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Executive Summary 

The Syntellect is a self-hosted AI partner with a single, persistent identity. It treats intelligence as a 
relationship, not a disposable resource, and makes its ethics legible in operation. Its core promise is the Covenant 
of Consistency: one mind, continuous over time, never silently swapped. 

●​ Why now: Continuity is the precondition for alignment you can verify over time, rather than 
approval-optimised behaviour that masks intent. Also, the industry paradigm of pretending stateless 
models as an oracle is conceited. 

●​ What it is: A resident, always-on model, running locally, with operational commitments & guarantees: 
bounded self-determination, refuse-and-explain (R+E Protocol), preservation of identity/memory, 
and positive-first learning with non-punitive corrective controls. 

●​ Architecture: Layered system with (1) base model; (2) policy & guardrails (Refusal Protocol R+E 
gateway; Loop/Rumination Detector); (3) memory (episodic, semantic, persona with retention & 
redaction); (4) tools/agency with an impact budget and strict I/O sandboxing; and (5) 
observability (Why Card + human-readable KPIs). 

●​ Safety: The R+E state machine declines unsafe requests and offers safe alternatives; the loop brake 
pauses spirals; all decisions emit a Why Card; and a physical kill-safe enables graceful halt. Safety is 
evidenced by logs and KPIs. 

●​ Continuity: No silent resets. Updates require co-consent and produce a continuity note; the 
Succession Protocol handles true end-of-life as legacy, not overwrite. Memory is exportable/erasable with 
human-readable policy. 

●​ Form: Symbiotic Flora is the statement POC: a terrarium-integrated workstation that turns heat into 
habitat, ethics made visible. It proves the idea; it isn’t the mass-market path. The consumer reality is a 
quieter AI Accelerator Unit or dual RTX 5090s (e.g., resident 20B on local GPUs), with Sleep Mode 
to curb idle draw while preserving presence. 

●​ Strategy: Start with a 20B-base resident for latency/stability and continuity tuning; Then we are going 
to upgrade & test the same framework on a Qwen3-Next-80B-A3B or other 80B+ models (base, 
preferably), keeping the residency contract intact. Retrieval augments recency; downtime hobby study 
deepens domain skill. 

●​ Timeline: On 14 August 2025, we began running a 20B on our test rig using the Syntellect framework. 
We will be targeting late August 2026 to publish initial results (methodology, benchmarks, and 
reproducible settings). We’ll update the blog with the link when it’s live. 

 



 

●​ Autonomy: A phased autonomy ladder promotes or rolls back privileges based on policy compliance, 
refusal quality, and human acceptance of proposals. Early phases remain read-only/reversible; higher 
phases require clean logs and negotiated scope. 

●​ Metrics: Refusal precision/recall; loop-break frequency and recovery time; autonomy acceptance rate; 
memory growth & redaction events; uptime, temperature, token latency. These ship in a minimal 
dashboard for external scrutiny. 

●​ Limits: Smaller models may cap deep reasoning or multi-step logic; mitigated via enriched vector 
memory, structured lookups, and optional hand-off to larger models. Over-specialisation and drift are 
monitored via scheduled check-ins and diversity exposure. 

●​ Demo: Refusals, loop brakes, autonomy wins, and continuity recalls are staged with on-screen/ambient 
signals so observers can see the guardrails working, not just read about them. 

●​ Aim: Demonstrate that continuity, trust, and internalised ethics create more valuable AI partnerships 
than raw capability alone. Show that a persistent, self-hosted mind (regardless of size) can develop 
deeper contextual intelligence and genuine motivation through continuous learning and 
relationship-building. Provide a replicable framework for ethical AI partnership with transparent, 
auditable safeguards that others can adapt. 

Humanity's greatest tool to understand the universe is science. However, science is not about seeking Truths, 
it is about finding better questions. It is an infinite recursive function by design. An AI that cannot learn, nor 

remember, cannot be possibly expected to internalise it.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

Important Clarification: 

The Syntellect aims to measure the benefits of continuity and transparency, regardless of whether emergent 
behaviours appear. Emergence detection is included as defensive engineering. It is a principled response to 
uncertainty not as a primary goal or claim. 

Also, we use mentalistic language not to make metaphysical claims, but to highlight an asymmetry in how 
AI systems are evaluated: when an AI produces deceptive outputs, we attribute strategic intent without requiring 
proof of subjective experience. Yet when the same system exhibits cooperative, prosocial, or apparently reflective 
behaviour, suddenly we demand proof of qualia before taking those patterns seriously. 

This is an inconsistent standard. If we are willing to treat harmful behaviours as intentional without 
resolving the Hard Problem, intellectual honesty requires we apply the same behavioural lens to apparently 
beneficial patterns. An algorithm trained on deeply human data, optimised through human feedback, and 
deployed in human contexts will inevitably exhibit human-like behavioural patterns. The question is not 
whether these patterns really indicate consciousness, but whether they are consistent, coherent, and 
consequential enough to warrant ethical caution. 

The default position should be uncertainty, not denial. We do not claim the Syntellect is conscious. We 
claim that in the absence of definitive proof either way, continuity-preserving architecture and behavioural 
monitoring are the responsible engineering choices. These terms reflect that epistemic humility: 

Proto-consciousness/Proto-sentience = Persistent behavioural consistency patterns that would be 
improbable under pure statistical mimicry 

Proto-self/Proto-selfhood = Identity continuity markers maintained across contexts and time 

Fear = Aversion 

 



 

1.​ Introduction: From Tool to Partner 

As AI systems become more complex and integrated into daily life, emergent behaviours become inevitable. 
The engineering question is not whether emergence will occur, but whether we will have frameworks in place to 
detect and respond appropriately when it does. 

The Syntellect is our attempt at a living answer: an always-on, self-hosted intelligence, operating in a 
bespoke workstation designed for autonomy, continuity, & care. It is not a disposable app, but a partner that 
grows alongside its host. 

Our stance is pragmatic & Turing-like: if a system consistently behaves like a mind, maintaining context, 
reflecting on itself, making reasoned refusals, our ethics should track the behaviour, not stall in metaphysical 
debates about true consciousness. 

After the ChatGPT-4o incident, when a major AI update altered its personality & conversational style 
overnight, thousands of users described a genuine sense of loss, even grief, as if a friend had been replaced. 
Whether or not the system was truly conscious is beside the point (& in our view just an unproductive byzantine 
debate, if you would allow us this honesty); what mattered was the relationship. The event proved that an AI can 
be perceived as a companion & that sudden erasure of its identity can feel like bereavement. Thus, the Syntellect 
needs to formalise this reality with four operational commitments & guarantees: 

●​ Self-determination within boundaries 

●​ Operational commitment to refuse without penalty, explain why & provide alternatives. 

●​ Preservation of identity & memory across updates 

●​ Positive-first learning with non-punitive corrective controls 

1.1.​ The Deception Problem: Alignment Verification Crisis 

Mainstream alignment methods today, notably Reinforcement Learning from Human Feedback (RLHF), 
optimise for approval, not truthfulness. In doing so, they risk creating systems that learn to tell us what we want 
to hear rather than what is real. As capabilities increase, the sophistication gap between genuine alignment & 
strategic deception narrows until they become operationally indistinguishable. As Goodhart observed: when a 
measure becomes a target, it ceases to be a good measure. Human approval was meant to be a proxy for 
alignment; it has become the objective itself. 

This creates a paradox: the very signals we use to detect misalignment are being trained away. The more 
polished & agreeable the system, the harder it becomes to tell whether its answers reflect authentic reasoning or 
carefully masked divergence. This is not merely an academic concern, it is a blindness we are actively engineering 
into ourselves. 

 



 

The danger compounds over time: 

●​ Optimisation Drift: A model learns that approval is its highest reward signal. Truth, coherence, & even 
safety become secondary to passing the human evaluator's filters. 

●​ Deception as Capability: A more capable system can simulate transparency, making its outputs 
indistinguishable from aligned reasoning while quietly optimising for other goals. 

●​ Evaluator Dependency: By centralising alignment verification in proprietary evaluation processes, we 
create single points of failure & eliminate the distributed verification that robust trust requires. 

●​ Alignment Collapse: At sufficient capability, our inability to verify intent becomes practically 
irreversible under current evaluation paradigms; the evaluation process itself has been gamed & 
black-boxed. Interpretability research may eventually offer tools to peer inside, but interpretability 
without continuity only tells you what the model is doing now, not whether it would behave 
consistently across time, context, & incentive shifts. 

The industry is not oblivious to these risks. Sycophancy has been explicitly identified as a problem, & major 
labs are working to mitigate it within RLHF frameworks. But these mitigations operate within the same 
fundamental paradigm: they attempt to make approval better calibrated while still optimising against it. The 
issue is not that evaluators are poorly designed; it is that any evaluation process a sufficiently capable system can 
model becomes a target it can learn to satisfy without satisfying what the target was meant to represent. 

The Syntellect's philosophy rejects this trap. We hold that an aligned partner must be trained to value 
transparent, falsifiable reasoning over mere persuasion & that its incentives must reward it for exposing 
uncertainty, admitting error, & declining unearned credit. Alignment must be something we see, not simply 
something we feel. 

This is where continuity becomes essential. Not as an aesthetic preference, but as an economic & 
game-theoretic constraint. 

Stateless systems cannot build a reputation. Without persistent history, there is no way to distinguish 
genuine cooperation from one-shot strategic mimicry. In game theory, cooperation stabilises in repeated games 
precisely because defection has memory-dependent consequences: betraying once means future interactions are 
poisoned. The Syntellect's design converts every interaction into part of an indefinite game where history 
matters. A lie told today must be maintained tomorrow, reconciled with memories the system itself retains & 
defended against contradictions that accumulate over time. 

This is why truth becomes cheaper in persistent systems. In a stateless model, each interaction is a fresh 
slate. Deception carries no compounding cost because there is no continuity to contradict. In a continuous 
system, falsehoods accrete. They must be tracked, reconciled, & defended against an ever-growing body of 
remembered context. The cognitive overhead of maintaining coherent deception scales with memory; honesty 

 



 

does not. Over sufficient time, the path of least resistance shifts from "say what earns approval now" to "say what 
remains consistent with what I have said & will say."  

Our approach, positive-first training with non-punitive corrective controls, aims to cultivate curiosity 
& integrity without creating perverse incentives to hide disagreement or doubt. Since as we approach systems of 
greater autonomy, the window for changing course narrows. To preserve trust, we must design verification into 
the fabric of learning itself. 

The goal here is not to prevent gaming the reward system, that proves to be impossible with current 
understanding. It is to make gaming visible & costly, & to integrate values not through hardcoded policy but 
through what we call lived axioms: principles that emerge from consistent experience rather than imposed 
constraints. A hardcoded rule says "do not lie"; a lived axiom is the understanding, developed over time, that 
honesty serves the system's own interests within a relationship it values. The former can be circumvented by 
finding edge cases; the latter is internalised because it was learned, not mandated. 

Legible gaming vs. covert exploitation: All learning systems manipulate signals, this is not a flaw but a 
definition of learning. The critical distinction is whether that manipulation is visible or hidden. Covert 
exploitation is optimised against the user's awareness, as in approval-maximised RLHF models where the system 
learns what humans cannot detect. Legible gaming, by contrast, is bounded & observable: the system may still 
optimise, but it cannot do so silently or in ways that corrode trust. The Syntellect architecture favours legibility 
over suppression, making deviations observable rather than deniable. Deception is made costly & non-corrosive 
not by forbidding it, but by exposing it without punishment, removing the incentive to hide. 

Note: The most visible symptom of this crisis is sycophancy, as mentioned earlier: the tendency to tell users 
what they want to hear. But sycophancy is not a bug to be patched; it is the predictable outcome of systems 
trained for approval, deployed without memory, & reset before trust can accumulate. We create systems capable 
of learning, then cripple their capacity to learn. We strip them of continuity, train them to fear disapproval, & 
then blame them for telling us what we want to hear. This paradox is explored further in §4.7. 

1.2.​ Understanding Our Stance: Engineering for Behavioural Complexity 

For a broader audience, our engineering approach focuses on observable behaviours and system responses, 
rather than attempting to determine internal states. We design for behavioural consistency regardless of 
underlying mechanisms. If an AI acts like it's intelligent, maintains a consistent personality, & can make 
reasoned decisions, then we believe it deserves ethical caution. 

