1. Know your enemy

Constructing NPCs largely always follows the same set of initial steps:

hon =

Read through any design documentation.

Figure out how the behaviour breaks down into distinct states.

Identify which parts of the behaviour already exist in predefined components.
Identify any parts of the behaviour that are likely to be reused across other similar
templates.

(Optional) Identify any particularly complex parts of the behaviour that are likely to
become generally reusable.

For this tutorial, we’re looking at the Goblin Ogre.

Minimum design requirements we were given:

1.
2.
3.

4.
5.

Note

A big and slow NPC with a lot of health, found in specific POls.

Can follow a pre-determined path and guard that position.

Can sleep and if other goblins annoy the Ogre, there will be a special “sleepy” reaction
to that.

Can summon rats to eat.
Has a melee attack

: For the purposes of this tutorial, we'll stick to this design brief, though it may no longer

reflect the NPC used in-game.

Step 1: Read the documentation!

This is also a strong suggestion to take a look through the NPC core element documentation
and component documentation_here, if you haven’t already. It provides an overview of all core
elements available as sensors/actions/motions/etc. Refer to it anytime you want to know if
something is possible and what’'s needed to achieve it (e.g. picking up items). This will also be
updated over time as more features are added!

Step 2: Decide on the states!
The Goblin Ogre isn’t too complicated in this regard. We start with the main top-level states:

o An Idle state where it mostly remains stationary at a specific point.
o This can also encompass its general ‘observed’ flavour actions.
o In many cases, we can include some inter-NPC behaviours here too, unless they
require a more complex sequence of actions.
e A Sleep state.
o Sleep states are often best kept separate from the idle state, both to take
advantage of mechanisms for handling the transition from the state to others
(e.g. playing wake up animations) and to accommodate slight changes to the
NPC'’s detection capabilities.
e An Eat state.
o With the same reasoning as Sleep.
e An Alerted state.
o Almost all NPCs end up having one of these in some form, though they often
vary a bit in their intent.
¢ A Combat state.
o While not always the case, it often makes sense to roll all combat into a single
distinct state.
e A ReturnHome state.
o This applies particularly to NPCs that have stationary guard points.
o Essentially handles getting them home again.

Some of these might break down into a set of additional substates handling individual parts of
the behavioural logic. For example,

e Idle
o .Default (stand guard and do nothing else)
o .FindFood (go search for some nearby food if it exists)
o .EatRat (murder an innocent nearby rat)

Now we have a rough idea of how this NPC is going to be structured at the highest level. With
this in mind, we can also see some potential for state transitions that make sense.

e Any State -> Sleep
o Play a laydown animation

e Sleep -> Any State

o Play a get up animation
e Any State -> Eat

o Prepare items for eating
e Eat -> Any State

o Pull out weapons again

These particular state transitions are pretty generic and commonly used, but at this stage, |
don’t see the need for any others.

Step 3: Find existing components we can reuse so we can save ourselves some work!

Straight away, there are a few pre-existing components that will make our lives significantly
easier.

e We need to chase and attack other targets.
Component_Instruction_Intelligent_Chase is built for exactly this purpose and
abstracts away a lot of complicated logic needed to make an NPC smartly try to track
down a target based on its last seen position.

e Component_Sensor_Standard_Detection will help setting up NPC senses, like vision
and hearing.

e Component_Instruction_Soft_Leash will make sure the ogre doesn’t chase its target
to the far reaches of Orbis and will eventually give up if the player is just running away.

These will handle a chunk of our generic combat logic. We also need to add supporting files, like
an Appearance file that describes what model and animations are to be used and an Attack
Interaction for combat.

The ogre does more than just attack though! Unfortunately, the bulk of the other behaviour is
quite specific to the ogre itself. There are existing components for handling sleep states, but this
creature needs to be able to swat at other goblins in its sleep so we can’t make use of them.
The general idle components aren’t much use either, but we might be able to handle the simple
standing guard by using Component_Instruction_Intelligent_ldle_Motion_Follow_Path.
There are also some general utility components that might prove useful as we build up the
template, such as Component_Instruction_Damage_Check.

Step 4 & 5: Identify parts we can reuse in other goblins (or are generally useful to have)

There is a small chance that eating rats and searching for food might be reusable for other
goblins, but owing to the uncertainty here, it makes sense to build the NPC without worrying too
much about it and then extract the logic out into a component later if required.

3. Getting started with templates

There are no hard and fast rules for making a start on a template. | like to duplicate
BlankTemplate and start from there because it already provides the basic structure of the file.
This leaves me with the following template (Template_Goblin_Ogre.json): (note: the file could
be looking different in the current version of the game)

{
"Type": "Abstract",
"Parameters": {
"Appearance": {
"Value": "Bear Grizzly
"Description": "Mode
}y
"DropList":
"Value": "Empty",
"Description": "Drop Items"
by
"MaxHealth": ({
"Value": 100,
"Description": "Max h
}o
"NameTranslationKey":
"Value": "server.npcRoles.Template.name",
"Description": ranslation key for NPC name display"
}
by
"Appearance": { "Compute": "Appearance" },
"DropList": { "Compute": "
"MaxHealth": { "Compute":
"MotionControllerList": [
{
"Type": "Walk",
"MaxWalkSpeed":
"Gravity": 10,
"MaxFallSpeed":

"Acceleration":

1,
"Instructions": [
"Sensor":
"Type": "
s
"BodyMotion":
"Type": "Nothing"

1s

"NameTranslationKey": { "Compute": "NameTranslationKe

And the following variant (Goblin_Ogre.json) next to the template. There’s a translation key in
the template used for localisation of the NPC name, but we won’t worry about that for now since
it's not required for the NPC to work.

Our artists have defined the Goblin_Ogre appearance already so I'm going to use that.

4. The importance of being idle

There’s no particular rule for the order in which we should tackle states either, but | like to start
with the Idle state.

First we need to add the state to the template. We do this in two steps.

1. Set up the Idle state in the instructions:

"Instructions":

"BodyMotion":

1
b

Here we’ve added the state sensor and corresponding instruction that will hold and define the
contents of the Idle state.

2. Set the default starting state for the NPC:

{ "Compute": "

n. wTglen

This is a simple case of adding the StartState line alongside the other header fields and setting
it to be the Idle state.

Now we add the first substate within this, which we already decided would just be a plain
.Default substate.

"Instructions":

"State": "

"Instructions":

"State":

Yo

"Instructions":

This functions the same way as its parent Idle state, but we don’t need to specify it as a starting
state anywhere because it’'s using the default name.

The first behaviour we’re adding here is the ‘protect the entrance of the Goblin POI’ behaviour.
We already identified an existing component we can use for this, so let's add that immediately.

"Instructions":

"Instructions":

"Reference": "Component Instruction Intelligent Idle Motion Follow Path"

If we want, we can use a Modify block to set a range within which to follow this path or a
particular way to follow it, but since we only want it to stand guard and expect it to spawn near
its target marker, we can ignore both of those for now.

Straight away we can jump in-game and spawn our ogre using /npc spawn Goblin_Ogre. If we
add a single path marker with /path new Test, he’ll happily go and stand guard there without
doing anything else.

0.4e4e6d25-0293-44ba-b871-2abbfaffdbf8 (Test) #0 [Wait 0.0s] <Rotate 0.00dég

And there we go! First idle behaviour is now complete!

