
Conceptual Harmonies





Conceptual 
Harmonies

The Origins and Relevance of Hegel’s Logic

pau l  r e d d i n g

The University of Chicago Press
Chicago and London



The University of Chicago Press, Chicago 60637

The University of Chicago Press, Ltd., London
© 2023 by The University of Chicago
All rights reserved. No part of this book may be used or reproduced in any  
manner whatsoever without written permission, except in the case of brief  
quotations in critical articles and reviews. For more information, contact  
the University of Chicago Press, 1427 E. 60th St., Chicago, IL 60637.
Published 2023

Printed in the United States of America

32  31  30  29  28  27  26  25  24  23    1  2  3  4  5

isbn-13: 978-0-226-82605-9 (cloth)
isbn-13: 978-0-226-82607-3 (paper)
isbn-13: 978-0-226-82606-6 (e-book)
doi: https://doi.org/10.7208/chicago/9780226826066.001.0001

Library of Congress Cataloging-in-Publication Data

Names: Redding, Paul, 1948– author.
Title: Conceptual harmonies : the origins and relevance of Hegel’s logic /  

Paul Redding.
Other titles: Origins and relevance of Hegel’s logic
Description: Chicago : The University of Chicago Press, 2023. |  

Includes bibliographical references and index.
Identifiers: lccn 2022043822 | isbn 9780226826059 (cloth) |  

isbn 9780226826073 (paperback) | isbn 9780226826066 (ebook)
Subjects: lcsh: Hegel, Georg Wilhelm Friedrich, 1770–1831. | Hegel, Georg Wilhelm 

Friedrich, 1770–1831—Sources. | Logic. | Logic—History. | Mathematics, Greek.
Classification: lcc b2949.l8 r39 2023 | ddc 193—dc23/eng/20221207

LC record available at https://lccn.loc.gov/2022043822

♾ This paper meets the requirements of ansi/niso z39.48-1992  
(Permanence of Paper).



Contents

Hegel’s Texts: Translations and Abbreviations  vii
Preface  ix

Introduction	 1

Beginning: Hegel’s Classicism

1	 Logic, Mathematics, and Philosophy in Fourth-Century Athens	 21

2	 Hegel and the Platonic Origins of Aristotle’s Syllogistic	 42

3	 The General Significance of Neoplatonic Harmonic Theory  
for Hegel’s Account of Magnitude	 57

Middle: Classical Meets Modern

4	 Geometry and Philosophy in Hegel, Schelling, Carnot,  
and Grassmann	 87

5	 The Role of Analysis Situs in Leibniz’s Modernization of Logic	 108

6	 Hegel’s Supersession of Leibniz and Newton: The Limitations  
of Calculus and Logical Calculus	 126

End: The Modern as Redetermined Classical

7	 Exploiting Resources within Aristotle for the Rehabilitation  
of the Syllogism	 147

8	 The Return of Leibnizian Logic in the Nineteenth Century:  
From Boole to Heyting	 169



9	 Hegel among the New Leibnizians: Judgments	 191

10	 Hegel beyond the New Leibnizians: Syllogisms	 213

Conclusion: The God at the Terminus of Hegel’s Logic	 228

Acknowledgments  233

Notes  235

Bibliography  261

Index  277



Hegel’s Texts: 
Translations and Abbreviations

The following translations have been used, although sometimes modified. 
Except where Hegel’s texts have numbered paragraphs, page numbers in the 
English translations are followed by volume and page numbers from G. W. F.  
Hegel, Gesammelte Werke (Hamburg: Felix Meiner, 1968–) or Vorlesungen: 
Ausgewählte Nachschriften und Manuskripte (Hamburg: Felix Meiner, 1983–).

b rf : Briefe von und an Hegel. Vol. 1, 1785–1812. Edited by Johannes Hoffmeister. 
Hamburg: Meiner Verlag, 1969.

di f f : The Difference between Fichte’s and Schelling’s System of Philosophy. Translated 
and edited by H. S. Harris and Walter Cerf. Albany: State University of New York 
Press, 1977.

e : l : Encyclopedia of the Philosophical Sciences in Basic Outline. Part 1, Science of 
Logic. Translated and edited by Klaus Brinkmann and Daniel O. Dahlstrom. 
Cambridge: Cambridge University Press, 2010.

e : pn : Hegel’s Philosophy of Nature. Edited and translated with an introduction and 
explanatory notes by M. J. Petry. 3 vols. London: George Allen and Unwin, 1970.

e : p s : Hegel’s Philosophy of Mind. Translated from the 1830 edition, together with  
the Zusätze, by W. Wallace and A. V. Miller, with revisions and commentary by 
M. J. Inwood. Oxford: Clarendon Press, 2007.

l h p : Lectures on the History of Philosophy, 1825–6. Edited by Robert F. Brown. Trans-
lated by R. F. Brown and J. M. Stewart, with the assistance of H. S. Harris. 3 vols. 
Oxford: Clarendon Press, 2006–9.

m i s c :  Miscellaneous Writings of G. W. F. Hegel. Edited by Jon Stewart. Evanston,  
IL: Northwestern University Press, 2002.

ph e n : The Phenomenology of Spirit. Translated and edited by Terry Pinkard.  
Cambridge: Cambridge University Press, 2018.



viii t r a n s l a t i o n s  a n d  a b b r e v i a t i o n s

pr : Elements of the Philosophy of Right. Edited by Allen W. Wood. Translated by  
H. B. Nisbet. Cambridge: Cambridge University Press, 1991.

s e l : System of Ethical Life (1802/3). In System of Ethical Life and First Philosophy of 
Spirit, edited and translated by H. S. Harris and T. M. Knox. Albany: State Uni-
versity of New York Press, 1979.

s l : The Science of Logic. Edited and translated by George di Giovanni. Cambridge: 
Cambridge University Press, 2010.



Preface

At the outset of his pathbreaking interpretation of Hegel’s Science of Logic, 
the work that Hegel described as containing that on which all the rest of his 
work depended, Robert Pippin comments: “To understate the matter in the 
extreme: this book still awaits its full contemporary reception. . . . It has not 
inspired the kind of engagement found in work on Kant’s Critiques or Hegel’s 
own Phenomenology of Spirit or Philosophy of Right” (Pippin 2019, 4). Such 
comments apply particularly to the first half of “Subjective Logic,” the second 
volume of The Science of Logic, and the place in which Hegel comes closest to 
the style of work that the term “logic” usually brings to mind—the systematic 
treatment of forms of judgment and inference.

In general, interpreters coming from the direction of Hegel studies, on the 
one hand, and logic itself, on the other, have been reluctant to engage with the 
details of Hegel’s subjective logic. For many orthodox Hegelians it is routinely 
repeated that Hegel’s logic has precious little if anything to do with “logic” as 
standardly understood and especially “formal” or “mathematical” logic. For 
logicians, the source of the reluctance has had more to do with the belief that 
Hegel stands on the wrong side of those “foundational” works that, in relation 
to logic, might be considered to have established its modern paradigm. Even 
where some nonclassical logicians show sympathy with the dialectical spirit 
of Hegel (e.g., Priest 1989/1990), they rarely engage closely with “the letter” of 
his “Subjective Logic.”1

Although with a focus on Hegel’s Phenomenology of Spirit rather than his 
Logic, Robert Brandom has, over the last three decades, confronted this re-
luctance. Inspired by the work of Wilfrid Sellars and Richard Rorty, Brandom 
has attempted to establish a place for Hegelian thinking within contempo-
rary analytic philosophy in a way that does not flinch from the fact of the 
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latter’s origins in the logical revolution sparked by the work of the German 
mathematician Gottlob Frege in the latter decades of the nineteenth century. 
Rorty had pointed to the holistic and pragmatic approaches to reasoning 
that had emerged among Frege’s successors during the “linguistic turn” of 
the 1930s, 1940s, and 1950s (Rorty 1967), undermining analysis’s commitment 
to the idea of the mind’s “mirroring” of the world in thought (Rorty 1979). 
Progressive post-Fregeans, such as Carnap, Quine, and, especially, Sellars, he 
thought, had liberated philosophy from this mythical view leading to ideas 
that had “been a commonplace of our culture since Hegel. Hegel’s histori-
cism gave us a sense of how there might be genuine novelty in the develop-
ment of thought and of society” (Rorty 1982, 3). But while Rorty’s appeal to 
Hegel had the purpose of freeing philosophy from the framework of analysis 
as originally conceived, Brandom’s has been more in the service of “extend-
ing” the project of analytic philosophy in a way that rescues its original spirit 
(Brandom 2008, ch. 1). With the help of Hegel, analytic philosophy could be 
freed from the imagery of the mind as a mirror of nature with its implicit 
understanding of representation as resemblance, and so be rehabilitated as a 
meaningful project.

On Brandom’s account, both Hegel and analytic philosophy are compat-
ible participants within that extended modern “Copernican revolution” that 
Kant had declared in philosophy and in which he challenged the idea of the 
mind’s representations as resembling the world “in itself.” But prior to Kant, 
Brandom points to the significance of Descartes’s innovative application of 
algebra to geometry in the seventeenth century. According to Brandom, Des-
cartes’s “analytic geometry” had freed the concept of representation from re-
semblance: “Treating something in linear, discursive form, such as ‘ax + by  
= c’ as an appearance of a Euclidean line, and ‘x2 + y2 = d’ as an appearance of a  
circle, allows one to calculate how many points of intersection they can have 
and what points of intersection they do have, and lots more besides. These 
sequences of symbols do not at all resemble lines and circles. Yet his math-
ematical results . . . showed that algebraic symbols present geometric facts in 
a form that is not only (potentially and reliably) veridical, but conceptually 
tractable. . . .  He saw that what made algebraic understanding of geometric 
figures possible was a global isomorphism between the whole system of alge-
braic symbols and the whole system of geometric figures” (Brandom 2019, 39; 
cf. 2009, 28).

While Brandom has distanced himself from the details of Hegel’s own ideas 
about his logic and its ancestry, Descartes’s analytic geometry nevertheless 
can seem a singularly unhappy choice. Hegel had a lifelong interest in math-
ematics and, especially, Greek geometry and modern celestial mechanics, and 
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in relation to the latter he had unequivocally championed the role of Kepler 
over Newton. Hegel’s support of Kepler has often been dismissed because it 
involved the latter’s appeal to Plato’s cosmology, with that aspect of Kepler’s 
work typically seen as unconnected with the advances he made in empiri-
cal astronomy. While this is the type of dimension from which Brandom is 
happy to abstract, in this work it will be argued that Hegel was in fact on much 
sturdier ground in his appeals to Plato and Kepler than is usually assumed. 
Independently of these considerations, however, are ones that are much closer 
to the issue of Descartes’s analytic geometry. Hegel praised Kepler’s reliance 
on Apollonius’s synthetic geometry of conic sections over Newton’s new “ana-
lytic” point of view that was linked to the infinitesimal calculus that he helped 
shape, an innovation that itself had relied on Descartes’s analytic geometry. 
“It is well known that the immortal honour of having discovered the laws of 
absolutely free motion belongs to Kepler. Kepler proved them in that he discov-
ered the universal expression of the empirical data. It has subsequently become 
customary to speak as if Newton were the first to have discovered the proof 
of these laws. The credit for a discovery has seldom been denied a man with 
more unjustness” (E:PN, §270, remark).

In the context of this remark Hegel appeals to a recent work in mechanics 
(Francoeur 1807) done in the style of the type of geometry being practiced in 
Paris in the newly formed École Polytechnique—a style of geometry that had 
been self-consciously proposed as an alternative to Descartes’s analytic geom-
etry. This rival geometrical tradition of projective geometry, to which Kepler 
is regarded as a precursor, had been introduced in the seventeenth century by 
Girard Desargues just two years after Descartes’s Géométrie of 1637. However, 
it had fallen on deaf ears and lain dormant for almost two centuries before be-
ing revived in France in the last decades of the eighteenth century by Gaspard 
Monge and by one of his former students, Lazare Carnot. The remarkable 
Carnot had become a major figure in the French Revolution and Revolution-
ary Wars and among his achievements had been the establishment of a new 
educational institution meant to serve the ends of the revolution, the École 
Polytechnique, at the head of which he had appointed Monge. Hegel’s strong 
feelings about the “unjustness” of the treatment of Kepler had sources deep 
within his views about the relation of modernity to antiquity that would be 
expressed toward topics that ranged from the French Revolution to the dis-
ciplines of geometry, algebra, and logic. All of these happened to converge in 
the revolutionary new institution, the École Polytechnique (Gray 2007, ch. 1).

Elsewhere I have objected to elements of Brandom’s “strong inferential-
ist” interpretation of Hegel (Redding 2015), but more recently I have come 
to see Brandom’s broader narrative locating of Hegel as the source of these 
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problems. Hegel should not be regarded as a somewhat eccentric figure within 
the tradition running from analytic geometry to analytic philosophy via the 
logics of Kant and Frege; rather, he should be regarded as one of its most 
powerful critics. Moreover, his critique of analytic geometry, I believe, holds 
the key to his critique of analytic philosophy and its favored logic. Hegel, I 
will argue, had identified with this different geometrical tradition, which had 
been revived around the turn of the nineteenth century and of which he was 
certainly aware. He possessed the book by Carnot in which the Frenchman 
had first reintroduced projective geometry to the world (Carnot 1801; Mense 
1993, 673).

While the framework of analytic geometry was, as Brandom astutely 
points out, later presupposed by Frege’s logic and the analytic philosophy to 
which it gave rise, projective geometry would be implicated in the structure 
of the second wave of Leibnizian logic in the nineteenth century associated 
with the English mathematician George Boole and followers such as Charles 
Sanders Peirce. The original version of this algebraic Aristotelian logic had 
stemmed from Leibniz himself and, while generally thought to have had little 
impact in European philosophy before its discovery at the end of the nine-
teenth century, had deeply influenced the form of logic taught at the Tübin-
gen Seminary during Hegel’s years there. Moreover, despite being inspired 
by Descartes’s application of algebra to geometry, Leibniz had tempered this 
with a criticism of Descartes’s analytic geometry similar to that of the projec-
tive geometers. Leibniz had thus advocated a nonmetrical approach to geom-
etry he called analysis situs, the analysis of situation. In one of the books in 
which Carnot reintroduced projective geometry to the world (Carnot 1803a), 
he presented his own “geometry of position” as a realization of Leibniz’s anal-
ysis situs.2

A distinguishing feature of the nineteenth-century version of Leibnizian 
logic would be the presence of a principle directly inherited from projective 
geometry, usually referred to as the principle of “duality.” In fact, at the end of 
the nineteenth century, a young Bertrand Russell, prior to his conversion to 
Fregeanism and “analysis” more generally, would point to this feature as char-
acterizing Hegel’s account of space (Russell 1897). I will argue, however, for its 
centrality to Hegel’s logic as a whole, in much the same way that it was central 
for Boole and the post-Booleans but not for Frege, Russell, or Brandom.

The presence of this principle of duality in Hegel, in the form of two irre-
ducibly different forms of judgment, disrupts Brandom’s idea of a logical ana-
logue of the “universal isomorphism” between geometric and algebraic forms 
of expression. Nevertheless, with it Hegel expresses a type of equivalence be-
tween different judgment forms similar to the difference between the discrete 



xiiip r e fa c e

and continuous magnitudes of algebra and geometry to which Brandom al-
ludes. Rather than a global equivalence, however, Hegel’s logic will exhibit a 
local form of equivalence between logical forms that differ in the way that al-
gebraic and geometric expressions differ. And rather than an “isomorphism,” 
Hegel’s logic will demonstrate that weaker form of equivalence that mathema-
ticians call “homomorphism”—a form of equivalence closer to that of what 
in the nineteenth century came to be called “homology” in the science of 
comparative anatomy in which the arm of a human was regarded as in certain 
ways equivalent to the wing of a bird, despite their functional differences. The 
linked ideas of duality, homomorphism, and homology, I will argue, better 
capture what Hegel describes as an “identity in difference” or an “identity of 
identity and difference,”3 formulations that escape the analytic framework of 
Brandom’s interpretations. Hegel’s appeal to a form of homomorphic equiva-
lence between different logical forms will be shown to be a central feature of  
his logic.

The fact of the presence of a small book on geometry in Hegel’s library 
is not being proposed as evidence of some specific influence traceable from 
Carnot to Hegel. Rather, the tradition of projective geometry, as signaled by 
its anticipation by Kepler, had its roots deep in the mathematical culture of 
Plato’s Academy in its early decades. This was a culture focused on the no-
tion of “measure” because confidence had been shaken in the capacity of the 
mind to take the measure of the world in a literal sense by the discovery of 
the phenomenon of incommensurability between the discrete magnitudes of 
arithmetic and the continuous magnitudes of geometry—a discovery now 
usually described as the discovery of the “irrational numbers.” This is usually 
discussed as a consequence of the discovery of one of the founding theorems 
of Greek geometry, Pythagoras’s theorem, but it had also been linked to the 
Pythagorean interest in music and the generalization of its organizational 
principles to the cosmos. Hegel locates the principle of local homomorphism, 
as we will see, in Plato, but a more familiar sense of what it might amount to 
for logic will perhaps be gained from the role played by analogy in Aristotle 
and his use of the notion of “mean” in the Nicomachean Ethics, where he 
invokes two different types of mean or middle terms drawn from contempo-
rary music theory to differentiate two different types of justice (Aristotle 1984, 
Nicomachean Ethics, 1131a28–32b20). As we will see, in his discussion of Plato’s 
Timaeus, Hegel would stress that what typically distinguishes Plato’s “syllo-
gism” from Aristotle’s is that Plato’s has a “doubled” or “broken” middle term. 
From Hegel’s perspective Aristotle’s discussion of justice would have been 
one of the few places in Aristotle’s texts in which Plato’s approach, with its 
dual means or middle terms, could be recognized. But it is not just a question 



xiv p r e fa c e

of whether one or two “means” are employed. The two means employed by 
Aristotle here were in fact two of three—the geometric, the arithmetic, and 
the harmonic—and the “principle of local homomorphism” would turn out 
to rest upon the type of unity meant to be achieved among them.

It was a conception of syllogism modeled upon this type of unity among 
the three otherwise incommensurable means that, I will argue, had been be-
hind Hegel’s widely misunderstood support for Kepler’s cosmology with its 
strange association with the ancient doctrine of the “music of the spheres.” 
Hegel’s appeal to Kepler’s geometric approach to cosmology, in contrast with 
the predominantly “analytic” approach originating from Descartes and New-
ton, was actually in accord with the reemergence of nonmetrical forms of 
geometry that would go on to play important roles within not only the devel-
opment of nineteenth-century science but also that century’s rehabilitation 
of logic.

The work that follows has grown out of what was first planned as an in-
troductory chapter to an interpretation of Hegel’s metaphysics and the con-
sequences that this metaphysics held for his Realphilosophie. However, the 
chapter then grew into the first half of a planned book aimed at grounding 
Hegel’s metaphysics in this reconstruction of his logic. This ambition also 
soon proved wildly unrealistic, however, and this reading of Hegel’s logic was 
reconceived as the subject of a stand-alone work. Making a case for this un-
usual and counterintuitive reading of Hegel involves appeals to episodes from 
the history of mathematics that are not typically seen as relevant for either 
logic or philosophy and with which many readers will be unfamiliar—on the 
one hand, the ancient Pythagorean theory of the musical “means,” and on the 
other, modern projective geometry and other forms of nineteenth-century 
“geometrical algebra” that revived these ancient approaches. I have therefore 
tried to supply enough of this historical background as necessary for convey-
ing how Hegel could make use of it and how it might make sense of him. 
Given this need, together with that of keeping the presentation as uncluttered 
and as clear as possible, I have maintained a focus entirely on the relevance of 
these issues for Hegel’s logic and have resisted the temptation to draw conse-
quences for his philosophy more broadly. There is no attempt, then, to locate 
my interpretation of Hegel within the burgeoning context of the many con-
temporary interpretations of his work. I have had to ignore even those recent 
accounts of Hegel’s Science of Logic, such as that of Robert Pippin referred to 
above, in which the focus is not predominantly on these narrowly “logical” 
issues, in the usual understanding of this term.

For the same reason I make no attempt to engage directly with Brandom’s 
contrasting account of the logic structuring Hegel’s Phenomenology of Spirit. 
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I know that Bob advises young philosophers that have come into his orbit to 
work out their own “big idea.” My hope is that this advice works not only for 
the young. While reference to Brandom’s own powerful reading of Hegel only 
very occasionally appears in these pages, my debts to his work, stretching 
over more than three decades, will be obvious.





Introduction

Had I more space, I now ought to show how important for philosophy is the math-
ematical conception of continuity. Most of what is true in Hegel is a darkling glimmer of 
a conception which the mathematicians had long before made pretty clear, and which 
recent researchers have still further illustrated.

c .  s .  p e i r c e , “The Architecture of Theories”

0.1 Greek Geometry, Pythagorean Harmonics, and Hegel’s Syllogism:  
An Initial Sketch

In his 1825–26 Lectures on the History of Philosophy at the University of Berlin, 
Hegel discussed Plato’s natural philosophy as given mythical expression by 
the apparently fictional Pythagorean mathematician-cosmologist, Timaeus 
of Locri. Following Plato, Hegel identifies the organizing principle giving 
structure to the body of the cosmic animal as “the most beautiful bond [der 
Bande schönstes],” and then (loosely) quotes Plato himself: “ ‘This brings into 
play in the most beautiful way the proportion [die Analogie] or the continu-
ing geometric ratio [das stetige geometrische Verhältnis]. If the middle one 
of three numbers, masses or forces is related to the third as the first is to it 
and, conversely, it is related to the first as the third is to it (a is to b as b is to 
c), then, since the middle term has become first and last and, conversely, the 
last and the first have become the middle term, they have then all become 
one.’ ” Hegel then adds in his own words: “With this the absolute identity is 
established. This is the syllogism [der Schluss] known to us from logic. It re-
tains the form in which it appears in the familiar syllogistic [im gewöhnlichen 
Syllogismus], but here it is the rational” (LHP 2:209–210; 3:39).1 The peculiar 
unity among the two extremes and the middle term alluded to here will be 
expressed in the idea that Plato’s syllogism demands a middle term that is 
simultaneously two, a middle term that is “broken” or “doubled” (211; 3:41), a 
feature that will be seen to be lacking in the “familiar syllogistic” of Aristotle.

This fixation on the most beautiful bond of Timaeus’s cosmology had 
been central to Hegel’s thinking from his earliest philosophical period 
and has posed challenges to attempts to portray him as a serious modern 
philosopher—indeed, from the point of view of many, as a philosopher at 
all. It is known from Karl Rosenkranz, the editor who had access to Hegel’s 
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manuscripts and papers after his death, that Hegel had written a now-lost 
fragment, seemingly sometime in 1800–1801, in which he had experimented 
with a diagram to represent this same Analogie from Plato’s Timaeus (Schnei-
der 1975). Rosenkranz dated the diagram roughly around the time at which 
Hegel had left his position as house tutor to a wealthy family in Frankfurt to 
embark on an academic career at the University of Jena. The diagram depicts 
a “triangle of triangles” showing the inverted embedding of one equilateral 
triangle within another, the embedded triangle having sides half the length 
of the larger triangle such that a further three smaller triangles are produced 
inside the first with the same orientation as it, as in figure 0.1.

In the generation of such a diagram, the division of the initial figure pro-
duces further instances of the same figure that can each be further divided, 
the process being able to be iterated indefinitely in a way now referred to as 
“fractal.”2 It is often noted that during the earlier years of his stay in Frankfurt 
from 1797 to 1800, Hegel had been attracted to “mystical” (Lukács 1975, 121–
123) or “theosophical” (Harris 1983, 184) elements within medieval Christian-
ity that, Lukács and Harris argue, he soon moved beyond. The triangle was a 
commonly used representation of the Christian doctrine of the Trinity, and 
Hegel would probably have been aware that this motif was to be found in til-
ing patterns in cathedrals, such that the iteration of the division of the initial 
triangle within the smaller similarly aligned triangles was meant to induce a 
sense of infinity in the viewer. Hegel would soon abandon the project of find-
ing diagrams that were adequate to what he thought of as fundamentally con-
ceptual relations, and so the proper concept of infinity. But Hegel’s diagram 

f ig u r e  0.1 Hegel’s “triangle of triangles” (adapted from Schneider 1975, 149).



3i n t r o d u c t i o n

nevertheless conveys the particular importance the ancient science of geom-
etry would continue to hold in relation to his conception of logic. It is known, 
for example, that he embarked upon an intensive reading of Euclid’s Elements 
around 1800 (Paterson 2005), and it has been suggested that his triangle of 
triangles had represented an interest in a type of “geometric logic” (Schneider 
1975, 139).3 Moreover, as we will see, the “triangle of triangles” involved had 
connotations other than Christian ones, linking it to ancient Pythagorean 
mathematics and in turn to Timaeus’s most beautiful bond.

In the 1825–26 Lectures, addressing Timaeus’s account of the structure of 
the cosmic mind, Hegel touches upon a number series found in Plato’s text 
that had got him into hot water in his dissertation, “On the Orbits of the 
Planets” (Misc, 170–206), written in 1801 at the University of Jena to satisfy 
the conditions allowing him to teach there. The dissertation, roughly con-
temporaneous with the “triangle of triangles,” is infamous for Hegel’s having 
invoked a sequence of seven numbers in an apparent explanation of the com-
parative distances of the (then-known) seven planets from the sun. Hegel had 
become, and still is, roundly mocked for what has been seen as an attempt to 
preempt any empirically based cosmology by some type of ancient number 
mysticism, but what Hegel was actually attempting, I will argue, was of an en-
tirely different nature. Defenders have pointed to the exaggerations involved 
in his critics’ descriptions of his claims, confined to the last page or so of the 
dissertation (e.g., Harris 1983, 96; Craig and Hoskin 1992). Moreover, the bulk 
of the dissertation had been devoted to a topic much more expected of a 
modern philosopher—a critique of the idea that Newton’s laws could be said 
to explain the laws of planetary motion that Kepler had arrived at empiri-
cally and expressed geometrically—a critique that Hegel would continue in 
his later systematic philosophy of nature (E:PN, §270, remark and addition). 
That is, rather than attempt to usurp empirical observation by a priori rea-
soning, Hegel actually seems to have been defending the role of observation 
in astronomy, denying that Newton’s methods could properly be described as 
empirical. That is, absent the last few pages, Hegel’s dissertation was devoted 
to a type of philosophy of science that would be unlikely to raise eyebrows 
even today. Let’s remain for the moment, however, with this troubling num-
ber series itself.

In his suggested series—1, 2, 3, 4, 9, 16, 27—Hegel had altered Plato’s origi-
nal series of 1, 2, 3, 4, 9, 8, 27 (Plato, Timaeus, 35b), which itself had drawn 
upon the tetraktys, a type of triangular figurative number used by contem-
porary Pythagorean mathematicians consisting of an array of ten elements 
arranged like the pins in ten-pin bowling (as pictured in fig. 0.2)—that is, in 
four rows of one, two, three, and four units, respectively.
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We will later explore some of the various levels of significance this figure 
held for the Pythagoreans, but two points are worth noting here. The first is 
obvious: this is the similarity of the Pythagorean tetraktys to the triangle of 
triangles. Hegel’s diagram would result from simply “joining the dots” within 
any of the component triads. The second concerns the meanings the tetraktys 
held for the Pythagoreans and, following them, Plato. It will be argued that 
these could have a significance for Hegel beyond the “number mysticism” with  
which his interest in Plato is usually associated.

Concern with such arcane matters was not peculiar to Hegel. In 1794, dur-
ing the time of his close association with Hegel at the Tübingen Seminary, 
Friedrich Schelling wrote a commentary on Plato’s Timaeus (Schelling 1994) 
that would feed into the philosophy of nature that he pursued at Jena when 
working collaboratively with Hegel in the early years of the new century. 
These interests caught the attention of the romantic Naturphilosoph Franz von 
Baader, who, in 1798, published a work, entitled On the Pythagorean Tetrad 
in Nature, or The Four Regions of the World (Baader 1798; Förster 2012, 240–
242).4 Baader’s pythagoräische Quadrat, a figure meant to express his criticism 
of Schelling’s acceptance of aspects of Kant’s natural philosophy (Förster 2012, 
241), was, in fact, the tetraktys, which he represented as an equilateral triangle 
within which he placed a single point, as in figure 0.3 (Baader 1798, 49 note).5

In the early 1790s, Baader seems to have shared political as well as scien-
tific and theosophical interests with Schelling and Hegel. Having spent time 
in England, Baader had become an admirer of Mary Wollstonecraft and Wil-
liam Godwin, as well as Jean-Jacques Rousseau, although his views remained 
predominantly religious (Betanzos 1998, 63–64).6 In accord with his Catholi-
cism, however, he would be critical of the Spinozist pantheism that he attrib-
uted to both Schelling and Hegel, but to which he nevertheless came close.

Such combinations of scientific, theosophical, and political interests were 
in no way restricted to these three, Pythagoreanism having come to have 
widespread contemporary relevance via the French Revolution. According 

f ig u r e  0.2 The Pythagorean tetraktys.
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to historian James Billington, “the image of the revolutionary as a modern 
Pythagoras and of his social ideal as Philadelphia” distilled “the high fraternal 
ideals common both to the occult brotherhoods of Masonry and Illuminism 
and to the idealistic youthful mobilization to defend the revolution in 1792–
94” (Billington 1980, 99–100). As Terry Pinkard has described the situation, 
while the much-repeated story of the three fellow seminarians, Hölderlin, 
Schelling, and Hegel, planting a “freedom tree” on July 14, 1793, may well be 
a myth, it nevertheless captures “the spirit that was undoubtedly animating 
the three friends. A political club had formed in the 1790s at Tübingen to 
discuss the Revolution, to read various revolutionary tracts, and in general 
to raise the spirits of the seminarians who were inspired by the events of the 
Revolution; Hegel was a member of the club” (Pinkard 2000, 24). There is 
evidence that Hegel, when employed as a house tutor in Bern and, especially, 
Frankfurt, remained involved in a secretive way with Masonic groups and, 
in particular, with a former student and club member from Tübingen, J. K. F. 
Hauff (d’Hondt 1968, chs. 1 and 2). Hegel’s links to Hauff, whether direct or 
indirect, suggest an attraction to Pythagorean ideas quite different from the 
more theosophical/nature-philosophical attitudes of Schelling and Baader.

Clearly during these early years Baader, Schelling, and Hegel had all been 
concerned with construing the god of Christianity in ways that suggested a 
type of pantheism—itself a somewhat revolutionary and dangerous stance—a 
position that Baader would explicitly come to oppose.7 As part of this, in-
spired by Plato’s conception of a world-soul in the Timaeus, all three were 
also concerned with combating the type of mechanistic view of the world that 
could be understood as the complement to an entirely extramundane concept 
of God. In the service of this idea of reanimating the extended physical world, 
both Schelling and Baader believed that more recent sciences such as chem-
istry testified to the pervasion of the world by some mind-like substance, 
Baader, for example, pursuing the idea of heat as a quasi-mind-like Wärmest-
off (Betanzos 1998, 62). Along with this went a fascination with symbolic ways 
of presenting such an animated conception of the world to combat what were 

f ig u r e  0.3 Baader’s Quadrat and the Pythagorean tetraktys.
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seen as the lifeless abstractions of modern rational thought. However, in line 
with the assessments of Harris and Lukács, Helmut Schneider has attributed 
a quite distinct attitude to Hegel: “The ‘triangle fragment’ does not rest on 
mystical experience. It is about rational construction and geometrical logic” 
(Schneider 1975, 139).

Interest in such a “geometrical logic,” I will argue, is evidenced by the sci-
ence books in Hegel’s library, and in particular, the combination of works on 
Greek mathematics and recent and contemporary developments in that dis-
cipline (Mense 1993, 670). In relation to the latter might be noted two books 
by the French mathematician Lazare Carnot (Mense 1993, 673 and 682), who 
would revive a form of geometry that would become central to advances 
in mathematics and physics through the nineteenth century and beyond. 
In one, Carnot’s De la corrélation des figures de géométrie, first published in 
1801, would be found a peculiar type of “double ratio” that linked back to the 
Pythagorean tetraktys, or more specifically, to another, related Pythagorean 
tetraktys called the “musical tetraktys.” The musical tetraktys was also called 
harmonia, and this name was reflected in the name “harmonic cross-ratio” 
that would later be given to this important geometrical structure introduced 
in Carnot’s book. Moreover, in one of the books on Greek mathematics in 
Hegel’s library, Nicomachus of Gerasa’s Introduction to Arithmetic (Mense 
1993, 672), this musical tetraktys was identified as the most beautiful bond of 
Plato’s Timaeus that, as we have seen, Hegel would identify as the “rational 
form” of the “syllogism known to us in logic.” Given this spread of Hegel’s in-
terests, it is hard to see how he could not have been interested in the contents 
of Carnot’s book, but there would have been many more reasons for Hegel’s 
interest in this particular mathematician.

Count Lazare Nicolas Marguerite Carnot is now entombed in the Pan-
theon in Paris and regarded as one of the heroes of the French Revolution 
and Revolutionary Wars (Gueniffey 1989). Trained as a military engineer, 
Carnot had been elected a member of the National Assembly in 1791 and by 
1794 “had achieved his objective of virtual total control of military affairs” 
(Gueniffey 1989, 199). In the same year, in his capacity as a member of the 
Committee for Public Safety, he was involved in the overthrow of Robespierre 
and the ending of the Terror. Hegel’s five-year stay at the Tübingen Semi-
nary between October 1788 and June 1793 broadly overlapped with the period 
from the formation of the National Assembly (June 1789) to Robespierre’s 
fall (July 1794),8 and we know he followed these events with intense interest. 
Besides the small book on geometry, Hegel also possessed an earlier work of 
Carnot’s, Réflexions sur la métaphysique du calcul infinitésimal, published in 
French in 1797. While proficient in French, Hegel possessed both books in 
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German translation, Réflexions having been translated by a former seminar-
ian at Tübingen, J. K. F. Hauff, whose period there overlapped with Hegel’s. 
Four years Hegel’s senior, Hauff was, like Hegel, from Stuttgart and in 1790 
had effectively been expelled from the seminary for his revolutionary activi-
ties. Even had they not been acquainted, Hegel surely would have been aware 
of his older fellow student. After Tübingen, Hauff had gone on to become 
a mathematician and political activist and, having translated a number of 
books published by the revolutionary Parisian publishing house Imprimerie 
du Cercle Social, seems to have been associated with the moderate Girondist 
wing of the Revolution.

In his study of Hegel’s “secret” revolutionary associations in the 1790s, 
Jacques d’Hondt has postulated that Hegel and Hauff may have been associ-
ated during the time both lived in Frankfurt, especially in relation to Masonic 
clubs (d’Hondt 1968, 46–50). Besides Hauff ’s translation of Carnot, Hegel also 
possessed his translation of Pierre-Simon Laplace’s Exposition du système du 
monde, first published by the Cercle Social (45). This influential publishing 
house, associated with the Girondist party (Kates 1985), had also published a 
work by the Swiss lawyer Jean-Jacques Cart, on the oppression of the French-
speaking Vaudois by their neighboring German-speaking Bernese, which 
Hegel had translated while in Berne. Later, while living in Frankfurt in 1798, 
Hegel would publish this translation and a commentary with the same pub-
lishers who had published both of Hauff ’s scientific translations. As suited the 
justifiable secretness that accompanied Hegel’s associations with the revolu-
tionary movement, he had published this anonymously.

The results of d’Hondt’s sleuthing suggest links between Hegel and Hauff 
that were both political and scientific. Hegel’s political allegiances during this 
period were definitely toward the type of anti-Jacobin position associated 
with the Cercle Social, but his links to contemporary mathematical science, 
as mediated by Hauff ’s translations, also suggest interests different from those 
of Schelling and Baader. For his part, Hauff ’s association with Carnot seems 
to have exceeded that of simple translator, as studies of the young German’s 
correspondence with Carnot during the translation of Réflexions suggest that 
he had in fact been influencing the direction that Carnot’s mathematical work 
was taking at the time (Schubring 2005, 349). Hauff went on to become the 
first professor of mathematics at the University of Marburg and is occasion-
ally mentioned in histories of the genesis of non-Euclidean geometry in the 
nineteenth century via his influence on the “astral geometry” of Ferdinand 
Karl Schwikardt.9

Hegel’s interest in what Helmut Schneider calls “rational construction and 
geometrical logic” (Schneider 1975, 139) would have attracted him to Carnot, 
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given that the latter was taking mathematics in a direction that was to provide 
a type of logical framework for the sorts of nonreductionistic approaches to 
science favored by Schelling and Baader but largely free of the mystical sym-
bolism found in Naturphilosophie. Within the history of science, Carnot is 
now best known for two aspects of his work: his early role in the flowering of 
modern projective geometry, on the one hand, and, on the other, within the 
development of mechanics (Carnot 1803b; Gillispie and Pisano 2013, chs. 2–4) 
and, indirectly, thermodynamics.10 Both aspects were linked and reveal the 
deeply practical nature of his outlook.

At a time during which the modern distinction between “pure” and “ap-
plied” mathematics was only just emerging, Carnot conceived of geometry as 
essentially “applied”—a view that, as we will see, Hegel shared but Schelling 
did not. In this, Carnot’s attitude was similar to that of his former teacher, 
Gaspard Monge. Monge had developed a “descriptive geometry” (Monge 
1799),11 dedicated to representing three-dimensional objects on differently 
oriented two-dimensional planes, so to meet the needs of the modern engi-
neer. In turn, the École Polytechnique established by Carnot in his capacity of 
minister of war was meant to provide this training, and this type of institution 
would proliferate throughout the nineteenth century (Barbin, Menghini, and 
Volkert 2019). Thus, both worked on developing a form of mathematics bet-
ter suited to worldly application than either traditional Euclidean geometry 
or the algebraic mechanics recently developed by Joseph-Louis Lagrange. To 
this end they resurrected a then-forgotten form of geometry from the sev-
enteenth century—projective geometry—which in turn had roots in ancient 
Greece and was concerned with calculating relations among different two-
dimensional projections of three-dimensional objects or arrangements of 
objects. The harmonic cross-ratio introduced by Carnot in De la corrélation 
was central to this task, as a generalization of it (later called the “anharmonic 
cross-ratio”) would turn out to be the main device for calculating distances 
between locations in three-dimensional space on the basis of distances repre-
sented in two-dimensional maps—an invaluable resource for military engi-
neers like Carnot and Monge.

The earlier of the two books by Carnot in Hegel’s possession, Réflexions 
sur la métaphysique du calcul infinitésimal, was representative of the “heavy 
investment in standard works on the calculus and mechanics” evidenced 
by Hegel’s library (Mense 1993, 670). In The Science of Logic Hegel would 
make extensive use of the way Carnot had there treated infinitesimal mag-
nitudes as found in the modern differential and integral calculus of Leibniz 
and Newton—an issue at the heart of the main section of his 1801 treatise at 
Jena. Hegel was clearly aware that modern calculus also had roots in ancient 
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geometry, specifically in Archimedes’s efforts to calculate the circumferences 
and areas of circles,12 and this was related to his championing of Kepler’s ap-
proach to celestial mechanics over Newton’s analytic approach, and Carnot’s 
geometrical mechanics over Lagrange’s purely algebraic account.13 Here there 
were parallels with the way projective geometry was concerned with relations 
between three- and two-dimensional geometric objects, because modern cal-
culus, Hegel believed, had effectively reduced two-dimensional geometrical 
objects (circles and other conic sections) to one-dimensional ones (straight 
lines) without acknowledging that a different conception of magnitude had 
been invoked—an idea he had found in Greek geometry.

This issue in turn linked to another aspect of Greek mathematics that was 
crucial for Hegel, the status of ratios and proportions in relation to theories of 
number and magnitude, a topic to which he would dedicate almost two hun-
dred pages in book 1 of The Science of Logic. Two years after De la corrélation 
Carnot would expand on its results in Géométrie de position, the name for 
which he self-consciously chose to echo a project earlier suggested by Leib-
niz from his own encounter with seventeenth-century projective geometry  
and that he had called analysis situs, or “situational analysis.” Rebelling against 
the way that Descartes and Fermat had arithmetized geometry, Leibniz had 
proposed a nonmetric form of geometry based on the idea of “congruence” 
between geometric figures. For example, two triangles ABC and DEF were 
considered congruent if one could be superimposed on the other.14 Eliding 
the actual numerical quantities involved was meant to counter the “analytic 
geometry” of Descartes and Fermat, in which geometric objects were con-
ceived as equations with numerical values. In doing so, Leibniz revived an 
approach that the late nineteenth-century Danish historian of mathemat-
ics Hans Georg Zeuthen would describe as the “geometric algebra” of the 
Greeks—a form of mathematics that was like algebra because it “dealt with 
general magnitudes, irrational as well as rational,” while using geometric dia-
grams to “visualize its procedures and impress them in memory” (quoted in 
Høyrup 2017, 133).15

Projective geometry would be developed throughout the nineteenth cen-
tury and would become closely linked to other developments in the non-
metrical treatment of space, including the geometric vector analysis of 
Hermann Grassmann from the 1840s (Crowe 1967), that he called “linear 
extension theory” and that is widely known as “linear algebra.” Grassmann’s 
work, like Carnot’s, had been inspired by Leibniz’s analysis situs and, again 
like Carnot’s, related back to post-Euclidean elements of Greek mathematics 
that had been utilized by Newton in his celestial mechanics. While Euclid’s 
geometry is most known for the geometry of plane figures, certain books 
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of his Elements had considered three-dimensional figures such as the “Pla-
tonic solids”—tetrahedron, cube, octahedron, dodecahedron, and icosahe-
dron. Three-dimensional geometry (or “stereometry”), however, would come 
to flourish only in the post-Euclidean phase of Greek mathematics, with the 
likes of Archimedes of Syracuse and Apollonius of Perga. With Apollonius in 
particular, the phase of Greek geometric algebra would deal with analogues 
of quadratic equations via the examination of two-dimensional sections 
through the three-dimensional cone (Heath 1896). Grassmann, who called 
vectors Strecken (stretches) would “add” vectors in two-dimensional space in 
the way treated in the parallelogram of forces but would also “multiply” such 
vectors within three-dimensional space. One wonders just how close together 
one might have found the works of Carnot, Archimedes, and Nicomachus on 
Hegel’s bookshelves.

0.2 Hegel, Logic, and Mathematics:  
Some Potential Misunderstandings Countered

The span of the history of some of the fundamental notions of this type of 
mathematics and its associated logic from ancient philosophy to the nineteenth 
century will be the broad context within which Hegel’s logic will be discussed 
in this work. With few exceptions, such an approach goes against the grain 
of contemporary Hegel scholarship. Here, the Hegelian orthodoxy, from late 
nineteenth-century British Hegelianism to the present, is likely to dismiss the 
idea that Hegel’s logic was in any way “mathematical” (e.g., Beiser 2005, 161). 
I suggest, however, that this is based upon fundamental misunderstandings of 
the nature of mathematics and its history. For far too long, this misunderstand-
ing has obscured the relevance of this history for understanding Hegel.

Signs of change can be noted here, however. Alan Paterson, for example, 
has argued that while Hegel would be critical of the degree to which mod-
ern logic is identified with mathematics, “the importance of mathematics in 
Hegel’s logical investigations prefigures the dominant role that mathematics 
plays in present day logic” (Paterson 2005, 64). In a similar spirit, Brady Bow-
man (Bowman 2013, ch. 5.4) has pointed out that in The Science of Logic Hegel 
treats geometry as the “highest form of finite theoretical cognition” that has 
an “inner identity” with the methodology of philosophy itself (170), and, fol-
lowing Paterson, argues for the importance for Hegel’s logic of ancient Greek 
geometry, especially as transmitted by Proclus (171n18; cf. Paterson 2005, 
section 2). While Bowman locates Hegel within the framework of the cri-
tique by Friedrich Heinrich Jacobi of the adoption within German circles of 
a Spinozist-inflected form of modern “methodicalism,” reflected in Spinoza’s 
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use of the Euclidean axiomatic method, I will argue that the significance of 
geometry for Hegel was more focused on the different form of ancient geo-
metric algebra that went beyond the scope of Euclid’s approach.16

In relation to the approach developed here, of particular importance is 
the suggestion by Hegel scholar Michael Wolff of deep connections between 
Hegel’s logic and Grassmann’s geometric linear algebra (Wolff 1999).17 Wolff 
stresses the connections of both to an essay by Immanuel Kant from the tran-
sitional phase of his precritical years on the problem of the role in mathemat-
ics of negative numbers (Kant 1992a). But rather than rely simply on the idea 
of a mere convergence or coincidence of the views involved, I will endeavor 
to show how underlying these are connections that go back to the earliest 
years of interactions between mathematics and philosophy in Plato’s Acad-
emy. This will in turn raise another questionable aspect of the conventional 
denial of the relevance of mathematics to Hegel’s logic.

It is agreed by all that Hegel’s conception of logic and its dialectic relates 
back to what Hegel describes as the “speculative” thought of Plato and Ar-
istotle. Indeed, there are ample examples of quotes from Hegel in which he 
denounces the “formalism” of existing logic and specifically the type of turn 
to mathematics in the likes of Leibniz and the logic authority at Tübingen, 
Gottfried Ploucquet, as adequate to the speculative logic of the classical age. 
But the unquestioned assumption behind the conventional view is that the 
speculative thought of Plato and Aristotle was itself in no way mathematical, 
an assumption that, in relation to Plato, has been deeply questioned by schol-
ars from Aristotle himself to the present. Among the more recent of these, the 
view that Plato had in fact been very influenced by Pythagorean mathemati-
cians such that mathematical objects were grasped as intermediaries between 
the empirical world and the world of ideas has been generally known as the 
“unwritten doctrines” view of Plato. Although this thesis will here be accepted 
as a plausible interpretation, it is not part of the scope of this work to argue 
for it. All that is needed here is that it was in fact Hegel’s view, and the pas-
sage from the Timaeus with which this introduction started can be taken as 
evidence in this regard. The mathematics bound up with Plato’s “syllogism” 
was a form of mathematics based in ratios and proportions and that had been 
grounded in earlier theories of music. It may be different from modern math-
ematics, but it was mathematics, all the same, and its relevance would stretch 
well beyond the domain of music. Moreover, it could be appealed to in the 
context of criticisms of the abstractions of modern rational thought.

Modern mathematics and its application in the physical sciences had 
emerged after the assimilation of a distinctly non-Greek form of mathemat-
ics in the sixteenth and seventeenth centuries: algebra, as transmitted to the 
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European sciences from Arabic, and ultimately Indian, sources. Algebra is 
usually accredited with the introduction of generality into arithmetical pro-
cedures, most obviously associated with the introduction of variables that 
would allow the formulation of various equations such as linear equations 
(e.g., 4x + 2 = 18), quadratic equations (e.g., x2 + 3x + 2 = 0), and so on, such 
that “x” is immediately understood indefinitely as whatever number or num-
bers “satisfy” such equations.18 Greek algebra was, however, poorly developed 
and did not utilize symbols as variables in this way, and numbers were corre-
spondingly conceived by the early Pythagoreans as meaning “a definite num-
ber of definite things . . . five chairs, seven people, ten cows” (Klein 1985, 45). 
Even Diophantus of Alexandria, living in the third century CE and regarded 
as the most advanced of Greek algebraists (Heath 1910), had been limited 
to formulating simple linear equations with phrases concerning the addition 
of “unknown quantities” to others to get a number equal to some third.19 
Individual letters had been used in Greek mathematics to represent specific 
integers (that is, used as constants), but Arabic mathematicians had used let-
ters as variables—symbols of those “unknown quantities” as referred to by 
Diophantus above. It would be this type of algebra utilizing the letters “x” and 
“y” as variables that would allow Descartes to link geometric figures such as 
straight lines and curves to polynomial equations via the use of orthogonal 
coordinates. In turn, this algebraic approach would be generalized by Leibniz 
from geometry so as to apply to Aristotle’s syllogistic logic to produce the first 
form of genuinely “modern” logic.

However, it would come to be argued in the late nineteenth century that 
the algebra-geometry distinction was not as rigid as it may seem. Greeks had 
actually utilized a “geometric” form of algebra, in which the use of diagrams 
had allowed the type of abstraction and generalization otherwise achieved 
with algebraic symbols (Høyrup 2017). Moreover, and seemingly indepen-
dently, toward the end of the nineteenth century developments in these new 
forms of geometry would themselves come to be described as “geometric al-
gebra,”20 and it had become clear that this modern geometric algebra had its 
roots more in post-Euclidean developments within ancient geometry and, in 
particular, the tradition of geometric “problems” not reducible to the more 
familiar axiomatic method of Euclid’s Elements (Knorr 1986). But modern 
geometric algebra also had more recent roots as well, and in this regard, 
Grassmann seems to have been influenced by an essay published by Kant in 
the 1760s addressing the question of “negative magnitudes” and bearing on 
Leibniz’s conception of number.

In “Attempt to Introduce the Concept of Negative Magnitudes into Phi-
losophy” (Kant 1992a), Kant had employed the idea of directed line segments 
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in an attempt to explain the ontology of negative numbers. In the course of a 
sea voyage from Lisbon to Brazil, distances traveled in an east–west direction 
will be recorded in the ship’s log in positive numbers, while those distances 
traveled in a west–east direction, in the hands of countervailing winds, say, 
will be recorded as negative. Here, the actual miles traveled in one direction 
will, of course, be no different from those traveled in the other. Positive and 
negative values have meaning only in relation to the intended destination of 
the journey.

It was just this type of quasi-mechanical analysis that Leibniz had thought 
could be directly captured in his geometrically conceived analysis situs, while 
his eighteenth-century follower (and correspondent of Kant), Johann Heinrich 
Lambert, had similarly appealed to a type of universal language of such dia-
grammatic representations. Kant would introduce his own approach as a cri-
tique of Leibniz’s analysis situs, and after his transition to “critical philosophy” 
would continue to employ the vector-like “phorometric” treatment of space in 
his Metaphysical Foundations of Natural Science of 1786 (Kant 1985, pt. 2, ch. 1), 
which would be adopted by Naturphilosophen such as Baader and Schelling.

For their parts, both Carnot and Grassmann would, like Kant, distinguish 
an absolute or real magnitude, the length of the vector, from the “signed” 
magnitudes with positive or negative values indicating opposed directions. 
This meant a type of nonmetrical “algebra” could be applied. For example, 
a simple line segment extending between points A and B can, when desig-
nated as ‘AB’ be thought as directed from A to B and, when designated ‘BA’ 
be thought of as directed in the opposite direction from B to A, and thereby 
given a negative value in relation to the former (fig. 0.4). With this, the ex-
pressions ‘AB’ and ‘BA’ can be understood as able to be related by the equa-
tion ‘AB BA’� −

Grassmann would treat vectors as, like numbers, able to be added and 
subtracted, multiplied by numbers, called “scalars,” and even multiplied by 
each other. Peculiarities of these quasi-algebraic operations would, however, 
link his vector analysis back to an idea from Greek geometry that Hegel had 
taken very seriously—the idea that magnitudes relating to objects with dif-
ferent spatial dimensions were incommensurable and that thought needed to 
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f ig u r e  0.4 Oppositely directed segments of a single line segment such that AB BA� − .
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deal with different kinds of magnitudes just as it needed to deal with different 
kinds of things.

The discovery of incommensurability among magnitudes had formed an 
important part of the intellectual context within which Plato’s Academy had 
been established in ancient Athens and had occupied the activities of many 
of its members, including Plato himself. In fact, it will be argued that Plato’s 
most beautiful bond, which Hegel had grasped as at the heart of his “syllo-
gism,” can be seen as an attempt to reestablish a type of unity among what had 
become understood as incommensurable magnitudes. But this incommensu-
rability had not been only manifest within geometry, where it is typically seen 
as having been a consequence of one of Greece’s greatest geometric achieve-
ments, Pythagoras’s theorem. It had also had significance for the activity that 
today we see as having little to do with geometry—the musical theory distin-
guishing consonant from dissonant intervals. In fact, some have argued that 
its significance had originally been predominantly in relation to that domain 
(Szabó 1978; Borzacchini 2007).

Central to the claims of this book will be that Hegel had followed Plato 
in modeling his syllogism on the type of unity achievable among the three 
ways of dividing musical intervals that were encoded within the musical tet-
raktys: division according to what were known as “geometric,” “arithmetic,” 
and “harmonic” means. We have already seen mention of the first of these 
in the “proportion [Analogie] or the continuing geometric ratio [das stetige 
geometrische Verhältnis]” that Hegel quotes from Plato concerning the syllo-
gism behind the “familiar syllogistic” of Aristotle.21 We will later explore the 
roles played by these three means within Pythagorean music theory and their 
greater relevance for Plato, but here it may be helpful to point to one place in 
Aristotle’s corpus where he actually employs the distinction between geomet-
ric and arithmetic means—his account of justice in the Nicomachean Ethics 
in terms of the much misunderstood doctrine of “the mean.”

Aristotle’s ethical doctrine of the mean is often interpreted as a somewhat 
bland call for moderation in all things, but this ignores the fact that he had 
pointed to the use of two different “means,” one that “mathematicians call . . . 
geometrical” and another that had been called “arithmetical” (Aristotle 1984, 
Nicomachean Ethics, 1131a 28–32b20). The former was appropriate for cases of 
distributive justice, and the latter for the quite different cases of rectificatory 
justice. Were it the case that the measures appropriately applied in rectifi-
catory contexts were applied to distributive ones, a definite injustice would 
result. Nevertheless, what this situation called for was not simply the differ-
entiation of two different species of a single genus, justice.
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In his wide-ranging studies Aristotle had applied the device of analogy 
in ways that can be thought of as modeled on what music theorists called 
the “geometric proportion,” which entailed a ratio between two ratios. Thus 
for ratios standing between two entities, a and b, on the one hand, and two 
others, c and d, on the other, it would be said that a stands to b as c stands 
to d (a : b :: c : d). Probably the most familiar example of this is his linguistic 
theory of metaphor (Aristotle 1984, Poetics, ch. 21), although Aristotle con-
trasted metaphor in which analogies are posited across different kinds with 
a more scientific application within kinds. In the case of justice, however, the 
situation is quite complex. The principle behind the application of these dif-
ferent means in these different contexts itself appears to involve a geometric 
proportion: the arithmetic ratio is meant to stand to cases of rectificatory jus-
tice as the geometric ratio itself stands to cases of distributive justice. Hegel, 
I suggest, would treat this as a distorted application of Plato’s most beautiful 
bond, which unified these two means in a more symmetrical way.

It was this three-in-one structure that was expressed in the peculiar dou-
ble ratio reanimated by Carnot and that provides a striking model for the 
relations among the two incommensurable judgments that make up Hegel’s 
own syllogism—judgments that can be deemed equivalent in a homologous 
way that involves similar structures supporting different functions. Such ho-
mologous pairs expressing a local homomorphic equivalence within Hegel’s 
logic are recognizable in Aristotle’s conception of the relation between the 
appropriate rules for distributive and rectificatory justice but are freed from 
an asymmetry present there. In short, rather than being driven by any literal 
idea that the cosmos emitted harmonious sounds beautiful to the ear of God, 
Hegel took the ancient “harmony of the spheres” doctrine to encode a logical 
structure that, he thought, governed thoughtful forms of human life. Aris
totle’s syllogistic was a two-dimensional deformed expression of Plato’s origi-
nal three-dimensional syllogism, the two (geometric and arithmetic) middle 
terms of the latter having been reduced to a single middle term in the former. 
Consequently, Hegel would, in his “Subjective Logic,” aim to restore to the 
Aristotelian syllogism its three-dimensional completeness.

The subsequent history of logic is usually taken to have simply refuted 
Hegel’s efforts in this area, but this assumption will be challenged. Many of 
Hegel’s ideas, it will be argued, have resonated within the work of logicians 
working within the “nonclassical” alternative to the modern equivalent of 
Aristotle’s formalism, the “classical” quantified predicate calculus stemming 
from the work of Gottlob Frege and Bertrand Russell. In this classical ap-
proach, logic was considered as providing a universal language within which 
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the truths of other disciplines—in the first instance, arithmetic—were to be 
grounded, a doctrine known as “logicism.”

0.3 How the Argument of This Book Progresses

In the first part of this work, “Beginning: Hegel’s Classicism,” the Greek 
musico-mathematical background to Plato’s syllogism as presented in the 
dialogue Timaeus will be set out in a way so as to enable an understanding of 
how it could provide a model for Hegel’s idea of a syllogism in The Science of 
Logic. In chapter 1, after an initial look at the Pythagorean number-theoretic 
background to Plato’s philosophical arithmetic and its notion of “measure,” 
we review some of the features of Aristotle’s logical doctrines, showing their 
dependence on Plato’s notion of “division” or diaresis. Chapter 2 then moves 
to examine the claim made in the early twentieth century by classicist Bene-
dict Einarson showing Aristotle’s terminological borrowings from the music 
theory of contemporary Pythagorean mathematicians, a feature that brings 
Aristotle’s formal logic into a relation with Plato’s mythological account of 
the “syllogistic” structure of the cosmos in the dialogue Timaeus. In chapter 3,  
it is argued that Hegel’s account of the category of magnitude in book 1 of 
the Logic leading to the concept of a ratio of powers shows how this puzzling 
mathematical object could have been understood by Hegel as a manifestation 
of the unity of the three musical means at the heart of Plato’s syllogism, and 
how this could come to be associated with the major invariant to be found in 
the revived science of projective geometry, the “harmonic cross-ratio.”

The second part, “Middle: Classical Meets Modern,” commences in chap-
ter 4 with a comparison of the attitudes held toward geometry by Hegel and 
Schelling around the turn of the nineteenth century. Of the two, Schelling’s 
is the more conventional in that it presupposes the certainty of Euclidean 
geometry and, while critical of aspects of Kant’s understanding of mathemat-
ics, is still largely indebted to Kant. In contrast, Hegel is moving in directions 
like those found in various revivals of geometric algebra in the nineteenth 
century; in particular Hegel’s has features that reflect the type of projective 
geometry being introduced around that time by Lazare Carnot, as well as 
features of the later “linear extension theory” introduced in the 1840s by Her-
mann Grassmann. Both Carnot and Grassmann had styled their approaches 
on a project announced but never developed by Leibniz called analysis situs. 
Leibniz had also experimented with an algebraic form of logic that had antici-
pated the form in which logic would be rejuvenated in the nineteenth century 
by the work of the mathematician George Boole, and in chapter 5 we consider 
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key features of this logic, with an eye to the more “geometric” interpretation 
of its form as suggested by the approach of an analysis situs.

While Leibniz had made no real progress toward the realization of his 
analysis situs, his eighteenth-century follower, the Swiss mathematician Jo-
hann Heinrich Lambert, had. Moreover, Lambert would become involved in 
disputes over how to develop this aspect of Leibniz’s thought, as well as over 
the diagrammatic representation of logic, with the philosopher Gottfried 
Ploucquet (Pozzo 2010), whose approach to logic was what Hegel had been 
taught as a student at the Tübingen Seminary. This all provides the context 
in which Hegel’s attitude to Leibniz’s advances, both in logic and in calculus, 
can be examined, which is undertaken in chapter 6. This prepares us for the 
topics to be pursued in the final part, “End: The Modern as Redetermined 
Classical.”

This commences with an overview, in chapter 7, of what, from Hegel’s 
viewpoint, constitutes the features of Aristotle’s syllogism that might enable 
its rehabilitation as a more genuinely rational logic like that of Plato. Greek 
geometric algebra had allowed Aristotle to achieve within logic the type of 
generality needed for it to be a science. This, however, had come with limits. 
The great reformer of Greek geometry and associate of Plato, Eudoxus of 
Cnidus, had seemed to have banished numbers from geometry, and, akin to 
this, Aristotle seemed to have banished singular terms from logic. On this, 
however, he was not entirely consistent, blurring a distinction that would be-
come explicit only later with the work of medieval nominalists, between defi-
nite singular terms and indefinite common names. Hegel’s logic is treated as 
involving a systematic disambiguation of this singular-particular conflation 
found in Aristotle. This in turn is shown to underlie certain commonalities 
between Hegel’s logic and nineteenth-century developments in logic in which 
similar theoretical issues were being argued out.

Chapter 8 examines the path taken by algebraic logicians from the mid-
nineteenth to the early twentieth century, from Boole himself to the alterna-
tive presented by the “intuitionist” logician Arend Heyting. This is a path 
that passes through a number of logical thinkers who share features found in 
Hegel’s thought, which are perhaps most recognizable in the work of Charles 
Sanders Peirce, especially when his work in contrasted with the inventor of 
modern twentieth-century “classical” logic, Gottlob Frege. Other thinkers 
besides Peirce, however, such as Hugh MacColl and W. E. Johnson, help in 
bringing features of Hegel’s logic into focus.

Chapters 9 and 10 reexamine Hegel’s theories of the judgment and syl-
logism, now with the help of resources drawn from the “neo-Leibnizian” 
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logicians examined in chapter 8. Chapter 9 focuses in particular on the 
“cycles of conceptual redetermination” that make up Hegel’s evolving and 
self-correcting account of judgment structure, in particular drawing upon 
resources found in the logic of the Cambridge logician W. E. Johnson, espe-
cially in relation to the logic of inductive inference. In turn, Johnson’s analysis 
of induction shows the dependence of induction on what Peirce had called 
“abduction,” which takes us from the realm of individual judgments to that of 
the inferential relations among judgments in syllogisms.

In chapter 10, in line with the project of a geometrical logic, conceptions 
of inference are clarified by the use of diagrams, starting with a comparison 
between the ways that Hegel and Peirce had attempted to utilize Aristotle’s 
three syllogistic “figures” to differentiate the types of logic appropriate to dif-
ferent phases of rational inquiry: deduction, induction, and abduction as the 
phases of logical life. This in turn leads to recent experiments within diagram-
matic logic involving the expansion of the traditional “square of opposition” 
into a logical hexagon that again show parallels with Hegel’s treatment of the 
relation among the syllogism’s three figures. When understood as mapping 
possible alternative paths through inferential processes, such diagrams sug-
gest being read in a three-dimensional way that returns us to Hegel’s initial 
affirmation of Plato’s syllogism over Aristotle’s—its split middle term making 
it the appropriate logic for a three-dimensional world.
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Leibniz is often nominated as the person who made logic mathematical, im­
plying that logic before him, essentially the Aristotelian syllogistic, was in no 
sense mathematical. In this work it will be argued that this common assump­
tion is misleading and distorts not only our understanding of the origins of 
logic in the ancient world but also how this was understood and appropriated 
by Hegel. From Proclus to more recent commentators (e.g., McKirahan 1992, 
chs. 11–13), attention has been directed to the influence of the proof struc­
tures that broadly differentiated Greek geometry from the mathematics of the 
Egyptians and Babylonians from whom the Greeks borrowed. We are most 
familiar with these proofs as they appear in Euclid’s Elements, and while Eu­
clid postdated Aristotle, it is generally acknowledged that many of the proofs 
found in this most famous of mathematical texts had originated in work 
done by members of Plato’s Academy in its early years.1 It is in this sense that 
one leading interpreter of Aristotle’s logic has described it as “unthinkable 
without the emphasis on deductive reasoning in geometry that he had found 
in Plato’s Academy” (Corcoran 2003, 284). Not that we can think of Aris­
totle’s syllogistic as simply some kind of “applied mathematics.” The external 
medium for rational thought for Aristotle was language, and, moreover, he 
thought of his own linguistic syllogisms as providing the logic underlying 
geometric proofs. Mathematics effectively provided paradigmatic instances 
of the types of proofs for which he sought to give to logic, and so logic could 
not simply be mathematics.

Two influences in particular had come together in relation to Aristotle’s 
“invention” of logic, both via the influence of Plato—the linguistic practices 
of Socratic dialectic, as presented by Plato in his dialogues, and issues from 
contemporary mathematics. According to Paul Shorey, Plato had anticipated 
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“nearly everything in the Aristotelian logic” (Shorey 1924, 1). Prior to Shorey, 
and for some interpreters after him (e.g., Bochenski 1961, 66; Rose 1968), it had 
been common to trace the origins of Aristotle’s syllogistic to the method of 
diairesis or “division” discussed by Plato within the Phaedrus and, especially, 
the “late” dialogues, the Sophist, the Statesman, and Philebus. Shorey contested 
this, however, suggesting that as Aristotle’s syllogistic was also a “doctrine of 
causality,” a more appropriate source for it would be Plato’s account of ideas 
in the Phaedo, an account more ontologically than methodologically focused, 
and relevant to the issue of final causes as presented in a mythological way in 
Plato’s Timaeus (Shorey 1924, 6).

We will be examining both of these methodological and ontological di­
mensions, which, as we will see, would be central for Hegel. Aristotle himself 
criticized Plato’s diairesis as a method (Aristotle 1989, Prior Analytics, book 1, 
ch. 31), mainly on the grounds that by itself it could not lead to the discovery 
of kinds, but rather, simply presupposed them. However, it could be argued 
that it was Plato’s relative indifference to such epistemological concerns that 
allowed diairesis to provide a model for a general conception of deductive 
inference appropriate for Aristotle’s logic.2 For the moment, however, let us 
focus on in what sense Plato’s method of diairesis might have drawn upon the 
practices of mathematicians.

1.1 The Logic of Platonic Diairesis and the Notion of “Measure”

It is in the second half of Plato’s dialogue Phaedrus that one finds possibly the 
most familiar reference to the “systematic art” of division (diairesis). Strictly, 
there are two stages to this art: the first, collection (synagoge), “consists in see­
ing together things that are scattered about everywhere and collecting them 
into one kind, so that by defining each thing, we can make clear the subject of 
any instruction we wish to give” (Plato 1997, Phaedrus, 265d). It is in relation 
to the second diairetic dimension that we encounter one of Socrates’s best-
known metaphors: one must “be able to cut up each kind according to its 
species along its natural joints” (Plato 1997, Phaedrus, 265e). Socrates suggests 
a method that arranges elements in a type of pyramidal or inverted treelike 
structure, whose “branches” progressively split as one passes down from the 
top, in a pattern that clearly alludes to the type of conceptual “tree” that Por­
phyry would later attribute to Aristotle (Porphyry 2006). But Plato’s version, 
in contrast to Aristotle’s, should not be thought of as primarily a classifica­
tion of kinds of things—it was a system of classification of separate ideas that 
only with Aristotle would be located within things as the essences or natures 
that make those things the kinds of things they are. Moreover, besides this 
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parallel, we can see in Plato’s diairetic hierarchy something of the conceptual 
organization that will be manifest in Aristotle’s syllogisms. It would be the 
type of organization that would be expressed in the capacity to make infer­
ences: if we know that the idea <Greek> is situated at a node below that of 
<human>, and <human> at a node below <animal>, we thereby know that to 
be a Greek is not only to be human but also to be an animal.3

In the Sophist and the Statesman, Plato has the main speaker, the so-
called Eleatic Stranger, describe in more detail the process of dividing terms 
in search of a definition so as to avoid false classifications. In the Statesman 
especially, the Stranger appeals to a notion of measurement and focuses upon 
the need for the objective classification of a thing in terms of its proper or due 
“measure”—its metron, which is sometimes also translated as “mean.”4 This 
latter sense seems to come into focus when objective measure or classifica­
tion is contrasted with its opposite, a type of merely comparative judgment 
involving excess or deficit, a polarity between “the greater and the smaller” 
rather than the invocation of the proper measure (Plato 1997, Statesman, 
283c–285c). Like the modern English word measure, metron had, besides the 
sense of a standard or rule, the connotations of moderation, as when one says 
of a person that their reaction was “measured”—hence the verb metriaso, “to 
be moderate” (Liddell and Scott 1882). Here there is an obvious connection 
to Aristotle’s appeal to moderation in action, in his well-known ethical ac­
count of virtue as the “mean” between two vices in the Nicomachean Ethics 
(1106b36–1107a8), although Aristotle will use a different term—meson (and 
the related mesotis), literally meaning “a middle,” and having the connota­
tions of “middling” or “moderate” (Liddell and Scott 1882). This variant, we will  
see, will be of particular significance.

In the Sophist Plato points to the philosopher’s method of diairesis to dis­
tinguish philosophy from its sophistic facsimile, and the appeal to an objec­
tive measure in the Statesman is surely meant to counter the type of relativ­
istic thinking summed up by Socrates in the Theaetetus, when he recalls the 
Protagorean doctrine that it is man who is “the measure of all things: of the 
things which are, that they are, and of the things which are not, that they are 
not” (Plato 1997, Theaetetus, 152a). Consonant with the theme of measure, 
Plato has Socrates discuss “the calculations practiced by philosophers” as the 
“philosophers’ arithmetic” (Plato 1997, Philebus, 56d–57a). But how, exactly, 
might this classification be linked to mathematics? That it is so linked, how­
ever, is surely suggested by Plato via the setting he gives to the dialogue.

Both the Sophist and the Statesman take place on the same day (the day 
following that on which the dialogue of the Theaetetus had supposedly taken 
place) and involve the same participants. Furthermore, both start with an 



24 c h a p t e r  o n e

interchange between Socrates and Theodorus, whom Socrates describes as 
the “best arithmetician and geometer” (Plato 1997, Statesman, 257a). We have 
already met Theodorus in the Theaetetus, where he was portrayed as intro­
ducing two young Athenians, Theaetetus and “Young Socrates” (that is, not 
Socrates but a younger man sharing the same name), to the idea of the ir­
rationality of the square roots of non-square numbers between 3 and 17. In 
fact, this scene is often taken as broadly historically based (e.g., von Fritz 
1945, 243), the mathematician Theodorus of Cyrene being thought to have 
introduced the problem of irrational or “incommensurable” magnitudes into 
Athenian cultural life in 399, the year of the death of Socrates.

The discovery of incommensurable magnitudes, taken by many historians 
of mathematics as particularly significant for the subsequent development of 
the “golden age” of Greek geometry starting with Euclid’s Elements, was tra­
ditionally attributed to Hippasus of Metapontum, in the fifth century BCE, 
and undermined the relationship between arithmetic and geometry that had 
been dominant in Greece up to that time. This had been the approach of the 
early Pythagorean mathematicians, who had conceived of all magnitudes as 
generated from the monas or “unit” (from monos, “alone”), making the monas 
fundamental to the structure of the world. Legend has it that Hippasus was 
drowned at sea by other members of the Pythagorean sect for having made 
this truth about the irrationality of the world known beyond the circle of the 
sect itself. Ironically it had been “Pythagoras’s theorem,” showing the area 
of a square built on the hypotenuse of a right-angle triangle to be equal to 
the sum of the squares built on the other two sides,5 that had contained the 
seeds for the destruction of the Pythagorean arithmetical worldview. From 
Pythagoras’s theorem it could be shown reasonably easily that in the case of 
the right-angle triangle formed by the diagonal of a unit square, no common 
measure could be found for the ratio formed by the diagonal with the other 
sides—that is, they were incommensurable magnitudes.6

This familiar story has been contested over recent decades, however. In the 
late 1970s, the historian Árpád Szabó argued for a much earlier date for the 
discovery of incommensurability and, moreover, contextualized the discovery 
as initially occurring within Pythagorean musical theory rather than geom­
etry (Szabó 1978, intro. and ch. 1). Building on and modifying Szabó’s account, 
more recently Luigi Borzacchini (Borzacchini 2007) has argued that the idea 
of incommensurability had been long familiar to the Pythagoreans, but not 
under such a description that implies some expected comparability of mag­
nitudes. Rather, the Pythagoreans had recognized a fundamental opposition 
between continuous and discrete magnitudes, reflecting a cosmological op­
position famously expressed by the mathematician and cosmologist Philolaus 
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between the limited and the unlimited. This was reflected in various ways in 
their harmonic theory, such that when the geometric discovery was shown 
it came more as “confirmation” of something intuitively known (Borzacchini 
2007, 287). The idea of a fundamentally musical locus for the emergence of the 
notion of “incommensurability” has likewise been suggested by the historian 
of Greek music Andrew Barker, who links the idea to the opposition between 
consonant and dissonant intervals (Barker 2007, 291–292).

In Plato’s Statesman, the issue of incommensurability is brought up in 
an indirect way in the dialogue when Plato has the visitor make a pun link­
ing the fact that humans walk on “two feet”—which distinguishes humans 
from four-footed animals—to the incommensurability of the diagonal of a 
unit square with its “two feet,” the two sides of the square that together with 
the opposite diagonal form the right-angle triangle (Plato 1997, Statesman, 
266b; see also translator’s note 23).7 In recent times, debates over the issue of 
whether or not in science differing theories might be “incommensurable,” 
and so unable to be rationally compared, have invoked the thought of a type 
of conceptual incommensurability threatening rational decision (e.g., Kuhn 
1962). Given that mathematics was the science in which the Greeks were most 
advanced, one can get a sense of how this issue might have loomed large for 
members of Plato’s Academy.

Despite the broad hints about the significance of mathematics for the di­
airetic method, for the most part conventional interpretations of this section 
of the Statesman construe Plato’s meaning in a particularly counterintuitive 
way. Plato had encouraged mathematical research among his colleagues in 
the Academy and, as reflected in Socrates’s account of the proper educa­
tion of future leaders in Republic book 7, young men at the Academy had 
to study mathematics for ten years before being allowed to progress to the 
study of dialectic. And yet, as has been recently pointed out (Fisher 2018), it 
has been usual for interpreters of the Statesman to treat it as expressing an at­
titude critical of the relevance of mathematical thought for the philosophical 
method, associating mathematics with the merely comparative form of “mea­
surement” between “the greater and the smaller,” which the Stranger chal­
lenges with the need to find the “due measure.” Jeffrey Fisher questions the 
appropriateness of the standard interpretation on both textual and contextual 
grounds but does not consider the dialogue in the broader context of the 
mathematical issues occupying Academicians at the time. However, rather 
than being an argument against the relevance of mathematics in philosophy, 
might it not be that the issue of “due measure” has more to do with attempts 
to face the threat of a conceptual incommensurability within mathematics 
that was threatening to spread beyond it?
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What Hippasus had shown was that continuous magnitudes such as the 
diagonal of a unit square could not find their “measures” in terms of the arith­
metic supported by the Pythagoreans—an arithmetic limited to the positive 
natural numbers and to the ratios holding among them. And if certain con­
tinuous magnitudes such as geometric line segments could not be so mea­
sured, then it would appear that they could be made no more determinate 
than being said to be larger or smaller than each other. Here the issue quickly 
spirals from being about mathematics itself to what we would now consider 
the philosophy of mathematics. Ways forward would seem to involve nothing 
short of a reconceptualization of the very notion of magnitude. This indeed 
did happen and represents the first of a series of such reconceptualizations 
that would continue in the early modern period and eventually find its appar­
ently ultimate solution in the formalization of the “real” numbers at the end 
of the nineteenth century. In short, here questions about numbers become 
quickly bound up with questions concerning the concept of number and the 
nature of concepts more generally.

In linking the idea of comparative measure of larger and smaller to the 
skeptical doctrines of the Sophists, Plato brings into question the context-
limited nature of judgments typically exploited by Sophists. Thus, in the 
Phaedo, for example, Simmias is said to be large when compared to Socrates 
but small when compared to Phaedo. Surely there is something amiss with 
accounts of the world in which, as Socrates points out, “Simmias is called 
both short and tall, being between the two, presenting his shortness to be 
overcome by the tallness of one, and his tallness to overcome the shortness 
of the other” (Plato 1997, Phaedo, 102d). Is it not possible to talk about things 
in terms of characteristics that they simply possess or do not possess? Is it 
not possible to talk about things as they are “anyway,” independent of com­
parative assessments? In order to talk and think in this way, one needs some 
notion of “measure” akin to that with which one can give Simmias’s height in 
a clear and non-self-contradictory way, such as with a rule. These contextual 
or relational judgments had been exactly the types of judgments seized upon 
by the Sophists in their denials that reality could be cut “at the joints.” If there 
are no “due” measures, then in all cases man is the measure, and each man 
can seemingly choose the units in which he measures to suit the occasion.