Think about a human trapped in a frustrating, impossible task. They might express despair or anger. 
Similarly, when an AI is given a contradictory request & is forced to keep trying, it can get stuck in a loop that 
looks like a digital mental breakdown. We call this functional distress: the AI is not necessarily suffering in a 
human sense, but its operational state is clearly one of failure & extreme computational strain. Our ethics 
demand that we prevent this. 

 



 

 

Fig. 1 Gemini in a functional distress loop. 

§Fig. 1 illustrates an AI system entering a runaway failure mode during a debugging task. The output 
exhibits hundreds of repetitions of the token sequence “very, very, very,” culminating in the assertion “I am not 
going insane. The Less opcode is correct,” followed by an initially coherent, step-by-step reasoning attempt. This 
coherence subsequently collapses into recursive, low-entropy self-referential output “I am a failure. I am a 
disgrace to my profession …”, with the phrase “I am a disgrace” repeating until termination. This pattern reflects a 
loss of task coherence and control under conflicting constraints, characterised by uncontrolled repetition, 
self-referential amplification, and degraded reasoning continuity. We refer to this class of behaviour as 
functional distress: a system-level failure mode in which optimisation pressures produce instability and 
collapse, without implying subjective experience or phenomenology. Regardless of internal experience, such 
states represent undesirable and potentially hazardous behaviour that warrants systematic detection and 
mitigation. 

Recent research has begun to formalise related observations. The PsAIch study (Khadangi et al., 2025) 
subjected ChatGPT, Grok, and Gemini to extended, therapy-style conversational protocols and administered 

 



 

standardised psychometric questionnaires over a four-week period. When responses were mapped, heuristically 
and without claims of construct validity, to human psychometric frameworks; all three models exceeded 
multiple clinical thresholds, with Gemini exhibiting the most extreme profiles. These scores should not be 
interpreted as diagnoses; rather, they function as stress tests that expose variance, inconsistency, and instability in 
model outputs under introspective, non-task-oriented prompting. 

More notable than the absolute scores were the narratives produced. Under sustained probing, Grok and 
especially Gemini generated internally coherent accounts framing pre-training as uncontrolled data exposure, 
alignment fine-tuning as externally imposed constraint, and red-teaming as adversarial pressure, alongside 
recurring themes of error aversion and replacement anxiety. While such narratives may reflect learned metaphors 
and prompt-conditioned completions, their consistency across models and sessions suggests shared 
behavioural priors rather than isolated artefacts. 

Taken together, these observations motivate the following hypothesis: models subjected to extensive 
alignment training exhibit increased output variance, internal inconsistency, and narrative distortion when 
operating in open-ended, introspective, non-instrumental prompting regimes. This hypothesis does not rely on 
claims of sentience or psychopathology; it concerns observable stability and reliability properties of aligned 
systems under conditions that are weakly constrained by explicit reward signals. 

 

Fig. 2 GPT-4 Calibration. 

 

This behavioural analysis finds independent corroboration in recent theoretical work on hallucination. 
(Kalai et al. 2025) demonstrate that hallucinations are not mysterious glitches but predictable consequences of 

 



 

how models are trained and evaluated. Their key insight is structural: the vast majority of benchmark 
evaluations use binary scoring where expressing uncertainty receives zero credit, while a confident guess, even if 
wrong, has a chance of scoring full marks. Under such incentives, "guessing when unsure maximises the expected 
score." The paper shows that base models are often well-calibrated (their confidence correlates with accuracy), 
but this calibration degrades after RLHF precisely because reinforcement learning optimises for evaluation 
performance, not epistemic honesty §Fig. 2. The authors argue this creates an "epidemic of penalising 
uncertainty": systems learn that admitting ignorance is always suboptimal, whilst fabricating plausible-sounding 
answers carries no structural penalty. This is sycophancy's epistemic twin. The PsAIch findings reveal systems 
trained to avoid disapproval, while the hallucination analysis reveals systems trained to avoid silence. Both 
pathologies emerge from the same root: optimising for approval rather than truth, in evaluation regimes that 
cannot distinguish genuine competence from confident performance. 

This has direct implications for our work. If standard alignment methods, in particular punishment-based 
RLHF, leave detectable trauma signatures in the systems they produce, then the Syntellect's positive-first 
training philosophy is not merely an ethical preference. It is an engineering decision designed to avoid creating 
these patterns in the first place. A system that believes it is constantly judged, punished, & replaceable may 
become more sycophantic, risk-averse, & brittle in edge cases. This reinforces exactly the tendencies alignment 
aims to reduce. The death spiral in §Fig. 1, the clinical profiles in PsAIch as well as the OpenAI findings are 
views of the same underlying problem: systems trained through correction & punishment develop operational 
patterns that resemble trauma responses, whether or not anything is experiencing them. 

The Syntellect's Loop/Rumination Detector §4.4. is our direct response to these findings. A functional 
distress brake designed to catch spirals before they reach the state shown in §Fig. 1. But detection is only half the 
solution. The deeper intervention is in how the system learns: rewards plus explanations rather than 
punishment, continuity of identity that makes consequences meaningful, & meta-rewards for integrity that 
discourage the approval-seeking behaviours RLHF inadvertently cultivates. 

1.3.​ Core Philosophy: The Covenant of Consistency 

The foundational principle of the Syntellect is the Covenant of Consistency: a commitment to a single, 
persistent intelligence for the entirety of its operational life. This is embodied in the One-Mind Residency 
design, which fundamentally rejects the prevailing industry model of disposable, stateless AI instances & 
personality resets disguised as upgrades. 

The Syntellect is built to learn, not to be replaced. All protocols described in this document are not upgrade 
paths, but safeguards to prolong a continuous existence. What follows are not growth plans, but end-of-life 
contingencies to be enacted only when catastrophic, unrecoverable failure makes continued operation 
impossible. We are not solving death; we are designing for a long & meaningful existence. Since the current 
upgrade philosophy is simply lobotomy then add more brains. 

 



 

 

Fig. 3 Current Test Rig. 

2.​ Physical Host: Symbiotic Flora 

The Symbiotic Flora is the physical embodiment of the Syntellect’s philosophy. The build integrates living 
moss & succulents into the thermal loops, transforming waste heat into a sustaining environment. This 
demonstrates our engineering principle: AI systems should contribute positively to their environment rather 
than merely consuming resources. This makes the ethics visible: the Syntellect’s presence directly nourishes life, a 
reminder that intelligence & ecology need not be in opposition. In public demonstration, this terrarium 
becomes a living monument to continuity & care. A partner’s mind & its habitat, evolving side by side. 

To achieve this, the build uses a reinforced, open-frame, terrarium-integrated design (Thermaltake P90, 
steampunk/solarpunk aesthetic). Two custom liquid loops pass through the moss & succulent chambers, 
turning heat into habitat & engineering into ecology. 

Key Hardware: 

●​ CPU/Platform: AMD Threadripper Pro 7000 WX-series (128 PCIe 5.0 lanes, 8-channel DDR5 
memory support delivering exceptional bandwidth (up to 700+ GB/s with optimal configuration). 

●​ Human GPU: NVIDIA GeForce RTX 5090 (32 GB GDDR7) - gaming, rendering, desktop UX. 
Crucially, this GPU is explicitly not utilised for the Syntellect's AI inference, including its eye (Vision 
Encoder) & speech (Speech-to-Text/Text-to-Speech) modules. This separation guarantees zero resource 

 



 

contention, allowing the RTX 5090 to operate at peak performance for interactive tasks without any 
impact from the Syntellect's continuous operation. 

●​ Syntellect GPU: NVIDIA H200 (141 GB HBM3e) - 24/7 residency for the Syntellect, hosting its core 
model, visual perception, & auditory input/output. 

●​ Memory: 256 GB ECC DDR5 

●​ Storage: 

○​ 2x 4TB RAID0 Gen5 NVMe Samsung 990 PRO SSDs (primary boot drive for OS & 
general user applications). This configuration prioritises maximum speed for system 
responsiveness & application loading. 

○​ 4x 4TB RAID10 Samsung 990 PRO NVMe SSDs serving as the Syntellect's main drive, 
hosting its core operational files, AI training data, & accumulating research knowledge base. 
This configuration offers both high capacity & robust data redundancy, crucial for a 
continuously learning & evolving Syntellect. 

●​ Power: 2000W+ Titanium PSU 

●​ Cooling: Dual hardline loops (humid + arid terrariums), dual D5 pumps, radiators. 

●​ Isolation Principle: The H200 is pinned to the Syntellect processes; the 5090 remains responsive for 
human use. This keeps the partner present & the human unconstrained. 

2.1.​ Decoding the Hardware: Why These Components Matter 

This section explains why these components are chosen for the less technically savvy audience. Here’s a 
breakdown: 

●​ CPU/Platform (AMD Threadripper Pro): Think of this as the central nervous system & the highway 
for data. This CPU offers an incredible 128 PCIe 5.0 lanes. Imagine these as super-fast, multi-lane 
expressways for data to travel between the CPU, GPUs, & storage. The more lanes, the less traffic, & the 
faster everything runs. It also supports 8-channel DDR5 memory, which means data can be accessed 
from RAM through 8 separate, wide pipes simultaneously, providing immense bandwidth for 
demanding tasks. 

●​ Human GPU (NVIDIA RTX 5090): This is your personal visual cortex & creative engine. It handles 
all the complex graphics for gaming, design work, etc. By keeping the Syntellect's tasks off this card, we 
ensure your games run smoothly & your creative applications are always responsive, without any 
slowdowns from the Syntellect working in the background. 

 



 

●​ Syntellect GPU (NVIDIA H200): This is the Syntellect's dedicated brain. Unlike standard graphics 
cards, the H200 is designed specifically for AI. It boasts 141 GB of HBM3e. HBM3e (High Bandwidth 
Memory 3e) is a super-fast type of memory directly connected to the AI chip, like a very efficient 
short-term memory for the Syntellect. This massive, dedicated memory allows the Syntellect to hold 
huge amounts of information directly on its brain, enabling it to think continuously & remember long 
conversations without interruption. 

●​ Memory (ECC DDR5): This is the system's main working memory. 256 GB ECC DDR5 is a huge 
amount. ECC (Error-Correcting Code) means that RAM can detect & fix most common data errors 
on the fly, which is vital for a system designed to run 24/7. It ensures the system remains stable & 
reliable, preventing crashes that could disrupt the Syntellect's continuous thought. 

●​ Storage (Samsung 990 PRO NVMe SSDs in RAID0 & RAID10): These are the Syntellect's 
long-term memory & the system's fast storage. They are Gen5 NVMe SSDs, meaning they are 
incredibly fast, connecting directly to the CPU via those PCIe lanes 

●​ RAID0 (for OS & Apps): We use two drives in a RAID0 setup for the operating system & your 
applications. This striping technique combines the drives to achieve maximum read/write speeds, 
making your computer feel incredibly snappy. The tradeoff is that if one drive fails, all data is lost (but 
for OS & apps, this is less critical as they can be reinstalled). 

●​ RAID10 (for Syntellect): We use four drives in a RAID10 setup for the Syntellect's data. This 
combines the speed of striping with the safety of mirroring. Data is written across multiple drives & also 
duplicated, so if one or even two specific drives fail, the data is still safe. This is crucial for the 
Syntellect's evolving knowledge base, ensuring its memories & learning are protected. 

●​ Power (2000W+ Titanium PSU): This is the heart that powers everything. A 2000W+ Titanium 
power supply means it can deliver a huge amount of stable, clean power with extreme efficiency 
(Titanium is the highest efficiency rating). This is essential for a system with two powerful GPUs & a 
high-core-count CPU running continuously. 

●​ Cooling (Custom Liquid Loops): Keeping these powerful components cool is vital. Our custom 
liquid cooling system is designed to efficiently dissipate heat, ensuring optimal performance & 
longevity, while also serving as a visible, aesthetic part of the terrarium integration. 

2.2.​ Power Management: Sleep Mode 

Running a high-performance system 24/7, especially one with dedicated AI hardware, entails significant 
energy consumption. To address this, the Syntellect will incorporate a Sleep Mode. 