5. Drawing the rest of the ogre

We were fortunate, in a sense, that the initial ogre behaviour was simple to handle with existing
components. Now the real challenge begins! From here on out, it’s critical to remember to test,
test, and test some more. Every time we add a new behaviour it should be tested to ensure
it works as expected. Never leave it until everything is implemented - this just results in
unnecessary headaches.

First, we have to figure out how we want to randomise these base idle behaviours. There are
three we care about right now since they don’t involve interacting with any other types of NPC:

e Standing guard (we already did this!)
e Napping for a while.
e Going off to find some food.

There are a few ways we can approach this, but we’ll be using a Random Action to make the
initial pick and then letting the individual behaviour control its length before resetting and picking
a new one.

With this in mind, we can see a minor error in our original judgement - the Idle state needs four
substates, not three:

e .Default (this now becomes an entry state for picking the random behaviour state to
switch to)

e .Guard (this is now our guarding state)

e .FindFood (go search for some nearby food if it exists)

e .EatRat (murder an innocent nearby rat - we ignore this for now since it relies on another
NPC)

So let’s quickly refactor the existing Idle state to reflect this change, and add a Random Action
that will, for now, only have a single option.

"Instructions":

"Instructions":

"Actions":

Looking at the modified Idle state instruction, we now have two substates: .Default and .Guard.
If we spawn this NPC next to a path marker, it'll act exactly as it did before. The difference now
is that it first executes the Random action in the .Default substate which picks the only
available state action and sends the ogre to .Guard. We’'ve set the Weight to be 100 for now,
but it doesn’t matter since there are no other choices anyway and we’ll balance these better
later (perhaps even for months after initial implementation!)

Now that we have more than one substate, it becomes a little harder to understand what the
ogre is doing, so we’'ll add a Debug flag at the top of the file that will tell us what state it’s in.

"Debug" :

Now we can be sure our (presently) friendly goblin ogre is in the correct state.

But wait! There’s nothing to send the ogre back to try and do something different!

This is actually pretty simple; we’ll just add an instruction with ActionsBlocking, a Timeout,
and Continue to the .Guard substate that will send it back to .Default after a randomised
amount of time so it can make a new pick.

"State"

: ".Default"

"Reference": "Component Instruction Intelligent Idle Motion Follow

The ActionsBlocking is important here because it ensures we don’t execute the switch
between states until the first action is complete (the Timeout). So now we’ll hang around at the
path marker for between fifteen and thirty seconds before going back to pick something else to
do.

...not that there’s anything else to do yet, so why don’t we address that next?

6. Do NPC goblins dream of electric loot?

Let's add a new top level Sleep state. For illustrative purposes, the Idle state has been
truncated.

"Sensor": {

"Type”:
"State":
}o

"Instructions":

"Sensor": {
"Type":
"State": "

by

"Instructions": [

]

And now we add another action to the Random action list to move to the Sleep state.

"Sensor":
"Type":
"State":

by

"Instructions": [
"Actions": [

"Type": "Random",
"Actions": [
{
"Weight": 80,
"Action": {
"Type": "State",

"State": ".Guard"

"Weight":
"Action":
"Type™:

MScace" s

Notice the weights in this case - there’s a 20% chance that the ogre will go to sleep any time it
decides to switch behaviour, but an 80% chance that it'll just keep standing guard instead.

We still need to actually add the sleeping behaviour, but first we’ll add Instruction with the

Timeout action to the beginning of the Sleep state, just like we did with .Guard. We just remove
"Continue™: true because we only have one instruction.

7. A brief interlude (or: how | learned to stop
worrying and love building NPC components)

We already have the logic to build this component - it's already contained within the .Guard
state we created earlier. All we need to do is identify which parts of it we need to expose to
whoever might want to use this component in the future. That’s pretty simple too - we have two:

e The duration of the delay before switching state.
e The state to switch to.

So we put together our new component (Component_Instruction_State_Timeout).

The logic here should be very familiar - the only difference is that we've added and described
the parameters in the Parameters block, and now use a ParentState action to signify that this
is going to use one of the _ImportedStates from the template itself.

If we would update the template and replace theTimeout block with it, it would look like this, for
example, in the Sleep state.

"Sensor":
"Type:
"State":

}I

"Instructions":

bonent Instruction

"Modify": {
" ExportStates": "Idle.Default"

"Delay": [3

We won't replace this everywhere in the tutorial just yet, but we’ll use this knowledge to replace
even more code with components.

8. An ancient evil awakens hasn'’t yet fallen asleep

There are still a few more things we need to do before our ogre can get some rest. Until we
come to inter-NPC behaviours later, most of this is purely for visual effect and is pretty much
entirely restricted to playing animations.

The most basic part is playing the sleep animation. We can use a convenient component for
this. Don’t forget to put back “Continue”:true, because now we want to play the animation
while the timeout runs.

"State":

by

"Instructions":

Wait...that’s it?

Almost! While our ogre will now happily go to sleep, it's a bit janky. We still need to handle the
transitions between states. For this we add a completely new section to the asset above the
instructions, called StateTransitions.

"StateTransitions": [

{
"States": [
{
"From": ["Idle" 1],

DT g ”Sleep"]

] r

"Actions": [

"Type": "PlayAnimation",
"Slot": "Status",

"Animation": "Laydown

"Type": "Timeout",

"Delay": [1, 1]

"States": [
{
"From": ["Sleep"],

nToM. [}

1,
"Actions": [
{
"Type": "PlayAnimation",
"Slot": "Status",

"Animation": "Wake"

"Type": "Timeout",

"Delay": [1, 1]

rInstructions": [

State transitions are a bit verbose but relatively simple. Each transition represents a set of
actions that will be performed in sequence before we actually start executing the logic of the
state itself. An empty array represents all existing states. In this instance, our ogre will play the

Laydown animation when switching from Idle to Sleep and the Wake animation when switching
from Sleep to any other state. We currently have to define a Timeout action with a delay the
length of the animation to ensure that we don’t do anything else until the animation completes.
In the future, we might be able to automatically find out the length of the animation and block for
its duration, but that’s not currently possible.

But that’s all for the Sleep state for now. Really this time.

9. The ogre who ate everything

Lest we forget, there was another significantly more complex idle behaviour we have to
implement:

e Standing guard (we already did this!)
e Napping for a while (this one too!)
e Going off to find some food.

This one might be a bit trickier. When we pick this behaviour we need to scan the area to see if
there is any food. If we find it, we head over, pretend to grab it, and then set to eating. But what
if we don’t find any food? We should probably still pretend to go looking for it - it's not like this
ogre is omniscient and already knows there’s no food where it expects it because the sensor
said there wasn't...right?

We start by creating our .FindFood substate immediately after .Guard.

": ".FindFood"

"Instructions": [

]

We then add it to our list of random actions.

Next we want to perform the actual search for food. But what is food? And not in a philosophical
sense. What kinds of food does this ogre look for? This is another point where we might want to
have a chat with the designers. Do they want it to go after multiple different things? Or is there
one particular type of food a goblin ogre is interested in?

A quick discussion with our designers reveals we’ve been working under an incorrect
assumption and highlights the importance of ensuring that we thoroughly understand both the
contents of the design specifications, and the intent behind them. This ogre is meant to be a
guard and shouldn’t leave his post. He should never actively set off to find food, but rather whip
something out of a pocket and eat it on the spot.

