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To theStudent

Welcome.

This book is an introduction to mathematics. In particular, it is an introduction to discrete

mathematics. What do these terms—discrete and mathematics—mean?

The world of mathematics can be divided roughly into two realms: the continuous andContinuous versus discrete

mathematics. the discrete. The difference is illustrated nicely by wristwatches. Continuous mathematics

corresponds to analog watches—the kind with separate hour, minute, and second hands. The

hands move smoothly over time. From an analog watch perspective, between 12:02 P.M. and

12:03 P.M. there are infinitely many possible different times as the second hand sweeps around

the watch face. Continuous mathematics studies concepts that are infinite in scope, in which

one object blends smoothly into the next. The real-number system lies at the core of con-

tinuous mathematics, and—just as on the watch—between any two real numbers, there is

an infinity intermediate points. Continuous mathematics provides excellent models and tools

for analyzing real-word phenomena that change smoothly over time, including the motion of

planets around the sun and the flow of blood through the body.

Discrete mathematics, on the other hand, is comparable to a digital watch. On a digital

watch there are only finitelymany possible different times between 12:02 P.M. and 12:03 P.M.

A digital watch does not acknowledge split seconds! There is no time between 12:02:03 and

12:02:04. The watch leaps from one time to the next. A digital watch can show only finitely

many different times, and the transition from one time to the next is sharp and unambiguous.

Just as the real numbers play a central role in continuous mathematics, integers are the pri-

mary tool of discrete mathematics. Discrete mathematics provides excellent models and tools

for analyzing real-world phenomena that change abruptly and that lie clearly in one state or

another. Discrete mathematics is the tool of choice in a host of applications, from computers

to telephone call routing and from personnel assignments to genetics.

Let us turn to a harder question: What is mathematics? A reasonable answer is that math-What is mathematics? A more

sophisticated answer is that

mathematics is the study of sets,

functions, and concepts built on these

fundamental notions.

ematics is the study of numbers and shapes. The word in this description we would like to

clarify is study. How do mathematicians approach their work?

Every field has its own criteria for success. In medicine, success is healing and the relief

of suffering. In science, the success of a theory is verified through experimentation. Success

in art is the creation of beauty. Lawyers are successful when they argue cases before juries

and convince the jurors of their clients’ cases. Players in professional sports are judged by

whether they win or lose. And success in business is profit.

What is successful mathematics? Many people lump mathematics together with science.

This is plausible, because mathematics is incredibly useful for science, but of the various

fields just described, mathematics has less to do with science than it does with law and art!

Mathematical success is measured by proof. A proof is an essay in which an assertion,

such as “There are infinitely many prime numbers,” is incontrovertibly shown to be correct.

Mathematical statements and proofs are, first and foremost, judged in terms of their correct-

ness. Other, secondary criteria are also important.Mathematicians are concernedwith creating

beautiful mathematics. And mathematics is often judged in terms of its utility; mathematical

concepts and techniques are enormously useful in solving real-world problems.

One of the principal aims of this book is to teach you, the student, how to write proofs.Proof writing.

Long after you complete this course in discrete mathematics, you may find that you do not

need to know how many k-element subsets an n-element set has or how Fermat’s Little Theo-

rem can be used as a test for primality. Proof writing, by contrast, will always serve you well.

It trains you to think clearly and present your case logically.

Many students find proof writing frightening and difficult. They might freeze after writ-

ing the word proof on their paper, unsure what to do next. The antidote to this proof phobia

can be found in the pages of this book! We demystify the proof-writing process by decod-Proof templates.

ing the idiosyncrasies of mathematical English and by providing proof templates. The proof

templates, scattered throughout this book, provide the structure (and boilerplate language) for
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xviii To the Student

the most common varieties of mathematical proofs. Do you need to prove that two sets are

equal? See Proof Template 5! Trying to show that a function is one-to-one? Consult Proof

Template 20!

How to Read a Mathematics Book

Reading a mathematics book is an active process. You should have a pad of paper and a pencil

handy as you read. Work out the examples and create examples of your own. Before you read

the proofs of the theorems in this book, try to write your own proof. Then, if you get stuck,

read the proof in the book.

One of the marvelous features of mathematics is that you need not (perhaps, should not!)

trust the author. If a physics book refers to an experimental result, it might be difficult or

prohibitively expensive for you to do the experiment yourself. If a history book describes

some events, it might be highly impractical to consult the original sources (which may be in

a language you do not understand). But with mathematics, all is before you to verify. Have

a reasonable attitude of doubt as you read; demand of yourself to verify the material pre-

sented. Mathematics is not so much about the truths it espouses but about how those truths

are established. Be an active participant in the process.

One way to be an active participant is to work on the hundreds of exercises found in this

text. If you run into difficulty, you may be helped by the many hints and occasional answers in

Appendix A. However, I hope you will not treat this book as just a collection of problems with

some stuff thrown in to keep the publisher happy. I tried hard to make the exposition clear and

useful to students. If you find it otherwise, please let me know. I hope to improve this book

continually, so send your comments to me by email at ers@jhu.edu or by conventional letter

to Professor Edward Scheinerman, Department of Applied Mathematics and Statistics, The

Johns Hopkins University, Baltimore, Maryland 21218, USA. Thank you.

I hope you enjoy.

Exercises 1. On a digital watch there are only finitely many different times that can be displayed. How

many different times can be displayed on a digital watch that shows hours, minutes, and

seconds and that distinguishes between A.M. and P.M.?

2. An ice cream shop sells ten different flavors of ice cream. You order a two-scoop sundae.

In how many ways can you choose the flavors for the sundae if the two scoops in the

sundae are different flavors?



To the Instructor

Why do we teach discrete mathematics? I think there are two good reasons. First, discretePlease also read the “To the Student.”

mathematics is useful, especially to students whose interests lie in computer science and en-

gineering, as well as those who plan to study probability, statistics, operations research, and

other areas of modern applied mathematics. But I believe there is a second, more important

reason to teach discrete mathematics. Discrete mathematics is an excellent venue for teaching

students to write proofs.

Thus this book has two primary objectives:

� to teach students fundamental concepts in discrete mathematics (from counting to basic

cryptography to graph theory) and
� to teach students proof-writing skills.

Audience and Prerequisites

This text is designed for an introductory-level course on discrete mathematics. The aim is

to introduce students to the world of mathematics through the ideas and topics of discrete

mathematics.

A course based on this text requires only core high school mathematics: algebra and

geometry. No calculus is presupposed or necessary.

Discrete mathematics courses are taken by nearly all computer science and computerServing the computer

science/engineering student. engineering students. Consequently, some discrete mathematics courses focus on topics such

as logic circuits, finite state automata, Turing machines, algorithms, and so on. Although these

are interesting, important topics, there is more that a computer scientist/engineer should know.

We take a broader approach. All of the material in this book is directly applicable to computer

science and engineering, but it is presented from a mathematician’s perspective. As college

instructors, our job is to educate students, not just to train them. We serve our computer

science and engineering students better by giving them a broader approach, by exposing them

to different ideas and perspectives, and, above all, by helping them to think and write clearly.

To be sure, in this book you will find algorithms and their analysis, but the emphasis is on

mathematics.

Topics Covered and Navigating the Sections

The topics covered in this book include

� the nature of mathematics (definition, theorem, proof, and counterexample),
� basic logic,
� lists and sets,
� relations and partitions,
� advanced proof techniques,
� recurrence relations,
� functions and their properties,
� permutations and symmetry,
� discrete probability theory,
� number theory,
� group theory,
� public-key cryptography,
� graph theory, and
� partially ordered sets.

Furthermore, enumeration (counting) and proof writing are developed throughout the text.

Please consult the table of contents for more detail.

xix



xx To the Instructor

Each section of this book corresponds (roughly) to one classroom lecture. Some sections

do not require this much attention, and others require two lectures.

There is enough material in this book for a year-long course in discrete mathematics. If

you are teaching a year-long sequence, you can cover all the sections.

A semester course based on this text can be roughly divided into two halves. In the first

half, core concepts are covered. This core consists of Sections 3 through 24 (optionally omit-

ting Sections 18 and 19).

From there, the choice of topics depends on the needs and interests of the students.

Sample Course Outlines

Thanks to its plentiful selection of topics, this book can serve a variety of discrete mathematics

courses. The following outlines provide some ideas on how to structure a course based on this

book.

� Computer science/engineering focus: Cover sections 1–17, 20–24, 29, 30–34, 35–37,

47–50, and 52. This plan covers the core material, special computer science notation,

discrete probability, essential number theory, and graph theory.
� Abstract algebra focus: Cover sections 1–17, 20–28, and 35–46. This plan covers the

core material, permutations and symmetry, number theory, group theory, and cryptogra-

phy.
� Discrete structures focus: Cover sections 1–27, 47–57, and 59. This plan includes the

core material, inclusion-exclusion, multisets, permutations, graph theory, and partially

ordered sets.
� Broad focus: Cover sections 1–17, 20–24, 26–27, 35–39, 43–46, and 47–53. This plan

covers the core material, permutations, number theory, cryptography, and graph theory.

Special Features

� Proof templates: Many students find proof writing difficult. When presented with a task

such as proving two sets are equal, they have trouble structuring their proof and don’t

know what to write first. (See Proof Template 5 on page 44.) The proof templates ap-

pearing throughout this book give students the basic skeleton of the proof as well as

boilerplate language. A list of the proof templates appears on the inside front cover.
� Growing proofs: Experienced mathematicians can write proofs sentence by sentence in

proper order. They are able to do so because they can see the entire proof in their minds

before they begin. Novice mathematicians (our students) often cannot see the whole proof

before they begin. It is difficult for a student to learn how to write a proof simply by

studying completed examples. I instruct students to begin their proofs by first writing the

first sentence and next writing the last sentence. We then work the proof from both ends

until we (ideally) meet in the middle.

This approach is presented in the text through ever-expanding proofs in which the

new sentences appear in color. See, for example, the proof of Proposition 12.11 (pages

60–63).
� Mathspeak: Mathematicians write well. We are concerned with expressing our ideas

clearly and precisely. However, we change the meaning of some words (e.g., injection

and group) to suit our needs. We invent new words (e.g., poset and bijection), and we

change the part of speech of others (e.g., we use the noun maximum and the preposition

onto as adjectives). I point out and explain many of the idiosyncrasies of mathematical

English in marginal notes flagged with the termMathspeak. In addition, a new section on

mathematical writing has been included in the first chapter.
� Hints: Appendix A contains an extensive collection of hints (and some answers). It is

often difficult to give hints that point a student in the correct direction without revealing

the full answer. Some hints may give away too much, and others may be cryptic, but on

balance, students will find this section enormously helpful. They should be instructed to

consult this section only after mounting a hearty first attack on the problems.
� Answers. An Instructor’s Manual is available from the publisher (Cengage). Not only

does this supplement give solutions to all the problems, it also gives helpful tips for
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teaching each of the sections. I strongly encourage you to obtain a copy. The Instructor’s

Manual is not available to students.
� Self tests. Every chapter ends with a self test for students. Complete answers appear in

Appendix B. These problems are of varying degrees of difficulty. Instructors may wish to

specify which problems students should attempt in case not all sections of a chapter have

been covered in class.





What’sNew in This
Third Edition

Problems, problems, problems, and more problems. This new edition has hundreds of new

problems added throughout the section exercises and chapter self-tests. Some of these

new problems are interrelated to develop ideas across chapters. For example, the number

of positive divisors of a positive integer is odd if and only if the integer is a perfect square.

Students are (indirectly) led to conjecture this in (Exercise 4.12e), to prove it by establishing a

bijection between two sets (Exercise 24.19), and to prove it again by an explicit enumeration

of divisors (Problem 16 of Self Test 7).

Other small topics are developed such as extending the Binomial Theorem to negative

exponents, counting lattice paths, using Sudoku to understand proof by contradiction, the

Bonferroni inequalities to approximate inclusion-exclusion, and so forth. In many cases, these

new topics are presented purely through exercises.

A new introductory section on mathematical writing has been added.

And many errors from the previous edition have been corrected; thank you to all those

who wrote!
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C H A P T E R

1 Fundamentals

The cornerstones of mathematics are definition, theorem, and proof. Definitions specify pre-

cisely the concepts in which we are interested, theorems assert exactly what is true about these

concepts, and proofs irrefutably demonstrate the truth of these assertions.

Before we get started, though, we ask a question: Why?

1 Joy

Why?

Before we roll up our sleeves and get to work in earnest, I want to share with you a fewPlease also read the To the Student

preface, where we briefly address the

questions: What is mathematics, and

what is discrete mathematics? We

also give important advice on how to

read a mathematics book.

thoughts on the question: Why study mathematics?

Mathematics is incredibly useful. Mathematics is central to every facet of modern tech-

nology: the discovery of new drugs, the scheduling of airlines, the reliability of communi-

cation, the encoding of music and movies on CDs and DVDs, the efficiency of automobile

engines, and on and on. Its reach extends far beyond the technical sciences. Mathematics is

also central to all the social sciences, from understanding the fluctuations of the economy

to the modeling of social networks in schools or businesses. Every branch of the fine arts—

including literature, music, sculpture, painting, and theater—has also benefited from (or been

inspired by) mathematics

Because mathematics is both flexible (new mathematics is invented daily) and rigorous

(we can incontrovertibly prove our assertions are correct), it is the finest analytic tool humans

have developed.

The unparalleled success of mathematics as a tool for solving problems in science, engi-

neering, society, and the arts is reason enough to actively engage this wonderful subject. We

mathematicians are immensely proud of the accomplishments that are fueled by mathematical

analysis. However, for many of us, this is not the primary motivation to study mathematics.

The Agony and the Ecstasy

Why do mathematicians devote their lives to the study of mathematics? For most of us, it is

because of the joy we experience when doing mathematics.

Mathematics is difficult for everyone. No matter what level of accomplishment or skill

in this subject you (or your instructor) have attained, there is always a harder, more frustrat-

ing problem waiting around the bend. Demoralizing? Hardly! The greater the challenge, the

greater the sense of accomplishment we experience when the challenge has been met. The

best part of mathematics is the joy we experience in practicing this art.

Most art forms can be enjoyed by spectators. I can delight in a concert performed by

talented musicians, be awestruck by a beautiful painting, or be deeply moved by literature.

Mathematics, however, releases its emotional surge only for those who actually do the work.

1
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I want you to feel the joy, too. So at the end of this short section there is a single problem

for you to tackle. In order for you to experience the joy, do not under any circumstancesConversely, if you have solved this

problem, do not offer your assistance

to others; you don’t want to spoil

their fun.

let anyone help you solve this problem. I hope that when you first look at the problem, you

do not immediately see the solution but, rather, have to struggle with it for a while. Don’t

feel bad: I’ve shown this problem to extremely talented mathematicians who did not see the

solution right away. Keep working and thinking—the solution will come. My hope is that

when you solve this puzzle, it will bring a smile to your face. Here’s the puzzle:

1 Exercise 1.1. Simplify the following algebraic expression:

.x � a/.x � b/.x � c/ � � � .x � z/:

2 Speaking (and Writing) of Mathematics

Precisely!

Whether or not we enjoy mathematics, we all can admire one of its unique features: there

are definitive answers. Few other endeavors from economics to literary analysis to history to

psychology can make this boast. Furthermore, in mathematics we can speak (and write) with

extreme precision. While endless books, songs, and poems have been written about love, it’s

far easier to make precise statements (and verify their truth) about mathematics than human

relations.

Precise language is vital to the study of mathematics. Unfortunately, students sometimes

see mathematics as an endless series of numeric and algebraic calculations in which letters

are only used to name variables; the closest one comes to using actual words is “sin” or “log.”

In fact, to communicate mathematics clearly and precisely we need far more than num-

bers, variables, operations, and relation symbols; we need words composed into meaningful

sentences that exactly convey the meaning we intend. Mathematical sentences often include

technical notation, but the rules of grammar apply fully. Arguably, until one expresses ideas

in a coherent sentence, those ideas are only half baked.

In addition, the mental effort to convert mathematical ideas into language is vital to learn-

ing those concepts. Take the time to express your ideas clearly both verbally and in writing. To

learn mathematics requires you to engage all routes into your brain: your hands, eyes, mouth,

and ears all need to get in on the act. Say the ideas out loud and write them down. You will

learn to express yourself more clearly and you will learn the concepts better.

A Bit of Help

Writing is difficult. The best way to learn is to practice, especially with the help of a partner.Be sure to check with your instructor

concerning what types of

collaboration are permitted on your

assignments.

Most people find it difficult to edit their own writing; our brains know what we want to say

and trick us into believing that what we put onto paper is exactly what we intend. If you resort

to saying “well, you know what I mean” then you need to try again.

In this brief section we provide a few pointers and some warnings about some common

mistakes.

� A language of our own. Scattered in the margins of this book you will find Mathspeak

notes that explain some of the idiosyncratic ways in which mathematicians use ordinary

words. Common words (such as function or prime) are used differently in mathematics

than in general use. The good news is that when we co-opt words into mathematical

service, the meanings we give them are razor sharp (see the next section of this book for

more about this).
� Complete sentences. This is the most basic rule of grammar and it applies to mathematics

as much as to any discipline. Mathematical notation must be part of a sentence.

Bad: 3x C 5.

This is not a sentence! What about 3x C 5? What is the writer trying to say?

Good: When we substitute x D �5=3 into 3x C 5 the result is 0.
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� Mismatch of categories. This is one of the most common mistakes people commit in

mathematical writing and speaking. A line segment isn’t a number, a function isn’t an

equation, a set isn’t an operation, and so on. Consider this sentence:

Air Force One is the president of the United States.

This, of course, is nonsense. No amount of “well, you know what I mean” or “you get the

general idea” can undo the error of writing that an airplane is a human being. Yet, this is

exactly the sort of error novice mathematical writers (and speakers) make frequently.

Thus, don’t write “the function is equal to 3” when you mean “when the function is

evaluated at x D 5 the result is 3”. Note that we don’t have to be verbose. Don’t write

“f D 3”, but do write “f .5/ D 3.”

Bad: If the legs of a right triangle T have lengths 5 and 12, then T D 30.

Good: If the legs of a right triangle T have lengths 5 and 12, then the area of T

is 30.
� Avoid pronouns. It’s easy to write a sentence full of pronouns that you—the writer—

understand but which is incomprehensible to anyone else.

Bad: If we move everything over, then it simplifies and that’s our answer.

Give the things you’re writing about names (such as single letters for numbers and

line numbers for equations).

Good: When we move all terms involving x to the left in equation (12), we find that

those terms cancel and that enables us to determine the value of y.
� Rewrite. It’s nearly impossible to write well on a first draft. What’s more, few mathe-

matics problems can be solved correctly straight away. Unfortunately, some students (not

you, of course) start solving a problem, cross out errors, draw arrows to new parts of the

solution, and then submit this awful mess as a finished product. Yuck! As with all other

forms of writing, compose a first draft, edit, and then rewrite.
� Learn LATEX. The editing and rewriting process is made much easier by word proces-

sors. Unfortunately, it’s much more difficult to type mathematics than ordinary prose.

Some what-you-see-is-what-you-get [WYSIWYG] word processing programs, such as

Microsoft Word, include an equation editor that allows the typist to insert mathematical

formulas into documents. Indeed, many scientists and engineers use Word to compose

technical papers replete with intricate formulas.

Nevertheless, the gold standard for mathematical typing is LATEX. Learning to com-The word LATEX is written with

letters of various sizes on different

levels, in part to distinguish it from

latex, a type of rubber.

Incidentally, this book was composed

using LATEX.

pose documents in LATEX takes a significant initial investment of time, but no investment

of cash as there many implementations of LATEX that are free and run on most types of

computers (Windows, Mac OS, linux). Documents produced in LATEX are visually more

appealing than the output of WYSIWIG systems and are easier to edit. In LATEX one

types special commands to produce mathematical notation. For example, to produce the

quadratic formula

x D
�b ˙

p

b2
� 4ac

2a

one types: x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}

There are many guides and books available for learning LATEX including some that

are available for free on the web.

2 Exercise 2.1. The six pieces below can be arranged to form a 3 � 3 square with the middle 1 � 1

square left empty (as in the figure in the margin).
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Determine how to solve this puzzle and then write out clear instructions (without any

diagrams!) so that another person can read your directions and properly fit the pieces

together to arrive at the solution.

You may download a large, printable version of the puzzle pieces (so you can cut

them out) from the author’s website:

www.ams.jhu.edu/�ers/mdi/puzzle.pdf

3 Definition

Mathematics exists only in people’s minds. There is no such “thing” as the number 6. You can

draw the symbol for the number 6 on a piece of paper, but you can’t physically hold a 6 in

your hands. Numbers, like all other mathematical objects, are purely conceptual.

Mathematical objects come into existence by definitions. For example, a number is called

prime or even provided it satisfies precise, unambiguous conditions. These highly specific

conditions are the definition for the concept. In this way, we are acting like legislators, laying

down specific criteria such as eligibility for a government program. The difference is that laws

may allow for some ambiguity, whereas a mathematical definition must be absolutely clear.

Let’s take a look at an example.

In a definition, the word(s) being

defined are typically set in italic type.

Definition 3.1 (Even) An integer is called even provided it is divisible by two.

Clear? Not entirely. The problem is that this definition contains terms that we have not yet

defined, in particular integer and divisible. If we wish to be terribly fussy, we can complain

that we haven’t defined the term two. Each of these terms—integer, divisible, and two—can

be defined in terms of simpler concepts, but this is a game we cannot entirely win. If every

term is defined in terms of simpler terms, we will be chasing definitions forever. Eventually

we must come to a point where we say, “This term is undefined, but we think we understand

what it means.”

The situation is like building a house. Each part of the house is built up from previous

parts. Before roofing and siding, we must build the frame. Before the frame goes up, there

must be a foundation. As house builders, we think of pouring the foundation as the first step,

but this is not really the first step. We also have to own the land and run electricity and water

to the property. For there to be water, there must be wells and pipes laid in the ground. STOP!

We have descended to a level in the process that really has little to do with building a house.

Yes, utilities are vital to home construction, but it is not our job, as home builders, to worry

about what sorts of transformers are used at the electric substation!

Let us return to mathematics and Definition 3.1. It is possible for us to define the terms

integer, two, and divisible in terms of more basic concepts. It takes a great deal of work to

define integers, multiplication, and so forth in terms of simpler concepts. What are we to do?

Ideally, we should begin from the most basic mathematical object of all—the set—and work

our way up to the integers. Although this is a worthwhile activity, in this book we build our

mathematical house assuming the foundation has already been laid.

Where shall we begin? What may we assume? In this book, we take the integers as ourThe symbol Z stands for the integers.

This symbol is easy to draw, but

often people do a poor job. Why?

They fall into the following trap:

They first draw a Z and then try to

add an extra slash. That doesn’t

work! Instead, make a 7 and then

an interlocking, upside-down 7 to

draw Z.

starting point. The integers are the positive whole numbers, the negative whole numbers, and

zero. That is, the set of integers, denoted by the letter Z, is

Z D f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g :

We also assume that we know how to add, subtract, and multiply, and we need not prove

basic number facts such as 3 � 2 D 6. We assume the basic algebraic properties of addition,

subtraction, and multiplication and basic facts about order relations (<, �, >, and �). See

Appendix D for more details on what you may assume.

Thus, in Definition 3.1, we need not define integer or two. However, we still need to

define what we mean by divisible. To underscore the fact that we have not made this clear yet,

consider the question: Is 3 divisible by 2?We want to say that the answer to this question is no,

but perhaps the answer is yes since 3� 2 is 1
1

2
. So it is possible to divide 3 by 2 if we allow
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fractions. Note further that in the previous paragraph we were granted basic properties of

addition, subtraction, and multiplication, but not—and conspicuous by its absence—division.

Thus we need a careful definition of divisible.

Definition 3.2 (Divisible) Let a and b be integers. We say that a is divisible by b provided there is an

integer c such that bc D a. We also say b divides a, or b is a factor of a, or b is a divisor of

a. The notation for this is bja.

This definition introduces various terms (divisible, factor, divisor, and divides) as well as

the notation bja. Let’s look at an example.

Example 3.3 Is 12 divisible by 4? To answer this question, we examine the definition. It says that a D 12

is divisible by b D 4 if we can find an integer c so that 4c D 12. Of course, there is such an

integer, namely, c D 3.

In this situation, we also say that 4 divides 12 or, equivalently, that 4 is a factor of 12. We

also say 4 is a divisor of 12.

The notation to express this fact is 4j12.

On the other hand, 12 is not divisible by 5 because there is no integer x for which 5x D

12; thus 5j12 is false.

Now Definition 3.1 is ready to use. The number 12 is even because 2j12, and we know

2j12 because 2 � 6 D 12. On the other hand, 13 is not even, because 13 is not divisible by 2;

there is no integer x for which 2x D 13. Note that we did not say that 13 is odd because we

have yet to define the term odd. Of course, we know that 13 is an odd number, but we simply

have not “created” odd numbers yet by specifying a definition for them. All we can say at this

point is that 13 is not even. That being the case, let us define the term odd.

Definition 3.4 (Odd) An integer a is called odd provided there is an integer x such that a D 2x C 1.

Thus 13 is odd because we can choose x D 6 in the definition to give 13 D 2 � 6C 1.

Note that the definition gives a clear, unambiguous criterion for whether or not an integer is

odd.

Please note carefully what the definition of odd does not say: It does not say that an

integer is odd provided it is not even. This, of course, is true, and we prove it in a subsequent

chapter. “Every integer is odd or even but not both” is a fact that we prove.

Here is a definition for another familiar concept.

Definition 3.5 (Prime) An integer p is called prime provided that p > 1 and the only positive divisors of

p are 1 and p.

For example, 11 is prime because it satisfies both conditions in the definition: First, 11 is

greater than 1, and second, the only positive divisors of 11 are 1 and 11.

However, 12 is not prime because it has a positive divisor other than 1 and itself; for

example, 3j12, 3 6D 1, and 3 6D 12.

Is 1 a prime? No. To see why, take p D 1 and see if p satisfies the definition of primality.

There are two conditions: First we must have p > 1, and second, the only positive divisors

of p are 1 and p. The second condition is satisfied: the only divisors of 1 are 1 and itself.

However, p D 1 does not satisfy the first condition because 1 > 1 is false. Therefore, 1 is not

a prime.

We have answered the question: Is 1 a prime? The reason why 1 isn’t prime is that the

definition was specifically designed to make 1 nonprime! However, the real “why question”

we would like to answer is: Why did we write Definition 3.5 to exclude 1?

I will attempt to answer this question in a moment, but there is an important philosophical

point that needs to be underscored. The decision to exclude the number 1 in the definition

was deliberate and conscious. In effect, the reason 1 is not prime is “because I said so!” In

principle, you could define the word prime differently and allow the number 1 to be prime.

The main problem with your using a different definition for prime is that the concept of a
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prime number is well established in the mathematical community. If it were useful to you to

allow 1 as a prime in your work, you ought to choose a different term for your concept, such

as relaxed prime or alternative prime.

Now, let us address the question: Why did we write Definition 3.5 to exclude 1? The idea

is that the prime numbers should form the “building blocks” of multiplication. Later, we prove

the fact that every positive integer can be factored in a unique fashion into prime numbers.

For example, 12 can be factored as 12 D 2�2�3. There is no other way to factor 12 down to

primes (other than rearranging the order of the factors). The prime factors of 12 are precisely

2, 2, and 3. Were we to allow 1 as a prime number, then we could also factor 12 down to

“primes” as 12 D 1 � 2 � 2 � 3, a different factorization.

Since we have defined prime numbers, it is appropriate to define composite numbers.

Definition 3.6 (Composite) A positive integer a is called composite provided there is an integer b such that

1 < b < a and bja.

For example, the number 25 is composite because it satisfies the condition of the def-

inition: There is a number b with 1 < b < 25 and bj25; indeed, b D 5 is the only such

number.

Similarly, the number 360 is composite. In this case, there are several numbers b that

satisfy 1 < b < 360 and bj360.

Prime numbers are not composite. If p is prime, then, by definition, there can be no

divisor of p between 1 and p (read Definition 3.5 carefully).

Furthermore, the number 1 is not composite. (Clearly, there is no number b with 1 < b <

1.) Poor number 1! It is neither prime nor composite! (There is, however, a special term that

is applied to the number 1—the number 1 is called a unit.)

Recap

In this section, we introduced the concept of a mathematical definition. Definitions typically

have the form “An object X is called the term being defined provided it satisfies specific

conditions.” We presented the integers Z and defined the terms divisible, odd, even, prime,

and composite.

3 Exercises 3.1. Please determine which of the following are true and which are false; use Definition 3.2

to explain your answers.

a. 3j100.

b. 3j99.

c. �3j3.

d. �5j � 5.

e. �2j � 7.

f. 0j4.

g. 4j0.

h. 0j0.

3.2. Here is a possible alternative to Definition 3.2: We say that a is divisible by b provided
a

b
is an integer. Explain why this alternative definition is different from Definition 3.2.

Here, different means that Definition 3.2 and the alternative definition specify dif-

ferent concepts. So, to answer this question, you should find integers a and b such that

a is divisible by b according to one definition, but a is not divisible by b according to

the other definition.

3.3. None of the following numbers is prime. Explain why they fail to satisfy Definition 3.5.

Which of these numbers is composite?

a. 21.

b. 0.

c. � .

d. 1

2
.

e. �2.

f. �1.
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3.4. The natural numbers are the nonnegative integers; that is,The symbol N stands for the natural

numbers.

N D f0; 1; 2; 3; : : :g:

Use the concept of natural numbers to create definitions for the following relations

about integers: less than (<), less than or equal to (�), greater than (>), and greater

than or equal to (�).

Note: Many authors define the natural numbers to be just the positive integers; for

them, zero is not a natural number. To me, this seems unnatural . The concepts positive

integers and nonnegative integers are unambiguous and universally recognized among

mathematicians. The term natural number, however, is not 100% standardized.

3.5. A rational number is a number formed by dividing two integers a=b where b 6D 0. TheThe symbol Q stands for the rational

numbers. set of all rational numbers is denotedQ.

Explain why every integer is a rational number, but not all rational numbers are

integers.

3.6. Define what it means for an integer to be a perfect square. For example, the integers 0,

1, 4, 9, and 16 are perfect squares. Your definition should begin

An integer x is called a perfect square provided. . . .

3.7. Define what it means for one number to be the square root of another number.

3.8. Define the perimeter of a polygon.

3.9. Suppose the concept of distance between points in the plane is already defined. Write a

careful definition for one point to be between two other points. Your definition should

begin

Suppose A; B; C are points in the plane. We say that C is between A and B

provided. . . .

Note: Since you are crafting this definition, you have a bit of flexibility. Consider

the possibility that the point C might be the same as the point A or B , or even that A

and B might be the same point. Personally, if A and C were the same point, I would

say that C is between A and B (regardless of where B may lie), but you may choose

to design your definition to exclude this possibility. Whichever way you decide is fine,

but be sure your definition does what you intend.

Note further: You do not need the concept of collinearity to define between. Once

you have defined between, please use the notion of between to define what it means for

three points to be collinear. Your definition should begin

Suppose A; B; C are points in the plane. We say that they are collinear pro-

vided. . . .

Note even further: Now if, say, A and B are the same point, you certainly want

your definition to imply that A, B , and C are collinear.

3.10. Define the midpoint of a line segment.

3.11. Some English words are difficult to define with mathematical precision (for example,

love), but some can be tightly defined. Try writing definitions for these:

a. teenager.

b. grandmother.

c. leap year.

d. dime.

e. palindrome.

f. homophone.

You may assume more basic concepts (such as coin or pronunciation) are already de-

fined.

3.12. Discrete mathematicians especially enjoy counting problems: problems that ask how

many. Here we consider the question: Howmany positive divisors does a number have?

For example, 6 has four positive divisors: 1, 2, 3, and 6.

How many positive divisors does each of the following have?

a. 8.

b. 32.

c. 2n where n is a positive integer.

d. 10.

e. 100.
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f. 1,000,000.

g. 10n where n is a positive integer.

h. 30 D 2 � 3 � 5.

i. 42 D 2 � 3 � 7. (Why do 30 and 42 have the same number of positive divisors?)

j. 2310 D 2 � 3 � 5 � 7 � 11.

k. 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8.

l. 0.

3.13. An integer n is called perfect provided it equals the sum of all its divisors that are both

positive and less than n. For example, 28 is perfect because the positive divisors of 28

are 1, 2, 4, 7, 14, and 28. Note that 1C 2C 4C 7C 14 D 28.

a. There is a perfect number smaller than 28. Find it.

b. Write a computer program to find the next perfect number after 28.

3.14. At a Little League game there are three umpires. One is an engineer, one is a physicist,

and one is a mathematician. There is a close play at home plate, but all three umpires

agree the runner is out.

Furious, the father of the runner screams at the umpires, “Why did you call her

out?!”

The engineer replies, “She’s out because I call them as they are.”

The physicist replies, “She’s out because I call them as I see them.”

The mathematician replies, “She’s out because I called her out.”

Explain the mathematician’s point of view.

4 Theorem

A theorem is a declarative statement about mathematics for which there is a proof.

The notion of proof is the subject of the next section—indeed, it is a central theme of

this book. Suffice it to say for now that a proof is an essay that incontrovertibly shows that a

statement is true.

In this section we focus on the notion of a theorem. Reiterating, a theorem is a declarative

statement about mathematics for which there is a proof.

What is a declarative statement? In everyday English we utter many types of sentences.

Some sentences are questions: Where is the newspaper? Other sentences are commands:

Come to a complete stop. And perhaps the most common sort of sentence is a declarative

statement—a sentence that expresses an idea about how something is, such as: It’s going to

rain tomorrow or The Yankees won last night.

Practitioners of every discipline make declarative statements about their subject matter.

The economist says, “If the supply of a commodity decreases, then its price will increase.”

The physicist asserts, “When an object is dropped near the surface of the earth, it accelerates

at a rate of 9:8 meter=sec2.”

Mathematicians also make statements that we believe are true about mathematics. Such

statements fall into three categories:

� Statements we know to be true because we can prove them—we call these theorems.
� Statements whose truth we cannot ascertain—we call these conjectures.
� Statements that are false—we call these mistakes!

There is one more category of mathematical statements. Consider the sentence “ThePlease be sure to check your own

work for nonsensical sentences. This

type of mistake is all too common.

Think about every word and symbol

you write. Ask yourself, what does

this term mean? Do the expressions

on the left and right sides of your

equations represent objects of the

same type?

square root of a triangle is a circle.” Since the operation of extracting a square root applies to

numbers, not to geometric figures, the sentence doesn’t make sense. We therefore call such

statements nonsense!

The Nature of Truth

To say that a statement is true asserts that the statement is correct and can be trusted. However,

the nature of truth is much stricter in mathematics than in any other discipline. For example,

consider the following well-known meteorological fact: “In July, the weather in Baltimore is
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hot and humid.” Let me assure you, from personal experience, that this statement is true! Does

this mean that every day in every July is hot and humid? No, of course not. It is not reasonable

to expect such a rigid interpretation of a general statement about the weather.

Consider the physicist’s statement just presented: “When an object is dropped near the

surface of the earth, it accelerates at a rate of 9:8 meter=sec2.” This statement is also true and

is expressed with greater precision than our assertion about the climate in Baltimore. But this

physics “law” is not absolutely correct. First, the value 9.8 is an approximation. Second, the

term near is vague. From a galactic perspective, the moon is “near” the earth, but that is not

the meaning of near that we intend. We can clarify near to mean “within 100 meters of the

surface of the earth,” but this leaves us with a problem. Even at an altitude of 100 meters,

gravity is slightly less than at the surface. Worse yet, gravity at the surface is not constant; the

gravitational pull at the top of Mount Everest is a bit smaller than the pull at sea level!

Despite these various objections and qualifications, the claim that objects dropped near

the surface of the earth accelerate at a rate of 9:8 meter=sec2 is true. As climatologists or

physicists, we learn the limitations of our notion of truth. Most statements are limited in

scope, and we learn that their truth is not meant to be considered absolute and universal.

However, in mathematics the word true is meant to be considered absolute, unconditional,

and without exception.

Let us consider an example. Perhaps the most celebrated theorem in geometry is the

following classical result of Pythagoras.

Theorem 4.1 (Pythagorean) If a and b are the lengths of the legs of a right triangle and c is the length of

the hypotenuse, then

a
2
C b

2
D c

2
:a

b

c

The relation a2
C b2

D c2 holds for the legs and hypotenuse of every right triangle,

absolutely and without exception! We know this because we can prove this theorem (more on

proofs later).

Is the Pythagorean Theorem really absolutely true? We might wonder: If we draw a right

triangle on a piece of paper and measure the lengths of the sides down to a billionth of an inch,

would we have exactly a2
C b2

D c2? Probably not, because a drawing of a right triangle

is not a right triangle! A drawing is a helpful visual aid for understanding a mathematical

concept, but a drawing is just ink on paper. A “real” right triangle exists only in our minds.

On the other hand, consider the statement, “Prime numbers are odd.” Is this statement

true? No. The number 2 is prime but not odd. Therefore, the statement is false. We might like

to say it is nearly true since all prime numbers except 2 are odd. Indeed, there are far more

exceptions to the rule “July days in Baltimore are hot and humid” (a sentence regarded to be

true) than there are to “Prime numbers are odd.”

Mathematicians have adopted the convention that a statement is called true provided it is

absolutely true without exception. A statement that is not absolutely true in this strict way is

called false.

An engineer, a physicist, and a mathematician are taking a train ride through Scotland.

They happen to notice some black sheep on a hillside.

“Look,” shouts the engineer. “Sheep in this part of Scotland are black!”

“Really,” retorts the physicist. “You mustn’t jump to conclusions. All we can say is that

in this part of Scotland there are some black sheep.”

“Well, at least on one side,” mutters the mathematician.

If-Then

Mathematicians use the English language in a slightly different way than ordinary speakers.Consider the mathematical and the

ordinary usage of the word prime.

When an economist says that the

prime interest rate is now 8%, we are

not upset that 8 is not a prime

number!

We give certain words special meanings that are different from that of standard usage. Math-

ematicians take standard English words and use them as technical terms. We give words such

as set, group, and graph new meanings. We also invent our own words, such as bijection and

poset. (All these words are defined later in this book.)

Not only do mathematicians expropriate nouns and adjectives and give them new mean-

ings, we also subtly change the meaning of common words, such as or, for our own purposes.
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While we may be guilty of fracturing standard usage, we are highly consistent in how we do

it. I call such altered usage of standard English mathspeak, and the most important example

of mathspeak is the if-then construction.

The vast majority of theorems can be expressed in the form “If A, then B .” For example,In the statement “If A, then B,”

condition A is called the hypothesis

and condition B is called the

conclusion.

the theorem “The sum of two even integers is even” can be rephrased “If x and y are even

integers, then x C y is also even.”

In casual conversation, an if-then statement can have various interpretations. For example,

I might say to my daughter, “If you mow the lawn, then I will pay you $20.” If she does the

work, she will expect to be paid. She certainly wouldn’t object if I gave her $20 when she

didn’t mow the lawn, but she wouldn’t expect it. Only one consequence is promised.

On the other hand, if I say to my son, “If you don’t finish your lima beans, then you won’t

get dessert,” he understands that unless he finishes his vegetables, no sweets will follow. But

he also understands that if he does finish his lima beans, then he will get dessert. In this case

two consequences are promised: one in the event he finishes his lima beans and one in the

event he doesn’t.

The mathematical use of if-then is akin to that of “If you mow the lawn, then I will pay

you $20.” The statement “If A, then B” means: Every time condition A is true, condition B

must be true as well. Consider the sentence “If x and y are even, then xC y is even.” All this

sentence promises is that when x and y are both even, it must also be the case that x C y is

even. (The sentence does not rule out the possibility of x C y being even despite x or y not

being even. Indeed, if x and y are both odd, we know that x C y is also even.)

In the statement “If A, then B ,” we might have condition A true or false, and we might

have condition B true or false. Let us summarize this in a chart. If the statement “If A, then

B” is true, we have the following.

Condition A Condition B

True True Possible

True False Impossible

False True Possible

False False Possible

All that is promised is that whenever A is true, B must be true as well. If A is not true, then

no claim about B is asserted by “If A, then B .”

Here is an example. Imagine I am a politician running for office, and I announce in public,

“If I am elected, then I will lower taxes.” Under what circumstances would you call me a liar?

� Suppose I am elected and I lower taxes. Certainly you would not call me a liar—I kept

my promise.
� Suppose I am elected and I do not lower taxes. Now you have every right to call me a

liar—I have broken my promise.
� Suppose I am not elected, but somehow (say, through active lobbying) I manage to get

taxes lowered. You certainly would not call me a liar—I have not broken my promise.
� Finally, suppose I am not elected and taxes are not lowered. Again, you would not accuse

me of lying—I promised to lower taxes only if I were elected.

The only circumstance under which “If .A/ I am elected, then .B/ I will lower taxes” is a lie

is when A is true and B is false.

In summary, the statement “If A, then B” promises that condition B is true whenever A

is true but makes no claim about B when A is false.

If-then statements pervade all of mathematics. It would be tiresome to use the sameAlternative wordings for “If A,

then B.” phrases over and over in mathematical writing. Consequently, there is an assortment of alter-

native ways to express “If A, then B .” All of the following express exactly the same statement

as “If A, then B .”

� “A implies B .” This can also be expressed in passive voice: “B is implied by A.”
� “Whenever A, we have B .” Also: “B , whenever A.”
� “A is sufficient for B .” Also: “A is a sufficient condition for B .”

This is an example of mathspeak. The word sufficient can carry, in standard English, the

connotation of being “just enough.” No such connotation should be ascribed here. The

meaning is “Once A is true, then B must be true as well.”
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� “In order for B to hold, it is enough that we have A.”
� “B is necessary for A.”

This is another example of mathspeak. The way to understand this wording is as

follows: In order for A to be true, it is necessarily the case that B is also true.
� “A, only if B .”

The meaning is that A can happen only if B happens as well.
� “A H) B .”

The special arrow symbolH) is pronounced “implies.”
� “B (H A”.

The arrow(H is pronounced “is implied by.”

If and Only If

The vast majority of theorems are—or can readily be expressed—in the if-then form. Some

theorems go one step further; they are of the form “IfA thenB , and if B then A.” For example,

we know the following is true:

If an integer x is even, then x C 1 is odd, and if x C 1 is odd, then x is even.

This statement is verbose. There are concise ways to express statements of the form “A implies

B and B implies A” in which we do not have to write out the conditions A and B twice each.

The key phrase is if and only if. The statement “If A then B , and if B then A” can be rewritten

as “A if and only if B .” The example just given is more comfortably written as follows:

An integer x is even if and only if x C 1 is odd.

What does an if-and-only-if statement mean? Consider the statement “A if and only if B .”

Conditions A and B may each be either true or false, so there are four possibilities that we

can summarize in a chart. If the statement “A if and only if B” is true, we have the following

table.

Condition A Condition B

True True Possible

True False Impossible

False True Impossible

False False Possible

It is impossible for condition A to be true while B is false, because A H) B . Likewise, it

is impossible for condition B to be true while A is false, because B H) A. Thus the two

conditions A and B must be both true or both false.

Let’s revisit the example statement.

An integer x is even if and only if x C 1 is odd.

Condition A is “x is even” and condition B is “xC 1 is odd.” For some integers (e.g., x D 6),

conditions A and B are both true (6 is even and 7 is odd), but for other integers (e.g., x D 9),

both conditions A and B are false (9 is not even and 10 is not odd).

Just as there are many ways to express an if-then statement, so too are there several waysAlternative wordings for “A if and

only if B.” to express an if-and-only-if statement.

� “A iff B .”

Because the phrase “if and only if” occurs so frequently, the abbreviation “iff” is often

used.
� “A is necessary and sufficient for B .”
� “A is equivalent to B”.

The reason for the word equivalent is that condition A holds under exactly the same

circumstances under which condition B holds.
� “A is true exactly when B is true.”

The word exactly means that the circumstances under which condition A hold are pre-

cisely the same as the circumstances under which B holds.
� “A() B”.

The symbol() is an amalgamation of the symbols(H and H).
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And, Or, and Not

Mathematicians use the words and, or, and not in very precise ways. The mathematical usage

of and and not is essentially the same as that of standard English. The usage of or is more

idiosyncratic.

The statement “A and B” means that both statements A and B are true. For example,Mathematical use of and.

“Every integer whose ones digit is 0 is divisible by 2 and by 5.” This means that a number

that ends in a zero, such as 230, is divisible both by 2 and by 5. The use of and can be

summarized in the following chart.

A B A and B

True True True

True False False

False True False

False False False

The statement “not A” is true if and only if A is false. For example, the statement “AllMathematical use of not.

primes are odd” is false. Thus the statement “Not all primes are odd” is true. Again, we can

summarize the use of not in a chart.

A not A

True False

False True

Thus the mathematical usage of and and not corresponds closely with standard English.

The use of or, however, does not. In standard English, or often suggests a choice of one optionMathematical use of or.

or the other, but not both. Consider the question, “Tonight, when we go out for dinner, would

you like to have pizza or Chinese food?” The implication is that we’ll dine on one or the other,

but not both.

In contradistinction, the mathematical or allows the possibility of both. The statement “A

or B” means that A is true, or B is true, or both A and B are true. For example, consider the

following:

Suppose x and y are integers with the property that xjy and yjx. Then x D y

or x D �y.

The conclusion of this result says that we may have any one of the following:

� x D y but not x D �y (e.g., take x D 3 and y D 3).
� x D �y but not x D y (e.g., take x D �5 and y D 5).
� x D y and x D �y, which is possible only when x D 0 and y D 0.

Here is a chart for or statements.

A B A or B

True True True

True False True

False True True

False False False

What Theorems Are Called

Some theorems are more important or more interesting than others. There are alternativeThe word theorem should not be

confused with the word theory. A

theorem is a specific statement that

can be proved. A theory is a broader

assembly of ideas on a particular

issue.

nouns that mathematicians use in place of theorem. Each has a slightly different connotation.

The word theorem conveys importance and generality. The Pythagorean Theorem certainly

deserves to be called a theorem. The statement “The square of an even integer is also even”

is also a theorem, but perhaps it doesn’t deserve such a profound name. And the statement

“6C 3 D 9” is technically a theorem but does not merit such a prestigious appellation.

Here we list words that are alternatives to theorem and offer a guide to their usage.

Result A modest, generic word for a theorem. There is an air of humility in calling your

theorem merely a “result.” Both important and unimportant theorems can be called

results.
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Fact A very minor theorem. The statement “6C 3 D 9” is a fact.

Proposition A minor theorem. A proposition is more important or more general than a

fact but not as prestigious as a theorem.

Lemma A theorem whose main purpose is to help prove another, more important theo-

rem. Some theorems have complicated proofs. Often one can break down the job of

proving a such theorems into smaller parts. The lemmas are the parts, or tools, used to

build the more elaborate proof.

Corollary A result with a short proof whose main step is the use of another, previously

proved theorem.

Claim Similar to lemma. A claim is a theorem whose statement usually appears inside

the proof of a theorem. The purpose of a claim is to help organize key steps in a proof.

Also, the statement of a claim may involve terms that make sense only in the context

of the enclosing proof.

Vacuous Truth

What are we to think of an if-then statement in which the hypothesis is impossible? Consider

the following.

Statement 4.2 (Vacuous) If an integer is both a perfect square and prime, then it is negative.

Is this statement true or false?

The statement is not nonsense. The terms perfect square (see Exercise 3.6), prime, and

negative properly apply to integers.

We might be tempted to say that the statement is false because square numbers and prime

numbers cannot be negative. However, for a statement of the form “If A, then B” to be de-

clared false, we need to find an instance in which clause A is true and clause B is false. In the

case of Statement 4.2, condition A is impossible; there are no numbers that are both a perfect

square and prime. So we can never find an integer that renders condition A true and condition

B false. Therefore, Statement 4.2 is true!

Statements of the form “If A, then B” in which condition A is impossible are called

vacuous, and mathematicians consider such statements true because they have no exceptions.

Recap

This section introduced the notion of a theorem: a declarative statement about mathematics

that has a proof. We discussed the absolute nature of the word true in mathematics. We ex-

amined the if-then and if-and-only-if forms of theorems, as well as alternative language to

express such results. We clarified the way in which mathematicians use the words and, or,

and not. We presented a number of synonyms for theorem and explained their connotations.

Finally, we discussed vacuous if-then statements and noted that mathematicians regard such

statements as true.

4 Exercises 4.1. Each of the following statements can be recast in the if-then form. Please rewrite each

of the following sentences in the form “If A, then B .”

a. The product of an odd integer and an even integer is even.

b. The square of an odd integer is odd.

c. The square of a prime number is not prime.

d. The product of two negative integers is negative. (This, of course, is false.)

e. The diagonals of a rhombus are perpendicular.

f. Congruent triangles have the same area.

g. The sum of three consecutive integers is divisible by three.

4.2. Below you will find pairs of statements A and B . For each pair, please indicate which

of the following three sentences are true and which are false:
� If A, then B .
� If B , then A.
� A if and only if B .
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Note: You do not need to prove your assertions.

a. A: Polygon PQRS is a rectangle. B: Polygon PQRS is a square.

b. A: Polygon PQRS is a rectangle. B: Polygon PQRS is a parallelogram.

c. A: Joe is a grandfather. B: Joe is male.

d. A: Ellen resides in Los Angeles. B: Ellen resides in California.

e. A: This year is divisible by 4. B: This year is a leap year.

f. A: Lines `1 and `2 are parallel. B: Lines `1 and `2 are perpendicular.

For the remaining items, x and y refer to real numbers.

g. A: x > 0. B: x2 > 0.

h. A: x < 0. B: x3 < 0.

i. A: xy D 0. B: x D 0 or y D 0.

j. A: xy D 0. B: x D 0 and y D 0.

k. A: x C y D 0. B: x D 0 and y D 0.

4.3. It is a common mistake to confuse the following two statements:The statement “If B, then A” is

called the converse of the statement

“If A, then B.”
a. If A, then B .

b. If B , then A.

Find two conditions A and B such that statement (a) is true but statement (b) is false.

4.4. Consider the two statements

a. If A, then B .

b. (not A) or B .

Under what circumstances are these statements true?When are they false? Explain why

these statements are, in essence, identical.

4.5. Consider the two statementsThe statement “If (not B), then (not

A)” is called the contrapositive of

the statement “If A, then B.”
a. If A, then B .

b. If (not B), then (not A).

Under what circumstances are these statements true?When are they false? Explain why

these statements are, in essence, identical.

4.6. Consider the two statements

a. A iff B .

b. (not A) iff (not B).

Under what circumstances are these statements true? Under what circumstances are

they false? Explain why these statements are, in essence, identical.

4.7. Consider an equilateral triangle whose side lengths are a D b D c D 1. Notice that in

this case a2
Cb2

6D c2. Explain why this is not a violation of the Pythagorean Theorem.

4.8. Explain how to draw a triangle on the surface of a sphere that has three right angles.A side of a spherical triangle is an

arc of a great circle of the sphere on

which it is drawn.
Do the legs and hypotenuse of such a right triangle satisfy the condition a2

Cb2
D c2?

Explain why this is not a violation of the Pythagorean Theorem.

4.9. Consider the sentence “A line is the shortest distance between two points.” Strictly

speaking, this sentence is nonsense.

Find two errors with this sentence and rewrite it properly.

4.10. Consider the following rather grotesque claim: “If you pick a guinea pig up by its tail,

then its eyes will pop out.” Is this true?

4.11. What are the two plurals of the word lemma?

4.12. More about conjectures. Where do new theorems come from? They are the creations

of mathematicians that begin as conjectures: statements about mathematics whose truth

we have yet to establish. In other words, conjectures are guesses (usually, educated

guesses). By looking at many examples and hunting for patterns, mathematicians ex-

press their observations as statements they hope to prove.

The following items are designed to lead you through the process of making con-

jectures. In each case, try out several examples and attempt to formulate your observa-

tions as a theorem to be proved. You do not have to prove these statements; for now we

simply want you to express what you find in the language of mathematics.

a. What can you say about the sum of consecutive odd numbers starting with 1? That

is, evaluate 1, 1C3, 1C3C5, 1C3C5C7, and so on, and formulate a conjecture.

b. What can you say about the sum of consecutive perfect cubes, starting with 1. That

is, what can you say about 13, 13
C 33, 13

C 33
C 53, 13

C 33
C 53

C 73, and

so on.
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c. Let n be a positive integer. Draw n lines (no two of which are parallel) in the plane.

How many regions are formed?

d. Place n points evenly around a circle. Starting at one point, draw a path to every

other point around the circle until returning to start. In some instances, every point

is visited and in some instances some are missed. Under what circumstances is every

point visited (as in the figure with n D 9)?

Suppose instead of jumping to every second point, we jump to every third point. For

what values of n does the path touch every point?

Finally, suppose we visit every kth point (where k is between 1 and n). When does

the path touch every point?

e. A school has a long hallway of lockers numbered 1, 2, 3, and so on up to 1000.

In this problem we’ll refer to flipping a locker to mean opening a closed locker or

closing an open locker. That is, to flip a locker is to change its closed/open state.
� Student #1 walks down the hallway and closes all the lockers.
� Student #2 walks down the hallway and flips all the even numbered lockers. So

now, the odd lockers are closed and the even lockers are open.
� Student #3 walks down the hall and flips all the lockers that are divisible by 3.
� Student #4 walks down the hall and flips all the lockers that are divisible by 4.
� Likewise students 5, 6, 7, and so on walk down the hall in turn, each flipping

lockers divisible by their own number until finally student 1000 flips the (one

and only) locker divisible by 1000 (the last locker).

Which lockers are open and which are closed? Generalize to any number of lockers.

Note: We ask you to prove your conjecture later; see Exercise 24.19.

5 Proof

We create mathematical concepts via definitions. We then posit assertions about mathematical

notions, and then we try to prove our ideas are correct.

What is a proof ?

In science, truth is borne out through experimentation. In law, truth is ascertained by a

trial and decided by a judge and/or jury. In sports, the truth is the ruling of referees to the best

of their ability. In mathematics, we have proof.

Truth in mathematics is not demonstrated through experimentation. This is not to say

that experimentation is irrelevant for mathematics—quite the contrary! Trying out ideas and

examples helps us to formulate statements we believe to be true (conjectures); we then try to

prove these statements (thereby converting conjectures to theorems).

For example, recall the statement “All prime numbers are odd.” If we start listing the

prime numbers beginning with 3, we find hundreds and thousands of prime numbers, and

they are all odd! Does this mean all prime numbers are odd? Of course not! We simply missed

the number 2.

Let us consider a far less obvious example.

Conjecture 5.1 (Goldbach) Every even integer greater than two is the sum of two primes.

Let’s see that this statement is true for the first few even numbers. We have

4 D 2C 2 6 D 3C 3 8 D 3C 5 10 D 3C 7

12 D 5C 7 14 D 7C 7 16 D 11C 5 18 D 11C 7:

One could write a computer program to verify that the first few billion even numbers (starting

with 4) are each the sum of two primes. Does this imply Goldbach’s Conjecture is true? No!

The numerical evidencemakes the conjecture believable, but it does not prove that it is true. To

date, no proof has been found for Goldbach’s Conjecture, so we simply do not know whether

it is true or false.

A proof is an essay that incontrovertibly shows that a statement is true. Mathematical

Mathspeak! A proof is often called

an argument. In standard English, the

word argument carries a connotation

of disagreement or controversy. No

such negative connotation should be

associated with a mathematical

argument. Indeed, mathematicians

are honored when their proofs are

called “beautiful arguments.” proofs are highly structured and are written in a rather stylized manner. Certain key phrases
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and logical constructions appear frequently in proofs. In this and subsequent sections, we

show how proofs are written.

The theorems we prove in this section are all rather simple. Indeed, you won’t learn any

facts about numbers you probably didn’t already know quite well. The point in this section

is not to learn new information about numbers; the point is to learn how to write proofs. So

without further ado, let’s start writing proofs!

We prove the following:

Proposition 5.2 The sum of two even integers is even.

We write the proof here in full, and then discuss how this proof was created. In this proof,

each sentence is numbered so we can examine the proof piece by piece. Normally we would

write this short proof as a single paragraph and not number the sentences.

Proof Proposition 5.2

1. We show that if x and y are even integers, then x C y is an even integer.

2. Let x and y be even integers.

3. Since x is even, we know by Definition 3.1 that x is divisible by 2 (i.e., 2jx).

4. Likewise, since y is even, 2jy.

5. Since 2jx, we know, by Definition 3.2, that there is an integer a such that x D 2a.

6. Likewise, since 2jy, there is an integer b such that y D 2b.

7. Observe that x C y D 2aC 2b D 2.aC b/.

8. Therefore there is an integer c (namely, aC b) such that x C y D 2c.

9. Therefore (Definition 3.2) 2j.x C y/.

10. Therefore (Definition 3.1) x C y is even.

Let us examine exactly how this proof was written.

� The first step is to convert the statement of the proposition into the if-then form.Convert the statement to if-then

form. The statement reads, “The sum of two even integers is even.”

We convert the statement into if-then form as follows:

“If x and y are even integers, then x C y is an even integer.”

Note that we introduced letters (x and y) to name the two even integers. These letters

come in handy in the proof.

Observe that the first sentence of the proof spells out the proposition in if-then form.

Sentence 1 announces the structure of this proof. The hypothesis (the “if” part) tells

the reader that we will assume that x and y are even integers, and the conclusion (the

“then” part) tells the reader that we are working to prove that x C y is even.

Sentence 1 can be regarded as a preamble to the proof. The proof starts in earnest at

sentence 2.
� The next step is to write the very beginning and the very end of the proof.Write the first and last sentences

using the hypothesis and conclusion

of the statement.
The hypothesis of sentence 1 tells us what to write next. It says, “. . . if x and y are

even integers. . . ,” so we simply write, “Let x and y be even integers.” (Sentence 2)

Immediately after we write the first sentence, we write the very last sentence of the

proof. The last sentence of the proof is a rewrite of the conclusion of the if-then form of

the statement.

“Therefore, x C y is even.” (Sentence 10)

The basic skeleton of the proof has been constructed. We know where we begin (x

and y are even), and we know where we are heading (x C y is even).
� The next step is to unravel definitions. We do this at both ends of the proof.Unravel definitions.

Sentence 2 tells us that x is even. What does this mean? To find out, we check (or

we remember) the definition of the word even. (Take a quick look at Definition 3.1 on

page 4.) It says that an integer is even provided it is divisible by 2. So we know that x is

divisible by 2, and we can also write that as 2jx; this gives sentence 3.

Sentence 4 does the same job as sentence 3. Since the reasoning in sentence 4 is

identical to that of sentence 3, we use the word likewise to flag this parallel construction.

We now unravel the definition of divisible. We consult Definition 3.2 to learn that 2jx

means there is an integer—we need to give that integer a name and we call it a—so that
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x D 2a. So sentence 5 just unravels sentence 3. Similarly (likewise!) sentence 6 unravels

the fact that 2jy (sentence 4), and we know we have an integer b such that y D 2b.

At this point, we are stuck. We have unraveled all the definitions at the beginning of

the proof, so now we return to the end of the proof and work backward!

We are still in the “unravel definitions” phase of writing this proof. The last sentence

of the proof says, “Therefore x C y is even.” How do we prove an integer is even? We

turn to the definition of even, and we see that we need to prove that x C y is divisible by

2. So we know that the penultimate sentence (number 9) should say that xCy is divisible

by 2.

How do we get to sentence 9? To show that an integer (namely, x C y) is divisible

by 2, we need to show there is an integer—let’s call it c—such that .x C y/ D 2c. This

gives sentence 8.

Now we have unraveled definitions from both ends of the proof. Let’s pause a mo-

ment to see what we have. The proof (written more tersely here) reads:

We show that if x and y are even integers, then x C y is an even integer.

Let x and y be even integers. By definition of even, we know that 2jx and 2jy.

By definition of divisibility, we know there are integers a and b such that x D 2a

and y D 2b.

:
:
:

Therefore there is an integer c such that xCy D 2c; hence 2j.xCy/, and therefore

x C y is even.

� The next step is to think. What do we know and what do we need?What do we know? What do we

need? Make the ends meet. We know x D 2a and y D 2b. We need an integer c such that x C y D 2c. So in

this case, it is easy to see that we can take c D a C b because the sum of two integers

is an integer. We fill in the middle of the proof with sentence 7 and we are finished! To

celebrate, and to mark the end of the proof, we append an end-of-proof symbol to the end

of the proof:

This middle step—which was quite easy—is actually the hardest part of the proof.

The translation of the statement of the proposition into if-then form and the unraveling of

definitions are routine; once you have written several proofs, you will find these steps are

easily produced. The hard part comes when you try to make ends meet!

The proof of Proposition 5.2 is the most basic type of proof; it is called a direct

proof. The steps in writing a direct proof of an if-then statement are summarized in Proof

Template 1.

Proof Template 1 Direct proof of an if-then theorem.

� Write the first sentence(s) of the proof by restating the hypothesis of the result. Invent

suitable notation (e.g., assign letters to stand for variables).
� Write the last sentence(s) of the proof by restating the conclusion of the result.
� Unravel the definitions, working forward from the beginning of the proof and back-

ward from the end of the proof.
� Figure out what you know and what you need. Try to forge a link between the two

halves of your argument.

Let’s use the direct proof technique to prove another result.
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Proposition 5.3 Let a, b, and c be integers. If ajb and bjc, then ajc.

The first step in creating the proof of this proposition is to write the first and last sentences

based on the hypothesis and conclusion. This gives

Suppose a, b, and c are integers with ajb and bjc.

. . .

Therefore ajc.

Next we unravel the definition of divisibility.

Suppose a, b, and c are integers with ajb and bjc. Since ajb, there is an integer x such

that b D ax. Likewise there is an integer y such that c D by.

. . .

Therefore there is an integer z such that c D az. Therefore ajc.

We have unraveled the definitions. Let’s consider what we have and what we need.

We have a, b, c, x, and y such that: b D ax and c D by:

We want to find z such that: c D az:

Now we have to think, but fortunately the problem is not too hard. Since b D ax, we can

substitute ax for b in c D by and get c D axy. So the z we need is z D xy. We can use this

to finish the proof of Proposition 5.3.

Suppose a, b, and c are integers with ajb and bjc. Since ajb, there is an integer x such

that b D ax. Likewise there is an integer y such that c D by. Let z D xy. Then

az D a.xy/ D .ax/y D by D c.

Therefore there is an integer z such that c D az. Therefore ajc.

A More Involved Proof

Propositions 5.2 and 5.3 are rather simple and not particularly interesting. Here we develop a

more interesting proposition and its proof.

One of the most intriguing and most difficult issues in mathematics is the pattern of prime

and composite numbers. Here is one pattern for you to consider. Pick a positive integer, cube

it, and then add one. Some examples:

3
3
C 1 D 27C 1 D 28;

4
3
C 1 D 64C 1 D 65;

5
3
C 1 D 125C 1 D 126; and

6
3
C 1 D 216C 1 D 217:

Notice that the results are all composite. (Note that 217 D 7 � 31.) Try a few more examples

on your own.

Let us try to convert this observation into a proposition for us to prove. Here’s a first (but

incorrect) draft: “If x is an integer, then x3
C 1 is composite.” This is a good start, but when

we examine Definition 3.6, we note that the term composite applies only to positive integers.

If x is negative, then x3
C 1 is either negative or zero.

Fortunately, it’s easy to repair the draft statement; here is a second version: “If x is a

positive integer, then x3
C 1 is composite.” This looks better, but we’re in trouble already

when x D 1 because, in this case, x3
C 1 D 13

C 1 D 2, which is prime. This makes us

worry about the entire idea, but we note that when x D 2, x
3
C 1 D 2

3
C 1 D 9, which is

composite, and we can try many other examples with x > 1 and always meet with success.
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The case x D 1 turns out to be the only positive exception, and this leads us to a third (and

correct) version of the proposition we wish to prove.

Proposition 5.4 Let x be an integer. If x > 1, then x3
C 1 is composite.

Let’s write down the basic outline of the proof.

Let x be an integer and suppose x > 1.

: : :

Therefore x3
C 1 is composite.

To reach the conclusion that x3
C 1 is composite, we need to find a factor of x3

C 1 that

is strictly between 1 and x3
C 1. With luck, the word factor makes us think about factoring

the polynomial x3
C 1 as a polynomial. Recall from basic algebra thatYou might have the following

concern: “I forgot that x3
C 1

factors. How would I ever come up

with this proof?” One idea is to look

for patterns in the factors. We saw

that 63
C 1 D 7 � 31, so 63

C 1 is

divisible by 7. Trying more

examples, you may notice that

73
C 1 is divisible by 8, 83

C 1 is

divisible by 9, 93
C 1 is divisible by

10, and so on. With luck, that will

help you realize that x3
C 1 is

divisible by xC 1, and then you can

complete the factorization

x3
C 1D .xC 1/�‹.

x
3
C 1 D .x C 1/.x

2
� x C 1/:

This is the “Aha!” insight we need. Both x C 1 and x2
� x C 1 are factors of x3

C 1. For

example, when x D 6, the factors x C 1 and x2
� x C 1 evaluate to 7 and 31, respectively.

Let’s add this insight to our proof.

Let x be an integer and suppose x > 1. Note that x3
C 1 D .x C 1/.x2

� x C 1/.

: : :

Since x C 1 is a divisor of x3
C 1, we have that x3

C 1 is composite.

To correctly say that x C 1 is a divisor of x3
C 1, we need the fact that both x C 1 and

x2
� x C 1 are integers. This is clear, because x itself is an integer. Let’s be sure we include

this detail in our proof.

Let x be an integer and suppose x > 1. Note that x3
C1 D .xC1/.x2

�xC1/. Because

x is an integer, both x C 1 and x2
� x C 1 are integers. Therefore .x C 1/j.x3

C 1/.

: : :

Since x C 1 is a divisor of x
3
C 1, we have that x

3
C 1 is composite.

The proof isn’t quite finished yet. Consult Definition 3.6; we need that the divisor be

strictly between 1 and x3
C 1, and we have not proved that yet. So let’s figure out what we

need to do. We must prove

1 < x C 1 < x
3
C 1:

The first part is easy. Since x > 1, adding 1 to both sides gives

x C 1 > 1C 1 D 2 > 1:

Showing that xC 1 < x3
C 1 is only slightly more difficult. Working backward, to show

x C 1 < x3
C 1, it will be enough if we can prove that x < x3. Notice that since x > 1,

multiplying both sides by x gives x
2

> x, and since x > 1, we have x
2

> 1. Multiplying

both sides of this by x gives x3 > x. Let’s take these ideas and add them to the proof.
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Let x be an integer and suppose x > 1. Note that x3
C1 D .xC1/.x2

�xC1/. Because

x is an integer, both x C 1 and x2
� x C 1 are integers. Therefore .x C 1/j.x3

C 1/.

Since x > 1, we have x C 1 > 1C 1 D 2 > 1.

Also x > 1 implies x
2

> x, and since x > 1, we have x
2

> 1. Multiplying both

sides by x again yields x3 > x. Adding 1 to both sides gives x3
C 1 > x C 1.

Thus x C 1 is an integer with 1 < x C 1 < x3
C 1.

Since xC 1 is a divisor of x3
C 1 and 1 < xC 1 < x3

C 1, we have that x3
C 1 is

composite.

Proving If-and-Only-If Theorems

The basic technique for proving a statement of the form “A iff B” is to prove two if-then

statements. We prove both “If A, then B” and “If B , then A.” Here is an example:

Proposition 5.5 Let x be an integer. Then x is even if and only if x C 1 is odd.

The basic skeleton of the proof is as follows:

Let x be an integer.

.)/ Suppose x is even. . . . Therefore x C 1 is odd.

.(/ Suppose x C 1 is odd. . . . Therefore x is even.

Notice that we flag the two sections of the proof with the symbols .)/ and .(/. This

lets the reader know which section of the proof is which.

Now we unravel the definitions at the front of each part of the proof. (Recall the definition

of odd; see Definition 3.4 on page 5.)

Let x be an integer.

.)/ Suppose x is even. This means that 2jx. Hence there is an integer a such that

x D 2a. . . . Therefore x C 1 is odd.

.(/ Suppose x C 1 is odd. So there is an integer b such that x C 1 D 2b C 1.

. . . Therefore x is even.

The next steps are clear. In the first part of the proof, we have x D 2a, and we want to

prove x C 1 is odd. We just add 1 to both sides of x D 2a to get x C 1 D 2a C 1, and that

shows that x C 1 is odd.

In the second part of the proof, we know xC 1 D 2bC 1, and we want to prove that x is

even. We subtract 1 from both sides and we are finished.

Let x be an integer.

.)/ Suppose x is even. This means that 2jx. Hence there is an integer a such that

x D 2a. Adding 1 to both sides gives x C 1 D 2aC 1. By the definition of odd, x C 1

is odd.

.(/ Suppose x C 1 is odd. So there is an integer b such that x C 1 D 2b C 1.

Subtracting 1 from both sides gives x D 2b. This shows that 2jx and therefore x is

even.

Proof Template 2 shows the basic method for proving an if-and-only-if theorem.
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Proof Template 2 Direct proof of an if-and-only-if theorem.

To prove a statement of the form “A iff B”:

� .)/ Prove “If A, then B .”
� .(/ Prove “If B , then A.”

As you become more comfortable writing proofs, you may find yourself getting boredWhen is it safe to skip steps?

writing the same steps over and over again. We have seen the sequence (1) x is even, so (2) x

is divisible by 2, so (3) there is an integer a such that x D 2a several times already. You

may be tempted to skip step (2) and just write “x is even, so there is an integer a such that

x D 2a.” The decision about skipping steps requires some careful judgment, but here are

some guidelines.

� Would it be easy (and perhaps boring) for you to fill in the missing steps? Are the missing

steps obvious? If you answer yes, then omit the steps.
� Does the same sequence of steps appear several times in your proof(s), but the sequence

of steps is not very easy to reconstruct? Here you have two choices:

– Write the sequence of steps out once, and the next time the same sequence appears,

use an expression such as “as we saw before” or “likewise.”

– Alternatively, if the consequence of the sequence of steps can be described in a state-

ment, first prove that statement, calling it a lemma. Then invoke (refer to) your lemma

whenever you need to repeat those steps.

� When in doubt, write it out.

Let us illustrate the idea of explicitly separating off a portion of a proof into a lemma.

Consider the following statement.

Proposition 5.6 Let a, b, c, and d be integers. If ajb, bjc, and cjd , then ajd .

Here is the proof as suggested by Proof Template 1.

Let a, b, c, and d be integers with ajb, bjc, and cjd .

Since ajb, there is an integer x such that ax D b.

Since bjc, there is an integer y such that by D c.

Since cjd , there is an integer z such that cz D d .

Note that a.xyz/ D .ax/.yz/ D b.yz/ D .by/z D cz D d .

Therefore there is an integer w D xyz such that aw D d .

Therefore ajd .

There is nothing wrong with this proof, but there is a simpler, less verbose way to handle

it. We have already shown that ajb; bjc) ajc in Proposition 5.3. Let us use this proposition

to prove Proposition 5.6.

Here is the alternative proof.

Let a, b, c, and d be integers with ajb, bjc, and cjd .

Since ajb and bjc, by Proposition 5.3 we have ajc.

Now, since ajc and cjd , again by Proposition 5.3 we have ajd .

The key idea is to use Proposition 5.3 twice. Once it was applied to a, b, and c to get ajc.

When we have established that ajc, we can use Proposition 5.3 again on the integers a, c, and

d to finish the proof.

Proposition 5.3 serves as a lemma in the proof of Proposition 5.6.



22 Chapter 1 Fundamentals

Proving Equations and Inequalities

The basic algebraic manipulations you already know are valid steps in a proof. It is not nec-

essary for you to prove that x C x D 2x or that x2
� y2

D .x � y/.x C y/. In your proofs,

feel free to use standard algebraic steps without detailed comment.

However, even these simple facts can be proved using the fundamental properties of num-

bers and operations (see Appendix D). We show how here, simply to illustrate that algebraic

manipulations can be justified in terms of more basic principles.

For x C x D 2x:

x C x D 1 � x C 1 � x 1 is the identity element for multiplication

D .1C 1/x distributive property

D 2x because 1C 1 D 2.

For .x � y/.x C y/ D x2
� y2:

.x � y/.x C y/ D x.x C y/ � y.x C y/ distributive property

D x
2
C xy � yx � y

2 distributive property

D x
2
C xy � xy � y

2 commutative property for multiplication

D x
2
C 1xy � 1xy � y

2
1 is the identity element for multiplication

D x
2
C .1 � 1/xy � y

2 distributive property

D x
2
C 0xy � y

2 because 1 � 1 D 0

D x
2
C 0 � y

2 because anything multiplied by 0 is 0

D x
2
� y

2
0 is the identity element for addition.

Working with inequalities may be less familiar, but the basic steps are the same. For

example, suppose you are asked to prove the following statement: If x > 2 then x2 > x C 1.

Here is a proof:

Proof. We are given that x > 2. Since x is positive, multiplying both sides by x givesWe need to comment that x is

positive because multiplying both

sides of an inequality by a negative

number reverses the inequality.

x2 > 2x. So we have

x
2

> 2x

D x C x

> x C 2 because x > 2

> x C 1 because 2 > 1.

Therefore, by transitivity, x2 > x C 1.

See the discussion of Ordering in

Appendix D for a review of

transitivity.

Recap

We introduced the concept of proof and presented the basic technique of writing a direct proof

for an if-then statement. For if-and-only-if statements, we apply this basic technique to both

the forward .)/ and the backward .(/ implications.

5 Exercises 5.1. Prove that the sum of two odd integers is even.

5.2. Prove that the sum of an odd integer and an even integer is odd.

5.3. Prove that if n is an odd integer, then �n is also odd.

5.4. Prove that the product of two even integers is even.

5.5. Prove that the product of an even integer and an odd integer is even.

5.6. Prove that the product of two odd integers is odd.

5.7. Prove that the square of an odd integer is odd.

5.8. Prove that the cube of an odd integer is odd.

5.9. Suppose a, b, and c are integers. Prove that if ajb and ajc, then aj.b C c/.

5.10. Suppose a, b, and c are integers. Prove that if ajb, then aj.bc/.

5.11. Suppose a, b, d , x, and y are integers. Prove that if d ja and d jb, then d j.ax C by/.

5.12. Suppose a, b, c, and d are integers. Prove that if ajb and cjd , then .ac/j.bd/.
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5.13. Let x be an integer. Prove that x is odd if and only if x C 1 is even.

5.14. Let x be an integers. Prove that x is odd if and only if there is an integer b such that
Note that Exercise 5.14 provides an

alternative to Definition 3.4. To show

that a number x is odd we can either

look for an integer a so that

x D 2aC 1 (using the definition) or

we can look for an integer b so that

x D 2b � 1 (using the result you

prove here).

x D 2b � 1.

5.15. Let x be an integer. Prove that 0jx if and only if x D 0.

5.16. Let a and b be integers. Prove that a < b if and only if a � b � 1.

5.17. Let a be a number with a > 1. Prove that a number x is strictly between 1 and
p

a if

and only if a=x is strictly between
p

a and a.

You may assume that 1 <
p

a < a. (We ask you to prove this later; see Exer-

cise 20.10.)

5.18. Prove that the difference between consecutive perfect squares is odd.By consecutive perfect squares we

mean numbers such as 32 and 42 or

122 and 132.
5.19. Let a be a perfect square. Prove that a is the square on a nonnegative integer.

5.20. For real numbers a and b, prove that if 0 < a < b, then a2 < b2.

5.21. Prove that the difference between distinct, nonconsecutive perfect squares is composite.

5.22. Prove that an integer is odd if and only if it is the sum of two consecutive integers.

5.23. Suppose you are asked to prove a statement of the form “If A or B , then C .” Explain

why you need to prove (a) “If A, then C ” and also (b) “If B , then C .” Why is it not

enough to prove only one of (a) and (b)?

5.24. Suppose you are asked to prove a statement of the form “A iff B .” The standard method

is to prove both A) B and B ) A.

Consider the following alternative proof strategy: Prove bothA) B and .not A/)

.not B/. Explain why this would give a valid proof.

6 Counterexample

In the previous section, we developed the notion of proof: a technique to demonstrate ir-

refutably that a given statement is true. Not all statements about mathematics are true! Given

a statement, how do we show that it is false? Disproving false statements is often simpler than

proving theorems. The typical way to disprove an if-then statement is to create a counterex-

ample. Consider the statement “If A, then B .” A counterexample to such a statement would

be an instance where A is true but B is false.

For example, consider the statement “If x is a prime, then x is odd.” This statement is

false. To prove that it is false, we just have to give an example of an integer that is prime but

is not odd. The integer 2 has the requisite properties.

Let’s consider another false statement.

Statement 6.1 (false) Let a and b be integers. If ajb and bja, then a D b.

This statement appears plausible. It seems that if ajb, then a � b, and if bja, then b � a,

and so a D b. But this reasoning is incorrect.

To disprove Statement 6.1, we need to find integers a and b that, on the one hand, satisfy

ajb and bja but, on the other hand, do not satisfy a D b.

Here is a counterexample: Take a D 5 and b D �5. To check that this is a counterexam-

ple, we simply note that, on the one hand, 5j � 5 and �5j5 but, on the other hand, 5 6D �5.

Proof Template 3 Refuting a false if-then statement via a counterexample.

To disprove a statement of the form “If A, then B”:

Find an instance where A is true but B is false.

Refuting false statements is usually easier than proving true statements. However, finding

counterexamples can be tricky. To create a counterexample, I recommend you try creating

several instances where the hypothesis of the statement is true and check each to see whether

or not the conclusion holds. All it takes is one counterexample to disprove a statement.

Unfortunately, it is easy to get stuck in a thinking rut. For Statement 6.1, we might con-

sider 3j3 and 4j4 and 5j5 and never think about making one number positive and the other

negative.
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Try to break out of such a rut by creating strange examples. Don’t forget about the number

0 (which acts strangely) and negative numbers. Of course, following that advice, we might still

be stuck in the rut 0j0, �1j � 1, �2j � 2, and so on.

Here is a strategy for finding counterexamples. Begin by trying to prove the statement;A strategy for finding

counterexamples. when you get stuck, try to figure out what the problem is and look there to build a counterex-

ample.

Let’s apply this technique to Statement 6.1. We start, as usual, by converting the hypoth-

esis and conclusion of the statement into the beginning and end of the proof.

Let a and b be integers with ajb and bja. . . . Therefore a D b.

Next we unravel definitions.

Let a and b be integers with ajb and bja. Since ajb, there is an integer x such that

b D ax. Since bja, there is an integer y such that a D by. . . . Therefore a D b.

Now we ask: What do we know? What do we need? We know

b D ax and a D by

and we want to show a D b. To get there, we can try to show that x D y D 1. Let’s try to

solve for x or y.

Since we have two expressions in terms of a and b, we can try substituting one in the

other. We use the fact that b D ax to eliminate b from a D by. We get

a D by ) a D .ax/y ) a D .xy/a:

It now looks quite tempting to divide both sides of the last equation by a, but we need to worry

that perhaps, a D 0. Let’s ignore the possibility of a D 0 for just a moment and go ahead and

write xy D 1. We see that we have two integers whose product is 1. And we realize at this

point that there are two ways that can happen: either 1 D 1 � 1 or 1 D �1 � �1. So although

we know xy D 1, we can’t conclude that x D y D 1 and finish the proof. We’re stuck and

now we consider the possibility that Statement 6.1 is false. We ask: What if x D y D �1?

We see that this would imply that a D �b; for example, a D 5 and b D �5. And then we

realize that in such a case, ajb and bja but a 6D b. We have found a counterexample. Do we

need to go back to our worry that perhaps a D 0? No! We have refuted the statement with our

counterexample. The attempted proof served only to help us find a counterexample.

Recap

This section showed how to disprove an if-then statement by finding an example that satisfies

the hypothesis of the statement but not the conclusion.

6 Exercises 6.1. Disprove: If a and b are integers with ajb, then a � b.

6.2. Disprove: If a and b are nonnegative integers with ajb, then a � b.

Note: A counterexample to this statement would also be a counterexample for the pre-

vious problem, but not necessarily vice versa.

6.3. Disprove: If a, b, and c are positive integers with aj.bc/, then ajb or ajc.

6.4. Disprove: If a, b, and c are positive integers, then a.bc/
D .ab/c .

6.5. Disprove: If p and q are prime, then p C q is composite.

6.6. Disprove: If p is prime, then 2p
� 1 is also prime.

6.7. Disprove: If n is a nonnegative integer, then 2.2n/
C 1 is prime.

6.8. An integer is a palindrome if it reads the same forwards and backwards when expressed

in base-10. For example, 1331 is a palindrome.

Disprove: All palindromes with two or more digits are divisible by 11.

6.9. Consider the polynomial n2
C nC 41.

(a) Calculate the value of this polynomial for n D 1; 2; 3; : : : ; 10.

Notice that all the numbers you computed are prime.

(b) Disprove: If n is a positive integer, then n2
C nC 41 is prime.
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6.10. What does it mean for an if-and-only-if statement to be false? What properties should

a counterexample for an if-and-only-if statement have?

6.11. Disprove: An integer x is positive if and only if x C 1 is positive.

6.12. Disprove: Two right triangles have the same area if and only if the lengths of their

hypotenuses are the same.

6.13. Disprove: A positive integer is composite if and only if it has two different prime fac-

tors.

7 Boolean Algebra

Algebra is useful for reasoning about numbers. An algebraic relationship, such as x2
� y2

D

.x � y/.x C y/, describes a general relationship that holds for any numbers x and y.

In a similar way, Boolean algebra provides a framework for dealing with statements. We

begin with basic statements, such as “x is prime,” and combine them using connectives such

as if-then, and, or, not, and so on.

For example, in Section 4 youwere asked (see Exercise 4.4) to explain why the statements

“If A, then B” and “(not A) or B” mean essentially the same thing. In this section, we present

a simple method for showing that such sentences have the same meaning.

In an ordinary algebraic expression, such as 3x�4, letters stand for numbers, and the op-

erations are the familiar ones of addition, subtraction, multiplication, and so forth. The value

of the expression 3x � 4 depends on the number x. When x D 1, the value of the expression

is �1, and if x D 10, the value is 26.

Boolean algebra also has expressions containing letters and operations. Letters (variables)Variables stand for TRUE and FALSE.

in a Boolean expression do not stand for numbers. Rather, they stand for the values TRUE and

FALSE. Thus letters in a Boolean algebraic expression can only have two values!

There are several operations we can perform on the values TRUE and FALSE. The mostThe basic operations of Boolean

algebra are ^, _, and :. These

operations are also present in many

computer languages. Since computer

keyboards typically do not have these

symbols, the symbols & (for ^), j

(for _), and� (for :) are often used

instead.

basic operations are called and (symbol: ^), or (symbol: _), and not (symbol: :).

We begin with ^. To define ^, we need to define the value of x^y for all possible values

of x and y. Since there are only two possible values for each of x and y, this is not hard.

Without further ado, here is the definition of the operation ^.

TRUE ^ TRUE D TRUE

TRUE ^ FALSE D FALSE

FALSE ^ TRUE D FALSE

FALSE ^ FALSE D FALSE:

In other words, the value of the expression x ^ y is TRUE when both x and y are TRUE and

is FALSE otherwise. A convenient way to write all this is in a truth table, which is a chart

showing the value of a Boolean expression depending on the values of the variables. Here is

a truth table for the operation ^.

x y x ^ y

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

The definition of the operation ^ is designed to mirror exactly the mathematical use of

the English word and. Similarly, the Boolean operation _ is designed to mirror exactly the

mathematical use of the English word or. Here is the definition of _.

TRUE _ TRUE D TRUE

TRUE _ FALSE D TRUE

FALSE _ TRUE D TRUE

FALSE _ FALSE D FALSE:
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In other words, the value of the expression x _ y is TRUE in all cases except when both

x and y are FALSE. We summarize this in a truth table.

x y x _ y

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

The third operation,:, is designed to reproduce the mathematical use of the English word

not:

:TRUE D FALSE

:FALSE D TRUE:

In truth table form, : is as follows:

x :x

TRUE FALSE

FALSE TRUE

Ordinary algebraic expressions (e.g., 3�2�4) may combine several operations. Likewise

we can combine the Boolean operations. For example, consider

TRUE ^ ..:FALSE/ _ FALSE/:

Let us calculate the value of this expression step by step:

TRUE ^ ..:FALSE/ _ FALSE/ D TRUE ^ .TRUE _ FALSE/

D TRUE ^ TRUE

D TRUE:

In algebra we learn how to manipulate formulas so we can derive identities such as

.x C y/
2
D x

2
C 2xy C y

2
:

In Boolean algebra we are interested in deriving similar identities. Let us begin with a simple

example:

x ^ y D y ^ x:

What does this mean? The ordinary algebraic identity .xCy/2
D x2

C 2xyCy2 means that

once we choose (numeric) values for x and y, the two expressions .xCy/
2 and x

2
C2xyCy

2

must be equal. Similarly, the identity x^y D y^x means that once we choose (truth) values

for x and y, the results x ^ y and y ^ x must be the same.

Now it would be ridiculous to try to prove an identity such as .xCy/
2
D x

2
C2xyCy

2

by trying to substitute all possible values for x and y—there are infinitely many possibilities!

However, it is not hard to try all the possibilities to prove a Boolean algebraic identity. In the

case of x ^ y D y ^ x, there are only four possibilities. Let us summarize these in a truth

table.

x y x ^ y y ^ x

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE FALSE

FALSE TRUE FALSE FALSE

FALSE FALSE FALSE FALSE

By running through all possible combinations of values for x and y, we have a proof that

x ^ y D y ^ x.

When two Boolean expressions, such as x^y and y^x, are equal for all possible valuesLogical equivalence.

of their variables, we call these expressions logically equivalent. The simplest method to show

that two Boolean expressions are logically equivalent is to run through all the possible values

for the variables in the two expressions and to check that the results are the same in every

case.
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Let us consider a more interesting example.

Proposition 7.1 The Boolean expressions :.x ^ y/ and .:x/ _ .:y/ are logically equivalent.

Proof. To show this is true, we construct a truth table for both expressions. To save space,

we write T for TRUE and F for FALSE.

x y x ^ y :.x ^ y/ :x :y .:x/ _ .:y/

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

The important thing to notice is that the columns for:.x^y/ and .:x/_.:y/ are exactly the

same. Therefore, no matter how we choose the values for x and y, the expressions :.x ^ y/

and .:x/ _ .:y/ evaluate to the same truth value. Therefore the expressions :.x ^ y/ and

.:x/ _ .:y/ are logically equivalent.

Proof Template 4 Truth table proof of logical equivalence

To show that two Boolean expressions are logically equivalent:

Construct a truth table showing the values of the two expressions for all possible values

of the variables.

Check to see that the two Boolean expressions always have the same value.

Proofs by means of truth tables are easy but dull. The following result summarizes the

basic algebraic properties of the operations ^, _, and :. In several cases, we give names for

the properties.

Theorem 7.2

� x ^ y D y ^ x and x _ y D y _ x. (Commutative properties)
� .x ^ y/ ^ z D x ^ .y ^ z/ and .x _ y/ _ z D x _ .y _ z/. (Associative properties)
� x ^ TRUE D x and x _ FALSE D x. (Identity elements)
�
:.:x/ D x.

� x ^ x D x and x _ x D x.
� x ^ .y _ z/ D .x ^ y/ _ .x ^ z/ and x _ .y ^ z/ D .x _ y/ ^ .x _ z/. (Distributive

properties)
� x ^ .:x/ D FALSE and x _ .:x/ D TRUE.
�
:.x ^ y/ D .:x/ _ .:y/ and :.x _ y/ D .:x/ ^ .:y/. (DeMorgan’s Laws)

All of these logical equivalences are easily proved via truth tables. In some of these

identities, there is only one variable (e.g., x^:x D FALSE); in this case, there would be only

two rows in the truth table (one for x D TRUE and one for x D FALSE). In the cases where

there are three variables, there are eight rows in the truth table as .x; y; z/ take on the possible

values .T;T;T/, .T;T;F/, .T;F;T/, .T;F;F/, .F;T;T/, .F;T;F/, .F;F;T/, and .F;F;F/.

More Operations

The operations ^, _, and : were created to replicate mathematicians’ use of the words and,

or, and not. We now introduce two more operations,! and$, designed to model statements

of the form “If A, then B” and “A if and only if B ,” respectively. The simplest way to define

these is through truth tables.
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x y x ! y

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE TRUE

FALSE FALSE TRUE

and

x y x $ y

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE TRUE

The expression x ! y models an if-then statement. We have x ! y D TRUE except

when x D TRUE and y D FALSE. Likewise the statement “If A, then B” is true unless

there is an instance in which A is true but B is false. Indeed, the arrow! reminds us of the

implication arrow).

Similarly, the expression x $ y models the statement “A if and only if B .” The expres-

sion x $ y is true provided x and y are either both true or both false. Likewise the statement

“A () B” is true provided that in every instance A and B are both true or both false.

Let us revisit the issue that the statements “If A, then B” and “(not A) or B” mean the

same thing (see Exercise 4.4).

Proposition 7.3 The expressions x ! y and .:x/ _ y are logically equivalent.

Proof. We construct a truth table for both expressions.

x y x ! y :x y .:x/ _ y

TRUE TRUE TRUE FALSE TRUE TRUE

TRUE FALSE FALSE FALSE FALSE FALSE

FALSE TRUE TRUE TRUE TRUE TRUE

FALSE FALSE TRUE TRUE FALSE TRUE

The columns for x ! y and .:x/ _ y are the same, and therefore these expressions are

logically equivalent.

Proposition 7.3 shows how the operation! can be reexpressed just in terms of the ba-

sic operations _ and :. Similarly, the operation $ can be expressed in terms of the basic

operations ^, _, and : (see Exercise 7.15).

Recap

This section presented Boolean algebra as “arithmetic” with the values TRUE and FALSE.

The basic operations are ^, _, and :. Two Boolean expressions are logically equivalent pro-

vided they always yield the same values when we substitute for their variables. We can prove

Boolean expressions are logically equivalent using truth tables. We concluded this section by

defining the operations! and$.

7 Exercises 7.1. Do the following calculations:

a. TRUE ^ TRUE ^ TRUE ^ TRUE ^ FALSE.

b. .:TRUE/ _ TRUE.

c. :.TRUE _ TRUE/.

d. .TRUE _ TRUE/ ^ FALSE.

e. TRUE _ .TRUE ^ FALSE/.

The point of the last four is that the order in which you do the operations matters!

Compare the expressions in (b)–(c) and (d)–(e) and note that they are the same except

for the placement of the parentheses.

Now rethink your answer to (a). Does your answer to (a) depend on the order in

which you do the operations?

7.2. Prove by use of truth tables as many parts of Theorem 7.2 as you can tolerate.

7.3. Prove: .x ^ y/ _ .x ^ :y/ is logically equivalent to x.

7.4. Prove: x ! y is logically equivalent to .:y/! .:x/.An if-then statement is logically

equivalent to its contrapositive. 7.5. Prove: x $ y is logically equivalent to .:x/$ .:y/.

7.6. Prove: x $ y is logically equivalent to .x ! y/ ^ .y ! x/.
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7.7. Prove: x $ y is logically equivalent to .x ! y/ ^ ..:x/! .:y//.

7.8. Prove: .x _ y/! z is logically equivalent to .x ! z/ ^ .y ! z/.

7.9. Suppose we have two Boolean expressions that involve ten variables. To prove that

these two expressions are logically equivalent, we construct a truth table. How many

rows (besides the “header” row) would this table have?

7.10. How would you disprove a logical equivalence? Show the following:

a. x ! y is not logically equivalent to y ! x.An if-then statement is not logically

equivalent to its converse. b. x ! y is not logically equivalent to x $ y.

c. x _ y is not logically equivalent to .x ^ :y/ _ ..:x/ ^ y/.

7.11. A tautology is a Boolean expression that evaluates to TRUE for all possible values of its

variables. For example, the expression x_:x is TRUE both when x D TRUE and when

x D FALSE. Thus x _ :x is a tautology.

Explain how to use a truth table to prove that a Boolean expression is a tautology

and prove that the following are tautologies.

a. .x _ y/ _ .x _ :y/.

b. .x ^ .x ! y//! y.

c. .:.:x//$ x.

d. x ! x.

e. ..x ! y/ ^ .y ! z//! .x ! z/.

f. FALSE! x.

g. .x ! FALSE/! :x.

h. ..x ! y/ ^ .x ! :y//! :x.

7.12. In the previous problem you proved that certain Boolean formulas are tautologies by

creating truth tables. Another method is to use the properties listed in Theorem 7.2

together with the fact that x ! y is equivalent to .:x/ _ y (Proposition 7.3).

For example, part (b) asks you to establish that the formula .x ^ .x ! y//! y is

a tautology. Here is a derivation of that fact:

.x ^ .x ! y//! y D Œx ^ .:x _ y/�! y translate!

D Œ.x ^ :x/ _ .x ^ y/�! y distributive

D ŒFALSE _ .x ^ y/�! y

D .x ^ y/! y identity element

D .:.x ^ y// _ y translate!

D .:x _ :y/ _ y De Morgan

D :x _ .:y _ y/ associative

D :x _ TRUE

D TRUE identity:

Use this technique to prove that the other formulas in Exercise 7.11 are tautologies.

You may replace x  y with y ! x (which, in turn, is equivalent to :y _ x) and

you may replace x $ y with .x ! y/ ^ .y ! x/.

7.13. A contradiction is a Boolean expression that evaluates to FALSE for all possible values

of its variables. For example, x ^ :x is a contradiction.

Prove that the following are contradictions:

a. .x _ y/ ^ .x _ :y/ ^ :x.

b. x ^ .x ! y/ ^ .:y/.

c. .x ! y/ ^ ..:x/! y/ ^ :y.

7.14. Suppose A and B are Boolean expressions—that is, A and B are formulas involving

variables (x, y, z, etc.) and Boolean operations (^, _, :, etc.).

Prove: A is logically equivalent to B if and only if A$ B is a tautology.

7.15. The expression x ! y can be rewritten in terms of only the basic operations^, _, and

:; that is, x ! y D .:x/ _ y.

Find an expression that is logically equivalent to x $ y and uses only the basic

operations ^, _, and : (and prove that you are correct).

7.16. Here is another Boolean operation called exclusive or; it is denoted by the symbol _.The phrase exclusive or is sometimes

written as xor. It is defined in the following table.
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x y x_y

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

Please do the following:

a. Prove that _ obeys the commutative and associative properties; that is, prove the

logical equivalences x_y D y_x and .x_y/_z D x_.y_z/.

b. Prove that x_y is logically equivalent to .x ^ :y/ _ ..:x/ ^ y/. (Thus _ can be

expressed in terms of the basic operations ^, _, and :.)

c. Prove that x_y is logically equivalent to .x_y/^ .:.x^y//. (This is another way

that _ can be expressed in terms of ^, _, and :.)

d. Explain why the operation _ is called exclusive or.

7.17. We have discussed several binary Boolean operations:^,_,!,$, and (in the previousA binary operation is an operation

that combines two values. The

operation : is not binary because it

works on just one value at a time; it

is called unary.

problem) _. How many different binary Boolean operations can there be? In other

words, in how many different ways can we complete the following chart?

x y x � y

TRUE TRUE ?

TRUE FALSE ?

FALSE TRUE ?

FALSE FALSE ?

There aren’t too many possibilities, and, in worst case, you can try writing out all of

them. Be sure to organize your list carefully so you don’t miss any or accidentally list

the same operation twice.

7.18. We have seen that the operations!,$, and _ can be reexpressed in terms of the basic

operations ^, _, and :. Show that all binary Boolean operations (see the previous

problem) can be expressed in terms of these basic three.

7.19. Prove that x _ y can be reexpressed in terms of just ^ and : so all binary Boolean

operations can be reduced to just two basic operations.

7.20. Here is yet another Boolean operation called nand; it is denoted by the symbol ^. WeNand.

define x^y to be :.x ^ y/.

Please do the following:

a. Construct a truth table for ^.

b. Is the operation ^ commutative? Associative?

c. Show how the operations x ^ y and :x can be reexpressed just in terms of ^.

d. Conclude that all binary Boolean operations can be reexpressed just in terms of ^

alone.

Chapter 1 Self Test

1. True or false: Every positive integer is either prime or composite. Explain your answer.

2. Find all integers x for which xj.x C 2/. You do not need to prove your answer.

3. Let a and b be positive integers. Explain why the notation ajbC1 can be interpreted only

as aj.b C 1/ and not as .ajb/C 1.

4. Write the following statement in if-then form: “Every perfect integer is even.”It is not known whether every perfect

number is even, but it is conjectured

that there are no odd perfect

numbers.

5. Write the converse of the statement “If you love me, then you will marry me.”

6. Determine which of the following statements are true and which are false. You should

base your reply on your common knowledge of mathematics; you do not need to prove

your answers.

a. Every integer is positive or negative.

b. Every integer is even and odd.

c. If x is an integer and x > 2 and x is prime, then x is odd.

d. Let x and y be integers. We have x2
D y2 if and only if x D y.
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e. The sides of a triangle are all congruent to each other if and only if its three angles are

all 60ı.

f. If an integer x satisfies x D x C 1, then x D 6.

7. Consider the following statement (which you are not expected to understand): “If a ma-

troid is graphic, then it is representable.”

Write the first and last lines of a direct proof of this statement.

It is customary to use the letter M to stand for a matroid.

8. The following statement is false: If x, y, and z are integers and x > y, then xz > yz.

Please do the following:

a. Find a counterexample.

b. Modify the hypothesis of the statement by adding a condition concerning z so that the

edited statement is true.

9. Prove or disprove the following statements:

a. Let a; b; c be integers. If ajc and bjc, then .aC b/jc.

b. Let a; b; c be integers. If ajb, then .ac/j.bc/.

10. Consider the following proposition. Let N be a two-digit number and let M be the num-

ber formed from N by reversing N ’s digits. Now compareN 2 and M 2. The digits of M 2

are precisely those of N 2, but reversed.

For example:

10
2
D 100 01

2
D 001

11
2
D 121 11

2
D 121

12
2
D 144 21

2
D 441

13
2
D 169 31

2
D 961

and so on.

Here is a proof of the proposition:

Proof. Since N is a two-digit number, we can write N D 10aC b where a and b are

the digits of N . Since M is formed from N by reversing digits, M D 10b C a.

Note that N 2
D .10aC b/2

D 100a2
C 20ab C b2

D .a2/ � 100C .2ab/ � 10C

.b2/ � 1, so the digits of N 2 are, in order, a2; 2ab; b2.

Likewise, M 2
D .10b C a/2

D .b2/ � 100C .2ab/ � 10C .a2/ � 1, so the digits

of M 2 are, in order, b2; 2ab; a2, exactly the reverse of N 2.

Your job: Show that the proposition is false and explain why the proof is invalid.

11. Suppose we are asked to prove the following identity:

x.x C y � 1/� y.x C 1/ D x.x � 1/� y:

The identity is true (i.e., the equation is valid for all real numbers x and y).

The following “proof” is incorrect. Explain why.

Proof. We begin with

x.x C y � 1/� y.x C 1/ D x.x � 1/� y

and expand the terms (using the distributive property)

x
2
C xy � x � yx � y D x

2
� x � y:

We cancel the terms x2, �x, and �y from both sides to give

xy � yx D 0;

and finally xy and �yx cancel to give

0 D 0;

which is correct.
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12. Are the Boolean expressions x ! :y and :.x ! y/ logically equivalent? Justify your

answer.

13. Is the Boolean expression .x ! y/ _ .x ! :y/ a tautology? Justify your answer.

14. Prove that the sum of any three consecutive integers is divisible by three.

15. In the previous problem you were asked to prove that the sum of any three consecutive

integers is divisible by three. Note, however, that the sum of any four consecutive integers

is never divisible by four. For example, 10C 11C 12C 13 D 46, which is not divisible

by four.

For which positive integers a is the sum of a consecutive integers divisible by a?

That is, complete the following sentence to give a true statement:

Let a be a positive integer. The sum of a consecutive integers is divisible by a if

and only if . . . .

You need not prove your conjecture.

16. Let a be an integer. Prove: If a � 3, then a2 > 2aC 1.

17. Suppose a is a perfect square and a � 9. Prove that a � 1 is composite.See Exercise 3.6 and its solution on

page 409 for the definition of perfect

square.
18. Consider the following definition:

A pair of positive integers, x and y, are called square mates if their sum, x C y is a

perfect square. (The concept of square mates was contrived just for this test, problems 18

to 20.)

For example, 4 and 5 are square mates because 4C 5 D 9 D 32. Likewise, 8 and 8

are square mates because 8C 8 D 16 D 4
2. However, 3 and 8 are not square mates.

Explain why 10 and �1 are not square mates.

19. Let x be a positive integer. Prove that there is an integer y that is greater than x such that

x and y are square mates.

20. Prove that if x is an integer and x � 5, then x has a square mate y with y < x.

You may use the following fact in your proof. If x is a positive integer, then x lies

between two consecutive perfect squares; that is, there is a positive integer a such that

a2
� x < .aC 1/2.



C H A P T E R

2 Collections

This chapter deals with collections. We consider two types of collections: ordered collections

(lists) and unordered collections (sets).

8 Lists

A list is an ordered sequence of objects. We write lists by starting with an open parenthe-

sis, following with the elements of the list separated by commas, and finishing with a close

parenthesis. For example, .1; 2;Z/ is a list whose first element is the number 1, whose second

element is the number 2, and whose third element is the set of integers.

The order in which elements appear in a list is significant. The list .1; 2; 3/ is not the same

as the list .3; 2; 1/.

Elements in a list might be repeated, as in .3; 3; 2/.

The number of elements in a list is called its length. For example, the list .1; 1; 2; 1/ is a

list of length four.

A list of length two has a special name; it is called an ordered pair.

A list of length zero is called the empty list and is denoted . /.

Two lists are equal provided they have the same length, and elements in the correspondingWhat it means for two lists to be

equal. positions on the two lists are equal. Lists .a; b; c/ and .x; y; z/ are equal iff a D x, b D y,

and c D z.

Lists are all-pervasive in mathematics and beyond. A point in the plane is often specifiedMathspeak!

Another word mathematicians use

for lists is tuple. A list of n elements

is known as an n-tuple.

by an ordered pair of real numbers .x; y/. A natural number, when written in standard nota-

tion, is a list of digits; you can think of the number 172 as the list .1; 7; 2/. An English word

is a list of letters. An identifier in a computer program is a list of letters and digits (where the

first element of the list is a letter).

Counting Two-Element Lists

In this section, we address questions of the form “How many lists can we make?”

Example 8.1 Suppose we wish to make a two-element list where the entries in the list may be any of the

digits 1, 2, 3, and 4. How many such lists are possible?

The most direct approach to answering this question is to write out all the possibilities.

.1; 1/ .1; 2/ .1; 3/ .1; 4/

.2; 1/ .2; 2/ .2; 3/ .2; 4/

.3; 1/ .3; 2/ .3; 3/ .3; 4/

.4; 1/ .4; 2/ .4; 3/ .4; 4/

There are 16 such lists.

33
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We organized the lists in a manner that ensures we have neither repeated nor omitted a

list. The first row of the chart contains all the possible lists that begin with 1, the second row

those that begin with 2, and so on. Thus there are 4� 4 D 16 length-two lists whose elements

are any one of the digits 1 through 4.

Let’s generalize this example a little bit. Suppose we wish to know the number of two-Mathspeak!

The mathematical use of the word

choice is strange. If a restaurant has a

menu with only one entrée, the

mathematician would say that this

menu offers one choice. The rest of

the world probably would say that

the menu offers no choices! The

mathematical use of the word choice

is similar to option.

element lists where there are n possible choices for each entry in the list. We may assume the

possible elements are the integers 1 through n. As before, we organize all the possible lists

into a chart.

.1; 1/ .1; 2/ � � � .1; n/

.2; 1/ .2; 2/ � � � .2; n/

:
:
:

:
:
:

: : :
:
:
:

.n; 1/ .n; 2/ � � � .n; n/

The first row contains all the lists that begin with 1, the second those that begin with 2, and

so forth. There are n rows in all. Each row has exactly n lists. Therefore there are n� n D n2

possible lists.

When a list is formed, the options for the second position may be different from the

options for the first position. Imagine that a meal is a two-element list consisting of an entrée

followed by a dessert. The number of possible entrées might be different from the number of

possible desserts.

Therefore let us ask: How many two-element lists are possible in which there are n

choices for the first element and m choices for the second element? Suppose that the pos-

sible entries in the first position of the list are the integers 1 through n, and the possible entries

in the second position are 1 through m.

We construct a chart of all the possibilities as before.

.1; 1/ .1; 2/ � � � .1; m/

.2; 1/ .2; 2/ � � � .2; m/

:
:
:

:
:
:

: : :
:
:
:

.n; 1/ .n; 2/ � � � .n; m/

There are n rows (for each possible first choice), and each row contains m entries. Thus the

number of possible such lists is

mCmC � � � Cm
œ

n times

D m � n:

Sometimes the elements of a list satisfy special properties. In particular, the choice of the

second element might depend on what the first element is. For example, suppose we wish to

count the number of two-element lists we can form from the integers 1 through 5, in which

the two numbers on the list must be different. For example, we want to count .3; 2/ and .2; 5/

but not .4; 4/. We make a chart of the possible lists.

� .1; 2/ .1; 3/ .1; 4/ .1; 5/

.2; 1/ � .2; 3/ .2; 4/ .2; 5/

.3; 1/ .3; 2/ � .3; 4/ .3; 5/

.4; 1/ .4; 2/ .4; 3/ � .4; 5/

.5; 1/ .5; 2/ .5; 3/ .5; 4/ �

As before, the first row contains all the possible lists that begin with 1, the second row those

lists that start with 2, and so on, so there are 5 rows. Notice that each row contains exactly

5 � 1 D 4 lists, so the number of lists is 5 � 4 D 20.

Let us summarize and generalize what we have learned in a general principle.
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Theorem 8.2 (Multiplication Principle) Consider two-element lists for which there are n choices for the

first element, and for each choice of the first element there are m choices for the second

element. Then the number of such lists is nm.

Proof. Construct a chart of all the possible lists. Each row of this chart contains all the

two-element lists that begin with a particular element. Since there are n choices for the first

element, there are n rows in the chart. Since, for each choice of the first element, there are m

choices for the second element, we know that every row of the chart has m entries. Therefore

the number of lists is

mCmC � � � Cm
œ

n times

D n �m:

Let us consider some examples.

Example 8.3 A person’s initials are the two-element list consisting of the initial letters of their first and last

names. For example, the author’s initials are ES. In how many ways can we form a person’s

initials? In how many ways can we form initials where the two letters are different?

The first question asks for the number of two-element lists where there are 26 choices for

each element. There are 262 such lists.

The second question asks for the number of two-element lists where there are 26 choices

for the first element and, for each choice of first element, 25 choices for the second element.

Thus there are 26 � 25 such lists.

Another way to answer the second question in Example 8.3 is as follows: There are 262

ways to form initials (repetitions allowed). Of these, there are 26 “bad” sets of initials in which

there is a repetition, namely, AA, BB, CC, . . . , ZZ. The remaining lists are the ones we want

to count, so there are 26
2 � 26 possibilities. Since 26 � 25 D 26 � .26� 1/ D 26

2 � 26, the

two answers agree.

Please note that we reported the answers to these questions as 262 and 26�25, and not as

676 and 650. Although the latter pair of answers are correct, the answers 262 and 26� 25 are

preferred because they retain the essence of the reasoning used to derive them. Furthermore,

the conversion of 262 and 26 � 25 to 676 and 650, respectively, is not interesting and can be

done easily by anyone with a calculator.

Example 8.4 A club has ten members. The members wish to elect a president and to elect someone else as

a vice president. In how many ways can these posts be filled?

We recast this question as a list-counting problem. How many two-element lists of peo-

ple can be formed in which the two people in the list are selected from a collection of ten

candidates and the same person may not be selected twice?

There are ten choices for the first element of the list. For each choice of the first element

(for each president), there are nine possible choices for the second element of the list (vice

president). By the Multiplication Principle, there are 10 � 9 possibilities.

Longer Lists

Let us explore how to use the Multiplication Principle to count longer lists.

Consider the following problem. How many lists of three elements can we make using

the numbers 1, 2, 3, 4, and 5? Let us write out all the possibilities. Here is a way we might

organize our work:
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(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5)

(1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,2,5)

(1,3,1) (1,3,2) (1,3,3) (1,3,4) (1,3,5)

(1,4,1) (1,4,2) (1,4,3) (1,4,4) (1,4,5)

(1,5,1) (1,5,2) (1,5,3) (1,5,4) (1,5,5)

(2,1,1) (2,1,2) (2,1,3) (2,1,4) (2,1,5)

(2,2,1) (2,2,2) (2,2,3) (2,2,4) (2,2,5)

and so forth until

(5,5,1) (5,5,2) (5,5,3) (5,5,4) (5,5,5)

The first line of this chart contains all lists that begin .1; 1; : : :/. The second line is all lists that

begin .1; 2; : : :/ and so forth. Clearly, each line has five lists. The question becomes:

How many lines are there in this chart?

This is a problemwe have already solved! Notice that each line of the chart begins, effectively,

with a different two-element list; the number of two-element lists where each element is one

of five possible values is 5 � 5, so this chart has 5 � 5 lines. Therefore, since each line of the

chart has five entries, the number of three-element lists is .5 � 5/ � 5 D 5
3.

We can think of a three-element list as the concatenation of a two-element list and a one-Suppose A and B are lists. Their

concatenation is the new list formed

by listing first the elements of A and

then the elements of B. The

concatenation of the lists .1; 2; 1/

and .1; 3; 5/ is the list

.1; 2; 1; 1; 3; 5/.

element list. In this problem, there are 25 possible two-element lists to occupy the front of the

three-element list, and for each choice of the front part, there are five choices for the back.

Next, let us count three-element lists whose elements are the integers 1 through 5 in which

no number is repeated. As before, we make a chart.

(1,2,3) (1,2,4) (1,2,5)

(1,3,2) (1,3,4) (1,3,5)

(1,4,2) (1,4,3) (1,4,5)

(1,5,2) (1,5,3) (1,5,4)

(2,1,3) (2,1,4) (2,1,5)

and so forth until

(5,4,1) (5,4,2) (5,4,3)

The first line of the chart contains all the lists that begin .1; 2; : : :/. (There can be no lines

that begin .1; 1; : : :/ because repetitions are disallowed.) The second line contains all lists that

begin .1; 3; : : :/, and so on. Each line of the chart contains just three lists; once we have chosen

the first and second elements of the list (from a world of only five choices), there are exactly

three ways to finish the list. So, as before, the question becomes: How many lines are on this

chart? And as before, this is a problem we have already solved!

The first two elements of the list form, unto themselves, a two-element list with each

element chosen from a list of five possible objects and without repetition. So, by the Multipli-

cation Principle, there are 5� 4 lines on the chart. Since each line has three elements, there is

a total of 5 � 4 � 3 possible lists in all.

These three-element lists are a concatenation of a two-element list (20 choices), and, for

each two-element list, a one-element list (3 choices), giving a total of 20 � 3 lists.

We extend the Multiplication Principle to count longer lists. Consider length-three lists.

Suppose we have a choices for the first element of the list, and for each choice of first element,

there are b choices for the second element, and for each choice of first and second elements,

there are c choices for the third element. Thus, in all, there are abc possible lists. To see why,

imagine that the three-element list consists of two parts: the initial two elements and the final

element. There are ab ways to fill in the first two elements (by the Multiplication Principle!)

and there are c ways to complete the last element once the first two are specified. So, by the

Multiplication Principle again, there are .ab/c ways to make the lists. The extension of these

ideas to lists of length-four or more is analogous.

A useful way to think about list-counting problems is to make a diagramwith boxes. Each

box stands for a position in the list, so if the length of the list is four, there are four boxes. We

write the number of possible entries in each box. The number of possible lists is computed by

multiplying these numbers together.
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Example 8.5 Let us revisit Example 8.4. We have a club with ten members. We want to elect an executive

board consisting of a president, a vice president, a secretary, and a treasurer. In how many

ways can we do this (assuming no member of the club can fill two offices)? We draw the

following diagram.

Pres. V.P. Sec. Treas.

10 9 8 7

This shows there are ten choices for president. Once the president is selected, there are are

nine choices for vice president, so there are 10� 9 ways to fill in the first two elements of the

list. Once these are filled, there are eight ways to fill in the next element of the list (secretary),

so there are .10 � 9/ � 8 ways to complete the first three slots. Finally, once the first three

offices are filled, there are seven ways to select a treasurer, so there are .10� 9� 8/� 7 ways

to select the entire slate of officers.

Two particular list-making problems recur often enough to warrant special attention.

These problems both involve making a list of length k in which each element of the list is

selected from among n possibilities. In the first problem, we count all such lists; in the second

problem, we count those without repeated elements.

When repetitions are allowed, we have n choices for the first element of the list, n choices

for the second element of the list, and so on, and n choices for the last element of the list. AllThis formula gives the number of

lists of length k where there are n

possible entries in each position of

the list and repetitions are allowed.

told, there are

n � n � � � � � n
›

k times

D n
k (1)

possible lists.

Now suppose we fill in the length-k list with n possible values, but in this case, repetition

Lists without repetitions are

sometimes called permutations.

However, in this book, the word

permutation has another meaning

described later (Section 27).

is not allowed. There are n ways to select the first element of the list. Once this is done, there

are n � 1 choices for the second element of the list. There are n � 2 ways to fill in position

three, n�3 ways to fill in position four, and so on, and finally, there are n�.k�1/ D n�kC1

ways to fill in position k. Therefore, the number of ways to make a list of length k where the

elements are chosen from a pool of n possibilities and no two elements on the list may be the

This formula counts the number of

lists of length k where the elements

are chosen from a pool of n

possibilities and no two elements on

the list are the same.

same is

n � Œn � 1� � Œn � 2� � � � � � Œn � .k � 1/�: (2)

This formula is correct, but there is a minor mistake in our reasoning! How many length-six

lists can we make where each element of the list is one of the digits 1, 2, 3, or 4 and repetition

is not allowed? The answer, obviously, is zero; you cannot make a length-six list using only

four possible elements and not repeat an element! What does the formula give? Equation (2)

says the number of such lists is

4 � 3 � 2 � 1 � 0 � �1

which equals 0. However, the reasoning behind the formula breaks down. Although it is true

that there are 4, 3, 2, 1, and 0 choices for positions one through five, it does not make any

sense to say there are �1 choices for the last position! Formula (2) gives the correct answer,

but the reasoning used to arrive there needs to be rechecked.

If the number of elements fromwhich we select entries in the list, n, is less than the lengthIn this paragraph, we use

Exercise 5.16: If a; b 2 Z, then

a < b () a � b � 1.
of the list, k, no repetition-free list is possible. But since n < k, we know that n � k < 0 and

so n � k C 1 < 1. Since n � k C 1 is an integer, we know that n � k C 1 � 0. Therefore, in

the product n � .n � 1/ � � � � � .n � k C 1/, we know that at least one of the factors is zero.

Therefore the whole expression evaluates to zero, which is what we wanted!

On the other hand, if n � k, our reasoning makes sense (all the numbers are positive),

and the formula in (2) gives the correct answer.

One case is worth special mention: k D 0. We ask: How many lists of length zero canLength-zero lists.

we form from a pool of n elements? The answer is one since the empty list (a list with no

elements) is a legitimate list.
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Because the expression n.n � 1/.n � 2/ � � � .n � k C 1/ occurs fairly often, there is a

special notation for it. The notation isThe special notation for

n.n� 1/ � � � .n� kC 1/ is .n/k .

An alternative notation, still in use on

some calculators, is nPk .
.n/k D n.n � 1/.n � 2/ � � � .n � k C 1/:

This notation is called falling factorial. We summarize our results on lists with or without

repetition concisely using this notation.

Theorem 8.6 The number of lists of length k whose elements are chosen from a pool of n possible elements

D
(

nk if repetitions are permitted

.n/k if repetitions are forbidden.

We do not recommend that you memorize this result because it is too easy to get confused

between the meanings of n and k. Rather, rederive it in your mind when you need it. Imagine

the k boxes written out in front of you, put the appropriate numbers in the boxes, and multiply.

Recap

This section deals with counting lists of objects. The central tool is the Multiplication Prin-

ciple. A general formula is developed for counting length-k lists of elements selected from a

pool of n elements either with or without repetitions.

8 Exercises 8.1. Write out all the possible two-letter “words” one can make using only the vowels A, E,

I, O, and U. These will be mostly nonsense words from “AA” to “UU”.

How many of these have no repeated letter?

8.2. Airports have names, but they also have three-letter codes. For example, the airport

serving Baltimore is BWI, and the code YYY is for the airport in Mont Joli, Québec,

Canada. How many different airport codes are possible?

8.3. A bit string is a list of 0s and 1s. How many length-k bit strings can be made?

8.4. A car’s ventilation system has various controls. The fan control has four settings: off,

low, medium, and high. The air stream can be set to come out at the floor, through the

vents, or through the defroster. The air conditioning button can be either on or off. The

temperature control can be set to cold, cool, warm, or hot. And finally, the recirculate

button can be either on or off.

In how many different ways can these various controls be set?

Note: Several of these settings result in the same effect since nothing happens if

the fan control is off. However, the problem asks for the number of different settings of

the controls, not the number of different ventilation effects possible.

8.5. I want to create two play lists on my MP3 player from my collection of 500 songs. One

play list is titled “Exercise” for listening in the gym and the other is titled “Relaxing”

for leisure time at home. I want 20 different songs on each of these lists.

In how many ways can I load songs onto my MP3 player I if allow a song to be on

both play lists?

And howmany ways can I load the songs if I want the two lists to have no overlap?

8.6. How many 3-element lists can be formed whose entries are drawn from a pool of n

possible elements if we require that the first and last entries of the list must be the

same?

How many such lists can be formed if we require that the first and last entries must

be different?

(In both cases, there is no restriction on the middle entry in the list.)

8.7. I have 30 photos to post on my website. I’m planning to post these on two web pages,

one marked “Friends” and the other marked “Family”. No photo may go on both pages,

but every photo will end up on one or the other. Conceivably, one of the pages may be

empty.
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Please answer these two questions:

a. In how many ways can I post these photos to the web pages if the order in which the

photos appear on those pages matters?

b. In how may ways can I post these photos to the web pages if the order in which the

photos appear on those pages does not matter?

8.8. You own three different rings. You wear all three rings, but no two of the rings are on

the same finger, nor are any of them on your thumbs. In how many ways can you wear

your rings? (Assume any ring will fit on any finger.)

8.9. In how many ways can a black rook and a white rook be placed on different squares of

a chess board such that neither is attacking the other? (In other words, they cannot be in

the same row or the same column of the chess board. A standard chess board is 8 � 8.)

8.10. License plates in a certain state consist of six characters: The first three characters are

uppercase letters (A–Z), and the last three characters are digits (0–9).

a. How many license plates are possible?

b. How many license plates are possible if no character may be repeated on the same

plate?

8.11. A telephone number (in the United States and Canada) is a ten-digit number whose first

digit cannot be a 0 or a 1. How many telephone numbers are possible?

8.12. A U.S. Social Security number is a nine-digit number. The first digit(s) may be 0.

a. How many Social Security numbers are available?

b. How many of these are even?

c. How many have all of their digits even?

d. How many read the same backward and forward (e.g., 122979221)?

e. How many have none of their digits equal to 8?

f. How many have at least one digit equal to 8?

g. How many have exactly one 8?

8.13. Let n be a positive integer. Prove that n2 D .n/2 C n in two different ways.

First (and more simply) show this equation is true algebraically.

Second (and more interestingly) interpret the terms n2, .n/2, and n in the context

of list counting and use that to argue why the equation must be true.

8.14. A computer operating system allows files to be named using any combination of up-The word character means a letter or

a digit. percase letters (A–Z) and digits (0–9), but the number of characters in the file name is

at most eight (and there has to be at least one character in the file name). For example,

X23, W, 4AA, and ABCD1234 are valid file names, but W-23 and WONDERFUL are not valid

(the first has an improper character, and the second is too long).

How many different file names are possible in this system?

8.15. How many five-digit numbers are there that do not have two consecutive digits the

same? For example, you would count 12104 and 12397 but not 6321 (it is not five

digits) or 43356 (it has two consecutive 3s).

Note: The first digit may not be a zero.

8.16. A padlock has the digits 0 through 9 arranged in a circle on its face. A combination for

0 1

2
3

4
56

7
8

9

this padlock is four digits long. Because of the internal mechanics of the lock, no pair

of consecutive numbers in the combination can be the same or one place apart on the

face. For example 0-2-7-1 is a valid combination, but neither 0-4-4-7 (repeated digit 4)

nor 3-0-9-5 (adjacent digits 0-9) are permitted.

How many combinations are possible?

8.17. A bookshelf contains 20 books. In how many different orders can these books be ar-

ranged on the shelf?

8.18. A class contains ten boys and ten girls. In how many different ways can they stand in a

line if they must alternate in gender (no two boys and no two girls are standing next to

one another)?

8.19. Four cards are drawn from a standard deck of 52 cards. In how many ways can this

be done if the cards are all of different values (e.g., no two 5s or two jacks) and all of

different suits? (For this problem, the order in which the cards are drawn matters, so

drawing A�-K~-3}-6| is not the same as drawing 6|-K~-3}-A� even though the

same cards are selected.)
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9 Factorial

In Section 8, we counted lists of elements of various lengths in which we were either allowed

or forbidden to repeat elements. A special case of this problem is to count the number of

length-n lists chosen from a pool of n objects in which repetition is forbidden. In other words,

we want to arrange n objects into a list, using each object exactly once. By Theorem 8.6, the

number of such lists is

.n/n D n.n � 1/.n� 2/ � � � .n � nC 1/ D n.n � 1/.n � 2/ � � � .1/:

The quantity .n/n occurs frequently in mathematics and has a special name and notation;

it is called n factorial and is written nŠ. For example, 5Š D 5 � 4 � 3 � 2 � 1 D 120.

Two special cases of the factorial function require special attention.

First, let us consider 1Š. This is the result of multiplying all the numbers starting from 1

all the way down to, well, 1. The answer is 1. Just in case this isn’t clear, let’s return to the

list-counting application. In how many ways can we make a length-1 list where there is only

one possible element to fill the first (and only!) position? Obviously, there is only one possible

list. So 1Š D 1.

The other special case is 0Š.

Much Ado About 0!

0Š is 1. Students’ reactions to this statement typically range from “That doesn’t make sense”

to “That’s wrong!” There seems to be an overwhelming urge to evaluate 0Š as 0.

Because of this confusion, I feel I owe you a clear and unambiguous explanation of why

0Š D 1. Here it is: Because I said so!

No, that wasn’t a terribly satisfying answer, and I will endeavor to do a better job in a

moment, but the simple fact is that mathematicians have defined 0Š to be 1, and we are all

in agreement on this point. Just as we declared (via our definition) that the number 1 is not

prime, we can also declare 0Š D 1. Mathematics is a human invention, and as long as we are

consistent, we can set things up pretty much however we please.

So now the burden falls on me to explain why it is a good idea to have 0Š D 1 and a bad

idea for it to be 0,
p

17, or anything else.

To begin, let us rethink the list-counting problem. The number 0Š ought to be the answer

to the following problem:

In howmany ways can we make a length-0 list whose elements come from a pool

of 0 elements in which there is no repetition?

It is tempting to say that no such list is possible, but this is not correct. There is a list whose

length is zero: the empty list . /. The empty list has zero length, and (vacuously!) its elements

satisfy the conditions of the problem. So the answer to the problem is 0Š D 1.

Here is another explanation why 0Š D 1. Consider the equation

nŠ D n � .n � 1/Š (3)

For example, 5Š D 5 � .4 � 3 � 2 � 1/ D 5 � 4Š. Equation (3) makes sense for n D 2 since

2Š D 2 � 1Š D 2 � 1. The question becomes: Does Equation (3) make sense for n D 1? If we

want Equation (3) to work when n D 1, we need 1Š D 1�0Š. This forces us to choose 0Š D 1.

Here is another explanation why 0Š D 1. We can think of nŠ as the result of multiply-

ing n numbers together. For example, 5Š is the result of multiplying the numbers on the list

.5; 4; 3; 2; 1/. What should it mean to multiply together the numbers on the empty list . /? Let

me try to convince you that the sensible answer is 1. We begin by considering what it means

to add the numbers on the empty list.

Alice and Bob work in a number factory and are given a list of numbers to add. They areAlice and Bob are to add the

numbers on the list .2; 3; 3; 5; 4/.

The answer should be 17.
both quite adept at addition, so they decide to break the list in two. Alice will add her numbers,

Bob will add his numbers, and then they will add their results to get the final answer. This is

a sensible procedure, and they ask Carlos to break the list in two for them.



Section 9 Factorial 41

Carlos, perhaps because he is feeling mischievous, decides to give Alice all of the num-Carlos gives Alice the list

.2; 3; 3; 5; 4/ and Bob the list . /.

Alice adds her numbers and gets 17.

What should Bob say?

bers and Bob none of the numbers. Alice receives the full list and Bob receives the empty list.

Alice adds her numbers as usual, but what is Bob to report as the sum of the numbers on his

list? If Bob gives any answer other than 0, the final answer to the problem will be incorrect.

The only sensible thing for Bob to say is that his list—the empty list—sums to 0.

The sum of the numbers in the empty list is 0.

Now, all three of them have received a promotion and are working on multiplication.Alice and Bob are to multiply the

numbers on the list .2; 3; 3; 5; 4/.

The answer should be 360.
Their multiplication procedure is the same as their addition procedure. They are asked to

multiply lists of numbers. When they receive a list, they ask Carlos to break the list into two

parts. Alice multiplies the numbers on her list, and Bob multiplies the numbers on his. They

then multiply together their individual results to get the final answer.

But of course Carlos decides to have some fun and gives all the numbers to Bob; toCarlos gives Alice the list . / and

Bob the list .2; 3; 3; 5; 4/. Bob

multiplies his numbers and gets 360.

What should Alice say?

Alice, he gives the empty list. Bob reports the product of his numbers as usual. What should

Alice say? What is the product of the numbers on . /? If she says 0, then when her answer is

multiplied by Bob’s answer, the final result will be 0, and this is likely to be the wrong answer.

Indeed, the only sensible reply that Alice can give is 1.

The product of the numbers in the empty list is 1. Since 0Š “asks” you to multiply together

a list containing no numbers, the sensible answer is 1.

This reasoning is akin to taking 2
0 D 1.

The final reason why we declare 0Š D 1 is that as we move on, other formulas work out

better if we take 0Š D 1. If we did not set 0Š D 1, these other results would have to treat 0 as

a special case, different from other natural numbers.

Product Notation

Here is another way to write nŠ:

nŠ D
n
Y

kD1

k:

What does this mean? The symbol
Q

is the uppercase form of the Greek letter pi (�), and it

stands for product (i.e., multiply). This notation is similar to using
P

for summation.

The letter k is called a dummy variable and is a place holder that ranges from the lower

value (written below the
Q

symbol) to the upper value (written at the top). The variable k

takes on the values 1, 2, . . . , n.

To the right of the
Q

symbol are the quantities we multiply. In this case, it is simple: We

just multiply the values of k as k goes from 1 to n; that is, we multiply

1 � 2 � � � � � n:

The expression on the right of the
Q

symbol can be more complex. For example, consider

the product

5
Y

kD1

.2k C 3/:

This specifies that we multiply together the various values of .2kC 3/ for k D 1; 2; 3; 4; 5. In

other words,

5
Y

kD1

.2k C 3/ D 5 � 7 � 9 � 11 � 13:

The expression on the right of the
Q

can be simpler. For example,

n
Y

kD1

2

is a fancy way to write 2n.



42 Chapter 2 Collections

Consider the following way of writing 0Š:

0
Y

kD1

k:

This means that k starts at 1 and goes up to 0. Since there is no possible value of k with

1 � k � 0, there are no terms to multiply. Therefore the product is empty and evaluates to 1.

Recap

In this section, we introduced factorial, discussed why 0Š D 1, and presented product notation.

9 Exercises 9.1. Solve the equation nŠ D 720 for n.

9.2. There are six different French books, eight different Russian books, and five different

Spanish books.

a. In how many different ways can these books be arranged on a bookshelf?

b. In how many different ways can these books be arranged on a bookshelf if all books

in the same language are grouped together?

9.3. Give an Alice-and-Bob discussion about what it means to add (and to multiply) a list

of numbers that only contains one number.

9.4. Consider the formula

.n/k D
nŠ

.n� k/Š
:

This formula is mostly correct. For what values of n and k is it correct? Prove the

formula is correct under a suitable hypothesis; that is, this problem asks you to find and

prove a theorem of the form “If (conditions on n and k), then .n/k D nŠ=.n � k/Š.”

9.5. Evaluate 100Š

98Š
without calculating 100Š or 98Š.

9.6. Order the following integers from least to greatest: 2100, 1002, 100100, 100Š, 1010.

9.7. The Scottish mathematician James Stirling found an approximation formula for nŠ.

Stirling’s formula is

nŠ �
p

2�nn
n
e
�n

where � D 3:14159 : : : and e D 2:71828 : : :. (Scientific calculators have a key that

computes ex ; this key might be labeled expx .)

Compute nŠ and Stirling’s approximation to nŠ for n D 10; 20; 30; 40; 50. What is

the relative error in the approximations?

9.8. Calculate the following products:

a.
Q4

kD1
.2k C 1/.

b.
Q

4

kD�3
k.

c.
Q

n

kD1

kC1

k
, where n is a positive integer.

d.
Qn

kD1

1

k
, where n is a positive integer.

9.9. Please calculate the following:

a. 1 � 1Š.

b. 1 � 1ŠC 2 � 2Š.

c. 1 � 1ŠC 2 � 2ŠC 3 � 3Š.

d. 1 � 1ŠC 2 � 2ŠC 3 � 3ŠC 4 � 4Š.

e. 1 � 1ŠC 2 � 2ŠC 3 � 3ŠC 4 � 4ŠC 5 � 5Š.

Now, make a conjecture. That is, guess the value of

n
X

kD1

k � kŠ:

You do not have to prove your answer.

9.10. When 100Š is written out in full, it equals

100Š D 9332621 : : : 000000:

Without using a computer, determine the number of 0 digits at the end of this number.
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9.11. Prove that all of the following numbers are composite: 1000ŠC2, 1000ŠC3, 1000ŠC4,

. . . , 1000ŠC 1002.

The point of this problem is to present a long list of consecutive integers, all of

which are composite.

9.12. A factorion is a positive integer with the following cute property. When written in

ordinary base-10, it equals the sum of the factorials of its digits.

For example, 145 is a factorion because

1ŠC 4ŠC 5Š D 1C 24C 120 D 145:

The numbers 1 and 2 are also factorions (because 1Š D 1 and 2Š D 2). There is only

one other factorion; find it!

We know of no nice “pencil and paper” solution to this problem. You’re best off

solving this with the help of a computer program.

9.13. Can factorial be extended to negative integers? On the basis of equation (3), what value

should .�1/Š be given?

9.14. Evaluate: 00.

9.15. The double factorial nŠŠ is defined for odd positive integers n; it is the product of all

the odd numbers from 1 to n inclusive. For example, 7ŠŠ D 1� 3� 5� 7 D 105. Please

answer the following.

a. Evaluate 9ŠŠ.

b. For an odd integer n, are nŠŠ and .nŠ/Š equal?

c. Write an expression for nŠŠ using product notation.

d. Explain why this formula works:

.2k � 1/ŠŠ D .2k/Š

kŠ2k
:

The remaining exercises in this section require calculus.

16. Let n be a positive integer. What is the nth derivative of xn?

17. The following formula appears in W.A. Granville’s Elements of the Differential and Inte-

gral Calculus (revised) published in 1911:

Explain the notation used in the denominators.

18. Evaluate the following integral for n D 0; 1; 2; 3; 4:
Z 1

0

x
n
e
�x

dx:

Note: The case n D 0 is easiest. Do the remaining values of n in order (first 1, then

2, etc.) and use integration by parts.

What is the value of this integral for an arbitrary natural number n?

Extra for experts: Evaluate the integral with n D 1

2
.

10 Sets I: Introduction, Subsets

A set is a repetition-free, unordered collection of objects. A given object either is a member

of a set or it is not—an object cannot be in a set “more than once.” There is no order to

the members of a set. The simplest way to specify a set is to list its elements between curly

braces. For example, f2; 3;
1

2
g is a set with exactly three members: the integers 2 and 3, and

the rational number 1

2
. No other objects are in this set. All of the following sets are the same:

f2; 3;
1

2
g f3;

1

2
; 2g f2; 2; 3;

1

2
g:

It does not matter in what order we list the objects, nor does it matter if we repeat an object. All

that matters is what objects are members of the set and what objects are not. In this example,

exactly three objects are members of the set; no other objects are members.
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Earlier, we introduced three special sets of numbers. These sets are Z (the integers), N

(the natural numbers), and Q (the rational numbers).

An object that belongs to a set is called an element of the set.

Membership in a set is denoted with the symbol 2. The notation x 2 A means that the

object x is a member of the set A. For example, 2 2 f2; 3;
1

2
g is true, but 5 2 f2; 3;

1

2
g is false.

In the latter case, we can write 5 … f2; 3;
1

2
g; the notation x … A means x is not an element

of A.

When read aloud, 2 is pronounced “is a member of” or “is an element of” or “is in.”

Often mathematicians write, “If x 2 Z, then. . . .” This means exactly the same thing as “If x

is an integer, then. . . .”

However, the 2 symbol can also stand for “be a member of” or “be in.” For example, if

we write “Let x 2 Z,” we mean “Let x be a member of Z” or, more prosaically, “Let x be an

integer.”