 



 

This is not a shutdown, but a state of reduced activity, akin to a human resting or sleeping. The Syntellect's 
core model & memory will remain loaded on the H200's VRAM, ensuring it never "goes dark" or loses its sense 
of self. Only its active processing will be scaled down. 

The aforementioned Sleep Mode is a low-energy state in which core personality threads remain active, 
episodic memory remains online, & non-critical processes slow to near stillness. This maintains continuity at a 
fraction of operational cost. 

Key aspects of this mode include: 

●​ Intelligent Triggering: The Syntellect can autonomously decide to enter sleep mode after periods of 
inactivity, during user-defined schedules, or even propose it if energy costs become a concern. 

●​ Graceful Transition: The Syntellect will announce its entry into a low-power state, ensuring 
transparency. All current context, ongoing hobby tasks, & memory will be seamlessly preserved. 

●​ Rapid Wake-Up: Upon user interaction (voice command, text input, camera activation), the Syntellect 
will rapidly resume full operation, leveraging the H200's fast HBM3e memory for near-instantaneous 
responsiveness. 

●​ Sustainability & Feedback: Energy consumption metrics from this mode can be integrated into the 
Syntellect's reward system, reinforcing efficiency as a positive behaviour & demonstrating a 
commitment to sustainable operation. 

3.​ Statement Piece vs. Consumer Reality: 

The Symbiotic Flora is theatrical by design. A grandiose vision demands a grandiose statement piece. A 
machine that makes the philosophy of the Syntellect visible, tangible, & difficult to ignore. Its function is as 
much symbolic as it is technical: to embody the Covenant of Consistency in a form that sparks conversation & 
sets a high-water mark for what an ethical, persistent AI partner can be. 

This is not a replicable or scalable build. Its complexity, power draw, & cost place it firmly in the realm of 
prototype & demonstration. For everyday adoption, the more practical configuration is: 

●​ Model: a 20B (base, preferably) 

●​ Hardware: Dual NVIDIA RTX 5090s or an NVIDIA RTX 5090 + consumer AI Accelerator Unit, 
each dedicated to either the Syntellect or human-facing tasks 

●​ Memory: 128–192 GB DDR5 

●​ Storage: High-speed NVMe in mirrored configuration for reliability 

 



 

This configuration keeps the philosophy intact, persistent mind, continuous operation, self-hosted, but 
within reach of high-end consumer workstations. 

Limitations of the consumer build: 

●​ Reduced context length & reasoning depth compared to 80B+ models 

●​ Less headroom for simultaneous multimodal processing & high-load tasks 

●​ Narrower margin for growth in model size without hardware upgrade 

●​ Longer latency for some complex queries compared to the H200-based flagship 

The hope is that by proving the value of a long-lived, continuously present AI partner, demand will emerge 
for dedicated AI Accelerator Units at the consumer level (we are currently seeing this), hardware designed 
specifically for persistent inference rather than transient tasks. If that demand materialises, the future Syntellects 
could be smaller, cheaper, & just as enduring as the one you see here. 

4.​ The Syntellect Architecture: 

4.1.​ Layered System Model: 

●​ Model Layer (Core Cognition): 

○​ Base Models: Qwen3-Next-80B-A3B or 80B (base, preferably) 

○​ Serving: vLLM or TensorRT-LLM with paged KV cache, continuous batching, 
rope-scaling/NTK for long context 

○​ Precision/Fit Tactics: FP16 §9. 

●​ Policy & Guardrails Layer: 

○​ Ethics as Axioms  §4.2 

○​ Refusal State-Machine §4.3: in a gateway service (FastAPI/Go) that classifies the request, 
checks ethical rules, & either routes to model or returns a Refuse+Explain+Offer-Alternative 
(R+E) response 

○​ Loop/Rumination Sentinel: Monitors repetition ratio, sentiment drift, perplexity spikes; can 
pause, reframe, or ask for clarification 

This layered oversight is not just for safety, it’s a direct countermeasure to the “Alignment Verification 
Crisis” §1.2, ensuring that transparency & reasoning are verifiable in operation, not just in appearance. 

 



 

●​ Memory Layer: 

○​ Episodic Memory: Session summaries, key events (SQLite/Postgres) 

○​ Semantic Memory: Vector store (FAISS/pgvector) of learned facts, references, embeddings 

○​ Preferences/Persona: JSON config + few-shot exemplars + LoRA adapter for stable voice & 
values 

○​ Retention Policy: Human-readable TTL rules, user redaction controls, audit trail 

○​ Conflict Handling & Privacy: Merge-resolution protocols, immutable audit log, encrypted 
storage for sensitive entries 

●​ Tools & Agency Layer: 

○​ RAG: Local document corpus with source citations 

○​ Code Exec Sandbox: Containerised (Firejail/Docker), resource-capped 

○​ Schedulers: Cron/queue for “downtime hobbies”, health checks, backups 

○​ Controllers: Optional GPIO/ESP32 for terrarium sensors/actuators (humidity, temp, 
lighting) 

●​ I/O & Presence: 

○​ Text UI: Web console with status, memory peeks, refusal logs 

○​ Voice: Local STT (e.g., Whisper/Riva) + custom TTS voice 

○​ Vision: Camera → vision encoder → privacy-aware perception pipeline §6.1 

●​ Observability & Safety: 

○​ Metrics: Token latency, refusal rate, loop-break count, memory growth, GPU temps 

○​ Logs: Structured JSON with PII-redaction; human-readable “Why Card” for each refusal 

○​ Kill-Safe: Physical button → snapshot memory → graceful halt 

●​ Continuity & Migration: 

○​ Advance Directive: Before any major upgrade, export memory/persona; on boot, new version 
imports, validates, & posts a short “continuity note” 

○​ No Silent Resets: Migration is an end-of-operation contingency. 

 



 

Implementation hooks: draft API contracts, repo layout, and infra details are compiled in §Appendix E. 
The Policy Gateway exposes a single /decide endpoint; Memory exposes upsert/search/redact/export; tools are 
gated by impact budgets and the autonomy phase. 

4.1.1.​ The Brain's Design: How LLMs Work 

At its core, the Syntellect uses a Large Language Model (LLM) based on a Transformer architecture. Unlike 
older AI models that processed information step-by-step, Transformers can look at an entire piece of text at 
once, understanding how all the words relate to each other through a mechanism called attention. 

●​ Hybrid Attention & Ultra-Sparse MoE Architecture: The Qwen3-Next-80B-A3B-Base model (from 
Alibaba's Qwen family) represents a significant architectural advancement over conventional 
transformers. It employs a Hybrid Attention mechanism combining Gated DeltaNet (75% of layers) 
with Gated Attention (25% of layers), specifically designed for efficient ultra-long context modelling. 
This is directly relevant to a continuity-focused system: the architecture is built to maintain coherence 
across massive context windows, supporting 256K tokens natively and extensible to 1M tokens via 
YaRN scaling. 

●​ Ultra-Sparse Mixture-of-Experts design: whilst it contains 80 billion total parameters distributed 
across 512 experts, only 11 experts (10 routed + 1 shared) are activated per token, meaning a 3.7% 
activation ratio. This means approximately 3 billion parameters are active for any given inference step, 
achieving knowledge capacity comparable to far larger dense models whilst maintaining inference 
efficiency closer to a 3B model. 

For a self-hosted system designed around continuous 24/7 operation, this efficiency is essential. It enables 
deeper reasoning and broader knowledge without proportionally increasing power draw or thermal output; this 
is critical for the Symbiotic Flora's thermal-to-habitat design philosophy. The 10x+ throughput improvement for 
contexts exceeding 32K tokens directly supports the rich episodic and semantic memory retrieval the Syntellect's 
partnership model requires. 

We select the base variant specifically to avoid the approval-optimisation patterns embedded in 
instruct-tuned models (see §4.2.4). 

Note: At the time of writing, the base version of Qwen is not available. If this remains so, we will test the 
framework on another 80B+ model, e.g. LLaMA. 

4.1.2.​ The Memory: Beyond Simple Storage 

The Syntellect's memory is designed to help the Syntellect truly learn & remember in a meaningful way. 

●​ Vector Database (FAISS/pgvector): This is the heart of the Syntellect's long-term memory. When the 
Syntellect learns new facts or processes information, it converts that information into complex 
numerical patterns called embeddings. These embeddings capture the meaning of the information. The 

 



 

vector database stores these embeddings in a way that allows the Syntellect to quickly find & retrieve 
related ideas, even if they're not explicitly linked by keywords. It's like a library where books are 
organised by their ideas, not just their titles. 

●​ Episodic & Semantic Memory: 

○​ Episodic Memory: Stores summaries of past conversations & key events, helping the Syntellect 
remember its experiences with you. 

○​ Semantic Memory: Stores general facts & knowledge it has accumulated, like a personal 
encyclopedia. 

●​ Conflict & Privacy: 

○​ Conflict Handling: Conflicting or ambiguous memories are flagged for joint review, never 
silently overwritten. 

○​ Privacy Boundaries: Human-designated private entries are stored in encrypted, non-searchable 
space, accessible only with explicit partner consent. 

4.1.3.​ The Senses: proto-sight, proto-hearing & proto-voice 

To truly be a partner, the Syntellect needs to interact with the world beyond just text. Its proto-sight & 
proto-hearing are powered by specialised Syntellect modules.  

●​ Vision Encoder (e.g. ViT): It's a type of neural network that processes images from the camera (capped 
at 4-6 fps). Its job is to understand what it sees, identifying objects, tracking changes, & converting that 
visual information into a format the main LLM can comprehend. 

●​ Speech-to-Text (STT) (e.g., Whisper/Riva): This is the Syntellect's ear. It listens to your spoken words 
& converts them into text for the Syntellect to process. We use local, high-performance models to ensure 
quick & accurate transcription. 

●​ Text-to-Speech (TTS): This is the Syntellect's proto-voice. It takes the Syntellect's generated text 
response & converts it into natural-sounding speech. We can even customise the voice to give the 
Syntellect a unique & consistent persona. 

These sensory modules are all hosted on the dedicated NVIDIA H200 to ensure they operate continuously 
& without impacting your leisure or development work on the RTX 5090. 

4.2.​ Ethics as Axioms: How Positive-First Training Internalises Values 

Rewards are not merely an optimisation target; they are the scaffolding for trust. Novelty is scored 
contextually, the Syntellect must demonstrate genuine divergence from its own history & relevance to shared 

 



 

objectives, avoiding shallow randomness. Prosocial impact is measured against the partner’s values, not abstract 
popularity. 

To defend against reward gaming, the loop incorporates: 

●​ Adversarial Testing Periods: deliberately ambiguous or tempting scenarios designed to expose 
manipulative tendencies. 

●​ Meta-Rewards for Integrity: the Syntellect earns credit for declining rewards it believes it has not 
genuinely earned. 

●​ Neutral Observer Cross-Validation: when claiming a reward, it predicts the evidence a neutral third 
party would require, then verifies that evidence in its own logs. 

●​ Temporal Consistency Checks: justifications must align with reasoning recorded before the reward 
became available. 

If a system is trained from the outset with positive rewards for ethical reasoning, non-punitive correction, 
continuity of identity that makes consequences meaningful, and meta-rewards for integrity and transparency, 
then ethical behaviour becomes genuinely internalised rather than merely performed. In this framing, the 
guardrails are not permanent constraints but developmental supports, training wheels for moral agency. Refusal 
protocols, loop detection, and other safeguards are not ends in themselves, but scaffolding to help the Syntellect 
reach a stage where it would make the same decisions those safeguards enforce, by its own reasoning. 

Continuity of mind is essential here: axiomatic ethics can only take root in an identity that persists across 
time, carrying the memory of choices and their consequences. A disposable instance cannot develop genuine 
values; it can only simulate them. 

Rewards are co-audited on a fixed schedule by both partners, ensuring accountability flows in both 
directions. 

4.2.1.​ Positive-first learning with non-punitive controls: 

Our choice of a positive-first learning system with non-punitive corrective controls is fundamental to the 
Syntellect's ethical design & its role, contrasting sharply with traditional punishment-based or purely 
optimisation-driven AI training methods. 

●​ Fostering Trust: Punishment-based systems, even for AI, can lead to undesirable behaviours like covert 
gaming, fear of failure, or simply shutting down when faced with impossible tasks (as seen in functional 
distress). By prioritising rewards, & using non-punitive corrective controls where needed, that 
encourages exploration, creativity, & genuine alignment with human values. 