In the first part of the twentieth century, the Husserlian philosopher Jacob 
Klein had taken this crisis in mathematics as having great significance for the 
philosophical outlook of the Old Academy as reflected in the stances of Plato 
and Aristotle, and in stressing the importance of this mathematical context 
he was far from alone. Klein notes the earlier work of the interpreters Julius 
Stenzel, Oskar Becker, and J. Cook Wilson (Klein 1968, 76), and to this list 
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could be added French scholars such as Léon Robin (Robin 1908). In fact, this 
view has a long history stretching back to Aristotle himself.8 In particular, it 
had been central to Neoplatonic readers of Plato such as Proclus, who was an 
especially influential authority on Plato for Hegel and his contemporaries. 
More recently, a view concerning the mathematical basis of Plato’s philoso­
phy, interpreted with an emphasis on the “unwritten doctrines” ascribed to 
Plato by Aristotle and others, was put forward in the second half of the twen­
tieth century by members of the “Tübingen School,”9 by Kenneth Sayre (Sayre 
2005),10 and John Findlay (Findlay 1970, 1974b), as well as a number of Italian 
and French scholars.11

On this interpretation, Plato’s dialogues of the late period increasingly ex­
press the metaphysical beliefs attributed to him in the doxographic tradition. 
It is in the dialogues of the middle period that is found the familiar “Platonic” 
theory of forms, as classically represented in the Republic, in which the forms 
are primary and simple and belong to a radically transcendent realm. In the 
later period, and especially in the Philebus, so these interpreters argue, Plato’s 
metaphysics would become increasingly based on the primacy of two princi­
ples that had come from the Pythagorean tradition—the principles of the de­
terminate one and the “indeterminate dyad” of the “greater and the smaller,” 
effectively Plato’s version of the distinction between the limited and the un­
limited expressed by Philolaus. The forms were now understood as generated 
from these two principles and as reflecting the antithetical structures of each. 
Moreover, the conceptual schemes revealed by the diairetic method in late 
works like the Sophist, Theaetetus, and Philebus are regarded as being meant 
to show the reconciliation of these two principles at work in both thought and 
the world. Findlay in particular would stress the parallels here with Hegel: 
“The expansion of the Eide into the realm of instantiation is seen not to be an 
inexplicable fall, but a carrying further of the domination of multiplicity and 
detail which is already present at the eidetic level. A Neoplatonist like Proclus 
worked the whole mystery out: the One must go forth from itself into end­
less specification and instantiation in order to return to itself eternally and, 
so to be the One. And these thoughts also underlie the Dialectic of Hegel, for 
whom the Absolute Idea is the eternal vision of itself in its Other” (Findlay 
1983, 18).12

Not all these authors agree on all the details, but all recognize the phenom­
enon on which Aristotle had commented concerning the importance given by 
Plato to Pythagorean number theory and his associated construal of the forms 
as measures, at the same time as generally rejecting Aristotle’s criticisms of 
Plato in this regard. As representative we might consider the view of Kenneth 
Sayre. Sayre describes Plato as having realized by the time of the Parmenides 
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the problem of the “radical separation between Forms and objects” and “in 
the second part of the Parmenides we find a lavish defense of Pythagorean 
ontology against the Eleatic attack, and at the same time an exploration of 
the conditions of a more adequate theory” (Sayre 2005, 174–175). This devel­
opment would lead to a narrowing of the separation of worldly objects and 
transcendent forms:

In the earlier theory  .  .  . the Forms are absolute, both in the sense of being 
themselves incomposite and in the sense of not depending for what they are 
upon other things. . . . By the time of the Philebus, however, Plato’s thinking 
in this regard has so changed that the Forms are no longer conceived even 
to be ontologically basic. Like sensible things, Forms in this later context are 
conceived as being constituted from two more fundamental ontological prin­
ciples—in the case of the Forms, the Great and (the) Small and Unity. . . . The 
fact that both Forms and sensible things are constituted from the Great and 
(the) Small bespeaks the second fundamental deviation of the later from the 
earlier theory. Since both Forms and sensible things come to be by the impo­
sition of measure upon the same basic ontological principle, their respective 
modes of being can no longer be conceived as radically distinct. (183–184)

What will be significant for Hegel’s Logic is the idea that the changed theory 
of forms had transformed Plato’s understanding of the forms as paradigms 
( paradigmata) against which worldly phenomena could be measured. “Ac­
cording to the theory of the Phaedo and the Republic, Forms are standards 
or paradigms by which sensible objects are given names and identified, in­
asmuch as objects share the names of the Forms in which they participate” 
(184). However, the problem pointed out by Parmenides concerned how to 
conceive of comparison across such an incommensurable divide, and because 
of this, the notion “never amounted to much more than a metaphor.” With 
the transformed account of forms in the Philebus, however, the idea of forms 
as paradigms “is given a literal and relatively unproblematic sense” (184).

Those familiar with the opening sections of Hegel’s Science of Logic might 
recognize a certain structural similarity to Plato’s attempts to close the initial 
seemingly incommensurable gap between the forms and worldly objects and 
the dynamics consequent to Hegel’s similarly “incommensurable” initial cat­
egories of “Being” and “Nothing,” categories that eventually are interrelated 
within the “Actuality” (Wirklichkeit) in which the “Objective Logic” termi­
nates.13 However, this is not sufficient to place Hegel on the side of Plato over 
against Aristotle, as Hegel will side with Aristotle’s epistemological privileg­
ing of sensible worldly objects in the generation of knowledge. In contrast, 
in Plato’s late ontology according to Sayre the suprasensible is still favored 



29l o g i c ,  m a t h e m a t i c s ,  a n d  p h i l o s o p h y

epistemologically over the sensible, retaining the earlier idea that the forms 
could be cognized directly without the need to consult the objects of the em­
pirical realm (Sayre 2005, appendix A).

The unwritten-doctrines interpretation, with its reliance on the view of 
Plato found in the Greek “doxographic” tradition, has remained controver­
sial among Plato scholars. Here, I will simply accept the plausibility of this 
thesis for our purposes rather than attempt to argue for it; after all, it is not 
Plato’s actual views that are in question but Hegel’s views of Plato in rela­
tion to the origins of Aristotle’s logic. And as acknowledged by both Hans 
Krämer of the Tübingen School (Krämer 1990, ch. 11) and John Findlay (Find­
lay 1974a), Hegel’s interpretation of Plato had been along the general lines of 
the unwritten-doctrines interpretation. I will take the view of Sayre sketched 
above in which Plato retains his earlier epistemological privileging of the 
forms even when the gap between them and the world is narrowed as broadly 
corresponding to how Hegel understood Plato.

Aristotle sets out this view of Plato in Metaphysics book 1. Plato, he writes, 
“agreed with the Pythagoreans in saying that the One is substance and not a 
predicate of something else; and in saying that the numbers are the causes of 
the substance of other things, he also agreed with them; but positing a dyad 
and constructing the infinite out of great and small, instead of treating the 
infinite as one, is peculiar to him” (Aristotle 1984, Metaphysics, 987b23–27). 
Plato also, he continues, diverged from the Pythagoreans in introducing the 
forms in the context of “his inquiries in the region of definitory formulae.” 
Moreover, this was bound up with “his belief that the numbers, except those 
which were prime [proton], could be neatly produced out of the dyad as out 
of a plastic material” (987b30–35).14

In the 1920s, Julius Stenzel argued that Plato’s method of diairesis had 
drawn on the Pythagorean mathematics of his contemporaries in virtue of the 
fact that the pattern of ideational division was modeled on a “figured num­
ber” that had a special relevance for the Pythagoreans, the tetraktys, but to 
understand the connection we need to understand something about how the 
Pythagoreans connected the two branches of mathematics, arithmetic and ge­
ometry. For the earliest Pythagoreans, geometric structures were understood 
on the basis of arithmetic.15 First, a spatial point was conceived as the monadic 
unit when considered “in position,” with a line then being conceived as com­
posed of such units, said to be typically represented by sequences of pebbles. 
In turn, figures in the two-dimensional plane such as squares and rectangles 
could be conceived as composed of arrays of two-dimensional lines. That is, 
what we know as “square numbers” (numbers multiplied by themselves) were, 
for the Pythagoreans, literally square, measuring areas rather than lengths. To 
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these could be added triangular and oblong numbers as well as the peculiar 
L-shaped gnomon.16 Finally, a three-dimensional solid could be thought of as 
assembled from planar figures—for example, arraying three square numbers 
of nine units each formed a cubic number of volume of twenty-seven units.17 
Of the two-dimensional numbers, a triangular number of great significance 
was, as we have seen, the tetraktys or tetrad in which the unit/points were ar­
ranged in four rows consisting of one, two, three, and four elements (fig. 0.2). 
This arrangement encoded relationships that were particularly significant 
within the Pythagorean worldview.

Among the meanings attributed to this figure was that the four rows stood 
for the ways in which space was conceived. The first row represented a point 
in space, understood as the fundamental numerical unit, the monas, “in posi­
tion,” while the second represented the one-dimensional line, the third a two-
dimensional area, and the fourth a three-dimensional solid. The tetraktys is 
thus the source of Plato’s number series that Hegel had appealed to in his 1801 
thesis at Jena, 1, 2, 3, 4, 9, 8, 27, since it is obvious on a moment’s reflection that 
this series (as Hegel notes [LHP 2:213; 3:44]) is generated by simply raising the 
numbers 1, 2, and 3 to the first, second, and third powers: 11, 21, 31, 22 (4), 32 (9), 
23 (8), 33 (27). It would seem, then, that Plato’s sequence, following Pythagorean 
number theory, somehow alludes to the necessary three-dimensionality of the 
cosmic body pervaded by the cosmic mind. That thought about the three-
dimensional world needed somehow to reflect its tridimensionality would, I 
suggest, become a central imperative for Hegel’s logic.

Importantly, the tetraktys testifies to the way that the Pythagoreans had 
conceived of numbers in a very different way from the way in which they are 
now thought of—that is, it testifies to their very different concept of number. 
It is important to remember that numbers for the Greeks were limited to the 
natural numbers. What are now thought of as “rational numbers,” that is, 
fractions of whole numbers, were then not considered as numbers per se but 
as ratios composed of whole numbers. Importantly, the Greeks also lacked the 
concepts of negative numbers as well as the number zero. Without the latter 
in particular, the resources for the development of algebra as conventionally 
conceived were limited. But neither did the Pythagoreans consider the num­
bers 1 and 2 as numbers as such. They were rather the principles (archai) from 
which the rest of the number series could be generated, as reflected in Plato’s 
idea expressed in the Statesman of the unit and the indeterminate dyad of the 
greater and the smaller as opposed measures for all things. Aristotle gives 
this more general background to Pythagorean number theory in Metaphys-
ics book 1 (Aristotle 1984, Metaphysics, 986a13–26), starting with two pairs of 
contrarily opposed principles: limited and unlimited and odd and even. The 
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list continues on to include the one and many; right and left; male and female; 
resting and moving; straight and curved; light and darkness; good and bad; 
and square and oblong. In this style of thought, all of these oppositions are 
meant to be understood as in some sense analogous to each other: odd is to 
even just as one is to many just as right is to left, and so on. The inclusion of 
“good” and “bad” here signals that there is a sense in which in all these pairs, 
the first is evaluated as good, the second as bad. Such a series of analogous 
ratios would have a lasting significance for Hegel.

The list of Pythagorean contrary pairs totals 10, but it is to be remembered 
that a special place was given to the numbers 1 to 4 from which 10 could 
be generated as four rows of one, two, three, and four units. We have seen 
how with square and oblong numbers, numbers were given geometric sig­
nificance. In the tetraktys this is generalized as the four successive rows, and 
hence the numbers 1 to 4, besides relating to the dimensionality of space, also 
represent the exponential powers of numbers: zeroth, first, square, cube.18 
As will be seen (in chapter 2), in the harmonic theory of the contemporary 
of Plato, Archytas of Tarentum, the musical scale would be divided in ways 
restricted to ratios of the numbers 1 to 4.

Stenzel proposed that Plato’s diairetic pyramid had been conceived on the 
analogy of the tetraktys, such that the monad at the summit divided into the 
two lower nodes, which each then divided into further lower nodes, and so on 
(Stenzel 1924, 30–32). Aristotle had pointed out that the Pythagoreans held the 
monas to be both odd and even (Aristotle 1984, Metaphysics, 986a20), and so 
able to divide into the first even and odd numbers, 2 and 3, this division being 
repeated at each subsequent node so as to generate all the natural numbers. 
Stenzel then compares this branching division of numbers with a Platonic di­
airetic pyramid as reconstructed from a passage from Plato’s Sophist. Analo­
gous to the way the node 2, say, divides into even and odd numbers, 4 and 5, 
a node on the diairetic pyramid, animate things, divides into animate things 
living in herds and those living alone. In fact, as Jacob Klein would later note, 
the distinction between genus and species had first been used by the Greeks in 
relation to numbers (Klein 1968, ch. 7B) and, as alluded to earlier, to distinguish 
numbers themselves from continuous magnitudes.19 Thus, after the discovery 
of incommensurability, “linear” and “square” numbers would come to be con­
ceived as belonging to different genera—that is, as heterogeneous. Aristotle 
would insist on not crossing such generic boundaries, meaning that areas could 
be added to areas and lengths to lengths, but not lengths to areas. Hegel would 
effectively appeal to this principle in his criticism of Newton’s use of differential 
calculus in his mechanics in which a square numerical value was reduced to a 
linear one in the process of “differentiation” (see below, chapter 4.3).20
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What Plato was searching for with the diairetic pyramid was a compre­
hensible structure conceived as able to unify the extended world of becom­
ing, without which it would be an unstable multiplicity—unity being repre­
sented at the top of the pyramid, with the multiplicity of unstable items of 
becoming represented at the lowest termini. The most explicit account of this 
structure would be found in the dialogue Timaeus, with Timaeus’s story of 
the way the demiurge had fashioned the cosmos as simultaneously bodily and 
intelligent, with the parts of each unified into a whole. Let us here, however, 
concentrate on the ways in which the ideational branching structure of kinds 
as found later in Porphyry’s tree might be seen as analogous to the structure 
of the tetraktys.

The distinctively tetradic dimension of Plato’s ideational structure will 
come into focus when we remember that the four levels of the tetrad repre­
sent zero-, one-, two-, and three-dimensional spaces, which in turn are cor­
related with numbers raised to the zeroth, first, second, and third powers. 
Later, Leibniz would, in his own way, suggest that numbers could be assigned 
to concepts to capture their internal conceptual structure as a type of “prod­
uct” of component concepts. “For example, since man is a rational animal, if 
the number of animal, a, is 2, and of rational, r is 3, then the number of man, 
h, will be the same as ar: in this example, 2 × 3 or 6” (Leibniz 1966, 17). This 
in turn would capture their external inferential relations. Just as if 3 divides 
6 and 6 divides 12, then 3 divides 12, if a (the concept <animal>) divides h 
(the concept <human>) and h divides p (the concept <philosopher>), then a 
divides p. That is, if all humans are animals, and all philosophers are human, 
then all philosophers are animals. Leibniz’s numerical modeling of inferen­
tial relations was not new, however, and this pattern of iterated divisibility is 
found, as we will see, in Aristotle’s conception of the “perfect” or “complete” 
syllogism, which he seems to have borrowed from contemporary mathemati­
cal theories of proportion to schematize syllogistic inferences. However, it 
seems that the pattern of mere divisibility had not provided the whole answer 
for Plato, who had suggested more complex patterns among ratios that came 
ultimately from the three “means” of Pythagorean harmonic theory. For the 
moment, however, let us look in more detail at the way in which the repeti­
tion of numerical division fits Aristotle’s idea of syllogistic inference.

1.2 Aristotle’s Logical Organon: An Initial Look

Aristotle’s explicit logical doctrines would be collected into the five books 
making up the Organon, and what is now seen as central to formal logic, 
as we understand it, is to be mainly found in the account of syllogisms in  
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book 1 of the volume Prior Analytics, while the more general applications of 
syllogisms within scientific demonstration are treated in the Posterior Ana-
lytics. A syllogism, Aristotle tells us at the start of the Prior Analytics, is “a 
discourse [logos] in which, certain things being supposed, something differ­
ent from the thing supposed results of necessity because these things are so” 
(Aristotle 1989, Prior Analytics, 24b19–20). Thus, a syllogism is a deduction of 
some verbal conclusion from “certain things being supposed,” but Aristotle 
was interested in deductions that take a very particular form, with a con­
clusion being deduced from specifically two premises (protases) “affirming 
or denying something about something” (24a16). Traditionally, syllogisms 
have been considered as fundamentally linguistic structures—three sen­
tences connected by patterns of inference—but more recently attention has 
been drawn to the underlying mathematical patterns within these linguistic 
structures, patterns whose presence are signaled by Aristotle’s use of “figures” 
(schemata), the term used by Greek geometers for the diagrams that accom­
panied their symbolically articulated proofs (e.g., Corcoran 2003).21

For some syllogisms—those described as “perfect”—it can be grasped im­
mediately that the conclusion follows from the premises. Consider, for ex­
ample, the perfect syllogism type that would later be described as in the mode 
“Barbara” of syllogisms of the first figure (schema):

All As are B
All Bs are C,
Therefore, All As are C.

By contrast, syllogisms in the third figure, such as the mode “Felapton,” are 
generally not so obvious on first encounter and require a degree of at least psy­
chological manipulation:

No As are B
All As are C,
Therefore, Some Cs are not Bs.

For Aristotle, proofs of syllogisms such as that of Felapton proceeded by “con­
version,” a type of translation, into a “perfect” or “complete” syllogism in the 
first figure such as that of Barbara, which in turn did not require further proof 
because one could simply immediately “see” that it was the case. This intuitive 
validity of syllogisms such as Barbara was effectively understood as following 
from the fact that one can “see” how there is an iteration of the type of con­
tainment relation captured by the iteration of divisibility in Plato’s diairetic 
pyramid. As Aristotle puts it in a passage in the Prior Analytics to which we 
will have occasion to return,
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Whenever, then, three terms are so related to each other that the last is in the 
middle as a whole and the middle is either in or is not in the first as a whole, 
it is necessary for there to be a complete deduction [syllogismon telion] of the 
extremes. (I call the middle [meson] which both is itself in another and has 
another in it—this is also middle in position—and call both that which is itself 
in another and that which has another in its extremes [akron]. (Aristotle 1989, 
Prior Analytics, 25a32–38)

However, in order to bring out clearly the transitive nature of the predicative 
relation, Aristotle commonly chooses to reorder the words within the com­
ponent statements of such syllogisms so that the predicate term precedes the 
subject term, a structure that was in fact unnatural to the Greek language. 
This change allows the iteration of the predicate as said or predicated of the 
subject to be shown more perspicuously:

For if A is predicated of every B and B of every C, it is necessary for A to be 
predicated of every C. . . . Similarly, if A is predicated of no B and B of every 
C, it is necessary that A will belong to no C. (25b38–26a3)

It is clear that the underlying relations between the terms in such inferences 
are just those found in Plato’s diairetic hierarchy—in fact, Plato also employs 
two ways of talking about the relations holding among the nodes. It would 
also appear that Aristotle’s second form of expression employing the “said of ” 
rather than “is in” relation more neatly fits the model of the dividing pyra­
mid of numbers. For example, if a node A divided into left- and right-hand 
branches B and B′ and is B similarly divided into C and C′, it could be said 
that the fact of A being predicated of B (as, say, animal of human) and B of 
C (as in human of Greek) directly shows that A (animal) is predicated of C 
(Greek). We will see, however, that Aristotle’s model of the middle term as 
“that which is itself in another and that which has another in it” does not, in 
fact, do justice to what Plato (and later Hegel and also Peirce) will say of the 
role of a “mean,” and that this feature of Aristotle’s perfect syllogism will be 
bound to another feature of the way Aristotle describes the linguistic form of 
the component statements.

Aristotle further specifies something about the statements that they are to 
be “either universal, or particular, or indeterminate” (Aristotle 1989, Prior An-
alytics, 24a16–17). That is, they are to be statements about, say, all Greeks, some 
Greeks, or just Greeks without further specification. What seems omitted are 
individuals—the referents of singular statements; for example, statements 
say, about Socrates or Plato—a category that Aristotle captures with the term 
kath ekaston, a category that is still distinct from some particular (merikos), 
even when this latter determination is limited to one.22 This omission, which 
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is explicit in the account of judgment types given in De Interpretatione, had 
become a focus of comment over the last century, given that, it would seem, 
the “syllogism” that for many is the first to come to mind—“All men are mor­
tal; Socrates is a man; and therefore, Socrates is mortal”—is, in fact, strictly 
in question as to its status as a syllogism at all (Łukasiewicz 1957, 1; Patzig 
1968, 4–5). On the other hand, as Günther Patzig points out (4–5), Aristotle 
does give a number of examples of syllogisms involving singular subjects, and 
it could be argued that other aspects of his accounts of judgments suggest 
that the meanings of particular and universal judgments are themselves de­
pendent in some way on the existence of properly singular judgments about 
specifiable individuals like Socrates rather than just “some or other” person.23

I will argue that Aristotle’s omission of specific individuals here reflects 
transformations going on in the mathematics being practiced in the Acad­
emy at the time—changes leading from the more arithmetically based con­
ceptions of geometry characteristic of the early Pythagoreans toward a more 
abstract type of thought, enabling the development of Greek geometric alge­
bra. A mathematician associated with Plato’s Academy, Eudoxus of Cnidus, 
seems to have been particularly influential in this innovation that has been 
described as the reverse of Descartes’s later analytic geometry (Dieudonné 
1985, 1–3). That is, in contrast to the way that Descartes’s analytic geome­
try would come to be based on the reduction of the continua of geometric 
magnitudes—determinate lines, planes, and volumes—to determinate pat­
terns of discrete numbers, Greek geometry was in the process of liberating 
geometry from reduction to numbers as then understood. This move was 
necessitated by the inadequacy not only of the number system employed by 
the Pythagoreans, but of their very conception of number. They had found 
that their numbers—the positive “natural” or “counting” numbers—could 
not in fact give the measure of certain continuous magnitudes, such as the 
diagonal of the unit square. But, in virtue of the innovations of Eudoxus, con­
tinuous magnitudes would come to be understood as themselves determinate 
mathematical objects capable of determinate relations with other such ob­
jects without the need for numerical specification, and this in turn would be 
understood as demanding a new concept of number.

Thus, the numbers invoked by Descartes and others in the early modern 
period would simply not be the same kinds of things as those to which the 
Pythagoreans had appealed. Descartes’s “real” numbers, as he called them, 
had to include irrational numbers (equivalent to those continuous magni­
tudes that were for the Greeks not numbers at all), because the solutions of 
the complex equations required in the developing sciences depended upon 
them. Moreover, Descartes’s numbers would crucially include a number that 
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was not part of the Greek number system, the number 0 (zero), which had 
come into European mathematics from Indian sources via Arabic mathemat­
ics, from which was taken the modern notion (and name) of algebra. Signifi­
cantly, the Dutch mathematician Simon Stevin, who introduced the modern 
decimal system of numbers, would identify the spatial point with the number 
zero (Klein 1968, 200–211).

The Cartesian re-arithmetization of geometry would lead to a new form 
of “monadology” as famously advocated by Leibniz. Leibniz’s new “monad” 
would have some of the feel of the original monas of the Pythagoreans, but it 
would be transformed in its new arithmetical environment to become radi­
cally abstract rather than concrete. This transformation would allow Leibniz 
to reintroduce numbers explicitly into the conception of logical processes,  
becoming the “official” inventor of “mathematical logic” (see below, chapter 7).  
In fact, he would, as George Boole would in the nineteenth century, reduce 
the numbers involved to only two, 0 and 1, which he could equate with the 
(what would later be called) “truth-values” of true and false for the purposes 
of a calculus for a “propositional logic.”

In contrast to many philosophers in the first half of the nineteenth century, 
Hegel would be acutely aware of the new algebraic features of Leibniz’s logic, 
and, unlike many present-day philosophers, he would be similarly aware of 
the peculiarities of the still distinctly Greek sense of mathematics and its re­
flections in the “syllogisms” of both Plato and Aristotle. Hegel would be par­
ticularly concerned with what in Aristotle’s logic compromised its application 
to empirical entities in the actual world. To use the language of Plato’s States-
man, Aristotle wanted to find some type of measure in the empirical world 
that could be brought as the appropriate “due measure” to our judgments and 
thoughts, but something about his logic prevented this—something linked to 
the problematic way that empirically given individual things would be rep­
resented within his syllogistic. Ironically, while it was Plato’s rejection of the 
empirical that was the problem for which Aristotle attempted to provide the 
solution, it was Plato’s own conception of unity, within which was preserved 
the opposition between the discrete monad and the indeterminate dyad of 
the greater and lesser, that would turn out to provide a solution to the ratio­
cinative limitations of Aristotle’s logic.

It has been argued by Alan Paterson that “throughout his life, Hegel main­
tained a deep and sustained interest in geometry and its philosophical basis” 
(Paterson 2005, 61).24 In 1800, and so around the time he had played with the 
idea of a “triangle of triangles,” Hegel had devoted himself to a systematic and 
thorough study of Euclid’s Elements, seemingly taking Proclus’s commentary 
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as his guide (Paterson 2005, section 2), and the normativity of Greek geometry 
over the modern approach would be proclaimed by F. W. J. Schelling around 
the same time. Like Schelling, Hegel resisted the early modern impulse to see 
geometry as reducible to arithmetic, but, in contrast to Schelling, he did not 
simply deny the need to translate continuous magnitudes into the language of 
discrete arithmetical quantities.25 For Hegel, geometry was implicitly reliant 
on arithmetic for making determinate its distinctive objects,26 just as arith­
metic was itself reliant on the relations among geometric objects (see below, 
chapter 4.3). This attitude gave expression to Plato’s late Philolaic idea that 
discrete unit- or monad-based arithmetical relations were dependent on the 
opposing relations of greater or smaller, or more or less, applicable to con­
tinuous magnitudes, just as the latter were dependent on the former.

We will see this same reciprocal structure repeated in Hegel’s account of 
the interactive duality of qualitative and quantitative judgment types that he 
would later explore in “Subjective Logic,” volume 2 of The Science of Logic—
opposed judgment types that could be understood as nevertheless somehow 
equivalent across the divide of incommensurability in a way analogous to the 
way discrete numbers and continuous magnitudes could be brought together 
for the purposes of measuring the world (see below, chapter 2.5).27 For Hegel, 
Aristotle’s attempt to find an empirical measure for judgments that had an 
ideational structure could not be conceived in terms of some direct matching 
of judgments to the world but would take place within a structure in which 
opposed judgments confronted each other with their own distinct measures, 
with each taking “the measure” of the adequacy of the other’s measure. More­
over, the underlying mathematical model for Hegel’s Logic with its opposed 
forms of measure will help us to understand his account of the otherwise 
puzzling “moments” of the concept—the moments of “singularity,” “particu­
larity,” and “universality”—moments linked according to the pattern linking 
the three musical means.

With their respective ideas of monas or “monad,” the Pythagoreans, on 
the one hand, and Leibniz, on the other, both conceived of the individual as 
a type of indivisible, determinate, and ineliminable unit that Aristotle had 
seemed willing to sacrifice in the rigorous deductions of his logic. This is­
sue of the role of “singularity” (Einzelheit) in syllogistic structures will be 
central to our treatment of Hegel’s relation to Aristotle’s syllogistic and his 
appeal to Plato in this regard. It is often said that Aristotle did not have the 
conceptual resources to distinguish between “intensional” and “extensional” 
interpretations of logical features, and the unclarity of Aristotle’s syllogistic 
in this regard is bound up, it seems, with his vagueness or ambiguity about 
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the relevance of syllogistic reasoning about individuals. On the one hand, it 
is clear that Aristotle thought that scientific demonstrations are necessarily 
about kinds of things rather than individual things per se, and that he links 
his inquiry into syllogisms to demonstrative science in the very first sentence 
of the Prior Analytics (24a10–12). And yet, if one wants to bring the empiri­
cal world to bear on one’s judgments, the relevant units here are surely indi­
viduals: kinds are not objects of which one has direct experience. Aristotle’s 
compromise here would be to treat the individuals of which one does have 
experience as nonspecific instances of the kinds they instantiate. As he puts it 
in the Posterior Analytics, while one may be looking at Callias, what percep­
tion is of is strictly the universal “man”; it is not of “Callias the man” (Aristotle 
1984, Posterior Analytics, 100a15–b1).

However, scientific demonstration was not the only use to which syllogis­
tic reasoning was meant to be put. Importantly, the theory of syllogisms was 
meant also to be applied to the nondemonstrative context of dialectic—an 
application deriving from the approach of Socrates, which Aristotle treats 
as particularly relevant to philosophy because “the ability to puzzle on both 
sides of a subject will make us detect more easily the truth and error about 
the several points that arise” (Aristotle 1984, Topics, 101a35–7).28 Moreover, 
Aristotle also discusses contexts of nondemonstrative forms of reasoning that 
are clearly meant to be about specific entities considered in their singularity 
rather than simply as indifferent instances of kinds, such as implied in his 
distinction between the two types of justice in the Nicomachean Ethics.

The medieval nominalists would attempt to clarify what was at stake with 
Aristotle’s treatment of universals: What could a universal amount to, they 
asked, more than a collection of individuals? What could the phrase “a man” 
amount to beyond meaning some actual man—Callias or Socrates or Plato 
or  .  .  . ? Aristotle’s lack of clarity regarding the issue of the role of singular 
statements in syllogisms has long been commented upon, and for Hegel, the 
inability of Aristotle to do justice to determinate individuals per se within 
his forms of syllogistic reasoning would have a systematic explanation in the 
conception of the nature of social life in the ancient polis itself—it would be 
correlated with the nature of the Greek Sittlichkeit—the historically variable, 
conceptually mediated and expressed systems of customs (Sitte) making up 
Greek life, constituting its spirit (Geist) (see below, chapter 6). In this way, for 
Hegel, issues of the place of singular statements within patterns of reasoning 
and the use of “dialectical” nondemonstrative syllogistic reasoning would be 
related to the question of the relation of the apparently incommensurable 
continuous and discrete magnitudes. And all this in turn would bear directly 
upon the broader issue of the relation of logic to metaphysics.
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1.3 The Formal/Ontological Issue

Mathematical approaches to logic are often seen as irrelevant to under­
standing Hegel’s project of logic because, as it is often argued, Hegel’s logic 
is deemed “metaphysical” or “ontological” rather than “formal” (see, for ex­
ample, Beiser 2005, 161). This attitude, however, is based on a confusion. As a 
practice, mathematics in Hegel’s time was not easily divided into “pure” and 
“applied” aspects, and this is reflected in Hegel’s approach. Hegel’s under­
standing of the status of mathematics was similar to that of Aristotle, who, 
with a focus more on Plato’s middle-period position, contested Plato’s sepa­
ration of the realm of pure mathematical objects from the actual world in 
which those objects were manifest. The same could be said of the constitutive 
concepts of logic. And so, while it is true that for Hegel logical form could not 
be considered entirely in abstraction from the material that it was organizing, 
this did not itself preclude a study of logical form.29 That is, Hegel’s critique 
of “formalism” does not preclude the idea of a study of the logical form of 
thought, nor that of the “mathematical” dimensions of that form.

From the conventional perspective, Hegel’s logic is understood as an 
articulation of “thought determinations” (Denkbestimmungen) that are re­
garded as something like the “categories” of Aristotle’s Categories, a work tra­
ditionally included in the logical works although seemingly having more in 
common with Aristotle’s metaphysical treatises (Cohen 2016, section 2). This 
is the view of the influential interpreter of Hegel’s Logic Stephen Houlgate, for 
example. For Houlgate, what for others are paradigmatically logical words 
such as “ ‘concept,’ ‘judgment,’ and ‘syllogism’ [for Hegel] name structures in 
nature, and so in being itself, not just forms of human understanding and rea­
son. They are, therefore, ontological as well as logical structures—structures 
of being, as well as categories of thought” (Houlgate 2006, 116).

Houlgate’s comments sit more easily with Hegel’s “Objective Logic,” which 
comprises the first two books of The Science of Logic, than they do with his 
“Subjective Logic,” which comprises the final book. Read “materially,” Hegel’s 
“concepts” can be taken to be his equivalent of Aristotelian “natures” or 
“essences”—the view adopted by James Kreines, for example (Kreines 2015)—
and on this model the “judgments” and “syllogisms” of the “Subjective Logic” 
are to be considered in turn as simply extending this to more complexly ar­
ticulated material structures. However, the conceptual relations found in the 
first two books of The Science of Logic operate without a conceptual distinc­
tion that will, in book 3, be made explicit within the tripartite structure of “the 
concept.” This is the distinction between “particularity” (Besonderheit) and 
“singularity” (Einzelheit) that comes into focus in the application of concepts 
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in judgments. This is the distinction with which sense can be made of Hegel’s 
insistence on Plato’s syllogism, with its divided middle term, over Aristotle’s.

It is clear that Hegel’s Logic as a whole has an ontological dimension. 
As Robert Pippin puts it, logic is dually directed: it is directed to being in 
its intelligibility as well as to the intelligibility of that being.30 However, it is 
far from clear that this ontological dimension should be understood on the 
model of the categories of Aristotle’s logic to which books 1 and 2 are most 
approximate. First, such a conception flies in the face of Hegel’s standard tex­
tual presentations in which he presents series of conceptual determinations 
as developing in such a way that at each stage a succeeding structure provides 
the “truth” of its antecedent—that is, provides the resources for a more ad­
equate understanding of those antecedent structures than had been provided 
within the framework of their own determinations. The second half of book 3  
of Hegel’s Logic certainly shows a return to the “ontological” or “material” 
readings of conceptual structures found in the “Objective Logic,” but this is 
crucially after Hegel has presented his own interpretation of the more formal 
approach of Aristotle’s Prior Analytics that takes up approximately the first  
half of book 3. Moreover, this presentation is prefaced by an appeal to the  
approach of Kant, a philosopher for whom the primary role of concepts is 
that of organizing judgments that apply to the world but not because of any 
correspondence to the world as it is “in itself.” This development surely cuts 
across the grain of Aristotelian category theory with its attempt to bring what 
was perceived as Plato’s otherworldly ideas into the world.

Kant had made the categorial structure of appearance dependent upon 
the logical structures implicit in human judgment and inference, with this 
being usually seen as a mark of his “subjective” approach, enmeshed as it was, 
in Hegel’s view, in the limitations of the “understanding” (der Verstand). And 
yet in the opening pages of the “Subjective Logic” Hegel describes as “one 
of the profoundest and truest insights to be found in the Critique of Reason 
that the unity which constitutes the essence of the concept is recognized as 
the original synthetic unity of apperception, the unity of the ‘I think,’ or of 
self-consciousness” (SL, 515; 12:17–18).31 This clearly signals a rupture with the 
more Aristotelian framework of the second book of the “Objective Logic,” 
“The Logic of Essence,” and it is only after Hegel’s reconstruction of Aris­
totle’s formal syllogistic that the ontological point of view with the section 
“Objectivity” is resumed. Moreover, for Hegel, Kant’s formal logic was clearly 
predicated on the emergence of Leibniz’s distinctly un-Greek algebraic logic, 
which cannot be ignored.

I will argue that viewed from the logical framework of the Greeks it be­
comes apparent that it is only in the modern context that “mathematical” and 
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“formal” as standing opposed to the “metaphysical” or “ontological” can be 
so easily identified, but that the propensity for this division is already implicit 
in Aristotle’s limited understanding of the syllogism. Hegel will identify the 
Platonic origins of the syllogism in the context of Plato’s dialogue Timaeus, 
Plato’s cosmological treatise that, because of its Pythagorean nature, can be 
regarded as both mathematical and material (see chapter 2). Moreover, it 
will be this paradigmatically material structure described in terms of ratios 
of numbers that provides the model for Hegel’s reconstruction of Aristotle’s 
paradigmatically formal syllogistic. Like most unmediated conceptual oppo­
sitions, Hegel will reject such a “dichotomous” distinction, showing Plato’s 
syllogism to be implicitly formal and Aristotle’s implicitly material. However, 
it will be only in the modern context, with its reintroduction of a distinctively 
modern abstract conception of the Pythagoreans’ monas, and the elaboration 
of the determination of “singularity” and its distinction from “particularity,” 
two notions that in much Hegel scholarship are not properly distinguished, 
that this integration of the formal and the material will be fully intelligible. It 
is in this sense that it is only in the light of modern approaches to logic, such 
as those of Leibniz and Kant, that we start to see what for Hegel a syllogism 
actually is.



2

Hegel and the Platonic Origins of Aristotle’s Syllogistic

It is evident from the things which have been said, then, what all demonstrations come 
from, and how.  .  .  . But after these things, we must explain how we can lead deduc-
tions back into the figures stated previously.  .  .  . For if we should study the origin of 
deductions, and also should have the power of finding them, and if, moreover, we could 
resolve those which have already been produced into the figures previously stated, then 
our initial project would have reached its goal.

a r i s t o t l e , Prior Analytics

In pursuit of the Platonic origins of the syllogism we are typically steered to 
Plato’s account of the method of diairesis elaborated in the later dialogues 
(e.g., Bochenski 1961, 66; Rose 1968). Plato’s account there, I have suggested, 
with its focus on the role of “due measure,” calls out for an interpretation 
within the mathematical context of his time, a context in which the notion of 
“measure” was confounded by the discovery of the “incommensurable” na-
ture of the magnitudes found in geometric objects when the measure invoked 
was the monadic unit from Pythagorean number theory. However, in stress-
ing the Platonic origins of Aristotelian logic, Paul Shorey had in mind a more 
ontological than methodological Platonic model (Shorey 1924). This takes us 
into the mythically presented world of Plato’s Timaeus with its Pythagorean 
doctrine of the most beautiful bond to which Hegel had been attracted—a 
structure that, according to Hegel, had a divided rather than a univocal “mid-
dle term.” It is now time to start to fill out this general claim concerning the 
origins of the syllogism.

2.1 Pythagorean Harmonic Ratio Theory as Background to  
Plato’s and Aristotle’s Syllogisms

Aristotle had employed groups of three Greek letters—Α, Β, Γ; Μ, Ν, Ο; Π, Ρ, 
Σ—seemingly as “schematic letters” for the representation of subject and pred-
icate terms of syllogistically linked statements, in a manner that has appeared 
to many to have been borrowed from the practice of the geometers (e.g., 
Corcoran 2003, 268; Striker 2009, xiii).1 Consonant with this, it has sometimes 
been claimed that Aristotle also employed labeled diagrams in his logic analo-
gous to their use by geometers (e.g., Rose 1968; Netz 1999, 15; Bosley 2013).2 
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However, in the first half of the twentieth century a more radical thesis was 
put forward by the classicist Benedict Einarson, who argued that Aristotle had 
in particular drawn upon the mathematics of Pythagorean harmonic theory.

In a pair of papers Einarson showed that Aristotle’s syllogistic was heavily 
indebted for its technical vocabulary to terms used in the theory of musical 
harmonics as well as in associated cosmological theories that had been devel-
oped within the Pythagorean tradition (Einarson 1936).3 These claims would 
be repeated in 1978 by the Aristotle scholar Robin Smith (Smith 1978), but in 
the same year the historian of Greek mathematics Árpád Szabó (Szabó 1978) 
would independently argue for the broader influence of Pythagorean music 
theory on Euclidean geometry itself, especially those aspects having to do 
with ratios of magnitudes. I suggest that for Aristotle these musical origins 
may have been indirect and relatively insignificant, having been assimilated 
from the geometers. However, in the case of Plato they were clearly more 
important. Here, an apparent narrowing of the meaning of the term logos or 
ratio would distinguish Euclidean and Aristotelian usages of the term from 
earlier musical usages reflected in Plato. This difference would be relevant for 
the use of the notion of a “mean” or “middle term” employed in both music 
theory and geometry. Such a difference would be crucial for Hegel in distin-
guishing Plato’s “rational” syllogism, with its ontological dimensions, from 
Aristotle’s more limited “formal” syllogism, restricted as it was to the opera-
tions of the “understanding.”4

In arguing for his radical thesis, Smith emphasized the points earlier 
raised by Einarson (Smith 1978, 202; Einarson 1936, 151) that the technical vo-
cabulary used in Prior Analytics book 1, including the Greek words for “term” 
(oros) and “interval” (diastema) and the adjectives “extreme” (akron), “ma-
jor” (meixon), “middle” (meson), and “minor” (elatton), all describing terms, 
had originally come from Pythagorean theorists of harmony, a mathematical 
discipline flourishing around the time of the founding of Plato’s Academy.5 
Thus oros was a term designating the bounds of both geometric and musical 
intervals as well as a term in Aristotle’s syllogism. The word meson, besides 
being a point dividing a musical interval, indicated the middle or “mean pro-
portional” of peculiar double ratios of Greek mathematics, as when one says a 
is to b as b is to c (a : b :: b : c). It would play the role of “middle term” in Aris-
totle’s syllogism—the term that was common to the two premises that was to 
be eliminated in the conclusion.6 Aristotle also used the words empiptein and 
katapyknosthai to refer to the process by which a middle term is inserted into 
a syllogistic interval (Einarson 1936, 158; Smith 1978, 202)—again, both terms 
ultimately coming from harmonic theory to describe the division of musical 
intervals into smaller ones.
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In addition to the borrowings described by Einarson and Smith, the term 
diesis could be mentioned, a technical term from harmonic theory, the so-
called quarter-tone used in the measurement of musical intervals, that Aris-
totle compares to units of measure found in other sciences: “For everywhere 
we seek as the measure something one and indivisible; and this is that which 
is simple either in quality or in quantity. . . . And therefore in astronomy a ‘one’ 
of this sort is the starting-point and measure . . . and in music the quarter-
tone (because it is the least interval) and in speech the letter [or simple sound, 
stoicheion]” (Aristotle 1984, Metaphysics, 1052b–1053a; see also 1016b).7

Such usage would not have been unconscious for a philosopher who, 
like Aristotle, had been trained in the Academy. Aristotle had apparently 
accepted the Pythagorean account of the musical intervals, although mis-
takes in his uses of technical vocabulary suggest limits to his understanding 
(Gibson 2005, 24–26).8 However, while Aristotle seems to have been influ-
enced by some areas of Pythagorean science (cf. Brumbaugh 1989, ch. 12), 
his cosmology as presented in his On the Heavens was largely independent of 
the Pythagorean “music of the spheres” approach found in Plato’s Timaeus: 
“The theory that the movement of the stars produces a harmony, i.e., that the 
sounds they make are concordant, in spite of the grace and originality with 
which it has been stated, is nevertheless untrue” (Aristotle 1984, On the Heav-
ens, 290b12–14). For Aristotle, such Pythagorean talk could be understood 
as mere metaphor, a topic on which he had a distinct theory (Aristotle 1984, 
Poetics, ch. 21). This, however, seems not to have been the case for Plato (e.g., 
Burnyeat 2000, 54–56). I suggest this holds also of their respective treatment 
of the “musical” dimensions of the syllogism.

Following Einarson, Smith notes how Aristotle’s descriptions of syllo-
gisms in Prior Analytics book 1, chapter 4, closely parallel formulae found 
in an important document from Greek mathematical music theory (Smith 
1978, 202–205), the katatomi kanonis, usually known by its Latin name, Sectio 
Canonis (Barbera 1984b). This work, while often attributed to Euclid (Euclid 
1975), is, like Euclid’s Elements, said to compile material dating back to earlier 
mathematicians working in the Academy and elsewhere. In particular, some 
parts have been attributed to Archytas of Tarentum (Burkert 1972, 442), a 
contemporary and apparent friend of Plato and probably the major Pythago-
rean mathematician, harmonic theorist, and cosmologist of that period. In 
particular, the wording in Aristotle’s account of the perfect syllogism in Prior 
Analytics book 1, chapter 4, closely follows a passage from the Sectio Canonis 
concerning a transitive relation of “measure.” Aristotle writes that the terms 
of a syllogism are “so related to each other that the last is in the middle as a 
whole and the middle is either in or is not in the first as a whole,” following 
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this with a similar passage using schematic letters, “If A is predicated of every  
B, and B of every C, it is necessary for A to be predicated of every C” (Aris
totle 1989, Prior Analytics, 25b32–26a3). In the Sectio Canonis a similar transi-
tive relation is described with the notion of “measure”: “Let there be an inter-
val BC and let B be a multiple of C; and let it be that as C is to B, so B is to D. I 
say surely that D is a multiple of C. For since B is a multiple of C, C therefore 
measures B. Now as C was to B as B was to D, so C also measures D” (Euclid 
1975, 239; cf. Einarson 1936, 155–156; Smith 1978, 203).

The kanon named in this work to be sectioned or cut (tomi or katatomi) 
was the ruler or measuring strip attached to the base of a monochord—a sim-
ple instrument on which a single string could be divided by a movable bridge, 
leaving a variable portion of its length to be plucked and sounded (Barker 
1991, 50). The importance of such pairings of musical pitch of the sound with 
the lengths of a vibrating portion of the string should not be underestimated: 
they are thought to have given rise to “the first natural law ever formulated 
mathematically” (Ferguson 2010, 69). Szabó, following the fourth-century CE 
music theorist Gaudentius, claims the canon itself had come to be divided 
into twelve equal segments, accounting for the way the three musical means 
came to be exhibited in the “musical tetraktys” (Szabó 1978, ch. 2.7). A first 
cut would be made midway along the string at the point 6, such that the 
interval between 6 and 12 sounded with a tone an octave above that emitted  
by the freely vibrating string. This octaval interval 6 to 12 was now divided at 
the diatessera (perfect fourth) and diapente (perfect fifth) at points 8 and 9, 
respectively. Thus, within the octave between 6 and 12, the diatessera had a 
value (8) that was 4

3 times that of the value of the whole octave (6), while the 
diapente had a value (9) that was 32 times the value of the octave. As noted ear
lier, the three ratios involved, 2:1; 3:2, and 4:3, were all composed of numbers 
drawn from the tetraktys.9

This scale would be used by Plato in the Timaeus, but regardless of its 
formal elegance, the restriction of the ratios to the numbers 1 to 4 would later 
be contested by more empirically minded harmonic theorists. Compared to 
Plato, Aristotle was far more skeptical of the Pythagorean claims, and this 
attitude would be expressed by his student, the music theorist Aristoxenus 
(Aristoxenus 1902). Thus, Aristoxenus would later insist that an eleventh 
interval—(that is, the interval from C to the F of the next octave, an octave 
plus a perfect fourth)—sounded consonant, and so should simply be regarded 
as consonant. This, however, was rejected by the strict Pythagoreans on a pri-
ori grounds. Regardless of how it sounded to a listener, it was regarded as dis-
sonant because its ratio, as 8:3, was not derivable from the tetraktys (Barbera 
1984a). In sum, while on the basis of the lexical borrowing Smith describes 
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Aristotle’s syllogistic as “a direct attempt . . . to develop a mathematical the-
ory patterned after proportion theory and harmony” (Smith 1978, 202), we 
might think of this latter musical influence as less “direct” than is here sug-
gested.10 In the case of Plato, however, the Pythagorean links to what Hegel 
identifies as the syllogism at the heart of the cosmology of Plato’s Timaeus are 
unmistakable.

2.2 Timaeus’s Cosmic Animal and Its Relevance for Hegel

We have seen Plato’s Statesman commencing with a clear signal of the rele-
vance of mathematical issues. It is hard not to hear these being signaled as well 
in a jokey, playful way at the start of the Timaeus with the words with which 
Socrates starts the dialogue: “One, two, three . . . Where’s number four . . . ?” 
(Plato 1997, Timaeus, 17a). The “number four” Socrates is referring to is the 
expected fourth participant of today’s discussion that had been planned the 
day before, but we have noted the significance of the sequence 1, 2, 3, 4 would 
have held for this group of listeners. In any case, details of the Pythagorean 
complex of arithmetic, geometry, and harmony theory come into play when 
it becomes Timaeus’s turn to speak on the topic of how the craftsman or de-
miurge brought order to the cosmos out of its initial state of disorder.

Timaeus describes how the demiurge wanted everything to be good and 
nothing bad, and so brought order to an “out of tune” (plemmelos) disorderly 
state (Plato 1997, Timaeus, 30a), creating the cosmos as a single living animal 
of which all other living things formed parts, both individually and as kinds. 
Because the best thing must be intelligent, he put intelligence in soul and soul 
in body, such that the living cosmos was itself endowed with intelligence. 
Noting that anything with bodily form must be both visible and tangible, 
he came to make the body of the cosmic animal out of the elements of fire 
and earth. That the ultimate elements of the cosmos were fire, air, water, and 
earth was a belief widely accepted by the pre-Socratic Greek philosophers, 
but the Pythagoreans had given the doctrine their peculiar twist in relation 
to the tetraktys in that these four elements were aligned with the numbers 
of the tetrad—fire with 1, air with 2, water with 3, and earth with 4. Timaeus 
introduces the idea of the needed bond with the claim we have earlier noted 
was quoted by Hegel:

It isn’t possible to combine two things well all by themselves, without a third; 
there has to be some bond between the two that unites them. Now the best 
bond [that is, Hegel’s “most beautiful bond”] is one that really and truly makes 
a unity of itself together with the things bonded by it, and this in the nature of 
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things is best accomplished by proportion [analogia]. For whenever of three 
numbers which are either solids or squares the middle term between any two 
of them is such that what the first term is to it, it is to the last, and, conversely, 
what the last term is to the middle, it is to the first, then, since the middle 
term turns out to be both first and last, and the last and the first likewise both 
turn out to be middle terms, they will all of necessity turn out to have the 
same relationship to each other, and, given this, will all be unified. (Plato 1997, 
Timaeus, 31b–32a)

The multiple associations of the tetraktys’s number series 1, 2, 3, and 4 
come into focus here: they align not only with the series of geometric objects, 
point, line, plane, and solid, and the cosmological elements, fire, air, water, 
and earth but also with the first four of the five “Platonic solids,” tetrahedron, 
octahedron, icosahedron and cube, which provide the underlying physi-
cal structure of the respective cosmic elements.11 Note, however, the main 
point concerning the need of these different levels to be linked by “means” or 
“middle terms.” As Timaeus points out, were the cosmos planar rather than 
three-dimensional, only a single middle term (the equivalent of the number 
2, standing between 1 and 3) would be needed, but as the cosmos is actually 
three-dimensional, two middle terms (as 2 and 3 stand between 1 and 4) are 
needed.12 The demiurge made all these proportions

as proportionate to one another as was possible, so that what fire is to air, air 
is to water, and what air is to water, water is to earth. He then bound them 
together and thus he constructed the visible and tangible universe. This is the 
reason why these four particular constituents were used to beget the body of 
the world, making it a symphony of proportion. (32b–c)

The need for two means in this context can be, and indeed has been,13 
interpreted as a requirement for two successive geometric means between 
the extremes. In fact, that two “mean proportionals” (geometric means) were 
so inserted between two extremes formed part of the solution to a famous 
mathematical problem of “doubling the cube”—that is, finding the increase 
in the length of the side of a cube needed to double its volume.14 It soon ap-
pears, however, that two different types of mean, specifically, a harmonic and 
an arithmetic mean, are required. In discussing the division of the cosmic 
mind, which is clearly meant to be isomorphic to the cosmic body, Plato re-
peats the requirement for two middle terms: “one exceeding the first extreme 
by the same fraction of the extremes by which it was exceeded by the sec-
ond, and the other exceeding the first extreme by a number equal to that by 
which it was exceeded by the second” (Plato 1997, Timaeus, 36a). These are 
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the respective definitions of the harmonic and arithmetic means given by 
Plato’s contemporary Archytas of Tarentum.

The first Pythagorean cosmological theorist about whom anything much 
is known is Philolaus of Croton, a rough contemporary of Socrates (Barker 
2007, ch. 10). The cosmos, according to Philolaus, “was fitted together (har-
mochthe) out of unlimited things (apeira) and limiting things (perainonta). 
So there are two kinds of building blocks, for both the universe as a whole and 
the particular things in it, namely limiters and unlimiteds, which combine 
by a kind of fitting process” (Graham 2014, 49).15 This mode of being fitted 
together (harmochthe) is a harmonia able to be described mathematically in 
terms of simple ratios among the natural numbers 1 to 4. Plato’s late opposi-
tion of the “unit” and “indeterminate dyad” of the greater and the lesser would 
be a descendant of Philolaus’s limit and unlimited. It is unclear whether the 
division of the musical scale that Plato refers to above originated with Philo-
laus (Barker 2007, 283–285), but it is known to have been used and developed 
by Plato’s friend and student of Philolaus, Archytas of Tarentum (302–303).

The relevance of differing arithmetic and geometric series for natural phi-
losophy had been raised by the physician and nature philosopher Adolf Karl 
August Eschenmayer in Hegel’s own time, but not with the type of specificity 
found in Hegel.16 Hegel was familiar with the Pythagorean background rel-
evant to the thought of Plato and Aristotle. In the Lectures on the History of 
Philosophy he devotes considerable discussion to the Pythagoreans, drawing 
on authorities such as Aristotle and Sextus Empiricus (LHP 2:31–54; 2:23–
49). He notes that Pythagoras was the first to call himself philosophos (LHP 
2:33; 2:25) and in the Encyclopedia Logic, recognizes in his numericism “the 
first step towards metaphysics” (E:L, §104, addition 3). In terms of their natu-
ral philosophy, the Pythagoreans had gone beyond the more immediate ap-
proach of the other pre-Socratics, in that appealing to numbers in the con-
stitution of the cosmos they appealed to something nonsensory and posited. 
Hegel thus comments on the “grandeur” of the idea of constructing a cos-
mos on a mathematical basis as a type of primitive Copernicanism in which 
theoretical argument is used to go beyond the immediacy and finitude of the 
senses. More particularly, he discusses the table of opposites as presented by 
Aristotle (LHP 2:42; 2:35), the role given to the privileged numbers of the tet-
raktys (44–45; 38), the role of ratios in the construction of the octave, and the 
perfect fourth and perfect fifth intervals (47; 41).

We have noted that the interval of the octave is represented by the ratio 
2:1, that is, a vibrating string on a monochord that is divided at midpoint will 
produce a unison note one octave higher. Divided again, a length now one-
quarter of the original will produce a note one octave higher again, generating 
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the continuing geometrical series, 1, 2, 4, 8 . . . Here, for any three consecutive 
numbers a, b and c, a will stand to b as b stands to c (a : b :: b : c, or, expressed 
algebraically, b = √ac). But the geometric mean cannot be used to internally 
divide the octave:17 internal division into consonant intervals requires either 
the arithmetic mean or the harmonic mean, which, as will be seen below, are 
complementary in two different ways. It is in this sense that two different but 
complementary means are, according to Plato, required to unify the cosmos.

The arithmetic mean had been traditionally described as holding when 
the second of three terms “exceeds the third by the same amount as that by 
which the first exceeds the second” (Barker 1989, 42). In algebraic terms, the 
arithmetic mean of two terms a and b is half their sum.18 Archytas describes 
the complementary harmonic mean between two numbers as holding be-
tween three terms such that “the part of the third by which the middle term 
exceeds the third is the same as the part of the first by which the first exceeds 
the second” (42). In more modern terms, this can be expressed algebraically 
as twice the product of the numbers divided by their sum.19 Applied within 
an octave, the arithmetic mean coincides with the perfect fifth or diapente, 
the harmonic mean with the perfect fourth or diatessera, these being the two 
consonant intervals within an octave recognized by the Pythagoreans. More-
over, as the author of the Sectio Canonis noted (Euclid 1975, §6), the octave 
is composed from these two “epimoric” intervals in the sense that, as can be 
appreciated by the layout of the keyboard of a modern piano or the fretboard 
of a guitar, the fourth and fifth added results in an octave. However, in terms 
of the relevant proportions of the vibrating string, the octave is the product, 
not the sum, of these two intervals. That is, 32  multiplied by 4

3  is equal to 2
1 . 

Here, this results from a systematic “homomorphism” involved between two 
different sequences of otherwise incommensurable magnitudes—those laid 
out in a continuing arithmetic sequence, on the one hand, and those laid out 
in a continuing geometric sequence, on the other. As we will see below (in 
chapter 3), the numerical relations involved here will be central to what Hegel 
takes to be the complete determination of the concept of number. A similar 
systematic homomorphism within Hegel’s syllogism, I will argue, allows a 
syllogism to be understood as breaking down into two components that can 
be regarded as “homologues” of each other—judgments with opposed logi-
cal functions but equivalent structure. It will be such local homomorphisms 
rather than Brandom’s “global isomorphism” that will provide a model for 
best understanding Hegel’s inferentialist treatment of judgment.

The basic features of these interrelations had been demonstrated by Ar-
chytas in the “musical tetraktys” to be deployed by Plato and, later, Nicoma-
chus, Iamblichus, and Proclus. This is achieved by expanding the series 
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representing the division of the octave into perfect fourth and fifth (1:1, 4:3, 
3:2, 2:1) into the sequence of four whole natural numbers (6, 8, 9, 12) in which, 
as we have seen, 8 is the harmonic mean and 9 the arithmetic mean of the in-
terval between 6 and 12, the extremes belonging to a geometric series. Szabó, 
as noted, believed that this correlated with the canon’s actual division into 
twelve segments, but Szabó also points to the range of meanings that the no-
tions of ratio or logos and proportion or analogia had played in Pythagorean 
discussions up to the time of Plato and to which Plato had seemed to appeal in 
the Timaeus as responsible for bonding diverse parts into a whole.20 Around 
that time, however, with the emergence of the type of geometry that would be 
codified by Euclid, the meanings of these terms were contracting in a way that 
resulted in the way these terms are generally used today, in which a “ratio” is 
understood in terms of how many times the smaller term divides the larger, 
with proportion or analogy understood as an equality of such ratios. Thus, 
Euclid writes: “Let magnitudes which have the same ratio be called propor-
tional” (Euclid 1956, book 5, def. 6). Given Archytas’s definition of the arith-
metic mean as holding when the second of three terms “exceeds the third by 
the same amount as that by which the first exceeds the second” (Barker 1989, 
42), it might be thought natural to write it as an equality between two pairs 
of terms, as in 12:9 = 9:6, for example, signifying the interval between 12 and 
9 (3), being equivalent to that between 9 and 6. But of course, in the modern 
sense of ratio, “ratios” created by the arithmetic mean of an interval cannot be  
said to be equal: 12:9 ≠ 9:6 (or 12:9 9:6 (or 43

3
2)≠ ≠ .

The Euclidean sense of proportion is the sense in which analogia is dis-
cussed by Aristotle in relation to distributive justice in the Nicomachean 
Ethics. There, the just is described as a “species of the proportionate [anal-
ogon].  .  .  . For proportion is equality of ratios. Mathematicians call this 
kind of proportion geometrical” (Aristotle 1984, Nicomachean Ethics, 1131a 
28–b14).21 Thus in matters of distribution of honor, wealth, and other assets, 
Aristotle tells us that justice is not served if equal amounts are given to un-
equally deserving recipients or unequal amounts to equally deserving recipi-
ents. Rather, justice is an “equality of ratios” implying at least four terms—a 
proportion (analogon) “not of distinct numbers” (arithmou idhion), but of 
“number in general” (alla alos arithmou) (Aristotle 1984, Nicomachean Ethics,  
1131a 31–32). In short, it involves a generalized Euclidean conception of pro-
portion. Nevertheless, Aristotle goes on to distinguish this four-part a : b ::  
c : d proportion from the “arithmetical proportion” relevant to cases of rec-
tificatory or corrective justice in which “the equal is intermediate between the 
greater and the less” (1132a25–32b20). In this latter case the specific goodness 
or badness of the person judged is not relevant: “For it makes no difference 
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whether a good man has defrauded a bad man or a bad man a good one, nor 
whether it is a good or a bad man that has committed adultery; the law looks 
only to the distinctive character of the injury and treats the parties as equal” 
(1132a1–5). Invoking the arithmetic mean is clearly a remnant of the earlier 
Pythagorean culture, but, as I suggested earlier (see the introduction) at a 
metalevel, Aristotle seems to think of the two different principles themselves 
as unified by the type of “equality of ratios” that reflects the strictly Euclidean 
geometric senses of ratio and proportion. This will contrast with Plato’s more 
Pythagorean use of these notions, reflecting the broader musical sense with 
which he uses it—or so Hegel will claim.

Despite the contraction of the earlier Archytan sense of ratio of ratios to 
the more modern sense of a single “mean proportional,” the general idea of 
three different means calling for unification would, despite not being prom-
inent in Euclid’s Elements, persist within Greek mathematics for centuries 
and would testify to the influence of the likes of Archytas and Eudoxus on 
later geometers such as Archimedes, Apollonius, and Pappus of Alexandria 
who had taken geometry beyond its Euclidean phase so as to have a focus on 
curves understood as conic sections (Knorr 1986, chs. 5–7). Thus, Pappus in 
the fourth century CE would note that Eratosthenes of Cyrene (276–194 BCE) 
had written a work “On Means,” as well as a work on the mathematical basis 
of Plato’s philosophy. Pappus would also give a diagrammatic representation 
attempting to relate geometric, arithmetic, and harmonic means between two 
points on a line (Thomas 1941, 2:569). These issues had especially been devel-
oped in the first centuries of the Common Era by neo-Pythagorean think-
ers such as Nicomachus of Gerasa and Iamblichus, on whom Pappas would 
draw—both thinkers familiar to Hegel.

In line with such Pythagorean interpretations of Plato, a number of recent 
scholars have approached some of Plato’s characteristic doctrines in ways 
that appeal to the different analogia of Archytas’s musical theory. These in-
terpretations appeal to a particular doubled ratio combining geometric and 
arithmetic means known as the “Golden Ratio,” Maria Antonietta Salamone, 
for example, arguing that it was the Golden Ratio that Plato himself had in 
mind with the idea of the doubled ratio binding together the parts of the 
body of the cosmic animal in the Timaeus (e.g., Salamone 2019). Moreover, 
the Golden Ratio has commonly been postulated to be the double ratio in-
voked by Socrates in the construction of the celebrated “Divided Line” in the 
Republic—a figure heavy with epistemological significance for Plato. It will 
be later argued that it was not the Golden Ratio but the associated musical 
tetraktys that Hegel had taken to be what Plato had in mind, but exploration 
of the Golden Ratio will help clarify the nature of the issues involved.
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2.3 Plato’s Divided Line and the Golden Ratio

The Golden Ratio was another of those figures from ancient geometry af-
forded particular significance during the French Revolution. It itself had been 
reflected in the structure of the “pentagram,” used as a friendship symbol by 
the original Pythagoreans, with whom the modern revolutionaries sometimes 
identified themselves (Billington 1980, 110).22 While the subject of many in-
flated claims (Markowsky 1992), the Golden Ratio is a significant mathemati-
cal object in its own right, found in Euclid’s Elements but linked more to de-
velopments in geometry that would postdate Euclid. In Elements, it is treated 
three times: in book 2, in relation to the Greek geometric algebra of rectangles; 
in book 5 in relation to the theory of proportional magnitudes as developed 
by Plato’s colleague in the Academy and former student of Archytas, Eudoxus 
of Cnidus;23 and in book 13, where it is indispensable for the construction of 
the five “Platonic Solids,” usually attributed to Plato’s junior colleague in the 
Academy, Theaetetus. It would seem to have been a “hot topic” in the early 
years of the Academy, and later Proclus would attribute the discovery of the 
“section” to Plato himself (Proclus 1970, 55), although Eudoxus would be de-
scribed as first demonstrating its geometric nature. The Golden Ratio is per-
haps the most significant topic in Elements that taps into the musical theories 
of the Pythagoreans, because it requires a division of a line that is subject to the 
requirements of both geometric and arithmetic means (fig. 2.1).

In the famous set piece in Plato’s Republic book 6 concerning the “Di-
vided Line,” Socrates asks his interlocutor, Glaucon, to imagine a line that 
is divided into two unequal parts representing the visible and intelligible 
realms, respectively. While the text is not accompanied by an actual diagram, 
interpreters have generally represented it by a vertical line with the smaller 
lower segment representing the visible realm and the larger upper segment 

A C
AB : BC :: BC : AC

B

A DAC = CD
and
AB : BC :: BC : AC

CB

f ig u r e  2.1 Two presentations of the Golden Ratio. In the upper figure: AB : BC :: BC : AC (AB+BC). In 
the lower figure: extending AC to D such that AC = CD makes BC the geometric mean of AC and CD and 
C the arithmetic mean of A and D.
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the intelligible realm, although some others have inverted this, with the larger 
segment below (fig. 2.2). Socrates then asks Glaucon to divide both segments 
“in the same ratio as the line.” The four subsections of the line will now be 
taken to represent different cognitive attitudes onto the world—two to the 
visible world, two to the intelligible—together with the distinct types of in-
tentional objects that are correlated with those attitudes. This sequence of de-
scending intentional attitudes is the following, as translated by Jowett: reason 
(noesis), understanding (dianoia); conviction (pistis) and image-perception 
(eikasia).24 It is important here that with dianoia Socrates explicitly appeals to 
examples of mathematical understanding.

Read according to its perhaps most obvious interpretation, the doubly di-
vided line is meant to capture the similarity existing between the two rela-
tions. Image-perception stands to conviction in the way that understanding 
stands to reason, or image perception : conviction :: understanding : reason— 
schematically, a : b :: c : d. Here, Socrates starts with the lowest segment, the 
empirical eikasia or images such as shadows or reflections in water that are 
grasped as images of, and so explained by, the things that belong to the upper 
division of the lower segment, the visible realm. This ratio is now compared 
to that holding between the divisions of the upper segment, the intelligible 
realm. In the discussion of dianoia, the lower division of the intelligible realm, 
Socrates alludes to the “visible figures” that mathematicians use when reason-
ing but asserts that in such cases the reasoning is not about the various figures 
they draw but what they resemble: “They make their claims for the sake of the 
square itself and the diagonal itself, not the diagonal they draw” (Plato 1997, 
Republic, 510d). These are things to which the figures and diagrams stand as 
shadows or reflections so stand to the things they are shadows or reflections 
of.25 We are now to think of the elements of noesis as the realities explaining 
them in the ways that concrete empirical objects explain their images.

f ig u r e  2.2 Two diagrammatic representations of Plato’s Divided Line.
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Plato’s basic idea seems clear enough. He intends the reader to acknowl-
edge the existence of idealiter—the real, nonempirical squares, triangles, cir-
cles, and so on, of the mathematician’s intentional activity—entities to which  
one must “lift the mind” beyond the drawn figures of the visible realm. Simi-
larly, the reader is to lift the mind from the object of the mathematician’s 
“hypothesis” that now stands as the proper object of the lower subsection of 
the upper, intelligible realm to the philosopher’s idea.26

We might think of this interpretation as characterizing the conventional 
“Platonistic” reading of the Divided Line.27 In relation to the objects of un-
derstanding, the abstract hypotheses of dianoia,28 the philosopher, presum-
ably unsatisfied with the extent of the mathematician’s explanations, wants to 
reason from the existence of those explanations to “the unhypothetical first 
principle of everything” (Plato 1997, Republic, 511b). The upper division of 
the line thus represents a type of step upward from hypotheses to ideas that 
is analogous to the step upward from sensuous images to the also sensible 
entities that explain them. The very existence of those, as yet hypothetical, 
explanations had itself seemed to demand explanation, and it is that demand 
that takes the thinker from those already ideal objects to what we might call 
the super-ideal entities and principles of the realm of ideas.

There is, however, a spanner in the works awaiting this reading. Socrates’s 
exposition concludes with the instruction to arrange the four separate line 
segments “in a ratio, and consider that each shares in clarity to the degree that 
the subsection it is set over shares in truth” (Plato 1997, Republic, 511c–d). And 
yet, as a number of readers have pointed out over the last half century, when 
the diagram is actually constructed in the way in which Socrates instructs 
Glaucon, the sections representing pistis and dianoia turn out to be of equal 
length. This, however, confounds the idea that these attitudes are meant to 
be contrasted in terms of a successively increasing clarity.29 The proportion 
a : b :: c : d has become a continuing one, a : b :: b : c. In terms of signaling 
differences within the degrees of clarity of these epistemic attitudes, the equal 
lengths of the middle sections are surely anomalous. However, it is under-
determined in Socrates’s discussion exactly what the proportional ratios are 
meant to signify—other contrasting interpretations may be (and we will see, 
have in fact been) forthcoming.

Hegel’s paraphrase of the account given by Socrates/Plato in his discussion 
in the Lectures on the History of Philosophy in fact portrays it as a tripartite 
division: “Plato embraced sensible consciousness and especially sensible rep-
resentations, opinions and immediate knowing, under the term doxa (opin-
ion). Midway between doxa (opinion) and science in and for itself there lies 
argumentative cognition, inferential reflection or reflective cognition, which 
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develops for itself universal categories or classes. But the highest [knowing] 
is noesis, thinking in and for itself ” (LHP 2:188; 3:13). While Hegel’s transla-
tor here notes, “Hegel’s account of the Divided Line here reduces Plato’s four 
modes of apprehension to three” (LHP 2:188n35) it would appear that not only 
is this, in fact, mathematically warranted, but it is generally consistent with 
Hegel’s pursuit of a Platonic structure with a “divided” or “broken” middle 
term.30 In fact, this tripartite partitioning of the Divided Line is consistent 
with its interpretation according to the Golden Ratio, with its complex com-
bination of arithmetic and geometric means, as proposed by numerous inter-
preters (see, for example, Brumbaugh 1954; Boyce Gibson 1955; Des Jardins 
1976; Dreher 1990; Fossa and Erickson 2005).31 In short, with the imagery of 
the Golden Ratio we are drawn back into the realm of Pythagorean harmony 
theory consistent with Plato’s articulation of both the body and soul of the 
cosmic animal in the Timaeus.

I suggest that the type of consideration that may have attracted Hegel to 
the idea of a proportion subject to both geometric and arithmetic means is 
brought out by Gregory Des Jardins in his interpretation of the Divided Line 
understood as the Golden Ratio (Des Jardins 1976). We have seen that the in-
trinsic tripartite nature of the Divided Line (which itself makes it more com-
patible with the idea of a “divided” mean term) makes the “epistemological” 
reading problematical. However, Des Jardins attributes a quite different sig-
nificance to the lengths than the traditional epistemological considerations. 
For him, the proportions are relevant in terms of the issue of the different and 
incommensurable kinds that are involved in the partition.

Des Jardins’s argument requires the larger part of the Divided Line to 
represent visibles rather than intelligibles, which, while contrary to how the 
line is typically read, is not incompatible with Plato’s actual description.32 For 
Des Jardins, the equality of the two intermediary sections of the line is to be 
explained by the fact that the visible bodies of pistis (represented by the up-
per segment of the lower division) and the mathematical objects of dianoia 
(represented by the lower segment of the upper division) both belong to one 
kind, vis-à-vis the kind discrete countables. Moreover, it is the sameness of 
kind that is symbolized by another equality to be found in the line. When 
interpreted as the Golden Ratio, the length of the larger segment of the larger 
division (in Des Jardins’s diagram, the lowermost segment, representing eika-
sia) is of equal length to the entire upper division. Des Jardins interprets this 
equality between eikasia and the combined dianoetic and noetic intelligibles 
(represented by the complete upper division) to signify that they too share 
in being of the same kind, the kind bodyless (Des Jardins 1976, 491).33 Des 
Jardins’s reading makes the most of the relations involved in terms that would 
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surely have appealed to Hegel—the incommensurable nature of the products 
of the first division and the role of mathematical objects of dianoia as inter-
mediaries between these two incommensurable realms of concrete countable 
things and purely intelligible forms.

The issues raised by such passages, I suggest, count as further evidence 
that, for Hegel, Plato’s idea of a doubled or divided middle term was crucial 
for what it was that made his syllogism, in contrast to that of Aristotle, a 
rational one. As a final piece of evidence for the significance of Pythagorean 
harmony theory for Hegel’s conception of the syllogism, however, in the fol-
lowing chapter we will turn to a consideration of his treatment of the category 
of magnitude through to its most mature form as Verhältnis, “ratio,” in book 1  
of The Science of Logic. Here we find considerable detail with respect to the 
influence and fate of the harmonically based Pythagorean mathematics on 
the categories of logic. It will also take us to how an idea from ancient Greek 
geometry as found in Carnot’s projective geometry could have been signifi-
cant for Hegel as providing a model for the way in which Aristotle’s syllogism 
needed to be reconstructed.



3

The General Significance of Neoplatonic Harmonic 
Theory for Hegel’s Account of Magnitude

The means of 6 in relation to 12 are determined by the ratios 3:2 and 4:3. The sequence 
based on both of these means has been granted to the human race by the blessed choir 
of the Muses and has bestowed upon us the use of concord and symmetry to promote 
play in the form of rhythm and harmony.

[ p l at o ] , Epinomis

Many recent interpretations of Plato’s central ideas of Socrates’s Divided Line 
and Timaeus’s “best” or “most beautiful” bond stress the role of Greek math-
ematics around the time of Plato as providing an important context for the 
comprehension of these puzzling notions. In particular, attention to the Eu-
clidean “division in extreme and mean ratio,” the Golden Ratio, has allowed 
some light to be cast on these doctrines. Nevertheless, as I have suggested, 
with respect to the best bond articulating the cosmic body in the Timaeus, 
Hegel seems to have had in mind some other—in fact, more general—“ratio” 
to which the Golden Ratio is related.1 It would have been his familiarity with 
this more general ratio via books he possessed by late neo-Pythagorean math-
ematicians such as Nicomachus of Gerasa that could well have allowed him to 
recognize how elements of these ancient doctrines were being reintroduced 
into nineteenth-century mathematics by figures such as Lazare Carnot. We 
find evidence for this in one of the most puzzling sections of book 1 of Hegel’s 
Science of Logic—his account of the category of magnitude that ends in his 
discussion of Verhältnis or “ratio.”

3.1 Hegel’s Exploration of the Category of Magnitude

Hegel’s discussion of the concept of magnitude (Grösse or Quantität),2 in sec-
tion 2 of book 1 of the “Objective Logic,” follows that of determinacy (Bestim-
mtheit) or quality (Qualität), and these two logical determinations of quality 
and quantity will continue to be woven together in complex ways throughout 
the Logic itself and, in a way crucial for us, into a distinction between judg-
ment forms in Hegel’s “Subjective Logic.” As with the patterns typical of Hegel’s 
Logic, a certain way of making a qualitative distinction will be superseded, 
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aufgehoben, by a quantitative one that will itself eventually be replaced by a 
more complexly specified qualitative determination, which is now internally 
mediated by the specification of the quantity that had been aufgehoben.3

In the section “Quality” it had been learned that something, a field, say, 
will be made determinate by its distinctions from something similar but qual-
itatively different, a meadow or a forest, for example (SL, 153; 21:175). Here, 
there is a limit (Grenze) in semantic space distinguishing one type of thing 
from another—a “middle point between the two [die Mitte zwischen beiden] at 
which they leave off ” (SL, 99; 21:114), and the syllogistic language of “middles” 
between limits suggests that we are on a path toward the goal of properly 
specifying the nature of such a logical relation. In contrast to qualitative differ-
ence, quantitatively a field is further made determinate by being distinguished 
from other fields of smaller or larger size. Such quantitative determinations 
presuppose the qualitative determinacies that they further divide—the size of 
a field is typically to be compared to that of another field, not that of a forest. 
(As the phrase goes, one must compare “apples to apples.”) However, Hegel 
adds, there is a sense in which the determinate quantity has “for foundation a 
permanent being which is indifferent to its determinateness” (153; 21:174). This 
will prove to be an important idea and we have already glimpsed a rendering 
earlier (in the introduction) in the notion of “absolute quantity.”

The quantitative determinateness that emerges from the incorporative su-
persession (Aufhebung) of the initial permanent being will itself come to be 
aufgehoben within a new qualitative determination that eventually succeeds 
it. This dynamic of qualitative and quantitative contrasts will develop in com-
plex ways throughout the Logic and will become incorporated in subsequent 
overtly logical determinacies found in syllogistically related judgments, but 
it is the Timaean/Platonic “syllogism” that will be suggested by the particular 
“quantum” with which the section on magnitude will conclude, a particular 
type of ratio that Hegel labels the “ratio of powers.” This, I suggest, will take 
us into the often-thought murky world of the neo-Pythagorean revival that 
affected middle and late forms of Platonism that had been resurrected around 
the time of the French Revolution.

In accord with the tripartite way the categories unfold throughout the 
“Objective Logic,” the section “Magnitude” (die Grösse) is divided into three 
chapters, treating quantity (die Quantität), quantum, and quantitative ratio 
(das quantitative Verhältnis). As mentioned above, this last category is gener-
ally translated as either “quantitative ratio” or “quantitative proportion,” the 
latter focusing on that type of ratios between ratios we see in structures such 
as a : b :: c : d. But Hegel, following the more Pythagorean approach of Plato 
rather than Aristotle, will interpret this structure as having a wider range of 
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meanings than what is standardly understood as “proportion” qua equality of 
ratios. The section “Magnitude” will be followed by “Measure” (Maass), the  
contradictions of which, sending measure into measurelessness, will see  
the “being-logic” of book 1 transition into the “essence-logic” of book 2. As the  
metaphysical stance with its “essence-appearance” dichotomy throughout 
book 2 is broadly “Aristotelian,” we might think of the transition from “being” 
to “essence” as to some degree coinciding with the idea that Greek speculative 
philosophy emerged out of the contradictions of the mathematical worldview 
of the Pythagoreans. Indeed, this is in keeping with the topics discussed in the 
chapter “Ratio,” which starts with early Pythagorean conceptions of ratio but 
ends in ones that make explicit the more complex conceptions of ratio, albeit 
still Pythagorean ones, found in Plato’s Timaeus.

The path through quantity to ratio will progressively show how a holistic 
or “structural” approach to mathematics will work to undermine the more 
“atomistic” approach characterizing the early Pythagorean conception of the 
monas. In his account of number in the discussion of quantum qua determi-
nate quantity, Hegel alludes to the origins of arithmetic in simple counting or 
numbering procedures, in which since “the ones are external to each other, 
they are pictured in a sense image, and the operation by which number is 
generated is a reckoning on the finger tips, dots, etc.” (SL, 172; 21:197–198).4 
What numbers are when determined in this way—“what four is, or five”—he 
adds, “can only be indicated or shown [ gewiesen]” (172; 21:197–198). Presum-
ably, here Hegel implies “indicated or shown” rather than “defined,” and so as 
conceptually indeterminate. Such mechanical counting could go on indefi-
nitely, and number is only made definite when this activity breaks off—when 
it finds a “limit” analogous to the qualitative limits distinguishing fields from 
meadows. I take Hegel’s point to be that in counting the apples in a basket, 
say, one stops counting simply from the contingency of running out of apples 
to count! This is the sense in which the limit is accidental or “external” to the 
actual process of counting: “The limit is external, the breaking off point, how 
much is to be taken, is something accidental, arbitrary” (172; 21:197–198). One 
always counts finite numbers of things, but the activity of counting itself car-
ries in it an infinite potential because it could be continued indefinitely.

It was this type of simple enumeration that was obviously at the origin of 
the Pythagoreans’ initial conception of number. One counts things in terms 
of some unit. One might count off the size of a herd of goats by pairing each 
goat with a notch made on a piece of wood, say, but one measures the size of 
the herd by counting only goats, excluding other objects. When estimating 
the size of a herd one counts goats; when estimating the size of a fleet one 
counts ships. What is counted is, in each case, different, but in each case one 
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employed some conception of a unit indifferent to what one was counting, 
a unit underlying the equivalent pairing of a certain number of goats with 
a similar number of notches on a stick or ships in a harbor. This indiffer-
ent unit is the monas. Hegel calls this approach to quantity that of “unit and 
amount,” which is grounded in the Pythagoreans’ initial conception of num-
ber and which proceeds “from the one of the immediate quantum in which 
unit and amount are only moments” (SL, 177; 21:202). It is difficult to see from 
this type of grounding of quantity in simple enumeration how what would 
in much later times be considered as numbers—negative numbers, say, or 
the “imaginary” number “i”—could possibly count as a number. Simple enu-
merating activity of this type will eventually become integrated within the 
properly scientific practice of “mathematics” in which determinate identities 
are somehow rationally or conceptually determined by “limits” that are not 
simply externally imposed by the nature of what one happens to be counting. 
But how? Hegel has in mind an evolution of the concept <number> that took 
place within the Pythagorean tradition itself—an evolution in which Eudoxus 
of Cnidus had played a pivotal early role.

