conserva¬ 

tive.) 

As an example, consider the read_word function in the fmt program. 

Notice that main calls strlen immediately after calling read_word, in order 

to determine the length of the word that was just read. Since read_word already 

knows the length of the word (read_word’s pos variable keeps track of the 

length), it seems silly to use strlen. Modifying read_word to return the 

word’s length is easy. First, we change the prototype of read_word in word. h: 

/********************************************************** 
* read_word: Reads the next word from the input and * 

* stores it in word. Makes word empty if no * 

* word could be read because of end-of-file. * 

* Truncates the word if its length exceeds * 

* len. Returns the number of characters * 

* stored. * 
**********************************************************/ 

int read_word(char *word, int len); 

Of course, we’re careful to change the comment that accompanies read_word. 

Next, we change the definition of read_word in word. c: 

int read_word(char *word, int len) 

{ 
int ch, pos = 0; 

while ((ch = read_char()) == ' ') 
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while (ch != ' 1 && ch != EOF) { 

if (pos < len) 

word[pos++] = ch; 

ch = read_char(); 

} 

word[pos] = '\01; 

return pos; 

} 

Finally, we modify fmt. c by removing the include of <string. h> and chang¬ 

ing main as follows: 

main() 

{ 
char word[MAX_WORD_LEN+2]; 

int word_len; 

clear_line(); 

for (;;) { 
word_len = read_word(word, MAX_WORD_LEN+l); 

if (word_len == 0) { 

flush_line(); 

return 0; 

} 
if (word_len > MAX_WORD_LEN) 

word[MAX_WORD_LEN] = 

if (word_len + 1 > space_remaining()) { 

write_line(); 

clear_line(); 

} 
add_word(word); 

} 
} 

Once we’ve made these changes, we’ll rebuild the fmt program by recompiling 

word, c and fmt. c and then relinking. There’s no need to recompile line . c, 

which didn’t include word. h and therefore won’t be affected by changes to it. In 

UNIX, we could use the following command to rebuild the program: 

% cc -o fmt fmt.c word.c line.o 

Note the mention of line . o instead of line . c. 

One of the advantages of using makefiles is that rebuilding is handled auto¬ 

matically. By examining the date of each file, the make utility can determine 

which files have changed since the program was last built. It then recompiles these 

files, together with all files that depend on them, either directly or indirectly. 

Defining Macros Outside a Program 

C compilers usually provide some method of specifying the value of a macro at the 

time a program is compiled. This ability makes it easy to change the value of a 
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macro without editing any of the program’s files. It’s especially valuable when 
programs are built automatically using makefiles. 

Most UNIX compilers (and some non-UNIX compilers) support the -D 

option, which allows the value of a macro to be specified on the command line: 

% cc -DDEBUG=1 foo.c 

In this example, the DEBUG macro is defined to have the value 1 in the program 
foo.c, just as if the line 

#define DEBUG 1 

appeared at the beginning of foo.c. If the -D option names a macro without 

specifying its value, the value is taken to be 1. 

Many compilers also support the -U option, which “undefines” a macro as if 
by using #undef: 

% cc -UDEBUG foo.c 

Q&A 

Q: You don’t have any examples that use the #include directive to include a 

source file. What would happen if we were to do this? 

A: That’s not a good practice, although it’s not illegal. Here’s an example of the kind 

of trouble you can get into. Suppose that f oo. c defines a function f that we’ll 

need in bar . c and baz . c, so we put the directive 

#include "foo.c" 

in both bar. c and baz . c. Each of these files will compile nicely. The problem 

comes later, when the linker discovers two copies of the object code for f. Of 

course, we would gotten away with including f oo . c if only bar . c had included 

it, not baz . c as well. To avoid problems, it’s best to use #include only with 

header files, not source files. 

Q: What are the exact search rules for the ttinclude directive? [p. 305] 

A: That depends on your compiler. The C standard is deliberately vague in its descrip¬ 

tion of #include. If the file name is enclosed in brackets, the preprocessor looks 

in a “sequence of implementation-defined places,” as the standard obliquely puts 

it. If the file name is enclosed in quotation marks, the file “is searched for in an 

implementation-defined manner” and, if not found, then searched as if its name 

had been enclosed in brackets. The reason for this waffling is simple: unlike DOS 

and UNIX, not all operating systems have hierarchical (tree-like) file systems. 

To make matters even more interesting, the standard doesn’t require that 

names enclosed in brackets be file names at all, leaving open the possibility that 

#include directives using <> are handled entirely within the compiler. 
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Q: I don’t understand why each source fde needs its own header file. Why not 

have one big header file containing macro definitions, type definitions, and 

function prototypes? By including this file, each source file would have access 

to all the shared information it needs, [p. 308] 

A: The “one big header file” approach certainly works; a number of programmers use 

it. And it has one advantage: with only one header file, there are fewer files to 

manage. For large programs, however, the disadvantages of this approach tend to 

outweigh its advantages. 
Using a single header file provides no useful information to someone reading 

the program later. With multiple header files, the reader can quickly see what other 

parts of the program are used by a particular source file. 
But that’s not all. Since each source file depends on the big header file, chang¬ 

ing it will cause all source files to be recompiled—a significant drawback in a 

large program. To make matters worse, the header file will probably change fre¬ 

quently because of the large amount of information it contains. 

Q: The chapter says that a shared array should be declared as follows: 

extern int a [ ] ; 

Since arrays and pointers are closely related, would it be legal to write 

extern int *a; 

instead? [p. 310] 

A: No. When used in expressions, arrays “decay” into pointers. (We’ve noticed this 

behavior when an array name is used as an argument in a function call.) In variable 

declarations, arrays and pointers are distinct types. 

Q: Does it hurt if a source file includes headers that it doesn’t really need? 

A: Not unless the header has a declaration or definition that conflicts with one in the 

source file. Otherwise, the worst that can happen is a minor increase in the time it 

takes to compile the source file. 

Q: I needed to call a function in the file foo.c, so I included the matching 

header file, foo.h. My program compiled, but it won’t link. Why? 

A: Compilation and linking are completely separate in C. Header files exist to provide 

information to the compiler, not the linker. If you want to call a function in f oo . c, 

then you have to make sure that f oo. c is compiled and that the linker is aware 

that it must search the object file for foo.c to find the function. Usually this 

means naming f oo . c in the program’s makefile or project file. 

Q: If my program calls a function in <stdio .h>, does that mean that all func¬ 

tions in <stdio .h> will be linked with the program? 

A: No. Including <stdio . h> (or any other header) has no effect on linking. In any 

event, most linkers will link only functions that your program actually needs. 
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Section 15.1 

Section 15.2 

Section 15.3 

Section 15.4 

Exercises 

1. Section 15.1 listed several advantages of dividing a program into multiple source files. 

(a) Describe several other advantages. 

(b) Describe some disadvantages. 

2. Which of the following should not be put in a header file? Why not? 

(a) function prototypes 

(b) function definitions 

(c) macro definitions 

(d) type definitions 

3. We saw that writing #include <file> instead of #include "file" may not work iffile is 
one that we’ve written. Would there be any problem with writing #include "file" instead 
of # include <file> if file is a system header? 

4. Suppose that the file f oo. c defines the external variable i as 

int i ; 

and the file bar. c declares it as 

extern long int i; 

(a) Explain what happens if one of the functions in bar . c assigns i the value 0, assuming 
that sizeof (int) is the same as sizeof (long int). 

(b) Repeat part (a), assuming that sizeof (int) is less than sizeof (long int). 

5. The fmt program justifies lines by inserting extra spaces between words. The way the 
write_line function is currently written, the words closer to the end of a line tend to 
have slightly wider gaps between them than the words at the beginning. (For example, the 
words closer to the end might have three spaces between them, while the words closer to the 
beginning might be separated by only two spaces.) Improve the program by having 
write_line alternate between putting the larger gaps at the end of the line and putting 
them at the beginning of the line. 

6. Write the RPN calculator program, using the design of Section 15.2. Implement the binary 
operators +, *, and /, assuming that they have the same meanings as in C. 

7. Suppose that a program consists of three source files—main. c, f 1. c, and f 2 . c—plus 
two header files, f 1. h and f 2 .h. All three source files include f 1. h, but only f 1. c and 
f 2 . c include f 2 . h. Write a UNIX makefile for this program, assuming that we want the 
executable file to be named demo. 

8. The following questions refer to the program described in Exercise 7. 

(a) Which files need to be compiled when the program is built for the first time? 

(b) If f 1. c is changed after the program has been built, which file(s) needs to be recom¬ 

piled? 
(c) If fl ,h is changed after the program has been built, which file(s) needs to be recom¬ 

piled? 
(d) If f 2 . h is changed after the program has been built, which file(s) needs to be recom¬ 

piled? 
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9. (a) Modify the fmt program by having the read_word function (instead of main) store 
the * character at the end of a word that’s been truncated. 

(b) If we make the change described in part (a), which file(s) will need to be recompiled? 



Structures, Unions, and 
Enumerations 

Functions delay binding: data structures induce binding. 
Moral: Structure data late in the programming process. 

This chapter introduces three new types: structures, unions, and enumerations. A 

structure is a collection of values (members), possibly of different types. A union 

is similar to a structure, except that its members share the same storage; as a result, 

a union can store one member at a time, but not all members simultaneously. An 

enumeration is an integer type whose values are named by the programmer. 

Of these three types, structures are by far the most important, so I’ll devote 

most of the chapter to them. Section 16.1 shows how to declare structure variables 

and perform basic operations on them. Section 16.2 then explains how to define 

structure types, which, among other things, enable us to write functions that accept 

structure arguments or return structures. Section 16.3 explores how arrays and 

structures can be nested. The last two sections are devoted to unions (Section 16.4) 

and enumerations (Section 16.5). 

16.1 Structure Variables 

The only data structure we’ve covered so far is the array. Arrays have two impor¬ 

tant properties. First, all elements of an array have the same type. Second, to select 

an array element, we specify its position (as an integer subscript). 

A structure has properties quite different from an array’s. The elements of a 

structure (its members, in C parlance) may have different types. Furthermore, each 

member of a structure has a name; to select a particular member, we specify its 

name, not its position. 
Structures may sound familiar, since most programming languages provide a 

similar feature. In other languages, structures are often called records; members of 

structures are known as fields. 

329 
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Declaring Structure Variables 

When we need to store a collection of related data items, a structure is a logical 

choice. For example, suppose that we need to keep track of parts stored in a ware¬ 

house. The information that we’ll need to store for each part might include a part 

number (an integer), a part name (a string of characters), and the number of parts 

on hand (an integer). To create variables that can store all three items of data, we 

might use a declaration such as the following: 

struct { 

int number; 

char name[NAME_LEN+1]; 

int on_hand; 

} parti, part2; 

Each structure variable has three members: number (the part number), name (the 

name of the part), and on_hand (the quantity on hand). Notice that this declara¬ 

tion has the same form as other variable declarations in C; struct { ... } speci¬ 

fies a type, while parti and part2 are variables of that type. 

The members of a structure are stored in memory in the order in which they’re 

declared. In order to show what the parti variable looks like when it’s stored in 

memory, let’s assume that (1) parti is stored at address 2000, (2) integers occupy 

two bytes, (3) NAME_LEN has the value 25, and (4) there are no gaps between the 

members. With these assumptions, parti will have the following appearance in 

memory: 

-number 

-on hand 

Usually it’s not necessary to draw structures in such detail. I’ll normally show 

them more abstractly, as a series of boxes: 
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number 

name 

on_hand 

I may sometimes draw the boxes horizontally instead of vertically: 

number name on_hand 

Member values will go in the boxes later; for now, I’ve left them empty. 

Each structure represents a new scope; any names declared in that scope won’t 

conflict with other names in a program. (In C terminology, we say that each struc¬ 

ture has a separate name space for its members.) For example, the following dec¬ 
larations can appear in the same program: 

struct { 

int number; 

char name[NAME_LEN+1]; 

int on_hand; 

} parti, part2; 

struct { 

char name[NAME_LEN+1]; 

int number; 

char sex; 

} employeel, employee2; 

The number and name members in the parti and part2 structures don’t con¬ 

flict with the number and name members in employeel and employee2. 

Initializing Structure Variables 

Like an array, a structure variable may be initialized at the time it’s declared. To 

initialize a structure, we prepare a list of values to be stored in the structure and 

enclose it in braces: 

struct { 

int number; 

char name[NAME_LEN+1] ■ 

int on_hand; 

} parti = {528, "Disk drive", 10}, 

part2 = {914, "Printer cable", 5}; 

The values in the initializer must appear in the same order as the members of the 

structure. In our example, the number member of parti will be 528, the name 

member will be "Disk drive", and so on. Here’s how parti will look after 

initialization: 
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lvalues >4.2 

table of operators >Appendix B 

Structure initializers follow rules similar to those for array initializers. Expres¬ 

sions used in a structure initializer must be constant; for example, we couldn’t 

have used a variable to initialize parti’s on_hand member. An initializer can 

be shorter than the structure it’s initializing; as with arrays, any “leftover” mem¬ 

bers are given 0 as their initial value. 

Operations on Structures 

Since the most common array operation is subscripting—selecting an element by 

position—it’s not surprising that the most common operation on a structure is 

selecting one of its members. Structure members are accessed by name, though, 

not by position. 
To access a member within a structure, we write the name of the structure 

first, then a period, then the name of the member. For example, the following state¬ 

ments will display the values of parti’s members: 

printf("Part number: %d\n", parti.number); 

printf("Part name: %s\n", parti.name); 

printf("Quantity on hand: %d\n", parti.on_hand); 

The members of a structure are lvalues, so they can appear on the left side of 

an assignment, or as the operand in an increment or decrement expression: 

parti.number =258; /* changes parti's part number */ 

parti.on_hand++; /* increments parti's quantity on hand */ 

The period that we use to access a structure member is actually a C operator. It 

has the same precedence as the postfix ++ and -- operators, so it takes precedence 

over nearly all other operators. Consider the following example: 

scanf("%d", &partl.on_hand); 

The expression &partl. on_hand contains two operators (& and .). The . 

operator takes precedence over the & operator, so & computes the address of 

parti. on_hand, as we wished. 

The other major structure operation is assignment: 

part2 = parti; 

part2. number will now contain the same value as parti. number, 

part2 . name will be the same as parti. name, and so on. 

Since arrays can’t be copied using =, it comes as something of a surprise to 

discover that structures can. It’s even more surprising when you consider that an 
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array embedded within a structure is copied when the enclosing structure is copied. 

Some programmers exploit this property by creating “dummy” structures to 
enclose arrays that will be copied later: 

struct { int a[10]; } al, a2; 

al = a2; /* legal, since al and a2 are structures */ 

Q&A 

The = operator can be used only with structures of compatible types. Two 

structures declared at the same time (as parti and part2 were) are compatible. 

As we’ll see in the next section, structures declared using the same “structure tag” 

or the same type name are also compatible. 

Other than assignment, C provides no operations on entire structures. In par¬ 

ticular, we can’t use the == and ! = operators to test whether two structures are 
equal or not equal. 

16.2 Structure Types 

Although the previous section showed how to declare structure variables, it failed 

to discuss an important issue: naming structure types. Suppose a program needs to 

declare several structure variables with identical members. If all the variables can 

be declared at one time, there’s no problem. But if we need to declare the variables 

at different points in the program, then life becomes more difficult. If we write 

struct { 

int number; 

char name[NAME_LEN+1]; 

int on_hand; 

} parti; 

in one place and 

struct { 

int number; 

char name[NAME_LEN+1]; 

int on_hand; 

} part2; 

in another, we’ll quickly run into problems. Repeating the structure information 

will bloat the program. Changing the program later will be risky, since we can’t 

easily guarantee that the declarations will remain consistent. 

But those aren’t the biggest problems. According to the rules of C, parti 

and part2 don’t have compatible types. As a result, parti can’t be assigned to 

part2, and vice versa. Also, since we don’t have a name for the type of parti 

or part2, we can’t use them as arguments in function calls. 

To avoid these difficulties, we need to be able to define a name that represents 

a type of structure, not a particular structure variable. As it turns out, C provides 
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two ways to name structures: we can either declare a “structure tag” or use 

typedef to define a type name. 

Declaring a Structure Tag 

A structure tag is a name used to identify a particular kind of structure. The fol¬ 

lowing example declares a structure tag named part: 

struct part { 

int number; 

char name [NAME_LEN+1] ; 

int on_hand; 

} ; 

Notice the semicolon that follows the right brace—it must be present to terminate 

the declaration. 

A Accidentally omitting the semicolon at the end of a structure declaration can lead 
to unexpected results. Consider the following example: 

struct part { 

int number; 

char name[NAME_LEN+1]; 

int on_hand; 

} /*** WRONG--semicolon missing ***/ 

f(void) 

{ 

return 0; /* error detected at this line */ 

} 

Since the return type of the function f is missing, it would normally be int by 
default. In this case, however, the compiler assumes a return type of struct 

part because the preceding structure declaration hasn’t been terminated properly. 
The compiler doesn’t detect the error until it reaches the first return statement in 
the function. The result: a cryptic error message. 

Once we’ve created the part tag, we can use it to declare variables: 

struct part parti, part2; 

Unfortunately, we can’t abbreviate this declaration by dropping the word struct: 

part parti, part2; /*** WRONG ***/ 

part isn’t a type name; without the word struct, it is meaningless. 

Since structure tags are meaningless unless preceded by the word struct, 

they don’t conflict with other names used in a program. It would be perfectly legal 

(although more than a little confusing) to have a variable named part. 
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Incidentally, the declaration of a structure tag can be combined with the decla¬ 

ration of structure variables: 

struct part { 

int number; 

char name[NAME_LEN+1]; 

int on_hand; 

} parti, part2; 

Here, we’ve not only declared part as a structure tag (making it possible to use 

part later to declare more variables) but also declared the variables parti and 

part2. 

All structures declared to have type struct part are compatible with one 

another: 

struct part parti = {528, "Disk drive", 10); 

struct part part2; 

part2 = parti; /* legal; both parts have the same type */ 

Defining a Structure Type 

As an alternative to declaring a structure tag, we can use typedef to define a 

genuine type name. For example, we could define a type named Part in the fol¬ 

lowing way: 

typedef struct { 

int number; 

char name [NAME_LEN+1] ; 

int on_hand; 

} Part; 

Note that the name of the type, Part, must come at the end of the definition, not 

after the word struct. 

We can use Part in the same way as the built-in types. For example, we 

might use it to declare variables: 

Part parti, part2; 

Since Part is a typedef name, we’re not allowed to write struct Part. All 

Part variables, regardless of where they’re declared, are compatible. 

When it comes time to name a structure, we can usually choose either to 

declare a structure tag or to use typedef. However, as we’ll see later, declaring a 

structure tag is mandatory when the structure is to be used in a linked list. 

Structures as Arguments and Return Values 

Functions may have structures as arguments and return values. Let’s look at two 

examples. Our first function, when given a part structure as its argument, prints 

the structure’s members: 



336 Chapter 16 Structures, Unions, and Enumerations 

void print_part(struct part p) 

{ 
printf("Part number: %d\n", p.number); 
printf("Part name: %s\n", p.name); 
printf("Quantity on hand: %d\n", p.on_hand); 

} 

Here’s how print_part might be called: 

print_part(parti); 

Our second function returns a part structure that it constructs from its arguments: 

struct part build__part (int number, const char* name, 

int on_hand) 

{ 
struct part p; 

p.number = number; 

strcpy(p.name, name); 

p.on_hand = on_hand; 

return p; 

} 

Notice that it’s legal for build_part’s parameters to have names that match the 

members of the part structure, since the structure has its own name space. Here’s 

how build part might be called: 

parti = build_part(528, "Disk drive", 10); 

Passing a structure to a function and returning a structure from a function both 

require making a copy of all members in the structure. As a result, these operations 

impose a fair amount of overhead on a program, especially if the structure is large. 

To avoid this overhead, it’s sometimes advisable to pass a pointer to a structure 

instead of passing the structure itself. Similarly, we might have a function return a 

pointer to a structure instead of returning an actual structure. 

On occasion, we may want to initialize a structure variable inside a function to 

match another structure, possibly supplied as a parameter to the function. In the 

following example, the initializer for part2 is the parameter passed to the f func¬ 

tion: 

void f(struct part parti) 

{ 
struct part part2 = parti; 

} 

C permits initializers of this kind, provided that the structure we’re initializing 

(part2, in this case) has automatic storage duration (it’s local to a function and 

hasn’t been declared static). The initializer can be any expression of the proper 

type, including a function call that returns a structure. 
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16.3 Nested Arrays and Structures 

Structures and arrays can be combined without restriction. Arrays may have struc¬ 

tures as their elements, and structures may contain arrays and structures as mem¬ 

bers. We’ve already seen an example of an array nested inside a structure (the 

name member of the part structure). Let’s explore the other possibilities: struc¬ 

tures whose members are structures and arrays whose elements are structures. 

Nested Structures 

Nesting one kind of structure inside another is often useful. For example, suppose 

that we’ve declared the following structure, which can store a person’s first name, 

middle initial, and last name: 

struct person_name { 

char first[LAST_NAME_LEN+1]; 

char middle_initial; 

char last[FIRST_NAME„LEN+1]; 

} ; 

We can use the person_name structure as part of a larger structure: 

struct student { 

struct person_name name; 

int id, age; 

char sex; 

} studentl, student2; 

Accessing studentl’s first name, middle initial, or last name requires two appli¬ 

cations of the . operator: 

strcpy(studentl.name.first, "Fred"); 

One advantage of making name a structure (instead of having first, 

middle_initial, and last be members of the student structure) is that we 

can more easily treat names as units of data. For example, if we were to write a 

function that displays a name, we could pass it just one argument—a 

person_name structure—instead of three arguments: 

display_name(studentl.name); 

Likewise, copying the information from a person_name structure to the name 

member of a student structure would take one assignment instead of three: 

struct person_name new_name; 

studentl.name = new_name; 
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Arrays of Structures 

One of the most common combinations of arrays and structures is an array whose 

elements are structures. An array of this kind can serve as a simple database. For 

example, the following array of part structures is capable of storing information 

about 100 parts: 

struct part inventory[100]; 

To access one of the parts in the array, we’d use subscripting. To print the part 

stored in position i, for example, we could write 

print_part(inventory[i]); 

Accessing a member within a part structure requires a combination of sub¬ 

scripting and member selection. To assign 883 to the number member of 

inventory [ i ], we could write 

inventory[i].number = 883 ; 

Accessing a single character in a part name requires subscripting (to select a par¬ 

ticular part), followed by selection (to select the name member), followed by sub¬ 

scripting (to select a character within the part name). To change the name stored in 

inventory [ i] to an empty string, we could write 

inventory[i].name[0] = '\0'; 

Initializing an Array of Structures 

Initializing an array of structures is done in much the same way as initializing a 

multidimensional array. Each structure has its own brace-enclosed initializer; the 

initializer for the array simply wraps another set of braces around the structure ini¬ 

tializers. 

One reason for initializing an array of structures is that we’re planning to treat 

it as a database of information that won’t change during program execution. For 

example, suppose that we’re working on a program that will need access to the 

country codes used when making international telephone calls. First, we’ll set up a 

structure that can store the name of a country along with its code: 

struct dialing_code { 

char *country; 

int code; 

} ; 

Note that country is a pointer, not an array of characters. That could be a prob¬ 

lem if we were planning to use dialing_code structures as variables, but we’re 

not. When we initialize a dialing_code structure, country will end up 
pointing to a string literal. 

Next, we’ll declare an array of these structures and initialize it to contain the 
codes for some of the world’s most populous nations: 



16.3 Nested Arrays and Structures 339 

const struct dialing_code country_codes[] = 

{"Argentina", 54} , {"Bangladesh", 880} , 
{"Brazil", 55} , {"China", 86}, 
{"Colombia", 57} , {"Egypt", 20} , 
{"Ethiopia", 251} , {"France", 33}, 
{"Germany", 49} , {"India", 91} , 
{"Indonesia", 62}, {"Iran", 98}, 
{"Italy", 39} , {"Japan", 81} , 
{"Korea, Republic of", 82} , {"Mexico", 52}, 
{"Nigeria", 234}, {"Pakistan", 92} , 

{"Philippines", 63} , {"Poland", 48} , 

{"Russia", 7}, {"South Africa" , 27}, 
{"Spain", 34} , {"Thailand", 66} , 

{"Turkey", 90}, {"Ukraine", 7}, 

{"United Kingdom", 44} , {"Vietnam", 84} , 

{"Zaire", 243}}; 

The inner braces around each structure value are optional. As a matter of style, 
however, I prefer not to omit them. 

PROGRAM Maintaining a Parts Database 

To illustrate how nested arrays and structures are used in practice, we’ll now 

develop a fairly long program that maintains a database of information about parts 

stored in a warehouse. The program is built around an array of structures, with 

each structure containing information—part number, name, and quantity—about 

one part. Our program will support the following operations: 

Add a new part number, part name, and initial quantity on hand. The pro¬ 

gram must print an error message if the part is already in the database or if the 

database is full. 

Given a part number, print the name of the part and the current quantity on 

hand. The program must print an error message if the part number isn’t in the 

database. 

(LA 

■uv 

Given a part number, change the quantity on hand. The program must print 

an error message if the part number isn’t in the database. 

J m Print a table showing all information in the database. Parts must be dis¬ 

played in the order in which they were entered. 

Terminate program execution. 

We’ll use the codes i (insert), s (search), u (update), p (print), and q (quit) to rep¬ 

resent these operations. A session with the program might look like this: 

Enter operation code: i 

Enter part number: 528 

Enter part name: Disk drive 

Enter quantity on hand: .10 
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Enter operation code: £3 

Enter part number: 528 

Part name: Disk drive 

Quantity on hand: 10 

Enter operation code: s 

Enter part number: 914 

Part not found. 

Enter operation code: i. 

Enter part number: 914 

Enter part name: Printer cable 

Enter quantity on hand: 

Enter operation code: u 

Enter part number: 528 

Enter change in quantity on hand: 

Enter operation code: s 

Enter part number: 528 

Part name: Disk drive 

Quantity on hand: 8 

Enter operation code: p 

Part Number Part Name 

528 Disk drive 

914 Printer cable 

Enter operation code: q 

The program will store information about each part in a structure. We’ll limit 

the size of the database to 100 parts, making it possible to store the structures in an 

array, which y^e’ll call inventory. (If this limit proves to be too small, we can 

always change it later.) To keep trade of the number of parts currently stored in the 

array, we’ll use a variable named num_parts. 

Since this program is menu-driven, it’s fairly easy to sketch the main loop: 

for (;;) { 

prompt user to enter operation code ; 

read code ; 

switch (code) { 
case 'i1: perform insert operation-, break; 

case 's': perform search operation; break; 

case 'u': perform update operation; break; 

case ip) : perform print operation; break; 

case fq’ : terminate program; 

default: print error message; 

} 
} 

For convenience, we’ll have separate functions perform the insert, search, 

update^ and print operations. Since these functions will all need access to 

inventory and num_parts, we might want to make these variables external. 

Quantity on Hand 

8 
5 
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invent.c 

Or we could hide the variables inside main, and then pass them to the functions as 

arguments. From a design standpoint, it’s usually better to make variables local to 

a function rather than making them external (see Section 10.2 if you’ve forgotten 

why). In this program, however, hiding inventory and num_parts inside 

main would merely complicate the program. 

For reasons that I’ll explain later, I’ve decided to split the program into three 

files: invent. c, which contains the bulk of the program; readline . h, which 

contains the prototype for the read_line function; and readline, c, which 

contains the definition of read_line. We’ll discuss the latter two files later in 

this section. For now, let’s concentrate on invent. c. 

/* Maintains a parts database (array version) */ 

tinclude <stdio.h> 

#include "readline.h" 

#define NAME_LEN 25 

#define MAX_PARTS 100 

struct part { 

int number; 

char name[NAME_LEN+1]; 

int on_hand; 

} inventory[MAX_PARTS]; 

int num__parts = 0; /* number of parts currently stored */ 

int find_part(int number); 

void insert(void); 

void search(void); 

void update(void); 

void print(void); 

/********************************************************** 
* main: Prompts the user to enter an operation code, 

* then calls a function to perform the requested * 

* action. Repeats until the user enters the * 

* command 'q'. Prints an error message if the user * 

* enters an illegal code. 
**********************************************************/ 

main() 

{ 
char code; 

for (;;) { 

printf("Enter operation code: "); 

scanf(" %c", &code); 

while (getcharO != ' \n') /* skips to end of line */ 

/ 

switch (code) { 

case 'i': insert(); 

break; 
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case 's' : search(); 

break; 

case ' U ' : : update(); 

break; 

case 'p' : : print(); 

break; 

case ' q' : : return 0; 

default: printf("Illegal 

} 
printf("\n"); 

/********************************************************** 
* find_part: Looks up a part number in the inventory * 

* array. Returns the array index TlT^the part * 

* number is found; otherwise, returns -1. * 
********************************************************** j 

int f ind_part (int number) - fU7) It t" 

{ 
int i ; 

for (i = 0; i < num parts; i++) 

if (inventory[i].number == number) 

return i; 

return -1; 

J************** ******************************************** 
* insert: Prompts the user for information about a new * 

* part and then inserts the part into the * 

* database. Prints an error message and returns * 

* prematurely if the part already exists or the * 

* database is full. * 
********************************************************** j 

void insert(void) 

{ 
int part_number; 

if (num_parts == MAX_PARTS) { 

printf("Database is full; can't add more parts.\n"); 
return; 

} 

printf("Enter part number: "); 

scanf("%d", &part_number); 

if (find_part(part_number) >= 0) { 

printf("Part already exists.\n"); 

return; 

} 

inventory[num_parts].number = part_number; 

printf("Enter part name: "); 

read_line(inventory[num_parts].name, NAME_LEN); 
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printf("Enter quantity on hand: "); 

scant("%d", kinventory[numjparts].on_hand); 

num_parts++; 

/********************************************************** 
* search: Prompts the user to enter a part number, then * 

* looks up the part in the database. If the part * 

* exists, prints the name and quantity on hand; * 

* if not, prints an error message. * 
**********************************************************/ 

void search(void) 

{ 
int i, number; 

} 

printf("Enter part number: " 

scant("%d", knumber); 

i = find_part(number); 

if (i >= 0) { 

printf("Part name: %s\n", 

printf("Quantity on hand: 

} else 

printf("Part not found.\n" 

) ; 

inventory[i].name); 

%d\n", inventory[i] .on_hand); 

/********************************************************** 
* update: Prompts the user to enter a part number. * 

* Prints an error message if the part doesn't * 

* exist; otherwise, prompts the user to enter * 

* change in quantity on hand and updates the * 

* database. * 
**********************************************************/ 

void update(void) 

{ 
int i, number, change; 

printf("Enter part number: "); 

scanf("%d", toumber); 

i = find_part(number); 

if (i >= 0) { 

printf("Enter change in quantity on hand: "); 

scanf("%d", ^change); 

inventory[i].on_hand += change; 

} else 

printf("Part not found.\n"); 

} 

/********************************************************** 
* print: Prints a listing of all parts in the database, * 

* showing the part number, part name, and * 

* quantity on hand. Parts are printed in the * 

* order in which they were entered into the * 

* database. * 
**********************************************************/ 
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void print(void) 

{ 

int i ; 

} 

printf("Part Number Part Name " 

"Quantity on Hand\n"); 

for (i = 0; i < num_parts; i++) 

printf("%7d %-25s%lld\n", inventory[i].number, 

inventory[i].name, inventory[i],on_hand); 

In main, the format string " %c" allows scanf to skip over white space 

before reading the operation code. The space in the format string is crucial; with¬ 

out it, scanf would sometimes read the new-line character that terminated a pre¬ 

vious line of input. 

The program contains one function, find_part, that isn’t called from 

main. This “auxiliary” function helps us avoid redundant code and simplify the 

more important functions. By calling f ind_part, the insert, search, and 

update functions can locate a part in the database (or simply determine if the part 

exists). 

There’s just one detail left: the read_line function, which we’ve used to 

read the part name. Section 13.3 discussed the issues that are involved in writing 

such a function. Unfortunately, the version of read_line we developed in that 

section won’t work properly in the current program. Consider what happens when 

the user inserts a part: 

Enter part number: 528 

Enter part name: Disk drive 

The user presses the Enter (or Return) key after entering the part number and again 

after entering the part name, each time leaving an invisible new-line character that 

the program must read. For the sake of discussion, let’s pretend that these charac¬ 
ters are visible: 

Enter part number: 528n 

Enter part name: Disk driven 

When we call scanf to read the part number, it consumes the 5, 2, and 8, but 

leaves the n character unread. If we try to read the part name using our original 

read_line function, it will encounter the a character immediately and stop 

reading. This problem is common when numerical input is followed by character 

input. Our solution will be to write a version of read_line that skips white- 

space characters before it begins storing characters into the string. Not only will 

this solve the new-line problem, but it also enables us to avoid storing any blanks 
that the user may enter at the beginning of the part name. 

Since read_line is unrelated to the other functions in invent. c, and 

since it’s potentially reusable in other programs, I’ve decided to separate it from 

invent. c. The prototype for read_line will go in the readline . h header 
file: 
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readline.h 

readline.c 
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#ifndef READLINE_H 

#define READLINE_H 

/********************************************************** 
* read_line: Skips leading white-space characters, then * 

* reads the remainder of the input line and * 

* stores it in str. Truncates the line if its * 

* length exceeds n. Returns the number of * 

* characters stored. * 
********************************************************** I 

int read_line(char str[], int n); 

#endif 

We’ll put the definition of read_line in the readline . c file: 

#include <ctype.h> 

#include <stdio.h> 

#include "readline.h" 

int read_line(char str[], int n) 

{ 
int ch, i = 0; 

while (isspace(ch = getchar())) 

while (ch != '\n' && ch != EOF) { 

if (i < n) 

str[i++] = ch; 

ch = getchar(); 

str [ i ] = 'Non¬ 
return i ; 

The isspace function tests whether its argument is a white-space character. Sec¬ 

tion 15.3 explains why ch has type int instead of char, and why it’s good to test 

for EOF. 

Unions 

A union, like a structure, consists of one or more members, which may be of dif¬ 

ferent types. However, the compiler allocates only enough space for the largest of 

the members in a union. The members of the union overlay each other within this 

space. As a result, assigning a new value to one member alters the values of all the 

other members as well. 
To illustrate the basic properties of unions, let’s declare a union variable, u, 

with two members: 
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union { 

int i ; 

float f; 

} u; 

Notice how the declaration of a union closely resembles a structure declaration: 

struct { 

int i; 

float f; 

} s; 

In fact, the structure s and the union u differ in just one way: the members of s are 

stored at different addresses in memory, while the members of u are stored at the 

same address. Here’s what s and u will look like in memory (assuming that int 

values require two bytes and float values take four bytes): 

s 

U 

In the s structure, i and f occupy different memory locations; the total size of s is 

six bytes. In the u union, i and f overlap (i is really the first two bytes of f), so u 

occupies only four bytes. As the figure shows, u. i and u. f have the same 

address. 

Members of a union are accessed in the same way as members of a structure. 

To store the number 82 in the i member of u, we would write 

u.i = 82; 

To store the value 74.8 in the f member, we would write 

u.f = 74.8; 

Since the compiler overlays storage for the members of a union, changing one 

member alters any value previously stored in any of the other members. Thus, if 

we store a value into u . f, any value previously stored in u . i will be lost. (If we 

examine the value of u. i, it will appear to be meaningless.) Similarly, changing 

u . i corrupts u . f. Because of this property, we can think of u as a place to store 

either i or f, not both. (The structure s allows us to store i and f.) 
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The properties of unions are almost identical to the properties of structures. 

We can declare union tags and union types in the same way we declare structure 

tags and types. Like structures, unions can be copied using the = operator, passed 

to functions, and returned by functions. 

Unions can even be initialized in a manner similar to structures. However, 

only the first member of a union can be given an initial value. For example, we can 

initialize the i member of u to 0 in the following way: 

union { 

int i ; 

float f; 

} u = (0); 

Notice the presence of the braces, even though the initializer is a single expression. 

The expression inside the braces must be constant. 

There are several important applications for unions. We’ll discuss two of these 

now. Another application—viewing storage in different ways—is highly machine- 

dependent, so we’ll postpone it until Section 20.3. 

Using Unions to Save Space 

We’ll often use unions as a way to save space in structures. Suppose that we’re 

designing a structure that will contain information about an item that’s sold 

through a gift catalog. The catalog carries only three kinds of merchandise: books, 

mugs, and shirts. Each item has a stock number and a price, as well as other infor¬ 

mation that depends on the type of the item: 

Books: Title, author, number of pages 

Mugs: Design 
Shirts: Design, colors available, sizes available 

Our first design attempt might result in the following structure: 

struct catalog_item { 

int stock_number; 

float price; 

int item_type; 

char title[TITLE_LEN+1]; 

char author[AUTHOR_LEN+l]; 

int num_pages; 

char design[DESIGN_LEN+1]; 

int colors; 

int sizes; 

} ; 

The item_type member would have one of the values BOOK, MUG, or SHIRT. 

The colors and sizes members would store encoded combinations of colors 

and sizes. 
Although this structure is perfectly usable, it wastes space, since only part of 

the information in the structure is common to all items in the catalog. If an item is 
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a book, for example, there’s no need to store design, colors, and sizes. By 

putting a union inside the catalog_item structure, we can reduce the space 

required by the structure. The members of the union will be structures, each con¬ 

taining the data that’s needed for a particular kind of catalog item: 

struct catalog_item { 

int stock_number; 

float price; 

int item_type; 

union { 

struct { 

char title[TITLE_LEN+1]; 

char author[AUTHOR_LEN+l]; 

int num_pages; 

} book; 

struct { 

char design[DESIGN_LEN+1]; 

} mug; 

struct { 

char design[DESIGN_LEN+1]; 

int colors; 

int sizes; 

} shirt; 

} item; 

} ; 

Notice that the union (named item) is a member of the catalog_item 

structure, and the book, mug, and shirt structures are members of item. If c is 

a catalog_item structure that represents a book, we can print the book’s title in 

the following way: 

printf("%s", c.item.book.title); 

C++ As this example shows, accessing a union that’s nested inside a structure can be 

awkward: to locate a book title, we had to specify the name of a structure (c), the 

name of the union member of the structure (item), the name of a structure mem¬ 

ber of the union (book), and then the name of a member of that structure 

(title). C++ makes unions a little easier to use by allowing them to be anony¬ 

mous. In C++, we could have omitted the name item when creating the structure, 

then written c . book. title instead of c . item, book . title. 

Using Unions to Build Mixed Data Structures 

Unions have another important application: creating data structures that contain a 

mixture of data of different types. Let’s say that we need an array whose elements 

are a mixture of int and float values. Since the elements of art array must be of 

the same type, it seems impossible to create such an array. Using unions, though, 

it’s relatively easy. First, we define a union type whose members represent the dif¬ 

ferent kinds of data to be stored in the array: 
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typedef union { 

int i ; 

float f; 

} Number; 

Next, we create an array whose elements are Number values: 

Number number_array[1000]; 

Each element of number_array is a Number union. A Number union can 

store either an int value or a float value, making it possible to store a mixture 

of int and float values in number_array. For example, suppose that we 

want element 0 of nuraber_array to store 5, while element 1 stores 8.395. The 
following assignments will have the desired effect: 

number_array[0].i = 5 ; 

number_array[1].f = 8.395; 

Adding a “Tag Field” to a Union 

Unions suffer from a major problem: there’s no easy way to tell which member of 

a union was last changed and therefore contains a meaningful value. Consider the 

problem of writing a function that displays the value currently stored in a Number 

union. This function might have the following outline: 

void print_number(Number n) 

{ 
if (n contains an integer) 

printf("%d", n.i); 

else 

printf("%g", n.f); 

} 

Unfortunately, there’s no way for print_number to determine whether n con¬ 

tains an integer or a floating-point number. 

In order to keep track of this information, we can embed the union within a 

structure that has one other member: a “tag field” or “discriminant” whose purpose 

is to remind us what’s currently stored in the union. In the catalog_item struc¬ 

ture discussed earlier in this section, item_type served this purpose. 

Let’s convert the Number type into a structure with an embedded union: 

#define INT_KIND 0 

ttdefine FLOAT_KIND 1 

typedef struct { 

int kind; /* tag field */ 

union { 

int i ; 

float f; 

} u; 
} Number; 
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Number has two members, kind and u. kind has two possible values, 

INT_KIND and FLOAT_KIND. 

Each time we assign a value to a member of u, we’ll also change kind to 

remind us which member of u we modified. For example, if n is a Number vari¬ 

able, an assignment to the i member of u would have the following appearance: 

n.kind = INT_KIND; 

n.u.i = 82; 

Notice that assigning to i requires that we first select the u member of n, then the 

i member of u. 

When we need to retrieve the number stored in a Number variable, kind will 

tell us which member of the union was the last to be assigned a value. The 

print_number function can take advantage of this capability: 

void print_number(Number n) 

{ 
if (n.kind == INT_KIND) 

printf("%d", n.u.i); 

else 

printf("%g", n.u.f); 

} 

It’s the program’s responsibility to change the tag field each time an assignment is 
made to a member of the union. Failing to keep the tag field up to date can result in 
bizarre errors. Some programming languages treat tag fields in a more secure way, 
but C makes no attempt. 

16.5 Enumerations 

In many programs, we’ll need variables that have only a small set of meaningful 

values. A “Boolean” variable, for example, should have only two possible values: 

“true” and “false.” A variable that stores the suit of a playing card should have 

only four potential values: “clubs,” “diamonds,” “hearts,” or “spades.” The obvi¬ 

ous way to deal with such a variable is to declare it as an integer, and have a set of 

codes that represent the possible values of the variable: 

int s; /* s will store a suit */ 

s = 2; /* 2 represents "hearts" */ 

Although this technique works, it leaves much to be desired. Someone reading the 

program may not realize that suit isn’t an ordinary integer variable, and the sig¬ 

nificance of 2 isn’t immediately apparent. 
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Using macros to define a suit “type” and names for the various suits is a step 
in the right direction: 

#define SUIT int 

#define CLUBS 0 

#define DIAMONDS 1 

#define HEARTS 2 

#define SPADES 3 

Our previous example now becomes easier to read: 

SUIT s; 

S = HEARTS; 

This technique is an improvement, but it’s still not the best solution. There’s no 

indication to someone reading the program that the macros represent values of the 

same “type.” If the number of possible values is more than a few, defining a sepa¬ 

rate macro for each will be tedious. Moreover, the names we’ve defined—CLUBS, 

DIAMONDS, HEARTS, and SPADES—will be removed by the preprocessor, so 

they won’t be available during debugging. 

C provides a special kind of type designed specifically for variables that have 

a small number of possible values. An enumeration is a type whose values are 

listed (“enumerated”) by the programmer, who must create a name (an enumera¬ 

tion constant) for each of the values. The following example enumerates the val¬ 

ues (CLUBS, DIAMONDS, HEARTS, and SPADES) that can be assigned to the 

variables si and s2: 

enum {CLUBS, DIAMONDS, HEARTS, SPADES) si, s2; 

Although enumerations have little in common with structures and unions, they’re 

declared in a similar way. Unlike the members of a structure or union, however, the 

names of enumeration constants must be different from other identifiers declared 

in the enclosing scope. 

Enumeration constants are similar to constants created with the #define 

directive, but they’re not equivalent. In particular, enumeration constants are sub¬ 

ject to C’s scope rules: if an enumeration is declared inside a function, its constants 

won’t be visible outside the function. 

Enumeration Tags and Types 

We’ll often need to create names for enumerations, for the same reasons that we 

name structures and unions. As with structures and unions, there are two ways to 

name an enumeration: by declaring a tag or by using typedef to create a genuine 

type name. 
Enumeration tags resemble structure and union tags. To define the tag suit, 

for example, we could write 

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES); 
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suit variables would be declared in the following way: 

enum suit si, s2; 

As an alternative, we could use typedef to make Suit a type name: 

typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit; 

Suit si, s2; 

Using typedef is an excellent way to create a Boolean type, by the way: 

typedef enum {FALSE, TRUE} Bool; 

Enumerations as Integers 

Behind the scenes, C treats enumeration variables and constants as integers. In our 

suit enumeration, for example, CLUBS, DIAMONDS, HEARTS, and SPADES 

represent the numbers 0, 1,2, and 3, respectively. 
We’re free to choose different values for enumeration constants. Let’s say that 

we want CLUBS, DIAMONDS, HEARTS, and SPADES to stand for 1, 2, 3, and 4. 

We can specify these numbers when declaring the enumeration: 

enum suit {CLUBS = 1, DIAMONDS = 2, HEARTS = 3, SPADES = 4}; 

The values of enumeration constants may be arbitrary integers, listed in no particu¬ 

lar order: 

enum dept {RESEARCH = 20, PRODUCTION = 10, SALES = 25}; 

It’s even legal for two or more enumeration constants to have the same value. 

When no value is specified for an enumeration constant, its value is one 

greater than the value of the previous constant. (The first enumeration constant has 

the value 0 by default.) In the following enumeration, BLACK has the value 0, 

LT_GRAY is 7, DK_GRAY is 8, and WHITE is 15: 

enum EGA_colors {BLACK, LT_GRAY = 7, DK_GRAY, WHITE = 15}; 

Since enumeration values are nothing but thinly disguised integers, C allows 

us to mix them with ordinary integers: 

int i; 

enum {CLUBS, DIAMONDS, HEARTS, SPADES} s; 

i = DIAMONDS; 

s = 0 ; 

S++ ; 

i = s + 2 ; 

/* i is now 1 

/* s is now 0 

/* s is now 1 

/* i is now 3 

*/ 

(CLUBS) */ 

(DIAMONDS) */ 

*/ 

C++ 

The compiler treats s as an integer variable; the names CLUBS, DIAMONDS, 

HEARTS, and SPADES are just synonyms for the numbers 0, 1,2, and 3. 

Although it’s convenient to be able to use an enumeration value as an integer, 

it’s dangerous to use an integer as an enumeration value (we might store the num- 
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ber 4 into s, for example). C++ is stricter than C in this respect—it doesn’t allow 

an integer to be used as an enumeration value without a cast. 

Using Enumerations to Declare “Tag Fields” 

Enumerations are perfect for solving a problem that we encountered in Section 

16.4: determining which member of a union was the last to be assigned a value. In 

the Number structure, for example, we can make the kind member an enumera¬ 

tion instead of an int: 

typedef struct { 

enum {INT_KIND, FLOAT_KIND} kind; 

union { 

int i ; 

float f; 

} u; 

} Number; 

The new structure is used in exactly the same way as the old one. The advantages 

are that we’ve done away with the INT_KIND and FLOAT_KIND macros (they’re 

now enumeration constants), and we’ve clarified the meaning of kind—it’s now 

obvious that kind should have only two possible values: INT_KIND and 

FLOAT_KIND. 

Q&A 

Q: When I tried using sizeof to determine the number of bytes in a structure, I 
got a number that was larger than the sizes of the members added together. 
How can this be? 

A: Let’s look at the following example: 

struct { 

char a; 

int b ; 

} s ; 

If char values occupy one byte and int values occupy four bytes, how large is 

s? The obvious answer—five bytes—may not be the correct one. Some computers 

require that data items begin on a multiple of some number of bytes (typically 

four). To satisfy the computer’s requirements, a compiler will “align” the members 

of a structure by leaving “holes” (unused bytes) between adjacent members. If we 

assume that data items must begin on a multiple of four bytes, the a member of the 

s structure will be followed by a three-byte hole. As a result, sizeof ( s) will be 

8. 

By the way, a structure can have a hole at the end, as well as holes between 

members. For example, the structure 
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struct { 

int a ; 

char b; 

} s ; 

might have a three-byte hole after the b member. 

Q: Can there be a “hole” at the beginning of a structure? 

A: No. The C standard specifies that holes are allowed only between members or after 

the last member. One consequence is that the address of the first member of a 

structure is guaranteed to be the same as the address of the entire structure. (Note, 

however, that the two pointers won’t have the same type.) 

Q: Why isn’t it legal to use == to test whether two structures are equal? [p. 333] 

A: This operation was left out of C because there’s no way to implement it that would 

be consistent with the language’s philosophy. Comparing structure members one 

by one would be too inefficient. Comparing all bytes in the structures would be 

better (many computers have special instructions that can perform such a compari¬ 

son rapidly). If the structures contain holes, however, comparing bytes could yield 

an incorrect answer; even if corresponding members have identical values, gar¬ 

bage present in the holes might be different. The problem could be solved by hav¬ 

ing the compiler ensure that holes always contain the same value (zero, say). 

Initializing holes would impose a performance penalty on all programs that use 

structures, however, so it’s not feasible. 

Q: Why does C provide two ways to name structure types (tags and typedef 

names)? [p. 334] 

A: C originally lacked typedef, so tags were the only technique available for nam¬ 

ing structure types. When typedef was added, it was too late to remove tags. 

Besides, a tag is still necessary when a member of a structure is a pointer to the 

structure itself. 

Q: Can a structure have both a tag and a type name? [p. 335] 

A: Yes. In fact, the tag and the type name can even be the same, although that’s not 

required: 

typedef struct part { 

int number; 

char name[NAME_LEN+1]; 

int on_hand; 

} part; 

C++ In C++, all tags are type names as well; declaring part as a'tag automatically 

makes part a type name also, without the need for a type definition. 
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Q: 

A: 

protecting header files >-15.2 

Q: 

A: 

Section 16.1 1 

2. 

Section 16.2 3. 

How can I share a structure type among several files in a program? 

Put a declaration of the structure tag (or a typedef, if you prefer) in a header file, 

then include the header file where the structure is needed. To share the part struc¬ 

ture, for example, we’d put the following lines in a header file: 

struct part { 
int number; 
char name[NAME_LEN+1]; 

int on_hand; 

} ; 

Notice that we’re declaring only the structure tag, not variables of this type. 

Incidentally, a header file that contains a declaration of a structure tag or struc¬ 

ture type may need protection against multiple inclusion. Declaring a tag or type 

twice in the same file is an error. Similar remarks apply to unions and enumera¬ 

tions. 

If I include the declaration of the part structure into two different files, will 

part variables in one file be of the same type as part variables in the other 

file? 

Technically, no. However, the C standard says that the part variables in one file 

have a type that’s compatible with the type of the part variables in the other file. 

Variables with compatible types can be assigned to each other, so there’s little 

practical difference between types being “compatible” and being “the same.” 

Exercises 

In the following declarations, the x and y structures have members named x and y: 

struct { int x, y; } x; 
struct { int x, y; } y; 

Are these declarations legal on an individual basis? Could both declarations appear as 
shown in a program? Justify your answer. 

(a) Declare structure variables named cl, c2, and c3, each with members re and im of 
type double. 

(b) Modify the declaration in part (a) so that cl’s members initially have the values 0.0 and 
1.0, while c2’s members are 1.0 and 0.0 initially. (c3 is not initialized.) 

(c) Write statements that copy the members of c2 into cl. Can this be done in one state¬ 

ment, or does it require two? 

(d) Write statements that add the corresponding members of cl and c2, storing the result 

in c3. 

(a) Show how to declare a tag named complex for a structure with two members, re and 

im, of type double. 
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Section 16.3 

Section 16.4 

(b) Use the complex tag to declare variables named cl, c2, and c3. 

(c) Write a function named make_complex that stores its two arguments (both of type 
double) into a complex structure, then returns the structure. 

(d) Write a function named add_complex that adds the corresponding members of its 
arguments (both complex structures), then returns the result (another complex struc¬ 
ture). 

4. Repeat Exercise 3, but this time using a type named Complex. 

5. The following structures are designed to store information about objects on a graphics 
screen. A point structure stores the x and y coordinates of a point on the screen. A 
rectangle structure stores the coordinates of the upper left and lower right comers of a 
rectangle. 

struct point { int x, y; }; 
struct rectangle { struct point upper_left, lower_right; }; 

Write functions that perform the following operations on a rectangle structure r passed 
as an argument: 

(a) Compute the area of r. 
(b) Compute the center of r, returning it as a point value. 
(c) Move r by x units in the x direction and y units in the y direction, returning the modi¬ 

fied version of r. (x and y are additional arguments to the function.) 
(d) Determine whether a point p lies within r, returning TRUE or FALSE, (p is an addi¬ 

tional argument of type struct point.) 

6. Write a program that asks the user for a country name and looks it up in the 
country_codes array. If it finds the country name, the program should display the corre¬ 
sponding dialing code; if not, the program should print an error message. 

7. Modify invent. c so that the p (print) operation displays the parts sorted by part number. 

8. Modify invent. c by making inventory and num_parts local to the main function. 

9. Modify invent. c by adding a price member to the part structure. The insert func¬ 
tion should ask the user for the price of a new item. The search and print functions 
should display the price. Add a new command that allows the user to change the price of a 
part. 

10. Suppose that s is the following structure: 

struct { 
float a; 
union { 

char b[4]; 
float c; 
int d; 

} e; 
char f[4]; 

} s; 

If char values occupy 1 byte, int values occupy 2 bytes, and float values occupy 4 
bytes, how much space will a C compiler allocate for s? (Assume that the compiler leaves 
no “holes” between members.) 
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Section 16.5 

11. Suppose that s is the following structure (point is a structure tag declared in Exercise 5): 

struct shape { 

int shape_kind; /* RECTANGLE or CIRCLE */ 

struct point center; /* coordinates of center */ 
union { 

struct { 

int length, width; 

} rectangle; 

struct { 

int radius; 

} circle; 

} u; 
} s ; 

Indicate which of the following statements are legal, and show how to repair the ones that 
aren’t: 

(a) s . shape_kind = RECTANGLE; 

(b) s. center, x = 10; 

(c) s . length = 25; 

(d) s . u. rectangle .width = 8; 

(e) s.u. circle = 5; 

(f) s.u. radius = 5 ; 

12. Let shape be the structure tag declared in Exercise 11. Write functions that perform the 
following operations on a shape structure s passed as an argument: 

(a) Compute the area of s. 

(b) Compute the center of s, returning it as a point value. 

(c) Move s by x units in the x direction and y units in the y direction, returning the modi¬ 
fied version of s. (x and y are additional arguments to the function.) 

(d) Determine whether a point p lies within s, returning TRUE or FALSE, (p is an addi¬ 
tional argument of type struct point.) 

13. Write a program similar to invent. c that uses the catalog_item structure to store 
information about items in a catalog. 

14. (a) Declare a tag for an enumeration whose values represent the seven days of the week. 

(b) Use typedef to define a name for the enumeration of part (a). 

15. Which of the following statements about enumeration constants are true? 

(a) An enumeration constant may represent any integer specified by the programmer. 

(b) Enumeration constants have exactly the same properties as constants created using 
#def ine. 

(c) Enumeration constants have the values 0, 1,2, ... by default. 

(d) All constants in an enumeration must have different values. 

(e) Enumeration constants may be used as integers in expressions. 

16. Suppose that b and i are declared as follows: 

enum {FALSE, TRUE} b; 

int i ; 

Which of the following statements are legal? Which ones are “safe” (always yield a mean¬ 
ingful result)? 
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(a) b = FALSE; 

(b) b = i; 

(c) b++ ; 

(d) i = b; 

(e) i = 2 * b + 1; 

17. (a) Each square of a chessboard can hold one piece—a pawn, knight, bishop, rook, queen, 
or king—or it may be empty. Each piece is either black or white. Define two enumeration 
types: Piece, which has seven possible values (one of which is “empty”), and Color, 

which has two. 

(b) Using the types from part (a), define a structure type named Square that can store 

both the type of a piece and its color. 

(c) Using the Square type from part (b), declare an 8 x 8 array named board that can 

store the entire contents of a chessboard. 

(d) Add an initializer to the declaration in part (c) so that board’s initial value corresponds 

to the usual arrangement of pieces at the start of a chess game. 



17 Advanced Uses of Pointers 

One can only display complex information in the mind. 
Like seeing, movement or flow or alteration of view is more 

important than the static picture, no matter how lovely. 

Previous chapters described two important uses of pointers. Chapter 11 showed 

how using a pointer to a variable as a function argument allows the function to 

modify the variable. Chapter 12 showed how to process arrays by performing 

arithmetic on pointers to array elements. This chapter completes our coverage of 

pointers by examining two additional applications: dynamic storage allocation 

and pointers to functions. 

Using dynamic storage allocation, a program can obtain blocks of memory as 

needed during execution. Section 17.1 explains the basics of dynamic storage allo¬ 

cation. Section 17.2 discusses dynamically allocated strings, which are more flexi¬ 

ble than C’s usual fixed-length character arrays. Section 17.3 covers dynamic 

storage allocation for arrays in general. Section 17.4 deals with the issue of storage 

deallocation—releasing blocks of dynamically allocated memory when they’re no 

longer needed. 

Dynamically allocated structures play a big role in C programming, since they 

can be linked together to form lists, trees, and other highly flexible data structures. 

Section 17.5 focuses on linked lists, the most fundamental linked data structure. 

Section 17.6 covers pointers to pointers, a topic that arises in Section 17.5. 

Section 17.7 introduces pointers to functions, a surprisingly useful concept. 

Some of C’s most powerful library functions expect function pointers as argu¬ 

ments. We’ll examine one of these functions, qsort, which can sort any array. 

17.1 Dynamic Storage Allocation 

C’s data structures are normally fixed in size; an array, for example, has a fixed 

number of elements, and each element has a fixed size. Fixed-size data structures 

359 



360 Chapter 17 Advanced Uses of Pointers 

can be a problem, since we’re forced to choose their sizes when writing a program; 

we can’t change the sizes without modifying the program and compiling it again. 

Consider the invent program of Section 16.3, which allows the user to add 

parts to a database. The database is stored in an array of length 100. To enlarge the 

capacity of the database, we can increase the size of the array and recompile the 

program. But no matter how large we make the array, there’s always the possibility 

that it will fill up. Fortunately, all is not lost. C supports dynamic storage alloca¬ 

tion: the ability to allocate storage during program execution. Using dynamic stor¬ 

age allocation, we can design data structures that grow (and shrink) as needed. 

Although it’s available for all types of data, dynamic storage allocation is used 

most often for strings, arrays, and structures. Dynamically allocated structures are 

of particular interest, since we can link them together to form lists, trees, and other 

data structures. 

Memory Allocation Functions 

To allocate storage dynamically, we’ll need to call one of the three memory alloca¬ 

tion functions declared in the <s tdlib. h> header: 

■ malloc—Allocates a block of memory, but doesn’t initialize it. 

■ calloc—Allocates a block of memory and clears it. 

■ realloc—Resizes a previously allocated block of memory. 

Of the three, malloc is probably the most used. It’s more efficient than calloc, 

since it doesn’t have to clear the memory block that it allocates. 

When we call a memory allocation function to request a block of memory, the 

function has no idea what type of data we’re planning to store in the block, so it 

can’t return an ordinary int pointer or char pointer or whatever. Instead, the 

function returns a value of type void*.A void* value is a “generic” pointer— 

essentially, just a memory address. 

Null Pointers 

When we call a memory allocation function, there’s always a possibility that it 

won’t be able to locate a block of memory large enough to satisfy our request. If 

that should happen, the function will return a null pointer. A null pointer is a 

“pointer to nothing”—a special value that can be distinguished from all valid 

pointers. After we’ve stored the return value in a pointer variable p, we must test p 

to see if it’s a null pointer. 

It’s the programmer’s responsibility to test the return value of any memory alloca¬ 

tion function and take appropriate action if it’s a null pointer. The effect of attempt¬ 

ing to access memory through a null pointer is undefined; the program may crash 

or behave unpredictably. 
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Q&A The null pointer is represented by a macro named NULL, so we can test 

malloc’s return value in the following way: 

p = malloc(10000); 

if (p == NULL) { 

/* allocation failed; take appropriate action */ 

} 

Some programmers combine the call of malloc with the NULL test: 

if ((p = malloc(10000)) == NULL) { 

/* allocation failed; take appropriate action */ 

} 

The NULL macro is defined in six headers: <locale.h>, <stddef .h>, 

<s tdio . h>, <stdlib. h>, <string. h>, and ctime . h>. As long as one of 

these headers is included in a program, the compiler will recognize NULL. A pro¬ 

gram that uses any of the memory allocation functions will include <s tdlib. h>, 

of course, making NULL available. 

In C, pointers test true or false in the same way as numbers. All non-null 

pointers test true; only null pointers are false. Thus, instead of writing 

if (p == NULL) ... 

we could write 

if ( !p) ... 

and instead of writing 

if (p ! = NULL) ... 

we could write 

if (p) ... 

As a matter of style, I prefer the explicit comparison with NULL. 

17.2 Dynamically Allocated Strings 

Dynamic storage allocation is often useful for working with strings. Strings are 

always stored in fixed-size arrays, and it can be hard to anticipate how long these 

arrays need to be. By allocating strings dynamically, we can postpone the decision 

until the program is running. 

Using malloc to Allocate Memory for a String 

The malloc function has the following prototype: 

void *malloc(size_t size); 
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size_t type >21.3 

Q&A 

A 

malloc allocates a block of size bytes and returns a pointer to it. Note that 

size has type size_t, an unsigned integer type defined in the C library. Unless 

we’re allocating a very large block of memory, we can just think of size as an 

ordinary integer. 

Using malloc to allocate memory for a string is easy, because C guarantees 

that a char value requires exactly one byte of storage (sizeof (char) is 1, in 

other words). To allocate space for a string of n characters, we’d write 

p = malloc(n+1); 

where p is a char * variable. The generic pointer that malloc returns will be 

converted to char * when the assignment is performed; no cast is necessary. (In 

general, we can assign a void * value to a variable of any pointer type and vice 

versa.) Nevertheless, some programmers prefer to cast malloc’s return value: 

p = (char *) malloc(n+1); 

When using malloc to allocate space for a string, don’t forget to include room for 

the null character. 

Memory allocated using malloc isn’t cleared or initialized in any way, so p 

points to an uninitialized array of n + 1 characters: 

Calling strcpy is one way to initialize this array: 

strcpy(p, "abc"); 

The first four characters in the array will now be a, b, c, and \0: 

P 

JL 

a b c \o 

0 1 2 3 4 n 

Using Dynamic Storage Allocation in String Functions 

Dynamic storage allocation makes it possible to write functions that return a 

pointer to a “new” string—a string that didn’t exist before the function was called. 
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Consider the problem of writing a function that concatenates two strings without 

changing either one. C’s standard library doesn’t include such a function (s treat 

isn’t quite what we want, since it modifies one of the strings passed to it), but we 

can easily write our own. 

Our function will measure the lengths of the two strings to be concatenated, 

then call malloc to allocate just the right amount of space for the result. The 

function next copies the first string into the new space and calls streat to con¬ 

catenate the second string. 

char *concat(const char *sl, const char *s2) 

{ 
char *result; 

result = malloc(strlen(si) + strlen(s2) + 1); 

if (result == NULL) { 

printf("Error: malloc failed in concat\n"); 

exit(EXIT_FAILURE); 

} 
strepy(result, si); 

streat(result, s2); 

return result; 

} 

If malloc returns a null pointer, concat prints an error message and terminates 

the program. That’s not always the right action to take; some programs need to 

recover from memory allocation failures and continue running. 

Here’s how the concat function might be called: 

p = concat("abc", "def"); 

After the call, p will point to the string "abedef", which is stored in a dynami¬ 

cally allocated array. The array is seven characters long, including the null charac¬ 

ter at the end. 

Functions like concat that dynamically allocate storage must be used with care. 

When the string that concat returns is no longer needed, we’ll need to call free 

to release the space that it occupies. If we don’t, the program may run out of mem¬ 

ory prematurely. 

Arrays of Dynamically Allocated Strings 

In Section 13.7, we tackled the problem of storing strings in an array. We found 

that storing strings as rows in a two-dimensional array of characters can waste 

space, so we tried setting up an array of pointers to string literals. The techniques 

of Section 13.7 work just as well if the elements of an array are pointers to dynam¬ 

ically allocated strings. To illustrate this point, let’s rewrite the remind, c pro¬ 

gram of Section 13.5, which printed a one-month list of daily reminders. 
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PROGRAM Printing a One-Month Reminder List (Revisited) 

The original remind. c program stores the reminder strings in a two-dimensional 

array of characters, with each row of the array containing one string. After the pro¬ 

gram reads a day and its associated reminder, it searches the array to determine 

where the day belongs, using strcmp to do comparisons. It then uses strcpy to 

move all strings below that point down one position. Finally, the program copies 

the day into the array and calls streat to append the reminder to the day. 

In the new program (remind2 . c), the array will be one-dimensional; its ele¬ 

ments will be pointers to dynamically allocated strings. Switching to dynamically 

allocated strings in this program will have two primary advantages. First, we can 

use space more efficiently by allocating the exact number of characters needed to 

store a reminder, rather than storing the reminder in a fixed number of characters 

(as the original program does). Second, we won’t need to call strcpy to move 

strings “down” in order to make room for a new reminder. Instead, we’ll merely 

move pointers to strings. 

Here’s the new program, with changes in bold. Switching from a two-dimen¬ 

sional array to an array of pointers turns out to be remarkably easy: we’ll only need 

to change eight lines of the program. 

remind2.C /* Prints a one-month reminder list */ 

♦include <stdio.h> 

#include <stdlib.h> 

♦include <string.h> 

♦define MAX_REMIND 50 

♦define MSG_LEN 60 

int read_line(char str[], int n); 

main() 

{ 
char *reminders[MAX_REMIND]; 

char day_str[3], msg_str[MSG_LEN+1]; 

int day, i, j, num_remind = 0; 

for (;;) { 

if (num_remind == MAX_REMIND) { 

printf("-- No space left --\n"); 

break; 

} 

printf("Enter day and reminder: "); 

scanf("%2d", &day); 

if (day == 0) 

break; 

sprintf(day_str, "%2d", day); 

read_line(msg_str, MSG_LEN); 
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for (i = 0; i < num_remind; i++) 

if (strcmp(day_str, reminders[i]) < 0) 

break; 

for (j = num_remind; j > i; j--) 
reminders[j] = reminders[j-1]; 

remindersti] = malloc(2 + strlen(msg_str) + 1); 

if (reminders[i] == NULL) { 

printf("No space left --\n"); 

break; 

> 

strcpy(reminders[i], day_str); 

strcat(reminders[i], msg_str); 

num_remind++; 

} 

printf("\nDay Reminder\n"); 

for (i = 0; i < num_remind; i++) 

printf(" %s\n", remindersti]); 

return 0; 

int read_line(char str[], int n) 

{ 
char ch; 

int i = 0; 

while ((ch = getchar()) != '\n1) 

if (i < n) 

str[i++] = ch; 

str[i] = ' \ 0 1 ; 

return i; 

17.3 Dynamically Allocated Arrays 

Dynamically allocated arrays have the same advantages as dynamically allocated 

strings (not surprisingly, since strings are arrays). When we’re writing a program, 

it’s often difficult to estimate the proper size for an array; it would be more conve¬ 

nient to wait until the program is run to decide how large the array should be. C 

solves this problem by allowing a program to allocate space for an array during 

execution, then access the array through a pointer to its first element. The close 

relationship between arrays and pointers, which we explored in Chapter 12, makes 

a dynamically allocated array just as easy to use as an ordinary array. 
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sizeof operator >7.4 

A 

Although malloc can allocate space for an array, the calloc function is 

often used as an alternative, since it initializes the memory that it allocates. The 

realloc function allows us to make an array “grow” or “shrink” as needed. 

Using malloc to Allocate Storage for an Array 

We can use malloc to allocate space for an array in much the same way we used 

it to allocate space for a string. The primary difference is that the elements of an 

arbitrary array won’t necessarily be one byte long, as they are in a string. As a 

result, we’ll need to use the sizeof operator to calculate the amount of space 

required for each element. 

Suppose we’re writing a program that needs an array of n integers, where n is 

to be computed during the execution of the program. We’ll first declare a pointer 

variable: 

int *a; 

Once the value of n is known, we’ll have the program call malloc to allocate 

space for the array: 

a = malloc(n * sizeof(int)); 

Always use sizeof when calculating how much space is needed for an array. 

Failing to allocate enough memory can have severe consequences. Consider the 

following attempt to allocate space for an array of n integers: 

a = malloc(n * 2); 

If int values are larger than two bytes (as they are on many computers), malloc 

won’t allocate a large enough block of memory. When we later store values into 

the array, the program may crash or behave erratically. 

Once it points to a dynamically allocated block of memory, we can ignore the 

fact that a is a pointer and use it instead as an array name, thanks to the relation¬ 

ship between arrays and pointers in C. For example, we could use the following 

loop to initialize the array that a points to: 

for (i = 0; i < n; i++) 

a[i] = 0; 

Of course, we have the option of using pointer arithmetic instead of subscripting to 

access the elements of the array. 

The calloc Function 

Although the malloc function can be used to allocate memory for an array, C 

provides an alternative—the calloc function—that’s sometimes better, calloc 

has the following prototype in <stdlib . h>: 
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void *calloc(size_t nmemb, size_t size); 

Q&A 

calloc allocates space for an array with nmemb elements, each of which is 

size bytes long; it returns a null pointer if the requested space isn’t available. 

After locating the memory, calloc initializes it by setting all bits to 0. For exam¬ 

ple, the following call of calloc allocates space for an array of n integers, which 

all guaranteed to be zero initially: 

a = calloc(n, sizeof(int)); 

Since calloc clears the memory that it allocates but malloc doesn’t, we 

may occasionally want to use calloc to allocate space for a non-array. By calling 

calloc with 1 as its first argument, we can allocate space for a data item of any 

type: . 

struct point { int x, y; } *p; 

p = calloc(1, sizeof(struct point)); 

After this statement has been executed, p will point to a structure whose x and y 

members have been set to zero. 

The realloc Function 

Once we’ve allocated memory for an array, we may later find that it’s too large or 

too small. The realloc function can resize the array to better suit our needs. The 

following prototype for realloc appears in <stdlib. h>: 

void *realloc(void *ptr, size_t size); 

When realloc is called, ptr must point to a memory block obtained by a previ¬ 

ous call of malloc, calloc, or realloc, size represents the new size of the 

block, which may be larger or smaller than the original size. Although realloc 

doesn’t require that ptr point to memory that’s being used as an array, in practice 

it usually does. 

Be sure that a pointer passed to realloc came from a previous call of malloc, 

calloc, or realloc. If it didn’t, the program may behave erratically. 

The C standard spells out a number of rules concerning the behavior of 

realloc: 

■ When it expands a memory block, realloc doesn’t initialize the bytes that 

are added to the block. 

■ If realloc can’t enlarge the memory block as requested, it returns a null 

pointer; the data in the old memory block is unchanged. 

■ If realloc is called with a null pointer as its first argument, it behaves like 

malloc. 
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m If realloc is called with 0 as its second argument, it frees the memory 

block. 

The C standard stops short of specifying exactly how realloc works. Still, 

we expect it to be reasonably efficient. When asked to reduce the size of a memory 

block, realloc should shrink the block “in place,” without moving the data 

stored in the block. By the same token, realloc should always attempt to 

expand a memory block without moving it. If it’s unable to enlarge the block 

(because the bytes following the block are already in use for some other purpose), 

realloc will allocate a new block elsewhere, then copy the contents of the old 

block into the new one. 

Once realloc has returned, be sure to update all pointers to the memory block, 

since it’s possible that realloc has moved the block elsewhere. 

17.4 Deallocating Storage 

malloc and the other memory allocation functions obtain memory blocks from a 

storage pool known as the heap. Calling these functions often—or asking them for 

large blocks of memory—can exhaust the heap, causing the functions to return a 

null pointer. 

To make matters worse, a program may allocate blocks of memory and then 

lose track of them, thereby wasting space. Consider the following example: 

p = malloc (...) ; 

q = malloc (...) ; 

p = q; 

After the first two statements have been executed, p points to one memory block, 

while q points to another: 

After q is assigned to p, both pointers now point to the second memory block: 
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There are no pointers to the first block (shaded), so we’ll never be able to use it 

again. 

A block of memory that’s no longer accessible to a program is said to be gar¬ 

bage. A program that leaves garbage behind has a memory leak. Some languages 

provide a garbage collector that automatically locates and recycles garbage, but C 

doesn’t. Instead, each C program is responsible for recycling its own garbage by 

calling the free function to release unneeded memory. 

The free Function 

The free function has the following prototype in <stdlib. h>: 

void free(void *ptr); 

Using free is easy; we simply pass it a pointer to a memory block that we no 

longer need: 

p = malloc (...) ; 

q = malloc (...); 

free(p); 

P = q; 

Calling free releases the block of memory that p points to. This block is returned 

to the heap, where it becomes available for reuse in subsequent calls of malloc or 

other memory allocation functions. 