The number of elements in a set A is denoted jAj. The cardinality of A is simply theAbsolute value bars around a set

stand for the cardinality or size of the

set (i.e., the number of elements in

that set). An alternative notation for

the cardinality of a set is #A.

number of objects in the set. The cardinality of the set f2; 3;
1

2
g is 3. The cardinality of Z is

infinite. We also call jAj the size of the set A.

A set is called finite if its cardinality is an integer (i.e., is finite). Otherwise, it is called

infinite.

The empty set is the set with no members. The empty set may be denoted f g, but it isThe empty set is also known as the

null set. better to use the special symbol ;. The statement “x 2 ;” is false regardless of what object x

might represent. The cardinality of the empty set is zero (i.e., j;j D 0).

Please note that the symbol ; is not the same as the Greek letter phi: � or ˆ.

There are two principal ways of specifying a set. The most direct way is to list the ele-

ments of the set between curly braces, as in f3; 4; 9g. This notation is appropriate for small

sets. More often, set-builder notation is used. The form of this notation isSet-builder notation.

fdummy variable W conditionsg :

For example, consider

fx W x 2 Z; x � 0g :

This is the set of all objects x that satisfy two conditions: (1) x 2 Z (i.e., x must be an integer)

and (2) x � 0 (i.e., x is nonnegative). In other words, this set is N, the natural numbers.

An alternative way of writing set-builder notation is

fdummy variable 2 set W conditionsg :

This is the set of all objects drawn from the set mentioned and subject to the conditions

specified. For example,

fx 2 Z W 2jxg

is the set of all integers that are divisible by 2 (i.e., the set of even integers).

Proof Template 5 Proving two sets are equal.

Let A and B be the sets. To show A D B , we have the following template:

� Suppose x 2 A. . . . Therefore x 2 B .
� Suppose x 2 B . . . . Therefore x 2 A.

Therefore A D B .

It is often tempting to write a set by establishing a pattern to the elements and then

using three dots (. . . ) to indicate that the pattern continues. For example, we might write

f1; 2; 3; : : : ; 100g to denote the set of integers from 1 to 100 inclusive. In this case, the notation

is clear, but it would be better to write fx 2 Z W 1 � x � 100g.
Here is another example, which is less clear: f3; 5; 7; : : :g. What is intended? We have to

guess whether we mean the set of odd integers greater than 1 or the set of odd primes. Use the

“. . . ” notation sparingly and only when there is absolutely no chance of confusion.
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Equality of Sets

What does it mean for two sets to be equal? It means that the two sets have exactly the same

elements. To prove that sets A and B are equal, one shows that every element of A is also an

element of B , and vice versa.

Let us illustrate the use of Proof Template 5 on a simple statement.

Proposition 10.1 The following two sets are equal:

E D fx 2 Z W x is eveng; and

F D fz 2 Z W z D aC b where a and b are both oddg:

In other words, the set F is the set of all integers that can be written as the sum of two

odd numbers. Using the template, the proof looks like this:

LetE D fx 2 Z W x is eveng andF D fz 2 Z W z D aCb where a and b are both oddg:
We seek to prove that E D F .

Suppose x 2 E . . . . Therefore x 2 F .

Suppose x 2 F . . . . Therefore x 2 E .

Start with the first half by unraveling definitions.

LetE D fx 2 Z W x is eveng andF D fz 2 Z W z D aCb where a and b are both oddg:
We seek to prove that E D F .

Suppose x 2 E . Therefore x is even, and hence divisible by 2, so x D 2y for some

integer y. . . . Therefore x is the sum of two odd numbers and so x 2 F .

Suppose x 2 F . . . . Therefore x 2 E .

We have that x D 2y, and we want x as the sum of two odd numbers. Here’s a simple

way to do this: 2yC 1 is odd (see Definition 3.4) and so is �1 (because �1 D 2� .�1/C 1).

So we can write

x D 2y D .2y C 1/C .�1/:

Let’s fold these ideas into the proof.

LetE D fx 2 Z W x is eveng andF D fz 2 Z W z D aCb where a and b are both oddg:
We seek to prove that E D F .

Suppose x 2 E . Therefore x is even, and hence divisible by 2, so x D 2y for some

integer y. Note that 2yC 1 and �1 are both odd and since x D 2y D .2yC 1/C .�1/

we see that x is the sum of two odd numbers. Therefore x 2 F .

Suppose x 2 F . . . . Therefore x 2 E .

The second part of the proof was already considered in Exercise 5.1 (and the solution

to that exercise can be found in Appendix A). So we simply refer to that previously worked

problem to complete the proof.
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LetE D fx 2 Z W x is eveng andF D fz 2 Z W z D aCb where a and b are both oddg:
We seek to prove that E D F .

Suppose x 2 E . Therefore x is even, and hence divisible by 2, so x D 2y for some

integer y. Note that 2yC1 and �1 are both odd, and since x D 2y D .2yC1/C .�1/,

we see that x is the sum of two odd numbers. Therefore x 2 F .

Suppose x 2 F . Therefore x is the sum of two odd numbers. As we showed in

Exercise 5.1, x must be even and so x 2 E .

Note that Proposition 10.1 can be rewritten as follows: An integer is even if and only if it

can be expressed as the sum of two odd numbers.

Subset

Next we define subset.

Definition 10.2 (Subset) Suppose A and B are sets. We say that A is a subset of B provided every element

of A is also an element of B . The notation A � B means A is a subset of B .

For example, f1; 2; 3g is a subset of f1; 2; 3; 4g. For any set A, we have A � A because

every element of A is (of course) in A.

Furthermore, for any set A, we have ; � A. This is because every element of ; is in

A—since there are no elements in ;, there are no elements of ; that fail to be in A. This is an

example of a vacuous statement, but a useful one.

The symbol � is often used for subset as well, but we do not use it in this book. We

prefer� because it looks more like �, and we want to emphasize that a set is always a subset

of itself. (The symbol � is a hybrid of the symbols � and D.) If we want to rule out the

equality of the two sets, we may say that A is a strict or proper subset of B; this means that

A � B and A 6D B . It would be tempting to let � denote proper subset (because it looks like

<), but the use of � to mean ordinary subset has not completely fallen out of fashion in the

mathematics community. We avoid controversy by not using the symbol�.
It is important to distinguish between 2 and �. The notation x 2 A means that x is an� and 2 have related but different

meanings. They cannot be

interchanged!
element (or member) of A. The notation A � B means that every element of A is also an

element of B . Thus ; � f1; 2; 3g is true, but ; 2 f1; 2; 3g is false.
The difference between 2 and � is analogous to the difference between x and fxg. The

symbol x refers to some object (a number or whatever), and the notation fxg means the set

whose one and only element is the object x. It is always correct to write x 2 fxg, but it is
incorrect to write x D fxg or x � fxg. (Well, it usually is incorrect to write x � fxg; see
Exercise 10.14.)

To prove that one set is a subset of another, we need to show that every element of the

first set is also a member of the second set.

Proposition 10.3 Let x be anything and let A be a set; then x 2 A if and only if fxg � A.

Proof. Let x be any object and let A be a set.

.)/ Suppose that x 2 A. We want to show fxg � A. To do this, we need to show that

every element of fxg is also an element of A. But the only element of fxg is x, and we are

given that x 2 A. Therefore fxg � A.

.(/ Suppose that fxg � A. This means that every element of the first set (fxg) is also a

member of the second set (A). But the only element of fxg is certainly x and so x 2 A.

The general method for showing that one set is a subset of another is outlined in Proof

Template 6.



Section 10 Sets I: Introduction, Subsets 47

Proof Template 6 Proving one set is a subset of another.

To show A � B:

Let x 2 A. . . . Therefore x 2 B . Therefore A � B .

We illustrate the use of Proof Template 6 using the following concept.

Definition 10.4 (Pythagorean Triple) A list of three integers .a; b; c/ is called a Pythagorean triple provided

a2 C b2 D c2.

For example, .3; 4; 5/ is a Pythagorean triple because 3
2 C 4

2 D 5
2. Pythagorean triples

Please note that .
p

2;
p

3;
p

5/ is

not a Pythagorean triple because the

numbers in the list are not integers;

the term Pythagorean triple only

applies to lists of integers. are so named because they are the lengths of the sides of a right triangle.

Proposition 10.5 Let P be the set of Pythagorean triples; that is,

P D f.a; b; c/ W a; b; c 2 Z and a
2 C b

2 D c
2g

and let T be the set

T D f.p; q; r/ W p D x
2 � y

2
; q D 2xy; and r D x

2 C y
2 where x; y 2 Zg:

Then T � P .

For example, if we let x D 3 and y D 2 and we calculate

p D x
2 � y

2 D 9 � 4 D 5; q D 2xy D 12; r D x
2 C y

2 D 9C 4 D 13

we find that .5; 12; 13/ 2 T . Proposition 10.5 asserts that T � P , which implies .5; 12; 13/ 2
P . Indeed, this is correct since

5
2 C 12

2 D 25C 144 D 169 D 13
2
:

We now develop the proof of Proposition 10.5 by utilizing Proof Template 6.

Let P and T be as in the statement of Proposition 10.5.

Let .p; q; r/ 2 T . . . . Therefore .p; q; r/ 2 P .

Unravel the meaning of .p; q; r/ 2 T .

Let P and T be as in the statement of Proposition 10.5.

Let .p; q; r/ 2 T . Therefore there are integers x and y such that p D x2 � y2,

q D 2xy, and r D x2 C y2. . . . Therefore .p; q; r/ 2 P .

To verify that .p; q; r/ 2 P , we simply have to check that all three are integers (which is

clear) and that p
2 C q

2 D r
2. We can write p, q, and r in terms of x and y, so the problem

reduces to an algebraic computation. We finish the proof.
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Let P and T be as in the statement of Proposition 10.5.

Let .p; q; r/ 2 T . Therefore there are integers x and y such that p D x
2 � y

2,

q D 2xy, and r D x2 C y2. Note that p, q, and r are integers because x and y are

integers. We calculate

p
2 C q

2D .x
2 � y

2
/
2 C .2xy/

2

D .x
4 � 2x

2
y

2 C y
4
/C 4x

2
y

2

D x
4 C 2x

2
y

2 C y
4

D .x
2 C y

2
/
2 D r

2
:

Therefore .p; q; r/ is a Pythagorean triple and so .p; q; r/ 2 P .

The symbols 2 and � may be written backward: 3 and �. The notation A 3 x means

exactly the same thing as x 2 A. The symbol 3 can be read, “contains the element.” The

notation B � A means exactly the same thing as A � B . We say that B is a superset of A.

(We also say that B contains A and A is contained in B , but the word contains can be a

bit ambiguous. If we say “B contains A,” we generally mean that B � A, but it might mean

B 3 A. We avoid this term unless the meaning is utterly clear from context.)

Counting Subsets

How many subsets does a set have? Let us consider an example.

Example 10.6 How many subsets does A D f1; 2; 3g have?
The easiest way to do this is to list all the possibilities. Since jAj D 3, a subset of A can

have anywhere from zero to three elements. Let’s write down all the possibilities organized

this way.

Number of elements Subsets Number

0 ; 1

1 f1g, f2g, f3g 3

2 f1; 2g, f1; 3g, f2; 3g 3

3 f1; 2; 3g 1

Total: 8

Therefore, there are eight subsets of f1; 2; 3g.

There is another way to analyze this problem. Each element of the set f1; 2; 3g either is a
member of or is not a member of a subset. Look at the following diagram.

in
cl

ud
es

 1

excludes 1

includes 3

excludes 3includes 2

excludes 2

includes 2

excludes 2

includes 3

excludes 3

includes 3

excludes 3

includes 3

excludes 3

{1,2,3}

{1,2}

{1,3}

{2,3}

{1}

{2}

{3}
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For each element, we have two choices: to include or not to include that element in the subset.

We can “ask” each element if it “wants” to be in the subset. The list of answers uniquely

determines the subset. So if we ask elements 1, 2, and 3 in turn if they are in the subset and

the answers we receive are (yes, yes, no), then the subset is f1; 2g.
The problem of counting subsets of f1; 2; 3g reduces to the problem of counting lists, and

we know how to count lists! The number of lists of length three where each entry on the list

is either “yes” or “no” is 2 � 2 � 2 D 8.

This list-counting method gives us the solution to the general problem.

Theorem 10.7 Let A be a finite set. The number of subsets of A is 2jAj.

Proof. LetA be a finite set and let n D jAj. Let the n elements ofA be named a1; a2; : : : ; an.

To each subset B of A we can associate a list of length n; each element of the list is one of

the words “yes” or “no.” The kth element of the list is “yes” precisely when ak 2 B . This

establishes a correspondence between length-n yes-no lists and subsets of A. Observe that

each subset of A gives a yes-no list, and every yes-no list determines a different subset of A.

Therefore the number of subsets of A is exactly the same as the number of length-n yes-no

lists. The number of such lists is 2
n, so the number of subsets of A is 2

n where n D jAj.

This style of proof is called a bijective proof. To show that two counting problems have

the same answer, we establish a one-to-one correspondence between the two sets we want to

count. If we know the answer to one of the counting problems, then we know the answer to

the other.

Power Set

A set can be an element of another set. For example,
˚

1; 2; f3; 4g
	

is a set with three elements:

the number 1, the number 2, and the set f3; 4g. A special example of this is called the power

set of a set.

Definition 10.8 (Power set) Let A be a set. The power set of A is the set of all subsets of A.

For example, the power set of f1; 2; 3g is the set
n

;; f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; f1; 2; 3g
o

:

Theorem 10.7 tells us that if a set A has n elements, its power set contains 2n elementsThe power set of A is denoted 2A.

However, some authors also use the

notation P.A/.

(the subsets of A). As a mnemonic, the notation for the power set of A is 2A. This is a special

notation; there is no general meaning for raising a number to an exponent that is a set. The

only case in which this makes sense is writing the set as a superscript on the number 2; the

meaning of the notation is the power set of A. This notation was created so that we would

have
ˇ

ˇ

ˇ
2

A

ˇ

ˇ

ˇ
D 2

jAj

for any finite set A. The left side of this equation is the cardinality of the power set of A; the

right side is 2 raised to the cardinality of A. On the left, the superscript on 2 is a set, so the

notation means power set; on the right, the superscript on 2 is a number, so the notation means

ordinary exponentiation.

Recap

In this section, we introduced the concept of a set and the notation x 2 A. We presented the

set-builder notation fx 2 A W : : :g. We discussed the concepts of empty set (;), subset (�),
and superset (�). We distinguished between finite and infinite sets and presented the notation

jAj for the cardinality of A. We considered the problem of counting the number of subsets of

a finite set and defined the power set of a set, 2A.
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10 Exercises 10.1. Write out the following sets by listing their elements between curly braces.

a. fx 2 N W x � 10 and 3jxg.
b. fx 2 Z W x is prime and 2jxg.
c. fx 2 Z W x2 D 4g.
d. fx 2 Z W x2 D 5g.
e. 2;.
f. fx 2 Z W 10jx and xj100g.
g. fx W x � f1; 2; 3; 4; 5g and jxj � 1g.

10.2. For each of the following sets, find a way to rewrite the set using set-builder notation

(rather than listing the elements).

a. f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g.
b. f�8;�6;�4;�2; 0; 2; 4; 6; 8g.
c. f1; 3; 5; 7; 9; 11; 13; : : :g.
d. f1; 4; 9; 16; 25; 36; 64; 81; 100g.

10.3. Find the cardinality of the following sets.

a. fx 2 Z W jxj � 10g.
b. fx 2 Z W 1 � x2 � 2g.
c. fx 2 Z W x 2 ;g.
d. fx 2 Z W ; 2 xg.
e. fx 2 Z W ; � fxgg.
f. 22f1;2;3g

.

g. fx 2 2f1;2;3;4g W jxj D 1g.
h.
˚

f1; 2g; f3; 4; 5g
	

.

10.4. Complete each of the following by writing either 2 or � in place of the.

a. 2 f1; 2; 3g.
b. f2g f1; 2; 3g.
c. f2g

˚

f1g; f2g; f3g
	

.

d. ; f1; 2; 3g.
e. N Z.

f. f2g Z.

g. f2g 2Z.

10.5. In each part of this exercise, please find three different sets and/or numbers A, B , and

C to make the statement true:

a. A � B � C .

b. A 2 B � C .

c. A 2 B 2 C .

d. A � B 2 C

10.6. In each part of this exercise, find a set A that makes the sentence true or explain why

no solution can be found.

a. ; � A.

b. ; 2 A.

c. A � ;.
d. A 2 ;.

10.7. For each of the following statements about sets A, B , and C , either prove the statement

is true or give a counterexample to show that it is false.

a. If A � B and B � C , then A � C .

b. If A 2 B and B � C , then A � C .

c. If A 2 B and B � C , then A 2 C .

d. If A 2 B and B 2 C , then A 2 C .

10.8. Let A and B be sets. Prove that A D B if and only if A � B and B � A.

(This gives a slightly different proof strategy for showing two sets are equal; com-

pare to Proof Template 5.)

10.9. Let A, B , and C be sets and suppose A � B , B � C , and C � A. Prove that A D C .
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10.10. Let A D fx 2 Z W 4jxg and let B D fx 2 Z W 2jxg. Prove that A � B .

10.11. Generalize the previous problem. Let a and b be integers and let A D fx 2 Z W ajxg
and B D fx 2 Z W bjxg.

Find and prove a necessary and sufficient condition for A � B . In other words,

given the notation developed, find and prove a theorem of the form “A � B if and only

if some condition involving a and b.”

10.12. Let C D fx 2 Z W xj12g and let D D fx 2 Z W xj36g. Prove that C � D.

10.13. Generalize the previous problem. Let c and d be integers and let C D fx 2 Z W xjcg
and D D fx 2 Z W xjd g.

Find and prove a necessary and sufficient condition for C � D.

10.14. Give an example of an object x that makes the sentence x � fxg true.
10.15. Please refer to Proposition 10.5, in which we proved that T � P . Show that T 6D P .

11 Quantifiers

There are certain phrases that appear frequently in theorems, and the purpose of this section

is to clarify and formalize those phrases. At first glance, these phrases are simple, but we’ll

do our best to try to make them complicated. The expressions are there is and every.

There Is

Consider a sentence such as the following:

There is a natural number that is prime and even.

The general form of this sentence is “There is an object x, a member of set A, that has the

following properties.” The example sentence can be rewritten to adhere more strictly to this

form as follows:

There is an x, a member of N, such that x is prime and even.

The meaning of the sentence is, we hope, clear. It says that at least one element in N has the

required properties. In this case, there is only one possible x (the number 2), but the phrase

there is does not rule out the possibility that there can be more than one object with the

requisite properties.

The phrase there exists is synonymous with there is.

Because the phrase there is occurs so often, mathematicians have developed a formal

notation for statements of the form “There is an x in set A such that . . . .” We write a backward,

uppercase E (i.e., 9) that we pronounce there is or there exists. The general form for using this

notation is

9x 2 A; assertions about x:

This is read, “There is an x, a member of the set A, for which the assertions hold.” The

sentence “There is a natural number that is prime and even” would be written

9x 2 N; x is prime and even.

The letter x is a dummy variable—simply a placeholder. It is similar to the index of summation

in
P

notation.

At times, we abbreviate the statement “9x 2 A, assertions about x” to “9x, assertions
about x” when context makes it clear what sort of object x ought to be.

The backward E is called the existential quantifier.

To prove a statement of the form “9x 2 A, assertions about x,” we have to show that

some element in A satisfies the assertions. The general form for such a proof is given in Proof

Template 7.
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Proof Template 7 Proving existential statements.

To prove 9x 2 A, assertions about x:

Let x be (give an explicit example) . . . (Show that x satisfies the assertions.) . . . There-

fore x satisfies the required assertions.

Proving an existential statement is akin to finding a counterexample. We simply have to

find one object with the required properties.

Example 11.1 Here is a proof (very short!) that there is an integer that is even and prime.

Statement: 9x 2 Z; x is even and x is prime.

Proof. Consider the integer 2. Clearly 2 is even and 2 is prime.

For All

The other phrase we consider in this section is every, as in “Every integer is even or odd.”

There are alternative phrases we use in place of every, including all, each, and any. All of the

following sentences mean the same thing:

� Every integer is either even or odd.
� All integers are either even or odd.
� Each integer is either even or odd.
� Let x be any integer. Then x is even or odd.

In all cases, we mean that the condition applies to all integers without exception.

There is a fancy notation for these types of sentences. Just as we used the backward E for

there is, we use an upside-downA (8) as a notation for all. The general form for this notation

is

8x 2 A; assertions about x:

This means that all elements of the set A satisfy the assertions, as in

8x 2 Z; x is odd or x is even:

When the context makes clear what sort of object x is, the notation may be shortened to

“8x; assertions about x.”

The upside-down A is called the universal quantifier.

To prove an “all” theorem, we need to show that every element of the set satisfies the

required assertions. The general form for this sort of proof is given in Proof Template 8.

Proof Template 8 Proving universal statements.

To prove 8x 2 A; assertions about x:

Let x be any element of A. . . . (Show that x satisfies the assertions using only the fact

that x 2 A and no further assumptions on x.) . . . Therefore x satisfies the required

assertions.

Example 11.2 To prove: Every integer that is divisible by 6 is even.

More formally, let A D fx 2 Z W 6jxg. Then the statement we want to prove is

8x 2 A; x is even:

Proof. Let x 2 A; that is, x is an integer that is divisible by 6. This means there is an integer

y such that x D 6y, which can be rewritten x D .2 � 3/y D 2.3y/. Therefore x is divisible by

2 and therefore even.
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Note that this proof is not significantly different from proving an ordinary if-then: “If x isMathspeak!

Mathematicians use the word

arbitrary in a slightly nonstandard

way. When we say that x is an

arbitrary element of a set A, we

mean that x might be any element of

A, and one should not assume

anything about x other than it is an

element of A. To say x is an

arbitrary even number means that x

is even, but we make no further

assumptions about x.

divisible by 6, then x is even.” The point we are trying to stress is that in the proof, we assume

that x is an arbitrary element of A and then move on to show that x satisfies the condition.

Negating Quantified Statements

Consider the statements

� There is no integer that is both even and odd.
� Not all integers are prime.

Symbolically, these can be written

� : .9x 2 Z; x is even and x is odd/.
� : .8x 2 Z; x is prime/.

In both cases, we have negated a quantified statement. What do these negations mean?

Let us first consider a statement of the form

: .9x 2 A; assertions about x/ :

This means that none of the elements of A satisfy the assertions, and this is equivalent to

saying that all of the elements of A fail to satisfy the assertions. In other words, the following

two sentences are equivalent:

: .9x 2 A; assertions about x/

8x 2 A; : .assertions about x/ :

For example, the statement “There is no integer that is both even and odd” says the same thing

as “Every integer is not both even and odd.”

Next we consider the negation of universal statements. Consider a statement of the form

: .8x 2 A; assertions about x/ :

This means that not all of the elements of x have the requisite assertions (i.e., some don’t).

Thus the following two statements are equivalent:

: .8x 2 A; assertions about x/

9x 2 A; : .assertions about x/ :

For example, the statement “Not all integers are prime” is equivalent to the statement “There

is an integer that is not prime.”

The mnemonic I use to remember these equivalences is

:8 : : : D 9: : : : and :9 : : : D 8: : : : :

When the : “moves” inside the quantifier, it toggles the quantifier between 8 and 9.

Combining Quantifiers

Quantified statements can become difficult and confusingwhen there are two (or more!) quan-

tifiers in the same statement. For example, consider the following statements about integers:

� For every x, there is a y, such that x C y D 0.
� There is a y, such that for every x, we have x C y D 0.

In symbols, these statements are written

� 8x; 9y; x C y D 0:

� 9y; 8x; x C y D 0:

What do these mean?

The first sentence makes a claim about an arbitrary integer x. It says that no matter what

x is, something is true—namely, we can find an integer y such that x C y D 0. Let’s say

x D 12. Can we find a y such that x C y D 0? Of course! We just want y D �12. Say
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x D �53. Can we find a y such that x C y D 0? Yes! Take y D 53. Notice that the y that

satisfies x D 12 is different from the y that satisfies x D �53. The statement just requires

that no matter how we pick x (8x), we can find a y (9y) such that x C y D 0. And this is a

true statement. Here is the proof:

Let x be any integer. Let y be the integer �x. Then x C y D x C .�x/ D 0.

Since the overall statement begins 8x, we begin the proof by considering an arbitrary integer

x. We now have to prove something about this number x—namely, we can find a number

y such that x C y D 0. The choice for y is obvious, just take y D �x. The statement

8x; 9y; x C y D 0 is true.

Now let us examine the similar statement

9y; 8x; x C y D 0:

This sentence is similar to the previous sentence; the only difference is the order of the quan-

tifiers. This sentence alleges that there is an integer y with a certain property—namely, no

matter what number we add to y (8x), we get 0 (xCy D 0). This sentence is blatantly false!

There is no such integer y. No matter what integer y you might think of, we can always find

an integer x such that x C y is not zero.

The statements8x; 9y; xCy D 0 and 9y; 8x; xCy D 0 are made a bit clearer through

the use of parentheses. They may be rewritten as follows:

8x; .9y; x C y D 0/

9y; .8x; x C y D 0/ :

These additional parentheses are not strictly necessary, but if they make these statements

clearer to you, please feel free to use them.

In general, the two sentences

8x; 9y; assertions about x and y

9y; 8x; assertions about x and y

are not equivalent to one another.

Recap

We analyzed statements of the form “For all . . . ” and “There exists . . . ” and introduced the

formal quantifier notation for them. We presented basic proof templates for such sentences.

We examined the negation of quantified sentences, and we studied statements with more than

one quantifier.

11 Exercises 11.1. Write the following sentences using the quantifier notation (i.e., use the symbols 9
and/or8). Note: We do not claim these statements are true, so please do not try to prove

them!

a. Every integer is prime.

b. There is an integer that is neither prime nor composite.

c. There is an integer whose square is 2.

d. All integers are divisible by 5.

e. Some integer is divisible by 7.

f. The square of any integer is nonnegative.

g. For every integer x, there is an integer y such that xy D 1.

h. There are an integer x and an integer y such that x=y D 10.

i. There is an integer that, when multiplied by any integer, always gives the result 0.

j. No matter what integer you choose, there is always another integer that is larger.

k. Everybody loves somebody sometime.

11.2. Write the negation of each of the sentences in the previous problem. You should “move”

the negation all the way inside the quantifiers. Give your answer in English and
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symbolically. For example, the negation of part (a) would be “There is an integer that

is not prime” (English) and “9x 2 Z; x is not prime” (symbolic).

11.3. What does the sentence “Everyone is not invited to my party” mean?

Presumably the meaning of this sentence is not what the speaker intended. Rewrite

this sentence to give the intended meaning.

11.4. True or False: Please label each of the following sentences about integers as either true

or false. (You do not need to prove your assertions.)

a. 8x; 8y; x C y D 0.

b. 8x; 9y; x C y D 0.

c. 9x; 8y; x C y D 0.

d. 9x; 9y; x C y D 0.

e. 8x; 8y; xy D 0.

f. 8x; 9y; xy D 0.

g. 9x; 8y; xy D 0.

h. 9x; 9y; xy D 0.

11.5. For each of the following sentences, write the negation of the sentence, but place the :
symbol as far to the right as possible. Then rewrite the negation in English.

For example, for the sentence

8x 2 Z; x is odd

the negation would be

9x 2 Z;:.x is odd/;

which in English is “There is an integer that is not odd.”

a. 8x 2 Z; x < 0.

b. 9x 2 Z; x D x C 1.

c. 9x 2 N; x > 10.

d. 8x 2 N; x C x D 2x.

e. 9x 2 Z;8y 2 Z; x > y.

f. 8x 2 Z;8y 2 Z; x D y.

g. 8x 2 Z; 9y 2 Z; x C y D 0.

11.6. Do the following two statements mean the same thing?

8x; 8y; assertions about x and y

8y; 8x; assertions about x and y

Explain.

Likewise, do the following two statements mean the same thing?

9x; 9y; assertions about x and y

9y; 9x; assertions about x and y

Explain.

11.7. The notation 9Š is sometimes used to indicate that there is exactly one object that sat-

isfies the condition. For example, 9Šx 2 N; x
2 D 1 means there is a natural number x

whose square is equal to 1 and there is only one such x. Of course, the realm of the in-

tegers, there are two numbers whose squares equal 1, so the statement 9Šx 2 Z; x2 D 1

is false.

The notation 9Š can be pronounced “there is a unique”.
Which of the following statements are true? Support your answer with a brief ex-

planation.

a. 9Šx 2 N; x2 D 4.

b. 9Šx 2 Z; x
2 D 4.

c. 9Šx 2 N; x2 D 3.

d. 9Šx 2 Z;8y 2 Z; xy D x.

e. 9Šx 2 Z;8y 2 Z; xy D y.
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11.8. A subset of the plane is called a convex region provided that, given any two points in

the region, every point on the line segment is also in that region.

a. Rewrite the definition of convex region using quantifiers. We suggest you use the

letter R to stand for the region and the notation L.a; b/ to stand for the line segment

whose endpoints are a and b. Your answer should use three 8 quantifiers.

b. Using quantifier notation, write what it means for a region not to be convex. Your

answer should use three 9 quantifiers.
c. Rewrite your answer to (b) in English and without using notation. (At the beginning

of this exercise, we defined what it means for a region to be convex purely with

words. Here, you are asked to explain what it means for a region not to be convex

purely with words.)

d. Illustrate your answer to (b) [and (c)] with a suitably labeled diagram.

12 Sets II: Operations

Just as numbers can be added or multiplied, and truth values can be combined with ^ and

_, there are various operations we perform on sets. In this section, we discuss several set

operations.

Union and Intersection

The most basic set operations are union and intersection.

Definition 12.1 (Union and intersection) Let A and B be sets.

The union of A and B is the set of all elements that are in A or B (or both). The union of

A and B is denoted A[ B .

The intersection of A and B is the set of all elements that are in both A and B . The

intersection of A and B is denoted A\ B .

In symbols, we can write this as follows:

A [ B D fx W x 2 A or x 2 Bg and A\ B D fx W x 2 A and x 2 Bg:

Example 12.2 Suppose A D f1; 2; 3; 4g and B D f3; 4; 5; 6g. Then A [ B D f1; 2; 3; 4; 5; 6g and A \ B D
f3; 4g.

A B

A B

It is useful to have a mental picture of union and intersection. A Venn diagram depicts

sets as circles or other shapes. In the figure, the shaded region in the upper diagram is A[B ,

and the shaded region in the lower diagram is A\ B .

The operations of [ and \ obey various algebraic properties. We list some of them here.

Theorem 12.3 Let A, B , and C denote sets. The following are true:

� A [ B D B [ A and A \ B D B \ A. (Commutative properties)
� A[ .B [C / D .A[B/[C and A\ .B \C / D .A\B/\C . (Associative properties)
� A [ ; D A and A\ ; D ;.
� A[ .B \C / D .A[B/\ .A[C / and A\ .B[C / D .A\B/[ .A\C /. (Distributive

properties)

Proof. Most of the proof is left as Exercise 12.5. Theorem 7.2 is extremely useful in proving

this result.
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Here we prove the associative property for union. You may use this as a template for

proving the other parts of this theorem.

Let A, B , and C be sets. We have the following:

A [ .B [ C / D fx W .x 2 A/ _ .x 2 B [ C /g definition of union

D fx W .x 2 A/ _ ..x 2 B/ _ .x 2 C //g definition of union

D fx W ..x 2 A/ _ .x 2 B// _ .x 2 C /g associative property of _
D fx W .x 2 A [ B/ _ .x 2 C /g definition of union

D .A [ B/ [ C definition of union.

How did we think up this proof? We used the technique of writing the beginning and end

of the proof and working toward the middle. Imagine a long sheet of paper. On the left, we

write A[ .B [ C / D : : :; on the right, we write : : : D .A [ B/[ C . On the left, we unravel

the definition of [ for the first [, obtaining A [ .B [ C / D fx W .x 2 A/ _ .x 2 B [ C /g.
We unravel the definition of [ again (this time on the B [ C ) to transform the set into

fx W .x 2 A/ _ ..x 2 B/ _ .x 2 C //g:

Meanwhile, we do the same thing on the right. We unravel the second[ in .A[B/[C

to yield fx W .x 2 A [ B/ _ .x 2 C /g and then unravel A [ B to get fx W ..x 2 A/ _ .x 2
B// _ .x 2 C /g.

Now we ask: What do we have and what do we want? On the left, we have

fx W .x 2 A/ _ ..x 2 B/ _ .x 2 C //g

and on the right, we need

fx W ..x 2 A/ _ .x 2 B// _ .x 2 C /g:

Finally, we stare at these two sets and realize that the conditions after the colon are logically

equivalent (by Theorem 7.2) and we have our proof.

Venn diagrams are also useful for visualizing why these properties hold. For example, the

following diagrams illustrate the distributive property A[ .B \ C / D .A[ B/\ .A[ C /.

A B∩C A∪ (B∩C)

A∪ B A∪ C (A∪ B)∩ (A∪ C)

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C

First examine the top row of pictures. On the left, we see the set A highlighted; in the

center, the region for B \ C is shaded; and finally, on the right, we show A [ .B \ C /.

Next examine the bottom row. The left and center pictures show A [ B and A [ C

highlighted, respectively. The rightmost picture superimposes the first two, and the darkened

region shows .A [ B/ \ .A [ C /.

Notice that exactly the same two shapes on the right panels (top and bottom) are dark,

illustrating that A [ .B \ C / D .A [ B/ \ .A [ C /.
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The Size of a Union

Suppose A and B are finite sets. There is a simple relationship between the quantities jAj,
jBj, jA[ Bj, and jA \ Bj.

Proposition 12.4 Let A and B be finite sets. Then

jAj C jBj D jA[ Bj C jA \ Bj:

Proof. Imagine we assign labels to every object. We attach a label A to objects in the set A,

and we attach a label B to objects in B .

Question: How many labels have we assigned?

On the one hand, the answer to this question is jAj C jBj because we assign jAj labels to
the objects in A and jBj labels to the objects in B .

On the other hand, we have assigned at least one label to the elements in jA [ Bj. So
jA [ Bj counts the number of objects that get at least one label. Elements in A \ B receive

two labels. Thus jA[BjC jA\Bj counts all elements that receive a label and double counts

those elements that receive two labels. This gives the number of labels.

Since these two quantities, jAj C jBj and jA[Bj C jA\Bj, answer the same question,

they must be equal.

This proof is an example of a combinatorial proof. Typically a combinatorial proof is

used to demonstrate that an equation (such as the one in Proposition 12.4) is true. We do this

by creating a question and then arguing that both sides of the equation give a correct answer

to the question. It then follows, since both sides are correct answers, that the two sides of the

alleged equation must be equal. This technique is summarized in Proof Template 9.

Proof Template 9 Combinatorial proof.

To prove an equation of the form LHS D RHS:

Pose a question of the form, “In how many ways . . . ?”

On the one hand, argue why LHS is a correct answer to the question.

On the other hand, argue why RHS is a correct answer.

Therefore LHS D RHS.

Finding the correct question to ask can be difficult. Writing combinatorial proofs is akin

to playing the television game Jeopardy!. You are given the answer (indeed, two answers) to

a counting question; your job is to find a question whose answers are the two sides of the

equation you are trying to prove.

We shall do more combinatorial proofs, but for now, let us return to Proposition 12.4.

One useful way to rewrite this result is as follows:Basic inclusion-exclusion.

jA[ Bj D jAj C jBj � jA\ Bj: (4)

This is a special case of a counting method called inclusion-exclusion. It can be interpreted

as follows: Suppose we want to count the number of things that have one property or another.

Imagine that set A contains those things that have the one property and set B contains those

that have the other. Then the set A [ B contains those things that have one property or the

other, and we can count those things by calculating jAj C jBj � jA\ Bj. This is useful when
calculating jAj, jBj, and jA \ Bj is easier than calculating jA [ Bj. We develop the concept

of inclusion-exclusion more extensively in Section 19.
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Example 12.5 How many integers in the range 1 to 1000 (inclusive) are divisible by 2 or by 5?

Let

A D fx 2 Z W 1 � x � 1000 and 2jxg and

B D fx 2 Z W 1 � x � 1000 and 5jxg:

The problem asks for jA[ Bj.
It is not hard to see that jAj D 500 and jBj D 200. Now A\B are those numbers (in the

range from 1 to 1000) that are divisible by both 2 and 5. Now an integer is divisible by both 2

and 5 if and only if it is divisible by 10 (this can be shown rigorously using ideas developed

in Section 39; see Exercise 39.3), so

A\ B D fx 2 Z W 1 � x � 1000 and 10jxg

and it follows that jA\ Bj D 100. Finally, we have

jA[ Bj D jAj C jBj � jA\ Bj D 500C 200� 100 D 600:

There are 600 integers in the range 1 to 1000 that are divisible by 2 or by 5.

In case A\B D ;, Equation (4) simplifies to jA[Bj D jAj C jBj. In words, if two sets
have no elements in common, then the size of their union equals the sum of their sizes. There

is a special term for sets with no elements in common.

Definition 12.6 (Disjoint, pairwise disjoint) LetA andB be sets. We callA andB disjoint providedA\B D
;.

Let A1; A2; : : : ; An be a collection of sets. These sets are called pairwise disjoint pro-

vided Ai \ Aj D ; whenever i 6D j . In other words, they are pairwise disjoint provided no

two of them have an element in common.

Example 12.7 Let A D f1; 2; 3g, B D f4; 5; 6g, and C D f7; 8; 9g. These sets are pairwise disjoint because
A \ B D A\ C D B \ C D ;.

However, let X D f1; 2; 3g, Y D f4; 5; 6; 7g, and Z D f7; 8; 9; 10g. This collection of

sets is not pairwise disjoint because Y \Z 6D ; (all other pairwise intersections are empty).

Corollary 12.8 (Addition Principle) Let A and B be finite sets. If A and B are disjoint, then jA [ Bj D
jAj C jBj.

Corollary 12.8 follows immediately from Proposition 12.4. There is an extension of the

Addition Principle to more than two sets.

If A1; A2; : : : ; An are pairwise disjoint sets, then

jA1 [ A2 [ � � � [Anj D jA1j C jA2j C � � � C jAnj:

This can be shown formally using the methods from Section 21; see Exercise 21.11.

A fancy way to write this is
ˇ

ˇ

ˇ

ˇ

ˇ

n
[

kD1

Ak

ˇ

ˇ

ˇ

ˇ

ˇ

D
n
X

kD1

jAkj:

The big
S

is analogous to the
P

and
Q

symbols. It means, as k goes from 1 to n (the lower

and upper values), take the union of the expression to the right (in this case Ak). So the big
S

notation is just a shorthand for A1 [A2[ � � �[An. This is surrounded by vertical bars, so we

want the size of that set. On the right, we see an ordinary summation symbol telling us to add

up the cardinalities of A1, A2, . . . , An.
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Difference and Symmetric Difference

Definition 12.9 (Set difference) Let A and B be sets. The set difference, A � B , is the set of all elements of

A that are not in B:

A� B D fx W x 2 A and x … Bg:

The symmetric difference of A and B , denoted A � B , is the set of all elements in A but

not B or in B but not A. That is,

A � B D .A � B/[ .B � A/:

Example 12.10 Suppose A D f1; 2; 3; 4g and B D f3; 4; 5; 6g. Then A � B D f1; 2g, B � A D f5; 6g, and
A � B D f1; 2; 5; 6g.

The figures show Venn diagram for these operations.

In general, the sets A� B and B � A are different (but see Exercise 12.18).

Here is another way to express symmetric difference:

Proposition 12.11 Let A and B be sets. Then

A B

A − B

A B

BA

A � B D .A [ B/� .A\ B/:

Let us illustrate the various proof techniques by developing the proof of Proposition 12.11

step by step. The proposition asks us to prove that two sets are equal, namely, A � B and

.A[ B/� .A\ B/. We use Proof Template 5 to form the skeleton of the proof.

Let A and B be sets.

(1) Suppose x 2 A � B . . . . Therefore x 2 .A [ B/ � .A \ B/.

(2) Suppose x 2 .A[ B/� .A\ B/. . . . Therefore x 2 A � B .

Therefore A � B D .A [ B/ � .A \ B/.

We begin with part (1) of the proof. We unravel definitions from both ends. We know that

x 2 A � B . By definition of �, this means x 2 .A � B/[ .B � A/. The proof now reads as

follows:

Let A and B be sets.

(1) Suppose x 2 A � B . Thus x 2 .A � B/ [ .B � A/. . . . Therefore x 2 .A [
B/� .A\ B/.

(2) Suppose x 2 .A[ B/� .A\ B/. . . . Therefore x 2 A � B .

Therefore A � B D .A [ B/ � .A \ B/.

Now we know that x 2 .A�B/[ .B�A/. What does this mean? By definition of union,

it means that x 2 .A � B/ or x 2 .B � A/. We have to consider both possibilities since we

don’t know in which of these sets x lies. This means that part (1) of the proof breaks into

cases depending on whether x 2 A � B or x 2 B � A. In both cases, we need to show that

x 2 .A[ B/� .A\ B/.
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Let A and B be sets.

(1) Suppose x 2 A�B . Thus x 2 .A�B/[.B�A/. This means either x 2 A�B

or x 2 B � A. We consider both cases.

� Suppose x 2 A � B . . . . Therefore x 2 .A [ B/ � .A \ B/.
� Suppose x 2 B �A. . . . Therefore x 2 .A [ B/ � .A \ B/.

. . . Therefore x 2 .A[ B/� .A\ B/.

(2) Suppose x 2 .A[ B/� .A\ B/. . . . Therefore x 2 A � B .

Therefore A � B D .A[ B/� .A \ B/.

Let’s focus on the first case, x 2 A � B . This means that x 2 A and x … B . We put

that in.

Let A and B be sets.

(1) Suppose x 2 A�B . Thus x 2 .A�B/[.B�A/. This means either x 2 A�B

or x 2 B � A. We consider both cases.

� Suppose x 2 A � B . So x 2 A and x … B . . . . Therefore x 2 .A[ B/� .A \ B/.
� Suppose x 2 B �A. . . . Therefore x 2 .A [ B/ � .A \ B/.

. . . Therefore x 2 .A [ B/ � .A \ B/.

(2) Suppose x 2 .A[ B/� .A\ B/. . . . Therefore x 2 A � B .

Therefore A � B D .A[ B/� .A \ B/.

We appear to be stuck. We have unraveled definitions down to x 2 A and x … B . To

proceed, we work backward from our goal; we want to show that x 2 .A[B/� .A\B/. To

do that, we need to show that x 2 A[ B and x … A\ B . We add this language to the proof.

Let A and B be sets.

(1) Suppose x 2 A�B . Thus x 2 .A�B/[.B�A/. This means either x 2 A�B

or x 2 B � A. We consider both cases.

� Suppose x 2 A � B . So x 2 A and x … B . . . .

Thus x 2 A[ B , but x … A \ B . Therefore x 2 .A [ B/ � .A \ B/.
� Suppose x 2 B �A. . . . Therefore x 2 .A [ B/ � .A \ B/.

. . . Therefore x 2 .A [ B/ � .A \ B/.

(2) Suppose x 2 .A[ B/� .A\ B/. . . . Therefore x 2 A � B .

Therefore A � B D .A[ B/� .A \ B/.

Now the two parts of this proof are moving closer together. Let’s record what we know

and what we want.
We already know: x 2 A and x … B .

We want to show: x 2 A [ B and x … A \ B .

The gap is now easy to close! Since we know x 2 A, certainly x is in A or B (we just said it’s

in A!), so x 2 A [ B . Since x … B , x is not in both A and B (we just said it’s not in B!), so

x … A \ B . We add this to the proof.
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Let A and B be sets.

(1) Suppose x 2 A�B . Thus x 2 .A�B/[.B�A/. This means either x 2 A�B

or x 2 B �A. We consider both cases.

� Suppose x 2 A � B . So x 2 A and x … B .

Since x 2 A, we have x 2 A [ B . Since x … B , we have x … A \ B .

Thus x 2 A [ B , but x … A\ B . Therefore x 2 .A [ B/� .A\ B/.
� Suppose x 2 B � A. . . . Therefore x 2 .A [ B/� .A\ B/.

. . . Therefore x 2 .A [ B/ � .A \ B/.

(2) Suppose x 2 .A[ B/� .A\ B/. . . . Therefore x 2 A � B .

Therefore A � B D .A [ B/ � .A \ B/.

We can now return to the second case of part (1) of the proof: “Suppose x 2 B � A.

. . . Therefore x 2 .A [ B/ � .A \ B/.” We have good news! This case looks just like the

previous case, except we have A and B switched around. The argument in this case is going

to proceed exactly as before. Since the steps are (essentially) the same, we don’t really have to

write them out. (If you are not 100% certain that the steps in this second case are exactly the

same as before, I urge you to write out this portion of the proof for yourself using the previous

case as a guide.) We can now complete part (1) of the proof.

Let A and B be sets.

(1) Suppose x 2 A�B . Thus x 2 .A�B/[.B�A/. This means either x 2 A�B

or x 2 B �A. We consider both cases.

� Suppose x 2 A � B . So x 2 A and x … B . Since x 2 A, we have x 2 A [ B .

Since x … B , we have x … A \ B . Thus x 2 A [ B , but x … A \ B . Therefore

x 2 .A[ B/� .A\ B/.
� Suppose x 2 B�A. By the same argument as above, we have x 2 .A[B/�.A\B/.

Therefore x 2 .A[ B/� .A \ B/.

(2) Suppose x 2 .A[ B/� .A\ B/. . . . Therefore x 2 A � B .

Therefore A � B D .A [ B/ � .A \ B/.

Now we are ready to work on part (2). We begin by unraveling x 2 .A[ B/� .A\ B/.

This means that x 2 A [ B , but x … A\ B (by the definition of set difference).

Let A and B be sets.

(1) Suppose x 2 A�B . Thus x 2 .A�B/[.B�A/. This means either x 2 A�B

or x 2 B �A. We consider both cases.

� Suppose x 2 A � B . So x 2 A and x … B . Since x 2 A, we have x 2 A [ B .

Since x … B , we have x … A \ B . Thus x 2 A [ B , but x … A \ B . Therefore

x 2 .A[ B/� .A\ B/.
� Suppose x 2 B�A. By the same argument as above, we have x 2 .A[B/�.A\B/.

Therefore x 2 .A[ B/� .A \ B/.

(2) Suppose x 2 .A[B/� .A\B/. Thus x 2 A[B and x … A\B . . . . Therefore

x 2 A � B .

Therefore A � B D .A [ B/ � .A \ B/.

Now let’s work backward from the end of part (2). We want to show x 2 A � B , so we

need to show x 2 .A� B/[ .B �A/.
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Let A and B be sets.

(1) Suppose x 2 A�B . Thus x 2 .A�B/[.B�A/. This means either x 2 A�B

or x 2 B � A. We consider both cases.

� Suppose x 2 A � B . So x 2 A and x … B . Since x 2 A, we have x 2 A [ B .

Since x … B , we have x … A \ B . Thus x 2 A [ B , but x … A \ B . Therefore

x 2 .A [ B/ � .A \ B/.
� Suppose x 2 B�A. By the same argument as above, we have x 2 .A[B/�.A\B/.

Therefore x 2 .A[ B/� .A\ B/.

(2) Suppose x 2 .A [ B/ � .A \ B/. Thus x 2 A [ B and x … A \ B . . . . So

x 2 .A� B/[ .B � A/. Therefore x 2 A � B .

Therefore A � B D .A[ B/� .A \ B/.

To show x 2 .A�B/[ .B �A/, we need to show that either x 2 A�B or x 2 B �A.

Let’s pause and write down what we know and what we want.

We already know: x 2 A [ B and x … A \ B .

We want to show: x 2 A � B or x 2 B � A.

What we know says: x is in A or B but not both. In other words, either x is in A, in which

case it’s not in B , or x is in B , in which case it’s not in A. In other words, x 2 A � B or

x 2 B �A, and that’s what we want to show! Let’s work this into the proof.

Let A and B be sets.

(1) Suppose x 2 A�B . Thus x 2 .A�B/[.B�A/. This means either x 2 A�B

or x 2 B � A. We consider both cases.

� Suppose x 2 A � B . So x 2 A and x … B . Since x 2 A, we have x 2 A [ B .

Since x … B , we have x … A \ B . Thus x 2 A [ B , but x … A \ B . Therefore

x 2 .A [ B/ � .A \ B/.
� Suppose x 2 B�A. By the same argument as above, we have x 2 .A[B/�.A\B/.

Therefore x 2 .A[ B/� .A\ B/.

(2) Suppose x 2 .A[ B/� .A\ B/. Thus x 2 A[ B and x … A \ B .

This means that x is in A or B but not both. Thus either x is in A but not B or x is

in B but not A. That is, x 2 .A � B/ or x 2 .B � A/.

So x 2 .A� B/[ .B �A/. Therefore x 2 A � B .

Therefore A � B D .A[ B/� .A \ B/.

And this completes the proof.

More properties of difference and symmetric difference are developed in the exercises.

One particularly worthwhile result, however, is the following:

Proposition 12.12 (DeMorgan’s Laws) Let A, B , and C be sets. Then

A� .B [ C / D .A� B/\ .A� C / and A � .B \ C / D .A � B/ [ .A � C /:

The proof is left to you (Exercise 12.19).
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Cartesian Product

We close this section with one more set operation.

Definition 12.13 (Cartesian product) Let A and B be sets. TheCartesian product of A and B , denotedA�B ,

is the set of all ordered pairs (two-element lists) formed by taking an element from A together

with an element from B in all possible ways. That is,

A �B D f.a; b/ W a 2 A; b 2 Bg:

Example 12.14 Suppose A D f1; 2; 3g and B D f3; 4; 5g. Then

A � B D f.1; 3/; .1; 4/; .1; 5/; .2; 3/; .2; 4/; .2; 5/; .3; 3/; .3; 4/; .3; 5/g and

B � A D f.3; 1/; .3; 2/; .3; 3/; .4; 1/; .4; 2/; .4; 3/; .5; 1/; .5; 2/; .5; 3/g:

Notice that for the sets in Example 12.14, A � B 6D B � A, so Cartesian product of sets

is not a commutative operation.

In what sense does Cartesian product “multiply” the sets? Why do we use a times sign

� to denote this operation? Notice, in the example, that the two sets both had three elements,

and their product had 3 � 3 D 9 elements. In general, we have the following:

Proposition 12.15 Let A and B be finite sets. Then jA �Bj D jAj � jBj.

The proof is left for Exercise 12.29.

Recap

In this section we discussed the following set operations:

� Union: A[ B is the set of all elements in A or B (or both).
� Intersection: A \ B is the set of all elements in both A and B .
� Set difference: A� B is the set of all elements in A but not B .
� Symmetric difference: A � B is the set of all elements in A or B , but not both.
� Cartesian product: A � B is the set of all ordered pairs of the form .a; b/ where a 2 A

and b 2 B .

12 Exercises 12.1. Let A D f1; 2; 3; 4; 5g and let B D f4; 5; 6; 7g. Please compute:

a. A [ B .

b. A \ B .

c. A � B .

d. B �A.

e. A � B .

f. A �B .

g. B �A.

12.2. Let A and B be sets with jAj D 10 and jBj D 7. Calculate jA \ Bj C jA [ Bj and
justify your answer.

12.3. Let A and B be sets with jAj D 10 and jBj D 7. What can we say about jA[ Bj?
In particular, find two numbers x and y for which we can be sure that x � jA [

Bj � y and then find specific sets A and B so that jA [ Bj D x and another pair of

sets so that jA[ Bj D y.

Finally, answer the same question about jA \ Bj (find upper and lower bounds as

well as examples to show that your bounds are tight).

12.4. a. A line in the plane is a set of points. If `1 and `2 are two different lines, what can we

say about j`1 \ `2j? In particular, find all possible values of j`1 \ `2j and interpret

them geometrically.
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b. A circle in the plane is also a set of points. If C1 and C2 are two different circles,

what can we say about jC1 \ C2j? Again, interpret your answer geometrically.

12.5. Prove Theorem 12.3.

12.6. Let A and B be sets. Explain why A \ B and A � B are disjoint.

12.7. Earlier we presented a Venn diagram of the distributive property A [ .B \ C / D
.A [ B/ \ .A [ C /. Please give a Venn diagram of the other distributive property,

A\ .B [ C / D .A \ B/[ .A\ C /.

12.8. Is a Venn diagram illustration a proof? (This is a philosophical question.)

12.9. Suppose A, B , and C are sets with A\B \C D ;. Prove or disprove: jA[B [C j D
jAj C jBj C jC j.

12.10. Suppose A, B , and C are pairwise disjoint sets. Prove or disprove: jA [ B [ C j D
jAj C jBj C jC j.

12.11. Let A and B be sets. Prove or disprove: A[ B D A \ B if and only if A D B .

12.12. Let A and B be sets. Prove or disprove: jA � Bj D jAj C jBj � jA\ Bj.
12.13. Let A and B be sets. Prove or disprove: jA � Bj D jA � Bj C jB � Aj.
12.14. Let A be a set. Prove: A� ; D A and ; � A D ;.
12.15. Let A be a set. Prove: A � A D ; and A � ; D A.

12.16. Prove that A � B if and only if A� B D ;.
12.17. Let A and B be nonempty sets. Prove: A � B D B �A if and only if A D B .

Why do we need the condition that A and B are nonempty?

12.18. State and prove necessary and sufficient conditions for A�B D B�A. In other words,

create a theorem of the form “Let A and B be sets. We have A � B D B � A if and

only if (a condition on A and B).” Then prove your result.

12.19. Give a standard proof of Proposition 12.12 and illustrate it with a Venn diagram.

12.20. In Exercise 11.8 we definedwhat it means for a region in the plane to be convex, namely,

a region R is convex provided given any two points in R, the line segment joining those

points is entirely contained in R.

Prove or disprove the following assertions:

a. The union of two convex regions is convex.

b. The intersection of two convex regions is convex.

12.21. True or False: For each of the following statements, determine whether the statement is

true or false and then prove your assertion. That is, for each true statement, please sup-

ply a proof, and for each false statement, present a counterexample (with explanation).

In the following, A, B , and C denote sets.

a. A � .B � C / D .A � B/ � C .

b. .A � B/ � C D .A � C / � B .

c. .A [ B/ � C D .A � C / \ .B � C /.

d. If A D B � C , then B D A [ C .

e. If B D A[ C , then A D B � C .

f. jA� Bj D jAj � jBj.
g. .A � B/ [ B D A.

h. .A [ B/ � B D A.

12.22. Let A be a set. The complement of A, denoted A, is the set of all objects that are notSet complement.

in A. STOP! This definition needs some amending. Taken literally, the complement of

the set f1; 2; 3g includes the number�5, the ordered pair .3; 4/, and the sun, moon, and

stars! After all, it says “. . .all objects that are not in A.” This is not what is intended.

When mathematicians speak of set complements, they usually have some overar-

ching set in mind. For example, during a given proof or discussion about the integers,

if A is a set containing just integers, A stands for the set containing all integers not in

A.

If U (for “universe”) is the set of all objects under consideration and A � U , then

the complement of A is the set of all objects in U that are not in A. In other words,

A D U �A. Thus ; D U .

Prove the following about set complements. Here the letters A, B , and C denote

subsets of a universe set U .

a. A D B if and only if A D B .

b. A D A.

c. A[ B [ C D A\ B \ C .
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The notation A is handy, but it can be ambiguous. Unless it is perfectly clear whatThe notation U �A is much clearer

than A. the “universe” set U should be, it is better to use the set difference notation rather than

complement notation.

12.23. Design a four-set Venn diagram. Notice that the three-set Venn diagram we have been

using has eight regions (including the region surrounding the three circles) correspond-

ing to the eight possible memberships an object might have. An object might be in or

not in A, in or not in B , and in or not in C .

Explain why this gives eight possibilities.

Your Venn diagram should show four sets, A, B , C , and D. How many regions

should your diagram have?

On your Venn diagram, shade in the set A � B � C � D.

Note: Your diagram does not have to use circles to demark sets. Indeed, it is im-

possible to create a Venn diagram for four sets using circles! You need to use other

shapes.

12.24. Let A, B , and C be sets. Prove thatAn expanded version of

inclusion-exclusion.
jA[ B [ C j D jAj C jBj C jC j

� jA\ Bj � jA\ C j � jB \ C j
C jA\ B \ C j:

12.25. There is an intimate connection between set concepts and Boolean algebra concepts.The connection between set

operations and Boolean algebra. The symbols ^ and _ are pointy versions of \ and [, respectively. This is more than a

coincidence. Consider:

x 2 A\B () .x 2 A/^.x 2 B/

x 2 A[B () .x 2 A/_.x 2 B/

Find similar connections between the set-theoretic notions of� and � with notions

from Boolean algebra.

12.26. Prove that symmetric difference is a commutative operation; that is, for sets A and B ,

we have A � B D B � A.

12.27. Prove that symmetric difference is an associative operation; that is, for any sets A, B ,

and C , we have A � .B � C / D .A � B/ � C .

12.28. Give a Venn diagram illustration of A � .B � C / D .A � B/ � C .

12.29. Prove Proposition 12.15.

12.30. Let A, B , and C denote sets. Prove the following:

a. A � .B [ C / D .A �B/ [ .A � C /.

b. A � .B \ C / D .A �B/ \ .A � C /.

c. A � .B � C / D .A �B/ � .A � C /.

d. A � .B � C / D .A � B/ � .A � C /.

13 Combinatorial Proof: Two Examples

In Section 12 we introduced the concept of combinatorial proof of equations. This technique

works by showing that both sides of an equation are answers to a common question. This

method was used to prove Proposition 12.4 (for finite sets A and B we have jAj C jBj D
jA[ Bj C jA\ Bj). See Proof Template 9.

In this section we give two examples that further illustrate this technique. One is based

on a set-counting problem and the other on a list-counting problem.

Proposition 13.1 Let n be a positive integer. Then

2
0 C 2

1 C � � � C 2
n�1 D 2

n � 1:

For example, 20 C 21 C 22 C 23 C 24 D 1C 2C 4C 8C 16 D 31 D 25 � 1.

We seek a question to which both sides of the equation give a correct answer. The right

hand side is simpler, so let us begin there. The 2n term answers the question “How many
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subsets does an n-element set have?” However, the term is 2n � 1, not 2n. We can modify

the question to rule out all but one of the subsets. Which subset should we ignore? A natural

choice is to skip the empty set. The rephrased question is “How many nonempty subsets does

an n-element set have?” Now it is clear that the right hand side of the equation, 2n � 1, is a

correct answer. But what of the left?

The left hand side is a long sum, with each term of the form 2j . This is a hint that we are

considering several subset-counting problems. Somehow, the question of howmany nonempty

subsets an n-element set has must be broken down into disjoint cases (each a subset-counting

problem unto itself) and then combined to give the full answer.

We know we are counting nonempty subsets of an n-element set. For the sake of speci-

ficity, suppose the set is f1; 2; : : : ; ng. Let’s start writing down the nonempty subsets of this

set. It’s natural to start with f1g. Next we write down f1; 2g and f2g—these are the sets whose

largest element is 2. Next we write down the sets whose largest element is 3. Let’s organize

this into a chart.

Largest element Subsets of f1; 2; : : : ; ng
1 f1g
2 f2g, f1; 2g
3 f3g, f1; 3g, f2; 3g, f1; 2; 3g
4 f4g, f1; 4g, f2; 4g, f1; 2; 4g, . . . , f1; 2; 3; 4g
:
:
:

:
:
:

n fng, f1; ng, f2; ng, f1; 2; ng, . . . , f1; 2; 3; : : : ; ng
We neglected to write out all the subsets on line 4 of the chart. How many are there? The sets

on this line must contain 4 (since that’s the largest element). The other elements of these sets

are chosen from among 1, 2, and 3. Because there are 23 D 8 possible ways to form a subset

of f1; 2; 3g, there must be 8 sets on this line. Please take a moment to verify this for yourself

by completing line 4 of the chart.

Now skip to the last line of the chart. How many subsets of f1; 2; : : : ; ng have largest

element n? We must include the element n together with each subset of f1; 2; : : : ; n � 1g, for
a total of 2n�1 choices.

Notice that every nonempty subset of f1; 2; : : : ; ng must appear exactly once in the chart.

Totaling the row sizes gives

1C 2C 4C 8C � � � C 2
n�1

:

Aha! This is precisely the left hand side of the equation we seek to prove.

Armed with these insights, we are ready to write the proof.

Proof (of Proposition 13.1)

Let n be a positive integer, and let N D f1; 2; : : : ; ng. How many nonempty subsets does N

have?

Answer 1: Since N has 2n subsets, when we disregard the empty set, we see that N has

2n � 1 nonempty subsets.

Answer 2: We consider the number of subsets of N whose largest element is j where

1 � j � n. Such subsets must be of the form f: : : ; j g where the other elements are chosen

from f1; : : : ; j � 1g. Since this latter set has 2j�1 subsets, N has 2j�1 subsets whose largest

element is j . Summing these answers over all j gives

2
0 C 2

1 C 2
2 C � � � C 2

n�1

nonempty subsets of N .

Since answers 1 and 2 are both correct solutions to the same counting problem, we have

2
0 C 2

1 C 2
2 C � � � C 2

n�1 D 2
n � 1:

We now turn to a second example (an equation you were led to discover in Exercise 9.9).
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Proposition 13.2 Let n be a positive integer. Then

1 � 1ŠC 2 � 2ŠC � � � C n � nŠ D .nC 1/Š� 1:

For example, with n D 4, observe that

1 � 1ŠC 2 � 2ŠC 3 � 3ŠC 4 � 4Š D 1 � 1C 2 � 2C 3 � 6C 4 � 24

D 1C 4C 18C 96

D 119 D 120� 1 D 5Š� 1:

The key to proving Proposition 13.2 is to find a question to which both sides of the

equation give a correct answer. As with the first example, the right hand side is simpler, so we

begin there.

The .n C 1/Š term reminds us of counting lists without replacement. Specifically, it an-

swers the question “How many lists can we form using the elements of f1; 2; : : : ; n C 1g
in which every element is used exactly once?” Because the right hand side also includes

a �1 term, we need to discard one of these lists. Which? A natural choice is to skip the list

.1; 2; 3; : : : ; n C 1/; this is the only list in which every element j appears in position j for

every j D 1; 2; : : : ; n. In every other list, some element j is not in the j th position on this

list. Alternatively, the discarded list is the only one in which the elements appear in increasing

order.

We therefore consider the question “How many lists can we form using the elements of

f1; 2; : : : ; nC 1g in which every element appears exactly once and in which the elements do

not appear in increasing order?”

Clearly .nC1/Š�1 is one solution to this problem; we need to show that the left hand side

is also a correct answer. If the elements in the list are not in increasing order, then some ele-

ment, say k, will not be in position k. We can organize this counting problem by considering

where this first happens.

Let us consider the case n D 4. We form a chart containing all length-5 repetition-free

lists we can form from the elements of f1; 2; 3; 4; 5g that are not in increasing order. We

organize the chart by considering the first time slot k is not element k. For example, when

k D 3 the lists are 12435, 12453, 12534, and 12543 since the entries in positions 1 and 2

are elements 1 and 2, respectively, but entry 3 is not 3. (We have omitted the commas and

parentheses for the sake of clarity.)

The chart for n D 4 follows.

k first “misplaced” element at position k

21345 21354 21435 21453 21534 21543 23145 23154 23415 23451 23514 23541

24135 24153 24315 24351 24513 24531 25134 25143 25314 25341 25413 25431

31245 31254 31425 31452 31524 31542 32145 32154 32415 32451 32514 32541

1 34125 34152 34215 34251 34512 34521 35124 35142 35214 35241 35412 35421

41235 41253 41325 41352 41523 41532 42135 42153 42315 42351 42513 42531

43125 43152 43215 43251 43512 43521 45123 45132 45213 45231 45312 45321

51234 51243 51324 51342 51423 51432 52134 52143 52314 52341 52413 52431

53124 53142 53214 53241 53412 53421 54123 54132 54213 54231 54312 54321

13245 13254 13425 13452 13524 13542

2 14235 14253 14325 14352 14523 14532

15234 15243 15324 15342 15423 15432

3 12435 12453 12534 12543

4 12354

5 —

Notice that row 5 of the chart is empty; why? This row should contain all repetition-free lists

in which the first slot k that does not contain element k is k D 5. Such a list must be of the

form .1; 2; 3; 4; ‹/, but then there is no valid way to fill in the last position.

Next, count the number of lists in each portion of the chart. Working from the bottom,

there are 1 C 4C 18C 96 D 119 lists (all 5Š D 120 except the list .1; 2; 3; 4; 5/). The sum

1C4C18C96 should be familiar; it is precisely 1 �1ŠC2 �2ŠC3 �3ŠC4 �4Š. Of course, this is
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not a coincidence. Consider the first row of the chart. The lists in this row must not begin with

a 1 but may begin with any element of f2; 3; 4; 5g; there are 4 choices for the first element.

Once the first element is chosen, the remaining four elements in the lists may be chosen in any

way we like. Since there are 4 elements remaining (after selecting the first), these 4 elements

can be arranged in 4Š ways. Thus, by the Multiplication Principle, there are 4 �4Š lists in which

the first element is not 1.

The same analysis works for the second row. Lists on this row must begin with a 1, and

then the second element must not be a 2. There are 3 choices for the second element because

we must choose it from f3; 4; 5g. Once the second element has been selected, the remaining

three elements may be arranged in any way we wish, and there are 3Š ways to do so. Thus the

second row of the chart contains 3 � 3Š D 18 lists.

We are ready to complete the proof.

Proof (of Proposition 13.2)

Let n be a positive integer. We ask, “How many repetition-free lists can we form using all the

elements in f1; 2; : : : ; nC 1g in which the elements do not appear in increasing order?”

Answer 1: There are .nC1/Š repetition-free lists, and in only one such list do the elements

appear in order, namely .1; 2; : : : ; n; nC 1/. Thus the answer to the question is .nC 1/Š� 1.

Answer 2: Let j be an integer between 1 and n, inclusive. Let us consider those lists in

which the first j � 1 elements are 1; 2; : : : ; j � 1, respectively, but for which the j th element

is not j . How many such lists are there? For element j there are nC 1 � j choices because

elements 1 through j � 1 have already been chosen and we may not use element j . The

remaining nC 1 � j elements may fill in the remaining slots on the list in any order, giving

.nC 1� j /Š possibilities. By the Multiplication Principle, there are .nC 1� j / � .nC 1� j /Š

such lists. Summing over j D 1; 2; : : : ; n gives

n � nŠC .n � 1/ � .n � 1/ŠC � � �3 � 3ŠC 2 � 2ŠC 1 � 1Š:

Since answers 1 and 2 are both correct solutions to the same counting problem, we have

1 � 1ŠC 2 � 2ŠC � � � C n � nŠ D .nC 1/Š� 1:

Recap

In this section we illustrated the concept of combinatorial proof by applying the technique to

demonstrate two identities.

13 Exercises 13.1. Give an alternative proof of Proposition 13.1 in which you use list counting instead of

subset counting.

13.2. Let n be a positive integer. Use algebra to simplify the following expression:

.x � 1/.1C x C x
2 C � � � C x

n�1
/:

Use this to give another proof of Proposition 13.1.

13.3. Substituting x D 3 into your expression in the previous problem yields

2 � 30 C 2 � 31 C 2 � 32 C � � � C 2 � 3n�1 D 3
n � 1:

Prove this equation combinatorially.

Next, substitute x D 10 and illustrate the result using ordinary base-10 numbers.

13.4. Let a and b be positive integers with a > b. Give a combinatorial proof of the identity

.aC b/.a � b/ D a2 � b2.

13.5. Let n be a positive integer. Give a combinatorial proof that n2 D n.n � 1/C n.

13.6. In this problemwe want to calculate the number of two-element lists .a; b/ we can form

using the numbers 0, 1, . . . , n with a < b.

a. Show that the answer is .nC 1/n=2 by considering the number of two-element lists

.a; b/ in which a < b or a > b.

b. Show that the answer is also 1C 2C � � � C n.
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Taken together, (a) and (b) prove the formula

n
X

kD1

k D .nC 1/n

2
:

13.7. How many two-element lists can we form using the integers from 1 to n in which the

largest element in the list is a (where a is some integer between 1 and n)?

Use your answer to show:

1C 3C 5C � � � C .2n � 1/ D n
2
:

Chapter 2 Self Test

1. The call sign for a radio station in the United States is a list of three or four letters, such as

WJHU or WJZ. The first letter must be a W or a K, and there is no restriction on the other

letters. In how many ways can the call sign of a radio station be formed?

2. In how many ways can we make a list of three integers .a; b; c/ where 0 � a; b; c � 9 and

aC b C c is even?

3. In how many ways can we make a list of three integers .a; b; c/ where 0 � a; b; c � 9 and

abc is even?

4. Without the use of any computational aid, simplify the following expression:

20Š

17Š � 3Š

5. In how many ways can we arrange a standard deck of 52 cards so that all cards in a given

suit appear contiguously (e.g., first all the spades appear, then all the diamonds, then all

the hearts, and then all the clubs)?

6. Ten married couples are waiting in line to enter a restaurant. Husbands and wives stand

next to each other, but either onemight be ahead of the other. Howmany such arrangements

are possible?

7. Evaluate the following:

100
Y

kD0

k2

k C 1
:

8. Let A D fx 2 Z W jxj < 10g. Evaluate jAj.
9. Let A D

˚

1; 2; f3; 4g
	

. Which of the following are true and which false? No proof is

required.

a. 1 2 A.

b. f1g 2 A.

c. 3 2 A.

d. f3g 2 A.

e. f3g � A.

10. Let A and B be finite sets. Determine whether the following statements are true or false.

Justify your answer with a proof or counterexample, as appropriate.

a. 2A\B D 2A \ 2B .

b. 2
A[B D 2

A [ 2
B .

c. 2A�B D 2A � 2B .

11. Let A be a set. Which of the following are true and which false?

a. x 2 A iff x 2 2A.

b. T � A iff T 2 2A.

c. x 2 A iff fxg 2 2A.

d. fxg 2 A iff
˚

fxg
	

2 2A.

12. Which of the following statements are true and which are false? No proof is required.

a. 8x 2 Z, x
2 � x.

b. 9x 2 Z, x3 D x.

c. 8x 2 Z, 2x � x.

d. 9x 2 Z, x2 C x C 1 D 0.
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13. Which of the following statements are true and which are false? No proof is required.

a. 8x 2 Z; 8y 2 Z; x � y.

b. 9x 2 Z; 8y 2 Z; x � y.

c. 8x 2 Z; 9y 2 Z; x � y.

d. 9x 2 Z; 9y 2 Z; x � y.

e. 8x 2 N; 8y 2 N; x � y.

f. 9x 2 N; 8y 2 N; x � y.

g. 8x 2 N; 9y 2 N; x � y.

h. 9x 2 N; 9y 2 N; x � y.

14. Let p.x; y/ stand for a sentence about two integers, x and y. For example, p.x; y/ could

mean “x � y is a perfect square.”

Assume the statement 8x; 9y; p.x; y/ is true. Which of the following statements

about integers must also be true?

a. 8x; 9y; :p.x; y/.

b. :
�

9x; 8y; :p.x; y/
�

.

c. 9x; 9y; p.x; y/.

15. Let A and B be sets and supposeA�B D f.1; 2/; .1; 3/; .2; 2/; .2; 3/g. Find A[B , A\B ,

and A� B .

16. Let A, B , and C denote sets. Prove that .A [ B/ � C D .A � C / [ .B � C / and give a

Venn diagram illustration.

17. Consider the following argument: All cats are mammals. I am a mammal. Therefore, I am

a cat. Show that this is fallacious using the language of set theory. Illustrate the fallacy

with a Venn diagram.

18. Suppose A and B are finite sets. Given that jAj D 10, jA [ Bj D 15, and jA \ Bj D 3,

determine jBj.
19. Let A and B be sets. Create an expression that evaluates to A \ B that uses only the

operations union and set difference. That is, find a formula that uses only the symbols A,

B , [, �, and parentheses; this formula should equal A\ B for all sets A and B .

20. Let n be a positive integer. Give a combinatorial proof of the identity

n
3 D n.n � 1/.n � 2/C 3n.n � 1/C n:
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3 CountingandRelations

14 Relations

Mathematics is teeming with relations. Intuitively, a relation is a comparison between two

objects. The two objects either are or are not related according to some rule. For example,

less than (<) is a relation defined on integers. Some pairs of numbers, such as .2; 8/, satisfy

the less-than relation (since 2 < 8), but other pairs of numbers do not, such as .10; 3/ (since

10 6< 3).

There are other relations defined on the integers, such as divisibility, greater than, equal-

ity, and so on. Furthermore, there are relations on other sorts of objects. We can ask whether

a pair of sets satisfies the� relation or whether a pair of triangles satisfies the is-congruent-to

relation.

Typically we use relations to study objects. For example, the is-congruent-to relation is a

central tool in geometry in the study of triangles. In this section, we take a different point of

view. Our purpose is to study the relations themselves.

What is a relation? The precise definition follows. Beware! At first glance, it may seem

utterly perplexing and bear little resemblance to what you understand relations, such as �, to
be. Rest assured that we will explain this definition thoroughly.

Definition 14.1 (Relation) A relation is a set of ordered pairs.

A set of ordered pairs??? Yes, we mean a set of two-element lists. For example, R D
f.1; 2/; .1; 3/; .3; 0/g is a relation, though not a particularly interesting one. This seems to

have little to do with familiar relations such as < and � and j.
In truth, when mathematicians think about relations, we rarely think about them as sets

of ordered pairs. We think of a relation R as a “test.” If x and y are related by R—if they pass

the test—then we write x R y. Otherwise, if they are not related by the relation R, we put a

slash through the relation symbol, as in x 6D y or A 6� B (A is not a subset of B).

How can we understandDefinition 14.1 in this way? The set of ordered pairs is a complete

listing of all pairs of objects that “satisfy” the relation.

Let’s return to the example R D f.1; 2/; .1; 3/; .3; 0/g. This says that, for the relation R,

1 is related to 2, 1 is related to 3, and 3 is related to 0, and for any other objects x; y, it is not

the case that x is related to y. We can write,

.1; 2/ 2 R; .1; 3/ 2 R; .3; 0/ 2 R; .5; 6/ … R

and this means that .1; 2/, .1; 3/, and .3; 0/ are related by R, but .5; 6/ is not. Although this is

a formally correct way to express these facts, it is not how mathematicians write. We would

rather write,

1 R 2; 1 R 3; 3 R 0; 5 6R 6:

In other words, the symbols x R y mean .x; y/ 2 R. Read aloud, x R y can be spoken “x isx R y () .x; y/ 2 R.

related by the relation R to y,” or, if everyone knows what relation is under consideration at

the moment, we can simply say, “x is related to y.”

73
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The familiar relations of mathematics can be thought of in these terms. For example, the

less-than-or-equal-to relation on the set of integers can be written as follows:

f.x; y/ W x; y 2 Z and y � x 2 Ng:

This says that .x; y/ is in the relation provided y � x 2 N—that is, provided y � x is a

nonnegative integer, which in turn is equivalent to x � y.

Let’s reiterate the two salient points:

� A relation R is a set of ordered pairs .x; y/; we include an ordered pair in R just when

.x; y/ “satisfies” the relation R. Any set of ordered pairs constitutes a relation, and a

relation does not have to be specified by a general “rule” or special principle.
� Even though relations are sets of ordered pairs, we usually do not write .x; y/ 2 R.

Rather, we write x R y and say, “x is related to y by the relation R.”

Next we extend Definition 14.1 a bit.

Definition 14.2 (Relation on, between sets) Let R be a relation and let A and B be sets. We say R is

a relation on A provided R � A � A, and we say R is a relation from A to B provided

R � A � B .

Example 14.3 Let A D f1; 2; 3; 4g and B D f4; 5; 6; 7g. Let

R D f.1; 1/; .2; 2/; .3; 3/; .4; 4/g;
S D f.1; 2/; .3; 2/g;
T D f.1; 4/; .1; 5/; .4; 7/g;
U D f.4; 4/; .5; 2/; .6; 2/; .7; 3/g; and
V D f.1; 7/; .7; 1/g:

All of these are relations.

� R is a relation on A. Note that it is the equality relation on A.
� S is a relation on A. Note that element 4 is never mentioned.
� T is a relation from A to B . Note that elements 2; 3 2 A, and 6 2 B are never mentioned.
� U is a relation from B to A. Note that 1 2 A is never mentioned.
� V is a relation, but it is neither a relation from A to B nor a relation from B to A.

Since, formally, a relation is a set, all the various set operations apply to relations. For

example, if R is a relation and A is a set, then R \ .A � A/ is the relation R restricted to the

set A. [We can also consider R\ .A�B/, in which case we have restricted R to be a relation

from A to B .]

Here is another operation we can perform on relations.

Definition 14.4 (Inverse relation) Let R be a relation. The inverse of R, denoted R�1, is the relation formed

by reversing the order of all the ordered pairs in R.

In symbols,

R
�1 D f.x; y/ W .y; x/ 2 Rg:

Example 14.5 Let

R D f.1; 5/; .2; 6/; .3; 7/; .3; 8/g:

Then

R
�1 D f.5; 1/; .6; 2/; .7; 3/; .8; 3/g:
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If R is a relation on A, so is R�1. If R is a relation from A to B , then R�1 is a relation

from B to A.

Note that writing 1=R is nonsense. To form the inverse of a relation simply means to

reverse all the ordered pairs in the relation; it has nothing to do with division. The �1 super-

script is a convenient notation. We have not defined a general operation of raising a relation

to a power.

Since the inverse operation reverses the ordered pairs in a relation, it is clear that .R�1/�1 D
R. Here are a formal statement and proof.

Proposition 14.6 Let R be a relation. Then .R�1/�1 D R.

Note that R, R�1, and .R�1/�1 are all sets. Thus, to prove that .R�1/�1 D R, we use

Proof Template 5 (equality of sets).

Proof. Suppose .x; y/ 2 R. Then .y; x/ 2 R�1 and thus .x; y/ 2 .R�1/�1.

Now suppose .x; y/ 2 .R
�1

/
�1. Then .y; x/ 2 R

�1 and so .x; y/ 2 R.

We have shown that .x; y/ 2 R () .x; y/ 2 .R�1/�1; therefore R D .R�1/�1.

Properties of Relations

We introduce special terms to describe relations.

Definition 14.7 (Properties of relations) Let R be a relation defined on a set A.

� If for all x 2 A we have x R x, we call R reflexive.
� If for all x 2 A we have x 6R x, we call R irreflexive.
� If for all x; y 2 A we have x R y H) y R x, we call R symmetric.
� If for all x; y 2 A we have .x R y ^ y R x/ H) x D y, we call R antisymmetric.
� If for all x; y; z 2 A we have .x R y ^ y R z/ H) x R z, we call R transitive.

We present several examples to illustrate this vocabulary.

Example 14.8 Consider the relationD (equality) on the integers. It is reflexive (any integer is equal to itself),

symmetric (if x D y, then y D x), and transitive (if x D y and y D z, then we must have

x D z).

The relationD is antisymmetric, though this is not an interesting example of antisymme-

try (see Exercise 14.5). The subsequent examples give better illustrations of this property.

However, the relationD is not irreflexive (which would say that x 6D x for all x 2 Z).

Example 14.9 Consider the relation� (less than or equal to) on the integers. Note that� is reflexive because

for any integer x, it is true that x � x. It is also transitive, since x � y and y � z imply that

x � z.

The relation � is not symmetric because that would mean that x � y H) y � x. This

is false; for example, 3 � 9, but 9 6� 3.

However, � is antisymmetric: If we know x � y and y � x, it must be the case that

x D y.

Finally, � is not irreflexive; for example, 5 � 5.

Example 14.10 Consider the relation < (strict less than) on the integers. Note that < is not reflexive because,

for example, 3 < 3 is false. Further, < is irreflexive because x < x is never true.

The relation < is not symmetric because x < y does not imply y < x; for example,

0 < 5 but 5 6< 0.
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The relation < is antisymmetric, but it fulfills the condition vacuously. The condition

states

.x < y and y < x/ H) x D y:

However, it is impossible to have both x < y and y < x, so the hypothesis of this if-then

statement can never be satisfied. Therefore it is true.

Finally, < is transitive.

Example 14.11 Consider the relation j (divides) on the natural numbers. Note that j is antisymmetric because,

if x and y are natural numbers with xjy and yjx, then x D y.

However, the relation j on the integers is not antisymmetric. For example, 3j�3 and�3j3,
but 3 6D �3.

Also notice that j is not symmetric (e.g., 3j9, but 9 does not divide 3).

The properties in Definition 14.7 depend on the context of the relation. The j (divides)
relation on the integers is different from the j relation when restricted to the natural numbers.

This example also shows that a relation can be neither symmetric nor antisymmetric.

The terms in Definition 14.7, such as reflexive, are attributes of a relation R defined on a

set A. Consider the relation R D f.1; 1/; .1; 2/; .2; 2/; .2; 3/; .3; 3/g. We ask: Is R reflexive?

This question does not have a definitive answer. If we think of R as a relation on the set

f1; 2; 3g, then the answer is yes. However, we can also consider R as a relation on all of Z;

in this context, the answer is no. One can only say that a relation R is reflexive if we are

presented with the set A on which R is a relation. In most cases, the set A will either be

explicitly mentioned or be obvious from context.

Recap

We introduced the notion of a relation in both the intuitive sense as a “condition” and in the

formal sense as a set of ordered pairs. We presented the concept of an inverse relation and

defined the following properties of relations: reflexive, irreflexive, symmetric, antisymmetric,

and transitive.

14 Exercises 14.1. Write the following relations on the set f1; 2; 3; 4; 5g as sets of ordered pairs.
a. The is-less-than relation.

b. The is-divisible-by relation.

c. The is-equal-to relation.

d. The has-the-same-parity-as relation.When we say that two numbers have

the same parity, we mean that they

are both odd or both even.
14.2. Each of the following is a relation on the set f1; 2; 3; 4; 5g. Express these relations in

words.

a. f.1; 2/; .2; 3/; .3; 4/; .4; 5/g
b. f(1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), (4,2), (4,3), (4,4), (5,1), (5,2), (5,3), (5,4),

(5,5)g.
c. f.1; 5/; .2; 4/; .3; 3/; .4; 2/; .5; 1/g.
d. f.1; 1/; .1; 2/; .1; 3/; .1; 4/; .1; 5/; .2; 2/; .2; 4/; .3; 3/; .4; 4/; .5; 5/g.

14.3. For each of the following relations defined on the set f1; 2; 3; 4; 5g, determine whether

the relation is reflexive, irreflexive, symmetric, antisymmetric, and/or transitive.

a. R D f.1; 1/; .2; 2/; .3; 3/; .4; 4/; .5; 5/g.
b. R D f.1; 2/; .2; 3/; .3; 4/; .4; 5/g.
c. R D f.1; 1/; .1; 2/; .1; 3/; .1; 4/; .1; 5/g.
d. R D f.1; 1/; .1; 2/; .2; 1/; .3; 4/; .4; 3/g.
e. R D f1; 2; 3; 4; 5g � f1; 2; 3; 4; 5g.

14.4. For each of the following relations on the set of human beings, please determinewhether

the relation is reflexive, irreflexive, symmetric, antisymmetric, and/or transitive.

a. has-the-same-last-name-as.

b. is-the-child-of.

c. has-the-same-parents-as (i.e., same mother and father)
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d. has-a-common-parent-as (i.e., same mother or father).

e. is-married-to.

f. is-an-ancestor-of.

14.5. Prove that the equality relation on the set of integers is antisymmetric.

14.6. Let us say that two integers are near one another provided the absolute value of their

difference is 2 or smaller (i.e., the numbers are at most 2 apart). For example, 3 is near

to 5, 10 is near to 9, but 8 is not near to 4. Let R stand for this is-near-to relation. Please

do the following:

a. Write down R as a set of ordered pairs. Your answer should look like this:

R D f.x; y/ W : : :g:

b. Prove or disprove: R is reflexive.

c. Prove or disprove: R is irreflexive.

d. Prove or disprove: R is symmetric.

e. Prove or disprove: R is antisymmetric.

f. Prove or disprove: R is transitive.

14.7. For each of the following relations, find R�1.

a. R D f.1; 2/; .2; 3/; .3; 4/g.
b. R D f.1; 1/; .2; 2/; .3; 3/g.
c. R D f.x; y/ W x; y 2 Z; x � y D 1g.
d. R D f.x; y/ W x; y 2 N; xjyg.
e. R D f.x; y/ W x; y 2 Z; xy > 0g.

14.8. Suppose that R and S are relations and R D S�1. Prove that S D R�1.

14.9. Let R be a relation on a set A. Prove or disprove: If R is antisymmetric, then R is

irreflexive.

14.10. Let R be the relation has-the-same-size-as defined on all finite subsets of Z (i.e., AR B

iff jAj D jBj). Which of the five properties (reflexive, irreflexive, symmetric, antisym-

metric, transitive) does R have? Prove your answers.

14.11. Consider the relation � on 2
Z (i.e., the is-a-subset-of relation defined on all sets of

integers). Which of the properties in Definition 14.7 does� have? Prove your answers.

14.12. What is ��1?

14.13. The property irreflexive is not the same as being not reflexive. To illustrate this, please

do the following:

a. Give an example of a relation on a set that is neither reflexive nor irreflexive.

b. Give an example of a relation on a set that is both reflexive and irreflexive.

Part (a) is not too hard, but for (b), you will need to create a rather strange example.

14.14. A fancy way to say R is symmetric is R D R
�1. Prove this (i.e., prove that a relation

R is symmetric if and only if R D R�1).

14.15. Prove: A relation R on a set A is antisymmetric if and only if

R \R
�1 � f.a; a/ W a 2 Ag:

14.16. Give an example of a relation on a set that is both symmetric and transitive but not

reflexive.

Explain what is wrong with the following “proof.”

Statement: If R is symmetric and transitive, then R is reflexive.

“Proof”: Suppose R is symmetric and transitive. Symmetric means that xR

y implies yR x. We apply transitivity to xR y and yR x to give xR x. Therefore

R is reflexive.

14.17. Drawing pictures of relations. Pictures of mathematical objects are wonderful aids in

understanding concepts. There is a nice way to draw a picture of a relation on a set or

of a relation from one set to another.

To draw a picture of a relation R on a set A, we make a diagram in which each

element of A is represented by a dot. If a R b, then we draw an arrow from dot a to dot

b. If it should happen that b is also related to a, we draw another arrow from b to a.

And if a R a, then we draw a looping arrow from a to itself.
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For example, let A D f1; 2; 3; 4; 5g and R D f.1; 1/; .1; 2/; .1; 3/; .4; 3/; .3; 1/g. A
picture of the relation R on A is given in the first figure.1

2

3

4

5

1

2

3

4

5

4

5

6

7

To draw a picture of a relation from A to B , we draw two collections of dots. The

first collection of dots corresponds to the elements in A, and we place these on the left

side of the figure. The dots for B go on the right. We then draw an arrow from a 2 A

to b 2 B just when .a; b/ is in the relation.

For example, let A D f1; 2; 3; 4; 5g and B D f4; 5; 6; 7g and let S be the relation

f.1; 4/; .1; 5/; .2; 5/; .3; 6/g. A picture of the relation S is given in the second figure.

Please draw pictures of the following relations.

a. Let A D fa 2 N W aj10g and let R be the relation j (divides) restricted to A.

b. Let A D f1; 2; 3; 4; 5g and let R be the less-than relation restricted to A.

c. Let A D f1; 2; 3; 4; 5g and let R be the relationD (equals) restricted to A.

d. Let A D f1; 2; 3; 4; 5g and let B D f2; 3; 4; 5g. Let R be the relation� (greater than

or equal to) from A to B .

e. Let A D f�1;�2;�3;�4;�5g and let B D f1; 2; 3; 4; 5g and let R D f.a; b/ W a 2
A; b 2 B; ajbg.

15 Equivalence Relations

As we proceed with our study of discrete mathematics, we shall encounter various relations.

Certain relations bear a strong resemblance to the relation equality. A good example (from

geometry) is the is-congruent-to relation (often denoted byŠ) on the set of triangles. Roughly
speaking, triangles are congruent if they have exactly the same shape. Congruent triangles are

not equal (i.e., they might be in different parts of the plane), but in a sense, they act like equal

triangles. Why? What is special aboutŠ that it acts like equality?

Of the five properties listed in Definition 14.7, Š is reflexive, symmetric, and transitive

(but it is neither irreflexive nor antisymmetric). Relations with these three properties are akin

to equality and are given a special name.

Definition 15.1 (Equivalence relation) Let R be a relation on a set A. We say R is an equivalence relation

provided it is reflexive, symmetric, and transitive.

Example 15.2 Consider the has-the-same-size-as relation on finite subsets of the integers (see Exercise 14.10):

For finite sets of integers A and B , we write A R B provided jAj D jBj. Note that R is reflex-

ive, symmetric, and transitive and therefore is an equivalence relation.

It is not the case that two sets with the same size are the same. For example, f1; 2; 3g R

f2; 3; 4g, but f1; 2; 3g 6D f2; 3; 4g. Nonetheless, sets related by R are “like” each other in that

they share a common property: their size.

The following equivalence relation plays a central role in number theory.

Definition 15.3 (Congruence modulo n) Let n be a positive integer. We say that integers x and y are con-

gruent modulo n, and we write

x � y .mod n/

provided nj.x � y/.

In other words, x � y .mod n/ if and only if x and y differ by a multiple of n.

Example 15.4
3 � 13 .mod 5/ because 3 � 13 D �10 is a multiple of 5.

4 � 4 .mod 5/ because 4 � 4 D 0 is a multiple of 5.

16 6� 3 .mod 5/ because 16 � 3 D 13 is not a multiple of 5.
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We often abbreviate the word modulo to just mod. If the integer n is known and unchang-

ing throughout the discussion, we may omit the (mod n) on the right. Also, the (mod n) is

often shortened to just (n).

Congruence of numbers (modulo n)

is different from congruence of

geometric figures. They are both

equivalence relations. Unfortunately,

mathematicians sometimes use the

same word with different meanings.

We try, however, to make sure the

meaning is always clear from

context.

The simplest case for this definition is when n D 1. In this case, we have x � y provided

the integer x�y is divisible by 1. However, all integers are divisible by 1, so any two integers

are congruent modulo 1. This is not interesting.

The next case is when n D 2. Two numbers are congruentmod 2 provided their difference

is divisible by 2 (i.e., they differ by an even number). For example,

3 � 15 .mod 2/; 0 � �14 .mod 2/; and 3 � 3 .mod 2/:

However,

3 6� 12 .mod 2/ and � 1 6� 0 .mod 2/:

Please notice that two numbers are congruent mod 2 iff they are both even or both odd (weTwo numbers that are both even or

both odd are said to have the same

parity.
prove this later).

Theorem 15.5 Let n be a positive integer. The is-congruent-to-mod-n relation is an equivalence relation on

the set of integers.

The proof of this result is not hard if we use the proof techniques we have developed. Our

goal is to prove that a relation is an equivalence relation. This means the proof should look

like this.

Let n be a positive integer and let� denote congruencemod n. We need to show that�
is reflexive, symmetric, and transitive.

� Claim: � is reflexive. . . . Thus� is reflexive.
� Claim: � is symmetric. . . . Thus� is symmetric.
� Claim: � is transitive. . . . Thus� is transitive.

Therefore� is an equivalence relation.

Note that the proof breaks into three parts corresponding to the three conditions in Defi-

nition 15.1. Each section is announced with the word claim. A claim is a statement we plan to

prove during the course of a proof. This helps the reader know what’s coming next and why.

We can now start unraveling each part of the proof. For example, to show that � is

reflexive, we have to show 8x 2 Z; x � x (see Definition 14.7). Let’s put that into the proof.

Let n be a positive integer and let� denote congruencemod n. We need to show that�
is reflexive, symmetric, and transitive.

� Claim: � is reflexive. Let x be an arbitrary integer,. . . Therefore x � x. Thus� is

reflexive.
� Claim: � is symmetric,. . . Thus� is symmetric.
� Claim: � is transitive,. . . Thus� is transitive.

Therefore� is an equivalence relation.

Now we want to prove x � x. What does this mean? It means nj.x � x/—that is, nj0—
and this is obvious! Clearly 0 is a multiple of n since n � 0 D 0. We add this to the proof:
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Let n be a positive integer and let� denote congruence mod n. We need to show that�
is reflexive, symmetric, and transitive.

� Claim: � is reflexive. Let x be an arbitrary integer. Since 0 � n D 0, we have nj0,
which we can rewrite as nj.x � x/. Therefore x � x. Thus� is reflexive.

� Claim: � is symmetric. . . . Thus� is symmetric.
� Claim: � is transitive. . . . Thus� is transitive.

Therefore� is an equivalence relation.

Now we tackle the symmetry of�. To show symmetry, we consult Definition 14.7 to see

that we must prove x � y H) y � x. This is an if-then statement, so we write:

Let n be a positive integer and let� denote congruence mod n. We need to show that�
is reflexive, symmetric, and transitive.

� Claim: � is reflexive. Let x be an arbitrary integer. Since 0 � n D 0, we have nj0,
which we can rewrite as nj.x � x/. Therefore x � x. Thus� is reflexive.

� Claim: � is symmetric. Let x and y be integers and suppose x � y. . . . Therefore

y � x. Thus� is symmetric.
� Claim: � is transitive. . . . Thus� is transitive.

Therefore� is an equivalence relation.

Next we unravel definitions.

Let n be a positive integer and let� denote congruence mod n. We need to show that�
is reflexive, symmetric, and transitive.

� Claim: � is reflexive. Let x be an arbitrary integer. Since 0 � n D 0, we have nj0,
which we can rewrite as nj.x � x/. Therefore x � x. Thus� is reflexive.

� Claim: � is symmetric. Let x and y be integers and suppose x � y. This means

that nj.x � y/. . . . And so nj.y � x/. Therefore y � x. Thus� is symmetric.
� Claim: � is transitive. . . . Thus� is transitive.

Therefore� is an equivalence relation.

We’re nearly done. We know nj.x�y/. We want nj.y�x/. We can unravel the definition

of divisibility and complete this section of the proof. (Alternatively, we can use Exercise 5.10.)

Let n be a positive integer and let� denote congruence mod n. We need to show that�
is reflexive, symmetric, and transitive.

� Claim: � is reflexive. Let x be an arbitrary integer. Since 0 � n D 0, we have nj0,
which we can rewrite as nj.x � x/. Therefore x � x. Thus� is reflexive.

� Claim: � is symmetric. Let x and y be integers and suppose x � y. This means

that nj.x�y/. So there is an integer k such that .x�y/ D kn. But then .y�x/ D
.�k/n. And so nj.y � x/. Therefore y � x. Thus� is symmetric.

� Claim: � is transitive. . . . Thus� is transitive.

Therefore� is an equivalence relation.

The proof of the third section nearly writes itself and we leave it to you (Exercise 15.6).
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Equivalence Classes

We noted earlier that two numbers are congruent mod 2 if and only if they are either (1) both

odd or (2) both even. (We have not proved this yet; we will. See Corollary 35.5.)

We have two classes of numbers: odd and even. Any two odd numbers are congruent

modulo 2 (this you can prove), and any two even numbers are congruent modulo 2. The two

classes are disjoint (have no elements in common) and, taken together, contain all the integers.

Similarly, let R denote the has-the-same-size-as relation on the finite subsets of Z. We

noted that R is an equivalence relation. Notice that we can categorize finite subsets of Z

according to their cardinality. There is just one finite subset of Z that has cardinality zero—

namely, the empty set. The only set related by R to ; is ;. Next, there are the subsets of size
one:

: : : ; f�2g; f�1g; f0g; f1g; f2g; : : :

These are all R-related to one another but not to other sets. There is also the class of all subsets

of Z of size two; again, these are related to one another but not to any other sets.

This decomposition of a set by an equivalence relation is an important idea we now

formalize.

Definition 15.6 (Equivalence class) Let R be an equivalence relation on a set A and let a 2 A. The equiva-

lence class of a, denoted Œa�, is the set of all elements of A related (by R) to a; that is,

Œa� D fx 2 A W x R ag:

Example 15.7 Consider the equivalence relation congruence mod 2. What is Œ1�? By definition,

Œ1� D fx 2 Z W x � 1 .mod 2/g:

This is the set of all integers x such that 2j.x�1/ (i.e., x�1 D 2k for some k), so x D 2kC1

(i.e. x is odd)! The set Œ1� is the set of odd numbers.

It’s not hard to see (you should prove) that Œ0� is the set of even numbers.

Consider Œ3�. You should also prove that Œ3� is the set of odd numbers, so Œ1� D Œ3�. (See

Exercise 15.9.)

The equivalence relation congruence mod 2 has only two equivalence classes: the set of

odd integers Œ1� and the set of even integers Œ0�.

Example 15.8 Let R be the has-the-same-size-as relation defined on the set of finite subsets of Z. What is

Œ;�? By definition,

Œ;� D fA � Z W jAj D 0g D f;g

since ; is the only set of cardinality zero.
What is Œf2; 4; 6; 8g�? The set of all finite subsets of Z related to f2; 4; 6; 8g are exactly

those of size 4:

Œf2; 4; 6; 8g� D fA � Z W jAj D 4g:

The relation R separates the set of finite subsets of Z into infinitely many equivalence classes

(one for each element of N). Every class contains sets that are related to each other but not to

anything not in that class.

We now present several propositions describing the salient features of equivalence classes.

Proposition 15.9 Let R be an equivalence relation on a set A and let a 2 A. Then a 2 Œa�.

Proof. Note that Œa� D fx 2 A W x R ag. To show that a 2 Œa�, we just need to show that

a R a, and that is true by definition (R is reflexive).
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One consequence of Proposition 15.9 is that equivalence classes are not empty. A second

consequence is that the union of all the equivalence classes is A (see Exercise 15.10).

Proposition 15.10 Let R be an equivalence relation on a set A and let a; b 2 A. Then a R b if and only if

Œa� D Œb�.

Proof. ()) Suppose aR b. We need to show that the sets Œa� and Œb� are the same (see Proof

Template 5).

Suppose x 2 Œa�. This means that x R a. Since a R b, we have (by transitivity) x R b.

Therefore x 2 Œb�.

On the other hand, suppose y 2 Œb�. This means that y R b. We are given a R b, and

this implies b R a (symmetry). By transitivity (applied to y R b and b R a), we have y R a.

Therefore y 2 Œa�.

Hence Œa� D Œb�.

(() Suppose Œa� D Œb�. We know (Proposition 15.9) that a 2 Œa�. But Œa� D Œb�, so a 2 Œb�.

Therefore a R b.

Proposition 15.11 Let R be an equivalence relation on a set A and let a; x; y 2 A. If x; y 2 Œa�, then x R y.

You are asked to prove Proposition 15.11 in Exercise 15.12.

Proposition 15.12 Let R be an equivalence relation on A and suppose Œa� \ Œb� 6D ;. Then Œa� D Œb�.

Before we work on the proof of this result, let us understand clearly what it is telling us.

It says that either two equivalence classes have nothing in common or else (if they do have

a common element) they are identical. In other words, equivalence classes must be pairwise

disjoint.

Now we develop the proof of Proposition 15.12. This proposition asks us to prove that

two sets (Œa� and Œb�) are the same. We could use Proof Template 5, and the proof would not

be too hard to do (you can try this for yourself).

However, please notice that Proposition 15.10 gives us a necessary and sufficient condi-

tion to prove that two equivalence classes are the same. To show that Œa� D Œb�, it is enough

to show a R b. The proof skeleton is as follows:

Let R be an equivalence relation on A and suppose Œa� and Œb� are equivalence classes

with Œa� \ Œb� 6D ;. . . . Therefore a R b. By Proposition 15.10, we therefore have

Œa� D Œb�.

Now we need to unravel the fact that Œa�\Œb� 6D ;. The fact that two sets have a nonempty

intersection means there is some element that is in both.

Let R be an equivalence relation on A and suppose Œa� and Œb� are equivalence classes

with Œa� \ Œb� 6D ;. Hence there is an x 2 Œa� \ Œb�—that is, an element x with x 2 Œa�

and x 2 Œb�. . . . Therefore a R b. By Proposition 15.10, we therefore have Œa� D Œb�.

We can now unravel the facts x 2 Œa� and x 2 Œb� to give x R a and x R b (by Defini-

tion 15.6).

Let R be an equivalence relation on A and suppose Œa� and Œb� are equivalence classes

with Œa� \ Œb� 6D ;. Hence there is an x 2 Œa� \ Œb�—that is, an element x with x 2 Œa�

and x 2 Œb�. So xR a and xR b. . . . Therefore aR b. By Proposition 15.10, we therefore

have Œa� D Œb�.
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Now we are almost finished.

We know: x R a and x R b.

We want: a R b.

We can switch x R a to a R x (by symmetry) and then use transitivity on a R x and x R b

to get a R b, completing the proof.

Let R be an equivalence relation on A and suppose Œa� and Œb� are equivalence classes

with Œa� \ Œb� 6D ;. Hence there is an x 2 Œa� \ Œb�—that is, an element x with x 2 Œa�

and x 2 Œb�. So x R a and x R b. Since x R a, we have a R x (symmetry), and since

a R x and x R b, we have (transitivity) a R b. By Proposition 15.10, we therefore have

Œa� D Œb�.

The proof is finished.

Let us reiterate some of what we have learned.

Corollary 15.13 Let R be an equivalence relation on a set A. The equivalence classes of R are nonempty,

pairwise disjoint subsets of A whose union is A.

Recap

An equivalence relation is a relation on a set that is reflexive, symmetric, and transitive. We

discussed the important equivalence relation congruence modulo n on Z. We developed the

notion of equivalence classes and discussed various properties of equivalence classes.

15 Exercises 15.1. For each of the following congruences, find all integers N , with N > 1, that make the

congruence true.

a. 23 � 13 .mod N /.

b. 10 � 5 .mod N /.

c. 6 � 60 .mod N /.

d. 23 � 22 .mod N /.

15.2. Let a and b be distinct (i.e., unequal) integers. What is the largest integer N such that

a � b .mod N /? Explain.

15.3. Which of the following are equivalence relations?

a. R D f.1; 1/; .1; 2/; .2; 1/; .2; 2/; .3; 3/g on the set f1; 2; 3g.
b. R D f.1; 2/; .2; 3/; .3; 1/g on the set f1; 2; 3g.
c. j on Z.
d. � on Z.

e. f1; 2; 3g � f1; 2; 3g on the set f1; 2; 3g.
f. f1; 2; 3g � f1; 2; 3g on the set f1; 2; 3; 4g.
g. Is-an-anagram-of on the set of English words. (For example, STOP is an anagram of

POTS because we can form one from the other by rearranging its letters.)

15.4. Prove that if x and y are both odd, then x � y .mod 2/.

Prove that if x and y are both even, then x � y .mod 2/.

15.5. Prove: If a is an integer, then a � �a .mod 2/.

15.6. Complete the proof of Theorem 15.5; that is, prove that congruence modulo n is

transitive.

15.7. For each equivalence relation below, find the requested equivalence class.

a. R D f.1; 1/; .1; 2/; .2; 1/; .2; 2/; .3; 3/; .4; 4/g on f1; 2; 3; 4g. Find Œ1�.

b. R D f.1; 1/; .1; 2/; .2; 1/; .2; 2/; .3; 3/; .4; 4/g on f1; 2; 3; 4g. Find Œ4�.

c. R is has-the-same-tens-digit-as on the set fx 2 Z W 100 < x < 200g. Find Œ123�.

d. R is has-the-same-parents-as on the set of all human beings. Find Œyou�.

e. R is has-the-same-birthday-as on the set of all human beings. Find Œyou�.

f. R is has-the-same-size-as on 2f1;2;3;4;5g. Find Œf1; 3g�.
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15.8. For each of the following equivalence relations, determine the number of equivalence

classes that relation has.

a. Congruence modulo 10 (for the integers).

b. Has-the-same-birthday-as (for human beings). [Note: Here, same birthday means

same birth month and day, but not necessarily the same year.]

c. Has-the-same-blood-type-as (for human beings). [Note: Consider both ABO and Rh

factor.]

d. Lives-in-the-same-state-as (for residents of the United States).

15.9. Please refer to the Example 15.7, in which we discussed the congruence modulo 2

relation on the integers. For that relation, prove that Œ1� D Œ3�.

15.10. Let R be an equivalence relation on a set A. Prove that the union of all of R’s equiva-

lence classes is A.

In symbols this is
[

a2A

Œa� D A:

The big
S

notation on the left is worthy of comment. It is akin to the notation developed

in Section 10. There, however, we had an index that ran between two integers, as in

n
[

kD1

.sets depending on k/

The dummy variable is k, and we take a union of sets that depend on k as k ranges

over the integers 1, 2, . . . , n.

The situation here is slightly different. The dummy variable is not necessarily an

integer. The notation is of the form
[

a2A

.sets depending on a/ :

This means we take the union over all possible (sets depending on a) as a ranges

over the various members of A.

Notice that in this problem the union may be redundant. It is possible for Œa� D Œa0�
where a and a0 are different members of A. For example, if R is congruence mod 2 and

A D Z, then
[

a2Z
Œa� D � � � [ Œ�2� [ Œ�1� [ Œ0� [ Œ1� [ Œ2� [ � � � D Œ0� [ Œ1� D Z

because � � � D Œ�2� D Œ0� D Œ2� D � � � and � � � D Œ�3� D Œ�1� D Œ1� D Œ3� D � � � .
15.11. Suppose R is an equivalence relation on a set A and suppose a; b 2 A.

Prove: a 2 Œb� () b 2 Œa�.

15.12. Prove Proposition 15.11.

15.13. Let R and S be equivalence relations on a set A. Prove that R D S if and only if the

equivalence classes of R are the same as the equivalence classes of S .

15.14. Please refer to Exercise 14.17 on drawing pictures of relations.

Let A D f1; 2; 3; : : : ; 10g. Do the following:
a. Draw three pictures of different equivalence relations on A.

b. For each equivalence relation, list all of its equivalence classes.

c. Describe what equivalence relations “look like.”

15.15. Here is another way to draw a picture of an equivalence relation: Draw the equivalence

classes. For example, consider the following equivalence relation onA D f1; 2; 3; 4; 5; 6g:

R D f.1; 1/; .1; 2/; .2; 1/; .2; 2/; .3; 3/;

.4; 4/; .4; 5/; .4; 6/; .5; 4/; .5; 5/; .5; 6/; .6; 4/; .6; 5/; .6; 6/g:

The equivalence classes of this relation on A are

Œ1� D Œ2� D f1; 2g; Œ3� D f3g; and Œ4� D Œ5� D Œ6� D f4; 5; 6g:1 2

3

4

5
6

The picture of the relation R, rather than showing relation arrows, simply shows

the equivalence classes of A. The elements of A are enclosed in a circle, and we sub-

divide the circle into regions to show the equivalence classes. By Corollary 15.13, we
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know that the equivalence classes of R are nonempty, are pairwise disjoint, and con-

tain all the elements of A. So in the picture, the regions are nonoverlapping, and every

element of A ends up in exactly one region.

For each of the equivalence relations you found in the previous problem, draw a

diagram of the equivalence classes.

15.16. There is only one possible equivalence relation on a one-element set: If A D f1g, then
R D f.1; 1/g is the only possible equivalence relation.

There are exactly two possible equivalence relations on a two-element set: If A D
f1; 2g, then R1 D f.1; 1/; .2; 2/g and R2 D f.1; 1/; .1; 2/; .2; 1/; .2; 2/g are the only

equivalence relations on A.

How many different equivalence relations are possible on a three-element set?

. . . on a four-element set?

15.17. Describe the equivalence classes for the is-similar-to relation on the set of all triangles.

16 Partitions

We ended the previous section with Corollary 15.13. Let us repeat that result here.

Let R be an equivalence relation on a set A. The equivalence classes of R are nonempty,

pairwise disjoint subsets of A whose union is A.1 2

3

4

5
6

This corollary is illustrated nicely by the diagrams you drew in Exercise 15.15. The equiva-

lence classes of R are drawn as separate regions inside a circle containing the elements of A.

The technical language for this property is that the equivalence classes of R form a par-

tition of A.

Definition 16.1 (Partition) Let A be a set. A partition of (or on) A is a set of nonempty, pairwise disjoint

sets whose union is A.

There are four key points in this definition, and we shall examine them closely in an

example. The four points are

� A partition is a set of sets; each member of a partition is a subset of A. The members ofThe parts of a partition are also

called blocks. the partition are called parts.
� The parts of a partition are nonempty. The empty set is never a part of a partition.
� The parts of a partition are pairwise disjoint. No two parts of a partition may have an

element in common.
� The union of the parts is the original set.

We often use a fancy letter P to

denote a partition. We do this

because P is a set of sets. The

elements of P are subsets of A. This

hierarchy of letters—lowercase,

uppercase, fancy—is a useful

convention for distinguishing

elements, sets, and sets of sets,

respectively.

Example 16.2 Let A D f1; 2; 3; 4; 5; 6g and let

P D
˚

f1; 2g; f3g; f4; 5; 6g
	

:

This is a partition of A into three parts. The three parts are f1; 2g, f3g, and f4; 5; 6g. These
three sets are (1) nonempty, (2) they are pairwise disjoint, and (3) their union is A.

The partition
˚

f1; 2g; f3g; f4; 5; 6g
	

is not the only partition of A D f1; 2; 3; 4; 5; 6g. Here
are two more that are worthy of note:

˚

f1; 2; 3; 4; 5; 6g
	

and
˚

f1g; f2g; f3g; f4g; f5g; f6g
	

:

The first is a partition of A into just one part containing all the elements of A, and the second

is a partition of A into six parts, each containing just one element.

Corollary 15.13 can be restated as follows:

Let R be an equivalence relation on a set A. The equivalence classes of R form a partition of

the set A.
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Given an equivalence relation on a set, the equivalence classes of that relation form a partitionForming an equivalence relation

from a partition. of the set. We start with an equivalence relation, and we form a partition. We can also go the

other way; given a partition, there is a natural way to construct an equivalence relation.

Let P be a partition of a set A. We use P to form a relation on A. We call this relation the

is-in-the-same-part-as relation and denote it by
P�. It is defined as follows. Let a; b 2 A. Then

a
P�b () 9P 2 P; a; b 2 P:

In words, a and b are related by
P� provided there is some part of the partition P that contains

both a and b.

Proposition 16.3 Let A be a set and let P be a partition on A. The relation
P� is an equivalence relation on A.

Proof. To show that
P� is an equivalence relation, we must show that it is (1) reflexive,

(2) symmetric, and (3) transitive.

� Claim:
P� is reflexive.

Let a be an arbitrary element of A. Since P is a partition, there must be a part P 2 P

that contains a (the union of the parts is A). We have a
P�a, since a; a 2 P 2 P.

� Claim:
P� is symmetric.

Suppose a
P�b for a; b 2 A. This means there is a P 2 P such that a; b 2 P . Since b

and a are in the same part of P, we have b
P�a.

� Claim:
P� is transitive. (This step is more interesting.)

Let a; b; c 2 A and suppose a
P�b and b

P�c. Since a
P�b, there is a part P 2 P

containing both a and b. Since b
P�c, there is a part Q 2 P with b; c 2 Q. Notice that b is

in both P and Q. Thus parts P and Q have a common element. Since parts of a partition

must be pairwise disjoint, it must be the case that P D Q. Therefore all three of a; b; c

are together in the same part of P. Since a; c are in a common part of P, we have a
P�c.

We have confirmed that
P� is an equivalence relation on A. What are its equivalence

classes?

Proposition 16.4 Let P be a partition on a setA and let
P� be the is-in-the-same-part-as relation. The equivalence

classes of
P� are exactly the parts of P.

We leave the proof for you (Exercise 16.5).

The salient point here is that equivalence relations and partitions are flip sides of the

same mathematical coin. Given a partition, we can form the in-the-same-part-as equivalence

relation. Given an equivalence relation, we can form the partition into equivalence classes.

Counting Classes/Parts

In discrete mathematics, we often encounter counting problems of the form “In how many

different ways can . . . ” The word on which we wish to focus is different.

For example, in how many different ways can the letters in the word HELLO be rear-

ranged? The difficult part of this problem is the repeated L. So let us begin with an easier

word.

Example 16.5 In how many ways can the letters in the word WORD be rearranged? A word is simply a list

of letters. We have a list of four possible letters, and we want to count lists using each of them

exactly once. This is a problem we have already solved (see Sections 8 and 9). The answer is

4Š D 24. Here they are:
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WORD WODR WROD WRDO WDOR WDRO

OWRD OWDR ORWD ORDW ODWR ODRW

RWOD RWDO ROWD RODW RDWO RDOW

DWOR DWRO DOWR DORW DRWO DROW

Let us return to the problem of counting the number of ways it is possible to rearrangeAnagrams of HELLO.

the letters in the word HELLO. If there were no repeated letters, then the answer would be

5Š D 120. Imagine for a moment that the two Ls are different letters. Let us write one larger

than the other: HELLO. If we were to write down all 120 different ways to rearrange the letters

in HELLO, we would have a chart that looks like this:

HELLO HELOL HELLO HELOL HEOLL HEOLL

HLELO HLEOL HLLEO HLLOE HLOLE HLOEL

many lines omitted

LLHEO LLHOE LLEHO LLEOH LLOHE LLOEH

LLHEO LLHOE LLEHO LLEOH LLOHE LLOEH

Now we shrink the large Ls back to their proper size. When we do, we can no longer

distinguish between HELLO and HELLO, or between LEHLO and LEHLO.

I hope at this point it is clear that the answer to the counting problem is 60: There are

120 entries in the chart (from HELLO to LLOEH), and each rearrangement of HELLO appears

exactly twice on the chart.

Let’s think about this by using equivalence relations and partitions. The set A is the set of

all 120 different rearrangements of HELLO. Suppose a and b are elements of A (anagrams of

HELLO). Define a relation R with a R b provided that a and b give the same rearrangement

of HELLO when we shrink the large L to a small L. For example, .HELOL/ R .HELOL/.

IsR an equivalence relation? Clearly R is reflexive, symmetric, and transitive (if in doubt,

think this out) and, so, yes, R is an equivalence relation. The equivalence classes of R are all

the different ways of rearranging HELLO that look the same when we shrink the large L. For

example,

ŒHLEOL� D fHLEOL; HLEOLg

since HLEOL and HLEOL both give HLEOL when we shrink the big L.

Here is the important point: The number of ways to rearrange the letters in HELLO is

exactly the same as the number of equivalence classes of R.

Now let’s do the arithmetic: There are 120 different ways to rearrange the letters in

HELLO (i.e., jAj D 120). The relation R partitions the set A into a certain number of equiv-

alence classes. Each equivalence class has exactly two elements in it. So all told, there are

120� 2 D 60 different equivalence classes. Hence there are 60 different ways to rearrange

HELLO.

Let us consider another example. How many different ways can we rearrange the lettersAnagrams of AARDVARK.

in the word AARDVARK? This eight-letter word features two Rs and three As. Let us use two

styles of R (say, R and R) and three styles of A (say, a, A, and A), so the word is AARDVaRK.

Let X be the set of all rearrangements of AARDVaRK. We consider two spellings to be

related by relation R if they are the same once their letters are restored to normal size. Clearly

R is an equivalence relation on X , and we want to count the number of equivalence classes.

The problem becomes: How large are the equivalence classes? Let us consider the size of

the equivalence class [RADaKRAV]. These are all the rearrangements that become RADAKRAV

when their letters are all the same style. How many are there? This is a list-counting problem!

We want to count the number of lists wherein the entries on the list satisfy the following

restrictions:

� Elements 3, 5, and 8 of the list must be D, K, and V.
� Elements 1 and 6 must be one each of two different styles of R.
� Elements 2, 4, and 7 must be one each of three different styles of A.

See the figure.



88 Chapter 3 Counting and Relations

R A D A K R A V
1 2 3 4 5 6 7 8

2 × 3 × 1 × 2 × 1 × 1 × 1 × 1

2! choices for Rs 3! choices for As

The letters R and A in the figure are dimmed to show that their final form is to be determined.

Now let’s count how many ways we can build this list. There are two choices for the first

position (we can use either R). There are three choices for the second position (we can use

any A). There is only one choice for position 3 (it must be D). Now, given the choices thus far,

there are only two choices for position 4 (the first A has already been selected, and so there

are only two choices of A left at this point). For each of the remaining positions, there is only

one choice (the K and V are predetermined, and we are down to only one choice each on the

remaining A and R).

Therefore, the number of rearrangements of AARDVaRK in [RADaKRAV] is 2 � 3 � 1 �
2 � 1 � 1 � 1 � 1 D 3Š � 2Š D 12.

And now for a critical comment: All equivalence classes have the same size! No matter

how we rearrange the letters in AARDVaRK, the analysis we just conducted remains the same.

Regardless of where the As may fall, there will be exactly 3Š ways to fill them in, and regard-

less of where the Rs are, there are 2Š ways to select their styles. And there is only one choice

each for the style of D, K, and V. So all of the equivalence classes have size twelve.

Therefore the number of rearrangements of AARDVARK is

8Š

3Š2Š
D 40320

12
D 3360:

It is worth summarizing the central idea of this counting technique in an official statement.

Theorem 16.6 (Counting equivalence classes) Let R be an equivalence relation on a finite set A. If all the

equivalence classes of R have the same size, m, then the number of equivalence classes is

jAj=m.

There is an important hypothesis in this result: The equivalence classes must all be the

same size. This does not always happen.

Example 16.7 Let A D 2f1;2;3;4g—that is, the set of all subsets of f1; 2; 3; 4g. Let R be the has-the-same-

size-as relation. This relation partitions A into five parts (subsets of size 0 through 4). The

sizes of these equivalence classes are not all the same. For example, Œ;� contains only ;, so
that class has size 1. However, Œf1g� D

˚

f1g; f2g; f3g; f4g
	

, so this class contains four members

of A. Here is a full chart.

Equivalence Size of

class the class

Œ;� 1

Œf1g� 4

Œf1; 2g� 6

Œf1; 2; 3g� 4

Œf1; 2; 3; 4g� 1

Recap

A partition of a set A is a set of nonempty, pairwise disjoint subsets of A whose union is A.

We explored the connection between partitions and equivalence relations. We applied these

ideas to counting problems where we seek to count the number of equivalence classes when

all the equivalence classes have the same size.
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16 Exercises 16.1. There are only two possible partitions of the set f1; 2g. They are
˚

f1g; f2g
	

and
˚

f1; 2g
	

.

Find all possible partitions of f1; 2; 3g and of f1; 2; 3; 4g.
16.2. How many different anagrams (including nonsensical words) can be made from each

of the following?

a. STAPLE

b. DISCRETE

c. MATHEMATICS

d. SUCCESS

e. MISSISSIPPI

16.3. How many different anagrams (including nonsensical words) can be made from SUC-

CESS if we require that the first and last letters must both be S.

16.4. How many different anagrams (including nonsensical words) can be made from FACE-

TIOUSLY if we require that all six vowels must remain in alphabetical order (but not

necessarily contiguous with each other).

16.5. Prove Proposition 16.4.

16.6. Prove Theorem 16.6. You may assume the generalized Addition Principle (see after

Corollary 12.8).

16.7. Twelve people join hands for a circle dance. In how many ways can they do this?

16.8. Continued from the previous problem. Suppose six of these people are men, and the

other six are women. In howmanyways can they join hands for a circle dance, assuming

they alternate in gender around the circle?

16.9. You wish to make a necklace with 20 different beads. In how many different ways can

you do this?

16.10. The integers 1 through 25 are arranged in a 5 � 5 array (we use each number from 1 to

22 4 5 20 23

16 3 8 7 14

21 1 25 9 15

6 12 11 2 24

19 10 17 13 18

4 520 23

3 87 14

1 259 15

12 112 24

10 1713 18

22

16

21

6

19

25 exactly once). All that matters is which numbers are in each column and how they

are arranged in the columns. It does not matter in what order the columns appear. (See

the figure. The two arrays shown should be considered to be the same.)

How many different such arrays can be formed?

16.11. Twenty people are to be divided into two teams with ten players on each team. In how

many ways can this be done?

16.12. A tennis club has 40 members. One afternoon, they get together to play singles matches

(one-on-one competitions). Every member of the club plays one match with another

member of the club, so twenty matches are held. In how many ways can this be ar-

ranged?

The next afternoon, the club members decide to play doubles matches (teams of

two pitted against each other). The players are formed into 20 teams, and these teams

each play one match each against another team (for a grant total of ten matches). In

how many ways can this be done?

16.13. One hundred people are to be divided into ten discussion groups with ten people in each

group. In how many ways can this be done?

16.14. A certain music school has 40 students, with 10 each studying violin, viola, cello, and

A string quartet usually has two

violins, one viola, and one cello. For

this problem, we consider quartets

with one of each of the four types of

string instruments, but you can try to

think about the situation in which

there are 20 violinists, 10 violists,

and 10 cellists that are to be

partitioned into traditional string

quartets.

string bass. The director of the school wishes to divide the class into 10 string quartets;

the four students in each quartet study the four different instruments.

In how many ways can this be done?

16.15. How many partitions, with exactly two parts, can be made of the set f1; 2; 3; 4g?
Answer the same question for the set f1; 2; 3; : : : ; 100g.

16.16. How many partitions of the set f1; 2; 3; : : : ; 100g are there such that both (a) there are

exactly three parts and (b) elements 1, 2, and 3 are in different parts?

16.17. Let A be a 100-element set. Which is greater: the number of partitions of A into 20 parts

of size 5 or the number of partitions of A into 5 parts of size 20?

16.18. Two different coins are placed on squares of a standard 8 � 8 chess board; they may

both be placed on the same square.

Let us call two arrangements of these coins on the chess board equivalent if we can

move the coins diagonally to get from one arrangement to another. For example, the

two positions shown on the two boards in the figure are equivalent.
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How many different (inequivalent) ways can the coins be placed on the chess

board?

16.19. Please redo the previous problem, this time assuming the coins are identical.

16.20. Let A be a set and let P be a partition of A. Is it possible to have A D P?

17 Binomial Coefficients

We ended the previous section with Example 16.7, in which we counted the number of equiv-

alence classes of the has-the-same-size-as relation on the set of subsets of f1; 2; 3; 4g. We

found five different equivalence classes (corresponding to the five integers from 0 to 4), and

these equivalence classes have various sizes. Their sizes are, in order, 1, 4, 6, 4, and 1. These

numbers may be familiar to you. Observe:

.x C y/
4 D 1x

4 C 4x
3
y C 6x

2
y

2 C 4xy
3 C 1y

4
:

These numbers are the coefficients of .x C y/4 after it is expanded. You may also recognize

these numbers as the fourth row of Pascal’s triangle. In this section, we explore these numbers

in detail.

The central problem we consider in this section is the following:

How many subsets of size k does an n-element set have?

There is a special notation for the answer to this question:
�

n

k

�

.

The notation
�

n
k

�

is pronounced “n

choose k.” Another form of this

notation, still in use on some

calculators, is nCk . Occasionally

people write C.n; k/. An alternative

way to express
�

n
k

�

is as the number

of “combinations” of n things taken

k at a time. The word combinatorics

(a term that refers to counting

problems in discrete mathematics)

comes from “combinations.” I dislike

the use of the word “combinations”

and believe it is clearer to say
�

n
k

�

stands for the number of k-element

subsets of an n-element set.

Definition 17.1 (Binomial coefficient) Let n; k 2 N. The symbol
�

n

k

�

denotes the number of k-element

subsets of an n-element set.

We call the number
�

n

k

�

a binomial coefficient. The reason for this nomenclature is that

the numbers
�

n

k

�

are the coefficients of binomial .xC y/n. This is explained more thoroughly

below.

Example 17.2 Evaluate
�

5

0

�

.

Solution: We need to count the number of subsets of a five-element set that have zero ele-

ments. The only possible such set is ;, so the answer is
�

5

0

�

D 1.

Clearly there is nothing special about the number 5 in this example. The number of zero-

element subsets of any set is always 1. So we have, for all n 2 N,
 

n

0

!

D 1:

Example 17.3 Evaluate
�

5

1

�

.

Solution: This asks for the number of one-element subsets of a five-element set. For example,

consider the five-element set f1; 2; 3; 4; 5g. The one-element subsets are f1g, f2g, f3g, f4g, and
f5g, so

�

5

1

�

D 5. The number of one-element subsets of an n-element set is exactly n:

 

n

1

!

D n:

Example 17.4 Evaluate
�

5

2

�

.

Solution: The symbol
�

5

2

�

stands for the number of two-element subsets of a five-element set.

The simplest thing to do is to list all the possibilities.
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f1; 2g f1; 3g f1; 4g f1; 5g
f2; 3g f2; 4g f2; 5g
f3; 4g f3; 5g
f4; 5g

Therefore, there are 10 two-element subsets of a five-element set, so
�

5

2

�

D 4C3C2C1 D 10.

There is an interesting pattern in Example 17.4. Let us try to generalize it. Suppose we

want to know the number of two-element subsets of an n-element set. Let’s say that the

n-element set is f1; 2; 3; : : : ; ng. We can make a chart as in the example. The first row of

the chart lists the two-element subsets whose smaller element is 1. The second row lists those

two-element subsets whose smaller element is 2, and so on, and the last row of the chart lists

the (one and only) two-element subset whose smaller element is n � 1 (i.e., fn� 1; ng).
Notice that our chart exhausts all the possibilities (the smaller element must be one of the

numbers from 1 to n � 1), and no duplication takes place (subsets on different rows of the

chart have different smaller elements).

The number of sets in the first row of this hypothetical chart is n � 1, because once we

decide that the smaller element is 1, the subset looks like this: f1; g. The second element

must be larger than 1, and so it is chosen from f2; : : : ; ng; there are n � 1 ways to complete

the set f1; g.
The number of sets in the second row of this chart is n � 2. All subsets in this row look

like this: f2; g. The second element needs to be chosen from the numbers 3 to n, so there

are n � 2 ways to complete this set.

In general, the number of sets in row k of this hypothetical chart is n� k. Subsets on this

row look like fk; g, the second element of the set needs to be an integer from k C 1 to n,

and there are n � k possibilities.

This discussion is the proof of the following result.

Proposition 17.5 Let n be an integer with n � 2. Then
 

n

2

!

D 1C 2C 3C � � � C .n � 1/ D
n�1
X

kD1

k:

So far we have evaluated
�

5

0

�

,
�

5

1

�

, and
�

5

2

�

. Let us continue this exploration.

Example 17.6 Evaluate
�

5

3

�

.

Solution: We simply list the three-element subsets of f1; 2; 3; 4; 5g:

f1; 2; 3g f1; 2; 4g f1; 2; 5g f1; 3; 4g f1; 3; 5g
f1; 4; 5g f2; 3; 4g f2; 3; 5g f2; 4; 5g f3; 4; 5g

There are ten such sets, so
�

5

3

�

D 10.

Notice that
�

5

2

�

D
�

5

3

�

D 10. This equality is not a coincidence. Let’s see why these

numbers are equal. The idea is to find a natural way to match up the two-element subsets of

This is an example of a bijective

proof.

f1; 2; 3; 4; 5g with the three-element subsets. We want a one-to-one correspondence between

these two kinds of sets. Of course, we could just list them down two columns of a chart, but

this is not necessarily “natural.” The idea is to take the complement (see Exercise 12.22) ofThe concept of set complement is

developed in Exercise 12.22. a two-element subset to form a three-element subset, or vice versa. We do this here:

A A A A

f1; 2g f3; 4; 5g f2; 4g f1; 3; 5g
f1; 3g f2; 4; 5g f2; 5g f1; 3; 4g
f1; 4g f2; 3; 5g f3; 4g f1; 2; 5g
f1; 5g f2; 3; 4g f3; 5g f1; 2; 4g
f2; 3g f1; 4; 5g f4; 5g f1; 2; 3g

Each two-element subset A is paired up with f1; 2; 3; 4; 5g � A (which we denote A since

f1; 2; 3; 4; 5g is the “universe” we are considering at the moment).
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This pairing,A$ A, is a one-to-one correspondence between the two-element and three-

element subsets of f1; 2; 3; 4; 5g. If A1 and A2 are two different two-element subsets, then A1

and A2 are two different three-element subsets. Every two-element subset is paired up with

exactly one three-element subset, and no sets are left unpaired. This thoroughly explains why
�

5

2

�

D
�

5

3

�

and gives us an avenue for generalization.

We might guess
�

n

2

�

D
�

n

3

�

, but this is not right. Let’s apply our complement analysis to
�

n

2

�

and see what we learn. Let A be a two-element subset of f1; 2; : : : ; ng. In this context, A

means f1; 2; : : : ; ng�A. The pairing A$ A does not pair up two-element and three-element

subsets. The complement of a two-element subset would be an .n � 2/-element subset of

f1; 2; : : : ; ng. Aha! Now we have the correct result:
�

n

2

�

D
�

n

n�2

�

.

We can push this analysis further. Instead of forming the complement of the two-element

subsets of f1; 2; : : : ; ng, we can form the complements of subsets of another size. What are

the complements of the k-element subsets of f1; 2; : : : ; ng? They are precisely the .n � k/-

element subsets. Furthermore, the correspondence A $ A gives a one-to-one pairing of the

k-element and .n�k/-element subsets of f1; 2; : : : ; ng. This implies that the number of k- and

.n� k/-element subsets of an n-element set must be the same. We have shown the following.

Proposition 17.7 Let n; k 2 N with 0 � k � n. Then
 

n

k

!

D
 

n

n� k

!

:

Here is another way to think about this result. Imagine a class with n children. The teacher

has k identical candy bars to give to exactly k of the children. In howmany ways can the candy

bars be distributed? The answer is
�

n

k

�

because we are selecting a set of k lucky children

to get candy. But the pessimistic view is also interesting. We can think about selecting the

unfortunate children who will not be receiving candy. There are n � k children who do not

get candy, and we can select that subset of the class in
�

n

n�k

�

ways. Since the two counting

problems are clearly the same, we must have
�

n

k

�

D
�

n

n�k

�

.

Thus far we have evaluated
�

5

0

�

,
�

5

1

�

,
�

5

2

�

, and
�

5

3

�

. Let us continue. We can use Proposi-

tion 17.7 to evaluate
�

5

4

�

; the proposition says that
 

5

4

!

D
 

5

5 � 4

!

D
 

5

1

!

and we already know that
�

5

1

�

D 5. So
�

5

4

�

D 5.

Next is
�

5

5

�

. We can use Proposition 17.7 and reason
�

5

5

�

D
�

5

5�5

�

D
�

5

0

�

D 1, or we

can realize that there can be only one five-element subset of a five-element set—namely, the

whole set!

Next comes
�

5

6

�

. We can try to use Proposition 17.7, but we run into a snag. We write
 

5

6

!

D
 

5

5 � 6

!

D
 

5

�1

!

but we don’t know what
�

5

�1

�

is. Actually, the situation is worse:
�

5

�1

�

is nonsense. It does not

make sense to ask for the number of subsets of a five-element set that have �1 elements; it

does not make sense to consider sets with a negative number of elements! (This is why we

included the hypothesis 0 � k � n in the statement of Proposition 17.7.)

However, a set can have six elements, so
�

5

6

�

is not nonsense; it is simply zero. A five-

element set cannot have any six-element subsets, so
�

5

6

�

D 0. Similarly,
�

5

7

�

D
�

5

8

�

D � � � D 0.

Let us summarize what we know so far:

� We have evaluated
�

5

k

�

for all natural numbers k. The values are 1, 5, 10, 10, 5, 1, 0, 0,

. . . , for k D 0; 1; 2; : : :, respectively.
� We have

�

n

0

�

D 1 and
�

n

1

�

D n.

� We have
�

n

2

�

D 1C 2C � � � C .n � 1/.
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� We have
�

n

k

�

D
�

n

n�k

�

.

� If k > n,
�

n

k

�

D 0.

Calculating
�

n

k

�

Thus far we have calculated various values of
�

n

k

�

, but our work has been ad hoc. We do not

have a general method for obtaining these values. We found that the nonzero values of
�

5

k

�

are

1; 5; 10; 10; 5; 1:

If we expand .x C y/5, we get

.x C y/
5 D 1x

5 C 5x
4
y C 10x

3
y

2 C 10x
2
y

3 C 5xy
4 C 1y

5

D
 

5

0

!

x
5 C

 

5

1

!

x
4
y C

 

5

2

!

x
3
y

2 C
 

5

3

!

x
2
y

3 C
 

5

4

!

xy
4 C

 

5

5

!

y
5
:

This suggests a way to calculate
�

n

k

�

: Expand .x C y/n and
�

n

k

�

is the coefficient of xn�kyk .

This is marvelous! Let’s prove it.

Theorem 17.8 (Binomial) Let n 2 N. Then

.x C y/
n D

n
X

kD0

 

n

k

!

x
n�k

y
k
:

This result explains why
�

n

k

�

is called a binomial coefficient. The numbers
�

n

k

�

are the

coefficients that appear in the expansion of .x C y/n.

Proof. The key to proving the Binomial Theorem is to think about how we multiply poly-

nomials. When we multiply .x C y/2, we calculate as follows:

.x C y/
2 D .x C y/.x C y/ D xx C xy C yx C yy

and then we collect like terms to get x2 C 2xy C y2.