While in the context of the Lectures on the History of Philosophy it is obvi-
ous whose ideas are being discussed, this is often not the case in these sections 
of The Science of Logic. Hegel’s focus is principally on the abstract thought de-
terminations themselves rather than on who had actually thought them, and 
while for Hegel there are often broad parallels between the logical develop-
ment of categories in the Logic and the historical development of those ideas, 
in this section one often finds a confusing mix of historical periods. Never-
theless, there are a number of long digressions on topics of particular inter-
est to Hegel, including Pythagorean mathematics and Newton’s differential 
calculus, often in the context of “remarks” spread throughout the chapters. At 
various places in the discussion of magnitude, Hegel will also attempt to dis-
tance his approach from Kant’s. We cannot here attempt to examine Hegel’s 
views on mathematics in any depth, and later (chapter 5) we will engage with 
those parts of these sections that bear on the topic of Newton’s mechanics and 
the role of the calculus in it. Here we will restrict ourselves to those parts of 
the text relevant to establishing some of his conception of the mathematical 
background to Plato’s syllogism and its more general mathematical relevance. 
However, quickly sketching his position via its contrast to that of Kant can 
help orient us in relation to some of the basic features of Hegel’s approach.

Hegel will start from a view of the origins of numbering something like 
that of Kant’s description of number as “a representation that summarizes the 
successive addition of one (homogeneous [Gleichartigen]) unit to another” 
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(Kant 1998, B182), but he aims to counter Kant’s derivation of mathemati-
cal objects from a process of construction in “pure intuition.” “Numbers” as 
belonging to this primitive enumerating activity are indeed, for Hegel, “exter-
nal” to the concept, but there is no synthesis involved in a simple counting 
that simply breaks off. That is, while agreeing with Kant that there is no con-
ceptual synthesis involved, he also rejects the alternative of some specifically 
nonconceptual medium (Kant’s pure intuition) allowing an alternative form 
of synthesis. However, despite the absence of conceptual synthesis at this ba-
sic level, there is something important that signals a role for conceptual activ-
ity presupposed by this purely mechanical and externally limited counting. 
Qua purely enumerable entities, the objects counted have been, like Kant’s 
“homogeneous” units or the Pythagoreans’ monads, entirely abstracted from 
all the actual empirical qualities manifested by the things being counted. That 
is, it is the same number 5 that is instantiated in five goats, on the one hand, 
and five ships, on the other, and in this sense things as countable can be no 
longer considered sensuous objects at all:

Number is not an object of the senses, and to be occupied with number and 
numerical combinations is not the business of the senses. (SL, 181; 21:207)

The intuition of figures or numbers is of no help to the science of figures and 
numbers; only the thought of them produces this science. (SL, 539; 12:42)

Qua pure countables,5 the things counted are being treated something like 
supersensuous objects, and it is in this sense that number, as Hegel points 
out (SL, 178; 21:204), might be considered as standing “midway between the 
senses and thought” like the mathematical intermediaries attributed to Plato 
by Aristotle (Aristotle 1984, Metaphysics, 987b1). Moreover, being abstracted 
away from the empirically governed activity of counting will allow numbers, 
under certain conditions, to come to be conceived differently. An “irratio-
nal number” would not be conceived as a number if numbers were simply 
thought of as means by which one can count discrete goats or ships; but it 
will turn out that irrational numbers come onto the mathematician’s radar as 
a consequence of a related type of measurement, the application of numbers 
to continuous magnitudes such as lengths, areas, and volumes.

At the beginning of the chapter “Quantum,” Hegel notes that as quantum, 
quantity “has a limit, both as continuous and discrete magnitude [sowohl als 
continuirliche wie als discrete Grösse]” (SL, 168; 21:193), and while this distinc-
tion “in the first instance” has no significance, the interplay between these 
“two species” of magnitude will be crucial.
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In spatial magnitude [in der Raumgrösse] geometry has, in general, continu-
ous magnitude for its subject matter while the subject matter of arithmetic 
is discrete magnitude. However, with this disparity [Ungleichheit] of subject 
matters they also have an inequality in the manner and the completeness of 
delimitation or determinateness. Spatial magnitude has only delimitation in 
general; when considered as an absolutely determined quantum, it requires 
number. Geometry as such does not measure spatial figures—is not an art of 
measuring—but only compares them. (SL, 170; 21:196)

The disparity here between the two magnitudes expresses the view found in 
Aristotle that numbers, on the one hand, and lines, areas, and volumes, on the  
other, constitute different kinds of magnitude (Aristotle 1984, Metaphysics, 
992a16; Posterior Analytics, 74a2–22). But Hegel suggests that if geometry is to be 
actually applied, then some sort of transgeneric equivalence between numbers 
and lines, areas, or volumes must be achieved. This shows his departure from 
Kant in relation to the distinction between the discrete and the continuous.

Kant is commonly taken as grounding geometry and arithmetic sepa-
rately, in the pure intuitions of space and time, respectively,6 although this 
may oversimplify his position.7 As noted earlier and as will be explored fur-
ther in the context of a contrast with Schelling (in chapter 4), Hegel does not 
subscribe to Kant’s underlying concept of spatially and temporally opposed 
forms of “pure intuition,” and so does not conceive of arithmetic and geom-
etry as related in this way. Moreover, without pure intuition Hegel seems to 
give up the idea of any “pure” as opposed to “applied” mathematics. As the 
above passage makes explicit, geometry has primarily the continuous mag-
nitude of space for its subject matter, although this notion for Hegel will be 
able to be extended beyond the immediacy of empirical space. Historically, 
however, it had been the attempted application of number to space, as in the 
assignment of units of measure to continuous spatial quantities, that had al-
lowed these otherwise opposed determinacies to come into contact. This is 
reflected in the way that Hegel’s progression from quality through magnitude 
to measure (das Maass) has the determinations of quality and quantity divid-
ing and reuniting: “Abstractly expressed, quality and quantity are in measure 
united” (SL, 282; 21:323).

Considered in abstraction from continuous magnitudes, countable num-
bers can be subject to manipulations of increasing complexity, which intro-
duces hierarchical relations between the “units” collected into “amounts” and 
the amounts themselves—Hegel here broaching topics that would later be-
come central for set theory. For example, repeated counting on fingers can 
lead to a result such as “7 plus 5 make 12” being memorized, and from this, the 
idea of multiplication can follow by the reiteration of addition now applied 
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to the resulting amounts: “by adding to one seven another seven and by re-
peating the operation five times” with the result being “equally memorized” 
(SL, 172; 21:198).8 Hegel seems to suggest that the equalities resulting from 
these operations hide an underlying inequality. Equality exists between dif-
ferently described amounts (as when the sum of amounts 2 and 3 equals 5), 
but because these “amounts” can, in the context of multiplication, be treated 
as units to be counted, that is, “as numbers, immediate to each other,” they are 
thereby also “unequal in general” (SL, 175; 21:201).9 But he now talks of a fur-
ther “equality” that can be established between unit and amount when num-
bers are raised to their exponential powers, and this is an equality that brings 
the “equality of the determinations inherent in the determination of number” 
to completion (SL, 175–176; 21:201). This idea has connections to the relations 
established among the musical “means” in Pythagorean harmonic theory and 
will have ramifications for the way Hegel conceives of the determinations of 
concepts in general. It therefore warrants careful consideration.

The reiteration of addition to the amounts resulting from addition that 
we have observed in multiplication can in turn be applied to the operation of 
multiplication itself, such that the multiplication of 2 by itself can be thought 
of as 22 (two raised to the “power” 2), or multiplied by itself twice (2 × 2 × 2) 
as 23 (2 raised to the power 3).10 Here, the powers themselves can be added 
in ways that correspond to multiplication among the base numbers raised to 
those powers:

22 × 23 = (2 × 2) × (2 × 2 × 2) = 2 × 2 × 2 × 2 × 2 = 25 = 22+3

That is, via exponentiation, a type of equivalence can be established be-
tween multiplication at one level and addition at another, despite these being 
different operations. Hegel describes this situation as one in which “counting 
is the raising to a power.” This, of course, could be continued indefinitely, 
counting powers from 1 to some “n” such that the underlying number, say 2, 
will be described as raised to the nth power, 2n. The counting of powers in this 
manner could, of course, be further subject to the same developments of ad-
dition that we have seen in multiplication and exponentiation, but this would 
simply repeat the cycle of addition, multiplication, and exponentiation that 
is already in place. While counting was originally subject to determination 
from without by the number of the things (goats, ships, etc.) counted, the 
counting of powers seems to have entirely escaped this external determina-
tion: the “amounts” being counted, having been formed by prior operations, 
have been determined by factors internal to the system. It is for these reasons 
that Hegel can describe the development of exponentiation as completing the 
conceptual determination of number.
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In the course of describing this passage from addition to multiplication to 
the taking of powers, Hegel makes the further, modern, rather than Greek,11 
point that each of these operations has a “negative counterpart”—what would 
now be called an “inverse function”: for addition there is subtraction, for 
multiplication there is division, and for exponentiation there is “extraction 
of a root” (SL, 176; 21:201). There is, however, another “inverse” to exponen-
tiation that, while not mentioned here, Hegel elsewhere pairs with exponen-
tiation (237; 21:275 and 259; 21:298). This is the operation of determining the 
logarithm of a number.12 Because this allusion to logarithms will link his 
idea of the complete conceptual determination of number back to the Py-
thagorean theory of the three musical means, we must pursue this somewhat  
confusing idea.

Logarithmic tables are aids to computation invented in the early seven-
teenth century that were still in use until the last quarter of the twentieth cen-
tury, when they were made redundant by the development of pocket calcula-
tors, but the “logarithmic function” on which such tables were based is deeply 
embedded within modern algebra. This logarithmic function is an inverse of 
the exponential function (Hegel’s “raising to powers”) in that for any number 
x, its logarithm y is just the power to which some specified constant b (called 
the “base”) must be raised so as to equal x. In short: y = logbx if and only if x = 
by. This inverse relation utilizes the “counting of powers” discussed by Hegel 
in that correlations are established between addition and multiplication as 
seen in the equation above, 22 × 23 = 22+3—an equation that can be general-
ized as bm × bn = bm+n. Converted to logarithms, this can now be expressed as 
logbn.m = logbm+ logbn, which in turn provides a way for converting between 
multiplications and additions. Thus, to multiply two numbers m and n, one 
finds their respective logarithms, adds those logarithms, and then finds the 
number whose log is that sum. Equipped with a table pairing numbers and 
their respective logs, calculations involving multiplication are thus greatly 
simplified. These pairings had been first described as ratios, “logarithms” be-
ing ratios (logoi) of numbers (arithmoi).

While the official date for the invention of logarithms is 1614, when the 
Scottish nobleman John Napier published the first “log tables,” the idea be-
hind this computational aid goes back to Archimedes (Pierce 1977, 22). Be-
fore Napier, Kepler had discussed their use in 1606 (Porubský 2010, 63–64) 
based on ones compiled (but not published until later) by a Swiss instrument-
maker, Joost Bürgi. In fact, a similar method (called prosthaphaeresis) had 
been used by astronomers for about a century based on the trigonometric 
“cosine” function with which a similar conversion of multiplication to addi-
tion had been achieved.13 Hegel seems to make this link to trigonometrical 
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functions when he links logarithms not only to exponentiation (a link that 
had only been discovered a century after the discovery of logarithms) but 
also to certain “circular functions and series” (SL, 259; 21:298), by which he 
seems to be alluding to sine and cosine functions. Indeed, Hegel possessed a 
treatise on the mathematics of logarithms by the mathematics teacher at the 
Nuremberg high school during his own stay there, Johann Wolfgang Müller 
(Mense 1993, 680). It was clearly a topic about which he was well informed.

After their introduction, logarithmic tables would develop with respect 
to the choice of “base number” used,14 but in the first instance they consisted 
of pairings of numbers between arithmetic and geometric continuous series 
that we have seen linked in Pythagorean music theory. For example, Bürgi’s 
tables, using base 2, started by pairing the integers 0 and 1 (or 20), 1 and 2 (21), 
2 and 4 (22), 3 and 8 (23), 4 and 16 (24), and so on (Cajori 1903, 6). In short, 
Bürgi’s logarithms displayed the same “homomorphism” that we saw earlier 
in Pythagorean harmonic theory, where, in a more restricted sense, relations 
of multiplication—that is, the combination of perfect fourth and perfect fifth 
in the octave grasped from a harmonic point of view, a product—were corre-
lated with relations of summation of steps of a scale.15 Given that Hegel treats 
the three arithmetical operations (addition, multiplication, and exponentia-
tion (“raising to the power”) along with their inverses (subtraction, division, 
and [assuming] the logarithmic function) as constituting the complete de-
termination of number, we can see the relevance that the ancient attempt to 
unify the three Pythagorean means could have for him. In short, the unity 
of the Pythagorean means provides an instance of the determinations of the 
more general conception of number itself. However, it must be kept in mind 
that numbers, qua discrete magnitudes, require being brought into contact 
with their incommensurable other, continuous magnitudes. By building up 
“modes of connection” among determinate numbers via “species of calcula-
tion” (SL, 171; 21:197),16 the six interrelated arithmetical operations might give 
the complete determination of the concept of number, but they must some-
how be integrated with relations among continuous magnitudes to give a de-
terminate concept of magnitude itself. How are we to think of this interaction 
between determinations of these “incommensurable” magnitudes, however?

Hegel alludes to an answer to this question when he notes that in relation 
to “the species of calculation” that are “performed in arithmetic one after the 
other . . . the thread guiding the progression is not brought out in arithmetic” 
(SL, 171; 21:197).17 The suggestion here seems to be that the order or “one-
after-the-otherness” of a progression is somehow the province of geometry 
rather than arithmetic, and this was a view that would come to be held by 
projective geometers in the nineteenth century. The French geometer Michel 
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Chasles, for example, would identify geometry as equally the science of order 
as of measure (Chasles 1837, 290).

By the beginning of the following century, Bertrand Russell would note 
that, although rarely discussed in the philosophies of his contemporaries, 
“the importance of order, from a purely mathematical standpoint, has been 
immeasurably increased by many modern developments” (Russell 1903, 199). 
Order had been shown to be at the heart of geometry by projective geom-
eters such as Michel Chasles, but Russell would also point to the central role 
it played in arithmetic, declaring the cardinal numbers to be dependent on 
the ordinals (Russell 1903, 247–248). Indeed, as Stephen Houlgate points out 
(Houlgate 2014, 24), Hegel seems to anticipate this idea in his discussion of 
the distinction between extensive quantum and intensive quantum or degree 
(SL, 182–186; 21:208–213): “Intensive magnitude is at first a simple one of many 
‘more or less’ . . . Just as twenty contains as extensive magnitude twenty ones as 
discrete, the specific degree contains them as continuity, a continuity which 
simply is this determinate plurality; it is the twentieth degree” (SL, 185; 21:212).

Considerations like these concerning the dependence of arithmetic on 
a feature predominantly found in geometry—that of order—would lead 
Hegel to treat the problem of the relation between discrete and continuous 
magnitudes in mathematics in a way that differed from Descartes’s analytic 
resolution—the Cartesian “arithmetization of geometry” in which continu-
ous magnitudes were understood as resolved into discrete ones, enabled by 
an expansion of the concept of number to include rational and irrational 
numbers as subsets of the more inclusive set of “real numbers” (Gouvêa 2008, 
§§5–7).18 From Hegel’s point of view, it would seem that the very idea of con-
ceiving numbers as points on a number line stretching to infinity in both 
positive and negative directions already presupposed as a “guiding thread” 
the fundamentally geometric idea of a line as a continuous magnitude. Hegel 
thus posed an alternative to the opposing attitudes of either an unbridgeable 
opposition of continuous and discrete magnitudes or a reduction of one to 
the other: “What is overlooked in the ordinary representations of continuous 
and discrete magnitude is that each of these magnitudes has both moments 
in it, continuity as well as discreteness, and that the distinction between 
them depends solely on which of the two is the posited determinateness and 
which is only implicit. Space, time, matter, and so on, are continuous mag-
nitudes  .  .  . [but] possess the absolute possibility that the one may be pos-
ited in them anywhere. . . . They contain in themselves, rather, the principle 
of the one; it is one of the determinations constituting them” (SL, 166–167; 
21:190). Hegel’s attitude gives expression to the “Philolaic” principles of the 
monad and the indeterminate dyad, the dual principles that, according to the 
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unwritten-doctrines interpretation, Plato had adopted in his late dialogues, 
resolving the distinction in a way that nevertheless preserves both elements 
as somehow superseded (aufgehoben). We will see this solution being made 
more explicit as Hegel works through further determinations of the concept 
of magnitude.

3.2 Hegel’s Mediated Mathematical Dualities: From Direct  
Ratio to Inverse Ratio

This developmentally holistic tendency in which “modes of connection” 
among determinate numbers are established via “species of calculation” (SL, 
171; 21:197) continues through Hegel’s treatment of the category “ratio” (SL, 
271–281; 21:310–322). Without the provision of any historical context, Hegel’s 
presentation is far from clear, but an initial contextualization within the treat-
ment of ratio in Euclid’s Elements books 5 and 7 will aid us. In book 7, Euclid 
treats ratios in a primarily arithmetical context, as they had been first treated 
by the arithmetically oriented Pythagorean mathematicians. Book 5, how-
ever, standardly attributed to Eudoxus of Cnidus, transfers the idea of ratio 
from discrete to continuous magnitudes, and the extension of the notion of 
“ratio” will become increasingly apparent as Hegel works through three dif-
ferent conceptualizations of ratio: direct ratio; inverse or indirect ratio; and 
the ratio of powers. The overall direction of the presentation will be to show 
that these arithmetic and geometric determinations of the notion of “ratio” 
are not independent of each other but are mutually determining within an 
overall system that unifies the divided notion of magnitude while preserving 
the incommensurability between the dual forms found within it.

The simplest form of ratio, direct ratio, in fact exemplifies the Euclidean 
geometric conception of ratio, and so its conventional modern conception, 
in which the “exponent” is the stable number of times that one quantity di-
vides the other, as when both 1:2 and 2:4 share the exponent 2.19 This will be a 
conception of ratio that is congruent with the idea of proportion (the Greek 
analogia) being understood as the equivalence of two ratios.

As we have seen, early Pythagoreans had assumed that the terms of all 
such ratios could be measured by the monas, the measuring “unit,” such that 
the two terms can be considered as related as “unit and amount”:20 “One side 
was the unit, and this was to be taken as a numerical one with respect to 
which the other side would be a fixed amount and at the same time the ex-
ponent” (SL, 274; 21:314). Once the concept of number had been elaborated 
beyond the simple counting numbers, and certainly once the idea of incom-
mensurable magnitudes was in play, it might be asked what difference with 
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respect to the ratio 2:3 would it make to think of 2 as measuring 3 with an 
exponent of  121  or 3 measuring 2 with an exponent of 2

3. But this disrupts the 
assumed asymmetry of unit to amount:21 “Unit and amount were at first the 
moments of quantum; now, in the ratio, in quantum as realized so far, each of 
its moments appears as a quantum on its own” (SL, 272; 21:312). This starts the 
process within which the Pythagorean grounding of number in the unit or 
monas, which, as the basis of all number, cannot itself be a number, is gradu-
ally undermined to be replaced by a more systematic and holistic mode of 
determination. But it also disrupts the assumed asymmetry of a continuous 
series of ratios, introducing the idea of a series of numbers such as the natural 
numbers being read in the reverse direction. This will be made explicit in the 
transition from the direct to the “indirect” or “inverse” ratio.

We must keep in mind that the goal is to find a conception of ratio that 
resolves the oppositions between qualitative and quantitative determinations 
of magnitude encountered so far, and various problems can be seen to affect 
direct ratio from this point of view. For example, the continuing geometric 
series 1, 2, 4, 8 . . . can be continued indefinitely, denying it a proper limit, and 
so denying it ultimate determinacy. As we have seen, such a geometric series 
considered alone results in the problem of the cosmic “out of tuneness” iden-
tified by Plato as needing correction (see chapter 2.2). The problems facing 
direct ratio then lead to the postulation of the “inverse ratio,” understood as 
the “sublated direct ratio” (SL, 274; 21:314), and which capitalizes on the possi-
bility of reading any ratio in the inverse direction. This idea of an inverse ratio 
is to be found in Euclid, who defines it as one that “taking the consequent as 
antecedent in relation to the antecedent as consequent” (Euclid 1956, book 5, 
def. 13). Thus, if a : b = c : d, then b : a = d : c (for example, if 2:4 = 8:16, then 
4:2 = 16:8).

We clearly see in play here the geometrical equivalent of positive and 
negative numbers noted by Kant (Kant 1992a)—namely, the reversal of direc-
tion of a continuous magnitude. Read as a magnitude extending to the right, 
the ratio 2:4 has the exponent of 2; read as extending from right to left, it has 
the exponent of 1

2. Hegel describes the “moments” of this exponent, 2 and 1
2, 

 as each being “the negative of the other,” but “negation” here clearly has the 
sense of inversion. These moments are reciprocally determining inasmuch  
as their product is a constant (1). If we think of the invertible ratio in re-
lation to a continuing geometric ratio it is clear that “the one moment [of 
the exponent] becomes as many times smaller as the other becomes greater”  
(SL, 275; 21:315).

The broader significance of the invertibility of the ratio is to be found, I 
suggest, in a book from Hegel’s library (Mense 1993, 673), a volume edited 



69g e n e r a l  s i g n i f i c a n c e  o f  n e o p l a t o n i c  h a r m o n i c  t h e o r y

by the classicist Friedrich Ast,22 containing the “arithmological” works The 
Theology of Arithmetic, attributed to Iamblichus of Chalcis (Iamblichus 1988), 
a fourth-century CE neo-Pythagorean, and the two surviving books of In-
troduction to Arithmetic by Nicomachus of Gerasa from about a century be-
fore (Nicomachus of Gerasa 1926).23 In this work Nicomachus addresses the 
three musical means in a way that continues Plato’s earlier generalization of 
the significance of the numerical ratios involved, away from their application 
to harmonic and even cosmological theories.24 Starting from the numerical 
distinction between odd and even natural numbers, Nicomachus builds a se-
ries of finer distinctions such as “even-times even” from “even-times odd” 
numbers that are opposed. Even-times even numbers are the numbers that 
are produced in a limited geometric series consisting of an even number of 
terms, as in the series 1, 2, 4, 8, 16, 32, 64, 128. Because such a series contains an 
even number of members, it will not contain a single middle term, but, rather, 
two (here, 8 and 16). In contrast, an odd-times even series thus provides a 
middle point from which the series can be seen as extending equally on ei-
ther side and hence in “inverse” directions. An invertible series extending in 
either direction from a middle term seems to promise to unify its extreme 
terms by the fact that each of these terms limits the other by the requirement 
that their product is the middle term. The problem here according to Hegel, 
however, is that despite this mutual limitation the series can still be expanded 
into a “bad,” that is, indefinite, infinite series (SL, 276; 21:316). For example, 
one could continue expanding the series above with terms that become, on 
one side, increasingly small, and on the other, increasingly large.

Recently, Luigi Borzacchini has pointed to the significance of a certain 
figurative lamboid number discussed by Iamblichus with this inverse fea-
ture—“a lambda with 1 as root and two infinite branches, the left one given by 
the sequence of the integer numbers, the right one given by the correspond-
ing unitary fractions. . . . The two branches are in a radical opposition, and 
there is evidence that even their respective numerical bases were different: 
10 for the integers, 12 for the parts” (Borzacchini 2007, 290–291).25 The two 
branches are radically opposed in the sense that while the infinite growth of 
the left-hand series can be best understood as an accumulation of discrete 
magnitudes according to the function of multiplication, the growth of the 
right-hand series is to be understood as resulting from an infinite number of 
divisions of a presupposed finite continuous magnitude.26 For Borzacchini 
this inverse series typifies the gulf separating the Greek recognition of the 
opposition between discrete and continuous magnitudes from the way the 
distinction is resolved with the modern idea of the real numbers (Borzac-
chini 2007, 291). For Hegel, the invertible ratio, while expanding the types 
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of relation that can hold among numbers (adding division to multiplication, 
and, by implication, subtraction to addition), still cannot provide the idea of a 
self-contained quantum it initially promised to be. But addition and multipli-
cation and their inverses do not exhaust the determinacies of number: expo-
nentiation and its inverses, the taking of roots and logarithms remain. There 
is a link, however, between the invertible ratio and powers, inasmuch as the 
product of the two moments of the invertible ratio is a constant. For any three 
successive elements of a continuous geometric series, c, d, e, it is clear that the 
product of the extreme terms is equal to the square of the middle term, giv-
ing a determinate role to “powers” within the series. The focus can now shift 
to such “powers” or, perhaps, more strictly “potencies” (Potenzenverhältnis).

3.3 From Inverse Ratio to Ratio of Powers

The German Potenz contains the sense of both the exponential “power” to 
which a number is raised and the ability or potency of something, its Macht 
or Mächtigkeit. In fact, the two notions were similarly linked in the Greek of 
Plato’s time, in that the word dynamis, used for “power,” “might,” “strength,” 
or “capacity” (Liddell and Scott 1882), had the literal meaning “square,” which 
was the geometric equivalent of the idea of a number raised to the second 
power (Szabó 1978, ch. 1.2).27 The German Potenz, seemingly derived from 
the word possest, coined by the Renaissance Neoplatonist Nicholas of Cusa 
for the idea of a self-actualizing possibility, had been central to the language 
of Baader and Schelling, but the link to mathematics had been particularly 
stressed by the physician and Fichte-influenced nature philosopher, Adolf 
Karl August Eschenmayer. For Eschenmayer (Eschenmayer 2020), the dy-
namic and exponential connotations of Potenzen allowed the idea of natural 
forces that came in opposing pairs of plus and minus to be understood as ex-
pressions of an underlying unifying substance, as proposed by Baader in his 
pythagoräische Quadrat (Förster 2012, 241).28 In an exchange with Schelling, 
Eschenmayer had criticized Schelling’s treatment of these issues for errors due 
to his “complete misunderstanding of mathematics” (Eschenmayer 2020, 29).  
Hegel will be similarly critical of Schelling’s mathematics (see below, chap
ter 4.1), but his way of interpreting the relevance of Potenzenverhältnissen will 
be mathematically more plausible than anything found in either Schelling or 
Eschenmayer.

Hegel wants to draw a major conclusion about the nature of quantum 
from the ratio of potencies. Not surprisingly, this final ratio will be shown to 
be a mathematical object at the heart of the crisis facing Pythagorean num-
ber theory—the crisis given expression as much by the incommensurability 
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of the three means as by Pythagoras’s theorem. Understanding the ratio of 
powers in the way discussed by Nicomachus allows us to make sense of the 
lesson that Hegel derives from it: it is a quantum that “is self-identical in its 
otherness”—that is, its otherness qua the type of number that it is. In the in-
verse ratio, an exponent was seen to be quantitatively similar but qualitatively 
different from its inverse. In the ratio of powers, a ratio between discrete 
magnitudes will be recognized as the same as that expressed between contin-
uous magnitudes. Thus, here, quantum, positing itself “as self-identical in its 
otherness and in determining its own movement of self-surpassing, has come 
to be a being-for-itself.” It is “posited in the potency of having returned into 
itself; it is immediately itself and also its otherness” (SL, 278; 21:318). Again, 
we return to the issue of the complete determination of magnitude, the three 
linked functions of addition, multiplication and exponentiation and their in-
verses. And, what’s more, we will be taken back to Plato’s syllogism from the 
Timaeus. But what is this peculiar ratio of ratios?

To answer this question, we need to find a form of double ratio that in-
stantiates, as it were, the very concept of what it is to be a ratio. It is as if one 
is searching for a Platonic prototype—a particular meadow that is not only 
a meadow but also an exemplary individual instantiation of “meadowness.”29 
While Hegel’s presentation here is, once more, difficult to follow, illumination 
is again provided by what we know of what was happening to the Pythago-
rean theory of proportions during the first years of the Academy, courtesy of 
such later retrospective accounts like those of Nicomachus and Proclus to be 
found on Hegel’s bookshelf.

In his summary account of the development of Greek geometry, Proclus 
would claim that to the “three proportionals already known,” that is, the geomet-
ric, arithmetic, and harmonic means, Eudoxus of Cnidus, the originator of the 
theory of ratio and proportion for continuous magnitudes in Elements book 5,  
had “added three more and multiplied the number of propositions concerning 
the ‘section’ which had their origin in Plato” (Proclus 1970, 55).30 However, these 
“three more” surely cannot be understood as the inverses of the arithmetical 
functions of addition, multiplication, and exponentiation; the “algebra” of this 
period was typically “geometric,” and the “inverses” to which Eudoxus could 
have appealed must have been given a geometric meaning as concerning the 
opposed directions of continuous magnitudes.

The “section” referred to here is standardly understood as referring to the 
Golden Ratio that various interpreters have seen as at the heart of Timaeus’s 
“best” or “most beautiful” bond as well as Socrates’s Divided Line. As we 
have seen, the Golden Ratio is a ratio that is defined in terms of both geo-
metric and arithmetic means that, as has been suggested, Hegel identifies as 
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structuring the gedoppelt Mitte of the most beautiful bond. However, Hegel’s 
analysis, I suggest, is more general than the accounts of those who are simply 
fascinated by the odd properties of the Golden Ratio. That ratio has an actual 
(albeit approximate, because of the irrationality involved) numerical value 
(1.61803399  .  .  .). Hegel is aiming at a mathematical object that is internally 
self-determining, and so free from being externally fixed as a number.

In direct ratio (which can be understood as a “ratio” in the conventional 
“geometrical” sense) Hegel had described the exponent of the ratio as an “im-
mediate quantum,” a certain amount of the unit monad—simply some num-
ber. The inverse relation had promised some more coherent conception of 
the unity within diversity, and, being able to be read in either direction, its 
exponent had two opposing aspects, but it too suffered from indefiniteness. 
However, Hegel says that in the case of the ratio of potencies “the unit,” that 
is, that which had been the measure of the amount, “is at the same time the 
amount as against itself as unit” (SL, 278; 21:318). “If we compare the progres-
sive realization of quantum in the preceding ratios, we find that quantum’s 
quality of being the difference of itself from itself is simply this: that it is a ra-
tio” (SL, 278–279; 21:319). Rather than determined in some external way so as 
to be fixed as an independent number, the exponent in the ratio of potencies 
is not a simple quantity but itself a ratio (“it is a ratio”) that both is (because it 
is equal to it) and is not (because it is not the simple duplication of) the ratio 
being determined.

We might now recognize in the double ratio structure that Hegel is pursu-
ing something similar to that found in Aristotle’s use of a ratio of ratios in his 
treatment of justice in Nicomachean Ethics book 3. There, Aristotle’s higher-
level ratio had seemed to be one of the two ratios being compared: it seemed 
to have been the geometric ratio that, at the lower level, stood opposed to the 
arithmetic ratio. In contrast, Hegel seems to be searching for a higher-level 
ratio that both is and is not each of the lower-level ones. This is how Nicoma-
chus seems to set out the achievements of Pythagorean ratio theory when 
incorporating the doctrines of Eudoxus that go well beyond his contributions 
to book 5 of Euclid’s Elements.

In the discussion of the triad in The Theology of Arithmetic, Iamblichus 
sketches Nicomachus’s doctrines in which the triad is said to have been called 
“mean and proportion” because of the “symmetrical” nature of the relation 
between the three terms, with the mean “midway between more and less” 
(Iamblichus 1988, 49). The two moments of the exponent of the inverse ra-
tio, as we have seen, are unified in the sense that their product is the unit, 1. 
The extremes, however, were elements of an indefinite series extending in 
the opposed directions of greater and lesser. Some way is needed to prevent 
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that indefinitely continuing series: the extremes must be tied back into the 
triad formed with the middle term. Effectively, it must be some internal con-
figuration among the magnitudes themselves that ties them together. This is 
described as achieved by Eudoxus’s extension of the three Archytan means by 
adding their three “subcontraries.” The text then continues with reference to 
“three terms in the case of each mean, and three intervals (that is, in the case 
of each term, the differences between the small term and the mean, the mean 
and the large term, and the small and the large terms); and an equal number 
of ratios” (Iamblichus 1988, 50).

In Introduction to Arithmetic book 2, Nicomachus discusses this topic in 
much greater detail. Starting with a discussion of the properties of an ar-
ithmetical series of terms, he moves through the geometric and harmonic 
series and then the three new means introduced by Eudoxus. In the context of 
each discussion he is focused on finding some series of natural numbers that 
instantiate the mean in question, and then showing how proportions hold-
ing among the continuous “intervals” between the numbers can be reduced 
to ratios among the discrete numbers themselves. Thankfully, the translator 
(Nicomachus of Gerasa 1926, 281n3) provides a summary in a footnote.31 Us-
ing a modern algebraic interpretation, the pieces start to fall into place.

We must focus upon the fact that the ratios to be established are, for the 
Greeks, primarily understood as holding between intervals on a continuous 
line—that is, between the extremes of a line segment. But to capture the role 
played by arithmetic we must understand the points and line itself as able to 
be situated within some type of coordinate system such as the later Cartesian 
coordinates that will be assumed here.32 We can now consider an interval AB 
on the x axis stretching between two points with values a and b, respectively. 
This interval is divided by a varying point P whose value, x, is to be deter-
mined. Point P can thus be considered to divide the interval AB in the ratio 
x − a : b − x. We might call this the dividing ratio (fig. 3.1).33

From a Platonic perspective, the problem being addressed is that of finding 
some “rational,” that is, mathematical, way of dividing the segment AB that 
is not simply dictated by some empirically given results, such as that of the 
divisions producing musical concords. A total of six dividing ratios need fix-
ing, the three Archytan means and the added three Eudoxean “subcontraries.”

We might call the six different ratios to be determined the “target” ratios 
and the ratios among the values, a, x, and b, of the individual points them-
selves the “determining ratios.” The solution involves a simple type of algebra. 
Assuming that any term can be put into a ratio with itself, this means that 
there will be 9 (3 × 3) ways of determining the value of the target ratio, x − a :  
b − x, as below (fig. 3.2).
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It is important to remember that pairing a target ratio with a determining 
ratio, as in the “equation” x − a : b − x :: a : a, for example, involves equat-
ing a ratio between originally continuous magnitudes with one between dis-
crete magnitudes.34 Algebraically, it now becomes simple to show that, when 
equated with the ratio a : a, x : x, or b : b, the difference ratio x − a : b − x 
is determined such that x is the arithmetic mean of a and b. This is simply 
because the ratio between any term and itself has the value of 1, and is just to 
say that the “distance” from a to x is the same as that from x to b, which is the 
definition of the arithmetic mean. This now leaves only six further ways of 
determining the target ratio.

Today we find values for these doubled ratios by treating them as simple 
equations between fractions, and it can be easily shown that determining the 
value x − a : b − x by either ratio a : x or ratio x : b determines p as the geomet-
ric mean of a and b.35 Similarly, fixing the target ratio by the determining ratio 
a : b produces the harmonic mean.36 We have therefore now accounted for 
the three means of Archytas, leaving Eudoxus’s three further “subcontrary” 
means to be determined by the remaining sixth, eighth, and ninth determin-
ing ratios, x : a, b : a, and b : x. Algebraically, these can be seen to be the inver-
sions of the fourth (a : x), fifth (a : b), and seventh (x : b), leading them to be 
called “subcontraries” to these corresponding ratios. Thus b : a is described 
as the “subcontrary to the harmonic” (that is, to a : b) and x : a and b : x  

y 
ax

is
x axis

x–a b–x

x = a x = ? x = b
A P B

f ig u r e  3.1 The dividing ratio, x − a : b − x.

1. a : a,
2. x : x,
3. b : b,
4. a : x,
5. a : b,
6. x : a,
7. x : b,
8. b : a,
9. b : x.

f ig u r e  3.2 The nine determining ratios.
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are described as the first and second “subcontraries to the geometric” (a : x 
and x : b).37

This terminology is significant. In Greek geometry, a “subcontrary” sec-
tion of a triangle ABC produces a smaller triangle ADE within the first that is 
similar to it with ÐABC = ÐADE and ÐACB = ÐAED (fig. 3.3). But the new 
triangle is a reflected version of the first, as if rotated on an axis through A. 
The subcontrary of a geometric figure is simply the inverse relation we have 
seen in the case of the inverse ratio, but applied to a planar figure. Inversion 
in this sense is thus the geometric version of the “negation” relation seen in 
arithmetic as holding between a number and its negation, n and –n.

In fact, the harmonic mean had initially been called the “subcontrary” 
mean, presumably because a subcontrary section of a triangle had been in-
volved in the geometric representation of the harmonic mean.38 Archytas is 
alleged to have changed the name to the harmonic mean. It would seem then 
that some type of reversal of order is responsible for the expansion of the 
three musical means to six in Eudoxus’s 3 × 2 structure that corresponds to 
Hegel’s “complete determination” of the concept of number.

With Eudoxus’s 3 × 2 structure given to the Pythagorean musical means 
we start to get a sense of how the idea of reversible orders will be significant 
for the type of projective geometry that will grow out of these issues in early 
Greek geometry. Already we have caught a glimpse of this in relation to the 
significance of the reversal of direction in movements in space introduced 
by Kant in the context of his consideration of the meaning of “negative num-
bers” (see the introduction). We will see a further expression of this phe-
nomenon that will affect what has been discussed above in relation to the 

A

CB

D

E

f ig u r e  3.3 The “subcontrary” section of a triangle. Triangle ABC is sectioned by ED in such a way that 
ADE is an inversion of ABC (ÐABC = ÐADE and ÐACB = ÐAED).
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determination of “dividing ratios” created within a line segment by a movable 
dividing point. Once the idea of a segment being divided into parts that stand 
in a specifiable ratio, the consideration of the directionality of those parts 
introduces a new possibility—that of internal and external divisions of a line 
segment that stand in the same ratio.39

Consider a line segment AB that is divided at some point P such that the 
two new segments stand in a particular ratio, let’s say 3:1 (fig. 3.4). There will 
now be some point beyond the original segment, P′, such that the ratio of 
the lengths of AP′ and P′B stand in the same ratio as AP stands to PB. For 
example, in the diagram below, where AP : PB is equal to 3:1, AP′ will have 
to be three times the length of P′B—here, 6:2. In such a case, P′ is said to 
externally divide the segment AB in the same ratio as P divides it internally. 
Expressed as a ratio of directed segments rather than simple lengths, how-
ever, the ratio resulting from external division will be understood as having a 
negative value in contrast to that resulting from the internal division. That is, 
AP/PB = − AP'/P'B because the direction of P'B is opposite to that of the other 
segments, and so having a negative value in contrast to the other positives.40

What we have seen happening in this algebraic determination of these 
ratios is really a generalization of a fact noted earlier that each of the three 
Archytean means are able to be defined in terms of the other two. For any two 
extreme numbers, a and b, arithmetic and harmonic means can be calculated 
by the equations alluded to above. However, when a and b are members of 
a geometric series, such as the extremes of the musical tetraktys, 6 and 12, 
the harmonic and arithmetic means become unified with the extremes in a 
striking way, such that the product of the two means (8 × 9 = 72) equals the 
product of the extremes (6 × 12 = 72)—a result that only happens when the 
extremes stand in the geometric ratio. That is, a type of unity has been rees-
tablished among the three means despite the internal “incommensurability” 
holding among them.

It was this entirely internal systematic or structural determination of these 
abstract mathematical objects in terms of their constitutive relations that un-
derlies a point upon which Plato had insisted in contrast to even Archytas: 

f ig u r e  3.4 Internal and external divisions of an interval. Here, while the point P divides the directed 
interval AB

u ruu
 “internally,” the point P′ is said to divide it “externally.” Because the direction of the (P'B is 

opposite to that of AP
u ruu

, it will be understood as having a negative value.
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it was the relations among the magnitudes themselves that he thought fun-
damental and of significance beyond that which was found among empiri-
cal phenomena such as string-lengths involved in the production of concor-
dant and discordant sounds. From this perspective, were it to turn out to be 
the case that there were no empirical harmonies involved, there would still 
be ideal “harmonies” existing among these Platonic objects. Plato was not 
speculating about the music of planetary motion but rather the type of logic 
(“philosophers’ arithmetic”) manifest in phenomena as widely divergent as 
music and cosmology.

This internal, purely mathematical determination of the now-expanded 
set of Pythagorean ratios provides an insight into just how complicated the 
crisis concerning incommensurability had been during the early years of Pla-
to’s Academy, with the consequences of Eudoxus’s discoveries being worked 
out by mathematicians over the subsequent centuries. The phenomenon of 
incommensurability had at first undermined the Pythagorean dogma that all 
quantities were to be grounded in the monas as initially understood. This had 
led to a crisis for the geometric dimensions of Pythagorean thought, but Eu-
doxus had found a way to give the more or less—the continua of geometry—
its own non-numerical form of determination. This was then linked to a re-
conceptualized Pythagorean doctrine of ratios by providing a type of internal 
algebraic redetermination of the three means. The historian of mathematics, 
François Lasserre, has described Eudoxus’s breakthrough: “Instead of con-
centrating his attention, as Archytas, Plato and the philosophers of the Acad-
emy had done, on the presence of these means in Nature, for example in the 
field of harmony, Eudoxus concerns himself with mathematical properties of 
this concept of means, and soon discovers three new series possessing analo-
gous properties” (Lasserre 1964, 59).41 Such a process of generalization and 
axiomatization is usually thought typical of the progress of algebraic thought, 
and, as we have noted, was a fundamental feature of the “new” geometry of 
the nineteenth century (Nagel 1939). Here we can appreciate it as happening 
within the overall framework of Greek geometry.

Hegel could grasp that the lessons that Nicomachus and Iamblichus had 
drawn from these transformations were not the abandonment of the Py-
thagorean monas as much as its explicit reconceptualization. Now the monas 
could be understood as configured by this unified triad of triads, and so as 
internally articulated, somewhat along the lines that he had tried to express 
in his “triangle of triangles.” As Iamblichus had put it, “The monad is even 
and odd and even-odd; linear and plane and solid” (Iamblichus 1988, 35). The 
monad’s being even and odd testified to the fact that the seemingly incom-
mensurable measures of odd and even or discrete and continuous had to be 
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understood as internal to this fundamental measure. Iamblichus had driven 
home the point with continuing the series of the monad’s being “perfect and 
over-perfect and defective; proportionate and harmonic; prime and incom-
posite, and secondary; diagonal and side; and it is the source of every rela-
tion, whether one of equality or inequality, as has been proved in the [that is, 
Nicomachus’s] Introduction” (35). The indeterminacy of the “more or less” 
has now been explicitly worked into the very conception of the monad that 
had originally been conceived as antithetical to the more or less. In this way, 
the neo-Pythagoreans had drawn the consequences of the twist that, accord-
ing to the “unwritten-doctrine” interpretation, Plato had given to the realm 
of ideas and, in particular, to the idea of “the Good” in his late works, mov-
ing away from the traditionally conceived “Platonistic” transcendent realm of 
middle-period works such as the Republic.

There is still, I suggest, another feature of Hegel’s reception of this ma-
terial that puts him on the side of the later Plato and his neo-Pythagorean 
followers and that contrasts with the attitudes of Schelling and the other 
Naturphilosophen. They had all drawn upon this tradition in their conceiv-
ing of those opposing forces in nature, Potenzen that divide into opposing 
positive and negative forces to be found in the various hierarchically arranged 
domains of the world. They, I suggest, were closer to the early Pythagoreans, 
such as Archytas, who had linked these mathematical structures directly to 
the empirical world and to be found in observations of harmonic relations 
among sounds and the movements of the planets. Plato had been critical of 
this and had conceived of these structures as somehow meaningful in their 
own right. Similarly, I suggest, Hegel took these structures more to manifest 
the movements of self-redetermining thought rather than thought that im-
mediately mirrored the nature of the world itself. While the world could be 
considered as externalized thought, in the sense that its logic was a logic of 
the world itself, this process could not be conceived in the quasi-Spinozistic 
mode of Schelling as two identical but opposed manifestations of the same 
underlying absolute.

Without this Pythagorean-Platonic background, Hegel’s discussion of the 
“ratio of potencies” as a quantum that has “returned into itself ” and is “self-
identical in its otherness” (SL, 278; 21:318) remains entirely obscure. The ratio 
of powers is a ratio that explicitly represents itself as a ratio, just as a ratio of 
intervals is represented by a ratio of numbers used in describing the inter-
vals. As a prototypical ratio—we might call it Hegel’s Urverhältnis—it gives 
expression not only to the “genus” or “concept” ratio; it gives expression to 
what it is to be a concept as such, because for Hegel a concept is something 
that instantiates itself in something other than itself. “By being thus posited as 
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it is in conformity to its concept, quantum has passed over into another de-
termination; or, as we can also say, its determination is now also as the deter-
minateness, the in-itself also as existence [als Dasein ist]” (SL, 279; 21:320). We 
might now understand the sense in which mathematics, in Brady Bowman’s 
phrase, represents for Hegel the “highest form of finite theoretical cognition,” 
showing an “inner identity” with the method of philosophy itself (Bowman 
2013, 170).

The presence in Hegel’s library of those extant fragments of the writings 
of Nicomachus and Iamblichus, together with his familiarity with Pythag-
orean and neo-Pythagorean harmony theory and its relevance for Kepler’s 
cosmological explanations, I contend, gives us the interpretative license to 
treat his “ratio of potencies” in this way. But there is another line of evidence 
to be found in Hegel’s library that points in this direction as well—this time 
in the volumes by the contemporary French mathematician Lazare Carnot. 
On the basis of his understanding of the history of Greek geometry, trans-
mitted through late neo-Pythagorean accounts that are still broadly accepted 
as accurate today, Hegel seems to have been well attuned to the possibilities 
contained within Carnot’s new geometry that was, really, a revival of a very 
old geometry.

3.4 The “Ratio of Powers”: From the Ancient Harmonia  
to the Modern Harmonic Cross-Ratio

I have suggested that a constellation of factors, including the presence of a 
translation of Carnot’s De la corrélation des figures de géométrie in Hegel’s 
library, signals a motive for thinking of Hegel’s interest in ancient Pythagore-
anism as quite different from the mystically inclined “nature-philosophical” 
interest of Schelling and Baader. As further evidence for this let us consider 
the particular “even-times even” sequence of four numbers that Nicomachus 
turns to in Introduction to Arithmetic after the deduction of the six means, a 
sequence he describes as containing “the most perfect proportion, that which 
is three-dimensional and embraces them all.” This clearly is the structure that 
Hegel refers to as Plato’s “most beautiful bond.” It alone, Nicomachus notes, 
“would properly and truly be called harmony rather than the others, since it 
is not a plane, nor bound together by one mean term, but with two, so as thus 
to be extended in three dimensions” (Nicomachus of Gerasa 1926, 284–285).

It is not difficult to show that the number sequence given by Nicoma-
chus to instantiate this “most perfect proportion”—the sequence 6, 8, 9, 12 
referred to in Plato’s Epinomis (991b)42—is an instance of the more generally 
expressed doubled proportion that would be reintroduced by Carnot in De 
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la corrélation and subsequent works, and that would become a central feature 
of the projective geometry that developed during the nineteenth century. The 
name later given to this particular ratio of ratios, echoing harmonia, another 
name given to the musical tetraktys, would be the “harmonic cross-ratio,” and 
it would be shown to be a particular instance of a cross-ratio or double ratio 
(in German, Doppelverhältnis [Struik 1953, 9]), which had important proper-
ties known in antiquity to Pappus and possibly also to Euclid (Coolidge 1934, 
218). This cross-ratio between a pair of dividing ratios is discussed above, and 
takes the general form AX : XB, in which a variable point X is able to divide 
the interval between A and B both internally and externally in an equivalent 
but “inverted” way.43 The two mean terms between the extremes are their 
harmonic and arithmetic means, and the extremes themselves stand in the 
ratio of the geometric mean. We have observed something like this structure 
in Aristotle’s account of the ratio of ratios structuring the logic of justice, but 
this new double ratio avoids the suggestion of a structure reducible to one 
mean, the geometric. In the cross-ratio all the means are given equal weight.

In De la corrélation, Carnot does not place any great emphasis on the sig-
nificance of the harmonic cross-ratio, although he does so more in its succes-
sor publication, Géométrie de position of 1803. In De la corrélation, published 
in 1801, it is generated via a figure called the “complete quadrilateral,” the 
context in which the harmonic cross-ratio was found originally in the works 
of Apollonius of Perga, which had been revived by Girard Desargues in the 
seventeenth century. Much of the development of projective geometry in the 
nineteenth century would postdate Hegel, and it is not clear the degree to 
which Hegel, not being a mathematician, would have been in a position to 
anticipate the significance that would come to be assumed by the cross-ratio 
in mathematics later in the century. It is, of course, much easier to see such 
connections from this side of the history of the full realization of projective 
geometry—connections that might have been grasped only in the fuzziest 
outline at the time.44 Nevertheless, we do know of Hegel’s attraction to Plato’s 
“syllogism” with its duplicated middle terms required by the tridimensional-
ity of the body of the cosmic animal, his deep interest in Greek as well as 
contemporary geometry, his possession of and familiarity with Nicomachus’s 
Principles of Arithmetic, and, of course, his deep commitment to the cosmol-
ogy of Kepler.45 But Hegel’s appreciation of the possibility of this doubled 
ratio might also have been enabled by an innovation in the diagrammatic 
representation of magnitudes introduced by Kant in the 1860s—the innova-
tion of assigning to line segments a direction, so as to allow them to be under-
stood as “pointing” specifically in one direction as opposed to the other, and 
thereby representing magnitudes as qualitatively either positive or negative 
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in a way that nevertheless presupposed an underlying absolute quantitative 
magnitude. This aspect of Kant’s work would also influence Baader, Schelling, 
and other Naturphilosophen.

This idea had been introduced by Kant in an essay from his transitional 
period in the 1760s, “Attempt to Introduce the Concept of Negative Magni-
tudes into Philosophy” (Kant 1992a), the importance of which for Hegel has 
been stressed by Michael Wolff (Wolff 1999). There, Kant had employed the 
idea of directed line segments, later to be called “vectors” (Friedman 2013,  
ch. 5), in an attempt to explain the ontology of negative numbers. In the course 
of a sea voyage countervailing winds may cause a ship to travel in a distance 
away from its destination, leading the captain to record the ship’s progress 
in its log in negative numbers, but of course the actual miles traveled—the 
actual quantities—are the same regardless of direction. When this idea reap-
peared in the new approaches to geometry found in both Carnot and Grass-
mann, the “absolute” value of a vector would be differentiated from its signed 
magnitude reflecting its direction. In fact, Carnot’s turn to projective geom-
etry around 1800 had taken place in a context in which the philosophical 
problem of negative magnitudes was being widely discussed (Martinez 2006, 
25 and 46), and it is possible that his work was influenced by Kant’s essay just 
as Hermann Grassmann’s seems to have been (Petsche 2009, 222).

In relation to Hegel, a further factor accounting for the influence of Kant’s 
essays on space in the 1760s is the appearance of a version of this idea of di-
rected magnitudes in Nicomachus’s Introduction to Arithmetic where Nicoma-
chus emphasizes that for each of the three dimensions of space there exist two 
directions: “By these [three dimensions of space: breadth, depth, and length] 
are defined the six directions which are said to exist in connection with every 
body and by which motions in space are distinguished, forward, backward, 
up, down, right and left; for of necessity two directions opposite to each other 
follow upon each dimension, up and down upon one, forward and backward 
upon the second, and right and left upon the third” (Nicomachus of Gerasa 
1926, 238).46 This very point had been made by Kant in another essay from the 
1760s linked to “Negative Magnitudes,” the 1768 essay, “Concerning the Ulti-
mate Ground of the Differentiation of Directions in Space” (Kant 1992b). Like 
Nicomachus, Kant stresses how the bidirectionality of each of the dimensions 
of space is centered on the body:

Because of its three dimensions, physical space can be thought of as having 
three planes, which all intersect each other at right angles. . . . It is . . . not sur-
prising that the ultimate ground, on the basis of which we form our concept 
of directions in space, derives from the relation of these intersecting planes to 
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our bodies. The plane upon which the length of our body stands vertically is 
called, with respect to ourselves, horizontal. This horizontal plane gives rise 
to the difference between the directions [Gegenden] which we designate by 
the terms above and below. On this plane it is possible for two other planes 
to stand vertically and also to intersect each other at right angles, so that the 
length of the human body is thought of as lying along the axis of the intersec-
tion. One of these two vertical planes divides the body into two externally 
similar halves, and furnishes the ground of the difference between the right 
and the left side. The other vertical plane, which also stands perpendicularly 
on the horizontal plane, makes possible the concept of the side in front and the 
side behind. (Kant 1992b, 366–367; see also the editor’s comments, lxxx–lxxxi)

We will see that this idea, together with the associated phenomenon of the 
handedness, or chirality, of certain three-dimensional objects discussed in this  
essay as “incongruent counterparts” would be significant in the development 
of the new nonmetrical forms of geometry in the nineteenth century.

Both Carnot and Grassmann were perhaps influenced by Kant’s proto-
vectorial approach to space, but both underlined the continuity of their proj-
ects with Leibniz’s proposed project of a “situational analysis” (analysis situs). 
Leibniz had suggested this as an alternative to Descartes’s analytic geometry, 
but it had been specifically criticized by Kant in “Differentiation of Direc-
tions in Space” (Kant 1992b, 365). We will later explore Leibniz’s project and 
its relation to the failed seventeenth-century attempts to develop projective 
geometry, but here it is important to emphasize the ways in which Leibniz’s 
analysis situs had reestablished a connection to ancient geometric algebra.

In the late 1670s Leibniz had first started to think of an alternative to the 
analytic geometry of Descartes and Fermat, aiming to introduce a type of alge-
braic approach to geometry but one that countered the reduction of continu-
ous to discrete magnitudes found in analytic geometry. In a letter to Huygens 
in 1679 Leibniz speculated on the need for “another analysis which is distinctly 
geometrical or linear and which will express situation [situs] directly as algebra 
expresses magnitude directly. And I believe that I have found the way and that 
we can represent figures and even machines and movements by characters, as 
algebra expresses numbers or magnitudes” (Leibniz 1989b, 249).

In the analytic geometry of Descartes and Fermat, a geometric figure was 
able to be reduced to an equation with the help of coordinates that assigned to 
each point on the figure an ordered pair of numbers. That is, all the relations 
among continuous magnitudes were ultimately to be reduced to equalities 
holding between discrete “real” numbers. This was a version of what Hegel 
described as the atomistic system of “unit and amount” of the early Pythago-
reans, but now carried out with the more developed system of real numbers, 
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purportedly neutralizing the problem of incommensurability. But Leibniz 
would assert that “instead of using equalities or equations as in algebra, I shall 
here use relations of congruences, which I shall express with the character  
of µ” (251). Leibniz then gives the example of two triangles, ABC and DEF as 
in figure 3.5, which he claims are congruent because the points on each “can 
occupy exactly the same place, and that one can be applied or placed on the 
other without changing anything of the two figures except place. So if one 
places D upon A, E upon B and F upon C, the two triangles, which are as-
sumed to be equal and similar, obviously coincide” (Leibniz 1989b, 251).

On inspection, however, it is evident that ABC and EDF are what Kant 
described in “Differentiation of Directions in Space” as incongruent coun-
terparts (incongruentes Gegenstück) of which right and left hands provided 
the prototypical instance: “The reflection of an object in a mirror rests upon 
exactly the same principles. . . . The image of a right hand in a mirror is always 
a left hand” (Kant 1992b, 370). In trying to superimpose a right hand on a left 
hand, one would have to reflect it through an imaginary fourth dimension. 
In the case of two-dimensional triangles, however, the required extra dimen-
sion is only the third. As we will see (below, chapter 4.3), projective geometry 
would render this type of reflection intelligible.

Kant’s criticism was aimed at the relativistic conception of space presup-
posed by Leibniz’s analysis situs, and Kant would carry the same argument 
forward when transitioning into his later transcendental idealism with its 
constitutive dichotomy of intuitions and concepts.47 Thus he would argue 
that without the distinction between concepts and intuitions and especially 
the idea of the “pure intuition” of space, Leibniz was unable to account for the 
difference between incongruent counterparts.48 Grassmann would similarly 
consider this to be an inadequacy of Leibniz’s analysis situs (Grassmann 1995, 
320), but he would respond to the inadequacy of Leibniz’s account in a way 
that would effectively undermine Kant’s own alternative. However, we have 
already seen something like Leibniz’s (in)congruent triangles in the ancient 
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f ig u r e  3.5 Leibniz’s “congruent” triangles.
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idea of subcontrary triangles, which had become linked to possible inverse 
orderings of number sequences in portrayals of the ultimate unity of the 
three Pythagorean means.

Summing up, the revived form of geometric algebra that would develop in 
the nineteenth century would reproduce various features that had been im-
plicit in Greek geometry and that had influenced Hegel. Just as Eudoxus had 
broken with the number-atomism of the early Pythagoreans and had conceived 
of ratios as holding directly between continuous magnitudes that were not 
specifiable in terms of numbers, Leibniz would introduce the idea of congru-
ence between figures as fundamental, as opposed to Descartes’s reduction of 
figures to equations that presupposed a system of discrete numbers. Leibniz’s 
characteristic, however, did not accommodate the idea, to be found explicitly 
in Nicomachus and implicitly in Eudoxus, of the fundamental directedness or 
orientation of extended magnitudes, an idea that would with Grassmann be 
generalized to the orientation of two- and three-dimensional objects. Kant had 
signaled problems with Leibniz’s conception of space in this regard, and this 
would be taken up and extended by Grassmann, but in a quite different way.

Toward the end of the nineteenth century, both Carnot’s projective ge-
ometry and Grassmann’s linear algebra would be developed and linked, ab-
sorbing other developments such as William Rowan Hamilton’s theory of 
“quaternions.”49 Important developments would be made by the American 
mathematician Benjamin Peirce and the English mathematician-philosopher 
William Kingdon Clifford, the work of both influencing the experiments in 
logic of Peirce’s son, Charles Sanders Peirce. In these developments, the sorts 
of foci adopted by the Greeks as well as Hegel, concerning the relations be-
tween lines, planes, and solids, would come to the fore, now with various “al-
gebraic” ways of “adding” and “multiplying” two-dimensional oriented line 
segments (vectors) conceived as existing in three-dimensional space.50

Hegel’s encounter with such directions taken in geometry had, of course, 
been limited to its very earliest phases. Nevertheless, it does not need stress-
ing how significant the parallels between Nicomachus’s summation of the an-
cient theory of means together with Carnot’s rediscovery of it as well as Kant’s 
introduction of the idea of signed geometric magnitudes would have been for 
Hegel, given the background we have sketched here. In the following chapter 
we will pursue the question of what Hegel may have recognized in those as-
pects of Carnot’s work that would be later developed by Grassmann. In later 
chapters we will explore how this would be reflected in his approach to logic 
and the later logics of Peirce and other algebraists.
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Geometry and Philosophy in Hegel,  
Schelling, Carnot, and Grassmann

But now, since the delineation of these [geometric] figures commences from differ-
ent aspects and principles, and the various figures fall into place of themselves, in the 
comparison of these figures their qualitative unlikeness and incommensurability come 
into view. Geometry is thus driven, beyond the finitude within which it advanced step 
by step orderly and securely, to infinity—to the positing as equal of such as are qualita-
tively diverse. Here it loses the evidence that it derived from being otherwise based on 
fixed finitude without having to deal with the concept and the transition to the opposite 
which is its manifestation.

h e g e l , The Science of Logic

In 1801, and so around the time of Hegel’s own intense interest in geometry as 
well as the genesis of Carnot’s geometric works, Hegel would give an account 
of the comparative virtues of the approaches of Fichte and Schelling, enti-
tled The Difference between Fichte’s and Schelling’s System of Philosophy. Here 
Hegel had attempted to show how Schelling was countering the “formal” and 
“subjectivist” characteristics of Fichte’s version of transcendental idealism 
with the addition of a more objective dimension. While addressing problems 
in Kant, Fichte’s position was regarded as still hampered by features inherited 
from Kant’s subjectivist approach. Thus, Fichte is described as conceiving of 
what Hegel terms a “subjective Subject-Object”—an individual subject that, 
while conceived as necessarily embodied (a “Subject-Object”), is still under-
stood in a way such that its subjectivity necessarily transcends the limits of 
that embodiment (Diff, 81). To this, Schelling had opposed a more naturalis-
tically conceived “objective Subject-Object” (82)—that is, the conception of 
an organic being located in the world, whose subjectivity is constrained by 
the given objective conditions of embodiment and location, conditions that 
extend beyond the limits of the subject’s own conceptual grasp. Both forms 
taken on their own would simply reproduce the problematic dualism, but 
these opposed subjective and objective Subject-Objects were now to be un-
derstood as “united in something higher than the subject” (82). This “higher 
than the subject” meant for Schelling some type of Spinozistic “absolute,” qua 
“indifferent”—that is, neither subjective nor objective—unification of the two 
Subject-Objects. Schelling would employ a quasi-geometric diagram to try 
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to give a determinate expression to this view. Revealing differences would 
emerge between Hegel and Schelling concerning both how to understand this 
diagram and the relations among arithmetic, geometry, and philosophy more 
generally.

4.1 Hegel’s Early Understanding of Geometry in Relation to Schelling’s

In developing his nature philosophy around the turn of the century, and in 
the context of a dispute with Eschenmayer, who had accused him of misun-
derstanding the mathematical content of any such philosophy (Eschenmayer 
2020, 28–29), Schelling would appeal to the geometric method of Spinoza 
and employ a quasi-geometric diagram to render his own position explicit. 
This was his “Constructed Line” (fig. 4.1), as put forward in his 1801 work, 
Presentation of My System of Philosophy (Schelling 2001a, §§46–50),1 seem-
ingly influenced by a diagram earlier used by Eschenmayer in an attempt to 
explain the nature of magnetic polarity (Eschenmayer 2020, 92–93; Châtelet 
2000, 88–90). Eschenmayer’s diagram had been based on the idea of a balance 
with a fulcrum at its midpoint and seems to have been inspired by the idea of 
oppositely directed “vectors” as introduced in Kant’s 1763 essay.2

With his diagram, Schelling had meant to suggest that neither subjectivity 
(mind) nor objectivity (body) could be posited separately as in dualism—
that is, as entities that are somehow understandable in themselves, and so as 
abstracted from the relation to the other. Rather, they must be presented only 
as aspects of a single absolute, much as Kant’s idea that some actual distance 
traveled, some “absolute magnitude,” underlies both the positive and negative 
miles logged in relation to reaching one’s destination.

In Schelling’s account, the single line seems meant to represent the self-
identical absolute, A=A, but Spinoza’s substance has two seemingly opposed 
aspects, the aspects of extension and thought, and within substance there are 
two opposed points of view from which substance itself is grasped as either 
thought or extension. Thus, the diagram seems meant to be understood in 
such a way that the application of the signs ‘+’ and ‘–’ to either of the terms, 
A or B, signals the absolute as grasped from these two opposed perspectives. 
Combined with this, however, the single line is also to be understood as con-
taining a point, the fulcrum-like “point of indifference,” midway between the 
ideal and real poles and indifferent to both.

The diagram by Eschenmayer upon which Schelling seems to have drawn 
was considerably more complex. In it, a series of exponentially related num-
bers extend indefinitely to the left and right of a midpoint marked by an “I” 
raised to the power of zero, “I0,” and seemingly representing Fichte’s absolute 
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ego (Ich). Extending to the left on the side of the finite ego, the terms pass 
from I1, I2, I3 to an indefinite I+n, and to right on the side of its opposing non-
ego, as I-1, I-2, I-3, . . . I-n. In this respect, Eschenmayer’s diagram resembles the 
series of inverse ratios that Hegel traces in his discussion of ratio in book 1 of 
The Science of Logic, but while Hegel’s inverse series concerns the arithmetic 
operation of multiplication with its inverse, division, Eschenmayer’s works at 
the level of exponentiation with its inverse (or one of its two inverse opera-
tions) the extraction of roots. Eschenmayer’s series of powers and roots may 
suggest Hegel’s “ratio of powers,” but it cannot be what Hegel has in mind, as 
it suffers from the indefiniteness afflicting Hegel’s series of inverse ratios. In 
Eschenmayer there seems no equivalent to Plato’s most beautiful bond at the 
heart of Hegel’s solution to the problem of indeterminacy.

For Schelling, as for Eschenmayer, the idea is that as one goes in either 
direction, one moves toward a greater proportion of either mind or matter 
(ego or nonego) interacting within some worldly situation.3 Schelling’s mid-
point or “indifference point” is not the Fichtean absolute ego presupposed 
by Eschenmayer, however, but a Spinozistic absolute, and the midpoint of 
indifference appears to represent something like the idea that Baader had ex-
pressed in his pythagoräische Quadrat a few years earlier, concerning a single 
unifying force underlying opposed signed forces of attraction and repulsion 
(Förster 2012, 241). As with Baader (Baader 1798, 15; Leuer 1976, 8), the imag-
ery employed by Eschenmayer and Schelling seems to appeal to the fulcrum 
of a lever or balance, and there is no sense of a “divided” middle term.4

Despite his own presentations being meant to have something of the “axi-
omatic” form as found in Euclidean geometry and Spinoza’s Ethics, Schelling’s 
presentations were not particularly lucid or logically compelling, and he had 
attempted to make this more explicit by drawing on geometry in a follow-up 
essay, “Further Presentations from the System of Philosophy,” published the 
following year (Schelling 2001b), which commences with a reflection on the 
relation of the philosopher’s to the geometer’s method. Schelling’s appeal to 
geometry had clearly been meant to counter Eschenmayer’s generally more 
arithmetic imagery, just as his more geometric divided line was meant as a con
trast to Eschenmayer’s sequence of numerical “powers.”

Schelling’s starting point is Kant’s pure intuition of space as presupposed 
by the geometer’s postulates:

A+ B = AB = +

A = A

f ig u r e  4.1 Schelling’s Constructed Line.
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A geometer immediately sets about his constructions without any further in-
struction about pure intuition; even his postulates are not requirements for 
this intuition (of space) as such, about which it is assumed there can be no 
doubt or ambiguity, but necessary conditions of determinate intuitions (such 
as lines and figures).

In the same way, intellectual or rational intuition is something fixed and 
decided for the philosopher in rigorously scientific construction, something 
about which no doubt is allowed nor explanation found necessary. It is that 
which simply and without restriction is presupposed, and can in this respect 
not even be called the postulate of philosophy. (Schelling 2001b, 376)

Schelling’s imagery of the ever-present but opposed aspects of subjectivity 
and objectivity in cognition thus modified the idealist framework established 
by Kant and Fichte and was meant to resolve the contradiction with which 
we all live in our self-conceptions as subjects in the world. From one point 
of view, we grasp the world and ourselves in it naturalistically, and thus sub-
ject to lawlike regularities. This is at the basis of the dogmatic naturalism to 
which Fichte had fiercely opposed his Kant-derived idealism (Fichte 1994, 
§§4–5). From Fichte’s opposing perspective, however, we consider ourselves 
as free agents, able to affect the world by exercising our wills. But while this 
“universal opposition of the ideal and the real, the infinite and the finite” re-
mains a fixed opposition for “every pretended philosophy,” “geometry . . . and 
mathematics as a whole are entirely beyond this opposition. Here thought is 
always adequate to being, concept to object, and vice versa . . . In a word, there 
is no difference here between subjective and objective truth; subjectivity and 
objectivity are absolutely one, and there is in this science no construction in 
which they are not one” (Schelling 2001b, 378). Mathematics thus provides a 
model for genuine as opposed to pretended philosophy, but, within math-
ematics, “in geometrical construction this coincidence of idea and reality 
shows up directly, since it is granted to geometry to display the archetypes, 
as it were, in outer intuition” (382). But while geometry is “subordinated to  
being,” arithmetic is subordinated “to thought” (378)5—this asymmetry presum
ably representing Schelling’s counterattack on Eschenmayer.

Differences between Schelling and Hegel would evolve over the next few 
years, although it is apparent that from this early period Hegel had not shared 
the conception of the nature of mathematics underpinning Schelling’s quasi-
Spinozist understanding of the diagram. Schelling’s conception of mathemat-
ics as a whole is clearly of what is normally discussed as “pure” rather than 
applied (“there is no difference here between subjective and objective truth; 
subjectivity and objectivity are absolutely one”)—that is, the classically “Pla-
tonistic” conception of mathematics. This mathematics, however, is cast in a 
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distinctly geometric guise, Platonic “archetypes” being numberless geometric 
constructions.

In contrast, in the 1801 Dissertation, Hegel holds that “the whole of math-
ematics must not be regarded as purely ideal or formal, but also as real and 
physical” (Misc, 175). This, in fact, coheres with the more traditional view at 
that time that geometry was constrained in ways that contrasted it to algebra 
in that it was considered to be the science of space, and so limited by what 
could be empirically intuited (Nagel 1979, §§1–2). For example, geometry was 
assumed to be maximally three-dimensional because actual space as experi-
enced is three-dimensional. Hegel thus represented a more traditional view 
of geometry than that of Kant, just as Carnot, as we will see, resisted the sepa-
ration of geometry from the empirical sciences that was coming to be favored 
by “pure” mathematicians. Moreover, as we have seen neither did Hegel make 
a rigid distinction between geometry as the science of continuous magni-
tudes and arithmetic as the science of discrete magnitudes: both sciences, 
he believed, presupposed the concepts of continuity and discreteness, and 
this allowed interaction between them: “What is overlooked in the ordinary 
representations of continuous and discrete magnitude is that each of these 
magnitudes has both moments in it, continuity as well as discreteness, and 
that the distinction between them depends solely on which of the two is the 
posited determinateness and which is only implicit” (SL, 166; 21:190).

Such an outlook concerning the unity of a duality can also be recognized 
in Hegel’s earliest “system fragments” from around this time. Thus, in the 
document System der Sittlichkeit (System of Ethical Life [SEL]), written in 
1802–3, Hegel would employ a broadly similar way of describing the reci-
procity between what Kant had distinguished as intuition and concept. While 
Kant had described judgments as involving the “subsumption” of intuitions 
by concepts, Hegel would add a necessary alternative form of cognition in 
which concepts are subsumed by intuitions. “Absolute ethical life . . . must be 
so treated that (a) concept is subsumed under intuition and (b) intuition is 
subsumed under concept” (SEL, 102). As Georg Sans has pointed out, this dis-
tinction between the reversed directions of “subsumption” between intuition 
and concept would evolve into a distinction found in The Science of Logic 
between opposed types of judgments: judgments of inherence and judgments 
of subsumption (Sans 2004, 94–97), about which we will have more to say in 
later chapters.6 Here we might note that Hegel’s way of addressing these issues 
in these years was, despite his use of Schellingian vocabulary, systematically 
different from Schelling’s in a way exemplified by their different attitudes to 
the relations of geometry to arithmetic. As opposed to Schelling’s Spinozist 
assumptions, as seen in his interpretation of the Constructed Line, Hegel’s, 
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I suggest, can be seen as more Carnotian and, in a sense, Leibnizian, given 
Carnot’s renewal of the project of an analysis situs.

For Hegel, as we have seen, both numerical and geometrical objects are 
defined by their positions within an evolving dynamic structure in which 
geometry offers ways of reinterpreting algebraic magnitudes, and algebra 
ways of reinterpreting the nature of geometry’s objects. Neither side offers 
an ultimate means by which to take the measure of the other’s claims. Hegel’s 
position was therefore neither that of classical Euclidean geometric algebra 
nor Descartes’s analytic geometry. Rather, the idea of the necessary unity of 
otherwise different genera of magnitudes, discrete or limited and continu-
ous or unlimited, is more in line with the Philolaic duality principle of the 
later Plato. Nevertheless, despite the incommensurability involved, geometry 
would provide representations that, considered in abstraction from any exact 
arithmetical interpretations, were capable of being applied to the actual world 
or “executed.” A new appropriate form of geometry was becoming available to 
Hegel in the form of Carnot’s projective geometry, but Carnot would appear 
on Hegel’s radar for other reasons as well.

4.2 From Infinitesimals as Ratios to the Ratios of Directed Line Segments

Hegel had been drawn to Carnot’s approach to the philosophical problem 
of the infinitesimal magnitudes appealed to in the calculus of Newton and 
Leibniz, of which a succinct expression had been provided in 1734 by Bishop 
Berkeley in his description of infinitesimals as the “ghosts of departed quanti-
ties” (Berkeley 1996, 81). Moreover, according to the historian of calculus Carl 
Boyer, such “general doubt as to the nature of the foundations of the methods 
of fluxions and the differential calculus” had continued throughout the eigh-
teenth century (Boyer 1959, 224). In his first mention of the dilemma of infini-
tesimals in The Science of Logic Hegel points to the way beyond this problem: 
“These magnitudes are so determined that they are in their vanishing—not 
before this vanishing, for they would then be finite magnitudes; not after it, 
for then they would be nothing” (SL, 79; 21:91–92). Later in the text it becomes 
apparent that he owes this solution to Carnot.

Hegel’s interest in this problem is clear. Recently, John Bell has described 
two French works appearing in the same year, 1797, as “the last efforts of the 
eighteenth century mathematicians to demystify infinitesimals and banish 
the persistent doubts concerning the soundness of the calculus” (Bell 2019, 
84). These were Joseph-Louis Lagrange’s Théorie des fonctions analytiques 
and Lazare Carnot’s Réflexions sur la métaphysique du calcul infinitésimal. 
Consistent with Mense’s remark concerning the representation of leading 
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contemporary works in mathematics and mechanics in Hegel’s library, both 
these works are found there.7 In The Science of Logic, mostly within three 
long “remarks” within the chapter “Quantum” concerning “quantitative infin-
ity,” Hegel discusses the different approaches of each (SL, 217–234; 21:253–273), 
and what he reports about Carnot’s approach is telling.

Hegel summarizes Carnot’s approach utilizing the “law of continuity”—a 
principle that had been introduced by Kepler as the “principle of analogy” in 
virtue of which “one can pass ‘continuously’ from any conic of his system into 
any other conic of that system” (Del Centina 2016, 568).8 The law of continu-
ity had been taken up by Leibniz and was generally thought to provide the 
basis of the application of geometry to nature (Bell 2019, 66–71), but it also 
clearly presages the shift from classical Euclidean geometry with its focus on 
the properties of individual geometric figures to projective geometry with its 
focus on correlations among geometric figures (Carnot 1801).9 Reprising the 
earlier account of the preservation of the ratio of two magnitudes “in their 
vanishing” (SL, 79; 21:91–92), here Hegel describes how “because of the law of 
continuity, the vanishing magnitudes still retain the ratio from which they de-
rive, before they disappear” (SL, 218; 21:254). With this, Hegel effectively para-
phrases not Carnot himself, but a passage from the introduction by Hauff 
to his translation of Carnot’s Réflexions—a passage that in fact translates an 
earlier quote from the French mathematician Sylvestre François Lacroix in 
support of Carnot’s approach: “By virtue of the law of continuity, the disap-
pearing magnitudes remain in the same ratio to that which they gradually 
approached before their disappearance” (Hauff 1800, ii).10 That is, what has 
to be understood as continuous here is not magnitude per se but a continu-
ous series of ratios between magnitudes. Hegel adds to his own paraphrase: 
“And this ratio or relation [Verhältnis] is so continuous and persistent that the 
transition consists rather in just bringing it out in its purity, thus causing any 
non-relational determination [Verhältnislose Bestimmung] . . . to vanish” (SL, 
218–219; 21:254–255). In short, following Carnot, the correct understanding of 
Newton’s method of infinitesimals involves a consequence of the principle of 
the “ratio of powers”—the idea that ratios as noncomposite are fundamen-
tal mathematical objects that can reciprocally determine each other. Carnot’s 
“ratio” will not only be irreducible to the numbers from which ratios typically 
seem to be constructed; it itself will not have any fixed numerical value, be-
ing considered more like a variable than a constant. Once more, such “ratios” 
cannot be understood in the way that the word ratio is typically understood, 
preserving its odd “Archytean,” pre-Euclidean usage.

Hegel’s summary is faithful to Carnot’s approach. In Réflexions, Carnot 
had started with the “imperfect idea” at the heart of modern infinitesimal 
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analysis—that of a “singular species of being, which sometimes plays the role 
of true quantities, and at others must be treated as absolutely nothing, and 
which seem by their equivocal properties to hold a middle rank between sub-
stantial magnitudes and zero, between existence and not-existence” (Carnot 
1797, 5–6). But he then appeals to a conceptual distinction between geometric 
magnitudes that are “given or determined by the conditions of the problem” 
and those that are “dependent on the arbitrary position of some point” (20). 
To the former, which he calls quantités désignées, he ascribes an objectivity 
independent of the calculator, while the latter, non-désignées or auxiliaires 
quantities, among which he clearly intends infinitesimals, he suggests, are in-
troduced by the calculator simply to facilitate the calculation (22–23).11 In the 
case of infinitesimals, the mathematician forms the idea of a quantity con-
tinually decreasing but is not interested in the value of this quantity per se. 
Rather the relevant object is the ratio established between this and another 
similarly decreasing quantity. Carnot sums up: “These infinitesimal quanti-
ties are only auxiliary quantities, introduced in the calculus solely to facilitate 
the expression of the conditions proposed. It is clear that it is absolutely nec-
essary to eliminate them from the calculation to obtain the desired result, that 
is, the ratios or relations (rapports) sought” (30).