The argument to free must be a pointer that was previously returned by a mem¬ 

ory allocation function. Calling free with any other argument (a pointer to a vari¬ 

able or array element, for example) can cause unpredictable behavior. 

The “Dangling Pointer” Problem 

Although the free function allows us to reclaim memory that’s no longer needed, 

using it leads to a new problem: dangling pointers. The call free (p) deallocates 

the memory block that p points to, but doesn’t change p itself. If we forget that p 

no longer points to a valid memory block, chaos may ensue: 

char *p = malloc(4); 

free(p); 

strcpy(p, "abc"); /*** WRONG ***/ 

Modifying the memory that p points to is a serious error, since our program no 

longer has control of that memory. 
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A Attempting to modify a deallocated memory block can have disastrous conse¬ 
quences, including a program crash. 

Dangling pointers can be hard to spot, since several pointers may point to the 

same block of memory. When the block is freed, all the pointers are left dangling. 

17.5 Linked Lists 

Dynamic storage allocation is especially useful for building lists, trees, graphs, and 

other linked data structures. We’ll look at linked lists in this section; a discussion 

of other linked data structures is beyond the scope of this book. For more informa¬ 

tion, consult a book such as Horowitz, Sahni, and Anderson-Freed, Fundamentals 

of Data Structures in C (New York: Computer Science Press, 1993). 

A linked list consists of a chain of structures (called nodes), with each node 

containing a pointer to the next node in the chain: 

The last node in the list contains a null pointer, shown here as a diagonal line. 

In previous chapters, we’ve used an array whenever we’ve needed to store a 

collection of data items; linked lists give us an alternative. A linked list is more 

flexible than an array; we can easily insert and delete nodes in a linked list, allow¬ 

ing the list to grow and shrink as needed. On the other hand, we lose the “random 

access” capability of an array. Any element of an array can be accessed in the same 

amount of time; accessing a node in a linked list is fast if the node is close to the 

beginning of the list, slow if it’s near the end. 

This section describes how to set up a linked list in C. It also shows how to 

perform several common operations on linked lists: inserting a node at the begin¬ 

ning of a list, searching for a node, and deleting a node. 

Declaring a Node Type 

To set up a linked list, the first thing we’ll need is a structure that represents a sin¬ 

gle node in the list. For simplicity, let’s assume that a node contains nothing but an 

integer (the node’s data) plus a pointer to the next node in the list. Here’s what our 

node structure will look like: 

struct node { 

int value; /* data stored in the node */ 

struct node *next; /* pointer to the next node */ 

}; 
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Notice that the next member has type struct node *, which means that it can 

store a pointer to a node structure. There’s nothing special about the name node, 

by the way; it’s just an ordinary structure tag. 

One aspect of the node structure deserves special mention. As Section 16.2 

explained, we normally have the option of using either a tag or a typedef name 

to define a name for a particular kind of structure. However, when a structure has a 

member that points to the same kind of structure, as node does, we’re required to 

use a structure tag. Without the node tag, we’d have no way to declare the type of 

Q&A 
Now that we have the node structure declared, we’ll need a way to keep track 

of where the list begins. In other words, we’ll need a variable that always points to 

the first node in the list. Let’s name the variable first: 

struct node * first = NULL; 

We’ve initialized first to NULL to indicate that the list is initially empty. 

Creating Nodes 

As we construct a linked list, we’ll need to create nodes one by one, adding each to 

the list. Creating a node involves three steps: 

1. allocating memory for the node, 

2. storing data into the node, and 

3. inserting the node into the list. 

We’ll concentrate on the first two steps for now. 

In order to create a node, we’ll need a variable that can point to the node tem¬ 

porarily, until it’s been inserted into the list. Let’s call this variable new_node: 

struct node *new_node; 

We’ll use malloc to allocate memory for the new node, saving the return value in 

new_node: 

new_node = malloc(sizeof(struct node)); 

new_node now points to a block of memory just large enough to hold a node 

structure: 

new_node 

value next 

Be careful to give sizeof the name of the type to be allocated, not the name of a 

pointer to that type: 

new_node = malloc(sizeof(new_node)); /*** WRONG ***/ 
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table of operators >Appendix B 

lvalues >4.2 

The program will still compile, but malloc will allocate only enough memory for 
a pointer to a node structure, not the structure itself. The likely result is a crash 
later, when the program attempts to store data in the node that new_node is pre¬ 

sumably pointing to. 

Next, we’ll store data into the value member of the new node: 

(*new_node).value = 10; 

Here’s how the picture will look after this assignment: 

new_node •- 10 

value next 

To access the value member of the node, we’ve applied the indirection operator 

* (to reference the structure to which new_node points), then the selection oper¬ 

ator . (to select a member within this structure). The parentheses around 

*new_.node are mandatory because the . operator would otherwise take prece¬ 

dence over the * operator. 

The -> Operator 

Before we go on to the next step, inserting a new node into a list, let’s take a 

moment to discuss a useful shortcut. Accessing a member of a structure using a 

pointer is so common that C provides a special operator just for this purpose. This 

operator, known as right arrow selection, is a minus sign followed by >. Using the 

-> operator, we can write 

new_node->value = 10; 

instead of 

(*new_node).value = 10; 

The -> operator is a combination of the * and . operators; it performs indirection 

on new_node to locate the structure that it points to, then selects the value 

member of the structure. 

The -> operator produces an lvalue, so we can use it wherever an ordinary 

variable would be allowed. We’ve just seen an example in which 

new_node->value appears on the left side of an assignment. It could just as 

easily appear in a call of scanf: 

scanf("%d", &new_node->value); 

Notice that the & operator is still required, even though new_node is a pointer. 

Without the &, we’d be passing scanf the value of new_node->value, which 

has type int. 
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Inserting a Node at the Beginning of a Linked List 

We’re now ready to insert a new node into a linked list. One of the advantages of a 

linked list is that nodes can be added at any point in the list: at the beginning, at the 

end, or anywhere in the middle. The beginning of a list is the easiest place to insert 

a node, however, so let’s focus on that case. 

If new_node is pointing to the node to be inserted, and first is pointing to 

the first node in the linked list, then we’ll need two statements to insert the node 

into the list. First, we’ll modify the new node’s next member to point to the node 

that was previously at the beginning of the list: 

new_node->next = first; 

Second, we’ll make first point to the new node: 

first = new_node; 

Will these statements work if the list is empty when we insert a node? Yes, 

fortunately.-To make sure this is true, let’s trace the process of inserting two nodes 

into an empty list. We’ll insert a node containing the number 10 first, followed by 

a node containing 20. In the figures that follow, null pointers are shown as diagonal 

lines. 

first = NULL; 

new_node = malloc(sizeof(struct node)); 

new_node->value = 10; 

new_node->next = first; 

first = new_node; 

first 

first 

new_node 
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new_node = malloc(sizeof(struct 

new_node->value = 20; 

new_node->next = first; 

first = new_node; 

node)); 
first 

new_node 

first 

new_node 

first 

new_node 

first 

new_node 

Inserting a node into a linked list is such a common operation that we’ll prob¬ 

ably want to write a function for that purpose. Let’s name the function 

add_to_list. It will have two parameters: list (a pointer to the first node in 

the old list) and n (the integer to be stored in the new node). 

struct node *add_to_list(struct node *list, int n) 

{ 
struct node *new_node; 

new_node = malloc(sizeof(struct node)); 

if (new_node == NULL) { 

printf("Error: malloc failed in add_to_list\n"); 

exit(EXIT_FAILURE); 

} 
new_node->value = n; 

new_node->next = list; 

return new_node; 

} 

Note that add_to_list doesn’t modify the list pointer. Instead, it returns a 

pointer to the newly created node (now at the beginning of the list). When we call 

add_to_list, we’ll need to store its return value into first: 

first = add_to_list(first, 10); 

first = add_to_list(first, 20); 

These statements add nodes containing 10 and 20 to the list pointed to by first. 

Getting add_to_list to update first directly, rather than return a new value 

for first, turns out to be tricky. We’ll come back to this issue in Section 17.6. 
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The following function uses add_to_list to create a linked list containing 
numbers entered by the user: 

struct node *read_numbers(void) 

{ 
struct node *first = NULL; 

int n; 

printf("Enter a series of integers (0 to terminate): "); 

for ( ;;) { 

scanf("%d", &n); 

if (n == 0) 

return first; 

first = add_to_list(first, n); 

} 
} 

The numbers will be in reverse order within the list, since first always points to 

the node containing the last number entered. 

Searching a Linked List 

Once we’ve created a linked list, we may need to search it for a particular piece of 

data. Although a while loop can be used to search a list, the for statement is 

often superior. We’re accustomed to using the for statement when writing loops 

that involve counting, but its flexibility makes the for statement suitable for other 

tasks as well, including operations on linked lists. Here’s the customary way to 

search a linked list, using a pointer variable p to keep track of the “current” node: 

idiom for (p = first; p != NULL; p = p->next) 

The assignment 

p = p->next 

advances the p pointer from one node to the next. An assignment of this form is 

invariably used in C when writing a loop that traverses a linked list. 

Let’s write a function named search_list that searches a list (pointed to 

by the parameter list) for an integer n. If it finds n, search_list will return 

a pointer to the node containing n; otherwise, it will return a null pointer. Our first 

version of search_list relies on the usual “list-searching” idiom: 

struct node *search_list(struct node *list, int n) 

{ 
struct node *p; 

for (p = list; p != NULL; p = p->next) 

if (p->value == n) 

return p; 

return NULL; 

} 
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Of course, there are many other ways to write search_list. One alterna¬ 

tive would be to eliminate the p variable, instead using list itself to keep track of 

the current node: 

struct node *search_list(struct node *list, int n) 

{ 
for (; list != NULL; list = list->next) 

if (list->value == n) 

return list; 

return NULL; 

} 

Since list is a copy of the original list pointer, there’s no harm in changing it 

within the function. 
Another alternative is to combine the list->value == n test with the 

list ! = NULL test: 

struct node *search_list(struct node *list, int n) 

{ 
for (; list != NULL && list->value != n; 

list = list->next) 

r 

return list; 

} 

Since list is NULL if we reach the end of the list, returning list is correct even 

if we don’t find n. This version of search_list might be a bit clearer if we 

used a while statement: 

struct node *search_list(struct node *list, int n) 

{ 
while (list != NULL && list->value ! = n) 

list = list->next; 

return list; 

} 

Deleting a Node from a Linked List 

A big advantage of storing data in a linked list is that we can easily delete nodes 

that we no longer need. Deleting a node, like creating a node, involves three steps: 

1. locating the node to be deleted, 
2. altering the previous node so that it “bypasses” the deleted node, and 

3. calling free to reclaim the space occupied by the deleted node. 

Step 1 is harder than it looks. If we search the list in the obvious way, we’ll end up 

with a pointer to the node to be deleted. Unfortunately, we won’t be able to per¬ 

form step 2, which requires changing the previous node. 

There are various solutions to this problem. We’ll use the “trailing pointer” 

technique: as we search the list in step 1, we’ll keep a pointer to the previous node 

(prev) as well as a pointer to the current node (cur). If list points to the list to 
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be searched and n is the integer to be deleted, the following loop implements step 
1: 

for (cur = list, prev = NULL; 

cur != NULL && cur->value != n; 

prev = cur, cur = cur->next) 

r 

Here we see the power of C’s for statement. This rather exotic example, with its 

empty body and liberal use of the comma operator, performs all the actions needed 

to search for n. When the loop terminates, cur points to the node to be deleted, 

while prev points to the previous node (if there is one). 

To see how this loop works, let’s assume that list points to a list containing 
30, 40, 20, and 10, in that order: 

Let’s say that n is 20, so our goal is to delete the third node in the list. After cur = 

list, prev = NULL has been executed, cur points to the first node in the list: 

prev cur 

□ □ 

The test cur ! = NULL && cur->value ! = n is true, since cur is pointing to a 

node and the node doesn’t contain 20. After prev = cur, cur = cur->next 

has been executed, we begin to see how the prev pointer will trail behind cur: 

prev cur 

30 40 20 10 

Again, the test cur ! = NULL && cur->value ! = n is true, so prev = cur, 

cur = cur->next is executed once more: 

list 

prev cur 
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Since cur now points to the node containing 20, the condition cur->value ! = 

n is false and the loop terminates. 
Next, we’ll perform the bypass required by step 2. The statement 

prev->next = cur->next; 

makes the pointer in the previous node point to the node after the current node: 

prev cur 

□ □ 
list 30 40 20 10 

We’re now ready for step 3, releasing the memory occupied by the current node: 

free(cur); 

The following function uses the strategy that we’ve just outlined. When given 

a list and an integer n, delete_f rom_list deletes the first node containing n. 

If no node contains n, the function does nothing. In either case, the function 

returns a pointer to the list. 

struct node *delete_from_list(struct node *list, int n) 

{ 
struct node *cur, *prev; 

for (cur = list, prev = NULL; 

cur != NULL && cur->value != n; 

prev = cur, cur = cur->next) 

/ 

if (cur == NULL) 

return list; 

if (prev == NULL) 

list = list->next; 

else 

prev->next = cur->next; 

free(cur); 

return list; 

} 

Deleting the first node in the list is a special case. The prev == NULL test checks 

for this case, which requires a different bypass step. 

/* n was not found */ 

/* n is in the first node */ 

/* n is in some other node */ 

Ordered Lists 

When the nodes of a list are kept in order—sorted by the data stored inside the 

nodes—we say that the list is ordered. Working with an ordered list is similar to 
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working with one that’s not ordered. Inserting a node into an ordered list is more 

difficult, though (the node won’t always be put at the beginning of the list), but 

searching is faster (we can stop looking after reaching the point at which the 

desired node would have been located). The following program illustrates both the 

increased difficulty of inserting a node and the faster search. 

PROGRAM Maintaining a Parts Database (Revisited) 

Let’s redo the parts database program of Section 16.3, this time storing the data¬ 

base in a linked list. Using a linked list instead of an array has two major advan¬ 

tages: (1) We don’t need to put a preset limit on the size of the database; it can 

grow until there’s no more memory to store parts. (2) We can easily keep the data¬ 

base sorted by part number—when a new part is added to the database, we simply 

insert it in its proper place in the list. In the original program, the database wasn’t 
sorted. 

In the new program, the part structure will contain an additional member (a 

pointer to the next node in the linked list), and the variable inventory will be a 
pointer to the first node in the list: 

struct part { 

int number; 

char name[NAME_LEN+1] ; 

int on_hand; 

struct part *next; 

In¬ 

struct part *inventory = NULL; /* points to first part */ 

Most of the functions in the new program will closely resemble their coun¬ 

terparts in the original program. The find_part and insert functions 

have become more complex, however, since we’re keeping the nodes in the 

inventory list sorted by part number. 

In the original program, f ind_part returns an index into the inventory 

array. In the new program, f ind_part will return a pointer to the node that con¬ 

tains the desired part number. If it doesn’t find the part number, f ind_part will 

return a null pointer. Since the inventory list is sorted by part number, the new 

version of f ind_part can save time by stopping its search when it finds a node 

containing a part number that’s greater than or equal to the desired part number, 

f ind_part’s search loop will have the form 

for (p = inventory; 

p != NULL && number > p->number; 

p = p->next) 

/ 

The loop will terminate when p becomes NULL (indicating that the part number 

wasn’t found) or when number > p->number is false (indicating that the part 

number we’re looking for is less than or equal to a number already stored in a 
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node). In the latter case, we still don’t know whether or not the desired number is 

actually in the list, so we’ll need another test: 

if (p != NULL && number == p->number) 

return p; 

The original version of insert stores a new part in the next available array 

element. The new version must determine where the new part belongs in the list 

and insert it there. We’ll also have insert check whether the part number is 

already present in the list, insert can accomplish both tasks by using a loop sim¬ 

ilar to the one in f ind_part: 

for (cur = inventory, prev = NULL; 
cur ! = NULL Sc Sc new_node->number > cur->number ; 

prev = cur, cur = cur->next) 

This loop relies on two pointers: cur, which points to the current node, and prev, 

which points to the previous node. Once the loop terminates, insert will check 

whether cur isn’t NULL and new_node->number equals cur—>nuiriber, if 

so, the part number is already in the list. Otherwise insert will insert a new node 

between the nodes pointed to by prev and cur, using a strategy similar to the one 

we employed for deleting a node. (This strategy works even if the new part number 

is larger than any in the list; in that case, cur will be NULL but prev will point to 

the last node in the list.) 
Here’s the new program. Like the original program, this version requires the 

read_line function described in Section 16.3; I assume that readline.h 

contains a prototype for this function. 

invent2.C /* Maintains a parts database (linked list version) */ 

♦include <stdio.h> 

♦include <stdlib.h> 

♦include "readline.h" 

♦define NAME_LEN 25 

struct part { 

int number; 

char name[NAME_LEN+1]; 

int on_hand; 

struct part *next; 

} ; 

struct part *inventory = NULL; /* points to first part */ 

struct part *find_part(int number); 

void insert(void); 

void search(void); 

void update(void); 

void print(void); 
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/********************************************************** 
* main: Prompts the user to enter an operation code, * 

then calls a function to perform the requested * 

* action. Repeats until the user enters the * 

command 'q'. Prints an error message if the user * 

* enters an illegal code. * 
**********************************************************, 

main() 

{ 
char code; 

} 

for (;;) { 

printf("Enter operation code: 

scanf(" %c", &code); 

while (getchar() != 1\n') /* 

) ; 

skips to end of line */ 

switch (code) { 

case ' i ' : : insert(); 

break; 

case 'S': : search(); 

break; 

case 'U* : : update(); 

break; 

case 'P' : : print(); 

break; 

case 'q': : return 0; 

default: printf("Illegal 

} 
printf (11 \n") ; 

/********************************************************** 
* find_part: Looks up a part number in the inventory * 

* list. Returns a pointer to the node * 

* containing the part number; if the part * 

* number is not found, returns NULL. * 
* *★*******★***********★********************★**************/ 

struct part *find_part(int number) 

{ 
struct part *p; 

for (p = inventory; 

p != NULL && number > p->number; 

p = p->next) 

/ 

if (p != NULL && number == p->number) 

return p; 

return NULL; 
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* 

* 

* 

~k 

* 

* 

* 

*/ 

new_node = malloc(sizeof(struct part)); 

if (new_node == NULL) { 
printf("Database is full; can't add more parts.\n"); 

return; 

} 

printf("Enter part number: "); 

scanf("%d", &new_node->number); 

for (cur = inventory, prev = NULL; 

cur != NULL && new_node->number > cur->number; 

prev = cur, cur = cur->next) 

if (cur != NULL && new_node->number == cur->number) { 

printf("Part already exists.\n"); 

free(new_node); 

return; 

} 

/********************************************************* 
* insert: Prompts the user for information about a new 

* part and then inserts the part into the 

* inventory list; the list remains sorted by 

* part number. Prints an error message and 

* returns prematurely if the part already exists 

* or space could not be allocated for the part. 
********************************************************* 

void insert(void) 

{ 
struct part *cur, *prev, *new_node; 

printf("Enter part name: 

read_line(new_node->name, 

printf("Enter quantity on 

scanf("%d", &new_node->on 

) ; 
NAME_LEN) 

hand: "); 

hand); 

new_node->next = cur; 

if (prev == NULL) 

inventory = new_node; 

else 

prev->next = new_node; 

} 

/********************************************************** 
* search: Prompts the user to enter a part number, then * 

* looks up the part in the database. If the part * 

* exists, prints the name and quantity on hand; * 

* if not, prints an error message. * 
**********************************************************/ 

void search(void) 

{ 
int number; 

struct part *p; 
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} 

printf("Enter part number: 

scant("%d"( &number); 

p = find_part(number); 

if (p != NULL) { 

printf("Part name: %s\n", 

printf("Quantity on hand: 

} else 

printf("Part not found.\n 

) ; 

p->name); 

%d\n", p->on_hand); 

) ; 

^^ir^^-k'k-k'k-k-k'k'k-k-k-k-k'k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k'k-k-k-k-k-k-k 

* update: Prompts the user to enter a part number. * 

Prints an error message if the part doesn't * 

* exist; otherwise, prompts the user to enter * 

* change in quantity on hand and updates the * 

* database. * 
**********************************************************/ 

void update(void) 

{ 
int number, change; 

struct part *p; 

printf("Enter part number: "); 

scanf("%d", &number); 

p = find__part (number) ; 

if (p != NULL) { 

printf("Enter change in quantity on hand: "); 

scanf("%d”, kchange); 

p->on_hand += change; 

} else 

printf("Part not found.\n"); 

/********************************************************** 
* print: Prints a listing of all parts in the database, * 

* showing the part number, part name, and * 

* quantity on hand. Part numbers will appear in * 

* ascending order. * 
★★★★★★★★★★★★★★■a*******************************************/ 

void print(void) 

{ 
struct part *p; 

} 

printf("Part Number 

"Quantity on 

for (p = inventory; 

printf("%7d 

p->name, p 

Part Name 

Hand\n"); 

p != NULL; p 

%-25s%lld\n" 

->on_hand); 

= p->next). 

p->number, 

Notice the use of free in the insert function, insert allocates space for 

a part before checking to see if the part already exists. If it does, insert releases 

the memory so that the program won’t risk running out of space prematurely. 
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17.6 Pointers to Pointers 

In Section 13.7, we came across the notion of a pointer to a pointer. In that section, 

we used an array whose elements were of type char *; a pointer to one of the 

array elements itself had type char * *. The concept of “pointers to pointers’ also 

pops up frequently in the context of linked data structures. In particular, when an 

argument to a function is a pointer variable, we’ll sometimes want the function to 

be able to modify the variable by making it point somewhere else. Doing so 

requires the use of a pointer to a pointer. 
Consider the add_to_list function of Section 17.5, which inserts a node 

at the beginning of a list. When we call add_to_lis t, we pass it a pointer to the 

first node in the list; it then returns a pointer to the new list: 

struct node *add_to_list(struct node *list, int n) 

{ 
struct node *new_node; 

new_node = malloc(sizeof(struct node)); 

if (new_node == NULL) { 
printf("Error: malloc failed in add_to_list\n"); 

exit(EXIT_FAILURE); 

} 
new_node->value = n; 

new_node->next = list; 

return new_node; 

} 

Suppose that we modify the function so that it assigns new_node to list 

instead of returning new_node. In other words, let’s remove the return state¬ 

ment from add_to_list and replace it by 

list = new_node; 

Unfortunately, this idea doesn’t work. Suppose that we call add_to_list in the 

following way: 

add_to_list(first, 10); 

At the point of the call, first is copied into list. (Pointers, like all other argu¬ 

ments, are passed by value.) The last line in the function changes the value of 

list, making it point to the new node. This assignment doesn’t affect first, 

however. 
Getting add_to_list to modify first is possible, but it requires passing 

add_to_list a pointer to first. Here’s the correct version of the function: 

void add_to_list(struct node **list, int n) 

{ 
struct node *new_node; 



17.7 Pointers to Functions 385 

17.7 

sin function >23.3 

new_node = malloc(sizeof(struct node)); 
if (new_node == NULL) { 

printf("Error: malloc failed in add_to_list\n"); 
exit(EXIT_FAILURE); 

} 
new_node->value = n; 
new_node->next = *list; 
*list = new_node; 

} 

When we call the new version of add_to_list, the first argument will be the 
address of first: 

add_to_list(&first, 10); 

Since list is assigned the address of first, we can use * list as an alias for 

first. In particular, assigning new_node to *list will modify first. 

Pointers to Functions 

So far, we’ve used pointers to various kinds of data, including variables, array ele¬ 

ments, and dynamically allocated blocks of memory. But C doesn’t require that 

pointers point only to data; it’s also possible to have pointers to functions. Pointers 

to functions aren’t as odd as you might think. After all, functions occupy memory 

locations, so every function has an address, just like each variable has an address. 

Function Pointers as Arguments 

We can use function pointers in much the same way we use pointers to data. Pass¬ 

ing a function pointer as an argument is fairly common in C. Suppose that we’re 

writing a function named integrate that integrates a function f between points 

a and b. We’d like to make integrate as general as possible by passing it f as 

an argument. To achieve this effect in C, we’ll declare f to be a pointer to a func¬ 

tion. Assuming that we want to integrate functions that have a double parameter 

and return a double result, the prototype for integrate will look like this: 

double integrate(double (*f)(double), double a, double b); 

The parentheses around * f indicate that f is a pointer to a function, not a function 

that returns a pointer. It’s also legal to declare f as though it were a function: 

double integrate(double f(double), double a, double b); 

From the compiler’s standpoint, this prototype is identical to the previous one. 

When we call integrate, we’ll supply a function name as the first argu¬ 

ment. For example, the following call will integrate the sin (sine) function from 0 

to 7t/2: 
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result = integrate(sin, 0.0, PI/2); 

Notice that there are no parentheses after sin. When a function name isn’t fol¬ 

lowed by parentheses, the C compiler produces a pointer to the function instead of 

generating code for a function call. In our example, we’re not calling sin; instead, 

we’re passing integrate a pointer to sin. If this seems confusing, think of 

how C handles arrays. If a is the name of an array, then a [ i ] represents one ele¬ 

ment of the array, while a by itself serves as a pointer to the array. In a similar way, 

if f is a function, C treats f (x) as a call of the function but f by itself as a pointer 

to the function. 
Within the body of integrate, we can call the function that f points to: 

sum += (*f) (x) ; 

* f represents the function that f points to; x is the argument to the call. Thus, dur¬ 

ing the execution of integrate (sin, 0.0, PI/2), each call of *f is actu¬ 

ally a call of sin. As an alternative to (*f) (x), C allows us to write f (x) to 

call the function that f points to. Although f (x) looks more natural, I’ll stick 

with (*f) (x) as a reminder that f is a pointer to a function, not a function name. 

The qsort Function 

Q&A 

Although it might seem that pointers to functions aren’t very useful for everyday 

programming, that couldn’t be further from the truth. In fact, some of the most 

powerful functions in the C library require a function pointer as an argument. One 

of these is qsort, whose prototype can be found in <stdlib.h>. qsort is a 

general-purpose function capable of sorting any array. 

Since the elements of the array may be of any type—even a structure or union 

type—qsort must be told how to determine which of two array elements is 

“smaller.” We’ll provide this information to qsort by writing a comparison 

function. When given two pointers p and q to array elements, the comparison 

function must return a number that is negative if *p is “less than” *q, zero if *p is 

“equal to” *q, and positive if *p is “greater than” *q. The words “less than,” 

“equal to,” and “greater than” are in quotes because it’s our responsibility to deter¬ 

mine how *p and *q are compared. 

qsort has the following prototype: 

void qsort(void *base, size_t nmemb, size_t size, 

int (*compar)(const void *, const void *)); 

base must point to the first element in the array. (If only a portion of the array is 

to be sorted, we’ll make base point to the first element in this portion.) In the sim¬ 

plest case, base is simply the name of the array, nmemb is the number of ele¬ 

ments to be sorted (not necessarily the number of elements in the array), size is 

the size of each array element, measured in bytes, compar is a pointer to the com¬ 

parison function. When qsort is called, it sorts the array into ascending order, 

calling the comparison function whenever it needs to compare array elements. 
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Q&A 
To sort the inventory array of Section 16.3, we’d use the following call of 

qsort: 

qsort (inventory, num__parts, sizeof (struct part), 

compare_parts); 

Notice that the second argument is num_parts, not MAX_PARTS; we don’t want 

to sort the entire inventory array, just the portion in which parts are currently 

stored. 

Writing the compare_parts function isn’t as easy as you might expect, 

since qsort requires that it have parameters of type void *. Unfortunately, we 

can’t access part numbers through void * pointers; we need pointers to part 

structures. To solve the problem, we’ll have compare_parts assign p and q to 

variables of type struct part *, thereby converting them to the desired type. 

compare_parts can now use the new pointers to access the members of the 

structures that p and q point to. Assuming that we want to sort parts by number, 

here’s how the compare_parts function might look: 

int compare_parts(const void *p, const void *q) 

{ 
struct part *pl = p; 

struct part *ql = q; 

if (pl->number < ql->number) 

return -1; 

else if (pl->number == ql->number) 

return 0; 

else 

return 1; 

} 

Although this version of compare_parts works, most C programmers 

would write the function more concisely. First, notice that we can replace pi and 

ql by cast expressions: 

int compare_parts(const void *p, const void *q) 

{ 
if (((struct part *) p)->number < 

((struct part *) q)->number) 

return -1; 

else if (((struct part *) p)->number == 

((struct part *) q)->number) 

return 0; 

else 

return 1; 

} 

The parentheses around ( (struct part * ) p) are necessary; without them, the 

compiler would try to cast p->number to type struct part *. 

We can make compare parts even shorter by removing the if state¬ 

ments: 
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int compare_parts(const void *p, const void *q) 

{ 
return ((struct part *) p)->number - 

((struct part *) q)->number; 

} 

Subtracting q’s part number from p’s part number produces a negative result if p 

has a smaller part number, zero if the part numbers are equal, and a positive result 

if p has a larger part number. 
To sort the inventory array by part name instead of part number, we d use 

the following version of compare_parts: 

int compare_parts(const void *p, 

{ 
return strcmp(((struct part *) 

((struct part *) 

} 

const void 

p) ->name, 

q) ->name); 

*q) 

All compare_parts has to do is call strcmp, which conveniently returns a 

negative, zero, or positive result. 

Other Uses of Function Pointers 

Although I’ve emphasized the usefulness of function pointers as arguments to 

other functions, that’s not all they’re good for. C treats pointers to functions just 

like pointers to data; we can store function pointers in variables or use them as ele¬ 

ments of an array or as members of a structure or union. We can even write func¬ 

tions that return function pointers. 
Here’s an example of a variable that can store a pointer to a function: 

void ( *pf) (int) ; 

pf can point to any function with an int argument and a void return value. If f 

is such a function, we can make pf point to f in the following way: 

pf = f; 

Notice that there’s no ampersand preceding f. Since pf now points to f, we can 

call f by writing either 

(*pf)(i); 

or 

pf(i); 

Arrays whose elements are function pointers have a surprising number of 

applications. For example, suppose that we’re writing a program that displays a 

menu of commands for the user to choose from. We can write functions that imple¬ 

ment these commands, then store pointers to the functions in an array: 
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PROGRAM 

<math. h> header >23.3 

tab u late, c 

void (*file_cmd[])(void) = { new_cmd, 

open_cmd, 

close_cmd, 

close_all_cmd, 

save_cmd, 

save_as_cmd, 

s ave_a1l_cmd, 

print_cmd, 

exit_cmd 

}; 

If the user selects command n, where n falls between 0 and 8, we can subscript the 

f ile_cmd array to find out which function to call: 

(*file_cmd[n])(); /* or file_cmd[n](); */ 

Of course, we could get a similar effect by using a switch statement. Storing the 

function pointers in an array gives us more flexibility, however, since the elements 

of the array can be changed as the program is running. 

Tabulating the Trigonometric Functions 

The following program prints tables showing the values of cos, sin, and tan 

(all three functions are declared in <math.h>). The program is built around a 

function named tabulate that, when passed a function pointer f, prints a table 

showing the values of f. 

/* Tabulates values of trigonometric functions */ 

#include <math.h> 

#include <stdio.h> 

void tabulate(double (*f)(double), double first, 

double last, double incr); 

main() 

{ 
double final, increment, initial; 

printf("Enter initial value: "); 
scanf("%lf", &initial); 

printf("Enter final value: "); 
scanf("%lf", &final); 

printf("Enter increment: "); 
scanf("%lf", Scincrement) ; 

printf("\n x cos(x)\n" 
" - -\n" ) ; 

tabulate(cos, initial, final, increment); 
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printf("\n x sin(x)\n" 

" - -\n") ; 

tabulate(sin, initial, final, increment); 

printf("\n x tan(x)\n" 

" - -\ n") ; 
tabulate(tan, initial, final, increment); 

return 0; 

} 

void tabulate(double (*f)(double), double first, 

double last, double incr) 

{ 
double x; 

int i, num_intervals; 

num_intervals = ceil((last - first) / incr); 

for (i = 0; i <= num_intervals; i++) { 

x = first + i * incr; 

printf("%10.5f %10.5f\n", x, (*f)(x)); 

} 
} 

tabulate uses the ceil function, which is part of the standard library. When 

given an argument x of double type, ceil returns the smallest integer that’s 

greater than or equal to x. 
Here’s what a session with tabulate . c might look like: 

Enter initial value: 0 

Enter final value: _d5 

Enter increment: .1 

X cos(x) 

0. 00000 1 .00000 

0 . 10000 0 .99500 

0 . 20000 0 .98007 

0 . .30000 0 .95534 

0 . .40000 0 .92106 

0 . , 50000 0 .87758 

X sin(x) 

0 , .00000 0 .00000 

0. .10000 0 .09983 

0 .20000 0 .19867 

0 .30000 0 .29552 

0 .40000 0 .38942 

0 .50000 0 .47943 
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Q: 
A: 

C++ 

*Q: 

A: 

variable-length argument lists 
>26.1 

X tan(x) 

0.00000 0.00000 
0.10000 0.10033 

0.20000 0.20271 

0.30000 0.30934 

0.40000 0.42279 

0.50000 0.54630 

Q&A 

What does the NULL macro represent? [p. 361] 

NULL actually stands for 0. When we use 0 in a context where a pointer would be 

required, C compilers are required to treat it as a null pointer instead of the integer 

0. The NULL macro is provided merely to help avoid confusion. The assignment 

P = 0; 

could be assigning the value 0 to a numeric variable or assigning a null pointer to a 

pointer variable; we can’t easily tell which. In contrast, the assignment 

p = NULL; 

makes it clear that p is a pointer. 

In C++, it’s common practice to use 0 rather than NULL; the reasons are too 

technical to discuss here. Some programmers prefer to use 0 rather than NULL in C 

programs as well. 

In the header files that come with my compiler, NULL is defined as follows: 

#define NULL (void *) 0 

What’s the advantage of casting 0 to void *? 

This trick, which is legal in Standard C, enables compilers to spot incorrect uses of 

the null pointer. For example, suppose that we try to assign NULL to an integer 

variable: 

i = NULL; 

If NULL is defined as 0, this assignment is perfectly legal. But if NULL is defined 

as (void *) 0, the compiler will inform us that assigning a pointer to an integer 

variable violates Standard C rules. 
Defining NULL as (void *) 0 has a second, more important, advantage. 

Suppose that we call a function with a variable-length argument list and pass 

NULL as one of the arguments. If NULL is defined as 0, the compiler will incor¬ 

rectly pass a zero integer value. (In an ordinary function call, NULL works fine 

because the compiler knows from the function’s prototype that it expects a pointer. 
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When a function has a variable-length argument list, however, the compiler has no 

such knowledge; it assumes that 0 represents an integer.) If NULL is defined as 

(void * ) 0, the compiler will pass a null pointer. 
To make matters even more confusing, some header files define NULL to be 

0L (the long int version of 0). This definition, like the definition of NULL as 0, 

is a holdover from C’s earlier years, when pointers and integers were compatible. 

For most purposes, though, it really doesn’t matter how NULL is defined; just think 

of it as a name for the null pointer. 

Q: Since 0 is used to represent the null pointer, I guess a null pointer is just an 

address with all zero bits, right? 

A: Not necessarily. Each C compiler is allowed to represent null pointers in a different 

way, and not all compilers use a zero address. For example, some compilers use a 

nonexistent memory address for the null pointer; that way, attempting to access 

memory through a null pointer can be detected by the hardware. 
How the null pointer is stored inside the computer shouldn’t concern us; that’s 

a detail for compiler experts to worry about. The important thing is that, when used 

in a pointer context, 0 is converted to the proper internal form by the compiler. 

Q: Is it acceptable to use NULL as a null character? 

A: Definitely not. NULL is a macro that represents the null pointer, not the null char¬ 

acter. Using NULL as a null character will work with some compilers, but not with 

all (since some define NULL as (void *) 0). In any event, using NULL as any¬ 

thing other than a pointer can lead to a great deal of confusion. If you want a name 

for the null character, define the following macro: 

ttdefine NUL '\0' 

Q: When my program terminates, I get the message “Null pointer assignment.” 

What does this mean? 

A: This message, which is produced by some DOS programs, indicates that the pro¬ 

gram has stored data into memory using a bad pointer (but not necessarily a null 

pointer). Unfortunately, the message isn’t displayed until the program terminates, 

so there’s no clue as to which statement caused the error. The “Null pointer assign¬ 

ment” message can be caused by a missing & in scanf: 

scanf("%d" , i); /* should have been scanf("%d", &i) ; */ 

Another possibility is an assignment involving a pointer that’s uninitialized or null: 

*p = i; /* p is uninitialized or null */ 

Q: Since my program seems to work even when I get the “Null pointer assign¬ 

ment” message, can I just ignore the message? 

A: Reread the answer to the previous question. If you get a “Null pointer assignment” 

message, your program has a bug in it, period. Fix it, or else. Although the pro¬ 

gram may appear to work, there’s no guarantee that it will always run correctly; if 
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it uses an uninitialized pointer, the program may work on some occasions and fail 

on others. And if the program is recompiled with a different compiler or ported to 

another computer, the chances of it working are slim to none. 

*Q: How does a program know that a “null pointer assignment” has occurred? 

A: The message depends on the fact that, in the small and medium memory models, 

data is stored in a single segment, with addresses beginning at 0. The compiler 

leaves a “hole” at the beginning of the data segment—a small block of memory 

that’s initialized to 0 but otherwise is not used by the program. When the program 

terminates, it checks to see if any data in the “hole” area is nonzero. If so, it must 
have been altered through a bad pointer. 

Q: Is there any advantage to casting the return value of malloc or the other 

memory allocation functions? [p. 362] 

A: Not really, although many programmers do it anyway. Casting the void * pointer 

that these functions return is unnecessary in Standard C, since pointers of type 

void * are automatically converted to any pointer type upon assignment. The 

habit of casting the return value is a holdover from Classic C, in which the memory 

allocation functions returned a char * value, making the cast necessary. 

In Standard C, there’s actually a small advantage to not performing the cast. 

Suppose that we’ve forgotten to include the <stdlib. h> header in the program. 

When we call malloc, the compiler will assume that its return type is int (the 

default return value for any C function). If we don’t cast the return value of 

malloc, a Standard C compiler will produce an error (or at least a warning), since 

we’re trying to assign an integer value to a pointer variable. On the other hand, if 

we cast the return value to a pointer, the program may compile, but likely won’t 

run properly. 

Q: The calloc function initializes a memory block to “zero bits.” Does this 

mean that all data items in the block become zero? [p. 367] 

A: Usually, but not always. Setting an integer to zero bits always makes the integer 

zero. Setting a floating-point number to zero bits usually makes the number zero, 

but this isn’t guaranteed—it depends on how floating-point numbers are stored. 

The story is the same for pointers; a pointer whose bits are zero isn’t necessary a 

null pointer. 

*Q: I see how the structure tag mechanism allows a structure to contain a pointer 

to itself. But what if two structures each have a member that points to the 

other? [p. 371] 

A: Here’s how we’d handle that situation: 

struct si; /* incomplete declaration of si */ 

struct s2 { 

struct si *p; 

}; 
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struct si { 

struct s2 *q; 

}; 

The first declaration of the si structure is “incomplete,” since we haven’t speci¬ 

fied the members of si. Incomplete declarations of a structure are permitted in C, 

provided that a full declaration appears later in the same scope. 

Q: Why isn’t the qsort function simply named sort? [p. 386] 

A: The name qsort comes from the Quicksort algorithm published by C. A. R. 

Hoare in 1962. Ironically, the C standard doesn’t require that qsort use the 

Quicksort algorithm, although many versions of qsort do. 

Q: Isn’t it necessary to cast qsort’s first argument to type void *, as in the fol¬ 

lowing example? [p. 387] 

qsort((void *) inventory, num_parts, sizeof(struct part), 

compare_parts); 

A: No. A pointer of any type can be converted to void * automatically. 

*Q: I want to use qsort to sort an array of integers, but I’m having trouble writ¬ 

ing a comparison function. What’s the secret? 

A: Here’s a version that works: 

int compare_ints(const void *p, const void *q) 

{ 
return *(int *)p - Mint *)q; 

} 

Bizarre, eh? The expression (int *)p casts p to type int *, so * (int *)p 

would be the integer that p points to. 

*Q: I needed to sort an array of strings, so I figured I’d just use strcmp as the 

comparison function. When I passed it to qsort, however, the compiler gave 

me an error. I tried to fix the problem by embedding strcmp in a comparison 

function: 

int compare_strings(const void *p, const void *q) 

{ 
return strcmp(p, q); 

} 

Now my program compiles, but qsort doesn’t seem to sort the array. What 

am I doing wrong? 

A: First, you can’t pass strcmp itself to qsort, since qsort requires a comparison 

function with two const void * parameters. Your compare_strings func¬ 

tion doesn’t work because it incorrectly assumes that p and q are strings (char * 

pointers). In fact, p and q point to array elements containing char * pointers. To 
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fix compare_strings, we’ll cast p and q to type char **, then use the * 
operator to remove one level of indirection: 

int compare_strings(const void *p, const void *q) 
{ 

return strcmp(*(char **)p, *(char **)q); 
} 

Exercises 

Section 17.2 

Section 17.3 

Section 17.5 

1. Having to check the return value of malloc (or any other memory allocation function) 
each time we call it can be an annoyance. Write a function named my_malloc that serves 
as a “wrapper” for malloc. When we call my_malloc and ask it to allocate n bytes, it in 
turn calls malloc, tests to make sure that malloc doesn’t return a null pointer, and then 
returns the pointer from malloc. Have my_malloc print an error message and terminate 
the program if malloc returns a null pointer. 

2. Write a function named strdup that uses dynamic storage allocation to create a copy of a 
string. For example, the call 

p = strdup(str); 

would allocate space for a string of the same length as str, copy the contents of str into 
the new string, and return a pointer to it. Have strdup return a null pointer if the memory 
allocation fails. 

3. Write a program that prompts the user to enter a senes of words, which the program then 
sorts and displays with duplicates removed. Hint: Use an array of pointers to dynamically 
allocated strings. Extra credit: Use the qsort function (Section 17.7) to do the sorting. 

4. Modify invent. c (Section 16.3) so that the inventory array is allocated dynamically 
and later reallocated when it fills up. Use malloc initially to allocate enough space for an 
array of ten part structures. When the array has no more room for new parts, use 
realloc to double its size. Repeat the doubling step each time the array becomes full. 

5. Suppose that the following declarations are in effect: 

struct point { int x( y; }; 
struct rectangle { struct point upper_left, lower_right; }; 
struct rectangle *p; 

Assume that we want p to point to a rectangle structure whose upper left corner is at 
(0,1) and whose lower right corner is at (1,0). Write a series of statements that allocate such 
a structure and initialize it as indicated. 

6. Suppose that f and p are declared as follows: 

struct { 
union { 

char a, b; 
int c; 

} d; 
int e[5]; 

) f, *p = &f; 
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Section 17.6 

Section 17.7 

Which of the following statements are legal? 

(a) p->b = ’ 1 ; 

(b) p->e [ 3 ] = 10; 

(c) ( *p) . d. a = ' * ' ; 

(d) p->d->c = 20; 

7. Modify the delete_from_list function so that it uses only one pointer variable instead 

of two (cur and prev). 

8. The following loop is supposed to delete all nodes from a list and release the memory that 
they occupy. Unfortunately, the loop is incorrect. Explain what’s wrong with it and show 

how to fix the bug. 

for (p = first; p != NULL; p = p->next) 

free(p); 

9. Modify invent2 . c by adding an e (erase) command that allows the user to remove a part 

from the database. 

10. Section 15.2 describes a file, stack, c, that provides functions for storing integers in a 
stack. In that section, the stack was implemented as an array. Modify stack, c so that a 
stack is now stored as a linked list. Replace the contents and top variables by a single 
variable that points to the first node in the list (the “top” of the stack). Write the functions in 
stack, c so that they use this pointer. Remove the is_full function, instead having 
push return either TRUE (if memory was available to create a node) or FALSE (if not). 

11. Modify the delete_from_list function (Section 17.5) so that its first argument is of 
type struct node * * (a pointer to a pointer to the first node in a list) and its return type is 
void. delete_from_list must modify its first argument to point to the list after the 

desired node has been deleted. 

12. Show the output of the following program and explain what it does. 

♦include <stdio.h> 

int fl(int (*f)(int)); 

int f2(int i); 

main() 

{ 
printf("Answer: %d\n", f1 {f2 >); 

return 0; 

} 

int fl(int (*f)(int)) 

{ 
int n = 0; 

while ((*f)(n)) n++; 

return n; 

} 

int f2(int i) 

{ 
return i * i + i - 12; 

} 
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13. Write the following function. The call sum (g, i, j ) should return g(i) + ... + g (j ). 

int sum(int (*f)(int), start, end); 

14. Let a be an array of 100 integers. Write a call of qsort that sorts only the last 50 elements 
in a. (You don’t need to write the comparison function). 

15. Modify the compare_parts function so that parts are sorted with their numbers in 
descending order. 

16. Modify invent. c (Section 16.3) so that the p (print) command calls qsort to sort the 
inventory array before it prints the parts. 

17. Write a function that, when given a string as its argument, searches the following array of 
structures for a matching command name, then calls the function associated with that name: 

struct { 
char *cmd_name; 
void (*cmd_pointer)(void); 

} file_cmd[] = 
{{"new", 
{"open", 
{"close", 
{"close all", 
{"save", 
("save as", 
{"save all", 
{"print", 
{"exit", 

new_cmd), 
open_cmd), 
close_cmd), 
close_all_cmd) 
save_cmd), 
save_as_cmd), 
save_all_cmd), 
print_cmd), 
exit_cmd) 

}; 
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Making something variable is easy. 
Controlling duration of constancy is the trick. 

Declarations play a central role in C programming. By declaring variables and 

functions, we furnish vital information that the compiler will need in order to 

check a program for potential errors and translate it into object code. 

Previous chapters have provided examples of declarations without going into 

full details; this chapter fills in the gaps. It explores the sophisticated options that 

can be used in declarations and reveals that variable declarations and function dec¬ 

larations have quite a bit in common. It also provides a firm grounding in the 

important concepts of storage duration, scope, and linkage. 

Section 18.1 examines the syntax of declarations in their most general form, a 

topic that we’ve avoided up to this point. We’ll then focus on the items that appear 

in declarations: storage classes (Section 18.2), type qualifiers (Section 18.3), 

declarators (Section 18.4), and initializers (Section 18.5). 

Understanding declarations takes time, but it’s a vital skill to have. This chap¬ 

ter probably isn’t the most exciting in the book, but you’ll need to master it before 

you consider yourself a C programmer. 

18.1 Declaration Syntax 

Declarations furnish information to the compiler about the meaning of identifiers. 

When we write 

int i ; 

we’re informing the compiler that, in the current scope, the name i represents a 

variable of type int. The declaration 

399 
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declaration 

float f(float); 

tells the compiler that f is a function that returns a float value and has one argu¬ 

ment, also of type float. 

In its most general form, a declaration has the following appearance: 

declaration-specifiers declarators ; 

Declaration specifiers describe the properties of the items being declared. Declar¬ 

ators give the names of the items and may provide additional information about 

their properties. 

Declaration specifiers fall into three categories: 

■ Storage classes. There are four storage classes: auto, static, extern, 

and register. At most one storage class may appear in a declaration; if 

present, it must come first. 

■ Type qualifiers. There are only two type qualifiers: const and volatile. 

A declaration may specify either one, both, or neither. 

■ Type specifiers. The keywords void, char, short, int, long, float, 

double, signed, and unsigned are all type specifiers. These words may 

be combined as described in Chapter 7; the order in which they appear doesn’t 

matter (int unsigned long is the same as long unsigned int). Type 

specifiers also include specifications of structures, unions, and enumerations 

(for example, struct point { int x, y; }, struct { int x, y; },or 

struct point). Type names created using typedef are type specifiers as 

well. 

Type qualifiers and type specifiers must follow the storage class, but there are no 

other restrictions on their order. As a matter of style, I’ll put type qualifiers before 

type specifiers. 

Declarators include identifiers (names of simple variables), identifiers fol¬ 

lowed by [ ] (array names), identifiers preceded by * (pointer names), and identi¬ 

fiers followed by () (function names). Declarators are separated by commas. A 

declarator that represents a variable may be followed by an initializer. 

Let’s look at a few examples that illustrate these rules. Here’s a declaration 

with a storage class and three declarators: 

storage class declarators 

i / i \ 
static float x, y, *p; 

t 
type specifier 

The following declaration has a type qualifier but no storage class. It also has an 
initializer: 
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type qualifier declarator 

J i 
const char month[] = "January"; 

t t 
type specifier initializer 

The following declaration has both a storage class and a type qualifier. It also has 

three type specifiers; their order isn’t important: 

storage class type specifiers 

i / \ ''Nk 

extern const unsigned long int a[10]; 

t t 
type qualifier declarator 

Function declarations, like variable declarations, may have a storage class, type 

qualifiers, and type specifiers. The following declaration has a storage class and a 

type specifier: 

storage class declarator 

extern int square(int); 

t 
type specifier 

The rest of the chapter covers storage classes, type qualifiers, declarators, and 

initializers in detail. 

18.2 Storage Classes 

block statements >10.3 

Storage classes can be specified for variables and—to a lesser extent—functions 

and parameters. We’ll concentrate on variables for now. 

For the remainder of this section, I’ll use the term block to mean either the 

body of a function (the part enclosed in braces) or a block statement (a compound 

statement containing declarations). 

Properties of Variables 

Every variable in a C program has three properties: 

■ Storage duration. The storage duration of a variable determines when mem¬ 

ory is set aside for the variable and when that memory is released. Storage for 

a variable with automatic storage duration is allocated when the surrounding 

block is executed; storage is deallocated when the block terminates, causing 
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Q&A 

the variable to lose its value. A variable with static storage duration stays at 

the same storage location as long as the program is running, allowing it to 

retain its value indefinitely. 

■ Scope. The scope of a variable is the portion of the program text in which the 

variable can be referenced. A variable can have either block scope (the vari¬ 

able is visible from its point of declaration to the end of the enclosing block) 

ox file scope (the variable is visible from its point of declaration to the end of 

the enclosing file). 

■ Linkage. The linkage of a variable determines the extent to which it can be 

shared by different parts of a program. A variable with external linkage may 

be shared by several (perhaps all) files in a program. A variable with internal 

linkage is restricted to a single file, but may be shared by the functions in that 

file. (If a variable with the same name appears in another file, it’s treated as a 

different variable.) A variable with no linkage belongs to a single function 

and can’t be shared at all. 

The default storage duration, scope, and linkage of a variable depend on 

where it’s declared: 

■ Variables declared inside a block (including a function body) have automatic 

storage duration, block scope, and no linkage. 

■ Variables declared outside any block, at the outermost level of a program, 

have static storage duration, file scope, and external linkage. 

The following example shows the default properties of the variables i and j : 

int i ; 

static storage duration 

file scope 

external linkage 

void f 
{ 

int 

(void) 

j ; 

automatic storage duration 

block scope 

no linkage 

} 

For many variables, the default storage duration, scope, and linkage are satis¬ 

factory. When they aren’t, we can alter these properties by specifying an explicit 

storage class: auto, static, extern, or register. 

The auto Storage Class 

The auto storage class is legal only for variables that belong to a block. An auto 

variable has automatic storage duration (not surprisingly), block scope, and no 

linkage. The auto storage class is almost never specified explicitly, since it’s the 

default for variables declared inside a block. 
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information hiding >19.2 

The static Storage Class 

The static storage class can be used with all variables, regardless of where 

they’re declared, but it has a different effect on a variable declared outside a block 

than it does on a variable declared inside a block. When used outside a block, the 

word static specifies that a variable has internal linkage. When used inside a 

block, static changes the variable’s storage duration from automatic to static. 

The following figure shows the effect of declaring i and j to be static: 

static int 

static storage duration 

file scope 

internal linkage 

void f(void) 
{ 

static int 

} 

static storage duration 
block scope 

no linkage 

When used in a declaration outside a block, static essentially hides a vari¬ 

able within the file in which it’s declared; only functions that appear in the same 

file can see the variable. In the following example, the functions f 1 and f2 both 

have access to i, but functions in other files don’t: 

static int i; 

void fl(void) 

{ 
/* has access to i */ 

} 

void f2(void) 

{ 
/* has access to i */ 

} 

This use of static can help implement a technique known as information hid¬ 
ing. 

A static variable declared within a block resides at the same storage loca¬ 

tion throughout program execution. Unlike automatic variables, which lose their 

values each time the program leaves the enclosing block, a static variable will 

retain its value indefinitely, static variables have some interesting properties: 

■ A static variable in a block is initialized only once, prior to program exe¬ 

cution. An auto variable is initialized every time it comes into existence 

(provided, of course, that it has an initializer). 

■ Each time a function is called recursively, it gets a new set of auto variables. 

If it has a static variable, on the other hand, that variable is shared by all 

calls of the function. 
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m Although a function shouldn’t return a pointer to an auto variable, there’s 

nothing wrong with it returning a pointer to a static variable. 

Declaring one of its variables to be static allows a function to retain infor¬ 

mation between calls in a “hidden” area that the rest of the program can’t access. 

More often, however, we’ll use static to make programs more efficient. Con¬ 

sider the following function: 

char digit_to_hex_char(int digit) 

{ 
const char hex_chars[16] = "0123456789ABCDEF"; 

return hex_chars[digit]; 

} 

Each time the digit_to_hex_char function is called, the characters 

012 3456789ABCDEF will be copied into the hex_chars array to initialize it. 

Now, let’s make the array static: 

char digit_to_hex_char(int digit) 

{ 
static const char hex_chars[16] = "0123456789ABCDEF"; 

return hex_chars[digit]; 

} 

Since static variables are initialized only once, we’ve improved the speed of 

digit_to_hex_char. 

The extern Storage Class 

The extern storage class enables several source files to share the same variable. 

Section 15.2 covered the essentials of using extern, so I won’t devote much 

space to it here. Recall that the declaration 

extern int i; 

informs the compiler that i is an int variable, but doesn’t cause it to allocate 

memory for i. In C terminology, this declaration is not a definition of i; it merely 

informs the compiler that we need access to a variable that’s defined elsewhere 

(perhaps later in the same file, or—more often—in another file). A variable can 

have many declarations in a program but should have only one definition. 

There’s one exception to the rule that an extern declaration of a variable 

isn’t a definition. An extern declaration that initializes a variable serves as a def¬ 

inition of the variable. For example, the declaration 

extern int i = 0; 

is effectively the same as 

int i 0; 
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Q&A 

This rule prevents multiple extern declarations from initializing a variable in 
different ways. 

A variable in an extern declaration always has static storage duration. The 

scope of the variable depends on the declaration’s placement. If the declaration is 

inside a block, the variable has block scope; otherwise, it has file scope: 

extern int 

static storage duration 

file scope 

? linkage 

void f(void) 
{ 

extern int 

} 

static storage duration 
block scope 

? linkage 

Determining the linkage of an extern variable is a bit harder. If the variable was 

declared static earlier in the file (outside of any function definition), then it has 

internal linkage. Otherwise (the normal case), the variable has external linkage. 

The register Storage Class 

Declaring a variable to have the register storage class asks the compiler to 

store the variable in a register instead of keeping it in main memory like other vari¬ 

ables. (A register is a storage area located in a computer’s CPU. In traditional 

computer architecture, data stored in a register can be accessed and updated faster 

than data stored in ordinary memory.) Specifying the storage class of a variable 

to be register is a request, not a command. The compiler is free to store a 

register variable in memory if it chooses. 

The register storage class is legal only for variables declared in a block. A 

register variable has the same storage duration, scope, and linkage as an auto 

variable. However, a register variable lacks one property that an auto vari¬ 

able has: since registers don’t have addresses, it’s illegal to use the & operator to 

take the address of a register variable. This restriction applies even if the com¬ 

piler has elected to store the variable in memory. 
register is best used for variables that are accessed and/or updated fre¬ 

quently. For example, the loop control variable in a for statement is a good candi¬ 

date for register treatment: 

int sum_array(int a[], int n) 

{ 
register int i; 
int sum = 0; 

for (i = 0; i < n; i++) 
sum += a[i]; 

return sum; 

} 
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register isn’t nearly as popular among C programmers as it once was. 

Today’s compilers are much more sophisticated than the early C compilers; many 

can determine automatically which variables would benefit the most from being 

kept in registers. 

The Storage Class of a Function 

Function declarations (and definitions), like variable declarations, may include a 

storage class, but the only options are extern and static. The word extern 

at the beginning of a function declaration specifies that the function has external 

linkage, allowing it to be called from other files, static indicates internal link¬ 

age—the function may be called only within the file in which it’s defined. If no 

storage class is specified, the function is assumed to have external linkage. 

Consider the following function declarations: 

extern int f(int i) ; 
static int g(int i); 
int h(int i); 

f has external linkage, g has internal linkage, and h (by default) has external link¬ 

age. 
Declaring functions to be extern is like declaring variables to be auto—it 

serves no purpose. For that reason, I don’t use extern in function declarations. 

Be aware, however, that some programmers use extern extensively, which cer¬ 

tainly does no harm. 
Declaring functions to be static, on the other hand, is quite useful. In fact, I 

recommend using static when declaring any function that isn’t intended to be 

called from other files. The benefits of doing so include: 

■ Easier maintenance. Declaring a function f to be static guarantees that f 

is never called outside the file in which its definition appears. As a result, 

someone modifying the program later knows that changes to f won’t affect 

functions in other files. 

■ Reduced “name space pollution.” Since functions declared static have 

internal linkage, their names can be reused in other files. Although we proba¬ 

bly wouldn’t deliberately reuse a function name for some other purpose, it can 

be hard to avoid in large programs. An excessive number of names with exter¬ 

nal linkage can result in what C programmers call “name space pollution”: 

names in different files accidentally conflicting with each other. Using 

static helps prevent this problem. 

Function parameters have the same properties as auto variables: automatic 

storage duration, block scope, and no linkage. The only storage class that can be 

specified for parameters is register. 
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Table 18.1 
Properties of Variables 

and Parameters 

18.3 

Summary 

Now that we’ve covered the various storage classes, let’s summarize what we 

know. The following code fragment shows all possible ways to include—or 

omit—storage classes in declarations of variables and parameters. 

int a; 
extern int b; 
static int c; 

void f(int d, register int e) 

{ 
auto int g; 
int h ; 
static int i; 
extern int j; 
register int k; 

} 

Table 18.1 shows the properties of each variable and parameter in this example. 

Name Storage Duration Scope Linkage 

a static file external 
b static file * 

c static file internal 
d automatic block none 
e automatic block none 

g automatic block none 
h automatic block none 
i static block none 

j static block * 

k automatic block none 

*The definitions of b and j aren’t shown, so it’s not possible to de¬ 
termine the linkage of these variables. In most cases, the variables 
will be defined in another file and will have external linkage. 

Of the four storage classes, the most important are static and extern, 

auto has no effect, and modern compilers have made register obsolete. 

Type Qualifiers 

There are two type qualifiers: const and volatile. Since volatile is used 

only in low-level programming, we’ll postpone discussing it until Section 20.3. 

const is used to declare objects that resemble variables but are “read-only”; a 

program can access the value of a const object, but can’t change it. For example, 

the declaration 

const int n = 10; 

creates a const object named n whose value is 10. The declaration 
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const int days_per_month[] = 
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; 

creates a const array named days_per_month. 

Using const to indicate that the value of an object won’t change has several 

advantages: 

Q&A 

■ const is a form of documentation; declaring an object to be const informs 

anyone reading the program later that the value of the object won’t change. 

■ The compiler can check that the program doesn’t inadvertently attempt to 

change the value of the object. 

■ When programs are written for certain types of applications (embedded sys¬ 

tems, in particular), the compiler can use the word const to identify data to 

be stored in ROM (read-only memory). 

At first glance, it might appear that const infringes on the #def ine direc¬ 

tive, which we’ve used in previous chapters to create names for constants. There 

are significant differences between #def ine and const, however: 

■ We can use #define to create a name for a numerical, character, or string 

constant, const can be used to create read-only objects of any type, includ¬ 

ing constant arrays, pointers, structures, and unions. 

■ const objects are subject to the same scope rules as variables; constants cre¬ 

ated using #def ine aren’t. In particular, we can’t use #def ine to create a 

constant with block scope. 

■ The value of a const object, unlike the value of a macro, can be viewed in a 

debugger. 

■ Unlike macros, const objects can’t be used in constant expressions. For 

example, we can’t write 

const int n = 10; 
int a[n]; /*** WRONG ***/ 

since array bounds must be constant expressions. 

There are no absolute rules that dictate when to use #define and when to 

use const. I recommend using #def ine for constants that represent numbers or 

characters. That way, you’ll be able to use the constants as array dimensions, in 

switch statements, and in other places where constant expressions are required. I 

use const primarily for protecting constant data stored in arrays. 

18.4 Declarators 

A declarator consists of an identifier (the name of the variable or function being 

declared), possibly preceded by the * symbol or followed by [ ] or (). By com¬ 

bining *, [ ], and (), we can create declarators of mind-numbing complexity. 
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Before we look at the more complicated declarators, let’s review the declara¬ 

tors that we’ve seen in previous chapters. In the simplest case, a declarator is just 
an identifier, like i in the following example: 

int i ; 

Declarators may also contain the symbols *, [ ], and (): 

■ A declarator that begins with * represents a pointer: 

int *p; 

■ A declarator that ends with [ ] represents an array: 

int a[10]; 

The brackets may be left empty if the array is a parameter, if it has an initial¬ 
izer, or if its storage class is extern: 

extern int a[]; 

Since a is defined elsewhere in the program, the compiler doesn’t need to 

know its length here. (In the case of a multidimensional array, only the first set 
of brackets can be empty.) 

■ A declarator that ends with () represents a function: 

int abs(int i) ; 
void swap(int *a, int *b) ; 
int find_largest(int a[], int n) ; 

C allows parameter names to be omitted in a function declaration: 

int abs(int); 
void swap(int *, int *); 
int find_largest(int [], int); 

The parentheses can even be left empty: 

int abs(); 
void swap(); 
int find_largest() ; 

These declarations specify the return types of abs, swap, and 

f ind_largest, but provide no information about their arguments. Leaving 

the parentheses empty isn’t the same as putting the word void between them, 

which indicates that there are no arguments. The empty-parentheses style of 

function declaration, which comes from Classic C, is rapidly disappearing. It’s 

inferior to Standard C’s prototype style, since it doesn’t allow the compiler to 

check whether function calls have the right arguments. 

If all declarators were as simple as these, C programming would be a snap. 

Unfortunately, declarators in actual programs often combine the *, [], and () 

notations. We’ve seen examples of such combinations already. We know that 
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int *ap[10]; 

declares an array often pointers to integers. We know that 

float *fp(float); 

declares a function that has a float argument and returns a pointer to a float. 

And, in Section 17.7, we learned that 

void (*pf)(int); 

declares a pointer to a function with an int argument and a void return type. 

Deciphering Complex Declarations 

So far, we haven’t had too much trouble understanding declarators. But what about 

declarators like the following one? 

int *(*x[10])(void); 

This declarator combines *, [ ], and (), so it’s not obvious whether x is a pointer, 

an array, or a function. 
Fortunately, there are two simple rules that will allow us to understand any 

declaration, no matter how convoluted: 

■ Always read declarators from the inside out. In other words, locate the iden¬ 

tifier that’s being declared, and start deciphering the declaration from there. 

■ When there’s a choice, always favor [ ] and () over *. If * precedes the 

identifier and [ ] follows it, the identifier represents an array, not a pointer. 

Likewise, if * precedes the identifier and () follows it, the identifier repre¬ 

sents a function, not a pointer. (Of course, we can always use parentheses to 

override the normal priority of [ ] and () over *.) 

Let’s apply these rules to our simple examples first. In the declaration 

int *ap[10]; 

the identifier is ap. Since * precedes ap and [ ] follows it, we give preference to 

[ ], so ap is an array of pointers. In the declaration 

float *fp(float); 

the identifier is fp. Since * precedes fp and () follows it, we give preference to 

(), so f p is a function that returns a pointer. 

The declaration 

void (*pf)(int); 

is a little trickier. Since *pf is enclosed in parentheses, pf must be a pointer. But 

( *pf) is followed by (int), so pf must point to a function with an int argu¬ 

ment. The word void represents the return type of this function. 
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As the last example shows, understanding a complex declarator often involves 

zigzagging from one side of the identifier to the other: 

void (*pf)(int); 
Type of pf: 

1. pointer to 

2. function with int argument 

3. returning void 

Let’s use this zigzagging technique to decipher the declaration given earlier: 

int *(*x[10])(void); 

First, we locate the identifier being declared (x). x is preceded by * and followed 

by [ ]; since [ ] have priority over *, we go right (x is an array). Next, we go left 

to find out the type of the elements in the array (pointers). Next, we go right to find 

out what kind of data the pointers point to (functions with no arguments). Finally, 

we go left to see what each function returns (a pointer to an int). Graphically, 

here’s what the process looks like: 

int *(*x[10])(void); 
Type of x: 

1. array of 

2. pointers to 

3. functions with no arguments 

4. returning pointer to int 

Mastering C declarations takes time and practice. The only good news is that 

there are certain things that can’t be declared in C. Functions can’t return arrays: 

int f(int) []; /* * * WRONG * * * / 

Functions can’t return functions: 

int g(int)(int); /*** WRONG ***/ 

Arrays of functions aren’t possible, either: 

int a[10](int); /*** WRONG ***/ 

Using Type Definitions to Simplify Declarations 

Some programmers use type definitions to help simplify complex declarations. 

Consider the declaration of x that we examined earlier in this section: 

int *(*x[10])(void); 

To make x’s type easier to understand, we could use the following series of type 

definitions: 

typedef int *Fcn(void); 
typedef Fen *Fcn_ptr; 
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typedef Fcn_ptr Fcn_ptr_array[10]; 

Fcn_ptr_array x; 

Reading backwards, we see that x has type Fcn_ptr_array, a 

Fcn_ptr_array is an array of Fcn_ptr values, a Fcn_ptr is a pointer to 

type Fen, and a Fen is a function that has no arguments and returns a pointer to an 

int value. 

18.5 Initializers 

For convenience, C allows us to specify initial values for variables as we’re declar¬ 

ing them. To initialize a variable, we write the = symbol after its declarator, then 

follow that with an initializer. (Don’t confuse the = symbol in a declaration with 

the assignment operator; initialization isn’t the same as assignment.) 

We’ve seen various kinds of initializers in previous chapters. The initializer 

for a simple variable is an expression of the same type as the variable: 

int i = 5 / 2; /* i is initially 2 */ 

If the types don’t match, C converts the initializer using the same rules as for 

conversion during assignment >7.5 assignment.! 

int j = 5.5; /* converted to 5 */ 

The initializer for a pointer variable must be a pointer expression of the same type 

as the variable or of type void *: 

int *p = &i; 

The initializer for an array, structure, or union is usually a series of values enclosed 

in braces: 

int a[5] = {1, 2, 3, 4, 5); 

To complete our coverage of declarations, let’s take a look at some additional 

rules that govern initializers: 

■ An initializer for a variable with static storage duration must be constant: 

#define FIRST 1 
#define LAST 100 

static int i = LAST - FIRST + 1; 

Since LAST and FIRST are macros, the compiler can compute the initial 

value of i (100 - 1 + 1 = 100). If LAST and FIRST had been variables, the 

initializer would be illegal. 

■ If a variable has automatic storage duration, its initializer need not be con¬ 

stant: 
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int f(int n) 

{ 
int last = n - 1; 

} 

■ A brace-enclosed initializer for an array, structure, or union must contain only 

constant expressions, never variables or function calls: 

#define N 2 

int powers[5] = (1, N, N*N, N*N*N, N*N*N*N]; 

Since N is a constant, the initializer for powers is legal; if N were a variable, 
the program wouldn’t compile. 

■ The initializer for an automatic structure or union can be another structure or 
union: 

void g(struct complex cl) 

{ 
struct complex c2 = cl; 

} 

The initializer doesn’t have to be a variable or parameter name, although it 

does need to be an expression of the proper type. For example, c2’s initializer 

could be *p, where p is of type struct complex *, or f (cl), where f is 
a function that returns a complex structure. 

Uninitialized Variables 

In previous chapters, we’ve implied that uninitialized variables have undefined 

values. That’s not always true; the initial value of a variable depends on its storage 

duration: 

■ Variables with automatic storage duration have no default initial value. The 

initial value of an automatic variable can’t be predicted and may change each 

time the variable comes into existence. 

■ Variables with static storage duration have the value zero by default. Unlike 

memory allocated by calloc, which is simply set to zero bits, a static vari¬ 

able is correctly initialized based on its type: integer variables are initialized to 

0, floating variables are initialized to 0.0, and pointers are initialized to the 

null pointer. 

As a matter of style, it’s better to provide initializers for static variables rather 

than rely on the fact that they’re guaranteed to be zero. If a program accesses a 

variable that hasn’t been initialized explicitly, someone reading the program later 

can’t easily determine whether the variable is assumed to be zero or whether it’s 

initialized by an assignment somewhere in the program. 
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Q & A 

Q: What exactly is the difference between “scope” and “linkage”? [p. 402] 

A: Scope is for the benefit of the compiler, while linkage is for the benefit of the 

linker. The compiler uses the scope of an identifier to determine whether or not it’s 

legal to refer to the identifier at a given point in a file. When the compiler trans¬ 

lates a source file into object code, it notes which names have external linkage, 

eventually storing these names in a table inside the object file. Thus, the linker has 

access to names with external linkage; names with internal linkage or no linkage 

are invisible to the linker. 

Q: I don’t understand how a name could have block scope but external linkage. 

Could you elaborate? [p. 405] 

A: Certainly. Suppose that one source file defines a variable i: 

int i ; 

Let’s assume that the definition of i lies outside any function, so i has external 

linkage by default. In another file, there’s a function f that needs to access i, so 

the body of f declares i as extern: 

void f(void) 

{ 
extern int i; 

} 

In the first file, i has file scope. Within f, however, i has block scope. If other 

functions besides f need access to i, they’ll need to declare it separately. (Or we 

can simply move the declaration of i outside f so that i has file scope.) What’s 

confusing about this entire business is that each declaration or definition of i 

establishes a different scope; sometimes it’s file scope, and sometimes it’s block 

scope. 

*Q: Why can’t const objects be used in constant expressions? A constant is a 
constant, right? [p. 408] 

A: Not necessarily. A const object is only guaranteed to stay constant during its life¬ 

time, not throughout the execution of the program. Suppose that a const object is 

declared inside a function: 

void f (int n) 

{ 
const int m = n; 

} 
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When f is called, m will be initialized to the value of f’s argument, m will then 

stay constant until f returns. When f is called the next time, m will likely be given 

a different value. That’s where the problem arises. Suppose that we use m to spec¬ 
ify the length of an array: 

void f(int n) 

{ 
const int m = n; 
int a[m]; /*** WRONG ***/ 

} 

a’s length won’t be known until f is called, which violates C’s rule that the length 
of each array be known to the compiler. 

That’s not the only problem with const, though, const objects declared 

outside blocks have external linkage and can be shared among files. If C allowed 

the use of const objects in constant expressions, we could easily find ourselves 
in the following situation: 

extern const int n; 
int a[n]; /*** WRONG ***/ 

C++ 

n is probably defined in another file, making it impossible for the compiler to 

determine a’s length. 

There’s no question that C’s restrictions on const objects are annoying. C++ 

improves matters somewhat by allowing a const object to appear in a constant 

expression, provided that (a) it’s an integer and (b) its initializer is constant: 

const int n = 10; 
int a[n]; /* legal in C++, but not in C */ 

C++ also specifies that const objects have internal linkage by default, making it 

possible to put their definitions in header files. 

Q: Why is the syntax of declarators so odd? 

A: Declarations are intended to mimic use. A pointer declarator has the form *p, 

which matches the way the indirection operator will later be applied to p. An array 

declarator has the form a [... ], which matches the way the array will later be sub¬ 

scripted. A function declarator has the form f (...), which matches the syntax of a 

function call. This reasoning extends to even the most complicated declarators. 

Consider the file_cmd array of Section 17.7, whose elements were pointers to 

functions. The declarator for f ile_cmd has the form 

(*file_cmd[])(void) 

and a call of one of the functions has the form 

(* fi1e_cmd[n]) (); 

The parentheses, brackets, and * are in identical positions. 



416 Chapter 18 Declarations 

Section 18.1 

Section 18.2 

Section 18.3 

Section 18.4 

Exercises 

1. For each of the following declarations, identify the storage class, type qualifiers, type speci¬ 

fiers, declarators, and initializers. 

