Neural Matrix Factorization

STAT3009 Recommender Systems

by Ben Dai (CUHK)
On Department of Statistics and Data Science

» Recall: Neural Networks

Using TF2.0 to Implement Your Own Model

- M Define your Model mathematically
 - Motivation, EDA, input/output, parameters/hyperparameters, etc.
- Translate your model into a neural network
- F Loss function, regularization
- OPT Optimizer, cross-validation, early stopping, etc.

Implementation

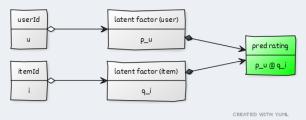
- Build Define the model using Keras
 - * Layers and path from input to output
- Compile Compile your model with keras.losses, keras.optimizers, and keras.metrics
 - Fit Train your model with data and hyperparameters
 - Pred Make predictions using model.predict

Can we reformulate MF as a neural network?

- » Steps: MF to NN
 - M MF model:

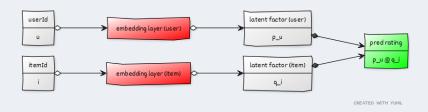
$$\widehat{r}_{ui} = \mathbf{p}_u^{\mathsf{T}} \mathbf{q}_i$$

- * Input user-item pair: $(u,i) \to \text{Output inner product: } \mathbf{p}_u^\mathsf{T} \mathbf{q}_i$
- Translate your model to a neural network



The key is to map **userId/itemId** to latent factors. Do we have a layer to perform this mapping? YES!

» What: Embedding Layer



We can incorporate **MF** by introducing embedding layers into the network.

An embedding layer:

Input A categorical feature $j \in \{1, \dots, J\}$

Output A latent factor for the input $\mathbf{w}_j \in \mathbb{R}^r$

Example userId $u \rightarrow$ latent factor p_u

» What: Embedding Layer

```
tf.keras.layers.Embedding(
   input_dim,
   output_dim,
   embeddings_regularizer=None,
   activity_regularizer=None,
   embeddings_constraint=None,
   **kwargs)
```

Key Arguments:

input_dim *J* - Integer. Size of the vocabulary, i.e., maximum integer index + 1.

output_dim r - Integer. Dimension of the dense embedding.

» How: Embedding Layer

Steps for the embedding layer:

One-hot Encode cate_feat as one-hot encoding (a binary dummy vector)

$$j \rightarrow \mathbf{e}_{J,j} = (0, \cdots, \underbrace{1}_{j\text{th}}, \cdots, 0)^{\mathsf{T}} \in \{0, 1\}^{J},$$

Mapping Map one-hot encoding to a latent factor using the embedding matrix

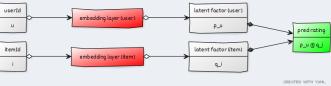
$$\mathbf{j} \rightarrow \mathbf{w}_{\mathbf{j}} = \mathbf{e}_{\mathbf{J},\mathbf{j}}^{\mathsf{T}} \mathbf{W},$$

Essentially, embedding is the same as latent factors; they are just different names.

» NCF: Embedding Layer

Let's summarize the Embedding Layer...

- Mapping $u \rightarrow \mathbf{p}_u$, or cate_feat \rightarrow dense representation
- Params Embedding matrix: #Users (or #Items) × #LatentFactors
 - hp #LatentFactors or embedding size
 - M The model becomes



F The formulation becomes:

$$\hat{f}_{\theta} = \underset{f_{\theta}}{\operatorname{argmin}} \ \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - f_{\boldsymbol{\theta}}(u,i))^2 + \lambda \operatorname{Reg}(\boldsymbol{\theta})$$

code Demo in Colab

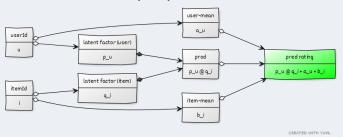
» In-Class Practice

In-class practice:

M MF-mean Model:

$$\hat{r}_{ui} = \mathbf{p}_u^{\mathsf{T}} \mathbf{q}_i + a_u + b_i$$

NN-view From a neural network perspective:



» NCF: Nonlinear Interaction

Incorporating neural networks to model **high-order** interactions between users and items.

M Model:

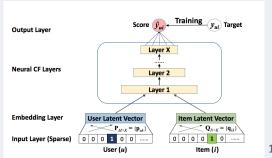
Input User-item pair $(u,i) \in \{1,\ldots,n\} \times \{1,\ldots,m\}$ Output Predicted rating Math

$$\hat{r}_{ui} = \phi(\mathbf{p}_u, \mathbf{q}_i),$$

where $\phi(\cdot)$ is a nonlinear function

» NCF: RS Formulation

Model The NCF model is illustrated as:



Params All parameters in the network include: (i) two embedding matrices in the embedding layers and (ii) weights in the other layers

hp Embedding size and network architecture

¹He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T. S. (2017, April). Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web (pp. 173-182).