The procedure for .x C y/n is much the same. We write out n factors of .x C y/:

.x C y/
—

1

.x C y/
—

2

.x C y/
—

3

� � � .x C y/
—

n

:

We then form all possible terms by taking either an x or a y from factors 1, 2, 3, . . . , n. This

is like making lists (see Section 8). We are forming all possible n-element lists where each

element is either an x or a y. For example,

.x C y/.x C y/.x C y/ D xxx C xxy C xyx C xyy C yxx C yxy C yyx C yyy:

The next step is to collect like terms. In the example .x C y/3 there is one term with three xs

and no ys, three terms with two xs and one y, three terms with one x and two ys, and one

term with no xs and three ys. This gives

.x C y/
3 D 1x

3 C 3x
2
y C 3xy

2 C 1y
3
:

The question now becomes: How many terms in .x C y/
n have precisely k ys (and

n � k xs)? Let us think of this as a list-counting question. We want to count the number of

n-element lists with precisely n � k xs and k ys. And we know what we want the answer to

be:
�

n

k

�

. We need to justify this answer.

We can specify all the lists with k ys (and n � k xs) by reporting the positions of the ys

(and the xs fill in the remaining positions). For example, if n D 10 and we say that the set of

y positions is f2; 3; 7g, then we know we are speaking of the term (list) xyyxxxyxxx. We

could make a chart: On the left of the chart would be all the lists with k ys and n � k xs,

and on the right we would write the set of y positions for each list. The right column of the

chart would simply be the k-element subsets of f1; 2; : : : ; ng. Aha! The number of lists with
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k ys and n � k xs is exactly the same as the number of k-element subsets of f1; 2; : : : ; ng.
Therefore the number of xn�kyk terms we collect is

�

n

k

�

. And this completes the proof!

Example 17.9 Expand .xC y/5 and find all the terms with two ys and three xs. Pair these terms up with the

two-element subsets of f1; 2; 3; 4; 5g.
Solution:

yyxxx $ f1; 2g xyxyx $ f2; 4g
yxyxx $ f1; 3g xyxxy $ f2; 5g
yxxyx $ f1; 4g xxyyx $ f3; 4g
yxxxy $ f1; 5g xxyxy $ f3; 5g
xyyxx $ f2; 3g xxxyy $ f4; 5g

We now have a procedure to calculate, say,
�

20

10

�

. All we have to do is expand out .xCy/20

and find the coefficient of x
10

y
10. To do that, we just write down all the terms from xxx � � �xx

to yyy � � �yy and collect like terms. There are only 220 D 1,048,576 terms. Sounds like fun!

No? You are right. This is not a good way to find
�

20

10

�

. It is no better than writing out all

the possible ten-element subsets of f1; 2; : : : ; 20g. And there are a lot of them. How many?

We don’t know! That’s what we’re trying to find out. We need another method (see also

Exercise 17.34).

Pascal’s Triangle

Recall from your algebra class that the coefficients of .x C y/
n form the n

th row of Pascal’s

1

1

2

3

5 10

1

1 1

31 1
4 61 4 1

1 10 5 1

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

k =
 2

k =
 3

k =
 4

k =
 5

k =
 1

k =
 0 triangle. The figure shows Pascal’s triangle. The entry in row n D 4 and diagonal k D 2 is

�

4

2

�

D 6, as shown (we count the rows and diagonals starting from 0).

How is Pascal’s triangle generated? Here is a complete description:

� The zeroth row of Pascal’s triangle contains just the single number 1.
� Each successive row contains one more number than its predecessor.
� The first and last number in every row is 1.
� An intermediate number in any row is formed by adding the two numbers just to its left

and just to its right in the previous row. For example, the first 10 in row n D 5 (and

diagonal k D 2) is formed by adding the 4 to its upper left (at n D 4; k D 1) and the 6 to

its upper right (at n D 4; k D 2 as shown circled in the figure).

How do we know that Pascal’s triangle generates the binomial coefficients? How do we

know that the entry in row n and column k is
�

n

k

�

?

To see why this works, we need to show that the binomial coefficients follow the same

four rules we just listed.

In other words, we form a triangle containing
�

0

0

�

on the zeroth row;
�

1

0

�

,
�

1

1

�

on the first

row,
�

2

0

�

,
�

2

1

�

,
�

2

2

�

on the second row, and so on. We then need to prove that this triangle of

binomial coefficients is generated by exactly the same four rules as Pascal’s triangle! This is

three-fourths easy plus one-fourth tricky. Here we go.

� The zeroth row of the binomial coefficient triangle contains the single number 1.

This is easy: The zeroth row of the binomial coefficients triangle is
�

0

0

�

D 1.
� Each successive row contains one more number than its predecessor.

This is easy: Row n of the binomial coefficient triangle contains exactly nC 1 num-

bers:
�

n

0

�

,
�

n

1

�

, . . . ,
�

n

n

�

.
� The first and last number in every row is 1.

This is easy: The first and last numbers in row n of the binomial coefficient triangle

are
�

n

0

�

D
�

n

n

�

D 1.
� The intermediate number in any row is formed by adding the two numbers just to its left

and just to its right in the previous row.
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This is tricky! The first thing we need to do is write down a careful statement of what

we need to prove about binomial coefficients. We need an intermediate number in any

row. This means we do not need to worry about
�

n

0

�

or
�

n

n

�

; we already know those are 1.

An intermediate number in row n would be
�

n

k

�

with 0 < k < n.

What are the numbers just above
�

n

k

�

? To find the upper left neighbor, we move up to
+n 1

k 1

n 1

k

n

k

row n � 1 and up to diagonal k � 1. So the number to the upper left is
�

n�1

k�1

�

. To find the

upper right neighbor, we move up to row n � 1 but stay on diagonal k. So the number to

the upper right is
�

n�1

k

�

.

We need to prove the following:

Theorem 17.10 (Pascal’s Identity) Let n and k be integers with 0 < k < n. Then
 

n

k

!

D
 

n � 1

k � 1

!

C
 

n � 1

k

!

:

How can we prove this? We don’t have a formula for
�

n

k

�

. The idea is to use combinatorial

proof (see Proof Template 9). We need to ask a question and then prove that the left and right

sides of the equation in Theorem 17.10 both give correct answers to this question. What

question has these answers? There is a clear question to which the left-hand side gives an

answer. The question is: How many k-element subsets does an n-element set have?

Proof. To prove
�

n

k

�

D
�

n�1

k�1

�

C
�

n�1

k

�

, we consider the question: How many k-element

subsets does the set f1; 2; 3; : : : ; ng have?
� Answer 1:

�

n

k

�

, by definition.

Now we need another answer. The right-hand side of the equation gives us some hints. It

contains the numbers n � 1, k � 1, and k. It is telling us to pick either k � 1 or k elements

from an .n� 1/-element set. But we have been thinking about an n-element set, so let’s throw

away one of the elements; let’s say that element n is a “weirdo.” The right-hand side is telling

us to pick either k � 1 or k elements from among the normal elements 1; 2; : : : ; n � 1. If we

only pick k � 1 elements, that doesn’t make a full k-element subset—in this case, we can add

the weirdo to the .k � 1/-element subset. Or we pick k elements from the normal elements.

Now we have a full k-element subset, and no room is left for the weirdo.

We now have all the ideas in place; let’s express them clearly.

Let n be called the “weird” element of f1; 2; : : : ; ng. When we form a k-element subset

of f1; 2; : : : ; ng, there are two possibilities. Either we have a subset that includes the weirdo,

or we have a subset that does not include the weirdo—these mutually exclusive possibilities

cover all cases.

If we put the weird element in the subset, then we have
�

n�1

k�1

�

choices for how to complete

the subset because we must choose k � 1 elements from f1; 2; : : : ; n � 1g.
If we do not put the weird element in the subset, then we have

�

n�1

k

�

ways to make the

subset because we must choose all k elements from f1; 2; : : : ; n � 1g.
Thus we have another answer.

� Answer 2:
�

n�1

k�1

�

C
�

n�1

k

�

.

Since Answer 1 and Answer 2 are correct answers to the same question, they must be

equal, and we are finished.

Example 17.11 We show that
�

6

2

�

D
�

5

1

�

C
�

5

2

�

by listing all the two-element subsets of f1; 2; 3; 4; 5; 6g.
There are

�

5

1

�

D 5 two-element subsets that include the weirdo 6:

f1; 6g f2; 6g f3; 6g f4; 6g f5; 6g
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and there are
�

5

2

�

D 10 two-element subsets that do not include 6:

f1; 2g f1; 3g f1; 4g f1; 5g f2; 3g
f2; 4g f2; 5g f3; 4g f3; 5g f4; 5g:

We now want to calculate
�

20

10

�

. The technique we could follow is to generate Pascal’s

triangle down to the 20th row and look up the entry on diagonal 10. How much work would

this be? The 20
th row of Pascal’s triangle contains 21 numbers. The previous row contains 20,

and the one before that has 19. There are only 1C 2C 3C � � � C 21 D 231 numbers. We get

most of them by simple addition and we need to do about 200 addition problems. (We can be

more efficient; see Exercise 17.36.) If you were to implement this procedure on a computer,

you would not need to save all 210 numbers. You would only need to save about 40. Once

you have calculated a row of Pascal’s triangle, you can discard the previous row. So at any

time, you would only keep the previous row and the current row. And if you are clever, you

can save even more memory.

In any case, if you follow this procedure, you will find that
�

20

10

�

D 184,756.

A Formula for
�

n

k

�

The technique of generating Pascal’s triangle to calculate binomial coefficients is a good one.

We can calculate
�

20

10

�

by performing roughly 200 addition problems instead of sifting through

a million terms in a polynomial (see also Exercise 17.34).

There is something a bit unsatisfying about this answer. We like formulas!We want a nice

way to express
�

n

k

�

in a simple expression using familiar operations. We have an expression

for
�

n

2

�

: Proposition 17.5 says
 

n

2

!

D 1C 2C 3C � � � C .n � 1/:

This is not bad, but it suggests that we still need to do a lot of addition to get the answer. There

is, however, a nice trick for simplifying this sum. Write the integers 1 through n � 1 forward

and backward, and then add:
�

n

2

�

D 1 + 2 + 3 + � � � + n � 2 + n � 1

C
�

n

2

�

D n � 1 + n � 2 + n � 3 + � � � + 2 + 1

2
�

n

2

�

D n + n + n + � � � + n + n D n.n � 1/

and therefore
 

n

2

!

D n.n � 1/

2
:

This equation is a special case of a more general result. Here is another way to count

k-element subsets of an n-element set.

Let us begin by counting all k-element lists, without repetition, whose elements are se-

lected from an n-element set. This is a problem we have already solved (see Section 8)! The

number of such lists is .n/k .

For example, there are .5/3 D 5 � 4 � 3 D 60 three-element, repetition-free lists we can

form from the members of f1; 2; 3; 4; 5g:
All the entries in a single row of this

chart express the same three-element

subset in six different ways. Since

this chart has 60 entries, the number

of three-element subsets of

f1; 2; 3; 4; 5g is 60� 6D 10.

123 132 213 231 312 321

124 142 214 241 412 421

125 152 215 251 512 521

and so on, until

345 354 435 453 534 543

Notice how we have organized our chart. All lists on the same row contain exactly the same

elements, just in different orders. Let us define a relation R on these lists. The relation is “has-

the-same-elements-as”—two lists are related by R just when their elements are the same (but

their orders might be different). Clearly R is an equivalence relation. Each row of the chart

gives an equivalence class. We want to count the equivalence classes. There are 60 elements
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of the set (all three-element lists). Each equivalence class contains six lists. Therefore the

number of equivalence classes is 60

6
D 10 D

�

5

3

�

by Theorem 16.6.

Let’s repeat this analysis for the general problem. We want to count the number of k-

element subsets of f1; 2; : : : ; ng. Instead, we consider the k-element, repetition-free lists we

can form from f1; 2; : : : ; ng. We declare two of these lists equivalent if they contain the same

members. Finally, we compute the number of equivalence classes to calculate
�

n

k

�

.

The number of k-element, repetition-free lists we can form from f1; 2; : : : ; ng is a prob-
lem we already solved (Theorem 8.6); there are .n/k such lists.

The reason why each list is

equivalent to .k/k D kŠ lists also

follows from Theorem 8.6; we want

to know how many length-k,

repetition-free lists we can form

using k elements.

Therefore the number of equivalence classes is .n/k=kŠ D
�

n

k

�

. We can rewrite .n/k as

nŠ=.n � k/Š (provided k � n), and we have the following result.

Theorem 17.12 (Formula for
�

n

k

�

) Let n and k be integers with 0 � k � n. Then

 

n

k

!

D nŠ

kŠ.n � k/Š
:

We have found a “formula” for
�

n

k

�

. Are we happy? Perhaps. If we want to compute
�

20

10

�

,

what does this theorem tell us to do? It asks us to calculate
 

20

10

!

D 20 � 19 � 18 � � � � � 3 � 2 � 1

10 � 9 � 8 � � � � � 2 � 1 � 10 � 9 � 8 � � � � � 2 � 1
:

This entails about 40 multiplications and 1 division. Also, the intermediate results (the nu-

merator and denominator) are very large (more digits than most calculators can handle).

Of course, we can cancel some terms between the numerator and the denominator to

speed things up. The last ten terms of the numerator are 10� � � � � 1, and that cancels out one

of the 10Šs in the denominator. So now the problem reduces to
 

20

10

!

D 20 � 19 � 18 � � � � � 11

10 � 9 � 8 � � � � � 1
:

We can hunt for more cancellations, but now it requires us to think about the numbers in-

volved. The cancellation of one 10Š in the denominator was mindless; we could build that

easily into a computer program. Other cancellations may be tricky to find. If we’re doing this

on a computer, we may as well just do the remaining multiplications and final division, which

would be

670442572800

3628800
D 184756:

Counting Lattice Paths

We close this section with an interesting application of binomial coefficients to a counting

problem. Consider a grid such as the one shown in the figure. We want to count the number of

paths from the lower left corner to the upper right corner in which each step of the path either

goes one unit to the right or one unit vertically.

The grid in the figure consists of 10 vertical lines and 10 horizontal lines. Therefore,

the restriction that every step be either be rightward or upward means that the entire path is

18 steps long. Furthermore, the path must contain exactly 9 horizontal (left-to-right) steps and

9 vertical steps to traverse from the lower left corner to the upper right corner.

To count these paths, we create a simple notation. We write a list of 18 letters; each letter

is either an R for a step to the right or else a U for an upward step. For the path in the figure,

the notation would be this:

RRU RUU UUR URR RUR UUR

(We inserted some spaces just to make this easier to read.) Notice that there are exactly 9 Rs

and 9 Us. The problem of counting paths is thereby transformed into this question: Howmany

lists of 9 Rs and 9 Us can we make?
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And we can transform this question into a subset counting question! Instead of writing

out the entire list of 18 letters, we can simply specify which 9 of the 18 positions are occupied

by Rs (and then we know the remaining positions are occupied with Us). For the list above,

the set would be f1; 2; 4; 9; 11; 12; 13; 15; 18g. Thus, the lattice-path-counting question that

we transformed into a list-counting question is now a subset counting question: How many

9-element subsets can we form from the set f1; 2; : : : ; 18g? And, of course, the answer is
�

18

9

�

.

Recap

This section dealt entirely with the binomial coefficient
�

n

k

�

, the number of k-element subsets

of an n-element set. We proved the Binomial Theorem, we showed that the binomial coeffi-

cients are the entries in Pascal’s triangle, and we developed a formula to express
�

n

k

�

in terms

of factorials.

17 Exercises 17.1. Evaluate the following without using the formula from Theorem 17.12. Indeed, try to

find the answer without doing any writing or arithmetic.

a.
�

9

0

�

.

b.
�

9

9

�

.

c.
�

9

1

�

.

d.
�

9

8

�

.

e.
�

9

6

�

�
�

9

3

�

.

f.
�

0

0

�

.

g.
�

2

0

�

.

h.
�

0

2

�

.

17.2. Write out all the 3-element subsets of f1; 2; 3; 4; 5; 6g to verify that
�

6

3

�

D 20.

17.3. Find the coefficient! Answer the following questions with the assistance of the Binomial

Theorem (Theorem 17.8):

a. What is the coefficient of x3 in .1C x/6?

b. What is the coefficient of x
3 in .2x � 3/

6?

c. What is the coefficient of x3 in .x C 1/20 C .x � 1/20?

d. What is the coefficient of x3y3 in .x C y/6?

e. What is the coefficient of x3y3 in .x C y/7?

17.4. Mixed Matched Marvin has a drawer full of 30 different socks (no two are the same).

He reaches in and grabs two. In how many different ways can he do this? Now he puts

them on his feet (presumably, one on the left and the other on the right). In how many

different ways can he do that?

17.5. Twenty people attend a party. If everyone shakes everyone else’s hand exactly once,

how many handshakes take place?

17.6. a. How many n-digit binary (0,1) sequences contain exactly k 1s?

b. How many n-digit ternary (0,1,2) sequences contain exactly k 1s?

17.7. How many length-12 lists can we form that contain exactly four each of the letters A,

B, and C?

17.8. Fifty runners compete in a 10K race. How many different outcomes are possible?To make this problem tractable,

assume that there are no ties. The answer to this question depends on what we are judging. Find different an-

swers to this question depending on the context.

a. We want to know in what place every runner finished.

b. The race is a qualifying race, and we just want to pick the ten fastest runners.

c. The race is an Olympic final event, and we care only about who gets the gold, silver,

and bronze medals.

17.9. Write out all the three- and four-element subsets of f1; 2; 3; 4; 5; 6; 7g in two columns.

Pair each three-element subset with its complement. Your chart should have 35 rows.

17.10. A special type of door lock has a panel with five buttons labeled with the digits 1

through 5. This lock is opened by a sequence of three actions. Each action consists of

either pressing one of the buttons or pressing a pair of them simultaneously.
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For example, 12-4-3 is a possible combination. The combination 12-4-3 is the same

as 21-4-3 because both the 12 and the 21 simply mean to press buttons 1 and 2 simul-

taneously.

a. How many combinations are possible?

b. How many combinations are possible if no digit is repeated in the combination?

17.11. In how many different ways can we partition an n-element set into two parts if one part

has four elements and the other part has all the remaining elements?

17.12. Look down the middle column of Pascal’s triangle. Notice that, except for the very top

1, all these numbers are even. Why?

17.13. Use Theorem 17.12 to prove Proposition 17.7.

17.14. Prove that the sum of the numbers in the n
th row of Pascal’s triangle is 2

n.

One easy way to do this is to substitute x D y D 1 into the Binomial Theorem

(Theorem 17.8).

However, please give a combinatorial proof. That is, prove that

2
n D

n
X

kD0

 

n

k

!

by finding a question that is correctly answered by both sides of this equation.

17.15. Use the Binomial Theorem (Theorem 17.8) to prove
 

n

0

!

�
 

n

1

!

C
 

n

2

!

�
 

n

3

!

C � � � ˙
 

n

n

!

D 0

provided n > 0.

Move all the negative terms over to the right-hand side to give
 

n

0

!

C
 

n

2

!

C
 

n

4

!

C � � � D
 

n

1

!

C
 

n

3

!

C
 

n

5

!

C � � � :

Give a combinatorial description of what this means and convert it into a combinatorial

proof. Use the “weirdo” method.

17.16. Consider the following formula:

k

 

n

k

!

D n

 

n � 1

k � 1

!

:

Give two different proofs. One proof should use the factorial formula for
�

n

k

�

(The-

orem 17.12). The other proof should be combinatorial; develop a question that both

sides of the equation answer.

17.17. Let n � k � m � 0 be integers. Consider the following formula:
 

n

k

! 

k

m

!

D
 

n

m

! 

n �m

k �m

!

:

Give two different proofs. One proof should use the factorial formula for
�

n

k

�

(Theo-

rem 17.12). The other proof should be combinatorial. Try to develop a question that

both sides of the equation answer.

17.18. How many rectangles can be formed from an m � n chess board? For example, for a

2 � 2 chess board, there are nine possible rectangles.

17.19. Let n be a natural number. Give a combinatorial proof of the following:
 

2nC 2

nC 1

!

D
 

2n

nC 1

!

C 2

 

2n

n

!

C
 

2n

n � 1

!

:

17.20. Let n be a positive integer. Prove that n �
�

n

2

�

� 1.

17.21. Use Stirling’s formula (see Exercise 9.7) to develop an approximation formula for
�

2n

n

�

.

Without using Stirling’s formula, give a direct proof that
�

2n

n

�

� 4n.

17.22. Use the factorial formula for
�

n

k

�

(Theorem 17.12) to prove Pascal’s Identity (Theo-

rem 17.10).
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17.23. Prove
 

n

3

!

D
 

2

2

!

C
 

3

2

!

C
 

4

2

!

C � � � C
 

n � 1

2

!

:

Hint:Mimic the argument for Proposition 17.5.

17.24. Continued from the previous problem. Proposition 17.5 says
�

n

2

�

D 1C2C� � �C.n�1/.

Make a large copy of Pascal’s triangle and mark the numbers
�

7

2

�

, 6, 5, 4, 3, 2, and 1.

You have several choices—do this “right.” What’s the pattern?

The previous exercise asks you to prove
�

n

3

�

D
�

2

2

�

C
�

3

2

�

C
�

4

2

�

C � � �C
�

n�1

2

�

. On a

large copy of Pascal’s triangle, mark the numbers
�

7

3

�

,
�

6

2

�

,
�

5

2

�

,
�

4

2

�

,
�

3

2

�

, and
�

2

2

�

. What’s

the pattern?

Now generalize these formulas and prove your assertion.

17.25. Give a geometric and an algebraic proof that

1C 2C 3C � � � C .n � 1/C nC .n� 1/C .n � 2/C � � � C 2C 1 D n
2
:

17.26. Prove:
�

n

0

��

n

n

�

C
�

n

1

��

n

n�1

�

C
�

n

2

��

n

n�2

�

C � � � C
�

n

n�1

��

n

1

�

C
�

n

n

��

n

0

�

D
�

2n

n

�

.

17.27. Howmany Social Security numbers (see Exercise 8.12) have their nine digits in strictly

increasing order?

The following series of problems introduce the concept ofmultinomial coefficients.

17.28. The binomial coefficient
�

n

k

�

is the number of k-element subsets of an n-element set.

Here is another way to think of
�

n

k

�

. Let A be an n-element set and suppose we have a

supply of labels; we have k labels that say “good” and n � k labels that say “bad.” In

how many ways can we affix exactly one label to each element of A?

17.29. Let A be an n-element set. Suppose we have three types of labels to assign to the el-

ements of A. We can call these labels “good,” “bad,” and “ugly” or give them less

interesting names such as “Type 1,” “Type 2,” and “Type 3.”

Let a; b; c 2 N. Define the symbol
�

n

a b c

�

to be the number of ways to label the

elements of an n-element set with three types of labels in which we give exactly a of

the elements labels of Type 1, b of the elements labels of Type 2, and c of the elements

labels of Type 3.

Evaluate the following from first principles:

a.
�

3

1 1 1

�

.

b.
�

10

1 2 5

�

.

c.
�

5

0 5 0

�

.

d.
�

10

7 3 0

�

.

e.
�

10

5 2 3

�

�
�

10

2 3 5

�

.

17.30. Let n; a; b; c 2 N with aC b C c D n. Please prove the following:

a.
�

n

a b c

�

D
�

n

a

��

n�a

b

�

.

b.
�

n

a b c

�

D nŠ

aŠbŠcŠ
.

c. If aC b C c 6D n, then
�

n

a b c

�

D 0.

17.31. Let n 2 N. Prove

.x C y C z/
n D

X

aCbCcDn

 

n

a b c

!

x
a
y

b
z

c

where the sum is over all natural numbers a; b; c with aC b C c D n.

17.32. A poker hand consists of 5 cards chosen from a standard deck of 52 cards. How many

different poker hands are possible?

17.33. Poker continued. There are a variety of special hands that one can be dealt in poker. ForIf you divide the answers to this

problem by
�

52
5

�

(the answer to the

previous problem), you will have the

probability that a randomly selected

poker hand is of the sort described.

The concept of probability is

developed in Part 6.

each of the following types of hands, count the number of hands that have that type.

a. Four of a kind: The hand contains four cards of the same numerical value (e.g., four

jacks) and another card.

b. Three of a kind: The hand contains three cards of the same numerical value and two

other cards with two other numerical values.

c. Flush: The hand contains five cards all of the same suit.
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d. Full house: The hand contains three cards of one value and two cards of another

value.

e. Straight: The five cards have consecutive numerical values, such as 7-8-9-10-jack.

Treat ace as being higher than king but not less than 2. The suits are irrelevant.

f. Straight flush: The hand is both a straight and a flush.

17.34. It is silly to compute .x C y/20 by expanding it to a million terms and then collecting

like terms. A much better way is to calculate .x C y/2 and collect like terms. Then

multiply that result by .x C y/ and collect like terms to give .x C y/3. Now multiply

that again by .xC y/ and so on until you reach .xC y/20. Compare this method to the

method of generating all of Pascal’s triangle down to the 20th row.

17.35. First of all, please verify that
�

n

4

�

D n.n � 1/.n� 2/.n� 3/=4Š.

We can think of this as a polynomial expression and substitute n D �1=2 into

the polynomial representation of
�

n

4

�

(even though this doesn’t make sense with the

definition of binomial coefficient) to get
 

�1

2

4

!

D
��1

2

� ��3

2

� ��5

2

� ��7

2

�

4Š
D 105=16

24
D 35

128
:

Find a formula for
��1=2

k

�

where k is a nonnegative integer.

17.36. To compute
�

n

k

�

by generating Pascal’s triangle, it is not necessary to generate the entire

triangle down to row n; you need only the part of the triangle in a 90ı wedge above
�

n

k

�

.

Estimate how many addition problems you would need to perform to calculate
�

100

30

�

by this method. How many addition problems would you need to perform if you

were to compute the entire Pascal’s triangle down to row 30?

17.37. Use a computer to print out a very large copy of Pascal’s triangle, but with a twist.

Instead of printing the number, print a dot if the number is odd and leave the location

blank if the number is even. Produce at least 64 rows.

Note that the computer doesn’t actually need to compute the entries in Pascal’s

triangle; it needs only to calculate their parity. (Explain.) What do you see?

18 Counting Multisets

We have considered two kinds of counting problems: lists and sets. The list-counting problems

(see Section 8) come in two flavors: we either allow or forbid repetition of the members of

the lists. The number of lists of length k whose members are drawn from an n-element set is

either nk (if repetition is allowed) or .n/k (if repetition is forbidden).Subsets as unordered lists.

Sets may be thought of as unordered lists (i.e., lists of elements where the order of the

members does not matter). As we saw in Section 17, the number of unordered lists of length

k whose members are drawn without repetition from an n-element set is
�

n

k

�

. This is a set-

counting problem.

The goal of this section is to count the number of unordered lists of length k whose

elements are drawn from an n-element set with repetition permitted. It is difficult, however,

to express this idea in the language of sets. We need the more general concept of multiset.

Multisets

A given object either is or is not in a set. An element cannot be in a set “twice.” The following

sets are all identical:

f1; 2; 3g D f3; 1; 2g D f1; 1; 2; 2; 3; 3g D f1; 2; 3; 1; 2; 3; 1; 1; 1; 1g:

A multiset is a generalization of a set. A multiset is, like a set, an unordered collection of

elements. However, in a multiset, an object may be considered to be in the multiset more than

once.

In this book, we write a multiset as follows: h1; 2; 3; 3i. This multiset contains four ele-

There is no standard notation for

multisets. Our notation h� � � i is not
widely used. The delimiters h and i
are called angle brackets and should

not be confused with the less-than <

and greater-than > symbols. Some

mathematicians simply use curly

braces f� � � g for both sets and

multisets.

ments: the element 1, the element 2, and the element 3 counted twice. We say that element
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3 has multiplicity equal to 2 in the multiset h1; 2; 3; 3i. The multiplicity of an element is the

number of times it is a member of the multiset.

Two multisets are the same provided they contain the same elements with the same mul-

tiplicities. For example, h1; 2; 3; 3i D h3; 1; 3; 2i, but h1; 2; 3; 3i 6D h1; 2; 3; 3; 3i.
The cardinality of a multiset is the sum of the multiplicities of its elements. In other

words, it is the number of elements in the multiset where we take into account the number of

times each element is present. The notation is the same as for sets. If M is a multiset, then

jM j denotes its cardinality. For example, j h1; 2; 3; 3i j D 4.

The counting problem we consider is: How many k-element multisets can we form by

choosing elements from an n-element set? In other words, how many unordered length-k lists

can we form using the elements f1; 2; : : : ; ng with repetition allowed?

Just as we defined
�

n

k

�

to represent the answer to a set-counting problem,we have a special

notation for the answer to this multiset-counting problem.

Definition 18.1 Let n; k 2 N. The symbol
��

n

k

��

denotes the number of multisets with cardinality equal to k

whose elements belong to an n-element set such as f1; 2; : : : ; ng.The notation
��

n
k

��

is pronounced “n

multichoose k.” The doubled

parentheses remind us that we may

include elements more than once.

Example 18.2 Let n be a positive integer. Evaluate
��

n

1

��

.

Solution: This asks for the number of one-element multisets whose elements are selected

from f1; 2; : : : ; ng. The multisets are

h1i ; h2i ; : : : ; hni

and so
��

n

1

��

D n.

Example 18.3 Let k be a positive integer. Evaluate
��

1

k

��

.

Solution: This asks for the number of k-element multisets whose elements are selected from

f1g. Since there is only one possible member of the multiset, and the multiset has cardinality

k, the only possibility is

˝

1; 1; : : : ; 1
™

k ones

˛

and so
��

1

k

��

D 1.

Example 18.4 Evaluate
��

2

2

��

.

Solution: We need to count the number of two-element multisets whose elements are selected

from the set f1; 2g. We simply list all the possibilities. They are

h1; 1i ; h1; 2i ; and, h2; 2i :

Therefore
��

2

2

��

D 3.

In general, consider
��

2

k

��

. We need to form a k-element multiset using only the elements

1 and 2. We can decide how many 1s are in the multiset (anywhere from 0 to k, giving

k C 1 possibilities), and then the remaining elements of the multiset must be 2s. Therefore
��

2

k

��

D k C 1.

Example 18.5 Evaluate
��

3

3

��

.

Solution: We need to count the number of three-element multisets whose elements are se-

lected from the set f1; 2; 3g. We list all the possibilities. They are

h1; 1; 1i h1; 1; 2i h1; 1; 3i h1; 2; 2i h1; 2; 3i
h1; 3; 3i h2; 2; 2i h2; 2; 3i h2; 3; 3i h3; 3; 3i

Therefore
��

3

3

��

D 10.
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Formulas for
��

n

k

��

In the foregoing examples, we calculated
��

n

k

��

by explicitly listing all possible multisets. This,

of course, is not practical if we want to calculate
��

n

k

��

for large values of n and k. We need a

better way to perform this computation.

For ordinary binomial coefficients, we have two methods to calculate
�

n

k

�

. We can gen-

erate Pascal’s triangle using the relation
�

n

k

�

D
�

n�1

k

�

C
�

n�1

k�1

�

or we can use the formula
�

n

k

�

D nŠ

kŠ.n�k/Š
.

Let’s look for patterns in the values of
��

n

k

��

. Here is a table of values of
��

n

k

��

for 0 �
n; k � 6.

k

0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 1 2 3 4 5 6 7

n 3 1 3 6 10 15 21 28

4 1 4 10 20 35 56 84

5 1 5 15 35 70 126 210

6 1 6 21 56 126 252 462

In Pascal’s triangle, we found that the value of
�

n

k

�

can be computed by adding two values

in the previous row. Does a similar relationship hold here?

Look at the value 56 in row n D 6 and column k D 3. The number just above this 56 is

35. Is 21 next to 35 so we can get 56 by adding 21 and 35? There is no 21 in row 5, but just to

the left of the 56 in row 6 there is a 21.

Examine other numbers in this chart. Each is the sum of the number just above and just

to the left. The number to the left of
��

n

k

��

is
��

n

k�1

��

and number above is
��

n�1

k

��

.

We have observed the following:

Proposition 18.6 Let n; k be positive integers. Then
  

n

k

!!

D
  

n � 1

k

!!

C
  

n

k � 1

!!

:

The proof of this result is similar to that of Theorem 17.10. I recommend you reread that

proof now. The essential idea of that proof and the one we are about to present is to consider

a weird element. We count [multi]sets of size k that either include or exclude the weirdo.

Proof. We use a combinatorial proof to prove this result (see Proof Template 9). We ask a

question that we expect will be answered by both sides of the equation:

How many multisets of size k can we form using the elements f1; 2; : : : ; ng?

A simple answer to this question is
��

n

k

��

.

For a second answer, we analyze the meanings of
��

n�1

k

��

and
��

n

k�1

��

.

The first has an easy interpretation. The number
��

n�1

k

��

is the number of k-element mul-

tisets using the members of f1; 2; : : : ; ng in which we never use element n.

How should we interpret
��

n

k�1

��

? What we want to say is that this represents the number

of k-element multisets using the members of f1; 2; : : : ; ng in which we must use element n.

To see why this is true, suppose we must use element n when forming a k-element multiset.

So we throw element n into the multiset. Now we are free to complete this multiset in any

way we wish. We need to pick k � 1 more elements from f1; 2; : : : ; ng; the number of ways

to do that is precisely
��

n

k�1

��

.

Since element n either is or is not in the multiset, we have
��

n

k

��

D
��

n�1

k

��

C
��

n

k�1

��

.
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Example 18.7 We illustrate the proof of Proposition 18.6 by considering
��

3

4

��

D
��

2

4

��

C
��

3

3

��

.

We list all the multisets of size 4 we can form using the elements f1; 2; 3g.
First, we list all the multisets of size 4 we can form from the elements in f1; 2; 3g that do

not use element 3. In other words, we want all the multisets of size 4 we can form that use just

elements f1; 2g. There are
��

2

4

��

D 5 of them. They are

h1; 1; 1; 1i h1; 1; 1; 2i h1; 1; 2; 2i h1; 2; 2; 2i h2; 2; 2; 2i

Second, we list all the multisets of size 4 that include the element 3 (at least once). They

are

h1; 1; 1; 3i h1; 1; 2; 3i h1; 1; 3; 3i h1; 2; 2; 3i h1; 2; 3; 3i
h1; 3; 3; 3i h2; 2; 2; 3i h2; 2; 3; 3i h2; 3; 3; 3i h3; 3; 3; 3i

Notice that if we ignore the mandatory 3 (in color), we have listed all the three-element mul-

tisets we can form from the elements in f1; 2; 3g. There are
��

3

3

��

D 10 of them.

This result,
��

n

k

��

D
��

n�1

k

��

C
��

n

k�1

��

, and its proof are quite similar to Theorem 17.10,
�

n

k

�

D
�

n�1

k�1

�

C
�

n�1

k

�

. The table of
��

n

k

��

values is similar to Pascal’s triangle in another way.

If we read the table of
��

n

k

��

values diagonally from the lower-left corner to the upper-right

corner, we read off the values

1 5 10 10 5 1

and this is the fifth row of Pascal’s triangle. We can write this as follows:

1 5 10 10 5 1

l l l l l l
��

6

0

�� ��

5

1

�� ��

4

2

�� ��

3

3

�� ��

2

4

�� ��

1

5

��

l l l l l l
�

5

0

� �

5

1

� �

5

2

� �

5

3

� �

5

4

� �

5

5

�

Observe that
��

n

k

��

D
�

‹

k

�

. What number should we fill in for the question mark? A bit

of guesswork and we see that ‹ D n C k � 1 fits the pattern we observed. For example,
��

4

2

��

D
�

5

2

�

D
�

4C2�1

2

�

.

We assert the following:

Theorem 18.8 Let n; k 2 N. Then
  

n

k

!!

D
 

nC k � 1

k

!

:

Proof. The idea of this proof is to develop a way to encode multisets and then count their

encodings. To find
��

n

k

��

, we list all (encodings of) the k-element multisets we can form using

the integers 1 through n. Before we present the encoding scheme, we need to deal with the

special case n D 0.

If both n D 0 and k D 0, then
��

0

0

��

D 1 (the empty multiset). However, the formula gives
�

0C0�1

0

�

D
��1

0

�

. Although this is nonsense (it is not possible to have a set with �1 elements),

it is possible to extend the definition of
�

n

k

�

to allow the upper index, n, to be any real number;

see Exercise 18.17. In the extended definition,
��1

0

�

D 1 as desired.

If n D 0 and k > 0, then
��

n

k

��

D 0 (there are no multisets of cardinality k whose elements

are chosen from the empty set). In this case,
�

nCk�1

k

�

D
�

k�1

k

�

D 0, as required.

Hence, from this point on, we may assume n is a positive integer. We now present the

scheme for encoding multisets as lists.

Suppose, for the moment, that n D 5 and the multiset is M D h1; 1; 1; 2; 3; 3; 5i. We

encode this multiset with a sequence of stars * and bars |. We have a star for each element

and a bar to make separate compartments for the elements. For this multiset, the stars-and-bars
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encoding is as follows:

h1; 1; 1; 2; 3; 3; 5i  ! ***|*|**||*

The first three *s stand for the three 1s in M . Then there is a | to mark the end of the 1s

section. Next there is a single * to denote the single 2 in M , and another | to signal the end

of the 2s. Two more *s follow for the two 3s in the multiset. Now notice that we have two |s

in a row. Since there are no 4s in M , there are no *s in this compartment. Finally, the last * is

for the single 5 in M .

In the general case, let M be a k-element multiset formed using the integers 1 through

n. Its stars-and-bars notation contains exactly k *s (one for each element of M ) and exactly

n � 1 |s (to separate n different compartments).

Notice that given any sequence of k *s and n� 1 |s, we can recover a unique multiset ofThis one-to-one pairing of multisets

and stars-and-bars encodings is an

example of a bijective proof.
cardinality k whose elements are chosen from the integers 1 through n. Thus there is a one-to-

one correspondence between k-element multisets of integers chosen from f1; 2; : : : ; ng and
lists of stars and bars with k *s and n � 1 |s. The good news is that it is easy to count the

number of such stars-and-bars lists.

Each stars-and-bars list contains exactly nC k � 1 symbols, of which exactly k are *s.

The number of such lists is
�

nCk�1

k

�

because we can think of choosing exactly k positions on

the length-.nC k � 1/ list to be *s. In other words, there are nC k � 1 positions on this list.

We want to select a k-element subset of those nC k � 1 positions in all possible ways. There

are
�

nCk�1

k

�

ways to do this.

Therefore
��

n

k

��

D
�

nCk�1

k

�

.

Example 18.9 In Example 18.5, we explicitly listed all possible size-three multisets formed using the integers

1, 2, and 3. Here we list them with their stars-and-bars notation.

Multiset Stars-and-bars Subset

h1; 1; 1i ***|| f1; 2; 3g
h1; 1; 2i **|*| f1; 2; 4g
h1; 1; 3i **||* f1; 2; 5g
h1; 2; 2i *|**| f1; 3; 4g
h1; 2; 3i *|*|* f1; 3; 5g
h1; 3; 3i *||** f1; 4; 5g
h2; 2; 2i |***| f2; 3; 4g
h2; 2; 3i |**|* f2; 3; 5g
h2; 3; 3i |*|** f2; 4; 5g
h3; 3; 3i ||*** f3; 4; 5g

The column labeled Subset shows which of the five positions in the stars-and-bars encoding

are occupied by *s. Notice that the
��

3

3

��

multisets correspond to the
�

5

3

�

subsets. Thus
��

3

3

��

D
�

3C3�1

3

�

D
�

5

3

�

.

Extending the Binomial Theorem to Negative Powers

The Binomial Theorem (Theorem 17.8) can be expressed in the following gently altered form:

.1C x/
n D

1
X

kD0

 

n

k

!

x
k
:

It may seem unusual to write the sum with infinitely many terms, but since
�

n

k

�

D 0 once

k > n, all but the first handful are equal to zero. For example,

.1C x/
5 D

1
X

kD0

 

5

k

!

x
k D 1C 5xC 10x

2C 10x
3C 5x

4 C 1x
5 C 0x

6C 0x
7C 0x

8C � � � :

What happens when we replace
�

n

k

�

with
��

n

k

��

? Something wonderful!
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To be specific, we shall examine the sum

1
X

kD0

  

n

k

!!

x
k D

  

n

0

!!

C
  

n

1

!!

x C
  

n

2

!!

x
2 C � � � :

This is truly an infinite sum as the multichoose coefficients
��

n

k

��

are nonzero even for k > n.

Thus, to be completely rigorous, we need to pay attention to convergence issues, but that’sSee Exercise 18.10 to see the sort of

trouble that infinite sums can cause. a calculus topic beyond the scope of this book. Nevertheless, we can proceed in a purely

algebraic way to derive a formula for
P

k

��

n

k

��

xk .

To begin, let us take the case n D 1. Note that
��

1

k

��

D 1 for all nonnegative integers k

because the only k-element multiset we can form using the elements of f1g is h1; 1; 1; : : : ; 1i
with k ones (see Example 18.3). Thus

1
X

kD0

  

1

k

!!

x
k D 1C x C x

2 C x
3 C x

4 C � � �

and this is a geometric series whose sum is 1=.1� x/.

We now demonstrate that

1
X

kD0

  

2

k

!!

D 1

.1 � x/2
:

Note that
��

2

k

��

D k C 1 (see Exercise 18.6). Therefore

1
X

kD0

  

2

k

!!

D 1C 2x C 3x
2 C 4x

3 C 5x
4 C � � � :

Now we consider 1=.1� x/2. Expanding this into two geometric series we have

1

.1 � x/2
D
�

1C x C x
2 C x

3 C � � �
� �

1C x C x
2 C x

3 C � � �
�

: (5)

and we ask: What is the coefficient of x5 for the expression on the right? To multiply the two

infinite series on the right, we multiply every term in the first factor by every term in the right

factor, and then collect like terms. To figure out the coefficient of x5, we end up collecting

the following terms: 1 � x5, x � x4, x2 � x3, x3 � x2, x4 � x, and x5 � 1—six terms in all. So the

coefficient of x
5 is 6, and that equals

��

2

5

��

.

In general, what is the coefficient of xk in Equation (5)? When the two series are mul-

tiplied and like terms are collected, the terms contributing to xk are these: 1 � xk , x � xk�1,

x2 � xk�2, and so on until xk � 1, for a total of k C 1 terms. Therefore

1

.1 � x/2
D
�

1C x C x
2 C x

3 C � � �
� �

1C x C x
2 C x

3 C � � �
�

D 1C 2x C 3x
2 C 4x

3 C 5x
4 C � � � D

1
X

kD0

  

2

k

!!

:

Given that
P
��

1

n

��

D .1 � x/�1 and
P
��

2

n

��

D .1 � x/�2, it’s not unreasonable to guess

that
P
��

3

n

��

D .1� x/�3 and so forth.

Theorem 18.10 (Negative Binomial) Let n be a nonnegative integer. Then

1
X

kD0

  

n

k

!!

x
k D .1 � x/

�n
:

The proof of this result is a generalization of the argument we gave to demonstrate that
P
��

2

k

��

D .1 � x/�2. In this argument, we are ignoring important issues of convergence

needed to make this discussion completely rigorous. Indeed, missing from the statement of

the theorem is the assumption that jxj < 1.

The central idea of the proof is to write .1 � x/�n as an n-fold product of the geometric

series 1CxCx
2C � � � and then to collect like terms. This can be a bit messy, so we offer the

following intermediate step to make the discussion clearer.
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Lemma 18.11 Let n be a positive integer and let k be a nonnegative integer. The equation

e1 C e2 C � � � C en D k

has
��

n

k

��

solutions for which e1; e2; : : : ; en are nonnegative integers.

For example, consider the equation e1 C e2 C e3 D 6 and we ask for all solutions in

which e1; e2; e3 are nonnegative integers. We claim there are
��

3

6

��

D 28 solutions. Here they

are:

0C 0C 6 0C 1C 5 0C 2C 4 0C 3C 3 0C 4C 2 0C 5C 1 0C 6C 0

1C 0C 5 1C 1C 4 1C 2C 3 1C 3C 2 1C 4C 1 1C 5C 0 2C 0C 4

2C 1C 3 2C 2C 2 2C 3C 1 2C 4C 0 3C 0C 3 3C 1C 2 3C 2C 1

3C 3C 0 4C 0C 2 4C 1C 1 4C 2C 0 5C 0C 1 5C 1C 0 6C 0C 0

How do the 28 solutions to the equation e1 C e2 C e3 D 6 relate to the 28 multisets of size

6 formed from f1; 2; 3g? We can pair up each triple e1 C e2 C e3 with a multiset with e1

ones, e2 twos, and e3 threes. For example, the triple 2 C 3 C 1 corresponds to the multiset

h1; 1; 2; 2; 2; 3i.

Proof (of Lemma 18.11)

There is a one-to-one correspondence between solutions to the equation e1 C e2 C � � � C
en D k and multisets of size k (with elements drawn from f1; 2; : : : ; ng): given the numbers

e1; e2; : : : ; en we make a multiset with e1 1s, e2 2s, and so forth; conversely, given a multiset

of size k, we can create a solution to e1 C e2C � � � C en D k where ei is the number of times

i appears in the set. This can be represented like this:

e1 C e2 C � � � C en D k  ! h1; : : : ; 1
—

e1

; 2; : : : ; 2
—

e2

; : : : : : : ; n; : : : ; n
˜

en

i:

Thus, the number of solutions to the equation e1 C e2 C � � � C en D k is
��

n

k

��

.

We now wrap up our argument for Theorem 18.10.

For n D 0, the expression
P
��

n

k

��

xk has only one nonzero term:
��

0

0

��

x0 which equals 1;

all the other terms are zero (because for k > 0,
��

0

k

��

D 0). Thus
P
��

0

k

��

xk D 1 D .1 � x/0.

For n > 0, write .1 � x/�n as an n-fold product of the geometric series:
�

1

1 � x

�n

D
�

1C x C x
2 C x

3 C � � �
�n

:

When we expand the right hand side of this equation and collect like terms, all the xk terms

are of the form xe1 xe2 � � �xen where the exponents sum to k and xej comes from the j th

factor on the right. Since (by Lemma 18.11) the number of such terms is
��

n

k

��

, that is the

coefficient of x
k . Therefore

1
X

kD0

  

n

k

!!

x
k D .1 � x/

�n
:

Recap

In this section, we considered the following counting problem:Howmany k-element multisets

can we form whose elements are selected from f1; 2; : : : ; ng? We denoted the answer by
��

n

k

��

.

We proved various properties of
��

n

k

��

, most notably that
  

n

k

!!

D
 

nC k � 1

k

!

:

We also showed how to replace
�

n

k

�

with
��

n

k

��

in the Binomial Theorem to give these
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identities:

.1C x/
n D

X

k

 

n

k

!

x
k and .1 � x/

�n D
X

k

  

n

k

!!

x
k
:

We have studied four counting problems: counting lists (with or without repetitions),

counting subsets, and counting multisets. The answers to these four counting problems are

summarized in the following chart.

Counting collections

Repetition Repetition

allowed forbidden

Ordered nk .n/k

Unordered
��

n

k

�� �

n

k

�

Size of collection: k

Size of universe: n

18 Exercises 18.1. Evaluate
��

3

2

��

and
��

2

3

��

by explicitly listing all possible multisets of the appropriate size.

Check that your answers agree with the formula in Theorem 18.8.

18.2. Give a stars-and-bars representation for all the sets you found in the previous problem.

18.3. Let n be a positive integer. Evaluate the following from first principles (i.e., don’t use

Proposition 18.6).

a.
��

0

n

��

.

b.
��

n

0

��

.

c.
��

0

0

��

.

Explain your answers.

18.4. Let n be a positive integer. There are 2
n possible sets that one can form using the

elements in f1; 2; : : : ; ng. How many multisets can be formed using those elements?

18.5. What multiset is encoded by the stars-and-bars notation *|||***?

18.6. Evaluate from first principles
��

2

k

��

(where k is a nonnegative integer).

18.7. Please calculate
��

8

4

��

and
��

4

8

��

. Notice anything interesting? Make a conjecture.

18.8. Express
��

n

k

��

using factorial notation.

18.9. Let n be a positive integer. Which is larger:
�

2n

n

�

or
��

n

n

��

? Justify your answer.

Show that the ratio between
�

2n

n

�

and
��

n

n

��

is the same for all positive integers n.

18.10. Substitute x D 2 into both sides of

1C x C x
2 C x

3 C x
4 C � � � D 1

1 � x
:

What happens?

Also substitute x D 1

10
. Any better?

18.11. In Exercise 18.7 you calculated
��

8

4

��

and
��

4

8

��

and we hope you noticed that the first is

twice as large as the second. Prove this in general. That is: Let a be a positive integer.

Show that
��

2a

a

��

is twice as large as
��

a

2a

��

.

18.12. Theorem 18.8 gives a formula for
��

n

k

��

of the form
�

‹

‹

�

. Derive a formula for
�

a

b

�

of the

form
��

‹

‹

��

where the upper and lower entries are expressions involving the integers a

and b where a � b � 0.

18.13. Prove:
  

n

k

!!

D
  

k C 1

n � 1

!!

:

18.14. Let
��

n

k

��

denote the number of multisets of cardinality k we can form choosing the

elements in f1; 2; 3; : : : ; ng with the added condition that we must use each of these n

elements at least once in the multiset.

a. Evaluate from first principles,
��

n

n

��

.

b. Prove:
��

n

k

��

D
��

n

k�n

��

.
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18.15. Let n; k be positive integers. Prove:

  

n

k

!!

D
  

n � 1

0

!!

C
  

n � 1

1

!!

C
  

n � 1

2

!!

C � � � C
  

n � 1

k

!!

:

18.16. Let n; k be positive integers. Prove:

  

n

k

!!

D
  

1

k � 1

!!

C
  

2

k � 1

!!

C � � � C
  

n

k � 1

!!

:

18.17. In Exercise 17.35 we saw that
�

n

k

�

can be expressed as a polynomial in n; for example,
�

n

4

�

D n.n � 1/.n � 2/.n � 3/=4Š. In this exercise we explore the same idea for
��

n

k

��

.

a. Show that for a positive integer n,
��

n

4

��

D n.nC 1/.nC 2/.nC 3/=4Š.

b. Multiply out the expression in part (a) and compare to the analogous expression for
�

n

4

�

.

c. Formulate (and prove) a conjecture relating the expressions
��x

k

�

and
��

x

k

��

where k

is a nonnegative integer.

d. Derive a formula for
��

1=2

k

��

.

18.18. Use part (c) of the previous problem to give an alternate derivation of Theorem 18.10

by substitution into the Binomial Theorem (Theorem 17.8). That is, you may assume

(without justification) that the formula

.1C x/
n D

1
X

kD0

 

n

k

!

x
k

works even if we use a negative integer for n.

18.19. Assume that the Negative Binomial Theorem (Theorem 18.10) extends to any negative

real number to develop an infinite series for

1p
1 � x

:

Then, substitute x D 1

2
into your formula through to the x5 term to compute an ap-

proximation to
p

2. How good is this approximation?

19 Inclusion-Exclusion

In Section 12 we learned that for finite sets A and B , we have jAjC jBj D jA[BjC jA\Bj.
We can rewrite this as

jA[ Bj D jAj C jBj � jA \ Bj

[see Proposition 12.4 and Equation (4)]. The equation expresses the size of a union of two

sets in terms of the sizes of the individual sets and their intersection. In Exercise 12.24, you

were asked to extend this result to three sets A, B , and C—that is, to prove

jA[ B [ C j D jAj C jBj C jC j
� jA\ Bj � jA\ C j � jB \ C j
C jA\ B \ C j:

Again, the size of the union is expressed in terms of the sizes of the individual sets and their

various intersections. These equations are called inclusion-exclusion formulas.

In this section, we prove a general inclusion-exclusion formula.
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Theorem 19.1 (Inclusion-Exclusion) Let A1, A2,. . . , An be finite sets. Then

jA1 [ A2 [ � � � [Anj D jA1j C jA2j C � � � C jAnj
� jA1 \A2j � jA1 \A3j � � � � � jAn�1 \Anj
C jA1 \ A2 \ A3j C jA1 \ A2 \A4j C � � � C jAn�2 \An�1 \Anj
� � � � C � � � � � � � � �
˙ jA1 \ A2 \ � � � \ Anj:

To find the size of a union, we add the sizes of the individual sets (inclusion), subtract the

sizes of all the pairwise intersections (exclusion), add the sizes of all the three-way intersec-

tions (inclusion), and so on.

The idea is that when we add up all the sizes of the individual sets, we have added too

much because some elements may be in more than one set. So we subtract off the sizes of the

pairwise intersections to compensate, but now we may have subtracted too much. Thus we

correct back by adding in the sizes of the triple intersections, but this overcounts, so we have

to subtract, and so on. Amazingly, at the end, everything is in perfect balance (we prove this

in a moment).

The repeated use of ellipsis (� � � ) in the formula is unfortunate, but it is difficult to express

this formula using the notations we have thus far developed. For four sets (A through D) the

formula is

jA[ B [ C [Dj D jAj C jBj C jC j C jDj
� jA\ Bj � jA\ C j � jA\Dj � jB \ C j � jB \Dj � jC \Dj
C jA\ B \ C j C jA\ B \Dj C jA\ C \Dj C jB \ C \Dj
� jA\ B \ C \Dj:

Example 19.2 At an art academy, there are 43 students taking ceramics, 57 students taking painting, and

29 students taking sculpture. There are 10 students in both ceramics and painting, 5 in both

painting and sculpture, 5 in both ceramics and sculpture, and 2 taking all three courses. How

many students are taking at least one course at the art academy?

Solution: Let C , P , and S denote the sets of students taking ceramics, painting, and

sculpture, respectively. We want to calculate jC [ P [ S j. We apply inclusion-exclusion:

jC [ P [ S j D jC j C jP j C jS j � jC \ P j � jC \ S j � jP \ S j C jC \ P \ S j
D 43C 57C 29 � 10 � 5 � 5C 2 D 111:

Proof (of Theorem 19.1)

Let the n sets be A1, A2, . . . , An and let the elements in their union be named x1, x2, . . . ,

xm. We create a large chart. The rows of this chart are labeled by the elements x1 through

xm. The chart has 2
n � 1 columns that correspond to all the terms on the right-hand side of

the inclusion-exclusion formula. The first n columns are labeled A1 through An. The next
�

n

2

�

columns are labeled by all the pairwise intersections from A1 \ A2 through An�1 \An. The

next
�

n

3

�

columns are labeled by the triple intersections and so on.

The entries in this chart either are blank or contain aC or � sign. The entries depend on

the row label (element) and column label (set). If the element is not in the set, the entry in

that position is blank. If the element is a member of the set, we put aC sign when the column

label is an intersection of an odd number of sets or else a � sign when the column label is an

intersection of an even number of sets. For the three sets in the Venn diagram in the figure and

their elements, the chart would be as follows:
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El’t A1 A2 A3 A1 \ A2 A1 \ A3 A2 \ A3 A1 \ A2 \ A3

1 +

2 +

3 + + �
4 + + �
5 +

6 + + �
7 + + + � � � +

8 + + + � � � +

9 + + �
10 + + �
11 + + �
12 +

A1

A2

A3

1
2

3
4

5

6
7 8

9
1011

12

There are three things to notice about this chart.

� First, the number of marks in each column is the cardinality of that column’s set; we

make a mark in a column just for that set’s elements. In the example, there are five marks

in the A2 \ A3 column (corresponding to elements 7, 8, 9, 10, and 11).
� Second, the sign of the mark (C or �) corresponds to whether we are adding or subtract-

ing that set’s cardinality in the inclusion-exclusion formula. Thus, if we add 1 for every

C sign in the chart and subtract 1 for every � sign, we get precisely the right-hand side

of the inclusion-exclusion formula.
� Third, look at the number of Cs and �s in each row. In the example, notice that there

is always one more C than �. If we can prove this always works, we will be finished

because then the net effect of all the Cs and �s is to count 1 for each element in the

union of the sets A1 [A2 [ � � � [An. So, if we can prove this works in general, we have

completed the proof.

The problem now reduces to proving that every row has exactly one moreC than �.
Let x be an element of A1 [ A2 [ � � � [ An. It is in some (perhaps all) of the Ai . Let us

say it is in exactly k of them (with 1 � k � n). Let us calculate how many Cs and �s are in
x’s row.

In the columns indexed by single sets, there will be k Cs; let’s write
�

k

1

�

in place of k

(you will see why in a moment).

In the columns indexed by pairwise intersections, there will be
�

k

2

�

�s. This is because x

is in k of the Ai s, and the number of pairs of sets to which x belongs is
�

k

2

�

.

In the columns indexed by triple intersections, there will be
�

k

3

�

Cs.
In general, in the columns indexed by j -fold intersections, there will be

�

k

j

�

marks. The

marks areC if j is odd and � if j is even. Thus

the number ofCs is
 

k

1

!

C
 

k

3

!

C
 

k

5

!

C � � � ; and

the number of �s is
 

k

2

!

C
 

k

4

!

C
 

k

6

!

C � � � :

Note that these sums do not go on forever; they include only those binomial coefficients whose

lower index does not exceed k. Also note that the term
�

k

0

�

is absent.

In Exercise 17.15, you proved
 

k

0

!

�
 

k

1

!

C
 

k

2

!

� � � � ˙
 

k

k

!

D 0

or, equivalently,
 

k

0

!

C
 

k

2

!

C
 

k

4

!

C
 

k

6

!

C � � �
Ÿ

number of � signs

D
 

k

1

!

C
 

k

3

!

C
 

k

5

!

C � � �
Ÿ

number ofC signs

:
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We therefore see that the number of Cs is exactly
�

k

0

�

D 1 more than the number of �s
in x’s row.

How to Use Inclusion-Exclusion

Inclusion-exclusion takes one counting problem (How many elements are in A1 [ � � � [An?)

and replaces it with 2n� 1 new counting problems (How many elements are in the various in-

tersections?). Nevertheless, inclusion-exclusionmakes certain counting problems easier. Here

is an example.

Example 19.3 (A list-counting problem) The number of length-k lists whose elements are chosen from the

set f1; 2; : : : ; ng is nk . How many of these lists use all of the elements in f1; 2; : : : ; ng at least
once?

For example, for n D 3 and k D 3, there are 33 D 27 length-three lists using the elements

in f1; 2; 3g. Of these, the following six lists use all of the elements 1, 2, and 3:

123 132 213 231 312 321.

Here is how to use inclusion-exclusion to solve this problem. We begin by letting U

(for universe) be the set of all length-k lists whose elements are chosen from f1; 2; : : : ; ng.
Thus jU j D nk . We call some of these lists “good”—these are the ones that contain all the

elements of f1; 2; : : : ; ng. And we call some of the lists “bad”—these are the ones that miss

one or more of the elements in f1; 2; : : : ; ng. If we can count the number of bad lists, we’ll be

finished because

# good lists D n
k � # bad lists: (6)

Now a list might be bad because it fails to contain the number 1. Or it might be bad if it

It is convenient to use # to stand for

“number of.”

misses the number 2 and so on. There are n different elements in f1; 2; : : : ; ng, and there are

n different ways a list might be bad. Let B1 be the set of all lists in U that do not contain the

element 1, let B2 be the set of all lists in U that do not contain the element 2, . . . , and let Bn

be the set of all lists in U that do not contain the element n. The set

B1 [ B2 [ � � � [Bn

contains precisely all the bad lists; what we want to do is calculate the size of this union. This

is a job for inclusion-exclusion! To calculate the size of this union, we need to calculate the

sizes of each of the sets Bi and all possible intersections, and then invoke Theorem 19.1.

To begin, we calculate the size of B1. This is the number of length-k lists whose elementsB1 D f222, 223, 232, 233, 322, 323,
332, 333g. are chosen from f1; 2; : : : ; ng with the added condition that the element 1 is never used. In

other words, jB1j is the number of length-k lists whose elements are chosen from f2; 3; : : : ; ng
(notice we deleted element 1). Thus we have n � 1 choices for each position on the list, so

jB1j D .n � 1/k .

What about jB2j? The analysis is exactly the same as for jB1j. The number of length-kB2 D f111, 113, 131, 133, 311, 313,
331, 333g. lists that do not use element 2 is the number of length-k lists whose elements are chosen from

f1; 3; 4; : : : ; ng (we deleted 2). So jB2j D .n � 1/k .

Indeed, for every j , jBj j D .n � 1/k . The first part of the inclusion-exclusion formula

now gives

jB1 [ � � � [ Bnj D jB1j C � � � C jBnj � � � � � � �
D n.n � 1/

k � � � � � � �

Now we continue to the second row of terms in Theorem 19.1. These are all the terms

of the form jBi \ Bj j. We begin with jB1 \ B2j. This is the number of lists that (1) doB1 \B2 D f333g.
not include the element 1 and (2) do not include the element 2. In other words, jB1 \ B2j
equals the number of length-k lists whose elements are chosen from the set f3; 4; : : : ; ng. The
number of these lists is jB1 \ B2j D .n � 2/k .

What about jB1 \ B3j? The analysis is exactly the same as before. These lists avoid theB1 \B3 D f222g.
elements 1 and 3, so they are drawn from an .n� 2/-element set. Thus jB1\B3j D .n� 2/

k .

Indeed, all terms in the second row of the inclusion-exclusion formula give .n � 2/k .
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The question that remains is: How many terms are in the second row? We want to pick

all possible pairs of sets from B1 through Bn and there are
�

n

2

�

such pairs. Thus far, we have

jB1 [ � � � [ Bnj D jB1j C � � � C jBnj � jB1 \ B2j � � � � C � � � � � �

D n.n � 1/
k �

 

n

2

!

.n � 2/
k C � � � � � � :

Let’s think about the triple intersections beforewe do the general case. Howmany lists are

in B1\B2\B3? This is the number of length-k lists that avoid all three of the elements 1, 2,

and 3. In other words, these are the length-k lists whose elements are drawn from f4; : : : ; ng.
The number of such lists is .n�3/k . Of course, this analysis applies to any triple intersection.

How many triple intersections are there? There are
�

n

3

�

. So we now have

jB1 [ � � � [Bnj D n.n � 1/
k �

 

n

2

!

.n � 2/
k C

 

n

3

!

.n � 3/
k � � � � � � � :

The pattern should be emerging. To make the pattern look better, replace the first n by
�

n

1

�

in the above equation. We expect the next term to be �
�

n

4

�

.n � 4/k .

To make sure the pattern we see is correct, let us think about the size of a j -fold intersec-

tion of the B sets. How many elements are in B1\B2\� � �\Bj ? These are the length-k lists

that avoid all elements from 1 to j ; that is, they draw their elements from fj C1; : : : ; ng (a set
of size n� j ). So jB1 \ B2 \ � � � \Bj j D .n� j /k . Of course, all j -fold intersections work

exactly like this. How many j -fold intersections are there? There are
�

n

j

�

. Thus the j
th term

in the inclusion-exclusion is ˙
�

n

j

�

.n � j /k . The sign is positive when j is odd and negative

when j is even.

As a sanity check, let us make sure this formula applies to jB1 \ � � � \ Bnj, the last termThe last term in the example is

B1 \B2 \B3 D ;. in the inclusion-exclusion. This is the number of lists of length k that contain none of the

elements 1 through n. If we can’t use any of the elements, we certainly can’t make any lists.

The size of this set is zero. Our formula for this term is˙
�

n

0

�

.n � n/k , which, of course, is 0.

We now have

jB1 [ � � � [ Bnj D
 

n

1

!

.n � 1/
k �

 

n

2

!

.n � 2/
k C

 

n

3

!

.n � 3/
k � � � � ˙

 

n

n

!

.n � n/
k

which can be rewritten using
P

notation as

jB1 [ � � � [Bnj D
n
X

jD1

.�1/
jC1

 

n

j

!

.n � j /
k
:

The .�1/jC1 term is a device that gives a plus sign when j is odd and a minus sign when j

is even.

We have nearly answered the question fromExample 19.3. The setB1[� � �[Bn counts the

number of bad lists; we want the number of good lists. We simply substitute into Equation (6)

to get

# good lists D n
k � # bad lists

D n
k �

" 

n

1

!

.n � 1/
k �

 

n

2

!

.n� 2/
k C

 

n

3

!

.n � 3/
k � � � � ˙

 

n

n

!

.n � n/
k

#

D n
k �

 

n

1

!

.n � 1/
k C

 

n

2

!

.n � 2/
k �

 

n

3

!

.n � 3/
k C � � � �

 

n

n

!

.n � n/
k

D
 

n

0

!

n
k �

 

n

1

!

.n � 1/
k C

 

n

2

!

.n � 2/
k �

 

n

3

!

.n � 3/
k C � � � �

 

n

n

!

.n � n/
k

D
n
X

jD0

.�1/
j

 

n

j

!

.n � j /
k

answering the question from Example 19.3.
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Proof Template 10 Using inclusion-exclusion.

Counting with inclusion-exclusion:

� Classify the objects as either “good” (the ones you want to count) or “bad” (the ones

you don’t want to count).
� Decide whether you want to count the good objects directly or to count the bad objects

and subtract from the total.
� Cast the counting problem as the size of a union of sets. Each set describes one way

the objects might be “good” or “bad.”
� Use inclusion-exclusion (Theorem 19.1).

Derangements

We illustrate the method of Proof Template 10 on the following classical problem.

This problem is known as the

hat-check problem. The story is that

n people go to the theater and check

their hats with a deranged clerk. The

clerk hands the hats back to the

patrons at random. The problem is:

What is the probability that none of

the patrons get their own hat back?

The answer to this probability

question is the answer to

Example 19.4 divided by nŠ.

Example 19.4 (Counting derangements) There are nŠ ways to make lists of length n using the elements of

f1; 2; : : : ; ng without repetition. Such a list is called a derangement if the number j does not

occupy position j of the list for any j D 1; 2; : : : ; n. How many derangements are there?

For example, if n D 8, the lists .8; 7; 6; 5; 4; 3; 2; 1/ and .6; 5; 7; 8; 1; 2; 3; 4/ are derange-

ments but .3; 5; 1; 4; 8; 6; 7/ and .2; 1; 4; 3; 8; 6; 7; 5/ are not.

Example 19.5 The derangements of f1; 2; 3; 4g are
2143 2341 2413

3142 3412 3421

4123 4312 4321

There are nŠ lists under consideration. The “good” lists are the derangements. The “bad”

lists are the lists in which one (or more) element j of f1; 2; : : : ; ng appears at position j of

the list.

We count the number of bad lists and subtract from nŠ to count the good lists.

We count the number of bad lists by counting a union. There are n ways in which a list

might be bad: 1 might be in position 1, 2 might be in position 2, and so forth, and n might be

in position n. So we define the following sets:

B1 D flists with 1 in position 1g
B2 D flists with 2 in position 2g

:
:
:

Bn D flists with n in position ng:

Our goal is to count jB1 [ � � � [ Bnj and finally to subtract from nŠ. To compute the size of a

union, we use inclusion-exclusion.

We first calculate jB1j. This is the number of lists with 1 in position 1; the other n � 1B1 D f1234, 1243, 1324, 1342,
1423, 1432g. elements may be anywhere. There are .n � 1/Š such lists. Likewise, jB2j D .n � 1/Š because

element 2 must be in position 2, but the other n � 1 elements may be anywhere. We have

jB1 [ � � � [ Bnj D jB1j C � � � C jBnj � � � � � � �
D n.n � 1/Š� � � � � � � :

Next consider jB1 \ B2j. These are the lists in which 1 must be in position 1, 2 must beB1 \B2 D f1234, 1243g.
in position 2, and the remaining n � 2 elements may be anywhere. There are .n � 2/Š such
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lists. Indeed, for any i 6D j , we have jBi \Bj j D .n� 2/Š since element i goes in position i ,

element j goes in position j , and the remaining n� 2 elements may go anywhere they want.

There are
�

n

2

�

pairwise intersections, and they all have size .n � 2/Š. This gives

jB1 [ � � � [ Bnj D jB1j C � � � C jBnj � jB1 \ B2j � � � � C � � � � � �

D n.n � 1/Š�
 

n

2

!

.n � 2/ŠC � � � � � � :

The
�

n

3

�

triple intersections all work the same, too. The size of B1 \ B2 \ B3 is .n � 3/Š

because elements 1, 2, and 3 must go into their respective positions, but the remaining n � 3

elements go wherever they please. So far we have

jB1 [ � � � [Bnj D n.n � 1/Š�
 

n

2

!

.n � 2/ŠC
 

n

3

!

.n � 3/Š� � � � :

If we rewrite the first n as
�

n

1

�

, this becomes

jB1 [ � � � [ Bnj D
 

n

1

!

.n � 1/Š�
 

n

2

!

.n � 2/ŠC
 

n

3

!

.n � 3/Š� � � � :

The pattern is emerging. To see that this works, let us consider the k-fold intersections such

as jB1 \B2 \ � � � \Bk j. There are
�

n

k

�

terms of this form. Each evaluates to .n� k/Š because

k of the elements/positions on the list are determined, and the remaining n � k elements can

go wherever they wish. Thus we have

jB1 [ � � � [Bnj D
 

n

1

!

.n � 1/Š�
 

n

2

!

.n � 2/ŠC
 

n

3

!

.n � 3/Š� � � � ˙
 

n

n

!

.n � n/Š:

Note the last term is
�

n

n

�

0Š D 1. To see this is correct, note that this is the size of B1\� � �\Bn.B1 \B2 \B3 \B4 D f1234g.
This is the set of lists in which 1 must be in position 1, 2 must be in position 2, and so on, and

n must be in position n. There is exactly one such list—namely, .1; 2; 3; : : : ; n/.

Finally, we subtract jB1 [ � � � [ Bnj from nŠ to get the number of derangements. This is

nŠ �
" 

n

1

!

.n � 1/Š�
 

n

2

!

.n � 2/ŠC
 

n

3

!

.n � 3/Š� � � � ˙
 

n

n

!

.n � n/Š

#

which equals
 

n

0

!

nŠ �
 

n

1

!

.n � 1/ŠC
 

n

2

!

.n � 2/Š�
 

n

3

!

.n � 3/ŠC � � � �
 

n

n

!

.n � n/Š

or, in
P

notation,

# derangementsD
n
X

kD0

.�1/
k

 

n

k

!

.n � k/Š:

We can simplify this answer. Recall that
 

n

k

!

D nŠ

kŠ.n � k/Š

(see Theorem 17.12). Therefore

# derangementsD
n
X

kD0

.�1/
k

 

n

k

!

.n � k/Š D
n
X

kD0

.�1/
k

nŠ

kŠ.n � k/Š
.n � k/Š D

n
X

kD0

.�1/
k

nŠ

kŠ
:

Finally, we can factor out the nŠ from all the terms and just have

# derangementsD nŠ

n
X

kD0

.�1/k

kŠ
:
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A Ghastly Formula

The inclusion-exclusion formula is

jA1 [ A2 [ � � � [Anj D jA1j C jA2j C � � � C jAnj
� jA1 \A2j � jA1 \A3j � � � � � jAn�1 \Anj
C jA1 \ A2 \ A3j C jA1 \ A2 \A4j C � � � C jAn�2 \An�1 \Anj
� � � � C � � � � � � � � �
˙ jA1 \ A2 \ � � � \ Anj:

Can this be rewritten without resorting to use of ellipsis (� � � )? Here we reduce the formula so

that it contains only a single ellipsis. You decide whether this is better.

ˇ

ˇ

ˇ

ˇ

ˇ

n
[

kD1

Ak

ˇ

ˇ

ˇ

ˇ

ˇ

D
n
X

kD1

.�1/
kC1

X

1�a1<���<ak�n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
\

jD1

Aaj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Can you invent a notation that does not require even one ellipsis?

Recap

We extended the simple formula jA [ Bj D jAj C jBj � jA \ Bj to deal with the size of the

union of many sets in terms of the sizes of their various intersections. We then showed how to

apply inclusion-exclusion to some complicated counting problems.

19 Exercises 19.1. There are four large groups of people, each with 1000 members. Any two of these

groups have 100 members in common. Any three of these groups have 10 members in

common. And there is 1 person in all four groups. All together, how many people are

in these groups?

19.2. Of the integers between 1 and 100 (inclusive) how many are divisible by 2 or by 5?

19.3. Of the integers between 1 and 1,000,000 (inclusive) how many are not divisible by 2,

3, or 5?

19.4. Let A, B , and C be finite sets. Prove or disprove: If jA [ B [ C j D jAj C jBj C jC j,
then A, B , and C must be pairwise disjoint.

19.5. How many five-letter “words” can you make in which no two consecutive letters are

the same? A “word” may be any list of the standard 26 letters, so WENJW is a word you

would count, but NUTTY is not.

Here is an easy solution: By the list-counting methods of Section 8, the answer is

26 � 25 � 25 � 25 � 25 D 26 � 254.

Give a hard solution using inclusion-exclusion, and then show that the two answers

are the same.

19.6. This problem asks you to give two proofs for

9
n D

n
X

kD0

.�1/
k

 

n

k

!

10
n�k

:

a. The first proof should use the binomial theorem (see Theorem 17.8).

b. The second should be a combinatorial proof using inclusion-exclusion.

19.7. How many six-digit numbers do not have three consecutive digits the same? (For this

problem, you may consider six-digit numbers whose initial digits might be 0. Thus you

should count 012345 and 001122, but not 000987 or 122234.)

19.8. Howmany lattice paths are there through the grid in the figure that avoid both locations

A

B

A and B? These paths must consist of exactly 18 steps: nine rightward steps and nine

upward steps. One such path is shown.

19.9. Note the following: jA\Bj D jAjC jBj � jA[Bj. Find a general formula for the size

of the intersection of several finite sets in terms of the sizes of their unions.

19.10. Let A1; A2; : : : ; An be finite sets and let A D A1 [ A2 [ � � � [ An. Please prove these

inequalities:
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a.

jAj �
n
X

iD1

jAi j:

b.

jAj �
n
X

iD1

jAi j �
X

1�i<j�n

jAi \ Aj j:

These are known as Bonferroni inequalities.

19.11. This problem refines part (a) of the previous exercise. Again, let A1; A2; : : : ; An be

finite sets and let A D A1 [ A2 [ � � � [An. Please prove:

jAj �
n
X

iD1

jAi j � .n � 1/jA1 \A2 \ � � � \ Anj:

Show that the factor .n � 1/ in the inequality cannot be replaced by n in an attempt to

give an even tighter inequality.

19.12. This exercise is for those who have studied calculus. In this section we showed that the

number of derangements of the numbers 1 through n is

nŠ

n
X

kD0

.�1/k

kŠ
:

If we divide this by nŠ we get the probability pn that no one gets their own hat back

from the deranged hat check clerk.

Evaluate:

lim
n!1

pn D
1
X

kD0

.�1/k

kŠ
:

Chapter 3 Self Test

1. Let R and S be relations on a set A. Suppose we are told that R � S . Express this fact in

the form of an if-then statement about R, S , and elements of A.

2. Let R be the relation on the set of all human beings (not just those in your family) defined

by x R y if and only if x is a parent of y.

a. If x is you, describe the set of people fy W x R yg.
b. If y is you, describe the set of people fx W x R yg.
c. Determine which of the following properties is satisfied by R: reflexive, irreflexive,

symmetric, antisymmetric, transitive.

d. Describe R�1.

3. Which of the following relations R defined on the set of all human beings (not just those

in your family) are equivalence relations?

a. x R y provided x and y have the same mother.

b. x R y provided x and y have the same mother and the same father.

c. x R y provided x and y have at least one parent in common.

4. Let A D f1; 2; 3; 4g. How many different relations on A are there?

5. Let x and y be integers. Suppose x � y .mod 10/ and x � y .mod 11/. Do these

imply that x D y?

6. Let R D f.x; y/ W x; y 2 Z and jxj D jyjg.
a. Prove that R is an equivalence relation on the integers.

b. Find the equivalence classes Œ5�, Œ�2�, and Œ0�.

7. Let A D f1; 2; 3g,B D f4; 5g, and R D .A�A/[.B�B/. Note that R is an equivalence

relation on A[ B . Find all the equivalence classes of R.

8. Let A D f1; 2; 3; 4; 5g and define an equivalence relation R on 2
A by X R Y if and only

if jX j D jY j. How many equivalence classes does R have?
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9. Let P D fN; Z; P g be a partition of the integers, Z defined by
� N D fx 2 Z W x < 0g,
� Z D f0g, and
� P D fx 2 Z W x > 0g.
Describe the equivalence relation

P�. Your answer should be of the following form: “Sup-

pose x and y are integers. Then x
P�y if and only if . . . .”

10. Ten married couples are seated around a large circular table. In how many different ways

can they do this, assuming husbands and wives sit next to one another? Please note that

if everyone moves one (or more) places to the left, the arrangement is not considered to

be different.

11. The letters in the word ELECTRICITY are scrambled to make two, possibly nonsensical

words (e.g., TIREEL CICTY). How many such anagrams are possible?

12. Two children are playing tic-tac-toe. In howmany ways can the first two moves be made?

One possible answer is 9 � 8 D 72 since there are 9 locations for the first player to

mark X and, for each such choice, 8 locations for the second player to mark O.

However, because of symmetry, some of these opening pairs of moves are the same.

For example, if the first player chooses a corner square and the second player chooses the

center, it doesn’t really matter which corner the first player chose.

Taking this into account, in howmany distinct ways can the first two moves be made?

13. There are 21 students in a chemistry class. The students must pair up to work as lab

partners, but, of course, one student will be left over to work alone. In how many ways

can the students be paired up?

14. Let A D f1; 2; 3; : : : ; 100g. How many 10-element subsets of A consist of only odd

numbers?

15. The expression .x C 2/50 is expanded. What is the coefficient of x17?

16. Let n be a positive integer. Simplify the following expression:

nC .nC 1/C .nC 2/C � � � C .2n/:

17. In a school of 200 children, 15 students are chosen to be on the school’s math team, and

of those, 2 students are chosen to be co-captains. In how many ways can this be done?

18. Let n and k be positive integers with k C 2 � n. Prove the identity
 

nC 2

k C 2

!

D
 

n

k

!

C 2

 

n

k C 1

!

C
 

n

k C 2

!

by the following two methods: combinatorially and by use of Pascal’s Identity (Theo-

rem 17.10).

19. Let n and k be positive integers. Consider this equation:

x1 C x2 C � � � C xn D k:

a. How many solutions are there if the variables xi must be nonnegative integers?

b. How many solutions are there if the variables xi must be positive integers?

c. How many solutions are there if the variables xi may only take the values 0 or 1?

20. A pizza restaurant features ten different kinds of toppings. When you order a quadruple

pie, you get to pick four toppings on your pizza.

a. How many different quadruple pizzas can be made if the four toppings must be differ-

ent?

b. How many different quadruple pizzas can be made if toppings may be repeated (e.g.,

onions, olives, and double mushrooms, or triple anchovies and garlic).

21. Let n be a positive integer. Howmany multisets can be made using the numbers 1 through

n, where each is used at most three times? Be sure to justify your answer.

For example, if n D 5, then we would count h1; 2; 2; 3i and h1; 2; 3; 4; 4; 4; 5i, but
we would not count h1; 2; 4; 4; 4; 4; 4; 4; 4i (too many 4s) or h3; 4; 6i (6 is not in the range

from 1 to n).

22. The squares of a 4 � 4 checkerboard are colored black or white. Use inclusion-exclusion

to find the number of ways the checkerboard can be colored so that no row is entirely one

color.

Explain why your expression simplifies to 144.
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4 MoreProof

Thus far we have used primarily one proof technique known as direct proof. In this method,

we work from hypothesis to conclusion, showing how each statement follows from previous

statements. The central idea is to unravel definitions and bridge the gap from what we have to

what we want.

We are now ready for, and need, more sophisticated proof methods. In this chapter, we

present two powerful methods: proof by contradiction and proof by induction (and its variant,

proof by smallest counterexample).

20 Contradiction

Most theorems can be expressed in the if-then form. The usual way to prove “If A, then B”

is to assume the conditions listed in A and then work to prove the conditions in B (see Proof

Template 1). In this section, we present two alternatives to the direct proof method.

Proof by Contrapositive

The statement “If A, then B” is logically equivalent to the statement “If (notB), then (notA).”

The statement “If (not B), then (not A)” is called the contrapositive of “If A, then B .”

Why are a statement and its contrapositive logically equivalent? For “If A, then B” to be

true, it must be the case that whenever A is true, B must also be true. If it ever should happen

that B is false, then it must have been the case that A was false. In other words, if B is false,

then A must be false. Thus we have “If (not B), then (not A).”

Here’s another explanation.We know that “IfA, thenB” is logically equivalent to “(notA)

or B” (see Exercise 4.4). By the same reasoning, “If (not B), then (not A)” is equivalent to

“(not (not B)) or (not A),” but “not (not B)” is the same as B , so this becomes “B or (not A),”

which is equivalent to “(not A) or B .” In symbols,

a! b D .:a/ _ b D .:.:b// _ .:a/ D .:b/! .:a/:

If these explanations are difficult to follow, here is a mechanical way to proceed.We build

a truth table for a! b and .:b/! .:a/ and see the same results.

a b a! b :b :a .:b/! .:a/

T T T F F T

T F F T F F

F T T F T T

F F T T T T

The bottom line is this: To prove “If A, then B ,” it is acceptable to prove “If (not B), then

(not A).” This is outlined in Proof Template 11.

119
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Proof Template 11 Proof by contrapositive

To prove “If A, then B”: Assume (not B) and work to prove (not A).

Let’s work through an example.

Proposition 20.1 Let R be an equivalence relation on a set A and let a; b 2 A. If a 6R b, then Œa� \ Œb� D ;.

We have essentially proved this already (see Proposition 15.12). Our purpose here is to

illustrate proof by contrapositive. We set the proof up using Proof Template 11.

LetR be an equivalence relation on a set A and let a; b 2 A. We prove the contrapositive

of the statement.

Suppose Œa� \ Œb� 6D ;. . . . Therefore a R b.

The key point to observe is that we suppose the negation of the conclusion (not Œa�\Œb� D
;; i.e., Œa�\ Œb� 6D ;) and work toward proving the negation of the hypothesis (not a 6R b; i.e.,

a R b).

Notice that we alerted our reader that we are not using direct proof by announcing that

we are going to prove the contrapositive.

To continue the proof, we observe that Œa� \ Œb� 6D ; means there is an element in both

Œa� and Œb�. We put this into the proof.

LetR be an equivalence relation on a set A and let a; b 2 A. We prove the contrapositive

of the statement.

Suppose Œa� \ Œb� 6D ;. Thus there is an x 2 Œa� \ Œb�; that is, x 2 Œa�

and x 2 Œb�. . . . Therefore a R b.

We use the definition of equivalence class to finish.

LetR be an equivalence relation on a set A and let a; b 2 A. We prove the contrapositive

of the statement.

Suppose Œa� \ Œb� 6D ;. Thus there is an x 2 Œa� \ Œb�; that is, x 2 Œa� and x 2
Œb�. Hence x R a and x R b. By symmetry a R x, and since x R b, by transitivity

we have a R b.

Is there an advantage to proof by contrapositive? Yes. Try proving Proposition 20.1 by

direct proof. We would assume a 6R b and try to show Œa� \ Œb� D ;. How would we unravel

the hypothesis a 6R b? How do we show that two sets have nothing in common?We don’t have

good ways of accomplishing these tasks; a direct proof here looks hard. By switching to the

contrapositive, we have conditions that are easier for us to use.

Reductio Ad Absurdum

Proof by contrapositive is an alternative to direct proof. If you can’t find a direct proof, try

Proof by contradiction is also called

indirect proof.

proving the contrapositive. Wouldn’t it be nice if there were a proof technique that combined

both direct proof and proof by contrapositive? There is! It is called proof by contradiction or,

in Latin, reductio ad absurdum. Here is how it works.

We want to prove “If A, then B .” To do this, we show that it is impossible for A to be

true while B is false. In other words, we want to show that “A and (not B)” is impossible.

One mistake. Here is another way to

think about proof by contradiction.

We assume A and (not B) and then

follow with valid reasoning until we

reach an impossible situation. This

means there must be a mistake. If all

our reasoning is valid, and since we

are allowed to assume A, the mistake

must have been in supposing (not B).

Since (not B) is the mistake, we

must have B.

How do we prove that something is impossible? We suppose the impossible thing is true

and prove that this supposition leads to an absurd conclusion. If a statement implies something

clearly wrong, then that statement must have been false!
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To prove “If A, then B ,” we make two assumptions. We assume the hypothesis A and

we assume the opposite of the conclusion; that is, we assume (not B). From these two as-

sumptions, we try to reach a clearly false statement. The general outline is given in Proof

Template 12.

Proof Template 12 Proof by contradiction

To prove “If A, then B”:

We assume the conditions in A.

Suppose, for the sake of contradiction, not B .

Argue until we reach a contradiction.

)(

(The symbol)( is an abbreviation for the following: Thus we have reached a con-

tradiction. Therefore the supposition (not B) must be false. Hence B is true.)

Let us present a formal description of proof by contradiction and then give an example.

We want to prove a statement of the form “If A, then B .” To do this, we assume A and

(not B) and show this implies something false. Symbolically, we want to show a! b. To do

this, we prove .a ^ :b/! FALSE. These two are logically equivalent.

Proposition 20.2 The Boolean formulas a! b and .a ^ :b/! FALSE are logically equivalent.

Proof. To see that these two are logically equivalent, we build a truth table.

a b a! b a ^ :b .a ^ :b/! FALSE

T T T F T

T F F T F

F T T F T

F F T F T

Therefore a! b D .a ^ :b/! FALSE.

Let’s apply this method to prove the following:

Proposition 20.3 No integer is both even and odd.

Re-expressed in if-then form, Proposition 20.3 reads, “If x is an integer, then x is not

both even and odd.”

Let’s set up a proof by contradiction.

Let x be an integer.

Suppose, for the sake of contradiction, that x is both even and odd.

. . .

That is impossible. Thus we have reached a contradiction, so our supposition (that x

is both even and odd) is false. Therefore x is not both even and odd, and the proposition

is proved.

Several comments are in order:

� The first sentence gives the hypothesis (let x be an integer).
� The second sentence serves two purposes.

First, it announces to the reader that this is going to be a proof by contradiction using

the phrase “for the sake of contradiction.”

Second, it supposes the opposite of the conclusion. The supposition is that x is both

even and odd.
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� The next sentence reads, “That is impossible.” We don’t know what the antecedent to

“That” is! What is impossible? We don’t know yet! As the proof develops, we hope to

run into a contradiction.
� Given that we have reached a contradiction, here is how we finish the proof. We say

that the supposition is impossible because it leads to an absurd statement. Therefore the

supposition (not B) must be false. Hence the conclusion (B) must be true.

The last few sentences of a proof by contradiction are almost always the same. Math-

ematicians use a special symbol to abbreviate a lot of words. The symbol is)(. The

image is that two implications are crashing into one another.

The symbol )( is an abbreviation for “Thus we have reached a contradiction;

therefore the supposition is false.”

The supposition is that which we have supposed—namely, (not B).

We don’t know (yet) what contradiction we might reach. Let’s just start working with

what we have and hope for the best. We know that x is both even and odd, so we unravel.

Let x be an integer.

Suppose, for the sake of contradiction, that x is both even and odd.

Since x is even, we know 2jx; that is, there is an integer a such that x D 2a.

Since x is odd, we know that there is an integer b such that x D 2b C 1.

. . .

)( Therefore x is not both even and odd, and the proposition is proved.

No contradiction yet. The definitions are completely unraveled. What we have to work

with is x D 2a D 2bC 1 where a and b are integers. Somehow, we need to manipulate these

into something false. Let’s try dividing the equation x D 2a D 2b C 1 through by 2 to give
x

2
D a D b C 1

2
, and this says that one integer is just 1

2
bigger than another (i.e., a � b D 1

2
),

but a � b is an integer and 1

2
is not! A number (a � b) cannot be both an integer and not an

integer! That’s a contradiction. Hurray!! Let’s put it into the proof. (Notice we didn’t use x

2
in

the contradiction, so we can simplify this a bit.)

Let x be an integer.

Suppose, for the sake of contradiction, that x is both even and odd.

Since x is even, we know 2jx; that is, there is an integer a such that x D 2a.

Since x is odd, we know that there is an integer b such that x D 2b C 1.

Therefore 2a D 2b C 1. Dividing both sides by 2 gives a D b C 1

2
so a � b D 1

2
.

Note that a � b is an integer (since a and b are integers) but 1

2
is not an integer. )(

Therefore x is not both even and odd, and the proposition is proved.

This completes the proof. We did not know when we began this proof that the absurdity

we would reach is that 1

2
is an integer. This is typical in a proof by contradiction; we begin

with A and (not B) and see where the implications lead.

Proposition 20.3 can also be expressed as follows. Let

X D fx 2 Z W x is eveng and Y D fx 2 Z W x is oddg:

Then X \ Y D ;.
Proof by contradiction is usually the best technique for showing that a set is empty. This

is worth codifying in a proof template.

Proof Template 13 Proving that a set is empty.

To prove a set is empty:

Assume the set is nonempty and argue to a contradiction.
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Proof Template 13 is appropriate to prove statements of the form “There is no object that

satisfies conditions.”

Contradiction is also the proof technique of choice when proving uniqueness statements.

Such statements assert that there can be only one object that satisfies the given conditions.

Mathspeak!

You would think that mathematicians, of all people, would use the word two correctly. So it may

come as a surprise that when mathematicians say “two” they sometimes mean “one or two.” Here is

an example. Consider the following statement: Every positive even integer is the sum of two odd

positive integers. Mathematicians consider this statement to be true despite the fact that the only way

to write 2 as the sum of two positive odd numbers is 2D 1C 1. The two odd numbers in this case

are 1 and 1. The two numbers just happen to be the same.

The phrase “Let x and y be two integers . . . ” allows for the integers x and y to be the same. This

is the convention, albeit a slightly dangerous one. It would be better simply to write, “Let x and y be

integers . . . .”

Occasionally we truly wish to eliminate the possibility that x D y. In this case, we write, “Let x

and y be two different integers . . . ” or “Let x and y be two distinct integers . . . .”

Proof Template 14 Proving uniqueness.

To prove there is at most one object that satisfies conditions:

Proof: Suppose there are two different objects, x and y, that satisfy conditions.

Argue to a contradiction.

Often the contradiction in a uniqueness proof is that the two allegedly different objects

are in fact the same. Here is a simple example.

Proposition 20.4 Let a and b be numbers with a 6D 0. There is at most one number x with ax C b D 0.

Proof. Suppose there are two different numbers x and y such that ax C b D 0 and

ay C b D 0. This gives ax C b D ay C b. Subtracting b from both sides gives ax D ay.

Since a 6D 0, we can divide both sides by a to give x D y.)(

Proof by Contradiction and Sudoku

If you solve Sudoku puzzles, you have undoubtedly used proof-by-contradiction reasoning.

(For those who have not yet become addicted to this game, you can learn how to play

on the web.)

For example, suppose the following diagram shows the top three rows of a Sudoku puzzle.

We ask: Where does the number 1 belong in the middle 3 � 3 box? (Take a moment to try to

work this out before reading on.)

We claim that the 1 for the middle box must go to the left of the 2 in the bottom row.

Here’s the proof.

Suppose the 1 goes in the top row, between the 4 and the 9. Then the 1 for the left box

cannot be in the top row (because of the 1 from the middle box between the 4 and the 9),

cannot be in the middle row (because of the 1 in the right box), and cannot be in the bottom

row (because there’s no free cell available in the third row of the left box).)( Therefore,

the 1 cannot be between the 4 and the 9.

Suppose the 1 goes in the middle row (in one of the two cells to the left of the 3). But

then we would have two 1s in the second row of the puzzle.)( Therefore the middle box’s 1

cannot be in the second row.

5 6 7

4 9

3

2 8

8

1



124 Chapter 4 More Proof

Therefore, the 1 for the middle box must be in the third row and there is only one open

cell in that row to the left of the 2.

A Matter of Style

Proof by contradiction of “If A, then B” is often easier than direct proof because there are

more conditions available. Instead of starting with only conditionA and trying to demonstrate

condition B , we start with both A and (not B) and hunt for a contradiction. This gives us more

material with which to work.

Sometimes, when you elect to write a proof by contradiction, you may discover that proof

by contradiction was not really required and a simpler sort of proof is possible. A proof is a

proof, and you should be happy to have found a correct proof. Nonetheless, a simpler way to

present your argument is always preferable. Here is how to tell whether you can simplify a

proof of “If A, then B .”

� You assumed A and (not B). You used only the hypothesis A, and the contradiction you

reached was B and (not B).

In this case, you really have a direct proof and you can remove the extraneous proof-

by-contradiction apparatus.
� You assumed A and (notB). You used only the supposition (notB), and the contradiction

you reached was A and (not A).

In this case, you really have a proof by contrapositive. Rewrite it in that form.

Recap

We introduced two new proof techniques for statements of the form “If A, then B .” In a proof

by contrapositive, we assume (not B) and work to prove (not A). In a proof by contradiction,

we assume both A and (not B) and work to produce a contradiction.

20 Exercises 20.1. Please state the contrapositive of each of the following statements:

a. If x is odd, then x2 is odd.

b. If p is prime, then 2p � 2 is divisible by p.

c. If x is nonzero, then x
2 is positive.

d. If the diagonals of a parallelogram are perpendicular, then the parallelogram is a

rhombus.

e. If the battery is fully charged, the car will start.

f. If A or B , then C .

20.2. What is the contrapositive of the contrapositive of an if-then statement?

20.3. A statement of the form “A if and only if B” is usually proved in two parts: one part to

show A) B and another to show B ) A.

Explain why the following is also an acceptable structure for a proof. First prove

A) B and then prove :A) :B .

20.4. For each of the following statements, write the first sentences of a proof by contradiction

(you should not attempt to complete the proofs). Please use the phrase “for the sake of

contradiction.”

a. If A � B and B � C , then A � C .

b. The sum of two negative integers is a negative integer.

c. If the square of a rational number is an integer, then the rational number must also

be an integer.

d. If the sum of two primes is prime, then one of the primes must be 2.

e. A line cannot intersect all three sides of a triangle.

f. Distinct circles intersect in at most two points.

g. There are infinitely many primes.

20.5. Prove by contradiction that consecutive integers cannot be both even.

20.6. Prove by contradiction that consecutive integers cannot be both odd.

20.7. Prove by contradiction: If the sum of two primes is prime, then one of the primes

must be 2.

You may assume that every integer is either even or odd, but never both.
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20.8. Prove by contradiction: If x is a real number, then x2 is not negative.

20.9. Prove by contradiction: If a and b are real numbers and ab D 0, then a D 0 or b D 0.

20.10. Let a be a number with a > 1. Prove that
p

a is strictly between 1 and a.

20.11. Prove by contradiction: Suppose n is an integer that is divisible by 4. Then nC 2 is not

divisible by 4.

20.12. Prove by contradiction: A positive integer is divisible by 10 if and only if its last (one’s)

digit (when written in base ten) is a zero.

You may assume that every positive integer N can be expressed as follows:

N D dk10
k C dk�110

k�1 C � � � C d110C d0

where the numbers d0 through dk are in the set f0; 1; : : : ; 9g and dk 6D 0. In this

notation, d0 is the one’s digit of N ’s base ten representation.

20.13. Let A and B be sets. Prove by contradiction that .A� B/\ .B �A/ D ;.
20.14. Let A and B be sets. Prove A\ B D ; if and only if .A � B/\ .B � A/ D ;.
20.15. Prove the converse of the Addition Principle (Corollary 12.8). The converse of a state-

ment “If A, then B” is the statement “If B , then A.” In other words, your job is to prove

the following:

Let A and B be finite sets. If jA[ Bj D jAj C jBj, then A \ B D ;.
20.16. Let A be a subset of the integers.

a. Write a careful definition for the smallest element of A.

b. Let E be the set of even integers; that is, E D fx 2 Z W 2jxg. Prove by contradiction
that E has no smallest element.

c. Prove that if A � Z has a smallest element, it is unique.

21 Smallest Counterexample

In Section 20 we developed the method of proof by contradiction. Here is another way we canProof by contradiction as proof by

lack of counterexample. think of this technique.

We want to prove a result of the form “If A, then B .” Let’s suppose this result were false.

If that were the case, there would be a counterexample to the statement. That is, there would

be an instance where A is true and B is false. We then analyze that alleged counterexample

and produce a contradiction. Since the supposition that there is a counterexample leads to an

absurd conclusion (a contradiction), that supposition must be wrong; there is no counterex-

ample. Since there is no counterexample, the result must be true.

For example, we showed that no integer could be both even and odd. We can rephrase the

argument as follows:

Suppose the statement “No integer is both even and odd” were false. Then there would

be a counterexample; let’s say x were such an integer (i.e., x is both even and odd).

Since x is even, there is an integer a such that x D 2a. Since x is odd, there is an

integer b such that x D 2b C 1. Thus 2a D 2b C 1, which implies a � b D 1

2
. Since a

and b are integers, so is a � b,)( ( 1

2
is not an integer).

In this section, we extend this idea by considering smallest counterexamples. It’s a little

idea that wields enormous power. The essence of the idea is that we not only consider an al-

leged counterexample to an if-then result, we consider a smallest counterexample. This needs

to be done carefully, and we explore this idea at length.

We have not yet proved a fact you know well: Every integer is even or odd. We have

shown that no integer can be both even and odd, but we have not yet ruled out the possibility

that some integer is neither. It is sensible to try to prove this by contradiction. We would

structure the proof as follows:
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Suppose, for the sake of contradiction, that there were an integer x that is neither even

nor odd. . . .)( Therefore every integer is either even or odd.

Next we could unravel definitions as follows:

Suppose, for the sake of contradiction, that there were an integer x that is neither even

nor odd. So there is no integer a with x D 2a and there is no integer b with x D 2bC1.

. . .)( Therefore every integer is either even or odd.

And now we’re stuck. What do we do next? We need a new idea. The new idea is to

consider a smallest counterexample. We begin with a restricted version of what we are trying

to prove.

Why do we restrict the scope of

Proposition 21.1 to natural numbers?

If we were trying to prove that every

integer is either even or odd, we

could not rule out the possibility that

there might be infinitely many

counterexamples, marching off to

�1. Then we could not talk

sensibly about the smallest

counterexample. It is akin to talking

about the smallest odd integer; there

is no such thing! The odd numbers

descend forever �3, �5, �7, . . . ;

there is no smallest odd integer.

On the other hand, the natural

numbers do not descend forever; they

“stop” at zero. It makes sense to

speak of the smallest odd natural

number, namely 1.

This is why we first prove

Proposition 21.1 only for natural

numbers. We extend this result to all

integers after we complete the proof.

Proposition 21.1 Every natural number is either even or odd.

We begin the proof using the idea of smallest counterexample.

Suppose, for the sake of contradiction, that not all natural numbers are even or odd.

Then there is a smallest natural number, x, that is neither even nor odd.

. . .)(

We add the next sentence to the proof, and let me warn you that the next sentence has an

error! Read the sentence carefully and try to find the mistake.

Suppose, for the sake of contradiction, that not all natural numbers are even or odd. Then

there is a smallest natural number, x, that is neither even nor odd. Since x � 1 < x, we

see that x � 1 is a smaller natural number and therefore is not a counterexample to

Proposition 21.1.

. . .)(

Do you see the problem? It is subtle. Let’s dissect the new sentence.

� Since x � 1 < x. . . . No problem here. Obviously x � 1 < x.
� . . .x � 1 . . . is not a counterexample to Proposition 21.1. No problem here either. We

know x is the smallest counterexample. Because x � 1 is smaller than x, it is not a

counterexample to Proposition 21.1.

Where is the problem?
� . . . natural number. . . . How do we know x�1 is a natural number?Here’s the mistake. We

do not know that x � 1 is a natural number because we have not ruled out the possibility

that x D 0.

Now it is not hard to rule out x D 0; we simply haven’t done it yet. Let’s take care of this

seemingly minor point.

Suppose, for the sake of contradiction, that not all natural numbers are even or odd.

Then there is a smallest natural number, x, that is neither even nor odd.

We know x 6D 0 because 0 is even. Therefore x � 1.

Since 0 � x � 1 < x, we see that x � 1 is a smaller natural number and therefore

is not a counterexample to Proposition 21.1.

. . .)(

We can now continue the proof.We know that x�1 2 N and x�1 is not a counterexample

to the proposition. What does this mean? It means that since x�1 is a natural number, it must
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be either even or odd. We don’t know which of these might be true, so we consider both

possibilities.

Suppose, for the sake of contradiction, that not all natural numbers are even or odd.

Then there is a smallest natural number, x, that is neither even nor odd.

We know x 6D 0 because 0 is even. Therefore x � 1.

Since 0 � x � 1 < x, we see that x � 1 is a smaller natural number and therefore

is not a counterexample to Proposition 21.1.

Therefore x � 1 is either even or odd. We consider both possibilities.

(1) Suppose x � 1 is odd. . . .

(2) Suppose x � 1 is even. . . .

. . .)(

Now we unravel definitions. In case (1), x�1 is odd, so x�1 D 2aC1 for some integer

a. In case (2), x � 1 is even, so x � 1 D 2b for some integer b.

Suppose, for the sake of contradiction, that not all natural numbers are even or odd.

Then there is a smallest natural number, x, that is neither even nor odd.

We know x 6D 0 because 0 is even. Therefore x � 1.

Since 0 � x � 1 < x, we see that x � 1 is a smaller natural number and therefore

is not a counterexample to Proposition 21.1.

Therefore x � 1 is either even or odd. We consider both possibilities.

(1) Suppose x � 1 is odd. Therefore x � 1 D 2aC 1 for some integer a. . . .

(2) Suppose x � 1 is even. Therefore x � 1 D 2b for some integer b. . . .

. . .)(

In case (1), we have x � 1 D 2a C 1, so x D 2a C 2 D 2.a C 1/, so x is even;

this is a contradiction to the fact that x is neither even nor odd. In case (2), we get a similar

contradiction.

Suppose, for the sake of contradiction, that not all natural numbers are even or odd.

Then there is a smallest natural number, x, that is neither even nor odd.

We know x 6D 0 because 0 is even. Therefore x � 1.

Since 0 � x � 1 < x, we see that x � 1 is a smaller natural number and therefore

is not a counterexample to Proposition 21.1.

Therefore x � 1 is either even or odd. We consider both possibilities.

(1) Suppose x � 1 is odd. Therefore x � 1 D 2a C 1 for some integer a. Thus x D
2aC 2 D 2.aC 1/, so x is even)( (x is neither even nor odd).

(2) Suppose x�1 is even. Therefore x�1 D 2b for some integer b. Thus x D 2bC1,

so x is odd)( (x is neither even nor odd).

In every case, we have a contradiction, so the supposition is false and the proposi-

tion is proved.

Let us summarize the main points of this proof.

� It is a proof by contradiction.
� We consider a smallest counterexample to the result.
� We need to treat the very smallest possibility as a special case.
� We descend to a smaller case for which the theorem is true and work back.

Before we present another example, let us finish the job we set out to accomplish.

Corollary 21.2 Every integer is either even or odd.
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The key idea is that either x � 0 (in which case we are finished by Proposition 21.1) or

else x < 0 (in which case �x 2 N, and again we can use Proposition 21.1).

Proof. Let x be any integer.

If x � 0, then x 2 N, so by Proposition 21.1, x is either even or odd.

Otherwise, x < 0. In this case �x > 0, so �x is either even or odd.

� If �x is even, then �x D 2a for some integer a. But then x D �2a D 2.�a/, so x is

even.
� If �x is odd, then �x D 2b C 1 for some integer b. From this we have x D �2b � 1 D

2.�b � 1/C 1, so x is odd.

In every case, x is either even or odd.

Proof Template 15 gives the general form of this technique.

Proof Template 15 Proof by smallest counterexample.

First, let x be a smallest counterexample to the result we are trying to prove. It must be

clear that there can be such an x.

Second, rule out x being the very smallest possibility. This (usually easy) step is called

the basis step.

Third, consider an instance x0 of the result that is “just” smaller than x. Use the fact

that the result for x
0 is true but the result for x is false to reach a contradiction)(.

Conclude that the result is true.

Here is another proposition we prove using the smallest-counterexample method.

Proposition 21.3 Let n be a positive integer. The sum of the first n odd natural numbers is n2.

The first n odd natural numbers are 1, 3, 5, . . . , 2n � 1. The proposition claims that

1C 3C 5C � � � C .2n � 1/ D n
2

or, in
P

notation,

n
X

kD1

.2k � 1/ D n
2
:

For example, with n D 5 we have 1C 3C 5C 7C 9 D 25 D 52.

Proof. Suppose Proposition 21.3 is false. This means that there is a smallest positive integer

x for which the statement is false (i.e., the sum of the first x odd numbers is not x
2); that is,

1C 3C 5C � � � C .2x � 1/ 6D x
2
: (7)

Note that x 6D 1 because the sum of the first 1 odd numbers is 1 D 12. (This is the

basis step.)

So x > 1. Since x is the smallest number for which Proposition 21.3 fails and since

x > 1, the sum of the first x � 1 odd numbers must equal .x � 1/2; that is,

1C 3C 5C � � � C Œ2.x � 1/� 1� D .x � 1/
2
: (8)

(So far this proof has been on “autopilot.” We are simply using Proof Template 15.)

Notice that the left-hand side of (8) is one term short of the sum of the first x odd numbers.

We add one more term to both sides of this equation to give

1C 3C 5C � � � C Œ2.x � 1/� 1�C .2x � 1/ D .x � 1/
2 C .2x � 1/:
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The right-hand side can be algebraically expanded; thus

1C 3C 5C � � � C Œ2.x � 1/� 1�C .2x � 1/ D .x � 1/
2 C .2x � 1/

D .x
2 � 2x C 1/C .2x � 1/

D x
2

contradicting (7).)(

In the two proofs we have considered thus far, there is a basis step. In the proof that allThe absolute importance of the basis

step. natural numbers are either even or odd, we first checked that 0 was not a counterexample.

In the proof that the sum of the first n odd numbers is n
2, we first checked that 1 was not a

counterexample. These steps are important. They show that the immediate smaller case of the

result still makes sense. Perhaps the best way to convince you that this basis step is absolutely

essential is to show how we can prove an erroneous result if we omit it.

Statement 21.4 (false) Every natural number is both even and odd.

Obviously Statement 21.4 is false! Here we give a bogus proof using the smallest-counter-

example method, but omitting the basis step.

“Proof.” Suppose Proposition 21.4 is false. Then there is a smallest natural number x that is

not both even and odd. Consider x � 1. Since x � 1 < x, x � 1 is not a counterexample to

Proposition 21.4. Therefore x � 1 is both even and odd.

Since x � 1 is even, x � 1 D 2a for some integer a, and so x D 2aC 1, so x is odd.

Since x � 1 is odd, x � 1 D 2b C 1 for some integer b, and so x D 2b C 2 D 2.b C 1/,

so x is even.

Thus x is both even and odd, but x is not both even and odd.)(

The proof is 99% correct. Where is the mistake? The error is in the sentence “Therefore

x � 1 is both even and odd.” It is correct that x � 1 is not a counterexample, but we do not

know that x � 1 is a natural number. We do not know this because we have not ruled out the

possibility that x � 1 D �1 (i.e., x D 0). Of course, no natural number is both even and odd.

So the smallest natural number that is not both even and odd is zero (the exact problem case!).

Well-Ordering

Let us take a closer look at the proof-by-smallest-counterexample technique. We saw that it

was appropriate to apply this technique to showing that all natural numbers are either even or

odd, but the method is invalid for integers. The difference is that the integers contain infinitely

descending negative numbers. However, consider the following statement and its bogus proof.

Statement 21.5 (false) Every nonnegative rational number is an integer.

Recall that a rational number is any number that can be expressed as a fraction a=b

where a; b 2 Z and b 6D 0. This statement is asserting that numbers such as 1

4
are integers.

Ridiculous! Notice, however, that the statement is restricted to nonnegative rational numbers;

this is analogous to Proposition 21.1, which was restricted to nonnegative integers.

Let’s look at the “proof.”

“Proof.” Suppose Statement 21.5 were false. Let x be a smallest counterexample.

Notice that x D 0 is not a counterexample because 0 is an integer. (This is the basis step.)

Since x is a nonnegative rational, so is x=2. Furthermore, since x 6D 0, we know that

x=2 < x, so x=2 is smaller than the smallest counterexample, x. Therefore x=2 is not a

counterexample, so x=2 is an integer. Now x D 2.x=2/, and 2 times an integer is an integer;

therefore x is an integer.)(

What is wrong with this proof? It looks like we followed Proof Template 15, and we even

remembered to do a basis step (we considered x D 0).
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The problem is in the sentence “Let x be a smallest counterexample.” There are infinitely

many counterexamples to Statement 21.5, including 1

2
, 1

3
, 1

4
, 1

5
, . . . . These form an infinite

descent of counterexamples, and so there can be no smallest counterexample!

We need to worry that we do not make subtle mistakes like the “proof” of Statement 21.5

when we use the proof-by-smallest-counterexample technique. The central issue is: When can

we be certain to find a smallest counterexample?

The guiding principle is the following.

The term well-ordered applies to an

ordered set (i.e., a set X with a <

relation). The set X is called

well-ordered if every nonempty

subset of X contains a least element.

Statement 21.6 (Well-Ordering Principle) Every nonempty set of natural numbers contains a least element.

Example 21.7 Let P D fx 2 N W x is primeg. This set is a nonempty subset of the natural numbers. By the

Well-Ordering Principle, P contains a least element. Of course, the least element in P is 2.

Example 21.8 Consider the set

X D fx 2 N W x is even and oddg:

We know that this set is empty because we have shown that no natural number is both even

and odd (Proposition 21.1). But for the sake of contradiction, we suppose that X 6D ;; then,
by the Well-Ordering Principle, X would contain a smallest element. This is the central idea

in the proof of Proposition 21.1.

Example 21.9 In contradistinction, consider the set

Y D fy 2 Q W y � 0; y … Zg:

The bogus proof of Statement 21.5 sought a least element of Y . We subsequently realized that

Y has no least element, and that was the error in our “proof.” The Well-Ordering Principle

applies to N, but not to Q.

Notice that we called the Well-Ordering Principle a statement; we did not call it a theo-The Well-Ordering Principle is an

axiom of the natural numbers. rem. Why? The reason harks back to the beginning of this book. We could, but did not, define

exactly what the integers are. Were we to go through the difficult task of writing a careful def-

inition of the integers, we would begin by defining the natural numbers. The natural numbers

are defined to be a set of “objects” that satisfy certain conditions; these defining conditions

are called axioms. One of these defining axioms is the Well-Ordering Principle. So the natural

numbers obey the Well-Ordering Principle by definition. There are other ways to define inte-

gers and natural numbers, and in those contexts one can prove the Well-Ordering Principle. If

you are intrigued about how all this is done, I recommend you take a course in foundations of

mathematics (such a course might be called Logic and Set Theory).

In any case, our approach has been to assume fundamental properties of the integers; we

take the Well-Ordering Principle to be one of those fundamental properties.

The Well-Ordering Principle explains why the smallest-counterexample technique works

to prove that natural numbers cannot be both even and odd, but it does not work to prove that

nonnegative rationals are integers.

Proof Template 16 gives an alternative to Proof Template 15 that explicitly uses the Well-

Ordering Principle.
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Proof Template 16 Proof by the Well-Ordering Principle.

To prove a statement about natural numbers:

Proof. Suppose, for the sake of contradiction, that the statement is false. Let X � N be

the set of counterexamples to the statement. (I like the letter X for eXceptions.) Since we

have supposed the statement is false, X 6D ;. By the Well-Ordering Principle, X contains

a least element, x.

(Basis step.) We know that x 6D 0 because show that the result holds for 0; this is

usually easy.

Consider x � 1. Since x > 0, we know that x � 1 2 N and the statement is true for

x� 1 (because x� 1 < x). From here we argue to a contradiction, often that x both is and

is not a counterexample to the statement.)(

Here is an example of how to use Proof Template 16.

Proposition 21.10 Let n 2 N. If a 6D 0 and a 6D 1, then

a
0 C a

1 C a
2 C � � � C a

n D anC1 � 1

a � 1
: (9)

In fancy notation, we want to prove

n
X

kD0

a
k D anC1 � 1

a � 1
:

We rule out a D 1 because the right-hand side would be 0

0
. We also rule out a D 0 to avoid

worrying about 00. If we take 00 D 1, then the formula still works.

Proof. We prove Proposition 21.10 using the Well-Ordering Principle.

Suppose, for the sake of contradiction, that Proposition 21.10 were false. Let X be the set

of counterexamples—that is, those integers n for which Equation (9) does not hold. Hence

X D
(

n 2 N W
n
X

kD0

a
k 6D anC1 � 1

a � 1

)

:

As we have supposed that the proposition is false, there must be a counterexample, so X 6D ;.
Since X is a nonempty subset of N, by the Well-Ordering Principle, it contains a least

element x.

Note that for n D 0, Equation (9) reduces to

1 D a1 � 1

a � 1

and this is true. This means that n D 0 is not a counterexample to the proposition. Thus x 6D 0.

(This is the basis step.)

Therefore x > 0. Now x � 1 2 N and x � 1 … X because x � 1 is smaller than the least

element of X . Therefore the proposition holds for n D x � 1, so we have

a
0 C a

1 C a
2 C � � � C a

x�1 D ax � 1

a � 1
:

We add ax to both sides of this equation to get

a
0 C a

1 C a
2 C � � � C a

x�1 C a
x D ax � 1

a � 1
C a

x
: (10)
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Putting the right-hand side of Equation (10) over a common denominator gives

ax � 1

a � 1
C a

x D ax � 1

a � 1
C a

x

�

a � 1

a � 1

�

D ax � 1C axC1 � ax

a � 1

D axC1 � 1

a � 1

and so

a
0 C a

1 C a
2 C � � � C a

x D axC1 � 1

a � 1
:

This shows that x satisfies the proposition and is therefore not a counterexample, contradicting

x 2 X .)(

Proof Template 16 is more rigidly specified than Proof Template 15. Often you will need

to modify Proof Template 16 to suit a particular situation. For example, consider the following:

Proposition 21.11 For all integers n � 5, we have 2n > n2.

Notice that the inequality 2
n

> n
2 is not true for a few small values of n:

n 0 1 2 3 4 5

2n 1 2 4 8 16 32

n2 0 1 4 9 16 25

Thus Proposition 21.11 does not apply to all of N. We need to modify Proof Template 16

slightly. Here is the proof of Proposition 21.11:

Proof. Suppose, for the sake of contradiction, Proposition 21.11 were false. Let X be the

set of counterexamples; that is,

X D
˚

n 2 Z W n � 5; 2
n 6> n

2
	

:

Since our supposition is that the proposition is false, we have X 6D ;. By the Well-Ordering

Principle, X contains a least element x.

We claim that x 6D 5. Note that 25 D 32 > 25 D 52, so 5 is not a counterexample to the

proposition (i.e., x … X ), and hence x 6D 5. Thus x � 6.

Now consider x � 1. Since x � 6, we have x � 1 � 5. Since x is the least element of X ,

we know that the proposition is true for n D x � 1; that is,

2
x�1

> .x � 1/
2
: (11)

We know 2x�1 D 1

2
� 2x and .x � 1/2 D x2 � 2x C 1, so Equation (11) can be rewritten as

1

2
� 2x

> x
2 � 2x C 1:

Multiplying both sides by 2 gives

2
x

> 2x
2 � 4x C 2: (12)

We will be finished once we can prove

2x
2 � 4x C 2 � x

2
: (13)

To prove Equation (18), we just need to prove

x
2 � 4x C 4 � 2: (14)

We got Equation (14) from Equation (13) by adding 2 � x2 to both sides. Notice that

Equation (14) can be rewritten

.x � 2/
2 � 2: (15)
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So we have reduced the problem to proving Equation (15), and to prove that, it certainly is

enough to prove

x � 2 � 2: (16)

and that’s true because x � 6 (all we need is x � 4).

The only modification to Proof Template 16 is that the basis case was x D 5

instead of x D 0.

We present another example where we need to modify slightly the Well-Ordering Princi-

ple method. This example involves the following celebrated sequence of numbers.

Definition 21.12 (Fibonacci numbers) The Fibonacci numbers are the list of integers .1; 1; 2; 3; 5; 8; : : :/ D
.F0; F1; F2; : : :/ where

F0 D 1;

F1 D 1; and

Fn D Fn�1 C Fn�2; for n � 2:

In words, the Fibonacci numbers are the sequence that begins 1; 1; 2; 3; 5; 8; : : : and each

successive term is produced by adding the two previous terms. We label these numbers Fn

(starting with F0).

Proposition 21.13 For all n 2 N, we have Fn � 1:7n.

Proof. Suppose, for the sake of contradiction, that Proposition 21.13 were false. Let X be

the set of counterexamples; that is,

X D fn 2 N W Fn 6� 1:7
ng :

Since we have supposed that the proposition is false, we know that X 6D ;. Thus, by the

Well-Ordering Principle, X contains a least element x.

Observe that x 6D 0 because F0 D 1 D 1:70 and x 6D 1 because F1 D 1 � 1:71.

Notice that we have considered two basis cases: x 6D 0 and x 6D 1. Why? We explain in

just a moment.

Thus x � 2. Now we know that

Fx D Fx�1 C Fx�2 (17)

and we know, since x � 1 and x � 2 are natural numbers less than x, that

Fx�2 � 1:7
x�2 and Fx�1 � 1:7

x�1
: (18)

This is why! We want to use the fact that the proposition is true for x � 1 and x � 2 in the

proof. We cannot do this unless we are sure that x � 1 and x � 2 are natural numbers; that is

why we must rule out both x D 0 and x D 1.

Combining Equations (17) and (18), we have

Fx D Fx�1 C Fx�2

� 1:7
x�1 C 1:7

x�2

D 1:7
x�2

.1:7C 1/

D 1:7
x�2

.2:7/

< 1:7
x�2

.2:89/

D 1:7
x�2

.1:7
2
/

D 1:7
x
:

(The trick was recognizing 2:7 < 2:89 D 1:7
2.)

Therefore Proposition 21.13 is true for n D x, contradicting x 2 X .)(
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Recap

In this section, we extended the proof-by-contradiction method to proof by smallest coun-

terexample. We refined this method by explicit use of the Well-Ordering Principle. We under-

scored the vital importance of the (usually easy) basis case.

21 Exercises 21.1. What is the smallest positive real number?

21.2. Prove by the techniques of this section that 1C 2C 3C � � � C n D 1

2
.n/.nC 1/ for all

positive integers n.

21.3. Prove by the techniques of this section that n < 2n for all n 2 N.

21.4. Prove by the techniques of this section that nŠ � nn for all positive integers n.

21.5. Prove by the techniques of this section that
�

2n

n

�

� 4n for all natural numbers n.

21.6. Recall Proposition 13.2 that for all positive integers n we have

1 � 1ŠC 2 � 2ŠC � � � C n � nŠ D .nC 1/Š� 1:

Prove this using the techniques of this section.

21.7. The inequality Fn > 1:6n is true once n is big enough. Do some calculations to find

out from what value n this inequality holds. Prove your assertion.

21.8. Calculate the sum of the first n Fibonacci numbers for n D 0; 1; 2; : : : ; 5. In other

words, calculate

F0 C F1 C � � � C Fn

for several values of n.

Formulate a conjecture about these sums and prove it.

21.9. Criticize the following statement and proof:

Statement. All natural numbers are divisible by 3.

Proof. Suppose, for the sake of contradiction, the statement were false. Let X be the

set of counterexamples (i.e., X D fx 2 N W x is not divisible by 3g). The supposition
that the statement is false means that X 6D ;. Since X is a nonempty set of natural

numbers, it contains a least element x.

Note that 0 … X because 0 is divisible by 3. So x 6D 0.

Now consider x � 3. Since x � 3 < x, it is not a counterexample to the statement.

Therefore x � 3 is divisible by 3; that is, there is an integer a such that x � 3 D 3a. So

x D 3aC 3 D 3.aC 1/ and x is divisible by 3, contradicting x 2 X .)(
21.10. In Section 17 we discussed that Pascal’s triangle and the triangle of binomial coeffi-

cients are the same, and we explained why. Rewrite that discussion as a careful proof

using the method of smallest counterexample. Your proof should contain a sentence

akin to “Consider the first row where Pascal’s triangle and the binomial coefficient tri-

angle are not the same.”

21.11. Prove the generalized Addition Principle by use of the Well-Ordering Principle. That

is, please prove the following:

Suppose A1, A2, . . . , An are pairwise disjoint finite sets. Then

jA1 [A2 [ � � � [ Anj D jA1j C jA2j C � � � C jAnj:

And Finally

Theorem 21.14 (Interesting) Every natural number is interesting.

Proof. Suppose, for the sake of contradiction, that Theorem 21.14 were false. Let X be the

set of counterexamples (i.e., X is the set of those natural numbers that are not interesting).

Because we have supposed the theorem to be false, we have X 6D ;. By the Well-Ordering

Principle, let x be the smallest element of X .

Of course, 0 is an interesting number: It is the identity element for addition, it is the first

natural number, any number multiplied by 0 is 0, and so on. So x 6D 0. Similarly, x 6D 1
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because 1 is the only unit in N, it is the identity element for multiplication, and so on. And

x 6D 2 because 2 is the only even prime. These are interesting numbers!

What is x? It is the first natural number that isn’t interesting. That makes it very interest-

ing!)(

22 Induction

In this section, we present an alternative to proof by smallest counterexample. This method is

called mathematical induction, or induction for short.

Mathspeak!

In standard English, the word induction refers to drawing general conclusions from examining

several particular facts. For example, the general principle that the sun always rises in the east follows

by induction from the observations that every sunrise ever seen has been in the east. This, of course,

does not prove the sun will rise in the east tomorrow, but even a mathematician would not bet against

it! The mathematician’s use of the word induction is quite different and is explained in this section.

It’s a great deal of fun to stand up a bunch of dominoes on their ends and then set off a

chain reaction to knock them all down. The picture on the cover of this book illustrates this.

What conditions need to be met so that all the dominoes will fall? We need two things

to hold: First, we need to be able to tip over the first domino in the line. Second, we need to

be sure that whenever a domino falls, it knocks over the next domino in the line. If these two

criteria are met, then all the dominoes will fall!

Keep this in mind and read on . . .

The Induction Machine

Imagine: Sitting before you is a statement to be proved. Rather than prove it yourself, suppose

you could build a machine to prove it for you. Although progress has been made by computer

scientists to create theorem-proving programs, the dream of a personal theorem-proving robot

is still the stuff of science fiction.

Nevertheless, some statements can be proved by an imaginary theorem-provingmachine.

Let us illustrate with an example.

Proposition 22.1 Let n be a positive integer. The sum of the first n odd natural numbers is n2.

This is Proposition 21.3, repeated

here for our reconsideration.

We can think of Proposition 22.1 as an assertion that infinitely many equations are true:

1 D 1
2

1C 3 D 2
2

1C 3C 5 D 3
2

1C 3C 5C 7 D 4
2

:
:
:

It is neither difficult nor particular interesting to verify any one of these equations; we just

need to add some numbers and check that we get the promised answer.

We could write a computer program to check these equations, but we cannot wait for the

program to run forever to verify the entire list. Instead, we are going to build a different sort

of machine. Here is how the machine works.

We give the machine one of the equations that has already been proved, say

1 C 3 C 5 D 32. The machine takes this equation and uses it to prove the next equation

1+ 3+ 5+ 7 = 42

1+ 3+ 5+ 7+ 9 = 52

ACME Equation
Machine

is true

is true

on the list, say 1C 3C 5C 7 D 42. That’s all the machine does. When we give the machine

one equation, it uses that equation to prove the next equation on the list.

Suppose such a machine has been built and is ready to work.We drop in 1C3C5C7 D 42

and out pops 1 C 3C 5C 7 C 9 D 5
2. Then we push in 1 C 3 C 5 C 7C 9 D 5

2 and out

comes 1C 3C 5C 7C 9C 11 D 62. Amazing! But it gets tiring feeding the machine these
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equations, so let’s attach a pipe from the “out” tube of the machine around to the “in” tube of

the machine. As verified equations pop out of the machine, they are immediately shuttled over

to the machine’s intake to produce the next equation, and the whole cycle repeats ad infinitum.

Our machine is all ready to work. To start it off, we put in the first equation, 1 D 12,

switch on the machine and let it run. Out pops 1C 3 D 22, and then 1C 3C 5 D 32, and so

on. Marvelous!

Would such a machine be able to prove Proposition 22.1? Won’t we need to wait forever

for the machine to prove all the equations? Certainly the machine is fun to watch, but who has

all eternity to wait?

We need one more idea. Suppose we could prove that the machine is 100% reliable.

Whenever one equation on the list is fed into the machine, we are absolutely guaranteed that

the machine will verify the next equation on the list. If we had such a guarantee, then we

would know that every equation on the list will eventually be proved, so they all must be

correct.

Let’s see how this is possible. The machine takes an equation that has already been

proved, say 1C3C5C7 D 42. Themachine is now required to prove that 1C3C5C7C9 D 52.

The machine could simply add up 1, 3, 5, 7, and 9 to get 25 and then check that 25 D 52. But

that is rather inefficient. The machine already knows that 1C 3C 5C 7 D 42, so it is faster

and simpler to add 9 to both sides of the equation: 1 C 3 C 5 C 7 C 9 D 4
2 C 9. Now the

machine just has to calculate 42 C 9 D 16C 9 D 25 D 52.

Here are the blueprints for the machine:

1. The machine receives an equation of the form

1C 3C 5C � � � C .2k � 1/ D k
2

through its intake tube.

Note: We are allowed to insert only equations that have already been proved,

so we trust that this particular equation is correct.

2. The next odd number after 2k � 1 is .2k � 1/ C 2 D 2k C 1. The machine adds

2k C 1 to both sides of the equation. The equation now looks like this:

1C 3C 5C � � � C .2k � 1/C .2k C 1/ D k
2 C .2k C 1/:

3. The machine calculates k2C .2kC1/ and checks to see whether it equals .kC1/2.

If so, it is happy and ejects the newly proved equation

1C 3C 5C � � � C .2k � 1/C .2k C 1/ D .k C 1/
2

through its output tube.

To be sure this machine is reliable, we need to check that whenever we feed the machine

a valid equation, the machine will always verify that the next equation on this list is valid.

As we examine the inner workings of the machine carefully, the only place the machine’s

gears might jam is when it checks whether k2 C .2k C 1/ is equal to .k C 1/2. If we can be

sure that step always works, then we can have complete confidence in the machine. Of course,

we know from basic algebra that k2 C 2k C 1 D .k C 1/2, and so we know with complete

certainty that this machine will perform its job flawlessly!

The proof boils down to this. It is easy to check the first equation: 1 D 12. We now imag-

ine this equation being fed into the machine (which we proved is flawless) and the machine

will prove all the equations on the list. We don’t need to wait for the machine to run forever;

we know that every equation on the list is going to be proved. Therefore, Proposition 22.1

must be true.

Theoretical Underpinnings

The essence of proof by mathematical induction is embedded in the metaphor of the equation-

proving machine. The method is embodied in the following theorem.
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Theorem 22.2 (Principle of Mathematical Induction) Let A be a set of natural numbers. If

� 0 2 A, and
� 8k 2 N; k 2 A H) k C 1 2 A,

then A D N.

The two conditions say that (a) 0 is in the set A and (b) whenever a natural number k is

in A, it must be the case that k C 1 is also in A. The only way these two conditions can be

met is if A is the full set of natural numbers.

First we prove this result, and then we explain how to use it as the central tool of a proof

technique.

Proof. Suppose, for the sake of contradiction, that A 6D N. Let X D N � A (i.e., X is the

set of natural numbers not in A). Our supposition that A 6D N means there is some natural

number not in A (i.e., X 6D ;).
Since X is a nonempty set of natural numbers, we know that X contains a least element

x (Well-Ordering Principle). So x is the smallest natural number not in A.

Note that x 6D 0 because we are given that 0 2 A, so 0 … X . Therefore x � 1. Thus

x � 1 � 0, so x � 1 2 N. Furthermore, since x is the smallest element not in A, we have

x � 1 2 A.

Now the second condition of the theorem says that whenever a natural number is in A, so

is the next larger natural number. Since x� 1 2 A, we know that .x� 1/C 1 D x is in A. But

x … A.)(

Proof by Induction

We can use Theorem 22.2 as a proof technique. The general kind of statement we prove by

induction can be expressed in the form “Every natural number has a certain property.” For

example, consider the following.

Proposition 22.3 Let n be a natural number. Then

0
2 C 1

2 C 2
2 C � � � C n

2 D .2nC 1/.nC 1/.n/

6
: (19)

The overall outline of the proof is summarized in Proof Template 17. We use this method

to prove Proposition 22.3.

Proof Template 17 Proof by induction.

To prove every natural number has some property.

Proof.

� Let A be the set of natural numbers for which the result is true.
� Prove that 0 2 A. This is called the basis step. It is usually easy.
� Prove that if k 2 A, then k C 1 2 A. This is called the inductive step. To do this we

– Assume that the result is true for n D k. This is called the induction hypothesis.

– Use the induction hypothesis to prove the result is true for n D k C 1.
� We invoke Theorem 22.2 to conclude A D N.
� Therefore the result is true for all natural numbers.

Proof (of Proposition 22.3)

We prove this result by induction on n. Let A be the set of natural numbers for which Propo-

sition 22.3 is true—that is, those n for which Equation (19) holds.
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� Basis step: Note that the theorem is true for n D 0 because both sides of Equation (19)

evaluate to 0.
� Induction hypothesis: Suppose the result is true for n D k; that is, we may assume

0
2 C 1

2 C 2
2 C � � � C k

2 D .2k C 1/.k C 1/.k/

6
: (20)

� Now we need to prove that Equation (19) holds for n D k C 1; that is, we need to prove

0
2 C 1

2 C 2
2 C � � � C k

2 C .k C 1/
2 D Œ2.k C 1/C 1�Œ.k C 1/C 1�Œk C 1�

6
: (21)

� To prove Equation (21) from Equation (20), we add .k C 1/2 to both sides of Equa-

tion (20):

0
2 C 1

2 C 2
2 C � � � C k

2 C .k C 1/
2 D .2k C 1/.k C 1/.k/

6
C .k C 1/

2
: (22)

To complete the proof, we need to show that the right-hand side of Equation (21)

equals the right-hand side of Equation (22); that is, we have to prove

.2k C 1/.k C 1/.k/

6
C .k C 1/

2 D Œ2.k C 1/C 1�Œ.k C 1/C 1�Œk C 1�

6
: (23)

The verification of Equation (23) is a simple, if mildly painful, algebra exercise that we

leave to you (Exercise 22.3).
� We have shown 0 2 A and k 2 A H) .k C 1/ 2 A. Therefore, by induction (Theo-

rem 22.2), we know that A D N; that is, the proposition is true for all natural

numbers.

This proof can be described using the machine metaphor. We want to prove all of the

following equations:

0
2 D .2 � 0C 1/.0C 1/.0/

6

0
2 C 1

2 D .2 � 1C 1/.1C 1/.1/

6

0
2 C 1

2 C 2
2 D .2 � 2C 1/.2C 1/.2/

6

0
2 C 1

2 C 2
2 C 3

2 D .2 � 3C 1/.3C 1/.3/

6

0
2 C 1

2 C 2
2 C 3

2 C 4
2 D .2 � 4C 1/.4C 1/.4/

6

:
:
:

So we build a machine that accepts one of these equations in its input tube; the equation

entering the machine is assumed to have been proved already. The machine then uses that

known equation to verify the next equation on the list. Suppose we know that the machine is

absolutely reliable, and whenever one equation is fed into the machine, the next equation on

the list will emerge from the machine as verified.

So if we can prove that the machine is completely reliable, all we need to do is feed in the

first equation on the list and let the machine churn through the rest. Our job reduces to this:

Prove the first equation (which is easy), design the machine, and prove it works.

The design of the machine is not particularly difficult. It simply adds the next term in the

long sum to both sides of the equation and checks for equality.

The challenging part is to verify that the machine will always work. For this, we must

have to check an algebraic identity, namely

.2k C 1/.k C 1/.k/

6
C .k C 1/

2 D Œ2.k C 1/C 1�Œ.k C 1/C 1�Œk C 1�

6
:

In the proof of Proposition 22.3, we explicitly referred to the set A of all natural numbers

for which the result is true. As you become more comfortable with proofs by induction, you

can omit explicit mention of this set. The important steps in a proof by induction are these:
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� Prove the basis case; that is, prove the result is true for n D 0.
� Assume the induction hypothesis; that is, assume the result for n D k.
� Use the induction hypothesis to prove the next case (i.e., for n D k C 1).

Note that in proving the case n D k C 1, you should use the fact that the result is true in case

n D k. If you do not use the induction hypothesis, then either (1) you can write a simpler

proof of the result without induction or (2) you have made a mistake.

The basis case is always essential and, thankfully, usually easy. If the result you wish to

prove does not cover all natural numbers—say, it covers just the positive integers—then the

basis step may begin at a value other than 0.

The induction hypothesis is a seemingly magical tool that makes proving theorems easier.

To prove the case n D k C 1, not only may you assume the hypotheses of the theorem, but

you also may assume the induction hypothesis; this gives you more with which to work.

Proving Equations and Inequalities

Proof by induction takes practice. One common application of this technique is to prove equa-

tions and inequalities. Here we present some examples for you to study. You will find that the

general outlines of the proofs are the same; the only difference is in some of the algebra. The

first two examples are results also proved in Section 13 by the combinatorial method (see

Propositions 13.1 and 13.2).

Proposition 22.4 Let n be a positive integer. Then

2
0 C 2

1 C � � � C 2
n�1 D 2

n � 1:

Proof. We prove this by induction on n.

Basis step: The case n D 1 is true because both sides of the equation, 20 andNote that this induction proof begins

with n D 1 because the Proposition

is asserted for positive integers.
21 � 1, evaluate to 1.