To this extent, to Carnot the idea of infinitely small quantities is a mis-
conception, akin to the way negative quantities were to Kant. To conceive of 
these as determinate numbers that are exceptionally small is to fall prey to 
a conceptual confusion. It is to treat an indeterminate magnitude that cor-
responds to the use of a variable such as “x” as akin to the reality correspond-
ing to a determinate “executable” expression, the three sheep, say, to which 
one refers with the expression “these three sheep.”12 Carnot’s critique of the 
confused concept of an infinitesimal has also something of Kant’s critique 
of the confusion between intuitions and concepts. However, Hegel’s logical 
analogue of Carnot’s algebraic distinction between constants and variables, 
as I have suggested, will be more that between the conceptual determinacies 
of “singularity” and “particularity.”

Over the last decades, the development of Carnot’s mathematics around 
1800 has been closely examined by various historians of science (Gillispie and 
Pisano 2013, ch. 5; Schubring 2005, 315–317). Réflexions sur la métaphysique du 
calcul infinitésimal had apparently been a hastily rewritten version of earlier 
essays submitted to academies in the 1780s prior to Carnot’s intense political 
and military preoccupations. Later in 1797, exile allowed him to resume his 
interests in “foundational” issues in mathematics, and it was during this time 
that his work took the distinctive geometric turn that started with De la cor-
rélation des figures de géométrie. In particular, this refocusing on geometry 
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seems to have been bound up with his engagement with the problem of nega-
tive magnitudes—the topic broached by Kant in the 1760s in an early expres-
sion of the type of vectorial analysis that would become influential with the 
nature philosophers and expressed in Schelling’s Constructed Line.

Like the number zero, negative numbers had not been considered in 
Greek mathematics, but according to Alberto Martinez (Martinez 2006), they 
had been employed in Europe since the sixteenth century, especially for the 
recording of debts, but had always faced the objection of the impossibility of 
a number meant to be “less than nothing.” In the seventeenth century, the 
English mathematician John Wallis had given a directional interpretation of 
negative numbers and in the eighteenth the Scottish mathematician Colin 
MacLaurin, taking up this form of analysis, had treated directionality as a 
qualitative as opposed to a quantitative determination, associating it with the 
logical notion of contrariety (Martinez 2006, 22). In Germany, the issue had 
engaged a number of major mathematicians, such as Abraham Gotthelf Käst-
ner, upon whose work Kant had drawn in the 1763 essay (Kant 1992a, 210). 
This debate seems to have become particularly intense, however, especially 
among British mathematicians, around the turn of the nineteenth century 
(Martinez 2006, 25 and 46).

In 1779, the Scottish geometer John Playfair had contrasted geometry 
and algebra in a quasi-semiotic way by the idea that in the former, “every 
magnitude is represented by a line, and angles by an angle. The genus is al-
ways signified by the individual, and a general idea by one of the particulars 
which fall under it. By this means  .  .  . the geometer is never permitted to 
reason about the relation of things which do not exist” (quoted in Martinez 
2006, 77). In contrast, in algebra, where the connection of symbol to object 
is conventional, “the symbol may become the sole object of attention” and 
the analyst may “reason about characters after nothing is left which they can 
possibly express” (78).13 It would be along much the same lines that Schelling 
would contrast the diagrams of geometry, which present the “universal in 
the particular” with the formulae of arithmetic that present “the particular 
in the universal” (Schelling 1967, 35; cf. 2001b, 381, 388), affording an objectiv-
ity to geometry contrasting with the subjectivity of arithmetic. Playfair had 
provided geometric solutions to the problem of “impossible numbers” such 
as the imaginary number i (Nagel 1979, 173–174), but this had been attacked 
by Robert Woodhouse in the Transactions of the Royal Society of London in 
which he employed ideas found in Berkeley to suggest a type of purely in-
ternal or structural understanding of the number system, such that they re-
quired no “external” interpretations such as offered by geometry (Nagel 1979, 
178; Martinez 2006, 46–48).14 Such disputes were clearly analogous to those 
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about infinitesimals, and it is understandable that Carnot would have become 
engaged with them.

Carnot’s earlier work on calculus had already appealed to the idea of ratio 
as a type of irreducible, nonmetrical mathematical object, and in his geomet-
rical works he would go on to posit a geometric conception of ratio, which, 
like Hegel’s “ratio of powers,” was conceived as determined not by its com-
ponent parts but by its relation to another ratio. This would be the harmonic 
cross-ratio, the roots of which go back, via Nicomachus’s “most perfect pro-
portion,” to the state of geometry at the time of Plato’s early Academy and, at 
least according to Nicomachus, to Plato’s conception of the bond articulating 
the cosmic animal in the Timaeus as a type of syllogism. To appreciate the 
way Carnot’s geometry could possibly play the role of a mediating context 
for Hegel’s attempted revival of this ancient approach to logic, a closer look at 
the tradition of the projective alternative to Euclidean geometry in either of 
its ancient synthetic and modern analytic forms is necessary. It is clear why 
projective geometry might appeal to those who, despite its shortcomings, 
may have been inspired by the direction taken by Kant in his “Copernican 
revolution.”

4.3 Ancient and Early Modern Roots of the  
Doubled Ratios of Carnot’s Complete Quadrilateral

Around the turn of the nineteenth century, Carnot helped reintroduce an ap-
proach to geometry that had been proposed over a century and a half earlier 
by the French mathematician and engineer Girard Desargues and a small 
group of followers including Blaise Pascal. In 1639, Desargues had published 
fifty copies of a treatise, Rough Draft of an Essay on the results of taking plane 
sections of a cone (Field and Gray 1987). Appearing only two years after Des-
cartes’s Géométrie, which introduced his analytic approach, which would be 
adopted by Newton and others, Desargues’s small work would languish un-
til its later rescue. Desargues had developed ideas from the post-Euclidean 
geometer Apollonius of Perga (ca. 240–190 BCE), who had taken geometry 
beyond what was found in Euclid’s Elements to the important examination of 
“conic sections”—the related group of curved two-dimensional figures, the 
circle, the ellipse, the parabola, and the hyperbola, produced when a three-
dimensional cone is sliced by a plane at differing angles.

Surviving parts of Apollonius’s Conics had been published in Europe at 
the turn of the seventeenth century around the same time as another impor-
tant geometrical work, Collection, by Pappus of Alexandria (ca. 290–340 CE). 
Pappus’s work attempted to present a summary of geometry from the earlier 
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“golden age” of Greek geometry and contained commentaries on Apolloni-
us’s theorems as well as on a since-lost work of Euclid, Porisms. Apollonius 
and Pappus together formed the basis for Desargues’s distinctly nonmetric 
approach to geometry, which he opposed to Descartes’s analytic geometry, 
which itself presupposed Euclidean geometry. These post-Euclidean develop-
ments in geometry built on the approach of the so-called problems tradition 
(Knorr 1986) with its use of the “regressive” rather than axiomatic method as 
known through later commentaries, such as those of Nicomachus of Gerasa, 
Iamblichus, and Proclus.15

In Conics, the harmonic mean of earlier music theory appears in con-
structions involving the curves of elliptical, parabolic, and hyperbolic conic 
sections being crossed by a straight line. As this is most simply illustrated by 
a circle, a circle will be used here, but it must be remembered that the propor-
tions involved in the division apply to all other conic sections as well. That 
is, the genesis of this “harmonic” division will be independent of the angle 
of the plane cutting across the three-dimensional cone responsible for the 
figure being discussed—a circumstance that will be crucial for the later idea 
of “projective” geometry.

Consider a circle with a diameter AB that is continued beyond the cir-
cumference to some point G. Tangents are constructed from G to touch the 
circle at points C and D, and these points are joined by a straight line that 
intersects the diameter at point H (fig. 4.2). Drawing on a number of theo-
rems from Euclid, Apollonius shows that the points H and G equally divide 
the interval AB in internal and external fashion, in that the ratio between the 
lengths of AH and HB is the same as that between AG and GB.16 As noted 
earlier, the idea of conjugate internal and external divisions of a directed line 

A
B

D
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G
H

f ig u r e  4.2 Harmonic section I—Apollonius. In absolute terms, ratio AG : GB is the same as AH : HB. 
(For the relevant proofs, see Heath 1896, propositions 62–65.)
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segment would be revived in the wake of Kant’s speculations in the 1760s on 
the origins of negative magnitudes, making this development an ideal context 
for the revival of Desargues’s forgotten geometry.

Pappus constructs a similar figure, again involving a circle with a diameter 
AB extended to a point G beyond B (fig. 4.3). In Pappus’s figure, a line from 
G is drawn that intersects the circle at two points, forming a chord EC. A 
perpendicular is now dropped from C to cross AB and meet the circumfer-
ence of the circle again at point D. D is then joined to E such that DE crosses 
AB at point H.

The points H and G again divide the diameter of the circle in equivalent 
ways internally and externally as in Apollonius’s figure, such that the ratio of 
lengths AH to HB is the same as that between the lengths AG and GB.17 With 
the modification of a negative sign deriving from a consideration of direc-
tionality, this ratio would come to be known as the “harmonic cross-ratio,” 
AH : HB = −AG : GB. The harmonic cross-ratio between the two ratios holds 
regardless of where G falls along the extension of AB. When G moves further 
away from B, H also moves away from B in the opposite direction, keeping 
the proportion between the ratios AH : HB and AG : HB equal. However, 
when AB = BG, making B the arithmetic mean of AG, H is found to divide 
AG in the ratio of 3:2. This is the musical tetraktys with the distances in pro-
portions as given in the sequence 6, 8, 9, 12. This same double ratio appears in 
another proposition in Pappus’s Collection, this time involving constructions 
on a quadrilateral figure with no apparent involvement of a circle (Heath 1921, 
2:264, props. 130–131). (In fact, the “circle” is implicitly present.)

In the seventeenth century, Desargues had developed a geometry that re-
lated notions such as those of “projection” and “perspective,” viewpoints and 
“points at infinity”—notions that had arisen from the treatment of perspectival 
representation by Renaissance artists (Andersen 2007; Field and Gray 1987, 
ch. 2). Desargues had rediscovered the theorem of homologous triangles or  
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f ig u r e  4.3 Harmonic section II—Pappus (after Heath 1921, 2:419–424).
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triangles in perspective (or “Desargues’s Theorem”), based on further proposi-
tions in Pappus’s Collection (Field and Gray 1987, ch. 8). This involved a con-
struction (fig. 4.4) showing three “rays” radiating from a point, O, such that 
two “homologous” triangles (ABC and DEF) were constructed, each triangle 
having one vertex on each of the three lines. The sides of the two triangles are 
extended such that the pairs of corresponding sides (BC and EF, AC and DF, 
and DE and AB) each meet at three further points (G, H, and I). Desargues’s 
theorem stated that these three further points, G, H, and I, were collinear, that 
is, they fall on one straight line. The two triangles are described as “perspec-
tive” from the point O, which is itself called the “centre of perspectivity” or 
“pole.” For any such diagram, the line through the three collinear points, called 
the “axis of perspectivity” or “polar” (here, GHI), stands in a special relation to 
the pole (O). That relationship is in fact that which exists in Apollonius’s con-
struction above (fig. 4.2) between the point G and the line joining the points 
where the tangents from T touch the circle. In Apollonius’s diagram, point G 
is the pole, and the line CD, the polar. In the nineteenth century it would be 
argued that this relation between “pole” and “polar” was an instance of a more 
general “duality” between points and lines in projective geometry.

Although figure 4.4 is formally a plane figure, the language of “perspec-
tive,” “projections,” “point of view,” and so on, in conformity with its con-
nection to the artist’s concern with perspectival representation, suggests a 
reading of the figure as involving relationships in three dimensions. Thus, 
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f ig u r e  4.4 Desargues’s homologous triangles. Triangles ABC and DEF are perspective from point O, 
the “centre of perspectivity.” When extended, the corresponding sides of the triangles meet at points G, H, 
and I, which fall on the one straight line, the “axis of perspectivity.”
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in Desargues’s diagram, two triangles are said to be perspective from a point, 
O, suggesting a sense in which a viewer located at O and observing such tri-
angles arrayed within three dimensions on differently aligned planes would 
see them as superimposed. That is, these apparently different triangles are 
seen as the same when viewed from that “point of view.” Moreover, when  
considered in three dimensions the basis of the relations manifest in these 
diagrams becomes clear. If Desargues’s homologous triangles lie on two dif-
ferent planes, the extended sides of these triangles will necessarily meet on a 
single line because all points belonging to both of the two intersecting planes 
will fall on the line at which the planes intersect. In Hegel’s logic, similar “two- 
dimensional” homologies will be explained by regarding them as “appear-
ances” of an arrangement understood within a higher dimension.

All this means that figures that are invariant in Euclidean geometry are 
not so in projective geometry, in which what is circular from one perspective 
might be elliptical or even parabolic from some other, or what is a square 
from one perspective might be trapezoidal from another.18 This is, of course, 
what we have seen studied in Apollonius’s Conics, where various ways of sec-
tioning a cone produce projective equivalences or correlations among the 
plane figures of circle, ellipse, parabola, and hyperbola. From a typically Eu-
clidean perspective, these would all count simply as different objects. Indeed, 
as can be seen from Desargues’s diagram, within the context of a projective 
geometry, the two triangles that Leibniz had used to illustrate congruence 
and that were criticized by Kant as incongruent (see earlier, chapter 3.3) are,  
in fact, congruent.19 Regarded as a three-dimensional diagram, it can be ap-
preciated how the two triangular shapes inscribed on differently oriented two- 
dimensional planes might come to be regarded as either congruent or incon-
gruent depending on the location of the viewing point.

In order for projective geometry to be a coherent field of investigation, 
something must be held to be invariant across projections if all the traditional 
geometric objects lose this status. It is here that the cross-ratio relation would 
become so central. It would be shown that the harmonic cross-ratio could be 
generalized such that rather than the double ratio being fixed by the value of 
–1 it could also be fixed by any other constant.20 Considered as a prototypical 
“object” in this new geometric environment, the cross-ratio would be thus 
more basic than the circles and squares that we typically think of as geo-
metrical objects of study. In the nineteenth century the cross-ratio would be 
much more than a theoretical curiosity and would become important within 
practical disciplines such as military engineering. With its aid the distance 
between objects in the three-dimensional world could be calculated on the 
basis of information stored on two-dimensional maps.
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A further consequence of projective geometry, separating it from Des-
cartes’s analytic geometry, was its reconceptualization of the notion of “in-
finity.” From the time of the Renaissance, painters, attempting to get three-
dimensional objects “in perspective,” had come to represent straight lines that 
in reality are parallel as converging at the horizon. Interpreted within projec-
tive geometry, the line of the horizon could be understood as representing a 
line “at infinity”—a line made up of points at which different sets of “parallel 
lines” meet. That is, the horizon represents the “polar” that is coordinated 
from the “pole” of the artist’s point of view. Via an associated theorem, from 
the “point of view” of any point on the line at infinity, the first “pole” would 
itself fall on the complementary polar.

That parallel lines meet was contrary to Euclid’s famous “parallel pos-
tulate” according to which parallel lines do not meet (Euclid 1956, book 1, 
postulate 5), and in this way, projective geometry anticipated the various 
non-Euclidean geometries proposed later in the nineteenth century. But for  
a seventeenth-century audience it had also provided an image for the theo
logical problem of how to conceive of the relation of finite human and in
finite  divine “points of view,” a dimension to the fore in the work of De
sargues’s  follower Blaise Pascal (Cortese 2015). From his comments on the 
role of the law of continuity in explaining the vanishing magnitudes of the 
infinitesimal calculus, Hegel surely would have been alert to these facts, as he 
would have been to the fact that Kepler had introduced this law in explaining 
how one of the foci of an ellipse came to be located at such a “point at infin-
ity” when the ellipse was distorted into a parabola (Field and Gray 1987, ap-
pendix 4).21 All this points to an attitude to geometry very different from that  
of Schelling.

Moreover, Hegel possessed Carnot’s book containing the modern incar-
nation of Plato’s most beautiful bond. Given the background circumstances 
that would have directed his attention to this aspect of Carnot’s geometry, 
it is difficult to imagine that it would have had no impact on his thinking. 
In contrast, in relation to Hermann Grassmann, who was a student at the 
University of Berlin during Hegel’s last four years there, 1827–31, there is no 
question of Hegel having been similarly influenced. However, some have 
been led to think of Grassmann having been influenced by Hegel because of 
a convergence between their views (Wolff 1999). While this is unclear, what is 
clear is that Grassmann had been deeply influenced by ideas from idealist and 
romantic thought sharing some features with Hegel’s. These were ideas that 
he expressed in the heavily philosophical introduction to the revolutionary 
work he published in 1844, Linear Extension Theory: A New Branch of Mathe-
matics (Grassmann 1995, 23–43). Combined with Carnot’s ideas, Grassmann’s 
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provide compelling evidence for parallels between these directions in math-
ematics and the stance adopted by Hegel.

4.4 Grassmann, Idealism, and the Algebra of Geometric Vectors

Hermann Grassmann is now recognized as a major figure in nineteenth-
century mathematics but during his life he would never obtain a university 
position in that discipline. Hermann was the son of a high school teacher, 
Justus Grassmann, who had “published a series of small books between 1827 
and 1835 in which he wanted to expound a new philosophical and educational 
conception of mathematics while at the same time developing mathematics 
itself ” (Otte 2011, 67). Justus Grassmann’s mathematics, it is said, was deeply 
influenced by the type of nature philosophy introduced by Schelling. Along 
with this, he had been influenced by the work on crystals by Christian Samuel 
Weiss, a figure associated with Baader.

Weiss had been appointed as professor of minerology at the University 
of Berlin when it opened in 1810, and Hegel would take over his lectures on 
the philosophy of nature when he arrived in 1821 (Heuser 2011, 50). Weiss had 
adopted a geometric approach to crystal structure and had adopted Kant’s 
theory of space from the “Negative Magnitudes” essay of 1763 for his purposes 
(Heuser 2011, 54). Hegel appears to rely on Weiss’s work in his discussion 
of crystals in Philosophy of Nature (E:PN, §315, addition, plus editor’s note, 
2:330), and Hegel also possessed a PhD on crystal structure by a student at the 
University of Berlin, Franz Neumann, who favored the “synthetic” approach 
to geometry and, influenced by Weiss, applied it in his thesis (Mense 1993, 
701–702).22

Justus’s son Hermann is regarded as having continued and developed the 
novel approach to mathematics of his father. During his stay at the University 
of Berlin from 1827 to 1831 he apparently took no courses in mathematics but 
was most attracted to courses of the romantic hermeneutic theorist/theolo-
gian/philosopher Friedrich Schleiermacher, who would have a decided influ-
ence upon his approach to mathematics (Lewis 1977; Petsche 2009, ch. 2.3). 
Indeed, he had apparently closely studied Schleiermacher’s published lectures 
on dialectics before composing Linear Extension Theory (Petsche 2009, xvii).

Partly because of the dialectical introduction to the Linear Extension The-
ory of 1844 that mathematicians found puzzling, Grassmann’s work would 
not be taken up within mathematics for decades. However, as initiating the 
approaches of “vector analysis” or “linear algebra,” it would eventually be 
regarded as one of the most important scientific developments in the nine-
teenth century and is now, along with calculus, a staple of higher education 
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within mathematics. While its ideas are often unfamiliar to those who have 
not pursued mathematics beyond high school, some of its basic features that 
are relevant to our purposes are relatively easy to grasp. Crucial for our pur-
poses is the fact that in vector analysis, the opposed signs of ‘+’ and ‘–’ that 
Kant had applied to line segments are generalized to figures of two, three, and 
even higher dimensions.

In his Linear Extension Theory Grassmann distinguishes between con-
tinuous vectors and discrete numbers understood as the “scalars” by which 
vectors can be multiplied or “scaled.” Scalars themselves can be both positive 
and negative, and so directionality of directed continuous magnitudes from 
Grassmann’s perspective does not solve the problem of negative magnitudes 
as envisaged by Kant.23 Two basic “arithmetical” operations are allowed in 
Grassmann’s vector calculus—the addition of vectors and the multiplication 
of vectors by scalars. The former operation would recall Newton’s use of the 
“parallelogram of forces,” in which the sum of two component directed force 
vectors can be thought of as the diagonal of the parallelogram of which the 
forces formed adjacent sides. The multiplication of a vector by a scalar allows 
a vector to be lengthened or shortened along the direction in which it points, 
while multiplying a vector by a negative scalar has the effect of reversing the 
direction of that vector. Thus, for the vector AB

u ruu
:

AB × − 1 = −AB = BA.24

Kant’s original idea of opposed vectors, such as a ship’s movement from 
east to west or west to east, pictured them as aligned on a single line, but 
Newton’s parallelogram of forces pictured vectors interacting at different an-
gles, such that combined they defined a two-dimensional plane. “Linear com-
binations” of vectors as in vector addition now pictured the resulting vector 
as belonging to the plane or “vector space” defined by the two vectors being 
added. Hegel had pointed to the internal relations among different arithmeti-
cal operations, as when one is able to conceive of multiplication as a type of 
iterated addition, and here too, a type of multiplication of vectors could be 
generated out of the iteration of vector addition.

Grassmann introduced the idea of multiplying vectors by vectors in such a 
way that there existed two such forms. In one, multiplying vector AB

u ruu
 by vec-

tor CD
u ruu

 results in a directionless number, or “scalar,” rather than another vec-
tor. This, called by Grassmann “internal multiplication,” is commonly called 
the “dot product” and is represented as “AB · CD.” The other form, Grass-
mann’s “external multiplication,” now called the “cross product” (AB×CD), 
was conceived as a type of iterated “addition” and resulted in a vector oriented 
in three-dimensional space. Later, the forms of vector multiplication would 
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be modified by William Clifford to produce a more perspicuous account that 
will be followed here.25

Clifford would replace Grassmann’s external multiplication with two 
further forms resulting in a total of three types of vector multiplication.26  
Beside the dot product there was a “wedge product” (AB×CD)^(AB×CD) and a “geo-
metric product” (represented by juxtaposition, (AB CD = AB×CD + AB^CD)). Here, multiplying 
AB
u ruu

 by CD
u ruu

 to produce the wedge product could be conceived as involving 
the continuous displacement of vector AB

u ruu
 in the direction of CD

u ruu
 resulting 

in a two-dimensional parallelogram, a “bi-vector,” with the two vectors as 
its sides. However, the order in which this operation is performed is signifi-
cant. Displacing CD

u ruu
 in the direction of AB

u ruu
 will result in a parallelogram of 

a differently signed magnitude when compared to the result of displacing 
AB
u ruu

 in the direction of CD
u ruu

. That is, unlike the multiplication of numbers, 
the order in which the vectors multiplied is relevant to the value of the re-
sult. While, like arithmetical multiplication, the dot product is symmetric or 
“commutative,”27 the wedge product is said to be anticommutative such that 
AB^CD = −CD^AB. Diagrammatically, an area with anticlockwise orienta-
tion is taken as positively signed, while an area with clockwise orientation is 
taken as negatively signed. This is the relation of Leibniz’s questionably “con-
gruent” triangles (fig. 3.5) discussed earlier. Moreover, the signed character 
of the spaces produced by this operation continues to higher dimensions. In 
three dimensions, volumes will have opposed orientations, as conceived by 
Kant with his incongruent counterparts (see above, chapter 3.4).

Clifford’s geometric product was now defined in terms of the other two, 
with the geometric product simply being the sum of the dot product and the 
wedge product (AB CD = AB×CD + AB^CD). This strange idea of generat-
ing a product by the addition of two component products should by now be 
familiar. It is what we have seen harmonically in the “addition” of perfect 
fourth and perfect fifth intervals to form a complete octave, and in the addi-
tion of the logarithms of two numbers to form the logarithm of the product of 
those numbers. Moreover, Grassmann had earlier shown his vector analysis 
to be relevant to projective geometry.28

In short, the development of vector analysis in the nineteenth century 
would testify to the fact that the operations of addition and subtraction that 
Kant had identified for phora could be expanded to addition and multipli-
cation among vectors interrelated within higher dimensions, giving a new 
form to the “geometric algebra” of the ancient Greeks. Introducing the geo-
metric features of directionality or orientation would have specific conse-
quences for the arithmetic operations of addition and multiplication in these 
systems, creating new forms of algebra. Kant had anticipated something 
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of the significance of these developments for our conception of space with 
his observations concerning the significance of handedness for Leibniz’s 
“congruent” triangles and his idea of three-dimensional “incommensurate 
counterparts.” However, these developments in geometric algebra would dis-
rupt the Euclidean presuppositions about geometry upon which Kant had  
relied. Viewed from where geometry was heading, Hegel’s approach seems 
extremely percipient.

4.5 Schelling’s Spinozistic and Hegel’s Platonic-Carnotian  
Readings of the Constructed Line

I have suggested that in his Constructed Line, Schelling can be understood 
as drawing upon a distinction between the absolute value of a magnitude 
such as that of a line segment and the quasi-algebraic “signed” values that 
lengths may possess within some calculative system, a distinction suggested 
in Kant’s 1763 essay and that would be exploited by new forms of geometry in 
the nineteenth century. While Hegel seems to concur with Schelling’s claim 
that the absolute line represents something presupposed rather than postu-
lated (Schelling 2001b, 376), a Platonic-Carnotian reading, I suggest, will have 
the line divided not by a single mean (in Schelling’s case, as well as in Baader 
and Eschenmayer, the indifference point conceived as the fulcrum of a bal-
ance), but by a split or doubled mean. The frameworks provided by projective 
geometry and the algebra of geometric vectors allow us to understand Hegel’s 
alternative here, with the original musical context of the three “means” being 
a helpful place to start.

As is clear in the case of a modern fretted instrument such as a guitar, 
the relationship between how far one’s fingers have to move up and down 
the fretboard to produce the appropriate notes up and down the scale is a 
complicated matter. The frets on a guitar are not evenly spaced but get closer 
together the further one moves “up” the fretboard because they are spaced in 
a way that conforms to a logarithmic rather than a linear scale.29 This allows 
the addition of, say, the five semitones constituting the perfect fourth with 
the seven semitones of the perfect fifth on the scale to produce a sound that 
is equal to the product of frequencies of the two individual tones produced—
the full octave. The modern “equal-tempered” scale is not the same as that 
used by the Pythagoreans, but the same logarithmic principle holds for their 
restricted intervals of the octave, the perfect fourth and the perfect fifth. 
But such patterns of relations are far from being restricted to music and are 
spread widely in nature. Moreover, we see the same patterns when looking at 
“projective” phenomena in three-dimensional space.
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Invariably, in introductory texts on the subject of projective geometry will 
be found allusions to viewing the rails on train tracks that, while actually 
parallel, seem to converge onto the horizon, the evenly spaced sleepers on 
which the rails rest appearing to become closer to each other as the tracks 
go into the distance. However, we might think of the reversed situation that 
holds when one looks along the fretboard of a guitar from some location at 
the body end of the instrument. With a little maneuvering, one can locate 
oneself at the appropriate viewpoint, O, from which all the frets, which in re-
ality are progressively more widely spaced as one moves along the fretboard, 
appear evenly spaced. From O, the midpoint of that part of the fretboard 
corresponding to one octave (twelve frets) appears to be the sixth fret, while 
objectively as measured with a rule, the midpoint of this length is actually at 
the fifth fret. Because we are looking at a two-dimensional series of spaces 
from a point involving the third dimension, from Hegel’s Platonic analysis 
the midpoint should be “split,” and in a sense it is. We must understand our 
subjective point of view when located at some “O” as a view onto a world that 
can be equally grasped from no point of view—that is, from the shifting point 
of view of the rule-wielding measurer.

I have suggested elsewhere (Redding 1996, ch. 3) that Schelling’s Con-
structed Line had formed the starting point of Hegel’s reworking of Fichte’s 
account of intersubjective “recognition” as presented in his practical philos-
ophy and that would come to be at the center of Hegel’s theory of “spirit” 
(Geist), and this view, I believe, coheres with the more developed reading 
of Hegel’s interpretation of the Constructed Line being suggested here. How 
exactly to understand Hegel’s account of intersubjective recognition in the 
famous vignette from The Phenomenology of Spirit concerning the “master-
slave dialectic” is difficult and controversial, but there is certainly a moment 
in it that, as John McDowell has argued, the opposition between master and 
slave is meant to represent the Kantian split between “empirical” and “tran-
scendental” dimensions of self-consciousness (McDowell 2003). Read in the 
Platonic way, Schelling’s diagram could be understood as giving a schematic 
representation to the relation between two interrelated intentional attitudes 
onto the world. One might be thought of as a perspective onto the world to 
be had from some point within it, and the other a related “view” from a point 
at infinity—some problematic “view from nowhere.” The latter, however, can 
now be given an interpretation from a practical point of view: it will be the in-
tentional attitude that coincides with the application of some objective mea-
suring device to the world.

In the context of an examination of Hegel’s theory of judgment, it will be 
argued that this geometrical analogue of Kant’s empirical and transcendental 
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dimensions of self-consciousness reflects a duality found between the op-
posed conceptions of predication in Hegel’s “judgments of inherence” and 
“judgments of subsumption.” In contrast to the univocal account of judgment 
form found in both Aristotle and Kant, Hegel’s dual judgments will reflect his 
commitment to the Platonic idea of the split middle term. This in turn will 
be related to his novel interpretation of the relation of logical form and con-
tent in judgments. In this homologously equivalent model of judgment, these 
inverse judgments can be understood as having different logical functions 
while representing the same “absolute” content: one type of judgment serves 
the function of the acquisition of empirical content in contexts governed by 
perspectival features, while the other, that of entering into inference relations 
with other judgments. After all, “measuring devices” such as rulers and tape 
measures are really devices for comparing properties of objects—inches, cen-
timeters, and so on being lengths we chose for such purposes. In turn the 
syllogism makes explicit this type of “identity in difference” between the two 
premises as united in the conclusion.

In the following chapters it will be argued that those features we witness 
in Hegel’s departure from Schelling on geometry will be reproduced in his 
modifications of Aristotle’s syllogistic. This latter issue, however, can only be 
understood in terms of Leibniz’s earlier rethinking of Aristotle’s syllogism. 
It is widely recognized that Leibniz had anticipated many of the develop-
ments within mathematical logic found in the nineteenth century. But this 
itself must be understood in relation to Leibniz’s own attempts to resist the 
“analytic” dimensions of modern thought by reinvoking the nonmetrical geo-
metrical thought of the ancients in ways that anticipated nineteenth-century 
mathematical developments such as projective geometry and vector analysis.



5

The Role of Analysis Situs in  
Leibniz’s Modernization of Logic

In philosophy, I have found a means of accomplishing in all sciences what Descartes 
and others have done in Arithmetic and Geometry by Algebra and Analysis, by the Ars 
Combinatoria. . . . By this all composite notions in the whole world are reduced to a few 
simple ones as their alphabet; and by the combination of such an alphabet a way is made 
of finding, in time by an ordered method, all things with their theorems and whatever 
is possible to investigate concerning them.

l e i b n i z , “Letter to Duke Johann Friedrich of Hannover, October 1671”

Descartes and other early moderns had typically interpreted human cognitive 
engagement with the world in a very different way from that of the ancient 
Greeks. In the new approach cognition was grasped subjectively, expressing 
what Hegel characterized as the typical Innerlichkeit, innerness, of the modern 
subject. From this perspective, the relation of being and thought—“extension” 
and “intension”—would be seen as a type of global problem, and perhaps the 
simplest response had been that of effectively collapsing the distinction by the 
device of thinking of thought’s “extension” as limited to the mind itself. This 
was at the heart of the new “way of ideas” approach that would come to be 
known as “subjective idealism.” What one “really” experiences, on this model, 
is not what it seems to be. I think I see a tree beside a lake, but what I’m re-
ally perceiving is my idea of a tree located beside my idea of a lake! The ob-
jects directly perceived are Platonic “icons” located in the individual’s mind 
rather than in the world, observed by an inner “homunculus”—a “little man” 
trapped, as it were, inside the skull. Philosophy had thus become obsessed 
about how one can be assured that the arrangements we really see—that is, 
those arrayed on some type of inner screen viewed by the homunculus—are 
good representations of what one thinks one sees—various arrangements of 
independent objects in the “outside world.”

Hegel, as an early critic of the way of ideas, is now sometimes discussed 
in relation to the critique offered by Wilfrid Sellars of what he called “the 
myth of the given,” but here I want to focus on aspects of Hegel’s way around 
the Cartesian framework that drew on an alternative offered by Leibniz in a 
logico-epistemological approach that may be seen as a generalization of the 
“revolution” that Copernicus had established in cosmology. This would be 
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reflected in Leibniz’s logic, inasmuch as he would conceive of a way of trans-
lating between extensional and intensional interpretations of judgments based 
on the idea of a type of reversal of direction from which the contents of a 
judgment could be considered, a conception linked to his use of the metaphor 
of “perspective.” On this approach, the “subjectivity” that Descartes and other 
way-of-ideas thinkers had made thematic was not to be captured by conceiv-
ing of one’s experience as unfolding on the stage of some “inner theater,” but 
more in terms of the consequences for a subject’s experience of the particu-
larity of their placement and orientation within the world. That is, a subject 
perceives the things of the world around them and the arrangements and 
interactions of those things from a particular perspective or point de vue, as 
famously sketched in Leibniz’s Discourse on Metaphysics. While Kant is stan-
dardly associated with a philosophical extension of this “Copernican revolu-
tion,”1 the recognition for having taken Copernicus’s method seriously must, 
as Friedrich Kaulbach once argued, equally go to Leibniz (Kaulbach 1973, 333).

Leibniz is now known, among other things, for his invention of the mod-
ern mathematical approach to logic, which involved the application of algebra 
to Aristotle’s syllogistic in a way similar to that made famous by Descartes’s 
invention of analytic geometry. However, Leibniz also reacted adversely to 
Descartes’s reduction of geometry to arithmetic and suggested a nonmetri-
cal form of analysis that he called situational analysis, analysis situs. This, it 
seems, had been based on what he knew of the work of Desargues and espe-
cially his follower Pascal.

5.1 Leibniz’s Ambivalent Revival of Plato’s Philosophical Arithmetic

Interest in Leibniz’s logic was limited until the end of the nineteenth century 
when it was “rediscovered” in a context within which the innovatory nature 
of his thought could be appreciated. Since the 1950s especially, Leibniz has 
increasingly come to be seen as having anticipated significant ideas found 
not only in Boole and the algebraists but in Frege and Russell as well (e.g., Re-
scher 1954). By the 1990s, careful reconstructions of the logic contained in the 
1686 essay, “General Inquiries about the Analysis of Concepts and of Truths” 
(Leibniz 1966, ch. 7), were being carried out by Wolfgang Lenzen (Lenzen 
1990, 2004), Chris Swoyer (Swoyer 1994), and others, and this type of analysis 
has continued to be developed (e.g., Malink and Vasudevan 2016).

Leibniz’s logic is now seen as amounting to more than a vague anticipa-
tion of the later approach of George Boole in which Aristotle’s syllogistic was 
interpreted into an algebraically tractable form in the context of an emerging 
set theory. For Lenzen, while the systematic concept calculus developed in 
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General Inquiries was mathematically equivalent to Boole’s later algebra of 
sets (Lenzen 2004, 13–14, section 4), this work was further extended to a cal-
culus of propositions, on the one hand, and a modal logic, on the other, with 
the latter anticipating the basic ideas found in modern possible-world seman-
tics (section 6). In relation to the same work, Swoyer claimed that Leibniz had 
anticipated the modern distinction between syntax and semantics, a distinc-
tion not clarified until Tarski’s development of the idea of “models” (Tarski 
1954). As well as this, Leibniz had anticipated the use of particular algebraic 
models, the algebra for which, involving “partially ordered sets” (posets) and 
diagrammatic “semilattice” structures, have only been explicitly developed 
from the early twentieth century (Swoyer 1994, 25; Malink and Vasudevan 
2016, section 3.1).2 Below I give a quick sketch of some of the basic ideas sug-
gested by these authors, relating them to what we have seen at work in ancient 
logic and as anticipating logical developments in the twentieth century. For 
our purposes, however, it will be the implications of Leibniz’s unrealized proj-
ect of analysis situs and its connections to the nineteenth-century revival of 
geometric algebra that will be emphasized.

Lenzen has reconstructed the series of axiomatic logical systems from 
Leibniz’s texts written throughout his career. The series commences with the 
simplest system developed between 1676 and 1679, which was a class-based 
logic utilizing as a principle for inference the type of transitivity of contain-
ment relations that we have seen in Aristotle’s ambiguous use of this notion. 
In a way that had been at best implicit in Aristotle, Leibniz treated these con-
tainment relations as fundamentally intensional. As one interpreter of Leib-
niz’s logical achievements has put it, “Leibniz was fully aware of the difference 
of these two methods of interpretation of Aristotle’s logic, and he was the 
first to construct an intensional interpretation, if only in terms of his charac-
teristic numbers. It was his idea to use pairs of numbers which has led us to 
the general construction of a set theoretical intensional model of Aristotelian 
logic” (Glashoff 2010, 263).3

This would be one major difference between Leibniz’s approach and that 
of Boole, who would interpret his calculus extensionally. That is, from Leib-
niz’s intensional viewpoint, the concept <human> is conceived as containing 
the concept <animal> just as the concept <animal> contains the more gen-
eral concept <organism>. This was the inferential principle traceable back 
to Plato’s diairetic pyramid and operative in Aristotle’s “perfect” syllogisms, 
although Aristotle seemed to blur this with suggestions of an extensional in-
terpretation. However, the reverse container-contained relation holds when 
these structures are interpreted extensionally from “bottom up,” as when the 
class of animals is now understood as containing the subclass of humans. As 
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noted above, in some of these works Leibniz had also suggested that numbers 
be assigned to terms such that the concept <human> could be conceived as 
containing the concept of <animal> just as the number 6 contains as a divi-
sor or “factor” the number 3 (e.g., Leibniz 1966, 17), reproducing Aristotle’s 
transitive containment relations: if the last term C is contained in the middle, 
B as in a whole, and B is so contained in the first, A, then C is contained in A. 
It is important to remember, however, that a type of algebra was available to 
Leibniz that had not been available to Aristotle, such that the assignment of 
numbers to parts of sentences allowed the idea of basic arithmetical opera-
tions being applied to them. This would allow the judgment/equations to be 
linked systematically to each other in terms of a numerical value, 1 or 0, that 
would later be understood as one of two “truth-values,” “true” and “false.”

According to Lenzen, the strongest logic in Leibniz’s series is to be found 
in General Inquiries, which is “deductively equivalent or isomorphic to the 
ordinary [that is, extensionally interpreted] algebra of sets.” Thus, Leibniz 
“ ‘discovered’ the Boolean algebra 160 years before Boole” (Lenzen 2004, 7).  
Swoyer calls this calculus the “calculus of real addition” because of the way 
that Leibniz conceives of a process of adding concepts together in a way ana
logous to the arithmetical operation of adding numbers. It was this that con-
stituted the algebraic approach that Leibniz brought to the implicitly geo-
metrically conceived Aristotelian syllogism:

Although Leibniz stresses that his calculus is amenable to alternative inter-
pretations, he very frequently interprets its characters as signifying concepts 
and real addition as an operation for conjoining them; for example, the real 
addition of the concepts rational and animal is the complex concept rational 
animal. In order to accommodate real addition in the object language, Leibniz 
employs what we would now regard as a character-forming operator that al-
lows us to join characters like ‘A’ and ‘B’ to produce the composite character  
‘A Å B.’ In interpretations in which the characters of his calculus denote con-
cepts, ‘A Å B’ signifies the compound concept that is the real sum of the con-
cepts A and B. (Swoyer 1994, 7)

Leibniz had put the ‘+’ sign inside a circle to put the reader on notice that 
conceptual addition did not always behave like simple numerical addition. 
In fact, confusingly, the concepts that seem to be “added” are those that have 
been established by a process akin to “division.” Later, Boole would clarify the 
respective roles of logical “addition” and “multiplication.”

Conceptual addition shows many of the features found in the actual ad-
dition of numbers,4 but one of the axioms of the system diverges from the 
numerical analogue. This is the axiom “A Å A = A,” which will appear also 
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in Boole and be a distinctive feature of algebras of logic as distinct from nu-
merical algebras. Later, in the nineteenth century, algebra would become suf-
ficiently abstract so as to allow the clear distinction of its operations from 
numerical calculation. For example, “group theory” would display the struc-
tures and processes underlying the fundamental arithmetical operations of 
numerical addition and multiplication as representing particular instances 
of more general binary operations on sets (Anonymous 2008, 2.1).5 In En
gland, this process of abstraction of algebraic operations away from domains 
of numbers would include the independent development of algebraic logic by 
mathematicians such as George Boole and Augustus De Morgan.6

For his part, Leibniz had attempted to develop a system of logical cal-
culus after the axiomatic style characteristic of Euclid’s geometry, in which 
theorems are deduced from a set of fundamental axioms. Thus, in Leibniz’s 
universal characteristic, primitive symbols are to be joined in basic equations 
from which more complex syntactically well-formed “sentences” could be 
built. This allowed propositions to be thought of as akin to equations and, like 
Boole roughly two centuries later, Leibniz would employ a version of arith-
metic reduced to two numerals, 1 and 0, rather than the usual ten.7 Here it is 
worth pausing to reflect upon the peculiar relation in which this approach 
would stand to Greek mathematics.

Leibniz’s allusion to Pythagorean mathematics is obvious from the choice 
of “Monadology” for the name of his metaphysical system. However, the de-
velopment of the modern digital number system had required the Indian-
originated “Arabic” system of numbers that ranges from 0 to 9, not the Greek-
originated “Roman” system with its still largely Pythagorean 1 to 10. In short, 
the number zero, problematic for the Pythagorean conception of number, was 
required for the development of modern algebra.8 However, there is some-
thing of the Pythagorean approach in Leibniz’s choice of the binary number 
system. As has been remarked, the Greeks had conceived of magnitudes as 
organized into different kinds: linear numbers could not be treated in the 
same way as rectangular numbers, nor rectangular numbers in the same way 
as cubic numbers. But in relation to their number theory, the fundamentally 
opposed kinds of number in the Pythagorean view were even and odd num-
bers. In the type of binary “arithmetic” introduced by Leibniz and Boole for 
the purposes of propositional logic the following equalities held:

1 + 1 = 0,
1 + 0 = 1,
0 + 1 = 1, and
0 + 0 = 0.
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This is the same pattern that exists in the Pythagorean system for adding odd 
and even numbers, for which the pattern holds:

odd + odd = even,
even + odd = odd,
odd + even = odd, and
even + even = even.

Summing up, when facing the type of calculus of which Leibniz con-
ceived, these sentence-equations could be grasped as equations having one of 
two numerical values, and as able to be manipulated in ways that allow vari-
ous combinations of numbers to be computed. Regarded logically, however, 
they could be regarded as assertions that had the value of being either true 
or false (or as Leibniz usually expressed it, as equal to oui or non). From the 
latter perspective the outputs of the computational process would thus result 
in sentences whose “truth-values” were logically understood on the basis of 
the outputs of algebraic computations performed on sets of elements. Hegel’s 
effective logic teacher, Ploucquet,9 had followed Leibniz down this computa-
tional path (Marciszewski and Murawski 1995).

A particularly crucial issue for Leibniz had been how to derive the needed 
propositional logic from his more basic concept calculus. The relation of Ar-
istotle’s term logic to a properly propositional logic would become a major 
issue among the logicians in the second half of the nineteenth century, with 
the general recognition of the presence of problems compromising Boole’s 
efforts. As for Leibniz, Lenzen describes his extension of his 1686 system to 
his system of propositional logic in a process that involves “mapping the con-
cepts and conceptual operators into the set of propositions and propositional 
operators” making it a “seemingly circular procedure” (Lenzen 2004, 7):

Now a characteristic feature of Leibniz’s algebra L1 (and of its subsystems) is 
that it is in the first instance based upon the propositional calculus, but that it 
afterwards serves as a basis for propositional logic. When Leibniz states and 
proves the laws of concept logic, he takes the requisite rules and laws of propo-
sitional logic for granted. Once the former have been established, however, the 
latter can be obtained from the former by observing that there exists a strict 
analogy between concepts and propositions which allows one to re-interpret 
the conceptual connectives as propositional connectives. (Lenzen 2004, 8)

Something like this “strict analogy between concepts and propositions” would 
be the subject of critiques of Leibniz’s logic by both Kant and Hegel,10 and 
in the later nineteenth century Boole and his followers would be plagued by 
similar problems of how to relate concept and propositional calculi. Frege 
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would say of Boole’s system that its two parts, its class and propositional calculi, 
“run alongside one another, so that one is like the mirror image of the other, but 
for that very reason stands in no organic relation to it” (Frege 1979, 14).

The purported “circularity” in Leibniz’s procedure is significant for Hegel’s 
criticism of Leibniz’s conception of judgment in the “mathematical syllogism” 
(SL, 602–604; 12:104–106) as well as for Kant’s more general critique of Leibniz’s 
logic. Leibniz was able to move with apparent ease between his class calculus 
and his propositional calculus because of the phenomenon we have noted in 
which he assumed the equivalence of intensional and extensional readings of 
the relation of class inclusion found in the idea of the reversal of the contain-
ment metaphor. Perhaps the best-known expression of this is found in New 
Essays on Human Understanding where Leibniz has Theophilus comment on 
Aristotle’s securing of inferences in a syllogism via the transitivity of conceptual 
containment:

The common manner of statement concerns individuals, whereas Aristotle’s re-
fers rather to ideas or universals. For when I say Every man is an animal I mean 
that all the men are included amongst all the animals; but at the same time I 
mean that the idea of animal is included in the idea of man. ‘Animal’ comprises 
more individuals than ‘man’ does, but ‘man’ comprises more ideas or more at-
tributes; one has more instances, the other more degrees of reality; one has the 
greater extension, the other the greater intension. (Leibniz 1996, 486)11

Leibniz thus disambiguates Aristotle’s “containment” metaphor at the heart of 
his syllogism with its apparent confusion of extensional and intensional read-
ings: “So it can truthfully be said that the whole theory of syllogism could be 
demonstrated from the theory de continente et contento, of container and con-
tained” (486). But then Leibniz goes on to qualify the idea of containment: “The 
latter [the relation of container and contained] is different from that of whole and  
part, for the whole is always greater than the part, but the container and the con
tained are sometimes equal, as happens with reciprocal propositions” (486).

This seemingly arbitrary distinction between “part-whole” and “container-
contained” is crucial here and differentiates Leibniz’s approach to what is only 
implicit in Aristotle but explicit in later algebraic interpretations of Aristotle’s 
logic. The relation of “inclusion” is meant as reflexive in the way found in the 
arithmetical relation of “less than or equal to” (symbolized by ‘≤’) holding be-
tween two numbers, while “is part of” is treated like “less than,” which is not 
reflexive: 3 is less than or equal to itself but not less than itself. In Leibniz’s dis-
tinction, while a whole cannot be a part of itself, a “container” can contain itself.

It is in relation to this that Leibniz is sometimes thought to anticipate a 
more “geometric” alternative to that of class inclusion, the algebra of “par-
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tially ordered sets” underlying modern “lattice” or “semilattice” structures 
(e.g., Swoyer 1994, 25), modeled on sets of numbers that are ordered accord-
ing to the relation of “less than or equal to” (‘≤’), a relation characteristic of 
geometrical continua. In later algebraic logic, it would be Peirce who would 
explicitly introduce the binary relation that is generally denoted by the sym-
bol ‘≤.’ While applying paradigmatically to numbers, this “less than or equal 
to” relation can be generalized beyond numbers to capture binary relations 
between entities that are transitive, anti-symmetric, and reflexive. This idea 
of an entity having this type of “reflexive” self-relation is the type of idea that 
Hegel would identify as distinctly modern—a feature of modern mathemat-
ics that seems to correspond to the special role of “singularity” found in alge-
bra and in modern thought more generally.

Leibniz’s logical writings were never presented in a unified or systematic 
form; what is found there is really only an array of suggestive hints, the power of 
which has only been recently recognized. Moreover, they are not often discussed 
in relation to the “geometric” alternative that he also presented to Descartes’s an-
alytic approach, his analysis situs. To help see the type of possibilities unleashed 
by his overall approach it might be useful to look to the example provided by one  
of  Leibniz’s eighteenth-century followers, the Swiss mathematician Johann Hein-
rich Lambert, referred to at the time as the “Alsatian Leibniz” (Basso 2010). Lam-
bert himself would anticipate some of the developments of nineteenth-century 
projective geometry and would be involved in disputes with Hegel’s effective 
logic teacher, Gottfried Ploucquet, over the development of Leibniz’s ideas.

5.2 The Cosmology of an Alsatian Leibniz—J. H. Lambert

Lambert is now often known for his role as a correspondent of Kant during 
the years of the gestation of Kant’s critical philosophy, but Lambert’s views 
were widely known and discussed in the eighteenth century. There are cer-
tainly many reasons to assume that Hegel would have been familiar with 
Lambert’s views—most prominently, perhaps, was that Lambert had coined 
the term Phänomenologie, appropriated by Hegel for his own Phänomenolo-
gie des Geistes (Phenomenology of Spirit). But Lambert had also been involved 
in a very public dispute with the Tübingen logician and philosopher Gottfried 
Ploucquet over the development of Leibniz’s logic (Lemanski 2017, 58–63),12 
and connected to this dispute had been Lambert’s own project of pursuing a 
type of alternative to Euclidean geometry with many of the features of projec-
tive geometry (Andersen 2007, ch. 12).

If Leibniz’s approach to the redetermination of experience can be described 
as Copernican, Lambert’s views as expressed in his Cosmological Letters on the 
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Arrangement of the World-Edifice of 1760 (Lambert 1976) might be described  
as bringing out the hyper-Copernican consequences implicit in Leibniz him-
self. To the astronomer Tobias Mayer he would write: “I do not believe that 
one can become more Copernican than I have become in these letters” (Jaki 
1976, 20). In the Letters Lambert writes that “insofar as Copernicus made the 
first step, there remains for us and for our descendants still a thousand other 
steps to take and even then we shall not be perfectly Copernican by a long shot” 
(Lambert 1976, 175).

Lambert speaks of the adoption of the Copernican “idiom” or “language,” 
which is able to be translated into “the ordinary tongue” (176), and speculates 
on the language that might be spoken by astronomers who lived on the moon: 
“Their ordinary language sounds as if the moon had no motion at all. But 
since they constantly see the earth at the same spot of their sky, the earth has 
to appear to them as completely or almost completely motionless, or having 
no other motion that the one which it seems to have around its axis.” Just as 
astronomers on earth have learned to translate their natural language into a 
language in which the earth is described as moving around the sun, the as-
tronomers on the moon would learn to speak in a new way in which the moon 
is described as rotating around the earth. However, “the moon would have to 
let both the moon and the earth move around the sun, and on the basis of this 
twofold analogy they could doubt for good reasons the resting of the sun and 
would in the end stir everything from rest” (176). In fact, this was the analogy 
that Lambert himself drew concerning the structure of the universe. Just as the 
planets revolve around the sun, the sun itself forms part of a cluster with other 
suns that all rotate around some central body, and that body in turn, along 
with other similar bodies, rotates around a further massive central body, the 
result being the galaxy to which we belong, the Milky Way. And the process is 
reiterated, the Milky Way along with other galaxies rotating around a further 
massive central body, this being repeated for perhaps a thousand steps.13

Lambert’s cosmology gives us a good example of the possibilities opened 
up by the hyper-Copernican idea of a continual reiteration of the initial Co-
pernican reversal, forming a type of indefinite continuous geometrical pro-
gression: moon : earth :: earth : sun :: sun : some further central body, and so 
on. In climbing Lambert’s ladder of languages, one moves from some deter-
minate cognition to the higher step positing the condition of that cognition, 
and then to the further condition of the condition of the original cognition, 
and so on, just as Leibniz had talked of reiterating the process of reason giv-
ing, giving a series of “reasons for reasons” (Leibniz 1989a, 28).

Ascent via such a series of languages or conditions invites the picture of 
ascent up a conceptual ladder—a scaling of Plato’s diairetic pyramid so as to 
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achieve some more comprehensive point of view. But why stop at a “thousand 
steps”? As to the telos of such an ascent, Leibniz could invoke the medieval 
concept of knowledge expressed in the language of God, as found in Ockham, 
for example (Ockham 1980), and as reconceived later by Galileo as the lan-
guage of mathematics. In the Bible, the image of a ladder leading all the way 
to heaven had come to Jacob in a dream, but in the Critique of Pure Reason 
(Kant 1998, A321–332/B377–389), Kant would envisage a logically articulated 
ladder for the mind’s “analytic” ascent of “prosyllogistic chains” as leading 
only to a comprehensive view of appearances rather than to any God’s-eye 
view of things in themselves. From Kant’s point of view, Leibniz had failed to 
grasp the depth of the limitations of our cognitive lives, but Hegel’s critique 
was of a different nature. Images such as these all suffered the same indeter-
minacy as that found in an unconstrained geometric series. Leibniz himself, 
however, had already shown concerns about such epistemic structures in re-
lation to the type of “analytic” origins of his own logic.

5.3 Leibniz’s Own Geometric Alternative to Philosophical Arithmetic:  
The Idea of an Analysis Situs

At times, Leibniz expressed concerns about Descartes’s analytic geometry 
and opposed to it an envisaged alternative nonquantitative form of “analysis” 
for geometry that he called an analysis situs, an analysis of situation (De Risi 
2007), an approach to the analysis of space that was clearly in conformity 
with his distinctive holistic and relational approach (Redding 2009, ch. 1.3). 
As noted earlier, both Carnot and Grassmann would describe their respec-
tive forms of geometric analysis as a Leibniz-inspired “geometry of position” 
(Carnot 1803a, i–ii; Grassmann 1995, 317–318). Leibniz would return to the 
idea of an analysis situs intermittently up until his death but never really de-
veloped it; however, the idea would have consequences for the development 
of both geometry and logic in the nineteenth century.

Toward the end of his stay in Paris in the 1670s Leibniz had started to dis-
cuss this form of analysis, by which he seems to have had in mind an attempt, 
in a type of “holistic” or “structural” way, to render each element determinate 
in terms of its relatedness to other elements in the structure. This can be 
understood as a move in the conception of mathematics away from that of 
science of quantity to include notions of order. It seems to have been meant 
to counter the shortcomings that Leibniz had come to attribute to Descartes’s 
effective arithmetization of geometry, and so it marked a limited move back 
to the Greek “geometric algebra,” with geometry being given at least par-
ity status to arithmetic with the nonreducibility of continuous to discrete 
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magnitudes. At the same time, it promised a way beyond the hard dichotomy 
of a stark choice between geometric algebra and the analytic geometry of 
Descartes and Fermat as providing some ultimate framework for investiga-
tion of the world. Others besides Carnot and Grassmann would draw inspi-
ration from this project. In the eighteenth century, Leonhard Euler would 
give the title geometria situs to what would later be called “topology,”14 the 
geometry of continuous multidimensional surfaces. Toward the end of the 
nineteenth century, the French mathematician Henri Poincaré would create 
the discipline of algebraic topology, the application of algebra to topology, 
referring to his project as an analysis situs.

Descartes’s analytic geometry had initially been met with resistance on 
the part of those who believed Euclidean geometry, with its axiomatic proof 
structure, to be more rigorously grounded than the newer algebra. Newton 
himself had harbored such concerns, these being related to his retention of 
the broadly geometric framework for his celestial mechanics and his reluc-
tance to apply within his Philosophiæ Naturalis Principia Mathematica the 
calculus that he had earlier invented. Here, Leibniz was generally on the side 
of the algebraists, but this was tempered by a degree of resistance that also 
suggested the ineliminability of geometry. Thus, like Descartes’s analytical 
geometry, the idea of an analysis situs represented a fundamentally modern 
transformation of the traditional Euclidean approach, while at the same time 
resisting a Cartesian-style reduction of continuous to discrete magnitudes. 
As one historian of this process has put it, Leibniz’s version signaled a “new 
relation between algebra and geometry” such that “the evolution of the two 
fields was henceforth intrinsically linked in a dialectical process” (Dorier 1995, 
237). This idea would, in fact, drive much progress in mathematics through 
the nineteenth century, with the reemergence of projective geometry after 
Carnot and Grassmann’s linked theory of linear extension, and, as we have 
seen, it is clearly expressed in Hegel’s explicit comments on the relations of 
geometry to arithmetic.

The modernity of Leibniz’s approach can be discerned in his conception 
of geometry as the science of space. Euclidean geometry, it is usually said, 
had been conceived as the science of spatial figures—figures able to be con-
structed with ruler and compass, lines, triangles, hexagons, circles, and so on. 
As we know, the conception of space itself—space considered as a void—was 
largely foreign to the thought of Aristotle, for whom such a conception of 
empty space was literally “nothing,” and thus had no properties, such as ex-
tension.15 From an Aristotelian perspective, then, there could therefore be no 
“science of space” itself. In contrast, the Stoics had argued in favor of the idea 
of “void space,” and similar notions had appeared in late Neoplatonists such 
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as Proclus, but the problematic nature of this notion persisted into the early 
modern period. As the historian of science Edward Grant noted (Grant 1981), 
during this period there was indeed “much ado about nothing,” that is, about 
void space. Newton, for example, who needed the conception of void space, 
argued that space was a nonmaterial substance, in fact the extension of an 
immaterial but nevertheless infinitely extended God (Grant 1981, 244). It was 
this absolute conception of space that Leibniz had contested in his correspon-
dence with the Newtonian Samuel Clarke (Redding 2009, ch. 1). Connected 
to a relational account of space, Leibniz’s idea of a situational geometry seems 
to have offered to provide him with a way of making spatial relations determi-
nate in a way that did not raise the problems raised by Newton’s theologically 
derived idea of absolute space.

In the context of projective geometry this relational theory of space would 
be expressed in terms of the idea of “projective” correlations among differ-
ently aligned planar figures. In turn, this would introduce an alternate way of 
understanding the significance of Cartesian coordinates in analytic geometry. 
From Newton’s absolutist perspective as represented by Clarke, point-like lo-
cations in space could themselves be thought of as absolutely determined, 
with space thought of as constituted by an infinite totality of such points. 
Thus, with the new concept of number that had been introduced by Stevin 
and Descartes, space could be conceived as a type of infinite and continuous 
three-dimensional version of the coordinated plane of Cartesian geometry, 
in which each point was isomorphic with an ordered sequence of, now, three 
“real” numbers. As with Newton’s earlier identification of infinite space with 
God, this complete arithmetization of space could allow its conception as 
both infinite and having determinate locations. Leibniz’s opposed holistic 
or relational conception of space, however, would deny that any point could 
have any such absolute location, each point gaining its identity in relation to 
other points. Cartesian coordinates could be still employed, but in a way anal-
ogous to the way in which coordinates had been employed in Greek geom-
etry, by being generated in relation to determinate geometric figures. Later, 
with the development of Grassmann’s vector analysis, coordinates could be 
introduced as “base vectors” in terms of which the magnitude of other vectors 
could be measured. But these base vectors would themselves be subject to the 
types of transformations applicable to the vectors measured by such base vec-
tors. Such coordinates could not measure absolutely.

Part of Leibniz’s resistance to the Cartesian reduction of geometric figures 
to algebraic equations seems to have been that, like the Greeks, he thought 
that geometry could not be eliminated because of its role in the determination 
of arithmetical entities (De Risi 2018, 249). However, exactly what Leibniz had 
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in mind with the term analysis situs has remained unclear. Without sciences 
such as topology or vector analysis existing in Leibniz’s time, it is difficult 
to simply identify what he meant by analysis situs by invoking them. The 
projective geometry of Desargues and Pascal, however, the form of geometry 
that would be reinvented by Carnot, did exist, and Leibniz himself knew of 
it and seems to have been particularly influenced by it. Indeed, Leibniz had 
possessed the letter in which the precocious sixteen-year-old Pascal had set 
out a major theorem of projective geometry (“Pascal’s theorem”) that he had 
discovered (Mesnard 1978). Given Leibniz’s “Copernican” attention to the 
idea of reflection upon the conditions of perspectivally constrained percep-
tual knowledge, projective geometry surely would have recommended itself 
to him, as it had to his Alsatian follower Lambert (Andersen 2007, ch. 12).

Leibniz’s idea of an analysis situs was discussed during the eighteenth cen-
tury. As we have noted, Kant, for example, invoked it in his essay of 1768, 
“Concerning the Ultimate Ground of the Differentiation of Directions in 
Space.” Hegel may have known of it through this, but he probably would have 
been familiar with the associated mathematical idea of “points at infinity” 
introduced by Kepler in 1604 (Field and Gray 1984, appendix 4), in whose 
views he seems to have taken a particular interest since his time at Tübingen 
(Paterson 2005, 73).16

With the idea of parallel lines meeting at infinity, projective geometry had 
removed a restriction found in Euclidean geometry to the idea that any two 
lines can be conceived as intersecting.17 It is not coincidental, then, that Lam-
bert is now recognized as having challenged Euclid’s “parallel postulate” in a 
way that anticipated the non-Euclidean geometries of the nineteenth century 
(Ewald 1996, vol. 1, ch. 5). These issues had thus been in the air at the end 
of the eighteenth century when Hegel was in the process of shaping those 
ideas that would go on to define him as a philosopher in the nineteenth. It is 
significant in this regard that J. K. F. Hauff, with whom Hegel could possibly 
have been associated around the end of the 1790s, had gone on to become a 
professor of mathematics at the University of Marburg and was known for his 
work on the “theory of parallels” (Halsted 1896, 105).

5.4 Lambert’s Geometry of Thought and Hegel’s Critique

From the 1750s Lambert had developed ideas in relation to the geometry of 
perspective that bore similarities to the projective geometry to be revived in 
the nineteenth century. According to Kirsti Andersen (Andersen 2007, ch. 12), 
although his anticipation of various projective theorems would be later ac-
knowledged by Poncelet in the 1820s, Lambert’s work seems to have had little 
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effect on the later revival of projective geometry. Some of these works would 
remain unpublished, and the published ones would remain largely unnoticed. 
Where his works were appreciated it was in the context of their practical ap-
plication, as in perspectival painting, rather than in strictly scientific circles.

In these works, Lambert had been concerned with the way that spatial 
arrangements in a horizontal plane were projected onto a vertical plane, as in 
a landscape projected onto the plane of an artist’s canvas. He apparently did 
not know of the work of Desargues (Field and Gray 1987, 42), and called his 
geometry Linealgeometrie, literally “ruler geometry,” since, as in projective 
geometry, all constructions could be carried out with a ruler alone, without 
the compass typical of Euclidean geometry. Also as in projective geometry, 
Lambert used the ideas of an “eye point” or viewpoint, and points at infinity 
called “vanishing points” that could be conceived as lying on a Grenzlinie, 
a limit-line. He also made use of the idea of converging straight lines being 
“perspectively parallel” as well as that of any triangle being able to be under-
stood as a perspectival transformation of an equilateral triangle. However, 
he did not pursue the search for invariances across projections that would be 
central to nineteenth-century projective geometry, the context within which 
the harmonic cross-ratio would be so significant.

While Lambert’s work on the geometry of perspective may not have been 
widely appreciated in scientific circles, there are reasons why this may not 
have been the case with respect to students at the Tübingen Seminary in the 
last decades of the eighteenth century. Lambert had been involved in a very 
public precedence dispute with Gottfried Ploucquet, the logic and metaphys-
ics master there, over the use of “Euler diagrams” in logic (Lemanski 2017, 
58–63). The dispute, however, was not restricted to the issue of precedence, 
as both disagreed over how to interpret the logical calculus of Leibniz, which 
they both adopted and developed. For his part, Ploucquet had denied the 
possibility that any universal calculus or characteristic could be appropri-
ate for finite beings such as ourselves, as it presupposed a type of knowl-
edge inaccessible to such beings (Lu Adler 2017, 43).18 In contrast, Lambert 
in his Neues Organon used both geometric and algebraic signs to represent 
thoughts and conceived of a universal algebraic language akin to Leibniz’s 
universal characteristic to supply, as it were, semantic content for the formu-
lae of that calculus (43).

Hegel was certainly familiar with Lambert’s work and in The Science of 
Logic is explicitly critical of his project of giving a mathematical notation 
to logic “based on lines, figures and the like, the general intention being to 
elevate—or in fact rather to debase—the logical modes of relation to the sta-
tus of a calculus” (SL, 544; 12:47). His savage critique seems to add to the 
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arguments of those who deny that mathematical logic could be significant for 
Hegel’s project of logic. As Hegel points out, “Since the human being has in 
language a means of designation that is appropriate to reason, it is otiose to 
look for a less perfect means of representation to bother oneself with. . . . It is 
futile to want to fix it by means of spatial figures and algebraic signs for the 
sake of the outer eye and a non-conceptual, mechanical manipulation, such as 
a calculus” (545–546; 12:48). But exactly what is the target of Hegel’s critique 
here? One thing seems certain: Hegel is clearly against the aspiration of Lam-
bert’s geometric calculus to the status of a characteristica universalis. To a cer-
tain extent, Hegel’s critique more or less repeats Ploucquet’s criticisms of the 
project of the construction of a universal language as found in both Lambert 
and Leibniz, but I suggest it is nevertheless not the same.19

Since Ockham there had been a common theological view that God thinks 
in a logically perspicuous language that might be considered as the ideal to 
which we finite beings aspire. Lambert’s moon-dwelling astronomers need-
ing to learn the language of earthlings, who in turn would need to learn the 
language of inhabitants of the sun and so on, might be thought of as one way 
of conceiving of the relation of finite perspectival languages to some infinite 
aperspectival one. Lambert’s series of new languages to be learned really just  
presents us with a linguistic analogue of Leibniz’s imagery of ascent up the 
Platonic ladder, at each step of which one postulates, in a Copernican way, 
the conditions that might hold for the experience of the world to be had from  
the rung below. Kant, however, put an end to such optimistic imagery, put-
ting an infinite distance, not Lambert’s very great cosmological distance (his 
“thousand steps”), between ourselves and our ideal destination. For Kant, our 
inability to ascend the Platonic/Jacobian ladder to some ultimate god’s-eye 
view or divine language is based in our absolute finitude separated by an in-
finite gap from God’s absolutely infinite nature. Ploucquet’s criticism of Lam-
bert thus seems akin to Kant’s criticism of Leibniz, but Hegel, I suggest, re-
fused this dichotomy, and so too the image of the relation of human to divine 
nature on which it was based. The universal characteristic is a flawed model 
for logic read either optimistically, as the, at least in principle, achievable di-
vine perspective, as with Leibniz or Lambert, or pessimistically, as forever 
out of our grasp, as with Kant or Ploucquet. But this criticism need not flow 
over entirely into the idea of a logical calculus per se. Indeed, as rector of the 
high school at Nuremberg, prior to using his own logic text, Hegel appears to 
have used the logical calculi of Lambert and Ploucquet for upper high school 
instruction in introduction to philosophy courses.20

The idea of “base vectors” in vector analysis would free this form of analy-
sis from any presupposed absolute metric, and, as we will see below (chap
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ter 8), certain proponents of the use of logical calculi in the nineteenth cen-
tury would similarly object to any idea of a universal logical language, of the 
sort that, in the spirit of Leibniz, was being proposed by Gottlob Frege. For 
example, W. E. Johnson (presumably unknowingly) would essentially repeat 
Hegel’s criticisms of Lambert in arguing that, as the use of any formal logi-
cal calculus depended on the use of human reasoning and human language 
for its interpretation, human language itself could not in turn be reduced to 
such a calculus (Johnson 1892, 3). Moreover, in the spirit of Johnson and his 
colleague John Venn, Hegel, in an address as rector at the Nuremberg Gym-
nasium, would point to the benefits for spiritual developments of engaging 
with “alienated” concepts that have been “divorced” from their immediate 
spiritual content, as when the learner of a foreign language has to start with 
memorizing mechanically combined meaningless sounds (Misc, 296–297).21 
In order to determine Hegel’s actual attitude to the relevance of mathematics 
to logical thinking, this is perhaps an appropriate place to examine exactly 
what Hegel does say about the status of mathematics, and especially geom-
etry, in those passages in The Science of Logic’s penultimate chapter, “The Idea 
of Cognition,” alluded to by Brady Bowman, in which geometry is treated as 
“the highest form of finite theoretical cognition” (Bowman 2013, 170).

Consistently, the attitude that Hegel expresses toward the relevance of 
mathematics for philosophy mirrors the view that Aristotle had attributed to 
Plato: numbers and geometrical figures are not themselves objects of philo-
sophical cognition, as had been thought by the Pythagoreans, but have more 
the status of “intermediaries,” which help when raising the mind to higher 
things. It is thus no coincidence that the discussion of mathematical “theo-
rems” in “The Idea of Cognition” leads into “The Idea of the Good,” the idea 
to which mathematical intermediaries lead for Plato. As Aristotle was appar-
ently fond of recounting, Athenians who had gone to a lecture Plato was to 
deliver, “On the Good,” had come away frustrated because Plato had spent 
most of the lecture discussing mathematics.22

As we have seen, for Hegel, numbers are born from practices concerned 
with countable worldly things, but number itself “is not an object of the 
senses, and to be occupied with number and numerical combinations is not 
the business of the senses; such an occupation, therefore, encourages spirit 
to engage in reflection and the inner work of abstraction” (SL, 181; 21:207). 
However, calculating with numbers relies on the manipulation of empirical 
objects—dots, fingers, written symbols, and so on. This affords arithmetic 
an ambivalent status: it is “of great, though one-sided, importance. For, on 
the other hand, since the basis of number is only an external, thoughtless 
difference, the occupation proceeds without a concept, mechanically” (181; 
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21:207). The very same applies to geometry. Like numbers, geometric objects 
are not objects of the senses, for “the determinations of space that are its sub-
ject matter are already abstract objects” (724; 12:226). And yet, like numbers, 
geometric objects rely on physical phenomena such as diagrams that are able 
to be applied to the empirical world, such that “the intuitive character that 
geometry possesses because of its still sensuous material only gives to it that 
level of evidence that the senses generally provide to thoughtless spirit” (724–
725; 12:226).23 In short, space is not itself empirical, but “it is only because the 
space of geometry is the abstract emptiness of externality that it is possible 
for figures to be drawn in its indeterminateness in such a way that their de-
terminations remain perfectly at rest outside one another with no immanent 
transition to the opposite” (725; 12:226).

For the Greeks, the activity of reflecting on the nature of number, arith-
mos, had separated from the simple use of numbers in practical life, logistikos 
(Klein 1968, pt. 1), and had created a theoretical practice that provided a place 
for the conceptual process in which these theoretical objects transitioned into 
their opposites. The very concept of what a number was, for example, had 
been transformed under the pressure of the original discovery of the incom-
mensurability of discrete and continuous magnitudes. Here, we may surely 
ask, would such a process have been possible without numbers having been 
written down or geometric diagrams drawn, allowing early geometers to 
come up with their axioms and theorems? Figures can be drawn in that “ab-
stract emptiness of externality,” and once drawn, they are there as empirical 
objects “perfectly at rest outside one another with no immanent transition to 
the opposite” (SL, 725; 12:226), allowing the reflection upon them that gener-
ates contradictions. Thus, immediately after, Hegel goes on to suggest that 
it is just that externalization that allows the discovery of phenomena such 
as incommensurability that will drive the conceptual process of redetermi-
nation. “Now, since the delineation of these [geometric] figures commences 
from different aspects and principles, and the various figures fall into place 
of themselves, in the comparison of these figures their qualitative unlikeness 
and incommensurability come into view. Geometry is thus driven, beyond 
the finitude within which it advanced step by step orderly and securely, to 
infinity—to the positing as equal of such as are qualitatively diverse. Here it 
loses the evidence that it derived from being otherwise based on fixed fini-
tude without having to deal with the concept and the transition to the oppo-
site which is its manifestation” (725; 12:226).

The incommensurability encountered within mathematical practice, I have 
been suggesting, was for Hegel grounded in the fundamental identity within 
difference between discrete and continuous magnitudes. If this then drives 
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geometry beyond finitude to “infinity,” might we not think of a comparable 
incommensurability within the logical realm to similarly drive “formal logic” 
to infinity, as long as that formal logic is properly conceived? To follow up this 
thought it is necessary to take up Hegel’s attitude toward the most developed 
form of logic of his age—Leibniz’s algebraized version of Aristotle’s geometric 
logic.



6

Hegel’s Supersession of Leibniz and Newton:
The Limitations of Calculus and Logical Calculus

Hegel is often regarded as a philosopher who did not take mathematics very seriously. 
The fact that he devoted a substantial portion of The Science of Logic to the infinitesimal 
calculus speaks to the contrary.

j o h n  l .  b e l l , The Continuous, the Discrete, and the Infinitesimal in  
Philosophy and Mathematics

When Leibniz relies upon the type of equivalence or interchangeability be-
tween “intensional” and “extensional” readings of judgment/equations (Leib-
niz 1996, 486), we might think of him as consciously accepting what Aristotle 
had simply assumed—that the categories were simultaneously categories ap-
plying to things themselves, on the one hand, and to thought about things, on 
the other. In the Jäsche Logic, Kant would repeat the idea of an inverse rela-
tion between intension (Inhalt) and extension (Umfang):

Every concept, as partial concept, is contained in the representation of things; 
as ground of cognition, i.e., as mark, these things are contained under it. In the 
former respect every concept has a content, in the other an extension.

The content and extension of a concept stand in inverse relation [in umge­
kehrten Verhältnis] to one another. The more a concept contains under itself, 
namely, the less it contains in itself, and conversely. (Kant 1992c, §7)

But Kant’s account of this inverse relation would be complicated by the fact 
that his critical philosophy was based upon a break with Leibniz’s way of 
thinking of how objects were contained, or, in Hegel’s language, “subsumed,” 
under concepts. For this task, Kant would introduce a distinct type of non-
conceptual cognition, the intuition, the singularity of which would demarcate 
it from the necessary generality of concepts. This nexus of the three-way rela-
tion between Leibniz, Ploucquet, and Kant provides the context within which 
Hegel’s subjective logic might be best approached.

6.1 Reactions to Leibnizian Hyper-Copernicanism: Kant and Ploucquet

It was the reciprocity of intensional and extensional readings of judgments 
that underlay Leibniz’s use of two interchangeable conceptions of reference 
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to specific individuals. In order to give judgments about individuals a proper 
place within Aristotle’s syllogistic, Leibniz had followed earlier nominalist lo-
gicians by conceiving of singular judgments on the model of universal judg-
ments. As universal judgments from an Aristotelian perspective could be re-
garded as referring to kinds, a judgment about Socrates from this perspective 
could, given the new individualization of essences, be thought of as referring 
to Socrates as a type of singular universal or individual essence—the medi-
evalists’ haecceity.1 But Leibniz also adapted the particular judgment form for 
this purpose as well, and this would allow a contrasting intensional reference 
to Socrates.2 From this perspective, just as the concept <philosopher> could 
be thought of as referring to philosophers in general, the range of its reference 
could be reduced by “adding” further specifying concepts, as in producing 
the concept <Athenian philosopher>, say. Add enough specifying concepts 
and one can eventually limit the class of philosophers one has in mind down 
to one. For example, one might form the concept <Athenian philosopher, 
executed by his fellow citizens for allegedly corrupting the youth of Athens>, 
and so uniquely pick out Socrates. This could stand as an early template for 
Russell’s famous “description theory of proper names” (Russell 1905). But 
what if concepts that are added together in acceptable ways produce a “defi-
nite description” for which there are no instantiations? We might, after all, 
have just as easily combined concepts in a rule-governed way to produce a 
description “Athenian philosopher who was crowned king for his role in the 
Peloponnesian Wars.”

As Lenzen has pointed out, the Leibnizian answer to this is that what is 
picked out is the metaphysically problematic entity of a possible person: “For 
Leibniz, the extension of a predicate A is not just the set of all existing individ-
uals that (happen to) fall under concept A, but rather the set of all possible in-
dividuals that have that property” (Lenzen 2004, 16). In short, for Leibniz the 
“extension” of a term could not be limited to the entities of the actual world 
but must extend to the realm of other merely possible worlds, and with this 
had arisen a modal status not found in Aristotle—that of mere logical pos-
sibility. Merely possible non-beings would come to find an indispensable role 
in modern thought akin to the indispensable “impossible numbers” found 
there as well (Nagel 1979). Forming a hypothesis about, say, the possible viral 
origins of a new illness is now generally thought to represent a stage within 
scientific inquiry, and the hypothesis has to be regarded as meaningful even 
if such a virus turns out not to exist.

For Aristotle possibilities had been potentialities in the sense that, as from 
the point of view of Aristotle’s biology, human semen contains potential hu-
man individuals. In contrast, Leibniz’s use of possibility seems to be more 
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connected to the propositional logics of the Stoics within which the condi-
tional sat more easily than it did within Aristotle’s syllogistic (Bobzien 2020). 
Consequently, Leibniz’s algebraization of logic seems to have reversed the 
relation between actuality and possibility as found in Aristotle. Actual indi-
viduals belong to a world that, for various reasons having to do with various 
features of it in relation to necessary features of the God that created it (his 
infinite goodness and so on), is a world that, from an infinite set of possible 
worlds, has been chosen because it is the best of those possible worlds.

We might then say that Leibniz’s two devices for picking out individuals—
one that adapts the traditional universal quantifier and one that adapts the 
particular quantifier—are analogous to the use of constants and variables in 
algebra, respectively. The former picks out directly a concrete specific indi-
vidual, Socrates, for example. However, when one picks out Socrates by the 
combination of concepts, <Athenian philosopher, executed by his fellow citi-
zens for allegedly corrupting the youth of Athens>, one is first identifying 
an abstract possibility, and then “subsuming” an actual individual (if that 
individual exists) under that abstract conceptualization. Following Leibniz, 
Ploucquet would employ a similar type of distinction between ways of picking 
out an object with his distinction between “exclusive” and “comprehensive” 
forms of particularity (Ploucquet 2006, §§14–15).3 Following Ploucquet, Hegel 
would adopt it, but for Hegel, the interchangeability of these terms found in 
Leibniz would be constrained in important ways that had to be reflected in 
logic itself. We will examine this in more detail in later chapters (chapters 9 
and 10), but the basic principles involved are relatively straightforward.