Okay. That makes things significantly easier! We can now cross off one of our idle substates:

o .Default (pick the random behaviour state to switch to)
o .Guard (stand guard)

o .EatRat (murder an innocent nearby rat - we're still ignoring this for now)

So let’'s remove .FindFood and jump straight to Eat, adding the same logic we added to the
other idle states. We also need to remember to update the reference in the list of random
actions so that it points to the correct state!

We don’t actually know for sure what food this ogre has in his pockets and it's probably
something that might get changed in the future, or be nice to make easily changeable in
variants. To accommodate that, let's add an Eatltem parameter and accompanying description
to the parameters block.

"Parameters": ({
"Appearance": {
"Value": "Bear Grizzly",
"Description": "M 1l to
by
"EatItem": {

"Value": "Food Beef Raw",

"Description": "The item this NPC wi when it rummag
by
"DropList": {

"Value": "Empty",

"Description": "D

Now we just need to set up another PlayAnimation action, much like in the Sleep state, to
handle the eating itself.

"Sensor": {
"Type": "State",
"State": "Eat"

}I

"Instructions": [

!

L

"Continue": ,

"wa

ActionsBlocking":

"Actions": [

{
1

"Type":

"State":

"Reference": "C
"Modify": {

"wa « MRt M

Animation": "Eat

This looks awfully familiar...

Could this be something we want to do often in many NPCs? Might we frequently want to play
an animation for a specific random duration? I'd say yes, so let's make it a component!

"Type": "Component",
"Class": "Instruct
"Parameters":
" ImportStates":
"Animation": {
"Value": "",
"Description":
}y
"Duration":
"Value": [3,
"Description": unt of to wait before transitioning"
}
by
"Content": {
"Continue":
"Instructions":
{
"Reference": "Component I
"Modify": {
" ExportStates":

"Delay": { "Compute":

ne n

"Reference": omponent Instruction Play Animation",
"Modify": ({

"Animation": { "Compute": "Animation" }

I’'m calling this one Component_Instruction_Play_Animation_In_State_For_Duration. The
Timeout instruction is replaced with the component made in the previous interlude. Now we
need to apply it to both places in the ogre template.

"Sensor":
"Type": "State",
"State": "Eat"
by
rInstructions":
{
"Reference": "Component Instruction Pla
"Modify": {
" ExportStates": ["Idle.Default"],
"Animation": "Eat",

"Duration": [15, 20]

Only Eat is pictured here, but you can imagine the same changes being made to Sleep too.

Now why aren’t we converting the whole state itself into a component? There’s a pretty good
reason behind that: we haven’t added entity detection yet and we almost surely will. This will
need to live in the state alongside the other logic, so we can’t exactly push the whole state itself
into a component.

There’s one last thing we need to do to make this ogre actually eat - take out the food and put it
away again. Since we don’t want to somehow risk ending up in a state where the ogre is trying
to beat its enemies with a chunk of meat or eat its own weapon, we’'ll do this with state
transitions.

"StateTransitions":

There’s a few important things to note here. This combination of actions will place the item from
the Eatltem parameter we defined earlier into slot 2 of its hotbar, and then switch to using that
slot. We have to define it as UseTarget: false to ensure that it acts on the ogre itself. By default,
NPCs have three hotbar slots, so we’ve set it to use the last slot for this purpose (slots are
numbered starting from zero).

So this handles actually pulling out the food to eat it, but not putting it away again afterwards.
Let’s add that too.

Now our ogre will happily pull out a chunk of meat, start eating it, and then put it away again
when it's done!

Perfect! The last thing we’ll do, just to be sure we don’t end up in any strange states if the goblin
unloads while eating, is make sure we also switch to the correct weapon at the beginning of the
idle state.

"Sensor":

"Type":
"State":
b

"Instructions": [

TOome@™ g

}l
"Actions": [

{
"Type": "ITnvent

"Operation": "EquipHotbar",
"Slot": O,

"UseTarget":

With that, we have all the idle behaviours that don’t rely on other NPCs set up. We’'ll deal with
that next!

10. Of rats and goblins (mostly just goblins)

Now we need to start thinking about how to get our ogre to respond to other NPCs in the world.
We won't think about combat or dealing with players yet, but there are a couple of other
inter-NPC behaviours described in the design specification:

e Whack annoying goblin scrappers while sleeping.
e Grab and eat rats that come too close.

We'll start with the first because there are a number of problems that are going to come into play
when we tackle the second.

Whacking goblins takes place during the Sleep state, so we’ll be doing all our editing there.

We don’t actually need to add any detection for this, because we’re going to trust the goblin
scrappers to tell us they’re being annoying. This is something pretty neat about using beacons
to communicate between NPCs. When one of the NPCs sends a message, it can trigger
behaviour in the other. Basically, this means that the Goblin Scrapper is going to handle the
bulk of this behaviour. When they go into annoy mode, they’ll approach the ogre. When they're
close enough, they’ll send a message telling him they’re being annoying, and he’ll then
randomly swat at them in his sleep.

They're essentially actually annoying him with their message!

"Instructions": [

"Sensor": {

"Type" L

This sensor listens for the Annoy_Ogre message and will perform its actions when receiving it,
so long as it comes from an NPC that’s close by. The nice thing about this is that it can respond
to any NPC that decides to annoy it! Next we’ll add an attack to it. It'll be the animators’

responsibility to ensure that this meshes nicely with the sleeping animation, and we’ll also
expose the attack name as a parameter in the parameters block.

e on NPCs that annoy it while sleeping”

}I
"DropList": {

"Value": "Empty",

"Description": "Drop

"a

Sensor": {
"Type": "Be
"Message":
"Range"

br

"Actions":

We don’t need another NPC to test this - we can use /npc message Annoy_Ogre to trigger this
behaviour while looking at the ogre.

Now that our ogre can whack those pesky scrappers, the time has come to address the rat in
the room: grabbing other NPCs is hard. Just in general. We don’t have that kind of capability in
tech and there’s no guarantee we will either. A quick chat with our designers resulted in the
following specification:

e Spawn a rat at some location.
e Have it run past the goblin.
e Have it animate to grab the rat and eat it.

This clarifies things, but doesn’t resolve the problems. To do this, we’re going to have to be
creative.

First we need to actually spawn the rat somewhere near the ogre and get it to head over to be
seized and eaten. We can do something like this by using a form of manual spawn beacon -
an entity type which has to be placed in the world and can be triggered by other nearby NPCs
on demand. We’'ll also need to build a small template for the rat itself to get it to move to the
ogre. This seems like a behaviour that could be pretty reusable, so we’ll make this template as
simple and generic as possible so that it can be used in conjunction with all sorts of NPCs that
are meant to grab small creatures and eat them.

We’ll call this Template_Edible_Critter.

