

INTRODUCTION TO CONTINUOUS CONTROL SYSTEMS
COLUMBIA UNIVERSITY MECHANICAL AND ELECTRICAL ENGINEERING
DEPARTMENTS: E3601

Homayoon Beigi[†]

1340 Mudd Building
Columbia University, New York City, NY 10027
hb87@columbia.edu

Homework 10

Problem 1 (Routh).

Use the Routh criterion on the following polynomials to determine the number of roots in the right-half complex plane.

A.

$$P(s) = s^7 + 3s^6 + 11s^5 + 19s^4 + 36s^3 + 38s^2 + 36s + 24 \quad (1)$$

B.

$$P(s) = s^6 + 2s^5 + 4s^4 + 8s^3 + 6s^2 + 8s + 4 \quad (2)$$

Problem 2 (Routh-Hurwitz).

A system has the following characteristic polynomial,

$$s^5 + 8s^4 + 24s^3 + 32s^2 + as + ab = 0 \quad (3)$$

where a and b are unspecified parameters. Use the Routh criterion to determine the constraints that must be imposed on the values of a and b to make the above system stable.

Problem 3 (Lyapunov Stability).

A. Does the choice of $\mathbf{Q} = \mathbf{I}$ provide a Lyapunov function for the following system,

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} -1 & 1 \\ -4 & -1 \end{bmatrix} \mathbf{x}(t) \quad (4)$$

B. Determine the stability of the above system using Routh-Hurwitz.

C. Find a Lyapunov function for the above system.

COPYRIGHT HOMAYOON BEIGI, 2025 THIS DOCUMENT IS COPYRIGHTED BY HOMAYOON BEIGI AND MAY NOT BE SHARED WITH ANYONE OTHER THAN THE STUDENTS REGISTERED IN THE COLUMBIA UNIVERSITY EEME-E3601 COURSE.

[†]Homayoon Beigi is Professor of Professional Practice in the department of mechanical engineering and in the department of electrical engineering at Columbia University

Problem 4 (Root Locus).

Consider the closed-loop system of Figure 1 where the transfer functions for the corresponding blocks are given by the following,

$$C(s) = s + 4 \quad (5)$$

$$G(s) = \frac{1}{s(s+2)(s+3)(s+6)} \quad (6)$$

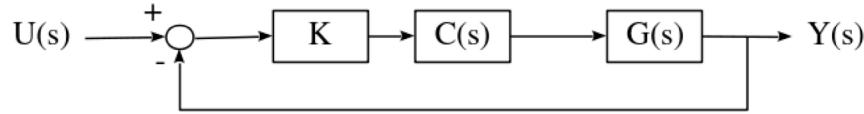


Fig. 1: Closed-Loop Block Diagram

A. Find all the pertinent information according to rules 1 through 11 and plot the root locus according to the outcome of these rules.

B. Using the above application of rules, determine at what K the system will go unstable.

C. Plot the root locus using Matlab and compare to your hand-drawn plot.

Problem 5 (Amplitude and Phase).

Express the following solutions by combining cosine and sine pairs to be represented in terms of sine only, with an amplitude and a phase.

A.

$$y(t) = \frac{10}{13}e^{-2t} - \frac{17}{10}e^{-t} - \frac{9}{130}\cos(3t) - \frac{7}{130}\sin(3t) \quad (7)$$

B.

$$y(t) = \frac{103}{100}e^{-2t} + \frac{29}{10}te^{-2t} - \frac{3}{100}\cos(4t) + \frac{1}{25}\sin(4t) \quad (8)$$

C.

$$y(t) = 1 - \frac{35}{1261}\cos(6t) + \frac{6}{1261}\sin(6t) - \frac{2}{1261}e^{-\frac{t}{2}} \left(613\cos\left(\frac{\sqrt{3}}{2}t\right) + \frac{1262}{\sqrt{3}}\sin\left(\frac{\sqrt{3}}{2}t\right) \right) \quad (9)$$

D.

$$y(t) = 1 + \frac{1}{5}e^{-2t} - \frac{6}{5}\cos(t) + \frac{2}{5}\sin(t) \quad (10)$$