Induction hypothesis: Suppose the result is true when n D k; that is, we assume

2
0 C 2

1 C � � � C 2
k�1 D 2

k � 1: (24)

We must prove that the Proposition is true when n D k C 1; that is, we must use Equa-

tion (24) to prove

2
0 C 2

1 C � � � C 2
.kC1/�1 D 2

kC1 � 1: (25)

Note that the left-hand side of Equation (25) can be formed from the left-hand side of

Equation (24) by adding the term 2k. So we add 2k to both sides of Equation (24) to get

2
0 C 2

1 C � � � C 2
k�1 C 2

k D 2
k � 1C 2

k
: (26)

We need to show that the right-hand side of Equation (26) equals the right-hand side of Equa-

tion (25). Fortunately, this is easy:

2
k � 1C 2

k D 2 � 2k � 1 D 2
kC1 � 1: (27)

Using Equations (25) and (27) gives

2
0 C 2

1 C � � � C 2
.kC1/�1 D 2

kC1 � 1

which is what we needed to show.

As our comfort and confidence in writing proofs by induction grow, we can be a bit terser.

The next proof is written in a more compact style.

Proposition 22.5 Let n be a positive integer. Then

1 � 1ŠC 2 � 2ŠC � � � C n � nŠ D .nC 1/Š� 1:
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Proof. We prove the result by induction on n.

Basis case: The Proposition is true in the case n D 1, because both sides of the equation,

1Š � 1 and 2Š� 1, evaluate to 1.

Induction hypothesis: Suppose the Proposition is true in case n D k; that is, we have

that

1 � 1ŠC 2 � 2ŠC � � � C k � kŠ D .k C 1/Š� 1: (28)

We need to prove the Proposition for the case n D k C 1. To this end, we add .k C 1/ �
.k C 1/Š to both sides of Equation (28) to give

1 � 1ŠC 2 � 2ŠC � � � C k � kŠC .k C 1/ � .k C 1/Š D .k C 1/Š� 1C .k C 1/ � .k C 1/Š: (29)

The right-hand side of Equation (29) can be manipulated as follows:

.k C 1/Š� 1C .k C 1/ � .k C 1/Š D .1C k C 1/ � .k C 1/Š� 1

D .k C 2/ � .k C 1/Š� 1

D .k C 2/Š� 1 D Œ.k C 1/C 1�Š� 1:

Substituting this into Equation (29) gives

1 � 1ŠC 2 � 2ŠC � � � C k � kŠC .k C 1/ � .k C 1/Š D Œ.k C 1/C 1�Š � 1:

Inequalities can be proved by induction as well. Here is a simple example whose proof is

a bit terser still.

Proposition 22.6 Let n be a natural number. Then

10
0 C 10

1 C � � � C 10
n

< 10
nC1

:

Proof. The proof is by induction on n. The basis case, when n D 0, is clear because

100 < 101.

Assume (induction hypothesis) that the result holds for n D k; that is, we have

10
0 C 10

1 C � � � C 10
k

< 10
kC1

:

To show that the Proposition is true when n D k C 1, we add 10kC1 to both sides and find

10
0 C 10

1 C � � � C 10
k C 10

kC1
< 10

kC1 C 10
kC1

D 2 � 10
kC1

< 10 � 10
kC1 D 10

kC1
:

Therefore the result holds when n D k C 1.

Other Examples

With a bit of practice, proving equations and inequalities by induction will become routine.

Generally, we manipulate both sides of the given equation (assumed by the induction hypoth-

esis, n D k) to demonstrate the next equation (n D k C 1). However, other kinds of results

can be proved by induction. For example, consider the following:

Proposition 22.7 Let n be a natural number. Then 4
n � 1 is divisible by 3.

Proof. The proof is by induction on n. The basis case, n D 0, is clear since 40�1 D 1�1 D
0 is divisible by 3.

Suppose (induction hypothesis) that the Proposition is true for n D k; that is, 4
k � 1 is

divisible by 3. We must show that 4kC1 � 1 is also divisible by 3.
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Note that 4kC1 � 1 D 4 � 4k � 1 D 4.4k � 1/C 4 � 1 D 4.4k � 1/C 3. Since 4k � 1

and 3 are both divisible by 3, it follows that 4.4k � 1/C 3 is divisible by 3 hence 4kC1 � 1 is

divisible by 3.

The next example involves some geometry. We wish to cover a chess board with special

tiles called L-shaped triominoes, or L-triominoes for short. These are tiles formed from three

1 � 1 squares joined at their edges to form an L shape.

It is not possible to tile a standard 8 � 8 chess board with L-triominoes because there are

64 squares on the chess board and 64 is not divisible by 3. However, it is possible to cover all

but one square of the chess board, and such a tiling is shown in the figure.

Is it possible to tile larger chess boards?A 2n�2n chess board has 4n squares, so, applying

Proposition 22.7, we know that 4
n � 1 is divisible by 3. Hence there is a hope that we may be

able to cover all but one of the squares.

Proposition 22.8 Let n be a positive integer. For every square on a 2
n � 2

n chess board, there is a tiling by

L-triominoes of the remaining 4n � 1 squares.

Proof. The proof is by induction on n. The basis case, n D 1, is obvious since placing an L-

triomino on a 2� 2 chess board covers all but one of the squares, and by rotating the triomino

we can select which square is missed.

Suppose (induction hypothesis) that the Proposition has been proved for n D k.

We are given a 2kC1 � 2kC1 chess board with one square selected. Divide the board into

four 2n � 2n subboards (as shown); the selected square must lie in one of these subboards.

Place an L-triomino overlapping three corners from the remaining subboards as shown in the

diagram.

We now have four 2k � 2k subboards each with one square that does not need to be

covered. By induction, the remaining squares in the subboards can be tiled by

L-triominoes.

Strong Induction

Here is a variation on Theorem 22.2.

Theorem 22.9 (Principle of Mathematical Induction—strong version) Let A be a set of natural

numbers. If

� 0 2 A and
� for all k 2 N, if 0; 1; 2; : : : ; k 2 A, then k C 1 2 A

then A D N.

The proof of this theorem is left to you (see Exercise 22.23).

Why is this called strong induction? Suppose you are using induction to prove a proposi-

tion. In both standard and strong induction, you begin by showing the basis case (0 2 A). In

standard induction, you assume the induction hypothesis (k 2 A; i.e., the proposition is true

for n D k) and then use that to prove k C 1 2 A (i.e., the proposition is true for n D k C 1).

Strong induction gives you a stronger induction hypothesis. In strong induction, you may as-

sume 0; 1; 2; : : : ; k 2 A (the proposition is true for all n from 0 to k) and use that to prove

k C 1 2 A (the proposition is true for n D k C 1).

This method is outlined in Proof Template 18.
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Proof Template 18 Proof by strong induction.

To prove every natural number has some property:

Proof.

� Let A be the set of natural numbers for which the result is true.
� Prove that 0 2 A. This is called the basis step. It is usually easy.
� Prove that if 0; 1; 2; : : : ; k 2 A, then k C 1 2 A. This is called the inductive step. To

do this we

– Assume that the result is true for n D 0; 1; 2; : : : ; k. This is called the strong

induction hypothesis.

– Use the strong induction hypothesis to prove the result is true for n D k C 1.
� Invoke Theorem 22.9 to conclude A D N.
� Therefore the result is true for all natural numbers.

Let us see how to use strong induction and why it gives us more flexibility than standard

induction. We illustrate proof by strong induction on a geometry problem.

Let P be a polygon in the plane. To triangulate a polygon is to draw diagonals through

the interior of the polygon so that (1) the diagonals do not cross each other and (2) every

region created is a triangle (see the figure). Notice that we have shaded two of the triangles.

These triangles are called exterior triangles because two of their three sides are on the exterior

of the original polygon.

We prove the following result using strong induction.

Proposition 22.10 If a polygon with four or more sides is triangulated, then at least two of the triangles formed

are exterior.

Proof. Let n denote the number of sides of the polygon. We prove Proposition 22.10 by

strong induction on n.

Basis case: Since this result makes sense only for n � 4, the basis case is n D 4. The

only way to triangulate a quadrilateral is to draw in one of the two possible diagonals. Either

way, the two triangles formed must be exterior.

Strong induction hypothesis: Suppose Proposition 22.10 has been proved for all poly-

gons on n D 4; 5; : : : ; k sides.

Let P be any triangulated polygon with k C 1 sides. We must prove that at least two of

its triangles are exterior.

A

B
d Let d be one of the diagonals. This diagonal separates P into two polygons A and B

where (this is the key comment) A and B are triangulated polygons with fewer sides than P .

It is possible that one or both of A and B are triangles themselves. We consider the cases

where neither, one, or both A and B are triangles.

� If A is not a triangle: Then, since A has at least four, but at most k sides, by strong

induction we know that two or more of A’s triangles are exterior. Now we need to worry:

Are the exterior triangles of A really exterior triangles ofP ? Not necessarily. If one of A’s

exterior triangles uses the diagonal d , then it is not an exterior triangle of P . Nonetheless,

the other exterior triangle of A can’t also use the diagonal d , and so at least one exterior

triangle of A is also an exterior triangle of P .
� If B is not a triangle: As in the previous case, B contributes at least one exterior

triangle to P .
� If A is a triangle: Then A is an exterior triangle of P .
� If B is a triangle: Then B is an exterior triangle of P .

In every case, both A and B contribute at least one exterior triangle to P , and so P has

at least two exterior triangles.
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Strong induction helped us enormously in this proof.When we considered the diagonald ,

we did not know the number of sides of the two polygons A and B . All we knew for sure was

that they had fewer sides than P . To use ordinary induction, we would need to have chosen

a diagonal such that A had k sides and B had three; in other words, we would have to select

B to be an exterior triangle. The problem is that we had not yet proved that a triangulated

Curiously, it is harder to prove that a

triangulated polygon has one exterior

triangle than to prove that a

triangulated polygon has two exterior

triangles! See Exercise 22.21.

polygon has an exterior triangle!

Strong induction gives more flexibility than standard induction because the induction

hypothesis lets you assume more. It is probably best not to write your proof in the style of

strong induction when standard induction suffices. In the cases where you need to use strong

induction, you also have proof by smallest counterexample as an alternative.

A More Complicated Example

We prove the following result by strong induction. The hard part of this example is keeping

track of the many binomial coefficients. The overall structure of the proof is no different from

the proof of Proposition 22.10. We follow Proof Template 18.

Fibonacci numbers were introduced

in Definition 21.12. Recall that

F0 D F1 D 1 and

Fn D Fn�1CFn�2 for all n � 2.

Proposition 22.11 Let n 2 N and let Fn denote the nth Fibonacci number. Then
 

n

0

!

C
 

n � 1

1

!

C
 

n � 2

2

!

C � � � C
 

0

n

!

D Fn: (30)

Note that the last several terms in the sum are all zero. Eventually the lower index in the

binomial coefficient will exceed the upper index, and all terms from that point on are zero.

For example,

�

7

0

�

C
�

6

1

�

C
�

5

2

�

C
�

4

3

�

C
�

3

4

�

C
�

2

5

�

C
�

1

6

�

C
�

0

7

�

D 1C6C10C4C0C0C0C0D 21 D F7:

In fancy notation,

n
X

jD0

 

n� j

j

!

D Fn:

Before we present the formal proof of Proposition 22.11, let us look to see why this might

be true and why we need strong induction.

In general, to prove that some expression gives a Fibonacci number, we use the fact that

Fn D Fn�1CFn�2. If we know that the expression works forFn�1 and Fn�2, then we can add

the appropriate expressions and hope we get Fn. In ordinary induction, we can assume only

the immediate smaller case of the result; here we need the two previous values, and strong

induction allows us to do this.

Let’s see how we can apply this to Proposition 22.11 by examining the case n D 8. We

want to prove

F8 D
 

8

0

!

C
 

7

1

!

C � � � C
 

4

4

!

:

We do this by assuming

F6 D
 

6

0

!

C
 

5

1

!

C
 

4

2

!

C
 

3

3

!

and

F7 D
 

7

0

!

C
 

6

1

!

C
 

5

2

!

C
 

4

3

!

:

We want to add these equations because F8 D F7 C F6. The idea is to interleave the terms

from the two expressions:

F7 C F6 D
 

7

0

!

C
 

6

0

!

C
 

6

1

!

C
 

5

1

!

C
 

5

2

!

C
 

4

2

!

C
 

4

3

!

C
 

3

3

!
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Now we can use Pascal’s identity (Theorem 17.10) to combine pairs of terms:
 

6

0

!

C
 

6

1

!

D
 

7

1

!  

5

1

!

C
 

5

2

!

D
 

6

2

!  

4

2

!

C
 

4

3

!

D
 

5

3

!

We can therefore combine every other term to get

F7 C F6 D
 

7

0

!

C
" 

6

0

!

C
 

6

1

!#

C
" 

5

1

!

C
 

5

2

!#

C
" 

4

2

!

C
 

4

3

!#

C
 

3

3

!

D
 

7

0

!

C
 

7

1

!

C
 

6

2

!

C
 

5

3

!

C
 

3

3

!

:

We are nearly finished. Notice that the
�

7

0

�

term should be
�

8

0

�

and the
�

3

3

�

term should be
�

4

4

�

.

The good news is that these terms both equal 1, so we can replace what we have by what we

want to finish this example:

F7 C F6 D
 

7

0

!

C
 

6

0

!

C
 

6

1

!

C
 

5

1

!

C
 

5

2

!

C
 

4

2

!

C
 

4

3

!

C
 

3

3

!

D
 

7

0

!

C
 

7

1

!

C
 

6

2

!

C
 

5

3

!

C
 

3

3

!

D
 

8

0

!

C
 

7

1

!

C
 

6

2

!

C
 

5

3

!

C
 

4

4

!

:

The case F9 D F8 C F7 is similar, but there are some minor differences. It is important

that you write out the steps for this case yourself before reading the proof. Be sure you see

what the differences are between these two cases.

Proof (of Proposition 22.11)

We use strong induction.

Basis case: The result is true for n D 0; Equation (30) reduces to
�

0

0

�

D 1 D F0, which

is true. Notice that the result is also true for n D 1 since
�

1

0

�

C
�

0

1

�

D 1C 0 D 1 D F1.

Strong induction hypothesis: Proposition 22.11 is true for all values of n from 0 to k.

(We may also assume k � 1 since we have already proved the result for n D 0 and n D 1.)

We seek to prove Equation (30) in the case n D k C 1; that is, we want to prove

FkC1 D
 

k C 1

0

!

C
 

k

1

!

C
 

k � 1

2

!

C � � � :

By the strong induction hypothesis, we know the following two equations are true:

Fk�1 D
 

k � 1

0

!

C
 

k � 2

1

!

C
 

k � 3

2

!

C � � �

Fk D
 

k

0

!

C
 

k � 1

1

!

C
 

k � 2

2

!

C � � � :

We add these two lines to get

FkC1 D Fk C Fk�1

D
 

k

0

!

C
 

k � 1

0

!

C
 

k � 1

1

!

C
 

k � 2

1

!

C
 

k � 2

2

!

C
 

k � 3

2

!

C � � � :

The next step is to combine terms with the same upper index using Pascal’s identity

(Theorem 17.10). First, we are going to worry about where this long sum ends.

In the case k is even, the sum ends

FkC1 D � � � C
 

k

2
C 1

k

2
� 2

!

C
 

k

2
C 1

k

2
� 1

!

C
 

k

2

k

2
� 1

!

C
 

k

2

k

2

!
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and in the case k is odd, it ends

FkC1 D � � � C
 

1

2
.k � 1/C 1

1

2
.k � 1/� 1

!

C
 

1

2
.k � 1/C 1

1

2
.k � 1/

!

C
 

1

2
.k � 1/

1

2
.k � 1/

!

:

Nowwe apply Pascal’s identity, combining those pairs of terms with the same upper entry

(each black term and the color term that follows).

In the case k is even, we have

FkC1 D
 

k

0

!

C
" 

k

1

!

C
 

k � 1

2

!

C � � � C
 

k

2
C 2

k

2
� 1

!

C
 

k

2
C 1

k

2

!#

D
 

k C 1

0

!

C
" 

k

1

!

C
 

k � 1

2

!

C � � � C
 

k

2
C 2

k

2
� 1

!

C
 

k

2
C 1

k

2

!#

and in the case k is odd, we have

FkC1 D
 

k

0

!

C
" 

k

1

!

C
 

k � 1

2

!

C � � � C
 

1

2
.k � 1/C 2

1

2
.k � 1/

!#

C
 

1

2
.k � 1/

1

2
.k � 1/

!

D
 

k C 1

0

!

C
" 

k

1

!

C
 

k � 1

2

!

C � � � C
 

1

2
.k � 1/C 2

1

2
.k � 1/

!#

C
 

1

2
.k C 1/

1

2
.k C 1/

!

:

In both cases, we have verified Equation (30) with n D k C 1, completing the proof.

The most difficult part of this proof was dealing with the upper and lower indices of the

binomial coefficients.

A Matter of Style

Proof by induction and proof by smallest counterexample are usually interchangeable. I prefer,

however, proof by smallest counterexample. This is mostly a stylistic preference, but there is a

mathematical reason to prefer the smallest-counterexample technique. When mathematicians

try to prove statements, they may believe that the statement is true, but they don’t know—until

they have a proof—whether or not the statement is true. We often alternate between trying

to prove the statement and trying to find a counterexample. One way to do both activities

simultaneously is to try to deduce properties a smallest counterexample might have. In this

way, we either reach a contradiction (and then we have a proof of the statement) or we learn

enough about how the counterexample should behave to construct a counterexample.

Recap

Proof by induction is an alternative method to proof by smallest counterexample. The first

step in a proof by induction is to prove a basis case (often that the result you want to prove is

true for n D 0). In standard induction, we make an induction hypothesis (the proposition is

true when n D k) and use it to prove the next case (the proposition is true when n D k C 1).

Strong induction is similar, but the strong-induction hypothesis is that the proposition is true

for n D 0; 1; 2; : : : ; k.

Any result you prove by induction (standard or strong) can just as well be proved using

the smallest-counterexample method. Induction proofs are more popular.

22 Exercises 22.1. Induction is often likened to climbing a ladder. If you can master the following two

skills, then you can climb a ladder: (1) get your foot on the first rung and (2) advance

from one rung to the next.

Explain why both parts (1) and (2) are necessary, and explain what this has to do

with induction.

22.2. Give a “mathematical proof” that you can topple an entire line of dominoes provided

(a) you can tip over the first domino in the line and (b) whenever a domino falls, it

knocks over the next domino in the line.
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22.3. Prove Equation (23).

22.4. Prove the following equations by induction. In each case, n is a positive integer.

a. 1C 4C 7C � � � C .3n� 2/ D n.3n�1/

2
.

b. 1
3 C 2

3 C � � � C n
3 D n2.nC1/2

4
.

c. 9C 9 � 10C 9 � 100C � � � C 9 � 10n�1 D 10n � 1.

d. 1

1�2 C
1

2�3 C � � � C
1

n.nC1/
D 1 � 1

nC1
.

e. 1C x C x2 C x3 C � � � C xn D .1 � xnC1/=.1 � x/. You should assume x 6D 1.

What is the correct right hand side when x D 1?

The next parts are for those who have studied calculus.

f.

lim
x!1

x
n

ex
D 0:

g.

nŠ D
Z 1

0

x
n
e
�x

dx:

h. The nth derivative of xn is nŠ; that is

d n

dxn
x

n D nŠ:

22.5. Prove the following inequalities by induction. In each case, n is a positive integer.

a. 2n � 2nC1 � 2n�1 � 1.

b. .1 � 1

2
/.1 � 1

4
/.1 � 1

8
/ � � � .1 � 1

2n / � 1

4
C 1

2nC1 .

c. 1C 1

2
C 1

3
C 1

4
C � � � C 1

2n � 1C n

2
.

d.
�

2n

n

�

< 4n.

e. nŠ � nn.

f. 1C 2C 3C 4C � � � C n � n2.

22.6. Let Fk denote the kth Fibonacci number (see Definition 21.12). Find a formula for

n
X

kD0

.�1/
k
Fk

and prove by induction that your formula is correct for all n > 0.

22.7. This problem is motivated by the infinite sum

1

12
C 1

22
C 1

32
C 1

42
C � � � :

You are going to show that the value of this sum is between 1 and 2 with the help of

Exercise 22.4(d). This sum is known as �.2/ (where � is the Greek letter zeta and stands

for the Riemann zeta function).

For your first step, please prove (by induction) that the following inequality holds

for all positive integers n:

1

12
C 1

22
C � � � C 1

n2
>

1

1 � 2 C
1

2 � 3 C � � � C
1

n.nC 1/
: .�/

For the second step, prove (by induction) this variation of .�/ is true for all positive
integers n:

1

12
C 1

22
C � � � C 1

n2
� 1C 1

1 � 2 C
1

2 � 3 C � � � C
1

.n � 1/n
: .��/

Finally, use .�/, .��/, and Exercise 22.4(d) to show that 1 � �.2/ � 2.

22.8. Let A be the matrixThis problem involves matrix

multiplication. Here An means A

matrix multiplied by itself n times.

For 2 � 2-matrices we have

�

a b
c d

� �

w x
y z

�

D
h

awCby axCbz
cwCdy cxCdz

i

:

So for the matrix in this problem

A2 D
�

2 14
�7 23

�

.

A D
�

2 2

�1 5

�

Prove, by induction, that for a positive integer n we have

A
n D

�

2 � 3n � 4n 2 � 4n � 2 � 3n

3n � 4n 2 � 4n � 3n

�

D 4
n

�

�1 2

�1 2

�

C 3
n

�

2 �2

1 �1

�

:
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22.9. A group of people stand in line to purchase movie tickets. The first person in line is

a woman and the last person in line is a man. Use proof by induction to show that

somewhere in the line a woman is directly in front of a man.

22.10. Prove, by induction, that the sum of the angles of a convex n-gon (with n � 3) is

180.n� 2/ degrees, i.e., �.n � 2/ radians.

22.11. Prove the Binomial Theorem (Theorem 17.8) by induction:

.x C y/
n D

n
X

kD0

 

n

k

!

x
n�k

y
k
:

22.12. The Tower of Hanoi is a puzzle consisting of a board with three dowels and a collection

of n disks of n different sizes (radii). The disks have holes drilled through their centers

so that they can fit on the dowels on the board. Initially, all the disks are on the first

dowel and are arranged in size order (from the largest on the bottom to the smallest on

the top).

The object is to move all the disks to another dowel in as few moves as possible.

Each move consists of taking the top disk off one of the stacks and placing it on another

stack, with the added condition that you may not place a larger disk atop a smaller one.

The figure shows how to solve the Tower of Hanoi in three moves when n D 2.

Prove: For every positive integer n, the Tower of Hanoi puzzle (with n disks) can

be solved in 2n � 1 moves.

22.13. We proved the Principle of Mathematical Induction (Theorem 22.2) by invoking the

Well Ordering Principle (Statement 21.6). In this problem, we consider the opposite

reasoning: we prove the Well Ordering Principle by induction. We consider the follow-

ing “proof”:

Proof. We have to show that every nonempty subset X of N has a least element. The

proof is by induction on the size of X .

Basis case: jX j D 1. In this case X consists of a single element, and therefore that

single element is the least element of X .

Induction hypothesis: Suppose the Well Ordering Principle has been shown for

subsets of N of size k.

Let X be a subset of N of size k C 1. Thus X D fx1; x2; : : : ; xk ; xkC1g. Let Y be

the set fx1; : : : ; xkg. Since jY j D k, it has a least element a.

If a < xkC1, then a is the least element of X . But if a > xkC1, then xkC1 is the

least element of X . In either case, X has a least element.

a. The “proof” given above is wrong. What’s the error?

b. Give a correct proof by induction of the Well Ordering Principle.

22.14. Let A1; A2; : : : ; An be sets (where n � 2). Suppose for any two sets Ai and Aj either

Ai � Aj or Aj � Ai .

Prove by induction that one of these n sets is a subset of all of them.

22.15. At the end of Section 17 (see page 97) we examined the problem of counting paths

through a lattice. Suppose we create a lattice with horizontal lines and vertical lines.

We seek to determine the number of paths from the lower left corner to the upper

right that use only rightward and/or upward steps (no leftward and no downward steps

permitted). For the case that there are 10 horizontal and 10 vertical lines in the grid (as

in the figure), the path must consist of 9 rightward and 9 upward steps. We found there

are
�

18

9

�

such paths.

In general, if the grid has a C 1 vertical lines and b C 1 horizontal lines, we can

argue as in Section 17 that there are
�

aCb

a

�

lattice paths from the lower left to the upper

right.

Here we request that you prove this formula by strong induction.

22.16. May a word be used in its own definition? Generally, the answer is no. However, inThe intimate connection between

recursive definition and proof by

induction.
Definition 21.12, we defined the Fibonacci numbers as the sequence F0, F1, F2, . . . by

setting F0 D 1, F1 D 1, and for n � 2, Fn D Fn�1 C Fn�2. Notice that we defined

Fibonacci numbers in terms of themselves! This works because we have defined Fn
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in terms of previously defined Fibonacci numbers. This type of definition is called a

recursive definition.

Recursive definitions bear a strong resemblance to proofs by induction. There are

typically one or a few basis cases, and then the rest of the definition refers back to

smaller cases (this is like the inductive step in a proof by induction).

Induction is the proof technique of choice to prove statements about recursively

defined concepts.

The following sequences of numbers are recursively defined. Answer the questions

asked.

a. Let a0 D 1 and, for n > 0, let an D 2an�1 C 1. The first few terms of the sequence

a0; a1; a2; a3; : : : are 1; 3; 7; 15; : : :.

What are the next three terms?

Prove: an D 2nC1 � 1.

b. Let b0 D 1 and, for n > 0, let bn D 3bn�1 � 1.

What are the first five terms of the sequence b0; b1; b2; : : :?

Prove: bn D 3nC1

2
.

c. Let c0 D 3 and, for n > 0, let cn D cn�1 C n.

What are the first five terms of the sequence c0; c1; c2; : : :?

Prove: cn D n2CnC6

2
.

d. Let d0 D 2, d1 D 5 and, for n > 1, let dn D 5dn�1 � 6dn�2.

Why did we give two basis definitions?

What are the first five terms of the sequence d0; d1; d2; : : :?

Prove: dn D 2n C 3n.

e. Let e0 D 1, e1 D 4 and, for n > 1, let en D 4 .en�1 � en�2/.

What are the first five terms of the sequence e0; e1; e2; : : :?

Prove: en D .nC 1/2n.

f. Let Fn denote the nth Fibonacci number. Prove:

Fn D

�

1C
p

5

2

�nC1

�
�

1�
p

5

2

�nC1

p
5

:

22.17. A flagpole is n feet tall. On this pole we display flags of the following types: red flags

that are 1 foot tall, blue flags that are 2 feet tall, and green flags that are 2 feet tall. The

sum of the heights of the flags is exactly n feet.

Prove that there are 2

3
2n C 1

3
.�1/n ways to display the flags.

22.18. Prove that every positive integer can be expressed as the sum of distinct Fibonacci

numbers.

For example, 20 D 2C 5C 13 where 2; 5; 13 are, of course, Fibonacci numbers.

Although we can write 20 D 2C 5C 5C 8, this does not illustrate the result because

we have used 5 twice.

22.19. Consider the following computer program.

function findMax(array, first, last) {

if (first == last) return array[first];

mid = first + (last-first)/2;

a = findMax(array,first,mid);

b = findMax(array,mid+1,last);

if (a<b) return b;

return a;

}

Here array is an array of integers. All other variables are integers. We assume that

first and last are between 1 and the number of elements in array and that first �
last.

The purpose of this program is to find the largest value in the array between two in-

dices; that is, it should return the largest value of array[first],array[first+1],. . . ,

array[last].
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Your job: Prove that this program fulfills this task.

[Technical note: If last-first is odd, then (last-first)/2 is rounded down to

the nearest integer. For example, if first is 7 and last is 20, then (last-first)/2

is 6.]

22.20. Consider the following computer program.

function lookUp(array, first, last, key) {

mid = first + (last-first)/2;

if (array[mid] == key) return mid;

if (array[mid] > key) return lookUp(array,first,mid-1,key);

return lookUp(array,mid+1,last,key);

}

Here array is an array of integers; all other variables represent integers. The values

stored in array are sorted; that is, we know that

array[1] < array[2] < array[3] < � � � :

We also know that 1 � first � last and that there is some index j between first

and last for which array[j] is equal to key.

Prove that this program finds that index j .

22.21. Try to prove, using strong or standard induction, that a triangulated polygon has at least

one exterior triangle.

What goes wrong when you try to do your proof?

The harder theorem (“. . . has at least two exterior triangles”) is easier to prove than

the easier theorem (“. . . has at least one exterior triangle”). This phenomenon is known

as induction loading.

22.22. Prove, by induction, the following trigonometric identities:Note that for n D 2, these identities

become the familiar double angle

formulas:

cos2� D cos2
� � sin2

�

sin2� D 2 sin � cos �:

cosn� D
 

n

0

!

cosn
� �

 

n

2

!

cosn�2
� sin2

� C
 

n

4

!

cosn�4
� sin4

� � � � �

sin n� D
 

n

1

!

cosn�1
� sin � �

 

n

3

!

cosn�3
� sin3

� C
 

n

5

!

cosn�5
� sin5

� � � � �

where n is a positive integer. Note: These are finite sums. They end once the lower

index in the binomial coefficient reaches n.

22.23. Prove Theorem 22.9.

22.24. Prove, using strong induction, that every natural number can be expressed as the sum

of distinct powers of 2. For example, 21 D 24 C 22 C 20.

23 Recurrence Relations

Proposition 22.3 gives a formula for the sum of the squares of the natural numbers up to n:

0
2 C 1

2 C 2
2 C � � � C n

2 D .2nC 1/.nC 1/.n/

6
:

How did we derive this formula?

In Exercise 22.16d you were told that a sequence of numbers, d0; d1; d2; d3; : : : satisfies

the conditions d0 D 2, d1 D 5, and dn D 5dn�1 � 6dn�2 and you were asked to prove that

dn D 2nC3n. More dramatically, in the same problem, you were asked to prove the following

complicated expression for the nth Fibonacci number:

Fn D

�

1C
p

5

2

�nC1

�
�

1�
p

5

2

�nC1

p
5

:

How did we create these formulas?
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In this section we present methods for solving a recurrence relation: a formula that spec-

ifies how each term of a sequence is produced from earlier terms.

For example, consider a sequence a0; a1; a2; : : : defined by

an D 3an�1 C 4an�2; a0 D 3; a1 D 2:

We can now compute a2 in terms of a0 and a1, and then a3 in terms of a2 and a1, and so on:

a2 D 3a1 C 4a0 D 3 � 2C 4 � 3 D 18

a3 D 3a2 C 4a1 D 3 � 18C 4 � 2 D 62

a4 D 3a3 C 4a2 D 3 � 62C 4 � 18 D 258:

Our goal is to have a simple method to convert the recurrence relation into an explicit formula

for the nth term of the sequence. In this case, an D 4n C 2 � .�1/n.

First-Order Recurrence Relations

The recurrence relations with which

we begin are called first order

because an can be expressed just in

terms of the immediate previous

element of the sequence, an�1.

Because the first term of the

sequence is a0, it is not meaningful

to speak of the term a�1 . Therefore,

the recurrence relation holds only for

n � 1. The value of a0 must be

given separately.

The simplest recurrence relation is an D an�1. Each term is exactly equal to the one before

it, so every term is equal to the initial term, a0.

Let’s try something only slightly more difficult. Consider the recurrence relation an D
2an�1. Here, every term is twice as large as the previous term. We also need to give the initial

term—say a0 D 5. Then the sequence is 5; 10; 20; 40; 80; 160; : : :. It’s easy to write down a

formula for the nth term of this sequence: an D 5 � 2n.

More generally, if the recurrence relation is

an D san�1

then each term is just s times the previous term. Given a0, the nth term of this sequence is

an D a0s
n
:

Let’s consider a more complicated example. Suppose we define a sequence by

an D 2an�1 C 3; a0 D 1:

When we calculate the first several terms of this, sequence we find the following values:

1; 5; 13; 29; 61; 125; 253; 509; : : :

Because the recurrence relation involves doubling each term, we might suspect that powers of

2 are present in the formula. With this in mind, if we stare at the sequence of values, we might

realize that each term is 3 less than a power of 2. We can rewrite the sequence like this:

4 � 3; 8 � 3; 16� 3; 32 � 3; 64� 3; 128� 3; 256� 3; 512� 3; : : :

With this, we obtain an D 4 � 2n � 3.

Unfortunately, “stare and hope you recognize” is not a guaranteed procedure. Let’s try to

analyze this recurrence relation again in a more systematic fashion.

We begin with the recurrence an D 2an�1 C 3 but leave the initial term a0 unspecified

for the moment. We derive an expression for a1 in terms of a0 using the recurrence relation:

a1 D 2a0 C 3:

Next, let’s find an expression for a2. We know that a2 D 2a1C 3, and we have an expression

for a1 in terms of a0. Combining these, we get

a2 D 2a1 C 3 D 2.2a0 C 3/C 3 D 4a0 C 9:

Now that we have a2, we work out an expression for a3 in terms of a0:

a3 D 2a2 C 3 D 2.4a0 C 9/C 3 D 8a0 C 21:
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Here are the first several terms:

a0 D a0

a1 D 2a0 C 3

a2 D 4a0 C 9

a3 D 8a0 C 21

a4 D 16a0 C 45

a5 D 32a0 C 93

a6 D 64a0 C 189:

One part of this pattern is obvious: an can be written as 2na0 plus something. It’s the “plus

something” that is still a mystery.We can try staring at the extra terms 0; 3; 9; 21; 45; 93; 189; : : :

in the hope of finding a pattern, but we don’t want to resort to that. Instead, let’s trace out how

the termC189 was created in a6. We calculated a6 from a5:

a6 D 2a5 C 3 D 2.32a0 C 93/C 3

so theC189 term comes from 2�93C3. Where did the 93 term come from? Let’s trace these

terms back to the beginning:

189 D 2 � 93C 3

D 2 � .2 � 45C 3/C 3

D 2 � .2 � .2 � 21C 3/C 3/C 3

D 2 � .2 � .2 � .2 � 9C 3/C 3/C 3/C 3

D 2 � .2 � .2 � .2 � .2 � 3C 3/C 3/C 3/C 3/C 3:

Now let’s rewrite the last term as follows:

2 � .2 � .2 � .2 � .2 � 3C 3/C 3/C 3/C 3/C 3

D 2
5 � 3C 2

4 � 3C 2
3 � 3C 2

2 � 3C 2
1 � 3C 2

0 � 3

D
�

2
5 C 2

4 C 2
3 C 2

2 C 2
1 C 2

0
�

� 3

D
�

2
6 � 1

�

� 3 D 63 � 3 D 189

Based on what we have learned, we predict a7 to be

a7 D 128a0 C
�

2
7 � 1

�

� 3 D 2
7

.a0 C 3/� 3 D 128a0 C 381

and this is correct.

We are now ready to conjecture the solution to the recurrence relation an D
2an�1 C 3. It is

an D .a0 C 3/ 2
n � 3:

Once we have the formula in hand, it is easy to prove it is correct using induction. How-

ever, we don’t want to go through all that work every time we need to solve a recurrence

relation; we want a much simpler method. We seek a ready-made answer to a recurrence

relation of the form

an D san�1 C t

where s and t are given numbers. Based on our experience with the recurrence

an D 2an�1 C 3, we are in a position to guess that the formula for an will be of the fol-

lowing form:

an D .a number/ � s
n C .a number/:
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Let’s see that this is correct by finding a1, a2, etc., in terms of a0:

a0 D a0

a1 D sa0 C t

a2 D sa1 C t D s.sa0 C t/C t D s
2
a0 C .s C 1/t

a3 D sa2 C t D s
�

s
2
a0 C .s C 1/t

�

C t D s
3
a0 C .s

2 C s C 1/t

a4 D sa3 C t D s
�

s
3
a0 C .s

2 C s C 1/t
�

D s
4
a0 C .s

3 C s
2 C s C 1/t:

Continuing with this pattern, we see that

an D s
n
a0 C .s

n�1 C s
n�2 C � � � C s C 1/t:

We can simplify this by noticing that sn�1 C sn�2 C � � � C s C 1 is a geometric series whose

sum is

sn � 1

s � 1

provided s 6D 1 (a case with which we will deal separately). We can now write

an D a0s
n C

�

sn � 1

s � 1

�

t

or, collecting the sn terms, we have

an D
�

a0 C
t

s � 1

�

s
n � t

s � 1
: (31)

Despite the precise nature of Equation (31), I prefer expressing the answer as in the

following result because it is easier to remember and just as useful.

Proposition 23.1 All solutions to the recurrence relation an D san�1 C t where s 6D 1 have the form

an D c1s
n C c2

where c1 and c2 are specific numbers.

Let’s see how to apply Proposition 23.1.

Example 23.2 Solve the recurrence an D 5an�1 C 3 where a0 D 1.

Solution: We have an D c15n C c2. We need to find c1 and c2. Note that

a0 D 1 D c1 C c2

a1 D 8 D 5c1 C c2:

Solving these equations, we find c1 D 7

4
and c2 D �3

4
, and so

an D
7

4
� 5n � 3

4
:

We have a small bit of unfinished business: the case s D 1. Fortunately this case is easy.

The recurrence relation is of the form

an D an�1 C t

where t is some number. It’s easy to write down the first few terms of this sequence and see

the result:

a0 D a0

a1 D a0 C t

a2 D a1 C t D .a0 C t/C t D a0 C 2t

a3 D a2 C t D .a0 C 2t/C t D a0 C 3t

a4 D a3 C t D .a0 C 3t/C t D a0 C 4t:

See the pattern? In retrospect, it’s pretty obvious.



Section 23 Recurrence Relations 153

Proposition 23.3 The solution to the recurrence relation an D an�1 C t is

an D a0 C nt:

Second-Order Recurrence Relations

A second-order recurrence relation gives each term of a sequence in terms of the previous twoIn a second-order recurrence relation,

an is specified in terms of an�1 and

an�2 . Since the sequence begins

with a0, the recurrence relation is

valid for n � 2. The values of a0

and a1 must be given separately.

terms. Consider, for example, the recurrence

an D 5an�1 � 6an�2: (32)

(This is the recurrence from Exercise 22.16d.) Let us ignore the fact that we already know a

solution to this recurrence and do some creative guesswork. A first-order recurrence, an D
san�1 has a solution that’s just powers of s. Perhaps such a solution is available for Equa-

tion (32). We can try an D 5n or perhaps an D 6n, but let’s hedge our bets and guess a

solution of the form an D rn for some number r . We’ll substitute this into Equation (32) and

hope for the best. Here goes:

an D 5an�1 � 6an�2 ) r
n D 5r

n�1 � 6r
n�2

Dividing this through by rn�2 gives

r
2 D 5r � 6

a simple quadratic equation. We can solve this as follows:

r
2 D 5r � 6 ) 0 D r

2 � 5r C 6 D .r � 2/.r � 3/ ) r D 2; 3:

This suggests that both 2n and 3n are solutions to Equation (32). To see that this is correct, we

simply have to check whether 2
n (or 3

n) works in the recurrence. That is, we have to check

whether 2n D 5 � 2n�1 � 6 � 2n�2 (and likewise for 3n). Here are the proofs:

5 � 2n�1 � 6 � 2n�2 D 5 � 2n�1 � 3 � 2 � 2n�2

D 5 � 2n�1 � 3 � 2n�1

D .5 � 3/ � 2n�1 D 2
n

5 � 3n�1 � 6 � 3n�2 D 5 � 3n�1 � 2 � 3 � 3n�2

D 5 � 3n�1 � 2 � 3n�1

D .5 � 2/ � 3n�1 D 3
n
:

We have shown that 2n and 3n are solutions to Equation (32). Are there other solutions?

Here are two interesting observations.

First, if an is a solution to Equation (32), so is can where c is any specific number. To see

why, we calculate

can D c .5an�1 � 6an�2/ D 5.can�1/ � 6.can�2/:

Since 2n is a solution to (32), so is 5 � 2n.

Second, if an and a0
n
are both solutions to Equation (32), then so is an C a0

n
. To see why,

we calculate:

an C a
0
n
D .5an�1 � 6an�2/C .5a

0
n�1
� 6a

0
n�2

/ D 5.an�1 C a
0
n�1

/� 6.an�2 C a
0
n�2

/:

Since 2n and 3n are solutions to Equation (32), so is 2n C 3n.

Based on this analysis, any expression of the form c12n C c23n is a solution to Equa-

tion (32). Are there any others? The answer is no; let’s see why.

We are given that an D 5an�1 � 6an�2. Once we have set specific values for a0 and a1,

a2, a3, a4,. . . are all determined. If we are given a0 and a1, we can set up the equations

a0 D c12
0 C c23

0 D c1 C c2

a1 D c12
1 C c23

1 D 2c1 C 3c2
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and solve these for c1; c2 to get

c1 D 3a0 � a1

c2 D �2a0 C a1:

Thus, any solution to Equation (32) can be expressed as

an D .3a0 � a1/ 2
n C .�2a0 C a1/ 3

n
:

Encouraged by this success, we are prepared to tackle the general problem

an D s1an�1 C s2an�2 (33)

where s1 and s2 are given numbers.

We guess a solution of the form an D rn, substitute into Equation (33), and hope for the

best:

There is a rough edge in this

calculation; since we are dividing by

rn�2 this analysis is faulty in the

case r D 0. However, this is not a

problem because we check our work

in a moment by a different method.

an D s1an�1 C s2an�2

r
n D s1r

n�1 C s2r
n�2

) r
2 D s1r C s2

so the r we seek is a root of the quadratic equation x2 � s1x � s2 D 0. Let’s record this as a

proposition.

Proposition 23.4 Let s1; s2 be given numbers and suppose r is a root of the quadratic equation x2�s1x�s2 D 0.

Then an D rn is a solution to the recurrence relation an D s1an�1 C s2an�2.

Proof. Let r be a root of x
2 � s1x � s2 D 0 and observe

s1r
n�1 C s2r

n�2 D r
n�2

.s1r C s2/

D r
n�2

r
2 because r

2 D s1r C s2

D r
n
:

Therefore r
n satisfies the recurrence an D s1an�1 C s2an�2.

We’re now in a good position to derive the general solution to Equation (33). As we saw

with Equation (32), if an is a solution to (33), then so is any constant multiple of an—that is,

can. Also, if an and a
0
n are two solutions to (33), then so is their sum an C a

0
n.

Therefore, if r1 and r2 are roots of the polynomial x2 � s1x � s2 D 0, then

an D c1r
n

1
C c2r

n

2

is a solution to Equation (33).

Are these all the possible solutions? The answer is yes in most cases. Let’s see what

works and where we run into some trouble.

The expression c1rn
1
Cc2rn

2
gives all solutions to (33) provided it can produce a0 and a1;

if we can choose c1 and c2 so that

a0 D c1r
0
1 C c2r

0
2 D c1 C c2

a1 D c1r
1

1
C c2r

1

2
D r1c1 C r2c2

then every possible sequence that satisfies (33) is of the form c1rn
1
C c2rn

2
. So all we have to

do is solve those equations for c1 and c2. When we do, we get this:

c1 D
a1 � a0r2

r1 � r2

and c2 D
�a1 C a0r1

r1 � r2

:

All is well unless r1 D r2; we’ll deal with this difficulty in a moment. First, let’s write down

what we know so far.
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Theorem 23.5 Let s1; s2 be numbers and let r1; r2 be roots of the equation x2 � s1x � s2 D 0. If r1 6D r2,

then every solution to the recurrence

an D s1an�1 C s2an�2

is of the form

an D c1r
n

1 C c2r
n

2 :

Example 23.6 Find the solution to the recurrence relation

an D 3an�1 C 4an�2; a0 D 3; a1 D 2:

Solution: Using Theorem 23.5, we find the roots of the quadratic equation x2 � 3x � 4 D 0.

This polynomial factors as x2 � 3x � 4 D .x � 4/.x C 1/ so the roots of the equation are

r1 D 4 and r2 D �1. Therefore an has the form an D c14
n C c2.�1/

n.

To find c1 and c2, we note that

a0 D c14
0 C c2.�1/

0 ) 3 D c1 C c2

a1 D c14
1 C c2.�1/

1 ) 2 D 4c1 � c2

Solving these gives

c1 D 1 and c2 D 2:

Therefore an D 4n C 2 � .�1/n.

Example 23.7 The Fibonacci numbers are defined by the recurrence relation Fn D Fn�1 C Fn�2. Using

Theorem 23.5, we solve the quadratic equations x2�x � 1 D 0 whose roots are .1˙
p

5/=2.

Therefore there is a formula for Fn of the form

Fn D c1

 

1C
p

5

2

!n

C c2

 

1 �
p

5

2

!n

:

We can work out the values of c1 and c2 based on the given values of F0 and F1.

Example 23.8 Solve the recurrence relation

an D 2an�1 � 2an�2 where a0 D 1 and a1 D 3:

Solution: The associated quadratic equation is x2 � 2x C 2 D 0, which, by the quadratic

formula, has two complex roots: 1 ˙ i . Do not panic. There is nothing in the work we did

that required the numbers involved to be real. We now just seek a formula of the form an D
c1.1C i/n C c2.1 � i/n. Examining a0 and a1, we have

a0 D 1 D c1 C c2

a1 D 3 D .1C i/c1 C .1 � i/c2:

Solving these gives c1 D 1

2
�i and c2 D 1

2
Ci . Thereforean D .

1

2
�i/.1Ci/nC.

1

2
Ci/.1�i/n.

The Case of the Repeated Root

We now consider the recurrence relations in which the associated polynomial x2 � s1x � s2

has a repeated root. We begin with the following recurrence relation:

an D 4an�1 � 4an�2 (34)

with a0 D 1 and a1 D 3. The first few values of an are 1, 3, 8, 20, 48, 112, 256, and 576.

The quadratic equation associated with this recurrence relation is x
2�4xC4 D 0, which

factors as .x � 2/.x � 2/. So the only root is r D 2. We might hope that the formula for an
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takes the form an D c2n, but this is incorrect. Consider the first two terms:

a0 D 1 D c2
0 and a1 D 3 D c2

1
:

The first equation implies c D 1 and the second implies c D 3

2
.

We need a new idea. We hope that 2n is involved in the formula, so we try a different

approach. Let us guess a formula of the form

an D c.n/2
n

where we can think of c.n/ as a “changing” coefficient. Let’s work out the first few values of

c.n/ based on the values of an we already calculated:

a0 D 1 D c.0/2
0 ) c.0/ D 1

a1 D 3 D c.1/2
1 ) c.1/ D 3

2

a2 D 8 D c.2/2
2 ) c.2/ D 2

a3 D 20 D c.3/2
3 ) c.3/ D 5

2

a4 D 48 D c.4/2
4 ) c.4/ D 4

a5 D 112 D c.5/2
5 ) c.5/ D 7

2

The “changing” coefficient c.n/ works out to something simple: c.n/ D 1C 1

2
n. We therefore

conjecture that an D
�

1C 1

2
n
�

2n.

Please note that the solution has the following form: an D c12
nC c2n2

n. Let’s show that

all sequences of this form satisfy the recurrence relation in (34):

4an�1 � 4an�2 D 4
�

c12
n�1 C c2.n � 1/2

n�1
�

� 4
�

c12
n�2 C c2.n � 2/2

n�2
�

D Œ2c12
n � c12

n
�C Œ2c2n2

n � c2n2
n
�C

�

�4 � 2n�1 C 8 � 2n�2
�

D c12
n C c2n2

n C 0 D an:

So every sequence of the form an D c12n C c2n2n is a solution to Equation (34). Have

we found all solutions? Yes we have, because we can choose c1 and c2 to match any initial

conditions a0 and a1; here’s how. We solve

a0 D c12
0 C c2 � 0 � 20

a1 D c12
1 C c2 � 1 � 21

which gives

c1 D a0 and c2 D �a0 C
1

2
a1:

Since the formula an D 2
nC 1

2
n2

n is of the form c12
nC c2n2

n, we know it satisfies the

recurrence (34). Substituting n D 0 and n D 1 in the formula gives the correct values of a0

and a1 (namely, 1 and 3), it follows that we have found the solution to Equation (34).

Inspired by this success, we assert and prove the following statement. Notice the require-

ment that r 6D 0; we’ll treat the case r D 0 as a special case.

Theorem 23.9 Let s1; s2 be numbers so that the quadratic equation x2 � s1x � s2 D 0 has exactly one root,

r 6D 0. Then every solution to the recurrence relation

an D s1an�1 C s2an�2

is of the form

an D c1r
n C c2nr

n
:

Proof. Since the quadratic equation has a single (repeated) root, it must be of the form

.x � r/.x � r/ D x2 � 2rx C r2. Thus the recurrence must be an D 2ran�1 � r2an�2.
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To prove the result, we show that an satisfies the recurrence and that c1; c2 can be chosen

so as to produce all possible a0; a1.

To see that an satisfies the recurrence, we calculate as follows:

2ran�1 � r
2
an�2 D 2r

�

c1r
n�1 C c2.n � 1/r

n�1
�

� r
2
�

c1r
n�2 C c2.n � 2/r

n�2
�

D .2c1r
n � c1r

n
/C .2c2.n � 1/r

n � c2.n � 2/r
n
/

D c1r
n C c2nr

n D an:

To see that we can choose c1; c2 to produce all possible a0; a1, we simply solve

a0 D c1r
0 C c2 � 0 � r0 D c1

a1 D c1r
1 C c2 � 1 � r D r.c1 C c2/:

So long as r 6D 0, we can solve these. They yield

c1 D a0 and c2 D
a0r � a1

r
:

Finally, in case r D 0, the recurrence is simply an D 0, which means that all terms are

zero.

Sequences Generated by Polynomials

We began this section by recalling Proposition 22.3, which gives a formula for the sum of the

squares of the natural numbers up to n:

0
2 C 1

2 C 2
2 C � � � C n

2 D .2nC 1/.nC 1/.n/

6
:

Notice that the formula for the sum of the first n squares is a polynomial expression. In Exer-

cise 22.4b you were asked to show that the sum of the first n cubes is n
2
.nC 1/

2
=4, another

polynomial expression. Proving these by induction is relatively routine, but how can we figure

out the formulas in the first place?

Good news: We now present a simple method for detecting whether a sequences of num-

bers is generated by a polynomial expression and, if so, for determining the polynomial that

created the numbers.

The key is the difference operator. Let a0; a1; a2; : : : be a sequence of numbers. FromThe difference operator � should not

be confused with the symmetric

difference operation, also denoted by

�. The difference operator converts

a sequence of numbers into a new

sequence of numbers, whereas the

symmetric difference operation takes

a pair of sets and returns another set.

this sequence we form a new sequence

a1 � a0; a2 � a1; a3 � a2; : : :

in which each term is the difference of two consecutive terms of the original sequence. We

denote this new sequence as �a. That is, �a is the sequence whose n
th term is �an D

anC1 � an. We call � the difference operator.

Example 23.10 Let a be the sequence 0; 2; 7; 15; 26; 40; 57; : : :. The sequence �a is 2; 5; 8; 11; 14; 17. This is

easier to see if we write the sequence a on one row and �a on a second row with �an written

between an and anC1.

a: 0 2 7 15 26 40 57

�a: 2 5 8 11 14 17

If the sequence an is given by a polynomial expression, then we can use that expression

to find a formula for �a. For example, if an D n3 � 5nC 1, then

�an D anC1 � an

D
�

.nC 1/
3 � 5.nC 1/C 1

�

�
�

n
3 � 5nC 1

�

D n
3 C 3n

2 C 3nC 1 � 5n� 5C 1 � n
3 C 5n � 1

D 3n
2 C 3n � 4:

Notice that the difference operator converted a degree-3 polynomial formula, n
3 � 5nC 1,

The degree of a polynomial

expression is the largest exponent

appearing in the expression. For

example, 3n5 � n2 C 10 is a

degree-5 polynomial in n. into a degree-2 polynomial.
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Proposition 23.11 Let a be a sequence of numbers in which an is given by a degree-d polynomial in n where

d � 1. Then �a is a sequence given by a polynomial of degree d � 1.

Proof. Suppose an is given by a polynomial of degree d . That is, we can write

an D cd n
d C cd�1n

d�1 C � � � C c1nC c0

where cd 6D 0 and d � 1. We now calculate �an:

�an D anC1 � an

D
h

cd .nC 1/
d C cd�1.nC 1/

d�1 C � � � C c1.nC 1/C c0

i

�
h

cd n
d C cd�1n

d�1 C � � � C c1nC c0

i

D
h

cd .nC 1/
d � cd n

d

i

C
h

cd�1.nC 1/
d�1 � cd�1n

d�1

i

C � � �

C
h

c1.nC 1/� c1n

i

C
h

c0 � c0

i

:

Each term on the last line is of the form cj .n C 1/j � cj nj . We expand the .n C 1/j term

using the Binomial Theorem (Theorem 17.8) to give

cj .nC 1/
j � cj n

j D cj

"

n
j C

 

j

1

!

n
j�1 C

 

j

2

!

n
j�2 C � � � C

 

j

j

!

n
0

#

� cj n
j

D cj

" 

j

1

!

n
j�1 C

 

j

2

!

n
j�2 C � � � C

 

j

j

!#

:

Notice that cj .n C 1/j � cj nj is a polynomial of degree j � 1. Thus, if we look at the

full expression for �an, we see that the first term cd .n C 1/d � cd nd is a polynomial of

degree d � 1 (because cd 6D 0) and none of the subsequent terms can cancel the n
d�1 term

because they all have degree less than d � 1. Therefore �an is given by a polynomial of

degree d � 1.

If a is given by a polynomial of degree d , then �a is given by a polynomial of degree

d � 1. This implies that �.�a/ is given by a polynomial of degree d � 2, and so on. Instead

of �.�a/, we write �2a. In general, �ka is �.�k�1a/ and �1a is just �a.

What happens if we apply � repeatedly to a polynomially generated sequence? Each

subsequent sequence is a polynomial of one lower degree until we reach a polynomial of

degree zero—which is just a constant. If we apply � one more time, we arrive at the all-zero

sequence!

Corollary 23.12 If a sequence a is generated by a polynomial of degree d , then �dC1a is the all-zeros se-

quence.

Example 23.13 The sequence 0; 2; 7; 15; 26; 40; 57; : : : from Example 23.10 is generated by a polynomial.

Repeatedly applying � to this sequence gives this:

a: 0 2 7 15 26 40 57

�a: 2 5 8 11 14 17

�2a: 3 3 3 3 3

�3a: 0 0 0 0

Corollary 23.12 tells us that if an is given by a polynomial expression, then repeated

applications of � will reduce this sequence to all zeros. We now seek to prove the converse;
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that is, if there is a positive integer k such that �kan is the all-zeros sequence, then an is

given by a polynomial formula. Furthermore, we develop a simple method for deducing the

polynomial that generates an.

Our first tool is the following simple proposition.

For those who have studied linear

algebra. If we think of a sequence as

a vector (with infinitely many

components), then Proposition 23.14

says that � is a linear

transformation.

Proposition 23.14 Let a, b, and c be sequences of numbers and let s be a number.

(1) If, for all n, cn D an C bn, then �cn D �an C�bn.

(2) If, for all n, bn D san, then �bn D s�an.

This proposition can be written more succinctly as follows: �.an C bn/ D �an C�bn

and �.san/ D s�an.

Proof. Suppose first that for all n, cn D an C bn. Then

�cn D cnC1 � cn

D .anC1 C bnC1/ � .an C bn/

D .anC1 � an/C .bnC1 � bn/

D �an C�bn:

Next, suppose that bn D san. Then

�bn D bnC1 � bn D sanC1 � san D s .anC1 � an/ D s�an:

The next step is to understand how � treats some particular polynomial sequences. We

start with a specific example.

Let a be the sequence whose nth term is an D
�

n

3

�

. For example, a5 D
�

5

3

�

D 10. ByNot only can
�

n
3

�

be expressed as a

polynomial in n, but the same is true

for all
�

n
k

�

(where k is a positive

integer). Using Theorem 17.12, when

n � k, write
�

n
k

�

as

n.n� 1/.n� 2/ � � � .n� k C 1/

kŠ
:

For the case 0 � n < k, observe that

both
�

n
k

�

and the polynomial evaluate

to zero. Thus for every positive

integer k,
�

n
k

�

can be written as a

polynomial of degree k.

Theorem 17.12, we can write

an D
 

n

3

!

D nŠ

.n � 3/Š3Š
D n.n � 1/.n � 2/.n � 3/.n � 4/ � � � .2/.1/

.n � 3/.n� 4/ � � � .2/.1/ � 3Š
D 1

6
n.n � 1/.n � 2/

which is a polynomial. This formula is correct, but there is a minor error. The formula
�

n

k

�

D
nŠ

.n�k/ŠkŠ
applies only when 0 � k � n. The first few terms of the sequence, a0; a1; a2,

are
�

0

3

�

,
�

1

3

�

, and
�

2

3

�

. All of these evaluate to zero, but Theorem 17.12 does not apply to them.

Fortunately, the polynomial expression 1

6
n.n�1/.n�2/ also evaluates to zero for n D 0; 1; 2,

so the formula an D 1

6
n.n � 1/.n� 2/ is correct for all values of n.

Now let’s calculate �an, �2an, and so on, until we reach the all-zeros sequence (which,

by Corollary 23.12, should be by �4an).

an: 0 0 0 1 4 10 20 35 56

�an: 0 0 1 3 6 10 15 21

�2an: 0 1 2 3 4 5 6

�3an: 1 1 1 1 1 1

�4an: 0 0 0 0 0

Please note that every row of this table begins with a zero except for row �
3
an, which begins

with a one.
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Since an D
�

n

3

�

is a polynomial of degree 3, we know that �an is a polynomial of

degree 2. Let’s work this out algebraically:

�an D �

 

n

3

!

D
 

nC 1

3

!

�
 

n

3

!

D 1

6
.nC 1/.n/.n � 1/� 1

6
n.n � 1/.n� 2/

D .n3 � n/ � .n3 � 3n2 C 2n/

6
D 3n2 � 3n

6

D 1

2
n.n � 1/ D

 

n

2

!

:

Having discovered that �
�

n

3

�

D
�

n

2

�

, we wonder whether there is an easier way to prove

this (there is) and whether this generalizes (it does).

We seek a quick way to prove that �
�

n

3

�

D
�

n

2

�

. This can be rewritten
�

nC1

3

�

�
�

n

3

�

D
�

n

2

�

,

which can be rearranged to
�

n

2

�

C
�

n

3

�

D
�

nC1

3

�

. This follows directly from Pascal’s Identity

(Theorem 17.10).

Seeing that �
�

n

3

�

D
�

n

2

�

, it’s not a bold leap to guess that �
�

n

4

�

D
�

n

3

�

, or in general

�
�

n

k

�

D
�

n

k�1

�

. The proof is essentially a direct application of Pascal’s Identity (with a bit of

care in the case n < k).

Proposition 23.15 Let k be a positive integer and let an D
�

n

k

�

for all n � 0. Then �an D
�

n

k�1

�

.

Proof. We need to show that �
�

n

k

�

D
�

n

k�1

�

for all n � 0. This is equivalent to
�

nC1

k

�

�
�

n

k

�

D
�

n

k�1

�

which in turn is the same as
 

nC 1

k

!

D
 

n

k

!

C
 

n

k � 1

!

: (35)

By Pascal’s Identity (Theorem 17.10), Equation (35) holds whenever 0 < k < nC 1, so we

need only concern ourselves with the case nC 1 � k (i.e., n � k � 1).

In the case n < k � 1, all three terms,
�

nC1

k

�

,
�

n

k

�

, and
�

n

k�1

�

, equal zero, so (35) holds.

In the case n D k�1, we have
�

nC1

k

�

D
�

k

k

�

D 1,
�

n

k

�

D
�

k�1

k

�

D 0, and
�

n

k�1

�

D
�

k�1

k�1

�

D
1, and (35) reduces to 1 D 0C 1.

Earlier we noted that for an D
�

n

3

�

, we have that �j a0 D 0 for all j except j D 3,

and �3a0 D 1. This generalizes. Let k be a positive integer and let an D
�

n

k

�

. Because an

is expressible as a degree-k polynomial, �kC1an D 0 for all n. Using Proposition 23.15, we

have that a0 D �a0 D �2a0 D � � � D �k�1a0 D 0 but �kak D 1; see Exercise 23.5.

Thus, for the sequence an D
�

n

k

�

, we know (1) that �kC1an D 0 for all n, (2) the value

of a0, and (3) the value of �j a0 for 1 � j < k. We claim that these three facts uniquely

determine the sequence an. Here is a careful statement of that assertion.

Proposition 23.16 Let a and b be sequences of numbers and let k be a positive integer. Suppose that

� �kan and �kbn are zero for all n,
� a0 D b0, and
� �j a0 D �j b0 for all 1 � j < k.

Then an D bn for all n.

Proof. The proof is by induction on k.

The basis case is when k D 1. In this case we are given that �an D �bn D 0 for all n.

This means that anC1 � an D 0 for all n, which implies that anC1 D an for all n. In other

words, all terms in an are identical. Likewise for bn. Since we also are given that a0 D b0,

the two sequences are the same.
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Now suppose (induction hypothesis) that the Proposition has been proved for the case

k D `. We seek to prove the result in the case k D `C1. To that end, let a and b be sequences

such that

� �`C1an D �`C1bn D 0 for all n,
� a0 D b0, and
� �j a0 D �j b0 for all 1 � j < `C 1.

Consider the sequences a0n D �an and b0n D �bn. By our hypotheses we see that

�`a0n D �`b0n D 0 for all n, a
0
0
D b

0
0
, and �j a

0
0
D �j b

0
0
for all 1 � j < `. Therefore, by

induction, a0 and b0 are identical (i.e., a0
n
D b0

n
for all n).

We now prove that an D bn for all n. Suppose, for the sake of contradiction, that a and b

were different sequences. Choose m to be the smallest subscript so that am 6D bm. Note that

m 6D 0 because we are given a0 D b0; thus m > 0. Thus we know am�1 D bm�1. We also

know that a0
m�1
D b0

m�1
; here is why:

a
0
m�1 D �am�1 D am � am�1

D b
0
m�1 D �bm�1 D bm � bm�1

am � am�1 D bm � bm�1

am � bm D am�1 � bm�1 D 0

∴ am D bm )(

Thus an D bn for all n.

We are now ready to present our main result about sequences generated by polynomial

expressions.

Theorem 23.17 Let a0; a1; a2; : : : be a sequence of numbers. The terms an can be expressed as polynomial

expressions in n if and only if there is a nonnegative integer k such that for all n � 0 we have

�kC1an D 0. In this case,

an D a0

 

n

0

!

C .�a0/

 

n

1

!

C
�

�
2
a0

�

 

n

2

!

C � � � C
�

�
k
a0

�

 

n

k

!

:

Proof. One half of the if-and-only-if statement has already been proved: If an is given by a

polynomial of degree d , then �dC1an D 0 for all n (Corollary 23.12).

Suppose now that a is a sequence of numbers and that there is a natural number k such

that for all n, �
kC1

an D 0. We prove that an is given by a polynomial expression by showing

that an is equal to

bn D a0

 

n

0

!

C .�a0/

 

n

1

!

C
�

�
2
a0

�

 

n

2

!

C � � � C
�

�
k
a0

�

 

n

k

!

:

To show that an D bn for all n, we apply Proposition 23.16; that is, we need to prove

(1) �kC1an D �kC1bn D 0 for all n,

(2) a0 D b0, and

(3) �j a0 D �j b0 for all 1 � j � k.

We tackle each in turn.

To show (1), note that �kC1an D 0 for all n by hypothesis. Notice that bn is a polynomial

of degree k, and so �kC1bn D 0 for all n as well (by Corollary 23.12).

It is easy to verify (2) by substituting n D 0 into the expression for bn; every term except

the first evaluates to zero, and the first term is a0

�

0

0

�

D a0.

Finally, we need to prove (3). The notation can become confusing as we calculate�
j
bn—

there will be too many �s crawling around the page! To make our work easier to read, we
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let

c0 D a0; c1 D �a0; c2 D �
2
a0; : : : ; ck D �

k
a0

and so we can rewrite bn as

bn D c0

 

n

0

!

C c1

 

n

1

!

C c2

 

n

2

!

C � � � C ck

 

n

k

!

:

Now, to calculate �j bn we apply Proposition 23.14, Proposition 23.15, and Corollary 23.12:

�
j
bn D �

j

"

c0

 

n

0

!

C c1

 

n

1

!

C c2

 

n

2

!

C � � � C ck

 

n

k

!#

D c0�
j

 

n

0

!

C c1�
j

 

n

1

!

C c2�
j

 

n

2

!

C � � � C ck�
j

 

n

k

!

D 0C � � � C 0C cj �
j

 

n

j

!

C cjC1�
j

 

n

j C 1

!

C � � � C ck�
j

 

n

k

!

D cj

 

n

0

!

C cjC1

 

n

1

!

C � � � C ck

 

n

k � j

!

:

We substitute n D 0 into this, which gives

�
j
b0 D cj C 0C � � � C 0 D �

j
a0

and this completes the proof.

Example 23.18 We return to the sequence presented in Examples 23.10 and 23.13: 0; 2; 7; 15; 26; 40; 57; : : :.

We calculated successive differences and found this:

a: 0 2 7 15 26 40 57

�a: 2 5 8 11 14 17

�2a: 3 3 3 3 3

�
3
a: 0 0 0 0

By Theorem 23.17,

an D 0

 

n

0

!

C 2

 

n

1

!

C 3

 

n

2

!

D 0C 2 � nC 3 � n.n � 1/

2
D n.3nC 1/

2
:

Example 23.19 Let us derive the following formula from Proposition 22.3:

0
2 C 1

2 C 2
2 C � � � C n

2 D .2nC 1/.nC 1/.n/

6
:

Let an D 02 C 12 C � � � C n2. Computing successive differences, we have

an: 0 1 5 14 30 55 91 140

�an: 1 4 9 16 25 36 49

�
2
an: 3 5 7 9 11 13

�3an: 2 2 2 2 2

�4an: 0 0 0 0

Therefore

an D 0

 

n

0

!

C 1

 

n

1

!

C 3

 

n

2

!

C 2

 

n

3

!

D 0C nC 3

2
n.n � 1/C 2

6
n.n � 1/.n� 2/

D 2n3 C 3n2 C n

6
D .2nC 1/.nC 1/.n/

6
:
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Recap

A recurrence relation for a sequence of numbers is an equation that expresses an element of the

sequence in terms of earlier elements. We analyzed first-order recurrence relations of the form

an D san�1 C t and second-order recurrence relations of the form an D s1an�1 C s2an�2:

� The recurrence an D san�1C t has the following solution: If s 6D 1, then an D c1stCc2

where c1; c2 are specific numbers.
� The solution to the recurrence an D s1an�1 C s2an�2 depends on the roots r1; r2 of

the quadratic equation x2 � s1x � s2 D 0. If r1 6D r2, then an D c1rn
1
C c2rn

2
but if

r1 D r2 D r , then an D c1rn C c2nrn.

We introduced the difference operator, �an D anC1 � an. The sequence of numbers an

is generated by a polynomial expression of degree d if and only if �dC1an is zero for all n.

In this case we can write an D a0

�

n

0

�

C .�a0/
�

n

1

�

C .�2a0/
�

n

2

�

C � � � C .�d a0/
�

n

d

�

.

23 Exercises 23.1. For each of the following recurrence relations, calculate the first six terms of the se-

quence (that is, a0 through a5). You do not need to find a formula for an.

a. an D 2an�1 C 2, a0 D 1.

b. an D an�1 C 3, a0 D 5.

c. an D an�1 C 2an�2, a0 D 0, a1 D 1.

d. an D 3an�1 � 5an�2, a0 D 0, a2 D 0.

e. an D an�1 C an�2 C 1, a0 D a1 D 1.

f. an D an�1 C n, a0 D 1.

23.2. Solve each of the following recurrence relations by giving an explicit formula for an.

For each, please calculate a9.

a. an D 2

3
an�1, a0 D 4.

b. an D 10an�1, a0 D 3.

c. an D �an�1, a0 D 5.

d. an D 1:2an�1, a0 D 0.

e. an D 3an�1 � 1, a0 D 10.

f. an D 4 � 2an�1, a0 D 0.

g. an D an�1 C 3, a0 D 0.

h. an D 2an�1 C 2, a0 D 0.

i. an D 8an�1 � 15an�2, a0 D 1, a1 D 4.

j. an D an�1 C 6an�2, a0 D 4, a1 D 4.

k. an D 4an�1 � 3an�2, a0 D 1, a1 D 2.

l. an D �6an�1 � 9an�2, a0 D 3, a1 D 6.

m. an D 2an�1 � an�2, a0 D 5, a1 D 1.

n. an D �2an�1 � an�2, a0 D 5, a1 D 1.

o. an D 2an�1 C 2an, a0 D 3, a1 D 3.

p. an D 2an�1 � 5an�2, a0 D 2, a1 D 3.

23.3. Each of the following sequences is generated by a polynomial expression. For each,

find the polynomial expression that gives an.

a. 1, 6, 17, 34, 57, 86, 121, 162, 209, 262, . . .

b. 6, 5, 6, 9, 14, 21, 30, 41, 54, 69, . . .

c. 4, 4, 10, 28, 64, 124, 214, 340, 508, 724, . . .

d. 5, 16, 41, 116, 301, 680, 1361, 2476, 4181, 6656, . . .

23.4. Explain why the notation �an has implicit parentheses .�a/n and why �.an/ is not

correct.

23.5. Let k be a positive integer and let an D
�

n

k

�

. Prove that a0 D �a0 D �2a0 D � � � D
�k�1a0 D 0 and that �ka0 D 1.

23.6. Suppose that the sequence a satisfies the recurrence an D an�1 C 12an�2 and that

a0 D 6 and a5 D 4877. Find an expression for an.

23.7. Find a polynomial formula for 14 C 24 C 34 C � � � C n4.

23.8. Let t be a positive integer. Prove that 1
t C 2

t C 3
t C � � � C n

t can be written as a

polynomial expression.
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23.9. Some so-called intelligence tests often include problems in which a series of numbers is

presented and the subject is required to find the next term of the sequence. For example,

the sequence might begin 1, 2, 4, 8. No doubt the examiner is looking for 16 as the next

term.

Show how to “outsmart” the intelligence test by finding a polynomial expression

(of degree 3) for an such that a0 D 1, a1 D 2, a2 D 4, a3 D 8, but a4 D 15.

23.10. Let s be a real number with s 6D 0. Find a sequence a so that an D s�an and a0 D 1.

23.11. For a natural number n, the n-cube is a figure created by the following recipe. The

0-cube is simply a point. For n > 0, we construct an n-cube by taking two disjoint

copies of an .n � 1/-cube and then joining corresponding points in the two cubes by

line segments. Thus, a 1-cube is simply a line segment and a 2-cube is a quadrilateral.

The figure shows the construction of a 4-cube from two copies of a 3-cube. Note that

an n-cube has twice as many points as an .n � 1/-cube; therefore, an n-cube has 2n

points. The question is, how many line segments does an n-cube have? Let an denote

the number of line segments in an n-cube. We have a0 D 0, a1 D 1, a2 D 4, a3 D 12,

and a4 D 32.

a. Calculate a5.

b. Find a formula for an in terms of an�1.

c. Find a formula for an just in terms of n (and not in terms of an�1) and use part (b)

to prove that your formula is correct.

23.12. Solve the equation �2an D �an with a0 D a1 D 2.

23.13. Find two different sequences a and b for which �an D �bn for all n.

23.14. The second-order recurrence relations we solved were of the form an D s1an�1 C
s2an�2. In this problemwe extend this to relations of the form an D s1an�1Cs2an�2C
t . Typically (but not always) the solution to such a relation is of the form an D c1rn

1
C

c2r
n
2
C c3 where c1; c2; c3 are specific numbers, and r1; r2 are roots of the associated

quadratic equation x2� s1x� s2 D 0. However, if one of these roots is 1, or if the roots

are equal to each other, another form of solution is required.

Please solve the following recurrence relations. In the cases where the standard

form does not apply, try to work out an appropriate alternative form, but if you get

stuck, please consult the Hints (Appendix A).

a. an D 5an�1 � 6an�2 C 2, a0 D 1, a1 D 2.

b. an D 4an�1 C 5an�2 C 4, a0 D 2, a1 D 3.

c. an D 2an�1 C 4an�2 C 6, a0 D a1 D 4.

d. an D 3an�1 � 2an�2 C 5, a0 D a1 D 3.

e. an D 6an�1 � 9an�2 � 2, a0 D �1, a1 D 4.

f. an D 2an�1 � an�2 C 2, a0 D 4, a1 D 2.

23.15. Extrapolate from Theorems 23.5 and 23.9 to solve the following third-order recurrence

relations.

a. an D 4an�1 � an�2 � 6an�3, a0 D 8, a1 D 3, and a2 D 27.

b. an D 2an�1 C 2an�2 � 4an�3, a0 D 11, a1 D 10, and a2 D 32.

c. an D �an�1 C 8an�2 C 12an�3, a0 D 6, a1 D 19, and a2 D 25.

d. an D 6an�1 � 12an�2 C 8an�3, a0 D 3, a1 D 2, and a2 D 36.

23.16. Suppose you wish to generate elements of a recurrence relation using a computer pro-

gram. It is tempting to write such a program recursively.
For example, consider the recurrence an D 3an�1 � 2an�2, a0 D 1, a1 D 5. Here

is a program to calculate the values an:
procedure get_term(n)

if (n < 0)

print ’Illegal argument’

exit

end

if (n == 0)

return 1

end

if (n == 1)

return 5
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end

return 3*get_term(n-1) - 2*get_term(n-2)

end

Although this program is easy to understand, it is extremely inefficient. Explain

why.

In particular, let bn be the number of times this routine is called when it calculates

an. Find a recurrence—and solve it!—for bn.

23.17. There are many types of recurrence relations that are of different forms from those

presented in this section. Try your hand at finding a formula for an for these:

a. an D nan�1, a0 D 1.

b. an D a2
n�1

, a0 D 2.

c. an D a0 C a1 C a2 C � � � C an�1, a0 D 1.

d. an D na0 C .n � 1/a1 C .n � 2/a2 C � � � C 2an�2 C 1an�1, a0 D 1.

e. an D 3:9an�1.1 � an�1/, a0 D 1

2
.

23.18. The Catalan numbers are a sequence defined by the following recurrence relation:

c0 D 1 and cnC1 D
n
X

kD0

ckcn�k :

Please do the following:

a. Calculate the first several Catalan numbers, say up to c8.

b. Find a formula for cn.

Part (b) is quite difficult, so here is a bit of magic to get you to an answer. The

On-Line Encyclopedia of Integer Sequences is a tool into which you can type a list of

integers to determine if the sequence has been studied and what is known about the

sequence. It is available on the web here: http://oeis.org/

c. Use Theorem 23.17 to find a formula for this sequence of numbers: 0, 1, 5, 12, 22,

35, 51, 70, 92, 117, 145, 176, 210. Please simplify your answer.

d. Use the On-Line Encyclopedia to find the name of the sequence in part (c).

e. Finally (just for fun) consider this sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24. . . . Try to identify this sequence on your own

before going to the On-Line Encyclopedia for the answer.

Chapter 4 Self Test

1. Prove that the equation x2 C 1 D 0 does not have any real solutions.

2. Prove that there is no integer x such that x2 D 2.

3. Prove that the sum of any four consecutive integers is not divisible by 4.

4. Let a and b be positive integers. Prove: If ajb and bja, then a D b.

5. Which of the following sets are well-ordered?

a. The set of all even integers.

b. The set of all primes.

c. f�100;�99;�98; : : : ; 98; 99; 100g.
d. ;.
e. The negative integers.

f. f�; �
2
; �

3
; �

4
; : : :g where � is the familiar real number 3:14159 : : : .

6. Let n be a positive integer. Prove that

1C 4C 7C � � � C .3n � 2/ D 3n2 � n

2
:

7. Let n be a natural number. Prove that

0ŠC 1ŠC 2ŠC � � � C nŠ � .nC 1/Š:

8. Suppose a0 D 1 and an D 4an�1 � 1 when n � 1. Prove that for all natural numbers n,

we have an D .2 � 4n C 1/=3.

9. Prove by induction: If n 2 N, then n < 2n.
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10. Consider the following proposition.

Let P be a finite set of (three or more) points in the plane and suppose any three

points in P are collinear. Then all the points in P must lie on a common line.

Prove this two ways: by contradiction and by induction.

11. Let n be a positive integer. Prove by induction that
p

1C
p

2C � � � C
p

n � n
p

n:

12. Let n be a positive integer and suppose n distinct lines are drawn in the plane. No two of

these lines are parallel, and no three of these lines intersect at a common point. Prove that

these lines divide the plane into
�

n

0

�

C
�

n

1

�

C
�

n

2

�

regions.

13. Let Fn denote the nth Fibonacci number (see Definition 21.12). Prove that for all natural

numbers n, we have

Fn C 2FnC1 D FnC4 � FnC2:

14. Let Fn denote the nth Fibonacci number. If n is a natural number, then 1 is the only

positive divisor of both Fn and FnC1 (i.e., if d > 0, d jFn, and d jFnC1, then d D 1).

15. Let Fn denote the nth Fibonacci number. Prove that for all natural numbers n we have

F
2

0 C F
2

1 C � � � C F
2

n D FnFnC1:

16. A horizontal stripe is to be tiled. The tiles come in two shapes: 1� 1 rectangles and 1� 2

n

rectangles. The 1� 1 tiles are available in two colors (white and dark blue), and the 1� 2

tiles are available in three colors (white, light blue, and dark blue). For a positive integer

n, let an denote the number of different ways to tile an n-long stripe using these tiles. The

figure shows one possible tiling with n D 11.

a. Show that for n � 2, an D 2an�1 C 3an�2.

b. Prove that an D .3nC1 C .�1/n/=4.

17. Let n be a positive integer. Prove there is a unique pair of nonnegative integers a; b such

that n D 2ab and b is odd.

18. In Exercise 22.24 you were asked to prove that every natural number can be written as

the sum of distinct powers of 2. Prove that such a representation is unique; that is, given

a natural number n, there is only one way to write n as the sum of distinct powers of 2.

Note: For this problem, rearranging the order of the summands does not constitute a

new way to express a number as the sum of distinct powers of 2; that is, 21 D 24C22C20

is no different than 21 D 20 C 24 C 22.

19. Let A be a nonempty finite set of positive integers. Suppose that for any two elements

r; s 2 A, we have r js or sjr . (In symbols, 8r 2 A; 8s 2 A; .r js or sjr/.)

a. Prove that A contains an element t with the property that for all a 2 A, ajt . (In
symbols, 9t 2 A; 8a 2 A; ajt .)

b. Furthermore, prove that t is unique (i.e., there is only one element of A that is a

multiple of all elements of A).

c. Finally, give an example to show that uniqueness does not hold if we do not assume

that all the elements of A are positive.

20. For each of the following recurrence relations, find a formula for the nth term, an.

a. an D 2an�1 C 15an�2, a0 D 4, a1 D 0.

b. an D 12an�1 � 36an�2, a0 D 1, a1 D 2.

c. an D an�1 C 3, a0 D 1.

d. an D 3an�1 C 1, a0 D 1.

21. The following sequence of numbers is generated by a polynomial expression. Find the

polynomial. (The first term is a0; you should find a polynomial expression for an.)

The sequence is

5, 26, 67, 146, 281, 490, 791, 1202, 1741, 2426, 3275, . . . .
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5 Functions

The concept of function is central to mathematics. Intuitively, a function can be thought of as

f (x) = 3x
2
−1

4

47

a machine. You put a number into the machine, push a button, and out comes an answer. A key

property of being a function is consistency. Every time we put a specific number—say, 4—

into the machine, the same answer emerges. We illustrate this in the figure. Here the function

takes an integer x as input and returns the value 3x2 � 1. Thus every time the number 4 is

entered into the machine, the answer 47 is produced.

Note that the function in the figure operates on numbers. It would not make sense to try

to put a triangle down the hopper of this machine! However, we can create a function whose

inputs are triangles and whose outputs are numbers. For example, we can define f to be the

function whose inputs are triangles, and for each triangle entered into the function, the output

is the area of the triangle.

The “mechanism” in the function “machine” need not be dictated by an algebraic formula.

All that is required is that we carefully specify the allowable inputs and, for each allowable

input, the corresponding output. This is often done with an algebraic expression, but there are

other ways to specify a function.

In this chapter, we take a careful look at functions. We begin with a precise definition.

24 Functions

Intuitively, a function is a “rule” or “mechanism” that transforms one quantity into another.

For example, the function f .x/ D x
2C 4 takes an integer x and transforms it into the integer

x2 C 4. The function g.x/ D jxj takes the integer x and returns x if x � 0 and �x if x < 0.

In this section, we develop a more abstract and rigorous view of functions. Functions are

special types of relations (please review Section 14).

Recall that a relation is simply a set of ordered pairs. Just as this definition of a relation

was at first counterintuitive, the precise definition of a function may at first seem strange.

Definition 24.1 (Function) A relation f is called a function provided .a; b/ 2 f and .a; c/ 2 f imply

b D c.

Stated in a negative fashion, a relation f is not a function if there exist a; b; c with

.a; b/ 2 f and .a; c/ 2 f but b 6D c.

Example 24.2 Let

f D f.1; 2/; .2; 3/; .3; 1/; .4; 7/g and g D f.1; 2/; .1; 3/; .4; 7/g

The relation f is a function, but the relation g is not because .1; 2/; .1; 3/ 2 g and 2 6D 3.

When expressed as a set of ordered pairs, functions do not look like rules for transforming

one object into another, but let us look closer. The ordered pairs in f associate “input” values

167
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(the first elements in the lists in f ) with “output” values (the second elements in the lists). In

Example 24.2, the function f associates the input value 1 with the output value 2, because

.1; 2/ 2 f . The reason why g is not a function is that for the input value 1, there are two

different output values: 2 and 3. What makes f a function is that for each input there can be

at most one output.

Mathematicians rarely use the notation .1; 2/ 2 f , even though this is formally correct.

Instead, we use the f .�/ notation.

Definition 24.3 (Function notation) Let f be a function and let a be an object. The notation f .a/ is defined

provided there exists an object b such that .a; b/ 2 f . In this case, f .a/ equals b. Otherwise

[there is no ordered pair of the form .a; / 2 f ], the notation f .a/ is undefined. The symbols

f .a/ are pronounced “f of a.”

Mathspeak!

Mathematicians often use the word map as a synonym for function. In addition to saying “f of 1

equals 2,” we also say “f maps 1 to 2.” And there is a notation for this. We write 1 7! 2. The

special arrow 7! means f .1/D 2. The function f is not explicitly mentioned in the notation

1 7! 2; when we use the 7! notation, we need to be certain that the reader knows what function is

being discussed.

For the function f from Example 24.2, we have

f .1/ D 2 f .2/ D 3 f .3/ D 1 f .4/ D 7

but for any other object x, f .x/ is undefined. The reason why we don’t call g a function

becomes clearer. What is g.1/? Since both .1; 2/ and .1; 3/ 2 g, the notation g.1/ does not

specify an unambiguous value.

Example 24.4 Problem: Express the integer function f .x/ D x2 as a set of ordered pairs.

Solution: We might write this out using ellipses:

f D f: : : ; .�3; 9/; .�2; 4/; .�1; 1/; .0; 0/; .1; 1/; .2; 4/; .3; 9/; : : :g

but it is much clearer if we use set-builder notation:

f D
˚

.x; y/ W x; y 2 Z; y D x
2
	

:

It is invariably clearer to write, “Let f be the function defined for an integer x by f .x/ D
x2” than to write out f as a set of ordered pairs as in the example.

Mathspeak!

The set-of-ordered-pairs notation for a function is similar to writing a function as a chart:

x f .x/

:
:
:

:
:
:

�3 9

�2 4

�1 1

0 0

1 1

2 4

3 9

:
:
:

:
:
:

Domain and Image

The sets of allowable inputs and possible outputs of a function have special names.
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Definition 24.5 (Domain, image) Let f be a function. The set of all possible first elements of the ordered

pairs in f is called the domain of f and is denoted domf . The set of all possible second

We have avoided using the word

range. Students are often taught that

the word range means the same thing

as our word image. The

mathematician’s use of the word

range is different from that

commonly taught in high school. We

avoid confusion simply by not using

this word.

elements of the ordered pairs in f is called the image of f and is denoted im f .

In other notation,

domf D fa W 9b; .a; b/ 2 f g and im f D fb W 9a; .a; b/ 2 f g :

Alternatively, we can write

domf D fa W f .a/ is definedg and imf D fb W b D f .a/ for some ag :

Example 24.6 Let f D f.1; 2/; .2; 3/; .3; 1/; .4; 7/g. (This is the function from Example 24.2.) Then

domf D f1; 2; 3; 4g and im f D f1; 2; 3; 7g:

Example 24.7 Let f be the function from Example 24.4; that is,

f D
˚

.x; y/ W x; y 2 Z; y D x
2
	

:

The domain of f is the set of all integers, and the image of f is the set of all perfect squares.

Next we introduce a special notation for functions.

Definition 24.8 (f W A! B) Let f be a function and let A and B be sets. We say that f is a function from

A to B provided domf D A and imf � B . In this case, we write f W A! B . We also say

that f is a mapping from A to B .

The notation f W A ! B is read aloud “f is a function from A to B .” The notation

f W A ! B makes three promises: First, f is a function. Second, domf D A. And third,

im f � B .

Mathspeak!

The notation f W A! B can be an entire sentence, an independent clause, or a noun phrase. In a

theorem, we might write, “If f W A! B, then . . . .” In this case, we would pronounce the symbols

as “If f is a function from A to B. . . .”

However, we may also write, “Let f W A! B . . . .” In this case, we would read the symbols as

“Let f be a function from A to B. . . .”

Example 24.9 Consider the sine function. This function is defined for every real number and returns a real

value. The domain of the sine function is all real numbers, and the image is the set Œ�1; 1� D
fx 2 R W �1 � x � 1g. We can write sin W R ! R because domsin D R and im sin � R. It

would also be correct to write sin W R! Œ�1; 1�.

To prove that f W A ! B (i.e., to prove that f is a function from A to B), use Proof

Template 19.

Proof Template 19 To show f W A! B.

To prove that f is a function from a set A to a set B:

� Prove that f is a function.
� Prove that domf D A.
� Prove that imf � B .
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Pictures of Functions

1 1 2 3 4

1

1 Graphs provide an excellent way to visualize functions whose inputs and outputs are real

numbers. For example, the figure shows the graph of the function f .x/ D sin x cos 3x. To

draw the graph of a function, we plot a point in the plane at coordinates .x; f .x// for every

x 2 domf .

Formally, the graph of a function is the set f.x; y/ W y D f .x/g. What is interesting is

that this set is the function! The function f is the set of all ordered pairs .x; y/ for which

y D f .x/. So to speak of “the graph of a function” is redundant! This is not bad. When we
Mathspeak!

Later in this book we use the word

graph in an entirely different way.

Here the word graph refers to the

diagram used to depict the relation

between one quantity (x) and

another (y D f .x/).

use the word graph in this context, we are conjuring up a geometric view of the function.

Graphs are helpful tools for understanding functions to and from the real numbers. To

verify that a picture represents a function, we can apply the vertical line test: Every vertical

line in the plane may intersect the graph of a function in at most one point. A vertical line may

not hit the graph twice; otherwise we would have two different points .x; y1/ and .x; y2/, both

on the graph of the function. This would mean that both .x; y1/; .x; y2/ 2 f with y1 6D y2.

And this is forbidden by the definition of function.

In discrete mathematics, we are particularly interested in functions to and from finite sets

(orN or Z). In such cases, traditional graphs of functions are either not helpful or nonsensical.

For example, let A be a finite set. We can consider the function f W 2A ! N defined by

f .x/ D jxj. (Alert: The vertical value bars in this context do not mean absolute value!) To

each subset x of A, the function f assigns its size. There is no practical way to draw this as a

graph on coordinate axes.

A
B

1

2

3

4

5

6

1

2

3

4

5

We have an alternative way to draw pictures of functions f W A ! B where A and B

are finite sets. Let A D f1; 2; 3; 4; 5; 6g and B D f1; 2; 3; 4; 5g and consider the function

f W A! B defined by

f D f.1; 2/; .2; 1/; .3; 2/; .4; 4/; .5; 5/; .6; 2/g :

A picture of f is created by drawing two sets of dots: one for A on the left and one for B on

the right. We draw an arrow from a dot a 2 A to a dot b 2 B just when .a; b/ 2 f —that is,

when f .a/ D b. From the picture, it is easy to see that im f D f1; 2; 4; 5g.
Now consider g defined by

g D f.1; 3/; .2; 1/; .2; 4/; .3; 2/; .4; 4/; .5; 5/g:

Is g a function from A D f1; 2; 3; 4; 5; 6g to B D f1; 2; 3; 4; 5g? There are two reasons why

A
B
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6
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g W A! B is false.

First, 6 2 A but 6 … domg. Thus domg 6D A. You can see this in the picture: There are

no arrows emanating from element 6.

Second, g is not a function (from any set to any set). Notice that .2; 1/; .2; 4/ 2 g which

violates Definition 24.1. You can see this in the picture as well: There are two arrows emanat-

ing from element 2.

If f is a function from A to B (f W A! B), its picture satisfies the following: Every dot

on the left (in A) has exactly one arrow leaving it, ending at the right (in B).

Counting Functions

Alternatively, we can count charts. In

how many ways can we replace the

question marks in the following chart

with elements from B?

x f .x/

1 ?

2 ?

:
:
:

:
:
:

a ?

The right-hand column is a length-a

list of elements chosen from the

b-element set B. There are ba ways

to complete this chart.

Let A and B be finite sets. How many functions from A to B are there? Without loss of

generality, we can choose A to be the set f1; 2; : : : ; ag and B to be the set f1; 2; : : : ; bg. Every
function f W A! B can be written out as

f D f.1; ‹/; .2; ‹/; .3; ‹/; : : : ; .a; ‹/g

where the ‹ entries are elements from B . In how many ways can we replace the ‹s with

elements in B? There are b choices for the element ‹ in .1; ‹/, and for each such choice, there

are b choices for the ‹ in .2; ‹/, etc., and finally b choices for the ‹ in .a; ‹/ given all the

previous choices. Thus, all told, there are ba choices. We have shown the following:

Proposition 24.10 Let A and B be finite sets with jAj D a and jBj D b. The number of functions from A to B

is ba.
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Example 24.11 Let A D f1; 2; 3g and B D f4; 5g. Find all functions f W A! B .

Solution: Proposition 24.10 tells that there are 23 D 8 such functions. They are

f.1; 4/; .2; 4/; .3; 4/g f.1; 5/; .2; 4/; .3; 4/g
f.1; 4/; .2; 4/; .3; 5/g f.1; 5/; .2; 4/; .3; 5/g
f.1; 4/; .2; 5/; .3; 4/g f.1; 5/; .2; 5/; .3; 4/g
f.1; 4/; .2; 5/; .3; 5/g f.1; 5/; .2; 5/; .3; 5/g:

In Section 10 we introduced the notation 2A for the set of all subsets of A. This notation

was a mnemonic for remembering that the number of subsets of an a-element set is 2a. Sim-

ilarly, there is a special notation for the set of all functions from A to B . The notation is BA.The notation BA stands for the set of

all functions f W A! B. This is a mnemonic for Proposition 24.10, because we can write
ˇ

ˇ

ˇ
B

A

ˇ

ˇ

ˇ
D jBjjAj:

In this book, we do not use this notation. Furthermore, people often find it confusing. It is

tempting to pronounce the symbols BA as “B to the A,” whereas the notation means the set

of functions from A to B .

Inverse Functions

A function is a special type of relation. Recall that in Section 14 we defined the inverse of a

relation R, denoted R�1, to be the relation formed from R by reversing all its ordered pairs.

Since a function, f , is a relation, we may also consider f �1. The problem we consider

here is: If f is a function from A to B , is f �1 a function from B to A?
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Example 24.12 Let A D f0; 1; 2; 3; 4g and B D f5; 6; 7; 8; 9g. Let f W A! B be defined by

f D f.0; 5/; .1; 7/; .2; 8/; .3; 9/; .4; 7/g;

so

f
�1 D f.5; 0/; .7; 1/; .8; 2/; .9; 3/; .7; 4/g:

Is f �1 a function from B to A? The answer is no for two reasons. First, f �1 is not a function.

Note that both .7; 1/ and .7; 4/ are in f �1. Second, domf �1 D f5; 7; 8; 9g 6D B . See the

figure.

In this example, f �1 is not a function. Let us examine why. Consulting Definition 24.1,

we observe that for f �1 to be a function, it must, first, be a relation. This is not an issue;

since f is a relation, so is f �1. Second, whenever .a; b/; .a; c/ 2 f �1, we must have b D c.

Restating this in terms of f , whenever .b; a/; .c; a/ 2 f , we must have b D c. This is what

went wrong in Example 24.12; we had .1; 7/; .4; 7/ 2 f , but 1 6D 4.

Pictorially, f �1 is not a function because there are two f -arrows entering element 7 on

the right.

Let us formalize this condition as a definition.

Mathspeak!

The term one-to-one is often written

as 1:1. Another word for a

one-to-one function is injection.

Definition 24.13 (One-to-one) A function f is called one-to-one provided that, whenever .x; b/; .y; b/ 2 f ,

we must have x D y. In other words, if x 6D y, then f .x/ 6D f .y/.

The function in Example 24.12 is not one-to-one because f .1/ D f .4/ but 1 6D 4.

Compare closely Definitions 24.13 (one-to-one) and 24.1 (function). The conditions are quite

similar.

Proposition 24.14 Let f be a function. The inverse relation f �1 is a function if and only if f is one-to-one.
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The proof is left to you (Exercise 24.15). While you are at it, also prove the following:

Proposition 24.15 Let f be a function and suppose f �1 is also a function. Then domf D imf �1 and im f D
domf �1.

It is common to want to prove that a function is one-to-one. Proof Template 20 gives

strategies for proving that a function is one-to-one.

Proof Template 20 Proving a function is one-to-one.

To show that f is one-to-one:

Direct method: Suppose f .x/ D f .y/. . . . Therefore x D y. Therefore f is one-to-

one.

Contrapositive method: Suppose x 6D y. . . . Therefore f .x/ 6D f .y/. Therefore f

is one-to-one.

Contradiction method: Suppose f .x/ D f .y/ but x 6D y. . . .)( Therefore f is

one-to-one.

Example 24.16 Let f W Z! Z by f .x/ D 3x C 4. Prove that f is one-to-one.

Proof. Suppose f .x/ D f .y/. Then 3xC 4 D 3yC 4. Subtracting 4 from both sides gives

3x D 3y. Dividing both sides by 3 gives x D y. Therefore f is one-to-one.

On the other hand, to prove that a function is not one-to-one typically requires us to

present a counterexample—that is, a pair of objects x and y with x 6D y but f .x/ D f .y/.

Example 24.17 Let f W Z! Z by f .x/ D x2. Prove that f is not one-to-one.

Proof. Notice that f .3/ D f .�3/ D 9, but 3 6D �3. Therefore f is not one-to-one.

A

B

For the inverse of a function also to be a function, it is necessary and sufficient that

the function be one-to-one. Now we consider a more focused question. Let f W A ! B .

We want to know when f �1 is a function from B to A. Recall that we had two difficulties

in Example 24.12. We have dealt with the first difficulty: f �1 needs to be a function. The

second difficulty was that there was an element in B that had no incoming arrow.
Mathspeak!

In standard English, the word onto is

a preposition. In mathematical

English, we use onto as an adjective.

Another word for an onto function is

surjection.

Consider the function f W A! B shown in the figure. Clearly f is one-to-one, so f �1

is a function. However, f �1 is not a function from B to A because there is an element b 2 B

for which f �1.b/ is undefined. For f �1 W B ! A, there must be an f -arrow pointing to

every element of B . Here is the careful way to say this:

Definition 24.18 (Onto) Let f W A! B . We say that f is onto B provided that for every b 2 B there is an

a 2 A so that f .a/ D b. In other words, im f D B .

The sentence “f W A! B is onto” is a promise that the following are true. First, f is a

function. Second, domf D A. And third, imf D B (see Exercise 24.12).
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Example 24.19 Let A D f1; 2; 3; 4; 5; 6g and B D f7; 8; 9; 10g. Let

f D f.1; 7/; .2; 7/; .3; 8/; .4; 9/; .5; 9/; .6; 10/g and

g D f.1; 7/; .2; 7/; .3; 7/; .4; 9/; .5; 9/; .6; 10/g:

Note that f W A ! B is onto because for each element b of B , we can find one or more

elements a 2 A such that f .a/ D b. It is also easy to check that im f D B .

However, g W A! B is not onto. Note that 8 2 B , but there is no a 2 A with g.a/ D 8.

Also, img D f7; 9; 10g 6D B .

The condition that f W A! B is onto can be expressed using the quantifiers 9 and 8 as

8b 2 B; 9a 2 A; f .a/ D b:

The condition that f is not onto can be expressed

9b 2 B;8a 2 A; f .a/ 6D b:

These ways of thinking about onto functions are formalized in Proof Template 21.

Proof Template 21 Proving a function is onto.

To show f W A! B is onto:

Direct method: Let b be an arbitrary element of B . Explain how to find/construct an

element a 2 A such that f .a/ D b. Therefore f is onto.

Set method: Show that the sets B and imf are equal.

Recall that Q stands for the set of

rational numbers.

Example 24.20 Let f W Q! Q by f .x/ D 3x C 4. Prove that f is onto Q.

Proof. Let b 2 Q be arbitrary. We seek an a 2 Q such that f .a/ D b. Let a D 1

3
.b � 4/.

(Since b is a rational number, so is a.) Notice that

f .a/ D 3
�

1

3
.b � 4/

�

C 4 D .b � 4/C 4 D b:

Therefore f W Q! Q is onto.

How did we ever “guess” that we should take a D 1

3
.b�4/? We didn’t guess; we worked

backward!

Let f W A ! B . In order for f �1 to be a function, it is necessary and sufficient that f

be one-to-one. Given that, in order for f �1 W B ! A, it is necessary for f to be onto B .

Otherwise, if f is not onto B , we can find a b 2 B such that f �1.b/ is undefined.

Theorem 24.21 Let A and B be sets and let f W A! B . The inverse relation f �1 is a function from B to A

if and only if f is one-to-one and onto B .

Proof. Let f W A! B .

()) Suppose f is one-to-one and onto B . We need to prove that f �1 W B ! A. We use

Proof Template 19.

� Since f is one-to-one, we know by Proposition 24.14 that f
�1 is a function.

� Since f is onto B , imf D B . By Proposition 24.15, domf �1 D B .
� Since the domain of f is A, by Proposition 24.15, im f �1 D A.
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Therefore f �1 W B ! A.

(() Suppose f W A! B and f �1 W B ! A. Since f �1 is a function, f is one-to-one

(Proposition 24.14). Since im f D domf �1 D B , we see that f is onto B .A function f W A! B that is both

kinds of “jection”— an injection and

a surjection—is called a bijection.

A function that is both one-to-one and onto has a special name.

Definition 24.22 (Bijection) Let f W A! B . We call f a bijection provided it is both one-to-one and onto.

Example 24.23 Let A be the set of even integers and let B be the set of odd integers. The function f W A! B

defined by f .x/ D x C 1 is a bijection.

Proof. We must prove that f is both one-to-one and onto. To see that f is one-to-one,

suppose f .x/ D f .y/ where x and y are even integers. Thus

f .x/ D f .y/ ) x C 1 D y C 1 ) x D y:

Hence f is one-to-one.

To see that f is onto B , let b 2 B (i.e., b is an odd integer). By definition, b D 2k C 1

for some integer k. Let a D 2k; clearly a is even. Then f .a/ D a C 1 D 2k C 1 D b, so f

is onto. Since f is both one-to-one and onto, f is a bijection.

Counting Functions, Again

Let A and B be finite sets with jAj D a and jBj D b. How many functions f W A ! B are

one-to-one? How many are onto?

Let’s look at two easy special cases. If jAj > jBj, then f cannot be one-to-one. Why?

Consider the function f W A ! B that we hope is one-to-one. Because f is one-to-one, for

distinct elements x; y 2 A, f .x/ and f .y/ are distinct elements of B . So let’s say the first b

elements of A are mapped by f to b different elements in B . After that, there are no further

elements in B to which we can map elements of A!

On the other hand, if jAj < jBj, then f cannot be onto. Why? There aren’t enough

elements in A to “cover” all the elements in B!

Let’s summarize these comments.

We explain why we call this

proposition the Pigeon Hole

Principle in the next section.

Proposition 24.24 (Pigeonhole Principle) Let A and B be finite sets and let f W A! B . If jAj > jBj, then f

is not one-to-one. If jAj < jBj, then f is not onto.

Stated in the contrapositive, if f W A! B is one-to-one, then jAj � jBj, and if f W A!
B is onto, then jAj � jBj. If f is both, we have the following:

Proposition 24.25 Let A and B be finite sets and let f W A! B . If f is a bijection, then jAj D jBj.

Let us return to the problem of counting those functions from an a-element set to a b-

element set that are one-to-one and those functions that are onto.

The good news is that we have solved these problems in previous sections of this book!

Consider the problem of counting one-to-one functions. Without loss of generality, sup-Counting one-to-one functions.

pose A D f1; 2; : : : ; ag and B D f1; 2; : : : ; bg. A one-to-one function from A to B is of the

form

f D f.1; ‹/; .2; ‹/; .3; ‹/; : : : ; .a; ‹/g

where the ‹s are filled in with elements of B without repetition. This is a list-counting problem

that we solved in Section 8.
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Now consider the problem of counting onto functions. Here we want to fill in the ‹s withCounting onto functions.

elements of B so that every element is used at least once. The number of length-a lists whose

elements come from B and use all the elements in B at least once was solved in Section 19.

Let us collect what we learned in those sections and summarize them in the following

result.

Theorem 24.26 Let A and B be finite sets with jAj D a and jBj D b.

.1/ The number of functions from A to B is ba.

.2/ If a � b, the number of one-to-one functions f W A! B is

.b/a D b.b � 1/ � � � .b � aC 1/ D bŠ

.b � a/Š
:

If a > b, the number of such functions is zero.

.3/ If a � b, the number of onto functions f W A! B is

b
X

jD0

.�1/
j

 

b

j

!

.b � j /
a
:

If a < b, the number of such functions is zero.

.4/ If a D b, the number of bijections f W A ! B is aŠ. If a 6D b, the number of such

functions is zero.

Recap

We introduced the concept of function, as well as the notation f W A ! B . We investigated

when the inverse relation of a function is itself a function. We studied the properties one-to-

one and onto. We counted functions between finite sets.

24 Exercises 24.1. For each of the following relations, please answer these questions:

(1) Is it a function? If not, explain why and stop. Otherwise, continue with the remain-

ing questions.

(2) What are its domain and image?

(3) Is the function one-to-one? If not, explain why and stop. Otherwise, answer the

remaining question.

(4) What is its inverse function?

a. f.1; 2/; .3; 4/g.
b. f.x; y/ W x; y 2 Z; y D 2xg.
c. f.x; y/ W x; y 2 Z; x C y D 0g.
d. f.x; y/ W x; y 2 Z; xy D 0g.
e. f.x; y/ W x; y 2 Z; y D x2g.
f. ;.
g. f.x; y/ W x; y 2 Q; x2 C y2 D 1g.
h. f.x; y/ W x; y 2 Z; xjyg.
i. f.x; y/ W x; y 2 N; xjy and yjxg.
j. f.x; y/ W x; y 2 N;

�

x

y

�

D 1g.
24.2. Let A D f1; 2; 3g and B D f4; 5g. Write down all functions f W A ! B . Indicate

which are one-to-one and which are onto B .

24.3. Let A D f1; 2g and B D f3; 4; 5g. Write down all functions f W A ! B . Indicate

which are one-to-one and which are onto B .

24.4. Let A D f1; 2g and B D f3; 4g. Write down all functions f W A! B . Indicate which

are one-to-one and which are onto B .

24.5. For each of the following functions, find f .2/.

a. f D f.x; y/ W x; y 2 Z; x C y D 0g.
b. f D f.1; 2/; .2; 3/; .3; 2/g.
c. f W N! N by f .x/ D .x C 1/.xC1/.
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d. f D f1; 2; 3; 4; 5g � f1g.
e. f W N! N by f .n/ D nŠ.

24.6. For each of the following functions, f , find the image of the function, im f .

a. f W Z! Z defined by f .x/ D 2x C 1.

b. f W Z! Z defined by f .x/ D jxj.
c. f W Z! Z defined by f .x/ D 1 � x.

d. f W R! R defined by f .x/ D 1=.1C x2/.

e. f W R! R defined by f .x/ D x2.

f. f W Œ�1; 1�! R defined by f .x/ D
p

1 � x2.The notation Œ�1; 1� stands for the

closed interval from �1 to 1; that is

Œ�1; 1� D fx 2 R W �1 � x � 1g.
24.7. Consider a function f W A! B .

a. How do you prove that f is not one-to-one?

b. How do you prove that f is not onto?

24.8. Let A D f1; 2; 3; 4g and B D f5; 6; 7g. Let f be the relation

f D f.1; 5/; .2; 5/; .3; 6/; .‹; ‹/g

where the two question marks are to be determined by you. Your job is to find replace-

ments for .‹; ‹/ so that each of the following is true. [Three different answers—one for

each of (a), (b), and (c)—are expected. The ordered pair .‹; ‹/ should be a member of

A � B .]

a. The relation f is not a function.

b. The relation f is a function from A to B but is not onto B .

c. The relation f is a function from A to B and is onto B .

24.9. Consider a function f W R ! R and consider a plot of its graph drawn in the plane.

The properties one-to-one and onto can be related to geometric properties of this graph.

Specifically, complete the following two sentences (and provide a proof of your state-

ment):

a. The function f is one-to-one if and only if every horizontal line . . . .

b. The function f is onto R if and only if every horizontal line . . . .

24.10. Let a and b be real numbers and consider the function f W R! R defined by f .x/ D
ax C b. For which values of a and b is f one-to-one? . . . onto R?

24.11. Let a, b, and c be real numbers and consider the function f W R ! R defined by

f .x/ D ax2 C bx C c. For which values of a, b, and c is f one-to-one? . . . onto R?

24.12. Consider the following two sentences about a function f :Despite the fact that the phrase “f is

onto” does not make sense in

isolation, mathematicians often write

it. It makes sense if we are thinking

about a particular pair of sets A and

B with f W A! B. In this context,

“f is onto” means “f is onto B.”

(a) f is onto.

(b) f W A! B is onto.

Explain why (a) does not make sense but (b) does.

24.13. The sine function is a function to and from the real numbers; that is sin W R ! R. The

sine function is neither one-to-one nor onto. Yet the arc sine function, sin�1, is known

as its inverse function.

Explain.

24.14. For each of the following, determine whether the function is one-to-one, onto, or both.

Prove your assertions.

a. f W Z! Z defined by f .x/ D 2x.

b. f W Z! Z defined by f .x/ D 10C x.

c. f W N! N defined by f .x/ D 10C x.

d. f W Z! Z defined by

f .x/ D
(

x

2
if x is even

x�1

2
if x is odd:

e. f W Q! Q defined by f .x/ D x2.

24.15. Prove Propositions 24.14 and 24.15.

24.16. Let A and B be finite sets and let f W A ! B . Prove that any two of the following

statements being true implies the third.

a. f is one-to-one.

b. f is onto.

c. jAj D jBj.
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24.17. Give an example of a set A and a function f W A ! A where f is onto but not

one-to-one.

Give an example where f is one-to-one but not onto.

Are your examples contradictions to the previous exercise?

24.18. Suppose f W A! B is a bijection. Prove that f �1 W B ! A is a bijection as well.

24.19. Let n be a positive integer. Let An be the set of positive divisors of n that are less thanp
n and let Bn be the set of positive divisors of n that are greater than

p
n. That is:

An D
˚

d 2 N W d jn; d <
p

n
	

and Bn D
˚

d 2 N W d jn; d >
p

n
	

:

For example, if n D 24, then
p

24 � 4:899 and so A24 D f1; 2; 3; 4g and B24 D
f6; 8; 12; 24g.
a. Find a bijection f W An ! Bn. This implies that jAnj D jBnj.
b. Prove that a positive integer has an odd number of positive divisors if and only if n

is a perfect square.

c. Prove the conjecture you made for Exercise 4.12e.

Note: The case n D 1 is trivial as A1 D B1 D ;. Also 1 is a perfect square and

has an odd number of positive divisors (just itself).

24.20. Let A be an n-element set and let k 2 N. Howmany functions f W A! f0; 1g are there
for which there are exactly k elements a in A with f .a/ D 1?

24.21. Let f be a function. We say that f is two-to-one provided for each b 2 im f there are

exactly two elements a1; a2 2 domf such that f .a1/ D f .a2/ D b.

For a positive integer n, let A be a 2n-element set and B be an n-element set. How

many functions f W A! B are two-to-one?

24.22. Let A be an n-element set and let i; j; k 2 N with i C j C k D n. How many functions

f W A! f0; 1; 2g are there for which there are exactly i elements a 2 A with f .a/ D
0, exactly j elements a 2 A with f .a/ D 1, and exactly k elements a 2 A with

f .a/ D 2.

24.23. Let f W A ! B be a function. The notation f .�/ is only defined when the object

between the parentheses is an element of the set A. However, it is often useful to extend

(abuse?) this notation and place a subset of A inside the parentheses. If X � A, then

f .X/ stands for the set of all values f takes when applied to elements of X ; that is:We call f .X/ the image of X by f .

f .X/ D ff .x/ W x 2 Xg

For example, suppose f W Z ! Z is defined by f .x/ D x2. Let X D f1; 3; 5g. Then
f .X/ D ff .1/; f .3/; f .5/g D f1; 9; 25g.

Please do:

a. Let f W Z! Z by f .x/ D jxj. If X D f�1; 0; 1; 2g, find f .X/.

b. Let f W R! R by f .x/ D sin x. If X D Œ0; ��, find f .X/.

c. Let f W R! R by f .x/ D 2x . If X D Œ�1; 1�, find f .X/.

d. Let f W Z! Z by f .x/ D 3x � 1. What is f .f1g/? Is it the same as f .1/?

e. Let f W A! B be a function. What is f .A/?

24.24. Let f be a function. The notation f �1.�/ should only be used (a) if f is an invertible

function and (b) then the object between the parentheses is an element of the image of

f . However, in the same spirit as Exercise 24.23, we can extend this notation.

Suppose f W A ! B is a function and let Y be a set. Then f �1.Y / is the set ofWe call f �1.Y / the preimage of Y

by f . In case Y is just a single

value, Y D fyg, then some authors

will write f �1.y/ to stand for the

set fx 2 A W f .x/ D ag. This is
horribly abusive; it is much better to

write f �1.fyg/.

all elements of A that are mapped to a value in Y . That is,

f
�1

.Y / D fx 2 A W f .x/ 2 Y g:
For example, suppose f W Z! Z by f .x/ D x2 and let Y D f4; 9g. Then f �1.Y / D
f�3;�2; 2; 3g. Notice that in this example f is not one-to-one, and hence not invertible.

Still, the notation f �1 is permitted in this context.

Please do:

a. Let f W Z! Z by f .x/ D jxj. If Y D f1; 2; 3g find f �1.Y /.

b. Let f W R! R by f .x/ D x
2. If Y D Œ1; 2�, find f

�1
.Y /.

c. Let f W R! R by f .x/ D 1=.1C x2/. Find f �1.f 1

2
g/.

d. Let f W R! R by f .x/ D 1=.1C x2/. Find f �1.f�1

2
g/.
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25 The Pigeonhole Principle

Proposition 24.24 is called the Pigeonhole Principle. It asserts that if A and B are finite sets

and if jAj > jBj, then there can be no one-to-one function f W A ! B . The reason is clear:

There are too many elements in A. What, you might ask, does this result have to do with

pigeons?

Imagine that we own a flock of pigeons and that the pigeons live in a coop. The pigeon

coop is divided into separate compartments called holes where the pigeons nest.

Suppose we own p pigeons and our coop has h holes. If p � h, then the coop is large

enough so that pigeons do not have to share holes. However, if p > h, then there are not

enough holes to give every pigeon a private room; some pigeons will have to share quarters.

There are a number of interesting mathematical problems that can be solved by the Pi-

geonhole Principle. Here we present some examples.

Proposition 25.1 Let n 2 N. Then there exist positive integers a and b, with a 6D b, such that na � nb is

divisible by 10.

For example, if n D 17, then we can subtract

176 D 24,137,569

� 172 D 289

24,137,280

which is divisible by 10.

To prove this result, we use the well-known fact that a natural number is divisible by 10

if and only if its last digit is a zero. A more careful approach would use ideas developed later

(in Section 35).

Proof. Consider the 11 natural numbers

n
1

n
2

n
3 � � � n

11
:

The ones digits of these numbers take on values in the set f0; 1; 2; : : : ; 9g. Since there are only
ten possible ones digits, and we have 11 different numbers, two of these numbers (say na and

nb) must have the same ones digit. Therefore na � nb is divisible by 10.

The next example comes from geometry. Every point in the plane can be expressed in

terms of its x- and y-coordinates. A point whose coordinates are both integers is called a

lattice point. For example, the points .1; 2/, .�3; 8/, and the origin are lattice points, but

.1:3; 0/ is not.

Proposition 25.2 Given five distinct lattice points in the plane, at least one of the line segments determined by

these points has a lattice point as its midpoint.

In other words, suppose A, B , C , D, and E are distinct lattice points. There are
�

5

2

�

D 10

A

B

C

D

E

different line segments we can form whose endpoints are in the set fA; B; C; D; Eg. Propo-
sition 25.2 asserts that the midpoint of one (or more) of these line segments must also be a

lattice point. For example, consider the five points in the figure. The midpoint of segment AD

is a lattice point.

To prove this result, we recall the midpoint formula from coordinate geometry. Let .a; b/

and .c; d / be two points in the plane (not necessarily lattice points). The midpoint of the line

segment determined by these points can be found using the following formula:

�

aC c

2
;

b C d

2

�

:
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Proof (of Proposition 25.2)

We are given five distinct lattice points in the plane. The various coordinates are integers and

hence are either even or odd. Given a lattice point’s coordinates, we can classify it as one of

the following four types:

.even; even/ .even; odd/ .odd; even/ .odd; odd/

depending on the parity of its coordinates. Notice that we have five lattice points, but only four

parity categories. Therefore (by the Pigeonhole Principle) two of these points must have the

same parity type. Suppose these two points have coordinates .a; b/ and .c; d /. The midpoint

of this segment is at coordinates
�

aCc

2
;

bCd

2

�

. Since a and c have the same parity, a C c is

even, and so aCc

2
is an integer. Likewise bCd

2
is an integer. This proves that the midpoint is a

lattice point.

The third example concerns sequences of integers. A sequence is simply a list. Given a

sequence of integers, a subsequence is a list formed by deleting elements from the original list

and keeping the remaining elements in the same order in which they originally appeared.

For example, the sequence

1 9 10 8 3 7 5 2 6 4

contains the subsequence

9 8 6 4:

Notice that the four numbers in the subsequence are in decreasing order, and so we call it a

decreasing subsequence. Similarly, a subsequence whose elements are in increasing order is

called an increasing subsequence.

We claim that every sequence of ten distinct integers must contain a subsequence of

four elements that is either increasing or decreasing. The sequence above has a decreasing

subsequence of length four and also an increasing subsequence of length four (find it). The

sequence

10 9 8 7 6 5 4 3 1 2

has several length-four decreasing subsequences, but no length-four increasing subsequence.

A sequence that is either increasing or decreasing is called monotone. Our claim is that

every sequence of ten distinct integers must contain a monotone, length-four subsequence.

This claim is a special case of a more general result.

Theorem 25.3 (Erdős-Szekeres) Let n be a positive integer. Every sequence of n2 C 1 distinct integers

must contain a monotone subsequence of length nC 1.

Our example (sequences of length ten) is the case n D 3 of the Erdős-Szekeres Theorem.

Proof. Let n be a positive integer. Suppose, for the sake of contradiction, that there is a

sequence S of n2 C 1 distinct integers that does not contain a monotone subsequence of

length nC 1. In other words, all the monotone subsequences of S have length n or less.

Let x be an element of the sequence S . We label x with a pair of integers .ux; dx/. The

integer ux (u for up) is the length of a longest increasing subsequence of S that starts at x.

Similarly, dx (d for down) is the length of a longest decreasing subsequence of S that starts

at x.

For example, the sequence

1 9 10 8 3 7 5 2 6 4

would be labeled as follows:

1
.4;1/

9
.2;5/

10
.1;5/

8
.1;4/

3
.3;2/

7
.1;3/

5
.2;2/

2
.2;1/

6
.1;2/

4
.1;1/
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Element 4 is the last element in the sequence, so it gets the label .1; 1/—the only sequences

starting at 4 have length one. Element 9 has label .2; 5/ because the length of a longest increas-

ing subsequence starting at 9 is two: .9; 10/. The length of a longest decreasing subsequence

starting at 9 is five: .9; 8; 7; 5; 4/ or .9; 8; 7; 6; 4/.

Returning to the proof, we make the following observations.

� Because there are no monotone subsequences of length nC 1 (or longer), the labels on

the sequence S use only the integers 1 through n.

Hence, we use at most n2 labels (from .1; 1/ to .n; n/).
� We claim that two distinct elements of the sequence cannot have the same label.

To see why, suppose x and y are distinct elements of the sequence with x appearing

before y. Their labels are .ux; dx/ and .uy ; dy/. Because the numbers on the list are

distinct, either x < y or x > y.

If x < y, then we claim ux > uy : We know there is an increasing subsequence of

length uy starting at y. If we insert x at the beginning of this subsequence, we get an

increasing subsequence of length uy C 1. Thus ux � uy C 1, or, equivalently, ux > uy .

Thus x and y have different labels.

Similarly, if x > y, then we have dx > dy and we again conclude that x and y have

different labels.

However, these two observations lead to a contradiction. There are only n2 different labels,

and S has n2 C 1 elements. By the Pigeonhole Principle, two of the elements must have the

same label. However, this contradicts the second observation that no two elements can have

the same label.)( Therefore S must have a monotone subsequence of length nC 1.

Cantor’s Theorem

The Pigeonhole Principle asserts that if jAj > jBj, there can be no one-to-one function f W
A! B . The flip side of this coin is that if jAj < jBj, there can be no onto function f W A!
B . Therefore, if f W A! B is both one-to-one and onto, then jAj D jBj.

These assertions are meaningful only if A and B are finite sets. Of course, it is possible

to find bijections between infinite sets. For example, here is a bijection fromN onto Z. Define

f W N! Z by

f .n/ D
(

�n=2 if n is even and

.nC 1/=2 if n is odd:

It is a bit awkward to see that f is a bijection from N onto Z just by staring at these formulas.

However, if we compute a few values of f (for some small values of n), the picture snaps into

focus.

n 0 1 2 3 4 5 6 7 8 9

f .n/ 0 1 �1 2 �2 3 �3 4 �4 5

Clearly, f is a one-to-one function (every integer appears at most once in the lower row of

the chart) and is onto Z (every integer is somewhere on the lower row). See Exercise 25.16.

Since there is a bijection fromN to Z, it makes a little bit of sense to write jNj D jZj. This
means that N and Z are “just as infinite.” This often strikes people as counterintuitive because

Z ought to be “twice as infinite” asN. However, the bijection shows that we can match up—in

a one-to-one fashion—the elements of the two sets.

You might be tempted to reconcile this in your mind by saying jZj D jNj because both
are infinite. This is not correct. The notation jZj D jNj should not be used because the sets are
infinite; however, the meaning we are trying to convey is that there is a bijection between N

andZ. In this sense, the two infinite sets have the same size despite the fact that Z superficially

appears to be “twice as big” as N.

Is it possible for two infinite sets not to have the same “size”? At first, this seems like a

silly question. If the two sets are both infinite, then they are both infinite—end of story! But

this doesn’t quite answer the question.
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It is reasonable to define two sets as having the same size provided there is a bijection

between them. In this sense, N and Z have the same size. Do all infinite sets have the same

size? The surprising answer to this question is no.

We prove that Z and 2Z (the set of integers and the set of all subsets of the integers) do

not have the same size. Here is the general result:

Theorem 25.4 (Cantor) Let A be a set. If f W A! 2A, then f is not onto.

If A is a finite set, this result is easy. If jAj D a, then j2Aj D 2a and we know that a < 2a

(see Exercise 21.3). Since 2A is a larger set, there can be no onto function f W A! 2A. This

argument, however, applies only to finite sets. Cantor’s Theorem applies to all sets.

Proof. Let A be a set and let f W A ! 2A. To show that f is not onto, we must find a

B 2 2A (i.e., B � A) for which there is no a 2 A with f .a/ D B . In other words, B is a set

that f “misses.” To this end, let

Since f .x/ is a set, indeed a subset

of A, the condition x … f .x/ makes

sense.

B D
˚

x 2 A W x … f .x/
	

:

We claim there is no a 2 A with f .a/ D B .

Suppose, for the sake of contradiction, there is an a 2 A such that f .a/ D B . We ponder:

Is a 2 B?

� If a 2 B , then, since B D f .a/, we have a 2 f .a/. So, by definition of B , a … f .a/;

that is, a … B .)(
� If a … B D f .a/, then, by definition of B , a 2 B .)(

Both a 2 B and a … B lead to contradictions, and hence our supposition [there is an a 2 A

with f .a/ D B] is false, and therefore f is not onto.

Example 25.5 We illustrate the proof of Theorem 25.4 with a specific example. Let A D f1; 2; 3g. Let
f W A! 2A as defined in the following chart.

a f .a/ a 2 f .a/?

1 f1; 2g yes

2 f3g no

3 ; no

Now B D fx 2 A W x … f .x/g. Since 1 2 f .1/, but 2 … f .2/ and 3 … f .3/, we have

B D f2; 3g. Notice that there is no a 2 A with f .a/ D B .

The implication of Cantor’s Theorem is that jZj 6D j2Zj. In a correct sense 2Z is more

infinite than Z. Cantor developed these notions by creating a new set of numbers “beyond”

the natural numbers; he called these numbers transfinite cardinals. The smallest infinite sets,

Cantor proved, have the same size as N. The size of N is denoted by the transfinite number

named @0 (aleph null).

Recap

There cannot be a one-to-one function from a set to a smaller set; this fact is known as the

Pigeonhole Principle. We illustrated how this fact can be used in proofs. We also know that

there cannot be a function from a set onto a larger set. We showed that for any set A, the set

2
A is larger, even for infinite sets A.

25 Exercises 25.1. Let N be a positive integer. Explain why if N is at least ten billion, then two of its digits

must be the same.

By the way: What is the largest integer that does not have a repeated digit?

25.2. How large a group of people do we need to consider to be certain that two members of

the group have the same birthday (month and day)?
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25.3. How large a group of people do we need to consider to be certain that three members

of the group have the same initials (first, middle, last)?

25.4. In any typical large city, there are (at least) two women with exactly the same numberBy large city we mean with a half

million inhabitants or more. of hairs on their heads. Explain why.

25.5. Let .a1; a2; a3; a4; a5/ be a sequence of five distinct integers. We call such a sequence

increasing if a1 < a2 < a3 < a4 < a5 and decreasing if a1 > a2 > a3 > a4 >

a5. Other sequences may have a different pattern of <s and >s. For the sequence

.1; 5; 2; 3; 4/ we have 1 < 5 > 2 < 3 < 4. Different sequences may have the same pat-

tern of <s and >s between their elements. For example, .1; 5; 2; 3; 4/ and .0; 6; 1; 3; 7/

have the same pattern of <s and >s as illustrated here:

1 < 5 > 2 < 3 < 4

l l l l
0 < 6 > 1 < 3 < 7

Given a collection of 17 sequences of five distinct integers, prove that 2 of them have

the same pattern of <s and >s.

25.6. Two Social Security numbers (see Exercise 8.12) match zeros if a digit of one number

is zero iff the corresponding digit of the other is also zero. In other words, the zeros in

the two numbers appear in exactly the same positions. For example, the Social Security

numbers 120-90-1109 and 430-20-5402 have matching zeros.

Prove: Given a collection of 513 Social Security numbers, there must be two that

match zeros.

25.7. Given a set of seven distinct positive integers, prove that there is a pair whose sum or

whose difference is a multiple of 10.

You may use the fact that if the ones digit of an integer is 0, then that integer is a

multiple of 10.

25.8. The squares of an 8 � 8 chess board are colored black or white. For this problem, an

L-region is a collection of 5 squares in the shape of a capital L. Such a region includes

a square (the corner of the L) together with the two squares above and the two squares

to the right. Two L-regions are shown in the figure.

Prove that no matter how we color the chess board, there must be two L-regions

that are colored identically (as illustrated by the two L-regions in the figure).

25.9. Consider a square whose side has length one. Suppose we select five points from this

square. Prove that there are two points whose distance is at most
p

2=2.

25.10. Show that Proposition 25.2 is best possible by finding four lattice points in the plane

such that none of their midpoints are lattice points.

25.11. Find and prove a generalization of Proposition 25.2 to three dimensions.

25.12. Find a sequence of nine distinct integers that does not contain a monotone subsequence

of length four.

Generalize your construction by showing how to construct (for every positive inte-

ger n) a sequence of n2 distinct integers that does not contain a monotone subsequence

of length nC 1.

25.13. Let a1; a2; a3; : : : ; a1001 be a sequence of integers. Prove that it must contain a sub-

sequence of length 11 that is (a) increasing, (b) decreasing, or (c) constant. In other

words, we can find indices i1 < i2 < � � � < i11 such that one of the following is true:

ai1
< ai2

< ai3
< � � � < ai11

ai1
> ai2

> ai3
> � � � > ai11

ai1
D ai2

D ai3
D � � � D ai11

Next, create a sequence of only 1000 integers that does not contain a subsequence that

is increasing, decreasing, or constant.

25.14. Write a computer program that takes as its input a sequence of distinct integers and

returns as its output the length of a longest monotone subsequence.

25.15. Ten points are placed in the plane with no two on the same horizontal line and no two

on the same vertical line. Prove that there must be four points that can be joined to give

an upward path (as viewed from left to right) or four points that can joined to give a

downward path. See the figure.
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25.16. Let f W N! Z by

f .n/ D
(

�n=2 if n is even and

.nC 1/=2 if n is odd:

Prove that f is a bijection.

25.17. Let E denote the set of even integers. Find a bijection between E and Z.

25.18. Let A be a nonempty set. Prove that if f W 2A ! A then f is not one-to-one.

25.19. In this problem we show that there are “more” real numbers than there are natural

numbers. To begin, we define a function f from subsets ofN to R; that is, f W 2N ! R.

Let A be a subset of N. We put

f .A/ D
X

a2A

10
�a

:

For example, if A D f1; 2; 4g, then

f .A/ D 10
�1 C 10

�2 C 10
�4

which equals 0.1101 in decimal notation.

a. Suppose A is the set of odd natural numbers. What is f .A/? Express your answer

both as a decimal and as a simple fraction.

b. Show that f is one-to-one.

From Cantor’s Theorem (Theorem 25.4) we know there are “fewer” natural numbers

than subsets of natural numbers, and from this problem there are “at least as many” real

numbers as there are subsets of N. In symbols:

jNj <
ˇ

ˇ2
N
ˇ

ˇ � jRj

and so there are “fewer” natural numbers than real numbers. In fact, one can show there

is a bijection between 2
N and R, so the � above can be replaced by an D.

26 Composition

Just as there are operations (e.g., C and �) for combining integers and there are operations

for combining sets (e.g., [ and \), there is a natural operation for combining functions.

Definition 26.1 (Composition of functions) Let A, B , and C be sets and let f W A ! B and g W B ! C .

Then the function g ı f is a function from A to C defined by

.g ı f /.a/ D g
�

f .a/
�

where a 2 A. The function g ı f is called the composition of g and f .

Example 26.2 Let A D f1; 2; 3; 4; 5g, B D f6; 7; 8; 9g, and C D f10; 11; 12; 13; 14g. Let f W A ! B and

B

6

7

8

9

A

1

2

3

4

C

11

12

13

10

5 14

1

2

3

4

11

12

13

10

5 14

f g

g f

g W B ! C be defined by

f D f.1; 6/; .2; 6/; .3; 9/; .4; 7/; .5; 7/g and g D f.6; 10/; .7; 11/; .8; 12/; .9; 13/g:

Then .g ı f / is the function

.g ı f / D f.1; 10/; .2; 10/; .3; 13/; .4; 11/; .5; 11/g:

For example,

.g ı f /.2/ D g
�

f .2/
�

D gŒ6� D 10:

So .2; 10/ 2 g ı f ; that is, .g ı f /.2/ D 10.
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Example 26.3 Let f W Z! Z by f .x/ D x2 C 1 and g W Z! Z by g.x/ D 2x � 3. What is .g ı f /.4/?

We calculate .g ı f /.4/ D gŒf .4/� D g.42 C 1/ D g.17/ D 2 � 17 � 3 D 31. (See the

figure.)

In general,

.g ı f /.x/ D gŒf .x/�

D g
�

x
2 C 1

�

D 2
�

x
2 C 1

�

� 3

D 2x
2 C 2 � 3

D 2x
2 � 1:

Some comments:

� The notation gıf means that we do f first and then g. It may seem strange that although

we evaluate f first, we write its symbol after g. Why?When we apply the function .gıf /

to an element a, as in

.g ı f /.a/

the letter f is closer to a and “hits” it first:

.g ı f /.a/ �! g
�

f .a/
�

:

� The domain of g ı f is the same as the domain of f :

dom.g ı f / D domf:

� In order for g ı f to make sense, every output of f must be an acceptable input to g.

Properly said, we need im f � domg. The requirements f W A ! B and g W B ! C

ensure that the functions fit together when we form g ı f .

For the functions in Example 26.2, f ı g is undefined because g.6/ D 10, but

10 … domf .
� It is possible that g ı f and f ı g both make sense (are defined). In this situation, it may

be the case that f ı g 6D g ı f (are different functions).

Example 26.4 (g ı f 6D f ı g) Let A D f1; 2; 3; 4; 5; 6g and let f W A! A and g W A! A be defined by

f D f.1; 1/; .2; 1/; .3; 1/; .4; 1/; .5; 1/g and

g D f.1; 5/; .2; 4/; .3; 3/; .4; 2/; .5; 1/g:

Then g ı f and f ı g are as follows:

g ı f D f.1; 5/; .2; 5/; .3; 5/; .4; 5/; .5; 5/g and

f ı g D f.1; 1/; .2; 1/; .3; 1/; .4; 1/; .5; 1/g:

Thus g ı f 6D f ı g.

Example 26.5 Recall the functions f and g from Example 26.3: f .x/ D x2 C 1 and g.x/ D 2x � 3. For

these, we have

.g ı f /.4/ D gŒf .4/� D g.17/ D 31 and

.f ı g/.4/ D f Œg.4/� D f .5/ D 26:

Therefore g ı f 6D f ı g.

f (x) = x2 + 1

4

g(x) = 2x − 3

17

31
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More generally,

.g ı f /.x/ D gŒf .x/� D gŒx
2 C 1�

D 2Œx
2 C 1� � 3 D 2x

2 � 1 and

.f ı g/.x/ D f Œg.x/� D f Œ2x � 3�

D Œ2x � 3�
2 C 1

D 4x
2 � 12x C 10:

Therefore g ı f 6D f ı g.

Therefore function composition does not satisfy the commutative property. It does, how-

ever, satisfy the associative property.

Proposition 26.6 Let A, B , C , and D be sets and let f W A! B , g W B ! C , and h W C ! D. Then

h ı .g ı f / D .h ı g/ ı f:

This proposition asserts that two functions, h ı .g ı f / and .h ı g/ ı f , are the same

function. Before we begin this proof, let us pause to consider: How do we prove two functions

are the same? We can go back to basics and recall that functions are relations, and relations in

turn are sets of ordered pairs. We can then follow Proof Template 5 to show that the sets are

equal.

However, it is simpler if we show that the two functions have the same domain, and for

every element in their common domain, they produce the same value. This implies that the

two sets are the same (see Exercise 26.2). This is summarized in Proof Template 22.

Proof Template 22 Proving two functions are equal.

Let f and g be functions. To prove f D g, do the following:

� Prove that domf D domg.
� Prove that for every x in their common domain, f .x/ D g.x/.

We now proceed with the proof of Proposition 26.6.

Proof. Let f W A ! B , g W B ! C , and h W C ! D. We seek to prove h ı .g ı f / D
.h ı g/ ı f .

First, we check that the domains of h ı .g ı f / and .h ı g/ ı f are the same. Earlier we

noted that dom.g ı f / D domf . Applying this fact to the current situation, we have

domŒh ı .g ı f /� D dom.g ı f / D domf D A and

domŒ.h ı g/ ı f � D domf D A

so both functions have the same domain, A.

Second, we check that for any a 2 A, the two functions produce the same value. Let

a 2 A be arbitrary. We compute

Œh ı .g ı f /�.a/ D h
�

.g ı f /.a/
�

D h
�

gŒf .a/�
�

and Œ.h ı g/ ı f �.a/ D .h ı g/Œf .a/�

D h
�

gŒf .a/�
�

:

Hence h ı .g ı f / D .h ı g/ ı f .
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Identity Function

The integer 1 is the identity element for multiplication, and ; is the identity element for union.

What serves as an identity element for composition? There is no single identity element;

instead we have many.

Definition 26.7 (Identity function) Let A be a set. The identity function on A is the function idA whose

domain is A, and for all a 2 A, idA.a/ D a. In other words,

idA D f.a; a/ W a 2 Ag:

The reason we call idA the identity function is the following:

Proposition 26.8 Let A and B be sets. Let f W A! B . Then

f ı idA D idB ıf D f:

Proof. We need to show that the functions f ı idA, idB ıf , and f are all the same. We use

Proof Template 22.