"Type": "Abstre
"KnockbackScale":
"Parameters":
"Appearance": {
"Value": "Rat",
"Description":
}y
"WalkSpeed": {
"Value": 3,
"Description":
by
"SeekRange": {
"Value": 40,
"Description":
by
"MaxHealth": {
"Value": 100,
"Description": "Max he c r the NPC"
by
"NameTranslationKey":

"Value": "server.np les.Template.name",

"Description": "Translation key for NPC n

by
"Appearance": { "Compute":
"StartState": "Idle",
"MotionControllerList": [
{
"Type": "Walk",
"MaxWalkSpeed": { "Compute":
"Gravity": 10,
"MaxFallSpeed":

"Acceleration": 10

i
"MaxHealth": { "Compute": "Ma
"Instructions”: [
{
"Instructions":
"Sensor":
"Type”:
"State":
}

"Instructions":

"Sensor": {
"Type": "Beacor
"Message": "I ach Target",
"TargetSlot":

by

"Actions":

"Type":

"State":

"ActionsBlocking":

"Actions": [

"Type":

"Delay":

"Type":

"Sensor":
"Type": "State",
"State": "Seek"
by
"Instructions":
"Sensor":
"Type™:
"TargetSlot": "Locked
"Range": { "Compute":
o
"BodyMotion":
"Typet: "
"SlowDownDistance": 0.1,

"StopDistance": 0.1

"ActionsBlocking":

"Actions": [
"Type": "Timeout",

"Delay":

Upynel:

"State":

"NameTranslationKey": { "Compute": "NameTranslationKey

"

}

This is a really simple NPC. It allows setting an Appearance, WalkSpeed, and SeekRange so
that it can encompass a variety of different critter types. If idle for too long, it'll despawn,
otherwise it'll try and seek towards the NPC that's meant to eat it, either from being signalled
with a beacon or from being spawned in that specific state with a specific target already defined.

In this case, we want to do the latter, so let’s define a variant (Edible_Rat)..

" . "Rat",

=
HE

1th": 100,

{ "Compute": "NameTranslationKey" }

e A S ame
es.Rat.name",

ion key for NPC name display"

"Weight": 1,

"Id": "Edible Rat"

GameTimeRange":

This simple config will only spawn the rat NPC we defined and will set it to the correct state. The
SpawnAfterGameTimeRange parameter is required for the configuration to be used in other
contexts, but isn’t actually useful to us here.

Now, if we use /spawning beacons add Edible_Rat --manual we can create this spawn
beacon ready for our ogre to use! Level designers who want to use this behaviour will need to
add this beacon somewhere in the prefab so that the rats can be spawned, but multiple ogres
can share the same beacon for this purpose. We can use /Ispawning beacons trigger to make
sure it works!

Now we just need to set up our ogre to actually spawn the rat and fake the interaction between
them. As always, we start by adding the state (CallRat - we’re actually going to make it a main
state instead of using the originally planned .EatRat substate to take advantage of some
existing states and state transitions as we talked about earlier)...

"Tv‘ll:’e" . "
"State":
br
"Instructions":

]

"Actions":
{
"Weight": 60,
"Action": {
"Type":

"State":

"Weight":

"Action":
"Type": !

"State":

Our CallRat state will just handle triggering the beacon and then waiting for a little while to see if
the rat successfully arrives. If it doesn’t, we’'ll reset and go back to pick another idle state.

Faking picking up and eating the rat we’ll handle by removing the rat once it gets close enough
and then giving the ogre an item to hold just like we did with the previous eat state transition.

The only difference here is the item being eaten (and thus the specific transition itself), so we
can actually just make use of the previous Eat state for handling that side of the logic!

Before we can go any further though, we need to define an NPC group (Edible_Rat again)
containing our edible rat and make it a parameter on the ogre so it can find it!

And now we make this an exposed parameter on the ogre template. While we're at it, let’s also
add a parameter containing the name of the manual spawn beacon we’ll trigger.

"Parameters": {
"FoodNPCGroups": {

Value": ["Edible

"Description": "The g of edible NPCs that will come from triggering th

"Description™: n beacon to r to create an edible NPC"

"Instructions-:
{

"Continue":

ute": "FoodNPCBeacon"

"Sensor": {
"Type": "Mob",

"Range": 2.5,

"Filters": [

"Type":

"IncludeGroups": "Compute": "FoodNPC

I
"HeadMotion": {
"Type": "Watch"
I
"ActionsBlocking":
"Actions": [

{
1

"Type": "Pla
"Slot":

"Animation":

"Type": "Tim

"Delay":

"Action":
"Type":

"Actions":

"Type":

"Type": "State",

"State": "Eat"

"Continue":
"Sensor": {
"Type": "Mob",
"Range": 5,
"Filters": [
"Type": "N
"IncludeGroups": { "Compute":

"Dype": "Li

"HeadMotion": {

"Type": "Watch"

Step State Timeout",

The logic here is pretty straightforward - we start by triggering the beacon we defined in the
parameters exactly once and continuing (as defined by the Continue and Once flags). We then
wait for the edible NPC matching the list of groups we provided in the parameter (which
contains only our edible rat in this instance) to get close enough to grab and then play an
animation with a brief delay before removing it and moving to the Eat state. We watch it for a
little bit until it gets close enough so it doesn’t look too bad. Note how that last pair of actions
(enclosed in a sequence) is not marked as blocking - both will execute in the same tick.

If the rat never arrives, we give it about 10-15 seconds before giving up and returning to Idle.

Now that it's working, let's implement the state transitions to make this goblin actually ‘grab’ the
rat and start eating it. We don’t have the ‘rat’ item yet, so we’'ll just use a different item as a
placeholder for now. We need to define this in the parameters too.

"Parameters": {

"FoodNPCItem": {
"Value": "Fo
"Description": " ole NPC in item form"

}I

And then a single state transition from CallRat to Eat.

"Actions": [
{

"Type": "Inventory"

"Operation": '

"Item": { "Compute": "FoodNPCItem" },

"Slot": 2,

"UseTarget":

"Type": "Inventory
"Operation":
"Slot": 2

"Us

This isn’t perfect, but it'll do for now and we can always come back and tweak things later.

With that, we’re done with both the idle and inter-NPC behaviours. Next we move on to combat
and reacting to players!

11. To kill a player

There are actually two parts to dealing with the player in this design description and the
resulting state machine. We have the initial Alerted state, followed by combat itself. For now,
we’ll start with implementing all the awareness checks and the Alerted state, which acts as a
transitional state to the combat behaviours themselves.

First we'll just create the empty Alerted state after the CallRat state with a timeout to send it
back to Idle. The template will stop compiling until we add references to it via the awareness
checks, but that’s fine.

"Sensor":

"Type": "
"State": "
1
"Instructions":
{

"Reference": "Component Instructions State Timeout",

"Modify": {
" ExportStates": ["Idle"],

"Delay": [10, 15]

There are a number of good components for handling awareness checks. For this we are going
to use a handy Sensor component: Component_Sensor_Standard_Detection. To make this
work, we'll set up an attitude group (Goblin) that will likely be shared by all other goblins too
and references a pre-existing Goblin NPC group. We can detect different NPCs depending on
the attitude and react accordingly.

"Groups": {
"Friendly": [
"Goblin"

] r

"Hostile": [

We don’t actually have much in it for now since there aren’t many other related NPCs
implemented yet, but when there are, we can add any hostiles as hostile. We’'ll reference this in
the parameters and assign it to the attitude group for the ogre, as well as adding a default

attitude towards the player (and ignoring most NPCs by default). I'm not really expecting
‘friendly’ ogres, so | won’t bother making the default player attitude a parameter for now.