» NCF: Implementation

```
Data (u,i) \rightarrow r_{ui}

Loss Mean Squared Error (MSE)

Metrics RMSE, MAE, etc.

Opt SGD/Adam
```

InClass demo: Neural Collaborative Filtering #1 in Colab

» ANCF: Additional Formulation

Motivation (from additive semi-parametric model)

The main effect is captured by first-order MF interaction; we then introduce additional latent factors to model higher-order interactions.

Model We aim to retain the MF terms in the model:

$$\widehat{r}_{ui} = \mathbf{p}_u^{\scriptscriptstyle\mathsf{T}} \mathbf{q}_i + \phi \left([\mathbf{s}_u, \mathbf{t}_i]
ight)$$

» ANCF: Additional Formulation

Model We aim to retain the MF terms in the model:

$$\widehat{r}_{ui} = \mathbf{p}_u^{\mathsf{T}} \mathbf{q}_i + f([\mathbf{s}_u, \mathbf{t}_i])$$

Parameters All parameters in the network include: (i) **two** embedding matrices in the embedding layers and (ii) **weights** in the other layers.

rparameters Embedding size and network architecture

InClass demo: Neural Collaborative Filtering #2

» Neural-NCF: Neural Formulation (Optional)

More general operators based on MF terms:

- * Without assuming a additive structure
- * Interaction between first-order and higher-order interactions

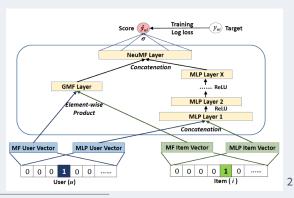
$$\widehat{r}_{ui} = \phi\left(\left[\mathbf{p}_u \circ \mathbf{q}_i, \psi(\left[\mathbf{s}_u, \mathbf{t}_i\right]\right)\right),$$

where ϕ and ψ are custom nonlinear functions.

» Neural-NCF: Neural Formulation (Optional)

* Transform the model into a neural network:

$$\widehat{r}_{ui} = \phi\left(\left[\mathbf{p}_u \circ \mathbf{q}_i, \psi(\mathbf{s}_u, \mathbf{t}_i)\right]\right)$$



²He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T. S. (2017, April). Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web (pp. 173-182).

» NCF: RS formulation (Optional)

Model The model becomes

$$\widehat{r}_{ui} = \phi\left(\left[\mathbf{p}_u \circ \mathbf{q}_i, \psi(\mathbf{s}_u, \mathbf{t}_i)\right]\right)$$

Params All params in the network: (i) four embedding matrices in embedding layers and (ii) weights in the other layers

hp embedding size and network architecture

Data $(u,i) o r_{ui}$

Loss MSE

Metrics RMSE, MAE, ...

Opt SGD/B-SGD

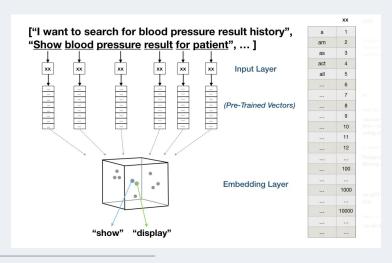
InClass demo: Neural collaborative filtering #3

- » Appendix: Embedding layers in NLP (Optional)
- * Embedding layers are a fundamental tool for NLP tasks
 Data Restaurant Review dataset

Training Examples	Labels
Simply loved it	Positive
Most disgusting food I have ever had	Negative
Stay away, very disgusting food!	Negative
Menu is absolutely perfect, loved it!	Positive
A really good value for money	Positive
This is a very good restaurant	Positive
Terrible experience!	Negative
This place has best food	Positive
This place has most pathetic serving food!	Negative

Goal Given textual reviews, can you provide a label to the review?

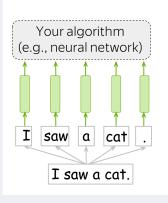
» Appendix: Embedding layers in NLP (Optional)



 $source: \ https://medium.com/@JMangia/coreml-with-glove-word-embedding-and-recursive-neural-network-part-2-ab238ca90970$

tf.keras.Embedding(input_dim, output_dim, input_length)

- * input_dim #vocabulary: total number of words in dictionary
- * output_dim Embedding size: dimension of latent factors
- * input_length length of sentence/document
- * All words share the same embedding layer



Any algorithm for solving a task

Word representation - vector (input for your model/algorithm)

Sequence of tokens

Text (your input)

Embedding Using the embedding layer to convert Words to a Matrix; then mapping Matrix to a target Outcome

- * Padding words with the same length
- * Train and fit the model as a general network

source: https://lena-voita.github.io/nlp_course/word_embeddings.html