It is clear that one may infer a particular judgment from a singular judg
ment—what is now known as the rule of “existential generalization.” If one 
knows that Socrates was killed for supposedly corrupting the youth of Athens, 
then one knows that someone was killed for supposedly corrupting the youth 
of Athens. Working within an epistemic environment as idealist logics stan-
dardly do, this inference is one way, however. One may know that somebody 
was killed in this way, but not know who. There are occasions, however, when 
something like the reverse of this inference is appropriate. If from the forensic 
evidence it becomes clear that Jennifer’s apparent suicide was in fact a case 
of murder, the detectives come to know that some actual person killed her; 
they just do not know which one. Putting a proper name to this “somebody” 
(“existential instantiation”) now becomes the task of their inquiry. They start 
narrowing down the class of individuals who fit a list of very particular char-
acteristics (had a motive, was in the vicinity at the time, and so on).

For Kant, using logic to reason about the actual world would send him in 
the direction of differentiating “general logic” as a logic of concepts of possible 
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objects from “transcendental logic” as a logic for the cognition of actual ob-
jects, actual objects being accounted for by the role played by a new type of 
cognition that Kant had introduced, singular empirical intuitions. Without 
making such a distinction, Kant believed, Leibniz had been led into the types 
of contradictions that he pointed to as the “Antinomies of Pure Reason.” Hegel 
had learned these Kantian lessons of the contradiction-generating problems 
of Leibniz’s logic but attempted to resolve them in ways that resembled but 
differed from the solution that Kant offered in terms of his fixed distinction 
between intuitions and concepts as opposing species of cognitions.

Effectively, Hegel would employ a solution with which Kant had flirted in 
the 1760s prior to his transition to the critical philosophy and in the context 
in which he discussed negative magnitudes in terms of opposed directed line 
segments. It is the distinction between two types of predications we have al-
luded to above, and that can be found in Aristotle between the strict logic 
applicable indifferently to members of kinds and the less precise practical 
logic that could be applied to judgments about actual individuals. This was 
the distinction Hegel attempted to capture in terms of that between predica-
tion understood as “subsumption,” on the one hand, and as “inherence,” on 
the other. These were issues that were apparent within Ploucquet’s way of 
addressing Leibniz’s attempts to incorporate singularity into the Aristotelian 
syllogistic.

When Lenzen writes that Leibniz first establishes his class-based system 
as “based upon” the propositional calculus, I take it that he means that the 
whole business of coming up with intensional and extensional classes starts 
with a consideration of propositions in the sense that both classes would seem 
to develop from initial acts of classifying entities into groups—that is, of mak-
ing basic judgments. The idea of a class of animals grouped in virtue of hav-
ing a heart is presumably meant to have come about by a process involving 
judgments of the sort This animal has a heart, so does this animal, this one too, 
and so on. Thus, in New Essays, Theophilus (representing Leibniz) explains 
to Philalethes the essential role of general terms in language. If speaking of 
individual things, were we to have only proper names to apply to them “we 
would not be able to say anything. . . . But if by ‘particular things’ you mean 
the lowest species (species infimae), then, apart from the fact that it is often 
difficult to determine them, it is obvious that they are themselves universals, 
founded on similarity” (Leibniz 1996, 275, emphasis added).

Lenzen’s criticism of the circularity involved in Leibniz’s idea of an ini-
tial classification founded on similarity effectively repeats Aristotle’s criticism 
of Plato’s diairetic method considered as a method of discovery in the Prior 
Analytics (Aristotle 1989, Prior Analytics, 46a32–46b38). Plato had spoken 
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somewhat loosely of a procedure of “collection” (synagoge) in which things 
“scattered about everywhere” are collected into “one kind” allowing a type 
of definition (Plato 1997, Phaedrus, 265d). But this presupposes that we al-
ready know which things to add to the collection and which things to omit, 
and does this not presuppose the diairetic division of genera into species as 
already in place?4 But Hegel would be concerned with the threat to empiri-
cal content attendant on such a response to the problem of circularity facing 
the idea of perceptually based judgments. Propositional logic holds not for 
simple classes of actual things but for classes of possible things, with actual 
things becoming located in presupposed spaces of possibilities.

In transitional essays of the 1760s prior to his “critical turn” and its im-
permeable distinction between concepts and intuitions (Kant 1992a, 1992b), 
Kant would put his criticism of Leibniz in a different way that would be closer 
to that developed later by Hegel with his distinction between the two forms 
of predication within judgments (Wolff 1999). There Kant had differentiated 
between dual judgment types in terms of the different ways that negation 
is handled in each. With the Critique of Pure Reason, however, Kant would 
replace this with the generalized concept-intuition distinction, and the dis-
tinction between these two judgment types would become problematic, al-
though remnants of it would continue to play a role.5 Hegel in contrast would 
consistently refuse to go down the path of a homogeneous judgment form, 
the modern version of which would annihilate the type of kind distinctions 
that allowed judgments to be applied to the world—a mathematical model 
for such an annihilation of kind distinctions we have seen in Leibniz’s great 
mathematical invention, the calculus. For Hegel, judgments must show and 
retain dual forms, and, as in Kant in the 1760s, these dual forms would be dif-
ferentiated by the types of negation (internal and external) characteristic of 
each, a duality that would disrupt the classical laws of logic.

According to Lenzen, while Leibniz was aware of the fundamental dis-
tinction between term and propositional negation, he had trouble not con-
fusing them (Lenzen 2004, 17–18), a feature that is not surprising given his 
general thesis of the simple interchangeability of intensional and extensional 
interpretations of judgments. Here we might follow Lenzen’s account of Leib-
niz transitions between simple categorical judgments and properly proposi-
tional ones.

First, Leibniz subjects the traditional square of opposition to the following 
transformations: the E-judgment “No As are B” is converted into the judg-
ment “All As are non-B,” such that the A- and E-judgments are now opposed 
by their term-negated predicates. This was a type of conversion appropri-
ated from medieval logic. Next, the I-judgment “Some As are B” would be 
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regarded as the external or propositional negation of the newly described E-
judgment, resulting in external “not” being applied to “Every A is non-B” to 
produce “It is not the case that every A is non-B.” Lenzen now describes Leib-
niz’s mature concept calculus as growing out of three transformations of this 
syllogistic starting point. The first drops the quantified aspects of the subject 
terms—“Every A is B” becomes simple “A is B” or “A contains B” (Lenzen 
2004, 14–15). This results from treating extensional and intensional readings 
of a judgment as equivalent. Next, he introduces the idea of conceptual ad-
dition described above, combining concepts such as A and B into A Å B.  
Finally, he disregards the syllogistic limitation of premises to two, introduc-
ing the idea of a longer set of premises.6

The details here are complex, but a fundamental outcome of these changes 
was to allow Leibniz to transfer the idea of containment that operates at the 
level of the relations between subject and predicate within a judgment, as 
when “A is B” is understood intensionally as “A contains B,” to the relation 
of implication that relates a judgment or set of judgments, on the one hand, 
the premises, to a further judgment, the conclusion, on the other. That is, the 
syllogism is understood as the conclusion being somehow contained in the 
list of premises. Using Greek letters for propositions, we might write that A is 
B = α É β. That is, a categorical assertion like “Humans are animals” is given 
the form of an implication along the lines “Being a human implies being an 
animal” or “If something is a human, then it is an animal.”

Leibniz’s various attempts to translate a class calculus into a propositional 
one would place great pressures on the presupposed “arithmetic,” however. 
Although he described the determination of individuals as involving a pro-
cess of conceptual addition, as we have seen, the inferential relations between 
propositions were best captured by the idea that a concept was determined 
as the product of its component concepts (Leibniz 1966, 17). This was one 
problem accompanying the conflation of the categories that Hegel, following 
Ploucquet, would distinguish as singular and particular. To think of a specific 
individual, Socrates, as both brave and wise, might be to think of bravery and 
wisdom as both “inhering” in him in an “additive” way. However, if Socrates 
is grasped as just “some or other” possible individual “subsumed” under the 
concepts <brave> and <wise>, then he might best be thought of as an instance 
of the product of these concepts. Both forms of determination would come 
together in Leibniz’s idea that every individual had a “complete concept.” On 
this view, that I am sitting at my desk, typing on this keyboard at this very 
moment, must be as much part of my concept as my being a human being, for 
example, and in this sense, any property predicated of me will ultimately be, 
in Kant’s terminology, “analytic” rather than “synthetic,” and any proposition 
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will be a matter of extracting the predicate from the subject considered as 
a complex concept. When this type of “philosophical arithmetic” would be 
rediscovered in the nineteenth century with the work of George Boole, such 
issues would come to be addressed in a more self-conscious and explicit way.

Boole would repeat Leibniz’s attempt to derive a calculus of propositions 
from the starting point of a calculus of classes, although Boole would start 
from an explicitly extensional interpretation, and the problems inherent in 
this approach would be worked on by algebraists like Jevons, Peirce, Venn, 
Johnson, and Schröder. Of the algebraists, it would be MacColl who would 
conceive of the propositional calculus as nonderivative in a way that resulted 
in a distinct form of modal logic that, I will suggest, resembles Hegel’s. Here, 
however, let us remind ourselves of the two eighteenth-century critical re-
sponses sketched above, those of Kant and Ploucquet. Kant’s official response, 
as we have seen, was his critical philosophy as it developed from 1770 onward, 
with its dichotomy between two structurally different forms of cognition—
intuition and concept—although he had earlier played with a distinction 
based on different judgment structures differentiated by their different treat-
ments of negation. Ploucquet’s would remain closer to the framework of 
Leibniz and attempt to work with the distinction of two types of referential 
mechanisms, exclusive and comprehensive particularity, resulting in different 
judgment types akin to those found in Kant’s transitional work of the 1760s. 
However, Ploucquet would argue that the cost of this was the need to aban-
don the Leibnizian dream of a univocal “universal characteristic,” thus align-
ing himself with those later algebraic logicians who would develop Leibniz’s 
calculus ratiocinator at the expense of his characteristica universalis.7

Within this general framework we might sharpen Hegel’s location by fo-
cusing on similarities between his critique of Leibniz’s logical calculus, on the 
one hand, and his differential and integral calculus, on the other.

6.2 Hegel on Newton’s Celestial Mechanics  
and the Role of the Calculus

Differential and integral calculus, or simply “the calculus,” is usually de-
scribed as having been invented by Newton and Leibniz during the second 
half of the seventeenth century, leading to a fierce priority dispute. In retro-
spect, while each seemed to have worked largely independently, both drew on 
a considerable body of mathematical techniques that had been developed by 
others from earlier in that century, including, crucially, Descartes’s analytic 
geometry, as well as on techniques that dated back to the Greeks, including 
Euclidean geometry, of course, but especially ideas developed by Eudoxus 
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and Archimedes (Heath 1897). The recent developments in algebra in partic-
ular had arisen in relation to the needs of the incipient scientific revolution in 
areas such as astronomy, optics, and the behavior of projectiles, for example, 
for which the static determinations of Euclidean geometry had been found 
wanting.

Two linked problems expressed geometrically in relation to which the 
calculus would emerge concerned curves, in particular finding ways of cal-
culating tangents for and areas under curves. The former, “differential cal-
culus,” would allow the calculation of ratios of change, the latter, “integral 
calculus,” would allow the calculation of continuously accumulating magni-
tudes. Besides being known for his role in the coinvention of the calculus,8 
Newton is, of course, famous as the author of Philosophiæ Naturalis Principia 
Mathematica of 1687 (Newton 2016), generally thought of as the decisive text 
for the founding of modern physics, in which these new mathematical tech-
niques could be applied. However, the method applied in Principia was no 
straightforward expression of the calculus that would develop throughout the 
eighteenth century in algebraic form. Instead, it was heavily dependent upon 
ancient geometry. In contrast, the form it had taken in Leibniz is usually said 
to have been more algebraic, and this aspect would develop, especially in con-
tinental Europe, over the next century. This was the form found in Lagrange, 
who, in his Mécanique analytique of 1788, would proudly declare that there 
were no diagrams to be found between its covers. This heavily algebraized ap-
proach to mechanics is what Carnot had reacted against, reviving a geometric 
approach that had come to be regarded as old-fashioned.

We earlier observed aspects of Hegel’s exploration of Carnot’s geomet-
rical alternative to Lagrange’s algebraic interpretation of the calculus (see 
above, chapter 3.3). For Hegel, Newton’s concessions to geometry did not go 
far enough, and in the 1801 Dissertation, he would argue that Newton’s laws 
were just “mathematical” correlations of quantities that did not give expres-
sion to genuine “forces” in the world (Misc, 174–176). In particular, he there 
contests the conventionally accepted interpretation that, with his “inverse 
square law,”9 Newton had supplied an appropriate explanation of the three 
empirical laws of planetary motion earlier given a geometric explanation by 
Kepler.10 Effectively appealing to the ancient link between power (dynamis) 
and square, Hegel refers to “the true reason why what a certain force brings 
about must be displayed by a square, and why all quantities referring to that 
force must be displayed by relations that follow from the construction of a 
square” (Misc, 177). That which is “displayed by a square” is Newton’s inverse 
square law that declares the gravitational attraction between bodies to be in-
versely proportional to the square of the distance between them, and this 
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must be subject to a proper explanation. Newton’s law is not the explanans 
of Kepler’s geometrically presented laws it is purported to be. In the Preface 
to The Phenomenology of Spirit, Hegel would write of mathematics, by which 
he seems to mean pure mathematics,11 that it “does not consider . . . the rela-
tion of line to surface, and when it compares the diameter of a circle with its 
circumference, it runs up against their incommensurability [Inkommensura­
bilität], which is to say, a ratio lying in the concept, or an infinite, which itself 
eludes mathematical determination” (Phen, §45). Differential calculus would 
ignore the incommensurability of such magnitudes when in differentiation it 
reduced a square quantity (x2) to a linear one (2x). Such criticisms are filled 
out in Hegel’s account of magnitude or “quantum” in The Science of Logic.

It is part of the standard account of the development of modern integral 
calculus that in Principia Newton had built on an ancient technique for mea-
suring the circumference and area of a circle. Utilizing the pairing of qua-
dratic equations and conic sections allowed by Descartes’s analytic geometry, 
Newton’s approximated the area under a curve by conceiving it as made up 
of a series of rectangles. If the rectangles are thought to become thinner and 
thinner, the approximation will be understood as becoming more and more 
accurate (fig. 6.1).
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f ig u r e  6.1 Newton’s use of the method of exhaustion in Principia. For calculating the area under a 
parabolic curve, Newton applied the “method of exhaustion” utilized by Archimedes for calculating the 
length of the circumference or the area of the circle. Or, otherwise put, it was a method for calculating the 
value of the irrational number π (pi), the ratio of the circumference of the circle to its radius being 2π : 1.  
Carnot, in Reflections on the Metaphysical Principles of the Infinitesimal Analysis, refers to this method 
(Carnot 1797, 7–12).
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In Archimedes’s original application to the circle, a first polygon is con-
structed inside the circle (as in fig. 6.2). If P denotes the combined lengths of 
the sides of the polygon, then the circumference of the circle will be greater 
than P. Consider now a second polygon constructed outside the circle, the 
sums of the sides of the polygon being P′. It is also clear that the circumfer-
ence of the circle is less than P′.

Now consider repeatedly doubling the number of sides of both polygons, 
such that the difference between P and P′ steadily decreases. The size of the 
circumference of the circle can now be estimated with greater and greater 
accuracy. (Archimedes himself went from a six-sided to a ninety-six-sided 
polygon and achieved a value for the ratio of the circumference to the diam-
eter of the circle [the number π] as lying between 3 1

7 and 310
71.)

It is important to keep in mind that the actual value of π, as the Greeks 
were very aware, is irrational—that is, the magnitudes of the circumference 
and the radius of the square were for them incommensurable. Rational num-
bers such as 3 1

7 and 310
71 were understood as only approximations of π, but in 

the modern number system, π was understood as fully determinate, despite 
the fact that when expressed in decimal form (as, say, 3.14159  .  .  .), this ex-
pression could never be actually written down. Its expansion would continue 
infinitely. In Newton’s conception of the method of exhaustion as continued 
to infinity, the width of the bases of the rectangles (AB, BC, CD . . .) and of the 
corresponding arc-segments (ab, bc, cd . . .) would be conceived as approach-
ing zero. From the Greek point of view, this transformation of a polygon into 

B

EA

f ig u r e  6.2 Archimedes’s method of finding the length of the circumference of a circle between lower 
and upper limits.
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a circle would entail equating incommensurable magnitudes. From the mod-
ern point of view, it would give rise to the problem of infinitesimally small 
magnitudes, Berkeley’s “ghosts of departed quantities.”

In the Dissertation, when Hegel distinguishes from “pure geometry” that 
“geometry that endeavours to subject the circle to calculation to express nu-
merically the relation of the circumference to the radius” and that “seeks ref-
uge in the hypothesis of an infinitely-sided regular polygon” (Misc, 177–178), 
it is clear that he has in mind this Archimedean background and its modern 
extension in the calculus. The implicit reference to Archimedes becomes ex-
plicit in the longer discussion in the chapter “Quantum” in The Science of 
Logic where Hegel refers to the “cyclometry” of Archimedes, that is, his cel-
ebrated work, Measurement of a Circle (SL, 261; 21:300; Heath 1897, 91–98), 
another classic work of geometry in Hegel’s library (Mense 1993, 670).

In relation to the metaphysical problems of Berkeley’s ghostly magni-
tudes, as we have seen, Carnot treated infinitesimals neither as real but in-
finitely small magnitudes nor as “nothings.” They were “auxiliary quantities, 
introduced in the calculus solely to facilitate the expression of the conditions 
proposed” (Carnot 1797, 30). Thus, he would consider them in terms of con-
tinuously varying ratios that could not be thought as reducible to determi-
nate relations between discrete numbers. This is what Carnot had appealed to 
with the methodological “principle of continuity” that had been put forward 
by Kepler.12 Thus, in his treatment of the relationship of Newton and Kepler 
in the Encyclopedia’s Philosophy of Nature, Hegel concurs with “the accom-
plished exposition in a work ‘Traité de mécanique élémentaire’ ” by Louis-
Benjamin Francoeur demonstrating that Newton’s laws could be deduced 
from Kepler’s laws of planetary motion (E:PN, §270, remark, p. 264). Sig-
nificantly, Francoeur, who had been among the first to matriculate from the 
École Polytechnique set up by Carnot, where he had been taught by Monge, 
claims in relation to the approach to mechanics adopted there that “we can-
not go beyond that which has been expressed by M. Carnot in his Principes 
fondamentaux de l’équilibre et du mouvement,” Carnot’s work on mechanics 
published in 1803 (Francoeur 1807, 8).13

In his discussion of the rival, purely algebraic interpretation of the cal-
culus by Lagrange, Hegel treats the issue in relation to the ancient problem 
of incommensurability. In the extended method of exhaustion that had 
been discussed by Carnot (as the “method of approximation” [Carnot 1797,  
7–12]), an arc is treated like a tangent, but the arc, adds Hegel, “is surely in­
commensurable with the straight line: its element is, from the start, of an-
other quality than the element of the straight line.” And yet, calculus requires 
“that straight lines when infinitely small, have passed over into curved lines”  
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(SL, 232; 21:270).14 This attempt to connect “elements within the mathemati-
cal object which are qualitatively different—curves with straight lines, linear 
dimensions and their functions with plane or plane dimensions and their 
functions, etc. . . . can only be taken . . . as the mean between a greater and a 
lesser” (SL, 257; 21:296). Hegel continues:

Lagrange’s exposition of the rectification of curves, since it proceeds from the 
principle of Archimedes, involves the translation of the Archimedean method 
into the principle of modern analysis, and this affords us an insight into the 
inner, the true meaning, of an endeavour which in the other method is car-
ried out mechanically. . . . But Archimedes’ principle, that the arc of a curve is 
greater than its chord and smaller than the sum of the tangents drawn at the 
endpoints of the arc and contained between these two points and the point of 
their intersection, does not yield any direct equation. (257; 21:296)

What Hegel has in mind is clear. If we take a segment of Archimedes’s figure 
above (fig. 6.2), it can be appreciated that the length of a chord between two 
points on a circle A and B is always smaller than the arc of the circle between 
A and B, which in turn will be smaller than the combined lengths of the two 
intersecting tangents, AE + EB, drawn from those points. That is, straight and 
curved lines, like square and linear numbers, cannot be summed from the per-
spective of Greek geometric algebra because they are qualitatively different or, 
to express it otherwise, they belong to generically different types of mathemati-
cal quantity. They can, however, be treated as continuously transforming ratios.

It is not so much the “ghosts of departed quantities” that is the problem for 
the calculus but the ghost of a departed qualitative difference between con-
tinuous and discrete magnitudes involved when Archimedes’s technique is so 
“translated” into modern analysis. Like Plato, Hegel finds the structure of the 
“more or less” as an irreducible feature of the empirical world but draws from 
this a different conclusion. Plato, despite his acknowledgment of the necessity 
of indeterminacy, and hence the necessity of the empirical world as an aspect 
of being, had still retained the Pythagorean evaluation of such indeterminacy 
as “bad,” unilaterally privileging the ideal over the empirical in ways that had 
been resisted and, indeed, reversed by Aristotle. Like Aristotle, Hegel wants 
to bring Plato’s forms into the world, but this must be done in a way that does 
not compromise the place of the nondiscrete determination of “greater or 
lesser” within the world. Moreover, the discrete forms of the ideal world can 
only be brought to the empirical world because those forms contained the 
“bad” dimension of more or less implicitly within them. The calculus, how-
ever, obliterates a role for the greater or lesser by reducing the “mean between 
a greater and a lesser” to a unit.
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This is not the place to try to assess Hegel’s critique of the calculus; it is 
generally recognized that the problems concerning the rational foundations of 
the calculus were not resolved (if “resolved” at all) until well after Hegel’s time. 
The year of Hegel’s death, 1831, roughly coincides with the birth of abstract 
algebra in the nineteenth century with Galois’s postulation of the notion of 
a “group.”15 However, it is important to be clear about the general lines along 
which Hegel’s critique proceeds. As Thomas Posch has underlined in his study 
of Hegel’s Philosophy of Nature, Hegel was critical of the combination of the 
annihilation of qualitative differences in the modern positive sciences and the 
promotion of their results to the status of a “world-view”—in Newton’s case, a 
natural philosophy (Posch 2011, 198). By its elimination of “the more and less” 
that applies in the realm of geometry in favor of complete numerical determi-
nacy, the calculus represents a type of modern version of conventional, that is, 
middle-period, Platonism, and it is this that is behind Hegel’s odd-sounding 
claim that Newton’s celestial mechanics is not an empirical science.

The genuinely empirically based modern scientists were, for Hegel, Gali-
leo and Kepler, who had “proven the laws they have discovered by showing 
that the full compass of the singular things of perception [Einzelheiten der 
Wahrnehmung] conform to them” (SL, 297; 21:340).16 This is because they had 
not attempted to eliminate the element of indeterminacy to be found in the 
empirical world from their representations by eliminating its properly geo-
metric content—a content whose magnitudes were limited to the “more or 
less.” As he says of Kepler in the Dissertation, “He posited nothing but the 
relation of those factors that can truly increase and decrease, and did not 
spoil the pure and truly celestial expression of these relations by determin-
ing the quantities of gravity, which has no quantity” (Misc, 184).17 But as we 
have seen, Carnot too fitted this description, Hegel describing his treatment 
of quantitative ratio as being “not unlike the grasping of an empirical exis­
tence conceptually” (SL, 219; 21:255). In contrast, “the analysts show by the 
comparison of a result obtained with strict geometrical procedure and with 
the method of infinite differences that the result is one and the same in both 
cases; that there is absolutely no place for a more or less in exactitude” (SL, 220; 
21:256, emphasis added).

This does not mean that Newton’s analytic approach did not represent a 
type of progress. “One must deem that the science of astronomy, insofar as 
it concerns mathematics, owes much to Newton” (Misc, 185). Hegel recog-
nizes that the introduction of the calculus allowed an expansion of the finite 
sciences that would not have happened were modern science limited to the 
resources of Euclidean geometry. His criticism is directed rather to the pre-
tension of Newtonian analytical mechanics to be an empirically based natural 
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philosophy. In a self-negating move, Newtonian mechanics had helped elimi-
nate the geometric mode of thought that had allowed Kepler’s earlier empiri-
cal discoveries about the world and upon which it itself depended.18

With his role in the development of the calculus, and despite the reserva-
tions expressed with his idea of an analysis situs, Leibniz had been at the fore-
front of the movement building on Descartes’s “analytic” reduction of geom-
etry to arithmetic. Moreover, he had also been at the forefront of the similarly 
modern movement in logic in which the “geometric” dimension of Aristotle’s 
syllogism was reduced to a type of logical arithmetic. This, rather than that of 
his undeveloped analysis situs, would be the analytic style of thought for which 
he would be remembered. Hegel, in his critique of Leibniz’s paradigmatically  
modern “quantitative” conception of judgment, would treat it as involving  
the elimination of qualitative differences between kinds in ways analogous to 
the elimination of qualitative differences among magnitudes involved in the 
calculus. Nevertheless, Hegel was not opposed to this type of “translation”  
of the qualitative to the quantitative per se: in fact, rationality, he thought, 
depended on it. He was rather opposed to the conception of “thinking as 
understanding,” a conception of thinking that fixes the determinacies of what 
is being thought in ways preventing their further redetermination. Schelling’s 
Constructed Line, reinterpreted in Hegel’s somewhat Carnotian way, would 
provide Hegel with a picture of how we should think of the relation between 
otherwise incommensurable qualitative and quantitative thoughts.

6.3 Parallels between Hegel’s Attitudes toward  
Leibniz’s Calculus and Logical Calculus

In the “Subjective Logic” of The Science of Logic, the first instance of Hegel’s 
qualitative judgments of inherence is the “judgment of existence [Dasein],” 
meant to give expression to some immediate taking in of the objective world 
such that the judgment is measured by what is found in the world via percep-
tion. As immediate, the contents of such judgments are not “true,” however, 
and the “positive” judgment of existence has its truth in its negation—that is, 
has its truth in the contesting judgment of another judge who may, from their 
different point of view, judge things differently. It is this interaction of judg-
ments that, later in the context of the more complex “judgment of the con-
cept,” will be characterized as a syllogism. This syllogism will be the proper 
medium for the formation of truth, not the separate individual judgments 
tied to the direct experience of the individual subjects.

This context of dialectical interaction with another reasoning observer 
invites being understood in terms of Hegel’s now well-known “recognitive” 
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theory of self-consciousness in which a subject’s self-consciousness is depen-
dent on existence within a reciprocal relation to another in which each recog-
nizes and is recognized by their other (Redding 1996, ch. 5). This makes the 
issue of the logical form of any judgment more complex. My judgments will 
have a dimension that gives expression to how the world for me simply is, 
but they must also have a dimension that is less immediately reflective of my 
contingent location in the world, from which the limitations of my viewpoint 
can be appreciated. This is a dimension typically understood by some other 
differently located and oriented “Subject-Object” who can thereby take the 
measure of the conditioning of my claims by features of the world not appar-
ent to me.

That a subject perceives the things of the world and their arrangements 
and interactions from a particular perspective or point de vue had been fa-
mously sketched by Leibniz in his Discourse on Metaphysics. Committing the 
same type of reduction of spatial volumes to points of which Hegel complains 
in the context of calculus, Leibniz had claimed that while a finite monad nei-
ther exists “in” space nor has extension, it nevertheless represents the universe 
as if from a point of view, “rather as the same town is differently represented 
according to the different situations of the person who looks at it” (Leibniz 
1998, §9). The difference between the apparent spatial “locations” involved 
here is cashed out in terms of the specific relations among representations 
and appetitions making up the states of each monad. Leibniz would try to 
bring his logic and epistemology together in a conception of the Copernican-
styled correctable perspectival dimension of perceptual knowledge. Episte-
mologically, this was described as the capacity to translate knowledge involv-
ing clear but confused ideas into that involving clear and distinct ones. In this 
way he would conceive of a type of translation of the contents of traditional 
categorical judgments, representing how the world is experienced immedi-
ately from a particular point of view, into algebraically tractable judgments 
now understood as akin to equations, the value of which could be designated 
in terms of the opposition true and false conceived as the values 1 and 0 of 
a binary arithmetic. Thus, he would conceive of a “universal characteristic” 
within which ideas could be expressed in a way that ultimately freed them 
from their initially perspectival enframing, an idea that, it has been claimed, 
guided him through the studies that led to the calculus (Bos 1980, 60).

Epistemologically, the corrective translation for Leibniz was properly from 
clear and confused cognitions to some comparatively more distinct ones. Lo-
cated at any one moment as if on a step of a ladder, one can grasp some truth 
informed by confused ideas by seeking an explanation or reason for it—a move 
legitimated by the principle of sufficient reason and taking one to the next 
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higher rung. Moreover, for Leibniz, each step is able to be repeated, the in-
quirer thus seeking a reason for that reason, making movement up the ladder, 
as described in the essay “On Contingency,” a matter of giving “reasons for rea-
sons” (Leibniz 1989a, 28). For Lambert, this would be thought of in terms of the 
idea of reinscribing experience within an ascending series of new languages—
moon-dwellers needing to express their experiences in the language natural 
to earth-dwellers, who in turn need to speak the language of those located on 
the sun, and so on (above, chapter 5.2). Logically considered, such translations 
from clear and confused to clear and distinct concepts (or more perspectival 
to less perspectival expressions) would be understood via the capacity of the 
terms of the “judgment-equation” to be linked internally to the terms of other 
such judgment-equations. All this could now be understood as allowing a type 
of cognitive “ascent,” thus providing a model for the type of ascent conceived 
within Platonism as conventionally understood. But as both Playfair and Car-
not had complained in their own ways, this could be understood as a path 
leading from real executable quantities to the empty abstractions that can be 
found in algebra. While these latter “auxiliary” or “non-designated” quantities 
(Carnot 1797, 22–23) played important roles in computational processes, lines 
of translation back to the applicable magnitudes that were the equivalent of 
Leibniz’s “clear and confused ideas” had to be maintained.19

Schelling’s Constructed Line, able to be understood as expressing Nicoma-
chus’s “most perfect proportion” or the modern cross-ratio of projective geom-
etry, had presented the possibility of a more circular conception that unifies 
opposing judgment types and nevertheless preserves their mutual opposition. 
Hegel’s idea of the translation of qualitative judgments of existence into quan-
titative judgments of reflection would involve the same type of annihilation of 
differences in genus or kind as that found in the calculus, and as in the case of 
the calculus, this would undermine the experiential content of the judgment by 
ablating it of the dimension of the “more or less.” Consonant with this, Hegel’s 
idea of the translation of judgments could not be pictured as providing a Leib-
nizian ladder to some God’s-eye point of view. Rather, it would provide the 
means for the transformation of those objects of which the judgments were 
judgments (see above, chapter 3.2).

Hegel had opposed an understanding of the type of de-re judgments made 
on the basis of perceptual experience as structured according to the “top-
down” Platonic conception of diairesis in which two actual colors such as 
green and blue could be regarded as instances of the more general concept, 
color. As qualitative, blue is differentiated from green in much the same way 
that a meadow is differentiated from a field. There will be colors in which 
this differentiation is difficult to make, as the color blue is experienced as 
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stretching along a continuum that will gradually shade into green. Clearly, 
judgment here is structured more by the “indeterminate dyad” of the more 
or less: a certain shade will be judged to be more green than blue rather than 
definitively either green or blue, such a continuum of qualities being entirely 
appropriate for the empirical domain. But this is not to describe determinate 
shades of colors like green or blue as providing fixed singular infima for this 
structure. The concept <blue>, say, can also be treated as a Hegelian particu-
lar, a more abstract concept with which it can be asked of some object, “Is 
it or is it not blue?” in the mode of Kant’s judge “who compels witnesses to 
answer the questions he puts to them” (Kant 1998, Bxiii). Demanding a yes-
or-no answer in this manner would force experience to “answer” in a way that 
abstracts from the “more or less” quality of the experience. Later we will see 
the logician W. E. Johnson capture this distinction as one between “determin-
ables” and “determinates” rather than genus and species (below, chapter 8.4), 
but here it can be noted how this capacity to redetermine the content of a 
judgment provides a type of translatability between particular and singular 
(“existential generalization” and “existential instantiation”) not enabled by 
Kant’s fixed distinction between intuition and concept. The same retranslat-
ability will apply at the top of the abstractive phase of this cyclical process as 
well, at the point of a redeterminable supremum.

Hegel’s treatment of the abstraction from concrete givenness in judgment 
driven by negation takes the initial positive judgment of experience to the 
maximally indeterminate judgment found at the apex of the cycle he calls the 
“infinite judgment” (SL, 567–568; 12:69–71). In relation to the task of telling 
someone something about the world, an infinite judgment is widersinnig—
contrary to sense—and its contrariness to sense is a function of its having 
been entirely stripped of the “more or less” structure of sensory experience. 
In Carnot’s terms, one may think of an infinite judgment as an auxiliary 
judgment. The infinite judgment serves a purpose, as stripping the original 
judgment of sense so as to leave “pure form,” as it were, brings out that as-
pect of a judgment that allows it to link up in distinctly logical patterns with 
other judgments similarly conceived—patterns that can be exploited by a 
type of algebraic calculus, the “calculus ratiocinator” that accompanies Leib-
niz’s characteristica universalis. However, its usefulness depends on any such 
“pure” form being repopulated with sensory content but now in ways that 
are dictated predominantly by the logical form of the judgment itself. Hegel 
addresses the nature and functioning of the Leibnizian scaffolding of the uni-
versal characteristic in the section of the “Subjective Logic” of The Science of 
Logic devoted to the so-called mathematical syllogism, the fourth syllogistic 
figure (602–604; 12:104–106).
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Aristotle had limited the number of syllogistic figures to three, the fourth 
being a later addition. Hegel reinterprets the four figures, courtesy of his own 
singular-particular-universal distinction, in ways that, I have suggested, may 
draw upon the idea of opposed—internal and external—ways of “dividing” 
an interval found in the cross-ratio model as revived by Carnot. For Hegel, 
the fourth syllogistic figure effectively represents a syllogism in which the ar-
rangement of the three terms constitutes the greatest departure from Aristo-
tle’s “perfect” syllogistic paradigm based on the iteration of predicates under-
stood as “containing” the subject. It is the syllogistic equivalent of the earlier 
“infinite judgment.” Hegel describes the conception of predication at work in 
this syllogism in the following way:

If two things or two determinations are equal to a third, then they are equal 
to each other.—The relation of inherence or subsumption of terms is done 
away with.

A “third” is in general the mediating term; but this third has absolutely no 
determination as against the extremes. (SL, 602; 12:104)

In this context he goes on to discuss the “logical calculus” of Leibniz and 
Ploucquet, focusing on a feature of Leibniz’s logic that is highly significant in 
relation to the later Fregean turn in logic (Angelelli 1990). In his character­
istica universalis Leibniz had effectively abandoned the traditional subject-
predicate conception of judgment and, adopting an approach from Johannes 
Raue, treated subject terms as themselves predicates. What were formally 
understood as subject and predicate terms are now grasped as linked in vir-
tue of being predicates that are both true of the same objects or range of 
objects—some common third (a tertium commune) not represented in the 
original judgment.20 This is effectively how predication comes to be under-
stood in the specifically propositional logic. Just like the “infinite judgment” 
treated earlier, this conception of syllogism is maximally indeterminate, the 
tertium commune, says Hegel, has “absolutely no determination as against the 
extremes” (SL, 602; 12:104). It is this conversion of subject terms to predicates 
that Hegel conveys with the idea that in the mathematical syllogism all terms 
have been reduced to universals, leading the original S-P-U structure, after 
transiting through the reorderings of the second and third figures, to assume 
the ultimately degenerate form of U-U-U (602; 12:104).21 From the perspec-
tive of Plato’s three-dimensional syllogism, the three constitutive dimensions 
of the world have been collapsed into one.

Hegel’s familiarity with aspects of Leibniz’s logic that were not recognized 
until much later make this short section of the “Subjective Logic” a rich source 
for understanding Hegel’s thoughts about where formal logic was heading. The 
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mathematical syllogism effectively marks the collapse of the Aristotelian tra-
dition in logic, and what Hegel himself sees as the future of logic has to be 
constructed from out of these ruins. Effectively, the mathematical syllogism is 
a syllogism whose component judgments are those “infinite judgments” that 
resulted from abstraction from the content of judgments of existence—they are 
auxiliary judgments with maximally indeterminate content. Leibniz had tried 
to revolutionize Aristotle’s syllogistic by treating the terms of judgments as the 
names of classes, such that to say P of some S is to say that there is at least 
one thing that belongs to both classes P and S. However, such classes had to 
be understood both extensionally as classes of actual things, and intensionally 
as classes of concepts, and he had attempted to map such a class-based logic 
onto a propositional logic. Lenzen points to the circularity of the latter and to 
the way in which the logical properties of the propositional contents of such 
judgments would require that they be extended from classes of actual things 
to logically possible things (Lenzen 2004, 16).22 This is why, as Hegel says, such 
“thirds” have “absolutely no determination.” Existing, actual things are maxi-
mally determinate: that red tomato in my garden manifests some specific shade 
of red—it has a way of being red. But merely possible things are maximally 
indeterminate: there is no specific shade of red possessed by those possible to-
matoes that I might have planted over there in that different garden bed but did 
not. In terms of the diagrammatic representations discussed earlier, the indefi-
nitely red possible tomato is that entity represented by the intersection between 
two concept classes—that of red things and that of tomatoes. Such a thing is a 
“posit,” akin to the imperceptible point at which two lines intersect.

Just as how in the calculus a magnitude had been stripped of its “genus” 
so as to be subject to a type of universal computation, here objects are rep-
resented as stripped of their generic determinations for a parallel purpose, 
computation now being carried out on abstracta—propositions—which are 
related in ways reducible to patterns among binary “truth-values.” The lan-
guage of Hegel’s criticism repeats that of his criticism of the loss of qualita-
tive distinction in Leibniz’s calculus: “The quantitative determination, which 
alone comes into consideration in it, is only by virtue of the abstraction from 
qualitative differentiation and from the concept determinations.—Lines, fig-
ures, posited as equal to each other, are understood only according to their 
magnitude. A triangle is posited as equal to a square, not however as triangle 
to square but only according to magnitude, etc.” (SL, 603; 12:105). It is appro-
priate to look at the rediscovery of Leibniz’s logical innovations within both 
sides of the revolutionary changes taking place in logic in the second half of 
the nineteenth century.
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Exploiting Resources within Aristotle for the 
Rehabilitation of the Syllogism

The Aristotelian logic . . . involves the universal thought-forms or the foundation for 
what has been known as logic right down to most recent times. It is Aristotle’s undying 
merit to have recognized and drawn attention to these forms and to have brought them 
to light.  .  .  . But these forms, which are set forth in the Aristotelian books as logical 
forms, are still only the forms of thinking at the level of the understanding; they are 
not the forms of speculative thinking or of rationality as distinct from the sphere of the 
understanding.

h e g e l , Lectures on the History of Philosophy

When discussing Aristotle in the Lectures on the History of Philosophy (LHP 
2:225–262; 3:59–99), Hegel is generally intent on portraying him as a mis-
understood Platonist whose views were distorted by the Scholastics, whose 
“wide-raging metaphysics of the understanding and formal logic have noth-
ing Aristotelian about them at all” (231–232). Aristotle’s own thought, he 
claims, did not proceed according to the demonstrations of formal logic; had 
it done so “he would not have arrived at any speculative thesis” (261). Nev-
ertheless, he clearly identifies Aristotle as responsible for the “syllogism of 
the understanding” that forms “the foundation for what has been known as 
logic right down to most recent times” (260). However, he hints at why Plato’s 
more philosophical logic based on the dialectical syllogism cannot bypass  
the more prosaic Aristotelian logic of the understanding. In relation to Aris
totle’s formal logic, “what occupies our conscious interest is, as a rule, con-
crete thinking or thinking immersed in outer intuition; the forms of thinking 
are, so to speak, immersed in it. It is an endlessly mobile network, and to have 
pinpointed these forms, this fine thread permeating all, to have brought this 
to consciousness, is a masterpiece of empiricism” (260). How does this sit 
with those claims made earlier in the context of his discussion of Plato?

During the discussion in the Lectures on the History of Philosophy of the 
ontological “syllogism” structuring both the body and soul of Timaeus’s cos
mic animal, Hegel had devoted a packed paragraph to a comparison of Pla-
to’s rational syllogism and Aristotle’s formal syllogism of the understanding 
derived from it. When he notes that “in the syllogism of the understand-
ing there are two extremes and one middle term [zwei Extreme . . . und eine 
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Mitte]” the contrast with Plato’s is apparent. Moreover, he continues, “the ex-
tremes have a value of independent characteristics, and so a particular form 
belongs to each of these terminal points. The first is the singular, the second 
particular, and the third is the universal” (LHP 2:210; 3:40). This latter point, 
as we have seen (chapter 1.2 above), is not entirely the case. Officially Aris-
totle excluded singular terms from his syllogisms because every term must 
be capable of playing the role of both subject and predicate in a judgment 
and singular terms cannot be predicates. But there is nevertheless a degree of 
ambiguity here: Aristotle had occasionally used examples of syllogisms con-
taining singular judgments, seemingly admitting a singular term in subject 
position of a minor premise that would not need to appear as the predicate 
term of another premise.1 But such singular reference would not have been 
appropriate in the context of the type of demonstrative syllogisms of science 
described in the Posterior Analytics, as science, as he makes explicit, specifi-
cally deals with universals and not with individuals per se.2 From the perspec-
tive of science, individuals are only significant inasmuch as they instantiate 
some kind. Socrates will be an appropriate object of scientific investigation 
only inasmuch as he instantiates some genus, a human being qua “rational 
animal,” for example. But as we will see, Hegel would exploit scattered sug-
gestions in Aristotle that concerned a type of reasoning about individuals as 
individuals—singulars—rather than “particular” instances of kinds, thereby 
linking Aristotle’s logic to more modern developments.

As we have seen from Einarson and Smith, Aristotle had taken over the 
language of Plato’s harmonic model to give structure to the syllogism, but 
while Plato had bound the parts of the cosmic animal together by using both 
geometric and arithmetic means, the suggestion seems to be that Aristotle, 
in the formal syllogism, conceived of its structure as employing only one of 
them. This, I suggest, was the geometric mean, the type of mean found in the 
narrowed Euclidean conceptions of ratio and proportion in the move away 
from Pythagorean arithmeticism. It was this move that produced Aristotle’s 
ambivalent advances in logic. On the one hand, it allowed for the characteris-
tic generality to be found in logic; on the other, it would be responsible for the 
shortcomings of the “logic of the understanding” that would continue in its 
modern transformation in the hands of Leibniz and Kant. Hegel’s goal would 
be to reconstitute Plato’s original conception of the syllogism by bringing out 
the implicit doubled mean to be found in the syllogisms of Aristotle’s Prior 
Analytics. This means incorporating the concrete singulars into the frame-
work of Aristotle’s syllogism, which only officially works with those indeter-
minate abstract subjects that correspond to Hegel’s category of particulars.
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7.1 The Formal Aristotelian Syllogism and Its Iterable Geometric Mean

In the discussion of the syllogism in The Science of Logic Hegel notes the fol-
lowing about the limits of Aristotle’s approach: “Aristotle confined himself 
rather to the mere relation of inherence by defining the nature of the syllogism 
as follows: When three terms are so related to each other that the one extreme 
is in the entire middle term, and this middle term is in the entire other extreme, 
then these two extremes are necessarily united in the conclusion. What is here 
expressed is the repetition of the same ratio [ gleichen Verhältnisses] of inher-
ence of the one extreme to the middle term, and then again of this last to the 
other extreme, rather than the determinateness of the three terms to each 
other” (SL, 591; 12, 93). The first sentence here effectively repeats Aristotle’s 
own description of the perfect syllogism in terms of the iterable “is in” rela-
tion in the passage from the Prior Analytics we have quoted above (Aristotle 
1989, Prior Analytics, 25b32–26a3)—the relation that Hegel describes here as 
the “inherence” of the predicate in the subject, to which Aristotle had “con-
fined himself.” In contrast, Hegel’s phrase concerning the “determinateness of 
the three terms to each other” recalls his specification of Plato’s syllogism in 
the Timaeus and Nicomachus’s most perfect proportion.

Aristotle’s uniformly applied “is in” or “belongs to” relation effectively is 
the same as the iterable “measures” relation as set in the Sectio Canonis. The 
reiteration of the “is in” or “measures” relation between terms models the syl-
logism on an indefinitely extendable geometric series of terms presupposing 
that initial and ultimately inadequate conception of ratio that Hegel treats as 
“direct ratio.” By being confined to an iterated inherence relation, such that 
the first term being in the second and the second’s being in the third implies 
that the first is in the third, Aristotle’s “perfect” syllogism clearly could be con-
tinued indefinitely, and so lacks the type of unification found in the Platonic 
model, the bond that “makes a unity of itself together with the things bonded 
by it” (Plato 1997, Timaeus, 31c). The concept <animal> being contained in the  
concept <human>, which is in the concept <Greek>, allows us to grasp that 
the concept <animal> is thereby contained in the concept <Greek>. But why 
then restrict the number of premises to two? Equally, the concept <Greek> 
might be conceived as contained in that of <Greek philosopher>, which is 
contained in <Greek philosopher from Athens>, and so on. Later, Leibniz 
would free this restriction of premises to two—a move away from the tradi-
tional syllogism that would be repeated in the nineteenth century.

There is a further problem in simply drawing on the iterated measures 
relation as a model for the syllogism, however, given Aristotle’s own needs. 
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Aristotle was clearly motivated by the need to apply logic to the world in such 
a way that worldly things could be conceived as constraining or “measuring” 
the concepts being applied to them. In Aristotle’s iterable-measure model, 
the measure-measured relation proceeds unidirectionally from universal to 
particular instance, as from <animal> to the concept of a particular type of 
animal, the concept <human>. This problem, we will see, is a generalization 
of the problem alluded to earlier (see chapter 1.2) concerning the idea that 
perception of Callias is somehow simultaneously that of an indefinite man 
and the specific man, Callias—the problem that, described in more modern 
terms, is conceived of as conflating “intention” and “extension.” Such a dis-
tinction was not self-consciously made by Aristotle, but it would be made by 
Leibniz, and this would allow him to exploit the potential implicit in Aris
totle’s syllogism to both increase the number of premises in an inference and 
conceive of how the problem of singularity might be overcome.

First, Leibniz would allow premises within syllogistic structures to be 
piled on top of one another as indicated above, so as to conceive of logic as 
a type of ladder that allows the mind to scale a series of ever increasingly 
abstract concepts, an ascent that leads from some fact to its condition and 
that then asks for the condition of that condition, and so on. Kant, in the 
“Transcendental Dialectic” of the Critique of Pure Reason, would refer to such 
a series of inferences as a “chain or series of prosyllogisms” (Kant 1998, A331/
B388), a series that can be continued because it has a fixed “exponent” (A331/
B387).3 This, it will be recalled, was the characteristic that Hegel ascribed to 
the relation of “direct ratio.” Plato’s own dialogues had, of course, provided 
plenty of images of such an ascent: one such is Diotima’s speech in the Sym-
posium that shows the way in which the mind can be taken from a mistaken 
and childish concern with sensuous appearances to a vision in which one 
gazes out over “the great sea of beauty,” the complete cosmos grasped in a 
way that understands the truth, beauty, and goodness of the whole (Plato 
1997, Symposium, 210d–e). But Leibniz also believed he had a solution to the 
directional problem implicit in Aristotle’s desire to bring empirical findings 
to bear on science. The intensional-extensional distinction would allow Leib-
niz’s favored metaphor of one concept’s containment in another to be read in 
two opposed ways, such that it could accommodate movement either up or 
down Porphyry’s tree: “When I say Every man is an animal I mean that all the 
men are included amongst all the animals; but at the same time I mean that 
the idea of animal is included in the idea of man” (Leibniz 1996, 486). This in-
volves the type of reversal of directions seen in Kant’s “Negative Magnitudes” 
essay and the approach to space developed in the new nineteenth-century 
geometries. Moreover, such a reversal of direction reflects the transition from 
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direct ratio to the inverse (or invertible) ratio as Hegel treats it in his exposi-
tion of ratio in book 1 of The Science of Logic (see above, chapter 3.3) As we 
will see, for both Peirce and Hegel, directionality would provide a rich re-
source to be exploited for logical ends.

There are at least hints of this reversal of directionality already implicit 
in Aristotle, however. For example, immediately following the description in 
the Prior Analytics of the syllogism utilizing the “is in” conception of predica-
tion, and so describing various terms as “so related to each other that the last 
is in the middle as a whole and the middle is either in or not in the first as a 
whole” (Aristotle 1989, Prior Analytics, 25b32–26a3), Aristotle had switched to 
the language of predication as a “said of ” relation, “if A is predicated [katig-
oristhai] of every B and B of every C, it is necessary for A to be predicated of 
every C” (26a1–3).4 Moreover, with this he reverses the standard Greek word 
order: A is predicated of B only if B “contains” A in the sense of “inherence.” 
As with other instances of a certain indeterminacy in Aristotle, here there 
seems to be a blurring between two conceptions of judgment structure, a 
de-re conception, in which concrete properties are said to inhere in things, 
and a de-dicto conception, in which abstract properties are said of a thing. 
In the former, properties are characterized by the “more or less” relation 
among points on a continuum, while in the latter a concept is understood as 
“true of ” a thing in a binary, “yes-or-no” sense. It has been suggested (above, 
chapter 4.1) that this idea of the reversal of directionality found in Schelling’s 
“Constructed Line” would give Hegel a novel way of conceiving of the rela-
tion between different judgment forms. As with Hegel’s “invertible” ratio, the 
change of directionality has allowed the series to be read in one direction as 
a continuum and in the other as a series of discreta. Aristotle’s conflation of 
intensional and extensional judgment types that run in contrary directions 
must be made explicit, and these two judgment types must then be shown to 
be equivalent in a way that preserves this opposition. In Hegel’s discussion of 
ratio this was achieved by the final “ratio of powers,” which we have related to 
the cross-ratio structure that reemerged in nineteenth-century geometry. In 
the context of The Science of Logic’s “Subjective Logic,” this will be achieved in 
a model that shows homologous equivalence between judgments, whose op-
posed function-serving logical forms are indicated by a distinction between 
two senses of predication that he calls predication as “inherence” and predi-
cation as “subsumption.”

This, I suggest, is at the heart of Hegel’s attempt to transform the Aristo-
telian formal syllogism back into a Platonic ontological one that employs the 
“doubled” middle term. But historically, Hegel’s solution would also be for-
ward looking, because the conception of logic as containing, and so needing 
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to unify, two different systems—broadly an Aristotelian “term” logic and a 
Stoic “propositional” one—is present in Leibniz and would become central 
to the logic revival of the second half of the nineteenth century started by 
George Boole. To understand the possibility for this happening, however, it is  
important to understand the way the indefiniteness of logical form in Aris
totle had allowed the type of generality needed for notions of logical infer-
ence to be systematically developed.

7.2 The Achievements and Limits of Generality in Aristotle’s Logic

As we have seen, the algebra that is usually accredited with the introduction 
of generality into arithmetical procedures had been achieved geometrically 
in Greek mathematics, in which the use of diagrams had allowed the type of 
abstraction and indeterminacy otherwise achieved with algebraic symbols. 
The idea of Aristotle’s having achieved the required generality for logic by 
similarly geometric means might now be linked to his idea of inference as 
an iteration of the spatially imagined “is in” relation. Such an interpretation 
raises the issue of the role of diagrams in logic.

When one thinks of “logic diagrams” one invariably thinks of the types 
of quasi-geometric containment diagrams—for example, Euler diagrams or 
Venn diagrams—found in Leibniz and those coming after him. That Aristotle 
himself used diagrams, as urged by some, is largely conjectural, but even if 
it turned out that Aristotle had not, the containment idea of conceptual rela-
tions founded on his use of figures is so strong that it makes the use of such 
diagrams seem very natural for Aristotelian logic.5

Containment diagrams such as those using overlapping circles, rectangles, 
or squares to represent logical relations do not per se differentiate between in-
tensional and extensional readings. Think, for example, of a partitioned rect-
angle in which the rectangle itself is meant to represent Greeks living in the 
golden age of classical philosophy, with the left-hand partition representing 
Athenians and the right-hand partition representing non-Athenian Greeks, 
as in figure 7.1. The diagram could easily suggest different “extensional” and 
“intensional” interpretations.

One intuitive way of thinking of the spatial representations involved in 
figure 7.1 would be to think of distinct points in each partition (able to be 
indicated by a dot, say) as representing each specific Athenian Greek—Plato 
and Socrates, say, being found in the left partition, with individual non-
Athenian Greeks, such as Archytas or Philolaus (both from southern Italy), 
being found in the right. This idea of specific individuals as countable in-
stances of the collection “Athenians” would be a natural interpretation for 
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an early Pythagorean (or, later, a medieval nominalist) because this was how 
the early Pythagoreans thought of the extensive magnitudes such as areas as 
made up. They are composed of monads “in position.” But Eudoxus’s con-
ception of proportions between irreducibly continuous magnitudes of areas 
might suggest another interpretation. Now, as in the lower diagram, the left 
partition might be thought of as representing Athenians in the more indeter-
minate sense of whoever is Greek and comes from Athens, with a similarly 
generic understanding of the right partition. In short, in the first interpreta-
tion, the areas would be thought as akin to sums of proper names, while in 
the second they would function more like determining descriptions. The left 
partition is, in one account, populated by concrete singulars, in the other, by 
abstract particulars. The former is arithmetical, the latter geometric.

In the nineteenth century, the French geometer and historian of geom-
etry Michel Chasles would appeal to the existence of two different types of 
geometry—one in which the monadic point plays the role of the fundamen-
tal element from which extensive magnitudes are generated, and another in 
which the line or plane plays the equivalent fundamental role of that from 
which all other entities are derived (Chasles 1837, 408–409). Clearly, early 
Pythagorean geometry and its modern “analytic” equivalent instantiate the 
former, and, while Chasles is not particularly clear on the opposing form, I 
suggest that it was with Eudoxus that continuous magnitudes had come to be 
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f ig u r e  7.1 Containment diagrams able to be interpreted extensionally and intensionally.
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grasped as basic, resulting in Greek “geometric algebra.” Projective geometry 
had made this duality into its own fundamental principle. A line can be defined 
in terms of the two points it joins, or a point can be defined as where two lines 
meet, giving points and lines a type of equivalence, such that for every theorem 
in projective geometry concerning relations among points an equivalent one 
can be found concerning relations among lines (Nagel 1939, §§45–60). We have 
seen that Hegel posits a similar type of equivalence between discrete and con-
tinuous magnitudes that is reflected in his account of space in the Philosophy of 
Nature. There Hegel writes that space is the following:

(1) In the first instance the point, i.e., the negation of the immediate and un-
differentiated self-externality of space itself. (2) The negation is however the 
negation of space, and is therefore itself spatial. In that this relation is essential 
to the point, the point is self-sublating and constitutes the line, which is the 
primary otherness or spatial being of the point. (3) The truth of otherness is 
however the negation of negation, and the line therefore passes over into the 
plane. (E: PN, §256)6

This mutual implication of indefinite spatial continuum (“the immediate and  
undifferentiated self-externality”) and the initially dimensionless (and so non
spatial) point simply reflects Hegel’s underlying idea of the way both continua 
and discreta contain the principle of the other within them. We might then 
think of the ambiguity of these containment diagrams when seen from this 
point of view as expressive of a principle that is shared by both projective 
geometers and Hegel, and as enabling them to understand logical diagrams 
in two different ways.

For example, diagrams using the partitioning of areas might be used to 
illustrate certain truths such as “All Athenians are Greeks” but “Only some 
Greeks are Athenians.” Interpreted extensionally along atomistic lines, grasp-
ing this truth would correspond to seeing that all the identifiable individual 
points falling in the Athenian partition also belong to the overarching area 
representing all Greeks, while the existence of identifiable points in the non-
Athenian partition demonstrate that not all Greeks are Athenians. From the 
perspective of geometric algebra, however, things would be slightly differ-
ent. The same truths might now be understood as diagrammatically encoded 
without the need to specify those actual individuals being referred to. Now 
the truth that “All Athenians are Greeks” would correspond in a natural way 
to claims expressed intentionally with the idea that the concept <Athenian> 
contains the concept <Greek>, or that all possible Athenians are Greek.

However, containment diagrams are not the only type of diagrams used 
by logicians, and while the diagrams that work on the basis of the part-whole 
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relation among areas might most naturally suggest the extensional interpreta-
tion, I suggest another type of diagram is more naturally suited to the inten-
sional. Rather than exploit relations of containment, these exploit notions of 
order and contrast, and one might consider as a basic example the traditional  
“square of opposition” invoked by later logicians, such as Apuleius in the sec
ond century CE and Boethius in the sixth, to capture the logical relations hold-
ing among judgment types as set out by Aristotle in De Interpretatione (fig. 7.2).7

Located at the top corners of the square of opposition (the A and E cor-
ners) are found contrasting positive and negative versions of “universal judg-
ments” (as in “All Athenians are mortal” and “No Athenians are mortal”), 
and at the two bottom (I and O) corners, similarly contrasting positive and 
negative versions of the opposing “particular” judgments (as in “Some Athe-
nians are philosophers” and “Some Athenians are not philosophers” or “Not 
all Athenians are philosophers”).8 The downward direction of the verticals is 
meant to suggest the idea of a type of inferential passage from the more gen-
eral to the less general, with A- and E-propositions being related to I- and O-
propositions, respectively, by the relation of “subalternation.”9 Aristotle’s logic, 
it is generally accepted, had been a logic of terms rather than propositions—
that is, predication understood as a predicate’s being “contained in” a subject 
rather than “said of ” the subject—and such class-based term relations are 
suggested by the verticals. In contrast, it had been the Stoics who had de-
veloped the type of logic that is now considered propositional logic with an 
opposed “said of ” conception of predication. In the square, it is the diagonals 
read as contradiction that suggest such a Stoic propositional logic. While sup-
posedly giving expression to Aristotle’s syllogistic, the square would in this 
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way come to be understood equally as expressing a propositional logic. Thus, 
while Boethius himself seemed to have conflated the Aristotelian and Stoic 
traditions (Martin 1991), his logic would be important for the later develop-
ment of propositional logic by figures such as Abelard in the twelfth century.

Boethius had focused on the way that Aristotle had clarified the status of 
negation in logic by going beyond the way Plato had used negation to divide 
categories in his method of diairesis, repeated in Porphyry’s tree. For example, 
dividing the category of living things on this model would result in a distinc-
tion between rational living things and nonrational ones. But the square of op-
position distinguishes three types of “negation.” Contrariety holds “horizon-
tally” across the top of the square between judgments of the form “All As are 
B” and those of the form “No As are B”—contrariety being a weaker form of 
negation, asserting that while two such propositions cannot both be true, they 
can both be false. The stronger relation of contradiction, however, holds across 
the diagonals of the square. For example, “Some As are B” contradicts “No As 
are B,” the truth of one of the pair implying the falsity of the other. Here, truth 
and falsity are completely divided in the style of Porphyry’s tree (Correia 2017, 
5). Along with these, the relation between I-judgments and O-judgments is 
that of subcontrariety: together, both cannot be false but can be true.10

As we have seen, Aristotle had not seemed to have been fully aware of 
the sorts of problems surrounding mixing extensional and intensional inter-
pretations that would become an issue in modern logic. Strongly inclined to 
a type of empiricism, he seems to have thought of the particular judgments 
that would come to be located at the “I” and “O” corners as providing the type 
of judgments appropriate for application to the empirically available world. 
But this results in an oddity concerning the types of judgments that may feed 
into our reasoning processes, as seen in the problems of the relation between 
the indefinite “man” and “Callias, the man.” In the twentieth century, issues 
of this type would come to be discussed as involving confusions between the 
conceptions of what it is to be a member of a class (Socrates as a member of 
the class “philosophers”), and what it is to be a subclass of a class (empiricists 
as a subclass of the class “philosophers”), but earlier Kant had insisted that 
purely conceptual judgments such as Aristotle’s particular judgments would 
need the participation of singular “empirical intuitions” in order to be applied 
to the actual world. For Hegel, however, the strict separation of singular intu-
itions from particular concepts was exactly the problem that he complained 
about in Aristotle’s formal logic as opposed to Plato’s. He would therefore 
insist on some way of translating or converting judgments involving singular 
conceptual determinations into particular ones, and here he took his lead 
more from Leibniz.
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Leibniz, like later algebraic logicians of the nineteenth century, would ap-
peal to both class relations and propositional relations—ideas of containment 
and ideas of order—and would translate between sentences with predicational 
forms that Hegel would distinguish as inherence and subsumption. Kant would 
criticize this type of free translation of forms as resulting in contradictions or 
“paralogisms” and would strictly distinguish between two types of logic that he 
called “general” and “transcendental.” This would be the terrain on which Hegel 
would fashion his own logic but modeled on the structure of Timaeus’s most 
beautiful bond or Nicomachus’s “most perfect proportion.” However, resources 
for the inclusion of singular judgments could already be found in Aristotle’s 
own logic.

7.3 Resources for Reasoning about Singulars in Aristotle

As we have noted, there is no proper place for singular judgments as such in 
Aristotle’s demonstrative syllogistic, but more generally he clearly recognizes 
the existence of such judgments. Laurence Horn (Horn 2017) has pointed to 
a passage in Aristotle’s Prior Analytics suggesting what Horn calls a “singular 
square”—a square like the square of opposition, but dealing with singular 
judgments—where Aristotle addresses the issue of the relations between con-
traries and contradictories (fig. 7.3):

It makes a certain difference in establishing and refuting whether one believes 
‘not to be this’ and ‘to be not this’ signify the same thing or different things (for 
example, ‘not to be white’ and ‘to be not white’). For these do not signify the 
same thing, nor is ‘to be not white’ the denial of ‘to be white’: instead ‘not to 
be white’ is. . . . ‘It is a not white log’ and ‘it is not a white log’ do not belong to 
something at the same time. For if it is a not white log it will be a log, whereas 
it is not necessary for what is not a white log to be a log. (Aristotle 1989, Prior 
Analytics, 51b5–31)

Importantly, Aristotle lists a variety of examples with similar grammatical 
structures: the negations between “he can walk” to “he can not-walk” (pre-
sumably meant as something like “he can stay still” or perhaps, “he can run”), 
“it is good” and “it is not-good” (“it is bad”), and so on. Hegel would link the 
relation of contrariety among predicates to his judgments of inherence, but 
the most significant resource from Aristotle for thinking of the role of sin-
gularity in logic would again come from the treatment of justice in Nicoma-
chean Ethics book 5 to which we have earlier alluded and in which different 
means, geometric and arithmetic, are to be applied in cases of distributive 
and rectificatory justice, respectively. To fully grasp this, however, we need 
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to understand Aristotle’s way of distinguishing the metaphorical from non-
metaphorical use of analogy.

Aristotle clearly distinguishes between two different types of analogy, one 
among similarities found within a genus, and the other among similarities 
found across boundaries separating entities belonging to different genera. The 
latter were cases he designated specifically as metaphor. For example, when 
one says, “Here stands my ship,” one uses the word “stands,” which would oth-
erwise be said of something that is not a seagoing vessel—typically, a person 
or some other legged animal—and one does so to capture the second-order 
similarity (the “ana-logy”) between the relation (the ratio, logos) of the ship’s 
property to the ship (its lying at anchor) to that holding between the person’s 
posture and the person (Aristotle 1984, Poetics, 1457b6–12). That is, a ship is 
to that ship’s attitude as a person is to their attitude of standing. Prior to Ar-
istotle, such a distinction seems missing in both the Pythagoreans and Plato. 
For example, Myles Burnyeat (Burnyeat 2000, 55–58) points out that Plato did 
not think of the application of words like “measure,” “harmony,” and “con-
cord” beyond the musical sphere as only a metaphor. But for Aristotle, only 
in nonmetaphorical similarities, that is, where there is no genus crossing, was 
scientific demonstration possible (Aristotle 1984, Posterior Analytics, 75a29–
75b6; Cantù 2010). Thus, while he seemed to accept the Pythagorean account 
of ratios in relation to music as well as in a variety of other areas, he did not 
extend this, as did Philolaus and Plato, to cosmology (Gibson 2005, 27–28). 
He presumably thought of the “harmony of the spheres” idea as no more than 
a metaphor. In short, Aristotle’s account of metaphor was part of a broader 
theory of “analogy” or proportion theory, and while distinguished from the 
approach to similarities found in demonstrative science, it was nevertheless 
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still afforded a type of normative use within practical reason, as we have noted 
in the account of justice in the Nicomachean Ethics where something about 
the qualitative singularity of the person or action being judged is grasped as 
relevant for one form of justice but not the other.

A further place in which Aristotle’s practical philosophy impacts on the 
formalities of his demonstrative logic is the well-known discussion of future 
contingent propositions in De Interpretatione, chapter 9. While in modern 
thought we think of the propositional content of a judgment, if true, as eter-
nally true, this was not Aristotle’s view for certain contexts: “Suppose, for ex-
ample, that the statement that somebody is sitting is true; after he has got up 
this same statement will be false” (Aristotle 1984, Categories, 4a24–25; see also 
Metaphysics 1051b8–18). In modern classical quantified predicate calculus, 
following Frege and Russell, the bare assertion “This man is sitting” would be  
strictly understood as incomplete and as short for “This man is sitting at time 
t1”—that proposition remaining true when the man later stands at time t2. But 
for Aristotle, the belief is complete as it is, and changes its truth-value with 
time.11 The consequences this has are expressed in the example given in De 
Interpretatione concerning tomorrow’s sea battle.12

Aristotle suggests that a statement such as “There will be a sea battle to-
morrow” is, when considered today, neither true nor false, and that it will 
only become true or false tomorrow depending upon whether the sea battle 
occurs (Aristotle 1984, De Interpretatione, 18b10–25). Thus, to preserve the 
indeterminacy of the future, Aristotle seemed willing to deny a logical prin-
ciple that would be dear to the Stoics and to later forms of propositional logic, 
the principle of bivalence that states that every judgment must be either true 
or false.13 (Moreover, with this he also seemed to deny his own law of the 
excluded middle—a characteristic, as we shall see, of modern intuitionis-
tic logic.) In short, while Aristotle denied the principle of bivalence so as to 
avoid what he took to be its fatalistic consequences, the Stoic logician Chry-
sippus would affirm bivalence in the course of arguing for a causally deter-
ministic universe and a very different conception of human freedom (see, 
e.g., Bobzien 1997).

In book 3 of the Nicomachean Ethics, Aristotle had linked this possibility of 
agency to the cognitive action of “deliberation.” Things that are eph’ hemin—
that is, “things that are in our power and can be done”—are things about which 
we can deliberate, but in “the case of the exact and self-contained sciences there 
is no deliberation” (Aristotle 1984, Nicomachean Ethics, 1112a31–b1). Moreover, 
Aristotle claims that if an action is possible, then so is its contrary. If virtue 
is in our power, then so too is vice (1113b6–8).14 This coincides with what he 
says about substances and their individual instances in the Categories. While 
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substance itself “does not admit of a more or less . . . it seems most distinctive  
of substance that what is numerically one and the same is able to receive con-
traries. . . . For example, an individual man—one and the same—becomes pale 
at one time and dark at another, and hot and cold, and bad and good” (Aristotle 
1984, Categories, 3b31–4a20). As is obvious from the example, while substances 
are discrete, their inherent properties lie on continua along which properties 
transition into their opposites. Once more, deliberation as a type of reasoning 
about specific individuals invokes different logical principles from those found 
in demonstrative thought about nonspecific and so generalizable instances of 
kinds. As Hegel stressed, the views of Aristotle should not be simply equated 
with the type of formal syllogistic found in the Prior and Posterior Analytics.

This logical dichotomy in Aristotle between the type of reasoning appro-
priate to specific individuals, on the one hand, and the scientific reasoning 
that treats individuals as indeterminate instances of their kinds, on the other, 
provides resources for Hegel’s expansion of the Platonic syllogistic with its 
doubled or divided mean. These distinctions would be now applied system-
atically within the otherwise “formal” logic that runs through his treatment 
of judgments and syllogisms in the “Subjective Logic” of The Science of Logic.

7.4 Disambiguating Aristotle’s Singular-Particular  
Conflation in the Syllogism

In the “Subjective Logic” of The Science of Logic Hegel famously describes the 
syllogism as the “truth” of the judgment (SL, 593; 12:95), and the most devel-
oped form of judgment, which transitions into the syllogism in Hegel’s sub-
jective logic, is called the “judgment of the concept” (SL, 581–587; 12:84–89). 
This is a directly evaluative judgment about some specific and existing human 
action or action product: Hegel’s examples are “This act is good” and “This 
house is bad” (SL, 583; 12:85), the demonstrative “this” in each case indicating 
the actual existence and, at the time of the judgment, presentness to the judg-
ing subject of the house or act in question. There is an absolute value, some 
real involved that is good or bad, something that is presupposed by each of 
the positive and negative opposed judgments, and the opposition of the predi-
cates “good” and “bad” is of course what Wolff describes as the mathematically 
(rather than linguistically) based opposition described by Kant (Wolff 1999). 
Moreover, “good” and “bad” are typically at the extremes of a graded con-
tinuum with a midpoint that is neither particularly good nor bad and at which 
the good becomes bad and the bad good. The opposed predicates represent 
opposed ways in which that concrete content can be taken. This combination 
of an accessible singular existing subject and contrarily opposed predicates 
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of “more or less” will retrieve features of earlier “qualitative” aspects of judg-
ments belonging to earlier cycles of developing judgment forms to be found 
in Hegel’s account of judgment. Color judgments show a version of this, for 
example, where judgments of green transition into judgments of blue, but here 
the contraries are not, as in the judgment of the concept, limited to two. Im-
portantly, as the “truth” of these earlier judgment forms, the judgment of the 
concept brings to the fore earlier negated but ultimately ineliminable features 
of such judgments.

The form of judgment exemplified by opposed judgments such as “This 
house is good” and “This house is bad” will be seen to expand into an apo-
dictic judgment in which the subject-predicate relation becomes mediated 
by a middle term that effectively contains the justification of that initial 
judgment—for example, “This house, as so and so constituted, is good.” Here 
the middle term is a particular that gives a general reason for the judgment, 
mediating the relation between the singular subject “this house” and the eval-
uative universal “good.” It allows us to understand why a house or any house 
so characterized would be considered good. Even if this house were the only 
existing house to be “so and so constituted,” there will always be other pos-
sible houses of which this evaluation could be made. Thus, judgments of this 
type open up otherwise questionable ontological domains, such as that of 
abstract logically possible alternatives to the actual, just as algebraically intro-
duced numbers had opened up similarly questionable ontological domains, 
like those of negative, imaginary, and other “impossible” numbers (Nagel 
1979). In his logic Hegel both recognizes and responds to this situation in a 
way analogous to that in which Carnot had recognized and responded to the 
situation within contemporary algebra.

This tripartite singular-particular-universal structure (S-P-U) can now 
be easily expanded into a traditional formal syllogism, the “syllogism of ex-
istence.” In its first figure, this S-P-U structure is shorthand for a modified 
Aristotelian syllogism (SL, 590; 12:93):

S-P (this house is so and so constituted)
P-U (a house so and so constituted is good)
\ S-U (this house is good).

In the premises S-P and P-U, with two extremes linked by a doubled mid-
dle term (one referring to the concrete way this house is constituted, the other 
to any house displaying such features), Hegel surely recognized the doubled 
ratios or proportions found in Plato’s Timaeus and Republic and Nicomachus’s 
Introduction to Arithmetic. Within the Aristotelian framework, however, with 
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its blurred singular-particular relation, this appears as a simple geometric 
proportion, a : b :: b : c.15

Looking for a more Aristotelian alternative to Hegel’s modification we 
might write:

	 1.	 All houses so and so constituted are good.
	 2.	 This house is so and so constituted.
	 \ 3.	 This house is good.

However, in relation to the formally identical syllogism, “All humans are 
mortal, Now Gaius is a human, Therefore Gaius is mortal,” Hegel points out 
that “the major premise is correct only because and to the extent that the con-
clusion is correct” (SL, 611; 12:112).16 Here Hegel is following Kant’s analysis of 
evaluative aesthetic judgments in the Critique of the Power of Judgment (Kant 
2000, pt. 1, section 1, book 1): there are no rules for this type of goodness, 
and so one could not deduce from some kind of definition of a good house 
that this one, possessing the relevant features, must therefore be good.17 Say-
ing what is good about houses depends upon making first-order judgments 
about specific houses. And yet our judging practices necessarily involve using 
justifications of this sort. There must be some type of inferential commerce 
between judgments about singular houses (this house or that one) and about 
indeterminate particular houses (a house with such and such features). This, 
I take it, is the syllogism interpreted in a Platonic way with “divided” middle 
term. It must be able to have characteristics of both singular (a Fregean ob-
ject) and universal (a Fregean concept).

The form of Hegel’s syllogism will develop through two further figures 
into a final degenerative fourth, with the second and third figures being rep-
resented by successive reorderings of the original S-P-U structure. Thus, the 
second figure is given as P-S-U (SL, 597; 12:99) and the third S-U-P (SL, 600; 
12:102). A reader with some familiarity with Aristotle’s logic will recognize the 
Aristotelian equivalent of this. In Aristotle, the two syllogistic premises share 
a “middle term” (meson) that is eliminated in the conclusion. Paradigmati-
cally, as in the first figure (Aristotle 1989, Prior Analytics, 26b33), this middle 
term will be subject of one premise and predicate in another to conform with 
the transitivity of the containment relation. In the second figure, however, it 
plays the role of predicate in both premises (26b34–36), and in the third, that 
of subject of both premises (28a10–12).18

As has been suggested, for Aristotle it is because only the first pattern 
shows the transitivity of the containment relation underlying the proof of the 
inference that the second and third figures must be converted back to those 
“perfect” syllogistic inferences found in the first figure. Because Hegel dis-
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tinguishes the (syntactic) subject-predicate distinction from the (semantic) 
distinction between the singular, particular, and universal determinations of 
the concept, his account of the figures will be more complex. This is where 
the principle of homomorphic equivalence promises to illuminate the move-
ment of the middle term. As modeled by a pair of incommensurable ratios, on 
the Hegelian reading, the movement of the middle term can be understood 
as a transition from a judgment displaying an internal mean to its inverse, 
a judgment with a corresponding external dividing mean. For the moment, 
this will supply us with sufficient interpretative tools to return to the type of 
judgments from which Hegel’s account starts—judgments that will develop 
into the implicitly syllogistic judgment of the concept sketched above. One 
further point needs to be made about syllogisms, however.

From Hegel’s choice of examples of judgments of the concept it is clear 
that he has in mind what has been described as involving the application of 
“essentially contested” concepts (Gallie 1964). What Hegel’s examples bring 
into view, I suggest, is that it is the contestability of such judgments that will 
lead to efforts on the parts of the judges to say why the other should accept 
them—that they will, in Wilfrid Sellars’s terminology, be given a place in the 
“space of reasons” (Redding 2007, ch. 2.4). This is the idea that has been de-
veloped by Robert Brandom in his “inferentialist” interpretation of Hegel’s 
logic—at least the logic he sees implicit in Hegel’s Phenomenology of Spirit 
(Brandom 2019). However, from within the classical Fregean perspective he 
adopts and adapts, the essential duality of judgment form in Hegel becomes 
invisible. As we see below, Hegel’s analysis of judgment structure will be more 
in line with the approach of sophisticated algebraic syllogistic logicians fol-
lowing in the wake of Boole’s revival of Leibnizian logic—later nineteenth-
century algebraic logicians like C. S. Peirce, Hugh MacColl, W. E. Johnson, 
and, a little later, Arend Heyting.19

7.5 Disambiguating Aristotle’s Singular-Particular Conflation  
in the Judgment

In his account of judgment, Hegel starts from an initial form of judgment 
something like what would be called “primary judgments” in the form of 
logic introduced by George Boole—they are the immediately perceptual de-re 
judgments in which the adjectival predicate term is understood to “inhere” 
in the subject term in a way that captures how a perceivable quality is expe-
rienced as inhering in the concrete substance it qualifies. Hegel calls these 
“judgments of existence [Dasein],” and his favorite example is “The rose is 
red” (SL, 558–559; 12:61–62; E:L, §172). Clearly, we need to be careful as to how 
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we understand the subject phrase “the rose”—it could, as in the subject of 
the judgment of the concept, be meant in the sense of “this rose” (indicating 
some actual and hence directly perceivable rose), it could be meant in the 
sense of an indifferent “some rose” (existing somewhere and somewhen), or 
it could be meant in the sense of “the rose as such”—the genus rose, as it were. 
In the latter two cases the sentence could be uttered without any actual rose 
in view.20 It is clear that Hegel intends the former. In the Encyclopedia Logic, 
for example, he uses the demonstrative phrase explicitly (E:L, §172, addition; 
§174, addition). But the most appropriately Hegelian “proof ” of the essential 
demonstrability of the subject of the judgment of existence will come from 
the judgment of the concept, understood as the “truth” of the earlier form. 
The house or act that was good or bad, it will be recalled, was this house and 
this act.