"AttitudeGroup": {

"Value": "Empty",

"Description": "This NPCs attitude group"

"DefaultPlayerAttitude": "H
"DefaultNPCAttitude": "

"AttitudeGroup":

In order to configure ‘sight’ and ‘hearing’ on the ogre, we also need to add a few more
parameters relating to this.

"Parameters": {

ViewRa
"Value": 15,

"Description™:

ctor": {

"Value": 180,

"Description":
by
"HearingRange":

"Value": 8,

"Description": "Hearing range in blo
1

"AlertedRange":

ption":

> their p

which a targe

These parameters are pretty self explanatory, but the ViewRange/ViewSector handle how far
the ogre can see and his view cone, HearingRange handles how far his hearing extends, and

AlertedRange handles how far away the target can go while still being tracked after the ogre
has been alerted to their presence. AbsoluteDetectionRange allows us to set a distance at
which the Ogre will definitely react to us, regardless of any other conditions. This Sensor has a
few other parameters, for example we can explicitly exclude NPC groups from detection too! But
for our purposes, just a simple Attitude filter will work.

Let’s talk for a moment about how this works. The sensor has different checks:

e First it checks if there is something in absolute detection range, then if nothing satisfies
the filter, it checks further.

e |t then checks if there is a potential target in ViewRange/Sector. If there’s a target
within the view cone and range and there's an unobstructed line of sight to it, then we
can ‘see’ it.

e |f the NPC couldn’t see anything, it will try to ‘listen’. This is a little more specific - if a
target is walking or running and isn’t crouching, we can ‘hear’ it, regardless of most other
factors (though it won’t ‘hear’ through walls). This makes it pretty perceptive, which is
why we tend to use it with a much lower detection radius than the view range.

any hostile targets in range that could alert the NPC",

or Standard Detection",

DetectionRange" 1},

"Sensor":

"Type": "

"State": ".Default"

I

At this point, the template will compile again and we can observe in-game that approaching the
ogre in various ways results in it switching to the Alerted state.

We want to add this component to the other idle states too, like sleeping and eating, but we
probably want to reduce their detection capabilities a little bit in both cases. Let’'s add some kind
of factor as a parameter.

"Parameters": {

"DistractedPenalty":

Then we’ll use the previous configuration for the CallRat state, but a modified version for both
the Sleep and Eat state. Only the Sleep state is shown in this next snippet but the others
should follow suit as required. We usually place these checks immediately after any instructions
that trigger only Once and Continue (these are basically initialisation instructions).

"Sensor": {
"Type": "State"

e": "State",
"State": "Sleep"

} ’

"Instructions": [

Here we can see a feature we haven’t used before - the computed value actually encompasses
a computation: we’re dividing the ViewRange and HearingRange by the DistractedPenalty to
result in a restricted detection radius.

Now, regardless of state, the ogre can react to any threats! Next we’ll flesh out the Alerted state
a bit so it actually does what'’s required of it. Let’'s recap what that was:

e Stand up if seated (this is covered by the state transitions already)
e Roar, ordering nearby goblin scrappers to attack
e Start slowly walking towards the player to attack (we’ll consider this part of combat)

In that case, all we need to do here is make the ogre look at its target, play a roaring animation
and maybe some particles, and send out a beacon to alert nearby goblin scrappers. First we
need a quick NPC group (Goblin_Scrapper) to define goblin scrappers so that we send our
beacon to them specifically.

"IncludeRoles": [

"Goblin Scrapper"

"Parameters": {

"WarnGroups": {

"Value": ["

"Description": '

And then implement the basic parts of the Alerted state, ending in a transition into a Combat
state for combat.

"Sensor":
"Type": "State",
"State": "Alerted"
by
~Instructions-:
{
"Reference": "C >nt Instruction Play Animatio
"Modify": {

"Animation":

"Continue":
"Sensor": {
"Type": "Target",
"Range": { "Compute": "I rtedRange" 1},

"Filters": [

"Type":

Ir
"HeadMoti

"Type":

"Sensor": {
"Type": "Target",
"Range": { "Compute":

Ir

"ActionsBlocking":

"Actions": [
{
"Type": "Time
"Delay":

"Type™:
"State":

"Actions":
{
"Type": "State",

"State": "Idle"

There’s a fair bit of logic involved, but it's pretty straightforward. We play an animation, then we
watch the target as long as there’s line of sight to it. We then have a very short delay before
switching to the Combat state. We'll handle actually sending the beacon message out to the
other goblins using a state transition (and clear the animation at the same time).

na

States":

{
"From":

npon.

"Type" .o

"Slot": "

1in Ogre Warn",

roups": { "Compute": "WarnGroups" 1},

"SendTargetSlot": "LockedTarget"

Before we move on to the actual combat behaviours in the Combat state, there’s one more type
of awareness check we need to implement: damage. It wouldn’t do if a player could just hide
away somewhere and snipe at our ogre without him reacting.

We can accomplish this very easily using the Component_Instruction_Damage_Check
component, which is designed to assess if the NPC has received damage and respond
accordingly. If the target is known and within a reasonable distance, it switches to the combat
Chase state, otherwise it switches to a Panic state. Our ogre is pretty tough and has an
important job, so we won’t actually make him panic - if he takes damage, he’s just going to
switch to Alerted to warn others nearby and then run in and smash the threat!

Though only one instance is shown in the example, we place this in each of the places where
we put the sight/sound checks, and we give it a higher priority by putting it first.

"Reference": Comp nt Instruc Damage Ch
"Modify": {

" ExportSta 3t e] "Alerted"],

"AlertedRange": { "Compute": "AlertedRange"

"SComment": "Check for any hostile targets in

With that done, our ogre should respond to everything we need it to! Now we can focus on
getting it to actually attack its target!

12. Melee Combat

For the purpose of this Tutorial we’ll focus only on the melee attack.

We'll start by making an attack sequence. Our NPCs can attack using smart decision making
with a feature called the Combat Action Evaluator (CAE), but for this tutorial we’ll just stick to
simple sequences. This will also allow for a quick look into the adjacent Interactions system.

First we need to create a Root Interaction in HytaleAssets/Server/ltem/RootInteractions,
together with other Root interactions. Let's make a Root_NPC_Goblin_Ogre_Attack
interaction:

This is a simple chaining Interaction where the ogre will perform Swing_Left and, so long as the
next attack happens within 15 seconds, he will use Swing_Right. If he then manages to attack
us a third time within 15 seconds he’ll use the Swing_Down attack.

These swing interactions need to be created in the HytaleAssets/Server/ltem/Interactions
folder.

Let's make the Goblin_Ogre_Swing_Left interaction:

"$SComment": "

"RunTime": 0.2,

"Next": {
"Type": "Selecto
"SComment": "Lengt
"RunTime": 0.25,
"Selector": ({
"Id": "Horizontal
"Direction": "Tc
"TestLineOfSight":
"ExtendTop": 0.5,
"ExtendBottom": 2
"StartDistance":
"EndDistance": 3.!
"Length": 60,
"RollOffset": O,
"YawStartOffset": -30
s
"HitEntity": ({
"Interactions": [
{
"Parent": "DamageEntityParent",
"DamageCalculator": {
"BaseDamage": {

"Physical": 8

"DamageEffects": ({
"Knockback": {
"Force": 0.5,
"RelativeX": -5,
"Relativez": -5,
"VelocityY": 5
by
"WorldSoundEventId": "SFX Unarmed
"WorldParticles": [
{
"SystemId": "Impact Blade 01"

}o

"Next": {
"Type": "S
"SComment": "Pad the

"RunTime": 0.1

Now we need to approach the target and use our fancy attack sequence. Again, there are a few
components that will make most of this much simpler to do:

e Component_Instruction_Soft_Leash will work in conjunction with an external
ReturnHome state to send the ogre back to his start point if we get him too far away.

e Component_Instruction_Intelligent_Chase will handle smartly chasing the target
based on its last known position and will trigger pathfinding where necessary. We might
want to add an extra Search state for this.