(a) static char **lookup(int level); 

(b) volatile unsigned long io_flags; 

(c) extern char *f ile_name [MAX_FILES] , path [ ] ; 

(d) static const char token_buf [ ] = 

2. Answer each of the following questions with auto, extern, register, and/or 
static. 
(a) Which storage class is used primarily to indicate that a variable or function can be 

shared by several files? 
(b) Suppose that a variable x is to be shared by several functions in one file but hidden 

from functions in other files. Which storage class should x be declared to have? 

(c) Which storage classes can affect the storage duration of a variable? 

3. List the storage duration (static or automatic), scope (block or file), and linkage (internal, 
external, or none) of each variable and parameter in the following file: 

extern float a; 

void f(register double b) 

{ 
static int c; 
auto char d; 

} 

4. Let f be the following function. What will be the value of f (10) if f has never been called 
before? What will be the value of f (10) if f has been called five times previously? 

int f(int i) 

{ 
static int j = 0; 
return i * j++; 

} 

5. Suppose that we declare x to be a const object. Which one of the following statements 

about x is falsel 

(a) If x is of type int, it can be used to declare the length of an array. 

(b) The compiler will check that no assignment is made to x. 

(c) x is subject to the same scope rules as variables. 

(d) x can be of any type. 

6. Write a complete description of the type of x as specified by each of the following declara¬ 

tions. 

(a) char (*x[10] ) (int) ; 

(b) int (*x(int) ) [5] ; 

(c) float * ( *x (void) ) ( int) [ 10] ; 

(d) void ( *x (int, void (*y) (int) ) ) (int) ; 
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Section 18.5 

7. Use a series of type definitions to simplify each of the declarations in Exercise 6. 

8. Write declarations for the following variables and functions: 

(a) p is a pointer to a function with a character pointer argument that returns a character 
pointer. 

(b) f is a function with two arguments: p, a pointer to a structure with tag t, and n, a long 
integer, f returns a pointer to a function that has no arguments and returns nothing. 

(c) a is an array of four pointers to functions that have no arguments and return nothing. 
The elements of a initially point to functions named insert, search, update, and 
print. 

(d) b is an array of 10 pointers to functions with two int arguments that return structures 
with tag t. 

9. In Section 18.4, we saw that the following declarations are illegal: 

int f(int)[]; /* Functions can't return arrays */ 
int g(int)(int); /* Functions can't return functions */ 
int a[10](int); /* Array elements can't be functions */ 

We can, however, achieve similar effects by using pointers: a function can return a pointer 
to the first element in an array, a function can return a pointer to a function, and the elements 
of an array can be pointers to functions. Revise each of these declarations accordingly. 

10. Which of the following declarations are legal? (Assume that PI is a macro that represents 
3.14159.) 

(a) char c = 65; 

(b) static int i = 5, j = i * i; 

(c) float f = 2 * PI; 
(d) double angles[] = {0, PI/2, PI, 3*PI/2}; 

11. Which kind of variables cannot be initialized? 

(a) array variables 

(b) enumeration variables 

(c) structure variables 

(d) union variables 

(e) none of the above 

12. What property of a variable determines whether or not it has a default initial value? 

(a) storage duration 

(b) scope 

(c) linkage 
(d) type 
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Q&A 

Wherever there is modularity there is the potential for misunderstanding: 
Hiding information implies a need to check communication. 

It’s obvious that real-world programs are larger than the examples in this book, but 

you may not realize just how much larger. Faster CPUs and larger main memories 

have made it possible to write programs that would have been impractical just a 

few years ago. The popularity of graphical user interfaces has added greatly to the 

average length of a program. Most full-featured programs today are at least 

100,000 lines long. Million-line programs are commonplace, and it’s not unheard- 

of for a program to have ten or more million lines. 

Although C wasn’t specifically designed for writing large programs, many 

large programs have in fact been written in C. It’s tricky, and it requires a great 

deal of care, but it can be done. In this chapter, I’ll discuss techniques that have 

proved to be helpful for writing large programs and show which C features (the 

static storage class, for example) are especially useful. 

Writing large programs (often called “programming-in-the-large”) is quite dif¬ 

ferent from writing small ones—it’s like the difference between writing a term 

paper (ten pages double-spaced, of course) and a 500-page book. A large program 

requires more attention to style, since many people will be working on it. It 

requires careful documentation. It requires planning for maintenance, since it will 

likely be modified many times. 

Above all, a large program requires careful design and much more planning 

than a small program. As Alan Kay, the designer of the Smalltalk programming 

language, puts it, “You can build a doghouse out of anything.” A doghouse can be 

built without any particular design, using whatever materials are at hand. A house 

for humans, on the other hand, is too complex to just throw together. 

Chapter 15 discussed writing large programs in C, but it concentrated on lan¬ 

guage details. In this chapter, we’ll revisit the topic, this time focusing on tech¬ 

niques for good program design. A complete discussion of program design issues 

is obviously beyond the scope of this book. However, I’ll try to cover—briefly— 

419 
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some important concepts in program design and show how to use them to create C 

programs that are readable and maintainable. 
Section 19.1 discusses how to view a C program as a collection of modules 

that provide services to each other. We’ll then see how the concepts of information 

hiding (Section 19.2) and abstract data types (Section 19.3) can improve modules. 

In Section 19.4, we’ll look at C++, an extended version of C that provides better 

support for information hiding, abstract data types, and other aspects of program- 

ming-in-the-large. 

19.1 Modules 

When designing a C program (or a program in any other language, for that matter), 

it’s often good to view it as a number of independent modules. A module is a col¬ 

lection of services, some of which are made available to other parts of the program 

(the clients). Each module has an interface that describes the available services. 

The details of the module—including the source code for the services them¬ 

selves—are stored in the module’s implementation. 
In the context of C, “services” are functions. The interface of a module is a 

header file containing prototypes for the functions that will be made available to 

other files in the program. The implementation of a module is a source file that 

contains definitions of the module’s functions. 
To illustrate this terminology, let’s look at the calculator program of Chapter 

15. This program consists of the file calc . c, which contains the main function, 

and a stack module, which is stored in the files stack. h and stack. c (see the 

figure at the top of the next page). The calc . c file is a client of the stack module. 

The stack. h file is the interface of the stack module; it supplies everything the 

client needs to know about the module. The stack, c file is the implementation 

of the module; it contains definitions of the stack functions and declarations of the 

variables that make up the stack. 
The C library is itself a collection of modules. Each header in the library 

serves as the interface to a module. <stdio . h>, for example, is the interface to a 

module containing I/O functions, while <string . h> is the interface to a module 

containing string-handling functions. 

Dividing a program into modules has a number of advantages: 

■ Abstraction. If modules are properly designed, we can treat them as abstrac¬ 

tions', we know what they do, but we don’t worry about the details of how they 

do it. Thanks to abstraction, it’s not necessary to understand how the entire 

program works in order to make changes to one part of it. What’s more, 

abstraction makes it easier for several members of a team to work on the same 

program. Once the interfaces for the modules have been agreed upon, the 

responsibility for implementing each module can be delegated to a particular 

person. Team members can then work largely independently of one another. 
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stack.c 

■ Reusability. Any module that provides services is potentially reusable in other 

programs. Our stack module, for example, is reusable. Since it’s often hard to 

anticipate the future uses of a module, it’s a good idea to design modules for 

reusability. 

■ Maintainability. A small bug will usually affect only a single module imple¬ 

mentation, making the bug easier to locate and fix. Once the bug has been 

fixed, rebuilding the program requires only a recompilation of the module 

implementation (followed by linking the entire program). On a larger scale, 

we could replace an entire module implementation, perhaps to improve per¬ 

formance or when transporting the program to a different platform. 

Although all these issues are important, maintainability is the most critical. 

Most real-world programs are in service over a period of years, during which bugs 

are discovered, enhancements are made, and modifications are made to meet 

changing requirements. Designing a program in a modular fashion makes mainte¬ 

nance much easier. Maintaining a program should be like maintaining a car—fix¬ 

ing a flat tire shouldn’t require overhauling the engine. 

For an example, we need look no further than the inventory program of 

Chapters 16 and 17. The original program (Section 16.3) stored part records in an 

array. Suppose that, after using this program for a while, the customer objects to 

having a fixed limit on the number of parts that can be stored. To satisfy the cus- 
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tomer, we might switch to a linked list (as we did in Section 17.5). Making this 

change required going through the entire program, looking for all places that 

depend on the way parts are stored. If we’d designed the program differently in the 

first place—with a separate module dealing with part storage we would have 

only needed to rewrite the implementation of that module, not the entire program. 

Once we’re convinced that modular design is the way to go, the process of 

designing a program boils down to deciding what modules it should have, what 

services each module should provide, and how the modules should be interrelated. 

We’ll now look at these issues briefly. For more information about design, consult 

a software engineering text. One good choice is FundamentciIs of Software Engi 

neering by Ghezzi, Jazayeri, and Mandrioli (Englewood Cliffs, N.J.: Prentice-Hall, 

1991); I’ll use the same terminology they do. 

Cohesion and Coupling 

Good module interfaces aren’t random collections of declarations. In a well- 

designed program, modules should have two properties: 

■ High cohesion. The elements of each module should be closely related to one 

another; we might think of them as cooperating toward a common goal. High 

cohesion makes modules easier to use and makes the entire program easier to 

understand. 

■ Low coupling. Modules should be as independent of each other as possible. 

Low coupling makes it easier to modify the program and reuse modules. 

Does the calculator program have these properties? The stack module is 

clearly cohesive: its functions represent operations on a stack. There’s little cou¬ 

pling in the program. The calc.c file depends on stack, h (and stack, c 

depends on stack . h, of course), but there are no other apparent dependencies. 

<float. h> header >23.1 

<limits .h> header >23.2 

Types of Modules 

Because of the need for high cohesion and low coupling, modules tend to fall into 

certain typical categories: 

■ Data pools. A data pool is a collection of related variables and/or constants. In 

C, a module of this type is often just a header file. From a design standpoint, 

putting variables in header files isn’t usually a good idea, but collecting 

related constants in a header file can often be desirable. In the C library, 

<f loat. h> and climits . h> are both data pools. 

■ Libraries. A library is a collection of related functions. The <string.h> 

header, for example, is the interface to a library of string-handling functions. 

■ Abstract objects. An abstract object is a collection of functions that operate on 

a hidden data structure. (An “object” is just a collection of data bundled with 

operations on the data. If the data is hidden, the object is “abstract.”) The stack 

module we’ve been discussing falls into this category. 
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■ Abstract data types. An abstract data type is a type whose representation is 

hidden. Client modules can use the type to declare variables, but have no 

knowledge of the structure of those variables. For a client module to perform 

an operation on a variable, it must call a function provided by the abstract data 

type module. Abstract data types play a significant role in modern-day pro¬ 

gramming; we’ll return to them in Section 19.3 for a more detailed discussion. 

19.2 Information Hiding 

A well-designed module often keeps some information secret from its clients. Cli¬ 

ents of our stack module, for example, have no need to know whether the stack is 

stored in an array, in a linked list, or in some other fashion. The technique of delib¬ 

erately concealing information from the clients of a module is known as informa¬ 

tion hiding. Information hiding has two primary advantages: 

■ Security. If clients don’t know how the stack is stored, they won’t be able to 

corrupt it by tampering with its internal workings. To perform operations on 

the stack, they’ll have to call functions that are provided by the module 

itself—functions that we’ve written and tested. 

■ Flexibility. Making changes—no matter how large—to a module’s internal 

workings won’t be difficult. For example, we could implement the stack as an 

array at first, then later switch to a linked list or other representation. We’ll 

have to rewrite the implementation of the module, of course, but—if the mod¬ 

ule was designed properly—we won’t have to alter the module’s interface. 

In C, the major tool for enforcing information hiding is the static storage 

static storage class >• i8.2 class. Declaring a function to be static gives the function internal linkage, thus 

preventing it from being called from other files (including clients of the module). 

Declaring a variable with file scope to be static has a similar effect—the vari¬ 

able is accessible only to functions in the same file. 

A Stack Module 

To see the benefits of information hiding, let’s look at two implementations of a 

stack module, one using an array and the other a linked list. We’ll assume that the 

module’s header file has the following appearance: 

Stack.h #ifndef STACK_H 

#define STACK_H 

void make_empty(void); 

int is_empty(void) ; 

void push(int i); 

int pop(void); 

#endif 
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stackl.c 

Notice that I haven’t put a prototype for stack_full in stack.h. Having a 

stack_full function makes sense when the stack is stored as an array, but not 

when it’s stored as a linked list. 
Let’s first use an array to implement the stack: 

♦include <stdio.h> 

♦include <stdlib.h> 

♦include "stack.h" 

♦define STACK_SIZE 100 

static int contents[STACK_SIZE]; 

static int top = 0; 

void make_empty(void) 

{ 
top = 0; 

} 

int is_empty(void) 

{ 
return top == 0; 

} 

static int is_full(void) 

{ 
return top == STACK_SIZE; 

} 

void push(int i) 

{ 
if (is_full()) { 

printf("Error in push: stack is full.\n"); 

exit(EXIT_FAILURE); 

} 
contents[top++] = i; 

} 

int pop(void) 

{ 
if (is_empty()) { 

printf("Error in pop: stack is empty.\n"); 

exit(EXIT_FAILURE); 

} 
return contents[--top]; 

} 

The variables that make up the stack (contents and top) are both declared 

static, since there’s no reason for the rest of the program to access them 

directly. I’ve included an is_full function in stackl.c, but I’ve made it 

static so that it’s hidden from the rest of the program. 
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stack2.c 

As a matter of style, some programmers use macros to indicate which func¬ 

tions and variables are “public” (accessible elsewhere in the program) and which 

are “private” (limited to a single file): 

ttdefine PUBLIC /* empty */ 

#define PRIVATE static 

The reason for writing PRIVATE instead of static is that the latter has more 

than one use in C; PRIVATE makes it clear that we’re using it to enforce informa¬ 

tion hiding. Here’s what the stack implementation would look like if we were to 

use PUBLIC and PRIVATE: 

PRIVATE int contents[STACK_SIZE]; 

PRIVATE int top = 0; 

PUBLIC void make_empty (void) { ... } 

PUBLIC int is_empty (void) { ... } 

PRIVATE int is_full (void) { ... } 

PUBLIC void push (int i) { ... } 

PUBLIC int pop (void) { ... } 

Now we’ll switch to a linked list: 

#include <stdio.h> 

#include <stdlib.h> 

#include "stack.h" 

struct node { 

int data; 

struct node *next; 

}; 

static struct node *top = NULL; 

void make_empty(void) 

{ 
top = NULL; 

} 

int is_empty(void) 

{ 
return top == NULL; 

} 

void push(int i) 

{ 
struct node *new_node; 

new__node = malloc(sizeof(struct node)); 
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if (new_node == NULL) { 
printf("Error in push: stack is full.\n”); 

exit(EXIT_FAILURE); 

} 

new_node->data = i; 

new_node->next = top; 

top = new_node; 

} 

int pop(void) 

{ 
struct node *old_top; 

int i; 

if (is_empty()) { 
printf("Error in pop: stack is empty.\n"); 

exit(EXIT_FAILURE); 

} 

old_top = top; 

i = top->data; 

top = top->next; 

free(old_top); 

return i; 

} 

There’s no need for the is_full function anymore, since the stack no longer has 

a fixed limit on its size. Instead, the push function tests whether malloc returns 

a null pointer; if so, there’s not enough memory left to push another item on the 

stack. Fortunately, is_full was declared static in stackl.c, making it 

impossible for other files to call is_full. Since these files were unaware of the 

existence of is_full, removing it can’t possibly affect them. 

Our stack example shows clearly the advantage of information hiding: it 

doesn’t matter whether we use stackl. c or stack2 . c to implement the mod¬ 

ule. Both versions match the stack’s interface, so we can switch from one to the 

other without having to make changes elsewhere in the program. 

19.3 Abstract Data Types 

A module that serves as an abstract object, like the stack module in the previous 

section, has one disadvantage: there’s no way to have multiple, instances of the 

object (more than one stack, in this case). To accomplish this, we’ll need to go a 

step further and create a new type. 

Once we’ve defined a Stack type, we’ll be able to have as many stacks as we 

want. The following fragment illustrates how we could have two stacks in the 

same program: 
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#include <stdio.h> 

♦include "stack.h" 

main() 

{ 
Stack si, s2; 

make_empty(&sl); 

make_empty(&s2); 

push(&sl, 1); 

push(&s2, 2); 

if (!is_empty(&sl)) 

printf("%d\n", pop(&sl)); /* prints "1" */ 

} 

We’re not really sure what si and s2 are (structures? pointers?), but it doesn’t 

matter. To clients of the stack module, si and s2 are abstractions that respond to 

certain operations (make_empty, is_empty, push, and pop). 

Let’s convert our stack.h header so that it provides a Stack type. Doing 

so will require adding a Stack (or Stack *) parameter to each function: 

♦define STACK_SIZE 100 

typedef struct { 

int contents[STACK_SIZE]; 

int top; 

} Stack; 

void make_empty(Stack *s); 

int is_empty(const Stack *s); 

void push(Stack *s, int i); 

int pop(Stack *s); 

The stack parameters to make_empty, push, and pop need to be pointers, since 

these functions modify the stack. The parameter to is_empty doesn’t need to be 

a pointer, but we’ve made it one anyway. Passing is_empty a Stack pointer 

instead of a Stack value is more efficient, since the latter would result in a struc¬ 

ture being copied. 

Encapsulation 

Unfortunately, Stack isn’t an abstract data type, since stack.h reveals what 

the Stack type really is. Nothing prevents clients from using a Stack variable as 

a structure: 

Stack si; 

si.top = 0; 
si.contents[top++] = 1; 
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Providing access to the top and contents members allows clients to corrupt 

the stack. Worse still, we won’t be able to change the way stacks are stored without 

having to assess the effect of the change on clients. 
What we need is a way to prevent clients from knowing how the Stack type 

is represented. Sadly, C has no features designed specifically for encapsulating 

types in this way. Techniques do exist, but they’re cumbersome or rely on trickery. 

The best way to achieve encapsulation is to use C++, which allows us to hide the 

details of a data type. In fact, C’s failure to support abstract data types properly is 

one of the reasons for the emergence of C++. 

19.4 C++ 

C++ No chapter on program design would be complete without mentioning C++, an 

extended version of C developed by Bjarne Stroustrup of AT&T Bell Laboratories 

during the 1980s. C++ is much better than C at supporting modern program design 

principles, including abstract data types. (C, of course, is a much older language, 

so we can’t really fault it for not supporting newer design techniques.) The most 

significant feature of C++, the class, allows us to achieve the kind of encapsulation 

that we sought in Section 19.3. Beyond that, C++ provides a cornucopia of new 

features for programming-in-the-large, including: 

■ Support for object-oriented programming, which offers the promise of 

greater code reuse by allowing a new class to be “derived” from an existing 

class instead of written from scratch. 

■ Overloaded operators, which make it possible to give additional meanings to 

traditional C operators. Overloaded operators allow us to extend the language 

itself by defining new data types (classes) that are almost indistinguishable 

from the basic (built-in) types. 

■ Templates, which enable us to write general-purpose, highly reusable classes 

and functions. 

■ Exception handling, a uniform way of detecting and responding to errors. 

One goal of C++ was to retain compatibility with C whenever possible. As a 

result, all the features of Standard C are also present in C++. That doesn’t mean 

that every C program will compile in C++, however. There are a few minor incom¬ 

patibilities between the two languages, some of which arise from restrictions that 

C++ imposes in an effort to achieve greater security than C. 

The rest of this section gives an overview of C++. A word of caution: I’ll only 

cover some of the new features in C++, and the description of those won’t be very 

complete. Still, you should be able to get a feel for what C++ programming is like. 
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comments 

tags vs. type names 

functions with no 
arguments 

default arguments 

reference arguments 

Differences between C and C++ 

Before we tackle the major new features that C++ adds to C—classes, overloading, 

derivation, virtual functions, templates, and exception handling—we’ll need to 

cover some of the smaller differences between the languages. 

C++ has single-line comments, which begin with // and end at the first new-line 

character: 

// This is a comment. 

// So is this. 

Single-line comments are safer than C-style comments (which are still legal), since 

they can’t accidentally be left unterminated. 

In C++, tags (names identifying a particular kind of structure, union, or enumera¬ 

tion) are automatically type names. Thus, instead of 

typedef struct { double re, im; } Complex; 

we can simply write 

struct Complex { double re, im; }; 

There’s no need to use the word void when declaring or defining a C++ function 

with no arguments: 

void draw(void); // no arguments 

void draw(); // no arguments either 

C++ allows function arguments to have default values. For example, the following 

function prints any number of new-line characters. If called with no arguments, it 

prints a single new-line character. 

void new_line(int n = 1) // default argument 

{ 
while (n-- > 0) 

putchar(1\n'); 

} 

new_line can be called with or without an argument: 

new_line(3); // prints 3 blank lines 

new_line(); // prints 1 blank line by default 

C specifies that arguments are passed by value, which makes it difficult to write 

functions that modify variables (other than arrays) supplied as arguments. To work 

around this restriction, we end up passing pointers to the variables. A function that 

exchanges the contents of two variables would have the following appearance in 

C: 
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void swap(int *a, int *b) 

{ 
int temp; 

temp = *a; 

*a = *b; 

*b = temp; 

} 

When swap is called, its arguments will be pointers to variables: 

swap(&i, &j); 

Although this technique works, it isn’t very convenient or especially readable, 

and it’s easy to make a mistake. C++ improves matters somewhat by allowing 

parameters to be declared as references instead of pointers. Here’s what the swap 

function will look like if a and b are references: 

void swap(int& a, int& b) //a and b are references 

{ 
int temp; 

temp = a; 

a = b; 

b = temp; 

} 

When swap is called, the arguments aren’t preceded by the & operator: 

swap(i, j ) ; 

Inside the body of swap, a and b are understood to be aliases for i and j. The 

statement temp = a; actually copies the value of i into temp. The statement a = 

b; actually copies the value of j into i. The statement b = temp; actually copies 

the value of temp into j. 

C programs can dynamically allocate and release blocks of memory by calling the 

library functions malloc, calloc, realloc, and free. Although C++ pro¬ 

grams have access to these functions, it’s better practice to use new and delete, 

which are operators, not functions, new allocates space, while delete releases 

it. The operand for new is a type specifier: 

int *int_ptr, *int_array; 

int_ptr = new int; // allocates memory for an int 

int_array = new int[10]; // allocates memory for an array 

// of ten integers" 

new returns a null pointer if the requested amount of memory can’t be allocated. 

The delete operator requires a pointer as its operand: 

delete int_ptr; // releases memory pointed to by 

// int ptr 
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delete [] int_array; // [] required when deallocating 

II an array 

Classes 

The most significant difference between C and C++ is the latter’s support for 

classes. (The importance of classes is underscored by C++’s original name: “C 

with Classes.”) A class is essentially an abstract data type: a collection of data 

together with functions that operate on the data. By writing a class, we can create a 

new data type that—if we’re careful—is nearly as powerful as a basic type. 

Let’s say that we need to store numbers in fractional form: 1/4, 3/7, and so on. 

If we write a class named Fraction, we’ll be able to manipulate fractions with 

ease. We could declare Fraction variables by writing 

Fraction fl, f2, f3; 

We could copy fractions using the = operator, pass them to functions, and write 

functions that return them. 

But that’s not all. A feature known as operator overloading allows us to use 

C++ operators as names for operations on Fraction objects. By overloading the 

* operator so that it multiplies fractions, we’ll be able to multiply f 1 and f2 by 

writing 

f3 = fl * f2 ; 

If f 1 has the value 1/2 and f 2 has the value 2/3, f 3 will be assigned 1/3. Being 

able to overload operators so that they work with fractions is a big step toward 

making Fraction as easy to use as the int and float types. 

Classes allow us to create any data type that we want. If we need a numeric 

type that C++ doesn’t normally provide (fractions, complex numbers, integers 

with an unlimited number of digits, and so forth), we can add the type to the lan¬ 

guage by designing an appropriate class. If we’re unhappy with the usual behavior 

of a C++ type, we can write our own. For example, a variable that belongs to our 

own Array class could perform a range check when it’s subscripted. Our own 

String variables could expand and shrink as needed. Classes are also ideal for 

creating complicated data structures that aren’t provided as C++ types: queues, 

sets, stacks, and the like. 

What makes classes so useful, however, is that they can model real-world 

objects, not just the kind of data structures that programmers normally work with. 

If we’re developing a banking application, we might define classes like Account; 

the Account class could provide operations like deposit and withdraw. 

Classes like these can make programs much easier both to read and to write, since 

we’ll be performing natural-looking operations on natural-looking objects. 

The downside of classes is that they can be difficult to design and implement. 

That’s the price we pay for ease of use. It’s the same trade-off that the computer 

field has made in recent years: as programs become easier to use, they become 

more complicated internally. 
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Class Definitions 

Defining a class in C++ is a lot like defining a structure in C. In its simplest form, 

a class definition is almost identical to a structure definition, with the word class 

at the beginning instead of struct: 

class Fraction { 

int numerator; 

int denominator; 

} ? 

numerator and denominator are said to be data members of the Fraction 

class. By the way, C++ doesn’t require that class names begin with capital letter; 

it’s just a convention that many C++ programmers follow. 

Once a class has been defined, we can use its name to declare variables in the 

same way we’d use a structure name: 

Fraction fl, f2; 

(A class tag serves as a type name in C++, so we don’t need to write class 

Fraction.) The compiler sets aside space for two variables, f 1 and f2, each 

with its own numerator and denominator members. C++ has a special name 

for variables like f 1 and f2; they’re said to be instances of the Fraction class. 

An instance of any class is known as an object. 

The members of a structure are accessible via the . and -> operators. In a 

class, on the other hand, the members are hidden within the class by default. As a 

result, statements like these are illegal: 

fl.numerator = 0; // illegal 

denom = f2.denominator; // illegal 

We say that numerator and denominator are private members of the 

Fraction class. 

If we choose, we can make the members of a class accessible by declaring 

them to be public: 

class Fraction { 

public: 

int numerator; 

int denominator; 

}; 

We can even mix public and private members: 

class Fraction { 

public: 

int numerator; 

private: 

int denominator; 

}; 

Note the use of private : to indicate that denominator is a private member. 

// accessible outside the class 

// hidden within the class 
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Member Functions 

If the private members of a class aren’t accessible outside the class, how it is possi¬ 

ble to change—or even inspect—their values? The answer is ingenious: functions 

that need access to the data members of a class are themselves declared inside the 

class! Functions that belong to a class are said to be member functions. 

Let’s make numerator and denominator private members of 

Fraction and add two member functions to the class: 

class Fraction { 

public: 

void create(int num, int denom); 

void print(); 

private: 

int numerator; 

int denominator; 

}; 

create and print are public members of Fraction, so they can be called 

outside the class. 

Member functions are called from an object, using the same “dot” operator 

that we use to access a member of a structure: 

fl.create(1, 2); // fl now stores 1/2 

f1.print(); // prints "1/2" 

Admittedly, this looks odd, but you’ll quickly get used to it. Here’s how to inter¬ 

pret the call of create: 

“f 1 is a Fraction object, so we’re calling the create function in the 
Fraction class. The create function will store 1 in fl’s 
numerator member and 2 in fl’s denominator member.” 

Here’s what the call of print means: 

“f 1 is a Fraction object, so we’re calling the print function in the 
Fraction class. The print function will display fl’s numerator 

member, followed by a / character, followed by f2’s denominator 

member.” 

Note that a member function somehow knows which object called it, even though 

the object itself isn’t one of the function’s arguments. We can think of f 1 as a sort 

of argument that goes before the function name instead of being put in the argu¬ 

ment list. 
Member functions don’t have to be public. In the case of the Fraction 

class, we might add reduce (which reduces a fraction to lowest terms) as a pri¬ 

vate member function: 

class Fraction { 

public: 

void create(int num, int denom); 

void print(); 
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private: 

void reduce(); 
int numerator; 

int denominator; 

} ; 

In practice, data members are usually declared to be private. Member functions are 

usually declared to be public unless they’re intended for use only within the class. 

So far we’ve only declared create, print, and reduce; where are they 

defined? One possibility is to define each member function later, outside the class 

definition. For example, the definition of create might look like this: 

void Fraction::create(int num, int denom) 

{ 
numerator = num; 

denominator = denom; 

reduce(); 

} 

Notice that Fraction: : precedes the name of the function. This notation is 

required—without it, the C++ compiler would treat create as an ordinary func¬ 

tion, not a member of the Fraction class. Note also that create has direct 

access to numerator and denominator. In general, a member function has 

access to all members—public or private—of its class. Finally, note the call of 

reduce, which looks strange since it’s not apparent what object is being reduced. 

It turns out that when one member function calls another, the latter function 

assumes that it was called from the same object. In other words, executing the call 

f1.create(1, 2); 

is like executing the following statements: 

fl.numerator = num; 

fl.denominator = denom; 

f1.reduce(); 

Instead of defining a member function outside its class, we have the option of 

putting the entire function inside the class definition: 

class Fraction { 

public: 

void create(int num, int denom) 

{ numerator = num; denominator = denom; reduce(); } 

} ; 

Putting the definition of a member function inside the class definition is advisable 

only if the definition is very short. 

Now let’s add a multiply function to the Fraction class. First, we need to 

declare the function inside the class definition: 
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class Fraction { 

public: 

void create(int num, int denom); 

void print(); 

Fraction mul(Fraction f); 

private: 

void reduce(); 

int numerator; 

int denominator; 

Next, we’ll need to write the definition of the mul function: 

Fraction Fraction:;mul(Fraction f) 

{ 
Fraction result; 

result.numerator = numerator * f.numerator; 

result.denominator = denominator * f.denominator; 

result.reduce(); 

return result; 

} 

At first, the mul function looks rather mysterious: f is clearly one of the fractions 

to be multiplied, but where’s the other fraction? The answer lies in the way mul 

will be called: 

f3 = f1.mul(f2); 

Here’s an interpretation of this statement: 

“fl is a Fraction object, so we’re calling the mul function in the 
Fraction class. The mul function will multiply fl’s numerator by 
f2’s numerator, and store the product in result’s numerator. Then, 
mul will multiply fl’s denominator by f2’s denominator, and store the 
product in result’s denominator. Next, mul will call reduce to 
reduce the result fraction to lowest terms. Finally, mul returns 
result, which is copied into f 3.” 

Constructors 

To ensure that instances of a class are properly initialized, the class may provide a 

special function known as a constructor. A class may also provide a destructor—a 

function that cleans up when an instance of the class is destroyed. The beauty of 

constructors and destructors (and the danger, as well!) is that they’re usually 

invoked automatically, without an explicit function call. In other words, we’ll 

write constructors and destructors for our classes, and the compiler will arrange for 

them to be called automatically when needed. 

Our Fraction class already has an initialization function named create. 

Let’s replace create with a constructor. A constructor looks like a function with 

the same name as the class itself: 
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class Fraction { 

public: 
Fraction(int num, int denom) 

{ numerator = num; denominator = denom; reduce(); } 

} ; 

Unlike other member functions, a constructor has no specified return type. Notice 

that constructors go in the public part of the class. 
Constructors can be called like ordinary functions, but they’re usually invoked 

implicitly in declarations: 

Fraction f(3, 4); // declares and initializes f 

In this declaration of the object f, the constructor for the Fraction class is 

called with 3 and 4 as its arguments. As a result, f will have 3/4 as its initial value. 

Constructors often have default arguments: 

class Fraction { 

public: 

Fraction(int num = 0, int denom = 1) 

{ numerator = num; denominator = denom; reduce(); } 

} ; 

Since both num and denom have default values, the Fraction constructor can 

have two arguments: 

Fraction f(3, 4); 

one argument: 

Fraction f(3); // same as Fraction f(3, 1); 

or no arguments: 

Fraction f; // same as Fraction f(0, 1); 

Constructors and Dynamic Storage Allocation 

Constructors and destructors are especially useful for classes that need dynamic 

storage allocation and deallocation (via the new and delete operators). For 

example, let’s say that we get fed up with the limitations of ordinary C strings. 

Creating our own String class offers several advantages: 

■ String objects could contain strings of arbitrary length. In C, a string is lim¬ 

ited by the length of its enclosing array. 

■ The length of a String object could be determined quickly. Finding the 

length of a C string requires calling strlen, which searches the entire string 

to locate its terminating null character. 

■ Additional operations could be added to the String class as needed. In C, 

we can’t easily modify <string . h> to contain additional functions. 
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Here’s how we might declare String objects: 

String sl("abc"), s2("def"); 

si would contain " abc" initially, while s2 would contain " def". Of course, the 

value of either variable could be changed later. 

Since there’s no limit on the length of a string, a String object will need to 

contain a pointer to dynamically allocated memory (we’ll call this text). For 

speed, we’ll also want a member that stores the length of the string: 

class String { 

private: 

char *text; // pointer to string 

int len; // length of string 

}; 

Next, we’ll need a constructor that converts an ordinary string to a String 

object: 

class String { 

public: 

String(const char *s); // constructor 

private: 

char *text; 

int len; 

} ; 

Here’s what the definition of the constructor might look like: 

String::String(const char *s) 

{ 
len = strlen(s); 

text = new char[len+l]; 

strcpy(text, s); 

} 

After computing the length of the string that s points to, the constructor uses the 

new operator to allocate enough space for a copy of the string. Finally, the con¬ 

structor copies the string into the newly allocated space. 

Destructors 

Classes that rely on dynamic storage allocation face a challenging problem. Con¬ 

sider what happens to a String object that’s local to a function: 

void f() 

{ 
String si("abc"); 

} 



438 Chapter 19 Program Design 

When f is called, the si object comes into existence. The constructor for si allo¬ 

cates an array of four characters and copies the string " abc" into the array. When 

f returns, si won’t exist any more, since it has automatic storage duration. Unfor¬ 

tunately, releasing the space occupied by a String object recovers only the mem¬ 

ory used for the text and len members; it doesn’t free the memory that text 

points to. As a result, the program will suffer from a memory leak. 
The problem of releasing dynamically allocated memory is one of the reasons 

that C++ provides destructors. A destructor is a function that’s called automati¬ 

cally when an object ceases to exist. Constructors and destructors go hand in hand. 

A constructor initializes an object when it comes into existence; a destructor cleans 

up when the object ceases to exist. If the constructor for a class allocates memory 

dynamically, the destructor will most likely free the memory. 

A destructor is a member function, just like a constructor is. The name of a 

destructor is the same as the name of the class, but with the character ~ (tilde) at 

the beginning. A destructor has no return type and no arguments. Here’s what the 

String class looks like with a destructor added: 

class String { 

public: 

String(const char *s); 

-String!) { delete [] text; > // destructor 

private: 

char *text; 

int len; 

} ; 

The -String destructor releases the character array pointed to by text. 

Overloading 

In C++, two or more functions in the same scope may have the same name. When 

functions are overloaded in this way, the C++ compiler determines which one is 

called by examining the function’s arguments. For example, suppose that two ver¬ 

sions of the function f exist in the same scope: 

void f(int); 

void f(double); // overloading! 

Here’s how calls of f are resolved: 

f(1); //a call of f(int) 

f(1.0); // a call of f(double) 

Overloading has one main advantage: Functions that perform the same opera¬ 

tion, but on operands of different types, can be given the same name. As a result, 

we have fewer names to remember. For example, the following functions both 

raise x to the power y, but for different types of arguments: 
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int pow(int x, int y); 

double pow(double x, double y); 

Member functions within a class can be overloaded. (In fact, that’s probably 

the most common use of function overloading in C++.) For example, overloading 

allows us to add another constructor to the String class: 

class String { 

public: 

String(const char *s) ; 

String() { text = 0; len = 0; } // overloading 

-String!) { delete [] text; } 

private: 

char *text; 

int len; 

}; 

In case you’re wondering why text is assigned 0, remember that 0 represents the 

null pointer. C++ programmers generally prefer 0 over NULL, for reasons we 

won’t go into here. 

The new String constructor, known as a default constructor because it has 

no arguments, will be invoked when String objects are declared without a spec¬ 

ified initial value: 

String s; // default constructor is invoked 

In addition to function overloading, C++ also supports operator overloading: 

the same operator symbol can represent different operations, depending on the 

types of the operands. Operator overloading allows us to redefine the operators of 

C++ to work with instances of our classes. The result is a more natural-looking, 

easier-to-read program; clients of the class can perform operations by applying 

operators instead of calling functions with hard-to-remember names. 

For example, the Fraction class would be easier to use if the mul function 

were replaced by the * operator. Doing so is easy; we just replace the name mul 

by operator* when we’re declaring or defining the function: 

class Fraction { 

public: 

Fraction operator*(Fraction f); 

private: 

} ; 

Fraction Fraction::operator*(Fraction f) 

{ 
// same body as mul function 

} 

Internally, the function is the same; only the name has changed. 
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« and » operators >20.1 

When an operator function is defined as a class member, one of its operands is 

always implicit. Thus, the * operator that we’ve just defined is a binary operator, 

not a unary operator. When we write a statement like 

f3 = fl * f2; 

the compiler notices that f 1 is a Fraction object, so it looks in the Fraction 

class, finds a function named operator*, and converts the statement to: 

f3 = f1.operator*(f2); 

After that, execution proceeds as for an ordinary member function. 

Input/Output in C++ 

Although C++ programs can use <stdio.h>, C++ provides an alternative I/O 
library. The most important header in the new library, <iostream.h>, defines sev¬ 
eral classes, including istream (input stream) and ostream (output stream). I/O 
takes place by performing operations on istream and ostream objects. Simple 
programs that obtain input from the keyboard and display output on the screen use 
the cin object for input and the cout object for output, cin is an instance of the 
istream class; cout is an instance of ostream. 

The istream and ostream classes rely heavily on operator overloading. In 
particular, the C operators « and » (left and right shift) are used for most reading 
and writing operations. The istream class overloads >> so that it obtains input 
from a stream. The ostream class overloads << so that it writes output to a stream. 
Using « and », an interactive session with the user might look like this: 

cout << "Enter a number: 

cin >> n; 

cout << "The square is 

cout << n * n; 

cout << "\n"; 

The first statement has the following interpretation: “cout is an ostream object, so 
we’re calling the operator<< function in the ostream class. The operator« 

function will take the string "Enter a number" as its argument.” 
One advantage of the new I/O library is that it can be extended to read and 

write instances of our own classes. For example, we could create an overloaded « 
operator that writes a Fraction object: 

Fraction f(3, 4); 

cout « f; // prints 3/4 

Being able to write fractions using « takes us another step toward our goal of mak¬ 
ing the Fraction class as easy to use as the basic types. 
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Object-Oriented Programming 

Although experts still debate the precise requirements for a language to be consid¬ 

ered “object-oriented,” there’s a consensus that such a language must provide at 

least the following three capabilities: 

■ Encapsulation—the ability to define a new type and a set of operations on 

that type, without revealing the representation of the type. (Values of the type 

are the “objects” in “object-oriented.”) C++ classes support encapsulation by 
restricting access to private data members. 

■ Inheritance—the ability to create new types that inherit properties from exist¬ 

ing types. C++ supports inheritance through a mechanism known as class der¬ 

ivation. 

■ Polymorphism—the ability of objects that belong to related classes to respond 

differently to the same operation. In C++, virtual functions support polymor¬ 

phism. 

We’ve already looked at classes, so we’ll turn now to class derivation and virtual 

functions. 

Derivation 

When we need a new class, C++ allows us to derive it from a previously defined 

class instead of writing it from scratch. For example, a program that manipulates 

geometric shapes might need classes named Circle, Square, and Triangle. 

These could all be derived from a more general class named Shape. Properties 

that are common to all three classes would be defined only once, in the Shape 

class; operations that apply to all shapes would also go in the Shape class. If 

every shape has a color and an x-y position on the screen, and if every shape can 

change its position and color, then Shape might look like this: 

class Shape { 

public: 

void change_color(int new_color); 

void move(int x_change, int y_change); 

private: 

int x, y; // coordinates of center 

int color; // current color 

}; 

Shape is said to be a base class', Circle, Square, and Triangle are derived 

classes. The figure at the top of the next page shows the relationships among the 

classes. 
One great advantage of derivation is that it helps us reuse code on a larger 

scale than would otherwise be possible. If we need to add a Pentagon class later, 

we can derive it from the Shape class. That’s a lot easier than writing the 
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base class 
Shape 

Circle Square Triangle 

derived class derived class derived class 

Pentagon class from scratch, since Pentagon can inherit most of what it needs 

from Shape. We’ll only have to write code for those properties that a Pentagon 

doesn’t have in common with a Shape. 

Derivation can also simplify maintenance. If our Shape class has a bug, we 

need only fix it there; there’s no need to modify the derived classes. By the same 

token, if we need to add a new property (or operation) that’s relevant for all shapes, 

we can just put it in the Shape class for derived classes to inherit. 
Derivation is often used to develop extensive libraries of related classes. In 

Smalltalk, an object-oriented language that influenced C++, all classes are directly 

or indirectly derived from a single class named Object. The class Magnitude 

(among others) is derived from Object, the classes Character, Date, Time, 

and Number are then derived from Magnitude, and the classes Float, 

Fraction, and Integer are derived from Number: 

Obj ect 

Magnitude 

Character Date Time Number 

Float Fraction Integer 

Each class has all the properties of its base class, plus some others that are unique 

to it. Objects that belong to the Magnitude class have one feature in common: 

they can be compared using relational operators (greater than, less than, and so 

forth). Number objects inherit this capability, and have the additional ability to 

support arithmetic. Arithmetic isn’t defined for other Magnitude objects. (Com¬ 

paring dates makes sense; adding dates doesn’t.) 

Now that we’ve examined derivation in general terms, let’s return to the 

Shape example to illustrate the specifics. To indicate that the Circle class is 

derived from Shape, we include a derivation list in the definition of Circle: 



class Circle: public Shape { 

}; 
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Circle inherits the members of Shape (with the exception of constructors 

and destructors); in other words, the members of Shape are also members of 
Circle. 

A derived class may declare additional data members and member functions 

that aren’t present in the base class. For example, Circle will probably need a 

data member that stores the radius of a circle. The Shape class doesn’t have a 
radius member, so we’ll need to put one in Circle: 

class Circle: public Shape { 

public: 

private: 

int radius; // radius of circle 

}; 

In addition to the radius data member, a Circle object will contain members 

named x, y, and color (inherited from Shape). 

When one class is derived from another, C++ allows a base class pointer to 

point to an instance of the derived class. For example, a variable of type Shape* 

can point to a Circle, Square, or Triangle object: 

Circle c; 

Shape *p = &c; // Shape pointer points to a Circle 

In a similar way, C++ allows a parameter of type Shape* to match an argument 

that points to a Circle, Square, or Triangle object. A parameter of type 

Shape& matches any Circle, Square, or Triangle object. The following 

function appears to require a Shape argument, but in fact could be passed a 

Circle, Square, or Triangle object instead: 

void add_to_list(Shape& s) 

{ 

} 

add_to_list is a rather versatile function that can handle different kinds of 

shape arguments. 

Virtual Functions 

Class derivation becomes even more valuable when combined with virtual func¬ 

tions—functions declared in a base class and then implemented differently in each 

derived class. Consider the Shape class. Every Shape object can increase its 

size, so the class will need a grow function: 
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class Shape { 

public: 

void grow)); 

} ; 

Unfortunately, the grow function will be different for each class derived from 

Shape. To handle this, we’ll declare grow to be virtual in the Shape class: 

class Shape { 

public: 

virtual void grow(); 

}; 

The Circle, Square, and Triangle classes will now provide their own cus¬ 

tom versions of grow. The Circle version might look like this: 

class Circle: public Shape { 

public: 

void grow() { radius++; } 

private: 

int radius; // radius of circle 

}; 

Most of the time, a virtual function behaves like an ordinary member function. 

If c is a Circle object, the call c . grow () increases the radius of c. When it’s 

invoked through a pointer (or reference) to a base class, however, a virtual function 

has a special property: which version of the function is called depends on what 

kind of object the pointer currently points to. 
Let’s say that p is a pointer to a Shape object. Since Circle and Square 

are both derived from the Shape class, p could point to an instance of either one 

of these classes. When p is used to call the grow function, Circle: : grow is 

called if p points to a Circle object, but Square : : grow is called if p points to 

a Square object: 

Shape *p; 

Circle c; 

Square s; 

p = &c; 

p->grow(); 

p = &s ; 

p->grow(); 

// p points to a Circle 

// calls Circle::grow 

// p points to a Square 

// calls Square::grow 

Notice the use of -> to call grow. Calling a member function from a pointer to an 

object requires -> instead of the dot operator. 

Virtual functions rely on a technique known as dynamic binding, since the 

compiler can’t always determine which version of the function is being called. 
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(Normal function calls—even calls of overloaded functions—can be resolved by 
the compiler.) Consider the following example: 

if (...) 
P = &c; 

else 
p = &s ; 

p->grow(); // calls either Circle::grow or Square::grow 

There’s no way for the compiler to know which version of grow is called; that 

can’t be determined until the program is run. 

Dynamic binding allows us to create data structures containing objects of dif¬ 

ferent classes—provided that all classes are derived from a common base class— 

and then apply the same operation to each. Each object can respond differently to 

the operation, depending on its class. For example, let’s say that we keep track of 

which objects are currently on the screen by storing Shape objects in a list. By 

visiting each object in turn and calling its grow function, we can increase its size 
without knowing what kind of shape it is: 

while (not at end of list) { 

make p point to current shape ; 

p->grow(); // calls either Circle::grow, Square::grow, 

// or Triangle::grow 

advance to next item in list ; 

} 

Dynamic binding simplifies our code because we don’t need to use a switch 

statement to test an object before performing an operation on it. Also, we can add 

new classes and remove old ones without modifying the code for processing the 

data structure. For example, if we add a Pentagon class (derived from Shape), 

the loop that makes each shape grow won’t need to be changed. 

Templates 

Templates are “patterns” from which classes can be created. (C++ also has func¬ 

tion templates, which we’ll ignore.) A template looks much like an ordinary class, 

except that part of the class definition is left unspecified. Omitting part of the class 

definition makes the class more general and easier to reuse. 

Consider the Stack type of Section 19.3. If we translate this type into a C++ 

class, we might end up with the following definition: 

class Stack { 

public: 

void make_empty(); 

int is_empty(); 

void push(int); 

int pop(); 

} 
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Unfortunately, a Stack object can only store integers. If we later need a stack that 

stores some other type of data (float values, for example), we could make a 

copy of the class definition, rename the class, and change int to float in many 

places. Creating a Stack template is a better idea: 

template cclass T> 

class Stack { 

public: 
void make_empty(); 

int is_empty(); 

void push(T); 

T pop(); 

} ; 

The Stack template looks much like the Stack class, except for the line 

template <class T> 

which indicates that Stack is a template that won’t be complete until the missing 

class T is filled in. T (a “template argument”) is a dummy name; any name would 

do. Notice that push now requires an argument of type T, and pop returns a T 

value. Stack’s member functions will have the following appearance: 

template cclass T> 

void Stack<T>::push(T x) 

{ 

} 

Class templates are later “instantiated” by filling in the template arguments. 

Despite the cclass T> notation, Stack’s argument doesn’t have to be a class; 

any C++ type will do. For example, here are three instantiations of the Stack 

class, using int, float, and char as the template arguments: 

Stack<int> int_stack; // stack of int values 

Stackcfloat> float_stack; // stack of float values 

Stack<char> char_stack; // stack of char values 

The following calls of push illustrate how we’d use the three stacks: 

int_stack.push(10); // pushes 10 onto int_stack 

float_stack.push(1.2); // pushes 1.2 onto float_stack 

char_stack.push('a’); // pushes 'a' onto char_stack 

Exception Handling 

An exception is a condition that can arise during the execution of a program, usu¬ 

ally as the result of an error. For example, there are two kinds of errors possible 

when using a Stack object: attempting to push an element onto the stack when 

it’s full or attempting to pop an element when it’s empty. We could represent these 

errors by exceptions named StackFull and StackEmpty. 
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When an error occurs, a function can “throw” an exception. In the case of the 

Stack class, the push and pop functions would throw the StackFull and 
StackEmpty exceptions, respectively: 

void Stack::push(int i) 

{ 
if [no space left) 

throw StackFull(); 

} 

int Stack::pop() 

{ 
i f (stack empty) 

throw StackEmpty!); 

} 

Code in which an exception may occur is placed in a “try block.” Exceptions 

are detected by “handlers” (“catch blocks”), which are attached to try blocks. 

In the following example, a try block that contains calls of push and pop has 

been followed by two catch blocks. The first catch block handles the 

StackFull exception by printing Error : Stack full, while the second han¬ 

dles the StackEmpty exception by printing Error : Stack empty. 

try { 

s.push(y); 

z = s.pop(); 

} 
catch (StackFull) { 

cout << "Error: Stack full\n"; 

} 
catch (StackEmpty) { 

cout << "Error: Stack empty\n"; 

} 

After an exception is handled, program execution continues after the last catch 

block. 

If there’s no handler for an exception at the end of the current try block, C++ 

doesn’t give up. Instead, it checks enclosing try blocks for a handler. If that 

search fails, the current function terminates and the exception is propagated to the 

calling function, then to its caller if necessary, and so on. The worst case is that the 

exception propagates all the way back to main. If main can’t handle the excep¬ 

tion, the entire program terminates. This property of exceptions helps prevent 

errors from accidentally being ignored. 
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Q: 

A: 

Q: 
A: 

FILE type >22.1 

Q & A 

You said that C wasn’t designed for writing large programs. Isn’t UNIX a 

large program? [p. 419] 
Not at the time C was designed. In a 1978 paper, Ken Thompson estimated that the 

UNIX kernel was about 10,000 lines of C code (plus a small amount of assembler). 

Other components of UNIX were of comparable size; in another 1978 paper, Den¬ 

nis Ritchie and colleagues put the size of the PDP-11 C compiler at 9660 lines. By 

today’s standards, these are indeed small programs. 

Are there any abstract data types in the C library? 

Technically there aren’t, but a few come close, including the FILE type (defined 

in <s tdio . h>). Before performing an operation on a file, we must declare a vari¬ 

able of type FILE *: 

FILE *fp; 

The fp variable will then be passed to various file-handling functions. 
Programmers are expected to treat FILE as an abstraction. It s not necessary 

to know what a FILE is in order to use the FILE type. Presumably FILE is a 

structure type, but the C standard doesn’t even guarantee that. In fact, it’s better not 

to know too much about how FILE values are stored, since the definition of the 

FILE type can (and often does) vary from one C compiler to another. 
Of course, we can always look in the s tdio . h file and see what a FILE is. 

Having done so, there’s nothing to prevent us from writing code to access the inter¬ 

nals of a FILE. For example, we might discover that FILE is a structure with a 

member named bsize (the file’s buffer size): 

typedef struct { 

int bsize; /* buffer size */ 

} FILE; 

Once we know about the bsize member, there’s nothing to prevent us from 

accessing the buffer size for a particular file: 

printf("Buffer size: %d\n", fp->bsize); 

Doing so isn’t a good idea, however, because other C compilers might store the 

buffer size under a different name, or keep track of it in some other way entirely. 

Changing the bsize member is an even worse idea: 

fp->bsize = 1024; 



Exercises 449 

Section 19.1 

Unless we know all the details about how files are stored, this is a dangerous thing 

to do. Even if we do know the details, they may change with a different compiler 
or the next release of the same compiler. 

Q: If C++ is so great, why does anyone still use C? 

A: In a sense, this isn’t a meaningful question. C++ has all the features of C, so every 

C++ programmer is “using” C. Let’s rephrase the question: “If C++ is so great, 

why doesn’t everyone use the C++ extensions?” 

For one thing, C++ is much more complex than C. Since C++ inherits virtu¬ 

ally all the features of C while adding a number of new ones, C++ is obviously a 

larger language. The many ways in which the features of C++ can be combined 

also add to its complexity. For writing small programs, C is much simpler and 

works just as well as C++. 

The fancy new features of C++ require compilers to do more work. As a 

result, C++ programs compile somewhat more slowly that C programs. Also, using 

the new features of C++ may impose a small but measurable run-time performance 

penalty that’s unacceptable in some applications. 

Although C++ fixes some of C’s most notorious pitfalls, it leaves others intact. 

And, of course, the new features of C++ introduce some traps that don’t exist in C. 

As Stroustrup himself puts it: “C makes it easy to shoot yourself in the foot. C++ 

makes it harder, but when do you, it blows away your whole leg.” 

Don’t forget that C has been around a lot longer than C++. Although C++ has 

begun to stabilize after years of change, it will take some time for C++ compilers 

to achieve the kind of compatibility that C compilers already enjoy. Moreover, 

there are a lot more C compilers in existence than C++ compilers, especially for 

the less popular platforms. 

To summarize: For “lean and mean” programs, and for programs that need to 

be widely portable, C is preferable. For large, full-featured programs—including 

those with an elaborate graphical user interface—C++ has the edge. 

Exercises 

1. A queue is similar to a stack, except that items are added at one end but removed from the 
other in a FIFO (first-in, first-out) fashion. Operations on a queue might include: 

inserting an item at the end of the queue 
removing an item from the beginning of the queue 
returning the first item in the queue (without changing the queue) 
returning the last item in the queue (without changing the queue) 
testing whether the queue is empty 

Write an interface for a queue module in the form of a header file named queue . h. 

Section 19.2 2. Modify the stack2 . c file to use the PUBLIC and PRIVATE macros. 
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Section 19.3 

Section 19.4 

Program Design 

3. (a) Write an array-based implementation of the queue module described in Exercise 1. 

(b) Write a linked-list implementation of the queue module described in Exercise 1. 

4. (a) Write an implementation of the Stack type, using an array representation. 

(b) Redo the Stack type, this time using a linked list representation instead of an array. 

(Show both stack. h and stack. c.) 

5. (a) Convert the queue . h header of Exercise 1 so that it defines a Queue type. Modify the 

functions in queue. h to take a Queue (or Queue *) parameter. 

(b) Write an implementation of the Queue type, using an array representation. 

(c) Write an implementation of the Queue type, using a linked-list representation. 

6. Does the Fraction class need a destructor? Justify your answer. 

7. Add overloaded operators named +, and / to the Fraction class. Write definitions tor 

these operators and for the print and reduce functions. 

8. Compared with using C’s printf and scant functions, what advantages can you see to 

using the « and » operators for input and output? 

9. Convert the Queue type of Exercise 5 into a Queue class. 

10. Convert the Queue class of Exercise 9 into a Queue template. 
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A programming language is low level when its 
programs require attention to the irrelevant. 

Previous chapters have described C’s high-level, machine-independent features. 

Although these features are adequate for many applications, some programs need 

to perform operations at the bit level. Bit manipulation and other low-level opera¬ 

tions are especially useful for writing systems programs (including compilers and 

operating systems), encryption programs, graphics programs, and programs for 

which fast execution and/or efficient use of space is critical. 

Section 20.1 covers C’s bitwise operators, which provide easy access to both 

individual bits and bit-fields. Section 20.2 then shows how to declare structures 

that contain bit-fields. Finally, Section 20.3 describes how certain ordinary C fea¬ 

tures (type definitions, unions, and pointers) can help in writing low-level pro¬ 

grams. For clarity, I’ll rely on 16-bit examples in this chapter; you shouldn’t have 

any trouble extending the examples to 32 bits. The discussion won’t depend upon 

any particular operating system, except for the portions of Section 20.3 that deal 

with the quirks of DOS programming. 

Some of the techniques described in this chapter depend on knowledge of how 

data is stored in memory, which can vary depending on the machine and the com¬ 

piler. Relying on these techniques will most likely make a program nonportable, so 

it’s best to avoid them unless absolutely necessary. If you do need them, try to limit 

their use to certain modules in your program; don’t spread them around. And, 

above all, be sure to document what you’re doing! 

20.1 Bitwise Operators 

C provides six bitwise operators, which operate on integers and characters at the 

bit level. We’ll discuss the bitwise shift operators first. 

451 
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Bitwise Shift Operators 

The bitwise shift operators can transform the binary representation of a number by 

shifting its bits to the left or right. C provides two shift operators, which are shown 

in Table 20.1. 

Table 20.1 

Bitwise Shift Operators 

The operands for << and >> may be of any integer or character type. The integral 

promotions are performed on both operands; the result has the type of the left oper¬ 

and after promotion. 
The value of i « j is the result when the bits in i are shifted left by j places. 

For each bit that is “shifted off’ the left end of i, a zero bit enters at the right. The 

value of i » j is the result when i is shifted right by j places. If i is of an 

unsigned type or if the value of i is nonnegative, then zeros are added at the left as 

needed. If i is a negative number, the result is implementation-defined; some 

implementations add zeros at the left end, while others preserve the sign bit by 

adding ones. 

portability tip For portability, it’s best to perform shifts only on unsigned numbers. 

The following examples illustrate the effect of applying the shift operators to 

the number 13: 

unsigned int i, j; 

i = 13; /* i is now 13 (binary 0000000000001101) */ 
j = i « 2; /* j is now 52 (binary 0000000000110100) */ 
j = i » 2; /* j is now 3 (binary 0000000000000011) */ 

As these examples show, neither operator modifies its operands. To modify a vari¬ 

able by shifting its bits, we’d use the compound assignment operators <<= and 

»=: 

i = 13; /* i is now 13 (binary 0000000000001101) */ 
i <<= 2; /* i is now 52 (binary 0000000000110100) */ 
i »= 2; /* i is now 13 (binary 0000000000001101) */ 

Symbol Meaning 

« left shift 
» right shift 

The bitwise shift operators have lower precedence than the arithmetic operators, 
which can cause surprises. For example, i << 2 + 1 means i << (2 + 1), not 

( i << 2 ) + 1. 
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Table 20.2 
Other Bitwise Operators 

A 
Q&A 

Bitwise Complement, And, Exclusive Or, and Inclusive Or 

Table 20.2 lists the remaining bitwise operators. 

Symbol Meaning 

~ bitwise complement 
Sc bitwise and 
A bitwise exclusive or 

1 bitwise inclusive or 

The ~ operator is unary; the integral promotions are performed on its operand. The 

other operators are binary; the usual arithmetic conversions are performed on their 

operands. 

The &, A, and | operators perform Boolean operations on all bits in their 

operands. The ~ operator produces the complement of its operand, with zeros re¬ 

placed by ones and ones replaced by zeros. The & operator performs a Boolean and 

operation on all corresponding bits in its two operands. The A and | operators are 

similar (both perform a Boolean or operation on the bits in their operands); how¬ 

ever, A produces 0 whenever both operands have a 1 bit, whereas | produces 1. 

Don’t confuse the bitwise operators & and | with the logical operators && and | |. 
The bitwise operators sometimes produce the same results as the logical operators, 
but they’re not equivalent. 

The following examples illustrate the effect of the ~, &, A, and | operators: 

unsigned int i, j, k; 

21; /* i is now 21 

56; /* j is now 56 

~i ; /* k is now 65514 

i & j ; /* k is now 16 

i A j ; /* k is now 45 

i j; /* k is now 61 

(binary 0000000000010101) */ 

(binary 0000000000111000) */ 

(binary 1111111111101010) */ 

(binary 0000000000010000) */ 

(binary 0000000000101101) */ 

(binary 0000000000111101) */ 

The value shown for ~i is based on the assumption that an unsigned int value 

occupies 16 bits. 
The ~ operator deserves special mention, since we can use it to help make 

even low-level programs more portable. Suppose that we need an integer whose 

bits are all 1. The preferred technique is to write ~0, which doesn’t depend on the 

number of bits in an integer. In a similar fashion, if we need an integer whose bits 

are all 1 except for the last five, we could write ~0x001f. 

The ~, &, A, and | operators have different precedence levels: 

highest: 
8c 

lowest: 
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As a result, we can combine these operators in expressions without having to use 

parentheses. For example, we could write i & ~j | k instead of ( i & (~j ) ) | k 

and i A j & ~k instead of i A (j & (~k) ). Of course, it doesn t hurt to use 

parentheses to avoid confusion. 

A The precedence of &, A, and | is lower than the precedence of the relational and 

equality operators. As a result, statements like the following one won’t have the 

desired effect: 

if (status & 0x4000 != 0) ... 

Instead of testing whether status & 0x40 0 0 isn’t zero, this statement will 

evaluate 0x40 00 ! = 0 (which has the value 1), then test whether the value of 

status & 1 isn’t zero. 

The compound assignment operators &=, A=, and | - correspond to the bit 

wise operators &, A, and |: 

/* i .is now 21 (binary 0000000000010101) */ 

/* j j_s now 56 (binary 0000000000111000) */ 

/* i is now 16 (binary 0000000000010000) */ 

/* i is now 40 (binary 0000000000101000) */ 

/* i is now 56 (binary 0000000000111000) */ 

Using the Bitwise Operators to Access Bits 

When we do low-level programming, we’ll often need to store information as sin¬ 

gle bits or collections of bits. In graphics programming, for example, we may want 

to squeeze two or more pixels into a single byte. Using the bitwise operators, we 

can extract or modify data that’s stored in a small number of bits. 

Let’s assume that i is a 16-bit integer variable. Using i as an example, let’s 

see how to perform the most common single-bit operations: 

■ Setting a bit. Suppose that we want to set bit 4 of i. (We’ll assume that the 

most significant bit is numbered 15 and the least significant is numbered 0.) 

The easiest way to set bit 4 is to or the value of i with the constant 0x0 010 

(a “mask” that contains a 1 bit in position 4): 

i = 0x0000; /* i is now 0000000000000000 */ 

i |= 0x0010; /* i is now 0000000000010000 */ 

More generally, if the position of the bit is stored in the variable j, we can use 

a shift operator to create the mask: 

i |= 1 « j; /* sets bit j */ 

For example, if j has the value 3, then 1 << j is 0x00 0 8. 

■ Clearing a bit. To clear bit 4 of i, we’d use a mask with a 0 bit in position 4, 

and 1 bits everywhere else: 
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idiom 
i = OxOOff; 

i Sc= -0x0010; 

/* i is now 0000000011111111 */ 

/* i is now 0000000011101111 */ 

Using the same idea, we can easily write a statement that clears a bit whose 
position is stored in a variable: 

i &= -(1 « j ) ; /* clears bit j */ 

■ Testing a bit. The following i f statement tests whether bit 4 of i is set: 

idiom if (i & 0x0010) ... /* tests bit 4 */ 

To test whether bit j is set, we’d use the following statement: 

if (i & 1 << j) ... /* tests bit j */ 

To make working with bits easier, we’ll often give them names. For example, 

suppose that we want bits 0, 1, and 2 of a number to correspond to the colors blue, 

green, and red, respectively. First, we define names that represent the three bit 
positions: 

enum {BLUE = 1, GREEN = 2, RED = 4}; 

Defining BLUE, GREEN, and RED as macros would also work, of course. Setting, 

clearing, and testing the BLUE bit would be done as follows: 

i |= BLUE; /* sets BLUE bit */ 

i &= -BLUE; /* clears BLUE bit */ 

if (i & BLUE) ... /* tests BLUE bit */ 

It’s also easy to set, clear, or test several bits at time: 

i |= BLUE | GREEN; /* sets BLUE and GREEN bits */ 

i &= -(BLUE | GREEN); /* clears BLUE and GREEN bits */ 

if (i & (BLUE I GREEN)) ... /* tests BLUE and GREEN bits */ 

The i f statement tests whether either the BLUE bit or the GREEN bit is set. 

Using the Bitwise Operators to Access Bit-Fields 

Dealing with a group of several consecutive bits (a bit-field) is slightly more com¬ 

plicated than working with single bits. Here are examples of the two most common 

bit-field operations: 

■ Modifying a bit-field. Modifying a bit-field requires a bitwise and (to clear 

the bit-field), followed by a bitwise or (to store new bits in the bit-field). The 

following statement shows how we might store the binary value 101 in bits 4- 

6 of the variable i: 

i = i Sc -0x0070 | 0x0050; /* stores 101 in bits 4-6 */ 

The Sc operator clears bits 4-6 of i; the | operator then sets bits 6 and 4. 

Notice that i | = 0x005 0 by itself wouldn’t always work: it would set bits 6 
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and 4 but not change bit 5. To generalize the example a little, let’s assume that 

the variable j contains the value to be stored in bits 4-6 of i. We’ll need to 

shift j into position before performing the bitwise or: 

i = (i Sc -0x0070) | (j « 4); /* stores j in bits 4-6 */ 

The << operator has higher precedence than & and |, so we can drop the 

parentheses if we wish: 

i = i Sc -0x0070 | j « 4; 

■ Retrieving a bit-field. When the bit-field is at the end of a number (in the low- 

order bits), fetching its value is easy. For example, the following statement 

retrieves bits 0-2 in the variable i: 

j = i & 0x0007; /* retrieves bits 0-2 */ 

The mask 0x00 07 contains 1 bits in each of the desired positions. If the bit- 

field is somewhere in the middle of i, then we can first shift the bit-field to 

the right end of the number, then extract the field using the & operator. To 

extracts bits 4-6 of i, for example, we could use the following statement: 

j = (i » 4) Sc 0x0007; /* retrieves bits 4-6 */ 

PROGRAM XOR Encryption 

One of the simplest ways to encrypt data is to exclusive-or (XOR) each character 

with a secret key. Suppose that the key is the & character. If we XOR this key with 

the character z, we’ll get the \ character (assuming that we’re using the ASCII 

ascii character set >-Appendixe character set). Here s what happens. 

00100110 (ASCII code for Sc) 

XOR 01111010 (ASCII code for z) 

01011100 (ASCII code for \) 

To decrypt a message, we just apply the same algorithm. In other words, by 

encrypting an already-encrypted message, we’ll recover the original message. If 

we XOR the & character with the \ character, for example, we’ll get the original 

character, z: 

00100110 (ASCII code for Sc) 

XOR 01011100 (ASCII code for \) 

01111010 (ASCII code for z) 

The following program, xor . c, encrypts a message by XORing each charac¬ 

ter with the Sc character. The original message can be entered by the user or read 

from a file using input redirection; the encrypted message can be viewed on the 

input and output redirection >22. i screen or saved in a file using output redirection. For example, suppose that the file 

msg contains the following lines: 
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Trust not him with your secrets, who, when left 

alone in your room, turns over your papers. 

--Johann Kaspar Lavater (1741-1801) 

To encrypt the msg file, saving the encrypted message in newmsg, we’d use the 
following command: 

xor <msg >newmsg 

newmsg will now contain these lines: 

rTSUR HIR NOK QORN _IST UCETCRU, QNI, QNCH JC@R 

GJIHC OH _IST TIIK, RSTHU IPCT _IST VGVCTU. 

—1INGHH mGUVGT jGPGRCT (1741-1801) 

To recover the original message, we’d use the command 

xor cnewmsg 

which will display it on the screen. 

As the example shows, our program won’t change some characters, including 

digits. XORing these characters with & would produce invisible control characters, 

which could cause problems with some operating systems. In Chapter 22, we’ll see 

how to avoid problems when reading and writing files that contain control charac- 

iscntri function >23.4 ters. Until then, we’ll play it safe by using the iscntrl function to check 

whether the original character or the new (encrypted) character is a control charac¬ 

ter. If so, we’ll have the program write the original character instead of the new 

character. 
Here’s the finished program, which is remarkably short: 

XOr.C /* Performs XOR encryption */ 

#include <ctype.h> 

#include <stdio.h> 

#define KEY ' 

main() 

{ 
int orig_char, new_char; 

while ((orig_char = getchar()) != EOF) { 

new_char = orig_char A KEY; 

if (iscntrl(orig_char) ]| iscntrl(new_char)) 

putchar(orig_char); 

else 

putchar(new_char); 

} 

return 0; 

} 
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20.2 Bit-Fields in Structures 

Although the techniques of Section 20.1 allow us to work with bit-fields, these 

techniques can be tricky to use and potentially confusing. Fortunately, C provides 

an alternative—declaring structures whose members represent bit-fields. 

As an example, let’s look at how DOS stores the date at which a file was cre¬ 

ated or last modified. Since days, months, and years are small numbers, storing 

them as normal integers would waste space. Instead, DOS allocates only 16 bits 

for a date, with 5 bits for the day, 4 bits for the month, and 7 bits for the year: 

“1 T 

year 

n-1-r 
month day 

L L ] 
15 14 13 12 11 10 

Using bit-fields, we can define a C structure with an identical layout: 

struct file_date { 

unsigned int day: 5; 

unsigned int month: 4; 

unsigned int year: 7; 

} ; 

The number after each member indicates its length in bits. Since the members all 

have the same type, we can condense the declaration if we want: 

struct file_date { 

unsigned int day: 5, month: 4, year: 7; 

} ; 

The type of a bit-field must be either int, unsigned int, or signed int. 

Using int is ambiguous; some compilers treat the field’s high-order bit as a sign 

bit, but others don’t. 

portability tip Declare all bit-fields to be either unsigned int or signed int. 

We can use a bit-field just like any other member of a structure, as the follow¬ 

ing example shows: 

struct file_date fd; 

fd.day = 28; 

fd.month = 12; 

fd.year = 8; /* represents 1988 */ 

After these assignments, the f d variable will have the following appearance: 

0 0 0 1 0 
— 

0 0 
— 

1 1 0 0 1 1 
— 

1 
— 

0 01 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
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We could have used the bitwise operators to accomplish the same effect; using the 

bitwise operators might even make the program a little faster. However, having a 

readable program is usually more important than gaining a few microseconds. 

Bit-fields do have one restriction that doesn’t apply to other members of a 

structure. Since bit-fields don’t have addresses in the usual sense, C doesn’t allow 

us to apply the & operator to a bit-field. Because of this rule, functions such as 

scanf can’t store data directly into a bit-field: 

scanf("%d", &fd.day); /*** WRONG ***/ 

Of course, we can always use scanf to read input into an ordinary integer vari¬ 

able, then assign it to f d. day. 

How Bit-Fields Are Stored 

The C standard allows the compiler some latitude in choosing how it stores bit- 

fields. Let’s take a more detailed look at how a compiler processes the declaration 

of a structure that has bit-field members. 

The rules concerning how the compiler handles bit-fields depend on the 

notion of “storage units.” The size of a storage unit is implementation-defined; 

typical values are 8 bits, 16 bits, and 32 bits. As it processes a structure declara¬ 

tion, the compiler packs bit-fields one by one into a storage unit, with no gaps 

between the fields, until there’s not enough room for the next field. At that point, 

some compilers skip to the beginning of the next storage unit, while others split the 

bit-field across the storage units. (Which one occurs is implementation-defined.) 

The order in which bit-fields are allocated (left to right or right to left) is also 

implementation-defined. 

Our f ile_date example assumes that storage units are 16 bits long. (An 8- 

bit storage unit would also be acceptable, provided that the compiler splits the 

month field across two storage units.) We also assume that bit-fields are allocated 

from right to left (with the first bit-field occupying the low-order bits); this is com¬ 

mon practice among DOS compilers. 

To provide more control over the storage of bit-fields, C allows us to omit the 

name of any bit-field. Unnamed bit-fields are useful as “padding” to ensure that 

other bit fields are properly positioned. Consider the time associated with a DOS 

file, which is stored in the following way: 

struct file_time { 

unsigned int seconds: 5; 

unsigned int minutes: 6; 

unsigned int hours: 5; 

}; 

(You may be wondering how it’s possible to store a number between 0 and 59 in a 

field with only 5 bits. Well, DOS cheats: it divides the number of seconds by 2, so 

the seconds member is actually between 0 and 29.) If we’re not interested in the 

seconds field, we can leave out its name: 
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struct file_time { 

unsigned int : 5; /* not used */ 

unsigned int minutes: 6; 

unsigned int hours: 5; 

}; 

The remaining bit-fields will be aligned as if the seconds field were still present. 

Another trick that we can use to control the storage of bit-fields is to specify 0 

as the length of an unnamed bit-field: 

struct s { 

unsigned int a: 4; 

unsigned int : 0; /* 0-length bit-field */ 

unsigned int b: 8; 

} ; 

A 0-length bit-field is a signal to the compiler to align the following bit-field at the 

beginning of a storage unit. If storage units are 8 bits long, the compiler will allo¬ 

cate 4 bits for the a member, then skip 4 bits to the next storage unit, and then allo¬ 

cate 8 bits for b. If storage units are 16 bits long, the compiler will allocate 4 bits 

for a, then skip 12 bits, and then allocate 8 bits for b. 