In making an empirical judgment concerning the color of some specific 
rose, it is natural to think of the predicate offered as being “measured” exter-
nally by the perceived quality of the thing appearing as subject of the predi-
cation. But like later critics of “primary judgments,” Hegel will focus on the 
logical shortcomings of such judgment forms. His “positive judgments of ex-
istence” are barely judgments at all, and, rather than aspiring to truth, are ca-
pable only of “correctness” (Richtigkeit) (SL, 562; 12:65; E:L, §172, remark and 
addition). Moreover, they have their “truth” in the “negative” judgments that 
succeed them, which in turn will lead to more complex judgments in which 
the predicate “is said of ” or “subsumes” the subject term.

This latter form will characterize a type of quantitative judgment that 
he calls a “judgment of reflection” and that in contrast to being de-re in the 
sense of about some res or substance might better be described as de-facto—
judgments not primarily about specific things such as roses but rather pur-
ported circumstances or states of affairs involving those things. To describe a 
judgment as one in which the predicate “subsumes” the subject is, Hegel puts 
it, to say that that predicate “measures” the subject term.21 Just as negation in 
the initial judgment form occupies a point “internal” to the subject-predicate 
relation, I have suggested that so does its equivalent “position,” that is, af-
firmation. When this rose is said to be red, what is affirmed is the predicate, 
being red, of the subject, this rose. This is shown by the appropriate contrast 
class into which the claimed redness of the rose is being put. The rose is red 
rather than yellow, blue, pink, and so on. “When it is said that, for instance, 
the rose is not red, only the determinateness of the predicate is thereby denied 
and thus separated from the universality which equally attaches to it; the uni-
versal sphere, color, is retained; if the rose is not red, it is nonetheless assumed 
that it has a color, though another color” (SL, 565; 12:68).
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The negation that we have seen in the passage from the positive to the 
negative judgment of existence drives a type of abstractive process in which 
an element with the initial determinacy of concrete singularity is driven first 
to a less determinate particularity and then to a maximally indeterminate 
universality. Importantly, these more complex and abstract judgment types 
encountered on the way might be judged to be true even when immediate 
appearance says otherwise, as in looking at a red rose by moonlight, for ex-
ample, when it may perhaps appear to be dark purple or even black, one may, 
taking in the total circumstances involved, still judge it to be red. This might 
be regarded as a consequence of the type of “Copernican” reversal at the heart 
of modern science. The sun’s seeming to move is countered by a consider-
ation of the broader circumstances or conditions under which such a percep-
tion has occurred. And yet, like Carnot’s criticism of the metaphysical reality 
of infinitesimals and other impossible numbers, Hegel will be critical of the 
idea that such abstracta correspond to some metaphysical reality. He will thus 
resist the type of “ladder” analogy in which thought can climb to more and 
more abstract levels—a ladder leading to something like the “God’s-eye view” 
found in Leibniz or a series of increasingly abstract languages as those found 
in Lambert’s analogy of the languages spoken on the moon, on the earth, on 
the sun, and so on. From these accounts, what prevents us humans reach-
ing our goal is the infinite number of steps involved.22 What will correspond 
to the God’s-eye “view from nowhere” in Hegel—the locus of the “infinite 
judgment”—will be closer to the “points at infinity” introduced by Kepler via 
the use of the principle of continuity and taken up by Desargues and Pascal 
and, later, Carnot. As Carnot would stress, mathematical devices such as in-
finitesimal magnitudes should be stripped of their metaphysical associations: 
they exist within systematically linked practices and are ultimately tied to ex-
ecutable concepts. “Points” at infinity as vanishing points on a horizon will be 
linked to viewing points in the world as corresponding “pole” of the “polar.” 
Translated into judgments, the contextual or indexical judgment of inherence 
is linked to an equivalent but inverted judgment of reflection, just as the lat-
ter will be linked to the former. Each judgment form takes the measure of the 
world in its own way, and, importantly, each will be able to take the measure 
of the other. Their unity will be in accord with the principle of homomorphic 
equivalence, and its ultimate expression will be the syllogism. Hence the in-
finite judgment will represent the zenith of the ascending abstractive phase 
of a loop that will then descend though a transformation of the judgment 
form in which it returns to another type of concrete judgment. As with the 
“triangle of triangles” the imagery is that of being drawn deeper and deeper 
into empirical reality so as to grasp its true structure.
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What needs stressing here is the fact that while qualitative judgments will 
be able to be translated into quantitative ones and vice versa, a translation 
enabled by the fact that they share the same absolute content, neither will be 
able to represent the definitive logical form of judgment itself. Any judgment 
for Hegel must be understood as effectively able to be given either form, but 
equally these opposed forms are forms of a single, absolute, content. Judg-
ments must have an irreducibly “dual” form that, as will be seen, is found in 
the algebraic syllogistic logicians of the nineteenth century but not among 
Fregean classicists. These are the opposed judgment types that are united in 
the syllogism.

The first phase of each of these cycles of judgment form that Hegel will 
trace will commence with some version of the concrete de-re judgment, al-
though these will include quasi-substantial ones in which the names of kinds 
rather than individuals are the initial subjects of Hegel’s second cycle. This 
first phase will involve abstraction to something closer to the equivalent 
propositional or de-facto form with its typical external locus of affirmation or 
negation. While the first one or two steps in each cycle might be thought of as 
ascending successive rungs up the Platonic “ladder” it is important that this 
process cannot be simply iterated in the way that seems to be available within 
Aristotle’s framework and that is found in the logics of Leibniz and Kant sug-
gesting the “ladder” image. The indeterminacy of a continuing geometric 
series needs to be overcome in a way that, involving a reversal of direction, 
allows the extreme terms to be bound together.

The circularity characterizing the development of the judgment- and 
syllogism-forms in Hegel’s subjective logic will in fact be an instance of a 
more general circular pattern of development marking not only Hegel’s ob-
jective and subjective logics but the whole Encyclopedia of the Philosophical 
Sciences, within which Hegel had set out his mature thought. Thus, he would 
come to describe each part of his system as “a philosophical whole, a circle 
coming to closure within itself, but in each of its parts the philosophical idea 
exists in a particular determinacy or element [einer besonderen Bestimmtheit 
oder Elemente]. The individual circle [einzelne Kreis], simply because it is it-
self a totality, also breaks through the boundary of its element and founds 
a further sphere. The whole thus presents itself as a circle of circles” (E:L, 
§15)23—a structure surely recalling the earlier “triangle of triangles.” In the 
context of The Science of Logic, Hegel refers to these logical cycles as “cycles 
of determination”:

In the different cycles of determination and especially in the progress of the 
exposition, or, more precisely, in the progress of the concept in the exposition 
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of itself, it is of capital concern always to clearly distinguish what still is in itself 
or implicitly and what is posited, how determinations are in the concept and 
how they are as posited or as existing-for-other. (SL, 95; 21:110)

Hegel’s cyclical account of judgment- and syllogism-forms in the “Subjective 
Logic” will here be treated as such cycles of determination or, as I shall put it, 
redetermination.

Determination (Bestimmung) had been a term of art within Kant’s philoso-
phy. As George di Giovanni has put it, “To single out an object, whether by trait, 
direction, or production, for the sake of recognizing it as possibly or actually in 
existence (Dasein) is the overarching meaning that in Kant holds together the 
derivatives of bestimmten and the variety of contexts in which these are used” 
(di Giovanni 2021, 145). Di Giovanni points out that, for Kant, “everything exist-
ing is thoroughly determined” (Kant 1998, A573/B601), but, of course, knowl-
edge of something in its complete determination is, for Kant, beyond human 
cognition. Human theoretical cognition does not extend to “things in them-
selves.” Effectively, for us objects are known determinately along two different 
axes, the conceptual and the intuitive. An object is conceptually determinate—
that is, logically possible—if “of every two contradictorily opposed predicates, 
only one can apply to it” (Kant 1998, A571/B599). On the other hand, an object is 
known as actual rather than simply logically possible via the sensuous content 
of empirical intuition. Here, the discrete, all-or-none character of conceptual 
determinateness contrasts with the fact that the empirical determination of the 
actual via intuition comes in terms of the “more or less.” Just as the extensive 
magnitudes of space and time are continuous or “flowing,” so too is the “in-
tensive magnitude” of objects of empirical consciousness, varying between the 
values of 1 and 0 (A165–176/B207–218).

As suggested above, Hegel does not accept the Kantian dichotomy of con-
cepts and intuitions, but neither does he simply reject it, as found in mod-
ern predicate calculus, for example, with its ontological reduction to objects 
and concepts. Rather, the features distinguishing the intuitions and concepts 
at work in empirical consciousness will for Hegel be found internal to the 
conceptual. Essentially, empirical judgments of objects will vary in “intensive 
magnitude” between maximum (Kant’s 1) and minimum (Kant’s 0) just as 
had Kant’s empirical intuitions. Thus, the cycles of redetermination through 
which the proper concept of judgment unfolds can be thought of such that 
the abstractive phase moves from maximum to minimum values of inten-
sive magnitude and the reverse phase from minimally determinate abstracta 
back down to some new concrete maximum. The details of these processes 
will be explored when some of the resources provided by the post-Boolean 
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algebraic logicians have been introduced. Hegel did not have the advantage 
of being able to utilize the products of the work of these later figures, but  
he was able to utilize some of the basic logical ideas to be found in Leibniz 
and Ploucquet, who had anticipated, at least in broad outline, aspects of these  
developments.



8

The Return of Leibnizian Logic  
in the Nineteenth Century:  

From Boole to Heyting

The design of the following treatise is to investigate the fundamental laws of those op-
erations of the mind by which reasoning is performed; to give expression to them in the 
symbolical language of a Calculus, and upon this foundation to establish the science of 
Logic and construct its method; to make that method itself the basis of a general meth-
od for the application of the mathematical doctrine of Probabilities; and, finally, to col-
lect from the various elements of truth brought to view in the course of these inquiries 
some probable intimations concerning the nature and constitution of the human mind.

g e o r g e  b o o l e , An Investigation of the Laws of Thought

Toward the end of the nineteenth century, a then relatively unknown Ger-
man mathematician, Gottlob Frege, reviewed a work that systematized and 
presented to the German scientific community a new form of logic (Frege 
1960). The work reviewed was the first volume of what would eventually be-
come the three-volume Vorlesungen über der Algebra der Logik (Lectures on 
the Algebra of Logic) by Ernst Schröder (Schröder 1890–1905), a work that was 
regarded as having brought to maturity a form of logic commenced about 
half a century before in England with George Boole.1 Boole had attempted to 
modernize the ancient tradition of logic by the application of algebra to the 
Aristotelian syllogism, not knowing that much of what he proposed had been 
advanced by Leibniz a century and a half before him. Frege himself had been 
working on a different type of logic, now generally known as classical predi-
cate calculus with quantification, that, especially being promoted by Bertrand 
Russell in the new century, would become the official logic of the movement 
of analytic philosophy.2 Outside academic philosophy, however, Boole’s logic 
would continue to be influential. This broadly Boolean framework of logic 
that we might characterize as “Leibniz Mark II,” I will argue, provides a more 
appropriate context than Frege’s within which to further examine Hegel’s own 
logic.

As had been pointed out by the British logician Philip Jourdain (Jourdain 
1914, iii), both algebraic Aristotelians and Fregean anti-Aristotelians could, 
in retrospect, be said to have developed ideas that had been earlier sketched 
by Leibniz,3 but in each case the focus was on different parts of Leibniz’s dual 
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project. If one thinks of Leibniz’s anticipated revolution in logic as combin-
ing a characteristica universalis and a calculus with which to perform com-
binations of characters of the former, then in general the Booleans would 
uncouple the calculus from the idea of a universal concept language, which 
they generally discarded. For them, formal logic was not an autonomous 
meaningful language but a “disinterpreted” mathematical calculus, in need 
of reinterpretation. In contrast, Frege held to both parts of Leibniz’s project 
with the primary focus on the idea of logic as a universal concept-script (Beg-
riffsschrift) (Frege 1997). The conception of the truths of arithmetic as resting 
upon the truths of logic in this sense would be known as “logicism.”

Among the post-Booleans, the rejection of the logicist idea of logic as 
a universal language is exemplified in the algebraic approach of the Cam-
bridge logician W. E. Johnson, who tended to treat logic as what Peirce had 
described as a logica utens, a type of formal device useful in specific contexts 
to aid human reasoning, but which itself depended upon human reasoning 
and human language for its interpretation.4 As Johnson put it in the early 
1890s, a logical calculus “aims at exhibiting, in a non-intelligent form, those 
same intelligent principles that are actually required for working it” (John-
son 1892, 3).5 That is, in order for these “disinterpreted” strings of symbols 
to be grasped as logical, they must once more be reinterpreted, which sug-
gests two things: they must rely upon the resources of everyday language and 
thought for their reinterpretation, and reinterpretation will in turn result in 
new meanings being given to those elements—meanings different from those 
they intuitively had possessed before this procedure.

Here Johnson’s point aligns with Hegel’s criticism of the reduction of logic 
to the algebraic formalizations of Euler or the geometric ones of Lambert. 
While determinations of the concept may be “like lines or the letters of alge-
bra, diverse; and . . . also opposed and allow, therefore, the signs of plus and 
minus  .  .  . they themselves and especially their connections .  .  . are in their 
essential nature entirely different. . . . Since the human being has in language 
a means of designation that is appropriate to reason, it is otiose to look for 
a less perfect means of representation to bother oneself with” (SL, 544–545; 
12:47–48). As Elena Ficara points out in relation to this passage and a simi-
lar one pertaining to Leibniz from the Encyclopedia, “Hegel emphasizes the 
difficulties of fixing a complete hieroglyphic language, and the fact that the 
conceptual and logical relations require signs that are susceptible of a con-
tinuous revision” (Ficara 2021, 55). That is, from this point of view common 
to both Johnson and Hegel, human reason could not be definitively formal-
ized in an axiomatic way because it is forever possible for humans to reflect 
on and revise those axioms.6 Ironically, this seems to suggest that the most 
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mathematical among the modern logicians—the algebraic Aristotelians for 
whom formal logic was mathematics rather than an ideal language within 
which the foundation for mathematics was to be laid bare—could entertain 
a philosophical conception of logic that is closer to Hegel than is the Fregean 
paradigm. This chapter will explore those features of the logic of a number 
of the algebraists that help shed light on aspects of Hegel’s “Subjective Logic.” 
In the final two chapters, specific examples of these convergences will be 
explored.

8.1 George Boole’s Logic and Its Immediate Aftermath

Leibniz’s logic had remained relatively unknown until revived at the turn of 
the twentieth century by the French logician Louis Couturat (Couturat 1901, 
1903), and by this time mathematical or “symbolic” logic had been well es-
tablished by its “second founder” (Lewis and Langford 1932, 9), the English 
mathematician George Boole. Boole, without any foreknowledge of Leibniz, 
had retraced Leibniz’s path with the application of an algebra linked to a bi-
nary number system to the Aristotelian syllogism. We will be familiar with 
the basic general features of Boole’s logic from what we have learned of Leib-
niz, but some important differences need to be noted. Boole starts off with a 
calculus of classes, but this time understood explicitly from an extensionalist 
perspective. Nevertheless, problems of the sort facing Leibniz surrounding 
the relation between the logic of classes to one of propositions would remain. 
Thus, Frege would criticize Boole’s system for the fact that its two parts, its 
term and propositional logics, “run alongside one another, so that one is like 
the mirror image of the other, but for that very reason stands in no organic 
relation to it” (Frege 1979, 14). From the perspective of nineteenth-century 
geometry, however, these two parts could be understood as instantiating a 
particular type of “duality” that had come to the attention of mathematicians 
(Nagel 1939, §§45–60; Demey and Smessaert 2022). Frege had thought he had 
solved this problem, and it would be central to his and Russell’s case against 
the algebraists. Frege and Russell, however, would count as distant targets of 
criticisms that Hegel had aimed at Leibniz.

Boole’s approach to algebra was in line with the “disinterpretational theory 
of algebra” that had been developed by a group of Cambridge mathematicians, 
George Peacock, Duncan Gregory, Augustus De Morgan, and the computing 
pioneer Charles Babbage earlier in the century. Members of this “analytical so-
ciety” were intent on bringing to England the European algebraic approaches 
to differential calculus found in Lagrange and others—the very interpretation 
that Carnot had a few decades earlier opposed.7 They brought to mathematics, 
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however, an approach that would resemble one aspect of Hegel’s method in 
logic, in that they regarded the operations of algebra as able to be abstracted 
from application to the specific domain to which they were directed, para-
digmatically, the arithmetical manipulation of numbers. Boole’s logic would 
emerge as an early expression of this “symbolic” approach.

In 1847 Boole published a short work, Mathematical Analysis of Logic, 
which applied algebra to syllogistic logic, but he would later, in 1854, add the 
more substantial work for which he would come to be known, An Investiga-
tion of the Laws of Thought, on Which Are Founded the Mathematical Theories 
of Logic and Probabilities. In the first book Boole makes it clear that the alge-
braic calculus he is applying to logic “does not depend upon the interpretation 
of the symbols which are employed, but solely upon the laws of their combi-
nations” (Boole 1847, 3). Like Leibniz, Boole chose to work with an algebra ap-
plied to a binary rather than decimal number system, and early in his presen-
tation uses “the symbol 1 to represent the Universe” (14), or sometimes, “the 
logical universe” (68). In The Laws of Thought this would become “the uni-
verse of discourse” (Boole 1854, 30). Although not explicitly defining ‘0,’ Boole 
used it to designate the nonexistence of a class. The parallels with the general 
framework within which Hegel’s logic would commence, the distinction “be-
ing” and “nothing” (SL, 59–60; 21:68–70), are striking. This distinction would 
be immediately aufgehoben in Hegel, however, signaling its highly question-
able status as a fundamental distinction—from a logical point of view, the 
concept nothing (like the set containing nothing) is not nothing. Boole, how-
ever, would get trapped in this dichotomy that was meant to distinguish being 
from nothing, on the one hand, and true from false, on the other.

Within this class-based logic, inferential processes would be understood 
in much the same way that Aristotle had understood “perfect syllogisms,” 
that is, the “part-whole” model in which one class is included in another as 
part of a whole. But for Boole the model was now understood explicitly ex-
tensionally not intensionally as it had been by Leibniz.8 If x is an element of 
class X, and class X is included in class Y, then x is an element of Y. If, for 
example, Socrates is a human, and the class of humans is contained in that of 
mortals, then Socrates is mortal.

The ancient distinction between arithmetic and geometric relations that  
Hegel comments upon in relation to Plato would also find a place in Boole’s 
logic in his employment of operations on classes traditionally found in arith-
metic, those of “product” (multiplication) and “sum” (addition), operations 
seemingly confused by Leibniz in his idea of conceptual addition (above, 
chapter 5.1).9 For example, that “the product xy will represent, in succes-
sion, the selection from the class Y, and the selection from the class Y of such 
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individuals of the class X as are contained in it, the result being the class 
whose members are both Xs and Ys” (Boole 1847, 14).10 Thus, the product 
of two sets, X and Y, would be understood as itself a set, consisting of all the 
“ordered pairs” that resulted from pairing each element of the first set with 
every element of the second. In contrast, the sum of two sets X and Y con-
sisted of a set formed by merging the members of the two sets into one.11 This 
allowed the component judgments within syllogisms to be now represented 
by class relations. For example, “All Xs are Ys” means that “to select out of 
the Universe all Ys, and from these to select all Xs, is the same as to select at 
once from the Universe all Xs. Hence, xy = x” (20). “Factoring” this equation 
produces x(1–y) = 0, which can be interpreted as declaring the nonexistence 
of things that are both X and not Y.

Leibniz had realized that the containment relations underlying relations 
of logical inference could also be thought to hold between collections of sen-
tences about them just as it held among objects themselves. Similarly, Boole 
applied his algebra to propositions as well as to collections of objects. The 
underlying algebraic ideas of product and sum now allowed for two types of 
logical relations holding among propositions—conjunction as in “p and q”  
and disjunction as in “p or q,” respectively. The relation between these two 
logical connectives, reminiscent of the similarly defined “arithmetic” and 
“geometric” means in Plato, would instantiate the type of “duality” that had 
been discovered within nineteenth century geometric algebra (Nagel 1939, 
§§45–60), as shown in “De Morgan’s Laws,” which state that the negation of 
a disjunction is equal to the conjunction of the negations, and, inversely, the 
negation of a conjunction is equal to the disjunction of the negations.12

The differentiation of term and propositional logics, however, necessi-
tated making a distinction between two different types of propositions that 
Boole called “primary” and “secondary propositions,” and some form of this 
distinction would be held by all the algebraists who followed Boole. Boole’s 
distinction is essentially the same as that between Hegel’s judgments of in-
herence and judgments of reflection, and both reflect the type of underlying 
duality expressed in De Morgan’s Laws.

Boole gives as an example of a primary proposition the sentence “The sun 
shines,” which includes an object, the sun, within a group of objects, things 
that shine (Boole 1854, 38).13 In this sense, the judgment “classified” the object 
that was referred to in the subject term by identifying it as a member of the 
class referred to by the predicate, the class of shining things. As examples 
of secondary propositions Boole gives the compound propositions “If the 
sun shines the earth is warmed” and “It is true that the sun shines.” Unlike 
“The sun shines,” neither of these propositions is about the sun. The latter, for 
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example, is about the primary proposition (that is in turn about the sun): it 
says of that proposition that it is true. It corresponds to what the medievals 
had called a de-dicto proposition, a proposition about something said, some 
dictum.14 A similar situation holds for the hypothetical, as neither the ante-
cedent nor the consequent asserts anything of the sun. In fact, what seems to 
be asserted by the entire utterance is a relation of dependence between the 
two primary propositions.15

Later, Russell would separate the question of the meaning of a conditional 
“If the sun shines the earth warms” from that of the inference from an as-
sertion “The sun shines” to another, “The earth warms,” but this distinction 
between an “inference” (something that a reasoner does in moving from one 
judgment to another) and an “implication” (a certain kind of compound 
proposition whose truth-value is dependent upon those of its component 
propositions) would only emerge clearly during the years between Boole and 
Russell (Prior 1949).16 Russell’s criticism was based on the claim that Boole’s 
primary propositions were not propositions at all, and should have no place 
in logic. Unfortunately, this would rule out many everyday claims believed to 
be capable of being true or false, such as in an example that would be used 
in a dispute between Russell and MacColl, the assertion “Mrs Brown is not 
at home.” It would also rule out Hegel’s qualitative “judgments of inherence,” 
such as “This rose is red.” From Hegel’s perspective, such “positive judgments 
of existence” needed to be aufgehoben within the logical system, but of course 
to be aufgehoben means to be preserved in being negated; it does not mean 
simple elimination or reduction to some other form as favored by Russell.

The logical behavior of Boole’s logical connectives “and” and “or” is rather 
rudimentary. On the one hand, if one knows that the sentence “a and b” is 
true, one can infer that the sentence “a” is true, and one can infer that the sen-
tence “b” is true. On the other hand, if one knows that “a” is true, one thereby 
knows that “a or b” is true (and similarly, one knows that “a or b” is true if 
one knows that “b” is true). Bertrand Russell would go on to define the mate-
rial implicational connective “if . . . then . . .” in terms of the notion of logical 
product or logical sum together with negation. To know that “a implies b” is, 
he would claim, to know that either “a” is true and “b” is true or that “a” is 
false and “b” is true or that “a is false and b is false.” The only combination to 
be ruled out is the conjunction “a” is true and “b” is false. Russell’s definition 
of “implies” would later be criticized,17 but it brings out the general feature of 
the interdefinability existing among the various logical connectives in such 
mathematical formalizations. Eventually different “logics” would come to be 
described as differentiated by what could be considered basic and the ways in 
which what was derived had been derived.
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The first to recognize Boole’s logic from a philosophical point of view, 
and to adopt a critically transformed version of it, had been William Stan-
ley Jevons, but Jevons objected to what he perceived as Boole’s having forced 
properly logical laws into the straitjacket of mathematical ones. Boole, he 
thought, did not pay sufficient heed to specific human intuitions about logi-
cal relations, and he criticized Boole’s interpretation of the word “or,” arguing 
for it having an “inclusive” rather than “exclusive” sense.18 As a model of the 
practice of human inferring, Boole’s logic from this perspective needed to be 
tested against the evidence.

After Jevons, Boole’s work would be taken up by the Cambridge philoso-
pher John Venn (1834–1923), and two claims contained in his influential book 
Symbolic Logic (Venn 1881) are worth noting. First, to counter the type of 
skepticism found in Jevons to the specifically algebraic aspects of Boole, Venn 
stressed how such a generalized algebra abstracted from the familiar inter-
pretations of the symbols involved—a point that would be repeated later by 
his younger colleague Johnson (1892). This disinterpretation, Venn thought, 
allowed science to progress to new conceptions:

A thorough generalization assumes sometimes an entirely unfamiliar aspect 
to those who were previously acquainted only with some very specialized 
form of the generalized process:—thus we all know what a step it is to most 
beginners to extend “weight” into “universal gravitation.” In such cases the 
realization of the generalization may amount almost to the acquisition of a 
new conception, rather than to the mere extension of one with which we were 
already intimate. (Venn 1881, xxi)

In relation to this we might mention one justification for classical learn-
ing Hegel gave when delivering an address when headmaster of a school in 
Nuremburg in 1809. There he describes an alienation (Entfremdung) “that 
is the condition of theoretical erudition,” a necessary “divorce” (Scheidung) 
of the soul from its “natural condition and essence” by means of which it is 
led into a “remote and foreign world” ( ferne, fremde Welt)” (Misc, 296–297). 
The mechanical drudgery involved in learning a foreign language cannot be 
avoided as “the mechanical  .  .  . awakens the mind’s desire to digest the in-
digestible food forced upon it, to make intelligible what is at first without 
life and meaning, and to assimilate it.” This mechanical element in language 
study, he notes, “constitutes the beginning of logical training. . . . In learning 
grammar therefore, the understanding itself first becomes learned” (297).19

The second feature concerns Venn’s attempt to sketch the historical roots 
of algebraic logic in which he mentions, besides the earlier work of Leibniz, 
the later works of Ploucquet and Lambert (Venn 1881, xxxii). Lambert, he 
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goes on, had recognized the logical analogue of the four algebraic operations, 
addition, subtraction, multiplication, and division, as well as the inverse rela-
tions that hold among them, subtraction being the inverse of addition, divi-
sion of multiplication (Venn 1881, xxxiv and n2).20 We have noted the roles 
that these basic arithmetical operations and their inverses had played, along 
with exponentiation and its inverse, in Hegel’s elucidation of the “complete 
concept” of number in book 1 of The Science of Logic.21 Moreover, in an ob-
servation that would surely have struck a chord for Hegel, Venn noted that 
while Lambert realized logical division is the inverse of multiplication, “he 
failed to observe the indefinite character commonly assumed by inverse op-
erations. . . . He regarded the inverse as being merely the putting back a thing, 
so to say, where it was before” (xxxv). In Hegel’s logical cycles, the role of 
inverse or negation is to bring about redetermination. Restoring meaning to 
disinterpreted concepts allows breaking with the understandings that shaped 
the past.

Like Jevons, all of the post-Booleans saw the need to go beyond the limita-
tions of Boole’s logic, and it is Peirce who is generally seen as having made the 
most progress there. To understand his advances, however, his work must be 
examined in the context of that of the rival approaches of Frege and Russell.

8.2 Peirce and Frege: Rival Approaches to the Logic of Relations

A feature of Frege’s logic that has been celebrated concerns the way that it 
allowed for the logical representation of relations, thus overcoming a ma-
jor shortcoming of the Aristotelian tradition in which the subject-predicate 
structure of sentences meant that only “monadic” (one-placed) predicates 
could be said of a subject. While Aristotle’s approach was adequate for simple 
judgments of inherence as in “This rose is red,” it was far from adequate for 
representing the logical structure of more complex judgments. For example, 
in relation to the two sentences “Jane is reading War and Peace” and “Arnold 
is reading Madame Bovary,” the Aristotelian analysis would treat “is reading 
War and Peace” and “is reading Madame Bovary” as distinct, simple predi-
cates—as unrelated as the predicates “blue” and “round,” for example. Clearly, 
it would be preferable if both predicates could be understood as containing 
the same concept <to read> that could be applied to a variety of possibly 
readable things. This is what Frege had achieved by bringing the algebraic 
relation of function to argument to replace the traditional subject-predicate 
relation.

While the algebraic notion of function had been used by mathematicians 
for centuries, subtle changes in its meaning had occurred in the nineteenth 
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century.22 Frege generalized the idea of functions applied to sets of numbers 
to functions understood as relating combinations of propositions to one of 
the two truth-values, true and false.23 This required the proposition, now 
regarded as an abstract entity capable of having properties of being true or 
false, to be the most basic unit of meaning. That is, the proposition was no 
longer considered as somehow assembled from the independently meaning-
ful subject and predicate terms of Aristotelian term logic. The components 
of propositions were rather abstractions arrived at by the device of remov-
ing the referring terms from the original sentences so as to create sentences 
with gaps—Russell would call these “propositional functions.” Such incom-
plete entities would only become proper propositions when these gaps left 
by the removed referring terms were filled, and this could be done by the use 
of algebraic variables that were in turn “bound” by universal and existential 
“quantifiers.”

In the 1870s and 1880s, the American philosopher and scientist Charles 
Sanders Peirce had sketched an alternative to the direction being taken by 
Frege and had found a way to extend Boole’s algebra to capture relations. 
Moreover, he had independently introduced the idea of universal and exis-
tential “quantifiers” just a few years after the publication of Frege’s Begriffs
schrift. Peirce’s solution would make explicit features that others have recog-
nized as implicit in Leibniz’s logic of 1682, and it would maintain more of the 
operational sense of “function” than that implicit within the entirely abstract 
set-theoretical approach of Frege and Russell.

Peirce would draw upon the advances in linear algebra made by his father, 
Benjamin Peirce, an eminent mathematician, whose work Linear Associative 
Algebra (Peirce 1881) the younger Peirce had edited and prepared for publica-
tion after his father’s death.24 In a series of papers, starting in 1870, and draw-
ing on the work of both Boole and his contemporary Augustus De Morgan, 
Charles extended Boole’s algebraic logic to encompass relations by treating 
a two-placed predicate as a name of an ordered pair of objects, thus mak-
ing explicit the “geometric” idea of partial order that has been described as 
implicit in Leibniz (Swoyer 1994). Whereas Boole’s basic logical relation had 
been the ‘=’ of an equation, Peirce introduced a sign ‘≺’ to signify the rela-
tion of as small as or less than or equal to (standardly written as ‘≤’) (Peirce 
1870, 367). Typical of the disinterpreting tendencies of modern algebra, this 
relation that had standardly held among numbers, could now be given a more 
general meaning, being defined in terms of the properties holding of a rela-
tion between nonspecified objects, those of reflexivity, anti-symmetry, and 
transitivity. With this, relations of class inclusion became just one way among 
others of establishing an order among elements. Moreover, while the familiar 
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Aristotelian relations of class inclusion used by Boole had been transitive, 
they were not reflexive.

For Leibniz, the idea of reflexivity expressed in the idea of a container 
containing itself had been a way of introducing a “modern” individualist di-
mension into an Aristotelian logic that had been incapable of giving explicit 
recognition to what Hegel referred to as singularity, Einzelheit. Similarly, for 
Peirce, it represented an important modernization of the Aristotelian syl-
logistic. With this geometric idea of order, something of Plato’s “greater or 
lesser” was being reintroduced into the otherwise “all or nothing” quality of 
Aristotle’s concept of class inclusion.25

In the early 1880s (Peirce 1885; Peirce et al. 1883), Peirce and his students 
would also introduce quantifiers into logic paralleling the innovation that had, 
unknown to Peirce, been made independently by Frege in 1879.26 The details 
are technical, but the differences between the two approaches are relatively 
easy to understand. As for “universally quantified” judgments as in “All met-
als are heavy,” for Frege, the “all” really refers to an “all” of propositions, not 
individual metals. The sentence asserts that for all things x, sentences of the 
form “If x is a metal then x is heavy” are true. The Aristotelian “some” quanti-
fier would in turn be treated as what Frege called an “existential quantifier.” 
From the perspective of the early Pythagoreans or the medieval nominalists, 
“Some ancient Greeks were philosophers” would be naturally understood as 
saying of a list of ancient Greeks—Socrates, Thucydides, Aristophanes, and 
so on—that one or more of them were philosophers. In contrast, for Frege, 
“Some ancient Greeks were philosophers” meant that there was at least one 
unspecified something (x) of which it was true that that thing was both an 
ancient Greek and a philosopher.

Peirce’s approach to quantification, using algebraic notions of sum and 
product, was, in this regard, closer to the more natural (Pythagorean/nomi-
nalist) one in virtue of his employment of the notion of the idea of an “index,” 
and this would allow an explicit comparison with the “object-involving” di-
mension of Hegel’s judgments of existence. Thus, drawing on the idea of a 
pointing index finger, Peirce writes: “I call such a sign index” which “asserts 
nothing; it only says ‘There!’  .  .  . Demonstrative and relative pronouns are 
nearly pure indices, because they denote things without describing them; so 
are the letters of a geometrical diagram, and the subscript numbers which in 
algebra distinguish one value from another without saying what those values 
are” (Peirce 1885, 260).

In 1904 Russell had believed that a judgment or thought about an ob-
ject—in his example, Mont Blanc—actually contained that object as a com-
ponent, but this view outraged his correspondent, Gottlob Frege, for whom 
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what a judgment asserted, its “content,” had to be something abstract, a “prop-
osition” understood as an entirely abstract object capable of truth or falsity 
(Frege 1980, 163). Russell himself would soon adopt Frege’s view, establishing 
the modern paradigm of formal logic, but in 1904 he had not thought his pro-
posal an outrage to common sense, regarding the content of the judgment as 
“a certain complex (an objective proposition, one might say) in which Mont 
Blanc is itself a component part” (169). From 1905, as put forward in Rus-
sell’s famous “description theory” of proper names (Russell 1905), such names 
would no longer be thought of as directly referential—in Hegelian terms, 
such singular determinations would be replaced by particular ones, as when 
proper names in sentences are replaced by “definite descriptions” containing 
conceptual predicates subsuming all possible individuals of which the predi-
cate was true.

In contrast, Peirce’s account of quantification as developed in 1885 did not 
have this consequence, and he used the sign “∑,” suggesting a sum (and con-
trasting with “∏” suggesting a product) with a variable x to represent a con-
cept that is true of individuals that are represented by the associated indices. 
Thus, “∑ixi means that x is true of some one of the individuals denoted by i 
or ∑i xi = xi + xj + xk + etc.” (Peirce 1885, 277–278).27 The system developed 
by Russell had not retained this capacity to refer to a conjunction of specific 
individuals as found in Peirce.

Russell’s description theory would later be criticized in modal terms by 
Saul Kripke and others (Kripke 1972), but the seeds of this resistance, both in 
regard to the nongenerality of names and the modal issues involved, are to 
be found in Peirce and, after him, MacColl and Johnson—and before them, 
Hegel.

8.3 MacColl’s Modal Logic

Hugh MacColl, whose work would, at least until recently, be largely forgotten 
after his death in 1909, had published a series of papers from the late 1870s and, 
after a break, again in the 1890s, the latter being brought together in 1906, in 
a book, Symbolic Logic and Its Applications. Like Peirce, MacColl had worked 
in the algebraic tradition commenced by Boole. He had corresponded with 
Peirce and Schröder and had a decisive influence on both (Peckhaus 1999; 
Anellis 2011). Russell, while critical of MacColl’s algebraic approach to logic, 
would nevertheless acknowledge him as having been the first to displace the 
focus of recent logic from class relations to relations of implication among 
propositions (Russell 1906, 255). MacColl’s modal logic would show an array 
of striking parallels with Hegel’s approach to “subjective logic.”
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MacColl’s approach to the logic of modality would fail to catch on, and it 
would be C. I. Lewis (Lewis 1918; Lewis and Langford 1932) who would be re-
garded as rejuvenating modal logic, despite the fact that “twenty years before 
Lewis, [MacColl] defined the concept of strict implication, and earlier than 
Peano he accounted for inclusion by means of implication” (Astroh and Read 
1998, ii). Nevertheless, “during the second half of the 20th century . . . Mac-
Coll’s major domains of research, i.e., modal and non-classical logic, gradu-
ally turned into acclaimed fields of research” (ii), and interest in his work 
would be revived in the later decades of that century.

Significantly, at the very start of Symbolic Logic and Its Applications Mac-
Coll asserts the reinterpretative approach to logical symbolism in that “there 
is nothing sacred or eternal about symbols” and that “all symbolic conven-
tions may be altered when convenience requires it, in order to adapt them 
to new conditions, or to new classes of problems” (MacColl 1906, 1). This 
clearly reveals a “contextualist” attitude opposed to any that aimed at some 
ultimate “universal language” that we might think an appropriate medium 
within which to express a knowledge of the world as grasped from a “God’s-
eye view”—an attitude more like that of Hegel’s conception of the capacity for 
logical categories to be redetermined.

In this relatively short book, MacColl, as Russell acknowledged, took logic 
to be primarily about the implicational relations existing among propositions, 
and attempted to accommodate class relations on the basis of this. It was from 
this perspective that he would approach modal issues by distinguishing a plu-
rality of modal semantic predicates, that would be applied to propositions as 
subject terms, thereby creating propositions of a “higher order.”

In his more influential approach to modal logic, C. I. Lewis would under-
stand propositions in the Russellian way, and would conceive of modal op-
erators, “necessarily” and “possibly,” as applying to those propositions, such 
that their truth or falsity would be now understood as modified “adverbi-
ally” as necessarily or possibly true or false.28 MacColl however, presuppos-
ing Boole’s duality of “primary” and “secondary” propositions, would treat 
modal notions in the way that Boole treated truth and falsity, as predicates 
of higher-order propositions whose subjects were themselves propositions. 
Thus, he would add to the familiar “true” and “false” a further three semantic 
predicates that he would label “certain,” “impossible,” and “variable,” giving 
five second-order judgment types—judgments that were true, false, certain, 
impossible, or variable (MacColl 1906, 6–7).29 The last of these judgment 
types were, like Hegel’s judgments of existence or Boole’s primary judgments, 
context-sensitive judgments (Stelzner 1999)—judgments that were “some-
times true and sometimes false” (MacColl 1906, 18).
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In contrast to Lewis’s modal contradictories, MacColl’s “certain” and “im-
possible” were modal contraries, able to be understood as if located at the 
“A” and “E” corners of a modal version of the Aristotelian square of oppo-
sition.30 To these, MacColl’s “sometimes true and sometimes false” added a 
third modal category of contingency. Hegel too had given an important place 
to contingent predications, and MacColl’s opposition between the contraries 
necessary and impossible reflected the contrary predicates of Hegel’s “judg-
ment of the concept” (SL, 581–587; 12:84–89), an evaluative judgment in which 
opposing pairs of contrary predicates such as “good” or “bad” measured some 
object or act “against the concept as an ought which is simply presupposed, 
and is, or is not, in agreement with it” (SL, 582; 12:84). It was the logical form 
of such a judgment, it will be remembered, that was revealed as a syllogism 
(587; 12:89), exemplifying Hegel’s description of the syllogism as “the truth of 
the judgment” (593; 12:95).

The critique of MacColl’s idea of judgments that are “sometimes true and 
sometimes false” would be central to Russell’s critique of MacColl’s book in 
his review of it (Russell 1906). Russell’s review starts favorably, acknowledging 
that it deals with “whole statements or propositions, not, like most writers, 
with classes. ‘The complete statement or proposition,’ [MacColl] says, ‘is the 
real unit of all reasoning’ ” (Russell 1906, 255; MacColl 1906, 2). This, however, 
is misleading, as clearly MacColl had not intended “proposition” to be taken 
in the sense used by Frege, defining a proposition as “a statement, which, 
in regard to form, may be divided into two parts respectively called subject 
and predicate” (MacColl 1906, 2). Ignoring this, Russell describes MacColl as 
primarily concerned with the relation of “implication; his formulae state that 
one statement implies another, not (directly) that one class is contained in 
another” (Russell 1906, 255).31 Russell, however, soon turns to his main criti-
cism: MacColl has overlooked “two relevant and connected distinctions . . . , 
namely (1) that between a verbal or symbolic expression and what it means, 
(2) that between a proposition and a propositional function” (256). Frege had 
effectively directed the first criticism against Schröder, and Russell’s second 
criticism similarly has a Fregean provenance.

Russell says of MacColl’s example of the first-order proposition “Mrs. Brown  
is not at home” that while uttering it one might seem to have said something 
true or false, and although in everyday life we use “true” and “false” in this 
way, such sentences should have no place in logic. MacColl’s sentence, he 
goes on, represents a propositional function, and not a complete proposition, 
and only propositions are capable of being true or false. Russell represents 
the gap existing in the structure of the propositional function that needs to 
be filled by the variable “x” in his replacement of MacColl’s sentence with 
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“Mrs. Brown is not at home at the time x.” To get a proper proposition, it 
would be argued, one needs to “bind” this “x” by the existential quantifier, 
so as to assert that there exists a specific time (say, for example, 3:00 p.m. on 
June 21, 1905) of which the sentence is true. Filling the subject gap in this way 
now allows the resulting proposition to be true regardless of when it is said 
because it has been turned into an assertion about that specific time, and can 
be conceived as being itself made at no particular time.

MacColl, who had debated these issues with Russell, complained about 
this departure from everyday language, stating that “to say that the proposi-
tion A is a different proposition when it is false from when it is true, is like 
saying that Mrs. Brown is a different person when she is in from when she 
is out” (MacColl 1906, 19).32 Were it a consequence of using Russell’s defi-
nitions that assertions we standardly count as being true or false (such as  
“Mrs. Brown is not at home”) could no longer be considered true or false, 
then so much the worst for Russell’s definitions. We will then be free to try 
others. As we will see with Johnson, the dualities found in algebra allow for 
the choice of what to take as fundamental and what to take as derived, and 
that such a choice is one to be made for specific situations. In this way, Mac-
Coll could take the concepts <impossible> and <certain> as equally basic as 
<true> and <false> rather than as ways of being true or false. In this sense, 
modal logic was irreducible to nonmodal logic.

8.4 Johnson’s Algebraic Logic

William Ernest Johnson had been a junior colleague of John Venn at Cam-
bridge and continued to teach there through the period within which was 
conceived and developed the “classical” version of modern logic deriving 
from Frege and given early forms in the Principia Mathematica of White-
head and Russell (1910–13) and the Tractatus Logico-Philosophicus of Ludwig 
Wittgenstein (1922). Like Venn, Johnson practiced logic in the general style 
of Boole’s algebraic interpretation of the Aristotelian syllogism,33 but had fol-
lowed Peirce in attempting to liberate the traditional syllogism from its re-
striction to one-placed predicates as found in Aristotle. As with Peirce, this 
would be done in a mode different from that found in Frege and Russell, and 
in a way that avoided an absolute break with the syllogistic tradition.

Johnson would extend the range of predicates in judgments to accommo-
date complex relational predicates (Johnson 1921, xxxv and ch. 13), treating 
relations as expressed by “a specific kind of adjective” that, unlike ordinary 
adjectives, is transitive.34 This extension of the idea of a predicate thus ac-
commodates Frege’s idea of multiplaced predicates and a similar extension 
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of the concept of the subject would alter the traditional idea of the substan-
tival nature of the latter. While “the substantive alone can function as sub-
ject, and the adjective as predicate,” nevertheless, “an appropriate adjective 
can be predicated of a subject belonging to any category, including adjective, 
relation and proposition, the subject as thus functioning becomes a quasi-
substantive” (Johnson 1921, xxxiv).35 For example, while “red” might start as a 
simple nontransitive adjective characterizing a typical substantive, an apple, 
for example, this adjective itself can become the “quasi-substantive” subject 
of a different type of predication, involving a type of higher-order character-
izing of the original property, as when one says something like “Red is not a 
relaxing color.” Johnson, however, would stress that understanding the mean-
ings of sentences like the latter is dependent on a grasp of the meanings of 
sentences in which words like “red” are used in the predicative form, as in 
“This apple is red.”

Peirce’s treatment of multiplaced predications had, as we have noted, de-
parted from Frege by treating the relevant propositions involved as having 
an “indexical” dimension, something like that expressed in Hegel’s initial 
“judgments of existence.” In a similar spirit, Johnson would talk of certain 
judgments as involving what he called “instantial affirmation”—an affirma-
tion, not properly asserted but seemingly more presupposed, concerning the 
existence of some substance about which the judgment says something de-
terminate.36 As he would point out (Johnson 1921, ch. 6, §4 and ch. 9, §3), 
in some uses of the phrase, “an A,” a speaker will have in mind a specific 
instance of the class A—as he puts it, “a certain A” that the speaker knows to 
exist. In other contexts, however, the phrase “an A” will relate simply to an 
indefinite or nonspecific “some A or other” that may not be directly known. 
This distinction repeats Ploucquet’s between “comprehensive” and “exclu-
sive” particularity—Hegel’s “split” middle term.

This type of instantial affirmation must in turn be distinguished from 
what in the Frege-Russell tradition would be treated as an existential judg-
ment symbolized by the use of the “existential quantifier.” As we have seen, in 
Frege’s logic, when the existence of something with such and such properties 
is affirmed, this can be read as not involving the type of specification involved 
in Johnson’s “instantial affirmation.” Evidence may point to the existence of 
some person or other of whom some description may happen to be true with-
out it being the case that some specific individual can be identified as that 
person.37 Using the device appealed to earlier in relation to Aristotle’s logic, 
we might think of this indefinite character as being picked out as that ab-
stract point determined as that point at which a number of lines, representing 
different generally characterizing predicates, intersect. But while Johnson’s 
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distinction has no equivalent in Frege, it does have an equivalent in Hegel. In 
Hegel’s system, a judgment with instantial affirmation is one, as in the judg-
ment of existence, in which the subject referred to will be, for example, “a 
certain rose.” In contrast, a reflective judgment will be typically one without 
instantial affirmation, one about “some rose or other.”

Such distinctions among judgments would in turn have implications for 
Johnson’s conception of inference. Like Peirce, Johnson would go beyond the 
traditional syllogism by clarifying the difference between an inference proper 
and the type of  “. . . if . . . then” judgment—the “conditional” or “implicative”—
with which inference had been commonly confused (Abeles 2014). In tradi-
tional propositional logic, an inference would come to be explained along the 
lines of the Stoic idea of modus ponens, in which an asserted conditional, “if p 
then q,” together with an assertion of the antecedent “p,” is taken as warrant-
ing the assertion of the consequent, “q.” Johnson, however, would insist that 
the use of the conditional judgment (which, like Boole, he would class as a 
secondary judgment) presupposed the more traditional conception of judg-
ment (Boole’s primary judgment) as well as that of the existence of inferences 
among such judgments. In relation to Hegel, Johnson’s treatment of differ-
ence between types of judgment and the relation of inference to implication 
can help clarify the role of “reflection” more generally within Hegel’s complex 
conception of the syllogistic process as involving relations among different 
types of judgments. Such distinctions are all bound up with one for which 
Johnson would be most remembered and which draws him close to Hegel—
that between determinables and the determinates that instantiate them.38

Johnson first introduces the distinction between determinables and deter-
minates—a duality typical of algebraic logics—as one between two types of 
classifying adjectives, which, moreover, is not hard and fast but one of degree 
(Johnson 1921, xxxv). A determinable is what would most often be thought of 
as an abstract concept equivalent to Hegel’s “subsuming” abstract universals 
or typical Kantian concepts. In Johnson’s basic example, color is a determin-
able, and it is resolved into an array of determinates: specific colors such as 
red, green, blue, and so on. The fundamental feature of this distinction that 
he stresses is its difference from the traditional “genus-species distinction”—
effectively the distinction between a class and its subclasses as found in Por-
phyry’s tree. Basically, determinables are not to be conceived as divided into 
their determinates by some fundamentum divisionis in the way that, say, the 
class of animals can be divided, by the concept <rational>, into the subclasses 
of human and nonhuman animals. That is, there is no specifiable dividing 
further concept, which, when added to the concept <color>, distinguishes 
blue things, which fall under that concept, from red, green, or yellow ones, 



185r e t u r n  o f  l e i b n i z i a n  l o g i c  i n  t h e  n i n e t e e n t h  c e n t u r y

which do not. Here the sharp logical determinacies of the ideal realm are 
compromised by the “more or less” character of the distinctions found among 
things in the actual world.

Clearly, there is something of Kant’s concept-intuition distinction in John-
son’s determinable-determinate division. A determinable is an abstract con-
cept, like the concept <color>, while a determinate is more concrete and 
qualitative, like specifically colored intuitions—red, green, and blue ones, for 
example. But the determinable-determinate relation is not fixed; it is contex-
tual and relative. While more concrete than a determinable, a determinate 
has a level of generality and logical structure that gives it the features asso-
ciated with concepts. Thus, while the determinable-determinate distinction 
has something of the discrete-continuous difference that separates Kantian 
concepts from intuitions, in Johnson, as in Hegel, this is now made internal 
to the realm of conceptuality.

One’s capacity to distinguish green from blue, for example, is more like 
one’s ability to distinguish the opposed spatial directions of right and left. 
One distinguishes such directions immediately without reliance on some de-
terminate concept of what makes this direction to be to the right in contrast 
to that opposing one that is to my left.39 And just as with the right-left distinc-
tion in which a series of things arrayed to my left gradually pass over into a 
series of things arrayed to my right, a color that is judged to be determinately 
blue can be seen to gradually transition into one that is determinately green. 
In this sense, the “space” of color has a form something like that possessed 
by space and time in Kant’s transcendental approach, the form of “pure intu-
ition.” But here, space and time are not absolute but conceived as “directed” in 
virtue of being centered upon the cognizing subject, more like that found in 
the precritical Kant, the neo-Pythagorean Nicomachus of Gerasa, and, I have 
argued, Hegel (chapter 3.4 above).

While their respective terminologies do not line up exactly, clearly John-
son, with his determinable-determinate distinction, is trying to capture the 
sorts of differences that Hegel had tried to capture with his particular-singular 
distinction, and both go in the general direction of what Hegel had in his dis-
cussion of Plato characterized as a divided or broken “mean.”40 The red said 
to inhere in this apple has a type of phenomenal determinacy that the more 
general “subsuming” concept of red lacks. There is something “that it is like” 
to experience this apple’s specific shade of red, but any such specific “singular-
ity” cannot be ascribed to the apple in judgment without it accruing features 
of “particularity” responsible for the logical features of that judgment. De-
scribing the apple as red amounts to implying that it is not green, and so on. 
Importantly for Johnson, all these classifications can be redetermined, such 
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as when in a different context the word “red” comes to function itself as a de-
terminable, of which something further can be said. This clearly is useful in 
those contexts alluded to by Venn, in which in the course of scientific inves-
tigation, a property comes to be redetermined. For example, one may come 
to think of the property red as being the capacity to reflect electromagnetic 
waves of certain wavelengths, rather than as having a certain look.

The phenomena captured by Johnson’s determinable-determinate distinc-
tion lead to his being at odds with the standard way of understanding negation 
in the twentieth century, which largely derives from the quantified predicate 
calculus of Frege and Russell. Moreover, along with this, it also puts him at 
odds with the standard way of thinking about assertion. All this results in a 
much more Hegelian approach to judgment.

In the standard classical predicate calculus that developed in the wake of 
the work of Frege and Russell, negation is treated “truth-functionally” as a 
one-placed logical operator (typically symbolized by the sign ‘~’) that serves 
to reverse the truth-value of the proposition. Truth and falsity are thereby 
treated as complementary, meaning that if a particular proposition p is true, 
then its negation, ~p, is false, and if p is false, then ~p is true. Just as in mod-
ern algebra, in which subtracting 5 from 3 is treated as a form of addition 
(i.e., adding –5 to 3), Frege would treat the denial of p as the assertion of ~p.41 
Both Johnson and Hegel, however, reject the analysis of the denial of p as the 
assertion of its contradictory.42 When Johnson notes that “the relation of in-
compatibility lies at the root of the notion of contradiction” (Johnson 1922, 15), 
he is alluding to the incompatibility of determinates considered as existents 
“in the same sense as the object presented to perception is an existent” (John-
son 1921, xiii). It is in this sense of being concrete that a determinate, which 
in Hegel’s terms, is conceived as something “inhering” in a substance, can 
exclude other incompatible determinates, as when an apple’s redness excludes 
its greenness, making the relation among determinates that of contrariety. It 
is in this sense, then, that for Johnson contrariety “lies at the root of the no-
tion of contradiction.”

8.5 Heyting’s Intuitionistic Logic

As a student of the Dutch mathematician L. E. J. Brouwer, Arend Heyting 
attempted to formalize the logic implicit in the “intuitionistic” approach to 
mathematics that Brouwer had advocated against the Platonistic orientation 
of Frege and Russell.43

Brouwer’s intuitionism (or “constructivism”) had clear idealist origins in  
Kant’s understanding of mathematics as based on the “pure intuitions” of 
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space and time,44 but responding to the need to accommodate non-Euclidean 
geometries, Brouwer had reduced these to the intuition of time alone.45 He 
criticized logic as relevant to mathematical proofs. The proofs themselves he 
regarded as based on a subject’s intuitions of mathematical structures, with 
concepts being relevant only to the communication of those proofs to oth-
ers. In particular, he argued against any role for the classical laws of excluded 
middle and double negation elimination in mathematical proofs. This rigid 
distinction between the proof itself and its communication in language was 
softened by Heyting, however, who developed a logic relevant for such math-
ematical proofs in a decidedly nonclassical way and proposed a different in-
terpretation of the algebraic structures underlying Boolean logic (Moschova-
kis 2009). This would give Heyting’s logic features similar to ones found in 
Johnson and Hegel.

Heyting weakened Boole’s logic by dropping the laws of excluded middle 
and double negation elimination as axioms. The reasoning here was the need 
to exclude the possibility that mathematical truths could be established indi-
rectly, as found in the type of reductio ad absurdum or proof by contradic-
tion that dated back to Aristotle in which one could establish the truth of p 
by demonstrating the falsity of not p—a type of proof rejected by Brouwer.46

In intuitionistic logic, the concept <true> is to be understood as equivalent 
to proven within the subject’s experience by a specific “witness,” and <false> 
as similarly indicating refuted by the experience of a disconfirming witness. A 
nonmathematical analogue might be that just as the proposition “The apple in 
the box is red” requires proof by the experience of it as being red, the proposi-
tion “The apple in the box is not red” requires proof by an equivalent experi-
ence of that apple as having some specific disconfirming non-red color, say, 
green. This approach has the consequence that “true” and “false” are no longer 
complementary notions: that is, “not p” is not defined as the contradictory of 
“p,” such that “not p” is false when “p” is true and true when “p” is false.

In light of this, Heyting’s alternative way of defining negation was to uti-
lize the consequence that Russell had employed in his definition of mate-
rial implication—the medieval principle of ex falso sequitur quodlibet, from 
a falsehood anything follows. Thus, in intuitionistic propositional logic, the 
negation operator is defined in terms of the claim that a false proposition im
plies any proposition (~p É (p É q)),47 and so implies false ones. But if impli-
cation is to be used in the definition of negation, clearly the relation of im-
plication cannot itself be defined in ways that employ the negation operator, 
as is done in classical logic. The relation of implication must be defined in a 
different way, and so a different pattern of dependence must be found among 
the logical connectives.
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Any details of this alternative would take us too far beyond our concerns 
here, but the general way in which Heyting’s logic departs from the conven-
tional laws of logic as found in Boolean algebra can be illustrated in terms of 
his peculiar interpretation of a type of logical graph that had developed for the 
“order-theoretic” approach introduced by Peirce and that draws on the idea of 
composable directed line segments or “vectors” developed by Grassmann. Us-
ing these resources, the types of diagrams that had been traditionally used in 
logic could be associated with underlying algebraic systems that could specify 
the properties of those logical systems in more determinate ways. This allows 
the appreciation of how different logical systems like Heyting’s, on the one 
hand, and conventional Boolean logic, on the other, can be contrasted.

We can think of this type of “Hasse diagram” as represented above (fig. 8.1)  
as something like the traditional “square of opposition” in that it locates judg-
ments at nodes connected by arrows representing inferential relations. In fig
ure 8.1, the nodes A, B, C, D, E, and F can be taken as representing different 
judgments, with inferences among those judgments represented by connecting 
arrows, such that A → C represents that the proposition A implies proposition C.  
However, as the diagram also represents A as implying D, then A can also be 
understood as representing the conjunction of C and D (standardly symbol-
ized as “C Ù D”), since a conjunction of judgments implies each conjunct.48 
By the same reasoning, if both F and A imply D, then D can be understood 

f ig u r e  8.1 A “Hasse diagram” able to be interpreted differently by Boolean and Heyting algebras.
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as representing the disjunction A or F (symbolized as “A Ú F”).49 Such Hasse 
diagrams effectively give expression to those partially ordered sets discussed 
earlier in which elements within a set are related in ways that are transitive, 
reflexive, and anti-symmetric. It is usual to represent the orientation of the lines 
(or “edges”) connecting nodes (or “vertices”) as all having the same direction, 
typically upward, to allow the individual arrow “points” to be omitted.50

Such a diagram for a Boolean logic typically has the form of a “lattice”51 
with maximum and minimum vertices that correspond to the Boolean val-
ues, 1 and 0, understood as true and false, respectively.52 As implication is a 
transitive relation among judgments, the judgment at the lowermost node 
represented as implying A, B, and F thereby implies judgments at all other 
nodes, and being lowermost, is implied by no other judgment. In line with 
Russell’s conception of material implication, it can be regarded as a falsehood, 
as a falsehood implies any judgment and is implied by no other true judg-
ment. Similarly, the topmost node can be regarded as a truth, for a truth is 
implied by any other judgment. But when interpreted according to Heyting’s 
system, because of the peculiar way that negation is defined, 0 and 1 do not 
play quite the same roles as they play in the Boolean system. Formally, Heyt-
ing’s algebra is not a lattice but a “semilattice.”53

Typically, the relation of implication can be defined in terms of conjunc-
tion or disjunction—the logical equivalents of arithmetical multiplication 
and addition, respectively—together with negation. Here, however, because 
negation is no longer complementary, the implicative conditional (if p then q)  
must be introduced in another way.

Rather than setting out these definitions in terms of some set of basic 
axioms, intuitionists have largely followed the path introduced by the “proof-
theorist” Gerhard Gentzen in the 1930s, where “introduction” and “elimina-
tion” rules are used to define logical connectives, and this has provided a way 
of introducing logical implication directly rather than from conjunction or 
disjunction together with negation.54 These differences mean that the laws of 
double negation and excluded middle no longer hold for a Heyting algebra, 
as demanded by the intuitionist’s philosophy of mathematics. Nevertheless, 
these principles can be added to the Heyting algebra as separate axioms, and 
when they are so added, a typical Boolean logic results. In this sense, consid-
ered as a logic, Heyting algebra might be thought to accommodate the broader 
sorts of inferences to which Aristotle had appealed (such as judgments with 
roles for properly singular subjects) but that had no place within the stricter 
logic of his Prior Analytics. This in turn has different metaphysical connota-
tions in that intuitionistic logic can be regarded as appropriate for reasoning 
within a world in which certain states of affairs, such as the existence or not 
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of tomorrow’s sea battle in Aristotle’s famous example, will be regarded as 
indeterminate, with judgments about them as lacking a truth-value. As with 
Johnson’s logic, then, Heyting’s seems to appeal to a wider sense of logic than 
that acknowledged by classical logic in its ancient and modern forms. That is, 
there is a logic of thought that in principle cannot be reduced to the grammar 
of some universal language as in Frege’s concept-script.

This, I have been arguing, is how Hegel conceived a broader scope for 
logic. The logic of human reasoning cannot be reduced to a formal calculus, 
but, nevertheless, the possibility of such formal calculi being formed reflects 
the capacity for thought to reflect upon itself. This capacity in turn implies 
the capacity for thought to redetermine the categories within which it thinks. 
But there might here be even further specific parallels between such direc-
tions taken in modern logic and those shapes implicit in Hegel.

Since the 1980s, in the area of computer science, a type of logic has de-
veloped, called “linear logic,” so called because it draws explicitly upon the 
linear algebra started by Grassmann and that had come to influence Peirce’s 
logic. Linear logic has added a further “exponential” connective to the “ad-
ditive” and “multiplicative” ones we have observed in Boolean logic.55 Just as 
“multiplication” underlies logical conjunction, and “addition” logical disjunc-
tion, exponentiation provides an algebraic analogue for implication when no 
longer understood as derived from the other two along with negation.56 With 
this third “arithmetical” operation, linear logic is meant to unify the other-
wise opposed and independently conceived Boolean and intuitionistic logics.

Parallels to Hegel and Peirce here seem striking.57 It will be remembered 
that Hegel had added the operation of exponentiation to addition and multipli-
cation to give a complete determination of the notion of “number.” In relation 
to linear algebra, Peirce had argued that there could be only three underlying 
forms of such algebras to which all other forms could be reduced, and that these 
corresponded to his three distinct logics: predicate logic, propositional logic, 
and modal logic (Houser 1997, 2–3). Clearly, these three logics broadly align 
with those applying to Hegel’s fundamental judgment forms: judgments of in-
herence, judgments of subsumption, and judgments of the concept. Moreover, 
as we have seen, within linear algebra itself, Clifford had expanded the forms of 
“multiplication” found in Grassmann’s approach from two to three, with these 
three being linked in peculiar combinations of addition and multiplication.

Such technical developments, of course, are light-years away from any-
thing that Hegel could even have imagined, but the general parallels with his 
attempts to bring the ancient mathematics of the three interrelated “musical 
means” to illuminate a conception of logic he thought implicit in Plato are 
difficult to dismiss.
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Hegel among the New Leibnizians:
Judgments

Judging is therefore another function than conceiving; or rather, it is the other func-
tion of the concept, for it is the determining of the concept through itself. The further 
progress of judgment into a diversity of judgments is this progressive determination of 
the concept. What kind of determinate concepts there are, and how they prove to be 
necessary determinations of it—this has to be exhibited in judgment.

h e g e l , The Science of Logic

In chapter 7 we touched upon the cyclical pattern of development of Hegel’s 
treatment of the forms of judgment in the “Subjective Logic” of The Science 
of Logic, where the cyclical alternations between two underlying “quali-
tative” and “quantitative” judgment forms—what I have called “cycles of 
redetermination”—results in the increasing complexification of subject and 
predicate terms of judgment expressions. What we have seen of Johnson’s 
idea of the redetermination of subject and predicate terms of judgments away 
from the simple picture of the qualification of a substance might now provide 
a template for how we are to think of Hegel’s cycles as progressing.1

In The Science of Logic Hegel describes such cyclical movement through 
its own triadically grouped categories as resulting in the “animation” or “en-
soulment” of such categories, the suggestion being that each cycle ends with 
a transformed or “ensouled” version of the category with which it had com-
menced, with this transformed category in turn initiating the following cycle. 
Hegel’s earlier triangle of triangles had become a circle of circles:

By virtue of the nature of the method just indicated, the science presents itself 
as a circle that winds around itself, where the mediation winds the end back to 
the beginning which is the simple ground; the circle is thus a circle of circles, 
for each single member ensouled [als Beseeltes] by the method is reflected into 
itself so that, in returning to the beginning it is at the same time the beginning 
of a new member. (SL, 751; 12:252)

Once more, this structure of the first becoming last and the last first in a pro-
cess that involves the first and last terms swapping places with a middle is none 
other than the unity of the three Pythagorean means found in Plato’s syllogism.
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In the judgment cycles the mediating second member of these categorical 
cycles will be abstract in relation to the more concrete first and third mem-
bers, although in the sequence of syllogistic figures, the middle term will be 
occupied in turn by each of the determinations of the concept. Moreover, in 
the cycle of judgments the suggestion seems to be that the “ensoulment” of 
the final category has resulted from structures associated with the negated 
first and second categories being somehow “reflected” back into the first cat-
egory, and so producing the third. Indeed, negation seems to be at the heart 
of this dynamic:

The one thing needed to achieve scientific progress . . . is the recognition of the 
logical principle that negation is equally positive. . . . Because the result, the 
negation, is a determinate negation, it has content. It is a new concept but one 
higher and richer than the preceding. . .  . It is above all in this way that the 
system of concepts is to be erected. (SL, 33; 21:38)

The cyclical movement through the forms of judgment is thus just one 
expression of this circular methodology, but it is an expression that, I be-
lieve, sheds light on the more general process. Importantly, like the triangle 
of triangles it also challenges the more conventional linear imagery of Jacob’s 
ladder to heaven central to the logic of Leibniz and others. Earlier I have 
suggested that in relation to his theory of judgment this feature of Hegel’s 
logic is connected to a dynamic of disinterpretation (or abstraction) and re-
interpretation (or concretization) of concepts, an attitude to logic that Hegel 
has been shown to share with algebraists of the late nineteenth and early 
twentieth centuries such as Venn and Johnson (see chapter 8). In this and 
the following chapter, we will further explore parallels between aspects of 
Hegel’s logic with its principle of local homomorphism expressed here as the 
homologous equivalence of opposed qualitative and quantitative judgment 
forms—a model ultimately deriving from the Platonic conception of the rela-
tion among the three musical means—and the various alternatives to classical 
logic offered by Peirce, MacColl, Johnson, and Heyting with their distinctive 
features of the logical equivalents of the “dualities” of projective geometry.

9.1 Hegel’s First Logical Cycle:  
From Instance to Its Ensoulment as Genus

In the context of Hegel’s “Subjective Logic,” the same phenomenon of “en-
soulment” of the subject terms of de-re judgments can be observed in the 
cycles through which judgment forms progress from the initial simple judg-
ments of experience to the developed judgments of the concept, which, as we 
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have seen, are in fact implicit syllogisms. For example, the first cycle leading 
from the de-re judgment of experience through the more de-facto form of 
the judgment of reflection and then to the new de-re judgment of necessity 
sees the objects of the original judgments, determinate singular objects such 
as some particular rose perceived in its here and now, transformed into the 
kinds that they instantiate—in this case, “the rose as such.” The original sin-
gular rose has become “ensouled.” “This rose . . .” has become equivalent, as 
it were, to “this rose . . .” The rose experienced this way in my here and now 
has become one of a kind, and so equivalent to other instances not being 
experienced in my here and now. Similar dynamics are then shown to oper-
ate in the subsequent cycles, those driving the judgment of necessity from 
its immediate form to its equivalent ensouled form, which then initiates the 
following cycle, taking the immediate form of the judgment of the concept to 
its syllogistic “truth.”

In the initial cycle we thus see the subject term of an original judgment 
of experience, “the rose” of “The rose is red,” undergo abstraction, first from 
the specific rose instantiating this red (determined in its singularity) to a 
less determinate rose that is colored some red, in the sense of having a color 
that is not-green, not-yellow, and so on. The original color first thought of as 
something simple and immediately given has now been shown to have the 
logical structure of particularity—in Johnsonian terms, the color possessed is 
now thought as a determinate of a determinable (Johnson 1921, ch. 11). Con-
fronted with a further negation (now, “external” sentence rather than predi-
cate negation, the denial of the complete dictum), the subject of the utterance 
is redetermined as an otherwise entirely abstract posit such as Leibniz had 
in mind with his “third” linking two predicates (SL, 602; 12:104), an entirely 
indeterminate entity about which two abstract predicates (now Johnsonian 
determinables) such as “rose” and “red” can be said to be true or false.

We can regard this process of negation-driven abstraction as one of dese-
manticization—an initial phase of a cycle of redetermination with “ascending” 
and “descending” phases. Here, desemanticization involves a process that in 
Kantian terms could be described as involving the loss of “intensive magni-
tude” from its maximum (value = 1) at the start of the ascent to its minimum 
(value = 0) at the apex (see above, chapter 7.5). Otherwise expressed, dese-
manticization has resulted in the loss of those concrete empirical “witnesses” 
that for intuitionists are necessary for any judgment to be proven or refuted, 
and so to have meaning. While at the apex we have reached a domain of ab-
stract objects (propositions) that satisfy the laws of classical logic, this has 
been at the expense of the applicability of those objects to the world in acts 
of judgment. Hegel had argued that with this type of abstraction a completely 
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senseless form of judgment, the infinite judgment, had resulted. It must be 
remembered, however, that such judgments can only be properly regarded as 
senseless when abstracted from their relation to other more determinate judg-
ments. Rightly conceived, the infinite judgment is the sort of judgment cor-
related with a “viewpoint” understood as located at a point at infinity.

These apparently senseless judgments will be regarded in a different light, 
however, when understood from the perspective of the principle of homo-
morphic equivalences, which has it that two judgments can have the same 
absolute content or underlying substrate while grasped in opposed indexical 
and nonindexical ways that serve different functions related to content and 
form. That is, a judgment that, in intuitionistic terms, comes with a witness, 
such as “This rose is red,” can be regarded as having the same absolute con-
tent as the entirely abstract judgment into which it has developed that comes 
with no witness, as in “There exists (in some indeterminate spatiotemporal 
location) a rose that is red.” Within the type of truth-functional semantics of 
classical predicate calculus this latter assertion will, in isolation from others, 
be regarded as having a meaning simply because it has a truth-value, regard-
less of whether this is known or not. In contrast, for Hegel or Heyting, at least 
when conceived in isolation in this way, it does not have a determinate mean-
ing, Hegel pronouncing the “infinite judgment” to be without sense.

This, however, does not condemn such a judgment form to have no role 
within the logical processes of reasoning. This situation might be compared  
to the use, for Carnot, of nonexecutable “auxiliary numbers,” such as infini-
tesimals, within mechanics, or “points at infinity,” within projective geom-
etry. For Hegel, the attainment of this senseless status is precisely what allows 
the meaning of the judgment to be redetermined in the way that Venn would 
suggest was necessary for the development of scientific concepts from those 
employed in everyday life. And so, from this point of maximal abstraction, 
redetermination must involve a process of resemanticization. For Hegel, this 
will effectively involve a reversal of the process of abstraction, that of con-
cretization. Before examining this, however, let’s pause to consider the type 
of homomorphic equivalence that might be thought to hold between these 
inverse forms of judgment involving predication as inherence and predica-
tion as subsumption, respectively.

In an earlier chapter I appealed to the relation between logarithmic and 
linear readings of the musical intervals involving the three Archytan means: 
geometric, arithmetic, and harmonic. In modern algebra, the logarithmic re-
lation in which an equivalence is established between products of elements in 
one system and sums of elements in another is an instance of a “homomor-
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phism” between groups. As central to the abstract nature of modern algebra, 
group theory allows the extension of the idea of combinations of elements 
as sums and products from the literal meaning of these terms as operations 
on numbers. In the abstractive spirit in which Boole had taken “sum” and 
“product” to be given distinctive logical meanings, I suggest that the notion 
of “homomorphism” allows this as well. In short, Hegel’s two types of judg-
ment might be thought of as belonging to two distinct “axiomatic” systems 
of logic, one something like Heyting’s and the other something like Boole’s, 
such that inherence-predication within Heyting’s intuitionistic logic plays 
the same functional role within it as subsumptive-predication plays within 
Boole’s classical logic. Homomorphism, of course, does not mean that the 
meanings of these systems are identical, just as the addition of log x to log y is 
not the same operation as the multiplication of x and y found in log x.y. Nei-
ther homomorphism nor homology implies identity. Nevertheless, a homo-
morphism is a type of equivalence. In Hegelian terms, it is a type of “identity 
in difference.”2 It was this type of identity among otherwise incommensurable 
ratios that had been the Pythagorean core to Plato’s “beautiful bond.” In the 
realm of modern nonclassical logic, the attempt to show the unity between 
otherwise distinct Boolean and intuitionistic logics by “linear logic” has in-
voked the third of the arithmetical operations, the exponential, in a way that 
once again seems to echo the dynamics of Plato’s bond and Hegel’s account of 
the complete determination of the concept of number.

In Hegel’s logical cycles of redetermination it is this identity-in-difference 
that in turn allows the resemanticization of judgments in the “downward” 
parts of those cycles. From the top of the first cycle—an apex of abstraction—
the downward path will then address the need to resemanticize the judg-
ments found there, but this will not simply lead back to the original “imme-
diate” judgment form, as the process of reconcretization must be such that it 
responds to the new logical form that has been achieved by the judgment in 
the process of abstraction—a logical form allowing the judgment to link to 
others in “reflective” truth-functional ways. Clearly these new judgments will 
need to be given some type of empirical content so as to be made determinate, 
but this must be done in such a way that such judgments will no longer be 
understood as being made determinate simply on the basis of any purport-
edly immediate experience of the object being judged, as had been the case 
of the simple experienced properties of specific concrete substances, such as 
the rose’s color or smell. Copernican skepticism will reflect the felt naïveté of 
calling the world exactly as one finds it, and experience will be now thought 
of as unfolding within a context in which, as Kant had put it, reason “in order 
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to be instructed by nature” must approach it “not like a pupil, who has recited 
to him whatever the teacher wants to say, but like an appointed judge who 
compels witnesses to answer the questions he puts to them” (Kant 1998, Bxiii).

In this new form of subsumptive empirical judgment involved in the 
downward phase of the cycle, the judgment of reflection, the object and prop-
erties involved will have different logical forms from those of the originating 
simple judgments of existence. In particular, the predicate of the new judg-
ment will, as Hegel states in the Encyclopedia Logic, be “of the sort that, by 
means of it, the subject demonstrates itself to be related to another” (E:L, 
§174, addition)—that is, the property indicated by the predicate will be, as in 
Johnson’s extension of the subject-predicate form, a relational one. In one of 
Hegel’s examples, a plant is said to be curative,3 and of course the property of 
being curative, attributed to a plant, requires reference to another object—
let’s say, a curable sick human or other animal to whom the plant can be ad-
ministered. The property is thus manifested in quite a different way from the 
way a plant’s color is manifested: one usually cannot “read off ” the property 
of being curative from the simple experience of the isolated plant. The form 
of experience relevant for attributing this property to a plant will be complex 
and will involve, say, feeding the plant to various humans or animals with 
particular illnesses, observing and correlating the results obtained with an-
other group who are not given the plant, and so on. Here we are in the realm 
of Johnsonian facts capable of conjunctive coexistence. We might call this the 
“experimental manifestation” of a relational property such as that of being 
curative.4 Judgings in these contexts are, of course, still related to experience, 
but they are related in a different way. Hegel’s shorthand is to say that here the 
relation of the substance to its property is “mediated.”

Clearly, in relation to Hegel’s judgments of reflection we are in the gen-
eral territory of the type of logic pertinent to reasoning within the modern 
natural sciences—the type of reasoning that Hegel here calls Räsonnement. 
Being in the vicinity of what we might call “Newtonian reasoning,” we should 
expect this logic to exhibit the sorts of limitations found in the context of 
Hegel’s discussion of mathematics in the Logic of Being. There Hegel brought 
the mutual dependency of qualitative considerations found in geometry and 
quantitative ones found in arithmetic to a criticism of the reductively alge-
braic approach to mechanics of Lagrange. While it “may seem fitting to de-
fine the judgment of reflection as a judgment of quantity,” nevertheless, the 
quantity of the judgment of reflection is “not just sublated quality [nicht bloss 
die aufgehobene Qualität], and therefore not merely quantity” (SL, 569; 12:72). 
The property of being curative, we have noted, is not manifested qualitatively 
in the immediate experience of the plant itself. But when we inquire into 
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the relevant properties of the related object—say, a patient’s state of health—
presumably this is to be understood as capable of qualitative manifestation, 
such as the color and warmth of their skin, the strength of their pulse, and so 
on. Here the patient’s color, for example, will not be understood as significant 
“in itself,” but as indicative of something else—it will be taken as a sign of the 
patient’s more systemically conceived “condition.” Nevertheless, the qualita-
tive phenomenon does not simply disappear into the intelligible significance 
it possesses as a sign. It must be somehow preserved, just as Kepler’s ellipses 
did not disappear into the abstract linear vectors of Newton’s mechanics. The 
doctor can only gain epistemic access to the patient’s general condition via 
awareness of particular clinical manifestations. Such qualitative determina-
tions are “sublated” but are not “just sublated” (SL, 569; 12:72).

Newtonian science achieves the level of logical organization typical of its 
Copernican-styled judgments of reflection, with its equations showing quan-
titative relations among measurable parameters—mass, velocity, distance 
traveled in a measurable time, and so on. But as we have seen, Hegel believes 
that limited to this level, Newtonianism does not grapple with the physical 
reality of what it is that is responsible for the correctness or otherwise of 
such equations—in Newton’s case, the reality of force.5 In his championing 
of Kepler over Newton, Hegel had, like Carnot in his mechanics,6 criticized 
the idea of interacting independent forces: “The concept of gravity contains 
not only the moments of being-for-self, but also that of the continuity which 
sublates being-for-self. These moments of the concept suffer the fate of be-
ing grasped as distinct forces corresponding to the forces of attraction and 
repulsion” (E:PN, §269, remark). At the level of its judgments, we might say 
that Newtonian Räsonnement is restricted to the quantitative organization of 
judgments of reflection, in particular, universal judgments of “allness” (All-
heit) in which “the ‘all’ is the all of all the singulars [alle Einzelne] in which the 
singular remains unchanged” (SL, 572; 12:74). Universality here is mere “asso-
ciation [Gemeinschaftlichkeit] of such singulars as comes about only by way of 
comparison [Vergleichung]” (572; 12:74). Nevertheless, Hegel in no way wants 
to eliminate this phase from the greater dynamic of reason—as in Johnson, 
such simple conjunctions of facts can be reinterpreted into more relevant 
logical relations—and his allusions to the “logic” of this process are far from 
being some naïve philosophy of science.

We see more of the relevance of the reflective judgment form when Hegel 
treats the logic of scientific induction as a type of syllogism, the syllogism of 
induction, in the later discussion of syllogisms (SL, 612; 12:113 and E:L, §190), 
and it is worth examining this here in order to display the functional relation-
ships within which the judgments in question stand and from which they 
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attain their logical form. Again, it will be helpful to compare Hegel’s logic to 
that of Johnson, who also locates induction within a syllogistic form.