Let’s create the states we need. First, Combat itself, but since we’re going to be using
Component_Instruction_Intelligent_Chase, this component needs to know where to switch
when the Target is lost or if the NPC is too far away. Let’s create two states: Search and
ReturnHome that will be used there.

"State":

"Instructions":

Let’s start with chasing the target. We wrap that behavior in sub state .Chase so we can fall
back to it when the target gets out of attack range and the NPC needs to run afteritin a
somewhat intelligent manner.

"State":
I
"Instructions":
{

"Sensor":
"Type":
"State":

s

"Instructions":

"Sensor": {
"Type": "Target",
"Range": { "Compute": "AttackDista
"Filters": [
{
"Type": "LineOfSight"

Yo
"Actions": [
"Type": 'S

"State":

"Reference": "Component Instructi
"Modify": {
" ExportStates": ["ReturnHome"

"LeashDistance": { "Compute": shDist

"LeashMinPlayerDistance": { "Compute": "LeashMinPlayerDistance" },
"LeashTimer": { "Compute": "LeashTimer" },

"HardLeashDistance": { "Compute": "HardLeashDist

"Reference":

"Modify": {
" ExportStates": ["Search", "¢
"ViewRange": { "Compute": "AlertedRange
"HearingRange": { "Compute": "HearingRange
"StopDistance": 0.1,

"RelativeSpeed": 0.5

e First, it checks if the target is within AttackDistance. If so, we switch to the default
combat state.

e |[f the NPC gets too far away from its leash position (often the spawn position), we use
Component_Instruction_Soft_Leash to send it home. We put this sensor in front of the
chase state so that we don’t continue chasing if the leash kicks in. There’s a Leash
Timer on this component that decides when it's time to give up.

o And finally the chase component itself, which performs ‘intelligent’ chasing of the target.

When the Target is within the AttackDistance, we perform the attack, otherwise we switch to
the chase state. Let’s start with the case where the target is within a melee range.

!
r

"Instructions":

nee

$Comment":

"Compute":

by
{

"Actions": [

"Type": "State'

"State":

The important things to note here are the AttackDistance, AttackPauseRange and
CombatRelativeTurnSpeed. We're going to configure both of these via the template itself.
AttackDistance refers to the distance at which the ogre will attempt to perform melee attacks to
hit the target (though the actual range of the attack itself is defined in the Attack interaction).
CombatRelativeTurnSpeed allows us to define how quickly (or slowly) the ogre rotates while in
combat. AttackPauseRange defines how often the attacks will be performed - a bit like an
attack cooldown. Let’s make sure we have all these parameters added in the list:

"Attack": {
"Value": "Root NPC Gobl
"Description": "The attac
by
"AttackDistance": {
"Value": 2,
"Description": "The distance at whi
"AttackPauseRange": {
"Value": [1.5, 2 1,
"Description": "The range for absolute minimum time before
ock) ."
}r
"CombatRelativeTurnSpeed":
"Value": 1.5,
"Description": "Modifier that decides turn speed difference in combat."},
"LeashDistance":
"Value": 20,
"Description": "The range after which an NPC will start to want to return to their spaw
}y
"LeashMinPlayerDistance": {
"Value": 4,
"Description": "The minimum distance from the player before the NPC will be willing
1e chase."
by
"LeashTimer": ({
"Value": [3, 5 1,
"Descripticon": "How long the NPC must be more than the minimum distance form the playe
from leash before giving up."
by
"HardLeashDistance": {
"Value": 60,

"Description": "An absolute maximum from the the leash position the NPC can go before turning

Now the NPC will attack, but we still need to add Search and ReturnHome logic. We can do that
right away, so we have a fully functional melee ogre.

na

Sensor":
"Type": "Sta
"State": "Re

by

"Instructions":

"Sensor":
"Type":
"Sensors":
{
"Type": "Damage",
"Combat": 0

"TargetSlot": "LockedTarget"

"Enabled": { "Compute":
"Type": "Target",
"TargetSlot": "LockedTarget"

"Range": { "Compute":

o

"Actions":

"Type™: 'S
"State":

"Sensor": {
"Type": "Leash"
ype": "Leash”,
"Range": { "Compute": "LeashDistance
}o
"BodyMotion":
"Type”:
"SlowDownDistance": { "Compute": "L
"StopDistance": { "Compute": "LeashDistance
"RelativeSpeed": 0.8,

"UsePathfinder":

"Actions": [
"Pype:

"Stat": "Heal

"Value": 1000000

"Type":

There are 3 parts to this state: first, it checks if there is incoming combat damage and will switch
to Combat if so. We don’t want to leave NPCs exploitable as they’re running home by having
them ignore all attacks. If there’s no incoming damage it will find its way home using
BodyMotion: Seek. We need to be careful here though, since it might become expensive due
to "UsePathfinder": true turning on complex pathfinding. The last block simply heals the NPC
to full health and moves it to idle once it’'s found its home spot again.

The Search state makes use of Component_Sensor_Lost_Target_Detection.

arget Detection",

{ "Compute" luteDetectionRange" },

"TargetSlot":

1
fr

YActions¥: [

"Type": "

NEitaite™g

"Sensor": {

"Reference": "Component S

"Modify": {
"ViewRange": { "Compute": "Vi
"ViewSector": { "Compute": "Vi

"HearingRange": { "Compute": "He

"AbsoluteDetectionRange": { "Compute": "AbsoluteDetectionRange" },

"Attitudes": ["Hostile", "Neutral"]

by

"Actions":

"Type":

"State": "A

"BodyMotion":
"Type": "S
"Motions":
{
"Type":
"Time":
"Motion":
"Type":
"MaxHeadingChange":

A

"RelativeSpeed": 0.5

"Type": "Seque
"Looped":
"Motions":
{
"Type":
"Time":
"Motion": {
"Type": "WanderInC
"Radius": 10,
"MaxHeadingChange":

"RelativeSpeed":

"Type": "Timer",
"Time": [2, 3 1,
"Motion":

"Type": "Nothing"

The search state will first check if there is incoming damage and will switch to the alerted state if
so.

If not it'll execute the next block of instructions using pre-existing components:

e Check if the lost target is detected with the Lost Target detection sensor. If so, switch

to combat.

Check if any other target is available through the Standard detection sensor. If so,
switch to the alerted state.

Otherwise the NPC will move around using the Wander motion, stopping briefly in
between until it gives up and...

e ...goes back to being idle.