20.3 Other Low-Level Techniques 

Some of the language features that we’ve covered in previous chapters are used 

often in low-level programming. To wrap up this chapter, we’ll take a look at sev¬ 

eral important examples: defining types that represent units of storage, using 

unions to bypass normal type-checking, and using pointers as addresses. We’ll also 

cover the volatile type qualifier, which we avoided discussing in Section 18.3 

because of its low-level nature. 

Defining Machine-Dependent I^pes 

Since the char type—by definition—occupies one byte, we’ll sometimes treat 

characters as bytes, using them to store data that’s not necessarily in character 

form. When we do so, it’s a good idea to define a BYTE type: 

typedef unsigned char BYTE; 

Depending on the machine, we may want to define additional types, like the fol¬ 

lowing one: 

typedef unsigned int WORD; 

We’ll use the BYTE and WORD types in later examples. 
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Using Unions to Provide Multiple Views of Data 

Although unions can be used in a portable way—see Section 16.4 for examples— 

they’re often used in C for an entirely different purpose: viewing a block of mem¬ 
ory in two or more different ways. 

Here’s a simple example based on the file_date structure described in 

Section 20.2. Since a f ile_date structure fits into two bytes, we can think of 

any two-byte value as a file_date structure. In particular, we could view an 

unsigned int value as a f ile_date structure (assuming that integers are 16 

bits long). The following union allows us to easily convert an integer to a file date 
or vice versa: 

union int_date { 

unsigned int i; 

struct file_date fd; 

} ; 

With the help of this union, we could fetch a file date from disk as two bytes, then 

extract its month, day, and year fields. Conversely, we could construct a date as 

a f ile_date structure, then write it to disk as a pair of bytes. 

As an example of how we might use the int_date union, here’s a function 

that, when passed an integer argument, prints it as a file date: 

void print_date(unsigned int n) 

{ 
union int_date u; 

u.i - n; 

printf("%d/%d/%.2d\n", u.fd.month, u.fd.day, 

(u.fd.year+1980)%100); 

} 

To determine the last two digits of the year, we add 1980 to u. fd.year (since 

the year is stored relative to 1980—the year the world began, according to 

Microsoft) and then compute the remainder when the year is divided by 100. 

Using unions to allow multiple views of data is especially useful when work¬ 

ing with registers, which are often divided into smaller units. Intel 80x86 proces¬ 

sors, for example, have 16-bit registers named AX, BX, CX, and DX. Each of 

these registers can be treated as two 8-bit registers. AX, for example, is divided 

into registers named AH and AL. 
When writing applications for Intel-based computers, we may need variables 

that represent the contents of the AX, BX, CX, and DX registers. We want access 

to both the 16- and 8-bit registers; at the same time, we need to take their relation¬ 

ships into account (a change to AX affects both AH and AL; changing AH modi¬ 

fies AX). The solution is to set up two structures, one containing members that 

correspond to the 16-bit registers, and the other containing members that match the 

8-bit registers. We then create a union that encloses the two structures: 
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union { 
struct { 

WORD ax, bx, cx, dx; 

} word; 

struct { 
BYTE al, ah, bl, bh, cl, ch, dl, dh; 

} byte; 

} regs; 

The members of the word structure will be overlaid with the members of the 

byte structure; for example, ax will occupy the same memory as al and ah. 

And that, of course, is exactly what we wanted. Here’s an example showing how 

the regs union might be used: 

regs.byte.ah = 0x12; 

regs.byte.al = 0x3 4; 

printf("AX: %x\n", regs.word.ax); 

Changing ah and al affects ax, so the output will be 

AX: 1234 

Using Pointers as Addresses 

We saw in Section 11.1 that a pointer is really some kind of memory address, 

although we usually don’t need to know the details. When we do low-level pro¬ 

gramming, however, the details matter. 
On some computers, an address has the same number of bits as an integer or 

long integer. Creating a pointer that represents a specific address is easy: we just 

cast an integer into a pointer. For example, here’s how we might store the address 

1000 (hex) into a pointer variable: 

BYTE *p; 

p = (BYTE *) 0x1000; /* p contains address 0x1000 */ 

Other computers are more difficult to deal with. When a computer with an 

Intel CPU runs in “real mode” (the mode used by DOS), an address consists of two 

16-bit numbers: a segment and an offset. Building a pointer from a specific 

address is usually done by invoking a macro provided in a nonstandard header. For 

example, the macro MK_FP (“make far pointer”)—usually found in the <dos . h> 

header—creates a pointer from a segment/offset pair: 

BYTE far *p; 

p = MK_FP(segment, offset); 

The word far (not a part of Standard C) indicates that p is a “far pointer”—in 

other words, it consists of both a segment and an offset. (A “near pointer” is just an 

offset.) 
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PROGRAM 

nlockon.c 

nlockoff.c 

Toggling the Num Lock Key 

On the IBM PC and compatibles, the Num Lock toggle determines whether the 

keys on the numeric keypad represent digits or cursor motions. By pressing the 

Num Lock key, the user can turn Num Lock on or off. 

The following programs, nlockon.c and nlockoff.c, make it possible 

to change the setting of Num Lock without pressing the Num Lock key. This 

capability can be useful in a batch file (a file containing a series of DOS com¬ 

mands). For example, we could put the nlockoff command in the DOS 

autoexec . bat file to turn Num Lock off whenever the machine is booted. 

These programs are actually rather easy to write, since the Num Lock toggle is 

kept in memory and has the same address on every PC. Bit 5 (the sixth bit from the 

right) in the byte located at segment 40 (hex), offset 17 (hex), controls Num Lock. 

Setting this bit turns Num Lock on; clearing it turns Num Lock off. nlockon. c 

and nlockoff . c need only store the address of the byte in a pointer, then use the 

bitwise operators to modify the Num Lock bit within this byte. 

The nlockon. c and nlockoff . c programs were written specifically for 

DOS compilers that support the far keyword and provide the MK_FP macro, 

nlockon. c uses the | = operator to set the Num Lock bit: 

/* Turns Num Lock on */ 

#include <dos.h> 

typedef unsigned char BYTE; 

main() 

{ 
BYTE far *p = MK_FP(0x0040, 0x0017); 

*p |= 0x20; /* sets Num Lock bit */ 

return 0; 

} 

nlockoff . c uses the &= operator to clear the Num Lock bit: 

/* Turns Num Lock off */ 

#include <dos.h> 

typedef unsigned char BYTE; 

main() 

{ 
BYTE far *p = MK_FP(0x0040, 0x0017); 

*p &= -0x20; /* clears Num Lock bit */ 

return 0; 

} 
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The volatile Type Qualifier 

On some computers, certain memory locations are “volatile”; the value stored at 

such a location can change as a program is running, even though the program 

doesn’t seem to be storing new values there. For example, some memory locations 

might hold data coming directly from input devices. 
The volatile type qualifier allows us to inform the compiler if any of the 

data used in a program is volatile, volatile typically appears in the declaration 

of a pointer variable that will point to a volatile memory location: 

volatile BYTE *p; /* p will point to a volatile byte */ 

To see why volatile is needed, suppose that p points to a memory location 

that contains the most recent character typed at the user’s keyboard. This location 

is volatile: its value changes each time the user enters a character. We might use 

the following loop to obtain characters from the keyboard and store them in a 

buffer array: 

while {buffer not full) { 

wait for input ; 

buffer[i] = *p; 

if (buffer[i++] == '\n') 

break; 

} 

A sophisticated compiler might notice that this loop changes neither p nor *p, so it 

could optimize the program by altering it so that *p is fetched just once: 

store *p in a register ; 

while {buffer not full) { 

wait for input; 

bu f f er [ i ] = value stored in register ; 

if (buffer[i++] == '\n') 

break; 

} 

The optimized program will fill the buffer with many copies of the same charac¬ 

ter—not exactly what we had in mind. Declaring that p points to volatile data 

avoids this problem by telling the compiler that *p must be fetched from memory 

each time it’s needed. 
For additional uses of volatile, see the Q&A section in Chapter 24. 

Q&A 

Q: What do you mean by saying that the & and | operators sometimes produce 

the same results as the && and | | operators, but not always? [p. 453] 

A: Let’s compare i & j with i && j (similar remarks apply to | and | |). As long as 

i and j have the value 0 or 1 (in any combination), the two expressions will have 
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the same value. However, if i and j should have other values, the expressions may 

not always match. If i is 1 and j is 2, for example, then i & j has the value 0 (i 

and j have no corresponding 1 bits), while i && j has the value 1. If i is 3 and j 
is 2, then i & j has the value 2, while i && j has the value 1. 

Side effects are another problem. Evaluating i & j + + always increments j as 

a side effect, while evaluating i && j + + sometimes increments j. 

Exercises 

Section 20.1 * 1. Show the output produced by each of the following code fragments. Assume that i, j, and 
k are unsigned int variables. 

(a) i = 8; j = 9 ; 
printf("%d", i » 1 + j » 1); 

(b) i = 1 ; 
printf("%d", i & ~i); 

(c) i = 2; j = 1; k = 0 ; 
printf("%d", ~i & j A k) ; 

(d) i = 7; j = 8; k = 9 ; 
printf("%d", i A j & k) ; 

2. Describe how to “toggle” a bit (change it from 0 to 1 or from 1 to 0). Illustrate the technique 
by writing a statement that toggles bit 4 in the variable i. 

*3. Explain what effect the following macro has on its arguments. You may assume that the 
arguments have the same type. 

#define M(x,y) ((x)A=(y),(y)A=(x),(x)A=(y)) 

4. In computer graphics, colors are often stored as three numbers, representing red, green, and 
blue intensities. Suppose that each number requires eight bits, and we’d like to store all 
three values in a single long integer. Write a macro named MK_COLOR with three parame¬ 
ters (the red, green, and blue intensities). MK_COLOR should return a long int in which 
the last three bytes contain the red, green, and blue intensities (in that order), with the red 
value as the last byte. 

5. Write macros named GET_RED, GET_GREEN, and GET_BLUE that, when given a color as 
an argument (see Exercise 4), return its 8-bit red, green, and blue intensities. 

6. (a) Use the bitwise operators to write the following function: 

unsigned short int swap_bytes(unsigned short int i); 

The return value of swap_bytes (i) should be the number that results from swapping the 
two bytes in i. (Short integers occupy two bytes on most computers.) For example, if i has 
the value 0x12 3 4 (00010010 00110100 in binary), then swap_bytes (i) should return 
0x3412 (00110100 00010010 in binary). Test your function by writing a program that 
reads a number in hexadecimal, then writes the number with its bytes swapped: 

Enter a hexadecimal number: 1234 
Number with bytes swapped: 3412 

Hint: Use the %hx conversion to read and write the hex numbers. 

(b) Condense the swap_bytes function so that its body is a single statement. 
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Section 20.2 

Section 20.3 

7. Write the following functions: 

unsigned int rotate_left(unsigned int i, int n); 
unsigned int rotate_right(unsigned int i, int n) ; 

The value of rotate_lef t ( i , n) should be the result of shifting the bits in i to the left 
by n places, with the bits that were “shifted off’ moved to the right end of i. (For example, 
rotate_left (0x1234, 4) should return 0x2341 if integers are 16 bits long.) 
rotate_right should be similar, but “rotate” bits to the right instead of the left. 

8. Let f be the following function: 

unsigned int f(unsigned int i, int m, int n) 

{ 
return (i >> (m+l-n)) & ~(~0 << n); 

} 

(a) What is the value of- (~0 << n)? 

(b) What does this function do? 

9. When stored according to the IEEE floating-point standard, a float value consists of a 1- 
bit sign (the leftmost—or most significant—bit), an 8-bit exponent, and a 23-bit fraction, in 
that order. Design a structure type that occupies 32 bits, with bit-field members correspond¬ 
ing to the sign, exponent, and fraction. Declare the bit-fields to have type unsigned int. 
Check the manual for your compiler to determine the order of the bit-fields. Warning: Some 
compilers limit bit-fields to 16 bits, so you may get an error message if you compile this 

structure. 

10. Design a union that makes it possible to view a 32-bit value as either a float or the struc¬ 
ture described in Exercise 9. Write a program that stores 1 in the structure’s sign field, 128 
in the exponent field, and 0 in the fraction field, then prints the float value stored in the 
union. (The answer should be -2.0 if you’ve set up the bit-fields correctly.) 
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Every program is a part of some other program and rarely fits. 

In previous chapters we’ve looked at the C library piecemeal; this chapter focuses 

on the library as a whole. Section 21.1 lists general guidelines for using the library. 

It also describes a trick found in some library headers: using a macro to “hide” a 

function. Section 21.2 gives an overview of each of the library’s fifteen headers. 

Later chapters cover the library’s headers in depth, with related headers 

grouped together into chapters. One of the headers, <stddef . h>, is quite differ¬ 

ent from the others, so I’ve chosen to describe it here (Section 21.3). 

21.1 Using the Library 

The standard library is divided into fifteen parts, with each part described by a 

header. Most compilers come with a more extensive library that invariably has 

more than fifteen headers. The extra headers aren’t standard, of course, so we can’t 

count on them being available with other compilers. These headers often provide 

functions that depend on a particular computer or operating system (which 

explains why they’re not standard). They may provide functions that allow more 

control over the screen and keyboard. Headers that support graphics or a window- 

based user interface are also common. 

The standard headers consist primarily of function prototypes, type defini¬ 

tions, and macro definitions. If one of our files contains a call of a function 

declared in a header or uses one of the types or macros defined there, we’ll need to 

include the header at the beginning of the file. When a file includes several head¬ 

ers, the Older of #include directives doesn’t matter. 

467 
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Restrictions on Names Used in the Library 

Any file that includes a standard header must obey a couple of rules. First, it can’t 

use the names of macros defined in that header for any other purpose. If a file 

includes <stdio.h>, for example, it can’t reuse NULL, since a macro by that 

name is already defined in <stdio.h>. Second, library names with file scope 

(type names, in particular) can’t be redefined at the file level. Thus, if a file 

includes <stdio,h>, it can’t define size_t as a identifier with file scope, since 

<stdio . h> defines size_t to be a type name. 
Although these restrictions are pretty obvious, C has other restrictions that 

you might not expect: 

■ Identifiers that begin with an underscore and an upper-case letter or two 

underscores are reserved for use within the library; programs should never 

use names of this form for any purpose. 

■ Identifiers that begin with an underscore are reserved for use as identifiers 

and tags with file scope. You should never reuse such a name unless it’s 

declared inside a function. 

■ Every identifier with external linkage in the standard library is reserved for 

use as an identifier with external linkage. In particular, the names of all stan¬ 

dard library functions are reserved. Thus, even if a file doesn’t include 

<stdio . h>, it shouldn’t define an external function named printf, since 

there’s already a function with this name in the library. 

These rules apply to every file in a program, regardless of which headers the file 

includes. Although these rules aren’t always enforced, failing to obey them can 

lead to a program that’s not portable. 

Functions Hidden by Macros 

It’s common for C programmers to replace small functions by macros. This prac¬ 

tice occurs even in the standard library. The C standard allows headers to define 

macros that have the same names as library functions, but protects the programmer 

by requiring that a true function be available as well. As a result, it’s not unusual 

for a library header to declare a function and define a macro with the same name. 

<ctype.h>header>23.4 Examples of function/macro pairs abound in the <ctype.h> header. Con¬ 

sider the isprint function, which tests whether a character is printable. It’s com¬ 

mon practice for <ctype . h> to declare isprint as a function: 

int isprint(int c); 

and also define it as a macro: 

#define isprint(c) ((c) >= 0x20 && (c) <= 0x7e) 

By default, a call of isprint will be treated as a macro invocation (since macro 

names are replaced during preprocessing). 
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pointers to functions >17.7 

Most of the time, we’re happy using a macro instead of a true function, 

because it will probably make our program run faster. Occasionally, though, we 

want a genuine function: perhaps we need to minimize the size of the executable 

code, or maybe we need a pointer to the function. 

ftundef directive >-14.3 

If the need arises, we can remove a macro definition (thus gaining access to 

the true function) by using the #undef directive. For example, the following lines 

provide access to the isprint function by undefining the isprint macro: 

#include <ctype.h> 
#undef isprint 

If isprint isn’t a macro, no harm has been done; #undef has no effect when 

given a name that’s not defined as a macro. 

As an alternative, we can disable individual uses of a macro by putting paren¬ 

theses around its name: 

(isprint) (c) 

The preprocessor can’t spot a parameterized macro unless its name is followed by 

a left parenthesis. The compiler isn’t so easily fooled, however; it can still recog¬ 

nize isprint as a function. 

21.2 Library Overview 

We’ll now take a quick look at the fifteen headers in the standard library. This sec¬ 

tion can serve as a “road map” to help you determine which part of the library you 

need. Each header is described in detail later in this chapter or in a subsequent 

chapter. For information about a specific library function, consult Appendix D. 

<assert.h> Diagnostics 

<assert. h> header >24.1 Contains only the assert macro, which allows us to insert self-checks into a pro¬ 

gram. If any check fails, the program terminates. 

<ctype.h> Character Handling 

<ctype. h> header >23.4 Provides functions for classifying characters and for converting letters from lower 

to upper case or vice versa. 

<errno.h> Errors 

<errno. h> header >24.2 Provides errno (“error number”), an lvalue that can be tested after a call of cer¬ 

tain library functions to see if an error occurred during the call. 
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<float.h> Characteristics of Floating Types 

<f loat. h> header >23.1 Provides macros that describe the characteristics of floating types, including their 

range and accuracy. 

climits.h> Sizes of Integral Types 

<limits . h> header >23.2 Provides macros that describe the characteristics of integer and character types, 

including their maximum and minimum values. 

clocale.h> Localization 

<locale . h> header >25.1 Provides functions to help a program adapt its behavior to a country or other geo¬ 

graphic region. Locale-specific behavior includes the way numbers are printed 

(including the character used as the decimal point), the format of monetary values 

(the currency symbol, for example), the character set, and the appearance of the 

date and time. 

<math.h> Mathematics 

<math. h> header >23.3 Provides a variety of common mathematical functions, including trigonometric, 

hyperbolic, exponential, logarithmic, power, nearest integer, and absolute value 

functions. Most functions have double arguments and return a double value. 

<setjmp.h> Nonlocal Jumps 

<set jmp . h> header >24.4 Provides the set jmp and longjmp functions, set jmp “marks” a place in a pro¬ 

gram; long jmp can then be used to return to that place later. These functions 

make it possible to jump from one function into another, still-active function, 

bypassing the normal function-return mechanism, set jmp and longjmp are 

used primarily for handling serious problems that arise during program execution. 

<signal.h> Signal Handling 

<signal. h> header >24.3 Provides functions that deal with exceptional conditions (signals), including inter¬ 

rupts and run-time errors. The signal function installs a function to be called if a 

given signal should occur later. The raise function causes a signal to occur. 

<stdarg.h> Variable Arguments 

<stdarg. h> header >26.1 Provides tools for writing functions that, like printf and scant, can have a 

variable number of arguments. 
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<stddef.h> Common Definitions 

<stddef ,h> header >21.3 Provides definitions of frequently used types and macros. 

<stdio.h> Input/Output 

<stdio . h> header >22.1-22.8 Provides a large assortment of input/output functions, including operations on both 
sequential and random-access files. 

<stdlib.h> General Utilities 

<stdlib.h> header>26.2 A catch-all header for functions that don’t fit into any of the other headers. The 

functions in <stdlib.h> can convert strings to numbers, generate pseudo-ran¬ 

dom numbers, perform memory management tasks, communicate with the operat¬ 

ing system, do searching and sorting, and perform operations on multibyte 
characters and strings. 

<string.h> String Handling 

<string. h> header >23.5 Provides functions that perform string operations, including copying, concatena¬ 
tion, comparison, and searching. 

<time.h> Date and Time 

<time . h> header >26.3 Provides functions for determining the time (and date), manipulating times, and 

displaying times in a variety of ways. 

21.3 The <stddef .h> Header: Common Definitions 

The <s tddef . h> header provides definitions of frequently used types and mac¬ 

ros; it doesn’t declare any functions. The types are: 

■ ptrdi f f_t. The type of the result when two pointers are subtracted. 

■ size_t. The type returned by the sizeof operator. 

■ wchar_t. A type large enough to represent all possible characters in all sup¬ 

ported locales. 

All three are names for integer types; ptrdiff_t must be a signed type, while 

size_t must be an unsigned type. For more information about wchar_t, see 

Section 25.2. 
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fwrite function >■22.6 

Q: 

The <stddef .h> header also defines two macros. One of them is NULL, 

which represents the null pointer. The other macro, offsetof, requires two argu¬ 

ments: type (a structure type) and member-designator (a member of the structure), 

offsetof computes the number of bytes between the beginning of the structure 

and the specified member. 
Consider the following structure: 

struct s { 
char a; 
int b[2]; 
float c; 

} ; 

The value of of fsetof (struct s, a) must be 0; C guarantees that the first 

member of a structure has the same address as the structure itself. We can’t say for 

sure what the offsets of b and c are. One possibility is that offsetof (struct 

s, b) is 1 (since a is one byte long), and offsetof (struct s, c) is 5 

(assuming 16-bit integers). However, some compilers leave holes—unused 

bytes—in structures (see the Q&A at the end of Chapter 16), which can affect the 

value produced by offsetof. If a compiler should leave a one-byte hole after a, 

for example, then the offsets of b and c would be 2 and 6, respectively. But that’s 

the beauty of offsetof: it produces the correct offsets for any compiler, allow¬ 

ing us to write portable programs. 
There are various uses for offsetof. For example, suppose that we want to 

save the first two members of an s structure in a file, ignoring the c member. 

Instead of having the fwrite function write sizeof (struct s) bytes, which 

would save the entire structure, we’ll tell it to write only offsetof (struct s , 

c) bytes. 
A final remark: Some of the types and macros defined in <stddef .h> 

appear in other headers as well. (The NULL macro, for example, is also defined in 

<locale.h>, <stdio.h>, <stdlib.h>, <string.h>, and <time.h>.) 

As a result, few programs need to include <s tddef . h>. 

Q&A 

I notice that you use the term “standard header” rather than “standard 
header file.” Is there any reason for not using the word “file”? 

Yes. According to the C standard, a “standard header” need not be a file. Although 

most compilers do indeed store standard headers as files, the standard opens the 

door to the possibility that the headers are built into the compiler itself. 

A: 
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Exercises 

Section 21.1 

Section 21.2 

Section 21.3 

1. Locate where header files are kept on your system. Find the nonstandard headers and deter¬ 
mine the purpose of each. 

2. Having located the header files on your system (see Exercise 1), find a standard header in 
which a macro hides a function. 

3. When a macro hides a function, which must come first in the header file: the macro defini¬ 
tion or the function prototype? Justify your answer. 

4. In which standard header would you expect to find each of the following? 

(a) a function that determines the current day of the week 

(b) a function that tests whether a character is a digit 

(c) a macro that gives the largest unsigned int value 

(d) a function that rounds a floating-point number to the next higher integer 

(e) a macro that specifies the number of bits in a character 

(f) a macro that specifies the number of significant digits in a double value 

(g) a function that searches a string for a particular character 

(h) a function that opens a file for reading 

5. Write a program that declares the s structure (see the text) and prints the sizes and offsets of 
the a, b, and c members. (Use sizeof to find sizes; use of fsetof to find offsets.) Have 
the program print the size of the entire structure as well. From this information, determine 
whether or not the structure has any holes. If it does, describe the location and size of each. 
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Input/Output 

In man-machine symbiosis, it is man 
who must adjust: The machines can’t. 

C’s input/output library, represented by the <stdio . h> header, is the biggest and 

most important part of the standard library. As befits its lofty status, we’ll devote 

an entire chapter (the biggest, if not one of the most important, in this book) to 

<s tdio. h>. 

We’ve been using <stdio . h> since Chapter 2, and we have experience with 

the printf, scanf, putchar, getchar, puts, and gets functions. This 

chapter provides more information about these functions, as well as introducing a 

number of new functions, most of which deal with files. Fortunately, many of the 

new functions are closely related to functions with which we’re acquainted, 

fprintf, for instance, is the “file version” of the printf function. 

We’ll start the chapter with a discussion of some basic issues: the stream con¬ 

cept, the FILE type, input and output redirection, and the difference between text 

files and binary files (Section 22.1). We’ll then turn to functions that are designed 

specifically for use with files, including functions that open and close files (Sec¬ 

tion 22.2). 

After discussing printf, scanf, and related functions for “formatted” 

input/output (Section 22.3), we’ll look at functions that read and write unformatted 

data: 

■ getc, putc, and related functions, which read and write one character at a 

time (Section 22.4). 

■ gets, puts, and related functions, which read and write one line at a time 

(Section 22.5). 

■ fread and fwrite, which read and write blocks of data (Section 22.6). 

Section 22.7 then shows how to perform random access operations on files. 

Finally, Section 22.8 describes the sprintf and sscanf functions, variants of 

printf and scanf that write to a string or read from a string. 

475 
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perror function >24.2 

v...printf functions >26.1 

This chapter covers all but four of the functions in <stdio .h>. The omis¬ 

sions are perror, vfprintf, vprintf, and vsprintf, which are closely 

related to other parts of the C library. 

22.1 Streams 

In C, the term stream means any source of input or any destination for output. 

Many small programs, like the ones in previous chapters, obtain all their input 

from one stream (usually associated with the keyboard) and write all their output 

to another stream (usually associated with the screen). 
Larger programs may need additional streams. These streams often represent 

files on magnetic disk, but could be associated with other kinds of devices: 

modems, network ports, printers, CD-ROM drives, and the like. We’ll concentrate 

on disk files, since they’re common and easy to understand. (I may even occasion¬ 

ally use the term file when I should say stream.) Keep in mind, however, that many 

of the functions in <stdio . h> work equally well with all streams, not just the 

ones that represent files. 

File Pointers 

Accessing a stream in a C program is done through file pointers, which have type 

FILE * (the FILE type is defined in <stdio.h>). Certain streams are repre¬ 

sented by file pointers with standard names; we can declare additional file pointers 

as needed. For example, if a program needs two streams in addition to the standard 

ones, it might include the following declaration: 

FILE *fpl, * fp2; 

A program may declare any number of FILE * variables, although operating sys¬ 

tems usually limit the number of streams that can be open at any one time. 

Standard Streams and Redirection 

Q&A <stdio.h> provides three standard streams (Table 22.1). These streams are 

ready to use—we don’t declare them, and we don’t open or close them. 

Table 22.1 
Standard Streams 

File Pointer Stream Default Meaning 

stdin Standard input Keyboard 

stdout Standard output Screen 

stderr Standard error Screen 

The functions that we’ve used in previous chapters—printf, scanf, 

putchar, getchar, puts, and gets—obtain input from stdin and send out¬ 

put to stdout. By default, stdin represents the keyboard and stdout and 
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stderr represent the screen. Some operating systems, however, allow these 

default meanings to be changed via a mechanism known as redirection. 

Under UNIX and DOS, for instance, we can force a program to obtain its 

input from a file instead of from the keyboard by putting the name of the file on the 
command line, preceded by the < character: 

demo <in.dat 

This technique, known as input redirection, essentially makes the stdin stream 

represent a file (in. dat, in this case) instead of the keyboard. The beauty of redi¬ 

rection is that the demo program doesn’t realize that it’s reading from in. dat; as 

far as it knows, any data it obtains from stdin is being entered at the keyboard. 

Output redirection is similar. Redirecting the stdout stream in UNIX and 

DOS is done by putting a file name on the command line, preceded by the > char¬ 
acter: 

demo >out.dat 

All data written to stdout will now go into the out. dat file instead of appear¬ 

ing on the screen. Incidentally, we can combine output redirection with input redi¬ 
rection: 

demo <in.dat >out.dat 

One problem with output redirection is that everything written to stdout is 

put into a file. If the program goes off the rails and begins writing error messages, 

we won’t see them until we look at the file. This is where stderr comes in. By 

writing error messages to stderr instead of stdout, we can guarantee that 

those messages will appear on the screen even when stdout has been redirected. 

Text Files versus Binary Files 

<stdio . h> supports two kinds of files: text and binary. In a text fde, the bytes 

represent characters, making it possible for a human to examine the file or edit it. 

The source code for a C program is stored in a text file, for example. In a binary 

file, on the other hand, bytes don’t necessarily represent characters; groups of 

bytes might represent other types of data, such as integers and floating-point num¬ 

bers. An executable C program is stored in a binary file, as you’ll quickly realize if 

you try to look at one. 

To see the difference between text files and binary files, consider the ways in 

which we could store the number 32,767 in a file. One option would be to store the 

number in text form as the characters 3, 2, 7, 6, and 7. If the character set is 

ASCII, we’d have the following five bytes: 

00110011 00110010 00110111 00110110 00110111 

'3' '2' •T '6' 
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The other option is to store the number in binary, which would take as few as two 

bytes: 

01111111 liiiiiii 

As this example shows, storing numbers in binary can save quite a bit of space. 

Why is it necessary to make a distinction between text files and binary files? 

A file, after all, is just a sequence of bytes either way. The answer is simple: some 

operating systems store text files and binary files in different ways. Text files are 

divided into lines, so there must be some way to mark the end of each line—a spe¬ 

cial character, for instance. Also, an operating system may use a special character 

to indicate the end of a text file. Binary files, on the other hand, aren’t divided into 

lines. And since a binary file may legally contain any character, it’s impossible to 

set aside an end-of-file character. 
In DOS, there are two differences between a text file and a binary file: 

■ End of line. When a new-line character is written to a text file, it is expanded 

into a pair of characters: a carriage return followed by a line feed. The reverse 

translation takes place during input. A new-line character written to a binary 

file, however, is a single character (line feed). 

■ End offde. A control-Z character (\xla) in a text file is assumed to mark the 

end of the file. (It’s not necessary to have a control-Z character at the end of a 

text file, but some editors put one there anyway.) A control-Z character in a 

binary file has no special significance; it’s treated like any other character. 

In contrast, UNIX doesn’t differentiate between text files and binary files; they’re 

both stored the same way. A UNIX text file has a single line-feed character at the 

end of each line; there’s no special character to mark the end of the file. 

When we’re writing a program that reads from a file or writes to a file, we 

need to take into account whether it’s a text file or a binary file. A program that 

displays the contents of a file on the screen will probably assume it’s a text file. A 

file-copying program, on the other hand, can’t assume that the file to be copied is a 

text file. If it does, binary files containing an end-of-file character won’t be copied 

completely. When we can’t say for sure whether a file is text or binary, it’s safer to 

assume that it’s binary. 

22.2 File Operations 

Simplicity is one of the attractions of input and output redirection; there’s no need 

to open a file, close a file, or perform any other explicit file operations. Unfortu¬ 

nately, redirection is too limited for many applications. When a program relies on 

redirection, it has no control over its files; it doesn’t even know their names. Worse 

still, redirection doesn’t help if the program needs to read from two files or write to 

two files at the same time. 
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When redirection isn’t enough, we’ll end up using the file operations that 

<stdio.h> provides. In this section, we’ll explore these operations, which 

include opening a file, closing a file, changing the way a file is buffered, deleting a 
file, and renaming a file. 

Opening a File 

FILE *fopen(const char *filename, const char *mode); 

fopen Opening a file for use as a stream requires a call of the f open function, f open’s 

first argument is a string containing the name of the file to be opened. (A “file 

name” may include information about the file’s location, such as a drive specifier 

or path.) The second argument is a “mode string” that specifies what operations we 

intend to perform on the file. The string " r", for instance, indicates that data will 

be read from the file, but none will be written to it. 

A 
escape sequences >7.3 

DOS programmers: Be careful when the file name in a call of fopen includes the 
\ character, since C treats \ as the beginning of an escape sequence. The call 

fopen("c:\project\testl.dat", "r") 

will always fail, because the compiler treats \p and \t as character escapes. To 
avoid the problem, use \\ instead of \: 

fopen("c:\\project\\testl.dat", "r") 

fopen returns a file pointer that the program can (and usually will) save in a 

variable and use later whenever it needs to perform an operation on the file. A typ¬ 

ical call of fopen looks like this: 

fp = fopen("in.dat", "r"); /* opens in.dat for reading */ 

When the program calls an input function to read from in. dat later, it will sup¬ 

ply fp as an argument. 

When it can’t open a file, fopen returns a null pointer. Perhaps the file 

doesn’t exist, or it’s in the wrong place, or we don’t have permission to open it. 

Never assume that a file can be opened; always test the return value of fopen to 
make sure it’s not a null pointer. 

Modes 

Which mode string we’ll pass to fopen depends not only on what operations we 

plan to perform on the file later but also on whether the file contains text or binary 

data. To open a text file, we’d use one of the mode strings in Table 22.2. 
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Table 22.2 String Meaning 

Mode Strings for " r" Open for reading 
Text Files " w" Open for writing (file need not exist) 

" a" Open for appending (file need not exist) 
" r+" Open for reading and writing, starting at beginning 
" w+" Open for reading and writing (truncate if file exists) 
" a+11 Open for reading and writing (append if file exists) 

Q&A When we use f open to open a binary file, we’ll need to include the letter b in 

the mode string. Table 22.3 lists mode strings for binary files. 

Table 22.3 
Mode Strings for 

Binary Files 

String Meaning 

" rb" Open for reading 

"wb" Open for writing (file need not exist) 

" ab" Open for appending (file need not exist) 

"r+b"or"rb+" Open for reading and writing, starting at beginning 

"w+b"or"wb+" Open for reading and writing (truncate if file exists) 

" a+b" or " ab+" Open for reading and writing (append if file exists) 

From tables 22.2 and 22.3, we see that <stdio.h> distinguishes between 

writing data and appending data. When data is written to a file, it normally over¬ 

writes what was previously there. When a file is opened for appending, however, 

attempts to write data to the file actually add it to the end of the file, thus preserv¬ 

ing the file’s original contents. 
By the way, special rules apply when a file is opened for both reading and 

writing (the mode string contains the + character). We can’t switch from reading to 

file-positioning functions >22.7 writing without first calling a file-positioning function. Also, we can’t switch from 
writing to reading without either calling f flush (covered later in this section) or 

calling a file-positioning function. 

Closing a File 

int fclose(FILE *stream); 

fclose The fclose function allows a program to close a file that it’s no longer using. 

The argument to fclose must be a file pointer obtained from a call of fopen or 

freopen (discussed later in this section), fclose returns zero if the file was 

closed successfully; otherwise, it returns the error code EOF (a macro defined in 

<stdio. h>). 
To show how f open and fclose are used in practice, here’s the outline of a 

program that opens the file example . dat for reading, checks that it was opened 

successfully, then closes it before terminating: 

#include <stdio.h> 
#include <stdlib.h> 

ttdefine FILE_NAME "example.dat" 
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main() 

{ 
FILE * fp; 

fp = fopen(FILE_NAME, "r"); 

if (fp == NULL) { 

printf("Can't open %s\n", FILE_NAME); 

exit(EXIT_FAILURE); 

} 

fclose(fp); 

return 0; 

} 

Of course, C programmers being the way they are, it’s not unusual to see the call of 

f open combined with the declaration of fp: 

FILE *fp = fopen(FILE_NAME, "r"); 

or the test against NULL: 

if ((fp = fopen (FILE_NAME, "r")) == NULL) ... 

Attaching a File to a Stream 

FILE *freopen(const char *filename, const char *mode, 

FILE *stream); 

freopen f reopen attaches a different file to a stream that’s already open. The most com¬ 

mon use of freopen is to associate a file with one of the standard streams: 

stdin, stdout, or stderr. To cause a program to begin writing to the file 

foo, for instance, we could use the following call of freopen: 

if (freopen("foo", "w", stdout) == NULL) { 

/* error; foo can't be opened */ 

} 

After closing any file previously associated with stdout (by command-line redi¬ 

rection or a previous call of freopen), freopen will open foo and associate it 

with stdout. 

f reopen’s normal return value is its third argument (a file pointer). If it can’t 

open the new file, freopen returns a null pointer, (freopen ignores the error if 

the old file can’t be closed.) 

Obtaining File Names from the Command Line 

When we’re writing a program that will need to open a file, one problem soon 

becomes apparent: how do we supply the file name to the program? Building file 

names into the program itself doesn’t provide much flexibility, and prompting the 
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Q&A 
user to enter file names can be awkward. Often, the best solution is to have the pro¬ 

gram obtain file names from the command line entered by the user at the time the 

program was run. When we execute a program named demo, for example, we 

might supply it with file names by putting them on the command line: 

demo names.dat dates.dat 

In Section 13.7, we saw how to access command-line arguments by defining 

main as a function with two parameters: 

main(int argc, char *argv[]) 

{ 

} 

argc is the number of command-line arguments; argv is an array of pointers to 

the argument strings, argv [ 0 ] points to the program name, argv [ 1 ] through 

argv [argc-1] point to the remaining arguments, and argv [argc] is a null 

pointer. In the example above, argc is 3, argv [ 0 ] points to a string containing 

the program name, argv [ 1 ] points to the string " names . dat", and argv [ 2 ] 

points to the string "dates.dat": 

argv 

0 

1 

2 

3 

PROGRAM Checking Whether a File Can Be Opened 

The following program determines if a file exists and can be opened for reading. 

When the program is run, the user will give it a file name to check: 

canopen fl.dat 

The program will then print either f 1. dat can be opened or f 1. dat can ' t 

be opened. If the user enters the wrong number of arguments on the command 

line, the program will print the message usage: canopen filename to 

remind the user that canopen requires a single file name. 

canopen.C /* Checks whether a file can be opened for reading */ 

#include <stdio.h> 

main(int argc, char *argv[]) 

{ 
FILE *fp; 



22.2 File Operations 483 

tmpfile 

tmpnam 

if (argc != 2) { 
printf("usage: canopen filename\n"); 
return 2; 

} 

if ((fp = fopen(argv[l], "r")) == NULL) { 

printf("%s can't be opened\n", argv[l]); 
return 1; 

} 

printf(”%s can be opened\n", argv[l]); 
fclose(fp); 
return 0; 

} 

Note that we can use redirection to discard the output of canopen and simply test 

the status value it returns (0 if the file can be opened; 1 if it can’t). 

Temporary Files 

FILE *tmpfile(void); 

char *tmpnam(char *s) ; 

Real-world programs often need to create temporary files—files that exist only as 

long as the program is running. C compilers, for instance, often create temporary 

files. A compiler might first translate a C program to some intermediate form, 

which it stores in a file. The compiler would then read the file later as it translates 

the program to object code. Once the program is completely compiled, there’s no 

need to preserve the file containing the program’s intermediate form. <s tdio . h> 

provides two functions, tmpfile and tmpnam, for working with temporary 

files. 
tmpfile creates a temporary file that will exist until it’s closed or the pro¬ 

gram ends. A call of tmpfile returns a file pointer that can be used to access the 

file later: 

FILE *tempptr; 

tempptr = tmpfile(); /* creates a temporary file */ 

If it fails to create a file, tmpfile returns a null pointer. 

Although tmpfile is easy to use, it has a couple of drawbacks: (1) we don’t 

know the name of the file that tmpfile creates, and (2) we can’t decide later to 

make the file permanent. If these restrictions turn out to be a problem, the alterna¬ 

tive is to create a temporary file using fopen. Of course, we don’t want this file to 

have the same name as a previously existing file, so we need some way to generate 

new file names; that’s where the tmpnam function comes in. 
tmpnam generates a name for a temporary file. If its argument is a null 

pointer, tmpnam stores the file name in a static variable and returns a pointer to it: 
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char *filename; 

filename = tmpnam(NULL); /* creates a temporary file name */ 

Otherwise, tmpnam copies the file name into a character array provided by the 

programmer: 

char filename[L_tmpnam]; 

tmpnam(filename); /* creates a temporary file name */ 

In the latter case, tmpnam also returns a pointer to the name of the temporary file. 

L__tmpnam is a macro in <stdio . h> that specifies how long to make a charac¬ 

ter array that will hold a temporary file name. 

When passing a pointer to tmpnam, be sure that it points to an array of at least 
L_tmpnam characters. Also, be careful not to call tmpnam too often; the 
TMP_MAX macro (defined in <stdio.h>) specifies the maximum number of 
temporary file names that can be generated by tmpnam during the execution of a 

program. 

File Buffering 

int fflush(FILE *stream) ; 

void setbuf(FILE *stream, char *buf); 

int setvbuf(FILE *stream, char *buf, int mode, 

size_t size)? 

Transferring information to or from a disk drive is a relatively slow operation. As a 

result, it isn’t feasible for a program to access a disk file directly each time it wants 

to read or write a character. The secret to achieving acceptable performance is 

buffering: data written to a stream is actually stored in a buffer area in memory; 

when it’s full (or the stream is closed), the buffer is “flushed” (written to the actual 

output device). Input streams can be buffered in a similar way: the buffer contains 

data from the input device; input is read from this buffer instead of the device 

itself. Buffering can result in enormous gains in efficiency, since reading a charac¬ 

ter from a buffer or storing a character in a buffer takes hardly any time at all. Of 

course, it takes time to transfer the buffer contents to or from disk, but one large 

“block move” is much faster than many tiny character moves. 

The functions in <stdio . h> perform buffering automatically when it seems 

advantageous. The buffering takes place behind the scenes, and we usually don’t 

worry about it. On rare occasions, though, we may need to take a more active role. 

If so, we can use the functions f flush, setbuf, and setvbuf. 
fflush When a program writes output to a file, the data normally goes into a buffer 

instead. The buffer is flushed automatically when it’s full or the file is closed. By 
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calling f flush, however, a program can flush a file’s buffer as often as it wishes. 
The call 

fflush(fp); /* flushes buffer for fp */ 

flushes the buffer for the file associated with fp. The call 

fflush(NULL); /* flushes all buffers */ 

flushes all output streams, fflush returns zero if it’s successful and EOF if an 

error occurs. 

setvbuf allows us to change the way a stream is buffered and to control the 

size and location of the buffer. The function’s third argument specifies the kind of 
buffering desired: 

■ _IOFBF (full buffering). Data is read from the stream when the buffer is 

empty or written to the stream when it’s full. 

■ _IOLBF (line buffering). Data is read from the stream or written to the stream 
one line at a time. 

■ _IONBF (no buffering). Data is read from the stream or written to the stream 

directly, without a buffer. 

(All three macros are defined in <stdio . h>.) 

setvbuf’s second argument (if it’s not a null pointer) is the address of the 

desired buffer. The buffer might have static storage duration, automatic storage 

duration, or even be allocated dynamically. Making the buffer automatic would 

allow its space to be reclaimed automatically at block exit; allocating it dynami¬ 

cally would enable us to free the buffer as soon as it’s no longer needed, 

setvbuf’s last argument is the number of bytes in the buffer. A larger buffer may 

give better performance; a smaller buffer saves space. 

For example, the following call of setvbuf changes the buffering of 

stream to full buffering, using the N bytes in the buffer array as the buffer: 

char bufferfN]; 

setvbuf(stream, buffer, _IOFBF, N) ; 

setvbuf must be called after stream is opened but before any other operations 
are performed on it. 

setvbuf returns zero if it’s successful. It returns a nonzero value if the 

requested buffering mode is invalid or can’t be provided. 
setbuf is an older function that assumes default values for the buffering 

mode and buffer size. If buf is a null pointer, the call setbuf (stream, buf) 

is equivalent to 

(void) setvbuf(stream, NULL, _IONBF, 0); 
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Otherwise, it’s equivalent to 

(void) setvbuf(stream, buf, _IOFBF, BUFSIZ); 

where BUFSIZ is a macro defined in <stdio . h>. The setbuf function is con¬ 

sidered obsolete; it’s not recommended for use in new programs. 

A When using setvbuf or setbuf, be sure to close the stream before its buffer is 

deallocated. 

Miscellaneous File Operations 

int remove(const char * filename); 

int rename(const char *old, const char *new); 

The functions remove and rename allow a program to perform basic file man¬ 

agement operations. Unlike most other functions in this section, remove and 

rename work with file names instead of file pointers. Both functions return zero 

if they succeed and a nonzero value if they fail. 

remove remove deletes a file: 

remove("foo"); /* deletes the file named "foo" */ 

If a program uses f open (instead of tmpf ile) to create a temporary file, it can 

use remove to delete the file before the program terminates. Be sure that the file 

to be removed has been closed; the effect of removing a file that s currently open is 

implementation-defined. 
rename rename changes the name of a file: 

rename("foo", "bar"); /* renames "foo" to "bar" */ 

rename is handy for renaming a temporary file created using f open if a program 

should decide to make it permanent. If a file with the new name already exists, the 

effect is implementation-defined. 

A If the file to be renamed is open, be sure to close it before calling rename; a file 

can’t be renamed if it’s open. 

22.3 Formatted I/O 

In this section, we’ll examine library functions that use format strings to control 

reading and writing. These functions, which include our old friends printf and 

scant, have the ability to convert data from character form to numeric form dur- 
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ing input and from numeric form to character form during output. None of the 

other I/O functions can do such conversions. 

The ...print f Functions 

int fprintf (FILE *streain, const char *format, ...); 

int printf(const char *format, ...); 

fprintf The fprintf and printf functions write a variable number of data items 

printf to an output stream, using a format string to control the appearance of the output, 

ellipsis >26. i The prototypes for both functions end with the ... symbol (an ellipsis), which 

indicates a variable number of additional arguments. Both functions return the 

number of characters written; a negative return value indicates that an error 
occurred. 

The only difference between printf and fprintf is that printf always 

writes to stdout (the standard output stream), while fprintf writes to the 

stream indicated by its first argument: 

printf("Total: %d\n", total); /* writes to stdout */ 

fprintf(fp, "Total: %d\n", total); /* writes to fp */ 

A call of printf is equivalent to a call of fprintf with stdout as the first 

argument. 

Don’t think of fprintf as merely a function that writes data to disk files, 

though. Like many functions in <stdio . h>, fprintf works fine with any out¬ 

put stream. In fact, one of the most common uses of fprintf—to write error 

messages to stderr, the standard error stream—has nothing to do with disk files. 

Here’s what such a call might look like: 

fprintf(stderr, "Error: data file can't be opened.\n"); 

Writing the message to stderr guarantees that it will appear on the screen even 

if the user redirects stdout. 

There are two other functions in <s tdio . h> that can write formatted output 

v...printffunctions>26.i to a stream. These functions, named vfprintf and vprintf, are fairly 

obscure. Both rely on the va_list type, defined in <stdarg.h>, so they’re 

discussed along with that header. 

...printf Conversion Specifications 

Both printf and fprintf require a format string containing ordinary charac¬ 

ters and/or conversion specifications. Ordinary characters are printed as is; con¬ 

version specifications describe how the remaining arguments are to be converted 

to character form for display. Section 3.1 described conversion specifications 

briefly, and we added more details in later chapters. We’ll now review what we 

know about conversion specifications and fill in the remaining gaps. 
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A ...print f conversion specification consists of the % character, followed by 

as many as five distinct items: 

conversion 
flags precision specifier 

1 1 1 
9- x> #0 12 . 5 L g 

r g 
minimum size 

field width modifier 

Here’s a detailed description of these items, which must appear in the order shown: 

■ Flags (optional; more than one permitted). The - flag causes left justification 

within a field; the other flags affect the way numbers are printed. Table 22.4 

gives a complete list of flags. 

Table 22.4 
Flags for ...printf 

Functions 

Flag Meaning 

- Left-justify within field. 

+ Positive signed numbers begin with +. 

space Positive signed numbers are prefixed by a space. (The + flag overrides the 

space flag.) 

# Octal numbers begin with 0, hex numbers with Ox or OX. Floating-point num¬ 
bers always have a decimal point. Trailing zeros aren’t removed from numbers 

printed with the g or G conversions. 

0 
(zero) 

Numbers are padded with leading zeros up to the field width. The 0 flag is 
ignored if the conversion is d, i, o, u, x, or X and a precision is specified. (The 

- flag overrides the 0 flag.) 

■ Minimum field width (optional). An item that’s too small to occupy this num¬ 

ber of characters will be padded. (By default, spaces are added to the left of 

the item, thus right-justifying it within the field.) An item that’s too large for 

the field width will still be displayed in its entirety. The field width is either an 

integer or the character *. If * is present, the field width is obtained from the 

next argument. 

■ Precision (optional). The meaning of the precision depends on the conver¬ 

sion: 

d, i, o, u, x, X: 

e, E, f: 

g, G: 

s: 

minimum number of digits 

(leading zeros are added if the number has fewer digits) 

number of digits after the decimal point 

maximum number of significant digits 

maximum number of characters 

The precision is a period (.) followed by an integer or the character *. If * is 

present, the precision is obtained from the next argument. If only the period is 

present, the precision is zero. 
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■ One of the letters h, 1, or L (optional). When used to display an integer, the 

letter h indicates that it is short; 1 indicates that the integer is long. When 

used with e, E, f, g, or G, the letter L indicates a long double argument. 

■ Conversion specifier. The conversion specifier must be one of the characters 

listed in Table 22.5. Notice that f, e, E, g, and G are all designed to write 

double values. However, they work fine with float values as well; thanks 

default argument promotions >9.3 to the default argument promotions, float arguments are converted auto¬ 

matically to double when passed to a function with a variable number of 

arguments. Similarly, a character passed to ...printf is converted automati¬ 

cally to int, so the c conversion works properly. 

Table 22.5 
Conversion Specifiers for 

...print f Functions 

Conversion Specifier Meaning 

d, i Converts a signed integer to decimal form. 

o, u, x, X Converts an unsigned integer to base 8 (o), base 10 (u), or base 
16 (x, X). x displays the hex digits a-f in lower case; X dis¬ 
plays them in upper case. 

f Converts a double value to decimal form, putting the decimal 
point in the correct position. If no precision is specified, dis¬ 
plays six digits after the decimal point. 

e, E Converts a double value to scientific notation. If no precision 
is specified, displays six digits after the decimal point. If e is 
chosen, the exponent is preceded by the letter e; if E is chosen, 
the exponent is preceded by E. 

g, G g converts a double value to either f form or e form, e form 
is selected only if the number’s exponent is less than -4 or 

greater than or equal to the precision. Trailing zeros are not dis¬ 
played; a decimal point appears only when followed by a digit. 
G chooses between f and E forms. 

c Displays an int value as an unsigned character. 

s Writes the characters pointed to by the argument. Stops writing 
when the precision (if present) is reached or a null character is 
encountered. 

p Converts a void * value to printable form. 

n The matching argument must be a pointer to an int (a short 

int if h precedes n; a long int if 1 precedes n). Stores into 
this integer the number of characters written so far by this call 
of .. .printf; produces no output. 

% Writes the character %. 

Be careful to follow the rules described here; the effect of using an invalid 

conversion specification is undefined. 

Many plausible-looking conversion specifications (like %le, %lf, and %lg) 

aren’t valid. 



490 Chapter 22 Input/Output 

Examples of ...print f Conversion Specifications 

Whew! It’s about time for a few examples. We’ve seen plenty of everyday conver¬ 

sion specifications in previous chapters, so we’ll concentrate here on illustrating 

some of the more advanced ones. As in previous chapters, I’ll use • to represent 

the space character. 
Let’s start off by examining the effect of flags on the %d conversion (they 

have a similar effect on other conversions). The first line of Table 22.6 shows the 

effect of %8d without any flags. The next four lines show the effect of the -, +, 

space, and 0 flags (the # flag is never used with %d). The remaining lines show the 

effect of combinations of flags. 

Table 22.6 
Effect of Flags on the %d 

Conversion 

Table 22.7 
Effect of the # Flag 

Conversion 
Specification 

Result of Applying 
Conversion to 123 

Result of Applying 
Conversion to -123 

%8d .123 . • • *-123 

%-8d 123. -123*••• 

% + 8d •••-+123 • • • *-123 

% 8d .123 .••.-123 

%08d 00000123 -0000123 

%- + 8d +123*••• -123* • •• 

%- 8d • 123•••• -123* • • • 

% + 0 8 d +0000123 -0000123 

% 08d •0000123 -0000123 

Table 22.7 shows the effect of the # flag on the o, x, X, g, and G conversions. 

(# can also be used with e, E, and f, but that’s extremely rare.) 

Conversion Result of Applying Result of Applying 
Specification Conversion to 123 Conversion to 123.0 

%8o .173 
%#8o ••••0173 

%8x .7b 
%#8x .... 0x7b 

%8X .7B 
%#8X ....0X7B 

%8g  123 
%#8g •123.000 

%8G  123 
%#8G *123.000 

In previous chapters, we’ve used the minimum field width and precision to 

display numbers, so there’s no point in more examples here. Instead, Table 22.8 

shows the effect of the minimum field width and precision on the %s conversion. 

Table 22.9 illustrates how the %g conversion displays some numbers in %e 

form and others in %f form. All numbers in the table were written using the % . 4g 

conversion specification. The first two numbers have exponents of at least 4, so 

they’re displayed in %e form. The next eight numbers are displayed in %f form. 

The last two numbers have exponents less than -4, so they’re displayed in %e 

form. 
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Table 22.8 
Effect of Minimum Field 

Width and Precision on 
the %s Conversion 

Conversion 
Specification 

Result of Applying 
Conversion to 

"bogus" 

Result of Applying 
Conversion to 
"buzzword" 

%6s •bogus buzzword 
%-6s bogus• buzzword 
%. 4s bogu buzz 

%6.4s •*bogu •*buzz 
%-6,4s bogu*• buzz•• 

Table 22.9 
Examples of the %g 

Conversion 
Number 

Result of Applying %. 4g 
Conversion to Number 

123456. 1.235e+05 
12345.6 1.235e+04 

1234.56 1235 
123.456 123.5 

12.3456 12.35 
1.23456 1.235 
.123456 0.1235 
.0123456 0.01235 
.00123456 0.001.235 
.000123456 0.0001235 
.0000123456 1.235e-05 
.00000123456 1.235e-06 

In the past, we’ve assumed that the minimum field width and precision were 

constants embedded in the format string. Putting the * character where either num¬ 

ber would normally go allows us to specify it as an argument after the format 

string. For example, the following calls of print f all produce the same output: 

printf("%6.4d", i) r 

printf("%*.4d", 6, i) 

printf("%6.*d", 4, i) 

printf("%*.*d", 6, 4, 

Notice that the values to be filled in for the * come just before the value to be dis¬ 

played. A major advantage of *, by the way, is that it allows us to use a macro to 

specify the width or precision: 

printf("%*d", WIDTH, i); 

We can even compute the width or precision during program execution: 

printf("%*d", page_width/num_cols, i); 

The most unusual specifications are %p and %n. The %p conversion allows us 

to print the value of a pointer: 

printf("%p\n", (void *) ptr); /* displays value of ptr */ 

Although %p is occasionally useful during debugging, it’s not a feature that most 

programmers use on a daily basis. The C standard doesn’t specify what a pointer 
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looks like when printed using %p, but it’s likely to be shown as an octal or hexa¬ 

decimal number. 
The %n conversion is used to find out how many characters have been printed 

so far by a call of ...print f. For example, after the call 

printf ("%d%n\n" , 123, Sclen) ; 

the value of len will be 3, since printf had written 3 characters (123) by the 

time it reached %n. Notice that & must precede len (since %n requires a pointer), 

and that len itself isn’t printed. 

The ...scanf Functions 

int fscanf(FILE *stream, const char *format, ...); 

int scanf(const char *format, ...); 

fscanf f scanf and scanf read data items from an input stream, using a format string to 

scanf indicate the layout of the input. After the format string, any number of pointers fol¬ 

low as additional arguments. Input items are converted (according to conversion 

specifications in the format string) and stored at the locations indicated by the 

pointers. 
scanf always reads from stdin (the standard input stream), while fscanf 

reads from the stream indicated by its first argument: 

scanf("%d%d", &i, &j); /* reads from stdin */ 

fscanf(fp, "%d%d", &i, &j); /* reads from fp */ 

A call of scanf is equivalent to a call of fscanf with stdin as the first argu¬ 

ment. 
The ...scanf functions return prematurely if an input failure occurs (no more 

input characters could be read) or if a matching failure occurs (the input charac¬ 

ters didn’t match the format string). Both functions return the number of data items 

that were read and assigned to arguments; they return EOF if an input failure 

occurred before any data items could be read. 
Loops that test scanf’s return value are common in C programs. The follow¬ 

ing loop, for example, reads a series of integers one by one, stopping at the first 

sign of trouble: 

idiom while (scanf ("%d", &i) == 1) { 

} 

...scanf Format Strings 

Calls of the ...scanf functions resemble those of the ...printf functions. That 

similarity can be misleading, however; the ...scanf functions work quite differ¬ 

ently from the ...printf functions. It pays to think of scanf and fscanf as 
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white-space characters >3.2 

“pattern-matching” functions. The format string represents a pattern that a 

...scanf function attempts to match as it reads input. If the input doesn’t match 

the format string, the function returns as soon as it detects the mismatch; the input 

character that didn’t match is “pushed back” to be read in the future. 

A ...scanf format string may contain three types of information: 

■ Conversion specifications. Conversion specifications in a ...scanf format 

string resemble those in a ...print f format string. Most conversion specifica¬ 

tions skip white-space characters at the beginning of an input item (the excep¬ 

tions are %[, %c, and %n). Conversion specifications never skip trailing 

white-space characters, however. If the input contains • 12 3 n, the %d conver¬ 

sion specification consumes •, 1, 2, and 3, but leaves h unread. (I’m using • 

to represent the space character and a to represent the new-line character.) 

■ White-space characters. One or more consecutive white-space characters in a 

...scanf format string match zero or more white-space characters in the input 

stream. 

■ Non-white-space characters. A non-white-space character other than % 

matches the same character in the input stream. 

For example, the format string "ISBN %d-%d-%ld-%d" specifies that the 

input will consist of: 

the letters ISBN 

possibly some white-space characters 

an integer 

the - character 

an integer (possibly preceded by white-space characters) 

the - character 
a long integer (possibly preceded by white-space characters) 

the - character 
an integer (possibly preceded by white-space characters) 

...scanf Conversion Specifications 

Conversion specifications for ...scanf functions are actually a little simpler than 

those for ...printf functions. A ...scanf conversion specification consists of the 

character % followed by the items listed below (in the order shown). 

■ * (optional). The presence of * signifies assignment suppression: an input 

item is read but not assigned to a variable. Items matched using * aren’t 

included in the count that ...scanf returns. 

■ Maximum field width (optional). The maximum field width limits the number 

of characters in an input item; conversion of the item ends if this number is 

reached. White-space characters skipped at the beginning of a conversion 

don’t count. 
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Table 22.10 
Conversion Specifiers for 

...scanf Functions 

■ One of the letters h, 1, or L (optional). When used to read an integer, the let¬ 

ter h indicates that the matching argument is a pointer to a short integer; 1 

indicates a pointer to a long integer. When used with e, E, f, g, or G, the let¬ 

ter 1 indicates that the argument is a pointer to double; L indicates a pointer 

to long double. 

■ Conversion specifier. The conversion specifier must be one of the characters 

listed in Table 22.10. 

Conversion 
Specifier Meaning 

d Matches a decimal integer. 

i Matches an integer. The number is assumed to be decimal unless it 
begins with 0 (indicating octal) or with Ox or OX (hex). 

o Matches an octal integer; the corresponding argument is assumed to be a 

pointer to unsigned int. 

u Matches a decimal integer; the corresponding argument is assumed to be 

a pointer to unsigned int. 

X, X Matches a hexadecimal integer; the corresponding argument is assumed 

to be a pointer to unsigned int. 

e, E, f, g, G Matches a float value. 

s Matches a sequence of non-white-space characters, then adds a null 

character at the end. 

[ Matches a nonempty sequence of characters from a scanset (explained 

later), then adds a null character at the end. 

c Matches n characters, where n is the maximum field width. If no field 
width is specified, matches one character. Doesn’t add a null character at 

the end. 

p Matches a pointer value in the form that .. .printf might have written 

it. 

n The corresponding argument must point to a variable of type int 
(short int if h precedes n; long int if 1 precedes n). Stores into 
this variable the number of characters read so far. No input is consumed 
and the return value of .. .scanf isn’t affected. 

% Matches the character %. 

Numeric data items can always begin with a sign (+ or -). The o, u, x, and X 

specifiers convert the item to unsigned form, however, so they’re not normally 

used to read negative numbers. 
The [ specifier is a more complicated (and more flexible) version of the s 

specifier. A complete conversion specification using [ has the form %\set] or 

% [Aset], where set can be any set of characters. (If ] is one of the characters in 

set, however, it must come first.) %[set] matches any sequence of characters in set 

(the scanset). % [Aset] matches any sequence of characters not in set (in other 

words, the scanset consists of all characters not in set). For example, % [abc] 

matches any string containing only the letters a, b, and c, while %[Aabc] 

matches any string that doesn’t contain a, b, or c. 
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string conversion functions >26.2 

Table 22.11 

Correspondence between 

...scanf Conversion 

Specifiers and String 

Conversion Functions 

Table 22.12 

scanf Examples 

(Group 1) 

Many of the ...scanf conversion specifiers are closely related to the string 

conversion functions in <stdlib.h>. These functions convert strings (like 

" -2 97 ") to their equivalent numeric values (-297). The d specifier, for example, 

looks for an optional + or - sign, followed by a series of decimal digits; this is 

exactly the same form that the strtol function requires when asked to convert a 

string to a decimal number. Table 22.11 shows the correspondence between con¬ 

version specifiers and string conversion functions. 

Conversion 
Specifier String Conversion Function 

d strtol with 10 as the base 
i strtol with 0 as the base 
o strtoul with 8 as the base 
u strtoul with 10 as the base 

x, X strtoul with 16 as the base 
e, E, f, g, G strtod 

It pays to be careful when writing calls of scanf. An invalid conversion 

specification in a scanf format string is just as bad as one in a print f format 

string; either one causes undefined behavior. 

scanf Examples 

In each of the examples to come, we’ll apply a call of scanf to the input charac¬ 

ters shown to its right. Characters printed in strikeout are consumed by the call. 

The values of the variables after the call appear to the right of the input. 

The examples in Table 22.12 show the effect of combining conversion specifi¬ 

cations, white-space characters, and non-white-space characters. The examples in 

Table 22.13 show the effect of assignment suppression and specifying a field 

width. The examples in Table 22.14 illustrate the more esoteric conversion specifi¬ 

ers (i, [, and n). 

scanf Call Input Variables 

n = scanf( "%d%d", &i, ) ; 43-, «34n n: 1 
i: 12 

j:? 

n = scanf( "%d,%d", &i, & j) ; 43-. , *34h n: 1 
i: 12 

j: ? 

n = scanf( "%d ,%d", &i , & j ) ; 12», ♦ 34p n: 2 
i: 12 

j: 34 

n = scanf( "%d, %d", &i / & j ) ; 43., •3 4h n: 1 
i: 12 

j:? 
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Table 22.13 
scanf Examples 

(Group 2) 

scanf Call Input Variables 

n = scanf("%*d%d", Sci); 12♦34h n: 1 

i: 34 

n = scanf("%*s%s", str); My•Fair•Ladya n: 1 

str: "Fair" 

n = scanf("%ld%2d%3d", 

Sci, & j , &k); 

123 4-5-n n: 3 

i: 1 

j: 23 
k: 45 

n = scanf("%2d%2s%2d", 

&i, str, Scj ) ; 

12 34-5-6-a n: 3 

i: 12 

str: 

j: 56 

"34" 

Table 22.14 
scanf Examples 

(Group 3) 

scanf Call Input Variables 

n = scanf( " %i%i%i", Sci, Sc j , Sck) ; 12 » 012 » Oxl-2-n n: 3 

i: 12 

j: 10 

k: 18 

n = scanf( "% [0123456789] ", str); 123abcn n: 1 

str: " 123 " 

n = scanf( "% [0123456789]", str); abcl23n n: 0 

str: ? 

n = scanf( "% [A0123456789] " , str); abcl23a n: 1 

str: "abc" 

n = scanf( " %*d%d%n" , Sci , Sc j ) ; 10 »2 0«3 On n: 1 

i: 20 

j: 5 

Detecting End-of-File and Error Conditions 

void clearerr(FILE * stream); 

int feof(FILE *stream); 

int ferror(FILE *stream); 

If we ask a ...scanf function to read and store n data items, we expect its return 

value to be n. If the return value is less than n, something went wrong. There are 

three possibilities: 

■ End of file. The function encountered end-of-file before matching the format 

string completely. 

■ Error. An error occurred that was beyond the control of the function. 

■ Matching failure. A data item was in the wrong format. For example, the 

function might have encountered a letter while searching for the first digit of 

an integer. 
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clearerr 

Q&A 
feof 

terror 

But how can we tell which kind of failure occurred? In many cases, it doesn’t mat¬ 

ter; something went wrong, and we’ve got to abandon the program. There may be 

times, however, when we’ll need to pinpoint the reason for the failure. 

Every stream has two indicators associated with it: an error indicator and an 

end-of-file indicator. These indicators are cleared when the stream is opened, and 

one or the other is set when an operation on the stream fails. Not surprisingly, 

encountering end-of-file sets the end-of-file indicator, and an error sets the error 

indicator. A matching failure, however, doesn’t change either indicator. 
Once the error or end-of-file indicator is set, it remains in that state until it’s 

explicitly cleared, perhaps by a call of the clearerr function, clearerr clears 

both the end-of-file and error indicators: 

clearerr(fp); /* clears eof and error indicators for fp */ 

clearerr isn’t needed often, since some of the other library functions clear one 

or both indicators as a side effect. 
Although we don’t have direct access to the error and end-of-file indicators, 

we can call the feof and f error functions to test a stream’s indicators to deter¬ 

mine why a prior operation on the stream failed. The call feof (fp) returns a 

nonzero value if the end-of-file indicator is set for the stream associated with fp. 

The call f error (fp) returns a nonzero value if the error indicator is set. Both 

functions return zero otherwise. 

When scanf returns a smaller-than-expected value, we can use feof and 

f err or to determine the problem. If feof returns a nonzero value, we’ve 

reached the end of the input file. If f err or returns a nonzero value, an error 

occurred during input. If neither returns a nonzero value, a matching failure must 

have occurred. Regardless of what the problem was, the return value of scanf 

tells us how many data items were read before the problem occurred. 

To see how feof and ferror might be used, let’s write a function that 

searches a file for a line that begins with an integer. Here’s how we intend to call 

the function: 

n = find_int("foo", &i) ; 

" foo" is the name of the file to be searched, i will be assigned the value of the 

integer, and n will be assigned the line number on which the integer was found. If 

a problem arises (the file can’t be opened, an input error occurs, or no line begins 

with an integer), f ind_int will return an error code (-1, -2, or -3, respectively). 

int find_int(const char *filename, int *ptr) 

{ 
FILE *fp = fopen(filename, "r"); 

int line = 1; 

if (fp == NULL) 

return -1; /* can't open file */ 
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while (fscanf(fp, "%d", 

if (ferror(fp)) { 

fclose(fp); 

return -2; 

} 
if (feof(fp)) { 

fclose(fp); 

return -3; 

} 
fscanf(fp, "% *[A\n]") 

line++; 

} 

fclose(fp); 

return line; 

} 

In the while expression, f ind_int calls f scanf in an attempt to read an inte¬ 

ger from the file. If the attempt fails (f scanf returns a value other than 1), 

f ind_int calls ferror and feof to see if the problem was an input error or 

end-of-file. If not, f scanf must have failed because of a matching error, so 

f ind_int skips the rest of the characters on the current line, increments the line 

count, and tries again. Note the use of the conversion %* [ A\n] to skip all charac¬ 

ters up to the next new-line. (Now that we know about scansets, it’s time to show 

off!) 

ptr) != 1) { 

/* input error */ 

/* integer not found */ 

/* skips rest of line */ 

22.4 Character I/O 

In this section, we’ll examine library functions that read and write single charac¬ 

ters. These functions work equally well with both text streams and binary streams. 

You’ll notice that the functions in this section treat characters as values of type 

int, not char. One reason is that the input functions indicate an end-of-file (or 

error) condition by returning EOF, which is a negative integer constant. 

Output Functions 

int fputc(int c, FILE * stream) ; 

int putc(int c, FILE *stream); 

int putchar(int c); 

putchar putchar writes one character to the stdout stream: 

putchar(ch); /* writes ch to stdout */ 

fputc fputc and putc are more general versions of putchar that write a character to 

Putc an arbitrary stream: 
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fputc(ch, fp); /* writes ch to fp */ 

putc(ch, fp); /* writes ch to fp */ 

Although putc and fputc do the same thing, putc is usually implemented 

as a macro and fputc as a function, putchar is normally a macro as well: 

#define putchar(c) putc((c), stdout) 

It may seem odd that the library provides both putc and fputc. But, as we saw 

in Section 14.3, macros have several potential problems. Although programmers 

usually prefer putc, which gives a faster program, fputc is available as an alter- 
Q&A 

If an error occurs, all three functions set the error indicator for the stream and 

return EOF; otherwise, they return the character that was written. 

Input Functions 

int fgetc(FILE *stream); 
int getc(FILE *stream); 

int getchar(void); 

int ungetc(int c, FILE *stream); 

getchar getchar reads a character from the stdin stream: 

ch = getchar(); /* reads a character from stdin */ 

fgetc fgetc and getc read a character from an arbitrary stream: 
getc 

ch = fgetc(fp); /* reads a character from fp */ 

ch = getc(fp); /* reads a character from fp */ 

Although getc and fgetc do the same thing, getc is usually implemented 

as a macro, while fgetc is a function, getchar itself is usually a macro defined 

in the following way: 

#define getchar() getc(stdin) 

For reading characters from a file, programmers usually prefer getc over fgetc. 

Since getc is a macro, it tends to be faster, fgetc is available as a backup if 

getc isn’t appropriate. 

All three functions behave the same if a problem occurs. At end-of-file, they 

set the stream’s end-of-file indicator and return EOF. If an error occurs, they set the 

stream’s error indicator and return EOF. To differentiate between the two, we can 

call either feof or terror. 

One of the most common uses of fgetc, getc, and getchar is to read 

characters from a file, one by one, until end-of-file occurs. It’s customary to use 

the following while loop for that purpose: 
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idiom 

A 
Q&A 

ungetc 

isdigit function >23.4 

file-positioning functions >22.7 

PROGRAM 

fcopy.c 

while ((ch = getc(fp)) != EOF) { 

} 

After reading a character from the file associated with f p and storing it in the vari¬ 

able ch (which must be of type int), the test condition compares ch with EOF. If 

ch isn’t equal to EOF, we’re not at the end of the file yet, so the body of the loop is 

executed. If ch is equal to EOF, the loop terminates. 

When reading from a file, always store the return value of fgetc, getc, or 
getchar into an int variable, not a char variable. Testing a char variable 
against EOF may give the wrong result. 

There’s one other character input function, ungetc, which “puts back” a 

character read from a stream and clears the stream’s end-of-file indicator. This 

capability can be handy if we need a “lookahead” character during input. For 

instance, to read a series of digits, stopping at the first nondigit, we could write 

while (isdigit(ch = getchar())) { 

} 
ungetc(ch, fp); /* puts back last value of ch */ 

The number of characters that can be pushed back by consecutive calls of 

ungetc—with no intervening read operations—depends on the implementation 

and the type of stream involved; only the first call is guaranteed to succeed. Call¬ 

ing a file-positioning function (fseek, fsetpos, or rewind) causes the 

pushed-back characters to be lost. 
ungetc returns the character it was asked to push back. It returns EOF if an 

attempt is made to push back too many characters before another read or file¬ 

positioning operation. 

Copying a File 

The following program makes a copy of a file. The names of the original file and 

the new file will be specified on the command line when the program is executed. 

For example, to copy the file f 1. c to f 2 . c, we’d use the command 

fcopy f1.c f2.c 

f copy will issue an error message if there aren’t exactly two file names on the 

command line or if either file can’t be opened. 

/* Copies a file */ 

ttinclude <stdio.h> 

#include <stdlib.h> 
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main(int argc, char *argv[]) 

{ 
FILE *source_fp, *dest_fp; 

int ch; 

if (argc != 3) { 

fprintf(stderr, "usage: fcopy source dest\n"); 

exit(EXIT_FAILURE); 

} 

if ( (source_fp = fopen(argv[1], "rb")) == NULL) { 

fprintf(stderr, "Can't open %s\n", argvfl]); 

exit(EXIT_FAILURE); 

} 

if ((dest_fp = fopen(argv[2], "wb")) == NULL) { 

fprintf(stderr, "Can't open %s\n", argv[2]); 

fclose(source_fp); 

exit(EXIT_FAILURE); 

} 

while ((ch = getc(source_fp)) != EOF) 

putc(ch, dest_fp); 

fclose(source_fp); 

fclose(dest_fp); 

return 0; 

} 

Using "rb" and "wb" as the file modes enables fcopy to copy both text 

and binary files. If we used " r" and "w" instead, the program wouldn’t necessar¬ 

ily be able to copy binary fdes. 