Consider f ı idA and f . We have

dom.f ı idA/ D dom idA D A D domf

so they have the same domain. Let a 2 A. We calculate

.f ı idA/.a/ D f .idA.a// D f .a/

so f ı idA and f give the same value for all a 2 A. Therefore f ı idA D f .

The argument that idB ıf D f is nearly the same (see Exercise 26.5).

Just as multiplying a nonzero rational number by its reciprocal gives 1, composing a

function with its inverse gives an identity function.

Proposition 26.9 Let A and B be sets and suppose f W A! B is one-to-one and onto. Then

f ı f
�1 D idB and f

�1 ı f D idA :

Please prove this (Exercise 26.6).

Recap

In this section we studied the composition of functions and identity functions.

26 Exercises 26.1. We list several pairs of functions f and g. For each pair, please do the following:
� Determine which of g ı f and f ı g is defined.
� If one or both are defined, find the resulting function(s).
� If both are defined, determine whether g ı f D f ı g.

a. f D f.1; 2/; .2; 3/; .3; 4/g and g D f.2; 1/; .3; 1/; .4; 1/g.
b. f D f.1; 2/; .2; 3/; .3; 4/g and g D f.2; 1/; .3; 2/; .4; 3/g.
c. f D f.1; 2/; .2; 3/; .3; 4/g and g D f.1; 2/; .2; 0/; .3; 5/; .4; 3/g.
d. f D f.1; 4/; .2; 4/; .3; 3/; .4; 1/g and g D f.1; 1/; .2; 1/; .3; 4/; .4; 4/g.
e. f D f.1; 2/; .2; 3/; .3; 4/; .4; 5/; .5; 1/g and g D f.1; 3/; .2; 4/; .3; 5/; .4; 1/; .5; 2/g.
f. f .x/ D x

2 � 1 and g.x/ D x
2 C 1 (both for all x 2 Z).

g. f .x/ D x C 3 and g.x/ D x � 7 (both for all x 2 Z).

h. f .x/ D 1 � x and g.x/ D 2 � x (both for all x 2 Q).

i. f .x/ D 1

x
for x 2 Q except x D 0 and g.x/ D x C 1 for all x 2 Q.

j. f D idA and g D idB where A � B but A 6D B .
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26.2. Consider functions f and g. Prove that f D g (as sets) if and only if domf D
domg and for every x in their common domain, f .x/ D g.x/. This justifies Proof

Template 22.

26.3. Let A and B be sets. Prove that A D B if and only if idA D idB .

26.4. What is the difference between the identity function defined on a set A and the is-equal-

to relation defined on A?

26.5. Complete the proof of Proposition 26.8.

26.6. Prove Proposition 26.9.

26.7. Suppose A and B are sets, and f and g are functions with f W A! B and g W B ! A.

Prove: If g ı f D idA and f ı g D idB , then f is invertible and g D f �1.

Note: This result is a converse to Proposition 26.9.

26.8. Suppose f W A! B is a bijection. Explain why the following are incorrect:

f ı f
�1 D idA and f

�1 ı f D idB :

26.9. Suppose A, B , and C are sets and f W A! B and g W B ! C . Prove the following:

a. If f and g are one-to-one, so is g ı f .

b. If f and g are onto, so is g ı f .

c. If f and g are bijections, so is g ı f .

26.10. Find a pair of functions f and g, from set A to itself, such that f ı g D g ı f .

Any of the following will work:
� Choose f and g to be the same function.
� Choose f or g to be idA.
� Choose g D f �1.

Those are too easy. Find another example.

26.11. Let A be a set and f a function with f W A! A.

a. Suppose f is one-to-one. Must f be onto?

b. Suppose f is onto. Must f be one-to-one?

Justify your answers.

26.12. Suppose f W A! A and g W A! A are both bijections.

a. Prove or disprove: g ı f is a bijection from A to itself.

b. Prove or disprove: .g ı f /�1 D g�1 ı f �1.

c. Prove or disprove: .g ı f /�1 D f �1 ı g�1.

26.13. Let A be a set and let f W A! A. Then f ı f is also a function from A to itself, as is

f ı f ı f .

Let us write f .n/ to stand for the n-fold composition of f with itself; that is,Note that f .n/.x/ does not mean

Œf .x/�n. For example, if

f .x/ D 1
2

xC 1, then

f .2/.x/ D f Œf .x/� D
1
2

Œ
1
2

xC 1�C 1D 1
4

xC 3
2
. This is

not the same as Œf .x/�2 D
.

1
2

x C 1/2 D 1
4

x2 C xC 1.

f
.n/ D f ı f ı � � � ı f

›

n times

:

Of course, f .1/ D f .

a. Develop a sensible meaning for f
.0/.

b. If f; g W A! A, must it be the case that .gıf /.2/ D g.2/ ıf .2/? Prove or disprove.

c. If f is invertible, must it be the case that .f �1/.n/ D .f .n//�1? Prove or disprove.

The following questions are best answered with the aid of a computer.

d. Let f W R! R by f .x/ D 2:8x.1 � x/. Consider the sequence of values

f .
1

2
/; f

.2/
.

1

2
/; f

.3/
.

1

2
/; f

.4/
.

1

2
/; : : : :

Describe the long-term behavior of these numbers.

e. Let f W R! R by f .x/ D 3:1x.1 � x/. Consider the sequence of values

f .
1

2
/; f

.2/
.

1

2
/; f

.3/
.

1

2
/; f

.4/
.

1

2
/; : : : :

Describe the long-term behavior of these numbers.

f. Let f W R! R by f .x/ D 3:9x.1 � x/. Consider the sequence of values

f .
1

2
/; f

.2/
.

1

2
/; f

.3/
.

1

2
/; f

.4/
.

1

2
/; : : : :

Describe the long-term behavior of these numbers.
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26.14. For each of the following sequences, find a formula for the n-th iteration of the functionHere we use the notation from

Exercise 26.13. f with the given starting value x0. That is, find the n-th term of

f .x0/; f
.1/

.x0/; f
.2/

.x0/; : : : :

a. f .x/ D 2x C 1 and x0 D 1.

b. f .x/ D 2x C 1 and x0 D �1.

c. f .x/ D x C 2 and x0 D 1.

d. f .x/ D x2 and x0 D 2.

e. f .x/ D 1=x and x0 D 2.

26.15. The standard notation for the application of a function f to a value a is f .a/. However,

an obscure alternative is to write f as an exponent above a like this: af . If one follows

this convention, it become natural to express composition of functions like multiplica-

tion:
�

a
f

�g

D a
.fg/

What is the difference between this notation for composition and the ı notation we

developed in this section? What advantage might this alternative notation have?

27 Permutations

Informally, a permutation is an ordering of objects. The precise meaning of permutation is the

following.

Definition 27.1 (Permutation) Let A be a set. A permutation on A is a bijection from A to itself.

Example 27.2 Let A D f1; 2; 3; 4; 5g and let f W A! A by

f D f.1; 2/; .2; 4/; .3; 1/; .4; 3/; .5; 5/g:

Since f is a one-to-one and onto function (i.e., a bijection) from A to A, it is a permutation.

Notice that because f is a bijection, the list .f .1/; f .2/; f .3/; f .4/; f .5// D .2; 4; 1; 3; 5/

is simply a reordering of .1; 2; 3; 4; 5/.

It is customary to use lowercase Greek letters (especially � , � , and �) to stand for per-

mutations. Note that in this context, � does not stand for the real number 3:14159 : : :.

The set of all permutations on f1; 2; : : : ; ng has a special notation.

Mathematicians use the notation Sn

to denote the set of all permutations

on any n-element set.

Definition 27.3 (Sn) The set of all permutations on the set f1; 2; : : : ; ng is denoted Sn.

In later sections, we refer to Sn as the symmetric group on n elements.

The following result lists important properties of Sn. One of these properties is that the
The symbol � is a lowercase Greek

iota. It looks much like an i but does

not have a dot. It is called the identity

permutation.

identity function idf1;2;:::;ng is a permutation and therefore in Sn. We usually denote the iden-

tity function by the lowercase Greek letter �.

Proposition 27.4 There are nŠ permutations in Sn. The set Sn satisfies the following properties.

� 8�; � 2 Sn; � ı � 2 Sn.
� 8�; �; � 2 Sn; � ı .� ı �/ D .� ı �/ ı � .
� 8� 2 Sn; � ı � D � ı � D � .
� 8� 2 Sn; �

�1 2 Sn and � ı �
�1 D �

�1 ı � D �.

Proof. We have already proved all the assertions in this proposition! The fact that jSnj D nŠ

comes from Theorem 24.26. The fact that the composition of two permutations is a permu-

tation is a consequence of Exercise 26.9. The equation � ı � D � ı � D � follows from
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Proposition 26.8. The fact that � 2 Sn H) ��1 2 Sn comes from Exercise 24.18 and the

fact that � ı ��1 D ��1 ı � D � is shown in Proposition 26.9.

Cycle Notation

In Example 27.2, we considered the following permutation in S5:

� D f.1; 2/; .2; 4/; .3; 1/; .4; 3/; .5; 5/g:

Writing a function as a list of ordered pairs is correct, but it is not always the most useful

notation. Here we consider alternative ways of expressing permutations.

We can express � in chart form as in the figure. Another popular form is to express a

The permutation from Example 27.2

in the form of a chart:

x �.x/

1 2

2 4

3 1

4 3

5 5

permutation as a 2�n array of integers. The top row contains the integers 1 through n in their

usual order, and the bottom row contains �.1/ through �.n/:

� D
�

1 2 3 4 5

2 4 1 3 5

�

:

Notice that the 2 � n array notation is not significantly different from a chart.

The top row in the array notation is not strictly necessary. We could express the permu-

tation � simply by reporting the bottom row; all the information we need is there. We could

write � D Œ2; 4; 1; 3; 5�. When n is small (e.g., n D 5), this notation is reasonable. However,

for a larger value of n (e.g., n D 200), it is awkward for human beings to distinguish be-

tween the values for �.83/ and �.84/. On the other hand, this is a reasonable way to store a

permutation in a computer.

An alternative notation for expressing permutations is known as cycle notation. The cycle

notation for the permutation � D
�

1 2 3 4 5
2 4 1 3 5

�

is

� D .1; 2; 4; 3/.5/:

Let us explain what this notation means. The two lists in parentheses, .1; 2; 4; 3/ and .5/, are

called cycles. The cycle .1; 2; 4; 3/ means that

1 7! 2 7! 4 7! 3 7! 1:

In other words,

�.1/ D 2; �.2/ D 4; �.4/ D 3; and �.3/ D 1:

Each number k is followed by �.k/. Taken literally, if we began the cycle with 1, we would

go on forever: .1; 2; 4; 3; 1; 2; 4; 3; 1; 2; 4; 3; 1; : : :/. Instead, when we reach the first 3, we

write a close parenthesis meaning “return to the start of the cycle.” Thus .1; : : : ; 3/ means that

�.3/ D 1.

What does the lonely .5/ mean? It means �.5/ D 5.

Let’s continue with a more complicated example.

Example 27.5 Let � D
�

1 2 3 4 5 6 7 8 9
2 7 5 6 3 8 1 4 9

�

2 S9. Express � in cycle notation.

Solution: Note that �.1/ D 2, �.2/ D 7, and �.7/ D 1 (we have returned to start). So

far we have

� D .1; 2; 7/ � � � :

The first element we have not considered is 3. Restarting from 3, we have �.3/ D 5 and

�.5/ D 3, so the next cycle is .3; 5/. So far we have � D .1; 2; 7/.3; 5/ � � � .
The next element we have yet to consider is 4. We have �.4/ D 6, �.6/ D 8, and �.8/ D

4 to complete the cycle. The next cycle is .4; 6; 8/. Thus far we have .1; 2; 7/.3; 5/.4; 6; 8/ � � � .
Finally, we have �.9/ D 9, so the last cycle is just .9/. The permutation � in cycle

notation is

� D .1; 2; 7/.3; 5/.4; 6; 8/.9/:

1

2

7

3

54

6

8

9

We can draw a picture of a permutation. Let � 2 Sn. We draw a dot for each element of

the set f1; 2; : : : ; ng. We draw an arrow from dot k to dot �.k/. The figure shows the permu-
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tation � D
�

1 2 3 4 5 6 7 8 9
2 7 5 6 3 8 1 4 9

�

. Notice that each cycle in .1; 2; 7/.3; 5/.4; 6; 8/.9/ corresponds

to a cycle of arrows in the diagram.

Does the cycle notation method work for all permutations? Is it possible that we begin

making a cycle .1; 5; 2; 9; : : :/ and the first repetition is not to the first element of the cycle. In

other words, could we run into a situation such as

�.1/ D 5 �.5/ D 2 �.2/ D 9 �.9/ D 5‹

In the diagram, we would have a chain of arrows starting at 1, going to 5, then 2, then 9, but

1

2

5

9

then back to 5 rather than 1. Might this happen? No. Notice that in this case we would have

�.1/ D �.9/ D 5, contradicting the fact that � is one-to-one.

More formally, let � 2 Sn. Consider the sequence

1; �.1/; .� ı �/.1/; .� ı � ı �/.1/; : : :

which we can rewrite

1; �.1/; �
.2/

.1/; �
.3/

.1/; : : :

(see Exercise 26.13). This is a sequence of integers in the finite set f1; 2; : : : ; ng, so eventually
this sequence must repeat itself. Let’s say that the first repeat is at �.k/.1/. [It is possible that

the first repeat is at k D 1—that is, that �.1/ D 1.] We want to conclude that �.k/.1/ D 1.

Suppose, for the sake of contradiction, that �.k/.1/ 6D 1. In this case, we have

�
.k/

.1/ D �
.j /

.1/ (36)

where 0 < j < k. Because this is the first repeat, we have

�
.k�1/

.1/ 6D �
.j�1/

.1/: (37)

Since � is one-to-one, applying � to both sides of Equation (37) yields

�
.k/

.1/ 6D �
.j /

.1/

contradicting (36). Therefore the first repeat must go back to element 1.

The cycle starting at element 1 might not include all the elements of f1; 2; : : : ; ng. In this
case, we can restart with an as-yet-unconsidered element and start building a new cycle.

Is it possible that this new cycle “runs into” an existing cycle? For this to happen, we

1

2

5

9

3
7

8
4

would have two arrows pointing to the same dot, a violation of the fact that � is one-to-

one. More formally, if the element s is not an element of the cycle .t; �.t/; �.2/.t/; : : :/, is

it possible that �.k/.s/ is an element of the cycle? If so, there is an element c on the cycle

with the property that there are two different elements a and b with �.a/ D �.b/ D c,

contradicting the fact that � is one-to-one.

Therefore we can write � as a collection of pairwise disjoint cycles; that is, no two of the

cycles have a common element.

We can say more. Is it possible to write the same permutation as a collection of disjoint

cycles in two different ways? At first glance, the answer is yes. For example,

� D .1; 2; 7/.3; 5/.4; 6; 8/.9/D .5; 3/.6; 8; 4/.9/.7; 1; 2/I

both represent the permutation � D
�

1 2 3 4 5 6 7 8 9
2 7 5 6 3 8 1 4 9

�

. However, on closer inspection, we see

that the two representations of � have the same cycles; the cycles .1; 2; 7/ and .7; 1; 2/ both

say the same thing—namely, �.1/ D 2, �.2/ D 7, �.7/ D 1.

There is only one way to write � as a collection of disjoint cycles. Suppose, for the

sake of contradiction, that we had two ways to write � . Then an element, say element 1,

would be listed in one cycle in the first representation and in a different cycle in the second

representation. However, if we consider the sequence,

1; �.1/; �
.2/

.1/; �
.3/

.1/; : : :

we see that the two different cycles predict two different sequences. This is nonsense because

the sequence is solely dependent on � and not on the notation in which we write it!

We summarize what we have discussed in the following result:
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Theorem 27.6 Every permutation of a finite set can be expressed as a collection of pairwise disjoint cycles.

Furthermore, this representation is unique up to rearranging the cycles and the cyclic order of

the elements within cycles.

Calculations with Permutations

The cycle notation is handy for doing pencil-and-paper calculations with permutations. Here

we show how to compute the inverse of a permutation and the composition of two permuta-

tions. Let us begin with calculating ��1.

If � maps a 7! b, then ��1 maps b 7! a. Thus if .a; b; c; : : :/ is a cycle of � , then

.: : : ; c; b; a/ is a cycle of ��1.

Example 27.7 (Inverting �) Let � D .1; 2; 7; 9; 8/.5; 6; 3/.4/ 2 S9. Calculate ��1.

Solution: ��1 D .8; 9; 7; 2; 1/.3; 6; 5/.4/.

To check that this is correct, let k be any element in f1; 2; : : : ; 9g. If �.k/ D j (if j

follows k in a cycle in �), check that �
�1

.j / D k (then k follows j in a cycle of �
�1).

Let us explore how to compute the composition of two permutations. For example, let

�; � 2 S9 be given by

� D .1; 3; 5/.4; 6/.2; 7; 8; 9/; and

� D .1; 4; 7; 9/.2; 3/.5/.6; 8/:

We compute � ı � . To do this, we calculate .� ı �/.k/ for all k 2 f1; 2; : : : ; 9g. We begin

with .� ı �/.1/. This can be written out as
�

.1; 3; 5/.4; 6/.2; 7; 8; 9/
ā

�

�

ı
�

.1; 4; 7; 9/.2; 3/.5/.6; 8/
ā

�

�

.1/:

Notice that � acts on 1 first and sends 1 7! 4.

The problem reduces to computing �.4/; that is,
�

.1; 3; 5/.4; 6/.2; 7; 8; 9/
�

.4/

and we see that � sends 4 7! 6. Thus .� ı �/.1/ D �.4/ D 6 and we can write

� ı � D .1; 6; : : : :

To continue the cycle, we calculate .� ı �/.6/. We have
�

.1; 3; 5/.4; 6/.2; 7; 8; 9/
ā

�

�

ı
�

.1; 4; 7; 9/.2; 3/.5/.6; 8/
ā

�

�

.6/ D
�

.1; 3; 5/.4; 6/.2; 7; 8; 9/
ā

�

�

.8/ D 9:

So � ı � maps 6 7! 9. Now we have

� ı � D .1; 6; 9; : : :

Next we compute .� ı �/.9/ D �.1/ D 3, so � ı � D .1; 6; 9; 3; : : :. Continuing in this

fashion, we get

1 7! 6 7! 9 7! 3 7! 7 7! 2 7! 5 7! 1

and we have completed a cycle! Thus .1; 6; 9; 3; 7; 2; 5/ is a cycle of � ı � . Notice that 4 is

not on this cycle, so we start over computing .� ı �/.4/. We find
�

.1; 3; 5/.4; 6/.2; 7; 8; 9/
ā

�

�

ı
�

.1; 4; 7; 9/.2; 3/.5/.6; 8/
ā

�

�

.4/ D 8

so 4 7! 8. The second cycle in � ı � begins .4; 8; : : :. Now we calculate .� ı �/.8/ D 4, so

the entire cycle is simply .4; 8/. The two cycles .1; 6; 9; 3; 7; 2; 5/ and .4; 8/ exhaust all the

elements of f1; 2; : : : ; 9g, and so we are finished. We have found

� ı � D .1; 6; 9; 3; 7; 2; 5/.4; 8/:
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Transpositions

The simplest permutation is the identity permutation �; it satisfies �.x/ D x for every x in its

domain. The identity permutation maps every element to itself.

The next simplest type of permutation is called a transposition. Transpositions map al-

most all elements to themselves, except that they exchange one pair of elements. For example,

� D .1/.2/.3; 6/.4/.5/.7/.8/.9/ 2 S9

is a transposition. Here is a formal definition:

Definition 27.8 (Transposition) A permutation � 2 Sn is called a transposition provided

� there exist i; j 2 f1; 2; : : : ; ng with i 6D j so that �.i/ D j and �.j / D i , and
� for all k 2 f1; 2; : : : ; ng with k 6D i and k 6D j , we have �.k/ D k.

When written in cycle notation, the vast majority of the cycles are singletons. It is more

convenient not to write out all these 1-cycles and to write just � D .3; 6/ instead of the verbose

� D .1/.2/.3; 6/.4/.5/.7/.8/.9/.

There is a nice trick for converting a cycle into a composition of transpositions.

Example 27.9 Let � D .1; 2; 3; 4; 5/. Write � as the composition of transpositions.

Solution: .1; 2; 3; 4; 5/ D .1; 5/ ı .1; 4/ ı .1; 3/ ı .1; 2/.

To see that this is correct, let � D .1; 5/ ı .1; 4/ ı .1; 3/ ı .1; 2/ and calculate �.1/, �.2/,

�.3/, �.4/, and �.5/. Look at how the elements 1 through 5 pass (from right to left) through

the transpositions. For example, 1 7! 2 by .1; 2/, then 2 7! 2 by .1; 3/, then 2 7! 2 by .1; 4/,

and finally 2 7! 2 by .1; 5/. So overall, 1 7! 2. Here is how all the elements are handled as

they pass through .1; 5/ ı .1; 4/ ı .1; 3/ ı .1; 2/:

1 7! 2 7! 2 7! 2 7! 2

2 7! 1 7! 3 7! 3 7! 3

3 7! 3 7! 1 7! 4 7! 4

4 7! 4 7! 4 7! 1 7! 5

5 7! 5 7! 5 7! 5 7! 1

so overall � D .1; 2; 3; 4; 5/.

Example 27.10 Let � D .1; 2; 3; 4; 5/.6; 7; 8/.9/.10; 11/. Write � as the composition of transpositions.

Solution: � D Œ.1; 5/ ı .1; 4/ ı .1; 3/ ı .1; 2/� ı Œ.6; 8/ ı .6; 7/� ı .10; 11/. (The brackets are

unnecessary; their purpose is to show how the answer was obtained.)

Let � be any permutation. Write � as a collection of disjoint cycles. Using the technique

from Example 27.9, we can rewrite each of its cycles as a composition of transpositions.

Because the cycles are disjoint, there is no effect of one cycle on another. Thus we can simply

string together the transpositions for the various cycles into one long composition of cycles.

What about the identity permutation �? Can it also be represented as the composition

of transpositions? Yes. We can write � D .1; 2/ ı .1; 2/. Or we can say that � is the result of

composing together a list of no permutations (this is akin to an empty product—see Section 9).

Let us summarize what we have shown here.

Theorem 27.11 Let � be any permutation on a finite set. Then � can be expressed as the composition of

transpositions defined on that set.
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The decomposition (great word to use here! ) of a permutation into transpositions is not

unique. For example, we can write

.1; 2; 3; 4/ D .1; 4/ ı .1; 3/ ı .1; 2/

D .1; 2/ ı .2; 3/ ı .3; 4/

D .1; 2/ ı .1; 4/ ı .2; 3/ ı .1; 4/ ı .3; 4/:

These ways of writing .1; 2; 3; 4/ are not simple rearrangements of one another. We see that

they do not even have the same number of terms. However, they do have something in com-

mon. In all three cases, we used an odd number of transpositions.

Theorem 27.12 Let � 2 Sn. Let � be decomposed into transpositions as

� D �1 ı �2 ı � � � ı �a and � D �1 ı �2 ı � � � ı �b :

Then a and b have the same parity; that is, they are both odd or both even.

The key to proving this theorem is to prove a special case first.

Lemma 27.13 If the identity permutation is written as a composition of transpositions, then that composition

must use an even number of transpositions. That is, if

� D �1 ı �2 ı � � � ı �a;

where the �s are transpositions, then a must be even.

Before we prove this lemma, we show how to use it to prove Theorem 27.12.

Proof (of Theorem 27.12)

Let � be a permutation decomposed into transpositions as

� D �1 ı �2 ı � � � ı �a and � D �1 ı �2 ı � � � ı �b :

Note that we can write ��1 as (see Exercise 27.11)

�
�1 D �b ı �b�1 ı � � � ı �2 ı �1

and so

� D � ı �
�1 D �1 ı �2 ı � � � ı �a ı �b ı �b�1 ı � � � ı �2 ı �1:

This is a decomposition of � into a C b transpositions. Hence a C b is even, and so a and b

have the same parity.

Our job now reduces to proving Lemma 27.13. To do this, we introduce the concept of

an inversion in a permutation.

Definition 27.14 (Inversion in a permutation) Let � 2 Sn and let i; j 2 f1; 2; : : : ; ng with i < j . The pair

i; j is called an inversion in � if �.i/ > �.j /.

It is easier to understand inversions when the permutation is written in 2 � n array form.

Let

� D
�

1 2 3 4 5

4 2 1 5 3

�

:

There are
�

5

2

�

D 10 ways we can choose a pair of elements 1 � i < j � 5. In the following

chart, we list all such pairs i; j and check whether �.i/ > �.j /.
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i j �.i/ �.j / Inversion?

1 2 4 2 YES

1 3 4 1 YES

1 4 4 5 no

1 5 4 3 YES

2 3 2 1 YES

2 4 2 5 no

2 5 2 3 no

3 4 1 5 no

3 5 1 3 no

4 5 5 3 YES

Thus � has five inversions. We can also write � as the composition of transpositions:

Here is another way to think about

inversions. Draw two collections of

dots labeled 1 through n on the left

and on the right. For each element i

on the left, draw a straight arrow

from i to �.i/ on the right. The

number of crossings is the number of

inversions.

1

2

3

4

5

1

2

3

4

5

� D
�

1 2 3 4 5
4 2 1 5 3

�

D .1; 4; 5; 3/.2/ D .1; 4/ ı .4; 5/ ı .5; 3/:

In this decomposition there are three transpositions (odd) and the permutation � has five

inversions (also odd).

For a second, more abstract example, we calculate the number of inversions in a transpo-

sition .a; b/ 2 Sn. Let us assume a < b so we can write this as

.a; b/ D
�

1 2 � � � a � 1 a aC 1 � � � b � 1 b b C 1 � � � n

1 2 � � � a � 1 b aC 1 � � � b � 1 a b C 1 � � � n

�

:

Let us count the inversions. To begin, the only inversions possible are those that involve a or

b. For any i; j (with neither i nor j equal to a or b), the transposition .a; b/ does not invert

the order of i and j ; there are no inversions of this sort.

We now count three types of inversions: those involving only a, those involving only b,

and those involving both a and b.

� Inversions involving a but not b.

Element a has advanced from column a to column b. In so doing, it has skipped past

elements aC 1, aC 2, . . . , b � 1 and creates inversions with those elements. It is still in

its proper order with respect to all other columns. The number of inversions of this sort

is .b � 1/� .aC 1/C 1 D b � a � 1.
� Inversions involving b but not a.

Element b has retreated from column b to column a. In so doing, it has ducked under

elements aC 1, aC 2, . . . , b � 1 and creates inversions with those elements. It is still in

its proper order with respect to all other columns. The number of inversions of this sort

is, again, .b � 1/� .aC 1/C 1 D b � a � 1.
� Inversions involving both a and b.

This is just one inversion.

Therefore the total number of inversions is 2.b�a�1/C1, an odd number. The number

of inversions involving a but not b equals the number of inversions involving b but not a.

Further, all these inversions involve the elements appearing between a and b.

The identity permutation has, of course, 0 (even) inversions. We now return to the goal of

showing that any decomposition of � into transpositions uses an even number of transpositions.

Proof (of Lemma 27.13)

Write � as a composition of transpositions:

� D �a ı �a�1 ı � � � ı �2 ı �1:

(We have written the �s in reverse order because we want to think of doing �1 first, �2 second,

and so on.)

Our goal is to prove that a is even. Imagine applying the transpositions �i one at a time.

We begin with a “clean slate”; that is,
�

1 2 ��� n
1 2 ��� n

�

.
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Now we apply �1. As we analyzed earlier, the resulting number of inversions is now

odd. We now show that as we apply each �i , the number of inversions changes by an odd

amount. Since the number of inversions at the start and at the end is zero, and since each

transposition increases or decreases the number of inversions by an odd amount, the number

of transpositions must be even.

Suppose �k D .a; b/ and

�k�1 ı � � � ı �1 D
�

� � � i � � � m � � � j � � �
� � � a � � � x � � � b � � �

�

:

Now when we apply �k D .a; b/, the effect is

�k ı �k�1 ı � � � ı �1 D
�

� � � i � � � m � � � j � � �
� � � b � � � x � � � a � � �

�

:

The only change is that a and b are exchanged in the bottom row. What has happened to the

number of inversions?

The first thing to note is that for a pair of columns including neither column i nor column

j , there is no change. All changes involve column i or j or both.

The second thing to note is that columns to the left of column i and columns to the right

of column j are unaffected by the interchange of a and b; these elements do not change their

order with respect to these outer columns.

Therefore we only need to pay attention to columns between columns i and j . Let’s say

that column m is between these (i < m < j ), and the entry in column m is x. When we

exchange a and b, the bottom row changes from Œ� � � a � � �x � � �b � � � � to Œ� � � b � � �x � � � a � � � �.
We break into cases depending on x’s size compared to a and b; x can be larger than both

a and b, smaller than both a and b, or between a and b.

� If x > a and x > b, then there is no change in the number of inversions involving x and

a or b. Before applying �k , we had a and x inverted, but x and b were in natural order.

After applying �k , we have x and b inverted, but x and a are in their natural order.
� If x < a and x < b, then there is no change in the number of inversions involving x and

a or b; the argument is analogous to the case where x is larger than both.
� If a < x < b, then upon switching a and b, we gain two inversions involving a and x

and involving b and x.
� If a > x > b, then upon switching a and b, we lose two inversions.

In every case, the number of inversions either stays the same or changes by two. Thus the

number of inversions involving column i or j and a column other than i or j changes by an

even amount.

Finally, the exchange of a and b either increases the number of inversions by one (if

a < b) or decreases the number of inversions by one (if a > b).

Thus the cumulative effect of �k is to change the number of inversions by an odd amount.

In conclusion, since we begin and end with zero inversions, the number of transpositions

in

� D �a ı �a�1 ı � � � ı �2 ı �1

must be even.

Theorem 27.12 enables us to separate permutations into two disjoint categories: those

that can be expressed as the composition of an even number of transpositions, and those that

can be expressed as the composition of an odd number of transpositions.

Definition 27.15 (Even, odd permutations) Let � be a permutation on a finite set. We call � even provided

it can be written as the composition of an even number of transpositions. Otherwise it can be

written as the composition of an odd number of transpositions, in which case we call � odd.

The sign of a permutation is ˙1 depending on whether the permutation is odd or even.

The sign of � isC1 if � is even and �1 if � is odd. The sign of � is written sgn� .
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Proposition 27.16 Let �; � 2 Sn. Then

sgn.� ı �/ D .sgn�/.sgn �/:

Proof. Write � and � as the composition of transpositions; say � is the composition of

p transpositions and � is the composition of s transpositions. Then sgn� D .�1/p and

sgn � D .�1/s . Since � ı � is the composition of p C s transpositions we have

sgn.� ı �/ D .�1/
pCs D .�1/

p
.�1/

s D .sgn�/.sgn �/:

A Graphical Approach

We close with an alternative approach to understanding even and odd permutations. The ideas

we present here yield another proof of Theorem 27.12. We use Theorem 27.6, which asserts

that every permutation � 2 Sn can be expressed as a collection of disjoint cycles in, essen-

tially, only one way.

1

2

3

4

5

6
7

8 9

We begin by drawing a picture of the permutation. Given � 2 Sn, we make a figure in

which the numbers 1; 2; : : : ; n are represented by points, and if �.a/ D b, we draw an arrow

from a to b. A picture for the permutation � D .1; 2; 3; 4; 5; 6/.7; 8; 9/ is shown in the figure.

In case �.a/ D a, we draw a looping arrow from a to itself. Each cycle of � corresponds

precisely to a closed path in the diagram.

Suppose we compose a permutation � with a transposition � . What is the effect on the

diagram? Suppose �; � 2 Sn and � D .a; b/ where a 6D b and a; b 2 f1; 2; : : : ; ng. When we

express � as disjoint cycles, cycles that contain neither a nor b are the same in � and � ı � .

The only cycles that are affected are ones that contain a or b (or both).

If a and b are in the same cycle, then � is of the form

� D .p; a; q; : : : ; s; b; t; : : : ; z/.� � � /:

Then � ı .a; b/ will be of the form

� ı .a; b/ D .p; a; q; : : : ; s; b; t; : : : ; z/.� � � / ı .a; b/

D .p; a; t; : : : ; z/.q; : : : ; s; b/.� � � /:

In other words, the cycle containing a and b in � is split into two cycles in � ı .a; b/: one

containing a and the other containing b.

The opposite effect occurs when a and b are in different cycles. In this case, � is of the

form

� D .p; a; q; : : :/.s; b; t; : : :/.� � � /

and so � ı .a; b/ has the form

� ı .a; b/ D .p; a; q; : : :/.s; b; t; : : :/.� � � / ı .a; b/

D .p; a; t; : : : ; s; b; q; : : :/.� � � /:

The cycles containing a and b in � are merged into a single cycle in � ı .a; b/.

For example, suppose � D .1; 2; 3; 4; 5/.6; 7; 8; 9/ and let � D � ı .4; 7/. Observe that

� D .1; 2; 3; 4; 8; 9; 6; 7; 5/. Because 4 and 7 are in separate cycles of � , they are in a common

cycle of � ı .4; 7/. Conversely, 4 and 7 are in the same cycle of � but are split into separate

cycles in � ı .4; 7/. See the figure.
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1

2

3

4

5

6

7

8 9

1

2

3 4

5

6

7 8

9

π = (1,2, 3, 4,5)(6,7,8,9)

σ = (1,2, 3, 4,8,9,6,7,5)

π (4, 7)

σ (4, 7)

With only a bit more care, these observations can be made into a rigorous proof of the

following result.

Proposition 27.17 Let n be a positive integer and �; � 2 Sn, and suppose � is a transposition. Then the number

of cycles in the disjoint cycle representations of � and � ı � differ by exactly one.

For the remainder of this section, it is convenient to write c.�/ to stand for the number

of cycles in the unique disjoint cycle representation of � . Proposition 27.17 can be expressed

as c.� ı �/ D c.�/˙ 1.

We now apply Proposition 27.17 to give another proof of Theorem 27.12.

Proof (of Theorem 27.12)

Suppose � 2 Sn and

Note that for a transposition � 2 Sn,

we have n� c.�/D 1. Remember

that � D .a; b/ is an abbreviated

form of the permutation in which the

1-cycles are not written. For

example, in S6 the transposition

� D .3; 5/ is, when written in full,

.1/.2/.3; 5/.4/.6/. Therefore

n� c.�/D 6� 5 D 1.

� D �1 ı �2 ı � � � ı �a (38)

where the �s are transpositions. We claim that a � n � c.�/ .mod 2/. In other words, the

parity of the number of transpositions in Equation (38) equals the parity of n � c.�/, and so

two different decompositions of � into transpositions will both have an even or both have an

odd number of terms.

Consider the sequence �, �1, �1 ı �2, �1 ı �2 ı �3, . . . , � . Each term is formed from the

previous by appending the appropriate �j . We calculate n�c.�/ for each of these permutations;

see the following chart.

Permutation � n � c.�/

� 0

�1 1

�1 ı �2 1˙ 1

�1 ı �2 ı �3 1˙ 1˙ 1

:
:
:

:
:
:

� D �1 ı � � � ı �a 1˙ 1˙ 1˙ � � � ˙ 1
�

a terms

Note that the parity of the expression 1˙ 1˙ 1˙ � � � ˙ 1 (with a terms) is exactly the same

as the parity of a, and the result follows.

This proof of Theorem 27.12 yields the following corollary.

Corollary 27.18 Let n be a positive integer and � 2 Sn. Then sgn� D .�1/n�c.�/.
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Recap

This section dealt with permutations: bijections from a set to itself. We studied properties of

composition with respect to the set Sn of all permutations on f1; 2; : : : ; ng. We showed how

to represent permutations in various forms, but we were especially interested in studying per-

mutations in disjoint cycle form. We showed how to represent permutations as compositions

of transpositions and discussed even and odd permutations.

27 Exercises 27.1. Consider the permutation � D
�

1 2 3 4 5 6 7 8 9
2 4 1 6 5 3 8 9 7

�

. Please express � in as many forms

as possible, including the following:

a. As a set of ordered pairs. (Never forget: A permutation is a function, and functions

are sets of ordered pairs.)

b. As a two-column chart.

c. In cycle notation (disjoint cycle).

d. As the composition of transpositions.

e. As a diagram with two collections of dots for the numbers 1 through 9 (one collec-

tion on the left and one collection on the right) with arrows from left to right.

f. As a diagram with one collection of dots for the numbers 1 through 9 with arrows

from i to �.i/ for each i D 1; 2; : : : ; 9.

27.2. Please express the following permutations in disjoint cycle form.

a. � D
�

1 2 3 4 5 6
2 4 6 1 3 5

�

.

b. � D
�

1 2 3 4 5 6
2 3 4 5 6 1

�

.

c. � ı � , where � is the permutation from part (b).

d. ��1 where � is the permutation from part (b).

e. � 2 S5.

f. .1; 2/ ı .2; 3/ ı .3; 4/ ı .4; 5/ ı .5; 1/.

g. f.1; 2/; .2; 6/; .3; 5/; .4; 4/; .5; 3/; .6; 1/g.
27.3. How many permutations in Sn have exactly one cycle?

27.4. How many permutations in Sn do not have a cycle of length one in their disjoint cycle

notation?

27.5. Let �; �; � 2 S9 be given by

� D .1/.2; 3; 4; 5/.6; 7; 8; 9/;

� D .1; 3; 5; 7; 9; 2; 4; 6; 8/; and

� D .1; 9/.2; 8/.3; 5/.4; 6/.7/:

Please calculate the following:

a. � ı � .

b. � ı � .

c. � ı � .

d. ��1.

e. ��1.

f. � ı � .

g. ��1.

27.6. Prove or disprove: For all �; � 2 Sn, � ı � D � ı � .

27.7. Prove or disprove: If � and � are transpositions, then � ı � D � ı � .

27.8. Prove or disprove: For all �; � 2 Sn, .� ı �/�1 D ��1 ı ��1.

27.9. Prove or disprove: For all �; � 2 Sn, .� ı �/�1 D ��1 ı ��1.

27.10. Prove or disprove: A permutation � is a transposition if and only if � 6D � and � D ��1.

27.11. Let �1; �2; : : : ; �a be transpositions and suppose

� D �1 ı �2 ı � � � ı �a:

Prove that

�
�1 D �a ı �a�1 ı � � � ı �1:
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27.12. Let � 2 S101 (i.e., � is a permutation of the integers 1 through 101). Prove that when

written in disjoint cycle notation, � has at least 11 cycles or � has a cycle with at least

11 entries.

27.13. Let � D .1; 2/.3; 4; 5; 6; 7/.8; 9; 10; 11/.12/ 2 S12. Find the smallest positive integer

k for which

�
.k/ D � ı � ı � � � ı �

š

k times

D �:

Generalize. If a �’s disjoint cycles have lengths n1; n2; : : : ; nt , what is the smallest

integer k so that �.k/ D �?

27.14. Although permutations are uniquely expressible as disjoint permutations, there is some

choice in the way the permutations can be written. For example,

.1; 3; 9; 2/.7/.4; 6; 5; 8/D .7/.2; 1; 3; 9/.5; 8; 4; 6/D .6; 5; 8; 4/.3; 9; 2; 1/.7/:

Devise a standard form for writing permutations as disjoint cycles that makes it easy to

check whether two permutations are the same.

27.15. Prove: If �; � 2 Sn and � ı � D � , then � D �.

27.16. Let �; �; � 2 Sn and suppose � ı � D � ı � . Prove that � D � .

27.17. For each of the permutations listed, please do the following:

(1) Write the permutation as a composition of transpositions.

(2) Find the number of inversions.

(3) Determine whether the permutation is even or odd.

a. .1; 2; 3; 4; 5/.

b. .1; 3/.2; 4; 5/.

c. Œ.1; 3/.2; 4; 5/�
�1.

d.
�

1 2 3 4 5
2 4 1 3 5

�

.

27.18. Prove: The number of inversions in a permutation equals the number of inversions in

its inverse.

27.19. Prove the following:

a. The composition of two even permutations is even.

b. The composition of two odd permutations is even.

c. The composition of an even permutation and an odd permutation is odd.

d. The inverse of an even permutation is even.

e. The inverse of an odd permutation is odd.

f. For n > 1, the number of odd permutations in Sn equals the number of even permu-

tations in Sn.

27.20. Suppose permutation� is written as a disjoint collection of cycles of lengths n1; n2; : : : ; nt .

Can you determine, just from these numbers, whether � is even or odd?

To answer yes, you need to develop and prove a formula for the parity of a permu-

tation given only its disjoint cycle lengths.

To answer no, you need to find two permutations—one even and one odd—whose

disjoint cycles have the same length.

27.21. The Fifteen Puzzle is a 4� 4 array of tiles numbered 1 to 15 with one empty space. You

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

move the tiles about this board by sliding a number tile into the empty position. The

initial configuration of the puzzle is shown in the upper diagram. To play, you scramble

the pieces about randomly and then try to restore the initial configuration.

Prove that it is impossible to move the pieces in the puzzle from the initial config-

uration to a new position in which all numbers are in their original positions, but tiles

14 and 15 are interchanged (shown in the lower figure).

27.22. This problem is for those who have studied linear algebra.

For a permutation � of the set f1; 2; : : : ; ng (that is, � 2 Sn) we define the permu-

tation matrix P� to be an n � n-matrix in which the i; �.i/-entries are equal to 1 and

all the other entries are 0s.

For example, if � D .1; 2; 4/.3; 5/.6/, then P� has 1s in these locations: .1; 2/,

.2; 4/, .3; 5/, .4; 1/, .5; 3/, and .6; 6/; all the other entries are 0:
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P� D

2

6

6

6

6

6

6

4

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

3

7

7

7

7

7

7

5

:

Please answer the following:

a. What is P� where � D .1; 3; 5; 2; 4/?

b. Let � be the identity permutation for Sn. What is P�?

c. Find the permutation � such that

P� D

2

6

6

6

6

4

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

3

7

7

7

7

5

:

d. Given permutations � and � in Sn, find a relation between the matrices P� , P� , and

P�ı� .
e. Show that P T

�
D P�1

�
D P��1 .

f. Express detP� in terms of � .

28 Symmetry

In this section, we take a careful look at the concept of symmetry. What does it mean to say

that an object is symmetric? A human face is symmetric because the left half and the right half

are mirror images of one another. On the other hand, a human hand is not symmetric.

In mathematics, the word symmetry typically refers to geometric figures. We give an

informal definition of symmetry here; a precise definition is given later.

A symmetry of a figure is a motion that, when applied to an object, results in a figure that

looks exactly the same as the original.

For example, consider a square sitting in the plane. If we rotate the square counterclock-

wise about its center through an angle of 90ı, the resulting figure is exactly the same as the

original. However, if we rotate the square through an angle of, say, 30ı, the resulting figure is
not the same as the original. Therefore a 90ı rotation is a symmetry of the square, but a 30ı

rotation is not.

Symmetries of a Square

Rotating a square 90ı counterclockwise through its center leaves the square unchanged.What

are the other motions we can apply to a square that leave it unchanged? To aid us in our

1

2 3

4

1 2

34

R90

analysis, imagine that the numbers 1 through 4 are written in the corners of the square. Since

the square looks exactly the same before and after we move it, the labels enable us to see how

the square was moved. The figure shows a counterclockwise rotation through 90ı; we call this
symmetry R90.

We may also rotate the square counterclockwise through 180ı. After this rotation, the
square will look exactly the same as before. We call this symmetry R180. We might also

1

2 3

4

1

23

4

R180

rotate the square clockwise though 180ı. Even though the physical motion of the square might

be different (clockwise versus counterclockwise rotation), the end results are identical. By

looking at the corner labels, you can tell that the square was rotated 180ı, but you cannot tell
whether that rotation was clockwise or counterclockwise. We consider these two motions to

be exactly the same; they give the same symmetry of the square.

Next, we can rotate the square through 270
ı and leave the image unchanged.We call this

symmetry R270.
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Finally, we can rotate the square through 360ı and the result is unchanged. Should we

call this R360? Although this is not a bad idea, notice that a 360ı rotation has no effect on

the labels. It is as if no motion whatsoever was applied to the square. We therefore call this

symmetry I , for identity.

If we rotate the square through 450ı [Note: 450 D 360C 90], it is as if we rotated only

through 90ı. A rotation through 450ı is simply R90.

So far we have found four symmetries: I , R90, R180, and R270. Are there more?

In addition to rotating the square, we can pick the square up, flip it over, and set it back

down in the plane. For example, we can flip the square over along a horizontal axis. The result

1

2 3

4

1

2

4

3

FH

of this motion is shown in the figure. Notice that after this motion, the square looks exactly

the same as when it started. We call this symmetry FH for “flip-horizontal.”

We can also flip the square over along its vertical axis; we call that motion FV . Please

draw a picture of this symmetry yourself.

We can also hold the square by two opposite corners and flip it over along its diagonal.

If we hold the upper-right and lower-left corners, the result is as shown in the figure. We call

1

2 3

4

12

3 4

F/

this symmetry F= for “flip along the = diagonal.”

We can also hold the upper-left and lower-right corners firm and flip over along the n
diagonal. We call this symmetry Fn.

The eight symmetries we have found thus far are I , R90, R180, R270, FH , FV , F=, and

Fn. The following figure shows all of them.

1

2 3

4

1 2

34

1
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4
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3 4
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4
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3 4 1 2
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I R90 R180

FH FV F/ F\

R270

Two questions arise.

� First, have we repeated ourselves? Just as a 360
ı rotation and the identity symmetry are

the same, are (perhaps) two of the above symmetries the same?

The answer is no. If you look at the labels, you can observe that no two of the squares

are labeled the same. The eight symmetries we have found are all different.
� Second, are there other symmetries we didn’t think of?

The labels can help us to see that the answer to this question is also no. Imagine that

we pick up the square and lay it back down in its original place (but perhaps rotated and/or

flipped). Where does the corner labeled 1 go? We have four choices: It might end up in

the northeast, northwest, southeast, or southwest. Once we have decided where corner 1

goes, consider the final resting place of corner 2. We now have only two choices because

corner 2 must end up next to (and not opposite) corner 1. Once we have placed corners

1 and 2, the remaining corners are forced into position. Therefore, there are 4 � 2 D 8

choices (four choices for corner 1 and, for each such choice, two choices for corner 2).

We have found all the symmetries.

Symmetries as Permutations

Sylvia and Steve work in a symmetry factory. One day their boss asks them to rotate the big

stone square in the company lobby 90ı. Of course, the only way the boss can know that the

square has been moved is by the labels on the corners of the square. So rather than move the

big, heavy square, they peel the stickers off the corners of the square and reattach them in

their new locations.

To perform the rotation R90, they simply move label 1 to position 2, label 2 to position

3, label 3 to position 4, and label 4 to position 1.

The symmetry R90 can be expressed as
�

1 2 3 4
2 3 4 1

�

. The first column means that label 1

moves to position 2, the second column means that label 2 moves to position 3, and so on.
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Now
�

1 2 3 4
2 3 4 1

�

is a permutation!We can express this permutation in cycle form as .1; 2; 3; 4/.

Indeed, all eight symmetries of the square can be expressed in this notation.

Symmetry 1 2 3 4 Cycle

name go to positions form

I 1 2 3 4 .1/.2/.3/.4/

R90 2 3 4 1 .1; 2; 3; 4/

R180 3 4 1 2 .1; 3/.2; 4/

R270 4 1 2 3 .1; 4; 3; 2/

FH 2 1 4 3 .1; 2/.3; 4/

FV 4 3 2 1 .1; 4/.2; 3/

F= 3 2 1 4 .1; 3/.2/.4/

Fn 1 4 3 2 .1/.2; 4/.3/

Every day, Steve and Sylvia’s boss asks them to reposition the big, heavy square in the

lobby. And every day, they just move the stickers around. One day, they switch stickers 1

and 2 and then take a lunch break. Meanwhile, their boss sees that the “symmetry” they

performed is .1; 2/.3/.4/, and there is no such symmetry of the square. Not all permutations

in S4 correspond to symmetries of the square—just the eight we listed. Sylvia and Steve were

summarily sacked for their sham stone square symmetry stratagem!

Combining Symmetries

What happens if we first flip the square horizontally and then rotate it through 90ı? The

combined motion looks like this:

1

2 3

4

1

2 3

4 12

3 4

FH R90

F/

The net effect of combining these two symmetries is a flip along the = diagonal, (i.e., F=). We

write this as

R90 ı FH D F=:

This is not a misprint! We did the horizontal flip FH first and then followed it by the 90ı

rotation R90. Why did we write R90 first? We are reusing the function composition symbol ı
in this context. Recall (Section 26) that when we write g ı f , it means we perform function

f first and then function g.

Suppose we want to calculate the result of

FH ıR270 ı FV :

We could draw several pictures or work with a physical model, but there is a better way. We

saw above that the symmetries of the square can be thought of as relabeling permutations of

its corners. Behold:

R90 ı FH D .1; 2; 3; 4/ ı .1; 2/.3; 4/

D .1; 3/.2/.4/

D F=:

The first ı stands for combining symmetries, and the second ı is permutation composition.

Notice, however, that the calculation with permutations gives the correct answer for the sym-

metries.

Let’s think about why this works.We first doFH , whichwe can express as� D .1; 2/.3; 4/.

The effect is to take whatever is in position 1 (label 1) to position 2. Then � D .1; 2; 3; 4/

takes whatever is in position 2 (label 1) to position 3. So the net effect is 1 7! 2 7! 3. The

other corners work the same way.
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It is a mildly laborious but worthwhile chore to make an 8�8 chart showing the combined

effect of each pair of symmetries. Here is the result:

ı I R90 R180 R270 FH FV F= Fn

I I R90 R180 R270 FH FV F= Fn

R90 R90 R180 R270 I F= Fn FV FH

R180 R180 R270 I R90 FV FH Fn F=

R270 R270 I R90 R180 Fn F= FH FV

FH FH Fn FV F= I R180 R270 R90

FV FV F= FH Fn R180 I R90 R270

F= F= FH Fn FV R90 R270 I R180

Fn Fn FV F= FH R270 R90 R180 I

Some comments:

� The operation ı is not commutative. Notice that R90 ı FH D F= but FH ıR90 D Fn.
� Element I is an identity element for ı.
� Every element has an inverse. For example, R�1

90
D R270 because R90 ı R270 D R270 ı

R90 D I .

It is also interesting to notice that most of the elements are their own inverse.
� The operation ı is associative. This is not easy to see just from looking at the table.

However, it follows from the fact that we can replace symmetries by permutations and

then interpret ı as composition. Since composition is associative, so is ı for symmetries.
� Compare these remarks to Proposition 27.4. If we ı together two symmetries of the

square, we get a symmetry of the square. The operation ı is associative and has an iden-

tity element, and every symmetry has an inverse. The operation of composition on the set

of all permutations of n elements, Sn, also exhibits these same properties.

Formal Definition of Symmetry

A geometric figure, such as a square, is a set of points in the plane (R2). For example, theThe plane is denoted by the symbol

R2. Why? The notation R2 is a

shorthand way of writing

R � R—that is, the set of all ordered

pairs .x; y/ where x and y are real

numbers. This corresponds to the

representation of points in the plane

by two coordinates.

following set is a square:

S D
˚

.x; y/ 2 R2 W �1 � x � 1; and � 1 � y � 1
	

: (39)

The distance between points .a; b/ and .c; d / is (by the Pythagorean Theorem)

distŒ.a; b/; .c; d /� D
p

.a � c/2 C .b � d/2

where distŒ.a; b/; .c; d /� stands for the distance between the points .a; b/ and .c; d /.

Definition 28.1 (Isometry) Let f W R2 ! R2. We call f an isometry provided

8.a; b/; .c; d / 2 R2
; distŒ.a; b/; .c; d /� D distŒf .a; b/; f .c; d /�:

A synonym for isometry is a distance-preserving function.

Let X � R2 (i.e., X is a geometric figure). Let f W R2 ! R2. Now writing f .X/ is

nonsense because X is a set of points and the domain of f is the set of points in the plane.

Nonetheless, f .X/ is a useful notation (see Exercise 24.23). It means

f .X/ D ff .a; b/ W .a; b/ 2 Xg:

That is, f .X/ is the set we obtain by evaluating f at all the points in X .

We can now say precisely what a symmetry is.

Definition 28.2 (Symmetry) Let X � R2. A symmetry of X is an isometry f W R2 ! R2 such that

f .X/ D X .



204 Chapter 5 Functions

Let S be the square in the plane defined by Equation (39). The symmetries of S are

I.a; b/ D .a; b/ FH .a; b/ D .a;�b/

R90.a; b/ D .�b; a/ FV .a; b/ D .�a; b/

R180.a; b/ D .�a;�b/ F=.a; b/ D .b; a/

R270.a; b/ D .b;�a/ Fn.a; b/ D .�a;�b/:

This discussion has been limited to geometric figures in the plane. One can extend all

these ideas to three-dimensional space and beyond.

Recap

This section introduced the concept of symmetry, related symmetry to permutations of labels,

and explored the operation of combining symmetries. Finally, we gave a technical definition

of symmetry.

28 Exercises 28.1. Verify by pictures and by permutation calculation that FH ıR90 D Fn.
28.2. Let R be a rectangle that is not a square. Describe the set of symmetries of R and write

down the ı table for this set.
28.3. Which of the symmetries of a square are represented by even permutations? Compare

your answer to this exercise to the previous one.

28.4. Let T be an equilateral triangle. Find all the symmetries of T and represent them as

permutations of the corners. Compare this to S3.

28.5. What are the symmetries of a triangle that is isosceles but not equilateral?

28.6. What are the symmetries of a triangle that is not isosceles (all three sides have different

lengths)?

28.7. Let P be a regular pentagon. Find all the symmetries of P (give them sensible names)

and represent them as permutations of the corners.

28.8. The symmetries of a square include permutations with exactly two fixed points (such

as F=) but as you should learn in Exercise 28.7, there are no symmetries of a regular

pentagon with exactly two fixed points.

For which values of n � 3 does a regular n-gon have a symmetry with exactly two

fixed points?

28.9. Create a picture with five labeled points (named 1 through 5) that has only two symme-

tries: .1/.2/.3/.4/.5/ and .1/.2/.3/.4; 5/.

28.10. Let Q be a cube in space. How many symmetries does Q have?

a. Show that a correct answer to this question is 24.

b. Show that another correct answer to this question is 48.

c. By Proof Template 9, since 24 and 48 are both answers to the same question, it must

be the case that 24 D 48.

Actually, the question “How many symmetries does Q have?” is a bit ambiguous.

What is different about the second set of 24 symmetries?

d. Represent the 48 symmetries of the cube as permutations of its corners.

28.11. This problem is only for those who have studied linear algebra.

Let C be a circle in the plane.

a. Describe the set of all symmetries of C .

b. Show how the symmetries of the circle can be represented by 2� 2 matrices A with

detA D ˙1.

c. What is the difference between symmetries whose matrix has determinant 1 and

those whose matrix has determinant�1?

d. Does every matrix with determinant˙1 correspond to a symmetry of the circle?

29 Assorted Notation
Pricing items at $9.99 drives me crazy.

I wish merchants would just sell the item for $10 and not try to deceive me that the item

costs “about” $9. It’s much easier for humans to deal with round, whole numbers, and that is

why approximating is a valuable skill.
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Just as it is valuable to approximate numbers, it is also useful to express functions in an

approximate manner. Consider a complicated function f (defined on the natural numbers)

defined by

f .n/ D 4n
5 � n.nC 1/.nC 2/

3
C 3n

2 � 12:

When n is large, the most “important” part is the n5. In this section, we develop a notation

that expresses this idea precisely. We also present a few other useful notations associated with

functions.

Big Oh

The “big oh” notation expresses the idea that one function is bounded by another. Here is the

definition.

Definition 29.1 (Big oh) Let f and g be real-valued functions defined on the natural numbers (i.e., f W N!
R and g W N! R). We say that f .n/ is O.g.n// provided there is a positive number M such

that, with at most finitely many exceptions,

jf .n/j �M jg.n/j:

In other words, f .n/ is O.g.n// means that jf .n/j is no greater than a constant multiple

of jg.n/j (with, perhaps, a few exceptions).

Example 29.2 Let f .n/ D
�

n

2

�

. We claim that f .n/ is O.n2/. Recall that
�

n

2

�

D n.n � 1/=2. Thus

f .n/ D n.n � 1/

2
� n2

2

and so f .n/ � 1

2
n2 for all n. So we can take M D 1

2
in the definition of big oh and conclude

that f .n/ is O.n2/.

Example 29.3 Let f .n/ D n.nC 5/=2. We claim that f .n/ is O.n2/. Note that, except for n D 0, we have

jf .n/j
jn2j D

f .n/

n2
(because f .n/ � 0 for all n 2 N)

D n.nC 5/

2n2
D nC 5

2n
D 1

2
C 5

2n
� 1

2
C 5

2
� 3:

Thus jf .n/j � 3jn2j and so f .n/ is O.n2/.

Let us consider a more complicated example. Recall the function we mentioned at the

start of this section:

f .n/ D 4n
5 � n.nC 1/.nC 2/

3
C 3n

2 � 12:

We show that this function is O.n5/. To do this, we need to compare jf .n/j and jn5j where
n 2 N. Since n is nonnegative, jn5j D n5. However, because the polynomial defining f .n/

has negative coefficients, we need a tool to handle jf .n/j.

Proposition 29.4 (Triangle inequality) Let a; b be real numbers. Then

jaC bj � jaj C jbj:

Proof. We consider four cases depending on whether or not each of a and b is negative.

� If neither a nor b is negative, we have jaC bj D aC b D jaj C jbj.
� If a � 0 but b < 0, we have jaj C jbj D a � b.
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If ja C bj D a C b (when a C b � 0) and we have that ja C bj D a C b < a <

a � b D jaj C jbj.
Otherwise ja C bj D �.a C b/ (when a C b < 0) we have ja C bj D �a � b D

�jaj C jbj < jaj C jbj.
In both cases, jaC bj < jaj C jbj.

� The case a < 0 and b � 0 is analogous to the preceding case.
� Finally, if a and b are both negative, we have ja C bj D �.a C b/ D .�a/ C .�b/ D
jaj C jbj.

In all cases, we have jaC bj is either equal to or less than jaj C jbj.

We return to the analysis of f .n/. If we multiply out all the terms in f , we get an expres-

sion of the form

f .n/ D 4n
5C‹n

3C‹n
2C‹nC‹

where the question marks represent numbers that I’m too lazy to figure out. Therefore

jf .n/j D
ˇ

ˇ4n
5C‹n

3C‹n
2C‹nC‹

ˇ

ˇ

� 4n
5 C j‹jn3 C j‹jn2 C j‹jnC j‹j:

We divide this expression by n5 and get

jf .n/j
jn5j D 4C j‹j

n2
C j‹j

n3
C j‹j

n4
C j‹j

n5
:

Notice that once n is larger than j‹j for all the terms I neglected to calculate, each of the terms

with a question mark is less than 1. So I may conclude that, except for finitely many values of

n, we have

jf .n/j
jn5j < 4C 1C 1C 1C 1 D 8:

That is, with at most finitely many exceptions, jf .n/j � 8jn5j and so f .n/ is O.n5/.

Example 29.5 n2 is O.n3/ but n3 is not O.n2/.

It is clear that jn2j � jn3j for all n 2 N, so n2 is O.n3/.

However, suppose, for the sake of contradiction, that n
3 is O.n

2
/. This means there is a

constant M so that, except for finitely many n 2 N, we have jn3j � M jn2j. Since n 2 N,

we may drop the absolute value bars and divide by n2 to get n � M for all but finitely many

n 2 N, but this is obviously false. Therefore n3 is not O.n2/.

When we say f .n/ is O.g.n//, the function g.n/ serves as a bound on jf .n/j. That is, it
says that jf .n/j grows no faster than a multiple of jg.n/j. So the function n2 grows no faster

than the function n3, but not vice versa.

For better or worse, mathematicians use the big oh notation in a sloppy way. It is proper toThe awful but useful and popular

notation f .n/ D O.g.n//. write “f .n/ is O.g.n//.” This means that the function f has a certain property—namely, that

its absolute value is bounded by a constant multiple of g. Now it is natural to use the word

is when we see an equals sign (D). As a result, mathematicians often write the abhorrent

f .n/ D O.g.n//.

I deplore this terrible notation. But, of course, I use it all the time. The problem is thatWhy do we use this terrible notation?

It’s like the old joke:

A: My uncle is crazy. He thinks he’s

a chicken!

B: So why don’t you take him to a

psychiatrist and have him helped??

A: Because we need the eggs!

f .n/ does not equal O.g.n//. Rather, f .n/ has a certain property that we call O.g.n//.

Further, we often write “equations” such as
 

n

3

!

D n3

6
CO.n

2
/:

This means that the function
�

n

3

�

is equal to the function n3

6
plus another function that isO.n2/.

This is a handy way to absorb all the less important information about
�

n

3

�

into a “remainder”

term. The proper way to express the foregoing “equation” is to say that
�

n

3

�

� n3

6
is O.n2/.
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Althoughwe tolerate the f .n/ D O.g.n// notation,we vehemently reject writingO.g.n// D
f .n/.

On the other end of the spectrum, some mathematicians write f .n/ 2 O.g.n//. This is

actually a nice notation. Many mathematicians define the notation O.g.n// to be the set of all

functions whose absolute values are bounded by a constant multiple of jg.n/j (with finitely

many exceptions). When we write f .n/ 2 O.g.n//, we assert that f is such a function.

� and ‚

The big oh notation establishes an upper bound on the growth of jf .n/j. Conversely, the �

(big omega) notation defines a lower bound on its growth.

Definition 29.6 (�) Let f and g be real-valued functions defined on the natural numbers (i.e., f W N ! R

and g W N ! R). We say that f .n/ is �.g.n// provided there is a positive number M such

that, with at most finitely many exceptions,

jf .n/j �M jg.n/j:

There is a simple relation between the O and � notations.

Proposition 29.7 Let f and g be functions from N to R. Then f .n/ is O.g.n// if and only if g.n/ is �.f .n//.

Proof. .)/ Suppose f .n/ isO.g.n//. Then there is a positive constantM such that jf .n/j �
M jg.n/j for all but finitely many n. Therefore jg.n/j � 1

M
jf .n/j for all but finitely many n,

and so g.n/ D �.f .n//.

.(/ Analogous to the previous argument.

Example 29.8 Let f .n/ D n2 � 3nC 2. Then f .n/ is �.n2/ and f .n/ is also �.n/, but f .n/ is not �.n3/.

The O notation is an upper bound and the � is a lower bound. The following notation

combines them. The symbol ‚ is a Greek capital theta.

Definition 29.9 (‚) Let f and g be real-valued functions defined on the natural numbers (i.e., f W N ! R

and g W N! R). We say that f .n/ is ‚.g.n// provided there are positive numbers A and B

such that, with at most finitely many exceptions,

Ajg.n/j � jf .n/j � Bjg.n/j:

Example 29.10 Let f .n/ D
�

n

3

�

. Then f .n/ is ‚.n3/, but f .n/ is neither ‚.n2/ nor ‚.n4/.

Proposition 29.11 Let f and g be functions from N to R. Then f .n/ is ‚.g.n// if and only if f .n/ is O.g.n//

and f .n/ is �.g.n//.

The proof is left for you (see Exercise 29.8).

The statement that f .n/ is ‚.g.n// says, in effect, that as n gets large, f .n/ and g.n/

grow at roughly the same rate.

As with the O notation, mathematicians often misuse the � and ‚ notations, writing

“equations” of the form f .n/ D �.g.n// and f .n/ D ‚.g.n//.

Little Oh

This discussion of little-oh notation is only for those who have studied calculus.
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The statement that f .n/ is O.g.n// says that f .n/ does not grow faster than g.n/ as n

gets large. Sometimes it is useful to say that f .n/ grows “much” slower than g.n/. For this,

we have the “little oh” notation.

Definition 29.12 (Little oh) Let f and g be real-valued functions defined on the natural numbers (i.e., f W
N! R and g W N! R). We say that f .n/ is o.g.n// provided

lim
n!1

f .n/

g.n/
D 0:

Example 29.13 Let f .n/ D
p

n. Then f .n/ D o.n/. To see why, we calculate

lim
n!1

p
n

n
D lim

n!1
1p
n
D 0:

Mathematicians misuse the little oh notation with the same reckless abandon with which

they misuse the O , �, and ‚ notations. You are more likely to see the “equation” f .n/ D
o.n2/ than the words “f .n/ is o.n2/.”

Floor and Ceiling

I have n marbles to give to two children. How should I divide them fairly? The answer is to

give each child n=2 marbles. That is, of course, unless n is odd. Half a marble does neither

child any good, so I might as well give one child .n� 1/=2 and the other child .nC 1/=2. (To

be totally fair, I would flip a coin to decide who gets the extra.)There is an alternative notation for

floor and ceiling. Some

mathematicians write Œx� to stand for

the floor of x and fxg to stand for

the ceiling of x. The problem with

this notation is that square brackets

Œ � are used as big parentheses and

curly braces fg are used for sets. You

may see Œx� in some older

mathematics books; just remember

that it means bxc.

The “give each child n=2 marbles” answer is easier to express than the more elaborate

answer that applies when n is odd. Sometimes, the only sensible answer to a problem is an

integer, but the algebraic expression we derive does not necessarily evaluate to an integer. It

is useful, in many instances, to have a notation for rounding off a noninteger answer to an

integral answer.

There are a number of different ways to round off nonintegers. The standard method is to

round the quantity to the nearest integer (and to round up if we are midway between). There

are, however, two other natural alternatives: We can always round up or we can always round

down. These functions have special names and notations.

Definition 29.14 (Floor and ceiling) Let x be a real number.

The floor of x, denoted bxc, is the largest integer n such that n � x.

The ceiling of x, denoted dxe, is the smallest integer n such that n � x.

In other words, bxc is the integer we form from x by rounding down (unless x is already

an integer), and dxe is the integer we form from x by rounding up.

Example 29.15 The following illustrate the floor and ceiling functions.

b3:2c D 3 b�3:2c D �4 b5c D 5

d3:2e D 4 d�3:2e D �3 d5e D 5

f , f .x/, and f .�/

A common, but understandable, mistake is to write “Consider the function f .x/. . . ” The

problem is that f .x/ is not a function! It’s a function evaluated at the value x. The correct

way to write this sentence is “Consider the function f . . . ”

Some writers like to emphasize that f is a function and do so by writing f .�/ where

the dot indicates that an argument to the function is expected. Our hypothetical sentence then

becomes “Consider the function f .�/. . . ” However, this added notation isn’t necessary and

the simplest notation (just write f ) is preferable.
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There are some instances in which the dot-between-parentheses notation is handy. For

example, the floor of a real number x is denoted bxc, but how might we refer to the floor

function as a function? Of course, we could (and perhaps should) simply refer to it by its

name: floor. But an acceptable alternative is to write b�c.
Here is another example of the utility of the dot notation. Suppose we have a function g

that takes two arguments. For example, let

g.x; y/ D x
2 C 3xy

2 � 2y:

Now suppose we wish to consider a situation in which we know that, say, x D 17 and we

want to think of g as just a function of its second argument. We might be tempted to write

“Consider the function g.17; y/. . . ” but this is committing the same error as referring to f .x/

as a function. One way to handle this is to write “Define the function h by h.y/ D g.17; y/. . . ”

But we might never have need to refer to h by name again, so this adds unwanted complexity

to our writing. A simpler solution is to write “Consider the function g.17; �/. . . ”

Recap

This section introduced the following notation for approximating functions: O , �, ‚, and o.

We also introduced the floor and ceiling functions for rounding off real numbers to integer val-

ues. Finally we distinguished between functions, f , and evaluating functions at an argument,

f .x/; this led us to introduce the f .�/ notation.

29 Exercises 29.1. Prove the following:

a. n2 is O.n4/.

b. n2 is O.1:1n/.

c. .n/k is O.nk/ where k is a fixed, positive integer.

d. nC1

n
is O.1/.

e. 2
n is O.3

n�1
/.

f. n sin n is O.n/.

29.2. True or false: Determine whether the following statements are true or false.

a. Suppose x 2 Q. Then x 2 Z if and only if dxe D x.

b. Suppose x 2 Q. Then x 2 Z if and only if dxe D bxc.
c. Suppose x; y 2 Q. Then bx C yc D bxc C byc.
d. Suppose x; y 2 Q. Then bxyc D bxc � byc.
e. Suppose x 2 Z and y 2 Q. Then bx C yc D x C byc.
f. Suppose x 2 Q. Then bxc can be calculated as follows: Write x as a decimal and

then drop all the digits to the right of the decimal point.

29.3. Suppose f .n/ is O.g.n// and g.n/ is O.h.n//. Prove that f .n/ is O.h.n//.

29.4. Suppose f W N ! R is O.1/. Show that there is a number M such that 8n 2 N,

jf .n/j �M .

29.5. Suppose f W N ! R is O.0/ (big-oh of zero). What does this imply about the values

of f ?

29.6. Suppose f .n/ is O.g.n//. Is 10f .n/ also O.g.n//? Justify your answer.

29.7. Suppose f1.n/ is O.g1.n// and f2.n/ is O.g2.n// where g1.n/ and g2.n/ are pos-

itive for all n. Show that f1.n/ C f2.n/ is O.g1.n/ C g2.n// and f1.n/f2.n/ is

O.g1.n/g2.n//.

Can we omit the hypothesis that g1.n/ and g2.n/ are positive for all n?

29.8. Prove Proposition 29.11.

29.9. Let a and b be real numbers with a; b > 1. Prove that loga n D O.logb n/.

Conclude that loga n D ‚.logb n/.

29.10. Let p.n/ be a polynomial of degree d in n. Prove that p.n/ is ‚.nd /.

29.11. Develop an expression (using the floor or ceiling notation) for the ordinary meaning

of rounding off a real number x to the nearest integer. Be sure your formula properly

handles rounding 3:49 to 3, but 3:5 to 4.

29.12. Develop an expression (using the floor or ceiling notation) for the ones digit of a positive

integer. That is, if n D 326, then your expression should evaluate to 6.
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29.13. For a real number x, prove

ˇ

ˇ

ˇ
dxe C bxc � 2x

ˇ

ˇ

ˇ
< 1:

The following exercises are for those who have studied calculus.

14. Prove that for every positive integer n that x
n is o.e

x
/.

15. Show that 1

1
C 1

2
C 1

3
C � � � C 1

n
D ln nCO.1/.

Chapter 5 Self Test

1. Let f D f.1; 2/; .2; 3/; .3; 4/g and g D f.2; 1/; .3; 1/; .4; 2/g. Please answer the follow-
ing:

a. What is f .2/?

b. What is f .4/?

c. What is domf ?

d. What is imf ?

e. What is f �1?

f. Note that g�1 is not a function. Why?

g. What is g ı f ?

h. What is f ı g?

2. Let f .x/ D ax C b where a 6D 0. Find f �1.x/.

3. Find all functions of the form f .x/ D ax C b such that .f ı f /.x/ D 4x � 2.

4. Suppose A and B are sets and f is a function with f W A ! B . Suppose also that

f .a/ D b. Please mark each of the following statements as true or false.

a. a 2 A.

b. b 2 B .

c. domf D A.

d. im f D B .

5. Let A D f1; 2; 3g and let B D f3; 4; 5; 6g.
a. How many functions f W A! B are there?

b. How many one-to-one functions f W A! B are there?

c. How many onto functions f W A! B are there?

6. Let A and B be n-element sets. How many functions are there from the set of all subsets

of A to set of all subsets of B?

7. Suppose f W A! B is one-to-one and g W B ! A is one-to-one. Must it be the case that

f is onto? Justify your answer.

8. Let f W Z! N by f .x/ D jxj.
a. Is f one-to-one?

b. Is f onto?

Prove your answers.

9. Let f W Z! Z by f .x/ D x3.

a. Is f one-to-one?

b. Is f onto?

Prove your answers.

10. Functions are relations, although it is not customary to consider whether they exhibit

properties such as reflexive or antisymmetric. Nevertheless, find a function that is also an

equivalence relation on the set f1; 2; 3; 4; 5g.
11. The squares of a 9 � 9 chess board are arbitrarily colored black and white. When we

examine the 2 � 2 blocks of squares, we must see repeated patterns (prove this). Indeed,

prove that some pattern must be repeated at least four times, as illustrated in the figure.

12. Let A D f1; 2; 3; 4; 5g with f W A ! A, g W A! A, and h W A! A. We are given the

following:
� f D f.1; 2/; .2; 3/; .3; 1/; .4; 3/; .5; 5/g,
� h D f.1; 3/; .2; 3/; .3; 2/; .4; 5/; .5; 3/g, and
� h D f ı g.

Find all possible functions g that satisfy these conditions.
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13. Suppose f; g W R! R are defined by

f .x/ D x
2 C x � 1 and g.x/ D 3x C 2:

Express, in simplest terms, .f ı g/.x/ � .g ı f /.x/.

14. Let f; g; h W R ! R defined by f .x/ D 3x � 4, g.x/ D ax C b, and h.x/ D 2x C 1,

where a and b are real numbers. Suppose that .f ıgıh/.x/ D 6xC5. Find .hıgıf /.x/.

15. In Exercise 9.14 you were asked to evaluate 00. (The answer is 00 D 1.) Explain this

answer from the perspective of counting functions.

16. Let A be a set. Suppose f and g are functions f W A ! A and g W A ! A with the

property that f ı g D idA.

Prove or disprove: f D g�1.

17. Let� be a permutation of f1; 2; 3; : : : ; 9g defined by the 2�9 array� D
�

1 2 3 4 5 6 7 8 9
3 9 2 6 5 7 4 1 8

�

.

Please do the following:

a. Express � as a set of ordered pairs.

b. Express � in cycle notation.

c. Express �
�1 in cycle notation.

d. Express � ı � in cycle notation.

e. Express � as the product of transpositions and determine whether � is an even or odd

permutation.

18. Let n be a positive integer and let � 2 Sn. Prove there is a positive integer k such that

�.k/ D ��1.

Note: �.k/ D � ı � ı � � � ı � where � appears on the right k times.

19. Let n be a positive integer and �; � 2 Sn. Evaluate

n
X

kD1

�

�.k/� �.k/
�

and explain your answer.

20. Let n be a positive integer and let � 2 Sn.

a. Prove that � can be written in the following form:

� D .1; x1/ ı .1; x2/ ı � � � ı .1; xa/

where 1 < xi � n for all n.

b. If the identity permutation � is written in the form presented in part (a) of this problem,

we know that a must be even. Give such a representation of � in which some of the

transpositions .1; x/ appear an odd number of times. (The total number of transposi-

tions must be even, but some of the particular transpositions appear an odd number of

times.)

21. Let n be a positive integer and � 2 Sn. Let x1; x2; : : : ; xn be real numbers. Prove that
Y

1�i<j�n

�

xj � xi

�

D .sgn�/ �
Y

1�i<j�n

�

x�.j / � x�.i/

�

:

Note: The products are over all pairs of integers i; j between 1 and n where i < j . For

example, with n D 3, the products are

.x2 � x1/ .x3 � x1/ .x3 � x2/ and
�

x�.2/ � x�.1/

� �

x�.3/ � x�.1/

� �

x�.3/ � x�.2/

�

:

22. Let T be a tetrahedron (a solid figure with four triangular faces) all of whose sides have

the same length.

a. Describe the set of symmetries of T , assuming reflections of the tetrahedron are con-

sidered the same.

b. Describe the set of symmetries of T , assuming reflections of the tetrahedron are con-

sidered different.

In both cases, the symmetries should be described as permutations of the four vertices

(corners) of T , which may be labeled 1, 2, 3, and 4.

23. Let x be a real number and suppose that bxc D dxe. What can you conclude about x?

24. Show that 2n is O.3n/, but 3n is not O.2n/.





C H A P T E R

6 Probability

Few things in life are certain. Probability theory provides us with tools for analyzing situations

in which events occur at random. Probability theory is used in a wide range of disciplines,

including sociology, nuclear physics, genetics, and finance.

It is important to distinguish between mathematical probability theory and its application

to problems in the real world. In mathematics, a probability is simply a number associated

with some object. In applications, the object is some event or uncertain action, and the num-

ber is a measure of how frequent or how likely that event is. Imagine you are prescribed a

medication for some disease. Your doctor might tell you that the probability the medication

will be effective is 94%. This means that if a large number of patients were to use this drug forThere are many ways to write a

number. The number 94% is exactly

the same as 0:94, which is the same

as 94
100

, which is the same as 47
50

.

Percentages are convenient ways to

express numbers between 0 and 1,

but they are no different from

fractions or decimal numbers.

this disease, we would expect 94% of them to be cured and the remaining 6% of them would

not be cured. In applications, probability is often synonymous with frequency.

Probabilities are real numbers between 0 and 1. An event with probability 1 is certain to

occur and an event with probability 0 is impossible. Probabilities between 0 and 1 reflect the

relatively likelihood between these two extremes. Unlikely events have probabilities close to

0 and likely events have probabilities close to 1.

In this chapter we introduce fundamental ideas from discrete probability theory. Discrete

probability problems are often counting problems recast in the language of probability theory.

30 Sample Space

Consider the toss of a die. We cannot say in advance which of the six sides of the die will land

face up; the outcome of this experiment is unpredictable. However, if the die is fair, we can

say that all six outcomes are equally likely. Thus, although we cannot predict which of the six

sides will emerge on top, we can describe the likelihood of seeing, for example, a 4 when we

roll the die.

Mathematicians model the roll of a die using a concept called a sample space. A sampleThere are two parts to a sample

space: a list of outcomes and an

assignment of probabilities to these

outcomes.

space has two parts. First, it contains a list of all the outcomes of some experiment. In this case,

there are six outcomes: any of faces 1 through 6 might land face up. Second, it quantifies the

likelihood of each of these outcomes. In this case, since all six outcomes are equally likely, we

give the same numerical score to each result; we call this likelihood score the probability of

the result. By convention, we require that the sum of the probabilities of the various possible

outcomes be 1. Thus we assign probability 1

6
to each of the six outcomes of the die-rolling

experiment.

Defined more carefully, a sample space consists of a set and a function. The set is the

collection of all conceivable outcomes of some experiment. The function assigns a numerical

score to each outcome; this numerical score—called the probability of the outcome—is simply

a real number between 0 and 1 (inclusive). We also require the sum of the probabilities of all

the outcomes to be exactly 1. It is customary to use the letter S for the set of outcomes and

the letter P for the function that assigns to each s 2 S the probability of that outcome, P.s/.

213
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Example 30.1 (Roll of a die) Let S be the set of outcomes from the roll of a die. The simplest way to name

the outcomes is with the integers 1, 2, 3, 4, 5, and 6, so

S D f1; 2; 3; 4; 5; 6g:

We also have a function P W S ! R defined by

P.1/ D 1

6
P.2/ D 1

6
P.3/ D 1

6

P.4/ D 1

6
P.5/ D 1

6
P.6/ D 1

6
:

Note that the probabilities are nonnegative real numbers and the sum of the probabilities of

all the elements in S is 1.

With this example in mind, we present the definition of a sample space formally:

A sample space is also called a

probability space.

Definition 30.2 (Sample space) A sample space is a pair .S; P / where S is a finite, nonempty set and P is a

function P W S ! R such that P.s/ � 0 for all s 2 S and
X

s2S

P.s/ D 1:

The condition
P

s2S
P.s/ D 1 means that the sum of the probabilities of all the elements

in S must be exactly 1.

1

2

3

4

Example 30.3 (Spinner) Consider the spinner shown in the figure. The arrow represents a needle that can

be spun around to point to one of the four regions 1, 2, 3, or 4.

We model this physical device with a sample space. The set of outcomes S contains the

names of the four regions; that is,

S D f1; 2; 3; 4g:

The probability function P W S ! R measures how likely it is for the spinner to land in each

of the regions. The likelihood is proportional to the area of the region. Thus we have

P.1/ D 1

2
; P.2/ D 1

4
; P.3/ D 1

8
; P.4/ D 1

8
:

We check that
X

s2S

P.S/ D P.1/C P.2/C P.3/C P.4/ D 1

2
C 1

4
C 1

8
C 1

8
D 1:

Example 30.4 (Pair of dice) Two dice are tossed. Die 1 can land in any one of 6 equally likely ways, and the

same is true for die 2. We can express the outcome of this experiment as an ordered pair .a; b/

where a and b are integers between 1 and 6. Thus there are 6� 6 D 36 possible outcomes for

this experiment. We let

S D f1; 2; 3; 4; 5; 6g � f1; 2; 3; 4; 5; 6g
D f.1; 1/; .1; 2/; .1; 3/; : : : ; .6; 5/; .6; 6/g:

Each of the 36 possible outcomes of this experiment is equally likely; that is, P.s/ D 1

36
for

all s 2 S .

Note that the fundamental outcomes of rolling a pair of dice are the 36 different ways the

pair can land. In the next section, we consider events such as “the sum of the numbers on the

dice is eight.” Rolling a 6 on the first die and a 2 on the second is an outcome of the dice-rolling

experiment. There are several different outcomes in which the two values sum to 8.

Example 30.5 (Poker hand) A hand of poker is a five-element subset of the standard deck of 52 cards.

There are
�

52

5

�

different five-element subsets of a 52-element set. The set S consists of all
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these different five-element subsets. Since they are all equally likely, we have

P.s/ D 1
�

52

5

�

for all s 2 S .

Example 30.6 (Coin tossing) A fair coin is tossed five times in a row, and the sequence of HEADS and

TAILS is recorded. We model this as a sample space. The set S contains all possible outcomes

of this experiment. We denote an outcome as a length-five list of Hs and Ts (where H stands

for HEADS and T for TAILS). There are 25 D 32 such lists, and they are all equally likely.

Thus

S D fTTTTT; TTTTH; TTTHT; : : : ; HHHHT; HHHHHg

and P.s/ D 1

32
for all s 2 S .

Are the sequences HHHHT and HHHHH equally likely? After seeing a coin turn up HEADS several

times in a row, some people have an intuition that the next roll is more likely to be TAILS. They feel

that the coin is “ready” to come up TAILS.

This intuition is incorrect, but the reason is physical, not mathematical. The coin is not capable of

“remembering” the results it gave for the past several rolls; from the coin’s perspective, each roll is a

new trial that has nothing to do with the past.

Perhaps a brilliant mechanical engineer could design a coin that could keep track of how it lands; if

the coin accumulated a series of HEADS, it would silently shift internal parts to make TAILS more

likely on the next roll. Then our model that HHHHT and HHHHH are equally likely would not

accurately reflect physical reality.

How can we tell whether our model is accurate? Ultimately, because this is a physical issue and not a

mathematical one, at some point we need to rely on physical measurements. We would record each

group of five flips to see if all possible length-5 lists came up about 1=32 of the time each.

A sample space .S; P / is a mathematical model of a physical experiment. In its pure

form, the sample space .S; P / is simply a set and a function with certain properties. The

interpretation of S as a set of outcomes and P.s/ as the likelihood of S is an added layer of

meaning. This added layer of meaning is what makes probability theory useful. However, we

can create sample spaces that have no specific physical interpretation. Here is an example:

Example 30.7 Let S D f1; 2; 3; 4; 5; 6g and define P W S ! R by

P.1/ D 0:1 P.2/ D 0:4 P.3/ D 0:1

P.4/ D 0 P.5/ D 0:2 P.6/ D 0:2:

Note that
P

s2S
P.s/ D 1.

In this example P.4/ D 0; this is perfectly acceptable. The interpretation is that outcome

4 is impossible. Thus the set S of outcomes might include results that cannot occur.

Recap

We introduced the concept of a sample space: a pair .S; P / where S is a set and P is a

function that assigns to each element in S a nonnegative number called its probability. The

sum of the probabilities over all outcomes in S must be exactly 1. In applications, the elements

of S represent the fundamental outcomes or results of some experiment.

30 Exercises 30.1. Let .S; P / be the sample space in which S D f1; 2; 3; 4g and P.1/ D 0:1, P.2/ D 0:1,

P.3/ D 0:2, and P.4/ D x. Find x.

30.2. Let .S; P / be the sample space in which S D f1; 2; 3; 4g. Suppose P.1/ D x,

P.2/ D 2x, P.3/ D 3x, and P.4/ D 4x. Find x.
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30.3. Let .S; P / be the sample space in which S D f1; 2; 3g, P.1/ D x, P.2/ D y, and

P.3/ D z. Suppose that x C y D z and z C y D x. Find x, y, and z.

30.4. Let .S; P / be the sample space in which S D f1; 2; 3; 4g and, for k D 1; 2; 3; 4, we

have P.k/ D c=k2 where c is some number. Find c.

30.5. Suppose that .S; P1/ and .S; P2/ are two sample spaces that have the same set of

outcomes, S . Is it possible that each outcome is less likely in the first sample space

than it is in the second? That is, can we have 8s 2 S; P1.s/ < P2.s/?

30.6. Suppose we wish to model letter frequency using a sample space. That is, let .S; P / be

a sample space in which S consists of the 26 letters A through Z as basic outcomes.

This sample space is meant to model the process of choosing a letter at random fromWhen all elements of a sample space

have the same probability, we say

that the distribution is uniform.
an English word. Would it be reasonable to set P.A/ D P.B/ D P.C / D � � � D
P.Z/ D 1=26?

If not, what would be a better way to choose these probabilities?

30.7. An experiment is performed in which a coin is flipped and a die is rolled. Describe this

experiment as a sample space. Explicitly list all elements of the set S and the value of

P.s/ for each element of S .

30.8. Tetrahedral dice. A tetrahedron is a solid figure with four faces, each of which is an

equilateral triangle. We can make dice in the shape of tetrahedra and label their faces

with the numbers 1 through 4. When such a die is rolled, the number that lands face down

on the table is the result.

a. Create a sample space that represents the toss of a tetrahedral die.

b. Create a sample space that represents the toss of a pair of tetrahedral dice.

30.9. A bag contains 20 marbles. These marbles are identical, except they are labeled with

the integers 1 through 20. Five marbles are drawn at random from the bag. There are a

few ways to think about this.

a. Marbles are drawn one at a time without replacement. Once a marble is drawn, it is

not replaced in the bag. We consider all the lists of marbles we might create. (In this

case, picking marbles 1; 2; 3; 4; 5 in that order is different from picking marbles

5; 4; 3; 2; 1.)

b. Marbles are drawn all at once without replacement. Five marbles are snatched up at

once. (In this case, picking marbles 1; 2; 3; 4; 5 and picking marbles 5; 4; 3; 2; 1 are

considered the same outcome.)

c. Marbles are drawn one at a time with replacement. Once a marble is drawn, it is

tossed back into the bag (where it is hopelessly mixed up with the marbles still in

the bag). Then the next marble is drawn, tossed back in, and so on. (In this case,

picking 1; 1; 2; 3; 5 and picking 1; 2; 1; 3; 5 are different outcomes.)

For each of these interpretations, describe the sample space that models these experi-

ments.

30.10. A dart is thrown blindly at the target shown in the figure. The probability that the dart

1

2

3

4

lands in one of the four concentric regions is proportional to the area of the region. The

radii of the circles in the figure are 1, 2, 3, and 4 units, respectively. Please note that

region 2 consists of just the annular region from radius 1 to 2, and does not the include

the enclosed circular region 1.

Let .S; P / be a sample space modeling this situation. The set S consists of the four

outcomes: hitting region 1, 2, 3, or 4. We can abbreviate that as S D f1; 2; 3; 4g.
Please find P.1/, P.2/, P.3/, and P.4/.

30.11. Give an example of a sample space with three elements in which one of the elements

has probability equal to 1.

30.12. Give an example of a sample space in which all of the elements have probability 1.

30.13. Definition 30.2 requires that the set S be nonempty. In fact, this requirement is

redundant. Show that if we delete this requirement from the definition, it is, never-

theless, impossible to have a sample space in which the set S is empty.

30.14. According to definition 30.2, in a sample space .S; P / the set S must be finite.

However, we can consider cases in which S is infinite, say, S D N, the natural

numbers. We can do this by allowing only finitely many members ofN to have nonzero

probability, but we can also consider the other extreme in which every element in N has

positive probability.
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a. Explain why it cannot be the case that all elements of N have the same probability

as each other.

We can assign probabilities to elements of N in a geometric sequence. That is, we putThis method of assigning

probabilities is called a geometric

distribution for the natural numbers.
P.0/ D a, P.1/ D ar , P.2/ D ar2, and so on, with P.k/ D ark where a and r are

specific numbers.

b. If the elements of N are given probabilities in a geometric sequence as described,

what is the relation between a and r for .N; P / to be a legitimate sample space?

31 Events

In this section we extend the scope of the probability function P of a sample space.

Let us return to the die-throwing example (Example 30.1). In this sample space .S; P /,

the probability function P gives the probability of each of the six possible outcomes of rolling

the die.

We might wish to know, for example, the probability that the die will show an evenRolling a 2 is an outcome of the

die-rolling experiment. It is a

fundamental result of the experiment.

Rolling an even number is an event;

an event is a set of outcomes.

number. There are three ways the die might yield an even result: face 2, 4, and 6. We want

to know the probability that the die produces a result in the set f2; 4; 6g. We call such a

set an event. The probability of this event is 1

2
. Each of the three outcomes of the die has

probability 1

6
, and we simply add them.

We denote the probability of the event f2; 4; 6g as P.f2; 4; 6g/. This is a forgivable abuse
of notation. The function P is a function defined on the elements of the set S of a sample

space. We use the same symbol applied to a subset of S . We define this extended use of the

symbol P so that

P.f2; 4; 6g/ D P.2/C P.4/C P.6/:

Definition 31.1 (Event) Let .S; P / be a sample space. An event A is a subset of S (i.e., A � S ).

The probability of an event A, denoted P.A/, is

P.A/ D
X

a2A

P.a/:

Example 31.2 (Pair of dice) Let .S; P / be the sample space representing the toss of a pair of dice (see

Example 30.4). What is the probability that the sum of the numbers on the two dice is 7?

Let A denote the event that the numbers on the dice sum to 7. In other words,

A D f.a; b/ 2 S W aC b D 7g D f.1; 6/; .2; 5/; .3; 4/; .4; 3/; .5; 2/; .6; 1/g:

The probability of this event is

P.A/ D P Œ.1; 6/�C P Œ.2; 5/�C P Œ.3; 4/�C P Œ.4; 3/�C P Œ.5; 2/�C P Œ.6; 1/�

D 1

36
C 1

36
C 1

36
C 1

36
C 1

36
C 1

36
D 6

36
D 1

6
:

Example 31.3 (Coin tossing) Let .S; P / be the sample space that models tossing a coin five times (see

Example 30.6). What is the probability that we see exactly one HEAD?

Let A denote the event that exactly one HEAD emerges. We can write this out explicitly

as

A D fHTTTT; THTTT; TTHTT; TTTHT; TTTTHg:

Note that A contains five outcomes, each of which has probability 1

32
. Therefore P.A/ D 5

32
.

What is the probability that exactly two HEADs are shown? LetB be the event that exactly

two of the coin flips show HEADs. We can write out the elements of B explicitly, but all we
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really need to know is how many elements are in B (because all elements of S have the

same probability). The size of B is jBj D
�

5

2

�

D 10 because we are choosing a two-element

subset (the positions of the Hs) from a five-element set (the five positions in the list). Thus

P.B/ D 10

32
D 5

16
.

Example 31.4 (Ten dice) Ten dice are tossed. What is the probability that none of the dice shows the num-

ber 1?

We begin by constructing a sample space .S; P /. Let S denote the set of all possible

outcomes of this experiment. An outcome of this experiment can be expressed as a length-ten

list formed from the symbols 1, 2, 3, 4, 5, and 6. There are 610 such lists and they are all

equally likely, so P.s/ D 6�10 for all s 2 S .

Let A be the event that none of the dice shows the number 1. Since all elements of S have

the same probability, this problem reduces to finding the number of elements in A.

The number of outcomes that do not have the number 1 is the number of lists of length

ten whose elements are chosen from the symbols 2, 3, 4, 5, and 6. The number of such lists

is 510. Therefore there are 510 elements in A, all of which have probability 6�10. Therefore

P.A/ D 5
10 � 6

�10 D
�

5

6

�10

� 0:1615:

Example 31.5 (Four of a kind) Recall the poker hand sample space of Example 30.5. A poker hand is called

a four of a kind if four of the five cards show the same value (e.g., all 7s or all kings). What is

the probability that a poker hand is a four of a kind?

Let A be the event that the poker hand is a four of a kind. Since every poker hand has

probability 1=
�

52

5

�

, we simply need to calculate jAj. There are 13 choices for which value is

repeated four times. Given that value, there are 48 choices for the fifth card. Thus

P.A/ D 13 � 48
�

52

5

� D 1

4165
� 0:00024:

Example 31.6 (Four children) A couple has four children. Which is more likely: They have two boys and

two girls, or they have three of one gender and one of the other?

Let S be the set of all possible lists of genders the couple might have. We can represent

the genders of the children as a list of length four drawn from the symbols b and g. There are

24 D 16 such lists, and they are all equally likely.

Let A be the event that the couple has two boys and two girls. Then

A D fggbb; gbgb; gbbg; bbgg; bgbg; bggbg

so P.A/ D 6

16
D 3

8
D 0:375.

Let B be the event that the couple has three of one gender and one of the other. Thus

B D fgggb; ggbg; gbgg; bggg; bbbg; bbgb; bgbb; gbbbg

so P.B/ D 8

16
D 1

2
D 0:5.

Since P.B/ > P.A/, we conclude that it is more likely for the couple to have three of

one gender and one of the other than for them to have two boys and two girls.

Combining Events

Events are subsets of a probability space. We can use the usual operations of set theory

(e.g., union and intersection) to combine events.

Let .S; P / be a sample space. If A and B are events, so is A[B . We can think of A[BUnion of events.

as the event that A or B occurs. For example, suppose A is the event that a die shows an even

number and B is the event that the die shows a prime number. Then A [ B is the event that
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the die shows a number that is even or prime (or both), so A [ B D f2; 4; 6g [ f2; 3; 5g D
f2; 3; 4; 5; 6g. The probability of the event A[ B is 5

6
.

Likewise, A \ B is the event that represents when both A and B occur. If A is the eventIntersection of events.

that a die shows an even number and B is the event that it shows a prime number, then

A \ B D f2; 4; 6g \ f2; 3; 5g D f2g. The probability of this event is P.A \ B/ D 1

6
.

The set A � B is the event that A occurs but B does not. For the die-rolling example,Difference of events.

A � B D f2; 4; 6g � f2; 3; 5g D f4; 6g. The probability of rolling a number that is even but

not prime is P.A � B/ D 2

6
.

Since the set S of a sample space is the “universe” of all outcomes, it is sensible toComplement of an event.

write A to stand for the set S � A. The set A represents the event when A does not occur.

For the die-rolling example, A is the event that we do not roll an even number, so P.A/ D
P.f1; 3; 5g/ D 3

6
.

Can we find P.A [ B/ if we know only P.A/ and P.B/? The answer is no. Consider

these two examples (from rolling a die).

� Let A D f2; 4; 6g and B D f2; 3; 5g. (Event A is rolling an even number and event B is

rolling a prime number.) Note that P.A/ D P.B/ D 1

2
and P.A[ B/ D 5

6
.

� Let A D f2; 4; 6g and let B D f1; 3; 5g. (Event A is rolling an even number and event B

is rolling an odd number.) Note that P.A/ D P.B/ D 1

2
and P.A [ B/ D 1.

These examples show that knowing P.A/ D P.B/ D 1

2
is not enough to determine the value

of P.A [ B/.

We can, however, relate the quantities P.A/, P.B/, P.A [ B/, and P.A \ B/.

Proposition 31.7 Let A and B be events in a sample space .S; P /. Then

P.A/C P.B/ D P.A [ B/C P.A\ B/:

It is interesting to compare this to Proposition 12.4, which asserts that

jAj C jBj D jA[ Bj C jA\ Bj:

In both cases, the results relate the “sizes” of sets. In the case of Proposition 12.4, we are

relating the number of elements in the various sets. In Proposition 31.7, we find the analogous

relation among the probabilities of the events.

Proof (of Proposition 31.7)

Consider the two sides of the equation,

P.A/C P.B/ and P.A [ B/C P.A \ B/:

We can expand these two sides as sums of P.s/ for various members of S . The left side is

P.A/C P.B/ D
X

s2A

P.s/C
X

s2B

P.s/

and the right side is

P.A [ B/C P.A \ B/ D
X

s2A[B

P.s/C
X

s2A\B

P.s/:

Consider an arbitrary element s 2 S . There are four possibilities:

� s is in neither A nor B . In this case, the term P.s/ does not enter either side of the

equation.
� s is in A but not in B . In this case, P.s/ enters exactly once into both sides of the equation

[once in P.A/ and once in P.A [ B/, but not in P.B/ nor P.A \ B/].
� s is in B but not in A. As before,P.s/ enters exactly once into both sides of the equation.
� s is in both A and B . In this case, P.s/ appears twice on each side of the equation [once

each in P.A/ and P.B/ and once each in P.A [ B/ and P.A\ B/].
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Therefore the two sides of the equation P.A/CP.B/ and P.A[B/CP.A\B/ sum exactly

the same terms and are therefore equal.

Proposition 31.8 Let .S; P / be a sample space and let A and B be events. We have the following:

� If A \ B D ;, then P.A [ B/ D P.A/C P.B/.
� P.A [ B/ � P.A/C P.B/.
� P.S/ D 1.
� P.;/ D 0.
� P.A/ D 1 � P.A/.

The proof is left for you (Exercise 31.14). In the first item, events whose intersection is

the empty set are called mutually exclusive.

The Birthday Problem

Four people are chosen at random. What is the probability that two (or more) of them have

the same birthday?

To make this problem more tractable, we make two simplifying assumptions. First, we

ignore the possibility that a person might be born on February 29. Second, we assume that it

is equally likely that a person is born on any given day of the year; that is, the probability a

random person is born on a given day of the year is 1

365
.

We model this problem with a sample space .S; P /. The sample space consists of all

length-4 lists of days of the year; we can represent these lists as .d1; d2; d3; d4/ where the di

are integers from 1 to 365. All such lists are equally likely with probability 365�4.

Let A be the event that two (or more) of the people have the same birthday. It is easier to

calculate P.A/, the probability they all have different birthdays, than it is to calculate P.A/

directly. Once we establish the value of P.A/, the value of P.A/ is easy to obtain since

P.A/ D 1 � P.A/.

Because the four birthdays must be different, we can choose the first date in 365 ways,

the second date in 364 ways, the third in 363, and the last in 362. Therefore

P.A/ D 365 � 364 � 363 � 362

3654
D 47831784

48627125

so

P.A/ D 1 � P.A/ D 795341

48627125
� 1:64%:

It is rather unlikely that two of them have the same birthday.

Now suppose that 23 people are chosen at random. What is the probability that some of

them have the same birthday? It would seem, since 23 is much smaller than 365, that this is

also an unlikely event. However, let us analyze this situation carefully.

Consider the sample space .S; P / where S contains all length-23 lists .d1; d2; : : : ; d23/

where each of the di is an integer from 1 to 365. We assign probability 365�23 to each of

these lists.

Let A be the event that two (or more) of the dis are equal. As before, it is easier to

calculate the probability of A. The number of length-23 repetition-free lists we can form from

365 different symbols is .365/23. Therefore,

P.A/ D .365/23

36523
D 365 � 364 � � �343

36523

and so

P.A/ D 1 � P.A/ D 1 � .365/23

36523
:

Using a computer, it is not hard to calculate that P.A/ D 50:73%, so it is more likely that

two (or more) of the people will have the same birthday than it is that no two of them have the

same birthday!
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Recap

Let .S; P / be a sample space. An event is a subset A of S . The probability of the event A

is the sum of the probabilities of the elements of A; that is, P.A/ D
P

s2A
P.s/. We can

combine events with the usual set operations, such as union (A [ B represents the event that

A or B occurs) and intersection (A\B is the event that both A and B occur). We investigated

the birthday problem.

31 Exercises 31.1. Let .S; P / be the sample space in which S D f1; 2; 3; : : : ; 10g and P.k/ D 1

10
for

all k 2 S . For each of the following events, write the event as a set (list of elements

enclosed in curly braces) and find the probability of that event.

a. Let A be the event that an even number is selected.

b. Let B be the event that an odd number is selected.

c. Let C be the event that a prime number is selected.

d. Let D be the event that a negative number is selected.

31.2. Recall the tetrahedral dice of Exercise 30.8. Suppose a pair of these dice are tossed. The

sum of the values we get (face down) can range from 2 D 1C 1 to 8 D 4C 4. Let Ak

be the event that the sum of the values of the dice is k. For each value of k from 2 to 8,

please do the following:

a. Write down the eventAk by explicitly writing out its elements between curly braces.

b. Calculate P.Ak/.

31.3. A coin is flipped four times. Let A be the event that we record an equal number of

HEADS and TAILS.

a. Write down the event A by explicitly writing its elements between curly braces.

b. Evaluate P.A/.

31.4. A coin is flipped ten times. What is the probability that we record an equal number of

HEADS and TAILS?

31.5. A coin is flipped n times. What is the probability that exactly h HEADS emerge?

31.6. Let .S; P / denote the sample space for flipping a coin ten times. Let A denote the event

that the results alternate between HEADS and TAILS.

a. Explicitly write down the set A.

b. Evaluate P.A/.

31.7. A pair of dice are rolled. Let A denote the event that the sum of the numbers showing

is 8.

a. Explicitly write down the set A (as a set of ordered pairs).

b. Evaluate P.A/.

31.8. Three dice are rolled. What is the probability that all three dice show even numbers?

31.9. Three dice are rolled. What is the probability that the sum of the numbers showing is

even?

31.10. Two dice are rolled. Let A denote the event that the number on the first die is greater

than the number on the second die.

a. Explicitly write down A as a set.

b. Evaluate P.A/.

31.11. A bag contains ten identically wrapped boxes, but the contents of the boxes have

different values (e.g., each contains a different amount of money). Alice and Bob are

each going to pick one box from the bag.

Suppose Alice picks first (one of the ten boxes at random) and then Bob picks at

random from the remaining boxes.

What is the probability that the contents of Alice’s box are more valuable than the

contents of Bob’s box? Is there an advantage to going first?

31.12. Nontransitive dice. In this problem we consider three dice with unusual numbering.

Call the three dice 1, 2, and 3. The spots on the three dice are given in the following

chart.

Die 1 5 6 7 8 9 18

Die 2 2 3 4 15 16 17

Die 3 1 10 11 12 13 14
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A game is played with these dice. Each player gets one of the dice (and the two players

have different dice). They each roll their die, and whoever has the higher number wins.

a. If dice 1 and 2 are rolled, what is the probability that die 1 beats die 2?

b. If dice 2 and 3 are rolled, what is the probability that die 2 beats die 3?

c. If dice 3 and 1 are rolled, what is the probability that die 3 beats die 1?

d. Which die is best?

31.13. More poker hands.

a. What is the probability that a poker hand is a three of a kind? (A three of a kind has

three cards of the same value and two other cards of different values, such as three

10s, a 7, and a jack.)

b. What is the probability that a poker hand is a full house? (A full house has three

cards with one common value and two other cards of another common value, such

as three queens and two 4s.)

c. What is the probability that a poker hand has one pair? (One pair means two cards

have the same value and three other cards have three other values, such as two 9s,

a king, an 8, and a 5.)

d. What is the probability that a poker hand has two pairs? (Two pairsmeans two cards

have one common value, two more cards have another common value, and a fifth

card has yet another value, such as two jacks, two 8s, and a 3.)

e. What is the probability that a poker hand is a flush? (A flush means all five cards

have the same suit.)

31.14. Prove Proposition 31.8.

31.15. A coin is flipped ten times.

a. What is the probability that there are an equal number of HEADS and TAILS?

b. What is the probability that the first three flips are HEADS?

c. What is the probability that there are an equal number of HEADS and TAILS and the

first three flips are HEADS?

d. What is the probability that there are an equal number of HEADS and TAILS or the

first three flips are HEADS (or both)?

31.16. Three dice are rolled.

a. What is the probability that none of the dice shows 1?

b. What is the probability that at least one die shows 1?

c. What is the probability that at least one die shows 2?

d. What is the probability that none of the dice shows 1 or 2?

e. What is the probability that at least one die shows 1 or at least one die shows 2

(or both)?

f. What is the probability that at least one die shows 1 and at least one die shows 2?

31.17. Let A and B be events in a sample space. Please prove that

P.A\ B/C P.A \ B/ D P.A/:

31.18. Suppose A and B are events in a sample space. Please prove: If A � B , then

P.A/ � P.B/.

31.19. Suppose A and B are events in a sample space with A � B and A 6D B . Prove or

disprove: P.A/ < P.B/.

31.20. Suppose thatA andB are events in a sample space for whichP.A/ >
1

2
andP.B/ >

1

2
.

Prove that P.A \ B/ 6D 0.

31.21. Suppose A1; A2; : : : ; An are events in a sample space. Prove that

P .A1 [A2 [ � � � [ An/ � P.A1/C P.A2/C � � � C P.An/:

31.22. Let A be an event in a sample space. Find P.A \ A/ and give a common-sense inter-

pretation.

31.23. Recall Exercise 30.14 in which we considered the sample space .N; P / for which

P.k/ D ar
k for real numbers a and r . In that problem you should have found that

r D 1 � a (or, equivalently, aC r D 1).

a. For this sample space, let A be the event that an even number is chosen. Find P.A/.

b. Is there a value for a such that P.A/ D P.A/?
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31.24. Write a computer program that takes as its input an integer n between 1 and 365

and returns as its output the probability that, among n randomly chosen people, two

(or more) have the same birthday.

Use your program to find the least positive integer k such that the probability is

greater than 99%.

32 Conditional Probability and Independence

An event is a subset of a sample space. Accordingly, we can apply set-theoretic operations to

create new events. For example, if A and B are events, then A\B is the event in which both

A and B occur.

In this section, we present the concept of one event being conditional on another. We

illustrate this concept with a nonmathematical example.

Let A represent the event that a student misses the school bus. Let B represent the event

that the student’s alarm clock malfunctions. Both these events have low probability;P.A/ and

P.B/ are small numbers. However, let us ask, “What is the probability of the student missing

the school bus given the fact that the alarm clock malfunctioned?” Now it is likely the student

will miss the bus! We denote this probability as P.AjB/: This is the probability that event A

occurs given that event B occurs.

We can think of P.A/ as the frequency (percentage of mornings) with which the student

misses the bus. Similarly, P.B/ measures how often the alarm clock fails. The conditional

probability P.AjB/ is the frequency with which the student misses the bus, but only consid-

ering the mornings when the alarm clock is broken.

S

A
B

We can illustrate this with a Venn diagram. Since events are sets, we illustrate them

as regions in the diagram. The box S represents the entire sample space. Regions A and B

represent the two events (missing the bus and alarm clock malfunction).We have drawn boxes

A and B relatively small to illustrate the fact that these are infrequent events.

The “universe” box S has area 1, and the smaller rectangles for events A and B have area

equal to their probabilities, P.A/ and P.B/.

Look closely at boxB—the alarm clockmalfunction event. A large proportion ofB’s area

is overlapped by box A. This overlap region represents those days on which the student misses

the bus and the alarm clock fails. Given that the alarm clock has failed, a large proportion

of the time the student misses the bus. The overlapping region has area P.A \ B/. What

proportion of box B does this overlap region cover? It covers P.A \ B/=P.B/. This ratio,

P.A \ B/=P.B/, is fairly close to 1 and represents the frequency with which the student

misses the bus on days the alarm clock fails. The conditional probability of event A given

event B is P.AjB/ D P.A \ B/=P.B/.

We consider another example. Let .S; P / be the pair-of-dice sample space (Example 30.4).

Consider the events A and B defined by

� Event A: the numbers on the dice sum to 8.
� Event B: the numbers on the dice are both even.

As sets, these can be written as follows:

A D f.2; 6/; .3; 5/; .4; 4/; .5; 3/; .6; 2/g and

B D f.2; 2/; .2; 4/; .2; 6/; .4; 2/; .4; 4/; .4; 6/; .6; 2/; .6; 4/; .6; 6/g:

Therefore we have P.A/ D 5

36
and P.B/ D 9

36
D 1

4
.

We now consider the problem: What is the probability the dice sum to 8 given that

The conditional probability P.AjB/

when P.B/ D 0 does not make

sense for us. This asks for the

probability that A occurs given that

an impossible event B occurred.

both dice show even numbers? Of the nine, equally likely dice rolls in set B , three of them

(highlighted in color) sum to 8. Therefore P.AjB/ D 3

9
D 1

3
. Notice that P.A \ B/ D 3

36

and we have

P.AjB/ D P.A\ B/

P.B/
D 3=36

9=36
D 3

9
D 1

3
:
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The equation P.AjB/ D P.A\ B/=P.B/ is the definition of P.AjB/, and we interpret

it as the probability of event A given that event B occurred. The only instance in which this

definition does not make sense is when P.B/ D 0.

Definition 32.1 (Conditional probability) Let A and B be events in a sample space .S; P / and suppose

P.B/ 6D 0. The conditional probability P.AjB/, the probability of A given B , is

P.AjB/ D P.A \ B/

P.B/
:

Example 32.2 (Spinner revisited) Consider the spinner from Example 30.3 (see the figure). Let A be the

1

2

3

4

event that we spin to a 1 (i.e., A D f1g) and let B be the event that the pointer ends in a

colored region (i.e., B D f1; 3g). What is the probability that we spin to a 1 given that the

pointer ends in a colored region?

Notice that region 1 consumes 4

5
of the colored portion of the diagram. We can also

calculate

P.AjB/ D P.A \ B/

P.B/
D P.f1g/

P.f1; 3g/ D
1=2

5=8
D 4

5
:

Example 32.3 A coin is flipped five times. What is the probability that the first flip is a TAIL given that

exactly three HEADS are flipped?

Let A be the event that the first flip is TAILS, and let B be the event that we flip exactly

three HEADS. We calculate

P.A/ D 24

25
D 1

2
and P.B/ D

�

5

3

�

25
D 10

32
D 5

16
:

To calculateP.AjB/, we also need to knowP.A\B/. The set A\B contains exactly
�

4

3

�

D 4

sequences since the first flip must be TAILS and exactly three of the remaining four flips are

HEADS. So

P.A\ B/ D 4

32
D 1

8
:

Thus

P.AjB/ D P.A \ B/

P.B/
D 1=8

5=16
D 2

5
:

Independence

A coin is flipped five times. What is the probability that the first flip comes up HEADS given

that the last flip comes up HEADS?

Let A be the event that the first flip comes up HEADS, and let B be the event that the last

flip comes up HEADS. We have

P.A/ D 24

25
D 1

2
; P.B/ D 24

25
D 1

2
; and P.A \ B/ D 23

25
D 1

4

and therefore

P.AjB/ D P.A \ B/

P.B/
D 1=4

1=2
D 1

2
:

Notice that P.AjB/ and P.A/ are equal. This makes intuitive sense. The probability the

first flip comes up HEADS is 1

2
and has nothing to do with the last flip. We call such events

independent (a formal definition follows).

This situation is quite different from Example 32.3. In that example, knowing that three

HEADS were seen decreases the likelihood that the first flip was a TAIL. Indeed, for that

example, P.AjB/ D 2

5
<

1

2
D P.A/.
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We work out the consequences of the equation P.AjB/ D P.A/. This equation can be

written

P.AjB/ D P.A \ B/

P.B/
D P.A/

and if we multiply through by P.B/, we get

P.A\ B/ D P.A/P.B/:

Now if P.A/ 6D 0, we can divide both sides by P.A/, and we have

P.BjA/ D P.A\ B/

P.A/
D P.B/:

We can summarize what we learned in the following proposition.

Proposition 32.4 Let A; B be events in a sample space .S; P / and suppose P.A/ and P.B/ are both nonzero.

Then the following statements are equivalent:

.1/ P.AjB/ D P.A/.

.2/ P.BjA/ D P.B/.

.3/ P.A \ B/ D P.A/P.B/.

The expression “the following

statements are equivalent” means

that each implies the other. In

other words, we have

.1/ () .2/,

.1/ () .3/, and

.2/ () .3/.

Nearly all the ideas for the proof have been presented. We leave it to you to fill in the

details (Exercise 32.6).

We use condition .3/ to define the concept of independent events.

Definition 32.5 (Independent events) Let A and B be events in a sample space. We say that these events

are independent provided

P.A\ B/ D P.A/P.B/:

Events that are not independent are called dependent.

We consider another example. A bag contains twenty balls; ten of the balls are painted

red and ten are painted blue. Two balls are drawn from the bag. Let A be the event that the

first ball drawn is red, and let B be the event that the second ball is red. Are these events

independent?

The question is vague because we have not specified whether or not we replace the first

ball before drawing the second. We consider both possibilities.

Suppose we replace the first ball before drawing the second. Then there are 20 � 20

ways to pick the two balls, of which 10 � 20 have the property that the first ball is red. Thus

P.A/ D 200

400
D 1

2
. Likewise, P.B/ D 1

2
. Finally, there are 10 � 10 ways to draw the balls

such that both the first and second balls are red. Therefore P.A \ B/ D 100

400
D 1

4
. Since

P.A \ B/ D 1

4
D 1

2
� 1

2
D P.A/P.B/

we conclude that A and B are independent events. This makes sense because the color we

observe on the second draw does not in any way depend on the color seen on the first.

But now suppose we do not replace the first ball once it is drawn. The situation is a bit

more complicated. There are 20 � 19 D 380 different ways to draw one ball and then draw a

second from those that remain. There are 10� 19 ways to pick a ball such that the first ball is

red; hence P.A/ D 190

380
D 1

2
. Similarly, there are 190 ways to pick a ball such that the second

ball is red, and we have P.B/ D 1

2
. However, there are only 10 � 9 ways to pick the balls

such that both are red. Therefore

P.A \ B/ D 90

380
D 9

38
6D 1

4
D P.A/P.B/

and so the events are dependent.
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It is instructive to calculate the conditional probabilities in this no-replacement scenario.

We have

P.BjA/ D P.A \ B/

P.A/
D 9=38

1=2
D 9

19
� 47:4%

so we see that the probability the second ball is red given that the first was red is slightly less

than the unconditional probability. This makes sense because once we pick the first ball, and

it is red, the proportion of red balls left in the bag is less than half. Indeed, exactly nine of the

remaining balls are red, and we have P.BjA/ D 9

19
, as we noted before.

Independent Repeated Trials

Recall the spinner from Examples 30.3 and 32.2. Suppose we spin the needle twice. Now,

instead of 4 possible outcomes (1, 2, 3, and 4), there are 16 [from .1; 1/ through .4; 4/]. What

is the probability that we spin a 3 and then we spin a 2?

We cannot express this question in the limited confines of the spinner sample space .S; P /

(where S D f1; 2; 3; 4g). Nonetheless, we can answer the question. The first spin of the

spinner and the second spin are independent of one another—the number that comes up on the

second spin is not in any way dependent on the first number that appears. If we think of “first

spin a 3” and “next spin a 2” as independent events with probabilities 1

8
and 1

4
, respectively,

then the probability that we spin a 3 and then a 2 ought to be 1

8
� 1

4
D 1

32
.

This is an example of repeated independent trials. We have a sample space .S; P /.

Instead of taking a single element s 2 S at random from S with probability P.s/, we take a

sequence of events s1; s2; : : : ; sn each drawn at random from S . We construct a new sample

space designed to handle this situation.

Technical note about Definition 32.6:

We have overused the symbol P in

this definition. We have two sample

spaces under consideration here:

.S; P / and .Sn; P /. It would be

more precise to use different symbols

for the two probability functions. A

reasonable choice would be to write

P n.�/ for the second probability

function.

Definition 32.6 (Repeated trials) Let .S; P / be a sample space and let n be a positive integer. Let Sn denote

the set of all length-n lists of elements in S . Then .Sn; P / is the n-fold repeated-trial sample

space in which

P Œ.s1; s2; : : : ; sn/� D P.s1/P.s2/ � � �P.sn/:

Example 32.7 (Dice revisited) The pair-of-dice sample space (Example 30.4) can be considered a repeated

trial on a single die. Let .S; P / be the sample space with S D f1; 2; 3; 4; 5; 6g and P.s/ D 1

6

for all s 2 S . Then .S2; P / represents the roll-two-dice sample space. The elements of S are

all possible results for rolling a pair of dice, from .1; 1/ through .6; 6/, all with probability 1

36
.

Example 32.8 (Coin tossing revisited) In Example 30.6, we consider the sample space representing five

flips of a fair coin. We can reformulate this situation as follows: Let .S; P / be the sample

space in which S D fHEADS,TAILSg and P.s/ D 1

2
for both s 2 S .

The toss-five-times sample space is simply .S5; P /. The set S5 contains all length-five

lists of the symbols HEADS and TAILS. All such lists are equally likely with probability 1

32
.

Example 32.9 (Tossing an unfair coin) Imagine a coin that is not fairly balanced; that is, it does not turn

up HEADS and TAILS with the same frequencies. We model this with a sample space .S; P /

where S D fHEADS,TAILSg, but

P.HEADS/ D p and P.TAILS/ D 1 � p

where p is a number with 0 � p � 1.

If we toss this coin five times, what is the probability that we see (in this order): HEADS,

HEADS, TAILS, TAILS, HEADS?

The answer is

P.HHTTH/ D P.H/P.H/P.T/P.T/P.H/ D p � p � .1� p/ � .1 � p/ � p:

This generalization of coin tossing,

in which the coin might not produce

HEADS and TAILS with the same

frequency, is known as a Bernoulli

trial. The term Bernoulli trial refers

to a situation in which there are two

possible outcomes, often called

SUCCESS and FAILURE. The

probability of SUCCESS is p and that

of FAILURE is 1� p.
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The Monty Hall Problem

The following problem is inspired by the old television game show Let’s Make a Deal. On

this show, one lucky contestant was presented with a choice of three doors. Behind exactly

one of these doors was a terrific prize; the other doors concealed items of considerably less

value. The contestant was asked to choose a door. At this point, the host of the show, Monty

Hall, would show the contestant one of the worthless prizes behind one of the other doors.

Furthermore, the contestant was offered the opportunity to switch to the other closed door.

The problem is: Is it helpful to switch to the other door, or doesn’t it matter?

An informal—and incorrect!—analysis of this problem runs as follows. The probability

that the prize is behind the door originally picked by the contestant is 1

3
. But now that one door

has been revealed, the probability that the valuable prize is behind either of the two remaining

doors is 1

2
, so it doesn’t matter whether the contestant switches to the other door. The error

in this argument is that the contestant knows more than the fact that the prize is not behind a

certain door. The door the host opens depends on which door the contestant originally chose,

and this is not an arbitrary choice.

Let us model this situation with a sample space. Suppose, without loss of generality, the

contestant chooses door 1. The prize might be behind door 1, in which case the host will show

door 2 or 3. Let us suppose the host is equally likely to pick either. If the prize is behind

door 2, then the host will certainly show door 3, and if the prize is behind door 3, then the

host will certainly show door 2.

Let us write “P1:S2” to stand for “the prize is behind door 1 and the host shows door 2.”

With this notation, the four possible occurrences are P1:S2, P1:S3, P2:S3, P3:S2. We model

this as a sample space by assigning the following probabilities:

P.P1:S2/ D 1

6
; P.P1:S3/ D 1

6
; P.P2:S3/ D 1

3
; P.P3:S2/ D 1

3
:

Suppose that after the contestant picks door 1, the host reveals the worthless item behind

door 2. Should the contestant switch to door 3?

Consider the following three events:

� A: the prize is behind door 1; i.e. A D fP1:S2;P1:S3g.
� B: the prize is behind door 3; i.e. B D fP3:S2g.
� C : the host reveals door 2; i.e., C D fP1:S2;P3:S2g.

Note that P.A/ D P.B/ D 1

3
. If the host did not reveal a door, there is no reason to switch.

However, let us calculate P.AjC / and P.BjC /. We have

P.A \ C / D P.fP1:S2g/ D 1

6

P.C / D P.fP1:S2;P3:S2g/ D 1

6
C 1

3
D 1

2

and so P.AjC / D P.A \ C /

P.C /
D 1=6

1=2
D 1

3
:

And we also have

P.B \ C / D P.fP3:S2g/ D 1

3

P.C / D P.fP1:S2;P3:S2g/ D 1

6
C 1

3
D 1

2

and so P.BjC / D P.B \ C /

P.C /
D 1=3

1=2
D 2

3
:

Therefore it is twice as likely that the contestant will win the big prize by switching doors

than by staying with the original choice.

Recap

We introduced the notion of conditional probability. If A and B are events [with P.B/ > 0],

then P.AjB/ is the probability that A occurs given that B occurs. We define P.AjB/ D
P.A \ B/=P.B/. We discussed independent events. We say A and B are independent
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provided P.A\B/ D P.A/P.B/. In the case where B has nonzero probability, this implies

that P.AjB/ D P.A/. We showed how to extend a sample space .S; P / into a repeated-trial

sample space .Sn; P /. We concluded with an analysis of the Monty Hall problem.

32 Exercises 32.1. Let .S; P / be a sample space with S D f1; 2; 3; 4; 5g and

P.1/ D 0:1; P.2/ D 0:1; P.3/ D 0:2; P.4/ D 0:2; and P.5/ D 0:4:

Here we list several pairs of events A and B . In each case, please calculate P.AjB/.

a. A D f1; 2; 3g and B D f2; 3; 4g.
b. A D f2; 3; 4g and B D f1; 2; 3g.
c. A D f1; 5g and B D f1; 2; 5g.
d. A D f1; 2; 5g and B D f1; 5g.
e. A D f1; 2; 3g and B D f1; 2; 3g.
f. A D f1; 2; 3g and B D f4; 5g.
g. A D ; and B D f1; 3; 5g.
h. A D f1; 3; 5g and B D ;.
i. A D f1; 2; 3; 4; 5g and B D f1; 3g.
j. A D f1; 3g and B D f1; 2; 3; 4; 5g.

32.2. Let .S; P / be the sample space with S D f1; 2; : : : ; 10g and P.x/ D 1

10
for all x 2 S .

Let A be the event “is odd” and let B be the event “is even”. Please calculate the

following:

a. P.A/.

b. P.B/.

c. P.AjB/.

d. P.BjA/.

e. P.BjA/.

f. P.BjA/.

g. P.BjA/.

32.3. A pair of dice are rolled. What is the probability that neither die shows a 2 given that

they sum to 7?

32.4. A pair of dice are rolled. What is the probability that they sum to 7 given that neither

die shows a 2?

32.5. A coin is flipped ten times. What is the probability that the first three flips are all HEADS

given that an equal number of HEADS and TAILS are flipped?

How does this conditional probability compare with the simple probability that the

first three flips are HEADS?

32.6. Prove Proposition 32.4.

32.7. Are disjoint events independent? Please give a proof or a counterexample.

32.8. Consider an 8�8 chess board in which the rows are numbered from 1 to 8, and likewise

for the columns. And, as is usual for a chess board, the squares are alternately colored

black and white.

The squares of this chess board form the elements of a sample space in which all of

the 64 squares on the chess board are equally likely; that is, all have probability 1=64.

For each of the following pairs of events A and B , determine if the two events are

independent.

a. A is the event that a white square is chosen and B is the event that a black square is

chosen.

b. A is the event that a square from an even numbered row is chosen and B is the event

that a square from an even numbered column is chosen.

c. A is the event that a white square is chosen and B is the event that a square from an

even numbered column is chosen.

32.9. Let A and B be events in a sample space with P.A \ B/ 6D 0. Prove that P.AjB/ D
P.BjA/ if and only if P.A/ D P.B/.

32.10. Let A and B be events in a sample space for which P.A/ > 0, P.B/ > 0, but

P.A\ B/ D 0. Prove that P.AjB/ D P.BjA/.

Give an example of two such events with P.A/ 6D P.B/.
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32.11. Let A and B be events in a sample space .S; P / and suppose 0 < P.B/ < 1. Please

prove:

P.AjB/P.B/C P.AjB/P.B/ D P.A/:

32.12. Let A and B be events in a sample space and suppose both have nonzero probability.

(a) Suppose P.AjB/ > P.A/. Must it be the case that P.BjA/ > P.B/?

(b) Suppose P.AjB/ < P.A/. Must it be the case that P.BjA/ < P.B/?

Please prove your answers.

32.13. Let A and B be events in a sample space with P.B/ 6D 0. Suppose P.AjB/ > 0. Must

it be the case that P.A/ > 0? (Prove your answer.)

32.14. Let A and B be events in a sample space .S; P / with P.B/ 6D 0. Suppose also that

P.x/ 6D 0 for all x 2 S .

a. Prove that P.AjB/ D 1 if and only if B � A.

b. Show that P.AjB/ D 1 does not imply B � A if we omit the hypothesis 8x 2 S;

P.x/ 6D 0.

32.15. Let A, B , and C be events in a sample space and suppose P.A\B/ 6D 0. Please prove:

P.A \ B \ C / D P.A/P.BjA/P.C jA \ B/:

32.16. In Exercise 30.14 (and again in Exercise 31.23) we considered the sample space .N; P /This problem shows the memoryless

property of the geometric distribution

on N. If we think of P.k/ as the

probability of, say, a disaster

happening in the kth time interval,

then P.Ak/ is the probability that

the disaster occurs at time k or later.

The conditional P.AkCj jAj /

asks: given that the disaster did not

occur before time j , what is the

probability it occurs k time units or

more after time j . The result is that

these two probabilities are the same.

That is, we “forget” that the disaster

did not yet occur and restart the

countdown to doom anew.

in which P.k/ D ark (where r D 1 � a). In this sample space, define the event

Ak D fn 2 N W n � kg. That is, Ak is the event that the randomly chosen natural

number is k or larger.

Please do:

a. Calculate P.Ak/.

b. Calculate P.AkCj jAj /.

c. You should observe that your answers to (a) and (b) are the same. This is a special

feature of the geometric probability distribution for N. Prove that if .N; P / has the

property that P.Ak/ D P.AkCj jAj / for all k; j 2 N, then P must be a geometric

distribution. That is, prove that there is a real number a such that P.k/ D a.1�a/k

for all k 2 N.

32.17. A card is drawn from a well-shuffled standard deck of 52 cards.

a. What is the probability that it is a spade (�)?
b. What is the probability that it is a king?

c. What is the probability that it is the king of spades?

d. Are the events in parts (a) and (b) independent?

32.18. Two cards are sequentially drawn (without replacement) from a well-shuffled standard

deck of 52 cards. Let A be the event that the two cards drawn have the same value

(e.g., both 4s) and let B be the event that the first card drawn is an ace. Are these events

independent?

32.19. Two cards are sequentially drawn (without replacement) from a well-shuffled standard

deck of 52 cards. Let A be the event that the two cards drawn have the same value

(e.g., both 4s) and let B be the even that the two cards have the same suit (e.g., both

diamonds [}]). Are these events independent?
32.20. Two cards are sequentially drawn (without replacement) from a well-shuffled standard

deck of 52 cards. Let A be the event that the first card drawn is a club (|) and let B be

the event that the second card drawn is also a club. Are these events independent?

32.21. In a sample space .S; P / let A be an event.

a. Prove that A and ; are independent events.
b. Prove that A and S are independent events.

32.22. Let S D f1; 2; 3; 4; 5; 6g and P.x/ D 1

6
for all x 2 S . For this sample space, find a

pair of events A and B such that (a) 0 < P.A/ < 1, (b) 0 < P.B/ < 1, and (c) A and

B are independent.

Next, show that if we were to change the sample space to .S; P / with S D
f1; 2; 3; 4; 5g and P.x/ D 1

5
for all x, then no such pair of events can be found.

32.23. Let A and B be events in a sample space. Prove or disprove the following statements.

a. If A and B are independent, then A and B are independent.

b. If A and B are independent, then A and B are independent.
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32.24. Let A and B be events in a sample space. Prove or disprove:

a. If P.A/ D 0, then A and B are independent.

b. If P.A/ D 1, then A and B are independent.

32.25. Let A, B , and C be events in a sample space. Prove or disprove:

a. If A and B are independent, and B and C are independent, then A and C are inde-

pendent.

b. If P.A\B \C / D P.A/P.B/P.C /, then A and B are independent, A and C are

independent, and B and C are independent.

c. IfA andB are independent,A andC are independent, andB andC are independent,

then P.A\ B \ C / D P.A/P.B/P.C /.

32.26. Recall the spinner sample space .S; P / from Examples 30.3 and 32.2. Write down all

the elements in .S2; P / as well as the value of P.�/ for every member of S2.

32.27. The spinner from Examples 30.3 and 32.2 is spun twice. What is the probability that

the sum of the two numbers is 6?

32.28. The spinner from Examples 30.3 and 32.2 is spun five times. What is the probability

the number 4 is never spun?

32.29. An unfair coin shows HEADS with probability p and TAILS with probability 1� p (see

Example 32.9). Suppose this coin is tossed five times. Let A be the event that HEADS

comes up exactly twice.

a. Write down A as a set.

b. Find P.A/.

32.30. An unfair coin shows HEADS with probability p and TAILS with probability 1� p (see

Example 32.9). Suppose this coin is tossed n times. Let A be the event that HEADS

comes up exactly h times. Find P.A/.

32.31. An unfair coin shows HEADS with probability p and TAILS with probability 1� p (see

Example 32.9). Suppose this coin is tossed twice. Let A be the event that the coin comes

up first HEADS and then TAILS, and let B be the event that the coin comes up first TAILS

and then HEADS.

a. Calculate P.A/.

b. Calculate P.B/.

c. Calculate P.AjA [ B/.

d. Calculate P.BjA [ B/.

e. Explain how to use an unfair coin to make a fair decision (choose between two

alternatives with equal probability).

32.32. Penelope the Pessimist and Olivia the Optimist are two of ten finalists in a contest. One

of these ten finalists will be randomly chosen to receive the grand prize (all finalists

have the same chance of winning). Just before the grand prize is awarded, a judge tells

eight of the finalists that they have not won the grand prize, and only Penelope and

Olivia remain.

Penelope thinks: Even before the judge eliminated the eight contestants, I knew

that at least eight of the other people were losers. That I now know that those eight are

losers doesn’t tell me anything. My chance of winning is still only 10%. What rotten

luck!

Olivia thinks: Now that those eight have been eliminated, there are only two of us

left in the contest. So now I have a 50% chance of winning. What wonderful luck!

Whose analysis is correct?

32.33. Alice and Bob play the following game. Both players start with a pile of n chips. On

each turn, they flip a coin. With probability p, Alice wins the toss and Bob gives her a

chip; conversely, with probability 1 � p, Bob wins the toss and Alice gives him a chip.

The game is over when one player (the winner) has all 2n chips.

What is the probability that Alice wins this game?

To help you work this out, please do the following:

a. Let ak denote the probability that Alice wins the game when she has k chips and

Bob has 2n� k. What are the values of a0 and a2n?

b. Find an expression for ak in terms of ak�1 and akC1. This expression is valid when

0 < k < 2n.
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c. Using the techniques of Section 23, solve the recurrence relation from part (b) using

the boundary conditions you deduced in part (a).

(If you have not studied Section 23, please see the hints in Appendix A.)

d. Your answer to part (c) should be a formula for ak . Substitute k D n into that

formula to find the probability that Alice wins.

In expressing your answers to (b), (c), and (d), it is useful to let q D 1� p.

33 Random Variables

Let .S; P / be a sample space. Although we may be interested in the individual outcomesThe term random variable is,

perhaps, one of the greatest

misnomers in all of mathematics: A

random variable is neither random

nor variable! It is a function defined

on a sample space. Random variables

are used to model quantities whose

value is random.

listed in S , we are often more interested in events. For example, in the pair-of-dice sample

space, we may want to know the probability that the numbers on the two dice are different.

Or if we flip a coin ten times, we may want to know the probability that we flip an equal

number of HEADS and TAILS. We have studied such “compound outcomes”—they are called

events.

We might not be interested in the specific outcomes in a sample space, but we might

be interested in some quantity derived from the outcome. For example, we might want to

know the sum of the numbers on two dice. Or we might want to know the number of HEADS

observed in ten throws of a fair coin.

In this section we consider the concept of a random variable. A typical random variable

associates a number with each outcome in a sample space .S; P /. That is, X.s/ is a number

that depends on s 2 S . For example,X might represent the number of HEADS observed in ten

flips of a coin, and if s D HHTHTTTTHT then X.s/ D 4.

The proper way to express this idea is to say that X is a function. The domain of X is the

set S or a sample space .S; P /. Each outcome s 2 S has a value X.s/ that is usually (but not

always) a real number. In this case, we have X W S ! R. More generally, a random variable

is any function defined on a sample space.

Definition 33.1 (Random variable) A random variable is a function defined on a probability space; that is,

if .S; P / is a sample space, then a random variable is a function X W S ! V (for some set V ).

Example 33.2 (Pair of dice) Let .S; P / be the pair-of-dice sample space (Example 30.4). Let X W S ! N

be the random variable that gives the sum of the numbers on the two dice. For example,

XŒ.1; 2/� D 3; XŒ.5; 5/� D 10; and XŒ.6; 2/� D 8:

Example 33.3 (Heads minus tails) Let .S; P / be the sample space representing ten tosses of a fair coin.

Let X W S ! Z be the random variable that gives the number of HEADS minus the number of

TAILS. For example,

X.HHTHTTTTHT/ D �2:

We can also define random variables XH and XT as the number of HEADS and the num-

ber of TAILS in an outcome. For example,

XH .HHTHTTTTHT/ D 4 and XT .HHTHTTTTHT/ D 6:

Notice that X D XH �XT . This means that for any s 2 S , X.s/ D XH .s/ �XT .s/.