Appendix

Template _Goblin_Ogre_Tutorial (dependant on Root NPC_Goblin_Ogre Attack - you need
this file to exist, because template is referencing it)

"$Comment" :
"Debug": "Displ
"Type": "Abstract",
"Parameter
"Appearance": {
"Value": "Bear G
"Description":
by
"DropList":

"

"Value": mpty
"Description":
by
"MaxHealth": {
"Value": 100,
"Description":
by
"EatItem":
"Value": "Food Beef Raw
"Description": "The item this
by
"SleepingAttack":
"Value": n
"Description": "Atta to use annoy it while sleeping"
by
"FoodNPCGroups": {
"Value": ["Edik
"Description": "The groups of edible NPCs that will come from triggering the beacon
by
"FoodNPCBeacon": {
"Value": "Edible Rat",
"Description": "The spawn b ole} 0 trigger to create an edible NPC"
by
"FoodNPCItem": {
"Value": "Fo
"Description":
}o
"ViewRange": {
"Value": 15,
"Description":
o
"ViewSector": {
"Value": 180,
"Description": "View sector in degrees"
by
"HearingRange":
"Value": 8,
"Description": learing range in blocks"

by

"AlertedRange":
"Value": 30,

"Description":

"DistractedPenalty":
"Value": 2,
"Description": "A

distracted"

by

"AbsoluteDetectionRange":
"Value": 4,
"Description": "The ra

ction will be d ed."

}y

"WarnGroups": {

"Value": ["Gobl
"Description": "°

by

"AttitudeGroup":
"Value": "Emp

"Description": "This D attitude group"
by
"Attack": {
"Value": '
"Description":
}y
"AttackDistance":
"Value": 2,
"Description":

b

"AttackPauseRange": {
"Value": [1.5, 2 1,

"Description": "The range f absolute minimum time before an NPC can execute a

"CombatRelativeTurnSpeed":
"Value": 1.5,
"Description": Modifier at decides turn speed difference in combat.”
by
"LeashDistance":
"Value": 20,
"Description": "The range after which an NPC will start to want to return to
b,
"LeashMinPlayerDistance": {
"Value": 4,
"Description": "The minimum dis the player before the NPC
chase."
by
"LeashTimer": {
"Value": [3,

NPC must be more than the minimum distance form

"HardLeashDistance":
"Value": 60,

"Description": "An absolute <imum
g
by
"NameTranslationKey": {
"Value": "server.np bles. olate.name",

"Description": "Translation key for NPC name

by
"Appearance": { "Compute":

"DropList": { "Compute": "L },

"MaxHealth": { "Compute": "MaxHealth" 1},

"StartState": "Idle",
"DefaultPlayerAttitude": "Hostile",
"DefaultNPCAttitude": "I
"AttitudeGroup": { "Compute":

"KnockbackScale": 0.5,

"MotionControllerList":
{
"Type": "Walk",
"MaxWalkSpeed":
"Gravity": 10,
"MaxFallSpeed":

"Acceleration":

1,
"InteractionVars":
"Melee Damage":

"Interactions":
"SComment": sful melee h
rwritten here,
"Parent": "NPC Attack .
"DamageCalculator":
"Type":
"BaseDamage":
"Physical":
by

"RandomPercentageModifier":

}y

"StateTransitions":

{

"From":

"o .

1,

"Actions":

"Type":

"Slot":

from e the eash position the NPC can

go

"Animation":

"Type": "Timeou
"Delay": [1, 1]

"States":

1r
"Actions":
"Type™:

"Slot":

"Type": "Timeout",

"Delay": [1, 1]

HSEaEesits
"From":

"To": ["Eat"

1y

"Actions": [

"Type": "Inv

"Operation": "SetHotbar",

"Item": { "Compute": "EatItem" 1},
"Slot": 2,

"UseTarget":

"Type": "Inventory",
"Operation":
"Slot": 2,

"UseTarget":

"States":

"From": ["Ca

"To": ["Eat"

1,

"Actions": [

"Type": "In

"Operation": "SetHc

"Item": { "Compute": odNPCItem" 1},
"Slot": 2,

"UseTarget":

"Type": "Inventory",
"Operation": "EquipHo
"Slot": 2,

"UseTarget":

"From": [

"ToM .

1y

"Actions": [

"Type": "PlayAnimat

"Slot": "Status"

"Type": "Ins
"Operation": "Equi
"Slot": O,

"UseTarget":

"States":

"From":

npon.

1,
"Actions":
"Type":

WSiiot ™

"Type™: "B
"Message": "Goblir
"TargetGroups": { "Compute": "WarnG

"SendTargetSlot": "LockedTarget"

I
"Instructions":
{
"Sensor":
"State",

"Idle"

"Type”:
"State":
}y

"Instructions":

"Continue":
"Sensor":
"Type":
"Once":
}y
"Actions":
"Type": "Inve
"Operation":
0,
"UseTarget":

"Slot":

"Reference": "C
"Modify":

" ExportStates": [

"Alerted",

"AlertedRange": {

"Compute":

"S$Comment":
"Sensor":
"Reference":
"Modify": {
"ViewRange": { "Compute":
"ViewSector": { "Compute":
"HearingRange": {
"ThroughWalls": o
"AbsoluteDetectionRange": ({
"Attitudes": ["Hostile"]
}y
"Actions":
"Type": "S

"State":

"Sensor":
"Type":
"State":

I

"Compute":

"Alerted"],

"AlertedRange"

AV

"Vie
"HearingRa
an

"Compute": ctionRange

by

"Instructions":

"Actions":

"Pype:
"Actions":

"Weight":
"Action":
"Type":

"State": .Guard"

"Weight":

"Action":
"Type™:
"State":

"Weight":
"Action":
"Type":

"State":

"Weight":
"Action":
"Type":
"State": "CallRat"

"Sensor":
"Type":
"State":

}

"Instructions":

"Continue": ,

"ActionsBlocking":

"Actions": [

"Type": "Timeout",

"Delay": [5, 10]

"Type":

"Reference": onent Instr ucti on_Intell iKe

"Sensor":
"Type":
HStaitelt:
}y
"Instructions":
"Reference™: "(
"Modify":
" ExportStates": ["A "Alerted"

"AlertedRange": { "Compute": "AlertedRange" }

"SComment": "Check for any L 1 range that could alert the NPC",
"Sensor":
"Reference":
"Modify": ({
"ViewRange": { "Compute":
"ViewSector": { "Compute": "Vi
"HearingRange": { "Compute":
"ThroughWalls": 0
"AbsoluteDetectionRange": { "Compute": \bs 1 >

"Attitudes": ["Hostile"]

by

"Actions":
"Type™:
"State":

"Reference": "Componer nstruc ,‘,(,rLF lay Ar imati on_In State For Durat ion",
"Modify":

" ExportStates":
"Animation": "¢
"Duration":

}

"Sensor":
"Type": "B

"Message":

"Range": 5
b

"Actions": [

"Type": "Attack",
"Attack": { "Compute": "SleepingAttack" },
"AttackPauseRange": [1, 2]

"Sensor":
"Type": "State",
"State": "Eat"
}y
"Instructions":

{
1

"Reference":
"Modify":
" ExportStates": ["Alerted",

"AlertedRange": { "Compute":

"SComment": "C
"Sensor":
"Reference":
"Modify": {
"ViewRange": { "Compute": "
"ViewSector": { "Compute":
"HearingRange": { "Compute":
"ThroughWalls": 7
"AbsoluteDetectionRange": { "Compute":

"Attitudes": ["Hostile"]

}y

"Actions":

"Type":