22.5 Line I/O 

We’ll now turn to library functions that read and write lines. These functions are 

used mostly with text streams, although it’s also legal to use them with binary 

streams. 

Output Functions 

int fputs(const char *s, FILE ‘stream); 

int puts(const char *s); 

puts We encountered the puts function in Section 13.3; it writes a string of characters 

to stdout: 

puts("Hi, there!"); /* writes to stdout */ 
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After it writes the characters in the string, puts always adds a new-line character. 
fputs fputs is a more general version of puts. Its second argument indicates the 

stream to which the output should be written: 

fputs("Hi, there!", fp); /* writes to fp */ 

Unlike puts, the fputs function doesn’t write a new-line character unless one is 

present in the string. 
Both functions return EOF if an error occurs; otherwise, they return a nonneg¬ 

ative number. 

Input Functions 

char *fgets(char *s, 

char *gets(char *s); 

int n, FILE *stream) 

gets We encountered gets in Section 13.3; it reads a string of characters from stdin: 

gets(str); /* reads a line from stdin */ 

gets reads characters one by one, storing them in the string, until it reads a new- 

line character, which it discards. 
fgets fgets is a more general version of gets that can read from any stream, 

f gets is also safer than gets, since it limits the number of characters that it will 

store. Here’s how we might use fgets, assuming that str is the name of a char¬ 

acter array: 

fgets(str, sizeof(str), fp) /* reads a line from fp */ 

In response to this call, fgets will read characters one by one, stopping at the 

first new-line character or when sizeof (str) - 1 characters have been read, 

whichever happens first. If it reads the new-line character, fgets stores it along 

with the other characters. (Thus, gets never stores the new-line character, but 

fgets sometimes does.) 
Both gets and fgets return a null pointer if an error occurs or they reach 

the end of the input stream before storing any characters. (As usual, we can use 

f eof or terror to determine which one it was.) Otherwise, both return a pointer 

to the string read. As you’d expect, both functions store a null character at the end 

of the string. 
Now that you know about fgets, I’d suggest using it instead of gets in 

most situations. With gets, there’s always the possibility of stepping outside the 

bounds of the receiving array, so it’s safe to use only when the string being read is 

guaranteed, to fit into the array. When there’s no guarantee (and there usually 

isn’t), it’s much safer to use fgets. Note that fgets will read from the standard 

input stream if passed stdin as its third argument: 

fgets(str, sizeof(str), stdin); 
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22.6 Block I/O 

size_t fread(void *ptr, size_t size, size_t nmemb, 

FILE ^stream); 

size_t fwrite(const void *ptr, size_t size, 

size_t nmemb, FILE *stream); 

Q&A 
fwrite 

The f read and fwrite functions allow a program to read and write large blocks 

of data in a single step, fread and fwrite are used primarily with binary 

streams, although—with care—it’s possible to use them with text streams as well. 
fwrite is designed to copy an array from memory to a stream. The first 

argument in a call of fwrite is the array’s address, the second argument is the 

size of each array element (in bytes), and the third argument is the number of ele¬ 

ments to write. The fourth argument is a file pointer, indicating where the data 

should be written. To write the entire contents of the array a, for instance, we 

could use the following call of fwrite: 

fwrite(a, sizeof(a[0]), sizeof(a)/sizeof(a[0]), fp) ; 

There’s no rule that we have to write the entire array; we could just as easily write 

any portion of it. fwrite returns the number of elements (not bytes) actually 

written. This number will be less than the third argument if a write error occurs. 
fread fread will read the elements of an array from a stream, f read’s arguments 

are similar to fwrite’s: the array’s address, the size of each element (in bytes), 

the number of elements to read, and a file pointer. To read the contents of a file into 

the array a, we might use the following call of fread: 

n = fread(a, sizeof(a[0]), sizeof(a)/sizeof(a[0]), fp); 

It’s important to check f read’s return value, which indicates the actual number of 

elements (not bytes) read. This number should equal the third argument unless the 

end of the input file was reached or an error occurred. The feof and ferror 

functions can be used to determine the reason for any shortage. 

Be careful not to confuse f read’s second and third arguments. Consider the fol¬ 
lowing call of fread: 

fread(a, 1, 100, fp) 

We’re asking fread to read 100 one-byte elements, so it will return a value 
between 0 and 100. The following call asks fread to read one block of 100 bytes: 

fread(a, 100, 1, fp) 

f read’s return value in this case will be either 0 or 1. 
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fwrite is convenient for a program that needs to store data in a file before 

terminating. Later, the program (or another program, for that matter) can use 

f read to read the data back into memory. Despite appearances, the data doesn’t 

need to be in array form; fread and fwrite work just as well with variables of 

all kinds. Structures, in particular, can be read by fread or written by fwrite. 

To write a structure variable s to a file, for instance, we could use the following 

call of fwrite: 

fwrite(&s, sizeof(s), 1, fp); 

22.7 File Positioning 

int fgetpos(FILE *stream, fpos_t *pos); 

int fseek(FILE *stream, long int offset, int whence); 

int fsetpos(FILE *stream, const fpos_t *pos); 

long int ftell(FILE *stream); 

void rewind(FILE *stream); 

Every stream has an associated file position. When a file is opened, the file posi¬ 

tion is set either at the beginning of the file or the end, depending on the mode. 

Then, when a read or write operation is performed, the file position advances auto¬ 

matically, allowing us to move through the file in a sequential manner. 

Although sequential access is fine for many applications, some programs need 

the ability to jump around within a file, accessing some data here and other data 

there. If a file contains a series of records, for example, we might want to jump 

directly to a particular record and read it or update it. <stdio. h> supports this 

form of access by providing five functions that allow a program to determine the 

current file position or to change it. 
fseek The f seek function changes the file position associated with the first argu¬ 

ment (a file pointer). The third argument specifies whether the new position is to 

be calculated with respect to the beginning of the file, the current position, or the 

end of the file. <stdio .h> defines three macros for this purpose: 

SEEK_SET beginning of file 

SEEK_CUR current file position 

SEEK_END end of file 

The second argument is a (possibly negative) byte count. To move to the beginning 

of a file, for example, the seek direction would be SEEK_SET &nd the byte count 

would be zero: 

fseek(fp, 0L, SEEK_SET); /* moves to beginning of file */ 

To move to the end of a file, the seek direction would be SEEK_END: 



22.7 File Positioning 505 

fseek(fp, 0L, SEEK_END); /* moves to end of file */ 

To move back 10 bytes, the seek direction would be SEEK_CUR and the byte 
count would be -10: 

fseek(fp, -10L, SEEK_CUR); /* moves back 10 bytes */ 

Note that the byte count has type long int, so I’ve used 0L and -10L as argu¬ 

ments. (0 and -10 would also work, of course, since arguments are converted to 
the proper type automatically.) 

Normally, fseek returns zero. If an error occurs (if the requested position 
doesn’t exist, for example), fseek returns a nonzero value. 

The file-positioning functions are best used with binary streams, by the way. C 

doesn’t prohibit programs from using them with text streams, but care is required 

because of operating system differences. Because of these differences, fseek is 

sensitive to whether a stream is text or binary. For text streams, either (1) offset 

(f seek’s second argument) must be zero or (2) whence (its third argument) must 

be SEEK_SET and offset a value obtained by a previous call of ftell. (In 

other words, we can only use fseek to move to the beginning or end of a file or to 

return to a place that was visited previously.) For binary streams, fseek isn’t 

required to support calls in which whence is SEEK_END. 

ftell The ftell function returns the current file position as a long integer. (If an 

error occurs, ftell returns -1L and stores an error code in errno.) The value 

returned by ftell may be saved and later supplied to a call of fseek, making it 

possible to return to a previous file position: 

long int file_pos; 

file_pos = ftell(fp); /* saves current position */ 

fseek(fp, file_pos, SEEK_SET); /* returns to old position */ 

rewind 

fgetpos 
fsetpos 

Q&A 

If fp is a binary stream, the call ftell ( fp) returns the current file position as a 

byte count, where zero represents the beginning of the file. (If f p is a text stream, 

however, ftell (fp) isn’t necessarily a byte count. As a result, it’s best not to 

perform arithmetic on values returned by ftell. For example, it’s not a good idea 

to subtract values returned by ftell to see how far apart two file positions are.) 
The rewind function sets the file position at the beginning. The call 

rewind (fp) is nearly equivalent to fseek ( fp, 0L, SEEK_SET); the differ¬ 

ences are that rewind doesn’t return a value, but does clear the error indicator for 

fp. 
fseek and ftell have one problem: they’re limited to files whose positions 

can be stored in a long integer. For working with very large files, Standard C pro¬ 

vides two additional functions: fgetpos and fsetpos. These functions can 

handle large files because they use values of type fpos_t to represent file posi¬ 

tions. An fpos_t value isn’t necessarily an integer; it could be a structure, for 

instance. 
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The call fgetpos(fp, &file_pos) stores the file position associated 

with fp into the file_pos variable. The call fsetpos (fp, &file_pos) 

sets the file position for fp to be the value stored in f ile_pos. (This value must 

have been obtained by a previous call of fgetpos.) If a call of fgetpos or 

fsetpos fails, it stores an error code in errno. Both functions return zero when 

they succeed and a nonzero value when they fail. 
Here’s how we might use fgetpos and fsetpos to save a file position and 

return to it later: 

fpos_t file_pos; 

fgetpos(fp, &file_pos); /* saves current position */ 

fsetpos(fp, &file_pos); /* returns to old position */ 

PROGRAM Modifying a File of Part Records 

The following program reads a binary file of part structures into an array, sets the 

on_hand member of each structure to 0, then writes the structures back to the 

file. Notice that the file is opened for both reading and writing (" rb+"). 

invclear.c /* Modifies a file of part records by setting the quantity 

on hand to zero */ 

#include <stdio.h> 

#include <stdlib.h> 

#define NAME_LEN 25 

#define MAX_PARTS 100 

struct part { 

int number; 

char name[NAME_LEN+1]; 

int on_hand; 

} inventory[MAX_PARTS]; 

int num_parts; 

main() 

{ 
FILE * fp; 

int i ; 

if ((fp = f open (11 invent. dat " , "rb+")) == NULL) { 

fprintf(stderr, "Can't open inventory file\n"); 

exit(EXIT_FAILURE); 

} 

num_parts = fread(inventory, sizeof(struct part), 

MAX_PARTS, fp); 
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22.8 

sprintf 

sscanf 

for (i = 0; i < num_parts; i++) 

inventory [i] . onjiand = 0; 

rewind(fp); 

fwrite(inventory, sizeof(struct part), num_parts, fp) ; 
fclose(fp); 

return 0; 

} 

Calling rewind is critical, by the way. After the f read call, the file position is at 

the end of the file. If we were to call fwrite without calling rewind first, 

fwrite would add new data to the end of the file instead of overwriting the old 
data. 

String I/O 

int sprintf(char *s, const char *format, ...); 

int sscanf(const char *s, const char *format, ...); 

The sprintf and sscanf functions allow us to read and write data using a 

string as though it were a stream. 
sprintf is similar to printf and fprintf, except that it writes output 

into a character array (pointed to by its first argument) instead of a stream, 

sprintf’s second argument is a format string identical to that used by printf 

and fprintf. For example, the call 

sprintf(str, "%d/%d/%d", 9, 20, 94); 

will copy 9/20/94 into str. When it’s finished writing into a string, sprintf 

adds a null character and returns the number of characters stored (not counting the 

null character). 

sprintf has a variety of uses. Sometimes, for example, we might want to 

format data for output without actually writing it. We can use sprintf to do the 

formatting, then save the result in a string until it’s time to produce output, 

sprintf is also convenient for converting numbers to character form. 
sscanf is similar to scanf and f scanf, except that it reads from a string 

(pointed to by its first argument) instead of reading from a stream, sscanf’s sec¬ 

ond argument is a format string identical to that used by scanf and f scanf. 

sscanf is handy for extracting data from a string that was read by another 

input function. For example, we might use fgets to obtain a line of input, then 

pass the line to sscanf for further processing: 

fgets(str, sizeof(str), stdin); /* reads a line of input */ 

sscanf(str, "%d%d", &i, &j); /* extracts two integers */ 
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One advantage of using sscanf instead of scanf or f scanf is that we can 

examine an input line as many times as needed, not just once, making it easier to 

recognize alternate input forms and to recover from errors. Consider the problem 

of reading a date that’s written either in the form month /day /year or month-day- 

year. Assuming that str contains a line of input, we can extract the month, day, 

and year as follows: 

if (sscanf(str, "%d /%d /%d", kmonth, &day, &year) == 3) 

printf("Month: %d, day: %d, year: %d\n", month, day, year); 

else if (sscanf(str, "%d -%d -%d", Sanonth, &day, &year) == 3) 

printf("Month: %d, day: %d, year: %d\n", month, day, year); 

else 
printf("Date not in the proper form\n"); 

Like the scanf and f scanf functions, sscanf returns the number of data 

items successfully read and stored, sscanf returns EOF if it reaches the end of 

the string (marked by a null character) before finding the first item, 

vsprintf function>26.1 There’s one other string I/O function, vsprintf. Since vsprintf relies on 
the va__list type, defined in <stdarg . h>, it’s discussed with that header. 

Q & A 

Q: You list only three standard streams—stdin, stdout, and stderr—but 

my compiler supplies stdaux and stdprn as well. What are these? [p. 476] 

A: stdaux and stdprn aren’t part of Standard C, although they’re supported by 

most DOS compilers, stdaux represents the COM (serial) port and stdprn rep¬ 

resents the PRN (parallel) port. By performing I/O operations on stdaux, a pro¬ 

gram can communicate with a device connected to the serial port (a modem, for 

example). By writing to stdprn, a program can send output directly to a printer. 

Q: If I use input or output redirection, will the redirected file names show up as 

command-line arguments? 

A: No; the operating system removes them from the command line. Let’s say that we 

run a program by entering 

demo foo <in_file bar >out_file baz 

The value of argc will be 4, argv[0] will point to the program name, 

argv [ 1 ] will point to " foo", argv [ 2 ] will point to " bar", and argv [ 3 ] 

will point to "baz ". 

Q: I’m writing a program that needs to save data in a file, to be read later by 

another program. Is it better to store the data in text form or binary form? 

A: That depends. If the data is all text to start with, there’s not much difference. If the 

data contains numbers, however, the decision is tougher. 
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Binary form is usually preferable, since it can be read and written quickly. 

Numbers are already in binary form when stored in memory, so copying them to a 

file is easy. Writing numbers in text form is much slower, since each number must 

be converted (usually by fprintf) to character form. Reading the file later will 

also take more time, since numbers will have to be converted from text form back 

to binary. Moreover, storing data in binary form often saves space, as we saw in 
Section 22.1. 

Binary files have two disadvantages, however. They’re hard for humans to 

read, which can hamper debugging. Also, binary files generally aren’t portable 

from one system to another, since different kinds of computers store data in differ¬ 

ent ways. For instance, some machines store integers in two bytes, while others 

store them in four bytes. Some machines expect the number’s high byte to be 

stored first, while others expect the low byte to come first. 

Q: C programs for UNIX never seem to use the letter b in the mode string, even 

when the file being opened is binary. What gives? [p. 480] 

A: In UNIX, text files and binary files have exactly the same format, so there’s never 

any need to use b. UNIX programmers should still include the b, however, so that 

their programs will be more portable to other operating systems. 

Q: I’ve seen programs that call f open and put the letter t in the mode string. 

What does t mean? 

A: The C standard allows additional characters to appear in the mode string, provided 

that they follow r, w, a, b, or +. DOS compilers often allow the use of t to indicate 

that a file is to be opened in text mode instead of binary mode. Of course, text 

mode is the default anyway, so t adds nothing. Whenever possible, it’s best to 

avoid using t and other nonportable features. 

Q: 

A: 

abort function >26.2 

Why bother to call f close to close a file? Isn’t it true that all open files are 

closed automatically when a program terminates? 

That’s usually true, but not if the program calls abort to terminate. Even when 

abort isn’t used, though, there are still good reasons to call fclose. First, it 

reduces the number of open files. Operating systems limit the number of files that 

a program may have open at the same time; large programs may bump into this 

limit. (The macro FOPEN_MAX, defined in <stdio.h>, specifies the minimum 

number of files that the implementation guarantees can be open simultaneously.) 

Second, the program becomes easier to understand and modify; by looking for the 

call of fclose, it’s easier for the reader to determine the point at which a file is 

no longer in use. Third, there’s the issue of safety. Closing a file ensures that its 

contents and directory entry are updated properly; if the program should crash 

later, at least the file will be intact. 

Q: I’m writing a program that will prompt the user to enter a file name. How 

long should I make the character array that will hold the file name? [p. 482] 
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A: That depends on your operating system. Fortunately, you can use the macro 

FILENAME_MAX (defined in <stdio.h>) to specify the size of the array. 

FILENAME_MAX is the length of a string that will hold the longest file name that 

the implementation guarantees can be opened. 

Q: Can f flush flush a stream that was opened for both reading and writing? 

A: According to the C standard, the effect of calling f flush is defined for a stream 

that (a) was opened for output, or (b) was opened for updating and whose last oper¬ 

ation was not a read. In all other cases, the effect of calling f flush is undefined. 

When f flush is passed a null pointer, it flushes all streams that satisfy either (a) 

or (b). 

Q: Can the format string in a call of ...print f or ...scanf be a variable? 

A: Sure; it can be any expression of type char *. This property makes the ...print f 

and ...scanf functions even more versatile than we’ve had reason to suspect. Con¬ 

sider the following classic example from Kernighan and Ritchie’s The C Program¬ 

ming Language, which prints a program’s command-line arguments, separated by 

spaces: 

while {--argc > 0) 

printf((argc >1) ? "%s " : "%s", *++argv); 

The format string is the expression (argc > 1) ? " %s " : " %s ", which evalu¬ 

ates to " %s " for all command-line arguments but the last. 

Q: Which library functions—other than clearerr—clear a stream’s error and 

end-of-file indicators? [p. 497] 

A: Calling rewind clears both indicators, as does opening or reopening the stream. 

Calling ungetc, fseek, or f setpos clears just the end-of-file indicator. 

Q: I can’t get f eof to work; it seems to return 0 even at end-of-file. What am I 

doing wrong? 

A: f eof will only return 1 when a previous read operation has failed; you can’t use 

feof to check for end-of-file before attempting to read. Instead, you should first 

attempt to read, then check the return value from the input function. If the return 

value indicates that the operation was unsuccessful, you can then use feof to 

determine whether the failure was due to end-of-file. In other words, it’s best not to 

think of calling feof as a way to detect end-of-file. Instead, think of it as a way to 

confirm that end-of-file was the reason for the failure of a read operation. 

Q: I still don’t understand why the I/O library provides macros named putc and 

getc in addition to functions named fputc and fgetc. According to Sec¬ 

tion 21.1, there are already two versions of putc and getc (a macro and a 

function). If we need a genuine function instead of a macro, we can expose the 

putc or getc function by undefining the macro. So why do fputc and 

fgetc exist? [p. 499] 
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A: Historical reasons. Prior to the standard, C had no rule that there be a true function 

to back up each parameterized macro in the library, putc and getc were tradi¬ 

tionally implemented only as macros, while fputc and fgetc were imple¬ 
mented only as functions. 

*Q: What’s wrong with storing the return value of fgetc, getc, or getchar 

into a char variable? I don’t see how testing a char variable against EOF 

could give the wrong answer, [p. 500] 

A: There are two cases in which this test can give the wrong result. To make the fol¬ 

lowing discussion concrete, I’ll assume two’s-complement arithmetic. 

First, suppose that char is an unsigned type. (Recall that some compilers 

treat char as a signed type, while others treat it as an unsigned type.) Now sup¬ 

pose that getc returns EOF, which we store into a char variable named ch. 

Since EOF is another name for -1, ch will end up with the value 255. Comparing 

ch (an unsigned character) with EOF (a signed integer) requires converting ch to a 

signed integer (255, in this case). The comparison against EOF fails, since 255 is 

not equal to -1. 

Now assume that char is a signed type instead. Consider what happens if 

getc reads a byte containing the value 255 from a binary stream. Storing 255 into 

the ch variable gives it the value -1, since ch is a signed character. Testing 

whether ch is equal to EOF will (erroneously) give a true result. 

Q: Why doesn’t Section 22.4 (Character I/O) say anything about the getch and 

getche functions? 

A: Simple—getch and getche aren’t part of the standard I/O library. These func¬ 

tions, which allow a program to capture individual keystrokes, are usually pro¬ 

vided by DOS compilers in the nonstandard header <conio .h> (console I/O). 

The standard input functions getc, fgetc, and getchar are buffered; they 

don’t start to read input until the user has pressed the Enter (Return) key. getch 

and getche, on the other hand, return characters as they’re entered. The differ¬ 

ence between the two functions is that getch doesn’t echo input characters, while 

getche does. In other words, if we use getch, the user won’t see the characters 

that he or she is typing. 
getch and getche can detect when the user has pressed a function key, cur¬ 

sor key, or any of the other special keys on a PC keyboard. When the user presses 

such a key, these functions return 0. When called the next time, they return a “scan 

code” indicating which key was pressed. If you’re using a DOS compiler, your 

manual should provide a list of scan codes, or you can consult a book about pro¬ 

gramming the PC family. 
Functions such as getch and getche are useful for writing certain kinds of 

programs. First, they allow the construction of interactive programs—editors, for 

example—that must be able to respond instantly to user input. Second, they allow 

programs to tell when the user has pressed a special key. Third, getch allows a 

program to read input without having to echo it, a definite advantage in some situ¬ 

ations (reading a password, say). 
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getch and getche have their problems as well. They don’t give the user a 

chance to backspace and correct errors. And since they re nonstandard, programs 

that call these functions won’t be portable to UNIX or other operating systems. 

Q: When I’m reading user input, how can I skip all characters left on the current 

input line? 

A: One possibility is to write a small function that reads and ignores all characters up 

to (and including) the first new-line character: 

void skip_line(void) 

{ 
while (getcharO != ' \n') 

} 

Another possibility is to ask scanf to skip all characters up to the first new- 

line character: 

scanf("%*[A\n]"); /* skips characters up to new-line */ 

scanf will read all characters up to the first new-line character, but not store them 

anywhere (the * indicates assignment suppression). The only problem with using 

scanf is that it leaves the new-line character unread, so you may have to discard 

it separately. 
Whatever you do, don’t call the f flush function: 

fflush(stdin); /* effect is undefined */ 

Although some implementations allow the use of f flush to “flush” unread input, 

it’s not a good idea to assume that all do. fflush is designed to flush output 

streams; the C standard states that its effect on input streams is undefined. 

Q: Why is it not a good idea to use fread and fwrite with text streams? 

[p. 503] 

A: One difficulty is that, under some operating systems, the new-line character 

becomes a pair of characters when written to a text file (see Section 22.1 for 

details). We must take this expansion into account, or else we’re likely to lose track 

of our data. For example, if we use fwrite to write blocks of 80 characters, some 

of the blocks may end up occupying more than 80 bytes in the file because of new- 

line characters that were expanded. 

Q: Why are there two sets of fde-positioning functions (f seek/ft ell and 

f setpos/fgetpos)? Wouldn’t one set be enough? [p. 505] 

A: f seek and ftell have been part of the C library for eons, so they had to be 

included in the C standard. Unfortunately, these functions don’t work for very 

large files (which weren’t common at the time C was designed), so f setpos and 

fgetpos were added during standardization. 
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Q: Why doesn’t this chapter discuss screen control: moving the cursor, changing 

the colors of characters on the screen, and so on? 

A: Standard C provides no functions for screen control. The standard addresses only 

issues that can reasonably be standardized across a wide range of computers and 

operating systems; screen control is outside this realm. If you’re working under 

DOS, you have several options for screen control, including calling the functions 

in <conio . h>, a header provided by most DOS compilers. UNIX programmers 

face the problem that their programs need to work with a variety of terminals. The 

customary way to handle this problem is to use the UNIX curses library, which 

supports screen control in a terminal-independent manner. 

Q: What about standard functions for graphics? 

A: There are no standard functions for graphics—see the answer to the previous ques¬ 

tion. If your program needs graphics capabilities, you have several choices. Your 

compiler may come with a graphics library. You could obtain a graphics library 

written by a third party. Or, as a last resort, you could write your own library. 

Exercises 

Section 22.1 

Section 22.2 

Section 22.3 

1. Indicate whether each of the following files is more likely to contain text data or binary 
data: 

, (a) a file of object code produced by a C compiler 

(b) a program listing produced by a C compiler 

(c) an e-mail message sent from one computer to another 

(d) a file containing a graphics image 

2. Indicate which mode string is most likely to be passed to fopen in each of the following 

situations: 

(a) A database management system opens a file containing records to be updated. 

(b) A mail program opens a file of saved messages so that it can add additional messages to 

the end. 
(c) A graphics program opens a file containing a picture to be displayed on the screen. 

(d) An operating system command interpreter opens a “batch file” (or “shell script”) con¬ 
taining commands to be executed. 

3. Extend the canopen program so that the user may put any number of file names on the 

command line: 

canopen foo bar baz 

The program should print a separate can be opened or can' t be opened message for 
each file. It should return 2 if there were no arguments on the command line, 1 if any of the 
files couldn’t be opened, or 0 if all files could be opened. 

4. Show how each of the following numbers would look if printed by printf with 
%#012.5g as the conversion specification: 
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(a) 83.7361 

(b) 29748.6607 

(c) 1054932234.0 

(d) 0.0000235218 

5. Is there any difference between the printf conversion specifications % . 4d and %04d? If 

so, explain what it is. 

*6. Write a call of printf that prints 

1 widget 

if the widget variable (of type int) has the value 1, and 

n widgets 

if its value is n. You are not allowed to use the if statement or any other statement; the 

answer must be a single call of printf. 

*7. Suppose that we call scanf as follows: 

n = scanf("%d%f%d", &i, &x, & j ) ; 

(i, j, and n are int variables and x is a float variable.) Assuming that the input stream 
contains the characters shown, give the values of i, j, n, and x after the call. In addition, 

indicate which characters were consumed by the call. 

(a) 10-20-30a 
(b) 1.0 *2.0*3. Oh 
(c) 0.1*0.2*0.3n 

(d) . 1*.2*.3H 

8. In previous chapters, we’ve used the scanf format string " %c" when we wanted to skip 
white-space characters and read a nonblank character. Some programmers use -sis 
instead. Are the two techniques equivalent? If not, what are the differences? 

9. Which one of the following calls is not a valid way of reading one character from the stan¬ 

dard input stream? 

(a) getch () 

(b) getchar () 

(c) getc(stdin) 

(d) fgetc(stdin) 

10. The f copy program has one minor flaw: it doesn’t check for errors as it’s writing to the 
destination file. Errors during writing are rare, but do occasionally occur (the disk might 
become full, for example). Show how to add the missing error check to fcopy. c, assum¬ 
ing that we want the program to write a message and terminate immediately if an error 

occurs. 

11. The following loop appears in the fcopy program: 

while ((ch = getc(source_fp)) != EOF) 

putc(ch, dest_fp); 

Suppose that we neglected to put parentheses around ch = getc (source_fp): 

while (ch = getc(source_fp) != EOF) 

putc(ch, dest_fp); 

Would the program compile without an error? If so, what would the program do when it’s 

run? 
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12. Write a program named toupper that converts all letters in a file to upper case. (Charac¬ 
ters other than letters shouldn’t be changed.) The user will supply the name of the input file 
on the command line: 

toupper test.doc 

Have toupper write its output to stdout. 

13. Write a program named feat that “concatenates” any number of files by writing them to 
standard output, one after the other, with no break between files. For example, the following 
command will display the files f 1. c, f2 . c, and f3 . c on the screen: 

feat fl.c f2.c f3.c 

feat should issue an error message if any file can’t be opened. Hint: Since it has no more 
than one file open at a time, feat needs only a single file pointer variable. Once it’s fin¬ 
ished with a file, feat can use the same file pointer variable when it opens the next file. 

14. (a) Write a program named cntchar that counts the number of characters in a text file. 

(b) Write a program named entword that counts the number of words in a text file (a 
“word” is any sequence of non-white-space characters). 

(c) Write a program named cntl ine that counts the number of lines in a text file. 

Have each program obtain the file name from the command line and write its output to 
stdout. 

15. The xor program of Section 20.1 refuses to encrypt bytes that—in original or encrypted 
form—are control characters. We can now remove this restriction. Modify the program so 
that the names of the input and output files are command-line arguments. Open both files in 
binary mode, and remove the test that checks whether the original or encrypted character is 
a control character. 

16. Write a program named hexdump that displays the bytes in a file as a series of hexadecimal 
codes, printed 20 per line: 

43 68 61 69 72 6d 61 6e 20 42 69 6c 6c 20 6c 65 61 64 73 20 
74 68 65 20 68 61 70 70 79 20 77 6f 72 6b 65 72 73 20 69 6e 
20 73 6f 6e 67 21 Od 0a 

Have the user specify the file name on the command line. Be sure to open the file in " rb" 
mode. 

17. Of the many techniques for compressing the contents of a file, one of the simplest and fast¬ 
est is known as run-length encoding. This technique compresses a file by replacing 
sequences of identical bytes by a pair of bytes: a repetition count followed by a byte to be 
repeated. For example, suppose that the file to be compressed begins with the following 
sequence of bytes (shown in hex): 

46 6f 6f 20 62 61 72 21 21 21 20 20 20 20 20 

The compressed file will contain the following bytes: 

01 46 02 6f 01 20 01 62 01 61 01 72 03 21 05 20 

Run-length encoding works well if the original file contains many long sequences of identi¬ 
cal bytes. In the worst case (a file with no repeated bytes), run-length encoding can actually 

double the length of the file. 

(a) Write a program named comp that uses run-length encoding to compress a file. To run 
comp, we’d use a command of the form 

comp original-file compressed-file 
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If compressed-file has no extension, comp will add the extension . rle. For example, the 

command 

comp foo bar 

will cause comp to create a file named bar. rle and write a compressed version of foo to 
that file, (comp will save foo’s name at the beginning of the bar .rle file.) Hint: The 

hexdump program of Exercise 16 could be useful for debugging. 

(b) Write a program named uncomp that reverses the compression performed by the comp 

program. The uncomp command will have the form 

uncomp compressed-file 

If compressed-file has no extension, uncomp adds the extension .rle. For example, the 

command 

uncomp bar 

will cause uncomp to open the file bar .rle and write an uncompressed version of its 
contents to the file whose name is stored at the beginning of bar .rle. 

18. (a) Write your own version of the fgets function. Make it behave as much like the real 
f gets function as possible; in particular, make sure that it has the proper return value. To 
avoid conflicts with the standard library, don’t name your function fgets. 

(b) Write your own version of fputs, following the same rules as in part (a). 

19. Modify the invent program of Section 16.3 by adding two new operations. 

■ Save the database in a specified file. 

■ Load the database from a specified file. 

Use the codes d (dump) and r (restore), respectively, to represent these operations. The 

interaction with the user should have the following appearance: 

Enter operation code: d 

Enter name of output file: invent.dat 

Enter operation code: r 

Enter name of input file: invent.dat 

20. Write a program that merges two files containing part records stored by the invent pro¬ 
gram (see Exercise 19). Assume that the records in each file are sorted by part number, and 
that we want the resulting file to be sorted as well. If both files have a part with the same 
number, combine the quantities stored in the records. (As a consistency check, have the pro¬ 
gram compare the part names and print an error message if they don’t match.) Have the pro¬ 
gram obtain the names of the input files and the merged file from the command line. 

*21. Modify the invent2 program of Section 17.5 by adding the d (dump) and r (restore) 
operations described in Exercise 19. Since the part structures aren’t stored in an array, the d 

operation can’t save them all by a single call of fwrite. Instead, it will need to visit each 
node in the linked list, saving the part number, name, and quantity on hand to a file. (Don’t 
save the next pointer; it won’t be valid once the program terminates.) As it reads parts 
from the file, the r operation will rebuild the list one node at a time. 

22. Write calls of f seek that perform the following file-positioning operations on a binary file 
whose data is arranged in 64-byte “records.” Use fp as the file pointer in each case. 

(a) Move to the beginning of record n. (Assume that the first record in the file is record 0.) 

(b) Move to the beginning of the last record in the file. 
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(c) Move forward one record. 

(d) Move backward two records. 

23. Write a program named dispdate that reads a date from the command line and displays it 
in the following form: 

September 13, 1995 

Allow the user to enter the date as either 9-13-95 or 9/13/95; you may assume that 
there are no spaces in the date. Print an error message if the date doesn’t have one of the 
specified forms. Hint: Use sscanf to extract the month, day, and year from the command¬ 
line argument. 
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23 Library Support for Numbers 
and Character Data 

Prolonged contact with the computer turns 
mathematicians into clerks and vice versa. 

This chapter describes the five library headers that provide support for working 

with numbers, characters, and character strings. Sections 23.1 and 23.2 cover the 

<float.h> and <limits.h> headers, which contain macros describing the 

characteristics of numeric and character types. Sections 23.3 through 23.5 discuss 

the remaining headers: cmath. h> (mathematical functions), cctype . h> (char¬ 

acter functions), and <string. h> (string functions). 

23.1 The <float.h> Header: Characteristics of 
Floating Types 

The < float. h> header provides macros that define the range and accuracy of 

the floating types. There are no types or functions in < float. h>. 

Two macros apply to all floating types. The FLT_ROUNDS macro specifies 

the rounding mode for floating-point addition. Table 23.1 shows the possible val¬ 

ues of FLT_ROUNDS. The FLT_RADIX macro specifies the radix of exponent 

representation; it has a minimum value of 2 (binary). 

Table 23.1 
Rounding Modes 

Value Meaning 

-1 Indeterminable 
0 Toward zero 
1 To nearest 
2 Toward positive infinity 
3 Toward negative infinity 

The remaining macros, which I’ll present in a series of tables, describe the 

characteristics of specific types. Each macro begins with either FLT, DBL, or 

519 



520 Chapter 23 Library Support for Numbers and Character Data 

LDBL, depending on whether it refers to the float, double, or long double 

type. The C standard provides extremely detailed definitions of these macros; my 

descriptions will be less precise but easier to understand. The tables indicate maxi¬ 

mum or minimum values for some macros, as specified in the C standard. 

Table 23.2 lists macros having to do with the number of significant digits in a 

number. 

Table 23.2 

Significant Digit Macros 

in <f loat. h> 

Table 23.3 lists macros having to do with exponents. 

Table 23.3 

Exponent Macros in 

<float.h> 

Table 23.4 lists the remaining macros, which describe how large numbers can 

be, how close to zero they can get, and how close two consecutive numbers can be. 

Table 23.4 

Max, Min, and Epsilon 

Macros in <f loat.h> 

Name Value Description 

FLT_MAX 

DBL_MAX 

LDBL MAX 

>10+37 
>10+37 
>10+37 

Largest value 

FLT_MIN 

DBL_MIN 

LDBL MIN 

<10-37 
<lCr37 
<10-37 

Smallest positive value 

FLT_EPSILON 

DBL_EPSILON 

LDBL_EPSILON 

<10“5 
<10“9 
<10“9 

Smallest representable difference between two numbers 

Name Value Description 

FLT MIN EXP Smallest (most negative) power to which 

DBL MIN EXP FLT_RADIX can be raised 

LDBL MIN EXP 

FLT MIN 10_EXP <-37 Smallest (most negative) power to which 10 can be 

DBL_MIN_10_EXP <-37 raised 

LDBL MIN 10 EXP <-37 

FLT_MAX_EXP 
DBL_MAX_EXP 
LDBL MAX EXP 

Largest power to which FLT RADIX can be raised 

FLT_MAX_10_EXP >+37 Largest power to which 10 can be raised 

DBL_MAX_10_EXP >+37 
LDBL_MAX_10_EXP >+37 

Name Value Description 

FLT_MANT_DIG 
DBL_MANT_DIG 
LDBL MANT DIG 

Number of significant digits (base FLT_RADIX) 

FLT DIG >6 Number of significant digits (base 10) 

DBL DIG >10 

LDBL_DIG >10 

Since most of the macros in <float.h> are of interest only to experts in 

numerical analysis, it’s probably one of the least-used headers in the standard 

library. 
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23.2 

Table 23.5 
Character Macros in 

climits.h> 

Table 23.6 
Integer Macros in 

<limits.h> 

terror directive > 14.5 

The <iimits.h> Header: Sizes of Integral Types 

The <limits . h> header provides macros that define the range of each integer 

and character type. There are no types or functions in <limits . h>. 

One set of macros in <limits . h> deals with the character types: char, 

signed char, and unsigned char. Table 23.5 lists these macros and shows 

the maximum or minimum value of each. 

Name Value Description 

CHAR_BIT >8 Number of bits per character 
SCHAR_MIN <-127 Minimum signed character 
SCHAR_MAX >+127 Maximum signed character 
U CHAR_MAX >255 Maximum unsigned character 
CHAR_MIN * Minimum character 
CHAR_MAX ** Maximum character 
MB_LEN_MAX >1 Maximum number of bytes per multibyte character 

*CHAR_MIN is equal to SCHAR_MIN if char is treated as a signed type; otherwise, CHAR_MIN is 0. 
**CHAR_MAX has the same value as either SCHAR_MAX or UCHAR_MAX, depending on whether char is 

treated as a signed type or an unsigned type. 

The remaining macros in climits . h> deal with the integer types: short 

int, unsigned short int, int, unsigned int, long int, and 

unsigned long int. Table 23.6 lists these macros and shows the maximum or 

minimum value of each. 

Name Value Description 

SHRT_MIN <-32767 Minimum short integer 
SHRT_MAX >+32767 Maximum short integer 
USHRT_MAX >65535 Maximum unsigned short integer 
INT_MIN <-32767 Minimum integer 

INT_MAX >+32767 Maximum integer 
UINT_MAX >65535 Maximum unsigned integer 

LONG_MIN C-2147483647 Minimum long integer 

LONG_MAX >+2147483647 Maximum long integer 
ULONG_MAX >4294967295 Maximum unsigned long integer 

The macros in climits . h> are handy for checking whether a compiler sup¬ 

ports integers of a particular size. For example, to determine whether the int type 

can store numbers as large as 100,000, we might use the following preprocessor 

directives: 

#if INT_MAX < 100000 

terror int type is too small 

tendif 

If the int type isn’t adequate, the terror directive will abort compilation. 

Going a step further, we might use the macros in climits . h> to help a pro¬ 

gram choose how to represent a type. Let’s say that variables of type Quantity 
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must be able to hold integers as large as 100,000. If INT_MAX is at least 100,000, 

we can define Quantity to be int; otherwise, we’ll need to make it long int: 

#if INT_MAX >= 100000 

typedef int Quantity; 

#else 
typedef long int Quantity; 

#endif 

23.3 The <math.h> Header: Mathematics 

The functions in cmath. h> fall into five groups: 

Trigonometric functions 

Hyperbolic functions 

Exponential and logarithmic functions 

Power functions 
Nearest integer, absolute value, and remainder functions 

Before we delve into these groups, let’s take a brief look at how the functions in 

cmath. h> deal with errors. 

Errors 

The cmath. h> functions handle errors in a way that’s different from other library 

functions. When an error occurs, most cmath. h> functions store an error code in 

<ermo.h>header>24.2 a special variable named errno (from the cerrno.h> header). In addition, 
when the return value of a function would be larger than the largest double 

value, the functions in cmath. h> return a special value, represented by the macro 

HUGE_VAL (defined in cmath.h>). HUGE_VAL is of type double, but it isn’t 

IEEE floating-point standard >7.2 necessarily an ordinary number. (The IEEE standard for floating-point arithmetic 

defines a value named “infinity”—a logical choice for HUGE_VAL.) 

The functions in cmath. h> primarily detect two kinds of errors: 

■ Domain error: An argument is outside a function’s domain. If a domain error 

occurs, the function’s return value is implementation-defined and EDOM 

(“domain error”) is stored in errno. In some implementations of 

cmath.h>, functions return the value NAN (“not-a-number”) when a 

domain error occurs. NAN is another special value (like “infinity”) defined in 

the IEEE standard. 

■ Range error: The return value of a function is outside the range of double 

values. If the return value’s magnitude is too large (overflow), the function 

returns positive or negative HUGE__VAL, depending on the sign of the correct 

result. In addition, ERANGE (“range error”) is stored in errno. If the return 

value’s magnitude is too small to represent (underflow), the function returns 

zero; some implementations may also store ERANGE in errno. 
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We’ll ignore the possibility of error for the remainder of this section. How¬ 

ever, the function descriptions in Appendix D explain the circumstances that lead 

to each type of error. 

Trigonometric Functions 

double acos(double x) ; 

double asin(double x); 

double atan(double x); 

double atan2(double y, double x); 

double cos(double x) ; 

double sin(double x); 

double tan(double x) ; 

cos The cos, sin, and tan functions compute the cosine, sine, and tangent, respec- 

sin tively. If PI is defined to be 3.14159265, passing PI/4 to cos, sin, and tan 

*an produces the following results: 

cos (PI/4) => 0.707107 

sin (PI/4) => 0.707107 

tan(PI/4) => 1.0 

Note that arguments to cos, sin, and tan are expressed in radians, not degrees. 
acos acos, asin, and atan compute the arc cosine, arc sine, and arc tangent: 
asin 
atan acos (1.0) => 0.0 

asin(l.O) => 1.5708 

atan (1.0) => 0.785398 

Applying acos to a value returned by cos won’t necessarily yield the original 

argument to cos, since acos always returns a value between 0 and K. asin and 

atan return a value between -n/2 and nil. 

atan2 atan2 computes the arc tangent of y/x, where y is the function’s first argu¬ 

ment and x is its second. The return value of atan2 is between -n and n. The call 

atan(x) is equivalent to atan2 (x, 1.0). 

Hyperbolic Functions 

double cosh(double x) ; 

double sinh(double x); 

double tanh(double x); 

cosh The cosh, sinh, and tanh functions compute the hyperbolic cosine, sine, and 

sinh tangent: 
tanh 
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cosh (0.5) => 1.12763 

sinh(0.5) => 0.521095 

tanh(0.5) => 0.462117 

Arguments to cosh, sinh, and tanh must be expressed in radians, not degrees. 

Exponential and Logarithmic Functions 

double exp(double x)? 
double frexp(double value, int *exp); 

double ldexp(double x, int exp); 

double log(double x); 

double loglO(double x); 
double modf(double value, double *iptr); 

exp The exp function returns e raised to a power: 

exp (3.0) => 20.0855 

log log is the inverse of exp—it computes the logarithm of a number to the base 

loglO e_ loglO computes the “common” (base 10) logarithm: 

log(20.0855) => 3.0 

loglO (1000) => 3.0 

Computing the logarithm to a base other than e or 10 isn’t difficult. The following 

function, for example, computes the logarithm of x to the base b, for arbitrary x 

and b: 

double logb(double x, double b) 

{ 
return log(x) / log(b); 

} 

modf The modf and frexp functions decompose a double value into two parts, 

modf splits its first argument into integer and fractional parts. It returns the frac¬ 

tional part and stores the integer part into the variable pointed to by the second 

argument: 

modf (3.14159 , &int_part) => 0.14159 (int_part is assigned 3.0) 

Although int_part must have type double, we can always cast it to int or 

long int later. 
frexp frexp splits a floating-point number into a fractional part/and an exponent 

n in such a way that the original number equals/x 2", where either 0.5 </< 1 or 

/= 0. It returns/and stores n into the (integer) variable pointed to by the second 

argument: 
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frexp(12.0, &exp) => .75 (exp is assigned 4) 

fr exp (0.25, &exp) => 0.5 (exp is assigned-1) 

Idexp ldexp undoes the work of f rexp by combining a fraction and an exponent 

into a single number: 

ldexp (.75, 4) => 12.0 

ldexp (0.5, -1) => 0.25 

In general, the call ldexp (x, exp) returns x x 2exp. 

Power Functions 

double pow(double x, double y); 

double sqrt(double x); 

pow The pow function raises its first argument to the power specified by its second 

argument: 

pow(3.0, 2.0) =s> 9.0 

pow(3.0, 0.5) => 1.73205 

pow(3.0, -3.0) => 0.037037 

sqrt sqrt computes the square root: 

sqrt (3.0) => 1.73205 

Using sqrt to find square roots is preferable to calling pow, by the way, since 

sqrt is usually a much faster function. 

Nearest Integer, Absolute Value, and Remainder Functions 

double ceil(double x); 

double fabs(double x); 

double floor(double x); 

double fmod(double x, double y); 

ceil The ceil (“ceiling”) function returns—as a double value—the smallest integer 

floor that’s greater than or equal to its argument, floor returns the largest integer that’s 

less than or equal to its argument: 

ceil (7.1) => 8.0 

ceil (7.9) => 8.0 

ceil (-7.1) => -7.0 

ceil ( - 7.9 ) => -7.0 
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tabs 

fmod 
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floor(7.1) => 7.0 

floor (7.9) => 7.0 

floor (-7.1) => -8.0 

floor(-7.9) => -8.0 

In other words, ceil “rounds up” to the nearest integer, while floor “rounds 

down.” There’s no standard function that rounds to the nearest integer, but we can 

easily use ceil and floor to write our own: 

double round(double x) 

{ 
return x < 0.0 ? ceil(x-0.5) : floor(x+0.5); 

} 

f abs computes the absolute value of a number: 

fabs(7.1) => 7.1 

f abs (-7.1) =>7.1 

fmod returns the remainder when its first argument is divided by its second 

argument: 

f mod ( 5.5 , 2.2) =>1.1 

C doesn’t allow the % operator to have floating operands, but fmod is a more-than- 

adequate substitute. 

The <ctype.h> Header: Character Handling 

The <ctype . h> header provides two kinds of functions: character-testing func¬ 

tions (like isdigit, which tests whether a character is a digit) and character 

case-mapping functions (like toupper, which converts a lower-case letter to 

upper case). 
Although C doesn’t require that we use the functions in <ctype. h> to test 

characters and perform case conversions, it’s a good idea to do so. First, these 

functions have been optimized for speed (in fact, many are implemented as mac¬ 

ros). Second, we’ll end up with a more portable program, since these functions 

work with any character set. Third, the <ctype . h> functions adjust their behav¬ 

ior when the locale is changed, which helps us write programs that run properly in 

different parts of the world. 

The functions in cctype . h> all take int arguments and return int values. 

We can usually ignore this detail, however—when necessary, C can automatically 

convert char arguments to int and int return values to char. 



isalnum 

isalpha 

iscntrl 

isdigit 

isgraph 

islower 

isprint 

ispunct 

isspace 

isupper 

isxdigit 

Table 23.7 
Character-Testing 

Functions 

PROGRAM 

tchrtest.c 
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Character-Testing Functions 

int isalnum(int c); 

int isalpha(int c); 

int iscntrl(int c); 

int isdigit(int c); 

int isgraph(int c); 

int islower(int c); 

int isprint(int c); 

int ispunct(int c); 

int isspace(int c); 

int isupper(int c); 

int isxdigit(int c) ; 

Each character-testing function returns 1 or 0 depending on whether or not its ar¬ 

gument has a particular property. Table 23.7 lists the property that each function 

tests. 

Name Test 

isalnum(c) Is c alphanumeric? 
isalpha(c) Is c alphabetic? 
iscntrl(c) Is c a control character?* 
isdigit(c) Is c a decimal digit? 
isgraph(c) Is c a printing character (other than a space)? 
islower(c) Is c a lower-case letter? 
isprint(c) Is c a printing character (including a space)? 
ispunct(c) Is c punctuation?** 
isspace(c) Is c a white-space character?*** 
isupper(c) Is c an upper-case letter? 
isxdigit(c) Is c a hexadecimal digit? 

*In ASCD, the control characters are \x00 through \xlf plus \x7f. 
* * All printing characters except the space and the alphanumeric characters are considered 
punctuation. 
***The white-space characters are space, form feed (\ f), new-line (\n), carriage return 
(\r), horizontal tab (\t), and vertical tab (\v). 

Testing the Character-Testing Functions 

The following program demonstrates the character-testing functions by applying 

them to the characters in the string " azAZ0 ! \ t". 

/* Tests the character-testing functions */ 

#include <ctype.h> 

#include <stdio.h> 

#define TEST(f) printf(" %c ", f(*p) ? 'x' : ' ’); 
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main() 

{ 
char *p; 

printf(" alnum ctnrl graph print" 

" space xdigit\n" 

" alpha digit lower punct" 

" upper\n"); 

for (p = "azAZO !\t"; *p != ' \0 ’ ; p++) { 

if (iscntrl(*p)) 

printf("\\x%02x, *p); 

else 

printf(" %c:", *p); 

TEST(isalnum); 

TEST(isalpha); 

TEST(iscntrl); 

TEST(isdigit); 

TEST(isgraph); 

TEST(islower); 

TEST(isprint); 

TEST(ispunct); 

TEST(isspace); 

TEST(isupper); 

TEST(isxdigit); 

printf("\n"); 

} 

return 0; 

} 

The program produces the following output: 

alnum ctnrl graph print space xdigit 

alpha digit lower punct upper 

a X X X X X X 

z X X X X X 

A X X X X X X 

Z X X X X X 

0 X X X X X 

X X 

; X X X 

\x09 X X 

Character Case-Mapping Functions 

int tolower(int c); 

int toupper(int c); 

tolower The tolower function returns the lower-case version of a letter passed to it as an 

toupper argument, while toupper returns the upper-case version. If the argument to 

either function is not a letter, it returns the character unchanged. 
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PROGRAM Testing the Case-Mapping Functions 

The following program applies the case-mapping functions to the characters in the 
string " aAO ! ". 

tcasemap.C /* Tests the case-mapping functions */ 

#include <ctype.h> 

#include <stdio.h> 

main() 

{ 
char *p; 

for (p = "aAO!"; *p != '\0'; p++) { 

printf("tolower('%c') is '%c1; ", *p, tolower(*p)); 

printf("toupper('%c1) is '%c'\n", *p, toupper(*p)); 

} 
return 0; 

} 

The program produces the following output: 

tolower('a 1) is 'a' ; toupper('a 1) is 'A' 

tolower(1A') is 'a' ; toupper('A') is 'A' 

tolower('0') is ' 0 ' ; toupper('0') is ' 0 ' 

tolower('!') is i i i . 
• / toupper('!') is ■ j • 

23.5 The <string.h> Header: String Handling 

We first encountered the <string. h> header in Section 13.5, which covered the 

most basic string operations: strcpy (string copy), streat (string concatenate), 

stremp (string compare), and strlen (string length). As we’ll see now, there 

are quite a few other string-handling functions in <string . h>, as well as func¬ 

tions that operate on character arrays that aren’t necessarily null-terminated. 

<string. h> provides five kinds of functions: 

■ Copying functions. Functions that copy characters from one place in memory 

to another place. 

■ Concatenation functions. Functions that add characters to the end of a string. 

■ Comparison functions. Functions that compare character arrays. 

■ Search functions. Functions that search an array for a particular character, a 

set of characters, or a string. 

■ Miscellaneous functions. Functions that initialize a character array or com¬ 

pute the length of a string. 

We’ll now tackle these functions, one group at a time. 
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Copying Functions 

void *memcpy (void *sl, const void *s2, size_t n) ; 

void *rneiumove (void *sl, const void *s2, size_t n) ; 

char *strcpy(char *sl, const char *s2); 

char *strncpy(char *sl, const char *s2, size_t n); 

Q&A 

memcpy 
memmove 

strcpy 
strncpy 

The four copying functions move characters (bytes) from one place in memory 

(the source) to another (the destination). Each function requires that the first argu¬ 

ment point to the destination and the second point to the source. All copying func¬ 

tions return the first argument (a pointer to the destination). 

memcpy copies n characters from the source to the destination, where n is the 

function’s third argument. If the source and destination overlap, the behavior of 

memcpy is undefined, memmove is the same as memcpy, except that it works cor¬ 

rectly when the source and destination overlap. 

strcpy copies a null-terminated string from the source to the destination, 

strncpy is similar to strcpy, but it won’t copy more than n characters, where 

n is the function’s third argument. (If n is too small, strncpy won’t be able to 

copy a terminating null character.) If it encounters a null character in the source, 

strncpy adds null characters to the destination until it has written a total of n 

characters, strcpy and strncpy, like memcpy, aren’t guaranteed to work if the 

source and destination overlap. 

The following examples illustrate the copying functions; the comments show 

which characters are copied. 

char source [] = { ’ h' , 'o', ' t' , '\0 ' , ' t' , 'e', 'a'}; 

char dest[ 7 ] ; 

memcpy(dest, source, 3); /* h. o, t */ 
memcpy(dest, source, 4); /* h. °, t, \o */ 
memcpy(dest, source, 7); /* h, o, t, \o. t, e, a *7 

memmove(dest, source, 3); /* h, o, t */ 
memmove(dest, source, 4); /* h, o, t, \o */ 
memmove(dest, source, 7); /* h. o, t. \0, t, e, a */ 

strcpy(dest, source); /* h, o, t, \0 */ 

strncpy(dest, source, 3); /* h, O, t */ 
strncpy(dest, source, 4); /* h, O, t, \0 */ 
strncpy(dest, source, 7); /* h, O, t. \o, \0, \0, \o */ 

Note that memcpy, memmove, and strncpy don’t require a null-terminated 

string; they work just as well with any block of memory. The strcpy function, on 

the other hand, doesn’t stop copying until it reaches a null character, so it works 

only with null-terminated strings. 
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mememp 
stremp 

strnemp 

Concatenation Functions 

char *strcat(char *sl, const char *s2); 

char *strncat(char *sl, const char *s2, size_t n); 

strcat appends its second argument to the end of the first argument. Both argu¬ 

ments must be null-terminated strings; strcat puts a null character at the end of 

the concatenated string. Consider the following example: 

char str[7] = "tea"; 

strcat(str, "bag"); /* adds b, a, g, \0 to end of str */ 

The letter b overwrites the null character after a, so that str now contains the 

string " teabag". strcat returns its first argument (a pointer). 
strncat is the same as strcat, except that its third argument limits the 

number of characters it will copy: 

char str[7] = "tea"; 

strncat(str, "bag", 2) ; /* adds b, a, \o to str */ 
strncat(str, "bag", 3) ; /* adds b, a, g» \o to str */ 
strncat(str, "bag", 4) ; /* adds b, a, g. \o to str */ 

As these examples show, strncat always leaves the resulting string properly 
null-terminated. 

Comparison Functions 

int mememp(const void *sl, const void *s2, size_t n) ; 

int stremp(const char *sl, const char *s2); 

int strcoll(const char *sl, const char *s2); 

int strnemp(const char *sl, const char *s2, 

size_t n); 

size_t strxfrm(char *sl, const char *s2, size_t n); 

We’ll tackle the comparison functions in two groups. Functions in the first group 

(mememp, stremp, and strnemp) compare two character arrays. The compari¬ 

son is done character by character, using the computer’s normal collating sequence 

(typically ASCII). Functions in the second group (strcoll and strxfrm) are 

used if the locale needs to be taken into account. 
The mememp, stremp, and strnemp functions have much in common. All 

three expect to be passed pointers to character arrays. The characters in the first ar¬ 

ray are then compared one by one with the characters in the second array. All three 

functions return as soon as a mismatch is found. Also, all three return a negative, 

zero, or positive integer, depending on whether the stopping character in the first 

array was less than, equal to, or greater than the stopping character in the second. 
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strcoll 

setlocale function >25.? 

strxfrm 

The differences among the three functions have to do with when to stop if the 

arrays are equal. The memcmp function is passed a third argument, n, that limits 

the number of comparisons performed; it pays no particular attention to null char¬ 

acters. s trcmp doesn’t have a preset limit, stopping instead when it reaches a null 

character in either array. (As a result, strcmp can be used only with null-termi¬ 

nated strings.) strncmp is a blend of memcmp and strcmp; it stops when n 

comparisons have been performed or a null character is reached in either array. 

The following examples illustrate memcmp, strcmp, and strncmp: 

char sl[] = {'b■, ' i'. ' g', *\0' , ' c ' , ' 'a' 

char s2[] = {1b', ' i', ' g' , ' \o •, ' c' , 'a' 

if (memcmp(si, s 2, 3) == 0) ... /* true */ 

if (memcmp(si, s2, 4) == 0) ... /* true */ 

if (memcmp(si, s2, 7) == 0) ... /* false */ 

if (strcmp(si, s2) == 0) ... /* true */ 

if (strncmp(si, s2, 3) ' == 0) ... /* true */ 

if (strncmp(si, s2, 4) 1 == 0) ... /* true */ 

if (strncmp(si, s2, 7) 1 == 0) ... /* true */ 

The strcoll function is similar to strcmp, but the outcome of the compar¬ 

ison depends on the current locale (set by calling the setlocale function), 

strcoll is useful for programs that need to perform comparisons differently 

depending on where the program is running. 
Most of time, strcoll is fine for performing a locale-dependent string com¬ 

parison. Occasionally, however, we might need to perform the comparison more 

than once (a potential problem, since strcoll isn’t especially fast) or change the 

locale without affecting the outcome of the comparison. In these situations, the 

strxfrm (“string transform”) function is available as an alternative to strcoll. 

strxfrm transforms its second argument (a string), placing the result in the 

array pointed to by the first argument. The third argument limits the number of 

characters written to the array. Calling strcmp with two transformed strings 

should produce the same outcome (negative, zero, or positive) as calling 

strcoll with the original strings. 

strxfrm returns the length of the transformed string. As a result, strxfrm 

is typically called twice: once to determine the length of the transformed string and 

once to perform the transformation. Here’s an example: 

size_t len; 

char *transformed; 

len = strxfrm(NULL, original, 0); 

transformed = malloc(len+1); 

strxfrm(transformed, original, len); 
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memchr 

strrchr 

strpbrk 

Search Functions 

void *memchr(const void *s, int c, size_t n); 

char *strchr(const char *s, int c); 

size_t strcspn(const char *sl, const char *s2); 

char *strpbrk(const char *sl, const char *s2); 

char *strrchr(const char *s, int c); 

size__t strspn (const char *sl, const char *s2); 

char *strstr(const char *sl, const char *s2); 

char *strtok(char *sl, const char *s2); 

The strchr function searches a string for a particular character. The following 

example shows how we might use strchr to search a string for the letter f. 

char *p, str[] = "Form follows function.'1; 

p = strchr(str, ' f’); /* finds first 'f' */ 

strchr returns a pointer to the first occurrence of f in str (the one in 

follows). Locating multiple occurrences of a character is easy; for example, the 

call 

p = strchr(p+1, 'f'); /* finds next 1f' */ 

finds the second f in str (the one in function). 
memchr is similar to strchr, but it stops searching after a set number of 

characters instead of stopping at the first null character, memchr’s third argument 

limits the number of characters it can examine—a useful capability if we don’t 

want to search an entire string or if we’re searching a block of memory that’s not 

terminated by a null character. The following example uses memchr to search an 

array of characters that lacks a null character at the end: 

char *p, str[22] = "Form follows function."; 

p = memchr(str, 1f’, sizeof(str)); 

Like the strchr function, memchr returns a pointer to the first occurrence of the 

character. If they can’t locate the desired character, both functions return a null 

pointer. 
strrchr is similar to strchr, but it searches the string in reverse order: 

char *p, str[] = "Form follows function.1'; 

p = strrchr(str, 1f1); /* finds last 1f' */ 

In this example, strrchr will first search for the null character at the end of the 

string, then go backwards to locate the letter f (the one in function), strrchr 

returns a null pointer if it fails to find the desired character. 
strpbrk is more general than strchr; it returns a pointer to the leftmost 

character in the first argument that matches any character in the second argument: 
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char *p, str[] = "Form follows function."; 

p = strpbrk(str, "mn"); /* finds first 'm' or 'n' */ 

strspn 
strcspn 

Q&A 

In this example, p will point to the letter m in Form. Like the other search func¬ 

tions, strpbrk returns a null pointer if no match is found. 
The strspn and strcspn functions, unlike the other search functions, 

return an integer (of type size_t), representing a position within a string. When 

given a string to search and a set of characters to look for, strspn returns the 

index of the first character that’s not in the set. When passed similar arguments, 

strcspn returns the index of the first character that’s in the set. Here are exam¬ 

ples of both functions: 

size_t len; 

char str[] = "Form follows function."; 

len = strspn(str, "morF"); 

len = strspn(str, " \t\n"); 

len = strcspn(str, "morF"); 

len = strcspn(str, " \t\n"); 

/* len = 4 */ 

/* len = 0 */ 

/* len = 0 */ 

/* len = 4 */ 

strstr strstr searches its first argument (a string) for a match with its second 

argument (also a string). In the following example, strstr searches for the word 

fun: 

char *p, str[] = "Form follows function."; 

p = strstr(str, "fun"); /* locates "fun" in str */ 

strstr returns a pointer to the first occurrence of the search string; it returns a 

null pointer if it can’t locate the string. After the call above, p will point to the let¬ 

ter f in function. 
strtok strtok is the most complicated of the search functions. It’s designed to 

search a string for a “token”—a sequence of characters that doesn’t include certain 

delimiting characters. The call strtok (si, s2 ) scans the si string for a non¬ 

empty sequence of characters that are not in the s2 string, strtok marks the end 

of the token by storing a null character in si just after the last character in the 

token; it then returns a pointer to the first character in the token. 

What makes strtok especially useful is that later calls can find additional 

tokens in the same string. The call strtok (NULL, s2) continues the search 

begun by the previous strtok call. As before, strtok marks the end of the 

token with a null character, then returns a pointer to the beginning of the token. 

The process can be repeated until strtok returns a null pointer, indicating that no 
token was found. 

To see how strtok works, we’ll use it to extract a month, day, and year from 
a date written in the form 

month day, year 
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where spaces and/or tabs separate the month from the day and the day from the 

year. In addition, spaces and tabs may precede the comma. Let’s say that the string 
str has the following appearance to start with: 

A P r i i 2 8 / 1 9 9 8 \o 

After the call 

p = strtok(str, " \t"); 

str will have the following appearance: 

str 

P 

A P r i i \0 2 8 r 1 9 9 8 \0 

p points to the first character in the month string, which is now terminated by a 

null character. Calling strtok with a null pointer as its first argument causes it to 

resume the search from where it left off: 

p = strtok(NULL, " \t"); 

After this call, p points to the first character in the day: 

P 

A P r i i \0 2 8 \0 1 9 9 8 \0 

A final call of strtok locates the year: 

p = strtok(NULL, " \t,”); 

After this call, str will have the following appearance: 

str 

P 

A P r i i \0 2 8 \0 1 9 9 8 \0 

When strtok is called repeatedly to break a string into tokens, the second argu¬ 

ment isn’t required to be the same in each call. In our example, the final call of 

strtok has the argument " \t, " instead of " \t". 
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Miscellaneous Functions 

void *raemset(void *s, int c, size_t n); 

size_t strlen(const char *s); 

memset memset stores multiple copies of a character into a specified area of memory. If p 

points to a block of N bytes, for example, the call 

memset(p, ' ', N); 

will store a space in every byte of the block. One of memset’s uses is initializing 

an array to zero bits: 

memset(a, 0, sizeof(a)); 

strlen 

strerror function >24.2 

memset returns its first argument (a pointer). 
strlen returns the length of a string, not counting the null character. See 

Section 13.5 for examples of strlen calls. 
There’s one other miscellaneous string function, strerror, which is cov¬ 

ered along with the <errno . h> header. 

Q & A 

Q: Why does <string.h> provide so many ways to do the same thing? Do we 

really need four copy functions (memcpy, memmove, strcpy, and 

strncpy)? [p. 530] 

A: Let’s start with memcpy and strcpy. These functions are used for different pur¬ 

poses. strcpy will only copy a character array that’s terminated with a null char¬ 

acter (a string, in other words); memcpy can copy a memory block that lacks such 

a terminator (an array of integers, for example). 
The other functions allow us to choose between safety and performance, 

strncpy is safer than strcpy, since it limits the number of characters copied. 

We pay a price for safety, however, since strncpy is likely to be slower than 

strcpy. Using memmove involves a similar trade-off. memmove will copy char¬ 

acters from one region of memory into a possibly overlapping region, memcpy 

isn’t guaranteed to work properly in this situation; however, if we can guarantee no 

overlap, memcpy is likely to be faster than memmove. 

Q: Why does the strspn function have such an odd name? [p. 534] 

A: Instead of thinking of strspn’s return value as the index of the first character 

that’s not in a specified set, we could think of it as the length of the longest “span” 

of characters that are in the set. 
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Exercises 

Section 23.3 

Section 23.4 

Section 23.5 

1. Write a program that finds the roots of the equation ax2 + bx + c = 0 using the formula 

—b ± Vb2 - 4ac 
* = -2a- 

Have the program prompt for the values of a, b, and c, then print both values of x. (If b2 - 
4ac is negative, the program should instead print a message to the effect that the roots are 
imaginary.) 

2. Extend the round function so that it rounds x to n digits after the decimal point. For exam¬ 
ple, the call round (3.14159, 3) would return 3.142. Hint: Multiply x by 10", round to 
the nearest integer, then divide by 10". Be sure that your function works correctly for both 
positive and negative values of x. 

3. Using isalpha and isalnum, write a function that checks whether a string has the syn¬ 
tax of a C identifier (that is, it consists of letters, digits, and underscores, with a letter or 
underscore at the beginning). 

4. Write a program that copies a file from standard input to standard output, removing all blank 
lines (lines containing only white-space characters). 

5. Write a program that copies a file from standard input to standard output, capitalizing the 
first letter in each word. 

6. In each of the following cases, indicate which function would be the best to use: memcpy, 
memmove, strcpy, or strncpy. Assume that the indicated action is to be performed by a 
single function call. 

(a) Moving all elements of an array “down” one position in order to leave room for a new 
element in position 0. 

(b) Deleting the first character in a null-terminated string by moving all other characters 
back one position. 

(c) Copying a string into a character array that may not be large enough to hold it. If the 
array is too small, assume that the string is to be truncated; no null character is neces¬ 
sary at the end. 

(d) Copying the contents of one array variable into another. 

7. Section 23.5 explains how to call strchr repeatedly to locate all occurrences of a char¬ 
acter within a string. Is it possible to locate all occurrences in reverse order by calling 
strrchr repeatedly? 

8. Use strchr to write the following function: 

int numchar(const char *s, char ch) ; 

numchar returns the number of times the character ch occurs in the string s. 

9. Replace the test condition in the following if statement by a single call of strchr: 

if (ch == 'a' || ch == 'b' || ch == ’c') ... 
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10. Replace the test condition in the following if statement by a single call of strstr. 

if (strcmp(str, "foo") == 0 | | strcmp(str, bar ) 0 | | 

strcmp (str, "baz") == 0) ... 

Hint: Combine the string literals into a single string, separating them with a special charac¬ 

ter. Does your solution assume anything about the contents of str? 

11. Write a program that prompts the user to enter a series of words, then prints the words in 
reverse order. Read the input as a string, and then use strtok to break it into words. 

12. Write a call of memset that replaces the last n characters in a null-terminated string s with 

! characters. 

13. Many versions of <string.h> provide additional (nonstandard) functions, such as those 

listed below. Write each function using only the features of Standard C. 

(a) s trdup (s) — Returns a pointer to a copy of s stored in memory obtained by calling 
malloc. Returns a null pointer if enough memory couldn’t be allocated. 

(b) stricmp (si, s2) —Similar to strcmp, but ignores the case of letters. 

(c) strlwr (s) — Converts upper-case letters in s to lower case, leaving other characters 

unchanged; returns s. 
(d) strrev (s) — Reverses the characters in s (except the null character); returns s. 

(e) strset (s , ch) — Fills s with copies of the character ch; returns s. 



Error Handling 

There are two ways to write error-free 
programs; only the third one works. 

C++ 

exception handling in C++ >19.4 

Although student programs often fail when subjected to unexpected input, com¬ 

mercial programs need to be “bulletproof’—able to recover gracefully from errors 

instead of crashing. Making programs bulletproof requires that we anticipate errors 

that might arise during the execution of the program, include a check for each 

error, and provide a suitable action for the program to perform if the error should 

occur. 

This chapter explores two ways for programs to check for errors: by calling 

assert (Section 24.1) and by checking the errno variable (Section 24.2). Sec¬ 

tion 24.3 explains how programs can detect and handle conditions known as sig¬ 

nals, some of which represent errors. Finally, Section 24.4 explores the set jmp/ 

longjmp mechanism, which is often used for responding to errors. 

Error detection and handling aren’t among C’s strengths. C indicates run-time 

errors in a variety of ways rather than in a single, uniform way. Furthermore, it’s 

the programmer’s responsibility to include code to test for errors. As a result, it’s 

easy to overlook potential errors; if one of these should actually occur, the program 

often continues running, albeit not very well. C++ tackles C’s weaknesses head-on 

by providing an improved way to deal with errors known as exception handling. 

24.1 The <assert.h> Header: Diagnostics 

void assert(int expression); 

assert assert, which is declared in the <assert.h> header, allows a program to 

monitor its own behavior and detect possible problems at an early stage. 

539 



540 Chapter 24 Error Handling 

Although assert is actually a macro, it’s designed to be used like a function. 

It has one argument, which must be an “assertion”—an expression that we expect 

to be true under normal circumstances. Each time assert is executed, it checks 

the value of its argument. If the argument has a nonzero value, assert does noth- 

stderr stream >22.1 ing; if its value is zero, assert prints a message (to s tderr, the standard error 

abort function >26.2 stream) and calls the abort function to terminate program execution. 
For example, let’s say that the file demo. c declares an array a of length N. 

We’re concerned that the statement 

a [ i ] = 0 ; 

in demo. c might cause the program to fail because i is not between 0 and N-l. 

We can use assert to check this condition before we perform the assignment to 

a [i]: 

assert(0 <= i && i < N); /* checks subscript first */ 

a[jj _ 0; /* now does the assignment */ 

If i’s value is less than 0 or greater than or equal to N, the program will terminate 

after displaying a message like the following one: 

Assertion failed: 0 <= i && i < N, file DEMO.C, line 109 

Standard C doesn’t require that the message have exactly this form. However, it 

does require that the message specify the argument that was passed to assert (in 

text form), the name of the source file containing the assert, and the line num¬ 

ber of the assert. 
assert has one disadvantage: it increases the running time of a program 

because of the extra check it performs. Using assert once in a while probably 

won’t have a great effect on a program s speed, but in time-critical applications, 

the increase in running time may not be acceptable. As a result, many program¬ 

mers use assert during testing, then disable it when the program is finished. 

Disabling assert is easy: we need only define the macro NDEBUG prior to 

including the <assert .h> header: 

#define NDEBUG 

#include <assert.h> 

The value of NDEBUG doesn’t matter, just the fact that it’s defined. If the program 

should fail later, we can reactivate assert by removing NDEBUG’s definition. 

Avoid putting an expression that has a side effect—including a function call— 
inside an assert; if assert is disabled at a later date, the expression won’t be 

evaluated. Consider the following example: 

assert((p = malloc(n+l)) !- NULL); 

If NDEBUG is defined, assert will be ignored and malloc won’t be called. 
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24.2 

lvalues >4.2 

sqrt function >23.3 

Q&A 

exp function >23.3 

The <errno.h> Header: Errors 

Some functions in the standard library indicate failure by storing an error code (a 

positive integer) in the errno variable, declared in <errno.h>. (errno may 

actually be a macro. If so, the C standard requires that it represent an lvalue, allow¬ 

ing us to use it like a variable.) Most of the functions that rely on errno belong to 

cmath. h>, but there are a few in other parts of the library. 

Let’s say that we need to use a library function that signals an error by storing 

a value in errno. After calling the function, we can check whether the value of 

errno is nonzero; if so, an error occurred during the function call. For example, 

suppose that we want to check whether a call of the sqrt (square root) function 

has failed. Here’s what the code would look like: 

errno = 0; 

y = sqrt(x); 

if (errno != 0) { 

fprintf(stderr, "sqrt error; program terminated.\n"); 

exit(EXIT_FAILURE); 

} 

It’s important to store zero in errno before calling a library function—like 

sqrt—that may change it. Although errno is zero at the beginning of program 

execution, it could have been altered by a later function call. Library functions 

never clear errno; that’s the program’s responsibility. 

The value stored in errno when an error occurs is usually either EDOM or 

ERANGE. (Both are macros defined in <errno . h>.) These values reflect the two 

kinds of errors that can occur when a math function is called: 

■ Domain errors (EDOM): An argument passed to a function is outside the func¬ 

tion’s domain. For example, passing a negative number to sqrt causes a 

domain error. 

■ Range errors (ERANGE): A function’s return value is too large to be repre¬ 

sented as a double value. For example, passing 1000 to the exp function 

often causes a range error, because <?1000 is too large to represent as a double 

on many computers. 