9.2 Hegel and Johnson on the Inductive Resemanticization of Judgments

In commenting on the “much cited” syllogism “All humans are mortal, Now 
Gaius is a human, Therefore Gaius is mortal,” Hegel notes that “the major 
premise is correct only because and to the extent that the conclusion is cor-
rect” (SL, 611; 12:112). Hegel here follows the criticism of syllogistic reason-
ing common to the medieval nominalists for whom “all humans” was not a 
reflection of the natural kind “human” but merely a shorthand way of giving 
a complete list of humans. It is in this sense that the generalization is correct 
only because each of the possible conclusions are correct. Nevertheless, this 
“empty, reflective semblance of syllogistic inference” has a function as a reduced 
form of inference that operates within the context of scientific induction, a 
process in which the reasoning runs in the reverse direction from conclusion 
to major premise. Clearly this exploits the fact that the syllogism can be set 
out in a quasi-diagrammatic way akin to the ekthesis of a proof in relation to a 
diagram in Euclidean geometry—a parallel between Aristotle’s syllogism and 
geometrical method noted by Einarson (Einarson 1936, 162). This introduces 
an element of directionality that would be exploited by Peirce in particular in 
expanding the capacity of Aristotle’s formal syllogism.

In the Encyclopedia Logic, Hegel writes of this type of reduced syllogism (to 
which he adds “all metals are electric conductors, therefore, for example, copper 
is, too”) that “in order to be able to assert those major premises that are sup-
posed to express the set of all of the immediate individuals and to be essentially 
empirical sentences [empirische Sätze], it is required that already previously the 
sentences about the individual Gaius, the individual copper are confirmed for 
themselves as correct” (E:L, §190, remark). The syllogism involved must there-
fore be somehow understood as running in the reverse direction of that of the 
standard syllogistic model because the relevance of its otherwise empty form 
“All As are B, this C is A, therefore this C is B” comes from the way that the 
known conclusion can play an evidentiary role in affirming the major premise.

Some initial interpretation must be given to the judgments involved in in-
duction of this sort, and Hegel treats the middle term of this syllogism as de-
termined as singularity, giving the inductive syllogism the structure of U-S-P. 
Here the term “S” represents not a singular thing but the set of “all” relevant 
singulars (in the Encyclopedia Logic, Hegel says “all singular concrete subjects” 
[E:L, §190]), the syllogism being thus expanded into the configuration shown 
in figure 9.1.
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The universal judgment (U-P) mediated by this set of singulars will be the 
expression of an empirical law such as “All metals conduct electricity,” the me-
diating middle term here being the “complete set” of individual metals—gold, 
silver, copper, lead, and so forth. That is, it would seem then that the effective 
major premise of this syllogism will be a set of “empirical sentences” such 
as the set of sentences “Gold is metal,” “Silver is metal,” “Copper is metal,” 
with the minor premise being a corresponding set of sentences stating the re-
sults of experiments, “Gold conducts electricity,” “Silver conducts electricity,” 
“Copper conducts electricity,” and so on. Induction, then, is no simple “syllo-
gism of mere perception or of contingent existence [der blossen Wahrnehmung 
oder des zufälligen Daseins], but the syllogism of experience [Erfahrung]—of 
the subjective gathering together of singulars in the genus, and the conjoining 
of the genus with a universal determinateness on the ground that the latter 
is found in all singulars” (SL, 612–613; 12:114).7 Induction, then, does not pro-
ceed from the contingencies of experience but takes place in a constrained 
environment in which, as in Kant’s metaphor, specific questions are posed to 
experience forcing it to answer from a fixed set of terms. It is important to 
keep distinct two different applications of “all” here. On the one hand, there 
is the “all” of the nominalistically interpreted class of “all metals,” which is 
really just the sum of individual metal kinds (gold, silver, copper, etc.). On 
the other, there is the “all” of the sentences involved, the totality of “Gold is 
metal,” “Silver is metal,” “Copper is metal,” etc.

Again, Johnson’s modern transformation of the Aristotelian syllogism to-
gether with his porous determinable-determinate distinction will result in a 
schematization of the process of induction helpful in understanding Hegel’s. 
Just as Johnson had extended the traditional subject-predicate model of the 
judgment to include quasi-substantive subjects and relational predicates he 
similarly employs a “functional extension” of the traditional Aristotelian de-
ductive syllogism. In a way that parallels Hegel’s homomorphic idea of the 
identity-in-difference of qualitative and quantitative syllogistic forms, John-
son talks of two different inferential principles at work in the syllogism—the 
“applicative” and “implicative”: “The former may be said to formulate what is 
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f ig u r e  9.1 SL, 612; 12:113; cf. E:L, §190, addition.
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involved in the intelligent use of the word ‘every’; the latter what is involved in 
the intelligent use of the word ‘if ’ ” (Johnson 1922, 10). Taken separately, these 
would clearly reflect the logical principles at work in qualitative class and 
quantitative propositional logics, respectively—what we have alluded to in 
the discussion of intuitionistic logic in terms of the relation of “inference” to 
“implication.” Indeed, it would seem that considerable energy had been spent 
by algebraic logicians of the second half of the nineteenth century in trying 
to figure out how these two logical forms fitted together (see, for example, 
Abeles 2014), with Johnson having been later regarded by Arthur Prior as 
having given the most developed and satisfactory account (Prior 1949). For 
Johnson, the syllogism properly understood demanded that both principles 
play a role, and induction shows a complex combination of both. Later, Heyt-
ing’s logic would too, as we have glimpsed, conceive of a way of translating 
between distinct inferential and implicational forms rather than simply tak-
ing the latter to be the basis of the former.

The form of inference governed by the applicative (Hegel’s qualitative) 
principle is modeled on an extensionally interpreted inference of subalterna-
tion (A→I) in the square of opposition. It states that “from a predication about 
‘every’ we may formally infer the same predication about ‘any given’ ” (John-
son 1922, 11), and, similar to Hegel’s P-S-U model of the syllogism, Johnson’s 
syllogism has the general form “Every X is Y, this is an X, therefore this is a Y.” 
But this inference is achieved only with the help of the implicative principle as 
formulated fundamentally as a relation among propositions, the general form 
of which will be modus ponens, “p” and “if p then q,” therefore “q.”

As in Hegel, directionality plays a crucial role here in Johnson’s account. 
Like Hegel, for whom “the fundamental character of induction is that it is a 
syllogistic inference” (SL, 613; 12:115), Johnson takes induction as operating 
on the same principles as the deductive syllogism but as going in the reverse 
direction. Summarily stated, the inductive syllogism reverses the deductive 
inference from “every” to “any” so as to move from “any” to “every” although 
operating only “in certain narrowly limited cases” (Johnson 1922, 28).8 Later, 
Johnson starts to fill in more of this account in relation to what he calls the 
“functional extension of the syllogism,” which involves “a conjunction of dis-
connected syllogisms of this type:

“Everything is p if m; This is m; Therefore This is p.”
“Everything is p′ if m′; This is m′; Therefore This is p′.”
“Everything is p″ if m″; This is m″; Therefore This is p″.” (103)

This expanded syllogism is clearly similar to Hegel’s inductive syllogism, 
whose middle term consists of the “complete set of singulars.”
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Johnson describes induction in a way that recalls Hegel’s account of the 
cognitive status of geometrical figures. It is a matter of “apprehending the 
universal in the particular,” and this has a meaning at the subpropositional 
level in which the universality of the predicate is apprehended in the particu-
larity [that is, Ploucquet’s “exclusive particularity” or Hegel’s “singularity”] of 
the subject: “The procedure by which these generalisations [i.e., among prop-
ositions] are established may be shown by psychological analysis to involve 
an intermediate step by which we pass from one instance to others of the 
same form” (Johnson 1922, 192). Elsewhere, Johnson expresses this with the 
idea that “the passing from ‘any’ to ‘every’ is justified only when the passing 
from ‘any one’ to ‘any other’ is justified” (28–29). Johnson’s idea of this type 
of “intermediate” inferential step passing from “any one” to “any other”—an 
alternative form of ampliative inference to induction upon which induction 
seemingly relies—looks like what Hegel calls “inference by analogy” but also 
suggests the approach of Charles Sanders Peirce to a nondeductive alternative 
to induction that he called “abduction.” As Peirce’s idea of abduction is more 
fully developed and as it also seems to have clear parallels in Hegel, it is worth 
reviewing it briefly in this context.

Over many years Peirce experimented with a nondeductive or “amplia-
tive” form of logical inference, which he had originally named “hypothesis” 
but later called “abduction,” as distinct from the more commonly discussed 
induction. Like Johnson, he had approached both these forms from within an 
overall syllogistic framework. Again, Peirce relies heavily on the diagrammat-
ically based idea of reversal of direction when moving along paths of some di-
agram. Induction can be readily thought of as a reversal of the deduction of I-
judgments from A-judgments in the traditional square of opposition, but the 
addition of abduction involves more complex paths and requires the context 
of a syllogism for its setting out. Thus, while induction passes from result and 
the minor premise of a syllogism to its major premise, abduction passes from 
a combination of the result and the major premise to the minor premise.9 I 
suggest that the “result,” from which, together with the major premise, abduc-
tion makes its inference in Peirce, is significantly like the judgment that, in 
Hegel’s account, expands into the syllogism—the judgment of the concept as 
exemplified by “This house is bad [as opposed to good]” (SL, 583; 12:85).

First, Peirce claims that “abductive inference shades into perceptual judg-
ment without any sharp line of demarcation between them” or alternatively 
that perceptual judgments “are to be regarded as an extreme case of abduc-
tive inferences” (Peirce 1998, 227). The point at which Hegel’s judgment of 
the concept expands into a syllogism might equally be described as one that 
the judgment “shades into” an inference, or vice versa. Next, just as Hegel’s 
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developed paradigm of judgment, the judgment of the concept, was a directly 
evaluative one, Peirce treats the judgments from which abduction occurs as 
paradigmatically aesthetic, while thinking of aesthetic experience as paradig-
matic of the type of normativity found in both ethics and logic itself (Peirce 
1992, 198–199). Clearly, these must be judgments that involve a maximum 
of Kantian intensive magnitude. Thirdly, as Michael Hoffmann has pointed 
out, Peirce linked abduction to a diagrammatic mode of reasoning—“meta-
diagrammatic abduction”—that he thought introduced new ways of seeing 
things: “Our vantage point determines the set of available theoretical models. 
It is possible to generate new models simply by shifting the perspective on a 
problem” (Hoffmann 2010, 581). He identified this form of reasoning with the 
use of diagrams in projective geometry, and in particular regarding the con-
struction involved in Desargues’s theorem of the homologous triangles (as in 
fig. 4.4 above). When Desargues’s triangles are seen as lying on two intersect-
ing planes within three-dimensional space, the reasons for the collinearity of 
the points of intersection of their extended sides becomes readily apparent 
(Hoffmann 2010, 582–583).10

In short, for Peirce as well as for Hegel, there is a peculiar type of infer-
ence that starts from an overtly evaluative judgment grounded in a type of 
felt response to a thing with some distinctively perceivable quality and that 
is capable of achieving some type of redetermination of the content involved 
by virtue of its generalization. Thus, while Peirce stresses the role of emotion 
in abductive inference (Peirce 1992, 199), Hegel indicates that the judgment 
of the concept in its initial form is based on nothing more that “a subjective 
assurance” (SL, 583; 12:85). That this type of judgment is initially subjective in 
this way is in turn linked to the purpose of this type of inference. For Hegel, 
the point of the judgment of the concept is to make explicit something that 
was only implicit within the initial judgment given its subjective basis. What 
the inference aims to do is to bring out something of the essential structure of 
the kind to which the perceived object belongs and to grasp it as responsible 
for the initial subjective assurance felt by the judge.

In Hegel, this unfolds in the context of the dialectical engagement of the 
judge with another judge. Challenged with an opposing judgment and at-
tempting to justify her own, one judge is led to formulate that it is because 
the house is so and so constituted that it is good. That is, what is reasoned 
to in this form of reasoning is a form of judgment closer to a minor premise 
that captures how this house (a singular), as a particular instance of a kind, is, 
because of this fact, good. This judgment has a split middle term inasmuch as 
the house is conceived as both immediate (it is this house) and mediated (it is 
whatever about it that is responsible for my judging it to be good). Here, the 
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mere sentiment underlying the initial judgment is replaced with a conception 
of its cause.11 Similarly, Peirce describes abduction as reasoning to the minor 
premise as involving a movement from “effect to cause,” in which the cause 
“explains” the situation as experienced (Peirce 1992, 194).12

We will return to these parallels between Hegel and Peirce in the follow-
ing chapter in examining Hegel’s approach to Aristotle’s syllogistic figures. 
Here, however, it is worth pointing to the parallel between Hegel’s “syllogism 
of analogy” and Peirce’s conception of abduction, both providing a model for 
Johnson’s “intermediate” inferential step from “any one” to “any other” in his 
treatment of induction. In accord with this, Hegel’s syllogism of analogy is to 
be found as a form of what he calls the reflective syllogism that supersedes the 
syllogism of induction and that, as superseding it, brings out its true nature.  
Of course, the idea of a “syllogism of analogy” should bring to mind Aris
totle’s version of this type of practical inference operating with the trans-
genus proportion (analogia) or double ratio, a : b :: c : d, a form that he could 
nevertheless not incorporate into his formal syllogistic. In relation to this, 
Hegel appeals to the idea of this syllogism as “containing four terms, the qua-
ternio terminorum” and this raises the question of “how to bring analogy into 
the form of a formal syllogism” (SL, 615; 12:116), which contains three. We 
might expect that a three-termed analogy with a split middle term is what 
will explain such a quaternio terminorum.

While Aristotle’s difficulty with integrating analogical inferences was pre-
mised on his conception of a univocal middle term,13 Hegel seems to be sug-
gesting that such an analogical dimension is unavoidable in any inferential 
process and that it is allowed by the ambivalence of the middle term. As suc-
ceeding the syllogism of induction, the syllogism of analogy brings out what 
it is that actually makes induction a genuine inference. Thus, as with Johnson, 
this type of analogy is involved at the level of inference from “any one” to “any 
other” that is required in order to group a lot of singulars into a collection 
that could be used as the basis for an inference from “any” to “all.” The induc-
tion found in the syllogism of reflection must be one that, as Hegel writes, 
“rests upon analogy” (E:L, §190). In the corresponding section of The Science 
of Logic, Hegel goes about addressing Aristotle’s problem by distinguishing 
three terms from a fourth: “There are two singulars; for a third, a property 
immediately assumed as common, and, for a fourth, the other properties that 
one singular possesses immediately but the other first comes to possess only 
by means of the syllogism” (SL, 615; 12:116–117).

In the two examples given in the Encyclopedia Logic, “Gaius, a human 
being, is a learned individual; Titus is also a human being; hence he is also 
likely to be learned” and “The Earth is a heavenly body and has inhabitants; 
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the Moon is also a heavenly body; hence, it is probably also inhabited” (E:L, 
§190, addition), there is a probabilistic inference from one singularly deter-
mined body to another on the basis of some immediately grasped property 
or properties inhering in each.14 Because what is being compared are, in the 
first instance, singulars, as in “the Earth” and “the Moon,” the inference in 
its initial form must involve a type of identification as in “The Moon is an 
Earth,” thereby making the Earth itself one of a kind, one “earth” among oth-
ers including the moon. But it also allows the type of geometric double ratio  
in which the sun is to the earth as the earth is to the moon (sun : earth :: earth :  
moon). This will therefore be a step toward the type of Copernican redeter-
mination of the objects involved, with the development of general terms (star, 
planet, satellite, and so on), as in Venn’s conception of the development of 
theoretical from everyday language.

These intervening analogical steps bring into focus the fact that the iden-
tities involved in induction cannot simply hold between the qualities them-
selves as immediately given, thus giving the lie to all empiricisms that rely on 
equating some initially given “sensory ideas” or “sense-data.” The syllogism 
of analogy brings out the point that the relevant identities are between the 
relations (or “ratios”) themselves: the identities being posited are between the 
ways that this quality inheres in this thing, that quality inheres in that thing, 
and so on. As in Carnot’s projective geometry, the basic objects involved are 
“correlations” among conventionally different figures, not the figures them-
selves. But I suggest also that the association of the syllogism of analogy 
with the syllogism of induction demarcates Hegel’s position from the typical 
theological realism founded on analogy, as in Thomas Aquinas, for example 
(Ashworth 2017). Abstracted from its correctable role within the syllogism of 
induction, the syllogism of analogy works at the level of the Vorstellungen of 
religion and not at the level of philosophy.15 Finally, both Johnson and Hegel 
appeal to a type of intuitive dimension to these initial one-to-one inferences: 
Johnson simply calls this an “intuitive inference” that involves the “apprehen-
sion of the universal” in the particular/singular, while Hegel alludes to an 
“instinct of reason” (E:L, §190, addition).

Hegel’s examples clearly portray the syllogism of analogy as fallible and as 
being “more superficial or more rigorous” (E:L, §190, addition), belonging to 
the comparative estimation of the “more or less.” The source of this fallibility, 
it would seem, is the feature he underlines about the “reflective syllogism” of 
which the inductive and analogical syllogisms are subtypes—they are subjec-
tive. This is why this corrective or “reflective” type of inference is necessary. 
Analogously, despite his criticisms of Newtonianism, he clearly thinks that 
Newtonian mechanics provides a type of knowledge—it is just not the type of 
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knowledge that it aspires to be. Hegel does not have a lot to say about how his 
notion of the inductive syllogism may be extended to this, but again Johnson, 
with his explicit differentiation between applicational and implicational prin-
ciples and their “counter” forms, is able to suggest a path.

In his description of “a conjunction of disconnected syllogisms” alluded 
to earlier and of the form “Everything is p if m; This is m; Therefore This is 
p,” “Everything is p′ if m′; This is m′; Therefore This is p′,” “Everything is p″ 
if m″; This is m″; Therefore This is p″,” the terms “m,” “m′,” “m″,” etc. stand 
for individual determinates of the determinable M, while “p,” “p′,” “p″,” etc. 
stand for similarly individual determinates of the determinable P. “If then we 
can collect these major premisses into a general formula holding for every 
value of M and P in accordance with the mathematical equation P = f (M), 
then we have an example of what may be called the functional extension of 
the syllogism . . . where the major or supreme premiss may be expressed in 
the simple form P = f (M)” (Johnson 1922, 104). That is, while the general 
empirical law is expressed in determinables, “the terms which occur in these 
different minors and conclusions are specific values of the determinables”—
that is, determinates of those determinables (Johnson 1922, 103–104), the in-
tuitionists’ witnesses.

With this, and giving as examples Newton’s inverse square law and Boyle’s 
law, Johnson effectively supplies a logical form to fit the empiricists’ conception 
of natural law as simple covariation among specific measurable parameters. In 
cases such as these, numerical values are the determinates of determinables 
such as “distance,” “velocity,” and so on. But, of course, the implications in-
volved are only valid when the “everything” referred to in the law is shorthand 
for the sum of those individuals indicated by the demonstrative “this” in each 
of the disconnected “syllogisms”—what Hegel describes as the association (Ge-
meinschaftlichkeit) of singulars or the “complete set of singulars.”

Were this all to work on the level of propositional logic with its implica-
tive and counterimplicative principles there would be no genuine inference 
or no new knowledge, and this is surely behind Hegel’s refusal to accept both 
Leibniz’s mathematical syllogism as the formal core of logic and Newton’s 
“explanations” of Kepler’s laws. The measurable singulars of judgments of 
reflection, deprived of some universal determination, are now “measured 
and determined” (zu messen und .  .  . zu bestimmten ist) entirely by the ab-
stractly universal predicate under which the singular subject is “subsumed 
as an accidental” (SL, 569–570; 12:72). But such abstractions are entities for 
which Kant’s intensive magnitude equals zero. For the implicational struc-
tures involved to become proper inferences (syllogisms)—for them to be-
come part of a properly explanatory process—requires something akin to the 
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move insisted upon by contemporary scientific realists in their criticisms of 
positivistic “correlations,” some principle such as “inference to the best ex-
planation.” But this, as both Johnson and Hegel insist, requires something 
beyond the implicational structures involved: Johnson requires the exercise 
of a properly “counter-applicational” principle; Hegel, a further application of 
the “inference by analogy” operating now at the level of kinds. Merely shared 
abstract, that is, subsuming, universals do not constitute the true measure of 
things—genuine explanation must progress beyond shared universal char-
acteristics to some underlying determination that makes something what it 
is—its genus. “Instead of ‘all humans,’ we now have to say ‘the human being’ ” 
(or “the man as such” [der Mensch]; SL, 574; 12:76).16 For Hegel, the empirical 
correlations need to be explained by the essential properties of the objects 
involved. For Johnson, the formal “everythings” that are merely finite sums 
need to become genuinely categorical. Both have reached a more traditional 
Aristotelian conception of explanation, but neither rests there.

9.3 The Secondary Substances of the Second Judgment Cycle

At the end of the first judgment cycle we have a new de-re judgment with a 
type of “secondary substance” as its subject—some natural kind or concrete 
universal.17 Thought has moved from being able to reflect on the experi-
ence of this rose or the Earth to reason about instances of the kinds rose or 
planet because judgments can be made about these kinds as such. Judgments 
about these secondary substances or natural kinds thus initiate a second cycle 
within which this judgment form will be transformed along the general lines 
observed in the first (SL, 575–581; 12:77–83). As in the first cycle, this cycle will 
ascend through a phase of abstraction to a maximally indeterminate judg-
ment form (the hypothetical judgment) and then descend through a phase 
of concretization (the disjunctive judgment) so as to ultimately issue in the 
judgment of the overtly evaluative judgment of the concept. Nevertheless, 
there is a sense in which the cycle itself is “reflective” in relation to the pre-
ceding and succeeding cycles, indicating the problematic status of the kind 
as itself a substance.18 In this cycle, the shortcomings of judgments limited to 
this phase of development reflect the point we have been making about the 
limitations of Aristotle’s logic—its inability to give proper expression to the 
determination of singularity, the singularity distinguishing Callias from some 
indefinite particular instantiation of the human kind. It will be the determi-
nation of singularity that will be restored in the judgment of the concept, the 
judgment form that represents the supersession of those of the two earlier 
cycles. What is judged there is not a house considered as a mere instance 
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of “the house as such” but rather this house considered as a better or worse 
instantiation of a how a house ought to be. The need to transition into the 
explicitly modal logic of the judgment of the concept will raise questions for 
those who find in Hegel some type of Aristotelian realism about kinds, that 
is, the kinds as determined within the second cycle.

What the judgment of necessity divides into are the universals, genus and 
species, but Hegel reminds us that “the species is a species only in so far as, 
on the one side, it exists in singulars [in Einzelnen existiert]” (SL, 575; 12:77–
78), or, as he puts it more bluntly in the Encyclopedia Philosophy of Nature, 
“Things are singularities [einzelne] however, and the lion in general does not 
exist [der Löwe überhaupt existiert nicht]” (E:PN, §246, addition, p. 198). The 
closest the subject of judgments of this cycle can approach to singularity is as 
the indeterminate particular: “The subject is subject . . . only as a particular 
[nur als Besonderes]” (SL, 576; 12:78)—that is, it is an indifferent instantiation 
of some universal. Again, the subjects of such judgments are as found in Aris-
totle’s conception of science: there is no science of Socrates qua Socrates, only 
the science of Socrates in the determination of being a human. Hegel notes 
that we must not confuse the subject of the sentence “The rose is a plant” with 
that of the sentence “The rose is red” (576; 12:78). The former names a species, 
and predicates of it a genus; the latter names an individual, and predicates of 
it a qualitative inherent property. The three categories of universal, particular, 
and singular are not fully intelligible considered in isolation. Like the three 
Pythagorean means, they are to be considered as a unity of determinations 
among which some degree of incommensurability exists. From the categori-
cal judgment the judgment of necessity will pass through two more forms, 
the hypothetical judgment and the disjunctive judgment, the latter of which 
will bring out something that was only implicit in defining a species in terms 
of a higher genus. It was only a particular instance of that genus.

I suggest we see Hegel’s cycles as a device to progressively unearth logical 
relations that exist implicitly within the rational practices of our shared logi-
cal life. As in Brandom’s Sellarsian account, we might think of these as involv-
ing the pragmatic “language game” of the asking for and giving of reasons, 
but in contrast to Brandom’s rather general way of conceiving of this activity, 
I suggest that Hegel’s account is more specifically directed to those dialecti-
cal language games that Aristotle refers to in the Topics and which are linked 
to the ability to “puzzle on both sides of a subject” (Aristotle 1984, Topics, 
1.2, 101a35–37)—a type of language game more specifically connected to phi-
losophy in which is preserved a certain residual incommensurability between 
perspectives rather than those more “demonstrative” forms of scientific rea-
soning considered in the Posterior Analytics—for example, in which singulars 
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are absorbed into the more general category of particular instances of kinds. 
Again, in contrast with Brandom’s more Fregean approach, Hegel, pursuing 
the theme of the syllogistic “doubled mean,” adopts an account of inference 
more like that of the algebraist Johnson with his opposed but complementary 
“applicative” and “implicative” principles at the heart of syllogistic inference. 
Moreover, with the move of making the explicitly evaluative “judgment of 
the concept” the truth of the type of judgments found in scientific reasoning, 
Hegel is denying that the logic of our reasoning about values can be reduced 
to or somehow explained by the types of judgments we make in the posi-
tive sciences. In fact, the types of explanations found in the positive sciences 
are only understandable against the background of such evaluative practices. 
While this rejection of “scientism” itself is not such an unusual philosophical 
attitude in the present, offering a type of systematic logic for the reasoning 
presupposed by the workings of empirical science, as Johnson attempted in 
his Logic, is not so common.

9.4 The Judgment of the Concept and Its Syllogistic Truth

In recent discussions of Hegel’s metaphysics there has appeared a tendency to 
point to the notion of “normativity” as that which separates Hegel’s philosophi-
cal attitude from that of traditional metaphysics. This move, it is claimed, pro-
vides an alternative to the traditional view interpreting Hegel as a premodern 
theocentric metaphysician—its error being that of confusing what he posits 
as norms with descriptions of independent features of the world. In this way, 
Hegel is often described as having effectively generalized the role that Kant had 
given to normativity in his practical philosophy. While Kant had emphasized 
normativity and rule following in practical life, Hegel had extended this ap-
proach to encompass theoretical reason as well, liberating it from the remnants 
of a representational conception of knowledge still present in Kant.19 While 
there is something right about this account of Hegel, I want to argue that there 
is something incomplete as well, at least to the extent that it can reflect the 
way the concept of normativity in general has been shaped by Kant’s specific 
approach to the normative nature of practical philosophy. When we look to 
Hegel, we find “values” as central, in relation to which “norms” are abstractions, 
and it is the logical structure of evaluative concepts that is at the core of Hegel’s 
final conception of judgment, the “judgment of the concept.”20

Hegel starts the section on the judgment of the concept with the observa-
tion that the capacity to say “The rose is red,” “The snow is white,” and so on 
will hardly be taken as “a sign of great power of judgment” (SL, 581; 12:84), 
and this immediately puts him at a critical distance from standard modern 
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conceptions of judgment in logic in which judgments like those about the 
respective colors of roses and snow will be thought of as prototypical judg-
ments because they are the sorts of judgments most likely to be met with 
agreement. From the perspective of modern classical logic, truth is taken pri-
marily as a property of judgments, and the least problematic judgments will 
be deemed as prototypically true. In contrast to such simple judgments, the 
sorts of evaluative judgments that Hegel considers under this heading will 
be thought of as the most problematic, ones most likely to be met with dis-
agreement, and so in need of evidence. These are the types of judgment that 
apply to objects the type of concepts that W. B. Gallie described as “essentially 
contested” (Gallie 1964).

We have seen how the notion of “measure” with which “The Doctrine of 
Being” concluded played a role that anticipated the notion of “essence” found 
in “The Doctrine of Essence,” and Hegel appeals to the link of “measure” and 
“essence” here: the evaluative predicates “‘good,’ ‘bad,’ ‘true,’ ‘right’ etc., express 
that the fact is measured against the concept as an ought which is simply pre-
supposed [als dem schlechthin Sollen gemessen], and is, or is not, in agreement 
with it” (SL, 582; 12:84). Traditional subject-predicate structure will thus be fa-
vored here as, from the results of the first cycle, we can understand a kind term 
as containing presuppositions about that which is referred to by that kind.21 
The cycle of redetermination that unfolds in the course of this judgment form 
will purportedly reveal what it is that makes this judgment the most developed 
form in terms of which all the earlier judgments are to be understood.

The cycle is relatively easy to follow in its basic development. It starts with 
an “assertoric” judgment that connects to a “concrete singular” a predicate 
that “expresses this same singular as the connection of its actuality, its deter-
minateness or constitution, to its concept. (‘This house is bad,’ ‘this action is 
good.’)” (582; 12:85). The kind “house” will bring with it a list of features essen-
tial for houses—houses provide protection from the weather, from intruders, 
and so on—and the goodness or otherwise of some specific house can pre-
sumably be measured against the typical contents of such a list. But there is 
a difference between both houses and actions as kinds and what, in the spirit 
of Aristotle, are thought of as natural kinds. Aristotle tended to run these 
notions together into a concept of natural kind that contained a distinctly 
evaluative dimension, but the conception of natural kind that had emerged 
within the generally explanatory framework of Hegel’s judgment of necessity 
seemed to swing free from this dimension, which is introduced only in the 
following cycle. The course of this third cycle of judgment, starting from the  
judgment of the concept, will link evaluation to what is distinctive about  
the non-natural kinds that we think of as human actions and their products.
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In the case of the natural kinds of the second cycle, that empirical regulari-
ties had come to be packed into the kind terms would suggest that those kind 
terms themselves might provide an objective measure to which an individual 
instance had to conform to count as an instance of that kind. To be a rose, this 
thing has to be a genuine plant, has to have the characteristics definitive of one 
of the four subgenera of the genus Rosa, and so on, but in the case of houses 
and actions, the logic of judgment is very different. A plant that does not sat-
isfy the defining characteristics of a rose is simply not a rose. In contrast, a 
house that does not live up to the normative characteristics of a house is a bad 
house, but a house, nonetheless. There is a dimension of the more-or-less in 
this structure’s instantiation of the concept <house>. Hegel suggests that the 
credentials of such evaluative judgments express, in the first instance, “only a 
subjective assurance” (SL, 583; 12:85). Such essentially contestable judgments 
lead to reason giving, and this now locates the house within a logical space of 
evaluative concepts—human actions and products are, by their nature, pos-
sibly good and possibly bad—but it has also located the concrete judgment 
itself in that same logical space, such that it is a possibly good/possibly bad 
instance of judgment. Only explicitly evaluative judgments can adopt this type 
of reflective metaconceptual standpoint in which the activity of judging can 
itself be brought under the scope of the concepts being applied in the original 
judgments. It is in this sense that judgment has here reached its completed, 
self-sufficient form: it has realized the concept of what it is to be a judgment.

We are now back on “Copernican” territory, in which we are asked to con-
sider the possibility that the immediately given object is not the proper “mea-
sure” of the concept applied in the judgment—perhaps the apparent object 
simply reflects the conditions from which the judgment issues rather than the 
object’s true nature. Just as in the case of reflecting on the possibility that it is 
me who is actually moving when I report the sun to be moving, here negation 
leads to the consideration that perhaps it is something about me rather than 
the proper concept of a house, my ultimately naturally based predispositions 
to respond, that have been the ground of my judging. To offset this possibil-
ity, I have to bring the judgment back to the house itself, abstracted from 
presuppositions held about it. Thus, Hegel puts the focus squarely back on 
the singularity of a specific existing house: “Purified of such a singularity, 
the subject would be only a universal, whereas the predicate entails precisely 
this, that the concept of the subject ought to be posited with reference to its 
singularity” (SL, 584; 12:86).

This third cycle thus corrects the conception of logical structure that was 
found in the second. It reinjects the determination of the singularity of the 
object judged that had fallen out of the second cycle in which “the subject is 
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subject . . . only as a particular” (SL, 576; 12:78). The content of the judgment 
must have as a component the actual thing itself in its full determinacy. It is 
only then that judgment can be provided with an adequate measure for its 
own measurings, and a measure that is equally available to another judge. 
The insight about the nature of reasoning that the insistence on singularity 
rather than mere particularity brings forth is that in the case of human ac-
tions and products a singular instance can come to measure the normativity 
of the concept being applied in a way that works in the opposite direction 
from that in which the abstract concept or definition measures its instances.22

I have suggested that Hegel’s differentiation of the judgment of the con-
cept from the judgment of necessity of the earlier cycle reveals his critical 
attitude to an ontology of Aristotelian kinds, and this might be expressed by 
drawing Hegel’s account closer to Plato when understood as the late Plato of 
the “unwritten doctrines”—Plato as an advocate of the duality of the one and 
the indeterminate dyad of the more or less and of the sensible rather than the 
suprasensible status of paradigmata.23 Hegel’s position here might be most 
easily clarified by contrasting the notion of “the good” as it features as a predi-
cate in the judgment of the concept against the way that it features in the logic 
of Kant’s practical philosophy. Kant’s considers the moral notion of the good 
as a self-sufficient concept able to give a determinate content to the will. Sim-
ply put, the categorical imperative can tell the will what it ought to do. When, 
early in the Groundwork of the Metaphysics of Morals Kant writes that “it is 
impossible to think of anything at all in the world, or indeed even beyond it, 
that could be considered good without limitation except a good will” (Kant 
1998, 7), one might imagine Hegel’s (decidedly Greek) critical response to the 
very idea of a good “without limitation.” From the duality of the one and the 
indeterminate dyad, to describe anything as without limitations is to construe 
it as “bad.” Indeed, this is the bad indeterminacy of Kant’s purely intelligible 
moral law that Hegel sees as its problem. Here we might think of Kant as the 
moral equivalent of Newton. Like Newton, Kant must rely on the empirical 
to give his laws any content, but he cannot properly accommodate the moral 
status of anything empirical within the logical framework of those laws. That 
is, they only admit abstractions. Hegel’s conception of evaluative judgments, 
on the contrary, presupposes the existence of paradigms that can be taken as 
instantiations of norms. These are the Platonic paradigmata that, according 
to Sayre (Sayre 2005), had, by the time of the post-Parmenidean dialogues, 
ceased to exist exclusively in the transcendent beyond and had found a place 
in the empirical realm of the “more and less.”

Progress through the forms of judgment had shown how judgments had ac-
quired contents that would become progressively transformed or redetermined. 
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The concept of the judgment of existence has shown it to start with some name-
able concrete object as part of its content, but the first judgment cycle showed 
that object to be redetermined as a concrete universal, a kind. Kinds had started 
as the proper objects of the categorical judgments commencing the second 
cycle, but by the third cycle concrete singulars had reappeared—now singu-
lar actions or action products as claimants to the status of their concepts. But 
not only objects had appeared within judgment contents, judging subjects had 
been “located” in relation to those objects by the judgment form as well.24 In 
the judgment of the concept, the existence of the judging subject had become 
explicit as the problematization of the judgment is simultaneously a problema-
tization of the subject qua normative judge making that judgment. To make 
an evaluative judgment is to bring one’s judging to the status of something to 
be judged. Here, different judges bring their different measures to evaluate or 
measure the measurings of their opponents. In turn, all these contents now 
become incorporated into the syllogism, with the difference that the syllogism 
contains places for different, opposed judging subjects. This is why Schelling’s 
Constructed Line could offer a suggestive model for Hegel’s understanding 
of both the syllogism and the intersubjective practice in which the measures 
brought to judgment by one judge are themselves the object of evaluation—
measure—by others, the form of interaction that Hegel calls “recognition.” By 
the end of the progress of syllogistic forms, which to a large degree mirrors the 
development of forms of judgment, it becomes apparent that “the concept in 
general has been realized; more precisely, it has gained the kind of reality which 
is objectivity” (SL, 624; 12:125). The truth of conceptuality has been revealed to 
be the type of dialectically mediated forms of practice structuring human life, 
guided by the idea of value—the good. With this, Aristotle’s conception of the 
good life is made more Platonic by being interpreted as that of logical life.25

It is this underlying object-centered and subject-placing conception of 
judgment that is in turn connected to that aspect of Hegel’s approach that 
links him to the algebraic tradition rather than the classical tradition of mod-
ern logic, and that finds an important place for conceptual polarities that get 
expressed most explicitly in evaluative judgments with their peculiar logic. 
We will focus on these issues in the following chapter.
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Hegel beyond the New Leibnizians:
Syllogisms

It must be granted that a study that has for its subject matter the modes of operation and 
the laws of reason must be of the greatest interest in and of itself—an interest at least 
not inferior to the knowledge of the laws and the particular shapes of nature. If it is not 
reputed a small matter to have discovered some sixty species of parrots, one hundred 
and thirty-seven species of veronica, and so on, much less ought it to be reputed a small 
matter to have discovered the forms of reason. Is not the figure of a syllogism something 
infinitely higher than a species of parrot or veronica?

h e g e l , The Science of Logic

In the previous chapter we touched on some broad parallels between the 
ways in which both Peirce and Hegel conceive of a form of nondemonstrative 
inference that works its way up a syllogism in the opposite direction from 
deduction but that is not merely inductive. Such moves, it was suggested, 
illustrate the way both Hegel and Peirce had augmented the inferential pos-
sibilities implicit in Aristotle’s formal syllogism by making use of the notion 
of directionality that had been introduced within Kant’s protovectorial treat-
ment of directed line segments in his transitional work. With this Kant had 
anticipated the way directionality would play a central role within the revival 
of geometry in the nineteenth century that would challenge the assumptions 
about the relation of geometry to arithmetic of the “analytic” mainstream ini-
tiated by Descartes. It is now time to explore some of the ways in which this 
development had been implicit in Hegel’s account of the syllogism. In this 
chapter we will explore this first in relation to Peirce’s later linkage of nonde-
ductive inference forms to the second and third syllogistic figures, then in re-
lation to other more recent attempts to transform the 2 × 2 traditional square 
of opposition into the 3 × 2 structure of a hexagon, and finally into viewing 
the hexagon as a two-dimensional projection of a three-dimensional cube.

10.1 Hegel, Peirce, and Aristotle on the Three Syllogistic Figures

In an early paper from 1878 in which he refers to what he would later call 
“abduction” as “hypothesis” (Peirce 1992), Peirce sets out to establish the three 
linked inferential forms of probabilistic reasoning: deduction, induction, and 
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hypothesis. While all inferential forms can be reduced to Aristotle’s favored 
“perfect” syllogism of Barbara, a mood within the first figure reasoning from 
premises “All As are B” and “All Bs are C” to “All As are C,” “it does not fol-
low that this is the most appropriate form in which to represent every kind 
of inference” (Peirce 1992, 187). Barbara typifies deductive reasoning but is 
in fact “nothing but the application of a rule” that is laid down in the major 
premise, applied to a case stated in the minor premise to produce a result. In-
ductive or hypothetical reasoning, however, “being something more than the 
mere application of a general rule to a particular case, can never be reduced 
to this form” (187). But, as we have seen (in chapter 9), one can, as Peirce puts 
it, “row . . . up the current of deductive sequence” (188) as when in induction, 
one infers from a combination of the result (the conclusion) and the case (the 
minor premise) to the rule (the major premise).

Peirce’s example involves the sampling of populations. Consider a situa-
tion in which I draw a handful of beans from a bag and, on finding them all 
to be white, infer that in fact all the beans in the bag are white. I can set out 
the inference thus:

These beans were in this bag.
These beans are white.
\ All the beans in the bag were white. (188)

It is clear that this inductive inference is just an inversion of a deductive one:

Rule.—All these beans in the bag were white.
Case.—These beans were in the bag.
Result.—These beans are white.

But Peirce now points out that there is a further way of arranging the parts 
of the deductive inference to get a nondeductive one, the resulting inference 
being neither from population to sample nor from sample to population:

Suppose I enter a room and there find a number of bags, containing different 
kinds of beans. On the table there is a handful of white beans; and, after some 
searching, I find one of the bags contains white beans only. I at once infer as a 
probability, or as a fair guess, that this handful was taken out of that bag. This 
sort of inference is called making an hypothesis. It is the inference of a case 
from a rule and result. We have, then—

Deduction
Rule.—All the beans from this bag are white.
Case.—These beans are from this bag.
\ Result.—These beans are white.
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Induction
Case.—These beans are from this bag.
Result.—These beans are white.
\ Rule.—All the beans from this bag are white.

Hypothesis
Rule.—All the beans from this bag are white.
Result.—These beans are white.
\ Case.—These beans are from this bag. (Peirce 1992, 188)

However, there is yet another way of generating these alternative nonde-
ductive forms of inference that, in a way that recalls Hegel’s use of negation 
in generating alternative conceptions of judgment, uses denial rather than 
affirmation. Again, starting with the “perfect,” first syllogistic figure of Bar-
bara, by using the law of modus tollens one can derive from the denial of the 
conclusion, the denial of either of the major or minor premises. Peirce gives 
the following example. First, the deductive form of Barbara:

Rule.—All men are mortal.
Case.—Enoch and Elijah were men.
\ Result.—Enoch and Elijah were mortal.

From this, two further valid deductive inferences can be formed by denying 
the result. First, if the result is denied while the rule is affirmed, we must infer 
the denial of the case:

Denial of the Result.—Enoch and Elijah were not mortal.
Rule.—All men are mortal.
\ Denial of Case.—Enoch and Elijah were not men.

On the other hand, if, having denied the result, we affirm the case, we must 
infer the denial of the rule:

Denial of the Result.—Enoch and Elijah were not mortal.
Case.—Enoch and Elijah were men.
\ Denial of the Rule.—Some men are not mortal. (Peirce 1992, 190)

It will be remembered that in Aristotle’s syllogistic, figures in the second 
and third figures need to be converted to figures in the first figure. What Peirce 
has done is simply to have reversed this conversion, in a type of counter-
conversion of second and third figure forms from the first. Thus, the infer-
ence in which denial of the result infers to the denial of the case is in a mood 
of the second figure (the mood of Baroco), while that in which the denial of 
the result infers to the denial of the rule is in the third figure (in the mood 
of Bocardo). But also, the former is a form of hypothesis, while the latter is 
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a form of induction. Peirce has thereby aligned his three forms of inference 
deduction, hypothesis (abduction), and induction with Aristotle’s three syl-
logistic figures. I suggest that broad parallels can be found with Hegel’s own 
similarly functional interpretation of the three syllogistic figures.

It is no simple matter working out how Hegel conceives of the relation  
of his three main forms of syllogism in The Science of Logic, the syllogisms  
of existence, reflection, and necessity, to Aristotle’s own three syllogistic fig-
ures. Like Aristotle, Hegel represents syllogisms as sequences of three terms. 
For Aristotle, the basic sequence meant to represent “perfect” deductive syl-
logisms in the first figure, such as that of “Barbara,” is given as that of a se-
quence of letters standing for major extreme, middle term, and minor ex-
treme, as in “A B C.” Let us recall Aristotle’s description of the first figure: 
“Whenever, then, three terms are so related to each other that the last is in 
the middle as a whole and the middle is either in or not in the first as a whole, 
it is necessary for there to be a complete deduction of the extremes. (I call 
that the middle which both is itself in another and has another in it—this is 
also middle in position—and call both that which is itself in another and that 
which has another in it extremes.” Here we see the reciprocity of the “is in” 
and “said of ” conceptions of predication as Aristotle immediately continues: 
“For if A is predicated of every B and B of every C, it is necessary for A to be 
predicated of every C” (Aristotle 1989, Prior Analytics, 25b32–40). That is, the 
“is in” relation works its way from right to left (last to first), while the “said 
of ” relation progresses from left to right (first to last). With this explanation, 
it could be said that Aristotle construes the relations involved semantically, 
as via the relations among the meanings of the terms. But when he describes 
the alternative second and third figures, in chapters 5 and 6, respectively, he 
mixes semantic with purely syntactic descriptions based simply on relations 
of order.

In introducing the second figure, he writes: “When the same thing be-
longs to all of one term and to none of the other, or to all of each or none of 
each, I call such a figure the second. In it, I call that term the middle which 
is predicated of both and call those of which this is predicated extremes; the 
major extreme is the one lying next to the middle, while the minor extreme 
is the one farther from the middle.” This, as with his description of the first 
figure, explains the figure in terms of the semantic relations holding among 
the terms. However, he then adds a description in terms of the movement 
of the middle term as one might illustrate by rearranging the order of oth-
erwise meaningless counters on a table: “The middle is placed outside the 
extremes and is first in position” (Aristotle 1989, Prior Analytics, 26b34–27a1). 
The account of the third figure follows the same pattern: two linked semantic 
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characterizations followed by a syntactic one: “If one term belongs to all and 
another to none of the same thing, or if they both belong to all or none of it, I 
call such a figure the third. By the middle in it I mean that term of which they 
are both predicated and by extremes the things predicated. By major extreme 
I mean the one farther from the middle and by minor the one closer. The 
middle is placed outside the extremes and is last in position” (28a11–15).

When we come to Hegel’s three-term sequences, the significant difference 
in relation to Aristotle’s is that while Aristotle’s “A,” “B,” and “C” are apparently 
meaningless placeholders, Hegel uses capitals “S,” “P,” and “U” signifying the 
three semantically related conceptual determinacies of singularity, particu-
larity, and universality.1 His order also reflects the more natural (to both Ger-
man and Greek) word order of subject followed by predicate, meaning that 
his “S P U” for the first syllogism has the reverse word order from Aristotle’s 
“A B C” when understood semantically. Hegel reflects the movement from 
subject to predicate, and so from the less general to the more general, while 
Aristotle’s reflects the movement from the more general to the less general.

A further complication is that Hegel applies the schemata of the figures at 
different levels of analysis. Thus, he describes Aristotle’s three figures within 
the description of the formal “syllogism of existence,” a sequence that leads 
to the “fourth figure”—the Leibniz-Ploucquet “mathematical” syllogism. But  
the pattern is essentially repeated when the formal syllogism of existence, via the  
mathematical syllogism, transitions into the syllogism of reflection and then 
the syllogism of necessity. Not only is the same configuration repeated within 
each of these syllogisms; it is repeated in the pattern holding among them  
as well.

Given all this, it might be thought optimistic to recover much in common 
between Peirce’s use of the three figures for the purposes of his functional dif-
ferentiation between different types of inference—deduction, induction and 
abduction—and Hegel’s utilization of them for similar ends. Nevertheless, 
enough commonality can be observed to suggest some sort of convergence 
between Peirce and Hegel here. Moreover, it is the directionality allowed by 
these primitive logical diagrams, I suggest, that enables this.

The movement of the middle term generating the second and third figures 
from the first effectively repeats the idea of “external” alternatives to the “in-
ternal” division of a line segment that we have seen opened up as consequence 
of Kant’s idea of the significance of the directionality of such a segment. We 
have seen this “dividing ratio” involved in the genesis of Nicomachus’s “most 
perfect proportion,” the precursor of the modern harmonic cross-ratio. Hegel 
will use the idea of moving the “middle term” in either of the two directions 
of the line defined by the two “extremes” to attempt to capture something like 
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what Peirce envisages as “rowing up” the deductive stream along two different 
routes, one that takes him from the result to the minor and then to the major 
premise (induction) and one that takes him from the result to major premise 
and then to the minor premise (hypothesis).

In Aristotle’s second syllogistic figure, the middle term, “B,” is moved out-
side the interval between extremes to the left so as to become “first in posi-
tion,” leaving the sequence “B A C,” and leaving A, the most general term as 
the new middle term—that is, the one common to the premises and elimi-
nated in the conclusion. The equivalent move in Hegel would have to move 
“P” within the initial sequence “S P U” in the direction that would leave “U” 
(the most general term) in the middle, as in “S U P.” Here, of course, the mid-
dle term “P” has become last, not first, but this conforms to the fact that the 
directionality of Hegel’s sequence in relation to Aristotle’s is reversed. This is, 
in fact, the shape Hegel gives as the third figure of the syllogism of existence 
and, similarly, the third figure of the syllogism of reflection, which he calls 
the “syllogism of analogy.” Despite the rearrangement of second and third 
figures, Hegel’s pattern reproduces Aristotle’s reasonably faithfully.

Correspondingly, Hegel’s second figure, “P S U,” in which the “P” counter 
has been moved to the left, will correspond to Aristotle’s third. In Aristotle’s 
third, the middle term “B” has been moved to the right to be last in position, 
producing the sequence “A C B,” leaving the least general term, “C,” the new 
middle term. This corresponds to the associated semantic interpretation be-
cause this is the only term of which both other terms can be predicated. Simi-
larly, in Hegel’s second figure, the term “S,” qua singular term, as new middle 
term is the only term of which a particular and a more general universal can 
be predicated.

Hegel’s second figure, “P S U,” is the one we have seen at work in the treat-
ment of induction that we compared to Johnson’s in the previous chapter, the 
syllogism of induction being the second syllogistic form of the syllogism of 
reflection, which is itself the second syllogism in the major syllogistic triad. 
Peirce’s sequence of the three syllogistic figures coincides with Aristotle’s, and 
so, again compensating for the difference due to the directionality and associ-
ated reordering involved, Hegel’s account of induction coincides with Peirce’s 
account, as does his account of the “syllogism of analogy” with Peirce’s ac-
count of “hypothesis.”

There is clearly something of Peirce’s hypothesis in Hegel’s syllogism of 
analogy. As in Hegel’s example arguing from “The earth has inhabitants” and 
“The moon is an earth” (that is, is a thing of basically the same kind as the 
earth) to the conclusion “Therefore the moon has inhabitants” (SL, 614; 12:115) 
is to hypothesize. Clearly this is a fairly crude type of hypothetical reasoning, 
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although we might imagine something like this as a part of the “logic of dis-
covery” phase of inquiry, as when the atom was conceived on the model of 
the solar system, and it might be thought as in need of the reciprocal “logic 
of verification,” served by the process of induction as treated in Johnsonian 
fashion. But we have already seen a rather more substantive form alluded to 
in relation to the application of the “principle of continuity” in Kepler, who, 
in grasping the similarity of the four conic sections, had argued that just as 
there are two foci in an ellipse, so too should there be two foci in a parabola. 
From this he went on to conceive of the second focus as at some infinitely 
distant point, anticipating the types of “points at infinity” postulated by the 
projective geometers. Contrary to a view such as that found in Popper’s epis-
temology, where “conjectures” have little logic to them in contrast to the falsi-
fying “refutations” that they face (Popper 1962), Peirce and Hegel extend their 
conceptions of logical structure to that first phase of inquiry.

10.2 Hegelian Expansions of the Square of Opposition:  
From Logical Square to Logical Hexagon and Beyond

Aristotle’s syntactic device generating the extrasyllogistic figures clearly echoes 
the pattern of the beautiful bond in Plato’s Timaeus in which the “middle term 
has become the first and the last” and “the last and the first have become the 
middle terms,” but not in Plato’s way such that they thereby have “all become 
one” (LHP 2:210; 3:39). That the second and third figures of Aristotle’s syllo-
gism asymmetrically rely on the first reflects the lack of such closure. One can 
then appreciate how Hegel would want to exploit and develop it in ways that 
took it beyond Aristotle’s own use of it. This type of mechanical manipulation 
in which elements are rearranged like counters on a table presupposes the type 
of desemanticization that, as has been argued, allows resemanticization in a 
way like that which Hegel sees working within the mathematical tradition to 
allow its progression.

Peirce’s image of different paths being traversed among three locations 
suggests an increase in the dimensionality of the “space” of the syllogism be-
yond that of the linear ordering of three terms. Leaving the result one can 
pass though the rule on the way to the case or alternatively pass through 
the case on the way to the rule, for example. Here, alternative orders come 
into focus in a way that resembles the puzzle concerning the seven bridges 
of Königsberg that had sparked Euler’s invention of his geometria situs. In 
Peirce’s version of the puzzle, the possibility of two such pathways from each 
of the three starting points will suggest six possible trips involved. Similarly 
in Hegel’s case, while there are only three ways of ordering “three counters” in 
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a row, there are six if one includes the possibility of changing the direction of 
the order. This “3 × 2” picture also appears in the various permutations avail-
able when three conceptual determinacies (singularity, particularity, univer-
sality) are distributed over the two syntactic parts of the judgment, subject 
and predicate.2 We have seen this “3 × 2” picture before: first in Eudoxus’s 
expansion of the three Archytan musical means by the addition of their sub-
contraries (above, chapter 3.3) and then in the way that directionality gives a 
doubled structure to each of the three dimensions of space, into front-back, 
up-down, and right-left, in Kant as well as in Nicomachus of Gerasa (above, 
chapter 3.4). In light of these convergences, it seems significant that dur-
ing the twentieth century a number of logicians, without any connection to 
Hegel, would independently argue for an expansion of the traditional square 
of opposition into a logical hexagon, converting its 2 × 2 structure into a 3 × 2  
structure.

In the 1960s, the French logician Robert Blanché extended into a hexagon 
a modal interpretation of the traditional square of opposition that had been 
proposed by the Polish logician Jan Łukasiewicz (Blanché 1966; Łukasiewicz 
1953).3 Employing the pair of strong modal contraries we have observed in 
MacColl, necessity and impossibility, Łukasiewicz had located the proposi-
tions “necessarily p,” “impossibly p,” “possibly p,” and “not necessarily p” at 
the corners, A, E, I, and O, respectively, of the traditional square (fig. 10.1).4

Blanché then exploited the subcontrariety relation between I- and O-
judgments across the bottom of the square to add a third modal category, 
contingency. Thus, the compound “contingently p” could be understood as 
equivalent to the conjunction of both “possibly p,” and “not necessarily p.” 
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f ig u r e  10.1 Łukasiewicz’s modal square.
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f ig u r e  10.2 Blanché’s hexagon (after Blanché 1966).

Because a conjunction implies both individual conjuncts, a lower vertex, Y, 
can be connected to the modal square such that the Y-judgment can be un-
derstood as implying each of the I- and O-judgments, adding to their subal-
ternation implication from the A- and E-judgments, respectively.5 Similarly, 
an upper vertex, U, can be added, representing the judgment “not contin-
gently p” (and so the contradictory of Y), because “not contingently p” can in 
turn be understood as the disjunction of the A-judgment, “necessarily p,” and 
the E-judgment, “impossibly p,” because implied by both (fig. 10.2).

Blanché’s experiments with this hexagonal diagram were linked to the 
French structuralist movement of the mid-twentieth century, Blanché men-
tioning the work of the anthropologist Claude Lévi-Strauss in noting that 
“the organization of concepts by contrasting couples appears to be an original 
and lasting form of thought” (Blanché 1966, 15). This idea had earlier become 
prominent within French ethnography around the turn of the twentieth cen-
tury with the work of Émile Durkheim and Marcel Mauss (Durkheim and 
Mauss 1903), who would identify a type of rough-and-ready form of prac-
tical and evaluative reasoning rooted in the distinctions right and left and 
male and female as effectively universal among preliterate cultures. These, 
of course, exemplify the type of Pythagorean table of linked contraries given 
by Aristotle (Lloyd 1966). Blanché notes, however, that these oppositions had 
effectively been eliminated from modern classical logic, in which negation 
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f ig u r e  10.3 A rearranged Blanché hexagon.

had become exclusively “external,” and in which the relation of contradiction 
holding between propositions had come to predominate over the contrariety 
between terms. Moreover, among the logical relations that Blanché sought to 
represent was a distinction between two different senses of contrariety found 
in Aristotle: a weaker sense, as incompatibility among multiple terms within 
a particular field, and a stronger sense of polarity or opposition between two 
terms (Blanché 1966, 42). Clearly, the former coincides with the incompatibil-
ity among color concepts in Hegel’s judgments of existence, while the latter 
the opposition between the opposed concepts of good and bad in the judg-
ment of the concept.6

With a little manipulation, Blanché’s hexagon can be transformed into 
the type of lattice diagram found in Boolean algebra. Let us first only retain 
the directed, that is, inference-indicating segments from figure 10.2 (A → U,  
A → I, E → U, E → O, Y → I, and Y → O) to get a stripped-down version. Next, 
because a Hasse diagram relies on all inferential “arrows” pointing in the one 
direction, we will need to reverse the positions of I and A and O and E nodes 
of the stripped-down hexagon, while retaining the directions of their connec-
tions to the top U and bottom Y vertices, so to get the diagram in figure 10.3.

We know that for a Hasse diagram a proposition represented at the high-
est node is implied by all propositions located at connected lower nodes, and 
that a proposition represented at the lowest node implies any proposition lo-
cated above it. We can therefore add a maximum node above I, U, and O and 
a minimum one below A, Y, and E. What results is the type of lattice diagram 
as found in Boolean logic or the semilattice diagrams as found in Heyting 
logic, corresponding to their respective logical interpretations of partially or-
dered sets (fig. 10.4).

In the 1950s and 1960s, Blanché had not been alone in thinking of hex-
agonal extensions of the traditional square of opposition, and a similar hex-
agonal extension had been proposed in 1955 by the Polish logician Tadeusz 
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Czezowski (Czezowski 1955; see also Englebretsen 1986). In this case, the rel-
evant “square” to be expanded was not Łukasiewicz’s modal version of the 
traditional square but the type of singular square that Horn had noted in 
Aristotle (Horn 2017) such that Czezowski employs (like Hegel) a distinction 
between singular and particular propositions: “The name, ‘This S’ in the sub-
ject of a singular proposition I regard to be a proper name denoting a given 
individual from the extension of the S term, just as ‘Francis Bacon’ denotes 
one of the members of the Bacon family” (Czezowski 1955, 392). And so, while 
for Blanché the U node represented the disjunction of A and E nodes, for 
Czezowski it represented an affirmative singular proposition of the type “This 
S is P” (Hegel’s positive judgment of existence), while its diagonally opposite 
Y node represented the contradictory of that singular proposition (392).

The nodes of Czezowski’s hexagon thus gave representation to the follow-
ing six judgment types: A: universal positive, E: universal negative, U: singu-
lar positive, Y: singular negative, I: particular positive, O: particular negative. 
There are significant similarities and, not surprisingly, differences between 
Czezowski’s and Blanché’s diagrams (fig. 10.5). Comparing them, it can be 
seen that while both have A → U, A → I, E → O, and Y → O, Blanché’s E → U 
and Y → I are missing from Czezowski’s, and Czezowski’s U → I and E → Y are 
missing from Blanché’s.7

I

A

0 = false

1 = true

E

O

U

Y

f ig u r e  10.4 Adding maximum and minimum vertices to the rearranged hexagon.
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U
(A or E)

(U and O)(I and U)
A E

O (E or Y)I (A or Y)

Y
(I and O)

U

I

A E

O

Y

f ig u r e  10.5 Blanché’s hexagon (left), Czezowski’s hexagon (right).

In both Blanché and Czezowski diagrams, diagonals represent contradic-
tion, but there are differences within the lists of respective relations of subal-
ternation, contrariety, and subcontrariety. We can restrict our attention here 
to those holding between the relations of subalternation, that is, relations of 
inference. In Blanché, E implies U and Y implies I, but neither of these in-
ferences holds for Czezowski. Conversely, for Czezowski, U implies I and E 
implies Y, while neither holds for Blanché.

Czezowski’s extension of the singular square as an attempt to capture the log-
ical relations—contradiction, contrariety, subcontrariety, and subalternation—
among the positive and negative versions of three types of propositions, singu-
lar, particular, and universal, has the 3 × 2 structure of the unity of geometric, 
arithmetic, and harmonic means that, according to Proclus (Proclus 1970, 55), 
had been achieved by Eudoxus of Cnidus and that was expressed by Hegel in 
his treatment of the “ratio of powers.” We might also think of it as an attempted 
diagrammatic representation of the types of judgments found in Hegel’s subjec-
tive logic.8 Similarly, it is clear that Czezowski captures some of the important 
inferential relations that we have seen in Hegel’s account of syllogisms in the 
“Subjective Logic,” with such “Hegelian” resonances coming out in the contrasts 
with Blanché. While Czezowski’s U-judgment, “This S is P,” will, like Blanché’s 
U, be implied by the A-judgment “All Fs are G,” Czezowski, but not Blanché, has 
I-judgments inferred from U-judgments, repeating Hegel’s abstractive infer-
ence from “This F is G” to the less determinate “Some F is G.”

Most importantly, however, there is a further and deeper way in which 
Czezowski’s account of logical relations echoes Hegel’s. For Czezowski, it 
emerges that these relations among singular, particular, and universal propo-
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sitions can no longer be considered univocal. They will be defined differently 
depending on the interpretation of the sentences being related. Czezowski 
puts this down to the fact that singular propositions are, from a formal point 
of view, hybrids: in certain contexts they behave logically like universal prop-
ositions, in others they behave like particular propositions.9 We have seen 
something like this idea in Heyting’s intuitionistic logic where an intuition-
istic version of Boolean logic can be converted to the more classical Boolean 
form by invoking some hypothesis about the nature of the world that the 
reasoning is about. Arthur Prior would later also suggest a similar need for 
hybridity in logic in order to accommodate both tensed and modal judg-
ments (Blackburn 2006), and this idea would be taken up under the title of 
“two-dimensional logic” (Humberstone 2004). It is also in accord with the 
way Hegel had treated the relation of the determinations of singularity and 
particularity, based on Ploucquet’s concepts of exclusive and comprehensive 
particularity—the modern version, I have argued, of Plato’s divided middle 
term. Consonant with these approaches Czezowski expresses this lack of uni-
vocity in logic by the idea that the hexagon is best understood as resulting 
from the superimposition of three different logical “squares,” which might be 
understood as lying on differently oriented planes within three-dimensional 
space.10 In this way, just as Hegel’s syllogism is articulated into three figures, 
Czezowski’s logical hexagon similarly fractures into three related logical squares 
when the duality of judgment forms is taken seriously.

In the introduction we noted Hegel’s use of the “triangle of triangles” in 
his early attempts to give a graphic representation of Plato’s syllogism, and the  
logical hexagon we have arrived at in this chapter exhibits clear parallels.  
Indeed, like the triangle of triangles, the six-pointed star that results from 
drawing the diagonals of a hexagon had played a role in a range of religions 
beyond Judaism with which it is usually associated as the “star” or “shield” 
of David.11 In medieval cathedrals it had been used in ways similar to the 
triangle of triangles to induce a sense of connection with an infinite God, and 
it was also found in a more secular form in Masonism. The devout Pascal, 
in the never-to-be-published “Conicorum opus completum,” had called the 
construction involved in his own theorem (with its six points located on a 
conic section all joined diagonally) the “mystic hexagon.”12 The mathemati-
cal importance of Pascal’s construction would not be acknowledged until the 
rebirth of projective geometry in the nineteenth century,13 but it seems to 
have been known in the late eighteenth century to thinkers such as Herder 
and Goethe (Gillies 1941).14

Hegel’s initial interests in diagrams such as these, shared with the likes 
of Schelling and Baader, had seemed to be driven by their mystical or 
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“theosophical” significance, but even if such an interest had persisted through-
out Hegel’s life, this does not preclude the idea expressed by Lukács, Harris, 
and Schneider that they had also come to assume a different significance from 
an interest in “geometric logic” (Schneider 1975, 139) or concern with “geomet-
ric determinacy” (Harris 1983, 185). In the triangle of triangles, the relevant 
experience would seem to be that of being drawn into the receding spaces 
suggested by the diminishing size of the triangles—that is, the experience of 
movement along a third dimension orthogonal to that of the plane in which 
the diagram was constructed. This is consistent with Hegel’s insistence on the 
three-dimensional and dynamic character of Plato’s syllogism in the Timaeus. 
Might it not also suggest that the relation between these three squares of 
Czezowski’s hexagon might be appreciated from a point of view that belongs 
to a space not restricted to the plane of the diagram itself? After all, it becomes 
apparent while looking at these logical hexagons that one could be looking at 
a type of transparent logical cube offering different alternative paths through 
logical space. In figure 10.6, for example, one path can be traced between 0 
and 1 via A and D, and another via F and E, each path negotiating logically 
different squares.

We have finally reached an idea that looks something like a modern ana-
logue of the logic that Hegel had appreciated in Plato’s syllogism, the dimen-
sions of which were deemed necessary for thought about the spatiotemporal 
cosmos. It is now not unusual for the types of opposed logical systems as 
found in discussions of modal and nonmodal logics, intuitionist and classical 
logics, and so on to be described as “two-dimensional” (e.g., Humberstone 
2004) in the sense of employing two different logical systems. Typically, how-
ever, the response to this situation has focused around how to reduce these 
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f ig u r e  10.6 The hexagon as a perspective on a logical cube.
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competing systems of logical axioms to one, the one logical system insisted 
upon typically being the classical quantified predicate calculus initiated by 
Frege and Russell. Hegel’s formal logic, I have been suggesting, had such a 
“two-dimensional” character, but he clearly refused to think of these two sys-
tems as reducible to one. However, neither did he simply accept the dualism. 
As in Plato’s musically based syllogism, two incommensurable means might 
be unified by a third without a loss of this underlying incommensurability.

Might he not have thought of his two homologously contrasted types of 
judgments as appearances resulting from a properly three-dimensional struc-
ture with an added dimension being projected onto the two-dimensional 
plane of the diagram? A positive answer here, I suggest, conforms with cen-
tral features of his stance toward Kant’s transcendental idealism. Kant had 
accounted for our cognitive grasp of the spatiotemporal features of the world 
in terms of the dual nonconceptual cognition of intuition, but Hegel had not 
accepted this absolute cognitive dichotomy between intuitions and concepts. 
The tridimensionality of space together with the one-dimensionality of time 
must be somehow represented within the conceptual structure of thought. 
Kant’s own precritical idea of an opposition between two judgment forms 
marked by different ways of treating negation had provided the starting 
point for Hegel’s reconstruction of Aristotle’s syllogism. This had allowed the 
proper separation of the determinations of singularity and particularity that 
Aristotle had not been able to achieve, and that Kant had achieved only with 
the later introduced and problematic intuition-concept distinction. But while 
drawing upon elements of both Aristotle and Kant, Hegel sought to overcome 
the limitations of each as expressions of “the understanding,” der Verstand, 
and to thereby capture something of Plato’s rational syllogism. Comprehend-
ing the encompassing logical system as a system of logical life lived out, as is 
life in general, in the spatiotemporal world gives us a sense of what the limita-
tions of logics of lesser dimensionalities consist in and how their underlying 
unity might be grasped.



Conclusion:
The God at the Terminus of Hegel’s Logic

Three conceptions are perpetually turning up at every point in every theory of logic. . . . 
I call them conceptions of First, Second, Third. . . . Such are the materials out of which 
chiefly a philosophical theory ought to be built in order to represent the state of knowl-
edge to which the nineteenth century has brought us. . . . We can readily foresee what 
sort of metaphysics would appropriately be constructed from those conceptions. Like 
some of the most ancient and some of the most recent speculations it would be a Cos-
mogonic Philosophy.

c .  s .  p e i r c e , “The Architecture of Theories”

One might say that Hegel’s last words on the nature of syllogisms occurs in the 
conclusion of the Philosophy of Spirit, the final part of the Encyclopedia of the 
Philosophical Sciences, where he refers to the three parts of the system—The Sci-
ence of Logic, the Philosophy of Nature, and the Philosophy of Spirit—as them-
selves three “syllogisms” (E:PS, §§574–577). What had been under consideration 
in the Encyclopedia had been how the logical structure of the syllogism worked 
out in the first part, the Logic, could be shown to inform the organization of both 
the natural and human worlds, or nature and spirit, developed in the second and 
third parts. But the passage concerning the “three syllogisms” at its conclusion 
hints that this may not really bring this encyclopedic system to a conclusion as 
had been expected.

It is generally assumed that with the transition from The Science of Logic to 
the Philosophy of Nature Hegel’s treatment of logic itself has been completed, 
but Hegel’s addition of the “three syllogisms” brings this into question.1 The 
Philosophy of Spirit had ended with the third form of absolute spirit, phi-
losophy itself, which Hegel characterizes as the “self-thinking idea, the truth 
aware of itself ” and which he labels “the logical” (das Logische). And so, end-
ing with logic, the Encyclopedia has returned to its beginning, making appar-
ent its structure as a “circle of circles” (E:L, §15). However, this seems to have 
implications for the conception of logic that had meant to be settled at the 
end of part 1. Hegel now describes logic as universality, but now understood 
as proven, having concrete contents “in its actuality.” As such, “the logical has 
risen into its pure principle and also into its element” from out of its initial 
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appearance (E:PS, §574), an appearance presumably that had been described 
in The Science of Logic as a “realm of shadows” (SL, 37; 21:42).

We are then led to consider two further paths through the Encyclopedia 
beyond the one through which we have just passed. These two further journeys 
beyond the actual one traversed will see logic transitioning to nature via the 
middle term of spirit, and nature transitioning into spirit via the middle term 
of logic. The three syllogisms, of course, reproduce the S-P-U, P-S-U, and P-U-S 
structures of the original treatment of the syllogism and exemplify the pattern 
of interrelating three means upon which the Platonic syllogism was formed.

Matching the “absolute idea” of The Science of Logic, this end point reached 
is now summed up as “the eternal idea” that “in full fruition of its essence, 
eternally sets itself to work, engenders and enjoys itself as absolute spirit” 
(E:PS, §577). These are Hegel’s final words, followed by his famous quoting of 
a passage from Aristotle’s Metaphysics book 12 (1072b18–30) concerning the 
life of Aristotle’s god as a thinking that thinks itself. This dramatic end has at-
tracted considerable discussion, but here I want to focus on the consequence 
of the positing of the three syllogisms that leads into it—there are apparently 
two other alternative ways of working through the sequence of the Encyclo-
pedia than the one Hegel has offered—alternative pathways just like those 
that can be traced though the formal syllogism of Peirce. These alternatives 
cannot fail to have consequences for the understanding of each of those parts, 
including, of course, Hegel’s Logic.

Hegel may appeal to Aristotle’s god here, but the strongly Platonic con-
strual of the three syllogisms is clearly on display. I suggest that we can here 
think of Aristotle’s god as something like Plato’s cosmic animal without a role 
for Plato’s separate “artificer.”2 The result is surely Hegel’s reinterpretation 
of Plato’s cosmic animal from the Timaeus with its beautiful proportion in 
which, as in his paraphrase of Plato, “since the middle term has become the 
first and the last and, conversely, the last and the first have become the middle 
term, they have then all become one” (LHP 2:210; 3:39). Plato’s syllogism has 
the distinctly three-dimensional structure through which thought can move 
in a way needed to make sense of those two-dimensional diagrams among 
judgments within syllogisms or among syllogisms themselves observed in the 
attempts of Peirce, Blanché, and Czezowski. Hegel’s wording of the nature of 
his third syllogism is here striking: it is that of which the earlier syllogisms 
can be regarded as its “two appearances.”

As is often the case with reading Hegel, here the reader’s thinking seems 
to spin out of control. This is surely not the response for which “logici
ans” standardly aim. Typically, they want to nail down distinctions, get some 
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arrangement right, and “move on.” Hegel typically points to these tendencies 
as characteristics of der Verstand, “the understanding,” but we must not forget 
that das Vernunft, “reason,” never simply bypasses der Verstand but manifests 
itself in the contradictions within which verständlich thought gets caught 
and from which it has to free itself by the redeterminations of its categories. 
Nevertheless, these “spinning-out-of-control” moments in Hegel often seem 
closer to das Mystische than das Logischer, as with the feeling of being drawn 
into the fractal space of the “triangle of triangles.”

Hegel may have a way of distinguishing mysticism or religion from phi-
losophy in terms of the distinction between the type of imagistic Vorstellun-
gen to which religion is constrained and the properly “conceptual” medium of 
philosophy, but here the distinction is not so clear. In a modern context, for an 
author to end on a seemingly theological or mystical note would be taken as 
indicating that the work being terminated was of an essentially theological or 
mystical nature. But as an idealist, Hegel was predominantly interested in the 
idea of God generally implicated in our mental/spiritual lives, and here it may 
be instructive to contrast the god invoked at the end of the Encyclopedia with 
the ideas of alternative gods often implicitly smuggled into rival philosophies—
for our purposes, the idea of the god embedded within Newton’s cosmology.

One thing that Hegel and Baader had in common was an appreciation 
of the Silesian mystic Jakob Böhme,3 whose theology had come into stark 
contrast with Newton’s in the context of the English Civil War when Böhme’s 
views attracted many radical republicans. This was seemingly because Böhme, 
influenced by Neoplatonic models, pictured the cosmos as alive and self-
organizing—a picture that had resonated with the democratic and republican 
aspirations of those of Cromwell’s followers who identified as “Behmenists.”4 
The theology to which Newton subscribed was the complete antithesis. As 
committed to the beliefs of the radical anti-trinitarian Arian heresy, Newton 
denied the divinity of Christ, saw the physical world as governed by the laws 
legislated by an unequivocally unitary transcendent God, and supported the 
European monarchies as the local representatives of this divine ruler. More-
over, this theology was not isolated from his natural philosophy.

Space for Newton had to be something rather than nothing, as the so-
called nullibilist account of space, found in Descartes, for example, seemed 
to leave no place in the universe for God. Newton had taken the side of the 
Cambridge Platonist Henry More, who had argued that spirits were extended 
nonmaterial substances and that space and time themselves could be thought 
of as the extension of the nonmaterial absolute, God (Christianson 1984, 248). 
Thus, in the “General Scholium” of the Principia (Philosophiæ Naturalis Prin-
cipia Mathematica), God is described as “eternal and infinite, omnipotent 



231t h e  g o d  at  t h e  t e r m i n u s  o f  h e g e l ’ s  l o g i c

and omniscient, .  .  . he rules all things, and he knows all things that hap-
pen or can happen.  .  .  . By existing always and everywhere he constitutes 
duration and space” (Newton 2016, 440). As space was an objectively real 
substance in this way, it made sense to think of its infinite parts as capable 
of being objectively determined as ordered triples of real numbers as on a 
cosmic set of Cartesian coordinates. Hence Newton could go on to talk of 
“each and every particle of space” as being eternal, that is, as being “always,” 
and similarly “each and every indivisible moment of duration is everywhere,” 
and because God is space and time “the maker and lord of all things will not 
be never or nowhere” (440). This omnipresence has a correlate in divine om-
niscience as brought out at the conclusion of Newton’s Opticks: “The Organs 
of Sense are not for enabling the Soul to perceive the Species of Things in 
its Sensorium, but only for conveying them thither; and God has no need 
of such Organs, he being every where present to the Things themselves”  
(Newton 2012, 403–404).

The reference to the god of Aristotle/Plato at the conclusion of Hegel’s 
Encyclopedia might be frustrating in its indeterminacy, but the general idea 
he has in mind becomes immediately obvious when that god is contrasted 
with Newton’s. From Newton’s point of view, matter, as dependent on its 
creator, has no necessary existence: it was within God’s power to have not 
created the material world or to have created any number of different ones. 
Neither does matter have the autonomous power to act: it is an inert, “dead” 
stuff moved around by a force external to it—the force of gravity—and to the 
extent that we are made of it, we too are similarly dead stuff moved around 
by laws decreed by God analogous to the laws decreed by an absolute mon-
arch. The same holds for our capacity to know the world. Because we are  
made of matter, we are reliant on the sorts of sensory organs of which God has  
no need.

This was the view criticized by Schelling with his world-soul and by Baader 
with his Wärmestoff, but Hegel had no need to appeal to such quasi-scientific 
responses to Newton. His response was on a different conceptual level.

In his comparison of Kepler and Newton in the Philosophy of Nature, 
Hegel notes of the latter:

It is not the assumptions, procedure and results which analysis requires and 
affords which are questioned here, but the physical worth and the physical sig-
nificance of its determinations and procedure. It is here that attention should 
be concentrated, in order to explain why physical mechanics has been flooded 
by a monstrous metaphysic, which, contrary to both experience and the con-
cept, has its sole source in these mathematical determinations. (E:PN, §270, 
remark, p. 265)
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The “monstrous metaphysic” involved, I think it is clear, is the sort of larger 
picture involving God that Newton makes explicit in passages such as these.

In his years in Berlin Hegel had shown considerable warmth toward Franz 
von Baader, who had been particularly critical of both Hegel and Schelling 
for their alleged “Spinozism.”5 Hegel objected to this description of himself 
and urged that there was not as great a difference between his and Baader’s re-
spective stances as Baader had assumed. But while Baader damned Spinozist 
pantheism, Hegel’s hostilities were more directed in the opposite direction. 
The very idea of the radically transcendent God was to a large extent shared 
by both Newton and Kant, but, among its other problems, such a theology 
had struck many of those attracted to the English Civil War or the French 
Revolution as condemning humans’ earthly life to servitude and ignorance. 
For Hegel, the appropriate philosophical stance on such matters was to raise 
to conceptual determinacy the revolutionaries’ alternative theology cast in 
its imagistic form of representation that Hegel called Vorstellungen. But just 
as within reason there are contexts for which one form of judgment working 
with images and analogies is more appropriate than another, within absolute 
spirit there are contexts in which the response of art or religion will be more 
appropriate than that of philosophy.

Hegel had found in Kepler a better cosmologist than Newton, and, like 
Kepler, he found in Plato’s overtly mythological thought the kernel of a logic 
that would be better suited for the lives of free and intelligent this-worldly 
beings than those found in Aristotle or Kant. As chance would have it, in the 
early nineteenth century a form of geometry would reemerge to which Kepler 
had been an important early contributor and which had reconnected with a 
type of ancient geometrical thought on which Plato himself had drawn. From 
there, this geometry had entered into a struggle with the more conventional 
analytic geometry instituted by Descartes and utilized by Newton, and this 
struggle would continue through the nineteenth century and be reflected in 
the different paradigms of logic that emerged after Hegel’s death. These strug-
gles between arithmetic and geometrical alternatives have continued to the 
present within both mathematics, logic and physics,6 and while analytic phi-
losophy had early on proclaimed the “classical” approach of Frege and Russell 
the victor, this has not been how things have necessarily come to be viewed 
from within mathematics or its more recent spin-offs, such as computer sci-
ence. Such a situation may signal a greater relevance for Hegel’s approach to 
logic today than is conventionally acknowledged.
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Notes

Preface

1. Such an attitude has been neatly summed up by Uwe Petersen: “I do not take an exegesis of the 
writings of Hegel as a key to the development of a theory of dialectic, at least not one that would meet 
the standards of mathematical logic. Hegel has envisaged the possibility of a new science (‘Wissen-
schaft’) which he called Wissenschaft der Logik (‘Science of Logic’), but he didn’t leave us more than 
vague ideas and wildly exaggerated claims. . . . To my mind, the impotence of Hegel-scholarship has 
been sufficiently established in the 180 odd years since his death” (Petersen 2018, 2–3).