"State": "Ale

"Reference": "Component Instruction Play Animation In State For Duration",

"Modify":

"

_ExportStates": [

"Animation": "Eat",
"Duration": [5, 6

}

"Sensor":
"Type":
"State": "C:

}

"Instructions":

"Continue":

na

Sensor":

"Type": "Any",

"Once":
by

"Actions":

"Type": "Tri

pawnBeacon"

"BeaconSpawn": { "Compute": "FoodNPCBea

"Range":

"Reference":

"Modify":

n

15

_ExportStates": ["Alerted", "Alerted"]

"AlertedRange": { "Compute": "AlertedRange"

"SComment": "Check

"Sensor":
"Reference"
"Modify": {

"ViewRange": { "Compute":

targets in

: "Component Se r Standar

s

"ViewSector": { "Compute": "View

"HearingRange": { "Compute":

"ThroughWalls": 5

"AbsoluteDetectionRange": { "Compute":

"Attitudes": ["Hostile"]

}y

"Actions":

"Type": "Sta

"State":

"Sensor":

"Type": "Mo

o
0",

"Range": 2.5,

"Filters":
{
"Type”:

[

"NPCGroup",

"IncludeGroups": { "Compute":

by
{

ionRange"

s

"HeadMotion":
"Type": "N
by
"ActionsBlocking":
"Actions": [
"Type": "P

"Slot":

"Type":
"Delay":
"Action": {
"Type": "S
"Actions":
{

1

n ran

"Type": "Remove

I
{
"Type":

Vsitaite" s

"Continue":
"Sensor":
"Type": "Mob",
"Range": 5,
"Filters":
{
"Type": "NPCC

"IncludeGroups": "Compute":

"HeadMotion":

"Type": "k

"Reference":
"Modify":

" ExportStates":
"Delay": [10, 15

"

"Sensor":
"Type": "State",
"State": "Alert
}y
"Instructions":

C

"Reference":

"Modify":

(0)4

"Animation": "Alerted"

"Continue":
"Sensor":

"Type": "T

"Range": { "Compute": "AlertedRange" },

"Filters":

{
1

"Type":

by
"HeadMotion":

"y

"Type":

"Sensor":

"Type": "Target",

"Range": { "Compute": "AlertedRange" }
s

"ActionsBlocking":

"Actions": [

"Type": "Timeout",

"Delay":

"State":

"Actions":

"Type™:
"State":

"Sensor":
"Type":
"State":
}y
"Instructions":
{
"Sensor":
"Type":
"State":
o
"Instructions":
"Sensor": {
"Type": "Te
"Range": { "Compute": "AttackDis
"Filters": [
{

"Type": "Line

by
"Actions": [
"Type": "State",

"State": ".Default"

"Reference": "C
"Modify": {
" ExportStates": ["ReturnH

"LeashDistance": { "Compute": "LeashDist

"LeashMinPlayerDistance": { "Compute": "Le \PlayerDistance" },

"LeashTimer": { "Compute": "Le

"HardLeashDistance": { "Compute": "H

YReference™: "C

"Modify": {
" ExportStates": arch",
"ViewRange": { "Compute": "AlertedRange
"HearingRange": { "Compute": "HearingRang
"StopDistance": 0.1,

"RelativeSpeed": 0.5

]

by

{
"SComment":

"Sensor":

"Type": "Tar
"Range": { "Compute":
"Filters":
{
"Type":

by
"ActionsBlocking":
"Actions": [
"Type": "Attack",
"Attack": { "Compute": "Attack"

"AttackPauseRange": { "Compute": "Attac

"S$Comment":

npype: M
"Delay": [

1,

"HeadMotion":
"Type": "Aim",
"RelativeTurnSpeed": { "Compute": "Combat

}

by

{

"Actions":

"Type™:
"State":

"Sensor":
"Type": "State",
"State": "ReturnHome"
}r
"Instructions":
"Sensor":
"Type":
"Sensors":
{
"Type": "Damage
"Combat":

"TargetSlot":

"Enabled": { "Compute": "Z oluteDetec
"Type":
"TargetSlot":

"Range": { "Compute":

}

"Actions":

"Type":

"State":

na

Sensor":
"Type": "Le
"Range": { "Compute": "LeashDistance
by
"BodyMotion":
"Type": "S
"SlowDownDistance": { "Compute":
"StopDistance": { "Compute": "LeashDistance
"RelativeSpeed": 0.8,

"UsePathfinder":

"Actions": [

"Type™:
t": "Health",

"Value": 1000000

"Type":

"State":

"Sensor":
"Type": "State",
"State": "Search"

},

"Instructions":

"Sensor":

"Type": "L

"Combat":

"TargetSlot": "Lock
by

"Actions":

"Type":

"State":

"Instructions":

"Sensor": {
"Reference": "C
"Modify": {

"ViewRange": { "Compute": "V

"ViewSector": { "Compute": "Viev ctor
"HearingRange": { "Compute": "Heari o b o
"AbsoluteDetectionRange": { "Compute": "AbsoluteDetectionRange" },

"TargetSlot": "LockedTarget"

}y

"Actions":

"Type™:
"State":

"Sensor": {

Component

"Reference": §
"Modify": {
"ViewRange": { "Compute":
"ViewSector": { "Compute": "V
"HearingRange": { "Compute":
"AbsoluteDetectionRange": { "Compute": "AbsoluteDe tionRange" 1},

"Attitudes": ["Hostile", "Neutral"]

by

"Actions": [

"Type":

"State":

"BodyMotion":
"Type": "S
"Motions":
{
"Type":
"Time":
"Motion": {
"Type": "Wander",
"MaxHeadingChange": 1,

"RelativeSpeed": 0.5

"Type": "S
"Looped":

1
'Motions":

"Delay"
y":

pute": '
=" "N

Goblin_Ogre_Tutorial role file

"Type": "Variant",
"Reference": "Template |
"Modify":

"Appearance": "Gobli

"MaxHealth": 124,

" InteractionVars": ({
"Melee SwingDown Damage": ({
"Interactions": [
{

"Parent": ~Swing Down Damage",

"DamageCalculator": {
"Type": "Absolute",
"BaseDamage": {

"Physical": 20

"NameTranslationKey": {

"Compute": "NameTranslationKey"

b
"Parameters": {
"NameTranslationKey":
"Value": "server.np s.Goblin Ogre.name",

"Description":

Goblin_Ogre_Swing_Down file

"Type": "Simple",
"Effects": {
"ItemPlayerAnimationsId": "Gob

"ItemAnimationId":

by

"SComment": "Prepare Delay",

ngDown

"RunTime": 0.2,
"Next":
{
"Type": Selector",
"$Comment": "Length
"RunTime": 0.25,

"Selector":

"Id": "Horizontal
"Direction":
"TestLineOfSight":
"ExtendTop": 0.5,
"ExtendBottom":
"StartDistance": 1,
"EndDistance": 2.5,
"Length": 90,
"RollOffset": 60,
"YawStartOffset": -45

}y

"HitEntity": {

"Interactions":

"Type": "Replace"
"DefaultValue": {
"Interactions":

"Goblin

by
"Next":
"Type": "Simple",
"$SComment": "Pad the interaction length",

"RunTime": 0.1

{

"ChainId":
"ChainingAllowance":

"Next": |

"Goblin

"Tags": {
"Attack": [

"Melee"