Example 33.4 Here is an example of a random variable whose values are not numbers. Let .S; P / be the

sample space representing ten tosses of a fair coin. For s 2 S , let Z.s/ denote the set of

positions where HEADS is observed. For example,

Z.HHTHTTTTHT/ D f1; 2; 4; 9g
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because the HEADS are in positions 1, 2, 4, and 9. We call Z a set-valued random variable

because Z.s/ is a set.

The random variable XH from the previous example is closely related to Z. We have

XH D jZj. This means that for all s 2 S , XH .s/ D jZ.s/j.

Random Variables as Events

Let X be a random variable defined on a sample space .S; P /. We might like to know the

probability that X takes on a particular value v. For example, if we roll a pair of dice,

what is the probability that the sum of the numbers is 8? We can express this question

in two ways. First, we can let A be the event that the two dice sum to 8; that is, A D
f.2; 6/; .3; 5/; .4; 4/; .5; 3/; .6; 2/g. We then ask: What is P.A/? Alternatively, we can

define a random variable X to be the sum of the numbers on the dice. We can then ask:

What is the probability that X D 8? We write this as P.X D 8/.

Writing P.X D 8/ extends the P.�/ notation beyond its previous scope. So far, we

allowed two sorts of objects to follow the P . We may write P.s/ where s is an element of a

sample space, and we may write P.A/ where A is an event (i.e., a subset of a sample space).

The way to read the expression P.X D 8/ is to interpret the “X D 8” as an event. The

X D 8 is shorthand for the event

fs 2 S W X.s/ D 8g:

In this case,

P.X D 8/ D P
�

fs 2 S W X.s/ D 8g
�

D P
�

f.2; 6/; .3; 5/; .4; 4/; .5; 3/; .6; 2/g
�

D 5

36
:

What does P.X � 8/ mean? The “X � 8” is shorthand for the event fs 2 S W X.s/ � 8g,
so

P.X � 8/ D P
�

fs 2 S W X.s/ � 8g
�

D 5C 4C 3C 2C 1

36
D 15

36
D 5

12
:

We can insert even more complicated algebraic expressions involving random variables

into the P.�/ notation. The notation asks for the probability of an implicit event; the event is

the set of all s that satisfy the given expression. For example, recall the random variables XH

and XT from Example 33.3. (These count the number of HEADS and the number of TAILS,

respectively, in ten flips of a fair coin.) We might ask: What is the probability that there are

at least four HEADS and at least four TAILS in ten flips of the coin? This question can be

expressed in these various ways:

P.XH � 4 and XT � 4/

P.XH � 4 ^ XT � 4/

P.XH � 4 \ XT � 4/

P.4 � XH � 6/:

In every case, we seek the probability of the following event:

fs 2 S W XH .s/ � 4 and XT .s/ � 4g:

Incidentally, the answer to this question is

P.XH � 4 ^ XT � 4/ D
�

10

4

�

C
�

10

5

�

C
�

10

6

�

210
D 672

1024
D 21

32
:

Example 33.5 (Binomial random variable) Recall the unfair coin of Example 32.9. Suppose this coin pro-

duces HEADS with probabilityp and TAILS with probability 1�p. The coin is flipped n times.

Let X denote the number of times that we see HEADS.

Let h be an integer. What is P.X D h/?

If h < 0 or h > n, it is impossible for X.s/ D h, so P.X D h/ D 0. Thus we narrow our

attention to the case with 0 � h � n.
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There are exactly
�

n

h

�

sequences of n flips with exactly h HEADS. All of these sequences

have the same probability: p
h
.1 � p/

n�h. Therefore

P.X D h/ D
 

n

h

!

p
h
.1 � p/

n�h
:

We call X a binomial random variable for the following reason. Expand the expression

.p C q/n using the binomial theorem. One of the terms in the expansion is
�

n

h

�

phqn�h. If we

set q D 1 � p, this is exactly P.X D h/.

As a shorthand, we say that X is a B.N; p/ random variable.

See Exercises 32.30 and 33.10–15.

Independent Random Variables

Recall the pair-of-dice sample space (Example 30.4). For this sample space, we define two

random variables, X1 and X2. The value of X1.s/ is the number on the first die and X2.s/ is

the number on the second die. For example,

X1Œ.5; 3/� D 5 and X2Œ.5; 3/� D 3:

Finally, let X D X1 C X2. This means X.s/ D X1.s/C X2.s/; that is, X is the sum of the

numbers on the dice. For example,XŒ.5; 3/� D 8. Knowledge of X2 tells us some information

about X . For example, if we know that X2.s/ D 4, then X.s/ D 4 is impossible. If we know

that X2.s/ D 4, then the probability that X.s/ D 5 is 1

6
(as opposed to 4

36
). We can express

this as P.X D 5jX2 D 4/ D 1

6
. The meaning of P.X D 5jX2 D 4/ is the usual meaning of

conditional probability. The events in this case are X D 5 and X2 D 4. We can calculate this

in the usual way:

P.X D 5jX2 D 4/ D P.X D 5 and X2 D 4/

P.X2 D 4/
D 1=36

1=6
D 1

6
:

However, knowledge of X2 tells us nothing aboutX1. Indeed, if a and b are integers from

1 to 6, we have

P.X1 D ajX2 D b/ D P.X1 D a and X2 D b/

P.X2 D b/
D 1=36

1=6
D 1

6
D P.X1 D a/:

We can say even more. Since

P.X1 D a and X2 D b/ D 1

36
D 1

6
� 1

6
D P.X1 D a/P.X2 D b/ (40)

the events “X1 D a” and “X2 D b” are independent. Furthermore, if either a or b is not an

integer from 1 to 6, then both sides of Equation (40) are zero. So we have

8a; b 2 Z; P.X1 D a and X2 D b/ D P.X1 D a/P.X2 D b/:

The events X1 D a and X2 D b are independent for all a and b. This is precisely what it

means to say that X1 and X2 are independent random variables.

Definition 33.6 (Independent random variables) Let .S; P / be a sample space and let X and Y be random

variables defined on .S; P /. We say that X and Y are independent if, for all a; b,

P.X D a and Y D b/ D P.X D a/P.Y D b/:

Let us expand on the phrase “for all a; b” in this definition. The random variables X and

Y are functions defined on .S; P /. Therefore we may write X W S ! A and Y W S ! B for

some sets A and B . It is not possible for X to take on a value outside of A or for Y to take on

a value outside of B . So the phrase “for all a; b” can be written more extensively as “for all

a 2 A and all b 2 B .” We can rewrite the condition in the definition as

8a 2 A;8b 2 B; P.X D a and Y D b/ D P.X D a/P.Y D b/:
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Recap

A random variable is neither random nor variable. Rather, a random variable is a function

defined on a sample space .S; P /. That is, for every s 2 S , the random variable X re-

turns a value X.s/. This value is often a number. We expanded the P.�/ notation to include

events described by random variables; for example, P.X D 3/ is the probability of the event

fs 2 S W X.s/ D 3g. Random variables X and Y are independent if the events X D a and

Y D b are independent for all a and b.

33 Exercises 33.1. Let .S; P / be a sample space with S D fa; b; c; d g and

P.a/ D 0:1; P.b/ D 0:2; P.c/ D 0:3; and P.d/ D 0:4:

Define random variablesX and Y on this sample space according to the following table.

s X.s/ Y.s/

a 1 �1

b 3 3

c 5 6

d 8 10

Please answer the following questions.

a. Write down the event “X > 3” as a set of outcomes (i.e., a subset of S ) and calculate

P.X > 3/.

b. Write down the event “Y is odd” as a set of outcomes and calculate P.Y is odd/.

c. Write down the event “X > Y ” as a set of outcomes and calculate P.X > Y /.

d. Write down the event “X D Y ” as a set of outcomes and calculate P.X D Y /.

e. Calculate P.X D m and Y D n/ for all integers m and n.

Note that for all but finitely many choices of m and n, this probability is zero.

f. Are X and Y independent?

g. Define a new random variable Z D X C Y . Find P.Z D n/ for all integers n.

Note that for all but finitely values of n, this probability is zero.

33.2. Let .S; P / be the sample space with S D f1; 2; 3; : : : ; 10g and P.a/ D 1

10
for all

a 2 S . For this sample space, define the random variables X and Y by

X.s/ D 2s and Y.s/ D s
2

for all s 2 S .

Please do:

a. Evaluate P.X < 10/.

b. Evaluate P.Y < 10/.

c. Evaluate .X C Y /.s/.

d. Evaluate P.X C Y < 10/.

e. Evaluate P.X > Y /.

f. Evaluate P.X D Y /.

g. Are X and Y independent? Justify your answer.

33.3. Recall the spinner from Examples 30.3 and 32.2. Suppose a prize of $10 is awarded for

spinning an odd number and $20 is awarded for spinning an even number.

a. Let X be the random variable that represents the amount of money won in this game.

Express X explicitly as a function defined on a sample space.

b. Write down the event “X D 10” as a set.

c. Calculate P.X D a/ for all positive integers a.

33.4. A fair coin is flipped three times. This is modeled by a sample space .S; P / where

S contains the eight lists from HHH to TTT, all with probability 1

8
. Let X denote the

number of times we see TAILS.

a. Write X explicitly as a function defined on S .

b. Write the event “X is odd” as a set.

c. Calculate P.X is odd/.
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33.5. A pair of dice are rolled. Let X be the (absolute value of the) difference between the

numbers on the dice.

a. What is XŒ.2; 5/�?

b. Evaluate P.X D a/ for all integers a.

33.6. Two unfair coins are tossed. The first lands HEADS side up with probability p1, and the

second lands HEADS side up with probability p2. Let X be the random variable that

gives the number of HEADS that appear when these two coins are flipped.

Please calculate P.X D a/ for a D 0; 1; 2.

33.7. A die is rolled ten times. Let X be the number of times the number 1 is rolled. Find

P.X D a/ for all integers a.

33.8. A coin is flipped ten times. Let XH be the number of times HEADS is produced and let

XT be the number of times TAILS is produced. Are XH and XT independent random

variables?

33.9. A coin is flipped ten times. Let X1 be the number of times we see HEADS immediately

before TAILS and let X2 be the number of times we see TAILS immediately before we

see HEADS.

For example, if we flip THHTTHHTHH, then X1 D 2 and X2 D 3 because we have

H-T twice and T-H three times in THHTTHHTHH.

Are X1 and X2 independent random variables?

33.10. Let X be a B.10;
1

2
/ random variable. What is the probability that X D 5?When we write that X is a B.n; p/

random variable, we mean that X is

a binomial random variable

representing the number of heads

when a coin, whose probability of

landing on heads is p, is flipped n

times. See Example 33.5.

33.11. Let X be a B.10;
1

2
/ random variable. Create a bar chart showing the values of

P.X D a/ for 0 � a � 10.

33.12. Write a computer program that takes as input a positive integer n and a real number

p (with 0 � p � 1) and produces as output a random value that behaves just like a

B.n; p/ random variable. That is, the probability your program’s output is k should be
�

n

k

�

p
k
.1 � p/

n�k .

Then use your program to generate one million random values of B.100;
1

2
/. Plot

a histogram showing how often each value (between 0 and 100) occurred.

33.13. Let X be a B.9;
1

2
/ random variable. Show that P.X D a/ D P.X D 9 � a/.

What is the probability that X is even?

33.14. Let X be a B.5;
1

3
/ random variable. What is the probability that X is odd?

33.15. Let X and Y be independent B.n; p/ random variables. Show that X C Y is also a

B.‹; ‹/ random variable. What values should replace the question marks?

33.16. A card is drawn at random from a standard deck of 52 cards. Let X be the value of the

card (from 2 to ace) and let Y be the suit of card. Are X and Y independent random

variables?

33.17. Two cards are drawn (without replacement) at random from a standard deck of 52 cards.

Let X be the value (from 2 to ace) of the first card and let Y be the value of the second

card. Are X and Y independent random variables?

33.18. Let X be a random variable defined on a sample space .S; P /. Is it possible for X to be

independent of itself?

34 Expectation

Most of the random variables we have considered give numerical results such as the numberNot all random variables yield results

that are numbers. For example, if a

card is drawn at random from a deck,

we can define a random variable X

as the suit of the card. In this case,

the random variable is not

real-valued. Rather, its values lie in

the set f�;};~;‚g.

of HEADS in a series of coin flips or the sum of values on a pair of dice. When a random

variable yields numerical results, we can ask questions such as: What is the average value this

random variable might take? And we might ask: How widely spread are its values?

In this section, we consider the expected value of real-valued random variables. The

expected value can be interpreted as the average value of a random variable.

Recall the spinner from Examples 30.3 and 32.2. Define the random variable X to be

simply the number of the region in which the pointer lands. Thus

P.X D 1/ D 1

2
; P.X D 2/ D 1

4
; P.X D 3/ D 1

8
; and P.X D 4/ D 1

8
:

What is the average value of X?
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A plausible (but incorrect) reply would be the following. The random variable X can

take on only four values: 1, 2, 3, and 4. The average of these is 1C2C3C4

4
D 10

4
D 5

2
. So the

average value of X is 5

2
.

However, the needle lands in region 1 far more often than in region 4. So if we were to

spin the pointer many times and average the results, we would be averaging many more 1s

and 2s than 3s and 4s. So we would get an average value less than 2.5.

If we were to spin the pointer a huge number N times, we would expect to see (roughly)
N

2
ones, N

4
twos, N

8
threes, and N

8
fours. If we add these up and divide by N , we get

N

2
� 1C N

4
� 2C N

8
� 3C N

8
� 4

N
D 1

2
C 1

2
C 3

8
C 1

2
D 15

8
D 1:875

which is less than 2.5.

A straight average of the values of X is not what we want. What we have calculated

is a weighted average of the values of X . The value a is counted a number of times that is

proportional to how often a appears. We call this weighted average of the values of X the

expected value or expectation of X .

Definition 34.1 (Expectation) Let X be a real-valued random variable defined on a sample space .S; P /.

The expectation (or the expected value) of X is

E.X/ D
X

s2S

X.s/P.s/:

The expected value of X is also called the mean value of X . The letter � is often used to

denote the expected value of a random variable.

Example 34.2 (Expected value of the spinner) Let X be the number that appears on the spinner of Exam-

ple 30.3. Its expected value is

E.X/ D
4
X

aD1

X.a/P.a/

D X.1/P.1/CX.2/P.2/CX.3/P.3/CX.4/P.4/

D 1 � 1
2
C 2 � 1

4
C 3 � 1

8
C 4 � 1

8
D 15

8
:

Example 34.3 (Expected value on a die) A die is tossed. Let X denote the number that we see. What is the

expected value of X?

The expected value is

E.X/ D
6
X

aD1

X.a/P.a/

D X.1/P.1/CX.2/P.2/CX.3/P.3/CX.4/P.4/CX.5/P.5/CX.6/P.6/

D 1 � 1
6
C 2 � 1

6
C 3 � 1

6
C 4 � 1

6
C 5 � 1

6
C 6 � 1

6

D 1C 2C 3C 4C 5C 6

6
D 21

6
D 7

2
D 3:5:

Suppose we roll a pair of dice. Let X be the sum of the numbers on the two dice. What is

the expected value of X? In principle, to calculate E.X/, we need to calculate

E.X/ D
X

s2S

X.s/P.s/:
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However, in this case, there are 36 different outcomes in the set S . This makes the above cal-

culation quite unpleasant. Fortunately, there are alternative methods to calculate expectation.

We present two methods that show that E.X/ D 7.

Imagine that we wrote out all 36 terms in the sum
P

s2S
X.s/P.s/. To simplify this mess,

we can collect like terms. For example, we could collect all the terms for which X.s/ D 10.

There are three such terms:

� � � C 10P Œ.4; 6/�C 10P Œ.5; 5/�C 10P Œ.4; 6/�C � � � :

Since all three probabilities equal 1

36
, this equals 10 � 3

36
. Notice that the outcomes in these

three terms are exactly those s 2 S for which X.s/ D 10. So we can rewrite these terms as

� � � C 10P.X D 10/C � � � :

If we collect all like terms, we have

E.X/ D 2P.X D 2/C 3P.X D 3/C � � � C 11P.X D 11/C 12P.X D 12/:

We can use this simplification to complete the calculation of E.X/. We have

E.X/ D 2P.X D 2/C 3P.X D 3/C � � � C 11P.X D 11/C 12P.X D 12/

D 2 � 1

36
C 3 � 2

36
C 4 � 3

36
C 5 � 4

36
C 6 � 5

36
C

C 7 � 6

36
C 8 � 5

36
C 9 � 4

36
C 10 � 3

36
C 11 � 2

36
C 12 � 1

36

D 2C 6C 12C 20C 30C 42C 40C 36C 30C 22C 12

36
D 252

36
D 7:

This was still a great deal of work, but better than expanding out 36 terms in the sum
P

X.s/P.s/. We shall present an even more efficient technique to find E.X/, but first let

us generalize what we have learned.

Proposition 34.4 Let .S; P / be a sample space and let X be a real-valued random variable defined on S . Then

E.X/ D
X

a2R
aP.X D a/:

Notice that the summation in Proposition 34.4 is over all real numbers a. This, of course,

is ridiculous. It seems we have exchanged a reasonable, finite sum—namely,
P

s2SX.s/P.s/—

for an unreasonable, infinite sum. However, because S is finite, there are only finitely many

different values that X.s/ can actually attain. For all other numbers a, P.X D a/ is zero,

and so we do not need to include them in the sum. So the apparently infinite sum in Proposi-

tion 34.4 is, in fact, only a finite sum over just those real numbers a for which

P.X D a/ > 0.

Proof (of Proposition 34.4)

Let X be a real-valued random variable defined on a sample space .S; P /. The expected value

of X is

E.X/ D
X

s2S

X.s/P.s/:

We can rearrange the order of the terms in this sum by collecting those terms with a common

value for X.s/. We have

E.X/ D
X

a2R

2

4

X

s2S WX.s/Da

X.s/P.s/

3

5 :

The inner sum is just over those s for which X.s/ is a. There are only finitely many values a

for which the inner sum is not empty.
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The inner sum can be rewritten. Because X.s/ D a for all s in the inner sum, we can

replace X.s/ by a. This gives

E.X/ D
X

a2R

2

4

X

s2S WX.s/Da

aP.s/

3

5 D
X

a2R

2

4a

X

s2S WX.s/Da

P.s/

3

5 :

Notice that we moved a out of the inner sum (by the distributive property).

The inner sum is now simply
X

s2S WX.s/Da

P.s/

which is precisely P.X D a/. We make this final substitution to yield

E.X/ D
X

a2R

2

4a

X

s2S WX.s/Da

P.s/

3

5 D
X

a2R
aP.X D a/:

Example 34.5 In Exercise 33.3 we considered a game in which we spin the spinner from Example 30.3,

receiving $10 for spinning an odd number and $20 for spinning an even number. Let X be the

payout from this game. What is the expected value of X? In other words, how much money

do we expect to receive per spin if we play this game many times?

We calculate the answer in two ways. By Definition 34.1, this is

E.X/ D
X

s2S

X.s/P.s/

D X.1/P.1/CX.2/P.2/CX.3/P.3/CX.4/P.4/

D 10 � 1
2
C 20 � 1

4
C 10 � 1

8
C 20 � 1

8
D 110

8
D 13:75:

Alternatively, we can use Proposition 34.4. In this case, we get

E.X/ D
X

a2R
aP.X D a/ D 10 � P.X D 10/C 20 � P.X D 20/

D 10 � 5
8
C 20 � 3

8
D 110

8
D 13:75:

If we play this game repeatedly, we expect to receive an average of $13.75 per spin.

Example 34.6 In Exercise 33.5, we defined a random variable X for the pair-of-dice sample space. The

value of X is the absolute value of the difference of the numbers on the two dice. What is the

expected value of X?

We use Proposition 34.4:

E.X/ D
X

a2R
aP.X D a/

D 0 � P.X D 0/C 1 � P.X D 1/C 2 � P.X D 2/

C 3 � P.X D 3/C 4 � P.X D 4/C 5 � P.X D 5/

D 0 � 6

36
C 1 � 10

36
C 2 � 8

36
C 3 � 6

36
C 4 � 4

36
C 5 � 2

36

D 10C 16C 18C 16C 10

36
D 70

36
D 35

18
� 1:944:

Linearity of Expectation

Suppose X and Y are real-valued random variables defined on a sample space .S; P /. We can

form a new random variable Z by adding X and Y ; that is, Z D X C Y . Since X and Y

are functions we need to be precise about what this means. This means that the value of Z

evaluated at s is simply the sum of the values X.s/ and Y.s/.
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For example, suppose .S; P / is the pair-of-dice sample space. DefineX1 to be the number

on the first die and X2 to be the number on the second die. Let Z D X1 C X2. Then Z is

simply the sum of the numbers on the two dice. For example, if s D .3; 4/, then X1.s/ D 3,

X2.s/ D 4, and Z.s/ D X1.s/CX2.s/ D 3C 4 D 7.

We can perform other operations on random variables. If X and Y are real-valued random

variables on a sample space .S; P /, then XY is the random variable whose value at s is

X.s/Y.s/. Likewise we can define X � Y and so on.

If c is a number and X is a real-valued random variable, then cX is the random variable

whose value at s is cX.s/.

We now address the question: If we know the expected value of X and Y , can we deter-

mine the expected value of X C Y , XY , or some other algebraic combination of X and Y ?

Let us begin with the simplest case: addition. Let .S; P / be the pair-of-dice sample space,

X1.s/ the number on the first die, X2.s/ the number on the second die, and Z D X1 C X2.

We previously calculated that E.X1/ D E.X2/ D 7

2
and E.Z/ D 7. Notice that E.Z/ D

E.X1/C E.X2/. This is not a coincidence.

Proposition 34.7 Suppose X and Y are real-valued random variables defined on a sample space .S; P /. Then

E.X C Y / D E.X/C E.Y /:

Proof. Let Z D X C Y . We have

E.Z/ D
X

s2S

Z.s/P.s/

D
X

s2S

ŒX.s/C Y.s/�P.s/

D
X

s2S

ŒX.s/P.s/C Y.s/P.s/�

D
X

s2S

X.s/P.s/C
X

s2S

Y.s/P.s/ D E.X/CE.Y /:

Example 34.8 Let .S; P / be the pair-of-dice sample space and let Z be the random variable giving the sum

of the values on the two dice. What is E.X/?

Let X1 be the value on the first die and X2 the value on the second. Note that Z D
X1 CX2. We know that E.X1/ D E.X2/ D 7

2
, so

E.Z/ D E.X1/C E.X2/ D 7

2
C 7

2
D 7:

Next we apply Proposition 34.7 to a more complicated problem.

A basket holds 100 chips that are labeled with the integers 1 through 100. Two chips are

drawn at random from the basket (without replacement). What is the expected value of their

sum, X?

There are three ways we can approach this problem.

First, we can apply the definition of expectation to find E.X/ D
P

s2S
X.s/P.s/. This

summation involves 9900 terms (there are 100 choices for the first chip times 99 choices for

the second chip).

Second, we can apply Proposition 34.4 and compute E.X/ D
P

a2R aP.X D a/. The

possible sums range from 3 to 199, so this sum has nearly 200 terms.

Third, we can use Proposition 34.7. Let X1 be the number on the first chip and X2 the

number on the second chip. Note that X1 can be any value from 1 to 100 and these are all

equally likely. Furthermore,X2 can also be any value from 1 to 100 and these, too, are equally

likely. Therefore

The sum of the integers

from 1 to 100 is
�

101
2

�

D 101�100
2
D 5050.

See Proposition 17.5.
E.X1/ D E.X2/ D 1C 2C � � � C 100

100
D 5050

100
D 50:5:

SinceX D X1CX2, we haveE.X/ D E.X1CX2/ D E.X1/CE.X2/ D 50:5C50:5 D 101.
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It is important to note that X1 and X2 are dependent random variables. This does not

prevent us from applying Proposition 34.7, which does not require that the random variables

in question to be independent.

It is also interesting to consider the expected value of the sum of the two chips if we

replace the first chip before drawing the second (see Exercise 34.5).

We have seen that the expected value of a sum equals the sum of the expected values.

What happens in the case of multiplication? We begin with a special case. Suppose X is a

real-valued random variable on a sample space .S; P /, and suppose c is a real number. What

can we say about E.cX/. First, what does cX mean? The symbols cX stand for the random

variable whose value at s is c � X.s/. We can express this as .cX/.s/ D cŒX.s/�. Now we

compute the expected value of cX . It is

E.cX/ D
X

s2S

.cX/.s/P.s/ D
X

s2S

cŒX.s/�P.s/ D c

X

s2S

X.s/P.s/ D cE.X/:

We have proved the following result.

Proposition 34.9 Let X be a real-valued random variable on a sample space .S; P / and let c be a real number.

Then

E.cX/ D cE.X/:

Proposition 34.9 can be restated this way: If the average value of X is some number a,

then the average value of cX is ca.

We combine Propositions 34.7 and 34.9 into one result as follows:

Theorem 34.10 (Linearity of expectation) Suppose X and Y are real-valued random variables on a sample

space .S; P / and suppose a and b are real numbers. Then

E.aX C bY / D aE.X/C bE.Y /:

Proof. We have

E.aX C bY / D E.aX/C E.bY / by Proposition 34.7, and

D aE.X/C bE.Y / by Proposition 34.9 (twice).

Theorem 34.10 can be extended to apply to a longer sequence of random variables. Sup-

poseX1; X2; : : : ; Xn are random variables defined on a sample space .S; P /, and c1; c2; : : : ; cn

are real numbers. Then it is easy to prove by induction that

E Œc1X1 C c2X2 C � � � C cnXn� D c1E ŒX1�C c2E ŒX2�C � � � cnE ŒXn� :

We apply this to the following problem. A coin is tossed 10 times. LetX be the number of

times we observe TAILS immediately after seeing HEADS. What is the expected value of X?

To compute E.X/, we express X as the sum of other random variables whose expecta-

tions are easier to calculate. Let X1 be the random variable whose value is one if the first two

tosses are HEADS-TAILS and is zero otherwise. The random variable X1 is called an indicator

random variable; it indicates whether or not some event occurs by taking the value one if

the event occurs and the value zero if it does not. Similarly, we let X2 be the random variable

that is one if the second and third tosses come up HEADS-TAILS and is zero otherwise. More

generally, let Xk be the random variable defined as follows:

Xk D
(

1 if toss k is HEADS and toss k C 1 is TAILS, and

0 otherwise.

Then

X D X1 CX2 C � � � CX9:

Thus, to calculate E.X/, it is enough to calculate E.Xk/ for k D 1; : : : ; 9. The advantage is

that E.Xk/ is easy to compute.
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The random variable Xk can take on only two values, one and zero, so

E.Xk/ D 0 � P.X D 0/C 1 � P.X D 1/ D P.X D 1/

and the probability we see HEADS-TAILS in positions k; k C 1 is exactly 1

4
. Therefore

E.Xk/ D 1

4
for each k with 1 � k � 9. Therefore

E.X/ D E.X1/C E.X2/C � � � CE.X9/ D 9

4
:

Indicator random variables take on only two values: zero and one. Such random variables

are often called zero-one random variables.

Proposition 34.11 Let X be a zero-one random variable. Then E.X/ D P.X D 1/.

Example 34.12 (Fixed points of a random permutation) Let � be a random permutation of the numbers

f1; 2; : : : ; ng. In other words, the sample space is .Sn; P / where all permutations� 2 Sn have

probability P.�/ D 1

nŠ
. Let X.�/ be the number of values k such that �.k/ D k. (Such a

value k is called a fixed point of the permutation.) What is the expected value of X?

For k with 1 � k � n, let Xk.�/ D 1 if �.k/ D k and let Xk.�/ D 0 otherwise. Note

that X D X1 CX2 C � � � CXn.

Since Xk is a zero-one random variable, E.Xk/ D P.Xk D 1/ D 1

n
. Therefore

E.X/ D E.X1/C � � � CE.Xn/ D n � 1

n
D 1:

On average, a random permutation has exactly one fixed point.

If the expected values of X and Y are known, we can easily find the expected value of

X C Y . Next we consider the expected value of XY .

Product of Random Variables

A pair of dice are tossed. Let X be the product of the numbers on the two dice. What is the

expected value of X?

We can express X as the product of X1 (the number on the first die) and X2 (the number

on the second die). We know that E.X1/ D E.X2/ D 7

2
. It seems reasonable to guess that

E.X1X2/ D E.X1/E.X2/ D
�

7

2

�2
.

We evaluate E.X/ by computing
P

a2R aP.X D a/. The calculations we need are sum-

marized in the following chart.

a P.X D a/ aP.X D a/

1 1=36 1=36

2 2=36 4=36

3 2=36 6=36

4 3=36 12=36

5 2=36 10=36

6 4=36 24=36

8 2=36 16=36

9 1=36 9=36

10 2=36 20=36

12 4=36 48=36

15 2=36 30=36

16 1=36 16=36

18 2=36 36=36

20 2=36 40=36

24 2=36 48=36

25 1=36 25=36

30 2=36 60=36

36 1=36 36=36

Total: 441=36
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ThereforeE.X/ D 441

36
D 21

6
� 21

6
D
�

7

2

�2
. This confirms our guess thatE.X/ D E.X1X2/ D

E.X1/E.X2/.

This example emboldens us to conjecture that E.XY / D E.X/E.Y /. Unfortunately,

this conjecture is incorrect, as the following example shows.

Example 34.13 A fair coin is tossed twice. Let XH be the number of HEADS and let XT be the number of

TAILS observed. Let Z D XH XT . What is E.Z/?

Note that E.XH / D E.XT / D 1, so we might guess that E.Z/ D 1. However,

E.Z/ D
X

a2R
aP.Z D a/

D 0 � P.Z D 0/C 1 � P.Z D 1/

D 0 � 2
4
C 1 � 2

4

D 1

2
:

Therefore E.XH XT / 6D E.XH /E.XT /.

Example 34.13 shows that the conjecture E.XY / D E.X/E.Y / is incorrect. It is there-

fore surprising that for the dice-rolling example we have E.X1X2/ D E.X1/E.X2/. We

might wonder why this works for the numbers on the two dice, but a similar equation does not

hold for XH and XT (the numbers of HEADS and TAILS). Notice that X1 and X2 are indepen-

dent random variables, but XH and XT are dependent. Perhaps the conjectured relationship

E.XY / D E.X/E.Y / holds for independent random variables. This revised conjecture is

correct.

Theorem 34.14 Let X and Y be independent, real-valued random variables defined on a sample space .S; P /.

Then

E.XY / D E.X/E.Y /:

Proof. Let Z D XY . Then

E.Z/ D
X

a2R
aP.Z D a/: (41)

Let us focus on the term aP.Z D a/. Since Z D XY , the only way we can have Z D a is to

have X D b and Y D c with bc D a. So we can write P.Z D a/ as

P.Z D a/ D
X

b;c2RWbcDa

P.X D b ^ Y D c/: (42)

The sum is over all numbers b and c so that bc D a. Since X and Y take on at most finitely

many values, this sum has only finitely many nonzero terms. Since X and Y are independent,

we can replace P.X D b^Y D c/ with P.X D b/P.X D c/ in Equation (42), which yields

P.Z D a/ D
X

b;c2RWbcDa

P.X D b/P.Y D c/:

We substitute this expression for P.Z D a/ into Equation (41) and calculate

E.Z/ D
X

a2R
a

2

4

X

b;c2RWbcDa

P.X D b/P.Y D c/

3

5

D
X

a2R

2

4

X

b;c2RWbcDa

aP.X D b/P.Y D c/

3

5
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D
X

a2R

2

4

X

b;c2RWbcDa

bcP.X D b/P.Y D c/

3

5

D
X

b;c2RWbc

bcP.X D b/P.Y D c/

D
X

b2R

"

X

c2R
bP.X D b/cP.Y D c/

#

D
X

b2R
bP.X D b/

"

X

c2R
cP.Y D c/

#

D
"

X

b2R
bP.X D b/

#"

X

c2R
cP.Y D c/

#

D E.X/E.Y /:

IfX and Y are independent, thenE.XY / D E.X/E.Y /. Is the converse of this statement

true? If X and Y satisfy E.XY / D E.X/E.Y /, then may we conclude that X and Y are

independent? Surprisingly, the answer is no, as the following example shows.

Example 34.15 Let .S; P / be the sample space with S D fa; b; cg in which all three elements have probability
1

3
. Define random variables X and Y according to the following chart.

s X.s/ Y.s/

a 1 0

b 0 1

c �1 0

Note that X and Y are not independent because

P.X D 0/ D 1

3
;

P.Y D 0/ D 2

3
; and

P.X D 0 ^ Y D 0/ D 0 6D 2

9
D P.X D 0/P.Y D 0/:

Note that for all s 2 S , we have X.s/Y.s/ D 0. Therefore

E.X/ D 0

E.Y / D 1

3

E.XY / D 0 D E.X/E.Y /:

Expected Value as a Measure of Centrality

The expected value of a real-valued random variable is in the “middle” of all the values X.s/.

For example, consider the sample space .S; P / where S D f1; 2; : : : ; 10g and P.s/ D 1

10
for

all s 2 S . Define a random variable X by the following chart.

s X.s/ s X.s/

1 1 6 2

2 1 7 8

3 1 8 8

4 1 9 8

5 2 10 8
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Note that

E.X/ D
X

a2R
aP.X D a/ D 1 � 0:4C 2 � 0:2C 8 � 0:4 D 4:

We illustrate this with a physical model. Imagine a seesaw—a long horizontal plank—along

which we place weights. We place a weight at position a providedP.X D a/ > 0. The weight

we place at a is P.X D a/ kilograms. For the random variable X described in the table

above, we place a total of 0:4 kg at 1 because P.X D 1/ D 0:4. We illustrate this in the

figure—each circle represents a mass of 100 g.

10–1 0 1 2 3 4 5 6 7 8 9

At what point does this device balance (we ignore the mass of the seesaw)? Suppose the

seesaw balances at a point `. Masses to the right of ` twist the seesaw clockwise, and masses

to the left twist it counterclockwise. The greater the distance of a mass from the center, the

greater the amount of twist—torque—applied to the seesaw. More precisely, if there is mass

m at location x, the amount of torque it applies to the plank is m.x � `/. The seesaw is in

balance if the sum of all the torques is zero. This means we need to solve the equation

X

a2R
P.X D a/.a � `/ D 0:

This equation can be rewritten as

X

a2R
aP.X D a/ D `

X

a2R
P.X D a/

and since
P

a
P.X D a/ is 1, we have

` D
X

a2R
aP.X D a/ D E.X/:

In the figure, the balancing point is at ` D 4, the expected value of X .

Variance

The expected value of a real-valued random variable is a measure of the centrality of the

values X.s/. Let us consider three random variables X , Y , and Z. They take on real values as

follows:

X D

8

ˆ

<

ˆ

:

�2 with probability
1

2

2 with probability
1

2

Y D

8

ˆ

<

ˆ

:

�10 with probability 0:001

0 with probability 0:998

10 with probability 0:001

Z D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

�5 with probability
1

3

0 with probability
1

3

5 with probability
1

3
:
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Notice that all three of these random variables have an expected value equal to zero; the

“centers” of these random variables are all the same. Yet the random variables are quite

different. We consider: Which of these is more “spread out”? At first glance, it appears that Y

is the most spread out because its values range from �10 to C10, whereas X is the most

“compact” because its values are restricted to the narrowest range (from �2 to C2).

However, Y ’s extreme values at˙10 are exceedingly rare. It can be argued that Y is more

concentrated near 0 than X because Y is almost always equal to zero, whereas X can be only

at ˙2.

To better describe how spread out the values of a random value are, we need a precise

mathematical definition. Here is an idea: Let � D E.X/. Let us calculate how far away

each value of X is from �, but count it only proportional to its probability. That is, we add

up ŒX.s/� ��P.s/. Unfortunately, this is what happens:The expression
X

ŒX.s/���P.s/

measures how far away X is from its

mean, �. It is a weighted average of

the distance from X to �. At first

glance, it would appear that when

X’s values are widely spread out,

this weighted average would be

large. However, in all cases, it sums

to zero.

X

s2S

ŒX.s/� ��P.s/ D
"

X

s2S

X.s/P.s/

#

�
"

X

s2S

�P.S/

#

D E.X/ � � D 0:

The problem is that values to the right of � are exactly canceled by values to the left. To

prevent this cancellation, we can square the distances between X and �, counting them pro-

portional to their probability. That is, we add up ŒX.s/ � ��2P.s/. We can think of the sum

X

s2S

ŒX.s/� ��
2
P.s/

as the expected value of a random variable Z D .X � �/
2. That is, Z.s/ D ŒX.s/ � ��

2,

and the expected value of Z is exactly the measure of “spread” we are creating. This value is

called the variance of X .

Definition 34.16 (Variance) Let X be a real-valued random variable on a sample space .S; P /. Let � D
E.X/. The variance of X is

Var.X/ D E
�

.X � �/
2
�

:

Example 34.17 Let X , Y , and Z be the three random variables we introduced at the beginning of this discus-

sion of variance. All three of these random variables have expected value � D 0. We calculate

their variances as follows:

Var.X/ D EŒ.X � �/
2
� D E.X

2
/

D .�2/
2 � 0:5C 2

2 � 0:5

D 4;

Var.Y / D EŒ.Y � �/
2
� D E.Y

2
/

D .�10/
2 � 0:001C 0

2 � 0:998C 10
2 � 0:001

D 0:2; and

Var.Z/ D EŒ.Z � �/
2
� D E.Z

2
/

D .�5/
2 � 1

3
C 0

2 � 1
3
C 5

2 � 1
3

D 50

3
� 16:67:

By this measure, Z is the most spread out and Y is the most concentrated.
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Example 34.18 A die is tossed. Let X denote the number that appears on the die. What is the variance of X?

Let � D E.X/ D 7

2
. Then

Var.X/ D EŒ.X � �/
2
� D E

"

�

X � 7

2

�2
#

D
�

1 � 7

2

�2

� 1
6
C
�

2 � 7

2

�2

� 1
6
C
�

3 � 7

2

�2

� 1
6

C
�

4 � 7

2

�2

� 1
6
C
�

5 � 7

2

�2

� 1
6
C
�

6 � 7

2

�2

� 1
6

D 25

24
C 3

8
C 1

24
C 1

24
C 3

8
C 25

24

D 35

12
� 2:9167:

The following result gives an alternative method for calculating the variance of a random

variable.

Proposition 34.19 Let X be a real-valued random variable. Then

Var.X/ D EŒX
2
� �EŒX�

2
:

Please note thatEŒX
2
� is quite different fromEŒX�

2. The first is the expected value of the

random variable X2 and the second is the square of the expected value of X . These quantities

need not be the same.

Proof. Let � D E.X/. By definition, Var.X/ D E
�

.X � �/2
�

. We can write .X � �/2 D
X2 � 2�X C �2. We can think of this as the sum of three random variables: X2, �2�X ,

and �2. If we evaluate these at an element s of the sample space, we get ŒX.s/�2, �2�X.s/,

and �2, respectively. Here we are thinking of �2 both as a number and as a random variable.

As a random variable, its value at every s is simply �
2. Therefore E.�

2
/ D �

2. We calculate

Var.X/ D E
�

.X � �/
2
�

D E
�

X
2 � 2�X C �

2
�

D EŒX
2
� � 2�EŒX�C EŒ�

2
� (by Theorem 34.10)

D EŒX
2
� � 2�

2 C �
2

D EŒX
2
� � �

2

D EŒX
2
� �EŒX�

2
:

Example 34.20 Let X be the number showing on a random toss of a die. What is Var.X/?

We apply Proposition 34.19, Var.X/ D EŒX2��EŒX�2. Note that EŒX�2 D
�

7

2

�2 D 49

4
.

Also,

EŒX
2
� D 1

2 � 1
6
C 2

2 � 1
6
C 3

2 � 1
6
C 4

2 � 1
6
C 5

2 � 1
6
C 6

2 � 1
6

D 12 C 22 C 32 C 42 C 52 C 62

6

D 91

6
:

Therefore

Var.X/ D EŒX
2
� � EŒX�

2 D 91

6
� 49

4
D 35

12
:

This agrees with Example 34.18.
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Recall Example 33.5, in which an unfair coin is flipped n times. The coin produces

The variance of a binomial random

variable.

HEADS with probability p and TAILS with probability 1 � p. Let X denote the number of

times we see HEADS. We have E.X/ D np (see Exercise 34.11). What is the variance of X?

We can express X as the sum of zero-one indicator random variables. Let Xj D 1 if the

j th flip comes up HEADS and Xj D 0 if the j th flip comes up TAILS. Then X D X1CX2C� � �
CXn.

By Proposition 34.19, Var.X/ D EŒX2��EŒX�2. The term EŒX�2 is simple to calculate.

Since EŒX� D np, we have EŒX�2 D n2p2. The calculation of EŒX2� is more complicated.

Since

X D X1 CX2 C � � � CXn

we have

X
2 D ŒX1 CX2 C � � � CXn�

2

D X1X1 CX1X2 C � � � CX1Xn CX2X1 C � � � � � � CXnXn:

There are two kinds of terms in this expansion. There are n terms where the subscripts are

the same (e.g., X1X1), and there are n.n � 1/ terms where the subscripts are different (e.g.,

X1X2). We can express this as

X
2 D

n
X

iD1

X
2

i
C
X

i 6Dj

XiXj :

To find EŒX
2
�, we apply linearity of expectation. Note that EŒX

2
i
� D EŒXi � D p (see Propo-

sition 34.11 and Exercise 34.10). If i 6D j , then Xi and Xj are independent random variables.

Therefore EŒXi Xj � D EŒXi �EŒXj � D p2 (see Proposition 34.14). Therefore

E
�

X
2
�

D E

2

4

n
X

iD1

X
2

i
C
X

i 6Dj

XiXj

3

5

D
n
X

iD1

EŒX
2

i
�C

X

i 6Dj

EŒXiXj �

D np C n.n � 1/p
2
:

We now have that EŒX2� D np C n.n � 1/p2 and EŒX�2 D n2p2. Therefore

VarŒX� D EŒX
2
� � EŒX�

2

D np C n.n � 1/p
2 � n

2
p

2

D np C n
2
p

2 � np
2 � n

2
p

2

D np � np
2

D np.1 � p/:

Recap

The expected value of a real-valued random variable X is the average value of X over many

trials. Specifically, E.X/ D
P

s2S
X.s/P.s/. By rearranging terms, we can write this as

P

a2R aP.X D a/. If X and Y are real-valued random variables, then E.XCY / D E.X/C
E.Y /. If a and b are real numbers, this can be extended to E.aXCbY / D aE.X/CbE.Y /.

This result is known as linearity of expectation. We can often use linearity of expectation to

simplify the calculation of expected values. If X represents the number of times something

happens, we can often express X as the sum of indicator random variables whose expectations

are easy to calculate. This enables us to calculate E.X/. If X and Y are independent random

variables, we have E.XY / D E.X/E.Y /. We showed how the expected value of X is at the

“center” of the values of X , and we introduced the variance as a measure of how spread out

the values of X are.
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34 Exercises 34.1. Find the expected value of the random variables X , Y , and Z in Exercise 33.1.

34.2. Let .S; P / be the sample space with S D fa; b; cg and P.s/ D 1

3
for all s 2 S . Find

the expected value of each of the following random variables:

a. X , where X.a/ D 1, X.b/ D 2, and X.c/ D 10.

b. Y , where Y.a/ D Y.b/ D �1 and Y.c/ D 2.

c. Z, where Z D X C Y .

34.3. A pair of tetrahedral dice are rolled (see Exercise 30.8). Let X be the sum of the two

numbers and let Y be the product.

Find E.X/ and E.Y /.

34.4. You play a game in which you roll a die and you win (in dollars) the square of the

number on the die. For example, if you roll a 5, then you win $25. On average, how

much money would you expect to receive per play of this game?

34.5. A basket holds 100 chips that are labeled with the integers 1 through 100. A chip is

drawn at random from the basket, it is replaced, and a second chip is drawn at random

(it might be the same chip). Let X be the sum of the numbers on the two chips. What is

the expected value of X?

34.6. A coin is flipped 100 times. Let XH be the number of HEADS and XT the number of

TAILS. Please do the following:

a. Let Z D XH CXT . What is Z.s/? Here s represents an element of the flip-a-coin-

one-hundred-times sample space.

b. Evaluate E.Z/.

c. Is it true that XH D XT ?

d. Is it true that E.XH / D E.XT /?

e. Evaluate E.XH / and E.XT / using what you have learned from parts (b) and (d).

f. Evaluate E.XH / by expressing XH as the sum of 100 indicator random variables.

34.7. Skeeball is an arcade game in which a player rolls a ball along a ramp that curves up at
50

40

20

10

30

the end and propels the ball into a target as shown in the figure. When the ball lands in

one of the regions, the player gets that many points. (The dotted line is not part of the

target; we drew it just to illustrate that the target region is a rectangle and a semicircle

joined together.)

Let us consider an oversimplified model of this game in which the ball is a point

and is equally likely to land anywhere in the target region.

What is the expected number of points the player gets on each roll?

34.8. The term expected value can be a bit deceiving. The following questions ask you to find

random variables whose expected value is not what someone might expect!

a. Give an example of a random variable X whose expected value is 1, but the proba-

bility that X D 1 is zero.

b. Give an example of a random variable X whose expected value is negative, but the

probability that X is positive is nearly 100%.

34.9. Prove Proposition 34.11.

34.10. Suppose X is a zero-one random variable. Prove that E.X/ D E.X2/.

34.11. Let X be a binomial random variable as in Example 33.5. Prove that E.X/ D np.

34.12. Let n be a positive integer. A random integer N between 0 and 2n � 1 (inclusive) is

generated; every possible number has probability 2�n. Imagine N written as an n-bit

binary number (between 00 : : : 0 and 11 : : : 1.

a. Let Xi be the random variable giving the i
th digit of N . What is E.Xi /?

b. Let X be the number of 1s in the binary representation of N . What is E.X/?

c. Using part (b), determine the number of 1s in all of the binary numbers from 0 to

2n � 1.

34.13. Let X be a random variable whose value is never zero. Prove or disprove: E.1=X/ D
1=E.X/.

34.14. In Theorem 34.14we learn that ifX and Y are independent random variables defined on

a common sample space, then we must have E.XY / D E.X/E.Y /. For such random

variables, which of the following additional identities are true:

a. E.X C Y / D E.X/C E.Y /.

b. E.X � Y / D E.X/ �E.Y /.
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c. E.X=Y / D E.X/=E.Y /.

d. E.XY / D E.X/E.Y /.

For (c) you may assume that the value of Y is never zero and for (d) you may assume

that the value of X is always positive.

34.15. Let X and Y be real-valued random variables defined on a sample space .S; P /.

Suppose X.s/ � Y.s/ for all s 2 S . Prove that E.X/ � E.Y /.

34.16. Let .S; P / be a sample space and let A � S be an event. Define a random variable IA

whose value at s 2 S is

IA.s/ D
(

1 if s 2 A, and

0 otherwise.

The random variable IA is called an indicator random variable because its value indi-

cates whether or not an event occurred.

Prove: E.IA/ D P.A/.

34.17. Markov’s inequality. Let .S; P / be a sample space and letX W S ! N be a nonnegative-

integer-valued random variable. Let a be a positive integer. Prove that

P.X � a/ � E.X/

a
:

A special case of this result is that P.X > 0/ � E.X/.

34.18. Find the variance of the random variables X , Y , and Z in Exercise 33.1.

34.19. Let .S; P / be the sample space in which S D f1; 2; 3; 4g and P is given by P.1/ D 0:1,

P.2/ D 0:2, P.3/ D 0:3, and P.4/ D 0:4. Find the variance of the following random

variables:

a. X is the random variable defined by X.1/ D X.2/ D 1, X.3/ D 2, and X.4/ D 10.

b. Y is the random variable defined by Y.k/ D 2k (for k D 1; 2; 3; 4).

c. Z is the random variable defined by Z.k/ D k2 (for k D 1; 2; 3; 4).

34.20. Let X be the number produced in a toss of a tetrahedral die. Calculate Var.X/.

34.21. Let X be defined on a sample space .S; P / and suppose that P.s/ 6D 0 for all s 2 S .

Prove that E.X2/ D E.X/2 if and only if X is a constant random variable.

34.22. Suppose X and Y are independent random variables defined on a sample space .S; P /.

Prove that Var.X C Y / D Var.X/C Var.Y /.

Give an example to show that the hypothesis that the random variables are inde-

pendent is necessary.

34.23. A pair of dice are tossed. Let X be the sum of the numbers on the two dice. Evaluate

Var.X/.

34.24. Chebyshev’s inequality. Let X be a nonnegative-integer-valued random variable.

Suppose E.X/ D � and Var.X/ D �2. Let a be a positive integer.

Prove:

P
�

jX � �j � a
�

� �2

a2
:

34.25. Let X and Y be random variables defined on a common sample space. The covariance

of X and Y is defined to be Cov.X; Y / D E.XY / �E.X/E.Y /.

Please prove the following:

a. If X and Y are independent, then Cov.X; Y / D 0.

b. Let x̄ D E.X/ and ȳ D E.Y /. Then Cov.X; Y / D EŒ.X � x̄/.Y � ȳ/�.

c. Var.X/ D Cov.X; X/.

d. Var.X C Y / D Var.X/C Var.Y /C 2Cov.X; Y /.

Random variables X and Y for which Cov.X; Y / D 0 are called uncorrelated. Part (a)

of this problem asserts that independent random variables are uncorrelated, which leads

us to the following question:

e. Are uncorrelated random variables independent? That is, if Cov.X; Y / D 0, must

X and Y be independent?



250 Chapter 6 Probability

Chapter 6 Self Test

1. Let .S; P / be a sample space with S D f1; 2; 3; : : : ; 10g. For a 2 S , suppose we have

P.a/ D
(

x if a is even and

2x if a is odd.

Find x.

2. Three dice are dropped at random into a frame where they sit snugly in a row (see the

figure). We wish to model this experiment using a sample space, .S; P /.

a. How many outcomes are in S if we think of the dice as being identical?

b. How many outcomes are in S if we think of the dice as being distinct (e.g., each of

the three dice is a different color).

3. Let .S; P / be a sample space where S D f1; 2; 3; : : : ; 10g and P.j / D j=55 for

1 � j � 10. Let A be the eventA D f1; 4; 7; 9g and let B be the eventB D f1; 2; 3; 4; 5g.
a. What is the probability of A?

b. What is the probability of B?

c. What is P.AjB/?

d. What is P.BjA/?

4. Ten children (five boys and five girls) are standing in line. Assume that all possible ways

in which they might line up are equally likely.

a. What is the probability that they appear in line in alphabetical order by name? Please

assume no two of the children have the same name.

b. What is the probability that all the girls precede all the boys?

c. What is the probability that between any two girls there are no boys (i.e., the girls

stand together in an uninterrupted block)?

d. What is the probability that they alternate by gender in the line?

e. What is the probability that neither the boys nor the girls stand together in an uninter-

rupted block?

5. Thirteen cards are drawn (without replacement) from a standard deck of cards.

a. What is the probability they are all spades (�)?
b. What is the probability they are all black?

c. What is the probability they are not all of one color?

d. What is the probability that none of the cards is an ace?

e. What is the probability that none of the cards is an ace and none is a heart (~)?
6. In the card game blackjack, each card in the deck has a numerical value. Number cardsIn fact, aces may be taken to have the

value 1 or 11, but for this problem

we simplify matters by considering

only the value 11.

(2 through 10) have the value printed on the card. Face cards (jacks, queens, and kings)

have the value 10, and aces have the value 11.

Two cards are drawn (without replacement) from a well-shuffled deck.

a. What is the probability that the sum of the values on the cards is 21?

b. What is the probability that the sum of the values on the cards is 16 or higher?

c. What is the probability the second card is a face card given that the first card is an ace?

7. A standard deck of cards is shuffled. What is the probability that the color of the last card

is red given that the color of the first card is black? Are the colors of the first and last cards

independent; that is, are the events “first card black” and “last card red” independent?

8. Let A be an event for a sample space .S; P /. Under certain circumstances it is possibleYour answer to this problem should

begin “Let A be an event in a sample

space .S; P /. Events A and A are

independent if and only if . . . .”

for the events A and A to be independent. Formulate and prove an if-and-only-if theorem

for an event and its complement to be independent.

9. Two squares are chosen (with replacement) from among the 64 squares of a standard

chess board; all such choices are equally likely. We consider the following events:
� R is the event that the two squares are in the same row of the chess board,
� C is the event that the two squares are in the same column of the chess board, and
� B is the event that both squares are black.

Which pairs of these events are independent?

10. Repeat the previous problem, this time assuming the squares are chosen without replace-

ment where all 64 � 63 possible sequences of choices are equally likely.
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11. An unfair coin is tossed twice in a row.What is the probability that the outcome is HEADS

and then TAILS, given that the two flips give different results (i.e., not HEADS-HEADS and

not TAILS-TAILS)?

12. Let A and B be events for a sample space .S; P /. Suppose that A � B and P.A/ 6D 0.

Prove that P.A/ D P.AjB/P.B/.

13. Consider the sample space .S; P / where S D fa; b; cg and P.a/ D 0:4, P.b/ D 0:4, and

P.c/ D 0:2. Let X be a real-valued random variable, and suppose X.a/ D 1, X.b/ D 2,

and E.X/ D 0. Find X.c/.

14. A card is drawn from a well-shuffled deck. Let X be the blackjack value of the first card

in the deck and let Y be the value of the second card. (Recall that face cards are worth 10

and aces are worth 11; see problem 6).

Please do the following:

a. Calculate P.X is even/.

b. Calculate E.X/.

c. Calculate E.Y /.

d. Are X and Y independent? Justify your answer.

e. Calculate E.X C Y /.

f. Calculate P.X D Y /.

g. Calculate Var.X/.

15. Let X and Y be independent random variables defined on a common sample space. Prove

or disprove: EŒ.X C Y /2� D ŒE.X/C E.Y /�2.

16. Simplified stock market. Suppose there are three kinds of days: GOOD, GREAT, and ROT-

TEN. The following chart gives the frequency of each of these types of days and the effect

on the price of a certain stock on that day.

Type of day Frequency Change in stock value

GOOD 60% C2

GREAT 10% C5

ROTTEN 30% �4

The type of a given day is independent of the type of any other day. Let X be the random

variable giving the change in value of the stock after five consecutive days.

Please answer:

a. What is the expected change in the stock price? (That is, find E.X/.)

b. Calculate Var.X/.





C H A P T E R

7 NumberTheory

Number theory is one of the oldest branches of mathematics and continues to be a vibrant

area of research. It was considered, for some time, to be quintessential pure mathematics—

a subject enjoyed for its own sake without any applications. Recently, number theory has

become central in the world of cryptography (see Sections 44–46) and computer security.

35 Dividing

Six children find a bag containing 25 marbles. How should they share them?Does this sound like you’re back in

grade school? Sorry! Please bear

with us.
The answer is that each child should get 4 marbles, and there will be 1 left over. The

problem is to divide 25 by 6. The quotient is 4 and the remainder is 1. Here is a formal

statement of this process.

Theorem 35.1 (Division) Let a; b 2 Z with b > 0. There exist integers q and r such that

a D qb C r and 0 � r < b:

Moreover, there is only one such pair of integers .q; r/ that satisfies these conditions.

The integer q is called the quotient and the integer r is called the remainder.

Example 35.2 Let a D 23 and b D 10. Then the quotient is q D 2 and the remainder r D 3 because

23 D 2 � 10C 3 and 0 � 3 < 10:

Example 35.3 Let a D �37 and b D 5. Then q D �8 and r D 3 because

�37 D �8 � 5C 3 and 0 � 3 < 5:

The remainder is the smallest natural number we can form by subtracting multiples of

b from a. This observation gives us the key idea in the proof. Consider all natural numbers

of the form a � kb and let r be the smallest such natural number. We use the Well-Ordering

Remember: The Well-Ordering

Principle states that every nonempty

subset of N contains a least element.

Principle.

Proof (of Theorem 35.1)

Let a and b be integers with b > 0. The first goal is to show that the quotient and remainder

exist; that is, there exist integers q and r that satisfy the three conditions

� a D qb C r ,
� r � 0, and
� r < b.

253
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LetFor example, if a D 11 and b D 3,

then A D f: : : ;�4;�1; 2; 5; 8;

11; : : :g and B D A\ N D
f2; 5; 8; 11; 14; : : :g.

A D fa � bk W k 2 Zg:

We want the remainder to be nonnegative, so we consider only the nonnegative elements of A.

Let

B D A\ N D fa � bk W k 2 Z; a � bk � 0g:

We want to select the least element of B . Note that the Well-Ordering Principle applies to

nonempty subsets of N. Thus we need to check that B 6D ;.
The simplest thing to do is to choose k D 0 in the expression a � bk. This shows thatIn our example, a D 11 > 0 so

a 2 B D f2; 5; 8; 11; 14; : : :g. a 2 A and, if a is nonnegative, then a 2 B , so B 6D ;. But it might be the case that a < 0.

We know, however, that b > 0, so if we take k to be a very negative number, we can certainly

make a � bk positive. (As long as we choose k to be any integer less than a

b
, we know that

a � bk � 0.)

Therefore, regardless of whether a is positive, negative, or zero, the set B is nonempty.

Since B 6D ;, by the Well-Ordering Principle (Statement 21.6) we can choose r to be the

least element of B . SinceThe least element of

B D f2; 5; 8; 11; : : :g is r D 2.

Since r 2 A, we can express

r D 11� 3q, (i.e., when q D 3).

r 2 B � A D fa � bk W k 2 Zg

we know that there is an integer, and we call it q, such that r D a � bq. This can be rewritten

a D qb C r:

Since r 2 B � N, we also know that

r � 0:

We still need to show that r < b. To prove this, suppose, for the sake of contradiction, that

r � b.

Let’s think about this for a moment. We are subtracting multiples of b from a until we

reach r , and r � b. This means we can still subtract another b from r without making a

negative result. We have

r D a � qb � b:

Let r 0 D .a � qb/� b D r � b � 0, so

r
0 D a � .q C 1/b � 0:

Therefore r 0 2 B and r 0 D r � b < r . This contradicts the fact that r is the smallest element

of B .)( Therefore r < b.

We have proved that the integers q and r exist. We now have to prove that they are unique.

Uniqueness is proved by contradiction (see Proof Template 14).

Suppose, for the sake of contradiction, there are two different pairs of numbers .q; r/ and

.q0; r 0/ that satisfy the conditions of the theorem; that is,

a D qb C r 0 � r < b and

a D q
0
b C r

0
0 � r

0
< b:

Combining the two equations on the left gives

qb C r D q
0
b C r

0 H) r � r
0 D .q

0 � q/b:

This means that r � r 0 is a multiple of b. But recall that 0 � r; r 0 < b. The difference of two

numbers in f0; 1; : : : ; b�1g can be at most b�1. So the only way that r�r 0 can be a multiple

of b is if r � r 0 D 0 (i.e., r D r 0).
Now that we know r D r 0, we turn to q and q0. Since

qb C r D a D q
0
b C r

0 D q
0
b C r;

we can subtract r from both sides to give

qb D q
0
b
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and since b 6D 0, we can cancel b from both sides, which yields

q D q
0
:

We have shown that these two different pairs of numbers .q; r/ and .q0; r 0/ have q D q0 and
r D r 0, a contradiction.)( Therefore, the quotient and remainder are unique.

Armed with Theorem 35.1, we can prove the following:

Corollary 35.4 Every integer is either even or odd, but not both.

Proof. We have previously shown (Proposition 20.3) that no integer can be both even and

odd. Thus it remains to show that every integer is one or the other (i.e., there is no integer that

is neither).

Let n be any integer. By Theorem 35.1 we can find integers q and r such that n D 2qC r

where 0 � r < 2. Note that if r D 0 then n is even and if r D 1 then n is odd.

Corollary 35.5 Two integers are congruent modulo 2 if and only if they are both even or both odd.

Proof. .)/ Let a and b be integers and suppose a � b .mod 2/. This means that a � b is

divisible by 2, say a � b D 2n for some integer n. By Corollary 35.4, a is either even or odd.

� If a is even, then a D 2k for some integer k. Since a � b D 2n, we have b D a � 2n D
2k � 2n D 2.k � n/ and so b is even.

� If a is odd, then a D 2kC1 for some integer k. Since a�b D 2n, we have b D a�2n D
2k C 1 � 2n D 2.k � n/C 1; thus b is odd.

In either case, a and b are either both even or both odd.

.(/ Suppose a and b are integers that are both even or both odd.

If a and b are both even, then a D 2n and b D 2m for some integers n and m. Then

a � b D 2n � 2m D 2.n�m/ and so a � b .mod 2/.

If a and b are both odd, then a D 2nC 1 and b D 2mC 1 for some integers n and m.

Then a � b D .2nC 1/� .2mC 1/ D 2.n�m/ and so a � b .mod 2/.

Thus if a and b are both even or both odd, then a � b .mod 2/.

Div and Mod

We define two operations associated with the division process. Given a and b, these opera-

tions give the quotient and remainder of the division problem. Now it would be quite sensible

if mathematicians named these operations with words such as quot and rem, but we’re a mis-

chievous lot; we call them div and mod. Thus, not only are we guilty of creating new names

where perfectly good old names suffice, but we use the word mod in two different ways: as an

operation and as a relation.

Definition 35.6 (div and mod) Let a; b 2 Z with b > 0. By Theorem 35.1, there exists a unique pair of

numbers q and r with a D qb C r and 0 � r < b. We define the operations div and mod by

a div b D q and a mod b D r:

Example 35.7 These calculations illustrate the div and mod operations.

11 div 3 D 3 11 mod 3 D 2

23 div10 D 2 23 mod 10 D 3

�37 div 5 D �8 �37 mod 5 D 3
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Please look closely at the third part of this example (dividing�37 by 5). The remainder is

never negative. So although �37� 5 D �7:4, we have �37 div 5 D �8 and �37 mod 5 D 3

because �37 D �8 � 5C 3 and 0 � 3 < 5.

We now need to pay special attention to the overworked word mod. We have used this
A second meaning of mod.

word in two different ways. The two meanings of mod are closely related but different.

When we first introduced the word mod (see Definition 15.3) it was used as the name of

an equivalence relation. For example,

53 � 23 .mod 10/:

The meaning of a � b .mod n/ is that a � b is a multiple of n. We have 53 � 23 .mod 10/

because 53� 23 D 30, a multiple of 10.

In the new meaning of this section, mod is a binary operation. For example,

53 mod 10 D 3:

In this context, mod means “divide and take the remainder.”

What is the connection between these two meanings of the word mod? We have the

following result.

Proposition 35.8 Let a; b; n 2 Z with n > 0. Then

a � b .mod n/ () a mod n D b mod n:

The use of mod on the left is as a relation. The use of mod on the right is as a binary

operation.

From the example, notice that 53 mod 10 D 3 and 23 mod 10 D 3.

This if-and-only-if result is not too hard to prove. It sets up as follows:

Let a; b; n 2 Z with n > 0.

.)/ Suppose a � b .mod n/. . . . Therefore a mod n D b mod n.

.(/ Suppose a mod n D b mod n. . . . Therefore a � b .mod n/.

We leave the definition unraveling and the rest of the proof to you (Exercise 35.8).

Recap

We formally developed the process of integer division resulting in quotients and remainders

and introduced the binary operations div and mod.

35 Exercises 35.1. For the pairs of integers a; b given below, find the integers q and r such that a D qbCr

and 0 � r < b.

a. a D 100, b D 3.

b. a D �100, b D 3.

c. a D 99, b D 3.

d. a D �99, b D 3.

e. a D 0, b D 3.

35.2. For each of the pairs of integers a; b in the previous problem, compute a divb and

a mod b.

35.3. For each of the following, find all positive integers N that make each of the equations

true.

a. 100 divN D 5.

b. N div 10 D 5.

c. 100 mod N D 5.

d. N mod 10 D 5.
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For these final two, the integers N that make the equations true are negative; find them.

e. 100 divN D �5.

f. N div 10 D �5.

35.4. Let a and b be positive integers.

a. Does a mod b D b mod a imply that a D b?

b. Does a div b D b div a imply that a D b?

Please prove your answers.

35.5. Let a, b, and c be positive integers.

a. Does a < b imply that a div c < b div c?

b. Does a < b imply that a mod c < b mod c?

Please prove your answers.

35.6. Explain why Theorem 35.1 does not make sense with b D 0 or with b < 0.

The case b D 0 is hopeless. Develop (and prove) an alternative to Theorem 35.1

that allows b < 0.

35.7. What is wrong with the following statements? Repair these statements and prove your

revised versions.

a. For all integers a; b, we have bja iff a div b D a

b
.

b. For all integers a; b, we have bja iff a mod b D 0.

35.8. Prove Proposition 35.8.

35.9. Prove that the sum of any three consecutive integers is divisible by 3.

35.10. Many computer programming languages have the mod operation as a built-in feature.

For example, the % sign in C is the mod operation. In C the result of x = 53%10; is to

assign the value 3 to the variable x.

Investigate how various languages deal with the mod operation in cases where the

second number is zero or negative.

35.11. Computer programming languages allow you to divide two integer type numbers and

always return an integer answer. For example, in C the result of x = 11/5; is to

assign the value 2 to the variable x. (Here, x is of type int.)

Investigate how various languages deal with integer division. In particular, is their

implementation of integer division the same as the div operation?

35.12. Dividing polynomials. The degree of a polynomial is the exponent on the highest power

of x. For example, x10 � 5x2 C 6 has degree 10, and the degree of 3x � 1

2
is 1. When

the polynomial is just a number (there are no x terms), we say the degree is 0. The

polynomial 0 is exceptional; we say its degree is �1. If p is a polynomial, we write

degp to stand for its degree.

You may assume that the coefficients of the polynomials we consider in this prob-

lem are rational numbers.

a. Suppose p and q are polynomials. Write a careful definition of what it means for p

to divide q (i.e., pjq).
Please verify that

.2x � 6/j.x3 � 3x
2 C 3x � 9/

is true in your definition.

b. Give an example of two polynomials p and q with p 6D q but pjq and qjp.
c. What is the relationship between polynomials that divide each other?

d. Prove the following analogue of Theorem 35.1:

Let a and b be polynomials, with b nonzero. Then there exist polynomials q and r

so that a D qb C r with deg r < deg b.

For example, if a D x
5 � 3x

2 C 2x C 1 and b D x
2 C 1, then we can take

q D x3 � x � 3 and r D 3x C 4.

e. In this generalized version of Theorem 35.1, are the polynomials q and r uniquely

determined by a and b?
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36 Greatest Common Divisor

This section deals with the concept of greatest common divisor. The term is virtually self-

defining.

Definition 36.1 (Common divisor) Let a; b 2 Z. We call an integer d a common divisor of a and b provided

d ja and d jb.

For example, the common divisors of 30 and 24 are �6, �3, �2, �1, 1, 2, 3, and 6.

Definition 36.2 (Greatest common divisor) Let a; b 2 Z. We call an integer d the greatest common divisor

of a and b provided

(1) d is a common divisor of a and b and

(2) if e is a common divisor of a and b, then e � d .

The greatest common divisor of a and b is denoted gcd.a; b/.

For example, the greatest common divisor of 30 and 24 is 6, and wewrite gcd.30; 24/ D 6.

Also gcd.�30;�24/ D 6.

Nearly every pair of integers has a greatest common divisor (see Exercise 36.4), and if

a and b have a gcd, it is unique (Exercise 36.6). This justifies our use of the definite article

when we call gcd.a; b/ the greatest common divisor of a and b.

In this section, we explore the various properties of greatest common divisors.

Calculating the gcd

In the foregoing example, we calculated the greatest common divisor of 30 and 24 by explic-An algorithm is a precisely defined

computational procedure. itly listing all their common factors and choosing the largest. This suggests an algorithm for

computing gcd. The algorithm is as follows:

� Suppose a and b are positive integers.
� For every positive integer k from 1 to the smaller of a and b, see whether kja and kjb.

If so, save that number k on a list.
� Choose the largest number on the list. That number is gcd.a; b/.

This procedure works: Given any two positive integers a and b, it finds their gcd. How-

ever, it is a dreadful algorithm because even for moderately large numbers (e.g., a D 34902

and b D 34299883), the algorithm needs to do many, many divisions. So although correct,

this algorithm is terribly slow.

There is a clever way to calculate the greatest common divisor of two positive integers;

this procedure was invented by Euclid. It is not only extremely fast, but it is not difficult to

implement as a computer program.

The central idea in Euclid’s Algorithm is the following result.

Proposition 36.3 Let a and b be positive integers and let c D a mod b. Then

gcd.a; b/ D gcd.b; c/:

In other words, for positive integers a and b, we have

gcd.a; b/ D gcd.b; a mod b/:

Proof. We are given that c D a mod b. This means that a D qb C c where 0 � c < b.

Let d D gcd.a; b/ and let e D gcd.b; c/. Our goal is to prove that d D e. To do this, we

prove that d � e and d � e.

First, we show d � e. Since d D gcd.a; b/, we know that d ja and d jb. We can write

c D a� qb. Since a and b are multiples of d , so is c. Thus d is a common divisor of b and c.

However, e is the greatest common divisor of b and c, so d � e.
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Next, we show d � e. Since e D gcd.b; c/, we know that ejb and ejc. Now a D qbC c,

and hence eja as well. Since eja and ejb, we see that e is a common divisor of a and b.

However, d is the greatest common divisor of a and b, so d � e.

We have shown d � e and d � e, and hence d D e; that is, gcd.a; b/ D gcd.b; c/.

To illustrate how Proposition 36.3 enables us to calculate greatest common divisors

efficiently, we compute gcd.689; 234/. The simple, inefficient divide-and-check algorithm we

considered first would have us try all possible common divisors from 1 to 234 and select the

largest. This implies we would perform 234 � 2 D 468 division problems!

689

#
234

#
221

#
13

#
0

Instead, we use Proposition 36.3. To find gcd.689; 234/, let a D 689 and b D 234. We

find c D 689 mod 234. This requires us to do a division. The result is c D 221. To find

gcd.689; 234/, it is enough to find gcd.234; 221/ because these two values are the same. Let’s

record this step here:

689 mod 234 D 221 ) gcd.689; 234/D gcd.234; 221/:

Now all we have to do is calculate gcd.234; 221/. We use the same idea. We apply

Proposition 36.3 as follows. To find gcd.234; 221/, we calculate 234 mod 221 D 13. Thus

gcd.234; 221/ D gcd.221; 13/. Let’s record this step (division #2).

234 mod 221 D 13 ) gcd.234; 221/D gcd.221; 13/:

Now the problem is reduced to gcd.221; 13/. Notice that the numbers are significantly

smaller than the original 689 and 234. We again use Proposition 36.3 and calculate 221 mod

13 D 0. What does that mean? It means that when we divide 221 by 13, there is no remainder.

In other words, 13j221. So clearly the greatest common divisor of 221 and 13 is 13. Let’s

record this step (division #3).

221 mod 13 D 0 ) gcd.221; 13/D 13:

We are finished! We have done three divisions (not 468 ), and we found

gcd.689; 234/ D gcd.234; 221/D gcd.221; 13/D 13:

The steps we just performed are precisely the Euclidean algorithm. Here is a formal

description:

Euclid’s Algorithm for Greatest Common Divisor

Input: Positive integers a and b.

Output: gcd.a; b/.

(1) Let c D a mod b.

(2) If c D 0, then we return the answer b and stop.

(3) Otherwise (c 6D 0), we calculate gcd.b; c/ and return this as the answer.

This algorithm for gcd is defined in terms of itself. This is an example of a recursively

defined algorithm (see Exercise 22.16, where recursion is explored). Let’s see how the algo-

rithm works for the integers a D 63 and b D 75.

� The first step is to calculate c D a mod b, and we get c D 63 mod 75 D 63.
� Next we check whether c D 0. It’s not, so we go on to compute gcd.b; c/ D gcd.75; 63/.

Scant progress has been made so far! All the algorithm has done is reverse the num-

bers. The next pass through, however, is more interesting.
� Now we restart the process with a0 D 75 and b0 D 63. We calculate c0 D 75 mod 63 D

12. Since 12 6D 0, we are told to calculate gcd.b0; c0/ D gcd.63; 12/.
� We restart again with a00 D 63 and b00 D 12. We calculate c00 D 63 mod 12 D 3. Since

this is not zero, we need to go on and to calculate gcd.b00; c00/ D gcd.12; 3/.
� We restart yet again with a000 D 12 and b000 D 3. Now we are told to calculate c000 D

12 mod 3 D 0. Aha! Now c
000 D 0, so we return the answer b

000 D 3 and we are finished.

The final answer is that gcd.63; 75/ D 3.
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Here is an overview of the calculation in chart form:

a b c

63 75 63

75 63 12

63 12 3

12 3 0

With only four divisions, the answer is produced.

Here is another way to visualize this computation. We create a list whose first two entries

are a and b. Now we extend the list by computing mod of the last two entries of the list.

When we reach 0, we stop. The next-to-last entry is the gcd of a and b. In this example, the

list would be

.63; 75; 63; 12; 3; 0/:

Correctness

Just because someone writes down a procedure to calculate gcd does not make it correct. The

point of mathematics is to prove its assertions; the correctness of an algorithm is no exception.

Proposition 36.4 (Correctness of Euclid’s Algorithm for gcd) Euclid’s Algorithm correctly computes gcd.a; b/

for any positive integers a and b.

Proof. Suppose, for the sake of contradiction, that Euclid’s Algorithm did not correctly

compute gcd. Then there is some pair of positive integers a and b for which it fails. Choose

a and b such that a C b is as small as possible. (We are using the smallest-counterexample

method.)

It might be the case that a < b. If this is so, then the first pass through Euclid’s Algo-

rithm will simply interchange the values a and b [as we saw when we calculated gcd.63; 75/]

because if a < b then c D a mod b D a, and Euclid’s Algorithm directs us to calculate

gcd.b; c/ D gcd.b; a/.

Thus we may assume that a � b.

The first step of the algorithm is to calculate c D gcd.a; b/. Two outcomes are possible:

either c D 0 or c 6D 0.

In the case c D 0, a mod b D 0, which implies bja. Since b is the largest divisor of

b (since b > 0 by hypothesis) and since bja, we have b is the greatest common divisor of a

and b. In other words, the algorithm gives the correct result, contradicting our supposition that

it fails for a and b.

So it must be the case that c 6D 0. To get c, we calculated the remainder when dividing a

by b. By Theorem 35.1, we have a D qb C c where 0 < c < b. We also know that b � a.

We sum the inequalities:

c < b

C b � a

) b C c < aC b

Thus b; c are positive integers with b C c < aC b.

This means that b and c are not a counterexample to the correctness of Euclid’s Algo-

rithm because bC c < aC b, and among all counterexamples, a and b was a counterexample

with the smallest sum. Thus the algorithm correctly computes gcd.b; c/ and returns its value

as the answer. However, by Proposition 36.3, this is the right answer! This contradicts the sup-

position that Euclid’s Algorithm fails on a; b.)( Hence Euclid’s Algorithm always returns

the greatest common divisor of the positive integers it is given.
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How Fast?

Howmany times do we have to divide to calculate the greatest common divisor of two positive

integers? We claim that after two rounds of Euclid’s Algorithm, the integers with which we

are working have decreased by at least 50%. The following proposition is the main tool.

Proposition 36.5 Let a; b 2 Z with a � b > 0. Let c D a mod b. Then c <
a

2
.

Proof. We consider two cases: (1) a < 2b and (2) a � 2b.

� Case (1): a < 2b.

We know that 2b > a > 0, so a > 0 and a � b � 0, but a � 2b < 0. Hence the

quotient when a is divided by b is 1. So the remainder in a divided by b is c D a � b.

Now we can rewrite a < 2b as b >
a

2
, and so

c D a � b < a � a

2
D a

2

which is what we wanted.
� Case (2): a � 2b, which can be rewritten b � a

2
.

The remainder, upon division of a by b, is less than b. So c < b, and we have b � a

2
,

so c <
a

2
.

In both cases, we found c <
a

2
.

We may assume that we start Euclid’s Algorithm with a � b; if not, the algorithm re-

verses a and b on its first pass, and from there on, the numbers come in decreasing order.

That is, if the numbers produced by Euclid’s Algorithm are listed as

.a; b; c; d; e; f; : : : ; 0/

then, assuming a � b, we have

a � b � c � d � e � f � � � � � 0:

By Proposition 36.5, the numbers c and d are less than half as large as a and b, respectively.

Likewise, two steps later, the numbers e and f are less than half as large as c and d , respec-

tively, and less than one-fourth of a and b, respectively. Thus

Every two steps of Euclid’s Algorithm decreases the integers with which we are

working to less than half their current values.

If we begin with .a; b/, then two steps later, the numbers are less than .
1

2
a;

1

2
b/, and four steps

later, less than .
1

4
a;

1

4
b/, and six steps later, less than .

1

8
a;

1

8
b/. How large are the numbers

after 2t passes of Euclid’s Algorithm? Since every two steps decrease the numbers by more

than a factor of 2, we know that after 2t steps the numbers drop by more than a factor of 2
t ;

that is, the two numbers are less than .2�ta; 2�t b/.

Euclid’s Algorithm stops when the second number reaches zero. Since the numbers in

Euclid’s Algorithm are integers, this is the same as when the second number is less than 1.

This means that as soon as we have

2
�t

b � 1;

the second number must have reached zero. Taking base-2 logs of both sides, we have

log2

�

2
�t

b
�

� log2 1

�t C log2 b � 0

log2 b � t:

In other words, once t � log2 b, the algorithm must be finished. So after at most 2 log2 b

passes, the algorithm has completed its work.



262 Chapter 7 Number Theory

How many divisions might this be if, say, a and b were enormous numbers (e.g., 1000

digits each). If b � 101000, then the number of steps is bounded by

2 log2

�

10
1000

�

D 2000 log2 10 < 2000� 3:4 D 6800:

(Note: log2 10 � 3:3219 < 3:4.) So in under 7000 steps, we have our answer. Compare this

to doing 101000 divisions (see Exercise 36.9)!

I hope you do not think I am trying your patience by considering such a ridiculous ex-

ample. Why on earth would anyone want to compute the gcd of two 1000-digit numbers!?

Well, the fact is that this is a practical, important problem with both industrial and military

applications. More on this later.

An Important Theorem

The following theorem is central to the study of the greatest common divisor (and beyond).

Let a and b be integers. An integer

linear combination of a and b is any

number of the form ax C by where

x and y are also integers.

Theorem 36.6 tells us that the

smallest positive integer linear

combination of a and b is gcd.a; b/.

Theorem 36.6 Let a and b be integers, not both zero. The smallest positive integer of the form ax C by,

where x and y are integers, is gcd.a; b/.

For example, suppose a D 30 and b D 24. We can make a chart of the values ax C by

for integers x and y between �4 and 4. We get the following table:

y

�4 �3 �2 �1 0 1 2 3 4

�4 �216 �192 �168 �144 �120 �96 �72 �48 �24

�3 �186 �162 �138 �114 �90 �66 �42 �18 6

�2 �156 �132 �108 �84 �60 �36 �12 12 36

�1 �126 �102 �78 �54 �30 �6 18 42 66

x 0 �96 �72 �48 �24 0 24 48 72 96

1 �66 �42 �18 6 30 54 78 102 126

2 �36 �12 12 36 60 84 108 132 156

3 �6 18 42 66 90 114 138 162 186

4 24 48 72 96 120 144 168 192 216

What is the smallest positive value on this chart? We see the number 6 at x D �3; y D 4

(because 30 � �3 C 24 � 4 D �90 C 96 D 6) and again at x D 1; y D �1 (because

30 � 1C 24 � �1 D 30 � 24 D 6).

Now we have shown only a relatively small portion of all the possible values of axC by.

Is it possible, if we were to extend this chart, that we might find a smaller positive value for

30x C 24y? The answer is no. Notice that both 30 and 24 are divisible by 6. Therefore any

integer of the form 30xC24y is also divisible by 6 (see Exercise 5.11). So even if we extended

this chart out forever, 6 is the smallest positive integer we would find.

Let a and b be any integers (not both zero). It is impossible to find integers x and y with

0 < ax C by < gcd.a; b/

because ax C by is divisible by gcd.a; b/. The point of Theorem 36.6 is that we can find

integers x and y such that ax C by D gcd.a; b/. Here is the proof:

Proof (of Theorem 36.6)

Let a and b be integers (not both zero) and let

The set D is the set of all positive

integers of the form ax C by (i.e.,

the set of all positive numbers on the

chart we considered above).

D D fax C by W x; y 2 Z; ax C by > 0g:

We want to examine the smallest member of D (i.e., we are about to invoke theWell-Ordering

Principle). First, we must be sure that D is nonempty.

To see that D 6D ;, we just have to prove that there is at least one integer in D. Can we

select integers x and y to make ax C by positive? If we take x D a and y D b, we find
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that ax C by D a2 C b2, and this is positive (unless a D b D 0, which is forbidden by

hypothesis). Therefore D 6D ;.
Applying theWell-Ordering Principle to D, a nonempty set of natural numbers, we know

that D contains a least element; call that least element d .

Our goal is to show that d D gcd.a; b/. How do we prove that d is the greatest common

divisor of a and b?We consult Definition 36.2. We need to show three things: (1) d ja, (2) d jb,
and (3) if eja and ejb, then e � d . We do each of these in turn.

� Claim (1): d ja.
Suppose, for the sake of contradiction, that a is not divisible by d . Then when we

divide a by d , we get a nonzero remainder:

a D qd C r with 0 < r < d:

Now d D ax C by, so we can solve for r in terms of a and b as follows:

r D a � qd D a � q.ax C by/ D a.1 � qx/C b.�qy/ D aX C bY

where X D 1 � qx and Y D �qy. Notice that 0 < r < d and r D aX C bY . This

means that r 2 D and r < d , contradicting the fact that d is the least element of D.)(
Therefore d ja.

� Claim (2): d jb.
This proof is analogous to d ja.

� Claim (3): If eja and ejb, then e � d .

Suppose eja and ejb. Then ej.ax C by/ (Exercise 5.11). Therefore ejd , so e � d

(because d is positive).

Therefore d is the greatest common divisor of a and b.

Example 36.7 Earlier we found that gcd.689; 234/D 13. Note that

689 � �1C 234 � 3 D �689C 702 D 13 D gcd.689; 234/:

Here is another example. Note that gcd.431; 29/ D 1. And note that

431 � 7C 29 � �104 D 3017� 3016 D 1:

Given a and b, how do we find integers x and y such that axC by D gcd.a; b/? Perhaps

it is not too hard to try a few values to guess that 689��1C 234� 3 D 13 D gcd.689; 234/,

but it seems to be hard to find the right x and y to get 431x C 29y D 1 (try it!).

The proof of Theorem 36.6 is not of any help. The step that proves that the numbers x

and y exist is nonconstructive—the Well-Ordering Principle shows that such integers exist

but gives us no clue how to find them. The key to finding x and y in ax C by D gcd.a; b/ is

to extend Euclid’s Algorithm.

Earlier we used Euclid’s Algorithm to calculate gcd.a; b/. Each time we did a division,

the only information we retained was the remainder (the central computational step is c D
a mod b). By keeping track of the quotients, too, we will be able to find the integers x and y.

Here is how this works.

We illustrate this method by finding x and y such that 431xC 29y D gcd.431; 29/ D 1.

Here are the steps in calculating gcd.431; 29/ by Euclid’s Algorithm:

431 D 14 � 29C 25

29 D 1 � 25C 4

25 D 6 � 4C 1

4 4 1 0:
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In all of these equations (except the last), we solve for the remainder (that is, we put the

remainders on the left).

25 D 431� 14 � 29

4 D 29� 1 � 25

1 D 25� 6 � 4:

Now we work from the bottom up. Notice that the last equation has 1 in the form 25x C 4y.

We substitute for 4 using the previous equation:

1 D 25� 6 � 4

D 25� 6 � .29 � 1 � 25/

D �6 � 29C 7 � 25:

Now we use 25 D 431� 14 � 29 to replace the 25 in 1 D �6 � 29C 7 � 25:

1 D �6 � 29C 7 � 25

D �6 � 29C 7 � .431� 14 � 29/

D 7 � 431C Œ�6C 7 � .�14/�29

D 7 � 431C .�104/� 29:

This is how we found x D 7 and y D �104 to get 431xC 29y D gcd.431; 29/ D 1.

Pairs of numbers whose greatest common divisor is 1 have a special name.

Definition 36.8 Let a and b be integers. We call a and b relatively prime provided gcd.a; b/ D 1.

In other words, integers are relatively prime provided the only divisors they have in com-

mon are 1 and �1.

Corollary 36.9 Let a and b be integers. There exist integers x and y such that ax C by D 1 if and only if a

and b are relatively prime.

Theorem 36.6 and its consequence, Corollary 36.9, are extremely useful tools for proving

results about gcd and relatively prime numbers. Here is an example. Try proving this without

using Theorem 36.6 and then you will appreciate its usefulness.

Proposition 36.10 Let a; b be integers, not both zero. Let d D gcd.a; b/. If e is a common divisor of a and b,

then ejd .

We know, since d D gcd.a; b/, that e � d , but that does not immediately imply that ejd .
Here is the proof.

Proof. Let a; b be integers, not both zero, and let d D gcd.a; b/. Suppose eja and ejb. Now,
by Theorem 36.6, there exist integers x and y such that d D ax C by. Since eja and ejb, we
have ej.ax C by/ (see Exercise 5.11), and so ejd .

Recap

In this section we examined the greatest common divisor of a pair of integers. We discussed

how to compute the gcd of two integers using Euclid’s Algorithm, and we analyzed the ef-

ficiency of the Euclidean Algorithm. We showed that for integers a; b (not both zero), the

smallest positive value of ax C by (with x; y 2 Z) is gcd.a; b/. When two integers’ gcd is 1,

we call those integers relatively prime.

36 Exercises 36.1. Please calculate:

a. gcd.20; 25/.

b. gcd.0; 10/.
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c. gcd.123;�123/.

d. gcd.�89;�98/.

e. gcd.54321; 50/.

f. gcd.1739; 29341/.

36.2. For each pair of integers a; b in the previous problem, find integers x and y such that

ax C by D gcd.a; b/.

36.3. Write a computer program that calculates the greatest common divisor of two integers

using Euclid’s Algorithm. Have your program keep track of the number of times it is

called to perform the calculation (that is, how “deep” it invokes recursion). For example,

our illustration of Euclid’s algorithm to find gcd.63; 75/ took four steps.

Use your program to check your answers to Exercise 36.1 and report the number

of steps each calculation takes.

36.4. Find integers a and b that do not have a greatest common divisor. Prove that the pair

you found are the only pair of integers that do not have a gcd.

36.5. Let a and b be positive integers. Find the sum of all the common divisors of a and b.

36.6. Prove that if a and b have a greatest common divisor, it is unique (i.e., they cannot have

two greatest common divisors).

36.7. In Proposition 36.3, we did not require that c 6D 0. Is Proposition 36.3 (and its proof)

correct even in the case c D 0?

36.8. Suppose a � b and running Euclid’s Algorithm yields the numbers (in list form)

.a; b; c; d; e; f; : : : ; 0/:

Prove that

a � b � c � d � e � f � � � � � 0:

36.9. Suppose we want to compute the greatest common divisor of two 1000-digit num-

bers on a very fast computer—a computer that can do 1 billion divisions per second.

Approximately how long would it take to compute the gcd by the trial division method?

(Choose an appropriate unit of time, such as minutes, hours, days, years, centuries, or

millennia.)

36.10. We can extend the definition of the gcd of two numbers to the gcd of three or more

numbers.

a. Give a careful definition of gcd.a; b; c/ where a; b; c are integers.

b. Prove or disprove: For integers a; b; c, we have gcd.a; b; c/ D 1 if and only if a; b; c

are pairwise relatively prime.

c. Prove or disprove: For integers a; b; c, we have

gcd.a; b; c/ D gcd
�

a; gcd.b; c/
�

:

d. Prove that gcd.a; b; c/ D d is the smallest positive integer of the form axCbyCcz

where x; y; z 2 Z.

e. Find integers x; y; z such that 6x C 10y C 15z D 1.

f. Is there a solution to part (e) in which one of x, y, or z is zero? Prove your answer.

36.11. Prove that consecutive integers must be relatively prime.

36.12. Let a be an integer. Prove that 2aC 1 and 4a2 C 1 are relatively prime.

36.13. Let a and b be positive integers. Prove that 2a and 2b�1 are relatively prime by showing

that there are integers X and Y such that 2aX C .2b � 1/Y D 1.

36.14. Suppose n and m are relatively prime integers. Prove that n and mC jn are relatively

prime for any integer j .

Conclude that if n and m are relatively prime, and m0 D m mod n, then n and m0

are relatively prime.

36.15. Suppose that a and b are relatively prime integers and that ajc and bjc. Prove that

.ab/jc.
36.16. Suppose a; b; n 2 Z with n > 1. Suppose that ab � 1 .mod n/. Prove that both a and

b are relatively prime to n.

36.17. Suppose a; n 2 Z with n > 1. Suppose that a and n are relatively prime. Prove that

there is an integer b such that ab � 1 .mod n/.
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36.18. Suppose a; b 2 Z are relatively prime. Corollary 36.9 implies that there exist integers

x; y such that axCby D 1. Prove that these integers x and y must be relatively prime.

36.19. Let x be a rational number. This means there are integers a and b 6D 0 so that x D a

b
.

Prove that we can choose a and b to be relatively prime.

36.20. A class of n children sit in a circle. The teacher walks around the outside of the circle

and pats every kth child on the head. Find and prove a necessary and sufficient condition

on n and k for every child to receive a pat on the head.

36.21. You have two measuring cups. One holds 8 ounces and the other holds 13 ounces. These

cups have no marks to show individual ounces. All you can measure is either a full 13

or a full 8 ounces. If you want to measure, say, 5 ounces, you can fill the 13-ounce

measuring cup, use it to fill the 8-ounce cup, and you will have 5 ounces left in the

larger cup.

a. Show how to use the 13-ounce and 8-ounce cups to measure exactly 1 ounce.

You may assume you have a large bowl for holding liquid, but this large bowl has no

marks for measuring. At the end, the bowl should contain exactly 1 ounce.

b. Generalize this problem. Suppose the measuring cups hold a and b ounces where a

and b are positive integers. Give and prove necessary and sufficient conditions on

a and b such that it is possible to measure out exactly 1 ounce using these cups.

36.22. In Exercise 35.12, we considered polynomial division. In this problem, you are asked

to develop the concept of polynomial gcd.

Polynomials in this problem may be assumed to have rational coefficients.

a. Let p and q be nonzero polynomials. Write a careful definition for common divisor

and greatest common divisor of p and q.

In this context, greatest refers to the degree of the polynomial.

b. Show, by giving an example, that there need not be a unique gcd of two nonzero

polynomials.

c. Let d be a greatest common divisor of nonzero polynomials p and q. Prove that

there exist polynomials a and b such that ap C bq D d .

d. Give a careful definition of relatively prime for nonzero polynomials.

e. Prove that two nonzero polynomials p and q are relatively prime if and only if there

exist polynomials a and b such that ap C bq D 1.

f. Let p D x
4 � 3x

2 � 1 and q D x
2 C 1. Show that p and q are relatively prime by

finding polynomials a and b such that ap C bq D 1.

37 Modular Arithmetic

A New Context for Basic Operations

Arithmetic is the study of the basic operations: addition, subtraction, multiplication, and

division. The usual contexts for studying these operations are number systems such as the

integers, Z, or the rationals, Q.

Division is, perhaps, the most interesting example. In the context of the rational numbers,

we can calculate x � y for any x; y 2 Q except when y D 0. In the context of the integers,

however, x � y is defined only when y 6D 0 and yjx.
The point is that in the two different contexts,Q and Z, the operation� takes on slightly

different meanings. In this section, we introduce a new context for the symbols C, �, �,
and� where their meanings are quite different from the traditional context. The difference is

so significant, that we use alternative symbols for these operations. We use the symbols˚,	,
˝, and˛.

Instead of consisting of integers or rationals, the new set in which we perform arithmetic

is denoted Zn where n is a positive integer. The set Zn is defined to be

Zn D f0; 1; 2; : : : ; n � 1gI

that is, Zn contains all natural numbers from 0 to n � 1 inclusive.
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We call this number system the integers mod n.Mathspeak!

This is a third use of the word mod!

We have mod as a relation, as in

13 � 8 .mod 5/, and we have mod

as an operation, as in

13 mod 5 D 3. Now we have the

integers mod n. The three uses are

different, but closely related.

To distinguish˚,	, ˝, and˛ from their uncircled cousins, we refer to these operations

as addition mod n, subtraction mod n, multiplication mod n, and division mod n.

Modular Addition and Multiplication

How are the modular operations defined? We begin with ˚ and˝.

Definition 37.1 (Modular addition, multiplication) Let n be a positive integer. Let a; b 2 Zn. We define

a˚ b D .aC b/ mod n and

a˝ b D .ab/ mod n:

The operations on the left are operations defined for Zn. The operations on the right are

ordinary integer operations.

Example 37.2 Let n D 10. We have the following:

5˚ 5 D 0 9˚ 8 D 7

5˝ 5 D 5 9˝ 8 D 2:

Notice that the symbols˚ and ˝ depend on the context. If we are working in Z10, then

5˚ 5 D 0, but if we are working in Z9, then 5˚ 5 D 1. It might be better to create a more

baroque symbol, such as
n

˚, to denote mod n addition, but in most situations, the modulus (n)

does not change. We simply must remain vigilant and know the current context.

Notice that if a; b 2 Zn, the results of the operations a˚ b and a˝ b are always defined

and are elements of Zn

Proposition 37.3 Let a; b 2 Zn. Then a˚ b 2 Zn and a˝ b 2 Zn. (Closure.)

Proof. Exercise 37.7.

The operations˚ and˝ exhibit the usual algebraic properties:

Proposition 37.4 Let n be an integer with n � 2.

� For all a; b 2 Zn, a˚ b D b ˚ a and a˝ b D b ˝ a. (Commutative.)
� For all a; b; c 2 Zn, a ˚ .b ˚ c/ D .a ˚ b/ ˚ c, and a ˝ .b ˝ c/ D .a ˝ b/ ˝ c.

(Associative.)
� For all a 2 Zn, a˚ 0 D a, a˝ 1 D a, and a˝ 0 D 0. (Identity elements: 0 for addition

and 1 for multiplication. Note that 0 is not an identity element for multiplication.)
� For all a; b; c 2 Zn, a˝ .b ˚ c/ D .a˝ b/˚ .a˝ c/. (Distributive.)

The proofs of these are quite similar to each other. We prove only one as an example.

Since a˚ b D .aC b/ mod n, and a˝ b D .ab/ mod n, the basic step in all of these proofs

is to write

a˚ b D aC b C kn or a˝ b D ab C kn

where k is an integer.

Proof. We show that˚ is associative. Let a; b; c 2 Zn. We want to show that a˚ .b˚c/ D
.a˚ b/˚ c.
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Now

a˚ .b ˚ c/ 2 Zn (by Proposition 37.3)

and a˚ .b ˚ c/ D a˚ .b C c C kn/

D ŒaC .b C c C kn/�C jn

D .aC b C c/C sn

where k; j; s 2 Z. Since, obviously,

aC b C c C sn � aC b C c .mod n/

we have .a C b C c/ mod n D .a C b C c C sn/ mod n D .a C b C c C sn/ because

aC b C c C sn 2 Zn. (We used Proposition 35.8.)

In short, a˚ .b ˚ c/ D .aC b C c/ mod n.

By a similar argument, .a ˚ b/˚ c D .a C b C c/ mod n. Thus a ˚ .b ˚ c/ D .a C
b C c/ mod n D .a˚ b/˚ c.

The rest of this proof is left to you (Exercise 37.8).

Modular Subtraction

What is subtraction? We can define ordinary subtraction in a number of different ways. Here

is one way based on addition. Let a; b 2 Z. We define a� b to be the solution to the equation

a D b C x. We then would prove two things: (1) the equation a D b C x has a solution, and

(2) the equation a D b C x has only one solution.

We use the same approach to define modular subtraction. We start by proving that an

equation of the form a D b ˚ x has a solution, and only one solution.

Proposition 37.5 Let n be a positive integer, and let a; b 2 Zn. Then there is one and only one x 2 Zn such that

a D b ˚ x.

Proof. To show that x exists, let x D .a�b/ mod n. We need to check that x 2 Zn and that

x satisfies the equation a D b ˚ x.

By definition of (the binary operation) mod, x is the remainder when we divide a � b

by n, so 0 � x < n, i.e., x 2 Zn. Note that x D .a � b/C kn for some integer k.

We calculate

b ˚ x D .b C x/ mod n D Œb C .a � b C kn/� mod n D .aC kn/ mod n D a

because 0 � a < n. Therefore x satisfies the equation a D b ˚ x.

Now we turn to showing uniqueness (see Proof Template 14). Suppose, for the sake of

contradiction, there were two solutions; that is, there exist x; y 2 Zn (with x 6D y) for which

a D b ˚ x and a D b ˚ y. This means that

b ˚ x D .b C x/ mod n D b C x C kn D a; and

b ˚ y D .b C y/ mod n D b C y C jn D a

for some integers k; j . Combining these, we have

b C x C kn D b C y C jn ) x D y C .k � j /n

) x � y .mod n/

) x mod n D y mod n

) x D y

because 0 � x; y < n. We have shown x D y, but x 6D y.)(

Now that we know that the equation a D b ˚ x has a unique solution, we can use this to

define a	 b.
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Definition 37.6 (Modular subtraction) Let n be a positive integer and let a; b 2 Zn. We define a	 b to be

the unique x 2 Zn such that a D b ˚ x.

Alternatively, we could have defined a	b to be .a�b/ mod n. We prove that this would

give the same result.

Proposition 37.7 Let n be a positive integer and let a; b 2 Zn. Then a	 b D .a � b/ mod n.

Proof. To prove that a 	 b D .a � b/ mod n, we consult the definition. We need to show

(1) that Œ.a � b/ mod n� 2 Zn and (2) that if x D .a � b/ mod n, then a D b ˚ x.

Note that (1) is obvious because .a � b/ mod n is an integer in Zn.

To show (2), we first note that x D a � b C kn for some integer k. Then

b ˚ x D .b C .a � b C kn// mod n D .aC kn/ mod n D a:

We could have used Proposition 37.7 as the definition of	 and then proved the assertion

in Definition 37.6 as a theorem. See Exercise 37.9.

Modular Division

Modular arithmetic is 3

4
easy.We now come to the difficult 1

4
. Modular division is significantly

different from the other modular operations. For example, in ordinary integer arithmetic, we

have cancellation laws. If a; b; c are integers with a 6D 0, then

ab D ac H) b D c:

However, in Z10,

5˝ 2 D 5˝ 4 but 2 6D 4:

Despite the fact that 5 6D 0, we cannot cancel, or divide, both sides by 5.

Motivated by the definition of 	, we might like to define a˛ b to be the unique x 2 Zn

so that a D b ˝ x. This is problematic. Consider 6 ˛ 2 in Z10. This should be the unique

x 2 Z10 so that 2˝ x D 6. Is x D 3? That would be nice. And we are encouraged by the fact

that 2˝ 3 D 6. However, observe that 2˝ 8 D 6. Should we have 6˛ 2 D 8? The problem

is that there might not be a unique solution to 6 D 2˝ x.

Example 37.8 Given a; b 2 Z10 (with b 6D 0), must there be a solution to a D b ˝ x? If so, is it unique?

Consider the following three cases.

� Let a D 6 and b D 2. There are two solutions to 6 D 2˝ x, namely x D 3 and x D 8.
� Let a D 7 and b D 2. There are no solutions to 7 D 2˝ x.
� Let a D 7 and b D 3. There is one and only one solution to 7 D 3˝ x, namely x D 9.

In this case it makes sense to write 7˛ 3 D 9.

Each of the assertions above can be verified simply by considering all possible values of x;

since there are only ten possible values for x, this is not terribly time-consuming.

The situation looks hopelessly muddled. Let’s try another approach. In Q, we can define

a� b to be a � b�1; that is, division by b is defined to be multiplication by b’s reciprocal. This

explains why division by zero is undefined; zero does not have a reciprocal. Let’s be precise

about what we mean by reciprocal. The reciprocal of a rational number x is a rational number

y such that xy D 1.

We can use this as our basis for defining division in Zn. We begin by defining reciprocals.

Definition 37.9 (Modular reciprocal) Let n be a positive integer and let a 2 Zn. A reciprocal of a is an

element b 2 Zn such that a ˝ b D 1. An element of Zn that has a reciprocal is called

invertible.
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Let’s investigate reciprocals in Z10. Here is the multiplication table for Z10:

˝ 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

Several comments are in order.

� Element 0 does not have a reciprocal; this is not surprising.
� Elements 2, 4, 5, 6, and 8 do not have reciprocals. This explains why our attempts to

divide by 2 were strange.
� Elements 1, 3, 7, and 9 are invertible (have reciprocals). Furthermore, they have only one

reciprocal each.
� Notice the elements of Z10 that have reciprocals are precisely those integers in Z10 that

are relatively prime to 10.
� The reciprocal of 3 is 7, and the reciprocal of 7 is 3; both 1 and 9 are their own reciprocals.

These observations give us some ideas to develop into theorems.

We observed that not all elements have reciprocals. However, those that do have only one

reciprocal. Notice that in Definition 37.9 we used the indefinite article. We wrote “A reciprocal

of. . . .” We did not write “The reciprocal of. . .” because we had not yet established uniqueness.

Let’s do that now.

Proposition 37.10 Let n be a positive integer and let a 2 Zn. If a has a reciprocal in Zn, then it has only one

reciprocal.

Proof. Suppose a had two reciprocals, b; c 2 Zn with b 6D c. Consider b ˝ a ˝ c. Using

the associative property (see Proposition 37.4) for˝ yields

b D b ˝ 1 D b ˝ .a˝ c/ D .b ˝ a/˝ c D 1˝ c D c;

contradicting b 6D c.)(

Thus it makes sense to speak of the reciprocal of a. We also call the reciprocal of a theThe overworked superscript �1.

inverse of a. The notation for the reciprocal of a is a
�1. We are overtaxing the superscript�1

and trying your patience as a reader here. The symbol a�1 has three different meanings that

depend on context. Please be careful! The three meanings are as follows:

� In the context of integers or rational numbers, a�1 refers to the rational number 1

a
.

� In the context of relations or functions, R�1 stands for the relation formed by reversing

all the ordered pairs in R (see Section 14).
� In the context of Zn, a�1 is the reciprocal of a. It is not (and you should never write) 1

a
.

For example, in the context of Z10, we have 3�1 D 7.

Note that 3 and 7 are reciprocals of each other in Z10. We have the following:

Proposition 37.11 Let n be a positive integer and let a 2 Zn. Suppose a is invertible. If b D a�1, then b is

invertible and a D b�1. In other words,
�

a�1
��1 D a.

The proof is left to you (Exercise 37.11).

We use reciprocals to define modular division.
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Definition 37.12 (Modular division) Let n be a positive integer and let b be an invertible element of Zn. Let

a 2 Zn be arbitrary. Then a˛ b is defined to be a˝ b�1.

Notice that a ˛ b is defined only when b is invertible; this is analogous to the fact that,

for rational numbers, a� b is defined only when b is invertible—that is, nonzero.

Example 37.13 In Z10, calculate 2˛ 7. Note that 7�1 D 3, so 2˛ 7 D 2˝ 3 D 6.

We still have some work to do. We need to address the following issues:

� In Zn, which elements are invertible?
� In Zn, given that a is invertible, how do we calculate a

�1?

We solved these problems for Z10 by writing out the entire ˝ table for Z10. We would

not want to do that for Z1000!

We noticed that the only invertible elements in Z10 are 1, 3, 7, and 9—precisely those

elements relatively prime to 10. Does this pattern continue? Let’s examine Z9. Here is the ˝
table for Z9:

˝ 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8

2 0 2 4 6 8 1 3 5 7

3 0 3 6 0 3 6 0 3 6

4 0 4 8 3 7 2 6 1 5

5 0 5 1 6 2 7 3 8 4

6 0 6 3 0 6 3 0 6 3

7 0 7 5 3 1 8 6 4 2

8 0 8 7 6 5 4 3 2 1

The invertible elements of Z9 are 1, 2, 4, 5, 7, and 8 (these are all relatively prime to 9), and

the noninvertible elements are 0, 3, and 6 (none of these are relatively prime to 9).

This suggests the following.

Theorem 37.14 (Invertible elements of Zn) Let n be a positive integer and let a 2 Zn. Then a is invertible

if and only if a and n are relatively prime.

At first glance, this may seem like a difficult theorem to prove.And if you attempt to prove

it by simply unraveling definitions, it is hard. However, we have a power tool for dealing with

pairs of numbers that are relatively prime. Corollary 36.9 tells us that a and b are relatively

prime if and only if there is an integer solution to axC by D 1. When we are armed with this

tool, the proof of Theorem 37.14 almost writes itself.

Here is an outline for the proof.

Let n be a positive integer and let a 2 Zn.

()) Suppose a is invertible. . . . Therefore a and n are relatively prime.

(() Suppose a and n are relatively prime. . . . Therefore a is an invertible element

of Zn.

For the forward ()) direction, we unravel the definition of invertible and keep unraveling.

Let n be a positive integer and let a 2 Zn.

()) Suppose a is invertible. This means there is an element b 2 Zn such that

a ˝ b D 1. In other words, .ab/ mod n D 1. Thus ab C kn D 1 for some integer k.

. . . Therefore a and n are relatively prime.

(() Suppose a and n are relatively prime. . . . Therefore a is an invertible element

of Zn.
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The first part of the proof is 99% done! We have ab C kn D 1. We apply Corollary 36.9

to a and n to conclude gcd.a; n/ D 1. This finishes the first part of the proof.

Let n be a positive integer and let a 2 Zn.

()) Suppose a is invertible. This means there is an element b 2 Zn such that

a˝ b D 1. In other words, .ab/ mod n D 1. Thus abCkn D 1 for some integer k. By

Corollary 36.9, a and n are relatively prime.

(() Suppose a and n are relatively prime. . . . Therefore a is an invertible element

of Zn.

For the second half (() of the proof, we start right in with Corollary 36.9.

Let n be a positive integer and let a 2 Zn.

()) Suppose a is invertible. This means there is an element b 2 Zn such that

a˝ b D 1. In other words, .ab/ mod n D 1. Thus abCkn D 1 for some integer k. By

Corollary 36.9, a and n are relatively prime.

(() Suppose a and n are relatively prime. By Corollary 36.9, there are integers x

and y such that ax C ny D 1. . . . Therefore a is an invertible element of Zn.

We have axCny D 1. This can be rewritten ax D 1�ny. We want b such that a˝b D 1.

The integer x is a likely candidate, but perhaps x … Zn. Of course, we can adjust x up or down

by a multiple of n without changing anything important. We can let b D x mod n. Let’s work

this into the proof.

Let n be a positive integer and let a 2 Zn.

()) Suppose a is invertible. This means there is an element b 2 Zn such that

a˝ b D 1. In other words, .ab/ mod n D 1. Thus abCkn D 1 for some integer k. By

Corollary 36.9, a and n are relatively prime.

(() Suppose a and n are relatively prime. By Corollary 36.9, there are integers x

and y such that ax C ny D 1. Let b D x mod n. So b D x C kn for some integer k.

Substituting into ax C ny D 1, we have

1 D ax C ny D a.b � kn/C ny D ab C .y � ka/n:

Therefore a ˝ b D ab .mod n/ D 1. Thus b is the reciprocal of a and therefore a is

an invertible element of Zn.

We now know that the invertible elements of Zn are exactly those that are relatively prime

to n. Also, the proof of Theorem 37.14 gives us a method to calculate inverses.

Let a 2 Zn and suppose gcd.a; n/ D 1. Thus there are integers x and y so that ax C
ny D 1. To find the numbers x and y, we use back substitution in Euclid’s Algorithm (see

Section 36).

Example 37.15 In Z431, find 29�1.

Solution. In Section 36, we found integers x and y such that 431xC 29y D 1, namely x D 7

and y D �104. Therefore .�104 � 29/ mod 431 D 1.

However, �104 … Z431. Instead we can take

b D �104 mod 431 D 327:

Now 29˝ 327 D .29 � 327/ mod 431 D 9483 mod 431 D 1. Therefore 29�1 D 327.
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Example 37.16 In Z431, calculate 30˛ 29.

Solution. In the previous example, we found 29�1 D 327. Therefore

30˛ 29 D 30˝ 327 D .30 � 327/ mod 431 D 9810 mod 431 D 328:

A Note on Notation

In this book we use different symbols for ordinary addition C and modular addition˚. This
is important because when proving theorems about˚, we often have both aC b and a˚ b in

the same equation. It would be confusing to write aC b for both.

The good news is that throughout this book, we are consistent in using ˚ for addition in

Zn andC for addition in Z or Q. It is still your responsibility to be aware of the modulus (n)

currently under discussion.

The bad news is that this ˚ notation is not standard. When mathematicians work in Zn,

they just write aC b or ab in place of a˚ b and a˝ b, respectively.

The mathematician typically writes a phrase such as “working in Zn” or “working mod-

ulo n” and then uses the conventional operation symbols.

Recap

We introduced the number system Zn. This is the set f0; 1; : : : ; n � 1g together with the

operations˚, 	, ˝, and˛.
The operations˚,	, and˝ are similar toC, �, and �, respectively; one simply operates

on the integers in the usual way and then reduces mod n.

The operation˛ is more subtle. We defined reciprocals in Zn and showed that an element

of Zn is invertible if and only if it is relatively prime to n. We can use Euclid’s gcd algorithm

to compute reciprocals in Zn. We then defined a˛ b D a ˝ b�1 just when b is invertible. If

b is not invertible, then a˛ b is undefined.

37 Exercises 37.1. In the context of Z10, please calculate:

a. 3˚ 3.

b. 6˚ 6.

c. 7˚ 3.

d. 9˚ 8.

e. 12˚ 4. [Be careful. The answer is not 6.]

f. 3˝ 3.

g. 4˝ 4.

h. 7˝ 3.

i. 5˝ 2.

j. 6˝ 6.

k. 4˝ 6.

l. 4˝ 1.

m. 12˝ 5.

n. 5	 8.

o. 8	 5.

p. 8˛ 7.

q. 5˛ 9.

37.2. Solve the following equations for x in the Zn specified.

a. 3˝ x D 4 in Z11.

b. 4˝ x 	 8 D 9 in Z11.

c. 3˝ x ˚ 8 D 1 in Z10.

d. 342˝ x ˚ 448 D 73 in Z1003.

37.3. Solve the following equations for x in the Zn specified. Note: These are quite different

from the previous set of problems. Why? Be sure you find all solutions.

a. 2˝ x D 4 in Z10.

b. 2˝ x D 3 in Z10.
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c. 9˝ x D 4 in Z12.

d. 9˝ x D 6 in Z12.

37.4. Here are a few more equations for you to solve in the Zn specified. Be sure to find all

solutions.

a. x ˝ x D 1 in Z13.

b. x ˝ x D 11 in Z13.

c. x ˝ x D 12 in Z13.

d. x ˝ x D 4 in Z15.

e. x ˝ x D 10 in Z15.

f. x ˝ x D 14 in Z15.

37.5. For some prime numbers p, the equation x˝x˚ 1 D 0 has a solution in Zp . For otherThe order of operations in Zn is the

same as in ordinary arithmetic. The

expression x˝ x˚ 1 should be

parenthesized as .x˝ x/˚ 1. In

essence, this problem is asking you

to determine whether or not there is ap
�1 in Zp for various prime

numbers p.

primes it does not. For example, in Z17 we have 4˝ 4˚ 1 D 0, but in Z19 there is no

solution. The equation has a solution for p D 2, but this is not a particularly interesting

example.

Investigate the first several (say, to 103) odd prime numbersp and divide them into

two categories: those for which x˝x˚1 D 0 has a solution in Zp and those for which

it does not. We recommend that you write a computer program to do this.

State a conjecture based on your evidence.

37.6. Prove: For all a; b 2 Zn, .a	 b/˚ .b 	 a/ D 0.

37.7. Prove that the operations ˚, ˝, and 	 are closed. This means that if a; b 2 Zn, then

a˚ b; a˝ b; a	 b are all elements of Zn.

37.8. Prove Proposition 37.4. Why is this proposition restricted to n � 2?

37.9. Use Proposition 37.7 as the definition of 	 and then prove the assertion in Defini-

tion 37.6 as a theorem.

37.10. For ordinary integers, the following is true. If ab D 0, then a D 0 or b D 0. The

analogous statement for Zn is not necessarily true. For example, in Z10, 2˝ 5 D 0 but

2 6D 0 and 5 6D 0. However, for some values of n (e.g., n D 5) it is true that a˝ b D 0

implies a D 0 or b D 0.

For which values of n � 2 does the implication

a˝ b D 0 () a D 0 or b D 0

hold in Zn?

Prove your answer.

37.11. Prove Proposition 37.11.

37.12. Let n be a positive integer and suppose a; b 2 Zn are both invertible. Prove or disprove

each of the following statements.

a. a˚ b is invertible.

b. a	 b is invertible.

c. a˝ b is invertible.

d. a˛ b is invertible.

37.13. Let n be an integer with n � 2. Prove that in Zn the element n � 1 is its own inverse.

37.14. Modular exponentiation. Let b be a positive integer. The notation ab means to multiply

a by itself repeated, with a total of b factors of a; that is,

a
b D a � a � � � � � a

›

b times

:

The notation for Zn is the same. If a 2 Zn and b is a positive integer, in the context of

Zn we define

a
b D a˝ a˝ � � � ˝ a

›

b times

:

Please do the following:

a. In the context of Zn, prove or disprove: ab D ab mod n.

b. Without the aid of a computer or a calculator, find, in Z100, the value of 364.

The most horrible way to do this problem is to fully calculate 3
64 and then reduce

mod 100 (although this will give the correct answer—why?).
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A less horrible way is to multiply 3 by itself 64 times, reducing mod 100 at each

stage. This requires you to do 63 multiplication problems.

Try to do this calculation using only 6 multiplications, including the very first 3 �
3 D 9.

c. Estimate how many multiplications you need to do to calculate ab in Zn.

d. Give a sensible definition for a0 in Zn.

e. Give a sensible definition for ab in Zn when b < 0. Should you be upset that a�1

already has a meaning?

37.15. Write a computer program to calculate ab mod c where a; b; c are positive integers

given by the user.

Use your program to check your answer to part (b) of Exercise 37.14 and to calcu-

late 21000 mod 99.

38 The Chinese Remainder Theorem

In this section, we investigate how to solve equations that involve modular equivalences.

Solving One Equation

We start with an easy example.

Example 38.1 Solve the equation

x � 4 .mod 11/:

Solution. This asks for all integers x such that x � 4 is a multiple of 11 (i.e., x � 4 D 11k for

some integer k). We can rewrite this as x D 4C 11k where k can be any integer.

So the solutions are : : : ;�18;�7; 4; 15; 26; : : :.

Let’s now work on a more complicated example.

Example 38.2 Solve the equation

3x � 4 .mod 11/: (43)

Suppose, just for a moment, that we had a solution x0 to the equation 3x � 4 .mod 11/.

Now consider the integer x1 D x0 C 11. If we substitute x1 for x in Equation (43), we get

3x1 D 3.x0 C 11/ D 3x0 C 33 � 3x0 � 4 .mod 11/

so x1 is also a solution. Thus, if we add or subtract any multiple of 11 to a solution to Equa-

tion (43), we obtain another solution to Equation (43). So if there is a solution, then there is a

solution in f0; 1; 2; : : : ; 10g D Z11. Once we find all the solutions in Z11, we have found all

solutions to the equation.

Now there are only 11 possible values of x we need to try, so it might be simplest just

to try all the possibilities to find the answer. However, we want to generalize this method to

problems where the modulus is a great deal larger than 11.

We seek a number x 2 Z11 for which 3x � 4 .11/. But note that

3x � 4 .11/ () .3x/ mod 11 D 4 () 3˝ x D 4

where˝ is modular multiplication in Z11. How do we solve the equation 3˝ x D 4 in Z11?

We would like to divide both sides by 3. Do we get x D 4

3
? Nonsense! That is not how we

divide in Z11. We multiply both sides of 3˝x D 4 by 3�1. By the methods of Section 37, we

can calculate 3�1 D 4, and so

3˝ x D 4 ) 4˝ 3˝ x D 4˝ 4 ) 1˝ x D 5 ) x D 5

(because 12 mod 11 D 1 and 16 mod 11 D 5).
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Let’s check this answer in Equation (43). We substitute x D 5 and calculate

3x D 15 � 4 .mod 11/

and so 5 is a solution. Furthermore, there are no other solutions in Z11. If x0 2 Z11 were

another solution, we would have 3˝ x0 D 4, and when we ˝ both sides by 4, we would find

x
0 D 5.

Although 5 is the only solution in Z11, it is not the only solution to Equation (43). If we

add any multiple of 11 to 5, we get another solution. The full set of solutions is f5 C 11k W
k 2 Zg D f: : : ;�17;�6; 5; 16; 27; : : :g. This completes the solution to Example 38.2.

We summarize what we have learned in the following result.

Proposition 38.3 Let a; b; n 2 Z with n > 0. Suppose a and n are relatively prime and consider the equation

ax � b .mod n/

The set of solutions to this equation is

fx0 C kn W k 2 Zg

where x0 D a
�1
0
˝b0, a0 D a mod n, b0 D b mod n, and˝ is modular multiplication in Zn.

The integer x0 is the only solution to this equation in Zn.

We have essentially done the proof by solving Equation (43). Please write out the proof

yourself, using our solution to Equation (43) as a guide.

It is not hard to extend Proposition 38.3 to solve equations of the form

ax C b � c .mod n/

where a and n are relatively prime.

Solving Two Equations

Now we solve a pair of congruence equations in different moduli. The type of problem we

solve is

x � a .mod m/ and

x � b .mod n/:

Let’s work out the solution to the following problem.

Example 38.4 Solve the pair of equations

x � 1 .mod 7/ and

x � 4 .mod 11/:

In other words, we want to find all integers x that satisfy both of these equations.

Let’s begin with the first equation. Since x � 1 .7/, we can write

x D 1C 7k

for some integer k. We can substitute 1C 7k for x in the second equation: x � 4 .11/. This

gives

1C 7k � 4 .mod 11/ ) 7k � 3 .mod 11/:

The problem now reduces to a single equation in k. We apply Proposition 38.3. To solve this

equation, we need to ˝ both sides by 7�1 working in Z11. In Z11 we find that 7�1 D 8.

We can check that 7�1 D 8 by

calculating 7˝ 8D .7 � 8/

mod 11 D 56 mod 11 D 1.

We calculate, in Z11,

7˝ k D 3 ) 8˝ 7˝ k D 8˝ 3 ) k D 2:
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Furthermore, if we increase or decrease k D 2 by any multiple of 11, we again have a solution

to 1C 7k � 4 .11/.

We are nearly finished. Let’s write down what we have. We know that we want all values

of x with

x D 1C 7k

and k can be any integer of the form

k D 2C 11j

where j is any integer. Combining these two, we have

x D 1C 7k D 1C 7.2C 11j / D 15C 77j .8j 2 Z/ :

In other words, the solution set to the equations in Example 38.4 is fx 2 Z W x � 15 .77/g.
To check that this is correct, notice that

15 � 1 .mod 7/ and 15 � 4 .mod 11/:

Furthermore, if x is increased or decreased by any multiple of 77, both equations remain valid

because 77 is a multiple of both 7 and 11.

Theorem 38.5 (Chinese Remainder) Let a; b; m; n be integers with m and n positive and relatively prime.

There is a unique integer x0 with 0 � x0 < mn that solves the pair of equations

x � a .mod m/ and

x � b .mod n/:

Furthermore, every solution to these equations differs from x0 by a multiple of mn.

We saw all the steps to prove the Chinese Remainder Theoremwhen we solved the system

in Example 38.4. The general proof follows the method of that example.

Proof. From the equation x � a .m/, we know that x D a C km where k 2 Z. We

substitute this into the second equation x � b .n/ to get

aC km � b .n/ ) km � b � a .n/

and we want to solve this for k. Note that adding or subtracting a multiple of n to b � a or to

m does not change this equation. So we let

m
0 D m mod n and c D .b � a/ mod n:

Since m and n are relatively prime, so are m0 and n (see Exercise 36.14). Thus solving km �
b � a .n/ is equivalent to solving km0 � c .n/. To find a solution in Zn, we solve, in Zn,

k ˝m
0 D c:

Since m0 is relatively prime to n, we can˝ both sides by its reciprocal to get

k D .m
0
/
�1 ˝ c:

Let d D .m0/�1 ˝ c, so the values for k that we want are k D d C jn for all integers j .

Finally, we substitute k D d C jn into x D aC km to get

x D aC km D aC .d C jn/m D aC dmC jnm

where j 2 Z is arbitrary. We have shown that the original system of two equations reduces to

the single equation

x � aC dm .mod mn/

and the conclusions follow.
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Example 38.6 Suppose we want to solve a system of three equations. For example, solve for all x:

x � 3 .mod 9/;

x � 5 .mod 10/; and

x � 2 .mod 11/:

Solution: We can solve the first two equations by the usual method

x � 3 .9/

x � 5 .10/

�

) x � 75 .90/:

Now we combine this result with the last equation and solve again by the usual method.

x � 75 .90/

x � 2 .11/

�

) x � 255 .990/:

Recap

We investigated how to solve equations of the form ax C b � c .n/ as well as systems of

equations of the form x � a .m/ and x � b .n/ where m and n are relatively prime.

38 Exercises 38.1. Solve the following for all integers x.

a. 3x � 17 .mod 20/.

b. 2x C 5 � 7 .mod 15/.

c. 10� 3x � 2 .mod 23/.

d. 100x � 74 .mod 127/.

38.2. Prove Proposition 38.3.

38.3. Solve the following systems of equations.

a. x � 4 .5/ and x � 7 .11/.

b. x � 34 .100/ and x � �1 .51/.

c. x � 3 .7/, x � 0 .4/, and x � 8 .25/.

d. 3x � 8 .10/ and 2x C 4 � 9 .11/.

38.4. Ten pirates find a sack of gold coins. When they try to divide up the gold (with equal

shares for all) they find there is one coin left over. Upset, one of the pirates cries “Arg!”

and leaves (with no gold). The remaining pirates again try to divide up the gold and this

time they find to their horror there are two coins left over. So two more of the pirates

cry “Arg!” and leave (with no gold). The remaining pirates divide up the gold and find,

to their delight, that each gets an equal share and no coins are left over.

What can we say about the number of gold coins in the sack? In particular, what is

the smallest number of coins that make the story correct?

38.5. Explain why it is important for a and n to be relatively prime in the equation ax �
b .n/. Specifically, you should do the following:

a. Create an equation of the form ax � b .n/ that has no solutions.

b. Create an equation of the form ax � b .n/ that has more than one solution in Zn.

38.6. For the pair of equations x � a .m/ and x � b .n/, explain why it is important that

m and n be relatively prime. Where in the proof of Theorem 38.5 did we use this fact?

Give an example of a pair of equations x � a .m/ and x � b .n/ that has no

solution.

Give an example of a pair of equations x � a .m/ and x � b .n/ that has more

than one solution in Znm.

38.7. Consider the system of congruences

x � a1 .mod m1/

x � a2 .mod m2/

where m1 and m2 are relatively prime. Let b1 and b2 be integers whereThese inverses exist because m1 and

m2 are relatively prime.
b1 D m

�1
1 in Zm2

b2 D m
�1

2
in Zm1

:
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Finally, let

x0 D m1b1a2 Cm2b2a1:

Please prove that x0 is a solution to the system of congruences.

38.8. Use the technique of the previous problem to solve the following systems of congru-

ences.

a. x � 3 .mod 8/ and x � 2 .mod 19/.

b. x � 1 .mod 10/ and x � 3 .mod 21/.

39 Factoring

In this section we prove the following well-known fact: Every positive integer can be factored

into primes in (essentially) a unique fashion. For example, the integer 60 can be factored into

primes as 60 D 2� 2� 3� 5. It can also be factored as 60 D 5� 2� 3� 2, but notice that the

primes in the two factorizations are exactly the same; the only difference is the order in which

we listed them. This is true of all positive integers (we can treat 1 as the empty product of

primes—see Section 9). We can consider prime numbers to be already factored into primes:

a prime, say 17, is the product of just one prime: 17. Composite numbers are the product of

two or more primes.

Theorem 39.1 (Fundamental Theorem of Arithmetic) Let n be a positive integer. Then n factors into a

product of primes. Furthermore, the factorization of n into primes is unique up to the order of

the primes.

The phrase “up to the order of the primes” means that we treat 2 � 3 � 5 the same as

5 � 2 � 3.

A key tool in the proof of this theorem is the following result.

Lemma 39.2 Suppose a; b; p 2 Z and p is a prime. If pjab, then pja or pjb.

Note: If we already had a proof of Theorem 39.1, this lemma would be simple to prove

(see Exercise 39.5).

Proof. Let a; b; p be integers with p prime and suppose pjab. Suppose, for the sake of

contradiction, that p divides neither a nor b.

Since p is a prime, the only divisors of p are ˙1 and ˙p. Since p is not a divisor of

a, the largest divisor they have in common is 1. Therefore gcd.a; p/ D 1 (i.e., a and p are

relatively prime). Thus, by Corollary 36.9, there are integers x and y such that axC py D 1.

Similarly, b and p are relatively prime. By Corollary 36.9, there are integers w and z

such that bz C pw D 1.

We have found that ax C py D 1 and bz C pw D 1. Multiplying these two equations

together, we get

1 D .ax C py/.bz C pw/ D abxz C pybz C paxw C p
2
yw:

Notice that all four of these terms are divisible by p (the first term is a multiple of ab,

which in turn is a multiple of p by hypothesis). We have shown that pj1, but this is clearly
false.)(

Lemma 39.3 Suppose p; q1; q2; : : : ; qt are prime numbers. If

pj .q1q2 � � �qt / ;

then p D qi for some 1 � i � t .
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You can proveLemma 39.3 by induction on t (or by the smallest-counterexamplemethod).

See Exercise 39.6.

Proof (of Theorem 39.1)

Suppose, for the sake of contradiction, that not all positive integers factor into primes. Let X

be the set of all positive integers that do not factor into primes. Note that 1 … X because we

can factor 1 into an empty product of primes. Also 2 … X because 2 is a prime (and factors

2 D 2).

By the Well-Ordering Principle, there is a least element of X ; let’s call it x. The integer

x is the smallest positive integer that does not factor into primes. Note that x 6D 1 (discussed

in the previous paragraph). Furthermore, x is not prime, since every prime is the product of

just one number (itself). Therefore x is composite.

Since x is composite, there is an integer a with 1 < a < x and ajx. This means there

is an integer b with ab D x. Since a < x, we may divide both sides of ab D x by a to get

1 <
x

a
D b. Because 1 < a, we may multiply both sides by b to get b < ab D x. Thus

1 < b < x. Therefore a and b are both positive integers less than x. Since x is the least

element of X , we know that neither a nor b is in X , so both a and b can be factored into

primes. Suppose the factorizations of a and b are

a D p1p2 � � �ps and b D q1q2 � � �qt

where the ps and qs are prime. Then

x D ab D .p1p2 � � �ps/ .q1q2 � � �qt /

is a factorization of x into primes, contradicting x 2 X .)( Therefore all positive integers

can be factored into primes.

Now we work to show uniqueness. Suppose, for the sake of contradiction, that some

positive integers can be factored into primes in two distinct ways. Let Y be the set of all such

integers with two (or more) distinct factorizations. Note that 1 … Y because 1 can be factored

only as the empty product of primes. The supposition is that Y 6D ;, and therefore Y contains

a least element y. Thus y can be factored into primes in two distinct ways:

y D p1p2 � � �ps and y D q1q2 � � �qt

where the ps and qs are primes and the two lists of primes are not simply rearrangements of

one another.

Claim: The list .p1; p2; : : : ; ps/ and the list .q1; q2; : : : ; qt / have no elements in common

(i.e., pi 6D qj for all i and j ). If the two lists had a prime in common—say, r—then y=r

would be a smaller integer (than y) that factors into primes in two distinct ways, contradicting

the fact that y is smallest in Y .

Now consider p1. Notice that p1jy, so p1j .q1q2 � � �qt /. However, by Lemma 39.3, p1

must equal one of the qs, contradicting the claim we just proved.)(

Infinitely Many Primes

How many primes are there? At first, it is easy to find primes; almost every other number is

prime: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and so on. This suggests that there could be infinitely

many primes. However, this pattern does not continue. In Exercise 9.11 you found a sequence

of 1001 consecutive composite numbers. Perhaps, after a point, there are no more primes.

Although the prime numbers thin out as we look deeper into the positive integers, they

never die out completely. There are infinitely many primes.

Theorem 39.4 (Infinitude of primes) There are infinitely many prime numbers.

Proof. Suppose, for the sake of contradiction, that there are only finitely many prime num-

bers. In such a case, we could (in principle) list them all:

2; 3; 5; 7; : : : ; p
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where p is the (alleged) last prime number. LetThis proof can also be viewed as an

algorithm for generating primes.

Given that we have generated primes

from 2 to p, the prime factors of

n D 2 � 3 � 5 � � �pC 1 must be new

primes that we have not previously

constructed. In this way, we can

build as many primes as we like.

n D
�

2 � 3 � 5 � � � � � p
�

C 1:

That is, n is the positive integer formed by multiplying together all the prime numbers and

then adding 1.

Is n a prime?

The answer is no. Clearly n is greater than the last prime p, so n is not prime. Since n is

not prime, n must be composite.

Let q be any prime. Because

n D
�

2 � 3 � � � � � q � � � � � p
�

C 1;

when we divide n by q, we are left with a remainder of 1. We see that there is no prime number

q with qjn, contradicting Theorem 39.1.)(

A Formula for Greatest Common Divisor

Suppose a and b are positive integers. By Theorem 39.1, we can factor them into primes as

a D 2
e2 � 3e3 � 5e5 � 7e7 � � � and b D 2

f2 � 3f3 � 5f5 � 7f7 � � � : (44)

For example, if a D 24 we would have

24 D 2
3 � 31 � 50 � 70 � � � :

Suppose ajb. Let p be a prime and suppose it appears ep times in the prime factorization of

a. Since pep ja and ajb, we have (by Proposition 5.3) pep jb, and therefore pep jpfp . Thus

ep � fp . In other words, if ajb, then the number of factors of p in the prime factorization of

a is less than or equal to the number of factors of p in the prime factorization of b.

Thus, if a and b are as in Equation (44) and if d D gcd.a; b/, then

d D 2
x2 � 3x3 � 5x5 � 7x7 � � �

where x2 D minfe2; f2g, x3 D minfe3; f3g, x5 D minfe5; f5g, and so on. For example,The notation minfa; bg stands for
the smaller of a or b. That is, if

a � b, then minfa; bg D a;

otherwise minfa; bg D b.

24 D 2
3 � 31 � 50 � 70 � � � and 30 D 2

1 � 31 � 51 � 70 � � �

and so

gcd.24; 30/ D 2
minf3;1g � 3minf1;1g � 5minf0;1g � 7minf0;0g � � � D 2

1 � 31 � 50 � 70 � � � D 6:

Let us summarize what we have observed in the following result.

Theorem 39.5 (GCD formula) Let a and b be positive integers with

a D 2
e2 � 3e3 � 5e5 � 7e7 � � � and b D 2

f2 � 3f3 � 5f5 � 7f7 � � � :

Then

gcd.a; b/ D 2
minfe2;f2g � 3minfe3;f3g � 5minfe5;f5g � 7minfe7;f7g � � � :

Irrationality of
p

2

Is there a square root of 2? In other words, is there a number x such that x
2 D 2? This is

actually a subtle question. In this section, we show that there is no rational number x such that

x2 D 2.

Proposition 39.6 There is no rational number x such that x2 D 2.

In effect, this is asking us to show that the set fx 2 Q W x2 D 2g is empty. To show that

something does not exist, we use Proof Template 13.

Proof. Suppose, for the sake of contradiction, that there is a rational number x such that

x2 D 2. This means there are integers a and b such that x D a

b
.
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We therefore have
�

a

b

�2 D 2. This can be rewritten

a
2 D 2b

2
:

Consider the prime factorization of the integer n D a
2 D 2b

2. On the one hand, since n D a
2,

the prime 2 appears an even number (perhaps zero) of times in the prime factorization of n.

On the other hand, since n D 2b2, the prime 2 appears an odd number of times in the prime

factorization of n.)( Therefore, there is no rational number x such that x2 D 2.

There is a real number x that satisfies x2 D 2, but the proof of this fact is complicated.

First, we need to define real number. Second, we need to define what it means to multiply two

real numbers. Finally, we have to show that x
2 D 2 has a solution. All of these are a job for

continuous mathematics, and we do not venture into that realm here.

There are many lovely proofs that
p

2 is irrational. Here is another.

Proof (of Proposition 39.6)

Suppose there is a rational number x such that x2 D 2. Write x D b

a
. By Exercise 36.19, we

may choose a and b to be relatively prime.

Because a and b are relatively prime, there is no prime that divides both.

Since b2

a2 D 2, we have

b
2 D 2a

2
:

Factor both sides of this equation into primes; the two sides of this equation are integers that

are greater than or equal to 2. Let p be one of the primes in the factorization. Looking at the

left-hand side, we see that the prime factorization of b2 is simply the prime factorization of

b with every prime appearing twice as often. So if pjb2, clearly p is a divisor of b and not a

divisor of a. Looking at the right-hand side, we see that p must be a divisor of 2, so p D 2.

We have shown that the only prime divisor of b2 D 2a2 is 2. Since 2jb and gcd.a; b/ D 1,

we see that a does not have any prime divisors! Thus a D ˙1 and we have

b
2 D 2:

In other words, there is an integer b with b2 D 2, and clearly there is no such integer.

Here is yet another proof that uses geometry.