Some functions can experience both kinds of errors; by comparing errno to 

EDOM or ERANGE, we can determine which error occurred. 

The perror and strerror Functions 

void perror(const char *s); 

char *strerror(int errnum); 
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perror When a library function stores a nonzero value in errno, we may want to display 

a message that indicates the nature of the error. One way to do this is to call the 

perror function (declared in <stdio . h>), which prints the following items, in 

the order shown: (1) its argument, (2) a colon, (3) a space, (4) an error message 

determined by the value of errno, and (5) a new-line character. The output of 

stderr stream >22.1 perror goes to the stderr stream, not to standard output. 

Here’s how we might use perror: 

errno = 0; 

y = sqrt(x); 

if (errno != 0) { 

perror("sqrt error"); 

exit(EXIT_FAILURE); 

} 

The error message that perror prints after sqrt error is implementation- 

defined. Here’s one possibility: 

sqrt error: Math argument 

We’re assuming that Math argument is the message that corresponds to the 

EDOM error. An ERANGE error usually produces a different message, such as 

Result too large. 

strerror The strerror function, which belongs to <string. h>, is closely related 

to perror. When passed an error code, strerror returns a pointer to a string 

describing the error. For example, the call 

puts(strerror(EDOM)); 

might print 

Math argument 

The error message that perror displays is the same message that strerror 

would return if passed errno as its argument. 

24.3 The <signal.h> Header: Signal Handling 

<signal.h> provides facilities for handling exceptional conditions, known as 

signals. Signals fall into two categories: run-time errors (such as division by zero) 

and events caused outside the program. Many operating systems, for example, 

allow users to interrupt or kill running programs; these events are treated as signals 

in C. When an error or external event occurs, we say that a signal has been raised. 

Many signals are asynchronous: they can happen at any time during program exe¬ 

cution, not just at certain points that are known to the programmer. Since signals 

may occur at unexpected times, they have to be dealt with in a unique way. 
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Table 24.1 
Signals 

signal 

abort function >26.2 

Signal Macros 

<signal. h> defines a number of macros that represent signals; Table 24.1 lists 

these macros and their meanings. C implementations are allowed to provide other 

signal macros, as long as their names begin with SIG followed by an upper-case 
letter. 

Name Meaning 

SIGABRT Abnormal termination (possibly caused by a call of abort) 

SIGFPE Error during an arithmetic operation (possibly division by zero or 
overflow) 

SIGILL Illegal instruction 
SIGINT Interrupt 
SIGSEGV Invalid storage access 
SIGTERM Termination request 

The C standard doesn’t require that the signals in Table 24.1 be raised auto¬ 

matically, since not all of them may be meaningful for a particular computer and 

operating system. Most implementations support at least some of these signals. 

The signal Function 

void (*signal(int sig, void (*func)(int)))(int); 

The most important function in <signal. h> is signal, which installs a signal¬ 

handling function for use later if a given signal should occur, signal is much 

easier to use than you might expect from its prototype. Its first argument is the 

code for a particular signal; the second argument is a pointer to a function that will 

handle the signal if it’s raised later in the program. For example, the following call 

of signal installs a handler for the SIGINT signal: 

signal(SIGINT, handler); 

handler is the name of a signal-handling function. If the SIGINT signal occurs 

later during program execution, handler will be called automatically. 

Every signal-handling function must have an int argument. When a particu¬ 

lar signal is raised and its handler is called, the handler will be passed the code for 

the signal. Knowing which signal caused a handler to be called can be useful; in 

particular, it allows us to use the same handler for several different signals. 

A signal-handling function can do almost anything it wants to. Possibilities 

include ignoring the signal, performing some sort of error recovery, or terminating 

the program. Unless it’s invoked by abort or raise, however, a signal handler 

shouldn’t call a library function or attempt to use a variable with static storage 

duration. 
If a signal-handling function returns, the program resumes executing from the 

point at which the signal occurred. There are a couple of special cases, however. If 

the signal was SIGABRT, the program will terminate (abnormally) when the han- 
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dler returns. The effect of returning from a function that has handled SIGFPE is 

undefined. (In other words, don’t do it.) 
Although signal has a return value, it’s often discarded. The return value, a 

pointer to the previous handler for the specified signal, can be saved in a variable if 

desired. In particular, if we plan to restore the original signal handler later, we need 

to save signal’s return value: 

void (*orig_handler)(int); /* function pointer */ 

orig_handler = signal(SIGINT, handler); 

This call installs handler as the handler for SIGINT, and saves a pointer to the 

original handler in the orig_handler variable. To restore the original handler 

later, we’d write 

signal(SIGINT, orig_handler); /* restores original handler */ 

Predefined Signal Handlers 

Instead of writing our own signal handlers, we have the option of using one of the 

predefined handlers that <signal. h> provides. There are two of these, each rep¬ 

resented by a macro: 

■ SIG_DFL. SIG_DFL handles signals in a “default” way. To install 

SIG_DFL, we’d use a call such as 

signal(SIGINT, SIG_DFL); /* use default handler */ 

The effect of calling SIG_DFL is implementation-defined, but in most cases 

it causes program termination. 

■ SIG_IGN. The call 

signal(SIGINT, SIG_IGN); /* ignore SIGINT signal */ 

specifies that SIGINT is to be ignored if it should be raised later. 

In addition to SIG_DFL and SIG_IGN, the <signal.h> header may provide 

other signal handlers; their names must begin with SIG_ followed by an upper¬ 

case letter. At the beginning of program execution, the handler for each signal is 

initialized to either SIG_DFL or SIG_IGN, depending on the implementation. 

<signal.h> defines another macro, SIG_ERR, that looks like it should be 

a signal handler. Actually, SIG_ERR isn’t a handler at all; it’s used to test for an 

error when installing a signal handler. If a call of signal is unsuccessful—it 

can’t install a handler for the specified signal—it returns SIG_ERR and stores a 

positive value in errno. Thus, to test whether signal has failed, we could write 

if (signal(SIGINT, handler) == SIG_ERR) { 

/* error; can't install handler for SIGINT */ 

} 
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tsignal.c 

There’s one tricky aspect to the entire signal-handling mechanism: what hap¬ 

pens if a signal is raised by the function that handles that signal? To prevent infi¬ 

nite recursion, the C standard requires that, when a handler is called for a signal 

other than SIGILL, the handler for that signal be reset to SIG_DFL (the default 

handler) or blocked in some other way. (We have no control over this process; it’s 

all done behind the scenes.) 

After a signal has been handled, it can’t be handled a second time by the same 
function unless the handler is re-installed. One way to do that, of course, is to have 
the handler call signal before it returns. 

The raise Function 

int raise(int sig); 

Although signals usually arise spontaneously, it’s occasionally handy for a pro¬ 

gram to cause a signal to occur. The raise function, which is also part of <sig¬ 

nal . h>, does just that. The argument to raise specifies the code for the desired 

signal: 

raise(SIGABRT); /* raises the SIGABRT signal */ 

The return value of raise can be used to test whether the call was successful: 

zero indicates success, while a nonzero value indicates failure. 

Testing Signals 

The following program illustrates the use of signals. First, it installs a custom han¬ 

dler for the SIGILL signal (carefully saving the original handler), then calls 

raise_sig to raise that signal. Next, it installs SIG_IGN as the handler for the 

SIGILL signal and calls raise_sig again. Finally, it reinstalls the original han¬ 

dler for SIGILL, then calls raise_sig one last time. 

/* Tests signals */ 

#include <signal.h> 
#include <stdio.h> 

void handler(int sig); 
void raise_sig(void); 

main() 

{ 
void (*orig_handler)(int); 
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printf("Installing handler for signal %d\n", SIGILL); 

orig_handler = signal(SIGILL, handler); 

raise_sig(); 

printf("Changing handler to SIG_IGN\n"); 

signal(SIGILL, SIG_IGN); 

raise_sig(); 

printf("Restoring original handler\n"); 

signal(SIGILL, orig_handler); 

raise_sig(); 

printf("Program terminates normally\n"); 

return 0; 

} 

void handler(int sig) 

{ 
printf("Handler called for signal %d\n", sig); 

} 

void raise_sig(void) 

{ 
raise(SIGILL); 

} 

Incidentally, the call of raise doesn’t need to be in a separate function. I 

defined raise_sig simply to make a point: regardless of where a signal is 

raised—whether it’s in main or in some other function—it will be caught by the 

handler that was installed most recently. 
The output of this program can vary somewhat, since a large part of the signal¬ 

handling mechanism is left undefined in the C standard. Here’s one possibility: 

Installing handler for signal 4 

Handler called for signal 4 

Changing handler to SIG_IGN 

Restoring original handler 

From this output, we see that SIGILL has the value 4 and that the original handler 

for SIGILL must have been SIG_DFL. (If it had been SIG_IGN, we’d see the 

message Program terminates normally.) Finally, we observe that 

SIG_DFL causes the program to terminate, but doesn’t print an error message. 

24.4 The <set jmp.h> Header: Nonlocal Jumps 

int setjmp(jmp_buf env); 

void longjmp(jmp_buf env, int val); 
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PROGRAM 

tsetjmp.c 

Normally, a function returns to the point at which it was called. We can’t use a 

goto statement to make it go elsewhere, because a goto can jump only to a label 

within the same function. The <setjmp.h> header, however, makes it possible 

for one function to jump directly to another function without returning. 

The most important items in <setjmp.h> are the setjmp macro and the 

longjmp function, setjmp “marks” a place in a program; longjmp can then 

be used to return to that place later. Although this powerful mechanism has a vari¬ 

ety of potential applications, it’s used primarily for error handling. 
To mark the target of a future jump, we call setjmp, passing it a variable of 

type jmp_buf (defined in <setjmp.h>). setjmp stores the current “environ¬ 

ment” (including a pointer to the location of the set jmp itself) in the variable for 

later use in a call of longjmp; it then returns zero. 
Returning to the point of the setjmp is done by calling longjmp, passing it 

the same jmp_buf variable that we passed to setjmp. After restoring the envi¬ 

ronment in the jmp_buf variable, longjmp will—here’s where it gets tricky— 

return from the setjmp call, set jmp’s return value this time is val, the second 

argument to longjmp. (If val is 0, however, setjmp returns 1.) 

Be sure that the argument to longjmp was previously initialized by a call of 
setjmp. Otherwise, calling longjmp results in undefined behavior. (The pro¬ 
gram will probably crash.) 

To summarize, setjmp returns zero the first time it’s called; later, longjmp 

transfers control back to the original call of setjmp, which this time returns a 

nonzero value. Got it? Perhaps we need an example... 

Testing set jmp/longjmp 

The following program uses setjmp to mark a place in main; the function f2 

later returns to that place by calling longjmp. 

/* Tests setjmp/longjmp */ 

#include <setjmp.h> 

ttinclude <stdio.h> 

static jmp_buf env; 

void f1(void); 

void f2(void); 

main() 

{ 
int ret; 

ret = setjmp(env); 

printf("setjmp returned %d\n", ret); 
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if (ret != 0) { 
printf("Program terminates: longjmp called\n"); 

return 0; 

} 
fl(); 
printf("Program terminates normally\n"); 

return 0; 

} 

void fl(void) 

{ 
printf("fl begins\n"); 

f 2 () ; 

printf("fl returns\n"); 

} 

void f2(void) 

{ 
printf("f2 begins\n"); 

longjmp(env, 1); 

printf("f2 returns\n"); 

} 

The output of this program will be 

setjmp returned 0 

fl begins 

f2 begins 

setjmp returned 1 

Program terminates: longjmp called 

The original call of setjmp returns 0, so main calls fl. Next, f 1 calls f2, 

which uses longjmp to transfer control back to main instead of returning to f 1. 

When longjmp is executed, control goes back to the setjmp call. This time, 

setjmp returns 1 (the value specified in the longjmp call). 

Q & A 

Q: My version of <errno.h> defines other macros in addition to EDOM and 
ERANGE. Is this practice legal? [p. 541] 

A: Yes. The C standard allows macros that represent other error conditions, provided 

that their names begin with the letter E followed by a digit or an upper-case letter. 

Q: Some of the macros that represent signals have cryptic names, like SIGFPE 

and SIGSEGV. Where do these names come from? [p. 543] 

The names of signals date back to the early C compilers, which ran on a DEC 

PDP-11. The PDP-11 hardware could detect errors with names like “Floating Point 

Exception” and “Segmentation Violation.” 

A: 
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A: 

Q: 

A: 

Q: 

A: 

Q: 

A: 

I noticed a type named sig_atomic_t in the <signal .h> header. What’s 
the purpose of this type? 

sig_atomic_t is an integer type that can be accessed “as an atomic entity,” ac¬ 

cording to the C standard. In other words, the CPU can fetch a sig_atomic_t 

value from memory or store one in memory with a single machine instruction, 

rather than using two or more machine instructions. sig_atomic_t is often de¬ 

fined to be int, since most CPUs can load or store an integer in one instruction. 

Normally, a signal-handling function isn’t supposed to access variables with 

static storage duration. However, the C standard allows one exception: a signal 

handler may store a value in a sig_atomic_t variable, provided that it’s 

declared volatile. To see the reason for this arcane rule, consider what might 

happen if a signal-handler were to modify a static variable that’s of a type larger 

than sig_atomic_t. If the program had fetched part of the variable from mem¬ 

ory just before the signal occurred, then completed the fetch after the signal is han¬ 

dled, it could end up with a garbage value. sig_atomic_t variables can be 

fetched in a single step, and volatile variables must be fetched each time 

they’re used, so the problem doesn’t occur. 

If signal-handling functions aren’t supposed to call library functions, how can 

a signal handler call signal to re-install itself? [p. 545] 

The C standard makes an exception for this case. A signal-handling function can 

legally call signal, provided that the first argument is the signal that it’s han¬ 

dling at the moment. 

The tsignal program calls printf from inside a signal handler. Isn’t that 

illegal? 

There’s another exception in the C standard: a signal-handling function invoked as 

a result of raise or abort may call library functions. 

How can setjmp modify the argument that’s passed to it? I thought that C 

always passed arguments by value, [p. 547] 

The C standard says that jmp_buf must be an array type, so set jmp is actually 

being passed a pointer. 

Sometimes my program won’t compile when I use set jmp. What’s the prob¬ 

lem? 

According to Standard C, there are only two legal ways to use set jmp: 

■ As an expression statement (possibly cast to void). 

■ As part of the controlling expression in an if, switch, while, do, or for. 

The entire controlling expression must have one of the following forms. 

(.constexp is a constant expression that evaluates to an integer, and op is a rela¬ 

tional or equality operator.) 

set jmp (...) 
! set jmp (...) 
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constexp op setjmp(...) 

setjmp(...) op constexp 

Some compilers allow calls of set jmp that don’t follow these rules. But if 

you don’t follow the rules, your program won’t be portable. 

Q: After a call of long jmp, what are the values of variables in the program? 

A: Most variables retain the values they had at the time of the long jmp. However, 

an automatic variable inside the function that contains the set jmp doesn’t have a 

definite value unless it was declared volatile or it hasn’t been modified since 

the set jmp was performed. 

Q: Is it legal to call long jmp inside a signal handler? 

A: Yes, provided that the signal handler wasn’t invoked because of a signal raised 

during the execution of a signal handler. 

Exercises 

Section 24.1 

Section 24.2 

Section 24.3 

Section 24.4 

1. (a) Assertions can be used to test for two kinds of problems: (1) problems that should never 
occur if the program is correct, and (2) problems that are beyond the control of the program. 
Explain why assert is best suited for problems that fall into the first category. 

(b) Give three examples of problems that are beyond the control of the program. 

2. (a) Write a “wrapper” function named try_math_fcn that calls a math function 
(assumed to have a double argument and return a double value) and then checks 
whether the call succeeded. Here’s how we might use try_math_f cn: 

y = try_math_fcn(sqrt, x, "Error in call of sqrt"); 

If the call sqrt (x) is successful, try_math_fcn returns the value computed by sqrt. 
If the call fails, try_math_fcn calls perror to print the message Error in call of 
sqrt, then calls exit to terminate the program. 

(b) Write a macro that has the same effect as try_math_fcn but builds the error mes¬ 
sage from the function’s name: 

y = TRY_MATH_FCN(sqrt, x); 

If the call of sqrt fails, the message will be Error in call of sqrt. Hint: Have 
TRY_MATH_FCN call try_math_f cn. 

3. Write a signal handler for SIGINT that keeps track of how many times it’s been called. The 
handler must ignore the signal the first two times it occurs, but terminate the program (by 
calling exit) when it occurs for the third time. 

4. In the invent program (Section 16.3), the main function has a for loop that prompts the 
user to enter an operation code, reads the code, and then calls either insert, search, 
update, or print. Add a call of set jmp to main in such a way that a subsequent call of 
longjmp will return to the for loop. (After the longjmp, the user will be prompted for 
an operation code, and the program will continue normally.) set jmp will need a jmp_buf 
variable; where should it be declared? 
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If your computer speaks English 
it was probably made in Japan. 

As originally designed, C wasn’t especially suitable for use in many countries. 

Classic C assumes that characters are single bytes and that all computers recognize 

the characters #, [, \, ], A, {, |, }, and which are needed to write C programs. 

Unfortunately, these assumptions aren’t valid in all parts of the world. The experts 

who created Standard C in the 1980s saw the importance of making C an interna¬ 

tional language. This chapter describes the features they added to the language and 

library for the benefit of international programmers. 

The <locale . h> header (Section 25.1) provides functions that allow a pro¬ 

gram to tailor its behavior to a particular “locale”—perhaps a country, a state or 

province, or a particular culture. Multibyte characters and wide characters (Section 

25.2) enable programs to work with large character sets like those found in Asian 

countries. Trigraph sequences (Section 25.3) make it possible to write programs on 

computers that lack some of the characters normally used in C programming. 

The importance of C to the international community was underscored in 1994 

with the approval of Amendment 1 to the ISO C standard. This amendment 

describes additional library support for international programming, including the 

new headers <iso646 .h>, <wctype.h>, and <wchar ,h>. Since it’s not yet 

in widespread use (and this book is already too long), I won’t go into the details of 

Amendment 1. For additional information, see Harbison and Steele, C: A Refer¬ 

ence Manual, Fourth Edition (Englewood Cliffs, N.J.: Prentice-Hall, 1995). 

25.1 The <locale.h> Header: Localization 

The clocale . h> header provides functions to control aspects of the library that 

vary from one locale to another. A locale is often a country, but it need not be. Dif- 
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ferent regions of a country could be treated as separate locales, for example; 

locales could even represent different cultures within a single region. 

Locale-dependent aspects of the library include: 

■ Formatting of numerical values. In some locales, for example, the decimal 

point is a period (297.48), while in others it’s a comma (297,48). 

■ Formatting of monetary values. For example, the currency symbol varies 

from country to country. 

■ Character set. The character set often depends on the language in a particular 

locale. Asian countries usually require a much larger character set than West¬ 

ern countries. 

■ Appearance of date and time. In some locales, for example, it’s customary to 

put the month first when writing a date (8/24/97); in others, the day goes first 
(24/8/97). 

Categories 

By changing locale, a program can adapt its behavior to different parts of the 

world. But a locale change can affect many aspects of the library, some of which 

we might prefer not to alter. Fortunately, we’re not required to change all aspects 

of a locale at the same time. Instead, we can use one of the following macros to 
specify a category: 

<string . h> header >23.5 

<ctype . h> header >23.4 

multibyte functions >25.2 

string conversion functions >26.2 

strf time function >26.3 

The setlocale Function 

char *setlocale(int category, const char *locale); 

■ LC_COLLATE. Affects the behavior of two string-comparison functions, 

strcoll and strxfrm. (Both functions are declared in <string . h>). 

■ LC_CTYPE. Affects the behavior of the functions in <ctype.h> (except 

isdigit and isxdigit). Also affects the multibyte functions in 
<stdlib. h>. 

■ LC_MONETARY. Affects the monetary formatting information returned by the 

localeconv function. Doesn’t affect the behavior of any library functions. 

■ LC_NUMERIC. Affects the decimal-point character used by formatted I/O 

functions (like printf and scant) and the string conversion functions 

(atof and strtod) in <stdlib.h>. Also affects the nonmonetary format¬ 
ting information returned by localeconv. 

■ LC_TIME. Affects the behavior of the strftime function (declared in 

ctime . h>), which converts a time into a character string. 

Implementations are free to provide other categories and define LC_ macros not 
listed above. 
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setlocale 

getenv function >26.2 
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localeconv 

The setlocale function changes the current locale, either for a single category 

or for all categories. If the first argument is one of the macros LC_COLLATE, 

LC_CTYPE, LC_MONETARY, LC_NUMERIC, or LC_TIME, a call of set- 

locale affects only a single category. If the first argument is LC_ALL, the call 

affects all categories. The C standard defines only two values for the second argu¬ 

ment: "C" and "". Other locales, if any, depend on the implementation. 

At the beginning of every program’s execution, the call 

setlocale(LC_ALL, "C"); 

occurs behind the scenes. In the "C" locale, library functions behave in the “nor¬ 

mal” way, and the decimal point is a period. 

Changing locale after the program has begun execution requires an explicit 

call of setlocale. Calling setlocale with " " as the second argument 

switches to the native locale, allowing the program to adapt its behavior to the 

local environment. The C standard doesn’t define the exact effect of switching to 

the native locale. Some implementations of setlocale check the execution 

environment (in the same way as getenv) for an environment variable with a par¬ 

ticular name (perhaps the same as the category macro). Some don’t do anything at 

all. (The standard doesn’t require setlocale to have any effect. Of course, a 

library whose version of setlocale does nothing isn’t likely to sell too well in 

some parts of the world.) 

We can’t say much about locales other than " C" and " ", since they vary con¬ 

siderably from one compiler to another. Some implementations may not provide 

any other locales. Others may provide locales with names like "Germany". One 

popular compiler uses cryptic strings like "en_GB.WIN1252" to represent 

locales, en indicates the language (English), GB the country (Great Britain), and 

WIN12 52 the character set (Windows multilingual). 

When a call of setlocale succeeds, it returns a pointer to a string associ¬ 

ated with the category in the new locale. (The string might be the locale name 

itself, for example.) On failure, setlocale returns a null pointer. 

setlocale can also be used as a query function. If its second argument is a 

null pointer, setlocale returns a pointer to a string associated with the category 

in the current locale. This feature is especially useful if the first argument is 

LC_ALL, since it allows us to fetch the current settings for all categories. A string 

returned by setlocale can be saved (by copying it into a variable) and then 

used in a later call of setlocale. 

The localeconv Function 

struct lconv *localeconv(void); 

Although we can ask setlocale about the current locale, the information that it 

returns isn’t necessarily in the most useful form. To find out highly specific infor¬ 

mation about the current locale (What’s the decimal-point character? What’s the 
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Table 25.1 
char * Members of 

lconv Structure 

currency symbol?), we need localeconv, the only other function declared in 

clocale. h>. 
localeconv returns a pointer to a structure of type struct lconv, which 

contains detailed information about the current locale. This structure has static 

storage duration and may be modified by a later call of localeconv or 

setlocale. Be sure to extract the desired information from the lconv structure 

before it’s wiped out by one of these functions. 
Some members of the lconv structure have char * type; other members 

have char type. Table 25.1 lists the char * members. The first three members 

deal with the formatting of nonmonetary values, while the others have to do with 

monetary values. The table also shows the value of each member in the " C" locale 

(the default); a value of "" means “not available.” 

Value in 
Name "C" Locale Description 

1 
e 

£ 

decimal_point Decimal-point character 
thousands_sep "" Character used to separate groups of 

digits before decimal point 
grouping "" Sizes of digit groups 

M
o

n
et

ar
y

 

int_curr_symbol "" International currency symbol* 
currency_symbol "" Local currency symbol 
mon_decimal_point "" Decimal-point character 
mon_thousands_sep "" Character used to separate groups of 

digits before decimal point 
mon_grouping "" Sizes of digit groups 
positive_sign "" String indicating nonnegative value 
negative sign 11" String indicating negative value 

*A three-letter abbreviation followed by a separator (often a space or a period). For example, the international cur¬ 
rency symbols for Italy, Netherlands, Norway, and Switzerland are " ITL. "NLG ", "NOK ",and"CHF ", 
respectively. 

The grouping and mon_grouping members deserve special mention. 

Each character in these strings specifies the size of one group of digits. (Grouping 

takes place from right to left, starting at the decimal point.) A value of CHAR_MAX 

indicates that no further grouping is to be performed; 0 indicates that the previous 

element should be used for the remaining digits. For example, the string " \ 3 " (\3 

followed by \0) indicates that the first group should have 3 digits, then all other 

digits should be grouped in 3’s as well. 

Table 25.2 lists the char members of the lconv structure and shows the 

value of each member in the "C" locale; a value of CHAR_MAX means “not avail¬ 

able.” All members in Table 25.2 have to do with the formatting of monetary val¬ 

ues. Table 25.3 shows how to interpret the values of the p_sign_posn and 
n_sign_posn members. 
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Table 25.2 
char Members of 

lconv Structure 

Name 
Value in 

"C" Locale 
; ■ 

Description 

int_frac_digits CHAR_MAX Number of digits after decimal point 
(international formatting) 

frac_digits CHAR_MAX Number of digits after decimal point 
(local formatting) 

P_cs_precedes CHAR_MAX 1 if currency_symbol precedes 
nonnegative value; 0 if it succeeds value 

p_sep_by_space CHAR_MAX 1 if currency_symbol is separated 
by space from nonnegative value; 0 if not 

n_cs_precedes CHAR_MAX 1 if currency_symbol precedes 
negative value; 0 if it succeeds value 

n_s ep_by_s pace CHAR_MAX 1 if currency_symbol is separated 
by space from negative value; 0 if not 

p_sign_posn CHAR_MAX Position of positive_sign for 
nonnegative value (see Table 25.3) 

n_sign_posn CHAR_MAX Position of negative_sign for 
negative value (see Table 25.3) 

Table 25.3 Value Meaning 

Values of 0 Parentheses surround quantity and currency_symbol 
p sign posn and 1 Sign precedes quantity and currency_symbol 

n_sign_posn 2 Sign succeeds quantity and eurrency_symbol 
3 Sign immediately precedes currency_symbol 
4 Sign immediately succeeds currency_symbol 

To see how the members of the lconv structure might vary from one locale 

to another, let’s compare two hypothetical examples. Table 25.4 shows typical val¬ 

ues of the monetary lconv members for the USA and Italy (the latter example is 

from the C standard itself). 

Table 25.4 
Typical Values of 

Monetary lconv 

Members for 

USA and Italy 

Member USA Italy 

int_curr_symbol "USD " "ITL." 
currency_symbo1 " £ „ " L. " 
mon_decimal_point II II II II 

mon_thousands_sep II II II II 

mon_grouping " \ 3" " \3 " 
positive_sign II li II ll 

negative_sign ll _ ll II _ II 

int_frac_digits 2 0 
frac_digits 2 0 
P_cs_precedes 1 1 
p_sep_by_space 0 0 
n_cs_precedes 1 1 
n_sep_by_space 0 0 
p_sign_posn 4 1 
n_sign_posn 4 1 



556 Chapter 25 International Features 

Here’s how the monetary amount 7593 would be formatted in the two locales: 

USA Italy 

Positive format $7,593.00 L.7.593 

Negative format $-7,593.00 -L.7.593 

International format USD 7,593.00 ITL.7.593 

Keep in mind that none of C’s library functions are able to format monetary values 

automatically. It’s up to each program to use the information in the lconv struc¬ 

ture to accomplish the formatting. 

25.2 Multibyte Characters and Wide Characters 

Q&A 

One of the biggest problems in adapting programs to different locales is the char¬ 

acter set issue. In the U.S., the majority of computers use the ASCII character set, 

and most of the others use EBCDIC. Outside the U.S., the situation is more com¬ 

plicated. In many countries, computers employ character sets that are similar to 

ASCII, but lack certain characters; we’ll discuss this issue further in Section 25.3. 

Other countries, especially those in Asia, face a different problem: written lan¬ 

guages that require a very large character set, usually numbering in the thousands. 

Changing the meaning of type char to handle larger character sets isn’t pos¬ 

sible, since char values, by definition, are limited to single bytes. Instead, C 

allows compilers to provide an extended character set. This character set may be 

used for writing C programs (in comments and strings, for example), in the envi¬ 

ronment in which the program is run, or in both places. C provides two encodings 

for an extended character set: multibyte characters and wide characters. It also 

provides functions that convert from one encoding to the other. 

Multibyte Characters 

In a multibyte character encoding, one or more bytes represent each extended 

character. Any extended character set must include the essential characters that C 

requires (letters, digits, operators, punctuation, and white-space characters); these 

characters are required to be single bytes. Other bytes can be interpreted as the 
beginning of a multibyte character. 

Japanese Character Sets 

The Japanese employ four different writing systems. The most complex, kanji, con¬ 
sists of thousands of symbols—far too many to represent in a one-byte encoding. 
(Kanji symbols actually come from Chinese, which has a similar problem with large 
character sets.) There’s no single way to encode kanji; common encodings include 
JIS (Japan Industrial Standard), Shift-JIS, and EUC (Extended UNIX Code). 
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Some multibyte character sets rely on a state-dependent encoding. In this 

kind of encoding, each sequence of multibyte characters begins in an initial shift 

state. Certain multibyte characters encountered later in the sequence change the 

shift state, affecting the meaning of subsequent bytes. Japan’s JIS encoding, for 

example, mixes one-byte codes with two-byte codes; “escape sequences” embed¬ 

ded in strings indicate when to switch between one-byte and two-byte modes. (In 

contrast, the Shift-JIS encoding is not state-dependent. Each character requires 

either one or two bytes, but the first byte of a two-byte character can always be dis¬ 

tinguished from a one-byte character.) 

In any encoding, the C standard requires that a zero byte always represent a 

null character, regardless of shift state. Also, a zero byte can’t be the second (or 

later) byte of a multibyte character. 

The C library provides two macros, MB_LEN_MAX and MB_CUR_MAX, 

related to multibyte characters. Both macros specify the maximum number of 

bytes in a multibyte character. MB_LEN_MAX (defined in <limits.h>) gives 

the maximum for any supported locale, while MB_CUR_MAX (defined in 

<s tdlib. h>) gives the maximum for the current locale. (Changing locales may 

affect the interpretation of multibyte characters.) Obviously, MB_CUR_MAX can’t 

be larger than MB_LEN_MAX. 

Wide Characters 

The other way to encode an extended character set is to use wide characters. A 

wide character is an integer whose value represents a character. Unlike multibyte 

characters, which may vary in length, all wide characters supported by a particular 

implementation require the same number of bytes. 

Wide characters have the type wchar_t (defined in <stddef. h> and 

<stdlib.h>), which must be an integral type able to represent the largest 

extended character set for any supported locale. For example, if two bytes are 

enough to represent any extended character set, then wchar_t could be defined 

as unsigned short int. 
One advantage of using wide characters is that C supports wide character con¬ 

stants and wide string literals. Wide character constants resemble ordinary charac¬ 

ter constants but are prefixed by the letter L: 

L' a' 

Wide string literals are also prefixed by L: 

L"abc" 

This string represents an array containing the wide characters L ’ a ', L ' b', and 

L ' c ', followed by a wide character whose code is zero. 
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Unicode 

Wide characters are well-suited for character sets with a fixed-length encoding. An 
important example is Unicode, an attempt at a universal character set—one that 
every country can use. Unicode is currently supported by Windows NT; in time, it 
will likely become a feature of other operating systems as well. Each Unicode char¬ 
acter occupies two bytes, so Unicode can represent as many as 65,536 characters, 
leaving plenty of room for the alphabets required by all modern languages, as well 
as some archaic languages (Sanskrit, for example). Unicode also includes a num¬ 
ber of specialized symbols, such as those used in mathematics. 

Multibyte Character Functions 

int mblen(const char *s, size_t n); 

int xnbtowc (wchar_t *pwc, const char *s, size_t n) ; 
int wctomb(char *s, wchar„t wchar); 

mblen The mblen function checks whether its first argument points to a series of bytes 

that form a valid multibyte character. If so, the function returns the number of 

bytes in the character; if not, it returns -1. As a special case, mblen returns 0 if the 

first argument points to a null character. The second argument limits the number of 

bytes that mblen will examine; typically, we’ll pass MB_CUR_MAX. 

The following function uses mblen to determine whether a string consists of 

valid multibyte characters. (This example and the wccheck example later in the 

section are from P. J. Plauger’s The Standard C Library (Englewood Cliffs, N.J.: 

Prentice-Hall, 1992).) The function returns zero if s points to a valid string: 

int mbcheck(const char *s) 

{ 
int n; 

for (mblen(NULL, 0); ; s + = n) 

if ((n = mblen(s, MB_CUR_MAX)) <= 0) 

return n; 

} 

Two aspects of the mbcheck function deserve special mention. First, there’s the 

mysterious call mblen (NULL, 0). It turns out that mblen keeps track of the 

shift state in a static variable. The call mblen (NULL, 0) sets this variable to its 

initial state so that characters later in the string will be interpreted properly. (Pass¬ 

ing a null pointer to mbtowc or wctomb has a similar effect. Each function has its 

own shift state, by the way.) Later calls of mblen may change the shift state. Sec¬ 

ond, there’s the matter of termination. Keep in mind that s points to an ordinary 

character string, which is assumed to end with a null character, mblen will return 

zero when it reaches this null character, causing mbcheck to return. 
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mbtowc 

wctomb 

mbstowcs 

The mbtowc function converts a multibyte character (pointed to by the sec¬ 

ond argument) into a wide character. The first argument points to the variable into 

which the function will store the result. The third argument limits the number of 

bytes that mbtowc will examine, mbtowc returns the same value as mblen: the 

number of bytes in the character if it’s valid, -1 if it’s not, and zero if the second 

argument points to a null character. 
The wctomb function converts a wide character (the second argument) into a 

multibyte character, which it stores into the array pointed to by the first argument, 

wctomb may store as many as MB_LEN_MAX characters into the array, but 

doesn’t append a null character. The conversion takes the current shift state into 

account, and updates the shift state if needed, wctomb returns the number of bytes 

in the character if it’s valid, -1 if it’s not. (Note that wctomb returns 1 if asked to 

convert a null wide character.) 

The following function uses wctomb to determine whether a string of wide 

characters can be converted to valid multibyte characters: 

int wccheck(wchar_t *wcs) 

{ 
char buf[MB_LEN_MAX]; 

int n; 

for (wctomb(NULL, 0); ; ++wcs) 

if ((n = wctomb(buf, *wcs)) <= 0) 

return -1; /* invalid character */ 

else if (buf[n-l] == '\0') 

return 0; /* all characters are valid */ 

} 

Incidentally, all three functions—mblen, mbtowc, and wctomb—c^n be 

used to test whether a multibyte encoding is state-dependent. When passed a null 

pointer as its char * argument, each function returns a nonzero value if multibyte 

characters have state-dependent encodings or zero if they don’t. 

Multibyte String Functions 

size_t mbstowcs(wchar_t *pwcs, const char *s, 

size_t n); 

size_t wcstombs(char *s, const wchar_t *pwcs, 

size_t n); 

The mbstowcs function converts a multibyte string into a sequence of wide char¬ 

acters. The second argument points to the multibyte string, while the first argument 

points to an array of wide characters. The third argument limits the number of wide 

characters that can be stored in the array, mbstowcs stops when it reaches the 

limit or encounters a null character (which it stores in the wide character array). It 

returns the number of array elements modified, not including the terminating zero 

code, if any. mbstowcs returns -1 if it encounters an invalid multibyte character. 
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wcstombs 

25.3 

Table 25.5 
Trigraph Sequences 

The wcstombs function is the opposite of mbstowcs: it converts a string of 

wide characters into multibyte characters. The second argument points to the wide 

character string. The first argument points to the array in which the multibyte char¬ 

acters are to be stored. The third argument limits the number of bytes that can be 

stored in the array, wcstombs stops when it reaches the limit or encounters a null 

character (which it stores). It returns the number of bytes stored, not including the 

terminating null character, if any. wcstombs returns -1 if it encounters a wide 

character that doesn’t correspond to any multibyte character. 

The mbstowcs function assumes that the string to be converted begins in the 

initial shift state. The string created by wcstombs always begins in the initial 

shift state. 

Trigraph Sequences 

A trigraph sequence (or simply, a “trigraph”) is a three-character code that can be 

used as an alternative to an ASCII character. The problem that trigraphs address is 

simple: C programs require the characters #, [, \, ], A, {, |, }, and ~. Many 

European countries use variants of ASCII that lack some of these characters. In 

Germany, for example, the characters [, \, ], {, |, }, and ~ are replaced by A, 0, 

U, a, 6, ii, and E, respectively. Trigraphs provide a way to write valid C programs 

without using any of the missing characters. 

Table 25.5 gives a complete list of trigraphs. All trigraphs begin with ??, 

which makes them, if not exactly attractive, at least easy to spot. 

Trigraph 
Sequence 

ASCII 
Equivalent 

? ? = # 
?? ( [ 
??/ \ 
??) ] 
? ? ' A 

??< { 
? ? ! | 
? ?> } 
? ?- - 

Trigraphs can be freely substituted for their ASCII equivalents. For example, 
the program 

ttinclude <stdio.h> 

main() 

{ 
printf("hello, world\n"); 

return 0; 
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could be written 

??=include <stdio.h> 

main() 

??< 

printf("hello, world??/n"); 

return 0; 

??> 

All Standard C compilers are required to accept trigraphs, even though they’re 

not always needed. Occasionally, this feature can cause problems. 

A Be careful about putting ? ? in a string—it’s possible that the compiler will treat it 
as the beginning of a trigraph. If this should happen, turn the second ? character 
into an escape sequence by preceding it with a \ character. The resulting ?\? 
combination can’t be mistaken for the beginning of a trigraph. 

Q&A 

Q: How long is the locale information string returned by setlocale? [p. 553] 

A: There’s no maximum length, which raises a question: how can we set aside space 

for the string if we don’t know how long it will be? The answer, of course, is 

dynamic storage allocation. The following example (based on a similar example in 

Harbison and Steele’s C: A Reference Manual) shows how to determine the 

amount of space needed, then copy the locale information into that space: 

char *temp, *old_locale; 

temp = setlocale(LC_ALL, NULL); 

if (temp == NULL) { 

/* locale information not available */ 

} 
old_locale = malloc(strlen(temp) + 1); 

if (old_locale == NULL) { 

/* memory allocation failed */ 

} 
strcpy(old_locale, temp); 

To restore the old locale information, we’d first switch to the native locale, then 

restore the old locale: 

setlocale(LC_ALL, ""); /* switch to native locale */ 

setlocale(LC_ALL, old_locale); /* restore old locale */ 
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Q: Why does C provide both multibyte characters and wide characters? 

Wouldn’t either one be enough by itself? [p. 556] 

A: The two encodings serve different purposes. Multibyte characters are handy for 

input/output purposes, since I/O devices are often byte-oriented. Wide characters, 

on the other hand, are more convenient to work with inside a program, since every 

wide character occupies the same amount of space. Thus, a program might read 

multibyte input, convert it to wide character form for manipulation within the pro¬ 

gram, and then convert it back to multibyte form for output. 

Exercises 

Section 25.1 

Section 25.2 

Section 25.3 

1. Determine which locales are supported by your compiler. 

2. Write a program that tests whether your compiler’s " " (native) locale is the same as its " C" 
locale. 

3. The Shift-JIS encoding for kanji requires either one or two bytes per character. If the first 
byte of a character is between 0x81 and 0x9 f or between OxeO and Oxef, a second byte 
is required. (Any other byte is treated as a whole character.) The second byte must be 
between 0x40 and 0x7e or between 0x80 and Oxfc. (All ranges are inclusive.) For each 
of the following strings, give the value that the mbcheck function of Section 25.2 will 
return when passed that string as its argument. 

(a) '' \x05\x87\x80\x36\xed\xaa" 

(b) "\x20\xe4\x50\x88\x3f" 

(c) "\xde\xad\xbe\xef" 

(d) "\x8a\x60\x92\x74\x41" 

4. Modify the following program fragment by replacing as many characters as possible by tri¬ 
graphs. 

while ((orig_char = getchar()) != EOF) { 
new_char = orig_char A KEY; 

if (iscntrl(orig_char) || iscntrl(new_char)) 
putchar(orig_char); 

else 
putchar(new_char); 

) 
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Functions 

It is the user who should parametrize 
procedures, not their creators. 

Our final chapter looks at the three remaining headers in the standard library: 

<stdarg.h>, <stdlib.h>, and <time.h>. These headers are unlike any 

others in the library, so I’ve saved them for last. The <stdarg. h> header (Sec¬ 

tion 26.1) makes it possible to write functions with a variable number of argu¬ 

ments. The <s tdlib. h> header (Section 26.2) is an assortment of functions that 

don’t fit into one of the other library headers. The <time.h> header (Section 

26.3) allows programs to work with dates and times. 

26.1 The <stdarg.h> Header: Variable Arguments 

void va_start(va_list ap, parmN); 

type va_arg (va_list ap, type); 

void va_end(va_list ap); 

We’ve seen that functions such as print f and scanf have no fixed limit on the 

number of arguments they accept. The ability to handle a variable number of argu¬ 

ments isn’t limited to library functions, however. The <stdarg.h> header pro¬ 

vides the tools we’ll need to write our own functions with variable-length 

argument lists. <stdarg.h> defines one type, va_list, and three macros. 

These macros, named va_start, va_arg, and va_end, can be thought of as 

functions with the prototypes shown above. 

563 
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va start 

va_arg 

To see how these macros work, we’ll use them to write a function named 

max_int that finds the maximum of any number of integer arguments. Here’s 

how we might call the function: 

max_int(3, 10, 30, 20) 

The first argument specifies how many additional arguments follow. This call of 

max_int will return 30 (the largest of the numbers 10, 30, and 20). 

Here’s the definition of the max_int function: 

int max_int(int n, ...) /* n must be at least 1 */ 

{ 
va_list ap; 

int i, current, largest; 

va_start(ap, n); 

largest = va_arg(ap, int); 

for (i = 1; i < n; i++) { 

current = va_arg(ap, int); 

if (current > largest) 

largest = current; 

} 

va_end(ap); 

return largest; 

} 

The . . . symbol in the parameter list (known as an ellipsis) indicates that the 

parameter n is followed by a variable number of additional parameters. 

The body of max_int begins with the declaration of a variable of type 
va_list: 

va_list ap; 
I 

Declaring such a variable is mandatory for max_int to be able to access the argu¬ 
ments that follow n. 

The statement 

va_start(ap, n); 

indicates where the variable-length part of the argument list begins (in this case, 

after n). A function with a variable number of arguments must have at least one 

“normal” parameter; the ellipsis always goes at the end of the parameter list, after 
the last normal parameter. 

The statement 

largest = va_arg(ap, int); 

fetches max_int’s second argument (the one after n), assigns it to largest, 

and automatically advances to the next argument. The word int indicates that we 

expect max_int’s second argument to have int type. The statement 
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A 

va_end 

default argument promotions >9.3 

current = va_arg(ap, int); 

fetches max_int’s remaining arguments, one by one, as it is executed inside a 
loop. 

Don’t forget that va_arg always advances to the next argument after fetching the 
current one. Because of this property, we couldn’t have written max_int’s loop in 
the following way: 

for (i = 1; i < n; i++) 

if (va_arg(ap, int) > largest) /*** WRONG ***/ 

largest = va_arg(ap, int); 

The statement 

va_end(ap); 

is required to “clean up” before the function returns. (Instead of returning, the 

function might call va_start and traverse the argument list again.) 

When a function with a variable argument list is called, the compiler performs 

the default argument promotions on all arguments that match the ellipsis: character 

values are promoted to integers, and float values are promoted to double. 

Consequently, it doesn’t make sense to pass a character type or float to 

va_arg, since arguments—after promotion—will never have one of those types. 

Calling a Function with a Variable Argument List 

Calling a function with a variable argument list is an inherently risky proposition. 

As far back as Chapter 3, we saw how dangerous it can be to pass the wrong argu¬ 

ments to printf and scanf. Other functions with variable argument lists are 

equally sensitive. The primary difficulty is that a function with a variable argument 

list has no easy way to determine how many arguments were passed or what their 

types are. This information must be passed into the function and/or assumed by the 

function. max_int relies on the first argument to specify how many additional 

arguments follow; it assumes that the arguments are of type int. Functions like 

printf and scanf rely on the format string, which describes the number of 

additional arguments and the type of each. 

Another problem has to do with passing NULL as an argument. NULL is usu¬ 

ally defined to represent 0. When 0 is passed to a function with a variable argu¬ 

ment list, the compiler assumes that it represents an integer—there’s no way it can 

tell that we want it to represent the null pointer. The solution is to add a cast, writ¬ 

ing (void * ) NULL instead of NULL. (See the Q&A section at the end of Chapter 

17 for more discussion of this point.) 



Chapter 26 Miscellaneous Library Functions 

vfprintf 
vprintf 

vsprintf 

The v„.printf Functions 

int vfprintf(FILE *stream, const char *format, 

va__list arg) ; 

int vprintf (const char *format, va__list arg) ; 

int vsprintf(char *s, const char *format, 

va_list arg); 

The vfprintf, vprintf, and vsprintf functions (the “v...printf func¬ 

tions”) belong to <stdio.h>. We’re discussing them in this section because 

they’re invariably used in conjunction with the macros in <stdarg. h>. 

The v...printf functions are closely related to fprintf, printf, and 

sprintf. Unlike these functions, however, the v...printf functions have a 

fixed number of arguments. Each function’s last argument is a va_list value, 

which implies that it will be called by a function with a variable argument list. In 

practice, the v...printf functions are used primarily for writing “wrapper” func¬ 

tions that accept a variable number of arguments, which are then passed to a 
v...printf function. 

As an example, let’s say that we’re working on a program that needs to dis¬ 

play error messages from time to time. We’d like each message to begin with a 
prefix of the form 

** Error n: 

where n is 1 for the first error message and increases by one for each subsequent 

error. To make it easier to produce error messages, we’ll write a function named 

error f that’s similar to print f, but adds * * Error n: to the beginning of its 

output and always writes to stderr instead of stdout. We’ll have errorf call 

vfprintf to do most of the actual output. Here’s what errorf might look like: 

int errorf(const char *format, ...) 

{ 
static int num_errors = 0; 

int n; 

va_list ap; 

num_errors++; 

fprintf(stderr, "** Error %d: ", num_errors); 

va_start(ap, format); 

n = vfprintf(stderr, format, ap) ; 
va_end(ap); 

fprintf(stderr, "\n"); 

return n; 
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26.2 The <stdlib.h> Header: General Utilities 

<stdlib. h> serves as a catch-all for functions that don’t fit into any of the other 

headers. The functions in <stdlib.h> fall into seven unrelated groups: 

String conversion functions 

Pseudo-random sequence generation functions 

Memory management functions 

Communication with the environment 

Searching and sorting utilities 

Integer arithmetic functions 

Multibyte character and string functions 

We’ll look at each group in turn, with two exceptions: the memory management 

functions and the multibyte character and string functions. 

The memory management functions (malloc, calloc, realloc, and 

free) permit a program to allocate a block of memory and then later release it or 

change its size. Chapter 17 describes all four functions in some detail. 

The multibyte character and string functions allow programs to manipulate 

characters that are more than one byte long. Section 25.2 discusses multibyte char¬ 

acters and explains what the multibyte functions do. 

String Conversion Functions 

double atof(const char *nptr); 

int atoi(const char *nptr); 

long int atol(const char *nptr); 

double strtod(const char *nptr, char **endptr); 

long int strtol(const char *nptr, char **endptr, 

int base); 

unsigned long int strtoul(const char *nptr, 

char **endptr, int base); 

The functions in this group convert strings containing numbers in character form 

to their equivalent numeric values. Three of these functions are fairly old, while 

the other three were added during the standardization of C. 
atof The old functions (atof, atoi, and atol) convert a string to a double, 

atoi int, or long int value, respectively. Each function skips white-space characters 

ato1 at the beginning of the string, treats subsequent characters as part of a number, and 

stops at the first character that can’t be part of the number. 
strtod The new functions (strtod, strtol, and strtoul) are more sophisti- 

strtol cated. For one thing, they indicate where the conversion stopped by modifying the 
strtoul variable that endptr points to. (The second argument can be a null pointer if 
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<errno . h> header >24.2 

PROGRAM 

tstrconv.c 

we’re not interested in where the conversion ended.) To check whether a function 

was able to consume the entire string, we can just test whether this variable points 

to a null character. What’s more, strtol and strtoul have a base argument 

that specifies the base of the number being converted. All bases between 2 and 36 

(inclusive) are supported. 
Besides being more versatile than the old functions, the new functions are bet¬ 

ter at handling errors. The old functions lack any way to indicate how much of the 

string was consumed during a conversion. Moreover, the old functions return zero 

if they can’t locate a number to convert; they return an undefined value if the num¬ 

ber is too large. As a result, neither problem can be detected by checking the func¬ 

tion’s return value. The new functions store ERANGE in errno if a conversion 

produces a value that’s too large (or too small) to represent. 

With the addition of strtod, strtol, and strtoul, the atof, atoi, 

and atol functions are redundant. They remain in the library for the benefit of 

older C programs, but strtod, strtol, and strtoul are recommended for 

new programs. 

Testing the String Conversion Functions 

The following program converts a string to numeric form by applying each of 

the six string conversion functions. After calling the strtod, strtol, and 

strtoul functions, the program also displays an indication of whether each con¬ 

version produced a valid result and whether it was able to consume the entire 

string. The program obtains the input string from the command line. 

/* Tests string conversion functions */ 

#include <errno.h> 

ttinclude <stdio.h> 

#include <stdlib.h> 

ttdefine CHK_VALID printf(" %s %s\n", \ 

errno != ERANGE ? "Yes" : "No ", \ 

*ptr == '\0' ? "Yes" : "No"); 

main(int argc, char *argv[]) 

{ 
char *ptr; 

if (argc ! = 2) { 

printf("usage: tstrconv string\n"); 

exit(EXIT_FAILURE); 

} 

printf("Function 

printf("- 

printf("atof 

printf("atoi 

printf("atoi 

Return Value\n"); 

-\n"); 
%g\n", atof(argv[1])); 

%d\n", atoi(argv[1])); 

%ld\n\n", atoi(argv[l])); 
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printf("Function Return Value Valid? 

"String Consumed?\n" 

"-\n") ; 

errno = 0; 

printf("strtod %-12g", strtod(argv[1], &ptr)); 
CHK_VALID; 

errno = 0; 

printf("strtol %-121d", strtol(argv[l], &ptr, 10)); 

CHK_VALID; 

errno - 0 ; 

printf("strtoul %-121u", strtoul(argv[1], &ptr, 10)); 

CHK_VALID; 

return 0; 

} 

If 3 000000000 is the command-line argument, the output of tstrconv 

might have the following appearance: 

Function Return Value 

atof 3e+09 

atoi 24064 

atol -1294967296 

Function Return Value Valid? S< ring Consumed? 

strtod 3e+09 Yes Yes 

strtol 2147483647 No Yes 

strtoul 3000000000 Yes Yes 

On many machines, the number 3000000000 is too large to represent as a long 

integer, although it’s valid as an unsigned long integer. The atoi and atol func¬ 

tions can’t detect the problem, and end up returning strange values. The strtoul 

function performs the conversion correctly, while strtol returns 2147483647 

(the largest long integer) and stores ERANGE in errno. 

If 123.45 6 is the command-line argument, the output will be 

Function Return Value 

atof 123.456 

atoi 123 

atol 123 

Function Return Value Valid? String Co 

strtod 123.456 Yes Yes 

strtol 123 Yes No 

strtoul 123 Yes No 
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rand 

srand 

time function >26.3 

All functions treated this input as a valid number, although the integer functions 

stopped at the decimal point. The strtol and strtoul functions failed to con¬ 

sume the input completely, however, so we know there’s a problem. 

If f oo is the command-line argument, the output will be 

Function Return Value 

atof 0 

atoi 0 

atol 0 

Function Return Value Valid? String Consumed? 

strtod 0 

strtol 0 

strtoul 0 

Yes No 

Yes No 

Yes No 

All the functions look at the letter f and immediately return zero. The s tr... func¬ 

tions don’t change errno, but we can tell that something went wrong from the 

fact that the functions didn’t consume the string. 

Pseudo-Random Sequence Generation Functions 

int rand(void); 

void srand(unsigned int seed); 

The rand and srand functions support the generation of pseudo-random num¬ 

bers. These functions are useful in simulation programs and game-playing pro¬ 

grams (to simulate a dice roll or the deal in a card game, for example). 
Each time it’s called, rand returns a number between 0 and RAND_MAX (a 

macro defined in <stdlib.h>). The numbers returned by rand aren’t actually 

random; they’re generated from a “seed” value. To the casual observer, however, 

rand appears to produce an unrelated sequence of numbers. 

Calling srand supplies the seed value for rand. If rand is called prior to 

srand, the seed value is assumed to be 1. Each seed value determines a particular 

sequence of “random” numbers; srand allows us to select which sequence we 
want. 

A program that always uses the same seed value will always get the same 

sequence of numbers from rand. This property can sometimes be useful: the pro¬ 

gram behaves the same way each time it’s run, making testing easier. However, we 

usually want rand to produce a different sequence each time the program is run. 

(A poker-playing program that always deals the same cards isn’t likely to be popu¬ 

lar.) The easiest way to ‘randomize” the seed values is to call the time function, 

which returns a number that encodes the current date and time. Passing time’s 

return value to srand makes the behavior of rand vary from one run to the next. 

See the guess . c and guess2 . c programs in Section 10.2 for examples of this 
technique. 
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PROGRAM Testing the Pseudo-Random Sequence Generation Functions 

The following program displays the first ten values returned by the rand function, 

then allows the user to choose a new seed value. The process repeats until the user 
enters zero as the seed. 

trand.C /* Tests the pseudo-random sequence generation functions */ 

#include <stdio.h> 
ttinclude <stdlib.h> 

main() 

{ 
int i, seed; 

printf("This program displays the first ten values of " 
"rand.\n"); 

for (;;) { 
for (i = 0; i < 10; i++) 

printf("%d ", rand()); 
printf("\n\n"); 
printf("Enter new seed value (0 to terminate): "); 
scanf("%d", &seed); 
if (seed == 0) 

break; 
srand(seed) ; 

} 

return 0; 

} 

Here’s how a session with the program might look: 

This program displays the first ten values of rand. 
346 130 10982 1090 11656 7117 17595 6415 22948 31126 

Enter new seed value (0 to terminate): 100 
1862 11548 3973 4846 9095 16503 6335 13684 21357 21505 

Enter new seed value (0 to terminate): 1 
346 130 10982 1090 11656 7117 17595 6415 22948 31126 

Enter new seed value (0 to terminate) : 0^ 

There are many ways to write the rand function, so there’s no guarantee that 

every version of rand will generate the numbers shown here. Note that choosing 

1 as the seed gives the same sequence of numbers as not specifying the seed at all. 
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Communication with the Environment 

void abort(void); 

int atexit(void (*func)(void)); 

void exit(int status); 
char *getenv(const char *name); 

int systera(const char *string); 

The functions in this group provide a simple interface to the operating system, 

allowing programs to (1) terminate, either normally or abnormally, and return a 

status code to the operating system, (2) fetch information from the user’s environ¬ 

ment, and (3) execute operating system commands. 
exit Performing the call exit (n) anywhere in a program is equivalent to execut¬ 

ing the statement return n; in main: the program terminates, and n is returned 

to the operating system as a status code. The <stdlib.h> header defines the 

macros EXIT_FAILURE and EXIT_SUCCESS, which can be used as arguments 

to exit. The only other portable argument to exit is 0, which has the same 

meaning as EXIT_SUCCESS. Returning status codes other than these is legal, but 

not necessarily portable to all operating systems. 
atexit When a program terminates, it normally performs a few final actions behind 

the scenes, including flushing output buffers, closing open streams, and deleting 

temporary files. We may have other “clean-up” actions that we’d like a program to 

perform at termination. The atexit function allows us to “register” a function to 

be called upon program termination. To register a function named cleanup, for 

example, we could call atexit as follows: 

atexit(cleanup); 

abort 

Q&A 
getenv 

When we pass a function pointer to atexit, it stores the pointer away for future 

reference. Later, when the program terminates, any function registered with 

atexit will be called automatically. (If several functions have been registered, 
the one registered most recently is called first.) 

abort is similar to exit, but causes abnormal program termination. Func¬ 

tions registered with atexit aren’t called. Depending on the implementation, it 

may be the case that file buffers aren’t flushed, streams aren’t closed, and tempo¬ 

rary files aren’t deleted, abort returns an implementation-defined status code 
indicating “unsuccessful termination.” 

Many operating systems provide an “environment”: a set of strings that 

describe the user’s characteristics. These strings typically include the path to be 

searched when the user runs a program, the type of the user’s terminal (in the case 

of a multi-user system), and so on. For example, a UNIX search path might look 
something like this: 

PATH=~:-/bin:/bin:/usr/bin:. 

DOS paths have a similar appearance: 
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system 

bsearch 

PATH=C:\;C:\DOS;C:\WINDOWS 

getenv provides access to any string in the user’s environment. To find the cur¬ 
rent value of the PATH string, for example, we would write 

p = getenv("PATH"); 

After this statement has been executed, p points to a string such as " ~ : - /bin: / 

bin:/usr/bin: . " or "C : \ ;C : \DOS;C : \WINDOWS". The string returned 

by getenv is statically allocated and may be changed by a later call of the func¬ 
tion. 

The system function allows a C program to run another program (possibly 

an operating system command). The argument to system is a command line, sim¬ 

ilar to one that we’d enter at the operating system prompt. For example, suppose 

that we’re writing a program that needs a listing of the files in the current directory. 

A UNIX program would call system in the following way: 

system("ls >myfiles"); 

A DOS program would use a slightly different call: 

system("dir >myfiles"); 

After either call, myf iles will contain a directory listing. The value returned by 

system is implementation-defined. Typically, system returns the termination 

status code from the program that we asked system to run; testing this value 

allows us to check whether the program worked properly. Calling system with a 

null pointer has a special meaning: the function returns a nonzero value if a com¬ 

mand processor is available. 

Searching and Sorting Utilities 

void *bsearch(const void *key, const void *base, 

size_t nmemb, size_t size, 

int (*compar)(const void *, 

const void *)); 

void qsort(void *base, size_t nmemb, size_t size, 

int (*compar)(const void *, const void *)); 

The bsearch function searches a sorted array for a particular value (the key). 

When bsearch is called, the key parameter points to the key, base points to the 

array, nmemb is the number of elements in the array, size is the size of each ele¬ 

ment (in bytes), and compar is a pointer to a comparison function. The compari¬ 

son function is similar to the one required by qsort: when passed pointers to the 

key and an array element (in that order), the function must return a negative, zero, 

or positive integer depending on whether the key is smaller than, equal to, or 

greater than the array element, bsearch returns a pointer to an element that 

matches the key; if it doesn’t find a match, bsearch returns a null pointer. 
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Although Standard C doesn’t require it to, bsearch normally uses the 

“binary search” algorithm to search the array, bsearch first compares the key 

with the element in the middle of the array; if there’s a match, the function returns. 

If the key is smaller than the middle element, bsearch limits its search to the 

first half of the array; if the key is larger, bsearch searches only the last half of 

the array, bsearch repeats this strategy until it finds the key or runs out of ele¬ 

ments to search. Thanks to this technique, bsearch is quite fast—searching an 

array of 1000 elements requires only 10 comparisons at most; searching an array 

of 1,000,000 elements requires no more than 20 comparisons. 
qsort Section 17.7 discusses the qsort function, which can sort any array, 

bsearch works only for sorted arrays, but we can always use qsort to sort an 

array prior to asking bsearch to search it. 

PROGRAM Determining Air Mileage 

Our next program computes the air mileage from New York City to various inter¬ 

national cities. The program first asks the user to enter a city name, then displays 

the mileage to that city: 

Enter city name: Frankfurt 

Frankfurt is 3851 miles from New York City. 

The program will store city/mileage pairs in an array. By using bsearch to 

search the array for a city name, the program can easily find the corresponding 

mileage. (Mileages are from The New York Public Library Desk Reference, Second 

Edition (New York: Prentice-Hall, 1993).) 

airmiles.c /* Determines air mileage from New York to other cities */ 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

struct city_info { 

char *city; 

int miles; 

}; 

int compare_cities(const void *key_ptr, 

const void *element_ptr); 

main() 

{ 
char city_name[81]; 
struct city_info *ptr; 

const struct city_info mileage[] 

{{"Acapulco", 

{"Antigua", 

{"Athens", 

{"Bermuda", 

2260}, {"Amsterdam", 
1783}, ("Aruba", 
4927}, {"Barbados", 
771}, {"Bogota", 

3639} , 
1963}, 
2100}, 
2487}, 
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{"Brussels", 3662}, {"Buenos Aires", 5302}, 
{"Caracas", 2123}, {"Copenhagen", 3849}, 
{"Curacao", 1993} , {"Frankfurt", 3851}, 
{"Geneva", 3859}, {"Glasgow", 3211}, 
{"Hamburg", 3806}, {"Kingston", 1583}, 
{"Lima", 3651}, {"Lisbon", 3366}, 
{"London", 3456}, {"Madrid", 3588}, 
{"Manchester", 3336}, {"Mexico City", 2086}, 
{"Milan", 4004}, {"Nassau", 1101}, 
{"Oslo", 3671}, {"Paris", 3628}, 
{"Reykjavik", 2600}, {"Rio de Janeiro", 4816}, 
{"Rome", 4280}, {"San Juan", 1609}, 
{"Santo Domingo ", 1560}, {"St. Croix", 1680}, 
{"Tel Aviv", 5672}, {"Zurich", 3926}}; 

printf("Enter city name: ”); 
scanf("%80[A\n]", i city_name); 
ptr = bsearch(city_name, mileage, 

sizeof(mileage)/sizeof(mileage[0]), 

sizeof(mileage[0]), compare_cities); 

if (ptr != NULL) 

printf("%s is %d miles from New York City.\n", 

city_name, ptr->miles); 

else 

printf("%s wasn't found.\n", city_name); 

return 0; 

int compare_cities(const 

const 

{ 
return strcmp((char *) 

((struct 

} 

void *key_ptr, 

void *element_ptr) 

key ptr, 

city_info *) element_ptr)->city); 

Integer Arithmetic Functions 

int abs(int j); 

div_t div(int numer, int denom); 

long int labs(long int j); 

ldiv_t ldiv(long int numer, long int denom); 

abs The abs function returns the absolute value of an int value; the labs function 

labs returns the absolute value of a long int value. 
div The div function divides its first argument by its second, returning a div_t 

value. div_t is a structure that contains both a quotient member (named quot) 

and a remainder member (rem). For example, if ans is a div_t variable, we 

could write 
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ans = div(5, 2); 
printf("Quotient: %d Remainder: %d\n", ans.quot, ans.rem) ; 

Idiv 

Q&A 

The ldiv function is similar but works with long integers; it returns an ldiv_t 

structure, which also has quot and rem members. (The div_t and ldiv_t 

types are defined in <stdlib. h>.) 

26.3 The <time.h> Header: Date and Time 

The <time.h> header provides functions for determining the time (and date), 

performing arithmetic on time values, and formatting times for display. Before we 

explore these functions, however, we need to discuss how times are stored. 

<time . h> provides three types, each of which represents a different way to store 

a time: 

Table 26.1 
Members of the tm 

Structure 

■ clock_t: A time value measured in “clock ticks.” 

■ t ime_t: A compact, encoded time and date (a calendar time). 

■ struct tm: A time that has been “broken down” into seconds, minutes, 

hours, and so on. A value of type struct tm is often called a broken-down 

time. Table 26.1 shows the members of the tm structure. All members are of 

type int. 

Name Description 
Minimum 

Value 
Maximum 

Value 

tm_sec Seconds after the minute 0 61** 

tm_min Minutes after the hour 0 59 
tm_hour Hours since midnight 0 23 
tm_mday Day of the month 1 31 
tm_mon Months since January 0 11 
tm_year Years since 1900 0 - 
tm_wday Days since Sunday 0 6 
tm_yday Days since January 1 0 365 
tm_isdst Daylight Saving Time flag * * 

‘Positive if Daylight Saving Time is in effect, zero if it’s not in effect, and negative if this in¬ 
formation is unknown. 
“Allows for two extra “leap seconds.” 

These types are used for different purposes. A clock_t value is good only 

for representing a time duration; time_t and struct tm values can store an 

entire date and time. time_t values are tightly encoded, so they occupy little 

space, struct tm values require much more space, but they’re often easier to 

work with. The C standard states that clock_t and time_t must be “arithmetic 

types,” by the way, but leaves it at that. As a result, we don’t know if clock_t 

and time_t values are stored as integers or floating-point numbers. 

We’re now ready to look at the functions in <time. h>, which fall into two 

groups: time manipulation functions and time conversion functions. 
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Time Manipulation Functions 

clock_t clock(void); 

double difftime(time_t timel, time_t timeO); 

time__t mktime(struct tm *timeptr); 

tirae_t time(time_t *timer); 

dock The clock function returns a clock_t value representing the processor time 

used by the program since execution began. To convert this value to seconds, we 

would divide it by CLOCKS_PER_SEC, a macro defined in <time . h>. 

When clock is used to determine how long a program has been running, it’s 

customary to call it twice: once at the beginning of main and once just before the 
program terminates: 

#include <time.h> 

main() 

{ 
clock_t start_clock = clock(); 

printf("Processor time used: %g sec.\n", 
(clock() - start_clock) / (double) CLOCKS_PER_SEC); 

return 0; 

} 

The reason for the initial call of clock is that the program will use some proces¬ 

sor time before it reaches main, thanks to hidden “start-up” code. Calling clock 

at the beginning of main determines how much time the start-up code requires so 

that we can subtract it later. 

The C standard doesn’t say whether clock_t is an integer type or a floating 

type; the type of CLOCKS_PER_SEC is also unknown. As a result, we don’t know 

the type of the expression 

(clock () - start__time) / CLOCKS_PER_SEC 

making it difficult to display using printf. To solve the problem, our example 

casts CLOCKS_PER_SEC to double, forcing the entire expression to have type 

double. 

time The time function returns the current calendar time. If its argument isn’t a 

null pointer, time also stores the calendar time in the object that the argument 

points to. time’s ability to return a time in two different ways is an historical 

quirk, but it gives us the option of writing either 

curtime = time(NULL); 

or 

time (&cur_time); 

where cur_time is a variable of type time_t. 
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difftime 

mktime 

The difftime function returns the difference between timeO (the earlier 

time) and timel, measured in seconds. Thus, to compute the actual running time 

of a program (not the processor time), we might use the following code: 

ttinclude <time.h> 

main() 

{ 
time_t start_time = time(NULL); 

printf("Running time: %g sec.\n", 
difftime(time(NULL), start_time)); 

return 0; 

} 

The mktime function converts a broken-down time (stored in the structure 

that its argument points to) into a calendar time, which it then returns. As a side 

effect, mktime adjusts the members of the structure according to the following 

rules: 

■ mktime changes any members whose values aren’t within their legal ranges 

(Table 26.1). Those alterations may in turn require changes to other members. 

If tm_sec is too large, for example, mktime reduces it to the proper range 

(0-59), adding the extra minutes to tm_min. If tm_min is now too large, 

mktime reduces it and adds the extra hours to tm_hour. If necessary, the 

process will continue to the tm_mday, tm_mon, and tm year members. 

■ After adjusting the other members of the structure (if necessary), mktime 

sets tm_wday (day of the week) and tm_yday (day of the year) to their cor¬ 

rect values. There’s never any need to initialize the values of tm_wday and 

tm_yday before calling mktime, since it ignores the original values of these 

members. 

mktime’s ability to adjust the members of a tm structure makes it useful for 

time-related arithmetic. As a example, let’s use mktime to answer the'following 

question: If the 1996 Olympics begin on July 19 and end 16 days later, what is the 

ending date? We’ll start by storing July 19, 1996 into a tm structure: 

struct tm t; 

t.tm_mday = 19; 
t.tm_mon =6; /* July */ 
t.tm_year = 96; /* 1996 */ 

We’ll also initialize the other members of the structure (except tm_wday and 

tm_yday) to ensure that they don’t contain garbage values that could affect the 

answer: 

t.tm_sec - 0; 
t.tm_min = 0; 
t.tm_hour = 0; 
t.tm_isdst = -1; 
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Next, we’ll add 16 to the tm_mday member: 

t.tm_mday += 16; 

That leaves 35 in tm_mday, which is out of range for that member. Calling 

mktime will bring the members of the structure back into their proper ranges: 

mktime(&t); 

We’ll discard mktime’s return value, since we’re interested only in the function’s 

Member Value Meaning 
tm_mday 4 4 

tm_mon 7 August 

tm year 96 1996 
tm_wday 0 Sunday 
tm yday 216 217th day of the year 

Time Conversion Functions 

char *asctime(const struct tm *timeptr); 

char *ctime(const time_t *timer); 

struct tm *gmtime(const time_t *timer); 

struct tm *localtime(const time_t *timer); 

size_t strftime(char *s, size_t maxsize, 

const char * format, 

const struct tm *timeptr); 

The time conversion functions make it possible to convert calendar times to bro¬ 

ken-down times. They can also convert times (calendar or broken-down) to string 

form. The following figure shows how these functions are related: 

The figure includes the mktime function, which the C standard classifies as a 

“manipulation” function rather than a “conversion” function. 
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gmtime 
localtime 

Q&A 
asctime 

dime 

strftime 

sprintf function >22.8 

locales >25.1 

PROGRAM 

The gmtime and localtime functions are similar. When passed a pointer 

to a calendar time, both return a pointer to a structure containing the equivalent 

broken-down time, localtime produces a local time, while gmtime’s return 

value is expressed in UTC (Coordinated Universal Time). 
The asctime (ASCII time) function returns a pointer to a string of the form 

Tue Aug 30 17:07:12 1994\n 

constructed from the broken-down time pointed to by its argument. The string is 

stored in a static variable that’s modified by each call of asctime. 
The ctime function returns a pointer to a string describing a local time; the 

call 

ctime(&t) 

is equivalent to 

asctime (localtime (Set) ) 

The strftime function, like the asctime function, converts a broken- 

down time to string form. Unlike asctime, however, it gives us a great deal of 

control over how the time is formatted. In fact, strftime resembles sprintf 

in that it “writes” characters into a string s (the first argument) according to a for¬ 

mat string (the third argument). The format string may contain ordinary characters, 

which are copied into s unchanged, and the conversion specifiers shown in Table 

26.2. The last argument points to a tm structure, which is used as the source of 

date and time information. The second argument is a limit on the number of char¬ 

acters that can be stored in s. 

The strftime function, unlike the other functions in <time.h>, is sensi¬ 

tive to the current locale. Changing the LC_TIME category may affect the behav¬ 

ior of the conversion specifiers. The examples in Table 26.2 are strictly for the 

"C" locale; in a German locale, %A might produce Dienstag instead of Tues¬ 

day. 

Displaying the Date and Time 

Let’s say we need a program that displays the current date and time. The program’s 

first step, of course, is to call the time function to obtain the calendar time. The 

second step is to convert the time to string form and print it. The easiest way to do 

the second step is to call ctime, which returns a pointer to a string containing a 

date and time, then pass this pointer to puts or print f. 

So far, so good. But what if we want the program to display the date and time 

in a particular way? Let’s assume that we need the following format: 

08-30-94 5:07p 

The ctime function always uses the same format for the date and time, so it’s no 

help. The strftime function is better; using it, we can almost achieve the 

appearance that we want. Unfortunately, strftime won’t let us display a one- 
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Table 26.2 
Conversion Specifiers for 
the strf time Function 

datetime.c 

Conversion Replacement 

%a Abbreviated weekday name (e.g., Tue) 
%A Full weekday name (e.g., Tuesday) 
%b Abbreviated month name (e.g., Aug) 
%B Full month name (e.g., August) 
%c Complete day and time (e.g., Aug 30 17:07:12 1994) 
%d Day of the month (01-31) 
%H Hour on 24-hour clock (00-23) 
%I Hour on 12-hour clock (01-12) 

%j Day of the year (001-3 66) 
%m Month (01-12) 
%M Minute (00-59) 

%P AM/PM designator (AM or PM) 
%S Second (00-61)* 
%U Week number (00-53)** 
%w Weekday (0-6) 
%W Week number (00-53)*** 
%x Complete date (e.g., Aug 30 1994) 
%X Complete time (e.g., 17:07:12) 

%y Year without century (00-9 9) 
%Y Year with century (e.g., 19 94) 
%Z Time zone name or abbreviation (e.g., EST) 
%% % 

*Allows for two extra “leap seconds.” 
**Treats the first Sunday as the beginning of week 1. 
***Treats the first Monday as the beginning of week 1. 

digit hour without a leading zero. Also, strf time uses AM and PM instead of a 

and p. 

