import requests import os os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False' def my_get(url, **kwargs): kwargs.setdefault('allow_redirects', True) return requests.api.request('get', 'http://127.0.0.1/', **kwargs) original_get = requests.get requests.get = my_get from stable_audio_tools import get_pretrained_model from stable_audio_tools.interface.gradio import create_ui import json import torch requests.get = original_get def main(args): torch.manual_seed(42) interface = create_ui( model_config_path = args.model_config, ckpt_path=args.ckpt_path, pretrained_name=args.pretrained_name, pretransform_ckpt_path=args.pretransform_ckpt_path, model_half=args.model_half ) interface.queue() interface.launch(share=False, auth=(args.username, args.password) if args.username is not None else None) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Run gradio interface') parser.add_argument('--pretrained-name', type=str, help='Name of pretrained model', required=False) parser.add_argument('--model-config', type=str, help='Path to model config', required=False) parser.add_argument('--ckpt-path', type=str, help='Path to model checkpoint', required=False) parser.add_argument('--pretransform-ckpt-path', type=str, help='Optional to model pretransform checkpoint', required=False) parser.add_argument('--username', type=str, help='Gradio username', required=False) parser.add_argument('--password', type=str, help='Gradio password', required=False) parser.add_argument('--model-half', action='store_true', help='Whether to use half precision', required=False) args = parser.parse_args() main(args)