Proof (of Proposition 39.6)

Suppose, for the sake of contradiction, there is a rational number x so that x
2 D 2. We may

assume x is positive, for otherwise we could simply use �x instead [since .�x/2 D x2 D 2].

Since x is rational, write x D b

a
where a and b are both positive and are as small as

possible.

Write x2 D 2 as a2 C a2 D b2. Construct an isosceles right triangle XYZ (with right

angle at Y ) whose legs have length a and whose hypotenuse has length b. See the figure.

X

Y Z

P

Q

a

b

b

a

a
b

a

b

a

b
a
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Swing an arc centered at Z from Y meeting the hypotenuse at point P . Because the

segment ZP has length a (it is a radius of the arc), the segment XP has length b � a.

Erect a perpendicular at P that meets leg XY at the point Q. Notice that XPQ is also an

isosceles right triangle (angle X is 45ı) and so segment PQ has length b � a.

Now triangles ZPQ and ZYQ are congruent because they are right triangles with the

same hypotenuse (QZ) and congruent legs YZ andPZ (use the HL theorem from geometry).

Therefore, by CPCTC, PQ and YQ are congruent. Since the length of PQ is b�a, the length

Geometry abbreviations: The HL

theorem asserts that given two right

triangles, if the hypotenuse and a leg

of one triangle are congruent to the

hypotenuse and a leg of a second

triangle, then the triangles are

congruent. The abbreviation CPCTC

stands for corresponding parts of

congruent triangles are congruent.
of YQ is the same.

Thus, since the length of YQ is b � a and the length of XY is a, the length of XQ is

a � .b � a/ D 2a � b.

� Claim: b > a, and hence b � a > 0.

This is because
�

b

a

�2

D 2, and if b � a, we would have
�

b

a

�2

� 1. (Also, the length of

the hypotenuse of a right triangle is greater than that of its legs.)

� Claim: 2a � b > 0.

If this were not so, we would have

b � 2a ) b
2 � 4a

2 ) b2

a2
� 4

contradicting b2

a2 D 2.
� Claim: .b � a/2 C .b � a/2 D .2a � b/2.

This follows by the Pythagorean Theorem applied to triangle XPQ.

Therefore
�

b0

a0

�2

D
�

2a � b

b � a

�2

D 2

where b0 D 2a � b and a0 D b � a. Since triangle XQP is strictly inside triangle XYZ, we

have a0 < a and b0 < b, contradicting the choice of a and b as small as possible.

Just for Fun

Here’s a problem with an amusing solution. Are there irrational numbers x and y with the

property that xy is rational?

Well, we know that
p

2 is irrational, so consider a D
p

2

p
2
. If a is rational, then the

answer to the question is “yes”.

But if a is irrational, then let b D
p

2 and notice that

a
b D

�p
2

p
2

�

p
2

D
�p

2

�2

D 2

which is rational, so again the answer is “yes”.

In either case (a is rational or irrational) we see that there are irrational numbers x and y

for which xy is rational.

Recap

We showed that every positive integer factors uniquely into a product of primes. We proved

there are infinitely many primes, and we used prime factorization to develop a formula for the

greatest common divisor of two positive integers. We proved that there is no rational number

whose square is 2.

39 Exercises 39.1. Suppose you wish to factor a positive integer n. You could write a computer program

that tries to divide n by all possible divisors between 1 and n. If n is around one million,

this means performing around one million divisions.

Explain why this is not necessary and that it is enough to check all possible divisors

from 2 up to (and perhaps including)
p

n.

If n is around one million, then
p

n is around one thousand.
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39.2. Factor the following positive integers into primes.

a. 25.

b. 4200.

c. 1010.

d. 19.

e. 1.

39.3. Let x be an integer. Prove that 2jx and 3jx if and only if 6jx.
Generalize and prove.

39.4. Suppose a is a positive integer and p is a prime. Prove that pja if and only if the prime

factorization of a contains p.

39.5. Prove Lemma 39.2 using Theorem 39.1.

39.6. Prove Lemma 39.3 by induction (or Well-Ordering Principle) using Lemma 39.2.

39.7. Suppose we wish to compute the greatest common divisor of two 1000-digit numbers

using Theorem 39.5. How many divisions would this take? (Assume we factor using

trial division up to the square roots of the numbers.)

How would this compare to using Euclid’s Algorithm?

39.8. Let a and b be positive integers. Prove that a and b are relatively prime if and only if

there is no prime p such that pja and pjb.
39.9. Let a and b be positive integers. Prove that 2a and 2b � 1 are relatively prime by

considering their prime factorizations.

39.10. Let a and b be integers. A commonmultiple of a and b is an integer n for which ajn and

bjn. We call an integer m the least common multiple of n provided (1) m is positive,

(2) m is a common multiple of a and b, and (3) if n is any other positive common

multiple of a and b, then n � m.

The notation for the least common multiple of a and b is lcm.a; b/. For example,

lcm.24; 30/ D 120.

Please do the following:

a. Develop a formula for the least common multiple of two positive integers in terms

of their prime factorizations; your formula should be similar to the one in Theo-

rem 39.5.

b. Use your formula to show that if a and b are positive integers, then

ab D gcd.a; b/ lcm.a; b/:

39.11. Let a 2 Z and suppose a2 is even. Prove that a is even.

39.12. Generalize the previous exercise. Prove that if a; p 2 Z with p a prime and pja2, then

pja.
39.13. Prove that consecutive perfect squares are relatively prime.

39.14. Let n be a positive integer and suppose we factor n into primes as follows:

n D p
e1

1
p

e2

2
� � �pet

t

where the pj s are distinct primes and the ej s are natural numbers.

Find a formula for the number of positive divisors of n. For example, if n D 18,

then n has six positive divisors: 1, 2, 3, 6, 9, and 18.

39.15. Recall (see Exercise 3.13) that an integer n is called perfect if it equals the sum of all its

divisors d with 1 � d < n. For example, 28 is perfect because 1C2C4C7C14D 28.

Let a be a positive integer. Prove that if 2
a � 1 is prime, then n D 2

a�1
.2

a � 1/ is

perfect.

39.16. In this problem we consider the question: How many integers, from 1 to n inclusive,Euler’s totient, '.n/.

are relatively prime to n? For example, suppose n D 10. There are ten numbers in

f1; 2; : : : ; 10g. Of them, the following are relatively prime to 10: f1; 3; 7; 9g. So there

are four numbers from 1 to 10 that are relatively prime to 10.

The notation '.n/ stands for the answer to this counting problem; that is, '.n/ is

the number of integers from 1 to n (inclusive) that are relatively prime to n. From our

example, '.10/ D 4. The symbol ' is a Greek lowercase letter phi. The function ' is

known as Euler’s totient.
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Please evaluate the following:

a. '.14/.

b. '.15/.

c. '.16/.

d. '.17/.

e. '.25/.

f. '.5041/. Note: 5041 D 712 and 71 is prime.

g. '.210/.

Note: You could do all of these by listing all the possibilities, but the last two would be

painful. Try to develop general methods (or see the next problem).

39.17. Euler’s totient, continued. Suppose p and q are unequal primes. Prove the following:

a. '.p/ D p � 1.

b. '.p2/ D p2 � p.

c. '.pn/ D pn � pn�1 where n is a positive integer.

d. '.pq/ D pq � q � p C 1 D .p � 1/.q � 1/.

39.18. Euler’s totient, continued further. Suppose n D p1p2 � � �pt where the pis are distinct

primes (i.e., no two are the same). For example, n D 2� 3� 11 D 66 is such a number.

Prove that

'.n/ D n � n

p1

� n

p2

� � � � � n

pt

C n

p1p2

C n

p1p3

C � � � C n

pt�1pt

� n

p1p2p3

� n

p1p2p4

� � � � � n

pt�2pt�1pt

C � � � � � � ˙ n

p1p2p3 � � �pt

:

For example,

'.66/ D 66 � 66

2
� 66

3
� 66

11
C 66

2 � 3 C
66

2 � 11
C 66

3 � 11
� 66

2 � 3 � 11

D 66 � 33 � 22 � 6C 11C 3C 2 � 1

D 20:

Note that this formula simplifies to

'.n/ D n

�

1 � 1

p1

��

1 � 1

p2

�

� � �
�

1 � 1

pt

�

:

For example, '.66/ D 66.1� 1

2
/.1 � 1

3
/.1 � 1

11
/ D 20.

39.19. Again with Euler’s totient. Now suppose n is any positive integer. Factor n into primes

as

n D p
a1

1
p

a2

2
� � �pat

t

where the pis are distinct primes and the exponents ai are all positive integers. Prove

that the formulas from the previous problem are valid for this general n.

39.20. Rewrite the second proof of Proposition 39.6 to show the following:

Let n be an integer. If
p

n is not an integer, then there is no rational number x such

that x2 D n.

39.21. Explain why we may assume a and b are both positive in the third proof of Proposi-

tion 39.6.

39.22. Prove that log2 3 is irrational.

39.23. Sieve of Erasothenes. Here is a method for finding many prime numbers. Write down

all the numbers from 2 to, say, 1000. Notice that the smallest number on this list (2) is

a prime. Cross off all multiples of 2 (except 2). The next smallest number on the list is

a prime (3). Cross off all multiples of 3 (except 3 itself). The next number on the list is

4, but it’s crossed off. The next smallest number on the list that isn’t crossed off is 5.

Cross off all multiples of 5 (except 5 itself).

a. Prove that this algorithm crosses off all composite numbers on the list but retains all

the primes.
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b. Implement this algorithm on a computer.

c. Let �.n/ denote the number of primes that are less than or equal to n. For example,In this context � has nothing to do

with the number 3:14159 : : :. �.19/ D 8 because there are eight primes that are less than or equal to 19—namely

2, 3, 5, 7, 11, 13, 17, and 19.

Use your program from part (b) to evaluate �.1000000/.

d. The Prime Number Theorem states that �.n/ � n= ln n. How good is this approxi-

mation when n D 1,000,000?

39.24. In this and the subsequent problems, you will be working in a different number system.

The goal is to illustrate that unique factorization of prime numbers is a special feature

of the integers.

We consider all numbers of the form

aC b
p
�3

where a and b are integers. For example, 5 � 2
p
�3 is a number in this system, but 1

2

is not.

This number system is denoted ZŒ
p
�3�. That is, ZŒ

p
�3� is the set

ZŒ
p
�3� D

n

aC b
p
�3 W a; b 2 Z

o

:

Please do the following:

a. Prove that if w; z 2 ZŒ
p
�3�, then w C z 2 ZŒ

p
�3�.

b. Prove that if w; z 2 ZŒ
p
�3�, then w � z 2 ZŒ

p
�3�.

c. Prove that if w; z 2 ZŒ
p
�3�, then wz 2 ZŒ

p
�3�.

d. Find all numbers w such that both w and w�1 are in ZŒ
p
�3�.

39.25. Let w D aC b
p
�3 2 ZŒ

p
�3�. Define the norm of w to be

N.w/ D a
2 C 3b

2
:

Please do the following:

a. Prove that if w; z 2 ZŒ
p
�3�, then N.wz/ D N.w/N.z/.

b. Find all w 2 ZŒ
p
�3� with N.w/ D 0, with N.w/ D 1, with N.w/ D 2, with

N.w/ D 3, and with N.w/ D 4.

39.26. Let w; z 2 ZŒ
p
�3�. We say that w divides z provided there is a q 2 ZŒ

p
�3� with

wq D z. In this case, we call w a factor of z.

We call p 2 ZŒ
p
�3� irreducible if and only if (1) p 6D 1 and p 6D �1 and (2) the

only factors of p are˙1 and˙p. Irreducible elements ofZŒ
p
�3� are much like primes

in Z (only we do not consider negative integers to be prime).

Determine which of the following elements of ZŒ
p
�3� are irreducible.

a. 1C 2
p
�3.

b. 2C
p
�3.

c. 2.

d. 1C
p
�3.

e. 3.

f. 7.

g. �1.

h. 0.

39.27. Let w 2 ZŒ
p
�3� with w 6D 0;˙1. Prove that w can be factored into irreducible

elements of ZŒ
p
�3�; that is, we can find irreducible elements p1; p2; : : : ; pt with w D

p1p2 � � �pt .

39.28. We have reached the main point of this series of problems about ZŒ
p
�3�. Our goal is

to make a statement about unique factorization in ZŒ
p
�3�.

Suppose we factor a into irreducibles as

a D .p1/.p2/.p3/ � � � .pt /

and consider the factorization

a D .�p2/.�p1/.p3/ � � � .pt /:

We consider these factorizations to be the same. We do not care about the order of the

factors (this is the same as for factoring positive integers into primes), and we do not
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care about stray factors of �1. For example, we consider the following two factoriza-

tions of 6 into irreducibles to be the same:

6 D .2/.
p
�3/.�

p
�3/ and

6 D .�2/.
p
�3/.
p
�3/:

These are the same despite the fact that we use 2 in the first factorization and �2 in the

second—we do not care about sign changes in the factors.

Thus the following two factorizations of 4 into irreducibles are the same:

4 D .2/.2/ D .�2/.�2/:

Here is the surprise and your job for this problem: Find another factorization of 4 into

irreducibles.

Therefore, in the number system ZŒ
p
�3�, we can factor numbers into irreducibles,

but the factorization need not be unique!

Chapter 7 Self Test

1. Find integers q and r such that 23 D 5q C r with 0 � r < 5, and calculate 23 div 5 and

23 mod 5.

2. Let a and b be positive integers. Prove that if bja, then a div b D a

b
.

3. Let a � 2 and b be positive integers and suppose aj.bŠC 1/. Prove that a > b.

4. Suppose that a is even and b is odd. Does this imply that a and b are relatively prime?

5. Let p and q be primes. Prove that gcd.p; q/ D 1 if and only if p 6D q.

6. Find integers x and y so that 100xC 57y D gcd.100; 57/.

7. Find the reciprocal of 57 in Z100.

8. Prove that consecutive Fibonacci numbersmust be relatively prime; that is, gcd.Fn; FnC1/ D
1 for all positive integers n.

9. Let p be a prime and let n be a positive integer. Prove that if n is not divisible by p, then

gcd.n; nC p/ D 1.

10. Let p be a prime and let n be a positive integer. Find, in simplest possible terms, the sum

of the positive divisors of pn.

11. In Z101, please calculate the following:

a. 55˚ 66.

b. 55	 66.

c. 55˝ 66.

d. 55˛ 66.

12. Let n be an integer with n � 2. Prove that n is prime if and only if all nonzero elements

of Zn are invertible.

13. Find all integers x that satisfy the following pair of congruences:

x � 21 .mod 64/ and

x � 12 .mod 51/:

14. Let a and b be positive integers. Prove that a D b if and only if gcd.a; b/ D lcm.a; b/.

15. Let n D 1010.

a. How many positive divisors does n have?

b. What is '.n/?

16. Let n be a positive integer. Prove that n has an odd number of positive divisors if and only

if n is a perfect square.

Note: This is the same as Exercise 24.19(b). In that case you were asked to find a

bijection between the set of positive divisors less than
p

n and the set of divisors greater

than
p

n. For this problem you should use your knowledge of factoring an integer n into

primes and how that can be used to determine the number of positive divisors of n directly.

17. Let a; b; c be positive integers. Prove that if ajbc and gcd.a; b/ D 1, then ajc.
18. Let a be a positive integer. Prove that the sum of a consecutive integers is divisible by a

if and only if a is odd.





C H A P T E R

8 Algebra

The word algebra has a variety of meanings. On the one hand, algebra is a high school subject,

often studied in conjunction with trigonometry, in which students learn how to deal with

variables and algebraic expressions. An important focus of such a course is solving various

types of equations.

The word algebra also refers to a more advanced, theoretical subject. Mathematicians

often call this subject abstract algebra to distinguish it from its more elementary cousin.

This chapter is an introduction to the ideas of abstract algebra. We are primarily con-

cerned with algebraic systems called groups, but abstract algebra studies other exotic systems

known as rings, fields, vector spaces, and so on.

Abstract algebra has a practical side: We combine ideas from number theory and group

theory in our study of public-key cryptography.

40 Groups

Operations

The first operation we learn as children is addition. Later we move on to more complex opera-

tions such as division, and in this book, we have investigated more exotic examples, including

^ and _ defined on the set fTRUE; FALSEg,˚ and˝ defined on Zn, and ı defined on Sn.

Recall that Sn is the set of all

permutations on the set

f1; 2; : : : ; ng and ı is composition;

see Definition 27.3.
In this section, we take a broader look at operations defined on sets and their algebraic

properties. First, we present a formal definition of operation.

Definition 40.1 (Operation) Let A be a set. An operation on A is a function whose domain is A �A.

Recall that A � A is the set of all ordered pairs (two-element lists) whose entries are in

A. Thus an operation is a function whose input is a pair of elements from A.

For example, consider the following function f W Z � Z! Z defined byNotice that we write f .a; b/,

although it would be more proper to

write f Œ.a; b/� because we are

applying the function f to the object

.a; b/. The extra brackets, however,

tend to be a distraction. Alternatively,

we can think of a function defined on

A�A as a function of two variables.

f .a; b/ D ja � bj:

In words, f .a; b/ gives the distance between a and b on a number line.

Although the notation f .a; b/ is formally correct, we rarely write the operation symbol

in front of the two elements on which we are operating. Rather, we write a symbol for the

operation between the two elements of the list. Instead of f .a; b/, we write af b.

Furthermore, we usually do not use a letter to denote an operation. Instead, we use a

special symbol such asC or˝ or ı. The symbolsC and � have preset meanings. A common

symbol for a generic operation is �. Thus, instead of writing f .a; b/ D ja � bj, we could

write a � b D ja � bj.
289
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Example 40.2 Which of the following are operations on N: C, �, �, and�?
Solution. Certainly addition C is an operation defined on N. Although C is more broadly

defined on any two rational (or even real or complex numbers), it is a function whose domain

includes any pair of natural numbers. Likewise multiplication � is an operation on N.

Furthermore, � is an operation defined on N. Note, however, that the result of � might

not be an element of N. For example, 3; 7 2 N, but 3 � 7 … N.

Finally, division � does not define an operation on N because division by zero is unde-

fined. However,� is an operation defined on the positive integers.

Properties of Operations

Operations may satisfy various properties. For example, an operation � on a set A is said to

be commutative on A if a � b D b � a for all a; b 2 A. Addition of integers is commutative,

but subtraction is not. Here we present formal definitions of some important properties of

operations.

Definition 40.3 (Commutative property) Let � be an operation on a set A. We say that � is commutative on
A provided

8a; b 2 A; a � b D b � a:

Definition 40.4 (Closure property) Let � be an operation on a set A. We say that � is closed on A provided

8a; b 2 A; a � b 2 A:

Let � be an operation defined on a set A. Note that Definition 40.1 does not require that

the result of � be an element of the set A. For example, � is an operation defined on N, but

the result of subtracting two natural numbers might not be a natural number. Subtraction is

not closed on N; it is closed on Z.

Definition 40.5 (Associative property) Let � be an operation on a set A. We say that � is associative on A

provided

8a; b; c 2 A; .a � b/ � c D a � .b � c/:

For example, the operations C and � on Z are associative, but � is not. For example,

.3 � 4/� 7 D �8, but 3 � .4 � 7/ D 6.

Definition 40.6 (Identity element) Let � be an operation on a set A. An element e 2 A is called an identity

element (or identity for short) for � provided

8a 2 A; a � e D e � a D a:

For example, 0 is an identity element forC, and 1 is an identity element for�. An identity
element for ı on Sn is the identity permutation �.

Not all operations have identity elements. For example, subtraction of integers does notIdentity elements must work on both

sides of the operation. have an identity element. It is true that a � 0 D a for all integers a, so 0 partially satisfies the

requirements of being an identity element for subtraction. However, for 0 to merit the name

identity element for subtraction, we would need that 0 � a D a for all integers, and this is

false. Subtraction does not have an identity element.
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Is it possible for an operation on a set to have more than one identity element?

Proposition 40.7 Let � be an operation defined on a set A. Then � can have at most one identity element.

Proof. We use Proof Template 14 for proving uniqueness.

Suppose, for the sake of contradiction, there are two identity elements, e and e
0, in A with

e 6D e0.
Consider e � e0. On the one hand, since e is an identity element, e � e0 D e0. On the other

hand, since e0 is an identity element, e � e0 D e. Thus we have shown e0 D e � e0 D e, a

contradiction to e 6D e0.)(

Definition 40.8 (Inverses) Let � be an operation on a set A and suppose that A has an identity element e.

Let a 2 A. We call element b an inverse of a provided a � b D b � a D e.

For example, consider the operation C on the integers. The identity element for C is 0.We may refer to �a as the additive

inverse of a to distinguish it from the

more customary meaning of inverse:

1=a.

Every integer a has an inverse: The inverse of a is simply �a because a C .�a/ D .�a/C
a D 0.

Now consider the operation � on the rational numbers. The identity element for multipli-

cation is 1. Most, but not all, rational numbers have inverses. If x 2 Q, then 1

x
is x’s inverse,

unless, of course, x D 0.

Notice that we require that an element’s inverse work on both sides of the operation.

Must inverses be unique? Consider the following example.

Example 40.9 Consider the operation � defined on the set fe; a; b; cg given in the following chart.

� e a b c

e e a b c

a a a e e

b b e b e

c c e e c

Notice that e is an identity element. Notice further that both b and c are inverses of a because

a � b D b � a D e and a � c D c � a D e:

Groups

Example 40.9 is strange. We know that if an operation has an identity element, it must be

unique. And it would be quite natural for us to expect “the” inverse of an element be unique.

However, we cannot say the inverse because we saw that an element might have more than

one inverse. For most operations we encounter, elements have at most one inverse. Some

examples:

� If a 2 Z, there is exactly one integer b such that aC b D 0.
� If a 2 Q, there is at most one rational number b such that ab D 1.
� If � 2 Sn, there is exactly one permutation � 2 Sn such that � ı � D � ı � D � (see

Exercise 27.16).

Most operations we encounter in mathematics are associative, and, as we shall show, as-

sociativity implies uniqueness of inverses. Note that the operation in Example 40.9 is not

associative (see Exercise 40.8).

This brings us to the notion of a group. A group is a common generalization of the fol-Mathspeak!

The word group is a technical

mathematical term. Its meaning in

mathematics is far removed from its

standard English usage.

lowing operations and sets:

� C on Z,
� � on the positive rationals,
� ˚ on Zn,
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� ı on Sn, and
� ı on symmetries of a geometric object.

In each of these cases, we have an operation that behaves nicely; for example, in all these

cases, elements have unique inverses. Here is the definition of a group:

Definition 40.10 (Group) Let � be an operation defined on a set G. We call the pair .G;�/ a group provided:

(1) The set G is closed under �; that is, 8g; h 2 G, g � h 2 G.

(2) The operation � is associative; that is, 8g; h; k 2 G, .g � h/ � k D g � .h � k/.

(3) There is an identity element e 2 G for �; that is, 9e 2 G, 8g 2 G, g � e D e � g D g.

(4) For every element g 2 G, there is an inverse element h 2 G, that is, 8g 2 G; 9h 2 G,

g � h D h � g D e.

Notice that a group is a pair of objects: a set G and an operation �. For example, .Z;C/

is a group. We can pronounce the symbols .Z;C/ aloud as “integers with addition.”

Sometimes, however, the operation under consideration is obvious. For example, .Sn; ı/
is a group (we proved this in Proposition 27.4). The only operation on Sn we consider in this

book (and virtually the only operation most mathematicians consider on Sn) is composition ı.
Thus we may refer to Sn as a group, where we understand that this is shorthand for the pair

.Sn; ı/.
Similarly, if we write, “Let G be a group. . . ,” we understand thatG has a group operation,

Mathspeak!

Our use of the word Abelian is in

honor of Niels Henrik Abel, a

Norwegian mathematician

(1802–1829). Abelian groups are

sometimes called additive or

commutative.

which, in this book, is denoted by �. Please be aware that the symbol � is not customary as the

generic group operation. Mathematicians use � or no symbol at all to denote a general group

operation. This is the same convention we use for multiplication. To avoid confusion, in this

book we use � or ? as the operation symbol of a generic group.

The group operation � need not be commutative. For example, we saw in Section 27 that

ı is not a commutative operation on Sn. Groups in which the operation is commutative have

a special name.

Definition 40.11 (Abelian groups) Let .G;�/ be a group. We call this group Abelian provided � is a com-

mutative operation on G (i.e., 8g; h 2 G, g � h D h � g).

For example, .Z;C/ and .Z10;˚/ are Abelian, but .Sn; ı/ is not.
In Example 40.9, we considered an operation in which inverses are not unique. This does

not happen in groups; in a group, every element has an inverse, and that inverse is unique.

Proposition 40.12 Let .G;�/ be a group. Every element of G has a unique inverse in G.

Proof. We know, by definition, that every element in G has an inverse. At issue is whether

or not it is possible for an element of G to have two (or more) inverses.

Suppose, for the sake of contradiction, that g 2 G has two (or more) distinct inverses.

Let h; k 2 G be inverses of g with h 6D k. This means

g � h D h � g D g � k D k � g D e

where e 2 G is the identity element for �. By the associative property,

h � .g � k/ D .h � g/ � k:

Furthermore,Notice that we are using the facts that

k and h are inverses of g and the

fact that e is an identity element. h � .g � k/ D h � e D h and .h � g/ � k D e � k D k:

Hence h D k, contradicting the fact that h 6D k.)(
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Proposition 40.12 establishes that if g is an element of a group, then g has a unique

inverse. We may speak of the inverse of g. The notation for g’s inverse is g�1. The superscript

�1 notation is in harmony with taking reciprocals in the group of positive rational numbers

The inverse of g in a group .G;�/ is
denoted g�1 .

(with multiplication), or inverse permutations in Sn. It is not a good notation for .Z;C/.

Examples

The concept of a group is rather abstract. It is helpful to have several specific examples. Some

of the examples that we present here we have considered before; others are new.

� .Z;C/: Integers with addition is a group.
� .Q;C/: Rational numbers with addition is a group.
� .Q;�/: Rational numbers with multiplication is not a group. It nearly satisfies Defini-

tion 40.10, except that 0 2 Q does not have an inverse. We can repair this example in two

ways. First, we can consider only the positive rational numbers: .QC;�/ is a group.

Another way to repair this example is simply to eliminate the number 0. .Q�f0g;�/

is a group.
� .Sn; ı/ is a group called the symmetric group.
� Let An be the set of all even permutations in Sn. Then .An; ı/ is a group called an alter-

nating group. See Exercise 40.7.
� The set of symmetries of a square with ı is a group. This group is called a dihedral group.

In general, if n is an integer with n � 3, the dihedral group D2n is the set of symme-

tries of a regular n-gon with the operation ı (see Section 28).
� .Zn;˚/ is a group for all positive integers n.
� Let G D f.0; 0/; .0; 1/; .1; 0/; .1; 1/g. Define an operation � on G by

.a; b/ � .c; d / D .a˚ c; b ˚ d/

where˚ is addition mod 2 (i.e.,˚ in Z2).

The � table for this group is this:

� .0; 0/ .0; 1/ .1; 0/ .1; 1/

.0; 0/ .0; 0/ .0; 1/ .1; 0/ .1; 1/

.0; 1/ .0; 1/ .0; 0/ .1; 1/ .1; 0/

.1; 0/ .1; 0/ .1; 1/ .0; 0/ .0; 1/

.1; 1/ .1; 1/ .1; 0/ .0; 1/ .0; 0/

This group is known as the Klein 4-group. Notice that .0; 0/ is the identity element and

every element is its own inverse.
� Let A be a set. Then .2A; �/ is a group (Exercise 40.13).� stands for symmetric difference of

sets. � .Z10;˝/ is not a group. The problem is similar to .Q;�/: Zero does not have an inverse.

The remedy in this case is a bit more complicated.We cannot just throw away the element

0. Notice that in .Z10 � f0g;˝/ the operation˝ is no longer closed. For example, 2; 5 2
Z10 � f0g, but 2˝ 5 D 0 … Z10 � f0g. Also, elements 2 and 5 do not have inverses.

In addition to eliminating the element 0, we can discard those elements that do not

have inverses. By Theorem 37.14, we are left with the elements in Z10 that are relatively

prime to 10; we are left with f1; 3; 7; 9g.
These four elements together with˝ form a group. The˝ table for them is this:

˝ 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

The last example is worth exploring in a bit more depth. We observed that .Z10;˝/ is

not a group and then we eliminated from Z10 those elements that do not have an inverse. We

saw, in Theorem 37.14, that the invertible elements of .Zn;˝/ are precisely those that are

relatively prime to n.
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Definition 40.13 (Z�
n
) Let n be a positive integer. We define

Z�
n
D fa 2 Zn W gcd.a; n/ D 1g :

Example 40.14 Consider Z�
14
. The invertible elements in Z�

14
(i.e., the elements relatively prime to 14) are 1,

3, 5, 9, 11, and 13. Thus

Z�14 D f1; 3; 5; 9; 11; 13g:

The˝ table for Z�
14

is this:

˝ 1 3 5 9 11 13

1 1 3 5 9 11 13

3 3 9 1 13 5 11

5 5 1 11 3 13 9

9 9 13 3 11 1 5

11 11 5 13 1 9 3

13 13 11 9 5 3 1

The inverses of the elements in Z�
14

can be found in this table. We have

1
�1 D 1 3

�1 D 5 5
�1 D 3

9
�1 D 11 11

�1 D 9 13
�1 D 13:

Proposition 40.15 Let n be a positive integer. Then .Z�n;˝/ is a group.

To prove that .G;�/ is a group, we need to check Definition 40.10. We summarize this in

Proof Template 23.

Proof Template 23 Proving .G;�/ is a group.

To prove that .G;�/ is a group:
� Prove that G is closed under �: Let g; h 2 G. . . . Therefore g � h 2 G.
� Prove that � is associative: Let g; h; k 2 G. . . . Therefore g � .h � k/ D .g � h/ � k.
� Prove that G contains an identity element for �: Let e be some specific element of G.

Let g 2 G be arbitrary. . . . Therefore g � e D e � g D g.
� Prove that every element of G has a �-inverse in G: Let g 2 G. Construct an element

h such that g � h D h � g D e.

Therefore .G;�/ is a group.

Proof (of Proposition 40.15)

First, we prove that Z�
n
is closed under˝. Let a; b 2 Z�

n
. We need to prove that a˝ b 2 Z�

n
.

Recall that a˝ b D .ab/ mod n.

We know that a; b 2 Z�
n
. This means that a and b are relatively prime to n. Therefore, by

Corollary 36.9, we can find integers x; y; z; w such that

ax C ny D 1 and bw C nz D 1:

Multiplying these equations gives

1 D .ax C ny/.bw C nz/ D .ax/.bw/C .ax/.nz/C .ny/.bw/C .ny/.nz/

D .ab/.wx/C .n/Œaxz C ybw C ynz�

D .ab/.X/C .n/.Y /
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for some integers X and Y . Therefore ab is relatively prime to n. By Exercise 36.14, we

may increase or decrease ab by a multiple of n, and the result is still relatively prime to n.

Therefore gcd.a˝ b; n/ D 1, and so a˝ b 2 Z�
n
.

Second, we show that˝ is associative. This was proved in Proposition 37.4.

Third, we show that .Z�n;˝/ has an identity element. Clearly gcd.1; n/ D 1, so 1 2 Z�n.
Furthermore, for any a 2 Z�

n
, we have

a˝ 1 D 1˝ a D .a � 1/ mod n D a

and therefore 1 is an identity element for˝.
Fourth, we show that every element in Z�n has an inverse in Z�n. Let a 2 Z�n. We know, by

Theorem 37.14, that a has an inverse a�1 2 Zn. The only issue is: Is a�1 in Z�n? Since a�1 is

itself invertible, by Theorem 37.14 again, a�1 is relatively prime to n, and so a�1 2 Z�
n
.

Therefore .Z�n;˝/ is a group.

How many elements are in Z�
n
? This is a problem we have already considered (see Exer-

cises 39.16–19). We recall and record the answer here for later reference.

Proposition 40.16 Let n be an integer with n � 2. Then

jZ�nj D '.n/

where '.n/ is Euler’s totient.

Recap

We began with a formal description of an operation on a set and listed various properties an

operation might exhibit. We then focused on four particular properties: closure, associativity,

identity, and inverses. We developed the concept of a group and discussed several examples.

40 Exercises 40.1. At the beginning of this section we considered the following operation defined on in-

tegers by x ? y D jx � yj. Please answer the following questions (and explain your

answer):

a. Is ? closed on the integers?

b. Is ? commutative?

c. Is ? associative?

d. Does ? have an identity element? If so, does every integer have an inverse?

e. Is .Z; ?/ a group?

40.2. Let ? be an operation defined on the real numbers R by x ? y D x C y � xy. PleaseFor example,

2 ? 3 D 2C 3� 2 � 3D �1. answer the following questions (and explain your answer):

a. Is ? closed on the real numbers?

b. Is ? commutative?

c. Is ? associative?

d. Does ? have an identity element? If so, does every real number have an inverse?

e. Is .R; ?/ a group?

40.3. Consider the operation ? for real numbers x and y defined by x ? y D xy=.x C y/.For example,

2 ? 3 D 2 � 3=.2C 3/ D 6
5
. We note that .R; ?/ is not a group for a variety of reasons, not the least of which is that

x ? y might not be defined (we might divide by 0).

The situation, however, is not hopeless; let’s do some repairs. First, let’s deal with

the divide-by-zero issue by extending the real numbers to also include the “number”

1. With this extension, we can have .�3/ ? 3 D .�3/ � 3=.�3 C 3/ D �9=0 D 1.

That’s acceptable, but 0=0 is a worse problem, so let’s simply ban 0 from the set of

allowable values for ?. That is, we define

R̃ D R � f0g [ f1g:

That is R̃ consists of all nonzero real numbers and the additional “number”1.

Give sensible meanings to x ?1,1 ? x, and1 ?1 (where x is a nonzero real

number) and show that .R̃; ?/ is an Abelian group.



296 Chapter 8 Algebra

40.4. Let .G;�/ be a group with G D fa; b; cg. Here is an incomplete operation table for �:
� a b c

a a b c

b ? ? ?

c ? ? ?

Find the missing entries.

40.5. Explain why .Z5;	/ is not a group. Give at least two reasons.

40.6. Consider the operations ^, _, and _ defined on the set fTRUE; FALSEg. Which of the

various properties of operations do these operations exhibit? (Consider the properties

closure, commutativity, associativity, identity, and inverses.)

Which (if any) of these operations define a group on fTRUE; FALSEg?
40.7. The set of even permutations of f1; 2; : : : ; ng is denoted An. Prove that .An; ı/ is aSee Definition 27.15 where we

present the concept of an even

permutation.
group. This group is called an alternating group.

40.8. Show that the operation in Example 40.9 is not associative.

40.9. Prove that if .G;�/ is a group and g 2 G, then
�

g�1
��1 D g.

40.10. Prove that if .G;�/ is a group, then e�1 D e.

40.11. We saw that .QC;�/ is a group (positive rational numbers with multiplication). Is

.Q�;�/ (negative rationals with multiplication) a group? Prove your answer.

40.12. This problem is only for those who have studied linear algebra. Let G be the set of 2�2

real matrices

�

a b

c d

�

with ad � bc 6D 0. Prove that G, together with the operation of

matrix multiplication, is a group.

Note that the set of all 2 � 2 real matrices do not form a group because some

matrices, such as

�

1 1

1 1

�

, are not invertible. We discard the noninvertible matrices, and

what remains is a group. This is analogous to our transformation from Zn to Z�n.
40.13. Let A be a set. Prove that .2A; �/ is a group.

40.14. Let G be a group and let a 2 G. Define a function f W G ! G by f .g/ D a�g. Prove

that f is a permutation of G.

40.15. Let G be a group. Define a function f W G ! G by f .g/ D g�1. Prove that f is a

permutation of G.

40.16. Let � be an operation on a finite set G. Form the � operation table. Prove that if .G;�/
is a group, then in every row and in every column, each element of G appears exactly

once.

Show that the converse of this assertion is false; that is, construct an operation � on
a finite set G such that in every row and in every column, each element of G appears

exactly once, but .G;�/ is not a group.
40.17. Let .G;�/ be a group and let g; h 2 G. Prove that .g � h/�1 D h�1 � g�1.

40.18. Let .G;�/ be a group. Prove that G is Abelian if and only if .g � h/�1 D g�1 � h�1

for all g; h 2 G.

40.19. Let .G;�/ be a group. Define a new operation ? on G by

g ? h D h � g:

Prove that .G; ?/ is a group.

40.20. Let .G;�/ be a group. Notice that e
�1 D e. Prove that if jGj is finite and even, then

there is another element g 2 G with g�1 D g.

Give an example of a finite group with five or more elements in which no element

(other than the identity) is its own inverse.

40.21. Let � be an operation defined on a set A. We say that � has the left cancellation property
on A provided

8a; b; c 2 A; a � b D a � c H) b D c:

a. Prove that if .G;�/ is a group, then � has the left cancellation property on G.

b. Give an example of a set A with an operation � that has the left cancellation property
but is not a group.

40.22. Reverse Polish Notation. We remarked at the beginning of this section that mathemati-

cians usually put the operation symbol between the two objects (operands) to which
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the operation applies. There is, however, an alternative notation in which the operation

symbol comes after the two operands. This notation is called reverse Polish notation

(RPN for short) or postfix notation. For example, in RPN, instead of writing 2C 3, we

write 2 3C.
Consider the RPN expression 2; 3; 4;C;�. There are two operation symbols, and

each operates on the two operands to its left. What do the C and � operate on? The

C sign immediately follows 3; 4, so it means to add those two numbers. This reduces

the problem to 2; 7;�. Now the � operates on the 2 and the 7 to give 14. Overall, the

expression 2; 3; 4;C;� in standard notation is 2 � .3C 4/.

On the other hand, the RPN expression 2; 3;C; 4;� stands for .2C 3/ � 4, which

evaluates to 20.

Evaluate each of the following.

a. 1; 1; 1; 1;C;C;C.
b. 1; 2; 3; 4;�;C;C.
c. 1; 2;C; 3; 4;�;C.
d. 1; 2;C; 3; 4;C;�.
e. 1; 2;C; 3;C; 4;�.

40.23. RPN continued. Convert the following expressions from standard notation to RPN. Do

not evaluate.

a. .2C 3/ � .4C 5/.

b. .2C .3 � 4//C 5.

c. ..2C 3/ � 4/C 5.

40.24. RPN continued. Suppose we have a list of numbers and operations (C and �) symbols

representing an RPN expression. Some such expressions are invalid, such as 2;C;C or

C; 3;�; 4; 4 or 2; 3;C; 4.

State and prove a theorem describing when a list of numbers and operation symbols

forms a valid RPN expression.

40.25. RPN continued. Write a computer program to evaluate RPN expressions.

41 Group Isomorphism

The Same?

What does it mean for two groups to be the same?

A simple answer to this question is that .G;�/ D .H; ?/ provided G D H and � D ?

(i.e., � and ? are the same operation). This would certainly be a proper definition for two

groups to be equal, but we asked a vaguer question.

Consider the following three groups: .Z4;˚/, .Z�
5
;˝/, and the Klein 4-group. Their

operation tables are as follows:

˚ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

˝ 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

� .0; 0/ .0; 1/ .1; 0/ .1; 1/

.0; 0/ .0; 0/ .0; 1/ .1; 0/ .1; 1/

.0; 1/ .0; 1/ .0; 0/ .1; 1/ .1; 0/

.1; 0/ .1; 0/ .1; 1/ .0; 0/ .0; 1/

.1; 1/ .1; 1/ .1; 0/ .0; 1/ .0; 0/

These three groups are different because they are defined on different sets. However, two of

them are, in essence, the same group. Look carefully at the three operation tables and try to

distinguish one from the other two.

The Klein 4-group (right) has a property that the other two don’t share. Notice that everyThe main diagonal of these tables is

the diagonal running from the upper

left to the lower right.
element in the Klein 4-group is its own inverse; you can see this by noting the identities

running down the main diagonal. However, in the other two groups, there are elements that

are not their own inverses. For example, 1 and 3 are inverses of one another in .Z4;˚/, and 2

and 3 are inverses of one another in .Z�
5
;˝/. Other than the identity, only 2 is its own inverse

in .Z4;˚/ and only 4 is its own inverse in .Z�
5
;˝/.

We can superimpose the operation tables for the two groups .Z4;˚/ and .Z�
5
;˝/ on top

of one another so they look the same. We pair the identity elements in the two groups with
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one another. We also pair the other elements (2 2 Z4 and 4 2 Z�
5
) that are their own inverses.

Then we have a choice for the other two pairs of elements. Here is a pairing:

.Z4;˚/ .Z�
5
;˝/

0  ! 1

1  ! 2

2  ! 4

3  ! 3

Next we superimpose their operation tables.

˚ ˝ 0 1 1 2 2 4 3 3

0 1 0 1 1 2 2 4 3 3

1 2 1 2 2 4 3 3 0 1

2 4 2 4 3 3 0 1 1 2

3 3 3 3 0 1 1 2 2 4

The tables for both .Z4;˚/ and .Z�
5
;˝/ are correct [although the table for .Z�

5
;˝/ is twisted

around a bit because we swapped the rows and columns for elements 3 and 4]. The important

thing to note is that every element of .Z4;˚/ (in black) sits next to its mate from .Z�
5
;˝/

(color).

More formally, let f W Z4 ! Z�
5
defined by

f .0/ D 1 f .2/ D 4

f .1/ D 2 f .3/ D 3:

Clearly f is a bijection and

f .x ˚ y/ D f .x/˝ f .y/

where˚ is mod 4 addition and˝ is mod 5 multiplication.

In other words, if we rename the elements of Z4 using the rule f , we get elements in

Z�
5
. The operation ˚ for Z4 and the operation˝ for Z�

5
give the exact same results once we

rename the elements.

To put it another way, imagine we made a group of four elements fe; a; b; cg with the

following operation table:

� e a b c

e e a b c

a a b c e

b b c e a

c c e a b

We then tell you that, in reality, these four elements fe; a; b; cg are either (1) aliases for ele-
ments of Z4 with operation˚ or (2) aliases for elements of Z�

5
with operation˝. Would you

be able to distinguish case (1) from (2)? No. The relabeling f shows that either group fits

the pattern in this table. The groups .Z4;˚/ and .Z�
5
;˝/ are, in essence, the same. They are

called isomorphic.

Definition 41.1 (Isomorphism of groups) Let .G;�/ and .H; ?/ be groups. A function f W G ! H is

called a (group) isomorphism provided f is one-to-one and onto and satisfies

8g; h 2 G; f .g � h/ D f .g/ ? f .h/:

When there is an isomorphism from G to H , we say G is isomorphic to H and we write

G Š H .

The is-isomorphic-to relation for groups is an equivalence relation (see Section 14); that

is,

� for any group G, G Š G,
� for any two groups G and H , if G Š H , then H Š G, and
� for any three groups G, H , and K , if G Š H and H Š K , then G Š K .
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Cyclic Groups

The groups .Z4;˚/ and .Z�
5
;˝/ have everything in common except for the names of their

elements. Element 1 of .Z4;˚/ has a special feature; it generates all the elements of the

group .Z4;˚/ as follows:

1 D 1

1˚ 1 D 2

1˚ 1˚ 1 D 3

1˚ 1˚ 1˚ 1 D 0:

The element 3 also generates all the elements of .Z4;˚/; please do these calculations yourself.

Of course, because .Z�
5
;˝/ is isomorphic to .Z4;˚/, it, too, must have a generator. Since

1 2 Z4 corresponds (according to the isomorphism we found previously) to 2 2 Z�
5
, we

calculate

2 D 2

2˝ 2 D 4

2˝ 2˝ 2 D 3

2˝ 2˝ 2˝ 2 D 1:

Thus element 2 2 Z�
5
generates the group.

The Klein 4-group does not have an element that generates the entire group. In this group,

every element g has the property that g � g D e D .0; 0/, so there is no way that g, g � g,

g � g � g,. . . can generate all the elements of the group.

By this pattern, there is no element of Z that generates .Z;C/. However, we have not

formally defined generator, so we are going to extend the rules in this case. The element 1

generates all the positive elements of Z: 1, 1 C 1, 1 C 1 C 1, and so forth. By this system,

we never get 0 or the negative integers. If, however, we allow 1’s inverse, �1, to participate

in the generation process, then we can get 0 [as 1C .�1/] and all the negative numbers �1,

.�1/C .�1/, .�1/C .�1/C .�1/, etc.

Definition 41.2 (Generator, cyclic group) Let .G;�/ be a group. An element g 2 G is called a generator

for G provided every element of G can be expressed just in terms of g and g�1 using the

operation �.
If a group contains a generator, it is called cyclic.

The special provision for g�1 is necessary only for groups with infinitely many elements.

If .G;�/ is a finite group and g 2 G, then we can always find a way to write g�1 D g � g �
� � � � g.

Proposition 41.3 Let .G;�/ be a finite group and let g 2 G. Then, for some positive integer n, we have

g
�1 D g � g � � � � � g

š

n times

:

It is inconvenient to write

g � g � � � � � g
š

n times

:

Instead, we can write gn; this notation means we � together n copies of g.

Proof. Let .G;�/ be a finite group and let g 2 G. Consider the sequence

g
1 D g; g

2
; g

3
; g

4
; : : : :

Since the group is finite, this sequence must, at some point, repeat itself. Suppose the first

repeat is at ga D gb where a < b.
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Claim: a D 1.

Suppose, for the sake of contradiction, a > 1. Then we have

g
a D g

b

g � g � � � � � g
š

a times

D g � g � � � � � g
š

b times

:

We operate on the left by g
�1 to get

g
�1 � g

a D g
�1 � g

b

g
�1 � .g � g � � � � � g

š

a times

/ D g
�1 � .g � g � � � � � g

š

b times

/

.g
�1 � g/ � .g � g � � � � � g

š

a� 1 times

/ D .g
�1 � g/ � .g � g � � � � � g

š

b � 1 times

/

e � .g � g � � � � � g
š

a� 1 times

/ D e � .g � g � � � � � g
š

b � 1 times

/

g � g � � � � � g
š

a� 1 times

D g � g � � � � � g
š

b � 1 times

g
a�1 D g

b�1

which shows that the first repeat is before ga D gb , a contradiction. Therefore a D 1.

We now know that if we stop at the first repeat, the sequence is

g
1
; g

2
; g

3
; : : : ; g

b D g:

Notice that since g D gb , if we operate on the left by g�1, we get e D gb�1.

It may be the case that b D 2, so g2 D g. In this case, g D e and so g1 D g�1, proving

the result.

Otherwise, b > 2. In this case, we can write

e D g
b�1 D g

b�2 � g

and therefore gb�2 D g�1.

Theorem 41.4 Let .G;�/ be a finite cyclic group. Then .G;�/ is isomorphic to .Zn;˚/ where n D jGj.

Proof. Let .G;�/ be a finite cyclic group. Suppose jGj D n and let g 2 G be a generator.

We claim that .G;�/ Š .Zn;˚/. To this end, we define f W Zn ! G by

f .k/ D g
k

where gk means g � g � � � � � g (with k copies of g and g0 D e).

To prove that f is an isomorphism, we must show that f is one-to-one and onto and that

f .j ˚ k/ D f .j / � f .k/.

� f is one-to-one.

Suppose f .j / D f .k/. This means that g
j D g

k . We want to prove that j D k.

Suppose that j 6D k. Without loss of generality, 0 � j < k < n (with < in the usual

sense of integers). We can � the equation gj D gk on the left by .g�1/j to get

.g
�1

/
j � g

j D .g
�1

/
j � g

k

e D g
k�j

:

Since k � j < n, this means that the sequence

g; g
2
; g

3
; : : :
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repeats after k � j steps, and therefore g does not generate the entire group (but only

k � j of its elements). However, g is a generator.)( Therefore f is one-to-one.
� f is onto.

Let h 2 G. We must find k 2 Zn such that f .k/ D h. We know that the sequence

e D g
0
; g D g

1
; g

2
; g

3
; : : :

must contain all elements of G. Thus h is somewhere on this list—say, at position k (i.e.,

h D g
k). Therefore f .k/ D h as required. Hence f is onto.

� For all j; k 2 Zn, we have f .j ˚ k/ D f .j / � f .k/.

Recall that j ˚ k D .j C k/ mod n D j C k C tn for some integer t . ThereforeIn this calculation, tn might be zero

(in which case g0 D e is fine) or tn

might be negative. The meaning of,

say, g�n is simply

.g�1/n D .gn/�1 .

f .j ˚ k/ D g
jCkCtn D g

j � g
k � g

tn

D g
j � g

k � g
tn D g

j � g
k � .g

n
/
t

D g
j � g

k � e
t D g

j � g
k

D f .j / � f .k/

as required.

Therefore f W Zn ! G is an isomorphism, and so .Zn;˚/ Š .G;�/.

Recap

In this section we discussed the notion of group isomorphism. Roughly speaking, two groups

are isomorphic if they are exactly the same except for the names of their elements. We also

discussed the concepts of group generators and cyclic groups.

41 Exercises 41.1. Find an isomorphism from .Z10;˚/ to .Z�
11

;˝/.

41.2. Let .G;�/ be the following group. The set G is f0; 1g � f0; 1; 2g; that is,

G D f.0; 0/; .0; 1/; .0; 2/; .1; 0/; .1; 1/; .1; 2/g:

The operation � is defined by

.a; b/ � .c; d / D .aC c mod 2; b C d mod 3/:

For example, .1; 2/ � .1; 2/ D .0; 1/.

Find an isomorphism from .G;�/ to .Z6;˚/.

41.3. Let .G;�/ be the following group. The set G is f0; 1; 2g � f0; 1; 2g; that is,

G D f.0; 0/; .0; 1/; .0; 2/; .1; 0/; .1; 1/; .1; 2/; .2; 0/; .2; 1/; .2; 2/g:

The operation � is defined by

.a; b/ � .c; d / D .aC c mod 3; b C d mod 3/:

For example, .1; 2/ � .1; 2/ D .2; 1/.

Show that .G;�/ is not isomorphic to .Z9;˚/.

41.4. This exercise generalizes the previous two. Let .G;�/ and .H; ?/ be groups. Their

direct product is a new group .G;�/ � .H; ?/ whose elements are all ordered pairs

.g; h/ where g 2 G and h 2 H . The operation for this group (let’s use the symbol �) is
defined by

.g1; h1/ � .g2; h2/ D .g1 � g2; h1 ? h2/:

For example, let’s consider .Z�
5
;˝/ � .Z3;˚/. We have

Z�5 D f1; 2; 3; 4g and Z3 D f0; 1; 2g

and therefore the elements of .Z�
5
;˝/ � .Z3;˚/ are

f.1; 0/; .1; 1/; .1; 2/; .2; 0/; .2; 1/; .2; 2/; .3; 0/; .3; 1/; .3; 2/; .4; 0/; .4; 1/; .4; 2/g:
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The operation .g1; h1/�.g2; h2/ produces the value .g; h/ where g D g1˝g2 (operating

in Z�
5
) and h D g1 ˚ g2 (operating in Z5). For example,

.2; 1/ � .3; 2/ D .2˝ 3; 1˚ 2/ D .1; 0/:

You should convince yourself that if .G;�/ and .H; ?/ are groups, then .G;�/ �
.H; ?/ is also a group. [Optional: Write a formal proof of this.]

We now come to the point of this problem: If .G;�/ and .H; ?/ are finite cyclic

groups, then sometimes .G;�/� .H; ?/ is cyclic and sometimes it is not. The question

is, under what condition(s) is the direct product of two finite cyclic groups also cyclic?

41.5. Suppose .G;�/ and .H; ?/ are isomorphic groups. Let e be the identity element for

.G;�/ and let e0 be the identity element for .H; ?/. Let f W G ! H be an isomorphism.

Prove that f .e/ D e0.
41.6. Suppose .G;�/ and .H; ?/ are isomorphic groups. Let f W G ! H be an isomorphism

and let g 2 G.

Prove that f .g
�1

/ D f .g/
�1.

41.7. We showed that .Z4;˚/ and .Z�
5
;˝/ are isomorphic. The isomorphism we found was

f .0/ D 1, f .1/ D 2, f .2/ D 4, and f .3/ D 3. There is another isomorphism

(a different function) from .Z4;˚/ to .Z�
5
;˝/. Find it.

41.8. Let .G;�/ and .H; ?/ be isomorphic groups. Prove that .G;�/ is Abelian if and only if
.H; ?/ is Abelian.

41.9. In Exercise 40.3 we created a group .R̃; ?/ where R̃ D R � f0g [ f1g (nonzero real

numbers plus 1) and for which x ? y D xy=.x C y/ (for real x; y) and x ?1 D
1 ? x D x.

Prove that .R̃; ?/ is isomorphic to .R;C/.

41.10. The group S4 (permutations of the numbers f1; 2; 3; 4g with the operation ı) has 24
elements. Is it isomorphic to .Z24;˚/? Prove your answer.

41.11. The group A4 (even permutations of f1; 2; 3; 4g) with the operation ı has 12 elements.See Exercise 40.7.

Is it isomorphic to .Z12;˚/?

Is .A3; ı/ Š .Z3;˚/?

41.12. Find an isomorphism from the Klein 4-group to the group .2f1;2g; �/.

41.13. Let .G;�/ be a group and let a 2 G. Define a function fa W G ! G by fa.x/ D a � x.

In Exercise 40.14, you showed that the functions fa are permutations.

Let H D ffa W a 2 Gg. Prove that .G;�/ Š .H; ı/ where ı is composition.

41.14. Which elements of Z10 are generators of the cyclic group .Z10;˚/?

Generalize your answer and prove your result.

41.15. When is the identity element e the generator of a cyclic group?

41.16. Let .G;�/ and .H; ?/ be finite cyclic groups and let f W G ! H be an isomorphism.

Prove that g is a generator of .G;�/ if and only if f .g/ is a generator of .H; ?/.

41.17. It is an advanced theorem that the group Z�p is a cyclic group for all primes p. Verify

this for p D 5, 7, 11, 13, and 17 by finding a generator for these Z�
p
.

42 Subgroups

A subgroup is a group within a group. Consider the integers as a group: .Z;C/. Within the

set of integers, we find the set of even integers, E D fx 2 Z W 2jxg. Notice that .E;C/ is

also a group; it satisfies the four required properties. The operationC is closed on E (the sum

of two even integers is again even), addition is associative, E contains the identity element 0,

and if x is an even integer, then �x is, too, so every element of E has an inverse in E . We call

.E;C/ a subgroup of .Z;C/.

Definition 42.1 (Subgroup) Let .G;�/ be a group and let H � G. If .H;�/ is also a group, we call it a

subgroup of .G;�/.

Notice that the operation for the group and the operation for its subgroup must be the

same. It is incorrect to say that .Z10;˚/ is a subgroup of .Z;C/; it is true that Z10 � Z, but

the operations˚ andC are different.
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Example 42.2 (Subgroups of .Z10;˚/) List all the subgroups of .Z10;˚/.

Solution: They are

f0g f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g
f0; 5g f0; 2; 4; 6; 8g:

In all four cases, the operation is˚.

Is the solution to Example 42.2 correct? There are two issues to consider:

� For each of the four subsets H we listed, is it the case that .H;˚/ is a group?
� Are there other subsets H � Z10 that we neglected to include?

We consider these two questions in turn.

If .G;�/ is a group and H � G, how do we determine whether .H;�/ is a subgroup?
Definition 42.1 tells us what to do. First, we need to be sure thatH � G. Second, we need

to be sure that .H;�/ is a group. The most direct way to do this is to check that .H;�/ satisfies
the four conditions listed in Definition 40.10: closure, associativity, identity, and inverses.

To check closure, we need to prove that if g; h 2 H , then g � h 2 H . For example, the

even integers form a subgroup of .Z;C/, but the odd integers do not—they do not satisfy the

closure property. If g and h are odd integers, then g C h is not odd.

Next, we do not have to check associativity. Reread that sentence! We wrote: we do not

have to check associativity. We know that .G;�/ is a group and therefore � is associative on
G; that is, 8g; h; k 2 G; g � .h � k/ D .g � h/ � k. Since H � G, we must have that � is
already associative on H . We get associativity for free!

Next, we check that the identity element is in H . This step is usually easy.

Finally, we know that every element of H has an inverse (because every element of

G � H has an inverse). The issue is as follows: If g 2 H , show that g�1 2 H .

These steps for proving that a subset of a group is a subgroup are listed in Proof Tem-

plate 24.

Proof Template 24 Proving a subset of a group is a subgroup.

Let .G;�/ be a group and let H � G. To prove that .H;�/ is a subgroup of .G;�/:
� Prove that H is closed under � (i.e., 8g; h 2 H; g � h 2 H ).

“Let g; h 2 H . . . . Therefore g � h 2 H .”
� Prove that e (the identity element for �) is in H .
� Prove that the inverse of every element of H is in H (i.e., 8h 2 H; h�1 2 H ).

“Let h 2 H . . . . Therefore h�1 2 H .”

We now reconsider the question: Are the four subsets in Example 42.2 truly subgroups

of .Z10;˚/? We check them all.

� H D f0g is a subgroup of .Z10;˚/.

The only element of this set is the identity element for ˚. Since 0˚ 0 D 0, we see

that H is closed under ˚, that it contains the identity, and that since 0’s inverse is 0, the

inverse of every element in H is also in H . Therefore f0g is a subgroup.
In general, if .G;�/ is any group, then H D feg is a subgroup (where e is the

�-identity element).
� H D Z10 D f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g is a subgroup of .Z10;˚/.

Since .Z10;˚/ is a group, it is a subgroup of itself.

In general, if .G;�/ is any group, then G is a subgroup of itself.
� H D f0; 5g is a subgroup of .Z10;˚/.

It is easy to check that H is closed under˚ since

0˚ 0 D 5˚ 5 D 0 and 0˚ 5 D 5˚ 0 D 5:

Clearly 0 2 H , and finally 0 and 5 are their own inverses. Therefore H is a subgroup of

.Z10;˚/.
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� H D f0; 2; 4; 6; 8g is a subgroup of .Z10;˚/.

Notice that H contains the even elements of Z10. If we add any two even numbers,

the result is even, and when we reduce the result mod 10, the answer is still even (Exer-

cise 42.8). We see that 0 2 H and the inverses of 0; 2; 4; 6; 8 are 0; 8; 6; 4; 2, respectively.

Therefore H is a subgroup of .Z10;˚/.

This shows that the four subsets in Example 42.2 are subgroups of .Z10;˚/.

We now turn to the other issue: Are there other subgroups of .Z10;˚/? There are 210 D
1024 subsets of Z10; we could list them and check them all, but there is a shorter method.

Let H � Z10 and suppose that .H;˚/ is a subgroup of .Z10;˚/. Since .H;˚/ is a

group, we must have the identity element 0 in H . If the only element of H is 0, we have

H D f0g. Otherwise there must be one, or more, additional elements. We consider them in

turn.

� Suppose 1 2 H .

Then, by closure, we must also have 1˚1 D 2 in H . By closure again, we must also

have 1˚ 2 D 3 in H . Continuing in this fashion, we see that H D Z10.

We have shown that 1 2 H implies H D Z10, so now we consider only the cases

with 1 … H .
� Suppose 3 2 H .

Then 3˚ 3 D 6 2 H and 3˚ 6 D 9 2 H . Since 9 2 H , so is its inverse, 1 2 H .

And we know that if 1 2 H , then H D Z10.

So we may assume 3 … H .
� Likewise, if 7 2 H or if 9 2 H , then we can show that 1 2 H , and then H D Z10.

(Please verify these for yourself.)

We may therefore assume that none of 1, 3, 7, or 9 is in H .
� Suppose 5 2 H .

We have H � f0; 5g. We know that 1; 3; 7; 9 … H . Might an even integer be in H?

If 2 2 H , then 2˚ 5 D 7 2 H , and that leads to H D Z10. Likewise, if any other even

number is also in H , then H D Z10.

So if 5 2 H , then either H D f0; 5g or H D Z10.

We have exhausted all possible cases in which an odd integer is in H . Henceforth

we may assume that all elements in H are even.
� Suppose 2 2 H . By closure, we have 4, 6, and 8 also in H , so H D f0; 2; 4; 6; 8g.
� If 4 2 H , then 4˚ 4˚ 4 D 2 2 H , and we’re back to H D f0; 2; 4; 6; 8g.

By a similar argument, if 6 or 8 is in H , we again arrive at H D f0; 2; 4; 6; 8g.
In summary, our analysis shows the following: We know that 0 2 H . If any of 1, 3, 7, or

9 is in H , then H D Z10. If 5 2 H , then either H D f0; 5g or H D Z10. If H contains any

of 2, 4, 6, or 8, then H D f0; 2; 4; 6; 8g or H D Z10. In all cases, we have that H is one of

f0g, Z10, f0; 5g, or f0; 2; 4; 6; 8g, showing that the list in Example 42.2 is exhaustive.

Lagrange’s Theorem

In Example 42.2, we found four subgroups of .Z10;˚/. The cardinalities of these four sub-

groups are 1, 2, 5, and 10. Notice that these four numbers are divisors of 10. Here is another

example:

Example 42.3 (Subgroups of S3) List all the subgroups of .S3; ı/.
Solution: Recall that S3 is the set of all permutations of f1; 2; 3g; that is,

S3 D f.1/.2/.3/; .12/.3/; .13/.2/; .1/.23/; .123/; .132/g:

Its subgroups are

f.1/.2/.3/g
f.1/.2/.3/; .12/.3/g f.1/.2/.3/; .13/.2/g f.1/.2/.3/; .1/.23/g

f.1/.2/.3/; .123/; .132/g
f.1/.2/.3/; .12/.3/; .13/.2/; .1/.23/; .123/; .132/g:

The cardinalities of these subgroups are 1, 2, 3, and 6—all of which are divisors of 6.
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Examples 42.2 and 42.3 suggest that if .G;�/ is a subgroup of .H;�/ (and both are

finite), then jGj is a divisor of jH j.

Theorem 42.4 (Lagrange) Let .H;�/ be a subgroup of a finite group .G;�/ and let a D jH j and b D jGj.
Then ajb.

The central idea in the proof is to partition G into subsets, all of which are the same size

as H . Since the parts in a partition are pairwise disjoint, we have divided G into nonover-

lapping parts of size jH j. This implies that jH j divides jGj. (This approach is akin to using

Theorem 16.6.)

The partition we create consists of equivalence classes of an equivalence relation which

is defined as follows:

Definition 42.5 (Congruence modulo a subgroup) Let .G;�/ be a group and let .H;�/ be a subgroup. Let
a; b 2 G. We say that a is congruent to b modulo H if a � b�1 2 H . We write this as

a � b .mod H/:

This is yet another meaning for the overused word mod! We consider an example.

Consider the group .Z�
25

;˝/. The elements of Z�
25

are

Z�
25
D f1; 2; 3; 4; 6; 7; 8; 9; 11; 12; 13; 14; 16; 17; 18; 19; 21; 22; 23; 24g:

Let H D f1; 7; 18; 24g. The operation table for˝ restricted to H is

˝ 1 7 18 24

1 1 7 18 24

7 7 24 1 18

18 18 1 24 7

24 24 18 7 1

Notice that H is closed under˝, the identity element 1 2 H , and since

1
�1 D 1 7

�1 D 18 18
�1 D 7 24

�1 D 24;

the inverse of every element of H is again a member of H . Therefore H is a subgroup

of Z�
25
.

For this group and subgroup, do we have 2 � 3 .mod H/? The answer is no. To see

why, we calculate

2˝ 3
�1 D 2˝ 17 D 9 … H

so 2 6� 3 .mod H/. (Note that 3�1 D 17 because 3˝ 17 D 1.)

On the other hand, we do have 2 � 11 .mod H/. To see why, we calculate

2˝ 11
�1 D 2˝ 16 D 7 2 H

so 2 � 11 .mod H/. (Note that 11�1 D 16 because 11˝ 16 D 176 mod 25 D 1.)

Congruence modulo a subgroup is an equivalence relation on the group.

Lemma 42.6 Let .G;�/ be a group and let .H;�/ be a subgroup. Then congruence modulo H is an equiv-

alence relation on G.

Proof. To check that congruence modulo H is an equivalence relation on G, we need to

show that it is reflexive, symmetric, and transitive.
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� Congruence modulo H is reflexive.It is interesting to note that the three

portions of this proof correspond

precisely to the three conditions we

must check to prove a subset of a

group is a subgroup (Proof

Template 24). The reflexive property

follows from the fact that e 2H .

The symmetry property follows from

the fact that the inverse of an element

of H must also be in H . And

transitivity follows from the fact that

H is closed under �.

Let g 2 G. We need to show that g � g .mod H/. To do that, we need to show

g � g�1 2 H . Since g � g�1 D e and since e 2 H , we have g � g .mod H/.
� Congruence modulo H is symmetric.

Suppose a � b .mod H/. This means that a � b�1 2 H . Therefore
�

a � b�1
��1 2

H . Note that

�

a � b
�1
��1 D

�

b
�1
��1 � a

�1 D b � a
�1

and so b � a�1 2 H . Thus we have b � a .mod H/.
� Congruence modulo H is transitive.

Suppose a � b .mod H/ and b � c .mod H/. Thus a � b�1; b � c�1 2 H . It

follows that

�

a � b
�1
�

�
�

b � c
�1
�

2 H

because H is a subgroup and therefore closed under �. Note that
�

a � b
�1
�

�
�

b � c
�1
�

D a �
�

b
�1 � b

�

� c
�1 D a � c

�1

and so a � c�1 2 H . Therefore a � c .mod H/.

Therefore congruence modulo H is an equivalence relation on G.

Since congruence mod H is an equivalence relation, we may consider the equivalence

classes of this relation. Recall the group .Z�
25

;˝/ and its subgroup H D f1; 7; 18; 24g we
considered earlier. For the congruence mod H relation, what is the equivalence class Œ2�?

This is the set of all elements of Z�
25

that are related to 2; that is,

Œ2� D fa 2 Z�
25
W a � 2 .mod H/g:

We can test all 20 elements of Z�
25

to see which are and which are not congruent to 2 modulo

H . We find that

Œ2� D f2; 11; 14; 23g:

In this manner, we can find all the equivalence classes. They are

Œ1� D f1; 7; 18; 24g;
Œ2� D f2; 11; 14; 23g;
Œ3� D f3; 4; 21; 22g;
Œ6� D f6; 8; 17; 19g; and
Œ9� D f9; 12; 13; 16g:

Several comments are in order.

First, these are all the equivalence classes of congruencemod H . Every element of Z�
25

is

in exactly one of these classes. You might ask: Did we neglect the class Œ4�? The equivalence

class Œ4� is exactly the same as Œ3� because 4 � 3 .mod H/ (because 3˝ 4�1 D 3˝ 19 D
7 2 H ).

Second, because these are equivalence classes, we know (by Corollary 15.13) that they

form a partition of the group (in this case, of Z�
25
).

Third, the class Œ1� equals the subgroup H D f1; 7; 18; 24g. This is not a coincidence.

Let .G;�/ be any group and let .H;�/ be a subgroup. The equivalence class of the identity
element, Œe�, must equal H . Here’s the one-line proof:

a 2 Œe� () a � e .mod H/ () a � e
�1 2 H () a 2 H:

Fourth, the equivalence classes all have the same size (in this example, they all have four

elements). This observation is the key step in proving Theorem 42.4, and so we prove it here

as a lemma.
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Lemma 42.7 Let .G;�/ be a group and let .H;�/ be a finite subgroup. Then any two equivalence classes

of the congruence mod H relation have the same size.

Proof. Let g 2 G be arbitrary. It is enough (see Exercise 42.14) to show that Œg� and Œe�

have the same size. As we noted above, Œe� D H . To show that Œg� and H have the same size,

we define a function f W H ! Œg� and we prove that f is one-to-one and onto. From this, it

follows that jH j D jŒg�j.
For h 2 H , define f .h/ D h � g. Clearly f is a function defined on H , but is f W

H ! Œg�? We need to show that f .h/ 2 Œg�. In other words, we need to prove that f .h/ �
g .mod H/. This is true because

f .h/ � g
�1 D .h � g/ � g

�1 D h � .g � g
�1

/ D h 2 H:

Therefore f is a function from H to Œg�.

Next we show that f is one-to-one. Suppose f .h/ D f .h0/. Then h � g D h0 � g.

Operating on the right by g�1 gives

.h � g/ � g
�1 D .h

0 � g/ � g
�1

h � .g � g
�1

/ D h
0 � .g � g

�1
/

h D h
0

and so f is one-to-one.

Finally, we show that f is onto. Let b 2 Œg�. This means that b � g .mod H/, and so

b � g�1 2 H . Let h D b � g�1. Then

f .h/ D f .b � g
�1

/ D .b � g
�1

/ � g D b � .g � g
�1

/ D b

and so f is onto Œg�.

Therefore H and Œg� have the same cardinality and the result is proved.

We now have the tools necessary to prove Lagrange’s Theorem.

Proof (of Theorem 42.4)

Let .G;�/ be a finite group and let .H;�/ be a subgroup. The equivalence classes of the

is-congruent-to-mod-H relation all have the same cardinality as H . Since the equivalence

classes form a partition of G, we know that jH j is a divisor of jGj.

Recap

In this section, we introduced the notion of a subgroup of a group, and we proved that if H is

a finite subgroup of G, then jH j is a divisor of jGj.

42 Exercises 42.1. Find all subgroups of .Z6;˚/.

42.2. Find all subgroups of .Z9;˚/.

42.3. Find all subgroups of the Klein 4-group.

42.4. Let .G;�/ be a group and suppose H is a nonempty subset of G.

Prove that .H;�/ is a subgroup of .G;�/ provided that H is closed under � and

that for every g 2 H , we have g�1 2 H .

This gives an alternative proof strategy to Proof Template 24. You do not need to

prove that e 2 H . You need only prove that H is nonempty.

42.5. Let .G;�/ be a group and suppose H is a nonempty subset of G.

Prove that .H;�/ is a subgroup of .G;�/ provided for every g; h 2 H , we have

g � h�1 2 H .

This gives yet another alternative to Proof Template 24, although of limited utility.

42.6. Find, with proof, all the subgroups of .Z;C/.

42.7. Prove that all subgroups of a cyclic group are also cyclic.
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Then, give an example of a group that is not cyclic, but all of its proper subgroups

are.

42.8. Prove that if x and y are even, then so is
�

.xCy/ mod 10
�

. Conclude that f0; 2; 4; 6; 8g
is closed under mod 10 addition.

42.9. Let .G;�/ be a group. The center of the group, denoted Z, are those elements of G

that commute with all elements in the group. In symbols,

Z D fz 2 G W 8g 2 G; g � z D z � gg:

Prove that .Z;�/ is a subgroup of .G;�/.
42.10. In .Z�

25
;˝/ the set H D f1; 6; 11; 16; 21g is a subgroup. Find the equivalence classes

of the congruence mod H relation.

42.11. Consider the group .S3; ı/ and the subgroup H D f.1/.2/.3/; .12/.3/g.
Find the equivalence classes of the mod H relation.

42.12. Let .G;�/ be a finite group and let g 2 G.

a. Prove that there is a positive integer k such that

g
k D g � g � � � � � g

š

k times

D e:

By the Well-Ordering Principle, there is a least positive integer k such that gk D e.

We define the order of the element g to be the smallest such positive integer.

b. Prove that fe; g; g2; g3; : : :g is a subgroup of G whose cardinality is the order of g.

c. Prove that the order of g divides jGj.
d. Conclude that g

jGj D e.

42.13. Let .G;�/ be a group and let .H;�/ and .K;�/ be subgroups. Prove or disprove each
of the following assertions.

a. H \K is a subgroup of .G;�/.
b. H [K is a subgroup of .G;�/.
c. H �K is a subgroup of .G;�/.
d. H � K is a subgroup of .G;�/.

42.14. The proof of Lemma 42.7 asserts that to show that the equivalence classes mod H all

have the same size that we need only show that jŒg�j D jŒe�j where g is an arbitrary

element of G. Why is this sufficient?

42.15. Why did we reuse the word mod for the new equivalence relation in this section? The

new relations are a generalization of the more familiar x � y .mod n/ for integers.

Here is the connection:

Consider the group .Z;C/ and let n be a positive integer. Let H be the subgroup

consisting of all multiples of n; that is,

H D fa 2 Z W njag :

Prove that for all integers x and y,

x � y .mod H/ () x � y .mod n/:

42.16. Let .G;�/ be a group and let .H;�/ be a subgroup.
Let a; b; c; d 2 G. We would like to believe that

if a � b .mod H/ and

c � d .mod H/;

then a � c � b � d .mod H/

but this is not true. Give a counterexample.

42.17. Let .G;�/ be a group. Although the operation � operates on two elements of G, in thisThis problem introduces the concept

of a coset. Given a group .G;�/, a
subgroup H , and an element g 2 G,

the sets g �H and H � g are called

cosets of H . More specifically,

g �H is called a left coset and

H � g is called a right coset.

and the next problem we extend the use of the operation symbol � as follows:
Let g 2 G and let .H;�/ be a subgroup of G. Define the sets H � g and g �H as

follows:

H � g D fh � g W h 2 H g; and

g �H D fg � h W h 2 H g:
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In other words, H � g is the set of all elements of G that can be formed by operating

on an element of H (called h) with g to form h � g. If H D fh1; h2; h3; : : :g, then

H � g D fh1 � g; h2 � g; h3 � g; : : :g and

g �H D fg � h1; g � h2; g � h3; : : :g :

For example, suppose the group G is S3 and the subgroup is H D f.1/.2/.3/; .1; 2; 3/;

.1; 3; 2/g. Let g D .1; 2/.3/. Then

H ı g D H ı .1; 2/.3/

D f.1/.2/.3/ ı .1; 2/.3/; .1; 2; 3/ ı .1; 2/.3/; .1; 3; 2/ ı .1; 2/.3/g
D f.1; 2/.3/; .1; 3/.2/; .1/.2; 3/g:

Please do the following:

a. Prove that g 2 H � g and g 2 g �H .

b. Prove that g �H D H () H � g D H () g 2 H .

c. Prove that if .G;�/ is Abelian, then g �H D H � g.

d. Give an example of a groupG, subgroupH , and element g such that g�H 6D H �g

42.18. We call a subgroup .H;�/ of .G;�/ normal provided, for all g 2 G, we have g �H DSee the previous problem for the

definition of g �H and H � g. H � g.

Prove that if H is normal and a; b; c; d 2 G, the implication

if a � b .mod H/ and

c � d .mod H/;

then a � c � b � d .mod H/

is true.

43 Fermat’s Little Theorem

This section is devoted to proving the following result.

Theorem 43.1 (Fermat’s Little Theorem) Let p be a prime and let a be an integer. Then

a
p � a .mod p/:

For example, if p D 23, then the powers of 5 taken modulo 23 are

5
1 � 5 5

2 � 2 5
3 � 10 5

4 � 4 5
5 � 20

5
6 � 8 5

7 � 17 5
8 � 16 5

9 � 11 5
10 � 9

5
11 � 22 5

12 � 18 5
13 � 21 5

14 � 13 5
15 � 19

5
16 � 3 5

17 � 15 5
18 � 6 5

19 � 7 5
20 � 12

5
21 � 14 5

22 � 1 5
23� 5 5

24 � 2 5
25 � 10

where all congruences are mod 23.

We give three rather different proofs of this lovely result.

First Proof

Proof (of Theorem 43.1)

We first prove (using induction) the result in the special case that a � 0. We finish by showing

that the special case implies the full theorem.

We prove, by induction on a, that if p is prime and a 2 N, then ap � a .p/.

Basis case: In the case a D 0, we have a
p D 0

p D 0 D a, so a
p � a .p/ holds for

a D 0.
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Induction hypothesis: Suppose the result holds for a D k; that is, kp � k .p/. We need

to prove that .k C 1/p � k C 1 .p/.

By the Binomial Theorem (Theorem 17.8), we have

.k C 1/
p D k

p C
 

p

1

!

k
p�1 C

 

p

2

!

k
p�2 C � � � C

 

p

p � 1

!

k C 1: (45)

Notice that the intermediate terms (all but the very first and very last) on the right-hand side

of Equation (45) are all of the form
�

p

j

�

kp�j where 0 < j < p. The binomial coefficient
�

p

j

�

is an integer that we can write as (Theorem 17.12):
 

p

j

!

D pŠ

j Š.p � j /Š
D p.p � 1/Š

j Š.p � j /Š
: (46)

The fraction in Equation (46) is an integer. Imagine we factor the numerator and the denomi-

nator of this fraction into primes (by Theorem 39.1). Because this fraction reduces to an inte-

ger, every prime factor in the denominator cancels a matching prime factor in the numerator.

However, notice that p is a prime factor of the numerator, but p is not a prime factor of the

denominator; both j and p� j are less than p (because 0 < j < p), and so the prime factors

in j Š and .p � j /Š cannot include p. Thus, after we reduce the fraction in Equation (46) to an

integer, that integer must be a multiple of p.

Therefore the middle terms in Equation (45) are all multiples of p, so we can write

k
p C

 

p

1

!

k
p�1 C

 

p

2

!

k
p�2 C � � � C

 

p

p � 1

!

k C 1 � k
p C 1 .mod p/: (47)

Finally, by induction we know that kp � k .p/, so combining Equations (45) and (47), we

have

.k C 1/
p � k

p C 1 � k C 1 .mod p/

completing the induction.

Thus we have proved Theorem 43.1 for all a 2 N; we finish by showing that the result

also holds for negative integers; that is, we need to prove

.�a/
p � .�a/ .mod p/

where a > 0. The case p D 2 is different from the case for odd primes.

In the case p D 2, we haveNote that a � �a .mod 2/; see

Exercise 15.5.

.�a/
2 � a

2 � a � �a .mod 2/

because �a � a .2/ for all integers a.

In the case p > 2 (and therefore p is odd), we have

.�a/
p D .�1/

p
a

p D � .a
p

/ � �a .mod p/

completing the proof.

Second Proof

Proof (of Theorem 43.1)

As in the previous proof, we first prove a restricted special case. In this proof, we assume a

is a positive integer. The case a D 0 is trivial, and the case when a < 0 is handled as in the

previous proof.

Thus we assume p is a prime and a is a positive integer. We consider the following

counting problem.

Howmany length-p lists can we form in which the elements of the list are chosen

from f1; 2; : : : ; ag?
The answer to this question is, of course, ap (see Theorem 8.6).
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Next we define an equivalence relation R on these lists. We say that two lists are equiv-

alent if we can get one from the other by cyclically shifting its entries. In a cyclic shift we

move the last element to the first position on the list. Two lists are related by R if we can form

one from the other by performing one (or more) cyclic shifts. For example, the following lists

are all equivalent:

12334 41233 34123 33412 23341:

We now consider a new problem:

How many nonequivalent length-p lists can we form in which the elements of

the list are chosen from f1; 2; : : : ; ag?

By nonequivalentwe mean not related by R. In other words, we want to count the number of

R-equivalence classes.

Example 43.2 Consider the case a D 2 and p D 3. There are eight lists we can form: 111, 112, 121, 122,

211, 212, 221, 222. These fall into four equivalence classes:

f111g; f222g; f112; 121; 211g; and f122; 212; 221g:

Example 43.3 Consider the case a D 3 and p D 5. There are 35 D 243 possible lists (from 11111 to 33333).

There are three equivalence classes that contain just one list, namely

f11111g; f22222g; and f33333g:

The remaining lists fall into equivalence classes containing more than one element. For ex-
ample, the list 12113 is in the following equivalence class:

Œ12113� D f12113; 31211; 13121; 11312; 21131g:

By experimenting with other lists, please notice that all the equivalence classes with more
than one list contain exactly five lists. (We prove this below.)

Thus there are three equivalence classes that contain only one list. The remaining 35 � 3

lists fall into classes containing exactly five lists each; there are .35 � 3/=5 such lists. Thus,

all told, there are

3C 35 � 3

5
D 51

different equivalence classes.
The punch line is this: The number .35 � 3/=5 is an integer. Therefore 35 � 3 is divisible

by 5; that is, 35 � 3 .5/.

How do we count the number of equivalence classes in general? If the equivalence classes

all had the same size, then we could use Theorem 16.6; we would simply divide the number

of lists by the (allegedly) common number of lists in each class. However, as the examples

show, the classes might contain different numbers of lists.

Let’s explore how many elements an equivalence class might contain. We begin with the

simple special case of lists all of whose elements are the same (e.g., 222 � � �2 or aaa � � �a);
such lists are equivalent only to themselves. There are a equivalence classes that contain

exactly one list—namely, f111 � � �1g, f222 � � �2g, . . . , faaa � � �ag.
Now consider a list with (at least) two different elements, such as 12113. How many

lists are equivalent to this list? We saw in Example 43.3 that there are five lists in 12113’s

equivalence class.

In general, consider the list

x1x2x3 � � �xp�1xp
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where the elements of the list are drawn from the set f1; 2; : : : ; ag. The equivalence class of
this list contains the following lists:

List 1 W x1x2x3 � � �xp�1xp (original)

List 2 W x2x3 � � �xp�1xpx1

List 3 W x3 � � �xp�1xpx1x2

:
:
:

List p W xpx1x2x3 � � �xp�1:

It appears that there are p lists in this equivalence class, but we know this is not quite right; if

all the xi s are the same, these p “different” lists are all the same. We need to worry that even

in the case where the xi s are not all the same, there still might be a repetition.

We claim: If the elements of the list x1x2x3 � � �xp�1xp are not all the same, then the p

lists above are all different. Suppose, for the sake of contradiction, that two of the lists are the

same. That is, there are two lists, say List i and List j , with 1 � i < j � p, with

xi xiC1 � � �xi�1 D xj xjC1 � � �xj�1:

What does it mean that these lists are equal? It means that, element by element, they are equal;

that is,

xi D xj

xiC1 D xjC1

:
:
:

xi�1 D xj�1:

These equations imply the following: If we cyclically shift the list x1x2x3 � � �xp�1xp by j � i

steps, the resulting sequence is identical to the original. In particular, this means that

x1 D x1C.j�i/:

If we shift the list another j � i steps, we again return to the original, so

x1 D x1C.j�i/ D x1C2.j�i/:

We need to be careful. Perhaps the subscript 1C 2.j � i/ is larger than p. Although there is

no element, say, xpC1 (it would be past the end of the list), since we are cyclically shifting we

can consider element xpC1 to be the same as element x1. In general, we can always add or

subtract a multiple of p so that the subscript on x lies in the set f1; 2; : : : ; pg. In other words,
we consider two subscripts to be the same if they are congruent mod p. Thus the equation

x1 D x1C.j�i/ D x1C2.j�i/ now makes sense.

We continue the analysis. We have the equation x1 D x1C.j�i/ D x1C2.j�i/ by consid-

ering two cyclic shifts of the list x1x2x3 � � �xp�1xp by j � i steps. If we shift another j � i

steps, we have

x1 D x1C.j�i/ D x1C2.j�i/ D x1C3.j�i/:

Clearly we have

x1 D x1C.j�i/ D x1C2.j�i/ D x1C3.j�i/ D � � � D x1C.p�1/.j�i/ (48)

where subscripts are taken modulo p. We claim that Equation (48) says

x1 D x2 D � � � D xp:

To see why, we note that in Equation (48) all subscripts (from 1 to p) appear. This was shown

in Exercise 36.20.

It is time to draw these various threads together. We are considering the set of lists equiv-

alent to x1x2x3 � � �xp�1xp . We know that if all the xs are the same, there is only one list

equivalent to x1x2x3 � � �xp�1xp (namely, itself). Otherwise, if there are at least two different

elements on this list, then there are exactly p different lists equivalent to x1x2x3 � � �xp�1xp

(if there were any fewer, then we would have x1 D x2 D � � � D xp by the above analysis).
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Thus there are a equivalence classes of size 1, corresponding to the lists 111 � � �1 through

aaa � � �a. The remaining ap � a lists form equivalence classes of size p. Thus, all together,

there are

aC ap � a

p

different equivalence classes. Since this number must be an integer, we know that .ap �a/=p

must be an integer (i.e., ap�a is divisible by p). This can be rewritten as ap � a .mod p/.

Third Proof

Proof (of Theorem 43.1)

For this third proof, we work in the group .Z�p ;˝/. We begin by making some simplifications.

We want to prove ap � a .mod p/ where p is a prime and a is any integer. We saw in

the previous proofs that we need to prove this result only for a > 0; the case a D 0 is trivial,

and the case a < 0 follows from the case when a is positive.

Let us narrow even further the range of values of a we need to consider. First, not only

is the case a D 0 trivial, it is also easy to prove ap � a .p/ when a is a multiple of p

(Exercise 43.8).

Second, if we increase (or decrease) a by a multiple of p, there is no change (modulo p)

in the value of ap :

.aC kp/
p D a

p C
 

p

1

!

a
p�1

.kp/
1 C

 

p

2

!

a
p�2

.kp/
2 C � � � C

 

p

p

!

a
0
.kp/

p

� a
p

.mod p/

because all the
�

p

j

�

ap�j .kp/j (with j > 0) are multiples of p.

Therefore we may assume that a is an integer in the set f1; 2; : : : ; p � 1g D Z�p .
Furthermore the equation ap � a .p/ is equivalent to

a˝ a˝ � � � ˝ a
›

p times

D a

where the computations are in Z�p . This can be rewritten ap D a where, again, the computa-

tions are in Z�
p
. If we ˝ both sides by a�1, we have ap�1 D 1 (in Z�

p
).

Conversely, if we can prove ap�1 D 1 in Z�p, then our proof of Theorem 43.1 will be

complete.

The good news is that you have already solved this problem! Exercise 42.12(d) asserts

that for any group G and for any element g 2 G, we have gjGj D e. In our case, the group is

Z�
p
, the element is a, and jZ�

p
j D p � 1. Therefore ap�1 D 1 and we are finished.

Euler’s Theorem

We can extend the third proof of Fermat’s Little Theorem to a broader context. Does the result

hold for nonprime moduli? Perhaps we can prove a
n � a .mod n/ for any positive integer n.

An example shows that this is not the correct extension of Fermat’s Little Theorem.

Example 43.4 Does an � a .mod n/ for nonprime values of n? Consider n D 9. We have

1
9 � 1 2

9 � 8 6� 2 3
9 � 0 6� 3

4
9 � 1 6� 4 5

9 � 8 6� 5 6
9 � 0 6� 6

7
9 � 1 6� 7 8

9 � 8 9
9 � 0 � 9

where all congruences are modulo 9. The formula ap � a .mod p/ does not extend to non-

prime values of p.

Let us return to the inner workings of the third proof. The key was to prove a
p�1 D 1

in Z�
p
. There are two reasons why this equation holds.
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First, a 2 Z�p ; if a were a multiple of p, then any power of a would also be a multiple

of p, and there is no power of a that would give us 1 modulo p.

Second, the exponent p � 1 is the number of elements in Z�p . The number of elements in

Z�n is not, in general, n � 1. Rather, jZ�nj D '.n/, Euler’s totient. (See Exercises 39.16–19.)

Let us revisit Example 43.4, this time replacing the exponent 9 with the exponent

'.9/ D 6.

Example 43.5 Note that Z�
9
D f1; 2; 4; 5; 7; 8g and '.9/ D 6. Raising the integers 1 through 9 to the power

6 (mod 9) gives

1
6 � 1 2

6 � 1 3
6 � 0

4
6 � 1 5

6 � 1 6
6 � 0

7
6 � 1 8

6 � 1 9
6 � 0:

This is much better! For those values of a 2 Z�
9
, we have a6 D 1. Of course, if a is

increased or decreased by a multiple of 9, the results in Example 43.5 remain the same.

By Exercise 42.12(d), we know that if a 2 Z�n, then

a
jZ�

nj D 1

and since jZ�
n
j D '.n/, this can be rewritten

a
'.n/ D 1

where the computations are performed in Z�n (i.e., using˝). Restated, this says,

a
'.n/ � 1 .mod n/

with ordinary integer multiplications. The generalization of Fermat’s Little Theorem is the

following result, which we owe to Euler.

Theorem 43.6 (Euler’s Theorem) Let n be a positive integer and let a be an integer relatively prime to n.

Then

a
'.n/ � 1 .mod n/:

Proof. We have seen the main steps in this proof already. Let a be relatively prime to n.

Dividing a by n, we have

a D qnC r

where 0 � r < n. Since a is relatively prime to n, so is r (see Exercise 36.14). Thus we may

assume that a 2 Z�n.
To show that a'.n/ � 1 .mod n/ is equivalent to showing that a'.n/ D 1 in Z�

n
, and this

follows immediately from Exercise 42.12(d).

Primality Testing

Fermat’s Little Theorem states that if p is a prime, then ap � a .mod p/ for any integer a.

We can write this symbolically as

p is a prime ) 8a 2 Z; a
p � a .mod p/:

The contrapositive of this statement is

:
h

8a 2 Z; a
p � a .mod p/

i

) p is not a prime

which can be rewritten

9a 2 Z; a
p 6� a .mod p/ ) p is not a prime:
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In other words, if there is some integer a such that a
p 6� a .mod p/, then p is not a prime.

We have the following:

Theorem 43.7 Let a and n be positive integers. If an 6� a .mod n/, then n is not prime.

Example 43.8 Let n D 3007. Is n prime? We compute 23007 mod 3007 and the result is 66. If 3007 were

prime, we would have 23007 � 2 .mod 3007/. Thus 3007 is not prime.

Notice that we have shown that 3007 is not prime without factoring. This may seem a

rather complicated way to check whether a number is prime. The number 3007 factors simply

as 31 � 97. Isn’t it simpler and faster just to factor 3007 than to compute 23007 mod 3007?

How much effort is involved in factoring 3007? The simplest method is trial division. We

can test divisors of 3007 starting from 2 and continuing until just after we pass
p

3007 � 54:8.

This method can, in the worst case, involve around 50 divisions.

On the other hand, computing 23007 seems to demand thousands of multiplications.

However, as we saw in Exercise 37.14, the computation ab mod c can be performed very

efficiently. The computation 2
3007

.mod 3007/ is accomplished with about 20 multiplica-

tions and 20 reductions mod 3007 (i.e., 20 divisions).

The computational efforts of the two methods appear to be roughly the same.

However, suppose we use trial division to see whether a 1000-digit number is prime.

Since n � 101000, we have
p

n � 10500. Thus we would be performing on the order of 10500

divisions, and this would take a very long time. (See Exercise 43.10.)

On the other hand, computing an mod n requires only a few thousandmultiplications and

divisions; this computation can be done in less than a minute on a desktop computer.

Theorem 43.7 is a terrific tool for showing that an integer is not prime. However, suppose

we have positive integers a and n with an � a .mod n/. Does this imply that n is prime? No.

Theorem 43.7 only guarantees that certain numbers are not prime.

Thus an � a .mod n/ does not imply n is prime. Computing, say, 2n mod n is not a sure-

fire way to check whether n is prime. You might wonder, suppose we find that 2n mod n D 2,

3n mod n D 3, and 4n mod n D 4, and so on. Do these imply that n is prime? No. This is

explored in Exercise 43.12.

Recap

We presented Fermat’s Little Theorem [if p is prime, then ap � a .mod p/] and gave three

different proofs. We also proved a generalization of this result known as Euler’s Theorem.

Finally, we showed how Fermat’s Little Theorem can be used as a primality test.

43 Exercises 43.1. For all a 2 Z13, calculate a12 and a13.

43.2. For all a 2 Z�
15
, calculate a14, a15, and a'.15/.

43.3. Without using a computer or calculator, evaluate 3102 mod 101. Note: 101 is prime.

43.4. Without using a computer or calculator, evaluate 2g mod 101 where g D 10100.

43.5. Let p be a prime and let 1 � a < p. Let x be a positive integer and let x0 D x mod .p�
1/. Prove that ax � ax0

.mod p/.

43.6. Let a, n, and x be positive integers with gcd.a; n/ D 1. Let x
0 D x mod '.n/. Prove

that ax � ax0
.mod n/.

43.7. With the help of a computer or calculator, evaluate 2g mod 901 where g D 10100.

Please think about efficiency. You certainly cannot do a googol multiplications and

then reduce modulo 901 nor can you do a googol multiplications reducing modulo 901

each step. You could employ the method of Exercise 37.14, but that would still require

hundreds of multiplications. Let’s imagine it costs $1 to perform a basic step of multi-

plying two numbers and reducing the result modulo 901. Estimate the cost to compute

your answer (and try to keep your cost as low as possible).

Note: 901 D 17 � 53.
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43.8. Without using Theorem 43.1, prove that if p is a prime and a is a multiple of p, then

ap � a .mod p/.

43.9. Let p be an odd prime and let a be an integer with 1 < a < p. To what positive power

can we raise a to find its multiplicative inverse in Zp? Explain why your solution is

correct.

43.10. Estimate how long it would take to factor a 1000-digit number using trial divisions.

Assume that we try all divisors up to the square root of the number and that we can

perform 10 billion trial divisions per second.

Choose a reasonable unit of time for your answer.

43.11. One of the following two integers is prime: 332,461,561 or 332,462,561.Which one is

it?

43.12. Find a positive integer n with the following properties:
� n is composite, but
� for all integers a with 1 < a < n, an � a .mod n/.

Such an integer is called a Carmichael number. It always passes our primality test but

is not prime.

The point is this: Even if an integer passes our primality test, it is not necessarily

prime. However, if it fails the primality test, then it must be composite.

44 Public Key Cryptography I: Introduction

The Problem: Private Communication in Public

Alice wants to tell Bob a secret. The problem is that everything they say to one another is

This problem is not contrived.

Imagine you wish to purchase a

product over the web. You visit the

company’s website and place your

order. To pay for the order, you enter

your credit card number. You do not

want anyone else on the Internet to

receive your credit card

number—only the merchant should

receive this sensitive information.

When you press the OK button, your

credit card information is sent out

over the Internet. On its way to the

merchant, it passes through various

other computers (e.g., from the

computer in your home, the

information first passes to your

Internet service provider’s

computer). You want to be sure that

an unscrupulous computer operator

(between you and the merchant)

cannot intercept your credit card

number. In this scenario, you (the

customer) correspond to Alice, the

merchant corresponds to Bob, and

the unscrupulous hacker on the

Internet is Eve.

heard by an eavesdropper named Eve. Can Alice tell Bob the secret? Can they hold a private

conversation? Perhaps they can create a secret code and converse only in this code. The prob-

lem is that Eve can overhear everything they say to each other—including all the details of

their secret code! One option is for Alice and Bob to make up their code in private (where Eve

can’t hear). This option could be impractical, slow, and expensive (e.g., if Alice and Bob live

far apart). It seems impossible for Alice and Bob to hold a private conversation while Eve is

listening to everything they say. Their attempts to pass private messages could be thwarted by

the fact that Eve knows their coding system.

It is therefore an amazing fact that private communication in a public forum is possible!

The key is to develop a secret code with the following property: Revealing the encryption

procedure does not undermine the secrecy of the decryption procedure. The idea is to find

a procedure that is relatively easy to do, but extraordinarily difficult to undo. For example,

it is not hard (at least for a computer) to multiply two enormous prime numbers. However,

factoring the resulting product (if we don’t know the prime factors) is extremely hard.

Factoring

Suppose p and q are large prime numbers—say, around 500 digits each. It is not difficult

to multiply these numbers. The result, n D pq, is a 1000-digit composite number. On a

computer, this computation takes less than a second. Indeed, if you were compelled to multiply

two 500-digit numbers with only pencil and paper (lots of paper!), you would be able to do

this task in a matter of hours or days.

Suppose that instead of being given the primes p and q, you are given their product

n D pq. You are asked to factor n to recover the prime factors p and q. You do not know p

and q—you know only n. If you try to factor n using trial division, you will need to do about

10500 divisions, and this would take an unimaginably long period of time even on a blazingly

fast computer (see Exercise 43.10).

There are more sophisticated algorithms for factoring that work much faster than trial

division. We do not discuss these more complicated, but faster, methods in this book. The

relevant fact is that although these techniques are much faster than trial division, they are not

so tremendously fast that they can factor a 1000-digit number in a reasonable period of time

(e.g., under a century).
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Furthermore, running these techniques on faster computers does not make factoring sig-

nificantly easier. Instead of using 500-digit primes p and q, we can use 1000-digit primes

(so n D pq increases from 1000 to 2000 digits). The time to multiply p and q rises mod-

estly (about 4 times longer). However, the time to factor n D pq increases enormously. The

number n is not twice as big as before—it’s 101000 times bigger!

The point of this discussion is to convince you that it is extremely difficult to factor

large integers. However, this might not be true. All I can say is that to date, there are no

efficient factoring algorithms known. Mathematicians and computer scientists believe there

are no efficient factoring algorithms, but to date, there is no proof that such an algorithm

cannot be created.

Conjecture 44.1 There is no computationally efficient procedure for factoring positive integers.

(We have not defined the term computationally efficient procedure, so this conjecture’s

precise meaning has not beenmade clear. The imprecise meaning of this conjecture—“Factoring

is hard!”—suffices for our purposes.)

This brings us to the second amazing fact for this section. The two techniques we present

for sending private messages over public channels are based on this unproven conjecture!

The security of public-key cryptosystems is based on ignorance, not on knowledge.The term public key refers to the fact

that the encryption procedure is

known to everyone, including the

eavesdropper.

Both of the public-key systems we present, Rabin’s system (Section 45) and the RSA system

(Section 46), can be broken by an efficient factoring algorithm. Details follow.

Words to Numbers

Alice’s message to Bob will be a large integer. People normally communicate with words, so

we need a system for converting a message into a number. Suppose her message is

Dear Bob, Do you want to go to the movies tonight? Alice

First, Alice converts this message into a positive integer. There is a standard way to convert the
Roman alphabet into numbers; this encoding is called the ASCII code. There is nothing secretIf they wish to converse in a language

that uses another alphabet, they may

render their message using Unicode.
about this code. It is a standard way to represent the letters A–Z (lower and upper cases),
numerals, punctuation, and so on, using numbers in the set f0; 1; 2; : : : ; 255g. For example,
the letter D in ASCII is the number 68. The letter e is 101. The space character is 32. Alice’s
message, rendered as numbers, is

D e a r spc B o b , spc D o spc y o u ...

068 101 097 114 032 066 111 098 044 032 068 111 032 121 111 117 ...

Next, Alice combines these separate three-digit numbers into one large integer, M :

M D 68,101,097,114,032,066,111,098,. . . ,099,101:

Since Alice’s original message is about 50 characters long, this message is about 150 digits

long. This is how Alice sends her message to Bob:

� In the privacy of his home, Bob creates a pair of functions, D and E; these functions are

inverses of one another; that is, D.E.M // D M .
� Bob tells Alice the function E . At this point, Eve gets to see the function E . The function

is fairly easy to compute, but it is very hard for Eve to figure out D knowing only E .
� Alice uses Bob’s public encryption function E . In the privacy of her own home, she

computes N D E.M / (where M is the message she wants to send). She now sends the

integer N to Bob. Eve gets to see this integer as well.
� Bob now uses his private decryption function D to compute D.N /. The result is

D.N / D D.E.M // DM

so now Bob knows the message M . Since Eve does not know D, she cannot figure out

what M is.

The challenge is to create functions E and D that work for this protocol. In the next two

sections, we present two methods to accomplish this.
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In private, Bob creates a

public encryption function

E and a secret decryption

function D.

Bob sends  his public

encryption function E to

Alice.

E

In private, Alice writes her

message in ASCII, M. She

uses Bob’s function E to

calculate N = E(M).

Alice sends N to Bob.
N

In private, Bob uses his

decryption function D to

calculate M = D(N). He now

has Alice’s message.

Eve sees E and N, but

cannot calculate M from

these.

Alice

1

2

3

4

5

Eve Bob

Cryptography and the Law

I am most certainly not an expert on law. Nonetheless, let me share some advice about the

material in the next two sections.

The techniques in the next two sections are not hard to implement on a computer. Let’s

suppose you reside in the United States and you write a computer program that implements

these cryptographicmethods. Indeed, it might be a terrific software package that lots of people

would like to use. You realize that since people value your work, they would be willing to

pay you for this program. So you sell your program to various people, including individuals

outside the United States.

Now, I hope you have an excellent lawyer, because you could be in heap of trouble. You

may have violated copyright and patent laws (the RSA system is so protected) as well as

U.S. export control laws (because cryptography is of military value, there are export controls

restricting its sale).

The point is that you must be careful if you decide to implement the techniques we are

about to present. Get knowledgeable legal advice before you start.

Recap

We introduced the central problem in public-key cryptography: How can two people, who

have never met, send private messages to each other over a nonsecure channel?
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44 Exercises 44.1. Write a computer program to convert ordinary text into ASCII and a sequence of ASCII

numbers into ordinary text.
44.2. A message, when converted to ASCII, reads as follows:

71 111 111 100 32 119 111 114 107

What is the message?

44.3. Factoring large integers is hard, but perhaps we can get lucky. Suppose that N D pqNo efficient algorithm is known for

factoring large integers. This does

not mean than an algorithm can’t

“get lucky” and successfully find the

factors quickly. In this exercise we

speculate as to whether getting lucky

is a reasonable strategy.

where p and q are unknown large primes.

a. If we pick a random integer d strictly between 1 and N , with all values equally

likely, what is the probability that d is a divisor of N ?

You should find that if p and q are around 1050, then the probability you can find

a divisor of N by “getting lucky” is very small. You are much more likely to win a

lucrative lottery several times in a row. So let’s try a different approach.

b. Choose a random integer k strictly between 1 and N . If gcd.k; N / is not 1, show

that gcd.k; N / must be either p or q. Note: We can compute gcd.k; N / efficiently.

c. What is the probability that the method described in (b) will succeed in finding a

factor of N ? How does this probability compare with (a)? Is it practical?

44.4. In this exercise we explore the concept of a digital signature. Let’s assume AliceDigital signatures.

and Bob both have public encryption functions EA and EB , respectively, and closely

guarded, private decryption functionsDA andDB . Alice and Bob each know the other’s

public function, and presumably Eve knows EA and EB too.

Normally, when Alice wants to send a message M to Bob, she encrypts the mes-

sage with Bob’s public function EB , transmits EB.M / to Bob, and he decrypts with

his private function DB by computing DB ŒEB .M /� D M .

But here’s another way Alice can proceed. She first “encrypts” the message M by

computing DA.M / and then sends the result to Bob. Let’s explore the implications of

her following this alternative protocol.

a. Alice has sent DA.M / to Bob. How does he recover the original message M ?

b. Eve intercepts the transmission DA.M /. Can she also decrypt this message?

c. The message Alice sent to Bob was nasty and she tries to claim that Eve sent the

message. How does Eve defend herself?

The point of (c) is that Alice cannot deny having sent the message; in that sense, she

has put her digital signature on the message.

45 Public Key Cryptography II: Rabin’s Method

The challenge in public-key cryptography is to create good encryption and decryption func-

tions. The functions should be relatively easy to compute, and (this is the central point) re-

vealing E should not provide enough information about D for Eve to figure D out.

In this section, we present a public-key cryptosystem devised by Michael Rabin. The en-

cryption function is especially simple. Let n be a large (e.g., 200-digit) integer. The encryption

function is

E.M / D M
2 mod n:

Decryption involves taking a square root (in Zn). The integer n needs to be chosen in a special

manner (described below). To understand how to decrypt messages and why Rabin’s method

is secure, we need to understand how to take square roots in Zn.

Square Roots Modulo n

Most hand-held calculators have a square root button. In the blink of an eye, your calculator

can tell you that
p

17 � 4:1231056. Most calculators, however, cannot give you
p

17 in Z59.

What does this mean? When we say that 3 is the square root of 9, we mean that 3 is the root

of the equation x2 D 9. Now the use of the word the is inappropriate because 9 has two dif-

ferent square roots:C3 and �3. However, the positive square root usually enjoys preferential

treatment.
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In Z59 the situation is similar. When we ask for the square roots of 17, we seek those

elements x 2 Z59 for which x2 D x˝x D 17. The calculator’s value of 4:1231056 : : : is not

of any help here.

There are only 59 different elements in Z59. We can simply square all of them and see

which (if any) gives 17 as a result. This is painful to do by hand but fast on a computer. We

find that 17 has two square roots in Z59: 28 and 31.

What is
p

18 in Z59? After we try all the possible values, we find that 18 does not have a

square root in Z59.

Stranger still, when we search for square roots of 17 in Z1121, we find four answers: 146,

500, 621, and 975.

For this cryptographic application, we need to take square roots modulo numbers that

are hundreds of digits long. Trying all the possibilities is not practical! We need a better

understanding of square roots in Zn.

Integers whose square roots are themselves integers are called perfect squares. In Zn

there is a different term.

Definition 45.1 (Quadratic residue) Let n be a positive integer and let a 2 Zn. If there is an element b 2 Zn

such that a D b ˝ b D b2, we call a a quadratic residue modulo n. Otherwise (there is no

such b) we call a a quadratic nonresidue.

We do not make a comprehensive study of quadratic residues here. We limit our investi-

gation to those facts that we need to understand the Rabin cryptosystem.We begin by studying

square roots in Zp where p is a prime.

Proposition 45.2 Let p be a prime and let a 2 Zp . Then a has at most two square roots in Zp .

Proof. Suppose, for the sake of contradiction, that a has three (or more) square roots in Zp .

Notice that if x is a square root of a, then so is �x � p � x because

.p � x/
2 D p

2 � 2px C x
2 � x

2 � a .mod p/:

Since a has three (or more) square roots, we can choose two square roots, x; y 2 Zp , such

that x 6D ˙y. Now let’s calculate .x � y/.x C y/. We get

.x � y/.x C y/ D x
2 � y

2 � a � a D 0 .mod p/:

Now the condition x 6D ˙y implies that x C y 6� 0 .p/ and x � y 6� 0 .p/ (i.e., neither

xCy nor x�y is a multiple of p). This means that p is not a factor of either xCy or x�y.

Yet p is factor of .x C y/.x � y/, contradicting Lemma 39.2.)( Therefore a has at mostLemma 39.2 states that if p is prime

and pjab, then pja or pjb. two square roots in Zp .

Proposition 45.3 Let p be a prime with p � 3 .mod 4/. Let a 2 Zp be a quadratic residue. Then the square

roots of a in Zp are
h

˙a
.pC1/=4

i

mod p:

Proof. Let b D a.pC1/=4 mod p. We need to prove that b2 D a.

By hypothesis, a is a quadratic residue in Zp , so there is an x 2 Zp such that a D
x ˝ x D x

2. We now calculate:

b
2 �

h

a
.pC1/=4

i2

�
h

.x
2
/
.pC1/=4

i2

(substitute a! x
2)
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�
h

x
.pC1/=2

i2

� x
pC1

� x
p

x
1

� x
2

� a .mod p/:

The step xpx1 � x2 follows from Theorem 43.1 because xp � x .p/ for a prime p.

Of course, if b2 � a .mod p/, then also .�b/2 � a .mod p/. By the proof of Proposi-

tion 45.2, there can be no other square roots in Zp.

In reading through this proof, you may have noticed that we did not explicitly use the

hypothesis that p � 3 .mod 4/. However, this hypothesis is important and is used implicitly

in the proof (see Exercise 45.2).

Example 45.4 Notice that 59 is prime and 59 � 3 .mod 4/. In Z59 we have

17
.pC1/=4 D 17

15 D 28

and notice that 282 D 28˝ 28 D 17. Also �28 � 31 and we have 312 D 31˝ 31 D 17.

As we have discussed (see Exercise 37.14), the computation ab mod c can be done effi-

ciently on a computer, so Proposition 45.3 gives us an efficient way to find square roots in Zp

(for primes congruent to 3 mod 4).

We mentioned earlier that 17 has four square roots in Z1121. This is not a contradiction

to Proposition 45.2 because 1121 is not prime; it factors 1121 D 19 � 59.

Here we describe how to find the four square roots of 17. But first, some analysis. Suppose

x is a square root of 17 in Z1121. This means

x ˝ x D 17

which can be rewritten

x
2 � 17 .mod 1121/

and that’s the same as

x
2 D 17C 1121k

for some integer k. We can write this (yet again!) in the following two ways:

x
2 D 17C 19.59k/ and x

2 D 17C 59.19k/

and so

x
2 � 17 .mod 19/ and x

2 � 17 .mod 59/:

This suggests that to solve x2 � 17 .1121/, we should first solve the two equations

x
2 � 17 .19/ and x

2 � 17 .59/:

We have already solved the second equation: In Z59 the square roots of 17 are 28 and 31.

Fortunately, 19 � 3 .mod 4/, so we can use the formula in Proposition 45.3:

17
.19C1/=4 D 17

5 � 6 .mod 19/:

The other square root is �6 � 13.

Let’s summarize what we know so far.

� We want to find
p

17 in Z1121.
� We have 1121 D 19 � 59.
� In Z19 the square roots of 17 are 6 and 13.
� In Z59 the square roots of 17 are 28 and 31.
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Furthermore, if x is square root of 17 in Z1121, then (after we reduce x modulo 59) it is also

a square root of 17 in Z59, and (after we reduce x modulo 19) it is also a square root of

17 in Z19. Thus x must satisfy the following:

x � 6 or 13 .mod 19/ and x � 28 or 31 .mod 59/:

This gives us four problems to solve:

x � 6 .mod 19/ x � 6 .mod 19/

x � 28 .mod 59/ x � 31 .mod 59/

x � 13 .mod 19/ x � 13 .mod 19/

x � 28 .mod 59/ x � 31 .mod 59/:

We can solve each of these four problems via the Chinese Remainder Theorem (Theorem 38.5).

Here we do one of the calculations. Let us solve the first system of congruences:

x � 6 .mod 19/

x � 28 .mod 59/:

Since x � 6 .19/, we can write x D 6C 19k for some integer k. Substituting this into the

second congruence x � 28 .59/, we get

6C 19k � 28 .59/ ) 19k � 22 .59/:

We multiply both sides of the latter equation by 19�1 D 28 (in Z59) to get

28 � 19k � 28 � 22 .59/ ) k � 26 .59/:

Thus we can write k D 26C 59j . Substituting this for k in x D 6C 19k, we have

x D 6C 19k D 6C 19.26C 59j / D 500C 1121j

so we find that x D 500 is one of the four square roots of 17 (in Z1121).

The other three square roots of 17 are 621, 146, and 975.

Let us recap the steps we took to find the square roots of 17 in Z1121.

� We factored 1121 D 19 � 59.
� We found the two square roots of 17 in Z19 (they are 6 and 13) as well as the square roots

of 17 in Z59 (they are 28 and 31).

Because 19 and 59 are congruent to 3 modulo 4, we can use the formula from Propo-

sition 45.3 to compute these square roots.
� We solve four Chinese Remainder Theorem problems corresponding to the four possible

pairs of values that
p

17 might take in Z19 and Z59.
� The four answers to these Chinese Remainder Theorem problems are the four square

roots of 17 modulo 1121.

Only one of these four steps is computationally difficult: the factoring step. The other

steps (finding square roots in Zp and using the Chinese Remainder Theorem) may be more

novel to you, but they can be done efficiently on a computer.

This procedure can be used to find the square roots of numbers in Zn provided the integer

n is of the form n D pq where p and q are primes with p � q � 3 .mod 4/. However,

if p and q are, say, 100-digit primes, then the factoring step makes this procedure utterly

impractical.

Does this imply that there is no other procedure for finding square roots? No, but let us

show that finding square roots in this context is just as hard as factoring.

Theorem 45.5 Let n D pq where p and q are primes. Suppose x 2 Zn has four distinct square roots, a, b,

c, d . If these four square roots are known, then there is an efficient computational procedure

to factor n.
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Proof. Suppose x 2 Zn where n D pq with p; q prime, and suppose x has four distinct

square roots. For example,

x D a
2 D b

2 D c
2 D d

2

in Zn. Of course, since a is a square root of x, so is �a. Because there are four distinct square

roots, we may assume that b D �a, but c 6D ˙a. Notice that

.a � c/.aC c/ D a
2 � c

2 � x � x � 0 .mod n/:

This means that .a � c/.a C c/ D kpq D kn where k is some integer. Furthermore, since

c 6D ˙a (in Zn), we know that a � c 6� 0 and aC c 6� 0 .n/.

Therefore gcd.a � c; n/ 6D n because a � c is not a multiple of n. Is it possible that

gcd.a� c; n/ D 1? If so, then neither p nor q is a divisor of a� c, and since .a� c/.aC c/ D
kpq D kn, we see that p and q must be factors of a C c, but this is a contradiction because

aC c is not a multiple of n. If gcd.a� c; n/ 6D n and gcd.a� c; n/ 6D 1, what possible values

remain for gcd.a � c; n/? The only other divisors of n are p and q, and therefore we must

have gcd.a � c; n/ D p or gcd.a � c; n/ D q.

Since gcd can be computed efficiently, given the four square roots of x in Zn, we can

efficiently find one of the factors of n D pq and then get the other factor by division into n.

Example 45.6 Let n D 38989. The four square roots of 25 in Zn are a D 5, b D �5 D 38984, c D 2154,

and d D �2154 D 36835. [Please check these yourself on a computer. For example, verify

that 21542 � 25 .38989/.] Now we calculate

gcd.a � c; n/ D gcd.�2149; 38989/D 307

gcd.aC c; n/ D gcd.2159; 38989/D 127

and, indeed, 127 � 307 D 38989.

Although there may be other procedures to find square roots inZpq , an efficient procedure

would be a contradiction to Conjecture 44.1. Thereforewe believe there is no computationally

efficient procedure to find square roots in Zpq .

The Encryption and Decryption Procedures

Alice wants to send a message to Bob. To prepare for this, Bob, in the privacy of his home,

finds two large (say, 100 digits each) prime numbers p and q with p � q � 3 .mod 4/. He

calculates n D pq. He then sends the integer n to Alice. Of course, Eve now knows n as well,

but because factoring is difficult, neither Alice nor Eve knows the factors p and q.

Next, Alice, in the privacy of her home, forms the integer M by converting her words

into ASCII and using the ASCII codes as the digits of her message number M . She calculates

N D M
2 mod n.

Now Alice sends N to Bob. Eve receives the number N as well.

To decrypt, Bob computes the four square roots of N (in Zn). Because Bob knows the

factors of n (namely, p and q), he can compute the square roots. This gives four possible

square roots, only one of which is the message M that Alice sent. Presumably, however, only

one of the four square roots is the ASCII representation of words; the other three square roots

give nonsense.

Eve cannot decrypt because she does not know how to find square roots.

Thus Alice has sent Bob a message that only Bob can decrypt and all their communication

has been in public!

Recap

In this section, we discussed Rabin’s public-key cryptosystem. In this system, messages are

encrypted by squaring and decrypted by finding square roots. These calculations take place

in Z�
pq

where p and q are primes congruent to 3 modulo 4. We explained how to find square

roots in this context and noted the connection to factoring.
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45 Exercises 45.1. Suppose it takes about 1 second to multiply two 500-digit numbers on a computer. How

long should we expect it to take to multiply two 1000-digit numbers? Why?

45.2. Proposition 45.3 includes the hypothesis p � 3 .mod 4/. This fact is not explicitly

used in the proof. Explain why this hypothesis is necessary and where in the proof we

(implicitly) use this condition.

45.3. Find the four square roots of 500 in Z589.

45.4. Find all values of
p

17985 in Z34751.

45.5. For primes p with p � 3 .mod 4/, Proposition 45.3 gives a method to find square

roots. In particular, for such primesp, there is always an integer e such that ae evaluates

to one of a’s square roots (assuming a is a quadratic residue). Does this works for other

primes? In particular, please do this:

a. List all the quadratic residues (perfect squares) in Z17.

b. Is there an integer e with the property that if a is a quadratic residue in Z17, then ae

is one of a’s square roots?

45.6. The first step in all public-key cryptosystems is to convert the English-language mes-

sage into a number, M . This is typically done with the ASCII code. In this problem, we

use a simpler method.

We write our messages using only the 26 uppercase letters. We use 01 to stand for

A, 02 to stand for B, etc., and 26 to stand for Z. The word LOVE would be rendered as

12152205 in this encoding.

Suppose Bob’s public key is n D 328419349. Alice encrypts her message M using

Rabin’s system as M 2 mod n. For example, if her message is LOVE, this is encrypted

as

12152205
2 mod 328419349D 27148732

and so she transmits 27148732 to Bob.

Alice encrypts four more words to Bob. Their encryptions are as follows:

a. 249500293.

b. 29883150.

c. 232732214.

d. 98411064.

Decrypt these four words.

45.7. Long and short messages. Suppose Bob’s public key is a 1000-digit composite number

n, and Alice encodes her message M as E.M / D M 2 mod n. When Alice wants to

send a message containing c characters, she creates an integer with 3c digits (using the

ASCII code).

a. Suppose 3c > 1000. What should Alice do?

b. Suppose 3c < 500. What should Alice be concerned about? What should she do in

this situation?

45.8. Let n D 171121; this number is the product of two primes.

The four square roots of 56248 in Zn are 68918, 75406, 95715, and 102203.

Without using trial division, factor n.

45.9. Let n D 5947529662023524748841; this number is the product of two primes.

The four square roots of 5746634461808278371316 in Zn are

602161451924;

1909321100318787504165;

4038208561704737244676; and

5947529661421363296917:

Factor n.

45.10. Show that every member of Z17 is a perfect cube (modulo 17) and that there is an

integer e such that for every a 2 Z17, ae is a cube root of a.

45.11. Prove the following generalization of Exercise 45.10: Let p be a prime with p �
2 .mod 3/. Then there is a positive integer e such that for every a 2 Zp , a

e is a cube

root of a. Note that this implies that every element of Zp is a perfect cube.
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45.12. Let n D 589. Note that n is the product of two primes. Most values in Zn have nine

distinct cube roots. In this exercise we ask you to develop a way to factor n if, somehow,

you were given all the cube roots of some a 2 Zn. Indeed, 201 is a perfect cube in Zn

and here are all of its cube roots: 17, 54, 271, 301, 302, 358, 518, 549, and 575.

Show how you can use these values to calculate the cube root of n.

Note: We chose a small integer n to make your calculations feasible to perform

with a calculator. Because n is so small, it might be easier just to use trial division.

However, the point of this exercise is to show how it is possible to factor n quickly

when given all nine cube roots of a perfect cube.

45.13. The method we presented in this section is a simplified version of Rabin’s method. In

the complete version, the encryption function is slightly more complicated.

As in the simplified system, Bob chooses two prime numbers p and q with p �
q � 3 .4/, and he calculates n D pq. He also chooses a value k 2 Zn. Bob’s encryp-

tion function is

E.M / D M.M C k/ mod n:

In the simplified version, we took k D 0.

a. Explain how Bob decrypts messages sent to him using this encryption function.

b. Suppose n D 589 and k D 321. If Alice’s message is M D 100, what value does

she send to Bob? Call this number N .

c. Bob receives the value sent by Alice [N from part (b)]. What are the (four) possible

messages Alice might have sent?

46 Public Key Cryptography III: RSA

Another public-key cryptosystem is known as the RSA cryptosystem, named after its inven-

tors, R. Rivest, A. Shamir, and L. Adleman. This method is based on Euler’s extension (The-

orem 43.6) to Fermat’s Little Theorem 43.1; we repeat Euler’s result here.

Let n be a positive integer and let a be an integer relatively prime to n. Then

a
'.n/ � 1 .mod n/:

Here ' is Euler’s totient: '.n/ is the number of integers from 1 to n that are relatively prime

to n. For use with the RSA system, we are especially interested in '.n/ with n D pq where

p and q are distinct prime numbers. In this case, recall that

'.n/ D '.pq/ D pq � p � q C 1 D .p � 1/.q � 1/

(see Exercise 39.17).

The RSA Encryption and Decryption Functions

We begin our study of the RSA cryptosystem by introducing its encryption and decryption

functions. In the privacy of his home, Bob finds two large (e.g., 500-digit) prime numbers p

and q and calculates their product n D pq. He also finds two integers e and d . The numbers

e and d have special properties that we explain below.

The encryption and decryption functions are

E.M / D M
e mod n and D.N / D N

d mod n:

These calculations can be done efficiently on a computer (see Exercise 37.14).

Bob tells Alice his encryption function E . In so doing, he reveals the numbers n and e

not only to Alice but also to Eve. He keeps the function D secret; that is, he does not reveal

the number d .

In the privacy of her home, Alice forms her message M , calculates N D E.M /, and

sends the result to Bob. Eve gets to see N , but not M .

In the privacy of his home, Bob calculates

D.N / D D.E.M //
‹DM:
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For Bob to be able to decrypt the message, it is important that we have D.E.M // D M .

Working in Zn, we want

D.E.M // D D .M
e
/ D .M

e
/
d D M

ed ‹DM:

How can we make this work? Euler’s theorem helps. Euler’s theorem tell us that if M 2 Z�n,
then

M
'.n/ D 1 in Z�

n
:

Raising both sides of this equation to a positive integer k gives

�

M
'.n/

�k

D 1
k ) M

k'.n/ D 1:

If we multiply both sides of the last equation by M , we get

M
k'.n/C1 DM

so if ed D k'.n/C 1, then we have D.E.M // DM ed DM . In other words, we want

ed � 1 .mod '.n//:

Now we are ready to explain how to choose e and d .

Bob selects e to be a random value in Z�
'.n/

; that is, e is an integer between 1 and '.n/

that is relatively prime to '.n/. Note that because Bob knows the prime factors of n, he can

calculate '.n/.

Next he computes d D e�1 in Z�
'.n/

(see Section 37). Now we have

D.E.M // D M
ed DM

k'.n/C1 D .M
'.n/

/
k ˝M D 1

k ˝M D M in Z�
n

and therefore, with this choice of e and d , Bob can decrypt Alice’s message.

Example 46.1 Bob picks the prime numbers p D 1231 and q D 337, and computes n D pq D 414847. He

can also compute

'.n/ D .p � 1/.q � 1/ D 1230 � 336 D 413280:

He chooses e at random in Z�
413280

—say, e D 211243. Finally, he calculates (in Z�
413280

)

d D e
�1 D 166147:

Let us review the steps in this procedure.

� In the privacy of his home, Bob finds two very large prime numbers, p and q. He calcu-

lates n D pq and '.n/ D .p � 1/.q � 1/.
� Still in private, Bob chooses a random number e 2 Z�

'.n/
and calculates d D e�1 where

the inverse is in the group Z�
'.n/

. He does this using Euclid’s Algorithm.
� Bob tells Alice the numbers n and e (but keeps the number d secret). Eve gets to see n

and e.
� In the privacy of her home, Alice forms her message M and calculates N D E.M / D

M e mod n.
� Alice sends the number N to Bob. Eve gets to see this number as well.
� In the privacy of his home, Bob calculates D.N / D N d D .M e/d D M and reads

Alice’s message.

Note: The decryption assumes M to be relatively prime to n (otherwise Euler’s theorem does

not apply). See Exercise 46.7 in the case that M is not relatively prime to n.

Example 46.2 (Continued from Example 46.1.) Bob’s encryption/decryption functions are

E.M / D M
211243 mod 414847 and D.N / D N

166147 mod 414847:

Suppose Alice’s message is M D 224455. In private, she computes,

E.M / D 224455
211243 mod 414847D 376682

and sends 376682 to Bob.
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In private, Bob calculates

D.376682/ D 376682
166147 mod 414847D 224455

and recovers Alice’s message.

Security

Can Eve decrypt Alice’s message? Let’s consider what she knows. She knows Bob’s public

encryption function E.M / D M e mod n, but she does not know the two prime factors of n.

She also knows E.M / (the encrypted form of Alice’s message), but she does not know M .

If Eve can guess the message M , then she can check her guess because she too can

compute E.M /. If Alice’s message is very short (e.g., Yes), this might be feasible.

Otherwise Eve can try to break Bob’s code. One way she can do this is to factor n. Once

she has n, she can compute '.n/ and then get d D e�1 (in Z�
'.n/

). However, our supposition

is that factoring is too hard for this to be feasible.

Note that Eve does not really need to know the prime factors of n. She would be happy

just knowing '.n/, so she can calculate d . This is not practical either.

Proposition 46.3 Let p and q be primes and let n D pq. Suppose we are given n, but we do not know p or q.

If we are also given '.n/, then we can efficiently calculate the prime factors of n.

Proof. We know that

n D pq and '.n/ D .p � 1/.q � 1/:

This is a system of two equations in two unknowns (p and q) that we can simply solve. We

write q D n=p and substitute this into the second equation, which we solve via the quadratic

formula.

Thus, if Eve could efficiently calculate '.n/ from n, then she could efficiently factor n,

contradicting Conjecture 44.1.

Example 46.4 If n D 414847, then '.n/ D 413280. We want to solve

pq D 414847 and .p � 1/.q � 1/ D 413280:

We substitute q D 414847=p into

.p � 1/.q � 1/ D 413280

to get

.p � 1/.414847=p � 1/ D 413280

which expands to

414848� 414847

p
� p D 413280

which rearranges to

p
2 � 1568pC 414847D 0

whose roots are p D 337 and 1231 (by the quadratic formula). The prime factors of 414847

are, indeed, 337 and 1231.

Now Eve does not, in point of fact, need '.n/. She will be happy just to know d . Is there

an efficient procedure for Eve to find d given n and e? Probably not.

Proposition 46.5 Let p, q be large primes and the n D pq. Suppose there is an efficient procedure that, given

e with gcd.e; '.n// D 1, produces d with ed � 1 .mod '.n//. Then there is an efficient

procedure to factor n.
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The proof is beyond the scope of this text, but it can be found in more advanced books

on cryptology. The point is that if we believe factoring is intractable, then there is no way for

Eve to recover the exponent d just from knowing e and n.

This, however, does not completely settle the issue. To break Bob’s code, Eve needs to

solve the equation

M
e � N .mod n/

where she knows e, N , and n. We have been thinking about the possibility that Eve would

recover the decryption function (especially the integer d ) and compute M from N the same

way Bob might. However, there may be other ways to solve this equation that we have not

considered. It is an unsolved problem to prove that breaking RSA is as hard as factoring.

Recap

The RSA cryptosystem is a public-key system. Bob (the recipient) chooses two large primes,

p and q, and calculates n D pq. He also finds e and d with ed � 1 .'.n//. He then

(publicly) tells Alice his encryption function E.M / DM e mod n, while holding confidential

his decryption function D.N / D N d mod n.

In private, Alice forms her message M , computes N D E.M /, and transmits N to Bob.

Finally, in private, Bob takes the value he received, N , and computes D.N / D
DŒE.M /� D M to recover Alice’s message M .

46 Exercises 46.1. Suppose n D 589 D 19 � 31 and let e D 53. Bob’s encryption function is E.M / D
M e mod n. What is his decryption function?

46.2. Suppose n D 589 D 19 � 31 and let d D 53. Bob’s decryption function is D.N / D
N d mod n. What is his encryption function?

46.3. Suppose Bob’s encryption function is E.M / D M 53 .mod 589/. Alice encrypts a

message M , calculates E.M / D 289, and sends the value 289 to Bob. What was her

message M ?

46.4. The integer n D 3312997 is the product of two distinct primes. Use the fact that '.n/ D
3309280 to find n’s prime factors.

46.5. The first step in all public-key cryptosystems is to convert the English-language mes-

sage into a number, M . This is typically done with the ASCII code. In this problem, we

use a simpler method.

We write our messages using only the 26 uppercase letters. We use 01 to stand for

A, 02 to stand for B, etc., and 26 to stand for Z. The word LOVE would be rendered as

12152205 in this encoding. (This is the same method as in Exercise 45.6.)

Suppose Bob’s RSA public key is .n; e/ D .328419349; 220037467/. To encrypt

the word LOVE, Alice calculates

12152205
220037467 mod 328419349D 76010536

and sends 76010536 to Bob.

Alice encrypts four more words to Bob. Their encryptions are as follows:

a. 322776966.

b. 43808278.

c. 166318297.

d. 18035306.

Decrypt these four words.

46.6. Suppose Bob creates two RSA encryption algorithms as follows: First, he picks large

primes p and q and calculates n D pq. Next he chooses two integers e1 and e2 with

gcd.e1; '.n// D gcd.e2; '.n// D 1 to make two encryption functions:

E1.M / D M
e1 mod n; and

E2.M / D M
e2 mod n

When Alice puts her message into code, she double-encrypts it by calculating

N D E1 .E2.M //

and sends N to Bob.
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Please answer the following:

a. How should Bob decrypt the message he receives from Alice?

b. Suppose, by mistake, Alice calculatesN
0 D E2 .E1.M // and, unbeknownst to Bob,

sends N 0 instead of N to him. What will happen when Bob decrypts N 0?
c. How much harder is it, using this double-encryption method, for Eve to decrypt

Alice’s message (compared to standard single encryption)?

46.7. Let Bob’s encryption function be E.M / D M e mod n where n D pq for distinct

primes p and q. His decryption function is D.N / D N d mod n where ed � 1

.mod '.n//.

Suppose Alice forms a message M (with 1 � M < n) that is not relatively prime

to n. You may suppose that M is a multiple of p, but not of q.

Prove that D.E.M // DM .

Chapter 8 Self Test

1. For real numbers x and y, define an operation x � y by

x � y D
p

x2 C y2:

Please answer the following questions and justify your responses.

a. Evaluate 3 � 4.

b. Is the operation � closed for real numbers?

c. Is the operation � commutative?

d. Is the operation � associative?
e. Does the operation � have an identity element?

2. In Exercise 40.2 we considered the operation x ? y D x C y � xy for real numbers and

found that .R; ?/ is not a group. LetR0 D R�f1g (the set of all real numbers other than 1).

Prove that .R0; ?/ is an Abelian group.

3. In Problem 2 you were asked to show that .R0; ?/ is an Abelian group where R0 D fx 2
R W x 6D 1g and ? is the operation defined by x ? y D x C y � xy.

Show that .R0; ?/ is isomorphic to .R�;�/whereR� is the set of nonzero real numbers

and � is ordinary multiplication.

4. List the elements in Z�
32

and find '.32/.

5. Consider the group .Z�
15

;˝/. Find the following subsets of Z�
15
:

a. H D fx 2 Z�
15
W x ˝ x D 1g, and

b. K D fx 2 Z�
15
W x D y ˝ y for some y 2 Z�

15
g.

6. Let .G;�/ be an Abelian group. Define the following two subsets of G:

a. H D fx 2 G W x � x D eg, and
b. K D fx 2 G W x D y � y for some y 2 Gg.
Prove that .H;�/ and .K;�/ are subgroups of .G;�/.

Furthermore, give examples to demonstrate that if the requirement that .G;�/ be

Abelian is deleted, H and K do not necessarily constitute subgroups.

7. Let .G;�/ be a group with exactly three elements. Prove that G is isomorphic to .Z3;˚/.

8. Find an isomorphism between .Z�
13

;˝/ and .Z12;˚/.

9. Let .G;�/ be a group and let .H;�/ and .K;�/ be subgroups. Define the set H �K to be

the set of all elements for the form h � k where h 2 H and k 2 K; that is,

H �K D fg 2 G W g D hk for some h 2 H and k 2 Kg:

a. In .Z100;˚/ let H D f0; 25; 50; 75g and K D f0; 20; 40; 60; 80g.
Find the set H ˚K .

b. Prove: If .G;�/ is an Abelian group and H and K are subgroups, then H �K is also a

subgroup.

c. Show that the result in part (b) is false if the word Abelian is deleted.

10. Show that for all elements g of .Z�
15

;˝/, we have g4 D 1.

Use this to prove that the group .Z�
15

;˝/ is not cyclic.

11. Without the use of any computational aid, calculate 290 mod 89.
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12. Let n D 38168467. Use the fact that

2
n � 6178104 .mod n/

to determine whether n is prime or composite.

13. Let n D 38168467. Given that '.n/ D 38155320, calculate (without the assistance of a

computational aid)

2
38155321 mod 38168467:

14. Using only a basic hand-held calculator, compute

874
256 mod 9432:

15. Find all values of
p

71 in Z883.

16. Find all values of
p

1 in Z440617. Note that 440617 factored into primes is 499 � 883.

17. Let n D 5460947. In Zn we have

1235907
2 D 1842412

2 D 3618535
2 D 4225040

2 D 1010120:

Use this information to factor n.

Note: You should find that n is the product of two distinct primes.

18. Alice and Bob communicate using the Rabin public-key cryptosystem. Bob’s public key

is n D 713809.

Alice sends a message to Bob. She first converts her message (a three-letter word) to

a number by taking A to be 01, B to be 02, and so on. Then she encrypts her message using

Bob’s public key and sends the result, 496410, to Bob.

Given that 713809D 787 � 907, decrypt Alice’s message.

19. Alice and Bob switch to using the RSA public-key cryptosystem. Alice’s public key is

.n; e/ D .453899; 449/. Given that 453899 D 541 � 839, find Alice’s private decryption

exponent, d .

20. Bob sends Alice a message using Alice’s RSA public key (as described in the previous

problem). Using A is 01, B is 02, etc., Bob converts his message (a three-letter word) into

an integer M , and encrypts using Alice’s encryption function. The result is EA.M / D
105015.

What was Bob’s message?

21. Given that n D 40119451 is the product of two distinct primes and '.n/ D 40106592,

factor n.
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9 Graphs

The word graph has several meanings. In nonmathematical English, it refers to a method

of representing an idea or concept with a picture or in writing. In both mathematics and in

English, it often refers to a diagram used to show the relationship of one quantity to another.

In this chapter, we introduce an entirely different mathematical meaning for the word

graph. For us, a graph is not a picture drawn on x and y axes.

47 Fundamentals of Graph Theory

Before we say precisely what a graph is or give a formal definition of the word graph, we

consider some interesting problems.

Map Coloring

Imagine a map of a mythical continent that has several countries. You are a cartographer

charged with designing a map of your continent. To show the different countries clearly, you

fill their regions using various colors. However, if you were to make every country a different

color, the map would be garish.

To make the map clear, but not gaudy, you decide to use as few colors as possible.