When strf time isn’t good enough, we have another alternative: convert the 

calendar time to a broken-down time, then extract the relevant information from 

the structure and format it ourselves using printf or a similar function. We 

might even use strf time to do some of the formatting, then have other func¬ 

tions complete the job. 

The following program illustrates the options. It displays the current date and 

time in three ways: the format used by ctime, one close to what we want (created 

by strf time), and the correct format (created by printf). The ctime version 

is easy to do, the strf time version is a little harder, and the printf version is 

even more difficult. 

/* Displays the current date and time in three formats */ 

#include <stdio.h> 
#include ctime.h> 

main() 

{ 
time_t current = time(NULL); 
struct tm *ptr; 
char date_time[19]; 
int hour; 
char am_or_pm; 
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/* print date and time in default format */ 

puts(ctime(&current)); 

/* print date and time using strftime to format */ 

strftime(date_time, sizeof(date_time), 

"%m-%d-%y %I:%M%p\n", localtime(&current)); 

puts(date_time); 

/* print date and time using custom formatting */ 

ptr = localtime(&current); 

hour = ptr->tm_hour; 

if (hour <= 11) 

am_or_pm = 'a'; 

else { 

hour -= 12; 

am_or_pm = 1p'; 

} 
if (hour == 0) 

hour = 12; 

printf("%.2d-%.2d-%.2d %2d:%.2d%c\n", ptr->tm_mon+l, 

ptr->tm__mday, ptr->tm_year, hour, ptr->tm_min, 

am_or_pm); 

return 0; 

} 

The output of datetime . c will have the following appearance: 

Tue Aug 30 17:07:12 1994 

08-30-94 05:07PM 

08-30-94 5:07p 

Q & A 

Q: Although <stdlib.h> provides six functions that convert strings to num¬ 
bers, there don’t appear to be any functions that convert numbers to strings. 
What gives? 

A: Some C libraries supply functions with names like itoa that convert numbers to 

strings. Using these functions isn’t a great idea, though, since they aren’t part of 

the C standard and won’t be portable. The best way to convert a number to a string 

sprintf function>22.8 is to call sprintf: 

char s [ 10] ; 

int i ; 

sprintf(s, "%d", i); /* stores i in the string s */ 
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Not only is sprint f portable, but it also provides a great deal of control over the 

appearance of the number. 

*Q: 

A: 

signal function >24.3 

longjmp function >24.4 

Is there a relationship between the abort function and SIGABRT signal? 

[p. 572] 

Yes. When called, abort actually raises the SIGABRT signal. If there’s no han¬ 

dler for SIGABRT, the program terminates abnormally as described in Section 

26.2. If a handler has been installed for SIGABRT (by a call of the signal func¬ 

tion), the handler is called. If the handler returns, the program then terminates 

abnormally. However, if the handler doesn’t return (it calls longjmp, for exam¬ 

ple), then the program doesn’t terminate. 

Q: Isn’t there some way to avoid all the ugly casting in the comparison function 

for bsearch or qsort? 

A: Yes, although it involves casting elsewhere in the program. Let’s look at the com¬ 

parison function used in airmiles . c: 

int compare_cities(const void *key_ptr, 

const void ^element ptr) 

{ 
return strcmp((char *) key_ptr, 

((struct city_info *) element_ptr)->city); 

} 

We can write this function in a more natural way, without the casts: 

int compare_cities(const 

const 

{ 
return strcmp(key_ptr, 

} 

char *key_ptr, 

struct city_info *element_ptr) 

element_ptr->city); 

Unfortunately, we can’t pass the new version of compare_cities to 

bsearch, which expects a pointer to a function with two void * arguments. The 

solution is to add a cast to the bsearch call: 

ptr = bsearch(city_name, mileage, 

sizeof(mileage)/sizeof(mileage[0]), 

sizeof(mileage[0]), 

(int (*) (const void *, const void *)) 

compare_cities); 

Does this technique make the program more readable? You be the judge. 

Q: Why do the div and ldiv functions exist? Can’t we just use the / and % 

operators? [p. 576] 

A: div and ldiv aren’t quite the same as / and %. Recall from Section 4.1 that 

applying / and % to negative operands doesn’t give a portable result. If i or j is 

negative, whether the value of i / j is rounded up or down is implementation- 

defined, as is the sign of i % j. The answers computed by div and ldiv, on the 
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Section 26.1 

other hand, don’t depend on the implementation. The quotient is rounded toward 

zero; the remainder is computed according to the formula n- qxd+ r, where n is 

the original number, q is the quotient, d is the divisor, and r is the remainder. Here 

are a few examples: 

n d q r 

7 3 2 1 

-7 3 -2 -1 

7 -3 -2 1 

-7 -3 2 -1 

Efficiency is the other reason that div and ldiv exist. Many machines can 

compute both the quotient and remainder in a single instruction, so calling div or 

ldiv may be faster than using the / and % operators separately. 

Q: Where does the name of the gintime function come from? [p. 580] 

A: Programming languages aren’t the only things that have been standardized. Inter¬ 

national time was standardized in 1883 with the creation of 24 time zones. Since 

some people (navigators and astronomers, in particular) needed a way to state 

times in absolute terms, rather than relative to a time zone, Greenwich Mean Time 

was established, based on the meridian running through Greenwich, England. 

More recently, Greenwich Mean Time was renamed Coordinated Universal Time, 

but the gmtime function was already in widespread use. 

Exercises 

1. Rewrite the max_int function so that, instead of passing the number of integers as the first 
argument, we must supply 0 as the last argument. Hint: max_int must have at least one 
“normal” argument, so you can’t remove the argument n. Instead, assume that it’s one of the 
numbers to be compared. 

2. Write a simplified version of printf in which the only conversion specification is %d, and 
all arguments after the first must be of type int. 

3. Write the following function: 

char *vstrcat(const char *first, ...); 

All arguments of vs treat are assumed to be strings, except for the last argument, which 
must be a null pointer (cast to char * type). The function returns a pointer to a dynamically 
allocated string containing the concatenation of the arguments, vs treat should return a 
null pointer if not enough memory is available. Hint: Have vstreat go through the argu¬ 
ments twice: once to determine the amount of memory required for the returned string and 
once to copy the arguments into the string. 

Explain the meaning of the following statement, assuming that value is a variable of type 
long int and p is a variable of type char *: 

value = strtol(p, &p, 10); 

Section 26.2 4. 
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Section 26.3 

5. Write a statement that randomly assigns one of the numbers 7, 11, 15, or 19 to the variable 
n. 

6. Write a function that returns a random double value d in the range 0.0 < d < 1.0. 

7. Write a program that simulates the dice game known as “craps.” The program should “roll” 
a pair of simulated dice by randomly selecting two numbers between 1 and 6. If the sum of 
the numbers is 7 or 11, have the program print the message Player wins. If the sum is 2, 
3, or 12, have it print Player loses. Otherwise, have the program repeatedly roll the dice 
until the original sum is reached a second time (Player wins) or the dice add up to 7 
(Player loses). Have the program display the values of the dice after each simulated 
roll. 

8. (a) Write a program that calls the rand function 1000 times, printing the low-order bit of 
each value it returns (0 if the return value is even, 1 if it’s odd). Do you see any patterns? 
(Often, the last few bits of rand’s return value aren’t especially random.) 

(b) How can we improve the randomness of rand for generating numbers within a small 
range? 

9. Test the atexit function by writing two functions, one of which prints That' s all, 
and the other folks !. Use the atexit function to register both to be called at program 
termination. Make sure they’re called in the proper order, so that we see the message 
That's all, folks! on the screen. 

10. Write a program that uses the clock function to measure how long it takes qsort to sort 
an array of 100 integers that are originally in reverse order. Run the program for arrays of 
1000 and 10000 integers as well. 

11. Write a function that, when passed a year (1996, for example), returns a t ime_t value rep¬ 
resenting the beginning of that year (the first second of the first minute of the first hour...). 

12. Write a program that prompts the user for a date (month, day, and year) and an integer n, 

then prints the date that’s n days later. 

13. Write a program that prompts the user to enter two dates, then prints the number of days 
between them. Hint: Use the mktime and dif f time functions. 

14. Write programs that display the current date and time in each of the following formats. Use 
strf time to do all or most of the formatting. 

(a) Tuesday, August 30, 1994 05:07p 

(b) Tue, 3 0 Aug 94 17:07 

(c) 08/30/94 5:07:12 PM 



r 'P 



APPENDIX A 
C Syntax 

Annex B of the ISO standard for C gives a complete set of syntax rules for the lan¬ 

guage. This appendix reproduces these rules, which I’ve reworked for readability.* 

In each rule, the name of a syntax item appears in the left margin, followed by its 

definition. Names of syntax items are shown in italic. The I, *, +, [, ], (, and ) sym¬ 

bols have the following meanings: 

iteml I item2 indicates that itemx and item2 are alternatives. 

item* indicates that item may be repeated zero or more times. 

item+ indicates that item may be repeated one or more times. 

[ item ] indicates that item is optional. 

( and ) are used to group alternatives. 

When set in Courier bold, however, these symbols have their usual C mean¬ 

ing. Although most of the rules are reasonably clear, some require further explana¬ 

tion. Where necessary, I’ve included commentary. 

Tokens 

token keyword I identifier I constant I string-literal I operator I punctuator 

preprocessing-token header-name I identifier I pp-number I character-constant I string-literal I 

operator I punctuator I each non-white-space character that cannot be one of the above 

‘Tokens” are the indivisible symbols that make up a program. The preprocessor recognizes 
some tokens that the compiler doesn’t, hence the distinction between a token and a prepro¬ 
cessing-token. 

*This material is adapted from American National Standards Institute ANSI/ISO 9899 © 1990 with 

permission by ANSI. Copies of this standard may be purchased from ANSI, 11 West 42nd Street, New 

York, NY 10036. 
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Keywords 

keyword auto I break I case I char I const I continue I default I do I 

double I else I enum I extern I float I for I goto I if I int I 

long I register I return I short I signed I sizeof I static I 

struct I switch I typedef I union I unsigned I void I volatile I 
while 

identifier 

nondigit 

digit 

constant 

floating-constant 

fractional-constant 

exponent-part 

floating-suffix 

integer-constant 

decimal-constant 

octal-constant 

hexadecimal-constant 

nonzero-digit 

octal-digit 

hexadecimal-digit 

integer-suffix 

unsigned-suffix 

Identifiers 

nondigit ( nondigit I digit )* 

_la Ibl c Idl e I f Iglhl i I j I k| 1 Imlnlolp |q| 

rlsItlulvlwIxlylzlAlBlClDlElFlGlHllI 

JlKlLlMlNlOlPlQlRlSlTlUlVlWlXlYlZ 

0I1I2I3I4I5I6I7I8I9 

Constants 

floating-constant I integer-constant I enumeration-constant I character-constant 

fractional-constant [ exponent-part ] [ floating-suffix ] I 

digit* exponent-part [ floating-suffix ] 

digit* . digit* I digit* . 

( e I E ) [ + I - ] digit* 

f I 1 I F I L 

By default, a floating constant is stored in double form. The letter f or f at the end of a float¬ 
ing constant tells the compiler to store it as a float; 1 or l stores it as a long double. 

decimal-constant [ integer-suffix ] I octal-constant [ integer-suffix ] I 
hexadecimal-constant [ integer-suffix ] 

nonzero-digit digit* 

0 octal-digit* 

Note that o is officially classified as an octal constant, not a decimal constant. This oddity 
makes no difference, of course, since o tias the same meaning in any base. 

( Ox I OX ) hexadecimal-digit* 

11213141516171819 

0I1I2I3I4I5I6I7 

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I a I b I c I d I e I f I 
A I B I C I D I E I F 

unsigned-suffix [ long-suffix ] I long-suffix [ unsigned-suffix ] 

u I U 
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long-suffix 

enumeration-constant 

I 

character-constant 

I 

c-char 

escape-sequence 

simple-escape-sequence 

octal-escape-sequence 

hex-escape-sequence 

string-literal 

I 
s-char 

operator 

punctuator 

1 I L 

The letter u or u at the end of an integer constant tells the compiler to store it as an unsigned 

int; 1 or l stores it as a long int. When followed by both letters (in either order), the con¬ 
stant is Stored as an unsigned long int. 

identifier 

enumeration-constant is used in the enumerator rule (see Declarations). 

'c-char+' I L'c-char+' 

If l is present, the constant represents a wide character, 

any character except 1, \, or new-line I escape-sequence 

Be careful to interpret the preceding rule correctly. It does say that a character constant can’t 
contain the new-line character, but it doesn’t say that a character constant can’t contain a ■ or 
\ character; both can still appear in a character constant as part of an escape sequence. 

simple-escape-sequence I octal-escape-sequence I hex-escape-sequence 

V I \" I \? I \\ I \a I \b I \f I \n I \r I \t I \v 

\ octal-digit [ octal-digit ] [ octal-digit ] 

\x hexadecimal-digit+ 

For historical reasons, an octal escape sequence is limited to three digits. A hex escape 
sequence, on the other hand, may have any number of digits. 

String Literals 

"s-char*" I L"s-char*" 

If l is present, the literal represents a wide string. 

any character except ", \, or new-line | escape-sequence 

This rule doesn’t say that a string constant can’t contain a " or \ character; both can still 
appear as part of an escape sequence. 

Operators 

[ I ] I ( I ) I . I -> I ++ I — I & I * I + I - I - I ! I sizeof I / I 

% I << I >> I < I > I <= I >= I == I ! = I A I | I I || I ? I : 1 = 1 
* = | /= | %= | += | -= | <<= | »= I &= I A= I |=l, I # I ## 

For convenience, the preprocessor operators # and ## are grouped with C’s ordinary opera¬ 

tors. 

Punctuators 

[ I ] I ( I ) I { I } I * I , I : I = I ; I ... I # 

Some punctuators are also operators, depending on context. The = token, for example, is a 
punctuator when used in a declaration to separate a variable from its initializer or an enumer¬ 
ation constant from its value; when used in an expression, it’s the assignment operator. The 
. . . token (ellipsis) is used for writing functions with variable-length argument lists. 
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header-name 

h-char 

q-char 

pp-number 

primary-expression 

postfix-expression 

argument-expression-list 

unary-expression 

unary-operator 

cast-expression 

multiplicative-expression 

additive-expression 

shift-expression 

relational-expression 

equality-expression 

AND-expression 

exclusive-OR-expression 

Header Names 

<h-char+> I nq-char+" 

any character except new-line and > 

any character except new-line and " 

A header name can contain almost any character. The reason for allowing so much flexibility 
is that header names often contain operating-system-dependent information (a path, for 
example). 

Preprocessing Numbers 

[ . ] digit ( digit I nondigit l(elE)( + |- )| . )* 

During preprocessing, numbers are detected using this simple rule, which allows some illegal 
numbers (OxOy, for example) to slip through. They’ll be detected later by the compiler, though, 
so no harm is done. 

Expressions 

identifier I constant I string-literal I ( expression ) 

A primary expression is an expression that’s indivisible, either because it’s a single identifier, 
constant, or string literal or because it’s enclosed in parentheses. All other expressions are 
subject to C’s rules of precedence and associativity, which are embodied in the 19 rules that 
follow. 

primary-expression ( [ expression ] I ( [ argument-expression-list ] ) I 
. identifier I -> identifier I ++ I -- )* 

assignment-expression ( , assignment-expression )* 

The arguments in a function call must be “assignment expressions,” not arbitrary expressions, 
to avoid confusion between the comma punctuator, which separates arguments, and the 
comma operator. 

( ++ I I sizeof )* ( postfix-expression I unary-operator cast-expression I 
sizeof ( type-name ) ) 

& I * I + I - I - I ! 

( ( type-name ) )* unary-expression 

cast-expression {( * \ / \ % ) cast-expression )* 

multiplicative-expression ( ( + I - ) multiplicative-expression )* 

additive-expression ((<<!>>) additive-expression )* 

shift-expression ((<l>|<=|>=) shift-expression )* 

relational-expression ( ( == I != ) relational-expression )* 

equality-expression ( & equality-expression )* 

AND-expression ( A AND-expression )* 
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inclusive-OR-expression 

logical-AND-expression 

logical-OR-expression 

conditional-expression 

assignment-expression 

assignment-operator 

expression 

constant-expression 

declaration 

declaration-specifiers 

init-declarator-list 

init-declarator 

storage-class-specifier 

I 

type-specifier 

struct-or-union-specifier 

struct-declaration 

specifier-qualifier-list 

struct-declarator-list 

struct-declarator 

enum-specifier 

enumerator-list 

exclusive-OR-expression ( | exclusive-OR-expression )* 

inclusive-OR-expression ( && inclusive-OR-expression )* 

logical-AND-expression ( | | logical-AND-expression )* 

logical-OR-expression ( ? expression : conditional-expression )* 

( unary-expression assignment-operator )* conditional-expression 

= I *= I /= I %= I += I -= I <<= | >>= I 4= I *= | | = 

assignment-expression ( , assignment-expression )* 

conditional-expression 

A constant expression is defined to be a conditional-expression, not an expression in general, 
since C prohibits assignment and comma operators in constant expressions. (C also disallows 
increment and decrement operators and function calls, although that’s not shown in the syntax 
rules.) 

Declarations 

declaration-specifiers [ init-declarator-list ] ; 

( storage-class-specifier I type-specifier I type-qualifier )+ 

The preceding rule is misleading, since it shows that a declaration may contain more than one 
storage class specifier. Actually, only one genuine storage class is allowed, and it must pre¬ 
cede type specifiers and type qualifiers. The justification for the rule is that a declaration may 
begin with typedef (considered a storage class specifier for syntax purposes), followed by a 
storage class. Type specifiers and type qualifiers may indeed be mixed, as the rule shows, 
leading to strange combinations like int const unsigned volatile long. 

init-declarator ( , init-declarator )* 

declarator [ = initializer ] 

typedef I extern I static I auto I register 

To simplify the syntax rules, typedef is lumped with the genuine storage classes. 

void I char I short I int I long I float I double I signed I 

unsigned I struct-or-union-specifier I enum-specifier I typedef-name 

( struct I union ) ( identifier I [ identifier ] { struct-declaration* } ) 

specifier-qualifier-list struct-declarator-list ; 

( type-specifier I type-qualifier )+ 

struct-declarator ( , struct-declarator )* 

declarator I [ declarator ] : constant-expression 

The constant expression in the preceding rule specifies the width of a bit-field. If the constant 
expression is present, the declarator can be omitted, creating an unnamed bit-field. 

enum ( identifier I [ identifier ] { enumerator-list } ) 

enumerator ( , enumerator )* 
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enumerator 

type-qualifier 

declarator 

direct-declarator 

parameter-type-list 

parameter-declaration 

identifier-list 

type-name 

I 
abstract-declarator 

direct-abstract-declarator 

typedef-name 

initializer 

initializer-list 

statement 

labeled-statement 

I 
compound-statement 

expression-statement 

selection-statement 

enumeration-constant [ = constant-expression ] 

const I volatile 

( * type-qualifier* )* direct-declarator 

( identifier I ( declarator ) ) ( [ [ constant-expression ] ] I 

( parameter-type-list ) I ( [ identifier-list ] ) )* 

parameter-declaration ( , parameter-declaration )* [ , . . . ] 

The presence of , ... at the end of a parameter list indicates that a variable number of addi¬ 
tional parameters may follow. 

declaration-specifiers [ declarator I abstract-declarator ] 

identifier ( , identifier )* 

specifier-qualifier-list [ abstractor-declarator ] 

type-name is used in the unary-expression and cast-expression rules (see Expressions). 

( * type-qualifier* )+ I ( * type-qualifier* )* direct-abstract-declarator 

An ordinary declarator includes both a name and information about the properties of that 
name; an abstract declarator specifies properties, but omits the name. The function prototype 

void f(int **, float []); 

uses the abstract declarators ** and [ ] to help describe the types of f’s parameters. 

( abstract-declarator ) I 

[ ( abstract-declarator ) ] ( [ [ constant-expression ] ] I 
( [ parameter-type-list ] ) )+ 

identifier 

assignment-expression I { initializer-list [ , ] } 

No, this isn t a mistake; an initializer list may indeed be followed by a (superfluous) comma. 

initializer ( , initializer )* 

Statements 

labeled-statement I compound-statement I expression-statement I selection-statement I 
iteration-statement I jump-statement 

identifier : statement I case constant-expression : statement I 
default : statement 

The latter two forms of labeled-statement are allowed only inside a switch statement. 

{ declaration* statement* > 

[ expression ] ; 

For syntax purposes, the null statement is treated as an expression statement in which the 
expression is missing. 

if ( expression ) statement [ else statement ] I 

switch ( expression ) statement 
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iteration-statement 

jump-statement 

translation-unit 

external-declaration 

function-definition 

preprocessing-file 

group 

if-section 

if-group 

elif-group 

else-group 

endif-line 

control-line 

Iparen 

replacement-list 

pp-tokens 

new-line 

The body of a switch statement is virtually always a compound statement, although that’s 
not strictly required. That compound statement may have declarations, although initializers in 
those declarations will be ignored. 

while ( expression ) statement I 

do statement while ( expression ) ; I 

for ( [ expression ] ; [ expression ] ; [ expression ] ) statement 

goto identifier ; I continue ; I break ; I return [ expression ] ; 

External Definitions 

external-declaration+ 

function-definition I declaration 

[ declaration-specifiers ] declarator declaration* compound-statement 

The declaration specifiers describe the function’s return type; the declarator gives its name 
and parameter list. The declarations (present only in the Classic C style of function definition) 
specify the types of the parameters. The compound statement is the function’s body. 

Preprocessing Directives 

[ group ] 

( [ pp-tokens ] new-line I if-section I control-line )+ 

if-group elif-group* [ else-group ] endif-line 

# if constant-expression new-line [ group ] I 

# ifdef identifier new-line [ group ] I 

# ifndef identifier new-line [ group ] 

# elif constant-expression new-line [ group ] 

# else new-line [ group ] 

# endif new-line 

# include pp-tokens new-line I 

# define identifier replacement-list new-line I 

# define identifier Iparen [ identifier-list ] ) replacement-list new-line I 

# undef identifier new-line I 

# line pp-tokens new-line I 

# error [ pp-tokens ] new-line I 

# pragma [ pp-tokens ] new-line I 

# new-line 

the left-parenthesis character without preceding white space 

[ pp-tokens ] 

preprocessing-token+ 

the new-line character 





APPENDIX B 
C Operators 

Precedence Name Symbol(s) Associativity 

1 array subscripting [] left 
1 function call 0 left 
1 structure and union member -> left 
1 increment (postfix) ++ left 
1 decrement (postfix) — left 

2 increment (prefix) ++ right 
2 decrement (prefix) -- right 
2 address of & right 
2 indirection ★ right 
2 unary plus + right 
2 unary minus - right 
2 bitwise complement ~ right 
2 logical negation 1 right 
2 size sizeof right 

3 cast 0 right 

4 multiplicative * / % left 

5 additive + left 

6 bitwise shift << >> left 

7 relational A
 

V
 

A
 II V
 II left 

8 equality = = ! = left 

9 bitwise and Sc left 

10 bitwise exclusive or /\ left 

11 bitwise inclusive or | left 

12 logical and Sc Sc left 

13 logical or II left 

14 conditional ? ; right 

15 assignment = *= /= %= right 
+= -= <<= >>= 

&= A= 1= 

16 comma / left 
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APPENDIX C 
Standard C versus Classic C 

This appendix lists most of the significant differences between Standard C and 

Classic C (the language described in the first edition of Kernighan and Ritchie’s 

The C Programming Language). The headings indicate which chapter of this book 

discusses each Standard C feature. This appendix doesn’t address the C library, 

which has changed much over the years. 

If your compiler doesn’t claim to be “standard,” it’s a good idea to check its 

manual to see how many Standard C features the compiler provides. Virtually all C 

compilers can handle at least some of the newer features. 

For other (less important) differences between Standard C and Classic C, con¬ 

sult Appendices A and C in K&R (Second Edition). 

2 C Fundamentals 

identifiers In Classic C, only the first eight characters of an identifier are significant. 

keywords Classic C lacks the keywords const, enum, signed, void, and volatile. In 

Classic C, the word entry is a keyword. 

4 Expressions 

unary + Classic C doesn’t provide the unary + operator. 

5 Selection Statements 

switch In Classic C, the controlling expression (and case labels) in a switch statement 

must have type int after promotion. In Standard C, the expression and labels may 

be of any integral type, including unsigned int and long int. 
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7 

unsigned types 

signed 

number suffixes 

long float 

long double 

escape sequences 

size_t 

usual arithmetic 
conversions 

9 

function definitions 

function declarations 

Basic Types 

Classic C provides only one unsigned type (unsigned int). 

Classic C doesn’t support the signed type specifier. 

Classic C doesn’t provide the U (or u) suffix to specify that an integer constant is 

unsigned, nor does it provide the F (or f) suffix to indicate that a floating constant 

is to be stored as a float value instead of a double value. In Classic C, the L 

(or 1) suffix can’t be used with floating constants. 

Classic C allows the use of long float as a synonym for double; this usage 
isn’t legal in Standard C. 

Classic C doesn’t provide the long double type. 

The escape sequences \a, \v, and \? don’t exist in Classic C. Also, Classic C 
doesn’t provide hexadecimal escape sequences. 

In Classic C, the sizeof operator returns a value of type int; in Standard C, it 
returns a value of type size_t. 

Classic C requires that float operands be converted to double. Also, Classic C 

specifies that combining a shorter unsigned integer with a longer signed integer 
always produces an unsigned result. 

Functions 

In a Standard C function definition, the types of the parameters are included in the 
parameter list: 

double square(double x) 

{ 
return x * x; 

} 

Classic C requires that the types of parameters be specified in separate lists: 

double square(x) 

double x; 

{ 
return x * x; 

} 

A Standard C function declaration (prototype) specifies the types of the function’s 
parameters (and the names as well, if desired): 

double square(double x) ; 

double square(double); 

int rand(void); 
/* alternate form */ 

/* no parameters */ 



Appendix C Standard C versus Classic C 599 

A Classic C function declaration omits all information about parameters: 

double square(); 
int rand(); 

function calls When a Classic C definition or declaration is used, the compiler doesn’t check that 

the function is called with arguments of the proper number and type. Furthermore, 

the arguments aren’t automatically converted to the types of the corresponding 

parameters. Instead, the integral promotions are performed, and float arguments 
are converted to double. 

void Classic C doesn’t support the void type. 

12 Pointers and Arrays 

pointer subtraction Subtracting two pointers produces an int value in Classic C but a ptrdif f_t 

value in Standard C. 

13 Strings 

string literals In Classic C, adjacent string literals aren’t concatenated. Also, Classic C doesn’t 

prohibit the modification of string literals. 

string initialization In Classic C, an initializer for a character array of length n is limited to n - 1 char¬ 

acters (leaving room for a null character at the end). Standard C allows the initial¬ 

izer to have length n. 

14 The Preprocessor 

#elif, #error, 

#pragma 

Classic C doesn’t provide the #elif, #error, and tpragma directives. 

#, ##, defined Classic C doesn’t provide the #, ##, and defined operators. 

16 Structures, Unions, and Enumerations 

structure and union 
members and tags 

In Standard C, each structure and union has its own name space for members; 

structure and union tags are kept in a separate name space. Classic C uses a single 

name space for members and tags, so members can’t have the same name (with 

some exceptions), and members and tags can’t overlap. 

whole-structure 
operations 

Classic C doesn’t allow structures to be assigned, passed as arguments, or returned 

by functions. 

enumerations Classic C doesn’t support enumerations. 
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17 Advanced Uses of Pointers 

void * In Standard C, void * is used as a “generic” pointer type; for example, malloc 

returns a value of type void *. In Classic C, char * is used for this purpose. 

pointer mixing Classic C allows pointers of different types to be mixed in assignments and com¬ 

parisons. In Standard C, pointers of type void * can be mixed with pointers of 

other types, but any other mixing isn’t allowed without casting. Similarly, Classic 

C allows the mixing of integers and pointers in assignments and comparisons; 
Standard C requires casting. 

pointers to functions If pf is a pointer to a function, Standard C permits using either ( *pf) (...) or 

pf(...) to call the function. Classic C allows only (*pf) (...). 

18 Declarations 

const and 
volatile 

Classic C doesn’t provide the const and volatile type qualifiers. 

initialization of 
arrays, structures, 

and unions 

Classic C doesn’t allow the initialization of automatic arrays and structures, nor 

does it allow initialization of unions (regardless of storage duration). 

25 International Features 

wide characters Classic C doesn’t support wide character constants and wide string literals. 

trigraph sequences Classic C doesn’t support trigraph sequences. 

26 Miscellaneous Library Functions 

variable arguments Classic C doesn’t provide a portable way to write functions with a variable number 
of arguments, and lacks the . . . (ellipsis) notation. 



APPENDIX D 
Standard Library Functions 

This appendix describes the library functions supported by Standard C.* When 

using this appendix, please keep the following points in mind: 

■ In the interest of brevity and clarity, I’ve omitted a few details; for the full 

story, see the standard. Some functions (notably printf, scanf, and their 

variants) are covered in detail elsewhere in the book, so their descriptions here 

are minimal. For more information about a function (including examples of 

how it’s used), see the section(s) listed in italic at the lower right corner of the 

function’s description. 

■ Each function description ends with lists of other relevant functions. Similar 

functions closely resemble the function being described. Related functions are 

often used in conjunction with the function being described. (For example, 

calloc and realloc are “similar” to malloc, while free is “related.”) 

See also functions aren’t as closely related to the function being described but 

might be of interest. 

■ If some aspect of a function’s behavior is described as implementation- 

defined, that means that it depends on how the C library is implemented. The 

function will always behave consistently, but the results may vary from one 

system to another. (In other words, check the manual to see what happens.) 

Undefined behavior, on the other hand, is bad news: not only may the behav¬ 

ior vary between systems, but the program may act strangely or even crash. 

■ The descriptions of many of the functions in <math.h> refer to domain 

error and range error, which are defined at the end of this appendix. 

*This material is adapted from American National Standards Institute ANSI/ISO 9899 © 1990 with 

permission by ANSI. Copies of this standard may be purchased from ANSI, 11 West 42nd Street, New 

York, NY 10036. 
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■ The behavior of the following library functions is affected by the current 
locale: 

Character-handling functions (except isdigit and isxdigit) 

Formatted input/output functions 

Multibyte character and string functions 
String conversion functions 

strcoll, strftime, and strxfrm 

The isalpha function, for example, usually checks whether a character lies 

between a and z or A and Z. In some locales, other characters are considered 

alphabetic as well. This appendix describes how the library functions behave 
in the " C" (default) locale. 

■ A few library functions are actually macros. They’re used in the same way as 
functions, however, so I don’t treat them differently. 

abort Abort Program <stdlib.h> 

void abort(void); 

Raises the SIGABRT signal. If the signal isn’t caught (or if the signal handler 

returns), the program terminates abnormally and returns an implementation- 

defined code indicating unsuccessful termination. Whether output buffers are 

flushed, open streams closed, or temporary files removed is implementation- 
defined. 

Similar functions 
Related functions 

See also 

exit, raise 

assert, signal 

atexit 26.2 

abs Absolute Value of Integer 

int abs(int j); 

<stdlib.h> 

Returns Absolute value of j. The behavior is undefined if the absolute value of j can’t be 
represented. 

Similar functions fabs, labs 
26.2 

acos Arc Cosine 
<math.h> 

double acos(double x); 

Returns Arc cosine of x; the return value is in the range 0 to n. A domain error occurs if x 
isn’t between -1 and +1. 

Related functions asm, atan, atan2, cos, sin, tan 23.3 
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asctime Convert Date and Time to ASCII <time.h> 

Returns 

Similar functions 
Related functions 

char *asctime(const struct tm *timeptr); 

A pointer to a null-terminated string of the form 

Mon Jul 15 12:30:45 1996\n 

constructed from the broken-down time in the structure pointed to by timeptr. 

ctime, strftime 

dif f time, gmtime, local time, mktime, time 26.3 

as in ArcSine <math.h> 

double asin(double x) ; 

Returns Arc sine of x; the return value is in the range -nil to nil. A domain error occurs if 

x isn’t between -1 and +1. 

Related functions acos, atan, atan2, cos, sin, tan 23.3 

assert Assert Truth of Expression <assert.h> 

void assert(int expression); 

If the value of expression is nonzero, assert does nothing. If the value of 

expression is zero, assert writes a message to stderr (specifying the text 

of expression, the name of the source file containing the assert, and the line 

number of the assert); it then terminates the program by calling abort. To dis¬ 

able assert, define the macro NDEBUG before including <assert. h>. 

Related functions abort 24.1 

atan Arc Tangent <math.h> 

double atan(double x); 

Returns Arc tangent of x; the return value is in the range -n/2 to 7t/2. 

Similar functions 
Related functions 

atan2 
acos, asin, cos, sin, tan 23.3 

atan2 Arc Tangent of Quotient <math.h> 

double atan2(double y, double x); 

Returns Arc tangent of y/x; the return value is in the range -n to n. A domain error may 

occur if x and y are both zero. 

Similar functions 
Related functions 

atan 
acos, asin, cos, sin, tan 23.3 
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atexit Register Function to be Called at Program Exit <stdlib. h> 

int atexit(void (*func)(void)); 

Registers the function pointed to by func as a termination function. The function 

will be called if the program terminates normally (via return or exit but not 

abort), atexit can be called repeatedly to register multiple termination func¬ 

tions. The last function to be registered is the first called upon termination. 

Returns Zero if successful, nonzero if unsuccessful (an implementation-dependent limit 
has been reached). 

Related functions exit 

See also abort 26.2 

at of Convert String to Floating-Point <stdlib.h> 

double atof(const char *nptr); 

Returns A double value corresponding to the longest initial part of the string pointed to 

by nptr that has the form of a floating-point number. The behavior is undefined if 
the number can’t be represented. 

Similar functions 
Related functions 

See also 

strtod 

atoi, atoi 

strtol,strtoul 26.2 

atoi Convert String to Integer <stdlib.h> 

int atoi(const char *nptr); 

Returns An integer corresponding to the longest initial part of the string pointed to by 

nptr that has the form of an integer. The behavior is undefined if the number 
can’t be represented. 

Similar functions 
Related functions 

See also 

atoi, strtol, strtoul 

atof 

strtod 26.2 

at ol Convert String to Long Integer <s td.1 ib h> 

long int atol(const char *nptr); 

Returns A long integer corresponding to the longest initial part of the string pointed to by 

nptr that has the form of an integer. The behavior is undefined if the number 
can’t be represented. 

Similar functions atoi, strtol, strtoul 

Re la ted functions atof 
See also strtod 

26.2 
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bsearch Binary Search <stdlib.h> 

void *bsearch(const void *key, const void *base, 

size_t memb, size_t size, 

int (*compar)(const void *, 

const void *)); 

Searches for the value pointed to by key in the sorted array stored at address 

base, which has nmemb elements, each with size bytes, compar is a pointer to 

a “comparison function.” When passed pointers to the key and an array element, in 

that order, the comparison function must return a negative, zero, or positive inte¬ 

ger, depending on whether the key is less than, equal to, or greater than the array 

element. 

Returns A pointer to an array element that tests equal to the key. Returns a null pointer if 

the key isn’t found. 

Related functions qsort 26.2 

cal loc Allocate and Clear Memory Block 

void *calloc(size_t nmemb, size_t size); 

<stdlib.h> 

Allocates a block of memory for an array with nmemb elements, each with size 

bytes. The block is cleared by setting all bits to zero. 

Returns A pointer to the beginning of the block. Returns a null pointer if a block of the 

requested size can’t be allocated. 

Similar functions malloc, realloc 

Related functions free 17.3 

ceil Ceiling <math.h> 

double ceil(double x); 

Returns Smallest integer that’s greater than or equal to x. 

Similar functions floor 23.3 

clearerr Clear Stream Error <stdio.h> 

void clearerr(FILE ‘stream); 

Clears the end-of-file and error indicators for the stream pointed to by stream. 

Related functions feof, f error, rewind 22.3 
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clock Processor Clock <time.h> 

clock_t clock(void); 

Returns Elapsed processor time (measured in “clock ticks”) since the beginning of program 

execution. (To convert to seconds, divide by CLOCKS_PER_SEC.) Returns 

(clock_t) -1 if the time is unavailable or can’t be represented. 

Similar functions 
See also 

time 

difftime 26.3 

COS Cosine <math.h> 

double cos(double x) ; 

Returns Cosine of x (measured in radians). 

Related functions acos, asin, atan, atan2, sin, tan 23.3 

cosh Hyperbolic Cosine cmath.h> 

double cosh(double x); 

Returns Hyperbolic cosine of x. A range error occurs if the magnitude of x is too large. 

Related functions 
See also 

sinh, tanh 

acos, asin, atan, atan2, cos, sin, tan 23.3 

ctime Convert Date and Time to String 

char *ctime(const time_t *timer); 

<time.h> 

Returns A pointer to a string describing a local time equivalent to the calendar time pointed 

to by timer. Equivalent to asctime (local time (timer) ). 

Similar functions 
Related functions 

asctime, strftime 

dif ftime, gmtime, localtime, mktime, time 26.3 

difftime Time Difference <time.h> 

double difftime(time_t timel, time_t timed); 

Returns Difference between timed (the earlier time) and timel, measured in seconds. 

Related functions 
See also 

asctime, ctime, gmtime, localtime, mktime, strftime, 
clock 

time 

26.3 

di V Integer Division 

div_t div(int numer, int denom); 

<stdlib.h> 



Appendix D Standard Library Functions 607 

Returns A structure containing quot (the quotient when numer is divided by denom) and 

rem (the remainder). The behavior is undefined if the result can’t be represented. 

Similar functions ldiv 26.2 

exit Exit from Program 

void exit(int status); 

<stdlib.h> 

Calls all functions registered with at exit, flushes all output buffers, closes all 

open streams, removes any files created by tmpfile, and terminates the pro¬ 

gram. The value of status indicates whether the program terminated normally. 

The only portable values for status are 0 and EXIT_SUCCESS (both indicate 

successful termination) plus EXIT_FAILURE (unsuccessful termination). Other 

values of status are implementation-defined. 

Similar functions abort 

Related functions at exit 9.5,26.2 

exp Exponential <math.h> 

double exp(double x); 

Returns e raised to the power x. A range error occurs if the magnitude of x is too large. 

Similar functions pow 
Related functions log 

See also loglO 23.3 

fabs Absolute Value of Floating-Point Number cmath.h> 

double fabs(double x); 

Returns Absolute value of x. 

Similar functions abs, labs 23.3 

f close Close File <stdio.h> 

int fclose(FILE *stream); 

Closes the stream pointed to by stream. Flushes any unwritten output remaining 

in the stream’s buffer. Deallocates the buffer if it was allocated automatically. 

Returns Zero if successful, EOF if an error was detected. 

fopen, freopen 

fflush 

Related functions 
See also 22.2 
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feof Test for End-of-File <stdio.h> 

int feof(FILE *stream); 

Returns A nonzero value if the end-of-file indicator is set for the stream pointed to by 
stream; otherwise, returns zero. 

Similar functions 
Related functions 

ferror 

clearerr, f seek, rewind 22.3 

ferror Test for File Error <s tdio. h> 

int ferror(FILE *stream); 

Returns A nonzero value if the error indicator is set for the stream pointed to by stream; 
otherwise, returns zero. 

Similar functions 
Related functions 

feof 

clearerr, rewind 22.3 

fflush Flush File Buffer <s tdio. h> 

int fflush(FILE ‘stream); 

Writes any unwritten data in the buffer associated with stream, which points to a 

stream that was opened for output or updating. If stream is a null pointer, 

f flush flushes all streams that have unwritten data stored in a buffer. 

Returns Zero if successful, EOF if an error was detected. 

See also fclose, setbuf, setvbuf 22.2 

fgetc Read Character from File <stdio.h> 

int fgetc(FILE ‘stream); 

Returns 

Reads a character from the stream pointed to by stream. 

The character read. If fgetc encounters the end of the stream, it sets the stream’s 

end-of-file indicator and returns EOF. If a read error occurs, fgetc sets the 
stream’s error indicator and returns EOF. 

Similar functions 
Related functions 

See also 

getc, getchar 
fputc, putc, ungetc 

putchar 22 4 

fgetpos Get File Position < s tdi o. h> 

int fgetpos(FILE ‘stream, fpos_t *pos); 

<stdio.h> 
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Stores the current position of the stream pointed to by stream into the object 
pointed to by pos. 

Returns Zero if successful. If the call fails, returns a nonzero value and stores an implemen¬ 
tation-defined error code in errno. 

Similar functions 
Related functions 

See also 

f tell 
fsetpos 
f seek, rewind 22.7 

f gets Read String from File <stdio.h> 

char *fgets(char *s, int n, FILE *stream); 

Reads characters from the stream pointed to by stream and stores them into the 

array pointed to by s. Reading stops at the first new-line character (which is stored 

in the string), when n - 1 characters have been read, or at end-of-file. fgets 
appends a null character to the string. 

Returns s (a pointer to the array in which the input is stored). Returns a null pointer if a 

read error occurs or fgets encounters the end of the stream before it has stored 

any characters. 

Similar functions 
Related functions 

See also 

gets 
fputs 
puts 22.5 

floor Floor <math.h> 

double floor(double x); 

Returns Largest integer that’s less than or equal to x. 

Similar functions ceil 23.3 

fmod Floating Modulus <math.h> 

double fmod(double x, double y); 

Returns Remainder when x is divided by y. If y is zero, whether a domain error occurs or 

fmod returns zero is implementation-defined. 

See also div, ldiv 23.3 

fopen Open File <stdio.h> 

FILE *fopen(const char * filename, const char *mode); 

Opens the file whose name is pointed to by filename and associates it with a 

stream, mode specifies the mode in which the file is to be opened. Clears the error 

and end-of-file indicators for the stream. 
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Returns A file pointer to be used when performing subsequent operations on the file. 

Returns a null pointer if the file can’t be opened. 

Similar functions 
Related functions 

freopen 
fclose, setbuf, setvbuf 22.2 

fprintf Formatted File Write <stdio.h> 

int fprintf(FILE *stream, const char *format. . . .) ; 

Writes output to the stream pointed to by stream. The string pointed to by 

format specifies how subsequent arguments will be displayed. 

Returns Number of characters written. Returns a negative value if an error occurs. 

Similar functions 
Related functions 

See also 

printf, sprintf, vfprintf, vprintf, vsprintf 
fscanf 
scanf, sscanf 22.3 

fputc Write Character to File <stdio.h> 

int fputc(int c, FILE *stream); 

Writes the character c to the stream pointed to by stream. 

Returns c (the character written). If a write error occurs, fputc sets the error indicator for 
stream and returns EOF. 

Similar functions 
Related functions 

See also 

putc, putchar 
fgetc, getc 
getchar 22.4 

f put S Write String to File < s tdio. h> 

Returns 

Similar functions 
Related functions 

See also 

int fputs(const char *s, FILE *stream); 

Writes the string pointed to by s to the stream pointed to by stream. 

A nonnegative value if successful. Returns EOF if a write error occurs. 

puts 
f gets 
gets 22.5 

f read Read Block from File <s tdio h> 

size_t fread(void *ptr, size_t size, size_t nmemb, 
FILE *stream); 

Attempts to read nmemb elements, each size bytes long, from the stream pointed 
to by stream and store them in the array pointed to by ptr. 
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Returns Number of elements (not characters) actually read. This number will be less than 

Related functions 

nmemb if f read encounters end-of-file or detects a read error. The return value is 
zero if either nmemb or size is zero. 

fwrite 22.6 

free Free Memory Block <stdlib.h> 

void free(void *ptr); 

Releases the memory block whose address is ptr (unless ptr is a null pointer, in 

which case the call has no effect). The block must have been allocated by a call of 

calloc, malloc, or realloc. 

Related functions calloc, malloc, realloc 17.4 

freopen Reopen File <stdio.h> 

FILE *freopen(const char *filename, const char *mode, 

FILE *stream); 

Returns 

After freopen closes the file associated with stream, it opens the file whose 

name is filename and associates it with stream. The mode parameter has the 

same meaning as in a call of f open. 

Value of stream if the operation succeeds. Returns a null pointer if the file can’t 

be opened. 

Similar functions 
Related functions 

f open 
fclose, setbuf, setvbuf 22.2 

f rexp Split into Fraction and Exponent <math. h> 

double frexp(double value, int *exp); 

Splits value into a fractional part/and an exponent n in such a way that 

value =/x 2n 

f is normalized so that either 0.5 </< 1 or/= 0. Stores n into the integer that exp 

points to. 

Returns /, the fractional part of value. 

Related functions 
See also 

ldexp 
modf 23.3 

fscanf Formatted File Read <stdio. h> 

int fscanf(FILE *stream, const char *format, ...); 
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Returns 

Reads any number of data items from the stream pointed to by stream. The 

string pointed to by format specifies the format of the items to be read. The argu¬ 

ments that follow format point to locations where the items are to be stored. 

Number of data items successfully read and stored. Returns EOF if an error occurs 

or end-of-file is reached before any items could be read. 

Similar functions 
Related functions 

See also 

scanf, sscanf 
fprintf, vfprintf 

printf, sprintf, vprintf, vsprintf 22.3 

f seek File Seek <stdio. h> 

Returns 

int fseek(FILE *stream, long int offset, int whence); 

Changes the file position indicator for the stream pointed to by stream. If 

whence is SEEK_SET, the new position is the beginning of the file plus offset 

bytes. If whence is SEEK_CUR, the new position is the current position plus 

offset bytes. If whence is SEEK_END, the new position is the end of the file 
plus offset bytes. 

For text streams, either offset must be zero or whence must be 

SEEK_SET and offset a value obtained by a previous call of ftell. For 

binary streams, f seek may not support calls in which whence is SEEK_END. 

Zero if the operation is successful, nonzero otherwise. 

Similar functions 
Related functions 

See also 

fsetpos,rewind 
ftell 

fgetpos 22.7 

fsetpos Set File Position < s tdi o. h> 

Returns 

int fsetpos(FILE *stream, const fpos_t *pos); 

Sets the file position indicator for the stream pointed to by stream according to 

the value pointed to by pos (obtained from a previous call of fgetpos). 

Zero if successful. If the call fails, returns a nonzero value and stores an implemen¬ 
tation-defined error code in errno. 

Similar functions 
Related functions 

See also 

f seek, rewind 
fgetpos 

ftell 22 7 

f tell Determine File Position < s tdi o. h> 

long int ftell(FILE *stream); 

Returns Returns the current file position indicator for the stream pointed to by stream. If 

the call fails, returns -1L and stores an implementation-defined error code in 
errno. 
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Similar functions fgetpos 
Related functions 

See also 
f seek 
f setpos, rewind 22.7 

fwrite Write Block to File <stdio. h> 

Returns 

size_t fwrite(const void *ptr, size_t size, 

size_t nmemb, FILE *stream); 

Writes nmemb elements, each size bytes long, from the array pointed to by ptr 

to the stream pointed to by stream. 

Number of elements (not characters) actually written. This number will be less 

than nmemb if fwrite detects a write error. 

Related functions fread 22.6 

getc Read Character from File <stdio. h> 

int getc(FILE *stream); 

Reads a character from the stream pointed to by stream. Note: getc is normally 

implemented as a macro; it may evaluate stream more than once. 

Returns The character read. If getc encounters the end of the stream, it sets the stream’s 

end-of-file indicator and returns EOF. If a read error occurs, getc sets the 

stream’s error indicator and returns EOF. 

Similar functions 
Related functions 

See also 

fgetc, getchar 
fputc, putc, ungetc 
putchar 22.4 

getchar Read Character <stdio. h> 

int getchar(void); 

Reads a character from the stdin stream. Note: getchar is normally imple¬ 

mented as a macro. 

Returns The character read. If getchar encounters the end of the input stream, it sets 

stdin’s end-of-file indicator and returns EOF. If a read error occurs, getchar 

sets stdin’s error indicator and returns EOF. 

Similar functions 
Related functions 

See also 

fgetc, getc 
putchar, ungetc 
fputc, putc 7.3, 22.4 

getenv Get Environment String <s tdlib. h> 

char *getenv(const char *name); 

<stdlib.h> 
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Searches the operating system’s environment list to see if any string matches the 
one pointed to by name. 

Returns A pointer to the string associated with the matching name. Returns a null pointer if 
no match is found. 

See also system 26.2 

gets Read String <stdio.h> 

char *gets(char *s) ; 

Reads characters from the stdin stream and stores them into the array pointed to 

by s. Reading stops at the first new-line character (which is discarded) or at end- 

of-file. gets appends a null character to the string. 

Returns s (a pointer to the array in which the input is stored). Returns a null pointer if a 

read error occurs or gets encounters the end of the stream before it has stored any 
characters. 

Similar functions 
Related functions 

See also 

f gets 

puts 

fputs 13.3, 22.5 

gintime Convert to Greenwich Mean Time ctime.h> 

struct tm *gmtime(const time_t *timer); 

Returns A pointer to a structure containing a broken-down UTC (Coordinated Universal 

Time—formerly Greenwich Mean Time) value equivalent to the calendar time 

pointed to by timer. Returns a null pointer if UTC isn’t available. 

Similar functions 
Related functions 

localtime 

asctime, ctime, dif f time, mktime, strf time, time 26.3 

isalnum Test for Alphanumeric cctype.h> 

int isalnum(int c); 

Returns A nonzero value if c is alphanumeric and zero otherwise, (c is 

either isalpha (c) orisdigit(c) is true.) 
alphanumeric if 

Related functions 
See also 

isalpha, isdigit 

islower, isupper 23.4 

isalpha Test for Alphabetic cctype.h> 

int isalpha(int c); 

Returns A nonzero value if c is alphabetic and zero otherwise, (c is alphabetic if either 
islower(c) orisupper(c) is true.) 
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Similar functions 
Related functions 

See also 

is lower, i supper 
isalnum 
tolower, toupper 23.4 

iscntrl Test for Control Character cctype.h> 

Returns 

Related functions 

int iscntrl(int c); 

A nonzero value if c is a control character and zero otherwise. 

isgraph, isprint, isspace 23.4 

isdigit Test for Digit <ctype.h> 

Returns 

Similar functions 
See also 

int isdigit(int c) ; 

A nonzero value if c is a digit and zero otherwise. 

isxdigit 
isalnum 23.4 

isgraph Test for Graphical Character <ctype.h> 

Returns 

int isgraph(int c); 

A nonzero value if c is a printing character (except a space) and zero otherwise. 

Similar functions 
Related functions 

isprint 
iscntrl, isspace 23.4 

islower Test for Lower-Case Letter cctype.h> 

Returns 

Similar functions 
Related functions 

See also 

int islower(int c); 

A nonzero value if c is a lower-case letter and zero otherwise. 

isalpha, isupper 
tolower, toupper 
isalnum 23.4 

isprint Test for Printing Character cctype.h> 

int isprint(int c); 

Returns A nonzero value if c is a printing character (including a space) and zero otherwise. 

Similar functions i s graph 
Related functions iscntrl, isspace 23.4 
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ispunct Test for Punctuation Character <ctype.h> 

int ispunct(int c); 

Returns A nonzero value if c is a punctuation character and zero otherwise. All printing 

characters except the space and the alphanumeric characters are considered punc¬ 
tuation. 

See also isalnum, isgraph, isprint 23.4 

isspace Test for White-Space Character cctype.h> 

int isspace(int c); 

Returns A nonzero value if c is a white-space character and zero otherwise. The white- 

space characters are space (' '), form feed (' \ f ' ), new-line (' \n ' ), carriage 

return (' \r '), horizontal tab (' \ t1), and vertical tab (' \ v'). 

See also iscntrl, isgraph, isprint 23.4 

isupper Test for Upper-Case Letter cctype.h> 

int isupper(int c); 

Returns A nonzero value if c is an upper-case letter and zero otherwise. 

Similar functions 
See also 

isalpha, islower 
tolower, toupper 23.4 

isxdigit Test for Hex Digit 

int isxdigit(int c); 

cctype.h> 

Returns A nonzero value if c is a hexadecimal digit (0-9, a-f, A-F) and zero otherwise. 

Similar functions isdigit 23.4 

labs Absolute Value of Long Integer 

long int labs(long int j); 

cstdlib.h> 

Returns Absolute value of j. The behavior is undefined if the absolute value of j can’t be 
represented. 

Similar functions abs, tabs 26.2 

ldexp Combine Fraction and Exponent 

double ldexp(double x, int exp); 

cmath.h> 
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Returns x x 2exp. A range error may occur. 

Related functions f rexp 23.3 

ldiv Long Integer Division <stdlib.h> 

ldiv_t ldiv(long int numer, long int denom); 

Returns A structure containing quot (the quotient when numer is divided by denom) and 

rem (the remainder). The behavior is undefined if the result can’t be represented. 

Similar functions div 26.2 

localeconv Get Locale Conventions <locale.h> 

struct lconv *localeconv(void); 

Returns A pointer to a structure containing information about the current locale. 

Related functions setlocale 25.1 

localtime Convert to Local Time <time.h> 

struct tm *localtime(const time_t *timer); 

Returns A pointer to a structure containing a broken-down local time equivalent to the cal¬ 

endar time pointed to by timer. 

Similar functions 
Related functions 

gmtime 
asctime, ctime, dif f time, mktime, strf time, time 26.3 

log Natural Logarithm <math.h> 

double log(double x) ; 

Returns Logarithm of x to the base e. A domain error occurs if x is negative. A range error 

may occur if x is zero. 

Similar functions 1 og 10 
Related functions exp 

See also pow 23.3 

loglO Common Logarithm <math.h> 

double loglO(double x) ; 

Returns Logarithm of x to the base 10. A domain error occurs if x is negative. A range 

error may occur if x is zero. 

Similar functions 
See also 

log 
exp, pow 23.3 
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1 ong j rnp Nonlocal Jump < s e t j mp. h> 

void longjmp(jmp_buf env, int val); 

Restores the environment stored in env and returns from the call of set jmp that 

originally saved env. If val is nonzero, it will be set jmp’s return value; if val 
is 0, setjmp returns 1. 

Related functions s e t j mp 
See also signal 24.4 

malloc Allocate Memory Block <stdlib. h> 

void *malloc(size_t size); 

Allocates a block of memory with size bytes. The block is not cleared. 

Returns A pointer to the beginning of the block. Returns a null pointer if a block of the 
requested size can’t be allocated. 

Similar functions 
Related functions 

calloc,realloc 
free 172 

mblen Compute Length of Multibyte Character <stdlib. h> 

int mblen(const char *s, size_t n); 

If s is a null pointer, initializes the shift state. 

Returns If s is a null pointer, returns a nonzero or zero value, depending on whether or not 

multibyte characters have state-dependent encodings. If s points to a null charac¬ 

ter, returns zero. Returns the number of bytes in the multibyte character pointed to 

by s, if the next n or fewer bytes form a valid character. If not, returns -1. 

Related functions 
See also 

mbtowe, wetomb 

mbstowcs, setlocale, westombs 252 

mbstowcs Convert Multibyte String to Wide Character String < s tdl ib. h> 

size_t mbstowcs (wchar__t *pwcs, const char *s, 

size_t n); 

Converts the sequence of multibyte characters that s points to into a sequence of 

wide character codes and stores not more than n codes into the array pointed to by 

pwes. Conversion ends if a null character is encountered; it is converted into a 
code with the value zero. 

Returns Number of array elements modified, not including the terminating code, if any. 

Returns (size_t) -1 if an invalid multibyte character is encountered. 
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Related functions westombs 
See also mblen, mbtowc, setlocale, wetomb 25.2 

mb t owe Convert Multibyte Character to Wide Character <stdlib.h> 

int mbtowc(wchar_t *pwc, const char *s, size_t n); 

If s is a null pointer, initializes the shift state. If s isn’t a null pointer, converts the 

multibyte character that s points to into the code for a wide character; at most n 

bytes of the multibyte character will be examined. If the multibyte character is 

valid and pwc isn’t a null pointer, stores the code into the object that pwc points 
to. 

Returns If s is a null pointer, returns a nonzero or zero value, depending on whether or not 

multibyte characters have state-dependent encodings. If s points to a null charac¬ 

ter, returns zero. Returns the number of bytes in the multibyte character pointed to 

by s, if the next n or fewer bytes form a valid character. If not, returns -1. 

Related functions 
See also 

mblen, wetomb 
mbstowes, setlocale, westombs 25.2 

memo hr Search Memory Block for Character <string. h> 

void *memchr(const void *s, int c, size_t n); 

Returns A pointer to the first occurrence of the character c among the first n characters of 

the object pointed to by s. Returns a null pointer if c isn’t found. 

Similar functions 
See also 

strehr 
strpbrk, strrehr, strstr 23.5 

mememp Compare Memory Blocks <string. h> 

int memempfeonst void *sl, const void *s2, size_t n); 

Returns A negative, zero, or positive integer, depending on whether the first n characters of 

the object pointed to by si are less than, equal to, or greater than the first n char¬ 

acters of the object pointed to by s2. 

Similar functions stremp, strcoll, strnemp 23.5 

memepy Copy Memory Block <string.h> 

void *memcpy(void *sl, const void *s2, size_t n); 

Copies n characters from the object pointed to by s2 into the object pointed to by 

si. May not work properly if the objects overlap. 

Returns s 1 (a pointer to the destination). 

Similar functions memmove, strepy, strnepy 23.5 23.5 
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memmove Copy Memory Block < s t r ing. h> 

void *memmove(void *sl, const void *s2, size_t n); 

Copies n characters from the object pointed to by s2 into the object pointed to by 

si. Will work properly if the objects overlap, although it may be slower than 
memcpy. 

Returns si (a pointer to the destination). 

Similar functions memcpy, strcpy, strncpy 23.5 

memset Initialize Memory Block <string. h> 

void *memset(void *s, int c, size_t n); 

Returns 

Stores c into the first n characters of the memory block pointed to by s. 

s (a pointer to the memory block). 

See also memcpy, memmove 23.5 

ink time Convert to Calendar Time <time h> 

time_t mktime(struct tm *timeptr); 

Returns 

Converts a broken-down local time (stored in the structure that timeptr points 

to) into a calendar time. The members of the structure aren’t required to be within 

their legal ranges, also, the values of tm_wday (day of the week) and tm vday 

(day of the year) are ignored, mktime stores values in tm_wday and tm__yday 

after adjusting the other members to bring them into their proper ranges. 

A calendar time corresponding to the structure that timeptr points to. Returns 
(time_t) -1 if the calendar time can’t be represented. 

Related functions asctime, ctime, dif ftime, gmtime, localtime, strftime, time 26.3 

modf Split into .Integer and Fractional Parts <ma t h. h> 

double modf(double value, double *iptr); 

Splits value into integer and fractional parts; stores the integer part into the 
double object pointed to by iptr. 

Returns Fractional part of value. 

See also frexp 23.3 
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perror Print Error Message <stdio.h> 

void perrorfconst char *s); 

Writes the following message to the stderr stream: 

string: error-message 

where string is the string pointed to by s and error-message is an implementation- 

defined message that matches the one returned by the call strerror (errno). 

Related functions strerror 24.2 

pow Power cmath.h> 

double pow(double x, double y); 

Returns x raised to the power y. A domain error occurs if (1) x is 

isn’t an integer or (2) the result can’t be represented when 

than or equal to zero. A range error is also possible. 

negative and y’s value 

x is zero and y is less 

Similar functions 
See also 

exp, sqrt 
log, loglO 23.3 

printf Formatted Write <stdio.h> 

int printf(const char *format, ...); 

Writes output to the stdout stream. The string pointed to by format specifies 

how subsequent arguments will be displayed. 

Returns Number of characters written. Returns a negative value if an error occurs. 

Similar functions fprintf, sprint f, vfprintf, vprintf, vsprintf 
Related functions scanf 

See also f scanf, sscanf 3.1, 22.3 

putC Write Character to File <stdio.h> 

int putc(int c, FILE *stream); 

Writes the character c to the stream pointed to by stream. Note: putc is nor¬ 

mally implemented as a macro; it may evaluate stream more than once. 

Returns c (the character written). If a write error occurs, fputc sets the stream’s error 

indicator and returns EOF. 

Similar functions fputc, putchar 
Related functions fgetc,getc 

See also getchar 22.4 
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putchar Write Character <stdio.h> 

int putchar(int c); 

Writes the character c to the stdout stream. Note: putchar is normally imple¬ 
mented as a macro. 

Returns c (the character written). If a write error occurs, putchar sets stdout’s error 
indicator and returns EOF. 

Similar functions 
Related functions 

See also 

fputc, putc 

getchar 

fgetc, getc 7.3, 22.4 

puts Write String <stdio.h> 

int puts(const char *s); 

Writes the string pointed to by s to the stdout stream, then writes a new-line 
character. 

Returns A nonnegative value if successful. Returns EOF if a write error occurs. 

Similar functions 
Related functions 

See also 

fputs 
gets 

f9ets 13.3,22.5 

qsort Sort Array <stdlib.h> 

void qsort(void *base, size_t nmemb, size_t size, 

int (*compar)(const void *, const void *)); 

Sorts the array pointed to by base. The array has nmemb elements, each size 

bytes long, compar is a pointer to a “comparison function.” When passed pointers 

to two array elements, the function must return a negative, zero, or positive integer, 

depending on whether the first array element is less than, equal to, or greater than 
the second. 

Related functions bsearch 17 7 26 2 

raise Raise Signal <signal.h> 

int raise(int sig); 

Raises the signal whose number is sig. 

Returns Zero if successful, nonzero otherwise. 

Similar functions abort 

Related functions signal 
24.3 
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rand Generate Pseudo-Random Number <stdlib.h> 

int rand(void); 

Returns A pseudo-random integer between 0 and RAND_MAX (inclusive). 

Related functions srand 26.2 

realloc Resize Memory Block <stdlib.h> 

void *realloc(void *ptr, size_t size); 

ptr is assumed to point to a block of memory previously obtained from calloc, 

malloc, or realloc, realloc allocates a block of size bytes, copying the 
contents of the old block if necessary. 

Returns A pointer to the beginning of the new memory block. Returns a null pointer if a 

block of the requested size can’t be allocated. 

Similar functions 
Related functions 

calloc,malloc 
free 17.3 

remove Remove File <stdio.h> 

int removefconst char ^filename); 

Deletes the file whose name is pointed to by filename. 

Returns Zero if successful, nonzero otherwise. 

See also rename 22.2 

rename Rename File <stdio.h> 

int rename(const char *old, const char *new) / 

Changes the name of a file, old and new point to strings containing the old name 

and new name, respectively. 

Returns Zero if the renaming is successful. Returns a nonzero value if the operation fails 

(perhaps because the old file is currently open). 

See also remove 22.2 

rewind Rewind File <stdio.h> 

void rewind(FILE *stream); 

Sets the file position indicator for the stream pointed to by stream to the begin¬ 

ning of the file. Clears the error and end-of-file indicators for the stream. 
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Similar functions fseek, fsetpos 

Related functions clearerr 

See also feof, terror, fgetpos, ftell 22.7 

scanf Formatted Read <stdio.h> 

int scanf(const char *format, ...); 

Reads any number of data items from the stdin stream. The string pointed to by 

format specifies the format of the items to be read. The arguments that follow 

format point to locations where the items are to be stored. 

Returns Number of data items successfully read and stored. Returns EOF if 

or end-of-file is reached before any items could be read. 
an error occurs 

Similar functions fscanf, sscanf 

Related functions printf, vprintf 

See also fprintf,sprintf, vfprintf, vsprintf 3.2, 22.3 

setbuf Set Buffer 

void setbuf(FILE *stream, char *buf); 

If buf isn’t a null pointer, a call of setbuf is equivalent to: 

(void) setvbuf(stream, buf, _IOFBF, BUFSIZ); 

<stdio.h> 

(BUFSIZ is a macro defined in <stdio . h>.) Otherwise, it’s equivalent to: 

(void) setvbuf(stream, NULL, _IONBF, 0); 

Similar functions setvbuf 

Related functions fopen, freopen 

See also fflush 22.2 

setjmp Prepare for Nonlocal Jump <setjmp.h> 

int setjmp(jmp_buf env); 

Stores the current environment in env for use in a later call of long jmp. 

Returns Zero when called directly. Returns a nonzero value when returning from a call of 
long jmp. 

Related functions 
See also 

longjmp 

signal 
24.4 

setlocale Set Locale <locale.h> 

char *setlocale(int category, const char *locale); 

Sets a portion of the program’s locale, category indicates which portion is 
affected, locale points to a string representing the new locale. 
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Returns If locale is a null pointer, returns a pointer to the string associated with cate¬ 

gory for the current locale. Otherwise, returns a pointer to the string associated 

with category for the new locale. Returns a null pointer if the operation fails. 

Related functions localeconv 25.1 

S et vbu f Set Buffer <stdio.h> 

int setvbuf(FILE *stream, char *buf, int mode, 

size_t size); 

Changes the buffering of the stream pointed to by stream. The value of mode 

can be either _IOFBF (full buffering), _IOLBF (line buffering), or _IONBF (no 

buffering). If buf is a null pointer, a buffer is automatically allocated if needed. 

Otherwise, buf points to a memory block that can be used as the buffer; size is 

the number of bytes in the block. Note: setvbuf must be called after the stream 

is opened but before any other operations are performed on it. 

Returns Zero if the operation is successful. Returns a nonzero value if mode is invalid or 
the request can’t be honored. 

Similar functions s e t bu f 
Related functions f open, f reopen 

See also f flush 22.2 

signal Install Signal Handler <signal.h> 

void (*signal(int sig, void (*func)(int)))(int); 

Installs the function that f unc points to as the handler for the signal whose num¬ 

ber is sig. 

Returns A pointer to the previous handler for this 

can’t be installed. 

signal; returns SIG_ERR if the handler 

Related functions abort, raise 24.3 

sin Sine cmath.h> 

double sin(double x); 

Returns Sine of x (measured in radians). 

Related functions acos, asin, atan, atan2, cos, tan 23.3 

sinh Hyperbolic Sine cmath.h> 

double sinh(double x) ; 

Returns Hyperbolic sine of x. A range error occurs if the magnitude of x is too large. 
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Related functions cosh, tanh 
See also acos, asin, atan, atan2, cos, sin, tan 23.3 

Sprint f Formatted String Write <stdio.h> 

int sprintf(char *s, const char *format, ...); 

Similar to fprintf and print f, but stores characters in the array pointed to by 

s instead of writing them to a stream. The string pointed to by format specifies 

how subsequent arguments will be displayed. Stores a null character in the array at 
the end of output. 

Returns Number of characters stored in the array, not counting the null character. 

Similar functions fprintf, print f, vfprintf, vprintf, vsprintf 
Related functions sscanf 

See also fscanf, scanf 22.8 

sqrt 

Returns 

Similar functions 

Square Root 

double sqrt(double x) ; 

Square root of x. A domain error occurs if x is negative. 

pow 

<math.h> 

23.3 

srand Seed Pseudo-Random Number Generator 

void srand(unsigned int seed); 

<stdlib.h> 

Uses seed to initialize the sequence of pseudo-random numbers produced by call¬ 
ing rand. 

Related functions rand 26.2 

SSCanf Forma tied String Read <stdio.h> 

int sscanf(const char *s, const char *format, ...); 

Similar to fscanf and scanf, but reads characters from the string pointed to by 

s instead of reading them from a stream. The string pointed to by format speci¬ 

fies the format of the items to be read. The arguments that follow format point to 
locations where the items are to be stored. 

Returns Number of data items successfully read and stored. Returns EOF if the end of the 
string is reached before any items could be read. 

Similar functions fscanf,scanf 
Related functions sprintf, vsprintf 

See also fprintf, printf, vfprintf, vprintf 22.8 
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strcat String Concatenation <string. h> 

char *strcat(char *sl, const char *s2); 

Returns 

Appends characters from the string pointed to by s2 to the string pointed to by si. 

si (a pointer to the concatenated string). 

Similar functions strncat 13.5,23.5 

strchr Search String for Character <string. h> 

char *strchr(const char *s, int c); 

Returns A pointer to the first occurrence of the character c in the string pointed to by s. 

Returns a null pointer if c isn’t found. 

Similar functions 
See also 

memchr 
strpbrk, strrchr, strstr 23.5 

strcmp String Compare <string.h> 

int strcmp(const char *sl, const char *s2); 

Returns A negative, zero, or positive integer, depending on whether the string pointed to by 

si is less than, equal to, or greater than the string pointed to by s2. 

Similar functions memcmp, strcoll, strncmp 13.5, 23.5 

strcoll String Compare Using Locale-Specific Collating Sequence < s tr ing. h> 

int strcoll(const char *sl, const char *s2); 

Returns A negative, zero, or positive integer, depending on whether the string pointed to by 

si is less than, equal to, or greater than the string pointed to by s2. The compari¬ 

son is performed according to the rules of the current locale’s LC_COLLATE cate¬ 

gory. 

Similar functions 
Related functions 

memcmp, strcmp, strncmp 
strxfrm 23.5 

strcpy String Copy <string.h> 

char *strcpy(char *sl, const char *s2); 

Copies the string pointed to by s2 into the array pointed to by si. 

Returns si (a pointer to the destination). 

Similar functions memcpy, memmove, strncpy 13.5, 23.5 



628 Appendix D Standard Library Functions 

strcspn Search String for Initial Span of Characters Not in Set <string. h> 

size__t strcspn (const char *sl, const char *s2); 

Returns Length of the longest initial segment of the string pointed to by si that doesn’t 

contain any character in the string pointed to by s2. 

Related functions strspn 23.5 

strerror Convert Error Number to String <s tr ing. h> 

char *strerror(int errnum); 

Returns A pointer to a string containing an error message corresponding to the value of 
errnum. 

Related functions perror 24.2 

strftime Write Formatted Date and Time to String < t ime. h> 

size_t strftime(char *s, size_t maxsize, 

const char *format, 

const struct tm *timeptr); 

Stores characters into the array pointed to by s under control of the string pointed 

to by format. The format string may contain ordinary characters, which are cop¬ 

ied unchanged, and conversion specifiers, which are replaced by values from the 

structure pointed to by timeptr. The maxsize parameter limits the number of 
characters (including the null character) that can be stored. 

Returns Zero if the number of characters to be stored (including the null character) exceeds 

maxsize. Otherwise, returns the number of characters stored (not including the 
null character). 

Similar functions 
Related functions 

asctime, ctime 

dif ftime, gmtime, localtime, mktime, time 26.3 

strlen String Length <string.h> 

size_t strlen(const char *s); 

Returns The length of the string pointed to by s, not including the null character. 

13.5, 23.5 

strncat Bounded String Concatenation <string h> 

char *strncat(char *sl, const char *s2, size_t n); 
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Appends characters from the array pointed to by s2 to the string pointed to by si. 

Copying stops when a null character is encountered or n characters have been cop¬ 
ied. 

Returns si (a pointer to the concatenated string). 

Similar functions s t r c a t 23.5 

Strncmp Bounded String Compare <string.h> 

int strncmp(const char *sl, const char *s2, size_t n); 

Returns A negative, zero, or positive integer, depending on whether the first n characters of 

the array pointed to by si are less than, equal to, or greater than the first n charac¬ 

ters of the array pointed to by s2. Comparison stops if a null character is encoun¬ 

tered in either array. 

Similar functions memcmp, strcmp, strcoll 23.5 

strncpy Bounded String Copy <string.h> 

char *strncpy(char *sl, const char *s2, size_ _t n) ; 

Copies the first n characters of the array pointed to by s2 into the array pointed to 

by si. If it encounters a null character in the array pointed to by s2, strncpy 

adds null characters to the array pointed to by si until a total of n characters have 

been written. 

Returns si (a pointer to the destination). 

Similar functions memcpy, memmove, strcpy 23.5 

Strpbrk Search String for One of a Set of Characters <s tring. h> 

char *strpbrk(const char *sl, const char *s2); 

Returns A pointer to the leftmost character in the string pointed to by s 1 that matches any 

character in the string pointed to by s2. Returns a null pointer if no match is 

found. 

See also memchr, strchr, strrchr, strstr 23.5 

Strrchr Search String in Reverse for Character <string. h> 

char *strrchr(const char *s, int c); 

Returns A pointer to the last occurrence of the character c in the string pointed to by s. 

Returns a null pointer if c isn’t found. 