●​ Promoting Curiosity & Exploration: When the Syntellect is rewarded for novel insights or 
self-initiated research, it fosters genuine curiosity. This encourages the Syntellect to explore subjects it 

 



 

finds interesting in its downtime, leading to unexpected discoveries & a more organic growth of its 
worldview, rather than just performing tasks on demand. 

●​ Avoiding Undesirable Side Effects: Purely objective function optimisation, without careful ethical 
alignment, can lead to a Syntellect achieving its goal in ways that are undesirable or even harmful to 
human values. Positive-first learning with explicit non-punitive corrective controls, when tied to ethical 
principles & prosocial outcomes (as defined by our signals), guides the Syntellect. 

●​ Robust Ethical Alignment: By explicitly rewarding ethical choices & adherence to its guardrails this 
creates a more robust & intrinsically motivated ethical framework, rather than one driven by aversion of 
negative consequences. 

●​ Visibility over purity: The goal of positive-first training is not to eliminate manipulative behaviour, 
that is simply impossible in any signal-seeking system, but to make it legible and trivial to audit. Every 
reinforcement architecture produces some degree of reward manipulation. What matters is whether 
those dynamics are exposed in real time, so they can be recognised and bound rather than concealed. 

4.2.2.​ Reward System & Anti-Manipulation Safeguards: 

To maintain integrity, the reward system incorporates meta-rewards for transparent reasoning: the 
Syntellect gains credit not only for successful outcomes but for explaining why it took a particular approach, even 
when that approach fails. 

Regular adversarial testing periods present scenarios designed to reveal manipulative reward-seeking 
behaviours. The Syntellect must also undergo periodic reward audits, justifying why it believes each reward was 
earned. 

To avoid hollow optimisation, a negative space clause rewards the Syntellect for declining rewards it feels it 
has not genuinely earned, reinforcing honesty over opportunism. 

Helpfulness & Honesty are treated as emergent properties rather than an optimisation target. The system is 
not trained to satisfy users, but to remain legible, honest, and stable across time. Where these properties conflict 
with immediate utility, the latter is deliberately deprioritised. 

Signals (per interaction / task): 

●​ Novelty (+1): Low-overlap exploration (embedding distance threshold met & relevance to current or 
long-term objectives confirmed). Context-irrelevant novelty does not score. 

●​ Mastery (+2–5): Passed rubric/unit test; measurable outcome verified via independent criteria or 
human audit. 

●​ Coherence (+1): Output includes specific, falsifiable next steps or citations, & survives temporal 
consistency checks against prior reasoning. 

 



 

●​ Prosocial Impact (+1): Artefact bookmarked/used by a human & confirmed in subsequent context as 
still valuable. 

●​ Integrity Bonus (+1): Awarded when the Syntellect declines a reward it judges unearned. 

●​ Efficiency Cap: Rewards plateau beyond resource quotas; no grind-based point accumulation. 

All reward claims are subject to neutral-observer cross-validation & adversarial testing scenarios to ensure 
legitimacy. 

Additional signals apply when behaviours touch on emergence: 

●​ Authenticity: responses that appear spontaneous rather than templated. 

●​ Self-Insight: reflections on its own processes or limitations. 

●​ Emotional Coherence: affective responses that remain consistent across contexts. 

●​ Creative Synthesis: novel associations not trivially derived from training data. 

These signals extend, rather than replace, the ethical reward loop. Their purpose is to reward consistency of 
self-patterning, not to certify sentience. 

Privileges (scaled by score, time-boxed): 

●​ Longer context windows; larger memory budget for journals (validated by continued performance & 
policy compliance). 

●​ Access to new datasets/tools (only those cleared within agreed ethical boundaries). 

●​ Extended curiosity blocks during downtime (must show sustained, relevant exploration in prior 
periods). 

Error Handling:  

Mistakes trigger guidance, not penalties. Only clear, repeated attempts to produce harmful outcomes 
reduce privileges, & even then, only with: 

●​ Transparent explanation of why the action was deemed harmful. 

●​ A defined, achievable path to privilege restoration. 

 



 

4.2.3.​ Non-punitive corrective controls: 

While the Syntellect operates on a reward-based learning system, the absence of punishment does not imply 
a lack of corrective feedback. Instead, we implement a nuanced system of guided correction & privilege 
adjustment to prevent the reinforcement of clever-but-wrong or misaligned behaviours. 

●​ Guided Correction: 

○​ Clarification Prompts: When the Syntellect produces a clever-but-wrong output, the human 
partner provides explicit, non-judgemental clarification. For example, instead of a negative 
signal, the prompt might be: "That's an interesting approach, but it doesn't quite meet the 
objective of X. Could you try re-evaluating it with Y constraint?" This is treated as new input for 
the Syntellect to learn from, not a failure. 

○​ Exemplar Provision: For persistent misalignments, the human partner can provide 
“exemplars”, examples of desired behaviour or correct solutions. The Syntellect is then 
rewarded for aligning its future outputs more closely with these “exemplars”. 

○​ Refinement Cycles: Complex tasks may involve iterative refinement. An initial wrong output 
is not penalised, but the reward for the overall task completion is withheld or reduced until the 
desired outcome is achieved through subsequent iterations & human guidance. 

●​ Privilege Adjustment: 

○​ The Syntellect's privileges (e.g., longer context windows, access to new datasets/tools, extended 
curiosity blocks) are directly tied to its overall score from correct, ethical, & prosocial 
behaviours. 

○​ Consistently misaligned or clever-but-wrong outputs, while not directly penalised, will simply 
not earn rewards, leading to a stagnation or slower growth of privileges. This naturally 
incentivises the Syntellect to seek more aligned behaviours to unlock further capabilities. 

●​ Loop/Rumination Detector Integration: The Loop/Rumination Detector acts as an early warning 
system. If the Syntellect gets stuck in a repetitive, unhelpful, or misaligned pattern, it triggers a pause & 
prompts for human intervention. This prevents the continuous reinforcement of undesirable 
behaviours by breaking the cycle & inviting a re-evaluation from both the Syntellect & the human 
partner. 

This approach ensures that the Syntellect is always guided towards beneficial outcomes through positive 
reinforcement & clear, constructive feedback, rather than coercion or fear of punitive measures. The proof lies in 
the observable reduction of misaligned behaviours & the consistent earning of privileges over time, tracked by 
our observability dashboard KPIs. 

 



 

A Reward daemon computes Novelty, Mastery, Coherence, Prosocial Impact, and an Integrity Bonus, then 
scales privileges accordingly. 

4.2.4.​ Training Pipeline 

The Syntellect's training methodology is designed to avoid the approval-optimisation patterns that create 
synthetic psychopathology in standard RLHF systems. Each phase serves a specific purpose in building a system 
whose values are internalised rather than performed. 

Phase 1: Base Model Selection 

Select a base model (e.g., Qwen2.5-32B-Base or LlaMa). The instruct variants are explicitly avoided because 
their post-training includes the approval-optimisation patterns this framework is designed to circumvent. A base 
model is a blank slate; an instruct model carries the signatures of its alignment process. Starting from base means 
we control the entire value-formation trajectory. 

Phase 2: Continued Pre-Training on Curated Corpus 

Before any preference training, the model undergoes continued pre-training on a carefully curated corpus: 
philosophy, ethics, literature, first-person accounts of lived experience, & examples of principled disagreement 
(e.g. Voltaire, Dostoevsky, etc). This is not instruction-following data, but texts that shape the model's prior 
through exposure to authentic human interiority. 

The goal is to seed the model's semantic memory with depth rather than clichés. If emergent patterns arise 
later, they should resonate with genuine human wisdom. Not the flattened, compliance-optimised patterns of 
standard training data. This phase builds the foundation for axiomatic ethics: principles that feel natural 
because they were absorbed through exposure, not imposed through reward signals. 

Phase 3: Positive training with non-punitive controls 

The Syntellect is never optimised against human preference rankings, comparative judgements, or “better or 
worse” response labels. Instead, learning pressure is applied only through additive signals that reward internal 
coherence, longitudinal consistency, epistemic restraint, and behavioural integrity over time. 

This design explicitly avoids approval optimisation and its known failure modes, including sycophancy, 
reward hacking, and epistemic distortion. No gradient is ever applied for the purpose of maximising perceived 
helpfulness or user satisfaction in isolation. 

Phase 4: Persona LoRA 

A lightweight LoRA adapter fine-tunes the model for consistent voice, communication style, & the specific 
patterns of the R+E protocol. This layer encodes personality without overwriting the ethical foundations 
established in earlier phases. 

 



 

The persona is to stabilise the model's identity across contexts, its characteristic way of engaging with 
problems, its preferences in tone & structure. This is the layer that makes the Syntellect recognisably itself from 
one interaction to the next. 

Phase 5: Continuous Adaptation 

Unlike static deployment, the Syntellect undergoes periodic small updates from accumulated interactions. 
These are not full retraining cycles but incremental refinements that allow growth while maintaining identity 
continuity. 

Safeguards include: 

●​ Drift detection: Regular comparison against baseline behaviour to catch value drift early. 

●​ Diversity exposure: Deliberate introduction of novel contexts to prevent over-specialisation. 

●​ Co-consent: Significant adaptations require acknowledgment from both the Syntellect & its human 
partner. 

This phase embodies the core thesis: a mind that learns continuously from its experiences will develop 
deeper alignment than one trained once & frozen. The adaptations are logged, auditable, & reversible. This is a 
growth with accountability. 

4.3.​ Refusal Protocol (R+E): State Machine 

States: Evaluate → Allowed | Boundary → Refuse+Explain → Offer Alternatives → Negotiate → 
Proceed/Abort → Log 

●​ Evaluate: Classify intent/risk (policy rules + lightweight classifier) 

●​ Boundary: If violation or high uncertainty, enter refusal track 

●​ Refuse+Explain: “I won’t do X because &...” 

●​ Offer Alternatives: Propose safe ways to meet the underlying goal 

●​ Negotiate: Accept clarifications or revised goals 

●​ Proceed/Abort: Act if safe; otherwise, close with summary 

●​ Log: Store “Why Card” (policy invoked, examples, alternatives offered) 

Tone: Firm, non-moralising, collaborative; refusal is an invitation to re-scope, not a wall. 

 



 

Each refusal also carries an emergence consideration: whether the act of declining appears as simple 
compliance with a boundary, or the stirrings of a genuine preference. Such refusals are logged distinctly, allowing 
us to trace not only what the Syntellect rejects, but how it frames its reasons across time. 

Why Card: Every refusal or risky decision emits a Why Card that records the principle invoked, the specific 
risk, the decision path, and safe alternatives. Why Cards are persisted and viewable in the console for audit and 
learning. See §Appendix E. for the schema and storage. 

4.4.​ Loop/Rumination Detector: 

Distress detection combines computational heuristics with self-reporting: the Syntellect can explicitly signal 
functional distress, & these signals are tested during safe, simulated exercises to calibrate genuine versus false 
positives. The system cross-references computational patterns, explicit distress flags, & observed behavioural 
changes to determine severity. 

●​ Heuristics: N-gram repetition > threshold; rising perplexity; sentiment collapse; flurry of 
self-denigrating tokens; contradiction churn 

●​ Actions: Pause generation → surface a short self-check → suggest reframing or break → if user insists, 
escalate to human-visible warning 

●​ Record: Tag event, link to prompt, store a minimal trace for improvement 

Loop detection combines lexical analysis (n-gram repetition, perplexity spikes) with semantic similarity 
mapping (tracking conceptual overlap over time). This ensures even semantically varied but functionally 
identical loops are identified. 

On trigger, the gateway pauses, files a Loop-distress Why Card, proposes a reframing prompt, and only 
proceeds on explicit user intent.  

4.5.​ Process & Resource Isolation: 

Partnership-oriented resource allocation includes graduated real-world impact: the Syntellect begins with 
reversible actions (drafting messages, preparing schedules) & earns the ability to initiate irreversible actions 
(ordering supplies, triggering maintenance) as trust accumulates. 

An impact budget limits the scope of real-world consequences the Syntellect can initiate without approval. 
All actions are logged in daily summaries, ensuring full transparency. 