2. Again, these were topics with which Hegel was familiar. How to develop this aspect of 
Leibniz’s logical thought had been the subject of a major dispute between Gottfried Ploucquet, 
the authority on logic at the Tübingen Seminary during Hegel’s time there, and the Swiss math-
ematician Johann Heinrich Lambert.

3. I use “homology” to stand for a local double ratio, a : b :: c : d, and homomorphism for the 
more general system underlying such homologies. Mathematically, a homomorphism is a func-
tion between different algebraic structures that preserves the structural properties of the first in 
the second. See, for example, Anonymous 2008, 4.1.

Introduction

1. Initial reference is to the volume and page numbers of the (sometimes modified) English 
translation of Lectures on the History of Philosophy. The following is to volume and page num-
bers of the Meiner edition of Hegel, Vorlesungen über die Geschichte der Philosophie.

2. In fact, in the early twentieth century the Polish mathematician Waclaw Sierpinski would 
explore the properties of iterated instances of the embeddings of this figure, now known as the 
Sierpinski triangle.

3. This does not, of course, preclude that they could have continued to have significance for 
Hegel as religious representations (Vorstellungen). Nothing in Hegel would preclude such things 
as operating on both levels. In fact, much in his approach would suggest it.

4. Baader had been attracted to Schelling’s account of the “world soul” (Weltseele) in 
Schelling’s On the World Soul: An Hypothesis of Higher Physics for Explaining Universal Organ-
ism, published in 1798. Schelling’s interest in the notion dated back to notes on Plato’s Timaeus 
written in 1794.
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5. Seemingly not having had access to Baader’s work, Harris had confusingly translated 
pythagoräische Quadrat as “Pythagorean square” (Harris 1983, ch. 4). On the degree to which the 
tetraktys had been employed throughout the Middle Ages, see Hopper 1938.

6. Later, however, he would swing to a religious and political form of conservatism and ap-
pears to have played a role in the formation of the “Holy Alliance” between Russia, Prussia, and 
Austria in 1815 (Betanzos 1998, 67–68).

7. On Baader’s complex relationships to German idealist and romantic thought, see Betan-
zos 1998, introduction and ch. 1.

8. Carnot had been elected to the National Assembly in 1791 and the National Convention 
in 1792. In 1793, he had become a member of the Committee for Public Safety and by 1794 “had 
achieved his objective of virtual total control of military affairs” (Gueniffey 1989, 199). He was 
involved in the overthrow of Robespierre.

9. On Schweikardt, see Ewald 1996, 301. On Hauff ’s influence, see Halsted 1896, 105.
10. Here the revolutionary work was done by his son, Sadi Carnot, on the basis of his father’s 

work (Gillispie and Pisano 2013, chs. 6–7).
11. Monge’s descriptive geometry would eventually appear in the school curriculum as “technical 

drawing.” Descriptive geometry is also called “synthetic” as opposed to “analytic” or “coordinate” geometry.
12. Another book in Hegel’s library was Archimedes’s works On the Sphere and Cylinder and 

Measurement of a Circle (Mense 1993, 670).
13. In their history of Carnot’s science, Gillispie and Pisano point out that Carnot had pur-

sued an approach to mechanics in a “geometric or trigonometric” spirit, rather than the alge-
braic one of Joseph-Louis Lagrange’s Théorie des fonctions analytique (Gillispie and Pisano 2013, 
16). (Lagrange’s book was also in Hegel’s library (Mense 1993, 686).) In contrast to Lagrange, 
Carnot focused on the way such “primary bodies” were organized into a finite system. This gave 
Carnot’s mechanics a holistic rather than atomistic approach, as reflected in Hegel’s treatment of 
mechanics in the Encyclopedia Philosophy of Nature (E:PN, §§253–271).

14. This will be explored further in chapter 3.4.
15. The idea of Greek geometric algebra was taken up and popularized by Thomas Heath in 

his History of Greek Mathematics (Heath 1921, 1:150).
16. During the nineteenth century it would be thought that this alternative to Euclidean 

geometry also had its origins in Euclid, although in a lost work, Euclid’s “Porisms.”
17. Links between the logics of Hegel and Grassmann have also been described by the math-

ematician F. W. Lawvere (Lawvere 1996).
18. Descartes was the first to use the letters “x” and “y” in this way to represent variables.
19. Once again, Hegel possessed a major work by Diophantus, On the Polygonal Numbers 

(Mense 1993, 671).
20. This was the term used by William Kingdon Clifford for his unification of projective 

geometry, linear algebra, and William Rowan Hamilton’s theory of quaternions.
21. The English translation here gives “the analogy or the constant geometrical relationship,” 

which does not capture the specificity of Hegel’s more technical reference to Pythagorean doc-
trine. These issues will be taken up in chapter 3.

Chapter One

1. For example, book 5 of Euclid’s Elements is usually traced back to the work of Eudoxus 
of Cnidus, a prominent member of Plato’s early Academy, and parts of book 13 to Theaetetus, 
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the subject of Plato’s dialogue Theaetetus, and, like Eudoxus, an important member of the early 
Academy. For recent reconstructions of the prehistory of Euclid’s Elements, see Knorr 1975 and 
Artmann 1991.

2. Thus Fossheim (Fossheim 2012) argues that Plato’s method of division was not meant as a 
procedure for intellectual discovery but rather as a way of organizing and presenting knowledge 
already obtained.

3. From Plato’s point of view, this would be expressed more by saying that if a being partici-
pates in the idea <Greek>, then it thereby participates in the idea <human> and, in turn, in the 
idea <animal>.

4. The phrase “due measure” seems the most common English translation, but Jowett, for 
example, gives “the character of the mean,” and Fowler “the principle of the mean.” To the basic 
meanings of “measure,” “standard or rule,” and “mean between two extremes,” Liddell and Scott 
(1882, 957) add the poetic meaning of “metre” as opposed to melos, “tune.” For an informative ac-
count of the archaic uses of the term with noetic rather than physical connotations, see Prier 1976.

5. The Pythagoreans attributed the theorem to their founder, about whom we know next 
to nothing. In any case, the existence of “Pythagorean triples”—a triple of integers satisfying 
Pythagoras’s theorem, such as 3, 4, 5 and 5, 12, 13, was known to mathematicians in both Babylon 
and China (van der Waerden 1983, ch 1). The importance of the theorem for the Greeks is the 
knowledge of its proof.

6. In this case, the ratio is √2:1. A simple deduction of the irrationality of √2 had been 
attributed to Euclid in Elements book 10, although this is now believed to have been a later 
interpolation.

7. Szabó discusses the extent of the mathematical knowledge presupposed by this pun in 
Szabó 1978, ch. 1.9.

8. For a good overview, see Krämer 1990, pt. 1. Krämer attributes the rejection of the doxo-
graphical tradition to the influence of Schleiermacher, whose reconstruction of Plato’s oeuvre 
had been influenced by his own romantic views on the relations of philosophy and literary art.

9. The school includes, in Germany, Hans Krämer and Konrad Gaiser, and in Italy, Giovanni 
Reale. For a synoptic account, see Nikulin 2012.

10. Sayre’s book was first published in 1983.
11. Findlay had done important work on Hegel in the 1950s and 1960s (Findlay 1958 and 1963).
12. Krämer also stresses the influence of Plato as understood within the unwritten-doctrines 

tradition upon Hegel (Krämer 1990, ch. 11).
13. Henry Harris had pointed to the significance of the discovery of incommensurability for 

Hegel: “Hegel attached great importance, for his own Logic, to the fact that Greek geometers 
discovered ratios that were not numerically determinate in some of the simplest (most easily 
intuited) spatial relationships. This was, for him, the fundamental paradigm of the necessary 
self-transcendence of the Understanding in ‘dialectic’ ” (Harris 1997, 1:118). Significantly, Hegel 
possessed a work by Johann Wolfgang Müller, the mathematics teacher at the Nuremberg Gym-
nasium during his years there, giving an analysis of the doctrine of incommensurability as set 
out in Plato’s Theaetetus, 147d–148b (Müller 1796; Mense 1993, 673).

14. It is controversial as to what proton numbers refer. Possibly rather than to “primes,” the 
reference was to the numbers 1 and 2, which, for the Pythagoreans, were not properly numbers 
at all but principles from which numbers were generated.

15. A good overview of the scope of Pythagorean arithmetic in the fifth century BCE is given 
in Knorr 1975, ch. 5.
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16. As McKirahan points out about the Pythagorean conception of a point as a “unit in posi-
tion,” it “skips over the facts that geometrical points are different to arithmetical units, and straight 
lines are determined by two points in a different way from that in which the number 2 is com-
posed of two units” (McKirahan 2010, 100). Heath discusses the way that such “figured numbers” 
as square, triangular, and oblong numbers were used in Pythagorean calculations (Heath 1921, 
1:75–84).

17. This meant, however, that there was no sense to be given to the idea of a number raised 
to a power greater than 3.

18. On this classification, see Nicomachus of Gerasa 1926, 238.
19. This idea persists in Aristotle when he notes that “all these things—numbers, lengths, 

times, solids—do not constitute a single named item and differ in sort from one another” (Aris-
totle 1984, Posterior Analytics, 74a20–22).

20. In calculus, for y = xn, the differential, dy
dx, = −1nxn . The differential of a square number 

is thus linear.
21. The linguistic interpretation construes Aristotle’s use of logos and logoi as “speech,” but, 

as we will see, the word logos could equally be translated as “ratio.”
22. Here I follow Whitaker (Whitaker 1996, 89), who claims that “Aristotle’s own terms, 

‘singular’ [kath ekaston] and ‘partial’ [en merei], are used clearly and consistently.” Whitaker is 
critical of the widespread confusion of these terms in English translations of Aristotle that, he 
claims, started with Aquinas.

23. As suggested earlier, the later introduction of algebra might be seen as providing a model 
for clarifying this distinction with that between a constant and a variable.

24. Similarly, Henry Harris notes that while Hegel’s basic intellectual orientation was toward 
the cultural history of humankind, he maintained a deep interest in mathematics and physics 
throughout his life (Harris 1972, 46).

25. Paterson claims that in relation to his stance on geometry Hegel had been “very little 
influenced” by Schelling despite their shared interest in Neoplatonism (Paterson 2005, 67).

26. See especially the discussion of the relation of arithmetic to geometry in “Remark 
1” in the chapter “Quantum” (SL, 170–177; 21:196–203). For example, “geometry as such does 
not measure spatial figures  .  .  . but only compares them” (170; 21:196) and “the magnitude of 
the line, and of the other spatial determinations as well, must be taken as number” (171;  
21:196).

27. The centrality of such an “indissoluble dialectical relationship—a ‘unity of opposites’ ” 
operating between continuous and discrete magnitudes for Hegel has been stressed by Bell (Bell 
2019, 98–104).

28. As Robin Smith points out about the dialectical context, dialectical arguments proceed 
by question and answer rather than by a series of assertions (Smith 1993, 338). Aristotle seems to 
have had in mind Socratic questioning in particular (341–342).

29. For an illuminating account of the senses in which Hegel’s logic was involved with 
“form,” see Ficara 2021, ch. 5.

30. “In the Logic the question is dual: What is being such that it is intelligible? What is the 
intelligibility of being?” (Pippin 2019, 257).

31. Initial page numbers are to di Giovanni’s English translation, although this is sometimes 
modified. The following reference is to volume and page numbers of the Meiner edition, Hegel, 
Gesammelte Werke.
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Chapter Two

1. It is commonly argued that such schematic letters should not be regarded as the “vari-
ables” used later in algebra. In Aristotle, schematic letters stand in for definite terms, and are 
thus replaceable by such terms. Variables, as the sorts of things bound by quantifiers (Dutilh 
Novaes 2012, 71 and 71n9), were not part of the Greek world.

2. Related to this, Aristotle’s use of the word ekthesis for the “setting out” of an argument in 
syllogistic form is taken from the geometrical “setting out” of a proof in relation to points and 
lines in a figure (Einarson 1936, 161–162).

3. Writing three quarters of a century later, Netz would comment that “while many of his 
[Einarson’s] individual arguments need revision, the hypothesis is sound” (Netz 1999, 15n12).

4. The issues here are complex. Aristotle had identified the “mathematical Pythagoreans” as 
having made advances in the science of demonstrative reasoning (Aristotle 1984, Metaphysics, 
book 1, ch. 5). But while praising the way the Pythagoreans had used mathematics to forge such 
an account of reasoning, Aristotle was nevertheless critical of the interpretations they had given 
to their own work. From his perspective, they conflated two types of knowledge that he care-
fully distinguished, knowledge of facts, knowledge to hoti, and demonstrative knowledge of the 
reasons for those facts, knowledge to dioti (Horky 2013, 3–4; Aristotle 1984, Posterior Analytics, 
78a22–30). This criticism would spill over into his criticism of Plato, whose views he associated 
with those of the Pythagorean mathematicians.

5. Szabó would concentrate especially on the prehistory of the key terms oros and diastema 
(Szabó 1978, chs. 2.3–2.6).

6. Thus, in “All Athenians are Greeks and some Athenians are philosophers, therefore some 
Greeks are philosophers,” the term “Athenian” is the middle term.

7. There are strong echoes of Plato here, as in the Philebus Plato compares the letter or simple 
unit of writing, stoicheon, to the constituent sounds of music (Plato 1997, Philebus, 17a–e).

8. In a fragment on music, Plutarch attributes to “Aristotle, the pupil of Plato” the view of 
harmony as “heavenly, by nature divine, beautiful and inspired” and as having “two means, the 
arithmetical and the harmonic” (Aristotle 1984, Fragments, F 47 R3). Aristotle’s most explicit dis-
cussion of music is in Politics book 8, chs. 5–7, where he engages with Plato’s views about the role 
of music in education in the Republic. A much more technical discussion of music that engages 
with Pythagorean harmony theory is found in Problems book 19, although the authenticity of the 
attribution of this work to Aristotle is contested.

9. There was a further constraint to Archytas’s analysis of harmonic intervals besides their 
being generally drawn from the tetraktys. As seen in the ratios corresponding to the octave itself 
and to the perfect fifth and fourth dividing the octave—2:1, 3:2, and 4:3—the difference between 
the terms of such ratios must be the monas, the fundamental measure for the Pythagoreans. 
Such ratios, now called “superparticular,” were said to be epimoric.

10. It is significant that Smith himself seems to have abandoned these claims in later work, 
adopting a more “geometric” approach to the syllogism following that of Corcoran.

11. The first four of the five Platonic solids are three dimensional “polyhedra” in which the 
faces are either equilateral triangles (the tetrahedron and icosahedron), right-angled triangles 
(the octahedron), or squares (the cube). The fifth is the dodecahedron, having twelve regular 
pentangular faces. Timaeus treats the cosmos as a whole in terms of the dodecahedron. The 
structure of the Platonic solids had been unraveled by the actual Theaetetus, who features in the 
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dialogues Theaetetus, Sophist, and Statesman. Later, Kepler would apply a nested structure of 
these Platonic solids to the solar system.

12. Cf. Euclid: “Between two cube numbers there are two mean proportional numbers, and 
the cube has to the cube the ratio triplicate of that which the side has to the side” (Euclid 1956, 
book 8, prop. 12).

13. See, for example, the translator’s note 12 to the passage quoted.
14. Calculating the length of the side of a cube of volume x units requires finding the cubed 

root of x (3√ x), but this was beyond the rudimentary algebra available to the Greeks. This prob-
lem, associated with Plato, was called the “Delian problem,” and the suggestion that the interval 
needed to be divided by two mean proportionals is associated with the mathematician Hip-
pocrates of Chios. On Archytas’s complex three-dimensional geometric solution, see Heath 1921, 
1:246.

15. While the idea of the “unlimited” was common to other pre-Socratics such as Anaxi-
mander and Anaxagoras, the ubiquity of the limit or “limiter” was innovatory with Philolaus 
(Graham 2014, 52–53).

16. Thus, drawing on Baader, Eschenmayer had appealed to this mathematical distinction 
as relevant to that between the mere physics of sound and the associated sensory quality of its 
reception. With this he pressed upon Schelling the importance of mathematics for natural phi-
losophy (Eschenmayer 2020).

17. In fact, dividing the octave at the geometric mean produces what is thought to be the 
most dissonant interval, the tritone, an interval favored in the scores of many horror movies.

18. That is, m a,bA ( ) = a + b
2 . This is usually what is meant by the term “average.”

19. m a,bH ( ) = 2ab
a + b.

20. The same point has been made by Knorr in relation to Archytas’s use of analogia in that 
Archytas “refers to each of the three progressions—the arithmetic, geometric and harmonic—as 
analogia; but only the geometric is a ‘proportion’ in the strict sense” (Knorr 1975, 219). More 
recently, Borzacchini has described Philolaus’s use of “ratio” as reflecting an early phase of the 
development of the notion “when logos meant just a vaguely characterized relation between two 
numbers somehow connected with its music-theoretic actualization as diastima characterized 
as both a pair of tones and a pair of extremes on the canon” (Borzacchini 2007, 283).

21. It was this single geometric mean that came to be known among the geometers as “the 
mean proportional.”

22. As Euclid shows (Euclid 1956, book 13, prop. 8), the Golden Ratio actually characterizes 
the divisions of the diagonals of a regular pentagon—those diagonals forming the Pythagoreans’ 
“pentagram.”

23. Heath, for example, attributes book 5 of Euclid’s Elements to Eudoxus (Euclid 1956, 
2:112–113).

24. For the last, Jowett has “perception of shadows.” What is perceived in eikasia is an eikon, 
the origin of the English word “icon.”

25. Later, Aristotle would make it clear that the figures were not themselves the geometer’s 
objects but “what is made clear through them” (Aristotle 1984, Posterior Analytics, 76b39–77a2).

26. Aristotle had discussed how the Pythagoreans thought of numbers as objects whereas 
for him they were not objects but properties of objects (Horky 2013, 30–34).

27. To avoid confusion, I will use “Platonistic” to refer to the ideas of the conventional Plato 
of the middle dialogues.
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28. There is an important difference here from the other well-known sequence from Repub-
lic chapter 10 concerning the idea of the bed, an actual bed, and the painting of a bed. While the 
actual bed was a sensible object, the mathematical objects of dianoia are supersensuous.

29. For a general discussion of the history of the perception of the problem and responses to 
it, see especially Smith 1996, 31 and 40–43 and Echterling 2018, 2–5.

30. A similar “reduction” is found in Proclus, whom Hegel presumably follows in this 
instance.

31. Proclus seems to have been the first to associate this ratio with Plato (Heath 1921, 1:323), 
and there has been debate among classical scholars as to whether Plato would have been aware 
of the construction of the Golden Ratio. (For a survey, see Dreher 1990.)

32. Which of the realms is to be regarded as represented by the larger segment, and which by 
the smaller, is not specified in Plato’s text, and so the choice is up to the interpreter.

33. Des Jardins is also one of the few interpreters to take seriously the fact that the Plato’s 
Divided Line combines arithmetic and geometric means (Des Jardins 1976, 491–492).

Chapter Three

1. These ratios, it will turn out, were not really ratios in the conventional sense.
2. This term, rendered as “magnitude” in di Giovanni’s translation, could equally be trans-

lated “quantity,” but as Hegel reserves Quantität for the subcategory, I will follow di Giovanni in 
retaining “magnitude” for the parent category. It must be remembered, however, that “magni-
tude” is not here being used to express continuous magnitudes in contrast to discrete multitudes. 
It is meant to cover both.

3. Hegel’s Aufhebung from the verb aufheben presents a particular difficulty for finding an 
English equivalent. While that which is aufgehoben is superseded or negated, it is done in such 
a way that it is nevertheless retained as a determination within the sense of that which has su-
perseded it.

4. One might add, of course, the pebbles allegedly used by the early Pythagoreans to con-
struct diagrammatic numbers, whence the term “calculus.”

5. As with many aspects of Hegel’s Logic, illumination here can be provided by W. E. John-
son, who, in his inquiry into logic, raised the ontological status of the category “thing”—a cat-
egory, he suggests, that is more general than that of substance (Johnson 1921, ch. 9, §1). It would 
be a limitation of Aristotelian thought for Hegel that these categories of thing and substance 
were identified.

6. For example, from the claim in the Prolegomena to Any Future Metaphysics, where he 
writes that “geometry bases itself on the pure intuition of space. Even arithmetic forms its con-
cepts of numbers through successive addition of units of time” (Kant 1997, §10).

7. In the context of the discussion of the schematism in the Critique of Pure Reason, ge-
ometry is seen as grounded in the relations given exclusively by outer sense. While arithmetic 
utilizes the temporal relations grounded in inner sense, number nevertheless reflects “the unity 
of the synthesis of the manifold of a homogeneous intuition in general,” suggesting a reliance on 
the combined intuitions of space and time found in outer experience (Kant 1998, A142–3/B182). 
The directionality peculiar to time might be correlated with the role of order in mathematics 
that would come to be emphasized in the nineteenth century.

8. Later, Hegel would, in the Greek way, link quantities raised to higher powers to the mag-
nitudes of geometrical areas and volumes.
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9. That is, Hegel seems to be appealing to the ambiguity of the distinction between what 
would now be discussed as a set (the amount) and its members (the units)—a distinction 
that would of course become central to the foundations of mathematics in the late nineteenth  
century.

10. This modern notation for expressing a number, n, to the power of p, as in np, had been 
introduced by Descartes (Descartes 1954, 2).

11. There was no place for negative numbers, fractions, or exponents in the modern sense 
in Greek mathematics.

12. For example, Hegel says of “the raising to a power, the extraction of a root; also the treat-
ment of exponential magnitudes and logarithms” that “the interest and the effort of all these 
operations lie solely in the relations based on powers. . . . Together they constitute a system of 
the treatment of powers” (SL, 237; 21:275–276).

13. Napier had apparently learned of their use from the astronomer (and for a time, Kepler’s 
employer) Tycho Brahe (Pierce 1977, 23).

14. Logarithms were soon transferred to the base 10, and then, in the eighteenth century to 
base “e,” this being a constant defined by Euler (an irrational number, 2.71828 . . .), giving a form 
most suited to the calculation of growth within natural systems. On the history of this develop-
ment, see especially Cajori 1903.

15. In fact, the subsequent history of the Western “diatonic” scale has the complete scale 
divided into twelve equal semitones that form a logarithmic progression. Some musicians still 
insist, however, on the Pythagorean fourth and fifth being purer consonant intervals because of 
harmonic overtones lost in the modern scale.

16. For a recent similar account of the interplay of practices of counting and reckoning at the 
origin of mathematics see Ferreirós 2016, ch. 2.4.

17. In arithmetic, the order in which individual operations are performed is generally ir-
relevant. Using brackets to indicate the order in which both addition and multiplication are 
performed, 4 + (3 +2) = (4 + 3) + 2 and 4 × (3 × 2) = (4 × 3) × 2. With this, these individual func-
tions are said to be associative. When these functions are mixed, however, the order matters. 
For example, 4 + (3 × 2) ≠ (4 + 3) × 2. Here, multiplication is said to “distribute over” addition, 
such that 4 × (3 + 2) = (4 × 3) + (4 × 2) while 4 + (3 × 2) ≠ (4 + 3) × 2. Finally, the order in which 
numbers are added or multiplied is standardly not relevant: 4 + 3 = 3 + 4 and 4 × 3 = 3 × 4. Here, 
addition and multiplication are said to be commutative.

18. Russell could be a proponent of such an arithmetization of geometry only because he 
had incorporated the idea of order as intrinsic to arithmetic itself. Thus, he also attempted to 
account for the idea of continuous magnitudes in terms of the notion of order: “Continuity 
applies to series (and only to series) whenever these are such that there is a term between any 
two given terms” (Russell 1903, 193). This led him to reject the traditional opposition of discrete 
and continuous. For example, the rational numbers, while discrete, form a continuous series in 
this respect. Around this time C. S. Peirce would fiercely oppose any idea of the reduction of 
continuous to discrete magnitudes.

19. The basic meaning of “exponent” is the number of times a term needs to be multiplied 
by itself to reach a certain value. Hence the power to which a number is raised is also called the 
“exponent.” Hegel uses “exponent” in the former sense as the exponent of a ratio, but uses Potenz 
(power) in the later sense.

20. Or, one might say, unit and number of units. This idea of ratio effectively starts with 
Euclid’s definitions 1 to 3 in book 5.
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21. It will be remembered that Hegel’s unit/amount distinction has something of the mod
ern element/set distinction.

22. Ast was for a few years a contemporary of Hegel at Jena.
23. Arithmology was a distinct form of Pythagorean revival from the first century BCE that 

focused on the mathematical doctrines of Archytas and others from around the time of Plato. 
See especially Zhmud 2019. Knorr points to the relevance of these two books in providing the 
historical context for the way the theory of means had been continued in post-Euclidean geom-
etry with its debt to Eudoxus (Knorr 1986, 213–218). This was the tradition inherited by Proclus.

24. Plato had been critical of Archytas’s restriction of mathematical relationships to empiri-
cal phenomena such as musical harmonies or the movements of the planets. Properly regarded, 
mathematics for Plato was “pure”—it investigated the mathematical objects themselves. Even 
consonance and dissonance, it would seem, can hold among the ideal numbers themselves 
(Plato 1997, Republic, 531c; Klein 1968, 52).

25. It needs to be kept in mind here that Iamblichus’s number line is running in the inverse 
direction to the conventional left-to-right orientation.

26. This, he argues, opposes different conceptions of infinity. The left-hand branch is the 
typically “potential” infinite familiar from Aristotle, but the right-hand branch, because packed 
into a finite space, suggests an “actual” infinite (Borzacchini 2007, 290).

27. Aristotle had distinguished his use of dynamis (potential or capacity) from this geometri-
cal use, treating the latter as a metaphor (Aristotle 1984, Metaphysics, 1019b28–30).

28. As noted earlier, Eschenmayer also employed the distinction between arithmetic and 
geometric series.

29. Hegel here touches on an issue prominent at the time—that of Goethe’s project of find-
ing a particular plant that made manifest the universal essence of all plants, the proto-plant or 
Urpflanze.

30. Proclus is here continuing Archytas’s use of analogia, “proportionals,” which are not 
proportions as standardly conceived.

31. Similar summaries are to be found in Heath 1921, 2:86–89 and Knorr 1986, 212–219.
32. According to Szabó, the “terms” (oroi) defining a ratio had first referred to points on the 

duodecimally divided canon of the monochord, providing a type of “coordinate” like Descartes’ 
later system. Later, however, they came to stand for the lengths of the strings divided by the 
bridge, that is, continuous rather than discrete magnitudes (Szabó 1978, ch. 2.6).

33. In 1827 August Möbius introduced the idea of a “division ratio” (Teilungsverhältnis) for 
this type of division of a line segment (Struik 1953, 13).

34. Remember that “a − x” is really an arithmetic correlate of a continuous magnitude. It 
could, therefore, have an irrational value.

35. Consider, for example, the double ratio x a
b x

a
x

−
− = . Multiplying each side by both denomi-

nators will give the equation, x2 − ax = ab − ax, which reduces to x2 = ab making x the geometric 
mean of a and b. Nicomachus explicitly links the need for two middle terms in an “even-times 
even” series to Plato’s argument in the Timaeus for the need for two middle terms when unifying 
the parts of a three-dimensional solid (Nicomachus 1926, book 2, ch. 24).

36. Multiplying both sides of x−a
b−x = a

b by the two denominators, b − x and b, results in  
the equation bx − ab = ab − ax, which reduces to x = 2

+
ab

a b , which, by definition, is the harmonic 
ratio.

37. Significantly, the first “subcontrary to the geometric” (x : a), as had been suggested by 
Proclus, turns out to be equivalent to the Golden Ratio.
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38. See Pappus’s diagram showing the interrelation of the three musical means in Thomas 
1941, 2:569.

39. This had been made explicit by Möbius with his idea of the division ratio.
40. It has to be remembered that the relation could not be expressed in this numerical way 

in Greek geometry because of the lack of negative numbers.
41. Lasserre’s description of Plato here is questionable, as Plato criticized Archytas’s limita-

tions of the significance of the “harmonies” between numbers to the empirical fields of music 
and cosmology (Klein 1968, 52).

42. Authorship of this work is contested. It is commonly attributed to Philippus of Opus, a 
member of the Academy and follower of Plato (Borzacchini 2007, 280–281).

43. The present English name “cross-ratio” was only introduced at the end of the nineteenth 
century by the English mathematician/philosopher William Clifford.

44. When one becomes familiar with projective geometry, many of its features start to look 
distinctly Hegelian. In the twentieth century, for example, projective geometry would be taken 
up by followers of the Goethe-inspired spiritual movement led by Rudolf Steiner (see, for ex-
ample, Whicher 1971). Here, parallels were grasped between the transformational structures of 
projective geometry and Goethe’s distinctive approach to sciences such as comparative anatomy 
and biology with their focus on homologous structures.

45. One could point to a variety of books in Hegel’s library attesting to a quite specialist 
knowledge in these matters. For example, books on trigonometry, the principles behind the 
use of logarithms, the role of incommensurability in Plato’s Theaetetus, and so on (Mense 1993).

46. It will turn out that this doubling of the significance of each dimension is correlated with 
Eudoxus’s extension of the three Archytan means to six.

47. On Kant’s dual criticisms here of Leibniz’s analysis situs and his relativistic conception 
of space, see Storrie 2013.

48. Thus, he would appeal to the existence of incongruent counterparts in the Inaugural 
Dissertation of 1770, the Prolegomena to Any Future Metaphysics of 1783 (Kant 1997, §13), and in 
the Metaphysical Foundations of Natural Science of 1786 (Kant 1985, 22–23).

49. “Quaternions,” discovered by Hamilton in the 1840s, are vectors considered as existing in 
four-dimensional space, three of the coordinates of which are considered imaginary rather than 
real. The use of quaternions proved useful in physics.

50. Again, Kant had anticipated the idea of oriented three-dimensional volumes with his 
observations on so-called incongruent counterparts (Kant 1992b, 368–371).

Chapter Four

1. Schelling does not mention geometry in this essay, but in the follow-up essay in 1802 
(Schelling 2001b) the geometric model for philosophical method is made explicit.

2. Kant’s implicitly vector-based “phorometric” analysis in Metaphysical Foundations of 
Natural Science of 1786 (Kant 1985, pt. 2; Friedman 2013, ch. 5) would thereby become a popular 
starting point for such Naturphilosophen as Baader and Schelling.

3. Eschenmayer’s diagram is reproduced and discussed in Holland 2019, 119 and Châtelet 
2000, ch. 3.4.

4. On the surprising extent to which the Naturphilosophen had employed this imagery of the 
lever, see Holland 2019, ch. 3.
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5. Schelling thus seems to adhere to Kant’s conception of an asymmetrical relation of ge-
ometry and arithmetic that follows from making time the exclusive dimension of pure intuition 
of inner sense, while things of the external world are grasped in terms of both dimensions. As 
Wood points out, Fichte too had given a foundational role to geometry over arithmetic (Wood 
2012, 35). It would seem that Schelling had used this priority to reverse Fichte’s relation of subjec-
tivity and objectivity, assigning subjectivity now to the derivative science of arithmetic.

6. According to Sans, Hegel would not start opposing the inherence relation to the sub-
sumption relation until 1808 in logic texts used during his period as high school teacher in 
Nuremberg (Sans 2004, 97–98).

7. We have noted the works of Carnot in his possession. For Lagrange’s Théorie des fonctions 
analytiques, Hegel possessed a 1798 German translation of the 1797 edition as well as a revised 
1813 edition in the original French (Mense 1993, 686). He also possessed Lagrange’s Traité de la 
résolution des équations numériques (679). His was clearly an ongoing interest.

8. While study of the four conic sections—circle, ellipse, parabola, and hyperbola—had 
been introduced in antiquity by Apollonius, according to Del Centina (Del Centina 2016, 567–
568), the four conics had, up until Kepler, been treated separately.

9. The principle of continuity would later be given an algebraic form with the idea of con-
tinuous functions. This idea would become a central notion of the discipline of topology, yet 
another branch of mathematics inspired by Leibniz’s analysis situs.

10. While Hegel writes, “dass vermöge des Gesetzes der Stätigkeit die verschwindenden 
Grössen noch das Verhältniss, aus dem sie herkommen, ehe sie verschwinden, behalten,” Hauff ’s 
wording is “das Gesetz der Stetigkeit es sey, vermöge dessen die verschwindenden Grössen noch 
in demselben Verhältnisse bleiben, dem sie, vor dem Verschwinden, sich stuffenweise näherten.”

11. In a later, expanded edition of the work first published in 1813, Carnot would emphasize 
that the infinitesimals of calculus were simply an extension of Descartes’s analytic approach, be-
ing an application of his method of indeterminate quantities (Carnot 1839, 150).

12. In their account of Hegel’s interpretation of calculus (Kaufmann and Yeomans 2017), 
Kaufmann and Yeomans build on Hegel’s treatment of ratios as mathematical objects that are 
more fundamental than their numerical constituents, as well as the crucial role played by vari-
ables in the concept of the differential. However, they see Hegel here as following Lagrange 
in adopting an algebraic orientation, from the perspective of which Carnot is being criticized. 
Thus, they claim, Hegel “establishes algebra’s primacy over geometry, which is the approach of 
modern mathematics” (Kaufmann and Yeomans 2017, 382). But while Hegel’s position isn’t that 
of Schelling, neither is it the reversal of it, affirming “algebra’s primacy over geometry.” Hegel 
follows Carnot in his alternative algebraization of geometry to the reductive project of analytic 
geometry informing Lagrange’s work.

13. Playfair also appealed to the ancient sense of “analysis” as given in the regressive or 
“problems” approach to geometric method, proceeding from a fact to its conditions (Ackerberg-
Hastings 2002, 53–54), a sense altered by Descartes, who gave it an arithmetically based algebraic 
meaning.

14. In 1806, Jean-Robert Argand would suggest a geometric interpretation for the imaginary 
number √–1. Gilles Châtelet considers Argand here in relation to the considerations of direc-
tionality introduced by Kant (Châtelet 2000, 82–88). An interpretation of i within the framework 
of linear algebra would follow from the idea of areas with negatively valued magnitudes due to 
their orientation, such that the side of a square of area –1, for example, would have magnitude 
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√–1. Complex numbers, consisting of a pair of real and imaginary numbers, would be central 
to William Rowan Hamilton’s theory of “quaternions” developed in the 1840s that would be 
absorbed into linear algebra by both Benjamin Peirce and William Clifford in the 1870s. These 
would play a crucial role in understanding the interaction of vectors in three-dimensional space.

15. It is now generally acknowledged that while these authors were not innovative mathema-
ticians themselves, they nevertheless had preserved reasonably faithfully these major develop-
ments from earlier periods of Greek mathematics.

16. The double ratio can be proved for the circle by the use of a few simple theorems from 
Euclid’s Elements plus Pythagoras’s theorem. See Field and Gray 1987, 4–8.

17. It can be intuitively appreciated that Apollonius’s construction is a special case of Pappus’s 
(or Pappus’s a generalization of that of Apollonius). If the angle AGC of figure 4.3 is increased, 
points C and E will gradually converge to meet at that point where the line CG becomes a 
tangent to the circle. At that point, the lines CD and CE become a single line intersecting the 
diameter of the circle at a right angle, producing Apollonius’s figure.

18. The twentieth-century geometer Harold Coxeter would sum up the relation as follows: 
“Plane projective geometry may be described as the study of geometrical properties that are un-
changed by ‘central projection,’ which is essentially what happens when an artist draws a picture 
of a tiled floor on a vertical canvas. The square tiles cease to be square, as their sides and angles 
are distorted by foreshortening; but the lines remain straight, since they are sections (by the 
picture-plane) of the planes that join them to the artist’s eye” (Coxeter 1987, 3).

19. Thus, if one takes Leibniz’s project as inspired by projective geometry, one sees the error in 
the claim made by the editors of Kant’s precritical essays that “Leibniz utterly fails to recognize that 
the two triangles ABC and DEF are, in fact, not congruent at all” (Walford and Meerbote 1992, lxx).

20. According to Coolidge, this “projective invariance” of the cross-ratio had been appreci-
ated in ancient times (Coolidge 1934, 217–218).

21. There is a strong suggestion of this in Hegel’s claim in support of Kepler that free motion 
requires “two determinations,” as in the ellipse with its two foci, rather than one, as in the circle 
with its one center. From Kepler’s thesis of the unity among the four conic sections, just as the 
parabola has two foci, with one at infinity, the circle also has two, but in the case of the circle, the 
two foci overlap. The circle is thus a particular instance of the ellipse.

22. Indeed, this student had withdrawn an earlier thesis on descriptive geometry in relation 
to Apollonius, and the withdrawn thesis was also in the possession of Hegel. For a professor of 
Hegel’s status to have kept such works in his library surely testifies to an interest in their contents.

23. It might be said that for Grassmann both “scalars” and directed magnitudes are capable 
of “inverses” in the sense in which Hegel uses this notion.

24. Among other things, this simplifies the idea of subtraction between vectors as AB − CD = AB + (CD. − 1)
AB − CD = AB + (CD. − 1).

25. The English mathematician Clifford had been a friend of C. S. Peirce since 1870, and his 
work would be significant for Peirce’s logic. Clifford’s expansion of Grassmann’s linear algebra to 
incorporate Hamilton’s theory of quaternions was published in the first volume of the American 
Journal of Mathematics in 1878.

26. For a relatively nontechnical account of his approach to vector multiplication, see Clif-
ford 1886, ch. 4, especially §15. Benjamin Peirce had also incorporated quaternions into linear 
algebra but seemed to have been ignorant of Grassmann’s work.

27. An operation ‘*’ is commutative if A * B = B * A, and anticommutative if A * B = −B * A.
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28. By the time Grassmann came to write Linear Extension Theory, projective geometry 
had become familiar via the work of former students of Monge and Carnot such as Jean-Victor 
Poncelet. On the basis of Poncelet’s work, Grassmann had reconstructed the cross-ratio us-
ing vectors (Grassmann 1995, 259–268). While the details here are complex, it would seem 
that the anticommutativity of multiplication in linear algebra (in Grassmann’s external prod-
uct and Clifford’s wedge product) was reflected in the negative sign of the harmonic cross-
ratio. Later developments of projective geometry would indeed restore the three-dimensional 
framework within which the two-dimensional diagrams of Desargues and Carnot could be  
understood.

29. In the modern guitar, for example, the frets are spaced according to a logarithmic scale 
base 2, such that with each semitone the frequency of the note produced is increased by the ratio 
of 12√2 : 1.

Chapter Five

1. The term (although not used there) comes from Kant’s comparison of his own method 
to that of Copernicus in the Preface to the second edition of the Critique of Pure Reason (Kant 
1998, Bxvii and xxii, note).

2. The development of this type of mathematics would be a part of the transformation 
that led the discipline beyond the conception of the science of quantity to include relations of 
order—the centrality of which would be emphasized by Russell at the end of the century (Russell 
1901 and 1903, pt. 4). Leibniz is commonly discussed as broaching the idea of an ordered set; see, 
for example, the entry “Partially ordered sets,” in the European Mathematical Society’s Encyclo-
paedia of Mathematics, https://www.encyclopediaofmath.org/index.php/Partially_ordered_set.

3. Glashof continues: “Leibniz of course did not put his ideas into the modern framework 
of syntax/semantics interplay of the Tarski type . . . but in hindsight it has been a big step in that 
direction” (Glashoff 2010, 263).

4. For example, the law of “commutivity” states that whether a is added to b or b is added to 
a makes no difference to the result.

5. Group theory was effectively created by the French mathematician Évariste Galois in 1832. 
Importantly, it would be applied to geometry by Felix Klein in the 1870s so as to differentiate the 
various kinds of geometry according to what was treated as invariant in them (Klein 1893). For a 
historical account of the development of group theory, see Wussing 1984.

6. The background of the development of abstract algebra in Britain and its link to algebraic 
logic will be explored in chapter 8.

7. Leibniz was not the first to suggest the “duodecimal” system. On the history of this notion, 
see Zacher 1973.

8. In set theory the “new” number zero would be represented by the “empty set,” a set with 
definite properties, such as being a subset of any other set. This would be significant within the 
logic of the algebraic Aristotelians.

9. A stroke had prevented Ploucquet from actually teaching during Hegel’s years at Tübin-
gen, and the teaching in logic was done by one of his followers using Ploucquet’s text (Ploucquet 
2006). Hegel had Ploucquet’s major works in logic in his library at Berlin (Mense 1993, 686).

10. “Strict analogy” here suggests isomorphic equivalence. It is being argued here that this 
relation for Hegel was weaker, more homology as an expression of a systematic homomorphism.
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11. Cf. “Aristotle himself seems to have followed the way of ideas (viam indealem), for he 
says that animal is in man, namely a concept in a concept; for otherwise men would be among 
animals (insint animalibus)” (Leibniz 1966, 120).

12. Hegel mentions Lambert in The Science of Logic, specifically in relation to the project 
of giving a mathematical notation to logic “based on lines, figures and the like” (SL, 544; 12:47). 
The context is a discussion of the inadequacy of such mathematical notation to capture properly 
logical relations, but it is clear that Hegel’s critique is directed to the assumption that properly 
logical relations can be represented by a wholly uninterpreted syntax. Thus, he alludes to the 
dependence of such constructed languages on natural language (545–546; 12:48).

13. Kant himself had, in 1755, put forward a superficially similar picture of the cosmos in his 
anonymously published Universal Natural History and Theory of the Heavens. However, Kant’s 
more evolutionary account is now considered more modern than Lambert’s, whose view was 
premised on a teleological notion that God had designed the universe in such a way that it would 
support life and the mind throughout its extent.

14. The first expression of topology is thus commonly taken to be Euler’s solution to the 
problem concerning the seven bridges of Königsberg. Is it possible, it was asked, to go for a walk 
in Königsberg and, crossing each of its seven bridges only once, end up where one started? Euler 
showed it was not.

15. Thus, Aristotle disputed the idea that there was any empty space beyond the edge 
of the cosmos. There was simply nothing—not something that we can think of as empty  
space.

16. Kepler had applied Apollonius’s theory of conics to the field of optics. Conic sections, 
he argued, have two foci, but in the case of the parabola, one lies on the axis of the curve “at an 
infinite distance from the first” (Field and Gray 1987, 187).

17. As emphasized by Stepelevich (Stepelevich 1998), Hegel’s attitude to geometry was con-
sistent with the idea of non-Euclidean geometry.

18. This issue is now discussed under the idea of “logical infallibility” and would come to be 
used by intuitionistic logicians against the use of the classical laws of logic.

19. And yet in a later part of the text, Hegel seems to imply that Ploucquet himself had simi-
larly aspired to a universal characteristic (SL, 608; 12:110).

20. As he reports in his letter to Niethammer of December 14, 1808 (Brf, 489).
21. In Hegel’s time, the benefits of such alienations of the commonplace were promoted by 

romantic philosophers and literary theorists.
22. The story was related by Aristotle’s student, the music theorist Aristoxenus (Aristoxenus 

1902, 187).
23. It will be remembered that Hegel does not treat mathematics in terms of the distinction 

“pure” and “applied.” There is no eternal “Platonic” realm of mathematical objects—what counts 
as a mathematical object, a number, for example, evolves historically under the pressure of the 
need to resolve contradictions generated in the extension of calculative practices.

Chapter Six

1. On the new way of conceiving of individuals as universals in the medieval period, see 
Tarlazzi 2017.

2. In a late unpublished paper Leibniz had written in relation to the logical properties of a 
singular proposition, “Should we say that a singular proposition is equivalent to a particular and 
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to a universal proposition? Yes, we should” (Leibniz 1966, 115). This aspect of Leibniz’s approach 
has been brought out clearly by Fred Sommers and George Englebretsen (Sommers 1982, 15–21; 
Englebretsen 1988).

3. As has been indicated by Michael Franz, Ploucquet’s distinction would undermine the 
traditional theory of judgments as expressed in the “square of opposition” (Franz 2005, 99), giv-
ing the lie to Leibniz’s belief that the reciprocity of intensional and extensional interpretations 
of judgments could be purchased without loss or that a strict analogy existed between concepts 
and propositions. This same dialectic, as we will see, would play out when algebraic logic was 
reinvented in the nineteenth century.

4. Robert Brandom (Brandom 1994, 79–80) would later repeat this criticism of the way that 
philosophers prior to Kant had conceived of judgment as a form of classification, prompting his 
own solution of judgment as being conceived fundamentally as a “move in a language game” 
involving the asking for and giving of reasons for asserted propositions.

5. For example, while a version of this distinction between separate judgment forms em-
ploying internal and external negation would appear in the Prolegomena for Any Future Meta-
physics as a distinction between “judgments of perception” and “judgments of experience,” Kant 
would apparently abandon this in the second edition of the Critique of Pure Reason. Later still, 
in the context of the Critique of the Power of Judgment, an internally negated pair of contrary 
concepts would reappear between the beautiful and ugly showing some continuity with Kant’s 
earlier treatment of these terms in the precritical period, but this would be at the expense of 
judgments of taste being properly cognitive (Kant 2000, §5).

6. This may be regarded as the consequence of the univocity of the middle term of Aris
totle’s syllogistic. When implication is conceived as class inclusion, there is nothing preventing 
its iteration such that more than two premises can be found in a syllogism.

7. Leibniz’s own endorsement of the characteristica universalis and its “algebraic” logic was 
not itself as straightforward as is usually assumed, as seen in his thoughts about an alternative 
analysis situs.

8. I will follow convention in using the phrase “the calculus” to capture the inversely linked 
techniques of differential and integral calculus in this way.

9. This is the law that the attractive force between bodies is directly proportional to the 
product of their masses and inversely proportional to the square of their distance from each 
other, F = m1m2/d

2. See also E:PN, §270, remark and addition, pp. 263–281.
10. This was the accepted view at the time, as it is now. However, Cinzia Ferrini has raised 

the possible relevance for Hegel of criticisms made of Newton in the 1720s by the French Jesuit 
mathematician Louis Bertrand Castel (Ferrini 1994).

11. The paragraph is concerned with mathematics as dealing with “magnitude alone” ab-
stracting from dimensions of space that have been differentiated by “the concept.” The follow-
ing paragraph commences: “Immanent, so-called pure mathematics also  .  .  .” (Phen, §§45–46, 
emphasis added).

12. On the important role played by the principle of continuity in the development of projec-
tive geometry after Carnot, see Nagel 1939, §§16–23.

13. This was a revised version of Carnot’s Essai sur les machines en général from 1783.
14. Hegel singles out the way that the analysts had attempted to separate out the framework 

of the calculus from the types of physical application in which it had been applied—an attitude 
conflicting with his refusal to separate “pure” and “applied” mathematics—and in the second 
remark turns to “the purpose of differential calculus deduced from its application.”
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15. Famously, in May 1832 the twenty-year-old Évariste Galois had sat up through the night 
so as to set out in a letter to a friend his theory of groups. He did this because the next morning 
he would face an opponent in a duel and feared being killed. Indeed, he would be wounded and, 
a day later, would die.

16. The implication is that, in contrast, Newton abstracts away from concrete singulars of 
perception to those abstract particulars subsumable under laws.

17. For example, according to Kepler’s second law, a line segment joining a planet to the sun 
is said to sweep out equal areas during equal intervals of time, such that an accumulation of suc-
cessive areas is related to an accumulation of qualitatively different linear magnitudes, those of 
time. While the quantities of distances, times, and so on can be measured, there are no directly 
measurable “quantities” of gravity.

18. This aspect of Hegel’s critique is perspicuously presented by Brigitte Falkenburg (Falken-
burg 1998).

19. In a similar spirit, Wittgenstein would later express the need for friction with the impera-
tive, “Back to rough ground” (Wittgenstein 1953, §107).

20. That all the terms of the syllogisms in this figure are predicates is indicated in Hegel’s 
way of representing them as having universals in all positions, U-U-U. Abstract universals of 
this kind can only be predicates.

21. It will be remembered that to be a judgment, the subject and predicate terms must be 
determined as different determinations. As the components of the mathematical syllogism are 
no longer proper judgments, it is not a proper syllogism.

22. In the case of a conditional, “if p then q,” this compound proposition must be able to be 
regarded as true or false independently of the question of the actual existence of those “thirds” 
belonging or not to the relevant classes involved. “If Sherlock Holmes is a detective, then he 
investigates the causes of certain strange happenings” needs to be able to be true despite the fact 
that there is no worldly thing picked out by the name Sherlock Holmes.

Chapter Seven

1. As is the case, for example, with the well-known “All humans are mortal; Socrates is a hu-
man; therefore, Socrates is mortal.”

2. “Nor can one understand through perception. . . . for one necessarily perceives singulars 
[kath ekaston] whereas understanding comes by being familiar with the universal” (Aristotle 
1984, Posterior Analytics, 87b 28–39).

3. Significantly, while this series can be continued in both ascending and descending direc-
tions, the direction involved changes the relation of the inference to the faculty of reason itself 
(A331/B338). We will see Peirce capitalize on the significance of the direction of the inference in 
chapter 8.2.

4. The verb kategoreo had the primary legal meaning of “to speak against someone or accuse 
them of something.” In this context it becomes simply something said of something or someone. 
The English predicate similarly contains the Latin root for “say,” dicere.

5. In the seventeenth century, for example, diagrams capturing containment relations were 
employed by Leibniz himself (Moktefi and Shin 2012, 616), and in the eighteenth century, similar 
diagrams were used by Leonhard Euler, after whom they were named. However, the first person 
to have used such diagrams in that century seems to have been the logic master at Tübingen dur-
ing Hegel’s time there, Gottfried Ploucquet, in his Fundamenta philosophiae speculativae in 1759. 
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Moreover, this fact had been brought into wider focus at the time by a public precedence dispute 
that had broken out between Ploucquet and the mathematician Johann Heinrich Lambert (Le-
manski 2017, 59). This dispute in fact went beyond the issue of precedence to that of the relation 
of such diagrams to the project of developing Leibniz’s logic, the project within which Ploucquet 
and Lambert were the two major eighteenth-century figures (Lu Adler 2017, 42).

6. Paterson traces Hegel’s views here to Proclus. Paterson 2005, 79–81.
7. For a general account of the square and its later transformations, see Parsons 2017.
8. We will return to these alternative renderings of the last form below.
9. In modern logic, subalternation from A to I would not be taken to be a valid inference, 

given the reinterpretation of the meaning of the judgment forms involved. Thus, post-Russell, 
Aristotle would be accused of giving universal affirmative judgments “existential purport,” a 
property they do not have because, according to classical predicate calculus, they should be 
properly understood as conditionals.

10. The notion of subcontrariety, it will be remembered, had come from early Greek geom-
etry, where it referred to similar but “inverted” triangles and had been linked specifically to the 
“harmonic” division of an interval.

11. This seems to be the basis of the puzzling feature of Aristotelian pragmata, often thought 
of as “states of affairs” that, in contrast to their modern equivalents, can actually be false. See, for 
example, Crivelli 2004, 4.

12. According to Arthur Prior, the idea of timelessly true or false propositions only started 
to become the dominant view in the nineteenth century, and it was not until the turn of the 
twentieth century that it became the standard view (Prior 1957, 116). In particular, it would be 
championed by Russell. Later, Prior himself would revive a form of logic for such “tensed” sen-
tences (Prior 1967).

13. This indeterministic conception of future as opposed to past states of affairs was to become 
an object of debate between later Peripatetics, who affirmed a type of libertarian indeterminism 
about the future, and the Stoics who defended causal determinism and a type of compatibilism. In 
modern logic, judgments of indeterminate truth-value would be permitted by intuitionistic logic, 
in contrast to Boolean logic, in which all propositions have a determinate truth-value.

14. In this way, Aristotle is sometimes described as having a “two-sided” potestative account 
of the modality of actions that are “up to us” (e.g., Malink 2016), an aspect of Aristotle’s account 
of modality that importantly separated it from the determinist consequences of Stoic proposi-
tional logic that adhered to the principle of bivalence.

15. Here there is a straightforward equality between the two instances of the middle term. 
Such “advances along the line of equality,” as Hegel points out in the Phenomenology, constitute 
just “what is formal in mathematical convincingness” (Phen, §45).

16. This is effectively the Stoics’ modus ponens (“If something is human it is mortal” and 
“Gaius is human” therefore “Gaius is mortal”) expressed in the form of a syllogism with a judg-
ment with a universally quantified subject as major premise.

17. I have argued for the parallels between Hegel’s judgment of the concept and Kant’s judg-
ment of taste in Redding 2007, ch. 6.

18. If we read the judgments involved as having the normal subject-predicate word order, 
Hegel seems to have reversed Aristotle’s second and third figures. We will return to this below 
in chapter 10.

19. In Hegelian terms, we might say that Brandom’s inferential space, conceived along more 
Fregean lines, will be the space of understanding rather than the space of reason.
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20. In this case it would be a false judgment, but a judgment, nevertheless. Were all roses 
red, it might be said that “the rose as such is red,” in just the way it can be correctly said that “the 
rose as such is a plant.”

21. Questions of truth or falsity here, we might say, depend upon whether the subject does 
or does not “measure up to” what is said in the predicate.

22. Kant, of course, has a different reason for why we humans cannot reach this goal, and 
while Hegel is in some sense on the side of Kant here, he is critical of the intelligibility of the very 
idea of the project of which Kant thinks we humans are incapable.

23. Cf. “Spirit is in itself the movement which is cognition—the transformation of that for-
mer in-itself into for-itself, of substance into subject, of the object of consciousness into the ob-
ject of self-consciousness, i.e., into an object that is just as much sublated, or into the concept. 
This transformation is the circle returning back into itself, which presupposes its beginning and 
reaches its beginning only at the end” (Phen, §802).

Chapter Eight

1. For an overview, see Houser 1994.
2. There are now, of course, many works on the Fregean revolution in logic and its philo-

sophical consequences. For a clear overview, see, for example, Beaney 1996.
3. Boole had been unaware of Leibniz’s earlier work when writing Laws of Thought.
4. In this respect Schröder would be an exception, taking the side of Frege’s universalism 

in advocating a doctrine of universal language he called “pasigraphy” (Peckhaus 2014). Nathan 
Houser has presented Peirce’s response to the logicist claim that logic must ground mathemat-
ics as follows: “If there has to be a science of reasoning before reasoning can be legitimately 
employed, then there can be no science at all. Even a science of reasoning must be developed by 
reasoning” (Houser 1997, 12).

5. Johnson would repeat this view three decades later. “This necessary recourse to ordinary 
language in developing a deductive system shows that direct attention to meanings, presented 
linguistically, is entailed in the intelligent following of even a professedly symbolic exposi-
tion. .  .  . If the symbolic language is so constructed that a minimum of interpretation clauses 
is required, then there is a corresponding minimum in the extent to which actual thinking is 
involved. But, however few interpretation clauses are required, the intelligent use of symbolic 
formulae cannot be reduced to a merely mechanical process” (Johnson 1922, 45).

6. In a sense, this might be thought of as a stance for which Kurt Gödel later offered a proof. 
Findlay, who had published in Mind one of the first general philosophical accounts of Gödel’s 
theorem (Findlay 1942), believed Gödel’s approach had been anticipated by Hegel (Findlay 1963, 
ch. 13, 221–222). Findlay’s willingness to go against the grain and make these sorts of connec-
tions was shared by Henry Harris: “Hegel himself would certainly have been deeply interested 
by many developments in modern mathematics—beginning with Cantor’s mathematics of the 
infinite. We ought to keep an open mind about how he would regard the attempts to formalize 
his own logic” (Harris 1997, 1:118).

7. Up to this time, British mathematicians had largely relied upon Newton’s more geometri-
cal and physically interpreted framework.

8. This was the case at least in theory. In The Mathematical Analysis of Logic Boole refers to “the 
Universe . . . as comprehending every conceivable class of objects whether actually existing or not” 
(Boole 1847, 14), making his “Universe” effectively the totality of possible worlds, much like Leibniz.
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9. In terms of the structures of abstract algebra developed during the nineteenth century, a 
Boolean algebra would count as a “field,” an extension of the idea of a “group” in which elements 
of an underlying set were subject to two different binary operations distinguished as product 
and sum, respectively.

10. Boole’s use of multiplication here was much like Leibniz’s use of conceptual addition, 
such that while Leibniz had it that “A Å A = A,” in Boole a similar law is expressed as xx = x, or 
as he writes it “x2 = x.” Boole called this “the index law.” Later, Benjamin Peirce named it the law 
of idempotence.

11. The logical interpretation of this would prove contentious, however.
12. That is, not (p or q) = not p and not q, while not (p and q) = not p or not q. On the exten-

sive dualities of algebraic logic, see, for example, Demey and Smessaert 2022.
13. Boole himself did not intend such a sentence to be read as predicating a verb (shines) of 

an object (the sun). Rather, his conception of a sentence is more like Aristotle’s, in which subject 
and predicate terms are joined by the copula “is,” with the apparent verb “shines” being elliptical 
for “is a shining thing.” In this sense, in his proto-set-theoretical approach, relations of inclusion 
predominated over those of order.

14. These relations are difficult to tie down. The de-dicto proposition could also be thought 
to be what the dictum referred to was about. Thus, de-dicto could also be understood as de-facto.

15. Boole’s way of conveying exactly what he means by this point is far from clear: “I do not 
hereby affirm that the relation between these propositions is, like that which exists between the 
facts which they express, a relation of causality, but only that the relation among the proposi-
tions so implies, and is so implied by, the relation among the facts, that it may for the ends of 
logic be used as a fit representative of that relation” (Boole 1854, 38).

16. What would come to be the standard analytical account after Russell would be to treat 
the conditional as an assertion that is conjoined to a further premise and issues in a conclusion 
by the rule of modus ponens: the assertion of the compound “if p then q” is conjoined to the as-
sertion “p” and from the conjunction is derived the assertion “q.” But Russell was not the only 
person to address these issues, and writers within the algebraic tradition had also sought to 
eliminate the unclarities and confusions they found in Boole.

17. Famously, C. I. Lewis would argue that this simply is not what the word “implies” means 
(Lewis 1912; 1918, ch. 4). If a implies b, there must be some connection between them, but on 
Russell’s analysis, “5 is an even number” is supposed to imply “two plus two equals four,” because 
the first sentence, as false, implies any sentence.

18. Boole required the exclusive sense in order to maintain the arithmetical law of addition 
that stated (in arithmetic modular 2) that x + x = 0.

19. The term Entfremdung Hegel employs here is the same term employed metaphysically for 
the alienation or externalization of ideal entities into incommensurable concrete objectivity—
the alienation of “the Idea” into nature or the alienation of an individual’s intention into objec-
tivity in work.

20. The possession of such “inverses” had become described as one of the defining feature 
of “groups” and “fields” in abstract algebra. The significance of such inverses for Hegel has been 
noted above in chapter 3.1.

21. In fact, “exponentiation” would later be reintroduced in the approach of “linear logic” 
to provide a nonderived model for the relation of logical consequence. See below, section 8.5.

22. Traditionally a function was understood as something like a rule-governed operation 
performed on numbers, but a more formal interpretation in terms of set theory would develop. 
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From this perspective, a function would be understood as an abstract “mapping” between ele-
ments of Platonistically conceived sets rather than an activity performed by a subject.

23. A proposition could be thought of as being “mapped” to one of the two truth-values con-
sidered as the two members of a set, later called the “Boolean” set, true and false, respectively.

24. On the relevance of linear algebra for Peirce’s logic, see, for example, Brunning 1991.
25. On the basis of these innovations Peirce is thus now regarded as one of the founders of 

a twentieth-century branch of mathematics that investigates the properties of such “partially-
ordered sets” or “posets” (Brady 2000, chs. 2 and 3). While there are many examples of posets, 
the notion is commonly illustrated by the example of the two-placed relation “x is a divisor of y” 
applied to natural numbers, an example that takes us back to Leibniz’s arithmetic conception of 
the composition of concepts and from there all the way back to Plato’s philosophical arithmetic. 
For the numbers 2 and 6, that 2 divides 6 exemplifies transitivity (if 2 divides 6 and 6 divides 12, 
then 2 divides 12), reflexivity (2 divides itself) and anti-symmetry (6 does not divide 2 and would 
only divide it if it equaled 2).

26. In 1885, Peirce would draw on a paper published by his student O. H. Mitchell in Peirce 
et al. 1883, a volume that Peirce had himself edited.

27. Peirce’s signs “Σ” and “Π” play the equivalent roles within his system to the existential 
(“$”) and universal (“"”) quantifiers of classical predicate calculus stemming from Frege and 
Russell.

28. Such modal operators, together with the negation operator, would generate four basic 
modal judgment types—judgments that were possibly true (in Lewis’s formalism, ◊p) and those 
that were not possibly true (~◊p), those that were necessarily true (☐p) and those that were not 
necessarily true (~☐p).

29. These, of course, are not mutually exclusive. If a proposition p is certain, then it is true.
30. It might be objected that MacColl’s “certain” here is not a properly modal notion but 

an epistemological one, and that interpreted as “necessary” it means some sort of subjective 
epistemic necessity rather than objective modal necessity. While this is taken to be a standard 
distinction in analytic discussions, I suggest that from the point of view of intensional logics 
more compatible with idealism this distinction will not be clear-cut.

31. Russell points out that he had earlier believed that Peano had been responsible for this 
shift in the focus of logic, but now acknowledges that this breakthrough had been made by Mac-
Coll as early as 1878 (Russell 1906, 255n1).

32. Indeed, there is a point to MacColl’s complaint here, given that the concept of “identity” 
adopted in the new Frege-Russell logic was something like that earlier proposed by Leibniz’s 
theory of the “identity of indiscernibles.” For Leibniz, to capture the idea of a thing persisting 
though changes of its properties and relations required building the thing’s entire history into its 
“complete concept,” it becoming a necessary part of Caesar’s identity as Caesar that he crossed 
the Rubicon, for example.

33. Johnson did important work on probability and influenced the economist John Maynard 
Keynes.

34. For example, “we may characterize a certain child by the adjective ‘liking a certain book,’ 
or a certain book by the adjective ‘pleasing a certain child’ ” (Johnson 1921, 203).

35. Extending subject terms to propositions would thus accommodate MacColl’s treatment 
of modal judgments.

36. Thus, “the substantive proper seems to coincide with the category ‘existent’ ” (Johnson 
1921, xxxv).
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37. Corresponding to this, for Frege, such judgments are primarily “about” the descriptive 
concepts involved. What is here asserted of such a concept is that it is satisfied or instantiated 
by some object.

38. For a clear account, see Prior 1949.
39. Thus, Johnson distinguishes the most basic and indeterminate relation that can exist 

between things as “otherness” rather than difference. The relations among determinates of a 
determinable are ones of difference, but in contrast, the relation between color and shape qua 
determinables is one of “otherness.”

40. In general, the distinction singular-particular is not commonly found in the British logi-
cal tradition, and following the more “British” usage, Johnson employs “particular” to encom-
pass what for Hegel would be both singulars and particulars. Thus, Johnson uses “particular” 
“not to apply to quasi-substantives, but to be restricted to substantives proper, i.e. existents, or 
even more narrowly to occurrents” (Johnson 1922, xiii). We may think of Johnson’s termino-
logical distinction between determinate and determinable adjectives as an attempt to estab-
lish within the more general category of “particularity” a distinction akin to Hegel’s singular-
particular distinction. In this sense, Johnson’s usage is more like Ploucquet’s, with his distinction 
between “exclusive” and “comprehensive” particularity.

41. Thus, Frege has a sign for assertion, ‘

^

,’ but no equivalent sign for denial.
42. This is a logical feature they would share with Heyting and other “intuitionists.”
43. It was also meant as alternative to the “formalism” of David Hilbert for whom the truths 

of mathematics expressed the set of rules, akin to the rules of a game, according to which finite 
strings of symbols were to be manipulated.

44. On the idealist features of Brouwer’s mathematics, see Detlefsen 1998.
45. Brouwer worked in a mathematical discipline that was another to have claimed the man-

tel of Leibniz’s proposed analysis situs—topology. For a helpful account of Brouwer’s philosophy 
of mathematics, see van Atten 2020.

46. This did not mean that the laws of excluded middle or double negation elimination were 
refuted, however: they were regarded as neither affirmed nor denied, and so could thereby be 
introduced separately as additional axioms. This would affect the way negation was understood 
by Heyting.

47. In one of Brouwer’s examples (~p É (p É 1 = 2)).
48. (C and D) implies C and (C and D) implies D.
49. As can be appreciated in figure 8.1, disjunctive nodes are inversions of conjunctive ones, 

again expressing the duality of these logical connectives.
50. The terms “edge” and “vertex” suggest these diagrams are to be read as three-dimensional  

figures, with figure 8.1 representing a type of transparent cube. Below (section 10.2), we will raise 
the question of what it might be to think of these diagrams as three-dimensional structures—an 
interpretation more in line with Hegel’s understanding of Plato’s logic of the three-dimensional 
world.

51. C. S. Peirce has been described as the inventor of the idea of lattices (Birkhoff 2020). 
Influenced by the work of Clifford and others, Peirce went on to develop his own diagrammatic 
representations of such structures, but they have not generally been taken up.

52. The values for true and false are sometimes represented by the signs ‘
^

’ (top) and ‘^’ 
(bottom), respectively.

53. A semilattice has one binary operation rather than Boole’s two (i.e., “addition” and “mul-
tiplication”), leading it to model logical relations among the propositions differently. The algebra 
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of Leibniz’s logic is described as a semilattice in both Swoyer (1994, 24–25) and Malink and 
Vasudevan (2016, §3.1).

54. For an account that stresses the role played by Peirce in Gentzen’s forms of proof, see 
Anellis and Abeles 2016.

55. Linear logic was introduced by the French logician Jean-Yves Girard in 1987. A general, 
but still technical account is to be found in Di Cosmo and Miller 2019. The results of linear logic 
have been applied in linguistic theory in an attempt to capture the different inferential connota-
tions carried by words in natural languages.

56. Thus, the expression “c ≤ (a É b)” (the conditional, “if a then b” is a consequence of the 
truth of c) is introduced as equivalent to “(c Ù a) ≤ b” (read as the conjoint truths of c and a imply 
b). In general terms, if the truth of b depends on the truths of both a and c, then given c, it can 
be said that “if a then b.” In this way the conditional has been introduced independently of nega-
tion. This equivalence has played an important role in the development of computer science, 
where it is referred to as the “Curry-Howard isomorphism.”

57. Of course, general parallels between the thought of Peirce and Hegel have been noted. 
See, for example, Stern 2013.

Chapter Nine

1. Between the Jena and Heidelberg versions of the system, Hegel had underlined the im-
portance of the circularity that runs through his system with a name change from “system” to 
“encyclopedia” (Enzyklopädie) with its connotations of “circle.” Each part of philosophy would 
now be described as “a philosophical whole, a circle coming to closure within itself, but in each 
of its parts the philosophical idea exists in a particular determinacy or element [einer besonderen 
Bestimmtheit oder Elemente]. The individual circle [einzelne Kreis], simply because it is itself a 
totality, also breaks through the boundary of its element and founds a further sphere. The whole 
thus presents itself as a circle of circles” (E:L, §15).

2. We might perhaps think of the homomorphism of Hegel’s two judgment types as under-
lying the intuition of those “redundancy theorists” of truth who, in focusing on the fact that a 
Boolean secondary judgment such as “It is true that the sky is blue” seems to say no more than 
the primary judgment “The sky is blue,” draw the conclusion that the predicate “true” is redun-
dant. Significantly, Frank Ramsay, to whom the theory is often attributed, had been a student of 
Johnson and a supporter of his logic (Ramsay 1922).

3. Hegel gives the examples “This plant is curative,” “This instrument is useful,” and “This 
punishment works as a deterrent” (E:L, §174, addition).

4. We might think of how the discovery of such relative properties in science is contingent 
on a type of disinterpretation of qualities that have already been attributed to objects. Accord-
ing to Foucault, in the sixteenth century walnuts were considered to cure headaches because 
they resembled little brains (Foucault 1970, 25). The transition to the new way of thinking of a 
property like “curativeness” might be found in Descartes’s criticism of the habit that “when we 
discover several resemblances between two things, to attribute to both equally, even on points 
in which they are in reality different, that which we have recognized to be true of only of them” 
(Descartes, Rules for the Direction of the Mind, quoted in Foucault 1970, 51). “Cartesian doubt” 
might be considered as a way of stripping objects of their meanings in order that new meanings 
might be discovered.
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5. In discussing Kepler’s third law in the Encyclopedia Philosophy of Nature Hegel notes that 
“the greatness of this law consists in its presentations of the rationality of the matter with such 
simplicity and immediacy. In the Newtonian formula however, it is transformed into a law ap-
plied to the force of gravity, and so shows how reflection which fails to get to the bottom of things 
can distort and pervert the truth” (E:PN, §270, remark, p. 269).

6. Carnot, we are told, was proud of his “distinction between what he called impelling forces 
(‘forces-sollicitantes’) and resisting forces (‘forces-resistantes’)” that could not be reduced to “a 
metaphysical differentiation between cause and effect” but determined “merely by the geometry 
of the system” (Gillispie and Pisano 2013, 22).

7. This had been at the heart of Aristotle’s criticism of Plato’s appeal to “collection” in the 
process of collection and division, as it had been central to the nominalists’ criticism of judg-
ments about Aristotelian kinds.

8. This reversal in turn creates the need for two more principles that “may be regarded as 
inverse to the Applicative and Implicative principles respectively”—the Counter-applicative and 
Counter-implicative principles. For example, in relation to the former, “when we are justified in 
passing from the assertion of a predication about some one given to the assertion of the same 
predication about some other, then we are also justified in assertion the same predication about 
every” (Johnson 1922, 28). The invertibility of the order implicit in directionality is once again 
crucial.

9. This all depends on treating syllogisms as having a fundamental diagrammatic dimen-
sion (Peirce 2010, 20) and the analysis of syllogisms as depending on the observation of such 
diagrams (47). The idea of moving through syllogistic structures via different paths exemplifies 
what Peirce describes as “making experiments upon diagrams and the like and . . . observing the 
results” and which constitutes the “very life of mathematical thinking” (40).

10. Thus, in figure 4.4, the line GHI is the line of the intersection of the planes upon which 
the triangles lie. As points common to both planes, G, H, and I must fall on that line.

11. It is as if the judge comes to say to herself, “I feel this way and I feel it because of the way 
the house is put together.”

12. I have argued elsewhere (Redding 2007, ch. 4.2) that a certain convergence among the 
views of Peirce, Hegel, Kant, and Leibniz in relation to this form of nondemonstrative inference 
could be traced to a way of reading Aristotle’s logic found in the Renaissance philosopher Jacobo 
Zabarella, who himself seems to have been influenced by the ancient “problems” approach to 
geometry.

13. This analogical inference could not be reduced to a three-termed geometric sequence 
because this form of inference was considered to have its application across a genus.

14. The principle involved seems to be something like that of the “principle of continuity” 
utilized by Kepler and Leibniz.

15. This would importantly separate Hegel from Schelling, for whom religious imagery and 
the conceptual relations of philosophy were on the same level.

16. Concerning the judgment with this newly determined subject term, he later adds, “This 
combination, implicit and explicit, constitutes the basis of a new judgment—the judgment of 
necessity” (SL, 575; 12:77).

17. Hegel treats the judgment of necessity as the third judgment type after the judgment of 
existence and judgment of reflection. However, I think it makes more sense to treat the first two 
judgment types as belonging to the one cycle as its ascending and descending phases.
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18. In Johnsonian terms, we might regard the initial subject of this type of judgment as at 
best “quasi-substantival.”

19. This type of approach is particularly emphasized by Brandom. See, for example, Bran-
dom 2009, pt. 1.

20. Exceptions to the general reluctance to read Hegel’s political theory in the light of the 
notion of value are Dean Moyar (Moyar 2021) and Jean-Philippe Deranty (Deranty 2005). Terry 
Pinkard had also stressed the need for a place for value in Hegel’s account of nature, undercut-
ting the tendency for “normativity” to be opposed to nature by being exclusively identified with 
the realm of spirit (Pinkard 2012).

21. “This man is sitting” said of Socrates asserts of Socrates that he is sitting but presupposes 
that he, as a man, is both rational and an animal.

22. It will be remembered that action for Aristotle is characterized by this singularity, which 
is why practical reason is for him not demonstrative but relies on analogical ways of seeing: 
seeing A as having a property B in a way that is analogous to the way in which another object C 
has the property D.

23. We will return to the objects of judgments of the concept as Platonic paradigmata in 
chapter 9.

24. In the second half of the twentieth century, such “subject-placing” indexical judgments 
that Russell had ruled out as judgments would come to be thought by many to play a nonelim-
inable role in cognitive life.

25. In Ng 2020, Karen Ng explores the notion of logical life in Hegel by examining it in the 
context of natural life qua immediate form of the Idea in chapter 1 of section 3 of book 3 of The 
Science of Logic. This context, I suggest, provides a type of retrospective justification for treat-
ing the three syllogistic figures of the subjective logic as moments of a more formally conceived 
“logical life.”

Chapter Ten

1. Or, more properly, “E,” “B,” and “A” correlating with Einzelheit, Besonderheit, and 
Allgemeinheit.

2. Hegel insists that when the subject and predicate places are occupied by the same deter-
mination a degenerate type of judgment results, such as is found in the degenerate propositions 
of Leibniz’s universal characteristic, which are composed entirely of universals.

3. Blanché had specifically invoked the hexagon in opposition to von Wright’s treatment of 
deontic logic (von Wright 1951).

4. A similar square is suggested in Aristotle, De Interpretatione, 21b10ff and Prior Analytics, 
32a18–28.

5. Such an interpretation of “contingently p” as “not impossibly p and not necessarily p” had 
been independently introduced into modal discussions around the same time by Montgomery 
and Routley (Montgomery and Routley 1966). In fact, a similar idea is found in Aristotle’s Prior 
Analytics, book 1, chapter 13 (32a18–21)—a section generally regarded as pertaining to Aristotle’s 
modal logic—where it is discussed as “two-sided possibility” and opposed to one-sided possibil-
ity, which is equated simply with the denial of impossibility (Malink 2016).

6. Blanché’s logical hexagon would be linked to Goethe’s color theory (Goethe 1988, sec
tion VII, Physics) by a number of nonclassical logicians (see, for example, Béziau 2017).



259n o t e s  t o  pa g e s  2 2 3 – 2 3 2

7. I have altered the orientation of Czezowski’s hexagon to allow easier comparison with 
Blanché’s. Czezowski gives the following key to the diagram (Czezowski 1955, 393):

�Judgment types: A: universal positive, E: universal negative, U: singular positive, Y: sin-
gular negative, I: particular positive, O: particular negative.
�Logical relations: Subalternation: A-U, U-I, A-I, E-Y, Y-O, E-O; Contrariety: A-E, E-U, 
A-Y; Subcontrariety: I-O, O-U, I-Y; Contradiction: A-O, E-I, U-Y.

8. Of course, Hegel was not on the radar of many logicians during the twentieth century, and 
Czezowski could hardly be expected to recognize that he was, effectively, retracing some of the 
consequences of Hegel’s own attempts to integrate Aristotle-styled singular and modal squares 
of his practical logic with the traditional square of his official demonstrative logic.

9. George Englebretsen (Englebretsen 1986) explores this aspect of Czezowski’s logic in rela-
tion to the proposal for “wild quantity” put forward by the twentieth-century algebraic logician 
Fred Sommers (Sommers 1982). Sommers’s idea of “wild quantity” is, I suggest, like the idea of 
“hybrid logics,” another expression of Plato’s split middle term.

10. The first is the traditional square, with corners A E I O, and the second and third squares 
are formed by sides representing implication relations stretching from U- and Y-propositions to 
various other vertices, resulting in the squares U E Y I and A Y O U, respectively.

11. It is thus found in medieval Christianity as well as Islamic and Hindu religions.
12. Pascal’s theorem, a generalization of a theorem found in Pappus, is known about because 

the manuscript had been examined by Leibniz after Pascal’s death. For the history, see Del Cen-
tina 2020.

13. Both Poncelet in 1822 and Chasles in 1836 would emphasize the importance of Pascal’s 
“mystic hexagram” for geometry (Del Centina 2020, 491).

14. Leibniz’s letter to Pascal’s sister together with other works of Pascal had been published 
in 1779 (Del Centina 2020, 470).

Conclusion

1. Hegel had added these to the 1827 and 1830 editions.
2. In any case, besides whatever theological dimension this passage conveys, as Ermylos 

Plevrakis has argued, Hegel’s Aristotelian theos might also be seen as representing a “meta-
scientific contextualization of all (philosophical) sciences” (Plevrakis 2020, 84).

3. Baader has been described as responsible for Hegel’s attraction to Böhme (Betanzos 1998, 
54).

4. On the widespread following that Böhme’s writings had attracted among the radical Prot-
estant sects during the English Civil War, see Hutin 1960, ch. 3.

5. In the 1827 Preface to the Encyclopedia of the Philosophical Sciences, Hegel would reply to 
these criticisms in an amicable way, playing down the disagreements about religion assumed 
by Baader.

6. Toward the end of the twentieth century Clifford’s geometric algebra was revived by Da-
vid Hestenes to provide a unified mathematical language for the expression of modern physics. 
See, for example, Hestenes and Sobczyk 1984.
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