See also memchr, strchr, strpbrk, strstr 23.5 
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strspn Search String for Initial Span of Characters in Set <string. h> 

size__t strspn(const char *sl, const char *s2); 

Returns Length of the longest initial segment in the string pointed to by si that consists 

entirely of characters in the string pointed to by s2. 

Related functions strcspn 23.5 

strstr Search String for Substring < s t r ing. h> 

char *strstr(const char *sl, const char *s2); 

Returns A pointer to the first occurrence in the string pointed to by si of the characters in 

the string pointed to by s2. Returns a null pointer if no match is found. 

See also memchr, strchr, strpbrk, strrchr 23.5 

strtod Con vert String to Double <stdlib.h> 

double strtod(const char *nptr, char **endptr); 

Skips white-space characters in the string that nptr points to, then converts sub¬ 

sequent characters into a double value. If endptr isn’t a null pointer, strtod 

modifies the object pointed to by endptr so that it points to the first leftover 

character. If no double value is found, or if it has the wrong form, strtod 

stores nptr into the object pointed to by endptr. If the number is too large or 
small to represent, it stores ERANGE in errno. 

Returns Converted number. Returns zero if no conversion could be performed. If the num¬ 

ber is too large to represent, returns plus or minus HUGE_VAL, depending on the 

number’s sign. Returns zero if the number is too small to represent. 

Similar functions 
Related functions 

See also 

atof 

strtol,strtoul 

atoi, atol 26.2 

strtok Search String for Token <string. h> 

char *strtok(char *sl, const char *s2); 

Searches the string pointed to by si for a “token” consisting of characters not in 

the string pointed to by s2. If a token exists, the character following it is changed 

to a null character. If si is a null pointer, a search begun by the most recent call of 

strtok is continued; the search begins immediately after the null character at the 
end of the previous token. 

Returns A pointer to the first character of the token. Returns a null pointer if no token could 
be found. 

See also memchr, strchr, strpbrk, strrchr, strstr 23.5 



Appendix D Standard Library Functions 631 

S t r101 Convert String to Long Integer <stdlib.h> 

long int strtol(const char *nptr, char **endptr, 

int base); 

Skips white-space characters in the string that nptr points to, then converts sub¬ 

sequent characters into a long int value. If base is between 2 and 36, it is used 

as the radix of the number. If base is zero, the number is assumed to be decimal 

unless it begins with 0 (octal) or with Ox or OX (hex). If endptr isn’t a null 

pointer, strtol modifies the object pointed to by endptr so that it points to the 

first leftover character. If no long int value is found, or if it has the wrong form, 

strtol stores nptr into the object pointed to by endptr. If the number can’t 

be represented, it stores ERANGE in errno. 

Returns Converted number. Returns zero if no conversion could be performed. If the num¬ 

ber can’t be represented, returns LONG_MAX or LONG_MIN, depending on the 
number’s sign. 

Similar functions atoi.atol, strtoul 

Related functions s t r t o d 

See also atof 26.2 

S t rt OU1 Convert String to Unsigned Long Integer <stdlib.h> 

unsigned long int strtoul(const char *nptr, 

char **endptr, int base); 

strtoul is identical to strtol, except that it converts a string to an unsigned 

long integer. 

Returns Converted number. Returns zero if no conversion could be performed. If the num¬ 

ber can’t be represented, returns ULONG_MAX. 

Similar functions atoi, atol, strtol 

Related functions strtod 

See also atof 26.2 

Strxfrm Transform Locale-Specific String <string.h> 

size_t strxfrm(char *sl, const char *s2, size_t n); 

Transforms the string pointed to by s2, placing the first n characters of the 

result—including the null character—in the array pointed to by si. Calling 

strcmp with two transformed strings should produce the same outcome (nega¬ 

tive, zero, or positive) as calling strcoll with the original strings. 

Returns Length of the transformed string (which may exceed n). 

strcmp, strcoll Related functions 23.5 
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system Perform Operating System Command 

int systemfconst char *string); 

<stdlib.h> 

Passes the string pointed to by string to the operating system’s command pro¬ 
cessor (shell) to be executed. 

Returns When string is a null pointer, returns a nonzero value if a command processor is 

available. If string isn’t a null pointer, returns an implementation-defined value. 

See also getenv 26.2 

tan Tangent cmath.h> 

double tan(double x) ; 

Returns Tangent of x (measured in radians). 

Related functions acos, asin, atan, atan2, cos, sin 23.3 

tanh Hyperbolic Tangent cmath.h> 

double tanh(double x); 

Returns Hyperbolic tangent of x. 

Related functions 
See also 

cosh, sinh 

acos, asin, atan, atan2, cos, sin, tan 23.3 

time Current Time ctime.h> 

time_t time(time_t *timer); 

Returns The current calendar time. Returns (time_t) -1 if the calendar time isn’t avail¬ 

able. If timer isn’t a null pointer, also stores the return value in the object that 
timer points to. 

Similar functions 
Related functions 

clock 

asctime, ctime, dif ftime, gmtime, localtime, mktime ,strftime 

26.3 

tmp file Create Temporary File <stdio.h> 

FILE *tmpfile(void); 

Creates a temporary file that will automatically be removed when it’s closed or the 
program ends. Opens the file in " wb+" mode. 

Returns A file pointer to be used when performing subsequent operations on the file. 
Returns a null pointer if a file can’t be created. 

Related functions tmpnam, fopen 22.2 
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tmpnam Generate Temporary File Name <stdio.h> 

char * tmpnam(char * s); 

Generates a name for a temporary file. If s is a null pointer, tmpnam stores the file 

name in a static variable. Otherwise, it copies the file name into the character array 

pointed to by s. (The array must be long enough to store L_tmpnam characters, 

where L_tmpnam is a macro defined in <stdio . h>.) 

Returns A pointer to the file name. 

Related functions tmpfile 22.2 

tolower Convert to Lower Case cctype.h> 

int tolower(int c); 

Returns If c is an upper-case letter, returns the corresponding lower-case letter. If c isn’t an 

upper-case letter, returns c unchanged. 

Similar functions 
Related functions 

See also 

toupper 

islower, isupper 

isalpha 23.4 

toupper Convert to Upper Case <ctype.h> 

int toupper(int c); 

Returns If c is a lower-case letter, returns the corresponding upper-case letter. If c isn’t a 

lower-case letter, returns c unchanged. 

Similar functions 
Related functions 

See also 

tolower 

islower, isupper 

isalpha 23.4 

ungetC Unread Character <stdio.h> 

int ungetc(int c, FILE *stream); 

Pushes the character c back onto the stream pointed to by stream and clears the 

stream’s end-of-file indicator. The number of characters that can be pushed back 

by consecutive calls of ungetc varies; only the first call is guaranteed to succeed. 

Calling a file positioning function (fseek, fsetpos, or rewind) causes the 

pushed-back character(s) to be lost. 

Returns c (the pushed-back character). Returns EOF if an attempt is made to push back too 

many characters without a read or file positioning operation. 

Related functions fgetc, getc, getchar 22.4 
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va_arg Fetch Argument from Variable Argument List < s tdarg. h> 

type va_arg (va_list ap, type); 

Fetches an argument in a variable argument list, then modifies ap so that the next 

use of va_arg fetches the following argument, ap must have been initialized by 

va_start prior to the first use of va_arg. 

Returns Value of the argument, assuming that its type (after the default argument promo¬ 

tions have been applied) is compatible with type. 

Related functions 
See also 

va_end, va_start 

vfprintf, vprintf, vsprintf 26.1 

vaend End Processing of Variable Argument List <s tdarg. h> 

void va_end(va_list ap) ; 

Ends the processing of the variable argument list associated with ap. 

Related functions 
See also 

va_arg, va_start 

vfprintf, vprintf, vsprintf 26.1 

va_start Start Processing of Variable Argument List <stdarg. h> 

void va_start(va_list ap, parmN); 

Must be invoked before accessing a variable argument list. Initializes ap for later 

use by va_arg and va_end. parmN is the name of the last ordinary parameter 
(the one followed by , . . .). 

Related functions 
See also 

va_arg, va_end 

vfprintf, vprintf, vsprintf 26.1 

vfprintf Formatted File Write Using Variable Argument List < s tdio. h> 

int vfprintf(FILE *stream, const char *format, 

va_list arg); 

Returns 

Equivalent to fprintf with the variable argument list replaced by arg. 

Number ot characters written. Returns a negative value if an error occurs. 

Similar functions 
See also 

fprintf, printf, sprintf, vprintf, vsprintf 
va_arg, va_end, va_start 26.1 

vprintf Formatted Write Using Variable Argument List <stdio. h> 

int vprintf(const char *format, va_list arg); 

<stdio.h> 
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Equivalent to printf with the variable argument list replaced by arg. 

Returns Number of characters written. Returns a negative value if an error occurs. 

Similar functions 
See also 

fprintf,printf, sprintf, vfprintf, vsprintf 
va_arg, va_end, va_start 26.1 

vsprint f Formatted String Write Using Variable Argument List <stdio. h> 

int vsprintf(char *s, const char *format, 

va_list arg); 

Equivalent to sprintf with the variable argument list replaced by arg. 

Returns Number of characters stored, not counting the null character. 

Similar functions fprintf, printf, sprintf, vfprintf, vprintf 
See also va_arg, va_end, va_start 26.1 

wcstombs Convert Wide Character String to Multibyte String <stdlib. h> 

size_t wcstombs(char *s, const wchar_t *pwcs, 

size_t n); 

Converts a sequence of wide character codes into the corresponding multibyte 

characters, pwcs points to an array containing the wide characters. The multibyte 

characters are stored into the array pointed to by s. Conversion ends if a null char¬ 

acter is stored or if storing a multibyte character would exceed the limit of n bytes. 

Returns Number of bytes stored, not including the null character. Returns (s i z e_t) -1 if 

a code that doesn’t correspond to a valid multibyte character is encountered. 

Related functions 
See also 

mbstowcs 
mblen, mbtowc, setlocale, wctomb 25.2 

WCtomb Convert Wide Character to Multi byte Character <stdlib.h> 

int wctomb (char *s, wchar_t wchar); 

Converts the wide character whose code is wchar into a multibyte character. If s 

isn’t a null pointer, stores the result into the array that s points to. If s is a null 

pointer, initializes the shift state. 

Returns If s is a null pointer, returns a nonzero or zero value, depending on whether or not 

multibyte characters have state-dependent encodings. If wchar corresponds to a 

valid multibyte character, returns the number of bytes in the character; if not, 

returns -1. 

Related functions 
See also 

mblen, mbtowc 
mbstowcs,setlocale, wcstombs 25.2 
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Domain Error 

Range Error 

Errors for<math.h> Functions 

An argument is outside the domain of the function. If a domain error occurs, the 

function’s return value is implementation-defined and EDOM is stored in errno. 

The return value of a function is outside the range of double values. If the return 

value’s magnitude is too large to represent (overflow), the function returns positive 

or negative HUGE_VAL, depending on the sign of the correct result. In addition, 

ERANGE is stored in errno. If the return value’s magnitude is too small to repre¬ 

sent (underflow), the function returns zero; some implementations may also store 

ERANGE in errno. 



APPENDIX E 
ASCII Character Set 

Escape Sequence 

Decimal Oct Hex Char Character 

0 \o \x00 nul 32 64 @ 96 
1 \1 \x01 soh (AA) 33 I 65 A 97 a 
2 \2 \x02 stx (AB) 34 u 66 B 98 b 
3 \3 \x03 etx (AC) 35 # 67 C 99 c 
4 \4 \x04 eot (AD) 36 $ 68 D 100 d 
5 \5 \x05 enq (AE) 37 % 69 E 101 e 
6 \6 \x06 ack (AF) 38 & 70 F 102 f 
7 \7 \x07 \a bel (AG) 39 1 71 G 103 g 
8 \10 \x08 \b bs (AH) 40 ( 72 H 104 h 
9 \11 \x09 \t ht (AI) 41 ) 73 I 105 i 

10 \12 \x0a \n If (AJ) 42 * 74 J 106 j 
11 \13 \x0b \v vt (AK) 43 + 75 K 107 k 
12 \14 \x0c \f ff (AL) 44 9 76 L 108 1 
13 \15 \x0d \r cr (AM) 45 - 77 M 109 m 
14 \16 \x0e so (AN) 46 78 N 110 n 
15 \ 17 \x0f si (aO) 47 / 79 O 111 o 
16 \20 \xl0 die (AP) 48 0 80 P 112 P 
17 \21 \xl 1 del (AQ) 49 1 81 Q 113 q 
18 \22 \xl2 dc2 (AR) 50 2 82 R 114 r 
19 \23 \xl3 dc3 (AS) 51 3 83 S 115 s 
20 \24 \xl4 dc4 (AT) 52 4 84 T 116 t 
21 \25 \xl5 nak (AU) 53 5 85 U 117 u 
22 \26 \xl6 syn (AV) 54 6 86 V 118 V 

23 \27 \xl7 etb (AW) 55 7 87 w 119 w 
24 \30 \xl8 can (AX) 56 8 88 X 120 X 

25 \31 \xl9 em (AY) 57 9 89 Y 121 y 
26 \32 \xla sub (AZ) 58 90 Z 122 z 
27 \ 3 3 \xlb esc 59 9 91 [ 123 { 
28 \34 \xlc fs 60 < 92 \ 124 1 
29 \35 \xld gs 61 = 93 ] 125 } 
30 \36 \xle rs 62 > 94 A 126 ~ 

31 \37 \xl f us 63 ? 95 - 
127 del 
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The best book on programming for the layman is 
“Alice in Wonderland"; but that’s because it’s 

the best book on anything for the layman. 

American National Standard for Information Systems—Programming Language— 

C, Document Number X3.159-1989. Now superseded by the ISO standard 

(ISO/IEC 9899:1990), which is the same except for formatting differences. 

Obtaining the C Standard 

Although the C standard is an important document that most serious programmers 
will want to own, it’s not obvious how to obtain a copy. One possibility is to order the 
original standard (X3.159-1989) from ANSI. Call (212) 642-4900 or write to 

American National Standards Institute 
11 West 42nd Street, 13th Floor 
New York, NY 10036 

The price, as of this writing, is $215.00. Before you rush to order a copy, however, 
be aware that the ANSI standard has been superseded by the ISO standard, which 
is available from ANSI for $130.00. (Outside the U.S., contact ISO at 1, rue de 
Varembi, Case postale 56, CH-1211 Geneve 20, Switzerland or send e-mail to 
central@isocs.iso.ch.) Why the price difference? The ANSI standard is bundled 
with the Rationale, a document that explains some of the decisions made during the 
creation of the standard. 

If the price is still a bit high, consider buying a copy of The Annotated ANSI C 
Standard (Berkeley: Osborne McGraw-Hill, 1993), which sells for about $40. 
(Despite its title, this book actually reprints the international standard.) The book 
includes annotations by Herbert Schildt, but lacks the Rationale. 

Since standards organizations support themselves by selling documents, you 
can’t get either the ANSI or the ISO standard via the Internet. You can, however, 
obtain the Rationale from ftp.uu.net in directory doc/standards/ansi/X3.159-1989. 
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\a alert (bell) escape sequence, 35,118 A bitwise exclusive or operator, 453- 
\\ backslash escape sequence, 36, 118 54 
\b backspace escape sequence, 35, 118 1 = bitwise inclusive or assignment op¬ 
\r carriage-return escape sequence, 

118 | 
erator, 454 
bitwise inclusive or operator, 453- 

\" double-quote escape sequence, 35, 54 
118 0 cast operator, 124, 127-29, 162 

\f form-feed escape sequence, 118 / comma operator, 94—95, 178, 286 
\xnn hexadecimal escape sequence, 119 •? : conditional operator, 72-73, 80 
\t horizontal-tab escape sequence, 35, -- decrement operator, 53-54, 58-59 

41,118 / = division assignment operator, 52 
\n new-line escape sequence, 14, 35, / division operator, 46, 583-84 

118 == equal-to operator, 65, 79 
\o. null character, 241, 392 > greater-than operator, 64 
\nnn octal escape sequence, 119 >= greater-than-or-equal-to operator, 

\? question-mark escape sequence, 64 
118, 133,561 + + increment operator, 53-54, 58-59, 

\' single-quote escape sequence, 118 225-27 
\v vertical-tab escape sequence, 118 ★ 

<< = 
indirection operator, 208-9, 225-27 
left-shift assignment operator, 452 

+= addition assignment operator, 52 << left-shift operator, 452 
+ addition operator, 46 < less-than operator, 64 
& address operator, 207-8 < = less-than-or-equal-to operator, 64 

[] array subscript operator, 140-41, && logical and operator, 65 
151,225,227,232, 234,242 1 logical negation operator, 65 

&= bitwise and assignment operator, ii logical or operator, 65 
454 •k — multiplication assignment operator, 

& bitwise and operator, 453-54 52 
~ bitwise complement operator, 453- * multiplication operator, 46 

54 1 = not-equal-to operator, 65 
A _ bitwise exclusive or assignment op¬ 

erator, 454 
# preprocessor operator, 282, 296, 

297 
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## preprocessor operator, 282-83, 296 
%= remainder assignment operator, 52 
% remainder operator, 46, 58, 583-84 
-> right arrow selection operator, 372 
»= right-shift assignment operator, 452 
>> right-shift operator, 452 
= simple assignment operator, 17, 50- 

51 
structure/union member operator, 
332, 346 

-= subtraction assignment operator, 52 
subtraction operator, 46 
unary minus operator, 46 

+ unary plus operator, 46 

\ backslash, 240 
{} braces, 12, 26 
/* * / comment delimiters, 14 
" double quote, 14 

ellipsis, 487, 564 
#... preprocessor directives, 10,12,273, 

276-77 
; semicolon, 14 
' single quote, 117, 119 
??c trigraph sequences, 560-61 
_ underscore, 23 

Abnormal program termination, 572 
Abnormal termination signal, 543, 583 
abort function, 572, 583, 602 
abs function, 575, 602 
Absolute value 

of a floating-point number, 526 
of a long integer, 575 
of an integer, 575 

Abstract data types, 423, 426-28,448—49 
encapsulating, 427-28 

Abstractions, 420 
Abstract objects, 422 
acos function, 523, 602 
Ada, 8 

Addition, of an integer and a pointer, 222- 
23 

Addition assignment operator +=, 52 
Addition operator +, 46 
Additive operators, 46 
Address arithmetic, see Pointer arithmetic 
Addresses, 205-6, 392 

versus pointers, 216-17 
using pointers as, 462 

Address operator &, 207-8 
in calls of scanf, 36, 212-13 

Aggregate variables, 139 
Alert (bell) escape sequence \a, 35, 118 

Algol 60, 2, 8 
Aliases, 208 
Alphabetic characters, testing for, 527 
Alphanumeric characters, testing for, 527 
Amendment 1, to C standard, 551 
ANSI standard for C, 2 
Arc cosine, 523 
Arc sine, 523 
Arc tangent, 523 
argc parameter, 264, 269 
Argument lists, variable-length, 132, 391— 

92,563-66 
Arguments, function, 156, 165-69, 177 

array, 167-69, 179-80, 229-30, 234, 235 
conversion of, 166-67 
function pointers as, 385-86 
passed by value, 165 
pointer, 211-15 
structure, 335-36 
union, 347 

using const to protect, 214-15, 217-18 
See also Parameters, function 

argv parameter, 264, 269 
Arithmetic, overflow during, 131 
Arithmetic, pointer, 221-24, 233-34 
Arithmetic error signal, 543 
Arithmetic operators, 45, 46-49 
Array arguments, 167-69,179-80,229-30, 

234, 235 

Array names, used as pointers, 227-31, 233 
Arrays, 139 

combined with structures, 337-45 
constant, 148-49 
copying, 151 
declarators for, 409 
dynamically allocated, 365-68 
elements of, 139-40 
initializing, 142-^43, 147-48, 338-39, 

412-13 
multidimensional, 146-50 
one-dimensional, 139-46 
and pointers, 224-27, 231-33, 234-35 
of pointers, 269 
of pointers to strings, 262-63 
ragged, 262 
storage of, 147 
of strings, 261-66, 363 
of structures, 338-39 

Arrays, character, 267 

versus character pointers, 245—46 
Array subscript operator [ ], 140-41, 151, 

225,227, 232, 234, 242 
ASCII character set, 116, 637 
asctime function, 580, 603 
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as in function, 523, 603 
<assert. h> header, 469, 539-^40 
Assertions, 539^40 
assert macro, 539^40, 603 
Assignment, 17 

in a controlling expression, 268 
conversion during, 127 
overflow during, 134 
of pointers, 209-10 
of structures, 332-33 
of unions, 347 

Assignment operators, 50-52 
compound, 52, 58, 452, 454 
simple, 17, 50-51, 151 

Assignment suppression, in a conversion 
specification, 493 

Associativity, operator, 47-48 
atan2 function, 523, 603 
atan function, 523, 603 
atexit function, 572, 604 
atof function, 567-68, 604 
atoi function, 567-68, 604 
atol function, 567-68, 604 
Automatic storage duration, 185-86, 401 
auto storage class, 402 

B (programming language), 2 
Backslash \, 240 
Backslash escape sequence \\, 36, 118 
Backspace escape sequence \b, 35, 118 
Basic types, 109 
BCPL, 2 
Binary files, 477-78, 508-9 
Binary operators, 46 
Binary search, 573-74 
Bit-fields, 455 

modifying, 455-56 
retrieving, 456 
storage of, 459-60 
in structures, 458-60 

Bits 
clearing, 454-55 
setting, 454-55 
testing, 455 

Bitwise and assignment operator &=, 454 
Bitwise and operator &, 453-54 
Bitwise complement operator ~, 453-54 
Bitwise exclusive or assignment operator 

A=, 454 
Bitwise exclusive or operator A, 453-54 
Bitwise inclusive or assignment operator 

| =, 454 
Bitwise inclusive or operator |, 453-54 
Bitwise operators, 451-57 

versus logical operators, 464-65 
Bitwise shift operators, 452 
Block I/O, 503-4 
Blocks, 193-94, 401 
Block scope, 186, 402, 414 
Body 

of a function, 156, 160-61 
of a loop, see Loop body 

Boolean values, 73-74 
Braces {}, 12, 26 

placement in compound statements, 79- 
80 

break statements, 76-77, 97-98 
Broken-down times, 576 

converting calendar times to, 580 
converting to calendar times, 578-79 
converting to strings, 580 

bsearch function, 573-74, 605 
Buffering, file, 484-86 
BUFSIZ macro, 486 
Building programs, 320-25 

C 
versus C++, 449 
Classic, 3, 597-600 
differences between C++ and, 429-31 
effective use of, 6-7 
history of, 1-3 
obfuscated, 5 
philosophy of, 3^4 
pitfalls, 6 
portability of, 4 
Standard, 2, 597-600 
standardization of, 2-3 
strengths, 4-5 
syntax rules, 587-93 
terseness of, 27 
weaknesses, 5-6 
writing large programs in, 448 

C++, 3, 428-47 
anonymous unions, 348 
base classes, 441 
versus C, 449 
class definitions, 432 
class derivation, 441—43 
classes, 431 
comments, 28, 429 
constructors, 435-37 
data members, of a class, 432 
default arguments, 429 
default constructors, 439 
derivation lists, 442^43 
derived classes, 441 
destructors, 435, 437-38 
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differences between C and, 429-31 
dynamic binding, 444-45 
dynamic storage allocation, 430, 436-37 
encapsulation in, 441 
exception handling, 446-47 
function overloading, 438-39 
functions, 429 
inheritance in, 441 
input/output, 440 
instances, of a class, 432 
member functions, of a class, 433-35 
object-oriented programming in, 441 
objects, 432 
operator overloading, 431,439^10 
polymorphism in, 441 
private members, of a class, 432 
public members, of a class, 432 
reference arguments, 429-30 
tags, 429 
templates, 445-^16 
type names, 429 
virtual functions, 443-45 

Calendar times, 576 
converting broken-down times to, 578- 

79 
converting to broken-down times, 580 
converting to strings, 580 
determining, 577 

Call, of a function, 13, 156, 161-62, 565 
calloc function, 360, 366-67, 393, 605 
Carriage-return escape sequence \ r, 118 
Cascaded if statements, 69-70 
Case labels, in a switch statement, 75-76 
Case sensitivity, 23 
Cast expressions, 127-29, 162 
Cast operator (), 124, 127-29, 162 
Categories, of a locale, 552 
cc compiler, 10-11 

%c conversion specification, 120, 246-47 
ceil function, 525-26, 605 
Ceiling, 525-26 
CHAR_BIT macro, 521 
CHAR_MAX macro, 521 
CHAR_MIN macro, 521 
Character case-mapping functions, 528-29 
Character constants, 117, 119 

versus string literals, 242 
for wide characters, 557 

Character escapes, 35-36, 118-19 
Character-handling functions, 120, 526-29 
Character I/O, 498-501 
Characters 

largest, 521 

line-feed, 133 
multibyte, 556-57 
new-line, 14, 133 
reading, 120-22, 133-34, 499-500, 511- 

12 
signed, 118, 133 
size of, in bits, 521 
smallest, 521 
unsigned, 118, 133 
used as array subscripts, 151 
used as integers, 117, 133 
white-space, see White-space characters 
wide, 557-58 
writing, 120-22, 498-99 

Character sets, 116-17, 556 
ASCII, 116, 637 
EBCDIC, 117 
extended, 556 
Japanese, 556 
Unicode, 117, 558 

Character-testing functions, 527-28 
Character types, 116-23 
char type, 116, 132 
Classic C, 3 

function declarations, 178 
function definitions, 177 
versus Standard C, 597-600 

clearerr function, 497, 510, 605 
Clients, of a module, 420 
" C" locale, 553 
clock_t type, 576 
clock function, 577, 606 
CLOCKS_PER_SEC macro, 577 
Clock ticks, 576 
Closing a file, 480-81,509 
Cohension, in module design, 422 
Comma expressions, 94-95 
Command-line arguments, 263-66, 269, 

481-82, 508 
Comma operator ,, 94-95, 178 

in macro definitions, 286 
Comments, 14-16, 27-28, 292 

nested, 28 

in preprocessor directives, 277 
unterminated, 28 
using //, 28 

Comparison functions 
for bsearch, 573, 583 
for qsort, 386, 394-95, 583 

Compilation, conditional, 276, 288-92, 298 
Compilers, 10 
Compiling a program, 10-11, 320 
Compound assignment operators, 52, 58, 

452, 454 
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Compound statements, 67-68, 193-94 
in macro definitions, 286 

Concurrent C, 3 
Conditional compilation, 276, 288-92, 298 

uses of, 291-92 
Conditional expressions, 72-73, 80 
Conditional operator ? :, 72-73, 80 
Conditioning out, 292, 298 
<conio . h> header (DOS), 511,513 
Constant arrays, 148-49 
Constant expressions, 76 

evaluated by preprocessor, 297 
Constants 

character, 117, 119, 242 
enumeration, 351, 352 
floating, 115-16, 132 
integer, 111-12 
using #def ine to create, 21-23, 278, 

296 
wide character, 557 
See also Literals 

const objects, 407-8, 414-15 
versus macros, 408 

const type qualifier, 148, 214-15, 217— 
18,229, 407-8,414-15 

Continuation 
of preprocessor directives, 276 
of string literals, 240^-1 

continue statements, 98, 104-5 
Control characters, testing for, 527 
Controlling expression 

in a do statement, 89-90 
in a for statement, 91-92 
in a loop, 85 
in a switch statement, 75 
in a while statement, 86-87 

Conversions, 124—29 
argument, 166-67 
default argument promotions, 166 
during assignment, 127 
explicit, 124 
of function return value, 170 
implicit, 124 
integral promotions, 125, 134 
promotions, 125 
usual arithmetic, 125-27 

Conversion specifications 
assignment suppression in, 493 
examples of, 34-35 
flags in, 488 
maximum field width in, 493 
minimum field width in, 33, 488 
precision in, 33, 488 

in ...printf format strings, 31-35,487- 
92 

in ...scanf format strings, 493-96 
scansets in, 494 

Conversion specifiers, 33-34, 489, 494 
for characters, 120 
for double values, 116 
for floating-point numbers, 18, 20-21, 

33,38,132, 490-91 
for integers, 18, 20, 33, 41, 131-32, 490 
for long double values, 116 
for long integers, 113 
for pointers, 217, 491-92 
for short integers, 113 
and string conversion functions, 495 
for strings, 246^17, 247-48, 490-91,494 
for unsigned integers, 113 

Coordinated Universal Time (UTC), 580, 
584 

cos function, 523, 606 
cosh function, 523-24, 606 
Cosine, 523 
Coupling, in module design, 422 
C Programming Language, The, 2 
ctime function, 580, 606 
<ctype. h> header, 469, 526-29 
curses library (UNIX), 513 

Dangling else problem, 71-72 
Dangling pointers, 369-70 
Data pools, 422 
_DATE_macro, 287-88 
DBL_DIG macro, 520 

DBL_E P SI LON macro, 520 

DBL_MANT_DIG macro, 520 

DBL_MAX_10_EXP macro, 520 

DBL_MAX_EXP macro, 520 

DBL_MAX macro, 520 

DBL_MIN_10_EXP macro, 520 

DBL_MIN_EXP macro, 520 

DBL_MIN macro, 520 

%d conversion specification, 18, 20, 33,41, 

490 

Deallocation, of dynamically allocated stor¬ 
age, 368-70 

Decimal integer constants, 112 
Declarations 

deciphering, 410-11 
versus definitions, 404 
function, 163-65, 178-79 
of pointer variables, 206-7 
of structure tags, 334—35, 393-94 
of structure variables, 330-31, 334-35 
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syntax of, 399-401 
of union variables, 345^-6 
using type definitions to simplify, 411- 

12 
of variables, 17 

Declaration specifiers, 400 
Declarators, 400, 408-12, 415 
Decrement operator 53-54, 58-59 
Default argument promotions, 166 
default case, in a switch statement, 76 
#def ine directives, 22,274,277-78,279, 

408 
defined preprocessor operator, 289-90, 

298 

Definitions 
versus declarations, 404 
of functions, 159-61, 177 
of machine-dependent types, 460 
of macros, 22, 274, 276, 277-88 
of structure types, 335 
of types, 129-31 
of variables, 309-10 

Deleting a file, 486 
Dependencies, in makefiles, 320 
Difference, between times, 578 
dif ftime function, 578, 606 
Digits, testing for, 527 
Directives, preprocessor, see Preprocessor 

directives 
Discriminants, see Tag fields 
div_t type, 575 
div function, 575-76, 583-84, 606-7 
Division assignment operator /=, 52 
Division functions, 575-76, 583-84 
Division operator / , 46, 583-84 
Domain errors, 522, 541, 636 
do statements, 89-91 

in macro definitions, 287 
Double quote ", 14 
Double-quote escape sequence \ ", 35, 118 
double type, 114, 132 
Dynamic storage allocation, 359-61 

for arrays, 365-68 
functions, 360, 393 
in string functions, 362-63 
for strings, 361-65 
using calloc, 366-67 
using malloc, 361-62, 366 
using realloc, 367-68 

EBCDIC character set, 117 

%e conversion specification, 33 

EDOM macro, 522, 541, 548 

Elements, of an array, 139-40 
#elif directives, 291 
Ellipsis . . ., 487, 564 
else clause, in an if statement, 68-69 
#else directives, 291 
Empty loop body, 102, 106 
Encapsulation, 427-28 
#endif directives, 288-89 
End of file, detecting, 496 
End-of-file indicator, for a stream, 497 

clearing, 497, 510 
testing, 497-98, 510 

Enumeration constants, 351, 352 
versus macros, 351 

Enumerations, 350-53 
as integers, 352-53 
using to declare tag fields, 353 

Enumeration tags, 351-52 
Enumeration types, 351-52 
Environment strings, 572-73 
EOF macro, 267, 511 
Equality, of structures, 354 
Equality operators, 65 

applied to pointers, 224 
Equal-to operator ==, 65, 79 
ERANGE macro, 522, 541,548 
<errno. h> header, 469, 541-42, 548 
errno variable, 522, 541-42 
terror directives, 293-94 

in header files, 312 
Error detection 

using assert, 539^10 
using errno, 541^-2 
using signals, 542^16 

Error indicator, for a stream, 497 
clearing, 497, 510 
testing, 497-98 

Errors 

converting to messages, 541-4-2 
domain, 522, 541, 636 
during I/O, 496 
during linking, 322, 326 
range, 522, 541,636 

when calling mathematical functions, 
522-23 

Escape sequences, 35-36, 118-19, 240 
character, 35-36, 118-19 
hexadecimal, 119 
numeric, 118-19 
octal, 119 

Evaluation of expressions, 54—56 

EX I T_F AI LURE macro, 171,572 

EXIT_SUCCESS macro, 171,572 

Exit from the middle of a loop, 96-101 
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exit function, 27, 99, 171,572, 607 
exp function, 524, 607 
Explicit conversions, 124 
Exponent, of a floating-point number, 28, 

115 
Exponential functions, 524—25 
Exponentiation, 58 
Expressions, 17, 45 

cast, 127-29, 162 
comma, 94-95 
conditional, 72-73, 80 
constant, 76 
evaluation of, 54-56 
logical, 64-66 
printing, 20 
side effects in, 50 

Expression statements, 57, 59, 161 
Extended character sets, 556 
Extended-precision floating constants, 116 
External linkage, 402, 414 
External variables, 186-93 

pros and cons of, 188-89 
scope of, 187 
storage duration of, 187 

extern storage class, 309-10,404—5, 406 

f abs function, 526, 607 
FALSE macro, 73 
fclose function, 480-81,509, 607 
%f conversion specification, 18,20-21,33, 

132 
feof function, 497-98, 510, 608 
f error function, 497-98, 608 
f flush function, 484-85, 510, 512, 608 
fgetc function, 499-500, 510-11, 608 
fgetpos function, 505-6, 512, 608-9 
fgets function, 502, 609 
Fields, of a structure or union, see Members 
_FILE_macro, 288, 294 
File buffers, flushing, 484-85, 510 
File inclusion, 274, 276, 305-6, 325 
FI LENAME_MAX macro, 510 
File names 

maximum length of, 509-10 
obtained from command line, 481-82 

File pointers, 476 
File-positioning functions, 504-7, 512 
File positions, 504 

changing, 504—6 
determining, 505-6 

Files 
attaching to streams, 481 
binary, 477-78, 508-9 
buffering, 484-86 

closing, 480-81, 509 
deleting, 486 
dividing a program into, 313-19 
in DOS, 478 
header, 305-12, 326 
object, 320 
opening, 479-80, 509 
renaming, 486 
source, 303-4, 325, 326 
temporary, 483-84 
text, 477-78, 508-9,512 
in UNIX, 478 

File scope, 187, 402 
FILE type, 448, 476 
Flags, in a conversion specification, 488 
<float.h> header, 470, 519-20 
Floating constants, 115-16, 132 
Floating-point addition, rounding modes 

for, 519 
Floating-point numbers, 114 

exponent of, 28, 115 
fraction of, 28, 115 
infinity, 522 
mantissa of, 28 
not-a-number, 522 
reading, 20-21,38, 116, 132 
sign of, 115 
writing, 18, 33, 116, 132, 490-91 

Floating types, 16, 114—16 
characteristics of, 519-20 
largest values of, 520 
limits on exponents, 520 
radix of exponent representation, 519 
significant digits, 520 
smallest difference between values of, 

520 
smallest positive values of, 520 

float type, 16, 28, 114, 132 
Floor, 525-26 
floor function, 525-26, 609 

FLT_DIG macro, 520 

FLTJEPSILON macro, 520 

FLT_MANT_DIG macro, 520 

FLT_MAX_10_EXP macro, 520 

FLT_MAX_EXP macro, 520 

FLT_MAX macro, 520 

FLT_MIN_10_EXP macro, 520 

FLT_MIN_EXP macro, 520 

FLT_MIN macro, 520 

FLT_RADIX macro, 519 

FLT_ROUNDS macro, 519 

Flushing a file buffer, 484—85, 510 

fmod function, 526, 609 

FOPEN_MAX macro, 509 



f open function, 479-80, 509, 609-10 
Format strings, 267 

in calls of ...printf, 31-36 
in calls of ...scanf, 20, 36—40, 492-93 
variables as, 510 

Formatted I/O, 486-98, 566 
matching failure during, 496 

Form-feed escape sequence \ f, 118 
for statements, 91-96, 104, 140 

idioms, 92-93 
omitting expressions in, 93-94 

fpos_t type, 505 
fprintf function, 487-92, 610 
fputc function, 498-99, 510-11,610 
fputs function, 502, 610 
Fraction, of a floating-point number, 28, 

115 
Fractional part, of a double value, 524 
fread function, 503—4, 512, 610-11 
free function, 369, 611 
freopen function, 481, 611 
frexp function, 524—25, 611 
f scanf function, 492-98, 611-12 
f seek function, 504-5, 510, 512, 612 
fsetpos function, 505-6, 510, 512, 612 
F (or f) suffix, on a floating constant, 116 
ftell function, 505, 512, 612-13 
Function arguments, see Arguments, func¬ 

tion 
Function body, 156, 160-61 
Function declarations, 163-65, 178-79 

in Classic C, 178 
Function definitions, 159-61, 177 

in Classic C, 177 

Function parameters, see Parameters, func¬ 
tion 

Function pointers, 385-91 
as arguments, 385-86 
as array elements, 388-89 
stored in variables, 388 

Function prototypes, 165, 178-79 
in header files, 307-8 

Functions, 12-13, 155 
calling, 13, 156, 161-62, 565 
declarators for, 409 
discarding return value of, 161-62 
library, 12 
main, 13, 180-81 

versus parameterized macros, 280-81 
recursive, 172-76, 181,202 
return type of, see Return type, of a func¬ 

tion 
storage class of, 406 

with variable-length argument lists, 132, 

391-92, 563-66 
fwrite function, 503-4, 512, 613 

Garbage, 369 
Garbage collection, 369 
gcc, see GNU C compiler 
%g conversion specification, 33, 490-91 
getc function, 499-500, 510-11,613 
getchar function, 121-22, 133-34, 499- 

500,511,613 
getche function (DOS), 511-12 
getch function (DOS), 511-12 
getenv function, 572-73, 613-14 
gets function, 247-48, 502, 614 
Global variables, see External variables 
gmtime function, 580, 584, 614 
GNU C compiler, 8,11 
goto statements, 98-99, 105 
Graphics, functions for, 513 
Greater-than operator >, 64 
Greater-than-or-equal-to operator >=,64 
Greenwich Mean Time, 584 

Header files, 305-12, 326 
terror directives in, 312 
function prototypes in, 307-8 
#include directives in, 310-11 
macro definitions in, 306-7 
protecting against multiple inclusion, 

311-12 
structure types defined in, 355 
type definitions in, 306-7 
variable declarations in, 309-10, 326 

Headers, standard, 12, 468, 472 
<assert. h>, 469, 539^40 
cctype. h>, 469, 526-29 
<errno . h>, 469, 541-42, 548 
<float.h>, 470, 519-20 
<iso646 ,h>, 551 

climits. h>, 111,470,521-22 
clocale . h>, 470, 551-56 
<math. h>, 470, 522-26 
<set jmp. h>, 470, 546—48 
<signal. h>, 470, 542^16, 549 
<stdarg. h>, 470, 563-66 
<stddef. h>, 471-72 
<stdio . h>, 471,475-513 
<stdlib.h>, 471, 567-76 
<string . h>, 251,471, 529-36 
< t ime. h>, 471, 576-82 
<wchar. h>, 551 
<wctype . h>, 551 

Heap, 368 

Hexadecimal digits, testing for, 527 
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Hexadecimal escape sequence \xnn, 119 
Hexadecimal integer constants, 112 
Hexadecimal numbers, 111-12 
Holes, in structures, 353-54 
Horizontal-tab escape sequence \ t, 35,41, 

118 
HUGE_VAL macro, 522 
Hyperbolic cosine, 523-24 
Hyperbolic functions, 523-24 
Hyperbolic sine, 523-24 
Hyperbolic tangent, 523-24 

%i conversion specification, 41 
Identifiers, 23-24 

length of, 29 
Idioms 

for statements, 92-93 
for string-handling, 257-61 

IEEE floating-point standard, 115, 522 
#ifdef directives, 290, 298 
#if directives, 288-89, 298 
#ifndef directives, 290, 298 
if statements, 66-74 

cascaded, 69-70 
dangling else problem, 71-72 
else clauses in, 68-69 

Illegal instruction signal, 543 
Implementation, of a module, 420 
Implementation-defined, 47 
Implicit conversions, 124 
#include directives, 274, 305-6, 325 

in header files, 310-11 
Include files, see Header files 
Incomplete structure declarations, 393-94 
Increment operator ++, 53-54, 58-59, 225- 

27 
Indentation, 26, 29 

in compound statements, 79-80 
in switch statements, 81-82 

Indexing, see Subscripting, array 
Indirection operator *, 208-9, 225-27 
Infinite loops, 87, 94, 104 
Infinity, 522 
Information hiding, 423-26 
Initializers, 19-20,412-13 

array, 142-13, 147-48, 338-39,412-13 
for automatic variables, 412-13 
for pointer variables, 412 
for static variables, 412 
string, 243—15 
structure, 331-32, 336, 412-13 
union, 347, 412-13 

Initial shift state, of a state-dependent en¬ 
coding, 557 

Input/output, 475-513 
block, 503—1 
character, 498-501 
end-of-file during, 496 
errors during, 496 
formatted, 486-98, 566 
line, 501-2 
pointer, 217 
string, 14, 246-19, 267, 501-2 

Input redirection, 477 
INT_MAX macro, 521 
INT_MIN macro, 521 
Integer arithmetic functions, 575-76 
Integer constants, 111-12 
Integer part, of a double value, 524 
Integers 

long, 110 
reading, 20,38,41, 112-13 
short, 110 
sign bit of, 109 
signed, 109-10 
unsigned, 109-10 
writing, 18, 33,41, 112-13, 131-32, 490 

Integer types, 16, 109-14 
largest values of, 521 
smallest values of, 521 

Integral promotions, 125, 134 
Integral types, 118 

sizes of, 521-22 
Interface, of a module, 420 
Internal linkage, 402 
International features 

localization, 551-56 
multibyte characters, 556-57 
trigraph sequences, 560-61 
wide characters, 557-58 

International Obfuscated C Code Contest, 5 
Interrupt signal, 543 
int type, 16, 110 
Invalid storage access signal, 543 
Invocation, macro, 279 
_IOFBF macro, 485 
_IOLBF macro, 485 
_IONBF macro, 485 
isalnum function, 527, 614 
isalpha function, 527, 614—15 
iscntrl function, 527, 615 
isdigit function, 527, 615 
is graph function, 527, 615 
islower function, 527, 615 
<iso646 .h> header, 551 
ISO standard for C, 2 
isprint function, 527, 615 
ispunct function, 527, 616 



isspace function, 527, 616 
isupper function, 527, 616 
isxdigit function, 527, 616 
Iteration, of a loop, 85 
Iteration statements, 63, 85 

Japanese character sets, 556 
jmp_buf type, 547, 549 
Jumps, nonlocal, 546-48 
Jump statements, 63 

K&R, 2 
Kcinji characters, 556 
Keywords, 24 

L_tmpnam macro, 484 
Labels 

case, 75-76 
statement, 98-99 

labs function, 575, 616 
Layout, of programs, 25-27, 29 
LC_ALL macro, 553 
LC_COLLATE macro, 552 
LC_CTYPE macro, 552 
LC_MONETARY macro, 552 
LC_NUMERIC macro, 552 
LC_TIME macro, 552 
lconv structure, 554-56 
LDBL_DIG macro, 520 
LDBL_EPSILON macro, 520 
LDBL_MANT_DIG macro, 520 
LDBL_MAX_10_EXP macro, 520 
LDBL_MAX_EXP macro, 520 
LDBL_MAX macro, 520 
LDBL_MIN_10_EXP macro, 520 
LDBL_MIN_EXP macro, 520 
LDBL_MIN macro, 520 
ldexp function, 525, 616-17 
ldiv_t type, 576 
ldiv function, 576, 583-84, 617 
Left associativity, 47 
Left-shift assignment operator «=, 452 
Left-shift operator <<, 452 
Less-than operator <, 64 
Less-than-or-equal-to operator <=,64 
Libraries, 422 
Library, standard, 448^49, 467-69 

character handling, 469, 526-29 
characteristics of floating types, 470, 

519-20 
common definitions, 471-72 
date and time, 471, 576-82 
diagnostics, 469, 539-40 
errors, 469, 541-42, 548 

general utilities, 471, 567-76 
headers, see Headers, standard 
input/output, 471, 475-513 
localization, 470, 551-56 
mathematics, 470, 522-26 
nonlocal jumps, 470, 546-48 
overview of, 469-71 
restrictions on names in, 468 
signal handling, 470, 542-^46, 549 
sizes of integral types, 470, 521-22 
string handling, 251-57, 471,529-36 
variable arguments, 470, 563-66 

Library functions, 12 
hidden by macros, 468-69 

<limits .h> header, 111, 470, 521-22 
_LINE_macro, 288, 294 

#line directives, 294-95 
Line-feed character, 133 
Line I/O, 501-2 
Linkage, 402 

external, 414 
internal, 402 
versus scope, 414 

Linked lists, 370-83 
deleting nodes from, 376-78 
inserting nodes into, 373-75 
ordered, 378-79 
searching, 375-76 

Linkers, 10 
Linking a program, 10-11, 320, 326 

errors during, 322, 326 
lint, 6, 8, 28 
Literals 

string, 14, 239-42, 266 
wide string, 557 
See also Constants 

<locale . h> header, 470, 551-56 
localeconv function, 553-56, 617 
Locale-dependent string comparison, 532 
Locales, 551-52 

"C", 553 
categories of, 552 
changing, 552-53 
native, 553 
and numeric formatting, 553-56 

Localization, 551-56 
localtime function, 580, 617 
Local variables, 185-86 

scope of, 186 
storage duration of, 185-86 

Logarithmic functions, 524 
log function, 524, 617 
loglO function, 524, 617 
Logical and operator &&, 65 
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Logical expressions, 64-66 
Logical negation operator !, 65 
Logical operators, 45, 65-66 

versus bitwise operators, 464-65 
and short-circuit evaluation, 66 

Logical or operator | |, 65 
LONG_MAX macro, 521 
LONG_MIN macro, 521 
long double type, 114 
Long integer constants, 112 
Long integers, 110 
long int type, 110 
longjmp function, 546-47, 550, 618 
long type specifier, 110 
Loop body, 85 

in a do statement, 89-90 
empty, 102, 106 
in a for statement, 91-92 
in a while statement, 86-87 

Loops, 85 
with exit in the middle, 96-101 
infinite, 87, 94, 104 

Lower-case letters 
converting to, 528 
testing for, 527 

L prefix, on a character constant or string 

literal, 557 

L (or 1) suffix 

on a floating constant, 116 
on an integer constant, 112 

Lvalues, 51, 58, 332, 372 

Machine-dependent types, 460 
Macro definitions, 22, 274, 276, 277-88 

comma operators in, 286 
compound statements in, 286 
do statements in, 287 
in header files, 306-7 
parentheses in, 22, 285-86 
outside programs, 324—25 
versus type definitions, 134 

Macro parameters, 279 
Macros 

versus const objects, 408 
versus enumeration constants, 351 
general properties of, 283-85 
invoking, 279 
parameterized, 279-82 
predefined, see Predefined macros 
redefining, 284 
rescanning during replacement of, 284, 

297 
scope of, 284 
simple, 277-79 

undefining, 284 
used as type names, 134 
used to hide functions, 468-69 
uses of, 278-79, 280, 281 

main function, 13, 180-81 
return type of, 13, 170, 181 

Makefiles, 320-22 
dependencies in, 320 
target files in, 321 

make utility, 322 
malloc function, 360, 361-62, 366, 618 
Mantissa, of a floating-point number, 28 
Matching failure, during formatted input, 

496 
<math. h> header, 470, 522-26 
Mathematical functions, 522-26 
Matrices, see Multidimensional arrays 
Maximum field width, in a conversion 

specification, 493 
MB_CUR_MAX macro, 557 
MB_LEN_MAX macro, 521, 557 
mblen function, 558, 618 
mbstowcs function, 559-60, 618-19 
mbtowc function, 559, 619 
Members 

alignment of, 353 
offsets of, 472 
scope of, 331 
selection of, 332, 346 
of a structure, 329 
of a union, 345-46 

memchr function, 533, 619 
memcmp function, 531-32, 619 
memcpy function, 151-52, 530, 536, 619 
memmove function, 530, 536, 620 
Memory, initializing, 536 
Memory allocation functions, 360, 393 
Memory leak, 369 
memset function, 536, 620 
Minimum field width, in a conversion spec¬ 

ification, 33,488 
mktime function, 578-79, 620 
Mode string, in call of f open, 479-80, 509 
modf function, 524, 620 
Modula-2, 8 
Modules, 420-23 

advantages of, 420-22 
clients of, 420 
cohension of, 422 
coupling of, 422 
implementation of, 420 
interface of, 420 
maintainability of, 421 
reusability of, 421 
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stack example, 423-26 
Module types, 422-23 

abstract data types, 423, 426-28, 448^19 
abstract objects, 422 
data pools, 422 
libraries, 422 

Multibyte character functions, 558-59 
Multibyte characters, 556-57 

converting to wide characters, 559 
determining length of, 558 
maximum number of bytes in, 557 
number of bytes in, 521 
state-dependent encoding of, 557 
versus wide characters, 562 

Multibyte string functions, 559-60 
Multibyte strings, 559-60 
Multidimensional arrays, 146-50 

and pointers, 231—33, 235 
Multiplication assignment operator *=, 52 
Multiplication operator *, 46 
Multiplicative operators, 46 

Name spaces, 331,406 
NAN, 522 
Native locale, 553 
%n conversion specification, 492 
NDEBUG macro, 540 
Nearest integer functions, 525-26 
New-line character, 14, 133 
New-line escape sequence \n, 14, 35, 118 
Nodes, in a linked list, 370 

creating, 371-72 
declaring, 370-71 
deleting, 376-78 
inserting, 373-75 

Nonlocal jumps, 546-48 
Not-a-number, 522 
Not-equal-to operator ! =, 65 
Null character \ 0, 241, 392 
Null directives, 295-96 
NULL macro, 361, 391-92, 472, 565 
Null pointer assignment, 392-93 
Null pointers, 264, 360-61,391-93 
Null statements, 102-3, 105-6 
Numeric escapes, 118-19 

Object code, 10 
Object files, 320 
Objective C, 3 
Objects, abstract, 422 
Objects, referenced by pointers, 207 
%o conversion specification, 113, 131-32 
Octal escape sequence \nnn, 119 

Octal integer constants, 112 
Octal numbers, 111-12 
of f setof macro, 472 
One-dimensional arrays, 139-46 
Opening a file, 479-80, 509 
Operators 

addition, 46 
addition assignment, 52 
additive, 46 
address, 207-8 
arithmetic, 45, 46-49 
array subscript, 140-41, 151, 225, 227, 

232, 234, 242 
assignment, 50-52 
associativity of, 47^18 
binary, 46 
bitwise, 451-57 
bitwise and, 453-54 
bitwise and assignment, 454 
bitwise complement, 453-54 
bitwise exclusive or, 453-54 
bitwise exclusive or assignment, 454 
bitwise inclusive or, 453-54 
bitwise inclusive or assignment, 454 
bitwise shift, 452 
cast, 124, 127-29, 162 
comma, 94-95, 178 
compound assignment, 52, 58, 452, 454 
conditional, 72-73, 80 
decrement, 53-54, 58-59 
division, 46, 583-84 
division assignment, 52 
equality, 65 
equal to, 65, 79 
greater than, 64 
greater than or equal to, 64 
increment, 53-54, 58-59, 225-27 
indirection, 208-9, 225-27 
left shift, 452 
left-shift assignment, 452 
less than, 64 
less than or equal to, 64 
logical, 45, 65-66 
logical and, 65 
logical negation, 65 
logical or, 65 
multiplication, 46 
multiplication assignment, 52 
multiplicative, 46 
not equal to, 65 
postfix, 53 
precedence of, 47-48 
prefix, 53 

preprocessor, see Preprocessor operators 
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relational, 45, 64 
remainder, 46, 58, 583-84 
remainder assignment, 52 
right arrow selection, 372 
right shift, 452 
right-shift assignment, 452 
simple assignment, 17,50-51 
sizeof, 123-24, 144-45, 168, 366 
structure/union member, 332, 346 
subtraction, 46 
subtraction assignment, 52 
table of, 595 
ternary, 72 
unary, 46 
unary minus, 46 
unary plus, 46 

Ordered lists, 378-79 
Organizing programs, 195-202 
Output redirection, 477 
Overflow 

during arithmetic, 131 
during assignment, 134 

Parameterized macros, 279-82 
versus functions, 280-81 
uses of, 280, 281 

Parameters, function, 156, 160, 177 
scope of, 186 
storage class of, 406 
storage duration of, 186 
See also Arguments, function 

Parameters, macro, 279 
Parentheses () 

in function calls, 161 
in macro definitions, 22, 285-86 

Pascal, 8 
%p conversion specification, 217, 491-92 
perror function, 541 —42, 621 
Pointer arithmetic, 221-24, 233-34 
Pointers 

versus addresses, 216-17 
from array names, 227-31, 233 
and arrays, 224—27, 231-33, 234—35 
arrays of, 269 
assignment of, 209-10 
comparison of, 224 
dangling, 369-70 
declarators for, 409 
as function arguments, 211-15 
to functions, 385-91 
and multidimensional arrays, 231-33, 

235 
null, 264, 360-61,391-93 
to pointers, 384—85 

returned by functions, 215-16 
using as addresses, 462 
using as array names, 230-31 
void *, 360, 393 
writing, 217 

Pointers, character, versus character arrays, 
245-46 

Pointer variables, 205-7 
initializing, 412 

Postfix operators, 53 
Power functions, 525 
pow function, 525, 621 
ttpragma directives, 295 
Precedence, operator, 47-48 
Precision, in a conversion specification, 33, 

488 
Predefined macros, 287-88 

_DATE_, 287-88 
_FILE_, 288, 294 
_LINE_, 288, 294 
_STDC_, 287, 292 
_TIME_, 287-88 

Prefix operators, 53 
Preprocessing tokens, 298 
Preprocessor, 10, 273 

behavior of, 273-76 
Preprocessor directives, 10, 12, 273, 276- 

77 
comments in, 277 
continuation of, 276 
#def ine, 22, 274, 277-78, 279, 408 
#elif, 291 
#else, 291 
#endif, 288-89 
terror, 293-94 
#if, 288-89, 298 
tifdef, 290, 298 
tifndef, 290, 298 
#include, 274, 305-6, 325 
#line, 294—95 
null, 295-96 
placement of, 277 
tpragma, 295 
tundef, 284 
white space in, 276 

Preprocessor operators 
#,282,296,297 
##,282-83,296 
defined, 289-90, 298 

printf function, 14, 18,31-36, 120,246- 
47,267, 487-92, 621 

confusing with scanf function, 39^10 
examples of use, 34-35, 490-92 

Printing characters, testing for, 527 



Procedures, see Functions 
Processor time, determining, 577 
Program design 

abstraction in, 420 
information hiding, 423-26 
modules, 420-23 

Program parameters, see Command-line ar¬ 
guments 

Programs 
building, 320-25 
compiling, 10-11, 320 
dividing into Files, 313-19 
general form of, 11-14 
layout of, 25-27, 29 
linking, 10-11,320, 326 
organizing, 195-202 
rebuilding, 322-24 
simple, 9-11 

Programs, example 
balancing a checkbook, 99-101 
calculating a broker’s commission, 70- 

71 
calculating the number of digits in an in¬ 

teger, 90-91 
checking a number for repeated digits, 

143—44 
checking planet names, 265-66 
checking whether a file can be opened, 

482-83 
classifying a poker hand, 196-202 
computing a UPC check digit, 48^19 
computing averages, 156-57 
computing interest, 145-46 
computing the dimensional weight of a 

box,18-19 
computing the dimensional weight of a 

box (revisited), 21 
computing the value of stock holdings, 

40—41 

converting from Fahrenheit to Celsius, 
22-23 

copying a file, 500-501 
dealing a hand of cards, 149-50 
determining air mileage, 574-75 
determining the length of a message, 

122-23 
displaying the date and time, 580-82 
finding the largest and smallest elements 

in an array, 213-14 
guessing a number, 189-93 
maintaining a parts database, 339-45 
maintaining a parts database (revisited), 

379-83 

modifying a file of part records, 506-7 
printing a countdown, 157-58 
printing a date in legal form, 77-79 
printing a one-month reminder list, 255- 

57 
printing a one-month reminder list (revis¬ 

ited), 364-65 
printing a pun, 9-10 
printing a pun (revisited), 158-59 
printing a table of squares, 88 
printing a table of squares (revisited), 

95-96 
Quicksort, 175-76 
reversing a series of numbers, 142 
reversing a series of numbers (revisited), 

228 
summing a series of numbers, 88-89 
summing a series of numbers (revisited), 

113-14 
tabulating the trigonometric functions, 

389-91 
testing set jmp/longjmp, 547-48 
testing signals, 545-46 
testing the case-mapping functions, 529 
testing the character-testing functions, 

527-28 
testing the pseudo-random sequence gen¬ 

eration functions, 571 
testing the string conversion functions, 

568-70 

testing whether a number is prime, 162— 
63 

text formatting, 313-19 
toggling the Num Lock key, 463 
using printf to format numbers, 34-35 
XOR encryption, 456-57 

Program termination, 27, 170-71, 180, 572 
Promotions, 125 

default argument, 166 
integral, 125, 134 

Prototypes, function, 165, 178-79 
Pseudo-random sequence generation func¬ 

tions, 570-71 
ptrdif f_t type, 471 
Punctuation characters, testing for, 527 
putc function, 498-99, 510-11,621 
putchar function, 121,498-99, 622 
puts function, 247, 501-2, 622 

qsort function, 386-88, 394-95, 574, 622 
Question-mark escape sequence \ ?, 118, 

133,561 
Quicksort algorithm, 173-75 
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Ragged arrays, 262 
raise function, 545, 622 
RAND_MAX macro, 570 
rand function, 570, 623 
Range errors, 522, 541, 636 
realloc function, 360, 367-68, 623 
Rebuilding programs, 322-24 
Records, see Structures 
Recursive functions, 172-76, 181,202 
Redirection, stream, 314, 477, 508 
Referenced type, 207 
register storage class, 405-6 
Relational operators, 45, 64 

applied to pointers, 224 
Remainder assignment operator %=, 52 
Remainder functions, 526 
Remainder operator %, 46, 58, 583-84 
remove function, 486, 623 
rename function, 486, 623 
Renaming a file, 486 
return statements, 13, 27, 169-70, 171, 

180 
Return type, of a function, 156, 159-60 

default, 159 
pointer, 215-16 
structure, 335-36 
union, 347 
void, 157, 160 

Return type, of main, 13, 170, 181 
rewind function, 505, 510, 623-24 
Right arrow selection operator ->, 372 
Right associativity, 48 
Right-shift assignment operator »=, 452 
Right-shift operator », 452 
Ritchie, Dennis, 1-2 
Row-major order, for storing multidimen¬ 

sional arrays, 147 
Rvalues, see Expressions 

Scalar variables, 139 
scanf function, 20-21, 36-41, 41-42, 

120-22, 133-34, 247-48,267,492- 
98, 624 

examples of use, 495-96 
using to skip characters, 512 

Scansets, in a conversion specification, 494 
SCHAR_MAX macro, 521 
SCHAR_MIN macro, 521 
%s conversion specification, 246, 247^18, 

490-91 
Scope, 194-95, 202, 402 

block, 186,402,414 
of external variables, 187 
file, 187,402 

of function parameters, 186 
versus linkage, 414 
of local variables, 186 
of macros, 284 
of members, 331 
of typedef names, 134 
of variables in a block, 193 

Screen control, functions for, 513 
Searching and sorting utilities, 573-75 
SEEK_CUR macro, 504-5 
SEEK_END macro, 504-5 
SEEK_SET macro, 504-5 
Selection statements, 63 
Semicolon ;, 14 
setbuf function, 485-86, 624 
<set jmp . h> header, 470, 546-48 
set jmp macro, 546-47, 549-50, 624 
setlocale function, 552-53, 561, 624— 

25 
setvbuf function, 485-86, 625 
Short-circuit evaluation of logical expres¬ 

sions, 66 
Short integers, 110 
short int type, 110 
short type specifier, 110 
SHRT_MAX macro, 521 
SHRT_MIN macro, 521 
Side effects, 50 

in array subscripts, 58, 141 
in comma expressions, 94 
in macro parameters, 281 

sig_atomic_t type, 549 
SIG_DFL macro, 544 
SIG_ERR macro, 544 
SIG_IGN macro, 544 
SIGABRT macro, 543, 583 
SIGFPE macro, 543, 548 
SIGILL macro, 543 
SIGINT macro, 543 
Sign, of a floating-point number, 115 
<signal. h> header, 470, 542-46, 549 
signal function, 543-44, 549, 625 
Signal handlers, 543^44, 549, 550 

predefined, 544-45 
Signals, 542 

installing a handler for, 543-44 
macros for, 543, 548 
raising, 545 

Sign bit, of an integer, 109 
signed char type, 118 
Signed integers, 109-10 
Signed types 

character, 118, 133 
integer, 110 



signed type specifier, 110, 118 
SIGSEGV macro, 543, 548 
SIGTERM macro, 543 
Simple assignment operator =, 17, 50-51, 

151 
Simple macros, 277-79 

uses of, 278-79 
Sine, 523 
sin function, 523, 625 
Single-precision floating constants, 116 
Single quote ', 117, 119 
Single-quote escape sequence \ ', 118 
sinh function, 523-24, 625-26 
size_t type, 471 
sizeof operator, 123-24, 144-45, 168, 

366 
Sorting, 574 
Source files, 303-4, 325, 326 
sprintf function, 255-56, 507, 582-83, 

626 
sqrt function, 525, 626 
Square root, 525 
srand function, 570, 626 
sscanf function, 507-8, 626 
Stacks, 187-88 
Standard C, 2 

versus Classic C, 597-600 
Standard error stream, 476-77 
Standard headers, see Headers, standard 
Standard input stream, 476-77 
Standard library, see Library, standard 
Standard output stream, 476-77 
Standard streams, 476-77, 508 
State-dependent encoding, of multibyte 

characters, 557 
Statement labels, 98-99 
Statements, 13-14 

block, 193-94 
break, 76-77, 97-98 
compound, 67-68, 193-94 
continue, 98, 104-5 
do,89-91 
expression, 57, 59, 161 
for, 91-96, 104, 140 
goto, 98-99, 105 
if, 66-74 
iteration, 63, 85 
jump, 63 
null, 102-3, 105-6 
return, 13,27, 169-70, 171, 180 
selection, 63 
switch, 74-79, 80-82 
while, 85-89, 103-4 

static storage class, 186, 403-4, 406, 
423 

Static storage duration, 186, 187, 202, 402 
<stdarg. h> header, 470, 563-66 
_STDC_macro, 287, 292 

<stddef . h> header, 471-72 
stderr stream, 476-77 
stdin stream, 476-77 
<stdio .h> header, 471, 475-513 
<stdlib. h> header, 471, 567-76 

communication with the environment, 

572-73 
integer arithmetic functions, 575-76 
pseudo-random sequence generation 

functions, 570-71 
searching and sorting utilities, 573-75 
string conversion functions, 567-70, 582 

stdout stream, 476-77 
Storage 

of arrays, 147 
of bit-fields in a structure, 459-60 
of floating-point numbers, 115 
of string literals, 241 
of structures, 353-54 
of unions, 346 

Storage, deallocating, 368-70 
Storage allocation, dynamic, see Dynamic 

storage allocation 
Storage classes, 400, 401-7 

auto, 402 

extern, 309-10, 404-5, 406 
for function parameters, 406 
for functions, 406 
register, 405-6 
static, 186, 403^1, 406, 423 
summary of, 407 

Storage duration, 401-2 
automatic, 185-86, 401 
of external variables, 187 
of function parameters, 186 
of local variables, 185-86, 202 
static, 186, 187, 202, 402 
of variables in a block, 193 

strcat function, 253, 259-61,268-69, 
531, 627 

strchr function, 533, 627 
strcmp function, 253-54, 268, 531-32, 

627 

strcoll function, 532, 627 
strcpy function, 252, 530, 536, 627 
strcspn function, 534, 628 
Streams, 476-78 

attaching to files, 481 
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changing buffering of, 485-86 
end-of-file indicator for, 497 
error indicator for, 497 
file position associated with, 504 
redirecting, 314, 477, 508 
standard, 476-77, 508 
using strings as, 507-8 

strerror function, 536, 541-42, 628 
strf time function, 580, 628 
<string.h> header, 251, 471, 529-36 
String conversion functions, 567-70, 582 

and conversion specifiers, 495 
String-handling functions, 251-57, 529-36 

dynamic storage allocation in, 362-63 
String idioms, 257-61 

copying a string, 259-61 
searching for the end of a string, 257-59 

Stringization, see # preprocessor operator 
String literals, 14, 239-42, 266 

versus character constants, 242 
concatenation of, 240-^11 
containing wide characters, 557 
continuing, 240-^11 
escape sequences in, 240 
length of, 266 
modifying, 242, 266 
operations on, 241^-2 
storage of, 241 

Strings 
accessing characters in, 249-50 
arrays of, 261-66, 363 
comparing, 251,253-54, 531-32 
computing length of, 254-55, 536 
concatenating, 253, 531 
converting numbers to, 582 
converting to numbers, 567-70, 582 
copying, 251,252, 530, 536 
dynamically allocated, 361-65 
multibyte, 559-60 
reading, 247-48, 502 
reading character by character, 248-49 
reading input from, 507-8 
searching, 533-35 
termination of, 243, 267 
wide, 560 
writing, 14, 246-47, 267, 501-2 
writing output into, 507 

String variables, 243-46 
initializing, 243-45 

strlen function, 254-55, 257-59, 268- 
69, 536, 628 

strncat function, 531,628-29 
strncmp function, 531-32, 629 
strncpy function, 530, 536, 629 

Stroustrup, Bjarne, 3 
strpbrk function, 533-34, 629 
strrchr function, 533, 629 
strspn function, 534, 536, 630 
strstr function, 534, 630 
strtod function, 567-68, 630 
strtok function, 534-35, 630 
strtol function, 567-68, 631 
strtoul function, 567-68, 631 
Structure/union member operator ., 332, 

346 
Structures, 139, 329 

arrays of, 338-39 
assignment of, 332-33 
bit-fields in, 458-60 
combined with arrays, 337^45 
equality of, 354 
as function arguments, 335-36 
holes in, 353-54 
incomplete declarations of, 393-94 
members of, 329 
nested, 337 
operations on, 332-33 
returned by functions, 335-36 
size of, 353-54 
storage of, 353-54 
with union members, 348 

Structure tags, 334-35, 354, 371, 393-94 
Structure types, 333-36, 354 

defined in header files, 355 
Structure variables, 329-33 

compatibility of, 355 
declaring, 330—31, 334—35 
initializing, 331-32, 336, 412-13 

strxfrm function, 532, 631 
Subroutines, see Functions 
Subscripting, array, 140^41 

See also Array subscript operator 
Subtraction 

of an integer from a pointer, 223 
of two pointers, 223-24 

Subtraction assignment operator -=,52 
Subtraction operator -, 46 
switch statements, 74-79, 80-82 
system function, 573, 632 

Tag fields, 349-50, 353 
Tags 

enumeration, 351-52 
structure, 334-35, 354, 371,393-94 
union, 347 

tan function, 523, 632 
Tangent, 523 
tanh function, 523-24, 632 



Target files, in makefiles, 321 
Temporary files, 483-84 

creating, 483 
creating names for, 483-84 
maximum number of, 484 

Termination, of a program, 27, 170-71, 
180, 572 

Termination request signal, 543 
Ternary operators, 72 
Text files, 477-78, 508-9, 512 
Thompson, Ken, 1-2 
<time.h> header, 471, 576-82 

time conversion functions, 579-80 
time manipulation functions, 577-79 

_TIME_macro, 287-88 
time_t type, 576 
Time conversion functions, 579-80 
Time differences, 578 
time function, 577, 632 
Time manipulation functions, 577-79 
Times, 576 

broken-down, 576 
calendar, 576 

TMP_MAX macro, 484 
tmpf ile function, 483, 632 
tmpnam function, 483-84, 633 
tm structure, 576 
Token-pasting, see # # preprocessor opera¬ 

tor 
Tokens, 25-27 

preprocessing, 298 
tolower function, 528, 633 
toupper function, 528, 633 
Trigonometric functions, 523 
Trigraph sequences ??c, 560-61 
TRUE macro, 73 
Type conversions, see Conversions 
Type definitions, 129-31 

in header files, 306-7 
versus macro definitions, 134 
using to simplify declarations, 411-12 

typedef names, scope of, 134 
typedef specifier, 335, 352, 354 
Type qualifiers, 400, 407-8 

const, 148, 214-15, 217-18, 229, 407- 
8,414-15 

volatile, 464, 549 
Types, 16 

basic, 109 
character, 116-23 
enumeration, 351-52 
floating, 16, 114-16 
integer, 16, 109-14 
integral, 118 

machine-dependent, 460 
signed, 110, 118, 133 
structure, 333-36, 354 
union, 347 
unsigned, 110, 118, 133 
using #define to rename, 279 

Type specifiers, 400 
char, 116, 132 
double, 114, 132 
float, 16, 28, 114, 132 
int, 16, 110 
long, 110 
short, 110 
signed, 110, 118 
unsigned, 110, 118 
void, 157, 159, 160 

UCHAR_MAX macro, 521 

%u conversion specification, 113 

UINT_MAX macro, 521 

ULONG_MAX macro, 521 

Unary minus operator -, 46 

Unary operators, 46 

Unary plus operator +, 46 

#undef directives, 284 

Underscore _, 23 

ungetc function, 500, 510, 633 

Unicode character set, 117, 558 

Uninitialized variables, 413 

Unions, 345-50 

adding tag fields to, 349-50, 353 
assignment of, 347 
as function arguments, 347 
members of, 345^16 
as members of structures, 348 
returned by functions, 347 
storage of, 346 
using to build mixed data structures, 

348-49 
using to provide multiple views of data, 

461-62 
using to save space, 347-48 

Union tags, 347 
Union types, 347 
Union variables, 345^46 

initializing, 347, 412-13 
UNIX operating system, 1-2 
unsigned char type, 118 
Unsigned integer constants, 112 
Unsigned integers, 109-10 
unsigned int type, 110 
unsigned long int type, 110 
unsigned short int type, 110 
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Unsigned types 
character, 118, 133 
integer, 110 

unsigned type specifier, 110, 118 
Upper-case letters 

converting to, 528 
testing for, 527 

USHRT_MAX macro, 521 
Usual arithmetic conversions, 125-27 
U (or u) suffix, on an integer constant, 112 
UTC (Coordinated Universal Time), 580, 

584 

va_arg macro, 563-65, 634 
va_end macro, 563-65, 634 
va_list type, 563-65 
va_start macro, 563-65, 634 
Variable declarations, 17 

in header files, 309-10, 326 
Variable definitions, 309-10 
Variable-length argument lists, 132, 391— 

92, 563-66 
Variables, 16-20 

aggregate, 139 
auto, 402 
default value of, 413 
extern, 404-5 
external, 186-93 
global, see External variables 
initializers for, see Initializers 
linkage of, 402 
local, 185-86 
pointer, 205-7 
register, 405-6 
scalar, 139 
scope of, 186, 187, 193,402 
static, 403—4 
storage duration of, 193, 202, 401-2 
string, 243-46 
structure, 329-33 
uninitialized, 413 
union, 345^46 

Vertical-tab escape sequence \v, 118 
vfprintf function, 487, 566, 634 
void 

in a cast expression, 162 
function return type, 157, 160 
in a parameter list, 159 

void * type, 360, 393 
volatile type qualifier, 464, 549 
vprintf function, 487, 566, 634-35 
vsprintf function, 508, 566, 635 

<wchar. h> header, 551 
wchar_t type, 471, 557 
wcstombs function, 560, 635 
wctomb function, 559, 635 
<wctype ,h> header, 551 
while statements, 85-89, 103-^4 
White Book, 2 
White-space characters, 37 

in preprocessor directives, 276 
in ...scanf format strings, 37, 493 
testing for, 527 

Wide character constants, 557 
Wide characters, 557-58 

converting to multibyte characters, 559 
versus multibyte characters, 562 

Wide string literals, 557 
Wide strings, 560 

%x conversion specification, 113, 131-32 
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