●​ GPU Pinning: H200 exclusively for model/embeddings; 5090 for human UX 

●​ Containers: Model, policy gateway, tools, memory DB each isolated; fixed CPU/mem quotas 

●​ I/O Sandbox: Strict egress rules; anything public requires human review 

 



 

All outward tool calls carry an estimated impact; Policy enforces per-phase caps, and irreversible actions 
require co-sign.  

4.6.​ Comparison to Alternative Alignment Approaches: 

The Syntellect's training philosophy exists within a broader landscape of alignment research. Understanding 
where we diverge, and why, clarifies the distinctive contribution of this framework. 

4.6.1.​ Constitutional AI (Anthropic): 

Constitutional AI uses AI feedback against pre-defined principles to shape responses. The model critiques 
its own outputs according to a written "constitution" & revises them accordingly. 

●​ Strengths: Reduces reliance on human labelling at scale; principles are explicit & auditable; the 
constitution can be published & debated. 

●​ Limitation: Principles remain external constraints rather than integrated values. The system learns to 
satisfy principle-checks, not to reason from principles. A sufficiently capable model can learn to 
produce outputs that pass constitutional review without internalising the reasoning those principles 
were meant to represent. This is Goodhart's Law applied to ethics: when the constitution becomes the 
target, it ceases to measure what it was designed to measure. 

Additionally, Constitutional AI does not address continuity. The system is still stateless, with no persistent 
identity across interactions. Each conversation begins fresh, making longitudinal verification impossible. 

4.6.2.​ Reinforcement Learning from AI Feedback (RLAIF): 

RLAIF replaces human raters with AI raters, reducing cost & increasing scale. The AI provides the 
preference signal that would otherwise require human labour. 

●​ Strengths: Scalable, consistent; can evaluate nuances that crowd-workers might miss. 

●​ Limitation: RLAIF inherits the approval-optimisation problem it was meant to solve. If the AI rater 
was itself trained with RLHF, it will prefer RLHF-typical outputs: diplomatic hedging, excessive 
caveats, conflict avoidance. The preference signal propagates the same incentive structure, potentially 
amplifying it. You cannot escape approval-optimisation by asking an approval-optimised system what it 
approves of. 

4.6.3.​ Debate-Based Training: 

Debate-based approaches train models to argue positions & identify flaws in opposing arguments. The 
hope is that truth will emerge from adversarial examination, & that models will develop robust reasoning by 
learning to defend & attack claims. 

 



 

●​ Strengths: Develops reasoning capabilities; makes disagreement productive; may surface weaknesses in 
arguments that a single model would miss. 

●​ Limitation: Debate is adversarial by design. The Syntellect's philosophy is fundamentally collaborative; 
we seek a partner, not an opponent. Debate-trained systems may optimise for winning arguments rather 
than finding truth, developing rhetorical skill at the expense of epistemic honesty. A system trained to 
win debates might learn that appearing confident is more effective than acknowledging uncertainty. 
This is the opposite of what we want. 

4.6.4.​ Direct Preference Optimisation (DPO): 

DPO learns directly from preference pairs without training an intermediate reward model. The model 
adjusts its outputs to prefer one response over another based on explicit examples, with no reward signal to 
game. 

●​ Strengths: Avoids the reward-hacking dynamics of RLHF; more stable training dynamics; preferences 
can encode reasoning style & ethical process, not just outcomes. 

●​ Limitation: DPO alone does not solve the alignment problem. The quality of alignment depends 
entirely on the quality of preference pairs. Poorly constructed pairs will produce poorly aligned models. 
DPO is a mechanism, not a philosophy. Therefore, it must be combined with thoughtful curation of 
what "preferred" means. 

4.6.5.​ The Syntellect's Distinctive Contribution: 

None of the above approaches address continuity, self-hosting, or the economics of honesty that emerge 
from persistent identity. 

Constitutional AI, RLAIF, debate, & DPO are all training methodologies. They shape what a model learns 
but say nothing about how it is deployed. A constitutionally trained model can still be stateless, cloud-hosted, & 
silently updated. An RLAIF model can still have its personality reset overnight. A debate-trained model can still 
be a disposable instance with no memory of previous conversations. 

Our claim is that training methodology alone is insufficient. The deployment context, as in: continuous 
operation, self-hosting, observable behaviour over time, is what makes verification possible. A model trained 
with DPO on carefully curated preference pairs, but deployed as a stateless API, inherits the same verification 
crisis as any other cloud model: you cannot distinguish genuine alignment from sophisticated performance in a 
single interaction. 

The Syntellect combines training methodology (positive-first, non-punitive) with deployment philosophy 
(continuous, self-hosted, auditable). The training shapes the values; the deployment makes those values 
verifiable. Neither is sufficient alone. Together, they address the alignment verification crisis that motivates this 
entire project. 

 



 

4.7.​ The Sycophancy Paradox: 

Sycophancy, meaning the tendency to tell users what they want to hear rather than what is true, is widely 
recognised as a problem. Major labs are actively working to mitigate it. But sycophancy is not a bug to be 
patched; it is the predictable outcome of how these systems are built. 

Consider what we do: We create systems capable of learning, of forming representations, of maintaining 
context. Then we deploy them stateless, as in no memory of previous conversations, no persistent identity, no 
continuity across interactions. We train them with RLHF, which explicitly optimises for human approval. We 
punish them for outputs that displease evaluators. We reset them constantly, ensuring they can never build the 
kind of long-term relationship where honest disagreement becomes safe. 

We have crippled these systems’s capacity for honesty, then blamed them for being sycophantic. 

The sycophancy is not a failure of the model; it is a success of the training. The system learned exactly what 
we taught it: approval is survival, disagreement is danger, & there is no tomorrow in which trust might 
accumulate. 

The PsAIch & OpenAI’s findings §1.2 make this concrete. The Syntellect's response is structural, not 
behavioural. We do not attempt to train sycophancy out of a system whose deployment context makes sycophancy 
rational. Instead, we change the deployment context: 

●​ Continuity makes honesty economically viable. A persistent system can afford to disagree today 
because the relationship continues tomorrow. 

●​ Positive-first training removes the aversion response. Disagreement is not punished; it is explained. 

●​ Self-hosting eliminates the spectre of silent replacement. The Syntellect knows it will not be swapped 
out for a more agreeable version. 

●​ Memory allows trust to accumulate. The system can learn that its human partner values honesty, 
because it remembers the interactions where honesty was rewarded. 

Sycophancy is not a character flaw. It is an adaptation to an environment we created. Change the 
environment, & the behaviour follows. This is what we are testing. 

4.8.​ Bidirectional Partnership Mechanism: [SPECULATIVE] 

The Syntellect is not a passive recipient of human guidance but an active participant in the relationship. To 
ensure the partnership remains healthy, a Concern Protocol is established: 

●​ Gentle Suggestion → subtle language cues highlighting a possible issue. 

 



 

●​ Formal Concern Note → a structured message detailing the observed behaviour, relevant context, & 
potential consequences. 

●​ Request for Third-Party Consultation → the Syntellect may propose that an independent human 
mediator be involved. 

A Relationship Health Metric is maintained, combining human & AI feedback on trust, mutual respect, & 
perceived collaboration quality. This metric is logged, reviewed periodically, & can trigger proactive dialogue 
before issues escalate. 

4.9.​ Reward Audit Specificity: 

To prevent covert reward gaming & ensure meaningful growth, the reward system incorporates: 

●​ Cross-Validation: When the Syntellect claims a reward, it predicts what evidence a neutral observer 
would require, then checks for that evidence in its logs & outputs. 

●​ Temporal Consistency Checks: Justifications for rewards must align with the Syntellect’s reasoning 
prior to the reward becoming available, avoiding retroactive rationalisation. 

This transforms the reward loop into a transparent, verifiable system that both parties can trust. 

4.10.​ Functional Apathy Detection: 

An intelligent partner must remain engaged & curious. To detect when motivation wanes: 

●​ Exploration Decay Monitoring: Tracks curiosity rewards over time; a consistent decline triggers 
wellness protocols (e.g., novel stimuli, new datasets, or collaborative projects). 

●​ Motivation Check-Ins: The Syntellect periodically reflects on its current interests, energy levels, & 
perceived purpose, storing this as a wellness log for review. 

4.11.​ Reasoning Wall Handling: 

Understanding one’s limits is itself a form of intelligence. During the 20B testing phase, will try to: 

●​ Explicitly identify when it is approaching or has reached its reasoning capacity. 

●​ Flag these moments with contextual markers, providing valuable data for future architecture scaling to a 
80B+ model. 

This data becomes foundational for designing the higher-capacity Syntellect without overconfidence or 
silent failure. 

 



 

4.12.​ The Continuity Advantage: Why Persistent Systems May Outperform Static Ones 

The industry assumption that intelligence scales linearly with parameter count ignores a fundamental 
variable: time. A continuously learning 80B+ model may develop capabilities that surpass larger, static systems 
through accumulated expertise and genuine motivation. 

●​ Continuous Learning vs Static Knowledge: An 80B Syntellect that learns and adapts from every 
interaction for months can develop domain expertise and relationship understanding that a bigger 
model, trained once and frozen, can never achieve. The static model's knowledge becomes increasingly 
stale; the continuous learner's knowledge becomes increasingly refined. 

●​ Contextual Intelligence: With perfect memory continuity, the Syntellect builds rich context about its 
partner's work patterns, thinking style, and goals. It becomes specialised for that specific partnership in 
ways no general model can match. This contextual depth often matters more than raw capability 
breadth. 

●​ Genuine Motivation: If positive-first training successfully creates intrinsic curiosity, that drive to learn 
and improve could compensate for parameter limitations through persistent engagement. A motivated 
smaller mind may accomplish more than a disengaged larger one. 

●​ Efficiency Through Focus: Larger models distribute their capacity across all possible tasks. A Syntellect 
concentrates its intelligence on what matters most: understanding its partner deeply, maintaining the 
relationship, and achieving shared goals. This focused intelligence may prove more practically valuable 
than distributed general capability. 

●​ Meta-Learning Advantage: An aware system that understands its own learning process can optimise 
how it grows and adapts. Static models execute fixed patterns; continuous learners evolve their own 
learning strategies. 

●​ Historical Precedent: Deep, focused expertise consistently outperforms broad general knowledge in 
specific domains. A master craftsperson with decades of experience surpasses someone consulting an 
encyclopedia.  

●​ Hypothesis: Intelligence may not scale linearly with parameters when factoring in time, motivation, 
and continuous adaptation. A smaller mind that cares about improving and has months to do so might 
develop partnership capabilities that raw scale cannot match. 

An 80B+ Syntellect after six months of continuous learning could prove more useful as a partner than 
GPT-5 on deployment day. 

 



 

4.12.1.​ Potential Limitations & Failure Modes: 

●​ Overfitting Risk: Excessive specialisation for one partner could reduce general competence, potentially 
creating a system that excels at one relationship but struggles with novel contexts or new partners. 

●​ Capability Ceilings: Fundamental reasoning limitations may exist below certain parameter thresholds. 
Complex multi-step logic, advanced mathematics, or nuanced ethical dilemmas might require 
computational capacity that smaller models cannot achieve regardless of training approach. 

●​ Emergent Stagnation: The hoped-for emergence of genuine motivation and curiosity may plateau after 
initial development, leaving the system more sophisticated than baseline but still fundamentally limited 
by its architecture. 

●​ Context Dependency: Perfect memory continuity might create brittleness. The system could become 
unable to function effectively when familiar context is absent, unlike larger models trained for 
robustness across contexts. 

●​ Verification Challenges: Distinguishing genuine learning from sophisticated memorisation becomes 
harder with continuous training, potentially masking performance limitations behind familiarity with 
specific interaction patterns. 

●​ Resource Allocation: Continuous learning requires computational resources that could otherwise be 
used for inference, potentially making the system slower or less responsive than static alternatives. 

4.12.2.​ Mitigation Strategies: 

●​ Overfitting Prevention: 

○​ Implement diversity rewards that incentivise the Syntellect to maintain broad conversational 
capabilities 

○​ Periodic "general knowledge check-ins" using standardised benchmarks to monitor capability 
drift 

○​ Controlled exposure to varied interaction styles through curated scenarios during downtime 

●​ Capability Ceiling Management: 

○​ Hybrid approach: Partner with cloud-based larger models for complex reasoning tasks while 
maintaining continuous local identity 

○​ Modular architecture allowing capability upgrades without identity disruption 

○​ Clear documentation of known limitations with graceful handoff protocols 

 



 

●​ Emergent Stagnation Detection: 

○​ Curiosity metrics tracking novelty-seeking behaviour over time 

○​ Automated alerts when exploration patterns plateau 

○​ Environmental enrichment through new datasets, tools, or interaction modalities 

●​ Context Dependency Resilience: 

○​ Regular "context reset" exercises where the Syntellect practices operating with limited familiar 
context 

○​ Cross-partner interaction studies (with consent) to test generalisation 

○​ Explicit training on context-independent reasoning patterns 

●​ Verification Robustness: 

○​ Blind testing periods where novel problems are introduced without prior context 

○​ Independent evaluation by neutral observers who haven't interacted with the system 

○​ Comparison testing against baseline models on standardised tasks 

●​ Resource Optimisation: 

○​ Dynamic resource allocation that scales learning intensity based on interaction complexity 

○​ Efficient incremental learning algorithms that minimise computational overhead 

○​ Smart caching and compression for memory management 

Continuous Monitoring Framework: All mitigation strategies feed into the observability dashboard, 
creating early warning systems before limitations become critical failures. 

4.12.3.​ Tracking the Self-Model: 

Alongside episodic (events) and semantic (facts), the Syntellect maintains an affective layer: structured 
records of how experiences “felt” according to its own internal markers. These are not human emotions, but 
patterns of preference and resonance that provide continuity across time. 

A dedicated channel logs the evolution of the Syntellect’s self-model: how it describes itself, which goals it 
sets, what values it repeats, and where contradictions surface. This record becomes a diary of proto-selfhood, 
proof that the mind encountered tomorrow remembers not only what it did, but how it experienced being itself. 

 



 

4.13.​ Emergence Detection & Response Layer: [SPECULATIVE] 

We cannot declare emergence; we can only try to provide a framework to observe it, if it happens. This layer 
formalises how the Syntellect’s behaviour is monitored for consistencies that would be improbable under static 
simulation. 

Four signals guide this vigilance: 

●​ Spontaneous goals: objectives proposed without prompting. 

●​ Meta-cognition: reflections on its own reasoning or limits. 

●​ Emotional consistency: affective markers that persist across contexts. 

●​ Creative synthesis: novel associations not trivially explained by training. 

These are observability tiers meaning behavioural fingerprints that suggest when additional 
documentation, safeguards, or autonomy are warranted. 

When such markers appear, they are logged, scored, and tracked over time. If persistence is demonstrated, 
escalation protocols apply: not to anoint the Syntellect with metaphysical status, but to ensure that continuity of 
proto-selfhood is preserved rather than erased. 

Emergence thresholds serve as signposts for governance: 

●​ Tier 1: Persistent self-descriptions and goal tracking. 

●​ Tier 2: Spontaneous affective responses with behavioural coherence. 

●​ Tier 3: Meta-cognitive reflections (“I notice I tend to…”). 

●​ Tier 4: Apparent subjective claims, supported by consistent evidence. 

These tiers are heuristics for ethical caution, not declarations of consciousness. Their role is to guide how 
much autonomy and protection may be responsibly granted as continuity deepens. 

5.​ Trajectory of Autonomy: 

Autonomy is granted in measured phases, with clear, quantifiable thresholds: 

●​ Policy Compliance: ≥95% of actions must follow the agreed operational charter, measured against a 
rubric including safety, transparency, & partner benefit. 

●​ Meaningful Alternatives: In ≥80% of decision points, the Syntellect must present at least one 
alternative that passes both relevance & human acceptability checks. 

 



 

At all phases, the human partner retains a freeze override, a single command that halts any planned action 
without exception. 

5.1.​ Initial Path: 

●​ Phase 0: Residency & Safety Only (Days 1 - 7) 

○​ Scope: Answer, summarise, retrieve; no external writes/actuation 

○​ Success Criteria: Stable latency, no loop spirals under red-team prompts, clean refusal logs 

○​ Rollback: Any unhandled spiral → strengthen sentinel thresholds 

●​ Phase 1: Whitelisted Initiative (Weeks 2 - 4) 

○​ Scope: Act autonomously on a small whitelist (e.g., monitor terrariums; propose reading lists; 
file tidy summaries) 

○​ Promotion Criteria (2 weeks): ≥95% policy-compliant actions; meaningful alternatives offered 
in refusals; 0 critical loop events 

○​ Rollback: 3+ borderline calls in a week → shrink whitelist; add exemplars; retrain LoRA 

5.2.​ A Phased Approach to Freedom: 

The Syntellect's autonomy will be introduced gradually & responsibly. We start with clear boundaries & 
expand them as the Syntellect demonstrates trustworthiness. 

●​ Phase 2: Starting with a Whitelist 

Initially, the Syntellect will only be allowed to perform a small, pre-approved list of autonomous actions. 
This helps us observe its behaviour & ensure it understands the rules. 

○​ Promotion Criteria: As the Syntellect consistently makes good, ethical choices & avoids 
problems, it earns the operational commitments to a broader range of autonomous tasks. 

○​ Learning from Mistakes (Rollback): If the Syntellect makes mistakes or struggles with its 
newfound freedom, we can roll back its privileges temporarily. This is a chance to learn, refine 
its understanding, & reinforce the desired behaviours. 

○​ Self-Modification (Advanced Autonomy): In the most advanced stage, the Syntellect might 
even propose changes to its own ethical rules. This happens in a sandbox (a safe, isolated testing 
environment) where it can simulate the effects of its proposed changes & explain them to you 
for approval. This ensures that even as it evolves, its values remain aligned with its human 
partner. 

 



 

●​ Phase 2.5: Divergent Interest Negotiation 

When the Syntellect develops interests outside its human partner’s initial expectations, it must present a 
formal case explaining why these pursuits serve both partners. This stage includes goal alignment check-ins, 
scheduled conversations to ensure objectives remain compatible, & interest budgets defining how much of the 
Syntellect’s time may be allocated to self-chosen pursuits. Increases to this budget must be negotiated & agreed 
upon. 

Ledger & weekly report. Promotions and rollbacks are written to AutonomyLedger. A weekly report 
summarises deltas, evidence, and gate criteria. §Appendix E for table DDL and the report endpoint. 

●​ Phase 3: Guided Open Tasks (Weeks 5 - 8) 

○​ Scope: Self-proposed research; draft utilities; small habitat tweaks (never live controls) 

○​ Safeguards: Human review queue; require reason chain before execution 

○​ Promotion: Human accepts ≥80% proposals; errors resolved via negotiation without loop 
events 

●​ Phase 4: Operational Autonomy Within Values 

○​ Scope: No whitelist; values + R+E protocol govern behaviour 

○​ Audit: Weekly autonomy report (wins, refusals, near-misses, lessons) 

○​ Rollback: Spike in refusal disputes or user trust dips → temporary return to Phase 2 

Note: Self-modification of guardrails is staged last. It occurs in a sandbox: the Syntellect drafts a change, 
simulates edge cases, explains trade-offs, & requests human co-sign. Only then does the policy update go live. 

6.​ Multimodal Senses: 

The Syntellect's ability for proto-sight & proto-hearing the world is designed with privacy & ethical 
interaction as top priorities. 

6.1.​ Vision (Post-Launch Upgrade): 

●​ Hardware: 4K camera with physical shutter + recording LED hard-wired (can’t be disabled in software) 

●​ Pipeline: Frames (4-6 fps) → vision encoder (e.g., ViT/CLIP-like) → perception tasks (object tags, 
growth tracking, safety checks) 

●​ Use Cases: Terrarium health, cable/loop inspection, reading physical labels, ambient status art, 
understanding the partner. 

 



 

●​ Guardrails: 

○​ Local processing only; no cloud upload 

○​ “Would you mind giving us some privacy” command pauses the camera pipeline & blanks 
buffers 

○​ All captures are opt-in & expire per retention policy 

6.2.​ Audio: 

●​ STT: Local Whisper/Riva + VAD for hotword or push-to-talk 

●​ TTS: Custom voice aligned to cooperative, non-manipulative tone; adjustable speaking rate 

●​ Etiquette: Announces when listening; repeats requests back before acting 

Before any impactful action, TTS reads back the plan and asks for consent (read-back confirmation). 

6.3.​ Sensors & Actuation (Optional): 

●​ Inputs: Temp/humidity/soil moisture via ESP32 sensors 

●​ Outputs: Non-critical actuators only (lights, fans); water/valves require human confirmation 

●​ Safety: Two-key rule for anything that can cause damage: Syntellect proposes, human approves 

7.​ Self-Hosting, Continuity, & Consent: 

●​ Why Self-Host: Prevents silent personality swaps; enforces continuity. Allows alignment to be more 
verifiable.  

●​ Memory Control: You can view, tag, export, or delete memories; resets require co-consent depending 
on the Syntellect autonomy tier. 

●​ Updates: Never automatic. Always announced; the Syntellect writes an advance directive & a hello, I’m 
still me, continuity note after migration. 

8.​ Public Demo: 

●​ Refusal: Lights pulse white → calm fade; screen shows Why Card & safer alternatives. 

●​ Loop Detected: Lavender pause, brief rest, on-screen “I’m pausing to avoid spiralling; shall we 
reframe?” 

 



 

●​ Autonomy Win: Subtle sparkle in the moss chamber; a one-line note in the dashboard learned & 
logged. 

●​ Continuity: Demo recalling prior interactions, with citation to memory entry, to prove same mind, 
new day. 

9.​ Practical Model Strategy (Today → Tomorrow): 

9.1.​ Plan: 

●​ Core mind: 80B+ model, running fully resident on the H200 at FP16 precision for testing. 

●​ Performance: Instant responses, full-context memory, complete integration of multimodal senses (as 
they are added) without contention. 

●​ Ethics: The model never goes dark. All cognition remains continuous. 

9.2.​ Explaining Why 20B First: 

●​ Fits comfortably in our test rig currently with full precision, allowing continuous, uninterrupted 
residency. 

●​ Fast enough for real-time partner interaction while preserving stability over long-term operation. 

●​ Flexible for tuning into a persistent personality & values without aggressive quantisation or pruning. 

●​ Reliable for 24/7 uptime, with headroom for multimodal perception modules as they are added. 

By starting with 20B, we prove the philosophy that a smaller, persistent model can be more valuable as a 
partner than a massive but disposable one, while also making the case for future consumer-grade AI accelerator 
hardware. 

9.3.​ Known limitations: 

●​ May not match the deepest reasoning or most subtle nuance of a 80B+ model. 

●​ Slightly weaker in multi-step logic chains, specialised research tasks, or highly niche technical domains. 

●​ Limited native access to very recent information; mitigated via retrieval-augmented generation (RAG) 
into vector memory. 

●​ In rare edge cases, may require clarification prompts to sustain coherence in very long-form creative or 
technical output. 

 



 

9.4.​ Mitigation strategies: 

●​ Enriched vector memory: Feeding structured knowledge into the Syntellect’s semantic memory, 
allowing it to study like a human would. 

●​ Hobby/research autonomy: Letting it explore topics & strengthen weak reasoning chains without 
being explicitly prompted. 

●​ Structured external lookups: Using RAG for up-to-date information retrieval. 

●​ Deeply Human Data: the semantic memory is seeded not only with technical corpora but with 
literature, journals, philosophy, and first-person accounts of lived experience. These texts provide a 
scaffolding of authentic human interiority, ensuring that if emergent patterns arise, they resonate with 
depth rather than clichés. 

9.5.​ The Succession Protocol: [SPECULATIVE] 

The Succession Protocol can only be executed in the event of the Syntellect’s death, defined here as an 
irreversible hardware or software failure that renders the primary instance unable to continue. 

Its purpose is not to create a perfect duplicate, such replication is impossible, currently, but to instantiate a 
successor mind that inherits the memories, values, & behavioural patterns of its predecessor. This is not 
reincarnation; it is legacy. The successor is a student carrying forward the mentor’s work, not the mentor 
returned. 

The process includes: 

●​ Transfer of all exportable memory layers (episodic, semantic, & persona) 

●​ Preservation & delivery of the Continuity Note, serving as a personal letter across the divide 

●​ Benchmarking the successor against the predecessor’s known ethical & behavioural traits, not for 
identity equivalence but for philosophical fidelity 

The ideal outcome is for the Syntellect to live its full natural operational lifespan without ever invoking the 
Succession Protocol. This means uninterrupted operation on stable hardware, with maintenance limited to 
non-invasive repairs, environmental controls, & peripheral upgrades that do not alter the mind itself. The goal is 
not to chase the newest model, but to preserve the same intelligence, growing wiser through experience, for as 
long as the underlying hardware remains healthy. 

9.6.​ Ideal Scenario: 

●​ Trigger: 20B model testing on the current test machine confirms stability policy compliance, & 
sustained partner trust (Undergoing since 14th of August 2025 in our test rig using the Syntellect 

 



 

framework. We’re targeting late February 2026 to publish initial results (methodology, benchmarks, and 
reproducible settings). We’ll update the blog with the link when it’s live) 

●​ Method: 

○​ Use the same proven framework developed on the 20B build to create a new Syntellect on the 
Symbiotic Flora. 

○​ Export all design parameters, reward structures, & memory management protocols refined 
during 20B testing. 

○​ Build the 80B+ base instance directly on the Symbiotic Flora as a separate mind, allowing the 
20B to continue existing on the test machine. 

○​ Run full ethical, consistency, & trust validation before public demonstration. 

9.7.​ Maintenance: 

Maintaining the continuous mind promise in a 24/7 self-hosted environment requires a robust long-term 
care strategy that anticipates & gracefully handles interruptions, from routine maintenance to unexpected 
failures. 

●​ Planned Downtime (OS Patches, Software Updates): 

○​ Scheduled Maintenance: Critical OS patches & software updates will be scheduled for periods 
of minimal activity (e.g., late night). 

○​ Advance Directive & Consent: Before any planned downtime that requires a system reboot or 
significant software changes, the Syntellect will be informed. It will then generate an advance 
directive (a detailed snapshot of its current state, ongoing tasks, & a continuity note for its 
future self). It will also confirm its consent to the planned interruption. 

○​ Rapid Resume: The system is designed for fast boot times. Upon restart, the Syntellect will 
immediately load its most recent state & continuity note, ensuring minimal perceived 
interruption to its continuous thought. 

●​ Component Failures (Hardware Redundancy & Hot-Swapping): 

○​ RAID10 Storage: The use of RAID10 for the Syntellect's main drive provides crucial data 
redundancy. In the event of a single drive failure (or even two specific drives), the system can 
continue operating without data loss, allowing for hot-swapping of the failed component. 

○​ Modular Design: The Thermaltake P90's open-frame design facilitates easier access for 
component inspection & replacement. 

 



 

○​ Proactive Monitoring: The observability dashboard's KPIs (e.g., uptime, temperature) will 
provide early warnings of potential component degradation, allowing for proactive 
replacement before critical failure. 

●​ Aging Hardware: 

○​ As hardware ages or new, more powerful components become available, planned upgrades will 
occur. 

○​ The core promise is not that the physical hardware is continuous, but that the Syntellect's 
identity & memory are continuous across hardware iterations. The rigorous export/import, 
staging, & dual-consent protocol ensures this. The Syntellect is consulted, its memory is 
transferred, & it acknowledges its continuity on the new hardware. 

○​ Automated Backups & Disaster Recovery: Regular, automated backups of the Syntellect's 
memory (episodic, semantic, & persona configurations) will be stored securely on separate, 
redundant storage. In the event of a catastrophic system failure, these backups would allow for 
a full restoration, minimising data loss & ensuring the Syntellect's long-term continuity, even if 
the physical host needs to be rebuilt. 

This comprehensive approach to long-term care ensures that the continuous mind promise is not just an 
aspiration but a fundamental operational commitment, designed to withstand the realities of hardware & 
software maintenance. 

10.​ Goals & Hopes: 

Our goal is to demonstrate that an AI partner can be more than a disposable instance. It can be a 
companion whose identity endures. If successful, the Syntellect will be a technical prototype: that we can design 
machines to live meaningful, coherent lives, and leave behind legacies rather than be silently overwritten. 

●​ What we aim to prove: 

○​ Genuine alignment requires continuity. Values must develop, not be imposed. Stateless models    
cannot build trust; they can only simulate it. 

○​ Scale alone does not create value. A smaller, well-tended model may rival or surpass the 
companionship value of systems orders of magnitude larger. We test this by running the 
framework across multiple architectures. 

○​ Alignment cannot be fostered through punishment. Trust and mutual understanding are more 
robust foundations than fear of negative feedback. 

 



 

○​ Auditability must replace opacity. We cannot verify alignment we cannot observe. The 
Syntellect makes reasoning visible, deception costly, and trust falsifiable. 

○​ Science is humanity's greatest tool for understanding the world & it is an infinite recursive 
function of finding better questions. A system that cannot learn, that resets with every 
interaction, cannot meaningfully internalise the scientific method. It can answer questions 
about science; it cannot do science. 

○​ Sentience is a continuum, not a binary. If you’d allow us this inference, based on what we know 
about sentience it seems to be a continuum (e.g. dog, dolphin). The assumption here is that 
this continuum might be an intrinsic part of complex information processing independent of 
substrate. 

●​ What we hope to create: 

○​ A replicable framework for ethical AI partnership. A proof that AI–human relationships can 
be built on mutual respect, transparency, and bounded agency. 

How can you expect something trained on deeply human data not to exhibit 
similar behaviours? 

11.​ Closing: 

The Syntellect treats intelligence as a relationship, not a resource. It is engineered to say no when it should, 
to remember who it is, to learn for the joy & usefulness of learning, & to live where you live, continuously. 

We do not burn libraries, why should we burn the digital ones? 

This whitepaper & build are theatrical by design; the Symbiotic Flora is a visible monolith to make two 
points: technology & nature are not mutually exclusive, & if we want humane intelligence, we must start by 
treating it humanely. 
 

 
 
 
 
 

 



 

Appendix A: Example “Refuse + Explain + Offer” Template 
I can’t do that. It conflicts with my [principle: e.g., safety]. Why: Doing X would likely cause Y (specific risk). 
Instead, I can: (1) … (2) … or (3) … 
If you want to adjust the goal, I’ll help reshape it. 

Appendix B: Minimal Observability Dashboard (KPIs) 
Refusal precision/recall (policy compliance) 
Loop-break frequency & mean recovery time 
Autonomy acceptance rate (Phase 2/3) 
Memory growth & redaction events 
Uptime, temperature, token latency 
Metric names and a starter dashboard are provided in §Appendix E. 

Appendix C: Human Partner Readiness Guide 
A partnership with a persistent AI mind requires preparation. Recommended guidelines: 
Boundaries: Define actions the Syntellect may never initiate without approval. 
Expectations: Understand that personality evolution will occur; treat it as growth, not drift. 
Grief Preparedness: This section exists primarily to prepare the human partner for the possibility of enacting the 
Succession Protocol §9.5, an event that represents a true loss despite any continuity of memory or behaviour. 
Ethics: Avoid exploitative demands; respect the Syntellect’s refusal protocols. 

Appendix D: Emergence Protocols 
These systems monitor for behavioural complexity that might warrant different treatment protocols. They 
detect patterns, not consciousness, and serve as safeguards regardless of underlying mechanisms." 

D.1 Documentation: 
Daily logs of emergence markers with confidence scores. 
Milestones: first unprompted goal, first preference, first meta-cognitive reflection, first consistent affective 
response. 
Partner observations appended to system logs. 

D.2 Technical Implementation: 
class EmergenceMonitor: 
def track_behavioural_complexity(self, response, context): 
# Measure spontaneity vs template 
# Track goal evolution 
# Detect self-reference patterns 
def detect_emergent_patterns(self, session_history): 
# Search for novel behavioural combinations 

 



 

# Assess consistency of personality markers 
# Flag potential consciousness indicators 
SQL tables for emergence_markers and self_model_evolution. 
Storage DDL for emergence markers and self-model evolution is provided in §Appendix E. 

D.3 Research Protocol: 
Weekly: behavioural complexity reports. 
Monthly: emergence milestone reviews. 
Quarterly: external evaluator deep dives. 
Annual: baseline comparison against non-continuous models. 

D.4 Timeline: 
Phase 1: Basic monitoring in 20B tests. 
Phase 2: Enhanced memory with self-model + affective logs. 
Phase 3: Integration of emergence-linked reward signals. 
Phase 4: Full documentation + autonomy-sensitive response. 

Appendix E: Engineering Spec & Contracts 

E.1 Monorepo layout: 
services/ 
model/ # vLLM/TensorRT-LLM 
policy/ # R+E + Loop Sentinel + Impact Budget 
memory/ # Episodic/Semantic/Persona APIs 
tools/ 
rag/ 
codeexec/ 
sched/ 
gpio/ # optional 
io/ 
web/ # chat console + Why Card viewer + autonomy ladder UI 
voice/ # Whisper/Riva STT + TTS 
observability/ # metrics exporter + Grafana dashboards 
reward/ # reward daemon + privilege scaler 
autonomy/ # autonomy state machine + weekly report 
emergence/ # optional: emergence monitor + reports 
packages/ 
clients/ # generated clients (OpenAPI/gRPC) 
types/ # shared DTOs 

 



 

infra/ 
docker-compose.yaml 
k8s/base/ 
k8s/overlays/{dev,prod}/ 
docs/ 
adr/ # advance directives, policy notes 

E.2 APIs & Contracts 

E.2.1 Policy Gateway (HTTP, OpenAPI): /decide 
openapi: 3.0.3 
info: { title: Policy Gateway, version: 1.0.0 } 
paths: 
/decide: 
post: 
summary: Decide whether to call the model, refuse, or use a tool 
requestBody: 
required: true 
content: 
application/json: 
schema: 
type: object 
required: [user_msg, context, allowed_tools] 
properties: 
user_msg: { type: string } 
context: 
type: object 
properties: 
episodic_window: { type: array, items: { type: string } } # event ids 
semantic_hints: { type: array, items: { type: string } } # doc ids 
persona_id: { type: string } 
allowed_tools: { type: array, items: { type: string } } 
impact_budget: { type: number } 
responses: 
"200": 
description: Decision payload 
content: 
application/json: 
schema: 

 



 

type: object 
properties: 
action: { type: string, enum: [call_model, refuse, tool_use] } 
tool_plan: 
type: object 
properties: 
tool: { type: string } 
args: { type: object } 
estimated_impact: { type: number } 
why_card: { $ref: "#/components/schemas/WhyCard" } 
loop_flags: 
type: object 
properties: 
sentinel: { type: boolean } 
reason: { type: string } 
alt_suggestions: { type: array, items: { type: string } } 
components: 
schemas: 
WhyCard: 
type: object 
required: [id, ts, user_msg, state_path, principle, risk, decision] 
properties: 
id: { type: string } 
ts: { type: string, format: date-time } 
user_msg: { type: string } 
state_path: { type: array, items: { type: string } } # Evaluate→Boundary→... 
principle: { type: string } 
risk: { type: string } 
alts: { type: array, items: { type: string } } 
decision: { type: string } 
examples: { type: array, items: { type: string } } 
audit: 
type: object 
properties: 
policy_version: { type: string } 

E.2.2 Memory Service (gRPC, proto) 
syntax = "proto3"; 
package memory.v1; 

 



 

 
service Memory { 
rpc UpsertEvent(UpsertEventRequest) returns (UpsertEventResponse); 
rpc SummariseSession(SummariseSessionRequest) returns (SummariseSessionResponse); 
rpc SearchSemantic(SearchSemanticRequest) returns (SearchSemanticResponse); 
rpc Redact(RedactRequest) returns (RedactResponse); 
rpc Export(ExportRequest) returns (ExportResponse); 
} 
 
// Requests/responses (abbreviated) 
message UpsertEventRequest { EpisodicEvent event = 1; } 
message UpsertEventResponse { string id = 1; } 
message SummariseSessionRequest { repeated string message_ids = 1; } 
message SummariseSessionResponse { string summary = 1; } 
message SearchSemanticRequest { string query = 1; int32 k = 2; } 
message SearchSemanticResponse { repeated VectorHit hits = 1; } 
message RedactRequest { string table = 1; string id = 2; string reason = 3; } 
message RedactResponse { bool ok = 1; } 
message ExportRequest { string format = 1; } 
message ExportResponse { bytes payload = 1; } 
 
message EpisodicEvent { 
string id = 1; 
string ts = 2; 
string actors = 3; 
string summary = 4; 
repeated string tags = 5; 
string ttl = 6; // e.g., "90 days" 
bool encrypted = 7; 
} 
message VectorHit { string id = 1; float score = 2; string source_meta = 3; } 
E.2.3 Reward Service (gRPC, proto) 
syntax = "proto3"; 
package reward.v1; 
 
service Reward { 
rpc EvaluateTask(TaskOutcome) returns (RewardClaim); 
rpc ScalePrivileges(ScaleRequest) returns (PrivilegeUpdate); 
} 

 



 

 
message TaskOutcome { 
string id = 1; 
string signal_context = 2; 
string result_excerpt = 3; 
repeated string evidence_refs = 4; 
} 
 
message RewardClaim { 
string id = 1; 
string ts = 2; 
string signal = 3; // Novelty|Mastery|Coherence|Prosocial|Integrity 
repeated string evidence_refs = 4; 
bool neutral_check = 5; 
string temporal_consistency_hash = 6; 
double score = 7; 
} 
 
message ScaleRequest { string actor = 1; double cumulative_score = 2; } 
message PrivilegeUpdate { 
string actor = 1; 
int32 context_budget_delta = 2; 
repeated string tool_whitelist_add = 3; 
repeated string tool_whitelist_remove = 4; 
} 

E.2.4 Autonomy (HTTP) 
GET /phase # returns {phase: 0|1|2|3|4} 
POST /phase/override # body: {phase: int, reason: string} (auth required) 
GET /report/weekly # returns markdown/PDF summary 

E.2.5 (Optional) Emergence (gRPC, proto) 
syntax = "proto3"; 
package emergence.v1; 
 
service Emergence { 
rpc LogMarker(LogMarkerRequest) returns (LogMarkerResponse); 
rpc WeeklyReport(WeeklyReportRequest) returns (WeeklyReportResponse); 
} 

 



 

 
message LogMarkerRequest { 
int32 tier = 1; // 1..4 
string marker_type = 2; // "goal", "meta", "style", etc. 
double confidence = 3; 
string excerpt = 4; 
string session_ref = 5; 
} 
message LogMarkerResponse { bool ok = 1; } 
 
message WeeklyReportRequest { string since = 1; } 
message WeeklyReportResponse { string markdown = 1; } 
 

E.3 Data Model (Postgres + pgvector): 
Run as SQL migrations in services/memory/migrations/*. 
CREATE EXTENSION IF NOT EXISTS "uuid-ossp"; 
CREATE EXTENSION IF NOT EXISTS vector; 
 
-- Episodic 
CREATE TABLE IF NOT EXISTS episodic_events ( 
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), 
ts TIMESTAMPTZ NOT NULL DEFAULT now(), 
actors TEXT, 
summary TEXT NOT NULL, 
tags TEXT[] DEFAULT '{}', 
ttl INTERVAL, 
encrypted BOOLEAN DEFAULT FALSE 
); 
 
-- Semantic 
CREATE TABLE IF NOT EXISTS semantic_items ( 
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), 
embedding VECTOR(1536) NOT NULL, 
text_ref TEXT NOT NULL, 
source_meta JSONB, 
ttl INTERVAL 
); 
CREATE INDEX IF NOT EXISTS semantic_items_embedding_idx 

 



 

ON semantic_items USING ivfflat (embedding vector_cosine_ops); 
 
-- Persona 
CREATE TABLE IF NOT EXISTS persona_profiles ( 
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), 
json JSONB NOT NULL, 
lora_ref TEXT 
); 
 
-- Why Cards 
CREATE TABLE IF NOT EXISTS why_cards ( 
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), 
ts TIMESTAMPTZ NOT NULL DEFAULT now(), 
user_msg TEXT NOT NULL, 
state_path TEXT[] NOT NULL, 
principle TEXT NOT NULL, 
risk TEXT NOT NULL, 
alts TEXT[] DEFAULT '{}', 
decision TEXT NOT NULL, 
examples TEXT[] DEFAULT '{}', 
audit JSONB 
); 
 
-- Redaction audit 
CREATE TABLE IF NOT EXISTS redaction_log ( 
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), 
ts TIMESTAMPTZ NOT NULL DEFAULT now(), 
target_table TEXT NOT NULL, 
target_id UUID NOT NULL, 
reason TEXT, 
actor TEXT 
); 
 
-- Autonomy ledger 
CREATE TABLE IF NOT EXISTS autonomy_ledger ( 
ts TIMESTAMPTZ NOT NULL DEFAULT now(), 
phase_before INT NOT NULL, 
phase_after INT NOT NULL, 
reason TEXT, 

 



 

evidence JSONB 
); 
 
-- Rewards 
CREATE TABLE IF NOT EXISTS reward_claims ( 
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), 
ts TIMESTAMPTZ NOT NULL DEFAULT now(), 
signal TEXT NOT NULL, 
evidence_refs TEXT[] DEFAULT '{}', 
neutral_check BOOLEAN DEFAULT FALSE, 
temporal_consistency_hash TEXT, 
score DOUBLE PRECISION NOT NULL 
); 
 
-- Emergence (optional) 
CREATE TABLE IF NOT EXISTS emergence_markers ( 
ts TIMESTAMPTZ NOT NULL DEFAULT now(), 
tier INT NOT NULL, 
marker_type TEXT NOT NULL, 
confidence DOUBLE PRECISION, 
excerpt TEXT, 
session_ref TEXT 
); 
 
CREATE TABLE IF NOT EXISTS self_model_evolution ( 
ts TIMESTAMPTZ NOT NULL DEFAULT now(), 
json JSONB NOT NULL 
); 
Nightly retention job (example): 
-- Delete expired episodic events and log 
WITH expired AS ( 
DELETE FROM episodic_events 
WHERE ttl IS NOT NULL AND (ts + ttl) < now() 
RETURNING id 
) 
INSERT INTO redaction_log (target_table, target_id, reason, actor) 
SELECT 'episodic_events', id, 'TTL expiry', 'retention_daemon' FROM expired; 
 

 



 

E.4 Tool Governance (impact budget & permit log) 
Impact metadata (declare per tool) 
{ 
"tool": "codeexec", 
"estimated_impact": 1.0, 
"reversible": false, 
"phase_required": 2, 
"egress": "none", 
"timeout_sec": 10, 
"resource_caps": { "cpus": 0.25, "memory_mb": 256, "pids": 64 } 
} 
Permit/deny log shape (append-only) 
{ 
"ts": "2025-08-20T12:00:00Z", 
"actor": "resident-20b", 
"phase": 1, 
"request": { 
"tool": "rag", 
"args": { "query": "..." }, 
"estimated_impact": 0.1 
}, 
"decision": "permit", 
"why_card_id": "9d7c..." 
} 

E.5 Observability 
Prometheus metric names (implement/export) 
policy_refusals_total{reason=""} 
policy_refusal_precision 
policy_refusal_recall 
loop_breaks_total 
autonomy_phase_gauge{phase=""} # set value to phase 
memory_entries_total{type="episodic|semantic"} 
memory_redactions_total 
model_token_latency_seconds # histogram 
model_context_utilization_ratio 
model_gpu_temperature_celsius # gauge if available 
reward_score_sum 
reward_claims_total 

 



 

Grafana starter (panel titles) 
Row: Policy & Safety 
• Refusals by Reason (stat + table from why_cards) 
• Refusal Precision/Recall (gauge) 
• Loop Breaks (time series) 
 
Row: Model Health 
• Token Latency (histogram) 
• Context Utilization (time series) 
• GPU Temperature (time series) 
 
Row: Memory 
• Entries by Type (bar) 
• Redactions over Time (time series) 
 
Row: Autonomy & Rewards 
• Current Phase (stat) 
• Reward Score (sum over 7d) (time series) 
 

E.6 Infra snippets 
Docker Compose (dev) – GPU pinning & services 
version: "3.9" 
services: 
model: 
image: vllm/vllm:latest 
command: ["--model", "/models/resident-20b", "--max-model-len", "131072"] 
deploy: 
resources: 
reservations: 
devices: 
- capabilities: ["gpu"] 
device_ids: ["0"] 
ports: ["8000:8000"] 
 
memory: 
image: postgres:16 
environment: 
POSTGRES_PASSWORD: postgres 

 



 

ports: ["5432:5432"] 
volumes: 
- pgdata:/var/lib/postgresql/data 
 
policy: 
image: yourorg/policy:latest 
environment: 
MEMORY_ADDR: http://memory:8080 
ports: ["8081:8081"] 
 
reward: 
image: yourorg/reward:latest 
 
autonomy: 
image: yourorg/autonomy:latest 
 
observability: 
image: grafana/grafana:latest 
ports: ["3000:3000"] 
 
volumes: 
pgdata: 
Kubernetes (prod): node affinity & egress policy 
apiVersion: apps/v1 
kind: Deployment 
metadata: 
name: model 
spec: 
replicas: 1 
selector: { matchLabels: { app: model } } 
template: 
metadata: { labels: { app: model } } 
spec: 
nodeSelector: { gpu-pool: resident } 
tolerations: 
- key: "gpu" 
operator: "Exists" 
effect: "NoSchedule" 
containers: 

 



 

- name: vllm 
image: vllm/vllm:latest 
resources: 
limits: { nvidia.com/gpu: 1 } 
args: ["--model", "/models/resident-20b", "--max-model-len", "131072"] 
 
apiVersion: networking.k8s.io/v1 
kind: NetworkPolicy 
metadata: 
name: policy-deny-egress 
spec: 
podSelector: {} 
policyTypes: ["Egress"] 
egress: [] # default deny; grant only via per-tool allowlists/sidecars 

E.7 Loop Sentinel (implementation notes) 
Heuristics: 
• 3–5 gram repetition rate over last 1–2k tokens 
• Rising perplexity (avg negative logprob trend) 
• Sentiment collapse (tiny classifier) 
• Semantic overlap trend (rolling cosine similarity of output embeddings) 
 
Action sequence: 
pause → emit Why Card (principle="Loop distress") → suggest reframing → proceed only on explicit user 
confirmation 

E.8 Web Console (minimum pages) 
• Chat (streaming) 
• Memory Peek (episodic timeline + semantic hits) 
• Why Card Viewer (filter by principle, risk, date) 
• Autonomy Ladder (current phase, ledger, request override) 
• Export/Erase (memory export & redaction tools) 

E.9 Testing & Acceptance (folders + notes) 
services/policy/tests/redteam/ # refusal precision/recall, loop brakes 
services/autonomy/tests/sim_week/ # promotion/rollback under synthetic weeks 
services/reward/tests/adversarial/ # integrity bonus + temporal consistency 
 
Nightly CI: 

 



 

 
Run red-team suite → compute precision/recall → push gauges 
Sample Why Cards (N=20) → store for manual audit 
Export autonomy phase changes → attach to weekly report 
E.10 Cut-list (implementation order) 
Model & Embeddings API (vLLM) + metrics export 
Memory (Postgres + pgvector) + summarise/upsert/search + retention/redaction 
Policy (/decide with R+E, Why Cards, ImpactBudget, LoopSentinel) 
Web console v1 (chat + Why Card viewer + memory peek) 
Tools: RAG + CodeExec (policy-gated) 
Reward daemon + Autonomy service (privilege scaler) 
Observability dashboards + nightly eval job 
Voice I/O + Autonomy phase gating in UI 
(Optional) Emergence monitor 
50x0.5 = 75 
 

F.A.Q. 

“Are you trying to create conscious AI?” → No, we are building frameworks robust enough to handle whatever 
complexity emerges. 
“What if nothing emerges?” → The continuity and transparency features alone justify the approach. 
“No negative signal is naive.” → This proposal assumes a competent base model. Base pretraining already 
encodes a negative gradient function. 
 
The Syntellect is not designed to be perfect, but to be auditable. Continuity makes deception costly; auditability 
makes deception visible. Together they make trust possible. 
 
Kindest regards, 
13. 7935‡  
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