However, to maintain clarity, you insist that neighboring countries should not receive the

same color.

The question is: What is the smallest number of colors you need to color your map?

The question refers not just to the map in the figure, but to any map that might be drawn.

Well, not quite any map. We do not allow countries that are disconnected. (For example,

Russia includes a region north of Poland and west of Lithuania that is disconnected from the

rest of Russia. The United States is in multiple pieces, and the U.S. state Michigan is in two

pieces: the upper and lower peninsulas.) Furthermore, regions that touch at just one point need

not receive different colors. (For example, the U.S. states Arizona and Colorado may be the

same color.)

We can color the map in the figure with just four colors, as shown. This raises a few

questions.

� Can this map be colored with fewer than four colors? (Notice that we have only one

country that is gray; perhaps if we are clever, we can color this map with only three

colors.)
� Is there another map that can be colored with fewer than four colors?
� Is there a map that requires more than four colors?

The answer to the first question is no; this map cannot be colored with fewer than four

colors. Can you prove this yourself? We shall return to this specific question in a later section,

but try this on your own now.

331
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The answer to the second question is yes. This is an easy question. Try drawing a map

that requires only two colors. (Hint: Make your life easy and build a continent with only two

countries!)

The third question, however, is notoriously difficult. This problem is known as the four

color map problem. It was first posed in 1852 by Francis Guthrie and remained unsolved

for about a century until, in the mid-1970s, Appel and Haken proved that every map can be

colored using at most four colors. We discuss this further in Sections 52 and 53.

Map coloring might seem like a frivolous problem. Instead, let us consider the following:

Imagine a university in which there are thousands of students and hundreds of courses. As in

most universities, at the end of each term there is an examination period. Each course has a

3-hour final exam. On any given day, the university can schedule two final exams.

Now it would be quite impossible for a student enrolled in two courses to take both final

exams if they were held during the same time slot. Recognizing this, the university wishes

to devise a final examination schedule with the condition that if a student is enrolled in two

courses, these courses must get different examination periods.

A simple solution to this problem is to hold only one examination during any time slot.

The problem, of course, is that if the examination period begins in May, it won’t end until

November!

The solution the university prefers is to have the smallest possible number of examination

slots. This way, students (and faculty ) can go on their summer vacations as soon as possible.

At first glance, this examination-scheduling problem seems to have little in common with

map coloring, but we assert that these problems are essentially the same. In map coloring, we

seek the least number of colors, subject to a special condition (countries that share a common

border receive different colors). In exam scheduling, we seek the least number of time slots

subject to a special condition (courses that share a common student receive different time

slots).

Problem Map Coloring Exam Scheduling

Assign colors time slots

to countries courses

condition common border) different colors common student) different slots

objective fewest colors fewest time slots

Both problems—map coloring and exam scheduling—have the same basic structure.

Three Utilities

The following is a classic puzzle. Imagine a “city” containing three houses and three utility

E
W

G

plants. The three utilities supply gas, water, and electricity. As an urban planner, your job is to

run connections from every utility plant to every home. You need to have three electric wires

(from the electric plant to each of the three houses), three water pipes (from the water plant to

the houses), and three gas lines (from the gas facility to the houses). You may place the houses

and the utility plants anywhere you desire. However, you may not allow two wires/pipes/lines

to cross! The diagram shows a failed attempt to construct a suitable layout.

I highly recommend you try this problem yourself. After many tries, you may come to be-

lieve that no solution is possible. This is correct. It is impossible to construct a gas/water/electric

layout to three houses without at least one pair of crossing lines. Later we prove this.

This may seem like a frivolous problem. However, consider the following: A printed

circuit board is a flat piece of plastic on which various electronic devices (resistors, capacitors,

integrated circuits, etc.) are mounted. Connections between these devices are made by printing

bare metal wires onto the surface of the board. If two of these wires were to cross, there would

be a short circuit. The problem is: Can we print the various connecting wires onto the board

in such a way that there are no crossings?

If there must be crossings, then the circuit board can be constructed in layers, but this is

more expensive. Finding a noncrossing layout saves production costs and therefore is worth-

while (especially for a mass-produced device).

The gas/water/electric layout problem is a simplified version of the more complicated

“printed circuit board” problem.
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Seven Bridges

The following is another classic puzzle. In the late 1700s, in the city of Königsburg (now

called Kaliningrad) located in the aforementioned disconnected section of Russia, there were

seven bridges connecting various parts of the city; these were configured as shown in the

figure.

The townspeople enjoyed strolling through their city in the evening. They wondered: Is

there a tour we can take through our city so that we cross every bridge exactly once?

I recommend you try solving this problem yourself. After a number of frustrating false

starts, you may decide that no such tour is possible. This is correct. The proof of this fact is

attributed to Euler. Euler abstracted the problem into a diagram akin to the one shown in the

figure. Each line in the diagram represents a bridge in Königsburg. The problem of walking

the seven bridges is now replaced by the problem of drawing the abstract figure without lifting

your pencil from the paper and without redrawing a line. Can this figure be so drawn? In the di-

agram, there are four places where lines come together; at each of these places, the number of

lines is odd. We claim: If we could draw this figure in the manner described, a point where an

odd number of lines meet must be either the starting point or the finishing point of the drawing.

Think about an intermediate point of the drawing—that is, any junction other than where we

start or where we end. At this junction, there must be an even number of lines because every

time we enter this point along one line, we leave it along another (recall that we are not al-

lowed to retrace a line). So every point in the diagram must be either the first or the last point

in the drawing. Of course, this is not possible because there are four such points. Therefore it

is impossible to draw the diagram without retracing a line or lifting your pencil, and therefore

it is impossible to tour the city of Königsburg and cross each of the seven bridges exactly once.

This is a nice puzzle, but again, it seems a bit frivolous. Here is the same problem again

in a more serious setting. Once again, don your urban-planning hat. Now, instead of distribut-

ing utility services, you are charged instead with the glamorous job of overseeing garbage

collection. Your small city can afford only one garbage truck. Your job is to set the route

the garbage truck is to follow. It needs to collect along every street in your city. It would be

wasteful if the truck were to traverse the same street more than once. Can you find a route for

the garbage truck so that it travels only once down every street?

If your city has more than two intersections where an odd number of roads meet, then

such a tour is not possible.

What Is a Graph?

The three problems we considered are nicely modeled by using the mathematical notion of a

graph.

Definition 47.1 (Graph) A graph is a pair G D .V; E/ where V is a nonempty finite set and E is a set of

two-element subsets of V .

This definition is tricky to understand and may appear to have nothing to do with the

motivational problems we introduced. Let us study it carefully, beginning with an example.

Example 47.2 Let

G D
�

f1; 2; 3; 4; 5; 6; 7g;
˚

f1; 2g; f1; 3g; f2; 3g; f3; 4g; f5; 6g
	

�

:

Here V is the finite set f1; 2; 3; 4; 5; 6; 7g and E is a set containing 5 two-element subsets of

V : f1; 2g, f1; 3g, f2; 3g, f3; 4g, and f5; 6g. Therefore G D .V; E/ is a graph.

The elements of V are called the vertices (singular: vertex) of the graph, and the elements

of E are called the edges of the graph. Remember, the elements of E are subsets of V , each

of which contains exactly two vertices. The graph in Example 47.2 has seven vertices and five

edges.

There is a nice way to draw pictures of graphs. These pictures make graphs much easier

to understand. It is vital, however, that you realize that a picture of a graph is not the same

thing as the graph itself!
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To draw a picture of a graph, we draw a dot for each vertex (element of V ). For the graph

in Example 47.2, we would draw seven dots and label them with the integers 1 through 7.

Each edge in E is drawn as a curve in the diagram. For example, if e D fu; vg 2 E , we draw

the edge e as a curve joining the dot for u to the dot for v. The following three pictures all

depict the same graph from Example 47.2.

1

2

3

4
5

6

7

1 2 3

4 5 6

7

1 2 3 4 5 6 7

The middle picture is a perfectly valid drawing of the graph. Three pairs of edges cross each

other; this is not a problem. The dots in the pictures represent the vertices, and the curves in

the pictures represent the edges. We can “read” the pictures and, from them, determine the

vertices and edges of the graph. The crossings may make the picture harder to understand, but

they do not change the basic information the picture conveys. The first and third pictures are

better only because they are clearer and easier to understand.

Adjacency

Definition 47.3 (Adjacent) Let G D .V; E/ be a graph and let u; v 2 V . We say that u is adjacent to v

provided fu; vg 2 E . The notation u � v means that u is adjacent to v.

We, most emphatically, do not say that u is “connected” to v. The phrase is connected toWARNING! DANGER! 
has an entirely different meaning (discussed later). We may say that u is joined to v.

If fu; vg is an edge of G, we call u and v the endpoints of the edge. This language isEndpoint.

suggestive of the drawing of G: the endpoints of the curve that represents the edge fu; vg are
the dots that represent the vertices u and v. However, it is important to remember always that

an edge of a graph is not a curve or a line segment; it is a two-element subset of the vertex set.

It is sometimes cumbersome to write the curly braces for an edge fu; vg. Provided thereDropping the curly braces.

is no chance for confusion, it is acceptable to write uv in place of fu; vg.
Suppose v is a vertex and an endpoint of the edge e. We can express this fact as v 2 eIncident.

since e is a two-element set, one of whose elements is v. We also say that v is incident on (or

incident with) e.

Notice that is-adjacent-to (�) is a relation defined on the vertex set of a graph G. Which

of the various properties of relations does is-adjacent-to exhibit?

� Is � reflexive?

No.

This would mean that u � u for all vertices in V . This means that fu; ug is an edge

of the graph. However, by Definition 47.1, an edge is a two-element subset of V . Note

that although we have written u twice between curly braces, fu; ug is a one-element set.

An object either is or is not an element of a set; it cannot be an element “twice.”
� Is � irreflexive?

Yes, but.

By the previous discussion, it is never the case that fu; ug is an edge of a graph. Thus
a vertex is never adjacent to itself and therefore� is irreflexive.

Then why, you may wonder, did we answer this question “Yes, but”? We were quiteMathspeak!

The word graph is not 100%

standardized. What we call a graph

is often called a simple graph. There

are other, more exotic, forms of

graphs.

emphatic (and remain so) that a vertex can never be considered adjacent to itself. The

issue is over the very word graph. According to Definition 47.1, an edge of a graph is

a two-element subset of V —end of story. However, some mathematicians use the word

graph in a different way and allow the possibility that a vertex could be adjacent to itself;

an edge joining a vertex to itself is called a loop. For us, graphs are not allowed to have

loops. Some authors also allow more than one edge with the same endpoints; such edges

are called parallel edges. Again, for us, graphsmay not have parallel edges. The set fu; vg
either is or is not an edge—it can’t be an edge “twice.”
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When we want to be perfectly clear, we use the term simple graph. If we wish to

discuss a “graph” that may have loops and multiple edges, we use the word multigraph.
� Is � symmetric?

Yes.

Suppose u and v are vertices of a graph G. If u � v in G, this means that fu; vg is
an edge of G. Of course, fu; vg is the exact same thing as fv; ug, so v � u. Therefore�
is symmetric.

� Is � antisymmetric?

In general, no.

Consider the graph from Example 47.2. In this graph, 1 � 2 and 2 � 1 but, of course,

1 6D 2. Therefore� is not antisymmetric.

However, it is possible to construct a graph in which � is antisymmetric (see Exer-

cise 47.13).
� Is � transitive?

In general, no.

Consider the graph from Example 47.47.2. Notice that 2 � 3 and 3 � 4, but 2 is not

adjacent to 4.

However, it is possible to construct a graph in which � is transitive (see Exer-

cise 47.13).

A Matter of Degree

Let G D .V; E/ be a graph and suppose u and v are vertices of G. If u and v are adjacent,

we also say that u and v are neighbors. The set of all neighbors of a vertex v is called the

neighborhood of v and is denoted N.v/. That is,

N.v/ D fu 2 V W u � vg:

For the graph in Example 47.2, we have

N.1/ D f2; 3g N.2/ D f1; 3g N.3/ D f1; 2; 4g N.4/ D f3g
N.5/ D f6g N.6/ D f5g N.7/ D ;:

The number of neighbors of a vertex is called its degree.

Some graph theorists call the degree

of a vertex its valence. This is a

lovely term! The word was chosen

because graphs serve as models of

organic molecules. The valence of an

atom in a molecule is the number of

bonds it forms with its neighbors.

Definition 47.4 (Degree) Let G D .V; E/ be a graph and let v 2 V . The degree of v is the number of edges

with which v is incident. The degree of v is denoted dG.v/ or, if there is no risk of confusion,

simply d.v/.

In other words,

d.v/ D jN.v/j:

For the graph in Example 47.2, we have

d.1/ D 2 d.2/ D 2 d.3/ D 3 d.4/ D 1

d.5/ D 1 d.6/ D 1 d.7/ D 0:

Something interesting happens when we add the degrees of the vertices of a graph. ForThe notation
X

v2V

d.v/

means we add the quantity d.v/ for

all vertices v 2 V .

Example 47.2, we have
X

v2V

d.v/ D d.1/C d.2/C d.3/C d.4/C d.5/C d.6/C d.7/

D 2C 2C 3C 1C 1C 1C 0 D 10

which, you might notice, is exactly twice the number of edges in G. This is not a coincidence.

Theorem 47.5 Let G D .V; E/. The sum of the degrees of the vertices in G is twice the number of edges;

that is,
X

v2V

d.v/ D 2jEj:
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Proof. Suppose the vertex set is V D fv1; v2; : : : ; vng. We can create an n � n matrix as

follows. The entry in row i and column j of this matrix is 1 if vi � vj and is 0 otherwise.

For the graph from Example 47.2, the matrix would look like this:A matrix is a rectangular array of

numbers. Incidently, the terms matrix

and graph were coined by

J.J. Sylvester when he was serving as

the first professor of mathematics at

Johns Hopkins University.

2

6

6

6

6

6

6

6

6

4

0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

5

:

This matrix is called the adjacency matrix of the graph.

Our technique for proving Theorem 47.5 is combinatorial proof (see Proof Template 9).

We ask,

How many 1s are in this matrix?

We give two answers to this question.

� First answer: Notice that for every edge of G there are exactly two 1s in the matrix.

For example, if vi vj 2 E , then there is a 1 in position ij (row i , column j ) and a 1 in

position j i . Thus the number of 1s in this matrix is exactly 2jEj.
� Second answer: Consider a given row of this matrix—say, the row corresponding to some

vertex vi . There is a 1 in this row exactly for those vertices adjacent to vi (i.e., there is a 1

in the j th spot of this row exactly when there is an edge from vi to vj ). Thus, the number

of 1s in this row is exactly the degree of the vertex—that is, d.vi /.

The number of 1s in the entire matrix is the sum of the row subtotals. In other words,

the number of 1s in the matrix equals the sum of the degrees of the vertices of the graph.

Because these two answers are both correct solutions to the question “How many 1s are in

this matrix?” we conclude that the sum of the degrees of the vertices of G (answer 2) equals

twice the number of edges of G (answer 1).

Further Notation and Vocabulary

There are many new terms to learn when studying graphs. Here we introduce more terms and

notation that are often used in graph theory.

� Maximum and minimum degree.

The maximum degree of a vertex in G is denoted �.G/. The minimum degree of a

vertex in G is denoted ı.G/. The letters � and ı are upper- and lowercase Greek deltas,

respectively. For the graph in Example 47.2, we have �.G/ D 3 and ı.G/ D 0.
� Regular graphs.

If all vertices in G have the same degree, we call G regular. If a graph is regular

and all vertices have degree r , we also call the graph r-regular. The graph in the figure is

3-regular.
� Vertex and edge sets.

Let G be a graph. If we neglect to give a name to the vertex and edge sets of G, weThe terms vertex and edge are not

100% standardized. Some authors

refer to vertices as nodes, and others

call them points. Similarly, edges are

variously called arcs, links, and lines.

can simply write V.G/ and E.G/ for the vertex and edge sets, respectively.
� Order and size.

Let G D .V; E/ be a graph. The order of G is the number of vertices in G—that is,

jV j. The size of G is the number of edges—that is, jE.G/j.
It is customary (but certainly not mandatory) to use the letters n and m to stand for

jV j and jEj, respectively.
Various authors invent special symbols to stand for the number of vertices and the

number of edges in a graph. Personally, I like the following:

�.G/ D jV.G/j and ".G/ D jE.G/j:
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You should think of � and " as functions that, given a graph, return the number of vertices

and edges, respectively.

The Greek letter � (nu) corresponds to the Roman letter n (the usual letter for the

number of vertices in a graph), and it looks like a v (for vertices). The Greek letter " (a

stylized epsilon) corresponds to the Roman e (for edges).
� Complete graphs.

Let G be a graph. If all pairs of distinct vertices are adjacent in G, we call G

complete. A complete graph on n vertices is denoted Kn. The graph in the figure is

a K5.

The opposite extreme is a graph with no edges. We call such graphs edgeless.

Recap

We began by motivating the study of graph theory with three classic problems (and non-

frivolous variations thereof). We then formally introduced the concept of a graph, being

careful to distinguish between a graph and its drawing. We studied the adjacency relation,

concluding with the result that the sum of the degrees of the vertices in a graph equals twice

the number of edges in the graph. Finally, we introduced additional graph theory terminology.

47 Exercises 47.1. The following pictures represent graphs. Please write each of these graphs as a pair of

sets .V; E/.

1 2 3

4 5 6

1

2

3

4

5

6
1 2 3

4 5 6

(a) (b) (c)

47.2. Draw pictures of the following graphs.

a.
�

fa; b; c; d; eg;
˚

fa; bg; fa; cg; fa; d g; fb; eg; fc; d g
	�

.

b.
�

fa; b; c; d; eg;
˚

fa; bg; fa; cg; fb; cg; fb; d g; fc; d g
	�

.

c.
�

fa; b; c; d; eg;
˚

fa; cg; fb; d g; fb; eg
	�

.

47.3. Color the map in the figure with four colors (so that adjacent countries have different

colors) and explain why it is not possible to color this map with only three colors.

47.4. In the map-coloring problem, why do we require that countries be connected (and not

in multiple pieces like Russia or Michigan)?

Draw a map, in which disconnected countries are permitted, that requires more

than four colors.

47.5. In the map-coloring problem, why do we allow countries that meet at only one point to

receive the same color?

Draw a map that requires more than four colors if countries that meet only at one

point must get different colors.

47.6. If three countries on a map all border each other, then the map certainly requires at

least three colors. (For example, look at Brazil, Venezuela, and Colombia or at France,

Germany, and Belgium.)

Devise a map in which no three countries border each other, and yet the map cannot

be colored with fewer than three colors.
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47.7. Imagine creating a map on your computer screen. This map wraps around the screen in

the following way. A line that moves off the right side of the screen instantly reappears

at the corresponding position on the left. Similarly, a line that drops off the bottom of the

screen instantly reappears at the corresponding position at the top. Thus it is possible to

have a country on this map that has a little section on the left and another little section

on the right of the screen, but is still in one piece.

Devise such a computer-screen map that requires more than four colors.

Try to create such a map that requires seven colors! (It is possible.)

47.8. Refer to the previous problem about drawing on your computer screen. On this screen,

can you solve the gas/water/electricity problem? That is, find a way to place the three

utilities and the three houses such that the connecting lines don’t cross. You may, of

course, take advantage of the fact that a pipe can wrap from the left side of the screen

across to the exact same point on the right or from top to bottom.

47.9. Continued from the previous problem. Suppose now you wish to add a cable televi-

sion facility to your computer screen city. Can you run three television cables from

the cable TV headquarters to each of the three houses without crossing any of the

gas/water/electric lines?

47.10. Show how to draw the picture in the figure without lifting your pencil from the page

and without redrawing any lines.

47.11. If you begin your drawing of the figure in Exercise 47.10 in the middle of the top,

it’s easy to obtain a solution. Show that is is possible to begin the drawing at the top

middle point and yet, by making some unfortunate decisions, be unable to complete the

drawing.

47.12. Recall the university examination-scheduling problem. Create a list of courses and stu-

dents such that more than four final examination periods are required.

47.13. Construct a graph G for which the is-adjacent-to relation,�, is antisymmetric.

Construct a graph G for which the is-adjacent-to relation,�, is transitive.
47.14. In Definition 47.4 (degree), we defined d.v/ to be the number of edges incident with v.

However, we also said that d.v/ D jN.v/j. Why is this so?

Is d.v/ D jN.v/j true for a multigraph?

47.15. Let G be a graph. Prove that there must be an even number of vertices of odd degree.

(For example, the graph in Example 47.2 has exactly four vertices of odd degree.)

47.16. Prove that in any graph with two or more vertices, there must be two vertices of the

same degree.

47.17. Let G be an r-regular graph with n vertices and m edges. Find (and prove) a simple

algebraic relation between r , n, and m.

47.18. Find all 3-regular graphs on nine vertices.

47.19. How many edges are in Kn, a complete graph on n vertices?

47.20. How many different graphs can be formed with vertex set V D f1; 2; 3; : : : ; ng?
47.21. What does it mean for two graphs to be the same? Let G and H be graphs. We say that

G is isomorphic to H provided there is a bijection f W V.G/! V.H/ such that for all

a; b 2 V.G/ we have a � b (in G) if and only if f .a/ � f .b/ (in H ). The function f

is called an isomorphism of G to H .

We can think of f as renaming the vertices of G with the names of the vertices in

H in a way that preserves adjacency. Less formally, isomorphic graphs have the same

drawing (except for the names of the vertices).

Please do the following:

a. Prove that isomorphic graphs have the same number of vertices.

b. Prove that if f W V.G/ ! V.H/ is an isomorphism of graphs G and H and if

v 2 V.G/, then the degree of v in G equals the degree of f .v/ in H .

c. Prove that isomorphic graphs have the same number of edges.

d. Give an example of two graphs that have the same number of vertices and the same

number of edges but that are not isomorphic.

a b c

d e f

e. Let G be the graph whose vertex set is f1; 2; 3; 4; 5; 6g. In this graph, there is an

edge from v to w if and only if v � w is odd. Let H be the graph in the figure.

Find an isomorphism f W V.G/! V.H/.
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48 Subgraphs

Informally, a subgraph is a graph contained inside another graph. Here is a careful definition:

Definition 48.1 (Subgraph) Let G and H be graphs. We call G a subgraph of H provided V.G/ � V.H/

and E.G/ � E.H/.

Example 48.2 Let G and H be the following graphs:

V.G/ D f1; 2; 3; 4; 6; 7; 8g V.H/ D f1; 2; 3; 4; 5; 6; 7; 8; 9g

E.G/ D
˚

f1; 2g; f2; 3g; f2; 6g; f3; 6g; E.H/ D
˚

f1; 2g; f1; 4g; f2; 3g; f2; 5g;
f4; 7g; f6; 8g; f7; 8g

	

f2; 6g; f3; 6g; f3; 9g; f4; 7g;
f5; 6g; f5; 7g; f6; 8g; f6; 9g;
f7; 8g; f8; 9g

	

Notice that V.G/ � V.H/ and E.G/ � E.H/ and so G is a subgraph of H . Pictorially,

these graphs are as follows:

G H

1

2
3

4
6

7 8

1

2
3

4

5 6

7 8
9

Naturally, if G is a subgraph of H , we call H a supergraph of G.

Induced and Spanning Subgraphs

We form a subgraph G from a graph H by deleting various parts of H . For example, if e is anEdge deletion.

edge of H , then removing e from H results in a new graph that we denote H � e. Formally,

we can write this as

V.H � e/ D V.H/ and E.H � e/ D E.H/ � feg:

If we form a subgraph of H solely by use of edge deletion, the resulting subgraph is

called a spanning subgraph of H . Here is another way to express this:

Definition 48.3 (Spanning subgraph) Let G and H be graphs. We call G a spanning subgraph of H pro-

vided G is a subgraph of H and V.G/ D V.H/.

When G is a spanning subgraph of H , the definition requires that V.G/ D V.H/; that

is, G and H have all the same vertices. Thus the only allowable deletions from H are edge

deletions.

Example 48.4 Let H be the graph from Example 48.2 and let G be the graph with

V.G/ D f1; 2; 3; 4; 5; 6; 7; 8; 9g and

E.G/ D
˚

f1; 2g; f2; 3g; f2; 5g; f2; 6g; f3; 6g; f3; 9g; f5; 7g; f6; 8g; f7; 8g; f8; 9g
	

:

Note that G is a subgraph of H and, furthermore, that G and H have the same vertex set.

Therefore G is a spanning subgraph of H .
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Pictorially, these graphs are as follows:

G H

1

2
3

4

5 6

7 8
9

1

2
3

4

5 6

7 8
9

Deleting vertices from a graph is a more subtle process than deleting edges. Suppose vVertex deletion.

is a vertex of a graph H . How shall we define the graph H � v? One idea (incorrect) is to let

V.H � v/ D V.H/� fvg and

E.H � v/ D E.H/:  WARNING! INCORRECT!!

This looks just like the definition of H � e. What is the problem? The problem with this

definition is that there may be edges of H that are incident with v. After we delete v from H ,

it does not make sense to have “edges” in H � v that involve the vertex v. Remember: The

edge set of a graph consists of two-element subsets of the vertex set. So an edge with v as an

endpoint is not legal in a graph that does not include v as a vertex.

Let’s try defining H � v again. When we delete v from H , we must delete all edges that

are incident with v; they are not legal to keep once v is gone. Otherwise we retain all the edges

that are not incident with v. Here is the correct definition:

V.H � v/ D V.H/ � fvg and

E.H � v/ D fe 2 E.H/ W v … eg:

In other words, the vertex set of H � v contains all the vertices of H except v. The edge set

of H � v contains all those edges of H that are not incident with v. The notation v … e is

a terse way to write “v is not incident with e.” Recall that e is a two-element set, and v … e

means v is not an element of e, (i.e., not an end point of e).

If we form a subgraph of H solely by means of vertex deletion, we call the subgraph an

induced subgraph of H .

Definition 48.5 (Induced subgraph) Let H be a graph and let A be a subset of the vertices of H ; that is,

A � V.H/. The subgraph of H induced on A is the graph HŒA� defined by

V.HŒA�/ D A and

E.HŒA�/ D fxy 2 E.H/ W x 2 A and y 2 Ag:

The set A is the set of vertices we keep. The induced subgraph HŒA� is the graph whose

vertex set is A and whose edges are all those edges of H that are legally possible (i.e., have

both end points in A).

When we say that G is an induced subgraph of H , we mean that G D HŒA� for some

A � V.H/.

The graph H �v is an induced subgraph of H . If A D V.H/�fvg, then H �v D HŒA�.

Example 48.6 Let H be the graph from Example 48.2 and let G be the graph with

V.G/ D f1; 2; 3; 5; 6; 7; 8g and

E.G/ D
˚

f1; 2g; f2; 3g; f2; 5g; f2; 6g; f3; 6g; f5; 6g; f5; 7g; f6; 8g; f7; 8g
	

:

Note that G is a subgraph of H . From H we deleted vertices 4 and 9. We have included in

G every edge of H except, of course, those edges incident with vertices 4 or 9. Thus G is an

induced subgraph of H and

G D HŒA� where A D f1; 2; 3; 5; 6; 7; 8g:

We can also write G D .H � 4/� 9 D .H � 9/� 4.
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Pictorially, these graphs are as follows:

G H

1

2
3

5 6

7 8

1

2
3

4

5 6

7 8
9

Cliques and Independent Sets

Definition 48.7 (Clique, clique number) Let G be a graph. A subset of vertices S � V.G/ is called a clique

provided any two distinct vertices in S are adjacent.

The clique number of G is the size of a largest clique; it is denoted !.G/.

In other words, a set S � V.G/ is called a clique provided GŒS� is a complete graph.

Example 48.8 Let H be the graph from the earlier examples in this section, shown again here.

Mathspeak!

In proper English, maximum and

maximal are closely related, but not

interchangeable, words. The

difference is that maximum is a noun

and maximal is an adjective. In

common usage, people often use

maximum as both a noun and an

adjective. In mathematics, we use

both maximal and maximum as

adjectives with slightly different

meanings. This difference is explored

further in Section 55.

1

2
3

4

5 6

7 8
9

This graph has many cliques. Here we list some of them:

f1; 4g f2; 5; 6g f9g f2; 3; 6g f6; 8; 9g f4g ;:

The largest size of a clique in H is 3, so !.H/ D 3.

The clique f1; 4g in the above example is interesting. It only contains two vertices, so

it does not have the largest possible size for a clique in H . However, it cannot be extended.

It is a maximal clique that does not have maximum size. By maximal we mean “cannot be

extended.” Bymaximumwe mean “largest.” Thus f1; 4g is amaximal clique that is not a clique
of maximum size.

Definition 48.9 (Independent set, independence number) Let G be a graph. A subset of vertices S �
V.G/ is called an independent set provided no two vertices in S are adjacent.

The independence number of G is the size of a largest independent set; it is denotedAn alternative term for an

independent set in a graph is stable

set, and ˛.G/ is also known as the

stability number of G.

˛.G/.

In other words, a set S � V.G/ is independent provided GŒS� is an edgeless graph.

Example 48.10 Let H be the graph from the earlier examples in this section.

1

2
3

4

5 6

7 8
9
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This graph has many independent sets. Here we list some of them:

f1; 3; 5g f1; 7; 9g f4g f1; 3; 5; 8g f4; 6g f1; 3; 7g ;:

The largest size of an independent set in H is 4, so ˛.H/ D 4.

The independent set f4; 6g is interesting. It is not a largest independent set, but it is a

maximal independent set. If you carefully examine the graph H , you should note that each of

the other seven vertices is adjacent to vertex 4 or to vertex 6. Thus f4; 6g is independent but
cannot be extended. It is a maximal independent set that is not of maximum size.

Complements

1

2

3

4

5

6

The two notions of clique and independent sets are flip sides of the same coin; here we discuss

what it means to “flip the coin.”

The complement of a graph G is a new graph formed by removing all the edges of G and

replacing them by all possible edges that are not in G. Formally, we state this as follows:

Definition 48.11 (Complement) Let G be a graph. The complement of G is the graph denoted G defined by

1

2

3

4

5

6

V.G/ D V.G/ and

E.G/ D fxy W x; y 2 V.G/; x 6D y; xy … E.G/g:

The two graphs in the figure are complements of one another.

The following immediate result makes explicit our assertion that cliques and independent

sets are flip sides of the same coin.

Proposition 48.12 Let G be a graph. A subset of V.G/ is a clique of G if and only if it is an independent set

of G. Furthermore,

!.G/ D ˛.G/ and ˛.G/ D !.G/:

Let G be a “very large” graph (i.e., a graph with a great many vertices). A celebrated the-

orem in graph theory (known as Ramsey’s Theorem) implies that either G or its complement,

G, must have a “large” clique. Here we prove a special case of this result; the full statement

and general proof of Ramsey’s Theorem can be found in more advanced texts. (See also Ex-

ercise 48.14.)

Proposition 48.13 Let G be a graph with at least six vertices. Then !.G/ � 3 or !.G/ � 3.

The conclusion may also be written as follows: Then !.G/ � 3 or ˛.G/ � 3.

Proof. Let v be any vertex of G. We consider two possibilities: either d.v/ � 3 or else

d.v/ < 3.
v

x

y

z

Consider first the case d.v/ � 3. This means that v has at least three neighbors: Let

x; y; z be three of v’s neighbors. See the figure.

If one (or more) of the possible edges xy, yz, or xz is actually an edge of G, then G

contains a clique of size 3, and so !.G/ � 3.

However, if none of the possible edges xy, yz, or xz is present in G, then all three are

edges of G, and so !.G/ � 3.

v

x

y

z

On the other hand, suppose d.v/ � 2. Since there are at least five other vertices in G

(because G has six or more vertices), there must be three vertices to which v is not adjacent:

Call these three nonneighbors x, y, and z. See the figure.

Now if all of xy, yz, xz are edges of G, then clearly G has a clique of size 3, so !.G/ �
3. On the other hand, if one (or more) of xy, yz, or xz is not in G, then we have a clique of

size 3 in G, so !.G/ � 3.

In all, there have been four cases, and in every case, we concluded either !.G/ � 3 or

!.G/ � 3.
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Recap

We introduced the concept of subgraph and the special forms of subgraph: spanning and

induced. We discussed cliques and independent sets. We presented the concept of the comple-

ment of a graph. Finally, we presented a simplified version of Ramsey’s Theorem.

48 Exercises 48.1. Let G be the graph in the figure. Draw pictures of the following subgraphs.

1

2

3

4

5 6

a. G � 1.

b. G � 3.

c. G � 6.

d. G � f1; 2g.
e. G � f3; 5g.
f. G � f5; 6g.
g. GŒf1; 2; 3; 4g�.
h. GŒf2; 4; 6g�.
i. GŒf1; 2; 4; 5g�.

48.2. Which of the various properties of relations does the is-a-subgraph-of relation exhibit?

Is it reflexive? Irreflexive? Symmetric? Antisymmetric? Transitive?

48.3. Let C be a clique and let I be an independent set in a graph G. Prove that jC \ I j � 1.

48.4. Let G be a complete graph on n vertices.

a. How many spanning subgraphs does G have?

b. How many induced subgraphs does G have?

48.5. Let G and H be the two graphs in the figure.

G H

Please find ˛.G/, !.G/, ˛.H/, and !.H/.

48.6. Find a graph G with ˛.G/ D !.G/ D 5.

48.7. Suppose that G is a subgraph of H . Prove or disprove:

a. ˛.G/ � ˛.H/.

b. ˛.G/ � ˛.H/.

c. !.G/ � !.H/.

d. !.G/ � !.H/.

48.8. Let G be with V.G/ D X [ Y where X D fx1; x2; x3g and Y D fy1; y2; y3; y4; y5g.The graph in this exercise is an

example of a complete bipartite

graph. This particular complete

bipartite graph is denoted K3;5. This

concept is formally introduced in

Definition 52.10.

Every vertex in X is adjacent to every vertex in Y , but there are no other edges in G.

Please do:

a. Find all the maximal independent sets of G.

b. Find all the maximum independent sets of G.

c. Find all the maximal cliques of G.

d. Find all the maximum cliques of G.

48.9. Let G be a graph with n D 100 vertices that does not contain K3 as a subgraph; inThis problem involves a special case

of Turán’s Theorem which answers

the following question: Given

positive integers n and r , what is the

maximum number of edges in a

graph G with n vertices and

!.G/ � r? In this problem, we seek

the answer in the case nD 100 and

r D 2.

other words, !.G/ � 2. (Such graphs are called triangle free.) What can we say about

the maximum number of edges in such a graph?

Imagine this problem as a contest. Your job is to build a triangle-free graph with

as many edges as possible. To get the competition started, Alex says: “If I take one

vertex and join it by edges to all the others, I can make a triangle-free graph with 99

edges. And it’s not possible to add an edge to my graph without making a triangle!”

But then Beth counters, “Yes, but if we just put all the vertices in a big cycle, we can

make a triangle-free graph with 100 edges.” Eve, who has been eavesdropping on their

conversation, adds, “But then I can draw a diagonal edge across Betty’s cycle and get

101 edges.” Zeke, who has not been paying particularly close attention, wakes up and

says, “My graph has 4950 edges, so I win!” Of course, he doesn’t tell anyone how he

got his answer.
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You can do better than Eve’s 101 edges—a lot better. Create a triangle-free graph

with 100 vertices and as many edges as you can. If you like, try to prove that your graph

is best possible.

In any case, prove that Zeke is wrong. (What was he thinking!?)

48.10. Let G D .V; E/ be a graph with V D f1; 2; 3; 4; 5; 6g. In the figure we show the graphsThis is a special case of the

reconstruction problem. In the

general case, suppose there is an

unknown graph G with n vertices

where n > 2. We are given n

unlabeled drawings of the graphs

G � v; one for each v 2 V.G/. The

question is: Do these n drawings

uniquely determine the graph G?

G � 1, G � 2, and so on but we do not show the names of the vertices.

G − 1 G − 2 G − 3

G − 4 G − 5 G − 6

The goal of this problem is to reconstruct the original graph G. Please do:

a. Determine the number of edges in G.

b. Using your answer to (a), determine the degrees of each of the six vertices of G.

c. Determine G.

48.11. Recall the definition of graph isomorphism from Exercise 47.21. We call a graph GSelf-complementary graphs

self-complementary if G is isomorphic to G.

a. Show that the graph G D
�

fa; b; c; d g; fab; bc; cd g
�

is self-complementary.

b. Find a self-complementary graph with five vertices.

c. Prove that if a self-complementary graph has n vertices, then n � 0 .mod 4/ or

n � 1 .mod 4/.

48.12. Find a graph G on five vertices for which !.G/ < 3 and !.G/ < 3. This shows that

the number six in Proposition 48.13 is best possible.

48.13. Let G be a graph with at least two vertices. Prove that ˛.G/ � 2 or !.G/ � 2.

48.14. Let n; a; b � 2 be integers. The notation n! .a; b/ is an abbreviation for the followingRamsey arrow notation

sentence:

Every graph G on n vertices has ˛.G/ � a or !.G/ � b.

For example, Proposition 48.13 says that if n � 6, then n ! .3; 3/ is true. However,

Exercise 48.12 asserts that 5! .3; 3/ is false.

Please prove the following:

a. If n � 2, then n! .2; 2/.

b. For any integer n � 2, n! .n; 2/.

c. If n! .a; b/ and m � n, then m! .a; b/.

d. If n! .a; b/, then n! .b; a/.

e. The least n such that n! .3; 3/ is n D 6.

f. 10! .3; 4/.

g. Suppose a; b � 3. If n! .a � 1; b/ and m! .a; b � 1/, then .nCm/! .a; b/.

h. 20! .4; 4/.

49 Connection
Graphs are useful in modeling communication and transportation networks. The vertices of

a graph can represent major cities in a country, and the edges in the graph can represent

highways that link them. A fundamental question is: For a given pair of sites in the network,

can we travel from one to the other?

For example, in the United States, we can travel by interstate from Baltimore to Denver,

but we cannot get to Honolulu from Chicago, even though both of these cities are serviced

by interstates. (Some so-called “interstate” highways actually reside entirely within one state,

such as I-97 in Maryland and H-1 in Hawaii.)
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In this section, we consider what it means for a graph to be connected and related issues.

The intuitive notion is clear. The graph in Example 47.2 (reproduced in the figure) is not

connected, but it does contain three connected components. These ideas are made explicit

next.

1

2

3

4
5

6

7

Walks

Definition 49.1 (Walk) Let G D .V; E/ be a graph. A walk in G is a sequence (or list) of vertices, with

each vertex adjacent to the next; that is,

W D .v0; v1; : : : ; v`/ with v0 � v1 � v2 � � � � � v`:

The length of this walk is `. Note that we started the subscripts at zero and that there are `C1The length of a walk is the number of

edges traversed. vertices on the walk.

1

2
3

4

5

6 7

8
9

For example, consider the graph in the figure. The following sequences of vertices are

walks:

� 1 � 2 � 3 � 4.

This is a walk of length three. It starts at vertex 1 and ends at vertex 4, and so we call

it a .1; 4/-walk.

In general, a .u; v/-walk is a walk in a graph whose first vertex is u and whose last

vertex is v.
� 1 � 2 � 3 � 6 � 2 � 1 � 5.

This is a walk of length six. There are seven vertices on this walk (counting vertices

1 and 2 twice, because they are visited twice by this walk).

We are permitted to visit a vertex more than once on a walk.
� 5 � 1 � 2 � 6 � 3 � 2 � 1.

This is also a walk of length six. Notice that this sequence is exactly the reverse of

that of the previous example.

If W D v0 � v1 � � � � � v`�1 � v`, then its reversal is also a walk (because � is

symmetric). The reversal of W is W
�1 D v` � v`�1 � � � � � v1 � v0.

� 9.

This is a walk of length zero. A singleton vertex is considered a walk.
� 1 � 5 � 1 � 5 � 1.

This is a walk of length four. This walk is called closed because it begins and ends

at the same vertex.

However, the sequence .1; 1; 2; 3; 4/ is not a walk because 1 is not adjacent to 1. Likewise

the sequence .1; 6; 7; 9/ is not a walk because 1 is not adjacent to 6.

Definition 49.2 (Concatenation) Let G be a graph. Suppose W1 and W2 are the following walks:

W1 D v0 � v1 � � � � � v`

W2 D w0 � w1 � � � � � wk

and suppose v` D w0. Their concatenation, denoted W1 CW2, is the walk

v0 � v1 � � � � � .v` D w0/ � w1 � � � � � wk:

Continuing the example from above, the concatenation of the walks 1 � 2 � 3 � 4 and

4 � 7 � 3 � 2 is the walk 1 � 2 � 3 � 4 � 7 � 3 � 2.

Paths

Definition 49.3 (Path) A path in a graph is a walk in which no vertex is repeated.
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For example, for the graph in the figure, the walk 1 � 2 � 6 � 7 � 3 � 4 is a path.

It is also called a .1; 4/-path because it begins at vertex 1 and ends at vertex 4. In general, a

.u; v/-path is a path whose first vertex is u and whose last vertex is v.
1

2
3

4

5

6 7

8
9

Note that the definition of path explicitly requires that no vertex of the graph be repeated.

Implicit in this condition is that no edge be used twice on the path. What do we mean by using

an edge? If a walk (or path) is of the form � � � � u � v � � � � , then we say that the walk used

or traversed the edge uv.

Proposition 49.4 Let P be a path in a graph G. Then P does not traverse any edge of G more than once.

Proof. Suppose, for the sake of contradiction, that some path P in a graph G traverses the

edge e D uv more than once. Without loss of generality, we have

P D � � � � u � v � � � � � u � v � � � � or

P D � � � � u � v � � � � � v � u � � � � :

In the first case, we clearly have repeated both vertices u and v, contradicting the fact that P

is a path. In the second case, it is conceivable that the first and second v we wrote are really

one in the same; that is, the path is of the form

P D � � � � u � v � u � � � �

but as in the previous case, we have repeated vertex u, contradicting the fact that P is a path.

Therefore P does not traverse any edge more than once.

Thus a path of length k contains exactly k C 1 (distinct) vertices and traverses exactly k

(distinct) edges. The word path in graph theory has an alternative meaning. Properly speaking,

a path is a sequence of vertices. However, we often think of a path as a graph or as a subgraph

of a given graph.

A P5 graph:

Definition 49.5 (Path graph) A path is a graph with vertex set V D fv1; v2; : : : ; vng and edge set

E D fviviC1 W 1 � i < ng:

A path on n vertices is denoted Pn.

Given a sequence of vertices in G constituting a path, we can also view that sequence as

a subgraph of G; the vertices of this subgraph are the vertices of the path, and the edges of

this subgraph are the edges traversed by the path.

Note that Pn stands for a path with n vertices. Its length is n � 1.

We use paths to define what it means for one vertex to be connected to another.

Definition 49.6 (Connected to) Let G be a graph and let u; v 2 V.G/. We say that u is connected to v

provided there is a .u; v/-path in G (i.e., a path whose first vertex is u and whose last vertex

is v).

Note that the is-connected-to relation is different from the is-adjacent-to relation. For

example, a vertex is always connected to itself: If v is a vertex, then the path .v)—yes, oneIs-connected-to is reflexive. . .

vertex by itself makes a perfectly legitimate path—is a .v; v/-path, so v is connected to v.

However, a vertex is never adjacent to itself. In the language of relations, is-connected-to is

reflexive, and is-adjacent-to is irreflexive.

The is-connected-to relation is reflexive. What other properties does it exhibit? It is not

hard to check that is-connected-to is not (in general) irreflexive or antisymmetric. (See Exer-

cise 49.9.)

Is the is-connected-to a relation symmetric? Suppose, in a graphG, vertex u is connected. . . and symmetric . . .

to vertex v. This means there is a .u; v/-path in G; call this path P . Its reversal, P�1, is a

.v; u/-path, and so v is connected to u. Thus is-connected-to is a symmetric relation.

Is the is-connected-to relation transitive? Suppose, in a graph G, we know that x is. . . and transitive.

connected to y and that y is connected to z. We want to prove that x is connected to z.
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Since x is connected to y, there must be an .x; y/-path; let’s call it P . And since y is

connected to z, there must be a .y; z/-path. Let’s call it Q. Notice that the last vertex of P is

the same as the first vertex of Q (it’s y). Therefore we can form the concatenation P CQ,

which is an .x; z/-path. Therefore x is connected to z.

x

y

z

Nice proof, huh? Not really. The above proof is incorrect! What went wrong? Try to

figure out the difficulty yourself. The figure gives you a big hint.

The problem with the proof is that although P and Q are paths, and it is true that the last

vertex of P and the first vertex of Q are the same, we do not know that P CQ is a path. All

we can say for certain is that P CQ is an .x; y/-walk.

To complete our argument that is-connected-to is transitive, we need to prove that the

existence of an .x; y/-walk implies the existence of an .x; y/-path. Let’s state this formally

and prove it.

Lemma 49.7 Let G be a graph and let x; y 2 V.G/. If there is an .x; y/-walk in G, then there is an

.x; y/-path in G.

The truth of this lemma is not too hard to see. If there is a walk and if this walk contains

a repeated vertex, we can shorten the walk by removing the portion of the walk between the

repeated vertex.Of course, this might not be a walk, so we may need to do this operation again.

This analysis can lead to a mushy proof. Here is a crisp way to express the same basic idea.

Proof. Suppose there is an .x; y/-walk in a graph G. Note that the length of an .x; y/-walk

is a natural number. Thus, by the Well-Ordering Principle, there is a shortest .x; y/-walk, P .There may be more than one shortest

.x; y/-walk; let P be any one of

them.
We claim that P is, in fact, an .x; y/-path. Suppose, for the sake of contradiction, that P

is not an .x; y/-path. If P is not a path, then there must be some vertex, u, that is repeated on

the path. In other words,

P D x � � � � �‹ � u � � � � � u
™

�‹‹ � � � � � y:

Note:We do not rule out the possibility that u D x and/or u D y. We only assume that vertex

u appears at least twice, so the second (colored) u appears later in the sequence than the first.

Form a new walk P 0 by deleting the portion of the walk marked in color. Note that this results

in a new walk. Note that vertices ‹ and ‹‹ are both adjacent to u, so the shortened sequence

P 0 is still an .x; y/-walk. However, by construction P is a shortest .x; y/-walk, contradicting

the fact that P 0 is an even shorter .x; y/-walk.)(
Therefore P is an .x; y/-path.

We return to where we left off before we proved this lemma. We were trying to show that

the relation is-connected-to is transitive. Let’s try the proof again. Suppose, in a graph G, we

know that x is connected to y and that y is connected to z. By definition, this means there are

an .x; y/-path P and a .y; z/-path Q. Form the walk W D P CQ. This is an .x; z/-walk, so

by Lemma 49.7, there must be an .x; z/-path in G. Therefore x is connected to z.

We have shown that is-connected-to is reflexive, symmetric, and transitive. In other words,

we have proved the following:

Theorem 49.8 Let G be a graph. The is-connected-to relation is an equivalence relation on V.G/.

Whenever we have an equivalence relation, we also have a partition: the equivalence

classes of the relation. What can we say about the equivalence classes of the is-connected-to

relation?

Let u and v be vertices of a graph G. If u and v are in the same equivalence class of the

is-connected-to relation, then there is a path joining them (from u to v, as well as its reversal,

from v to u). On the other hand, if u and v are in different equivalence classes, then u and v

are not related by the is-connected-to relation. In this case, we know there is no path joining

u to v, or vice versa.

Consider the graph in the figure (the same graph from Example 47.2). The equivalence

1

2

3

4
5

6

7

classes of the is-connected-to relation on this graph are

f1; 2; 3; 4g; f5; 6g; and f7g:
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The equivalence classes of is-connected-to decompose a graph into components.

Definition 49.9 (Component) A component of G is a subgraph of G induced on an equivalence class of the

is-connected-to relation on V.G/.

In other words, we partition the vertices; two vertices are in the same part exactly when

there is a path from one to the other. For each part of this partition, there is a component of

the graph. The component is the subgraph formed by taking all vertices in one of these parts

and all edges of the graph that involve those vertices.

The graph we have been considering (from Example 47.2) has three components:

GŒf1; 2; 3; 4g�; GŒf5; 6g�; and GŒf7g�:

The first component has four vertices and four edges. The second component has two vertices

and one edge. And the third component has just one vertex and no edges.

If a graph is edgeless, then each of its vertices forms a component unto itself. At the

other extreme, it is possible that there is only one component. In this case, we call the graph

connected. Here is another way to state this.

Definition 49.10 (Connected) A graph is called connected provided each pair of vertices in the graph is

connected by a path; that is, for all x; y 2 V.G/, there is an .x; y/-path.

Disconnection

Definition 49.11 (Cut vertex, cut edge) Let G be a graph. A vertex v 2 V.G/ is called a cut vertex of G

provided G � v has more components than G.

Similarly, an edge e 2 E.G/ is called a cut edge of G provided G � e has more compo-

nents than G.

In particular, if G is a connected graph, a cut vertex v is a vertex such that G � v is

disconnected. Likewise e is a cut edge if G � e is disconnected. The graph in the figure has

two cut edges and four cut vertices (highlighted).

Theorem 49.12 Let G be a connected graph and suppose e 2 E.G/ is a cut edge of G. Then G�e has exactly

two components.

Proof. Let G be a connected graph and let e 2 E.G/ be a cut edge. Because G is connected,

it has exactly one component. Because e is a cut edge, G � e has more components than G

(i.e., G � e has at least two components). Our job is to show that it does not have more than

two components.

Suppose, for the sake of contradiction, G � e has three (or more) components. Let a, b,

and c be three vertices of G � e, each in a separate component. This implies that there is no

path joining any pair of them.

Let P be an .a; b/-path in G. Because there is no .a; b/-path in G � e, we know P must

traverse the edge e. Suppose x and y are the endpoints of the edge e, and without loss of

generality, the path P traverses e in the order x, then y; that is,

P D a � � � � � x � y � � � � � b:

Similarly, since G is connected, there is a path Q from c to a that must use the edge

e D xy. Which vertex, x or y, appears first on Q as we travel from c to a?

� If x appears before y on the .c; a/-path Q, then notice that we have, in G � e, a walk

Pa
b

c

x y
e

Pa
b

c

x y
e

from c to a. Use the .c; x/-portion of Q, concatenated with the .x; a/-portion of P�1.

This yields a .c; a/-walk in G � e and hence a .c; a/-path in G � e (by Lemma 49.7).

This, however, is a contradiction, because a and c are in separate components of G � e.
� If y appears before x on the .c; a/-path Q, then notice that we have, in G�e, a walk from

c to b. Concatenate that .c; y/-section of Q with the .y; b/-section of P . This walk does
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not use the edge e. Therefore there is a .c; a/-walk in G � e and hence (Lemma 49.7) a

.c; a/-walk in G � e. This contradicts the fact that in G � e we have c and b in separate

components.

Therefore G � e has at most two components.

Recap

We began with the concepts of walk and path. From there, we defined what it means for a

graph to be connected and what its connected components are. We discussed cut vertices and

cut edges.

49 Exercises 49.1. Let G be the graph in the figure.

a

b

a. How many different paths are there from a to b?

b. How many different walks are there from a to b?

49.2. Is concatenation a commutative operation?

49.3. Prove that Kn is connected.

49.4. Let n � 2 be an integer. Form a graph Gn whose vertices are all the two-element

subsets of f1; 2; : : : ; ng. In this graph we have an edge between distinct vertices fa; bg
and fc; d g exactly when fa; bg \ fc; d g D ;.

Please answer:

a. How many vertices does Gn have?

b. How many edges does Gn have?

c. For which values of n � 2 is Gn connected? Prove your answer.

49.5. Consider the following (incorrect) restatement of the definition of connected: “A graph

G is connected provided there is a path that contains every pair of vertices in G.”

What is wrong with this sentence?

49.6. Let G be a graph. A path P in G that contains all the vertices of G is called a Hamilto-

nian path. Prove that the following graph does not have a Hamiltonian path.

49.7. How many Hamiltonian paths (see previous problem for definition) does a complete

graph on n � 2 vertices have?

49.8. Mouse and cheese. A block of cheese is made up of 3 � 3 � 3 cubes as in the figure.

Is it possible for a mouse to tunnel its way through this block of cheese by (a) starting

at a corner, (b) eating its way from cube to adjacent cube, (c) never passing though any

cube twice, and, finally, (d) finishing at the center cube? Prove your answer.

49.9. Consider the is-connected-to relation on the vertices of a graph. Show that is-connected-

to need not be irreflexive or antisymmetric.

49.10. Let G be a graph. Prove that G or G (or both) must be connected.

49.11. Let G be a graph with n � 2 vertices. Prove that if ı.G/ � 1

2
n, then G is connected.

49.12. Let G be a graph with n � 2 vertices.

a. Prove that if G has at least
�

n�1

2

�

C 1 edges, then G is connected.

b. Show that the result in (a) is best possible; that is, for each n � 2, prove there is a

graph with
�

n�1

2

�

edges that is not connected.

49.13. Let G be a graph and let v; w 2 V.G/. The distance from v to w is the length of a

This exercise develops the notion of

distance in graphs. We need this

concept later (in Section 52).

x y

shortest .v; w/-path and is denoted d.v; w/. In case there is no v; w-path, we may either

say that d.v; w/ is undefined or infinite. For the graph in the figure, there are several

.x; y/-paths; the shortest among them have length 2. Thus d.x; y/ D 2.
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Prove that graph distance satisfies the triangle inequality. That is, if x; y; z are

vertices of a connected graph G, then

d.x; z/ � d.x; y/C d.y; z/:

49.14. For those who have studied linear algebra. Let A be the adjacency matrix of a graph

G. That is, we label the vertices of G as v1; v2; : : : ; vn. The matrix A is an n�n matrix

whose i; j -entry is 1 if vivj 2 E.G/ and is 0 otherwise.

Let k 2 N. Prove that the i; j -entry of Ak is the number of walks of length k from

vi to vj .

49.15. Let n and k be integers with 1 � k < n. Form a graphG whose vertices are the integers

f0; 1; 2; : : : ; n � 1g. We have an edge joining vertices a and b provided

a � b � ˙k .mod n/:

For example, if n D 20 and k D 6, then vertex 2 would be adjacent to vertices 8 and

16.

a. Find necessary and sufficient conditions on n and k such that G is connected.

b. Find a formula involving n and k for the number of connected components of G.

50 Trees

One of the simplest family of graphs are the trees. Graph theory problems can be difficult.

Often, a good way to begin thinking about these problems is to solve them for trees. Trees are

also the most basic connected graph. What are trees? They are connected graphs that have no

cycles. We begin by defining the term cycle.

Cycles

Definition 50.1 (Cycle) A cycle is a walk of length at least three in which the first and last vertex are the

same, but no other vertices are repeated.

The term cycle also refers to a (sub)graph consisting of the vertices and edges of such a

walk. In other words, a cycle is a graph of the form G D .V; E/ where

V D fv1; v2; : : : ; vng and

E D fv1v2; v2v3; : : : ; vn�1vn; vnv1g :

A cycle (graph) on n vertices is denoted Cn.

In the upper figure we see a cycle of length six as a subgraph of a graph. The lower figure

shows the graph C6.

Forests and Trees

Definition 50.2 (Forest) Let G be a graph. If G contains no cycles, then we call G acyclic. Alternatively, we

call G a forest.

The term acyclic is more natural and (almost) does not need a definition—its standard

English meaning is a perfect match for its mathematical usage. The term forest is widely used

as well. The rationale for this word is that here, just as in real life, a forest is a collection of

trees.

Definition 50.3 (Tree) A tree is a connected, acyclic graph.

In other words, a tree is a connected forest.

The forest in the figure contains four connected components. Each component of a forest

is a tree.

Note that a single isolated vertex (e.g., the graph K1) is a tree.
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There is only one possible structure for a tree on two vertices: Since a tree on two vertices

must be connected, there must be an edge joining the two vertices. This is the only possible

edge in the graph, and a graph on two vertices cannot have a cycle (a cycle requires at least

three distinct vertices). Therefore any tree on two vertices must be a K2.

There is also only one possible structure for a tree on three vertices. Since the graph is

connected, there certainly must be at least one edge—say, joining vertices a and b. However,

if there were only one edge, then the third vertex, c, would not be connected to either a or b,

and so the graph would not be connected. Thus there must be at least one more edge—without

loss of generality, let us say that it is the edge from b to c. So far we have a � b � c, but

ac … E . Now the graph is connected. Might we also add the edge ac? If we do, the graph is

connected, but it is no longer acyclic, as we would have the cycle a � b � c � a. Any tree

on three vertices must be a P3.

However, on four vertices, we can have two different sorts of trees. We can have the path

P4 and we can have a star: a graph of the form G D .V; E/ where

V D fa; x; y; zg and E D fax; ay; azg:

Properties of Trees

Trees have a number of interesting properties. Here we explore several of them.

Theorem 50.4 Let T be a tree. For any two vertices a and b in V.T /, there is a unique .a; b/-path.

a

b

Conversely, if G is a graph with the property that for any two verticesu; v, there is exactly

one .u; v/-path, then G must be a tree.

Proof. This is an if-and-only-if style theorem. It can be rephrased: A graph is a tree if and

only if between any two vertices there is a unique path.

.)/ Suppose T is a tree and let a; b 2 V.T /. We need to prove that there is a unique .a; b/-

path in T . We have two things to prove:

� Existence: The path exists.
� Uniqueness: There can be only one such path.

The first task is easy. There exists an .a; b/-path because (by definition) trees are connected.

The second task is more complicated. To prove uniqueness, we use Proof Template 14.

Suppose, for the sake of contradiction, there were two (or more) different .a; b/-paths in

T ; let us call them P and Q. It would be tempting at this point to reason as follows: “Follow

P

Qa b that path P from a to b and then the path Q from b to a; this gives a cycle—contradiction!

Therefore there can be only one .a; b/-path.” However, this reasoning is incorrect. As the

figure suggests, the paths P and Q might overlap or cross each other; we cannot say that

P CQ�1 is a cycle. We need to be more careful.

Since P and Q are different paths, we know that at some point one of them traverses

a different edge than the other. Let us say that from a to x the paths are the same (perhaps

a D x) but then they traverse different edges; that is,

P W a � � � � � x � y � � � � � b

Q W a � � � � � x � z � � � � � b:

This implies that xy is an edge ofP and not an edge ofQ (becauseQ cannot repeat vertices—

it’s a path!—the vertex x does not appear again on Q and so there is no opportunity to see the

edge xy on Q).

Now consider the graph T �xy (delete the edge xy from T ). We claim there is an .x; y/-

path in T � xy. Why? Notice that there is an .x; y/-walk in T � xy: Start at x, follow P�1

from x to a, follow Q from a to b, and then follow P�1 from b to y. Notice that on this

walk we never traverse the edge xy. Thus there is an .x; y/-walk in T � xy. Therefore, by

Lemma 49.7, there is an .x; y/-path in T �xy; let us call this path R. The path R must contain

at least one vertex in addition to x and y because R does not use the edge xy to get from x

to y. Now, if we add the edge xy to the path R, we have a cycle (traverse R from x to y and

then back to x along the edge yx). This, at long last, is the contradiction we sought: a cycle

in the tree T .)( Therefore there can be at most one .a; b/-path.
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.(/ Let G be a graph with the property that between any two vertices there is exactly one

path. We must prove that G is a tree. We leave this for you (Exercise 50.6).

Theorem 50.4 gives an alternative characterization of trees. We can prove that a graph

is a tree directly by the definition: show that it is connected and acyclic. Alternatively, we can

prove that a graph is a tree by showing that between any two vertices of G there is a unique

path. The next theorem gives yet another characterization of trees.

Theorem 50.5 Let G be a connected graph. Then G is a tree if and only if every edge of G is a cut edge.

Proof. Let G be a connected graph.

.)/ Suppose G is a tree. Let e be any edge of G. We must prove that e is a cut edge. Suppose

the endpoints of e are x and y. To prove that e is a cut edge, we must prove that G � e is

disconnected.

Notice that in G there is an .x; y/-path—namely, x � y (traverse just the edge e). By

Theorem 50.4, this path is unique—there can be no other .x; y/-paths. Thus, if we delete the

edge e D xy from G, there can be no .x; y/-paths (i.e., G � e is disconnected). Therefore e

is a cut edge.

.(/ Suppose every edge of G is a cut edge. We must prove that G is a tree. By assumption,

G is connected, so we must show that G is acyclic.

Suppose, for the sake of contradiction, that G contains a cycle C . Let e D xy be an edge

of this cycle. Notice that the vertices and other edges of C form an .x; y/-path, that we call P .

Since e is a cut edge of G, we know that G � e is disconnected. This means there exist

P
Q

a bx y

e

vertices a; b for which there is no .a; b/-path in G � e. However, in G, there is an .a; b/-path

Q; hence Q must traverse the edge e. Without loss of generality, we traverse e from x to y as

we step along Q:

Q D a � � � � � x � y � � � � � b:

We are nearly finished. Notice that in G�e there is an .a; b/-walk. We traverse Q from a

to x, then P from x to y, and then Q from y to b (see the figure). By Lemma 49.7, this implies

that in G � e there is an .a; b/-path, contradicting the fact that there is no such path.)(
Thus G has no cycles and is therefore a tree.

Leaves

In biology, a leaf is a part of the tree that hangs at the “ends” of the tree. We use the same

word in graph theory to convey a similar idea.

Definition 50.6 (Leaf) A leaf of a graph is a vertex of degree 1.

Leaves are also called end vertices or pendant vertices. The tree in the figure has four

leaves (marked).

Does every tree have leaves? No. The graph K1 is a trees but it does not have a vertex of

degree 1. Otherwise, every tree has a leaf.

Theorem 50.7 Every tree with at least two vertices has a leaf.

Proof. Let T be a tree with at least two vertices. Let P be a longest path in T (i.e., P is a

path in T and there are no paths in T that are longer). Since T is connected and contains at

least two vertices, P has two or more vertices. Say,

P D v0 � v1 � � � � � v`

where ` � 1.

We claim that the first and last vertices of P (v0 and v`) are leaves of T .
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Suppose, for the sake of contradiction, that v0 is not a leaf. Since v0 has at least one

neighbor (v1), we have that d.v0/ � 2. Let x be another neighbor of v0 (i.e., x 6D v1).

Note that x is not a vertex on P , for otherwise we would have a cycle:

v0 � v1 � � � � � x � v0:

Thus we can prepend x to the path P to form the path Q:

Q D x � v0 � v1 � � � � � v`
œ

P

:

However, notice that Q is a path in T that is longer than P .)( Therefore v0 is a leaf.

Likewise v` is a leaf. Therefore T has at least two leaves.

In fact, we proved that a tree with at least two vertices must have two (or more) leaves.

Next we prove that plucking a leaf off a tree leaves behind a smaller tree.

Proposition 50.8 Let T be a tree and let v be a leaf of T . Then T � v is a tree.

A converse of this statement is also true; we leave the proof of the converse to you as an

exercise (Exercise 50.7).

Proof. We need to prove that T � v is a tree. Clearly T � v is acyclic: If T � v contained a

cycle, that cycle would also exist in T . Thus we must show that T � v is connected.

Let a; b 2 V.T � v/. We must show there is an .a; b/-path in T � v. We know, since T

is connected, that there is an .a; b/-path P in T . We claim that P does not include the vertex

v. Otherwise we would have

P D a � � � � � v � � � � � b

and since v is neither the first nor the last vertex on this path, it has two distinct neighbors on

the path, contradicting the fact that d.v/ D 1. Therefore P is an .a; b/-path in T � v, and so

T � v is connected and a tree.

Proposition 50.8 forms the basis of a proof technique for trees. Many proofs about trees

are by induction on the number of vertices. Proof Template 25 gives the basic form for such a

proof.

Proof Template 25 Proving theorems about trees by leaf deletion.

To prove: Some theorem about trees.

Proof. We prove the result by induction on the number of vertices in T .

Basis case: Claim the theorem is true for all trees on n D 1 vertices. (This should be

easy!)

Induction hypothesis: Suppose the theorem is true for all trees on n D k vertices.

Let T be a tree on n D kC 1 vertices. Let v be a leaf of T . Let T 0 D T � v. Note that

T 0 is a tree with k vertices, so by induction T 0 satisfies the theorem.

Now we use the fact that the theorem is true for T 0 to somehow prove that the conclu-

sion of the theorem holds for T . (This might be tricky.)

Thus the result is proved by induction.

We demonstrate this proof technique for the following result.

Theorem 50.9 Let T be a tree with n � 1 vertices. Then T has n � 1 edges.

We use Proof Template 25 to prove this result.
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Proof. We prove Theorem 50.9 by induction on the number of vertices in T .

Basis case: Claim the theorem is true for all trees on n D 1 vertices. If T has only n D 1

vertex, then clearly it has 0 D n � 1 edges.

Induction hypothesis: Suppose Theorem 50.9 is true for all trees on n D k vertices.

Let T be a tree on n D k C 1 vertices. We need to prove that T has n � 1 D k edges.

Let v be a leaf of T and let T 0 D T � v. Note that T 0 is a tree with k vertices, so by

induction T
0 satisfies the theorem (i.e., T

0 has k � 1 edges).

Since v is a leaf of T , we have d.v/ D 1. This means that when we deleted v from T , we

deleted exactly one edge. ThereforeT has onemore edge than T 0; that is, T has .k�1/C1 D k

edges.

Thus the result is proved by induction.

Spanning Trees

Trees are, in a sense, minimally connected graphs. By definition, they are connected, but (see

Theorem 50.5) the deletion of any edge disconnects a tree.

Definition 50.10 (Spanning tree) Let G be a graph. A spanning tree of G is a spanning subgraph of G that is

a tree.

(Recall that a spanning subgraph of G is a subgraph that has the same vertices as G. See

Definition 48.3.)

The definition appears not to say anything because the words spanning tree are perfectly

descriptive. A spanning tree of G is a tree subgraph of G that includes all the vertices of G.

For the graph in the figure, we have highlighted one of its many spanning trees.

Theorem 50.11 A graph has a spanning tree if and only if it is connected.

Proof. .(/ Suppose G has a spanning tree T . We want to show that G is connected. Let

u; v 2 V.G/. Since T is spanning, we have V.T / D V.G/, and so u; v 2 V.T /. Since T is

connected, there is a .u; v/-path P in T . Since T is a subgraph of G, P is a .u; v/-path of G.

Therefore G is connected.

.)/ Suppose G is connected. Let T be a spanning connected subgraph of G with the least

Note: G is, itself, a spanning

connected subgraph of G. Thus there

is at least one such subgraph. Among

all spanning connected subgraphs,

we choose one with the least number

of edges and we call it T .

number of edges.

We claim that T is a tree. By construction, T is connected. Furthermore, we claim that

every edge of T is a cut edge. Otherwise, if e 2 E.T / were not a cut edge of T , then T � e

would be a smaller spanning connected subgraph of G.)( Therefore every edge of T is a

cut edge. Hence (Theorem 50.5) T is a tree, and so G has a spanning tree.

We can use this result to provide yet another characterization of trees.

Theorem 50.12 Let G be a connected graph on n � 1 vertices. Then G is a tree if and only if G has exactly

n � 1 edges.

Proof. .)/ This was shown in Theorem 50.9.

.(/ Suppose G is a connected graph with n vertices and n� 1 edges. By Theorem 50.11, we

know that G has a spanning tree T ; that is, T is a tree, V.T / D V.G/, and E.T / � E.G/.

Note, however, that

jE.T /j D jV.T /j � 1 D jV.G/j � 1 D jE.G/j

so we actually have E.T / D E.G/. Therefore G D T (i.e., G is a tree).

Recap

We introduced the notions of cycle, forest, and tree. We proved that the following statements

about a graph G are equivalent:
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� G is a tree.
� G is connected and acyclic.
� G is connected and every edge of G is a cut edge.
� Between any two vertices of G there is a unique path.
� G is connected and jE.G/j D jV.G/j � 1.

We also introduced the concept of spanning tree and proved that a graph has a spanning

tree if and only if it is connected.

50 Exercises 50.1. Let G be a graph in which every vertex has degree 2. Is G necessarily a cycle?

50.2. Let T be a tree. Prove that the average degree of a vertex in T is less than 2.

50.3. There are exactly three trees with vertex set f1; 2; 3g. Note that all these trees are paths;
the only difference is which vertex has degree 2.

How many trees have vertex set f1; 2; 3; 4g?
50.4. Let d1; d2; : : : ; dn be n � 2 positive integers (not necessarily distinct). Prove that

d1; : : : ; dn are the degrees of the vertices of a tree on n vertices if and only if
Pn

iD1
di D

2n � 2.

50.5. Let e be an edge of a graph G. Prove that e is not a cut edge if and only if e is in a cycle

of G.

50.6. Complete the proof of Theorem 50.4. That is, prove that if G is a graph in which any

two vertices are joined by a unique path, then G must be a tree.

50.7. Prove the following converse to Proposition 50.8:

Let T be a tree with at least two vertices and let v 2 V.T /. If T � v is a tree, then

v is a leaf.

50.8. Let T be a tree whose vertices are the integers 1 through n. We call T a recursive tree

12

3

4

5 6

7 8

9

if it has the following special property. Let P be any path in T starting at vertex 1.

Then, as we move along the path P , the vertices we encounter come in increasing

numerical order. The tree in the figure is an example of a recursive tree. Notice that all

paths starting at vertex 1 encounter the vertices in increasing order. For example, the

highlighted path encounters the vertices 1 < 4 < 8 < 9.

Please do the following:

a. Prove: If T is a recursive tree on n vertices, then vertex n is a leaf (provided n > 1).

b. Prove: If T is a recursive tree on n > 1 vertices, then T � n (the tree T with vertex

n deleted) is also a recursive tree (on n � 1 vertices).

c. Prove: If T is a recursive tree on n vertices and a new vertex nC 1 is attached as a

leaf to any vertex of T to form a new tree T 0, then T 0 is also a recursive tree.

d. How many different recursive trees on n vertices are there? Prove your answer.

50.9. Let G be a forest with n vertices and c components. Find and prove a formula for the

number of edges in G.

50.10. Prove that a graph is a forest if and only if all of its edges are cut edges.

50.11. In this problem, you will develop a new proof that every tree with two or more vertices

has a leaf. Here is an outline for your proof.

a. First prove, using strong induction and the fact that every edge of a tree is a cut edge

(Theorem 50.5), that a tree with n vertices has exactly n � 1 edges.

Please note that our previous proof of this fact (Theorem 50.9) used the fact that

trees have leaves; that is why we need an alternative proof.

b. Use (a) to prove that the average degree of a vertex in a tree is less than 2.

c. Use (b) to prove that every tree (with at least two vertices) has a leaf.

50.12. Let T be a tree with u; v 2 V.T /, u 6D v, and uv … E.T /. Prove that if we add the

edge uv to T , the resulting graph has exactly one cycle.

50.13. Let G be a connected graph with jV.G/j D jE.G/j. Prove that G contains exactly one

cycle.

50.14. Prove:

a. Every cycle is connected.

b. Every cycle is 2-regular.

c. Conversely, every connected, 2-regular graph must be a cycle.
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50.15. Let e be an edge of a graph G. Prove that e is a cut edge if and only if e is not in any

cycle of G.

50.16. LetG be a graph. A cycle of G that contains all the vertices in G is called aHamiltonian

cycle.

a. Show that if n � 5, then Cn has a Hamiltonian cycle.

b. Prove that the graph in the figure does not have a Hamiltonian cycle.

50.17. Consider the following algorithm.
� Input: A connected graph G.
� Output: A spanning tree of G.

(1) Let T be a graph with the same vertices as G, but with no edges.

(2) Let e1; e2; : : : ; em be the edges of G.

(3) For k D 1; 2; : : : ; m, do:

(3a) If adding edge ek to T does not form a cycle with edges already in T , then

add edge ek to T .

(4) Output T .

Prove that this algorithm is correct. In other words, prove that whenever the input to

this algorithm is a connected graph, the output of this algorithm is a spanning tree of G.

50.18. Consider the following algorithm.
� Input: A connected graph G.
� Output: A spanning tree of G.

(1) Let T be a copy of G.

(2) Let e1; e2; : : : ; em be the edges of G.

(3) For k D 1; 2; : : : ; m, do:

(3a) If edge ek is not a cut edge of T , then delete ek from T

(4) Output T .

Prove that this algorithm is correct. In other words, prove that whenever the input to

this algorithm is a connected graph, the output of this algorithm is a spanning tree of G.

50.19. Let G be a connected graph. The Weiner index of G, denoted W.G/, is the sum of the

distances between all pairs of vertices in G. In other words, if V.G/ D f1; 2; 3; : : : ; ng,
then

W.G/ D
X

1�i<j�n

d.i; j /

where d.i; j / is the distance between vertices i and j (see Exercise 49.13). For exam-

ple, for a path on four vertices we have

W.P4/ D .1C 2C 3/C .1C 2/C 1 D 10:

In this problem we ask that you show that a star (a tree with one vertex adjacent to all

the other vertices which are, consequently, leaves) is the tree with the smallest Weiner

index of all trees. Just for this problem, let Sn denote the star with n vertices.

a. Calculate W.Sn/ in simplest possible terms.

b. Prove that if T is any tree on n vertices, then W.T / � W.Sn/.

c. Prove that if T is any tree on n vertices and W.T / D W.Sn/ then T must be a star.

51 Eulerian Graphs

Earlier (in Section 47) we presented the classic Seven Bridges of Königsburg problem. We

explained that it is impossible to walk all seven bridges without retracing a bridge (or taking

a swim across the river) because the multigraph that represents the bridges has more than two

vertices of odd degree.

Consider the two figures shown. The figure on the left has four corners where an odd

number of lines meet. Therefore, it is impossible to draw this figure without lifting your pencil

or redrawing a line. The odd corners must be the first or last points on such a drawing.
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The figure on the right, however, has only two corners with an odd number of lines (the

lower two). These points must be the first/last points in a drawing. Can this figure be drawn

without lifting your pencil or retracing a line? Try it! You have an important hint. You must

start at one of the lower two corners. With that hint, it is simple to draw this figure.

In this section, we recast this bridge-walking/figure-drawing problem as a graph theory

problem.

Definition 51.1 (Eulerian trail, tour) Let G be a graph. A walk in G that traverses every edge exactly once

is called an Eulerian trail. If, in addition, the trail begins and ends at the same vertex, we call

the walk an Eulerian tour. Finally, if G has an Eulerian tour, we call G Eulerian.

The problems we consider are the following: Which graphs have Eulerian trails? Which

graphs have Eulerian tours (i.e., are Eulerian)? In this section, we give a complete answer.

Necessary Conditions

If a graph G has an Eulerian trail, then it is (almost) necessary that G be connected. If the

graph has two (or more) components, it would be impossible for the trail to visit more than

one component, so there is no way we can traverse all the edges of the graph. Impossible, that

is, unless those additional components did not have any edges to traverse! This can happen ifAn isolated vertex is a vertex of

degree 0. all (but one) of the components consist of just a single isolated vertex.

Let us call a component of a graph trivial if it contains only one vertex. Otherwise we call

the component nontrivial. Thus the first necessary condition for the existence of an Eulerian

trail is the following:

� If G is Eulerian, then G has at most one nontrivial component.

Thus, we lose no generality by only considering connected graphs.

Let us revisit the degree conditions. Suppose v is a vertex of a graph G in which there is

an Eulerian trail W . If v is neither the first nor the last vertex on this trail, then we observe

that v must have even degree:

W D first � � � � �‹ � v �‹ � � � � �‹ � v �‹ � � � � �‹ � v �‹ � � � � � last:

Since every edge of the graph is traversed exactly once, and since for every edge entering v

on this tour there is another edge exiting v, it must be the case that d.v/ is even.

We therefore have the following:

� If G has an Eulerian trail, then it has at most two vertices of odd degree.

What can we say about the degrees of the first and last vertices on the trail? Suppose that

the first and last vertices on the trail are different. The degree of the first vertex on the trail

must be odd by the following reasoning. There is one edge traversed from this vertex when

the trail begins. Then, every other time we visit the first vertex, an entering edge is paired with

an exiting edge. Therefore, its degree must be odd. The same is true for the last vertex on the

trail; its degree must be odd.

� If G has an Eulerian trail that begins at a vertex a and ends a vertex b (with a 6D b), then

vertices a and b have odd degree.

If the trail begins and ends at the same vertex a, we observe that d.a/ must be even. WeAnother reason d.a/ is even: If

d.a/ were odd, it would be the only

vertex of odd degree, contradicting

Exercise 47.15.

have one edge exiting a at the start of the tour which matches the final edge entering a at the

end of the tour. Every other time we visit a, entering and exiting edges pair up, and so, all

told, the number of edges incident with a must be even. We therefore have the following:

� If G has an Eulerian tour (i.e., if G is Eulerian), then all vertices in G have even degree.

We have one last remark to make about Eulerian tours before we present the main theo-

rems for this section. Suppose we have an Eulerian tour in a connected graph that begins and

ends at a vertex a, and suppose b is the second vertex on this tour:

W D a � b � � � � � � � � a:
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We can, instead, begin the tour at b, follow the original tour until we get to the last visit to a,

and finish at b; that is,

W
0 D b � � � � � � � � a � b

is also an Eulerian tour starting/ending at b. If we shift the tour repeatedly, we see that we can

begin an Eulerian tour at any vertex we choose.

� If G is a connected Eulerian graph, then G has an Euler tour that begins/ends at any

vertex.

Main Theorems

The necessary conditions we just delineated motivate what we seek to prove.

Theorem 51.2 Let G be a connected graph all of whose vertices have even degree. For every vertex v 2
V.G/, there is an Eulerian tour that begins and ends at v.

Theorem 51.3 Let G be a connected graph with exactly two vertices of odd degree: a and b. Then G has an

Eulerian trail that begins at a and ends at b.

A traditional way to prove these results is first to prove Theorem 51.2 and then use it to

prove Theorem 51.3. We take a different, more interesting approach. We establish these two

theorems with a single proof! The proof is by induction on the number of edges in the graph.

To prove the two results at the same time, we require a more elaborate induction hypothesis,

but this makes the induction easier—an example of induction loading.

Proof. We prove both Theorems 51.2 and 51.3 by induction on the number of edges in G.

Basis case: SupposeG has 0 edges. Then G consists of just 1 isolated vertex, v. The walk

.v/—remember: a single vertex by itself is a walk—is an Eulerian trail of G.

(This is a perfectly valid basis case, but it is so simple we do one more unnecessary basis

step to make sure nothing strange is happening here. It also appears to have nothing to do with

Theorem 51.3.)

Another basis case: Suppose G has one edge. Since G is connected, the graph must

consist of just two vertices, a and b, and a single edge joining them. Now G has exactly two

vertices of odd degree, and clearly a � b is an Eulerian trail starting at one and ending at the

other.

Induction hypothesis: Suppose a connected graph has m edges. If all of its vertices have

even degree, then there is an Eulerian tour beginning/ending at any vertex. If exactly two of

its vertices have odd degree, then there is an Eulerian trail that begins at one of these vertices

and ends at the other.

Let G be a connected graph with mC 1 edges.

� Case 1: All of G’s vertices have even degree.

In this case, we must show that we can form an Eulerian tour starting at any vertex

of G. Let v be an arbitrary vertex of G.

Let w be any neighbor of v. Consider the graph G
0 D G � vw. Notice that in G

0

all vertices have exactly the same degree that they had in G, except for v and w; their

degrees have decreased by exactly 1. Thus G0 has exactly two vertices of odd degree.
We also assert that G0 is connected. We defer this part of the proof to Lemma 51.4

(see the “Unfinished business” section), which assures us that if all vertices in a graph

have even degree, then no edge is a cut edge.

Here is the lovely part: Since G0 is connected and has exactly two vertices of odd

degree, it has (by induction) an Eulerian trail that begins at w and ends at v.

If we add the edge vw to the beginning of W , the result is an Eulerian tour of G that

begins/ends at v!
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� Case 2: Exactly two of G’s vertices, a and b, have odd degree.

We must show there is an Eulerian trail that begins at a and ends at b.

– Subcase 2a: Suppose d.a/ D 1.

In this case, a has exactly one neighbor, x. It is possible that x D b or x 6D b. We

check both possibilities.

Let G0 D G � a; that is, delete vertex a (and the one edge incident thereon) from G.

Notice that d.x/ drops by 1, while all other vertices have the same degree as before.

Also note that G
0 has m edges and is connected (see the proof of Proposition 50.8).

If x D b, then all vertices in G0 have even degree (a is gone and b’s degree has

changed by 1). Therefore, by induction, G0 has an Eulerian tour W that begins and

ends at vertex b. If we insert the edge ab at the beginning of W , we have constructed

an Eulerian trail that begins at a and ends at b.

If x 6D b, then G0 has exactly two vertices of odd degree (the degree of x in G0 is
now odd, and b still has odd degree). Therefore, by induction, there is an Eulerian

trail W that begins at x and ends at b. If we prepend the edge ax to W , we have an

Eulerian trail in G that begins at a and ends at b.

– Subcase 2b: Suppose d.a/ > 1.

Since d.a/ is odd, we have d.a/ � 3. We claim that at least one of the edges incident

with a is not a cut edge (this is proved in Lemma 51.5 in “Unfinished business,”).

Let ax be an edge incident with a that is not a cut edge of G. Let G0 D G � ax.

Notice that, just as in subcase 2a, we might have x D b or x 6D b.

In the case x D b, then, just as before, all vertices of G0 have even degree, and we

can form, by induction, an Eulerian tour in G0 that begins/ends at b and then prepend

the edge ab to form an Eulerian trail in G that begins at a and ends at b, as required.

In the case x 6D b, then, just as before, we have exactly two vertices of odd degree

in G0, namely, x and b. By induction, we form, in G0, an Eulerian trail that starts at

x and ends at b. We prepend the edge ax to yield the requisite Eulerian trail in G.

In all cases, we find the required Eulerian trail/tour in G.

The proof of Theorems 51.2 and 51.3 implicitly gives an algorithm for finding Eulerian

trails in graphs. The algorithm can, rather imprecisely, be expressed as follows: Don’t make

any blatant mistakes. What do we mean by this?

First, if the graph has two vertices of odd degree, you must begin the trail at one of these

vertices.

Second, imagine you are part way through drawing the graph. You are currently at vertex

v, and let us suppose H represents the subgraph of the original graph consisting of those

edges you have not yet traversed. Which edge from v should you take? The proof shows that

you can take any edge you like, just as long as it is not a cut edge. Of course, if there is only

one edge of H incident with v, you must take it, but this isn’t a problem; you will never need

to revisit that vertex again!

Unfinished Business

The proof of Theorems 51.2 and 51.3 used the following two results.

Lemma 51.4 Let G be a graph all of whose vertices have even degree. Then no edge of G is a cut edge.

Proof. Suppose, for the sake of contradiction, e D xy is a cut edge of such a graph. Notice

that G � e has exactly two components (by Theorem 49.12), and each of these components

contains exactly one vertex of odd degree, contradicting Exercise 47.15.

Lemma 51.5 Let G be a connected graph with exactly two vertices of odd degree. Let a be a vertex of odd

degree and suppose d.a/ 6D 1. Then at least one of the edges incident with a is not a cut edge.
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Proof. Suppose, for the sake of contradiction, that all edges incident at a are cut edges. Let

b be the other vertex of odd degree in G.

a

b

e

P

Since G is connected, there is an .a; b/-path P in G. Exactly one edge incident at a is

traversed by P . Let e be any other edge incident at a.

Now consider the graph G0 D G � e. This graph has exactly two components (The-

orem 49.12). Since the path P does not use the edge e, vertices a and b are in the same

component. Notice also that, in G
0, vertex a has even degree, and all other vertices in its com-

ponent have not changed degree. This means that, in G0, the component containing vertex a

has exactly one vertex of odd degree, contradicting Exercise 47.15.

Recap

Motivated by the Seven Bridges of Königsburg problem, we defined Eulerian trails and tours

in graphs. We showed that every connected graph with at most two vertices of odd degree has

an Eulerian trail. If there are no vertices of odd degree, it has an Eulerian tour.

51 Exercises 51.1. For which values of n is the complete graph Kn Eulerian?

51.2. We noticed that a graph with more than two vertices of odd degree cannot have an

Eulerian trail, but connected graphs with zero or two vertices of odd degree do have

Eulerian trails. The missing case is connected graphs with exactly one vertex of odd

degree. What can you say about those graphs?

51.3. A domino is a 2�1 rectangular piece of wood. On each half of the domino is a number,

denoted by dots. (See the cover of this book.) In the figure, we show all
�

5

2

�

D 10

dominoes we can make where the numbers on the dominoes are all pairs of values

chosen from f1; 2; 3; 4; 5g (we do not include dominoes where the two numbers are the

same). Notice that we have arranged the ten dominoes in a ring such that, where two

dominoes meet, they show the same number.

For what values of n � 2 is it possible to form a domino ring using all
�

n

2

�

dominoes

formed by taking all pairs of values from f1; 2; 3; : : : ; ng? Prove your answer.
Note: In a conventional box of dominoes, there are also dominoes both of whose

squares have the same number of dots. Youmay either ignore these “doubles” or explain

how they can easily be inserted into a ring made with the other dominoes.

51.4. Let G be a connected graph that is not Eulerian. Prove that it is possible to add a single

vertex to G, together with some edges from this new vertex to some old vertices such

that the new graph is Eulerian.

51.5. Let G be a connected graph that is not Eulerian. In G there must be an even number of

odd-degree vertices (see Exercise 47.15). Let a1; b1; a2; b2; : : : ; at ; bt be the vertices

of odd degree in G.

If we add edges a1b1; a2b2; : : : ; at bt to G, does this give an Eulerian graph?

51.6. Let G be an Eulerian graph. Prove that it is possible to partition the edge set of G such

that the edges in each part of the partition form a cycle of G.

The figure shows such a partition in which the edges from different parts of the

partition are drawn in different colors and line styles.

51.7. A rook is a chess piece that may, on a single turn, move any number of squares horizon-
Note: A standard chess board is an

8 � 8 grid of squares.
tally or any number of squares vertically on the board. That is, if squares A and B are

in the same row [or same column] then we are permitted to move the rook from A to B .

But if A and B are in neither the same row nor the same column, a move between these

squares is illegal. Thus in every row and every column there are
�

8

2

�

pairs of squares

between which the rook may move. This gives a total of 16
�

8

2

�

D 448 such pairs.

Suppose a rook is placed on an empty chess board. Can we repeatedly move the

rook so that it moves exactly once between each pair of squares in the same row and

once between each pair of squares in the same column?

Note: When the rook travels between squares A and B , it should traverse either

from A to B or from B to A, but not both.

51.8. Is it possible to walk the seven bridges of Königsburg so that you cross every bridge

exactly twice, once in each direction?



Section 52 Coloring 361

51.9. Let G be a graph. The line graph of G is a new graph L.G/ whose vertices are the

edges of G; two vertices of L.G/ are adjacent if, as edges of G, they share a common

end point. In symbols:

V ŒL.G/� D E.G/ and EŒL.G/� D fe1e2 W je1 \ e2j D 1g :

Prove or disprove the following statements about the relationship between a graph

G and its line graph L.G/:

a. If G is Eulerian, the L.G/ is also Eulerian.

b. If G has a Hamiltonian cycle, then L.G/ is Eulerian. (See Exercise 50.16 for the

definition of a Hamiltonian cycle.)

c. If L.G/ is Eulerian, then G is also Eulerian.

d. If L.G/ is Eulerian, then G has a Hamiltonian cycle.

52 Coloring

The four color map problem and the exam-scheduling problem are both examples of graph-

coloring problems. The general problem is as follows: Let G be a graph. To each vertex of

G, we wish to assign a color such that adjacent vertices receive different colors. Of course,

we could give every vertex its own color, but this is not terribly interesting and not relevant to

applications. The objective is to use as few colors as possible.

For example, consider the map-coloring problem from Section 47. We can convert this

problem into a graph-coloring problem by representing each country as a vertex of a graph.

Two vertices in this graph are adjacent exactly when the countries they represent share a

common border. Thus coloring the countries on the map corresponds exactly to coloring the

vertices of the graph.

We can also convert the exam-scheduling problem into a graph-coloring problem. The

vertices of this graph represent the courses at the university. Two vertices are adjacent when

the courses they represent have a common student enrolled. The colors on the vertices rep-

resent the different examination time slots. Minimizing the number of colors assigned to the

vertices corresponds to minimizing the number of exam periods.

Core Concepts

Colors are phenomena of the physical world and graphs are mathematical objects. It is mildly

illogical to speak of applying colors (physical pigments) to vertices (abstract elements).

The careful way to define graph coloring is to give a mathematical definition of coloring.

Definition 52.1 (Graph coloring) Let G be a graph and let k be a positive integer. A k-coloring of G is a

function

f W V.G/! f1; 2; : : : ; kg:

We call this coloring proper provided

8xy 2 E.G/; f .x/ 6D f .y/:

If a graph has a proper k-coloring, we call it k-colorable.

The central idea in the definition is the function f . To each vertex v 2 V.G/, the function

f associates a value f .v/. The value f .v/ is the color of v. The palette of colors we use is

the set f1; 2; : : : ; kg; we are using positive integers as “colors.” Thus f .v/ D 3 means that

vertex v is assigned color 3 by the coloring f .

The condition 8xy 2 E.G/; f .x/ 6D f .y/ means that whenever vertices x and y are

adjacent (form an edge of G), then f .x/ 6D f .y/ (the vertices must get different colors). In a

proper coloring, adjacent vertices are not assigned the same color.

Notice what the definition does not require: It does not say that all the colors must be

used; that is, it does not require f to be onto. The number k refers to the size of the palette of

2
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6

3

4

2

1 6

5

3
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colors available—it is not a demand that all k colors be used. If, say, a graph is five-colorable,

then it is also six-colorable. We can simply add color 6 to the palette and then not use it.

Although the formal definition of coloring specifies that the colors we use are integers,

we often refer to real colors when describing graph coloring.

The goal in graph coloring is to use as few colors as possible.

The symbol � is not an x. It is a

lowercase Greek chi.

Definition 52.2 (Chromatic number) Let G be a graph. The smallest positive integer k for which G is k-

colorable is called the chromatic number of G. The chromatic number of G is denoted �.G/.

Example 52.3 Consider the complete graph Kn. We can properly color Kn with n colors by giving every

vertex a different color. Can we do better? No. Since every vertex is adjacent to every other

vertex in Kn, no two vertices may receive the same color and therefore n colors are required.

Thus �.Kn/ D n.

Notice that for any graph G with n vertices, we have �.G/ � n because we can always

give each vertex a separate color. This means that among all graphs with n vertices, Kn has

the largest chromatic number. We can say a little bit more.

Proposition 52.4 Let G be a subgraph of H . Then �.G/ � �.H/.

Proof. Given a proper coloring of H , we can simply copy those colors to the vertices of G

to achieve a proper coloring of G. So if we used only �.H/ colors to color the vertices of H ,

we have used at most �.H/ colors in a proper coloring of G.

Proposition 52.5 Let G be a graph with maximum degree �. Then �.G/ � �C 1.

Proof. Suppose the vertices of G are fv1; v2; � � � ; vng and we have a palette of �C1 colors.

We color the vertices of G as follows:

To begin, no vertex in G is assigned a color. Assign any color from the palette to vertex v1.

Next we color vertex v2. We take any color we wish from the palette, as long as the coloring

is proper. In other words, if v1v2 is an edge, we may not assign the same color to v2 that we

gave to v1. We continue in exactly this fashion through all the vertices. That is, when we come

to vertex vj , we assign to vertex vj any color from the palette we wish, just making certain

that the color on vertex vj is not the same as any of its already-colored neighbors.

The issue is whether there are sufficiently many colors in the palette so that this procedure

never gets stuck (i.e., we never reach a vertex where there is no legal color left to choose).

Since every vertex has at most � neighbors and since there are � C 1 colors in the palette,

we can never get stuck. Thus this procedure produces a proper �C 1-coloring of the graph.

Hence �.G/ � �C 1.

Example 52.6 What is the chromatic number of the cycle Cn? If n is even, then we can alternate colors

(black, white, black, white, etc.) around the cycle. When n is even, this yields a valid coloring.

However, if n is odd, then vertex 1 and vertex n would both be black if we alternated colors

around the cycle. See the figure. Thus, for n-odd,Cn is not two-colorable. It is, however, three-

colorable.We can alternately color vertices 1 throughn�1 with black and white and then color

vertex n with, say, blue. This gives a proper three-coloring of Cn. [Also, by Proposition 52.5,

we have �.Cn/ � �.Cn/C 1 D 2C 1 D 3.] Thus

�.Cn/ D
(

2 if n is even and

3 if n is odd.

?

1

2

3

4

56

7

8

9

Note the following interesting point about this example: The chromatic number of C9 is

3, but C9 does not contain K3 as a subgraph.
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Bipartite Graphs

Which graphs are one-colorable? That is, can we describe the class of all graphs G for which

�.G/ D 1?

Notice that �.G/ D 1 means that we can properly 1-color the graph G. This means that

if we assign all vertices the same color, this is a proper coloring. How can this be? It implies

that both endpoints of any edge in G are the same color, which is a blatant violation! The

answer is: There can be no edges in G. In other words, we have the following:

Proposition 52.7 A graph G is one-colorable if and only if it is edgeless.

That was easy! Let’s move on to characterizing two-colorable graphs—that is, graphs G

for which �.G/ � 2. These graphs have a special name.

Definition 52.8 (Bipartite graphs) A graph G is called bipartite provided it is 2-colorable.

Here is another useful way to describe bipartite graphs. Let G D .V; E/ be a bipartite

graph and select a proper two-coloring. Let X be the set of all vertices that receive one of the

two colors and let Y be the set of all vertices that receive the other color. Notice that fX; Y g
forms a partition of the vertex set V . Furthermore, if e is any edge of G, then e has one of its

endpoints in X and its other endpoint in Y .

The partition of V into the sets X and Y such that every edge of G has one end in X

and one end in Y is called a bipartition of the bipartite graph. When writing about bipartite

graphs, it is customary to write sentences such as the following: “Let G be a bipartite graph

with bipartition V D X [Y . . . .” This means that X and Y are the two parts of the bipartition.

The sets X and Y are called by some authors (this author not included) the partite sets of the

bipartite graph.

The problem we address here is: Which graphs are bipartite? For example, on the basis

of Example 52.6, we conclude that even cycles are bipartite, but odd cycles are not. The

following result gives another wide class of examples.

Proposition 52.9 Trees are bipartite.

We prove this using the method in Proof Template 25.

Proof. The proof is by induction on the number of vertices in the tree.

Basis case: Clearly a tree with only one vertex is bipartite. Indeed, �.K1/ D 1 � 2.

Induction hypothesis: Every tree with n vertices is bipartite.

Let T be a tree with nC 1 vertices. Let v be a leaf of T and let T 0 D T � v. Since T is a

tree with n vertices, by induction T 0 is bipartite. Properly color T 0 using the two colors black
and white.

Now consider v’s neighbor—call it w. Whatever color w has, we can give v the other

color (e.g., if w is white, we color v black).

Since v has only one neighbor, this gives a proper two-coloring of T .

Trees and even cycles are bipartite. What other graphs are bipartite? Here is another

important class of bipartite graphs:

Definition 52.10 (Complete bipartite graphs) Let n; m be positive integers. The complete bipartite graph

Kn;m is a graph whose vertices can be partitioned V D X [ Y such that

� jX j D n,
� jY j D m,
� for all x 2 X and for all y 2 Y , xy is an edge, and
� no edge has both its endpoints in X or both its endpoints in Y .

The graph in the figure is K4;3.
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The following theorem describes precisely which graphs are bipartite.

This is an example of a

characterization theorem.

Theorem 52.11 A graph is bipartite if and only if it does not contain an odd cycle.

The proof of this result is a bit complicated. We present it in a moment, but first, we

explain why this is a wonderful theorem.

Suppose I have a graph and I want to convince you that it is bipartite. I can do this by

coloring the vertices and then showing you my coloring. You can patiently inspect each edge

and notice that the two endpoints of every edge have different colors. You are now certain that

the graph is bipartite.

On the other hand, suppose I present you with a complicated graph that is not bipartite.

The following argument is not terribly persuasive: “I tried for days to two-color this graph,

and I really worked quite hard. Trust me! There is no way this graph can be two-colored.”

Theorem 52.11 guarantees that I will always be able to present a much better and simpler

argument. I can find an odd cycle in the graph and show it to you, and then you will be

convinced that the graph is not bipartite.

The proof of Theorem 52.11 requires the concept of distance in a graph; this was devel-

oped in Exercise 49.13.

Proof Theorem 52.11

.)/ Let G be a bipartite graph. Suppose, for the sake of contradiction, that G contains an

odd cycle C as a subgraph. By Proposition 52.4, we have

3 D �.C / � �.G/ � 2;

a contradiction. Therefore G does not contain an odd cycle.

.(/ Next we show that if G does not contain an odd cycle, then G is bipartite. We begin by

proving a special case of this result. We show that if G is connected and does not contain an

odd cycle, then G is bipartite.

Suppose G is connected and does not contain an odd cycle. Let u be any vertex in V.G/.

Define two subsets of V.G/ as follows:

X D fx 2 V.G/ W d.u; x/ is oddg and Y D fy 2 V.G/ W d.u; y/ is eveng:

In words, X and Y contain those vertices in G that are at odd and even distance from u,

respectively. Note that u 2 Y because d.u; u/ D 0. Also note that V.G/ D X [ Y (every

vertex is some finite distance from u because, by hypothesis,G is connected) and X \Y D ;
(because the distance from a given vertex to u cannot be both odd and even).

We color the vertices in X black and the vertices in Y white. We claim that this gives a

proper two-coloring of G. To prove this, we must show that there are no two vertices in X

that are adjacent and no two vertices in Y that are adjacent.

Suppose, for the sake of contradiction, there are two vertices x1; x2 2 X with x1 � x2.

Let P1 be a shortest path from u to x1. Because x1 2 X , we know that d.u; x1/ is odd, so the

length of P1 is odd. Likewise let P2 be a shortest .u; x2/-path; its length is also odd.

It is tempting (but incorrect!) to conclude as follows: Concatenate

P1 C .x1 � x2/C P
�1

2
:

That is, traverse P1 from u to x1 (odd distance), go from x1 to x2 (odd distance), and, finally,

go back to u along P2 (odd again). The total distance is odd, so we have an odd cycle.

The error is that P1 C .x1 � x2/C P�1
2

might not be a cycle (see the figure). The paths

′u

x1

x2

P1

P2

u

P1 and P2 might have vertices and edges in common.

To fix this problem, let u0 denote the last vertex that P1 and P2 have in common. That is,

as we traverseP1 from u to x1, we know that P1 and P2 have at least one vertex in common—

namely, u. Perhaps they have other vertices in common. In any case, since P1 ends at x1 and

P2 ends at x2, eventually along P1 we reach the last vertex these two paths have in common.

After u0, there are no further P2 vertices on P1. Therefore, if we traverse P1 from u0 to x1,

then traverse the edge x1x2, and finally return to u
0 along P

�1
2

, we have a cycle. The question

is: Is this an odd cycle?
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We note that the section of P1 from u to u0 is as short as possible. Otherwise, if there were
a shorter path Q from u to u0, then we could concatenate Q with the .u0; x1/-section of P1

and achieve a .u; x1/-walk that is shorter than P1, from which we could construct a .u; x1/-

path that is shorter than P1; this is a contradiction. So the .u; u0/-section of P1 is as short as

possible. Likewise the .u; u0/-section of P2 is as short as possible. Hence the .u; u0/-sections
of P1 and P2 must have the same length.

Now consider the .u; x1/- and .u; x2/-sections of P1 and P2, respectively. We know that

P1 and P2 both have odd length. From them, we delete the same length: their .u; u0/-sections.
Thus the two sections that remain are either both odd or both even—they have the same parity.

We now conclude that the cycle C is an odd cycle. The cycle consists of the edge x1x2

(length 1) and the two sections from u0 of P1 and P2 (same parity). Since 1C oddC odd and

1C evenC even are both odd, we conclude that C is an odd cycle. But by hypothesis, G has

no odd cycles.)( Therefore there is no edge in G both of whose endpoints are in X .

Might there be an edge with both ends in Y ? No. The argument is exactly the same as

before. The only fact we used about the paths P1 and P2 is that their lengths had the same

parity; it didn’t really matter that they were both odd. If they were both even, the exact same

argument applies. There are no edges between any pair of vertices of Y .

Therefore we have a proper two-coloring of G, and hence G is bipartite.

To finish the proof, we need to consider the case when G is disconnected. Suppose G

is a disconnected graph that contains no odd cycles. Let H1; H2; : : : ; Hc be its connected

components. Note that since G does not contain an odd cycle, neither do any of its

components. Hence, by the argument above, they are bipartite. Let Xi [ Yi be a bipartition of

V.Hi / (with 1 � i � c). Finally, let

X D X1 [X2 [ � � � [Xc and

Y D Y1 [ Y2 [ � � � [ Yc:

We claim that X [ Y is a bipartition of V.G/.

Please observe that X and Y are pairwise disjoint and their union is V.G/. There can

be no edge between two vertices in Xi because Xi [ Yi is a bipartition, and there can be

no edge between vertices of Xi and Xj (with i 6D j ) because these vertices are in separate

components of G. Therefore no edge has both ends in X . Similarly, no edge has both ends

in Y . Therefore X [ Y is a bipartition of V.G/, and so G is bipartite.

The Ease of Two-Coloring and the Difficulty of Three-Coloring

The proof of Theorem 52.11 gives us a method for determining whether or not a graph is

bipartite. The statement itself gives us an efficient way to convince others that we have cor-

rectly determined whether or not a graph is bipartite.

We begin with a graph, all of whose vertices are uncolored. We arbitrarily color one

vertex white. Then we color all its neighbors black. Now we color all neighbors of black

vertices white, and then all neighbors of white vertices black.

At some point in this procedure, we may color two adjacent vertices the same color. If

we do, we can retrace our steps and find an odd cycle, proving the graph is not bipartite.

We may also find that this coloring procedure finds no new vertices to color, but yet, there

remain uncolored vertices. In this case, we realize the graph is not connected, and we restart

this procedure in another component.

If, after doing this procedure in every component, we never find adjacent vertices with

the same color, then we have found a bipartition of the graph.

This procedure is simple and efficient. We know that once we color a vertex, say, black,

all its neighbors must be white. There is no choice in this matter because there are only two

colors.

The situation for three-coloring graphs is more complicated. Let’s suppose the three col-

ors are red, blue, and green.We color one vertex red. Now, what shall we color its neighbors??

We have choices and, in this case, choices complicate our lives.

We do not have a result akin to Theorem 52.11 for three-colorable graphs. If I have a

three-coloring for a graph G, I can convince you that G is three-colorable simply by showing

you the coloring. However, if G is not three-colorable, how can I readily convince you that no

such coloring is possible? There is no known answer to this problem.
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We ask:

Is it difficult to three-color graphs?

This question itself is difficult! Most computer scientists and mathematicians believe that it

is difficult to color a graph properly with three colors or to show that no such coloring exists.

However, there is no proof that this is a hard problem.

Computer scientists have identified a wide collection of problems that are on a par with

graph coloring. That is, they have shown that if any one problem in this special collection has

an efficient solution, then they all do. Problems in this category are known as NP-complete.

A full description of what it means for a problem to be in this category is beyond the realm

of this book. Our point is that there are no known efficient procedures to determine whether

or not a graph is three-colorable (or k-colorable for any fixed value of k > 2) and so there is

no known efficient procedure for calculating �.G/. There are, however, heuristic and approx-

imate methods that often give good results.

Recap

We introduced the concepts of a proper coloring of a graph and the chromatic number. We

analyzed the class of bipartite (two-colorable) graphs and characterized such graphs by the

fact that they do not contain odd cycles.

52 Exercises 52.1. Let G and H be the graphs in the following figure.

G H

Please find �.G/ and �.H/.

52.2. Let n � 3 be an integer. The Möbius ladder graph, denoted M2n, has 2n vertices

labeled 1 through 2n. The edges of M2n consist of a cycle through the 2n vertices as

well as edges joining diametrically opposite vertices on this cycle. That is, the cycle is

1 � 2 � 3 � � � � � 2n � 1 and the additional edges are ft; t C ng for 1 � t � n. This

graph is 3-regular. The graph in the figure is M8.

Determine �.M2n/.

52.3. Let G be a graph and let v be a vertex of G. Prove that

�.G � v/ � �.G/ � �.G � v/C 1:

52.4. Let a; b be integers with a; b � 3. The torus graph Ta;b has vertex set

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

3,0 3,1 3,2

V D f.x; y/ W 0 � x < a and 0 � y < bg:

Every vertex .x; y/ in Ta;b has exactly four neighbors: .xC1; y/, .x�1; y/, .x; yC1/,

and .x; y � 1/ where arithmetic in the first position is modulo a and arithmetic in the

second position is modulo b.

The graph in the figure is T4;3. Note that vertex .3; 0/ has four neighbors: .0; 0/,

.2; 0/, .3; 1/, and .3; 2/.

Determine �.Ta;b/.

52.5. Let G be a graph with just one vertex. It is correct to say that G is three-colorable. How

can this be if G has only one vertex?

52.6. Let G be a properly colored graph and let us suppose that one of the colors used is red.

The set of all red-colored vertices have a special property. What is it?

Graph coloring can be thought of as partitioningV.G/ into subsets with this special

property.

52.7. Let G be a graph with n vertices that is not a complete graph. Prove that �.G/ < n.

52.8. Let G be a graph with n vertices. Prove that �.G/ � !.G/ and �.G/ � n=˛.G/.

52.9. Let G D Kn;m. Determine jV.G/j and jE.G/j.
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52.10. Let G be a graph with n vertices. Prove that �.G/�.G/ � n.

52.11. Let G be the seven-vertex graph in the figure. Prove that �.G/ D 4.

2

1

5 3

4

6

7

52.12. Let G be a graph with exactly one cycle. Prove that �.G/ � 3.

52.13. Let n be a positive integer. The n-cube is a graph, denoted Qn, whose vertices are the

2n possible length-n lists of 0s and 1s. For example, the vertices of Q3 are 000, 001,

010, 011, 100, 101, 110, and 111.

Two vertices of Qn are adjacent if their lists differ in exactly one position. For

example, in Q4, vertices 1101 and 1100 are adjacent (they differ only in their fourth

element) but 1100 and 0110 are not adjacent (they differ in positions 1 and 3).

Please do the following:

a. Show that Q2 is a four-cycle.

b. Draw a picture of Q3 and explain why this graph is called a cube.

c. How many edges does Qn have?

d. Prove that Qn is bipartite.

e. Prove that K2;3 is not a subgraph of Qn for any n.

52.14. Suppose G has maximum degree � > 1, but it has only one vertex of degree �. Prove

that �.G/ � �.

52.15. Let G be a graph with the property that ı.H/ � d for all induced subgraphs H of G.

Prove that �.G/ � d C 1.

52.16. Consider the graph in the figure. Notice that it does not containK3 as a subgraph. Please

do the following:

a. Show that this graph is four-colorable.

b. Show that this graph has chromatic number equal to 4.

c. Show that if we delete any edge from this graph, the resulting graph has chromatic

number 3.

52.17. Suppose G is a graph with 100 vertices. One way to determine whether G is three-

colorable is to examine all possible three-colorings of G. If a computer can check

1 million colorings per second, about how long would it take to check all possible

three-colorings?

52.18. In addition to coloring the vertices of a graph, mathematicians are interested in coloring

the edges. In a vertex coloring, vertices that are on a common edge must be different

colors. In an edge coloring, edges that share a common vertex must be different colors.

More precisely, a proper k-edge coloring of a graph G is a function f W E.G/!
f1; 2; : : : ; kg with the property that if e and e0 are distinct edges that have a common

end point, then f .e/ 6D f .e0/. The edge chromatic number of G, denoted �0.G/, is the

least k such that G has a proper k-edge coloring.

Please do:

a. Show that the edge chromatic number of the graph in the figure is 4.

b. Prove that if T is a tree, then �
0
.T / D �.T /.

c. Give an example of a graph G for which �0.G/ > �.G/.

53 Planar Graphs
In this section, we study graph drawings. We are especially interested in graphs that can be

drawn without crossing edges.

Dangerous Curves

A graph and its drawing are very different objects. A graph is, by Definition 47.1, a pair of

finite sets .V; E/ that satisfy certain properties. Its drawing is ink on paper; it is notational

shorthand that is often easier to grasp than writing out the two sets V and E in full.

In this section, we take a different approach. We study not only graphs but their drawings

as well. A drawing is ink on paper—it is not a mathematical object. (A picture of a circle is

not a circle.) Thus our first order of business ought to be a careful mathematical definition of

a graph drawing. Unfortunately, this is complicated. The difficulty lies primarily in defining

just what we mean by a curve in the plane. The precise definition of curve requires concepts

from continuous mathematics that we have not developed and are beyond the scope of this

book.
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Instead, we shall just live dangerously. We proceed with our intuitive understanding of

what a curve is. Note that a curve may have corners and straight sections. Indeed, a line

segment is a curve. It must, however, be all in one piece. The figure in the margin shows three

separate curves. A simple curve is a curve that joins two distinct points in the plane and does

not cross itself. The top curve in the figure is simple; the other two are not.

If a curve returns to its starting point, we call the curve closed. If the first/last point of the

curve is the only point on the curve that is repeated, then we call the curve a simple closed

curve. The middle curve in the diagram is a simple closed curve. The third curve is neither

simple nor closed.

Before we get to work on planar graphs, we need to present a word of warning. Some

of the proofs in this section are not rigorous. We shall be honest with you concerning where

we are not using full rigor. The problem is that fully proving these results requires a deep

understanding of curves and we have not even given a proper definition of curve. For example,

we use (implicitly) the following theorem.

Theorem 53.1 (Jordan Curve) A simple closed curve in the plane divides the plane into two regions: the

inside of the curve and the outside of the curve.

Many students’ reaction to the Jordan Curve Theorem is that it is so obvious that it does

not require a proof. Ironically, this “simple” and “obvious” statement is difficult to prove. We

shall accept it and use it nevertheless.

Embedding

A drawing is a diagram made of ink on paper. The mathematical abstraction of a drawing is

called an embedding. An embedding of a graph is a collection of points and curves in a plane

that satisfies the following conditions:

� Each vertex of the graph is assigned a point in the plane; distinct vertices receive distinct

points (i.e., no two vertices share the same point).
� Each edge of the graph is assigned a curve in the plane. If the edge is e D xy, then the

endpoints of the curve for e are exactly the points assigned to x and y. Furthermore, no

other vertex point is on this curve.

If all the curves are simple (do not cross themselves) and if the curves from two edges do not

intersect (except at an endpoint if they both are incident with the same vertex), then we call

the embedding crossing-free.

The figure shows two embeddings of the graph K4. Note that we greatly exaggerated the

points, drawing them as large round dots. The drawing on the right represents a crossing-free

embedding on K4.

Not all graphs have crossing-free embeddings in the plane. Those that do have a special

name.

Definition 53.2 (Planar graph) A planar graph is a graph that has a crossing-free embedding in the plane.

For example, the graph K4 is planar. However, the graph K5 is not planar. How do we

know? We can try to find a crossing-free drawing of K5 and not succeed, but that is not a

proof. Alternatively, we study properties of planar graphs and use that knowledge to prove

that K5 is not planar. The first step toward this goal is a classic of Euler.

Euler’s Formula

Let G be a planar graph and consider a crossing-free embedding of G, as in the figure. In this

drawing, we see the points and curves of the embedding. We also see another feature: faces.This definition of face is not

rigorous. A face is a portion of the plane cut off by the drawing. Imagine the graph drawn on a physical

piece of paper. If we cut along the curves representing the edges of G, the paper falls apart

into various pieces. Each of these pieces is called a face (or region) of the embedding.
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The drawing of the graph in the figure has five faces. Yes, five is the correct number. There

are four bounded faces (faces with only finite area) and one unbounded face that surrounds

the graph.

The graph in this figure has n D 9 vertices, m D 12 edges, and f D 5 faces. I encourage

you to make a number of other crossing-free drawings of connected planar graphs and, for

each, record how many vertices, edges, and faces each drawing has. Stare at your numbers

and see whether you discover the following result (don’t peek).

Theorem 53.3 (Euler’s formula) Let G be a connected planar graph with n vertices and m edges. Choose

a crossing-free embedding for G, and let f be the number of faces in the embedding. Then

n �mC f D 2:

Please note that the hypothesis connected is important. An extension to this result coversThis proof is not 100% rigorous.

There are no untrue statements, but

some of our claims are unsupported.

In particular, when we delete a

noncut edge from the graph, we

assert, but do not prove, that two

faces collapse into a single face.

the cases when the graph is not connected (see Exercise 53.3).

Proof. This proof is by induction on the number of edges in the planar graph G.

Suppose G has n vertices. The basis case for this proof is when the number of edges is

n� 1 since a connected graph with n vertices must have at least n� 1 edges (see Section 50).

Basis case: Since G is connected and has m D n � 1 edges, we know that G is a tree. In

a drawing of a tree, there is only one face (the unbounded face) because there are no cycles to

enclose additional faces. Thus f D 1. We therefore have

n �mC f D n � .n � 1/C 1 D 2

as required.

Induction hypothesis: Suppose all connected planar graphs with n vertices and m edges

satisfy Euler’s formula.

Let G be a planar graph with n vertices and m C 1 edges. Choose a crossing-free em-

bedding of G and let f be the number of faces in this embedding. We need to prove that

n � .mC 1/C f D 2.

Let e be an edge of G that is not a cut edge. Because G has more than n � 1 edges, it is

not a tree, and therefore (Theorem 50.5) not all of its edges are cut edges. Therefore G � e is

connected.

If we erase e from the drawing of G, we have a crossing-free embedding of G � e, and

so G� e is planar. Notice that G� e has n vertices and .mC1/�1 D m edges. The drawing,

we claim, has f � 1 faces. The edge we deleted causes the two faces on either side of it to

merge into a single face, so G � e’s drawing has one less face than G’s.

Now, by induction, we have

n �mC .f � 1/ D 2

which rearranges to

n � .mC 1/C f D 2

which is what we needed to prove.

LetG be a connected planar graph with n vertices and m edges.We can solve the equation

n �mC f D 2 for f and we get f D 2 � nCm. This has an important consequence. The

number of vertices and edges are quantities that depend only on the graph G—they have

nothing to do with how the graph is drawn in the plane. On the other hand, the quantity f is

the number of faces in a particular crossing-free drawing of G. There may be many different

ways to draw G without crossings. The implication of Euler’s formula is that regardless of

how we draw the graph, the number of faces is always the same.

5

3

3

7

6

5

3

3

5

8

For example, consider the two drawings of the graph in the figure. In both cases, the graph

has f D 2 � nCm D 2 � 9C 12 D 5 faces.

Notice that we wrote a number inside each face. This indicates the number of edges that

are on the boundary of that face; it is called the degree of the face. In the upper figure, the
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face with degree equal to 7 is noteworthy. Observe there are only six edges that touch that

face. Why, then, do we say this face has degree 7? The edge to the leaf has both sides on

the boundary of the face; therefore this edge counts twice when we calculate the degree. The

concept of side of an edge has no meaning whatsoever when we are considering only graphs.

However, it makes sense when we consider a graph’s embedding.

Since every edge has two sides, it contributes a total value of 2 to the degrees of the faces

it touches. If an edge only touches one face, then it counts twice toward that face’s degree. If

it touches two faces, it counts once toward each of the two faces’ degrees. Therefore, if we

add the degrees of all the faces in the embedding, we get twice the number of edges in the

graph. We have shown the following:

Proposition 53.4 Let G be a planar graph. The sum of the degrees of the faces in a crossing-free embedding of

G in the plane equals 2jE.G/j.

How small can the degree of a face be? If the graph is simply K1, then the embedding is

just one point, and there is just one face (the entire plane minus the one point). This face is

bounded by zero edges, so it has degree equal to 0.

If the graph has just one edge, then, as before, there is only one face. The “boundary” of

this face is just the one edge—it counts twice to the degree and so this face has degree 2.

As soon as a planar graph has two (or more) edges, then all faces have degree 3 or greater.

(Technically, we should prove this, but we are taking a less than rigorous approach to planar

graphs just for this section. Draw pictures to convince yourself of this fact.)

We use the face-degree concept to prove the following corollary to Euler’s formula.

Corollary 53.5 Let G be a planar graph with at least two edges. Then

jE.G/j � 3jV.G/j � 6:

Furthermore, if G does not contain K3 as a subgraph, then

jE.G/j � 2jV.G/j � 4:

Proof. First note that, without loss of generality, G is connected. If G is not connected, we

can add single edges between components to make it connected, and the resulting graph is

still planar with more edges than the original graph. If the larger graph satisfies the inequality

jE.G/j � 3jV.G/j � 6, so does the original graph.

Let G be a connected planar graph with at least two edges. Pick a crossing-free embed-

ding of G; this embedding has f faces. By Euler’s formula, f D 2 � jV.G/j C jE.G/j.
We calculate the sum of the degrees of the faces in this embedding.

On the one hand, by Proposition 53.4, the sum of the face degrees is 2jE.G/j.
On the other hand, every face has degree at least 3, so the sum of the face degrees is at

least 3f . Therefore we have

2jE.G/j � 3f

which we can rearrange to read f � 2

3
jE.G/j.

Substituting this into Euler’s formula, we get

2 � jV.G/j C jE.G/j D f � 2

3
jE.G/j;

which rearranges to 2 � jV.G/j C 1

3
jE.G/j � 0, which yields

jE.G/j � 3jV.G/j � 6:

The proof of the second inequality is left for you in Exercise 53.4.

Here is another consequence of Euler’s formula:

Corollary 53.6 Let G be a planar graph with minimum degree ı. Then ı � 5.
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Proof. Let G be a planar graph. If G has fewer than two edges, clearly ı � 5. So we may

assume that G has at least two edges.

Thus, by Corollary 53.5, we have jE.G/j � 3jV.G/j � 6.

The minimum degree ı cannot be greater than the average degree. Let d̄ denote the aver-

age degree in G. So ı � d̄ .

We now calculate

ı � d̄ D
P

v2V.G/
d.v/

jV.G/j D 2jE.G/j
jV.G/j �

2.3jV.G/j � 6/

jV.G/j D 6 � 12

jV.G/j < 6

but since ı is an integer, we have ı � 5.

Nonplanar Graphs

A graph that is not planar is called nonplanar. We can use Corollary 53.5 to prove that certain

graphs are nonplanar.

Proposition 53.7 The graph K5 is nonplanar.

Proof. Suppose, for the sake of contradiction, that K5 were planar. By Corollary 53.5, weCorollary 53.5 is not an

if-and-only-if result. The graph in the

figure satisfies the inequality

jE j � 3jV j � 6 but is not planar.

would have

10 D jE.G/j � 3jV.G/j � 6 D 3 � 5 � 6 D 9;

a contradiction.)( Therefore K5 is nonplanar.

Consider the graph in the figure: Is it planar? Note that it has 7 vertices and 12 edges.

Does it satisfy the formula jE.G/j � 3jV.G/j � 6? Yes: Note that 12 � 15 D 3 � 7� 6.

We claim the graph in the figure is nonplanar. Suppose it were planar. Then it would

have a crossing-free embedding. Given such an embedding, we can ignore the two vertices

of degree 2. The path between the lower left and lower right vertices is represented by a

three-section curve that we can think of as a single curve. Thus, if the graph in the figure had

a crossing-free planar embedding, so would K5. However, since K5 has no such embedding,

neither does the graph in the figure.

The graph in the figure is an example of a subdivision ofK5. A subdivision ofG is formed

from G by replacing edges with paths. Clearly if a graph is planar, so are its subdivisions. And

the converse of this statement is also true: If a graph is nonplanar, then all of its subdivisions

are also nonplanar. Therefore any subdivision of K5 is nonplanar.

Moreover, any graph that contains a subdivision of K5 as a subgraph must also be non-

planar.

Next let us consider the complete bipartite graph K3;3. It has six vertices and nine edges,

and so it satisfies the inequality 9 D jE.G/j � 3jV.G/j � 6 D 3 � 6 � 6 D 12. However,

because K3;3 is bipartite, it contains no odd cycles. In particular, it does not contain K3 as

a subgraph. We can therefore consider the stronger inequality jE.G/j � 2jV.G/j � 4 in

Corollary 53.5.

Proposition 53.8 The graph K3;3 is nonplanar.

Proof. Suppose, for the sake of contradiction, that K3;3 were planar. Since it does not

contain K3 as a subgraph, we have (applying the second part of Corollary 53.5)

9 D jE.G/j � 2jV.G/j � 4 D 2 � 6 � 4 D 8

which is a contradiction.)( Therefore K3;3 is nonplanar.

This solves the gas/water/electricity problem from Section 47. It is impossible to run

noncrossing utility lines between the three utilities and the three homes—if we could, we

would have a crossing-free embedding of K3;3 and that is impossible!



372 Chapter 9 Graphs

Not only is K3;3 nonplanar but so is any subdivision graph we can form from K3;3.

Furthermore, any graph that contains a subdivision of K3;3 as a subgraph must be nonplanar

as well.

The following remarkable result of Kuratowski says that K5 and K3;3 are the progenitors

of all nonplanar graphs. Here is what we mean.

Theorem 53.9 (Kuratowski) A graph is planar if and only if it does not contain a subdivision of K5 or K3;3

as a subgraph.

We have shown the easier half of Kuratowski’s Theorem. If G contains a subdivision of

K5 or K3;3 as a subgraph, then G cannot be planar—if G were planar, we would be able to

create a crossing-free embedding of K5 or K3;3 and that’s impossible.

The more difficult part of this result is to prove that if a graph does not contain a subdivi-

sion of K5 or K3;3 as a subgraph, then the graph must be planar. For the proof, please see an

advanced text on graph theory.

Kuratowski’s Theorem is a marvelous characterization of planarity. If a graph is planar,

I can convince you of this fact by presenting you with a crossing-free drawing. On the other

hand, if a graph is nonplanar, I can convince you of this fact by finding a subdivision of K5 or

K3;3 as a subgraph of my graph.

Coloring Planar Graphs

We return to the map-coloring problem of Section 47. As we discussed in Section 52, the

problem of coloring a map is equivalent to the problem of coloring a graph. What we did not

consider previously is that the graph that arises from a map has a special property: It must be

planar. To see why, we begin with a map. We locate one vertex for each country at the capital

city of that country. From that capital city, we draw curves out to its various borders. These

curves fan out in a starlike pattern and do not cross each other. We send each curve to the

midpoint of the border where it connects to the curve emanating from the capital city of its

neighbor. In this way, we have constructed a planar embedding of the graph we want to color.

Thus the map-coloring problem becomes: Is every planar graph four-colorable? The

answer is yes. This was proved in the 1970s by Appel and Haken.

Theorem 53.10 (Four Color) If G is a planar graph, then �.G/ � 4.

This theorem is best possible in the sense that the number 4 cannot be replaced by a

smaller value. The graph K4 is planar and �.K4/ D 4 (Example 52.3).

The proof of the Four Color Theorem is long and complicated. One of the interesting

aspects of the proof is that it requires a large amount of computation. Roughly speaking,

Appel and Haken showed how to reduce the four color problem to about 2000 cases. They

also proved how each case can be checked by a computer program. They then created and ran

the necessary programs to check each of these cases.

In this section, we prove a simpler version of the Four Color Theorem.We show that every

planar graph is five-colorable. We start by proving that every planar graph is six-colorable.

Proposition 53.11 (Six color) If G is a planar graph, then �.G/ � 6.

Proof. The proof is by induction on the number of vertices in the graph.See Exercise 53.9 for an alternative

approach to proving this result. Basis case: The theorem is obviously true for all graphs on six or fewer vertices, because

we can give each vertex a separate color.

Induction hypothesis: Suppose the theorem is true for all graphs on n vertices (i.e., all

planar graphs with n vertices are six-colorable).

Let G be a planar graph with nC 1 vertices. By Corollary 53.6, G contains a vertex, v,

with d.v/ � 5. Let G0 D G � v. Notice that G0 is planar and has n vertices. By induction,

G
0 is six-colorable. Properly color the vertices of G

0 using just six colors. We can extend this

coloring to G by giving v a color. Notice that v has at most five neighbors, and so there is
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some other color that we can assign to v that is different from the colors of its neighbors. This

yields a proper six-coloring of G, and so �.G/ � 6.

The overall logic in proving that �.G/ � 5 for planar graphs is similar. The difficult part

comes when there are five neighbors of vertex v, and they all have different colors.

Theorem 53.12 (Five color) If G is a planar graph, then �.G/ � 5.

Proof. The proof is by induction on the number of vertices in the graph.

Basis case: The theorem is obviously true for all graphs on five or fewer vertices, because

we can give each vertex a separate color.

Induction hypothesis: Suppose the theorem is true for all graphs on n vertices (i.e., all

planar graphs with n vertices are five-colorable).

Let G be a planar graph with nC 1 vertices. By Corollary 53.6, G contains a vertex, v,

with d.v/ � 5. Let G0 D G � v. Notice that G0 is planar and has n vertices. By induction, G0

is five-colorable. Properly color the vertices of G0 using just five colors.
We want to extend this coloring to G by giving v a color. Consider the neighbors of v. If

among the neighbors of v there are only four different colors, then there is a left over color

that we can assign to v. This yields a proper five-coloring of G.

The problem has been reduced to the case where d.v/ D 5 and all five of its neighbors

are different colors. There is no way to extend this coloring to v; whatever color we might

choose for v would be the same color as one of its neighbors. So to extend the coloring to

vertex v, we need to recolor some vertices.

Since G is planar, choose a crossing-free embedding of G. Every vertex of G, except

v, has been colored with colors from the set f1; 2; 3; 4; 5g. Let u1, u2, . . . , u5 be the five

neighbors of v in clockwise order, and, without loss of generality, let us assume that ui has

color i (for i D 1; 2; : : : ; 5).

The basic idea is to change the color on one of v’s neighbors. Let’s change the color of

u1 from 1 to 3. Now we can simply color v with color 1 and celebrate. The problem, however,

is that u1 might have a neighbor that has color 3; in that case, changing u1 to color 3 creates

3
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an edge both of whose endpoints have the same color, and so the coloring would not be proper

(see the figure).

Simply changing the color of u1 from 1 to 3 does not solve this problem. We need to be

more aggressive!

Let H1;3 be the subgraph of G induced by all vertices with color 1 or 3. In other words,

we take only those vertices with color 1 or 3, and all edges that join such vertices, and call that

subgraph H1;3. Notice that if in one component of H1;3, we exchange colors 1 and 3, then we

still have a proper coloring of G
0 (remember: v is not colored yet).

We therefore exchange colors 1 and 3 in the component of H1;3 that contains vertex u1.

This color exchange results in a proper coloring of G0 in which vertex u1 has color 3. We are

all set to color vertex v with color 1. The problem, however, is that vertex u3 might also be in

the same component of H1;3 as vertex u1. Then, despite a 1-for-3 color exchange, v still has

all five colors present on its neighbors.

If u1 and u3 are in separate components of H1;3, then the 1-for-3 color exchange works

fine. We exchange colors 1 and 3 in the component of H1;3 that includes u1 (but not u3). This

gives a modified (but proper) five-coloring of G
0 in which color 3 is not present on any of v’s

neighbors, and so we may color v with color 1.

It remains to consider the case where u1 and u3 are in the same component of H1;3 (i.e.,
3
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there is a path P in H1;3 from u1 to u3 as in the figure).

If u1 and u3 are in the same component of H1;3, we proceed as follows: We argue as

before, but now we attempt to recolor vertex u2 with color 4. Let H2;4 denote the subgraph

of G induced on the vertices of color 2 or color 4. If u2 and u4 are in separate components of

H2;4, then we can recolor u2’s component, exchanging colors 2 and 4. The resulting modified

coloring is a proper five-coloring of G
0 in which no neighbor of v has color 2. In this case, we

can simply give vertex v color 2 and have a proper five-coloring of G.



374 Chapter 9 Graphs

The problem, as before, is that perhaps u2 and u4 are in the same component of H2;4.

We claim, however, that this cannot happen! Suppose there is a path, Q, from u2 to u4.

Note that the vertices along Q are colored with colors 2 and 4, and the vertices on P are

colored with colors 1 and 3. ThusP and Q have no vertices in common. Furthermore, pathP ,

together with vertex v, forms a cycle. This cycle becomes a simple closed curve in the plane.

Notice that vertices u2 and u4 are on different sides of this curve! Therefore the path Q from

Q

v

u1

u2

u3u4

u5

1

2

34

5

P

u2 to u4 must pass from the inside of this simple closed curve to the outside, and where

it does, there is an edge crossing. However, by construction, this embedding has no edge

crossings! Therefore vertices u2 and u4 must be in separate components of H2;4, and the

2-for-4 recoloring technique may be used. Finally, we color vertex v with color 2, giving a

proper five-coloring of G.

Recap

We introduced the concept of planar graphs: graphs that can be drawn in the plane without

edges crossing. We presented Euler’s formula that relates the number of vertices, edges, and

faces of a connected planar graph and used it to find bounds on the number of edges in a planar

graph. We showed that K5 and K3;3 are nonplanar and discussed Kuratowski’s Theorem,

which says, in essence, that these two graphs are the only “fundamental” nonplanar graphs.

We then discussed the Four Color Theorem and proved the simpler result that all planar graphs

are five-colorable.

53 Exercises 53.1. Give an example of a curve that is closed but not simple.

53.2. Each of the graphs in the figure is planar. Redraw these graphs without crossings.

53.3. Let G be a planar graph with n vertices, m edges, and c components. Let f be the

number of faces in a crossing-free embedding of G. Prove that

n �mC f � c D 1:

53.4. Complete the proof of Corollary 53.5. That is, prove that if G is planar, has at least two

edges, and does not contain K3 as a subgraph, then jE.G/j � 2jV.G/j � 4.

53.5. Let G be a graph with 11 vertices. Prove that G or G must be nonplanar.

53.6. Let G be a 5-regular graph with ten vertices. Prove that G is nonplanar.

53.7. For which values of n is the n-cube Qn planar? (See Exercise 52.13.) Prove your

answer.

53.8. The graph in the figure is known as Petersen’s graph. Prove that it is nonplanar by

finding either a subdivision of K5 or a subdivision of K3;3 as a subgraph.

53.9. Give a short proof that �.G/ � 6 for planar graphs (Proposition 53.11) by applying the

result of Exercise 52.15 and Corollary 53.6.

53.10. Let G D .V; E/ be a planar graph in which every cycle has length 8 or greater.

a. Prove that jEj � 4

3
jV j � 8

3
. (You should assume the graph has at least one cycle.)

b. Prove that ı.G/ � 2.

c. Prove that �.G/ � 3.

53.11. A graph is called outerplanar if it can be drawn in the plane so that all the vertices are

incident with a common face (which we may take to be the unbounded face). Examples

of outerplanar graphs include trees and cycles. Also, if we draw a cycle and add non-

crossing diagonal edges, the resulting graph is also outerplanar.

a. Let G be a graph that contains a vertex v that is adjacent to all the other vertices in

G. Show that G is planar if and only if G � v is outerplanar.

b. Show that K4 is not outerplanar.

c. Show that K2;3 is not outerplanar.
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d. Show that if G is an outerplanar graph with n � 3 vertices, then G has at most

2n � 3 edges.

e. Show that if G is outerplanar, then �.G/ � 3.

53.12. A Platonic graph is a connected planar graph in which all vertices have the same

degree r (with 3 � r � 5) and in whose crossing-free embedding all faces have the

same degree s (with 3 � s � 5). Let G be a Platonic graph with v vertices, e edges,

and f faces.

a. Prove that vr D f s. How is this quantity related to e?

b. Prove that if r D s D 3, then v D f D 4. Conclude that K4 is the only Platonic

graph with r D s D 3.

c. Prove that

e D 2

2

r
C 2

s
� 1

:

d. In all, there are nine ordered pairs .r; s/ with 3 � r; s � 5. Use the equation in

part (c) to rule out the existence of Platonic graphs with some of these values.

e. For the pairs .r; s/ that were not ruled out in part (d), find a Platonic graph with

vertex degree r and face degree s.

53.13. A soccer ball is formed by stitching together pieces of material that are regular pen-

tagons and regular hexagons. The lengths of the sides of these polygons are all the

same, so the edges match up exactly. Each corner of a polygon is the meeting place for

exactly three polygons.

Prove that there must be exactly 12 pentagons.

Chapter 9 Self Test

1. Draw a picture of the following graph:

�˚

1; 2; 3; 4; 5
	

;
˚

f1; 2g; f1; 3g; f3; 4g
	�

:

2. Find a graph on ten vertices whose degrees are 6, 5, 5, 5, 4, 4, 4, 4, 3, and 3, or prove that

no such graph exists.

3. Let G be a graph with 100 vertices. The vertex set of G can be partitioned into ten sets

of ten vertices each; thus,

V.G/ D W1 [W2 [ � � � [W10:

The Wis are pairwise disjoint and all have cardinality 10.

In G there are no edges between vertices in the same Wi , but between Wi and Wj

(with i 6D j ) all possible edges are present.

How many edges does G have?

4. Let G be a graph with 10 vertices and 15 edges.

a. How many induced subgraphs does G have?

b. How many spanning subgraphs does G have?

5. Let a and b be distinct vertices in a complete graph on ten vertices, K10. Howmany paths

of length 5 are there from a to b?

6. Let a and b be distinct vertices in a complete graph on ten vertices, K10. How many

walks of length 5 are there from a to b?

This question is more difficult than the one posed in Problem 5. To assist you in

answering this question, use the following steps:

a. Define f .k/ to be the number of length-k walks between distinct vertices in K10 and

g.k/ to be the number of length-k walks in K10 from a vertex back to itself.

Deduce the values of f .0/, g.0/, f .1/, and g.1/.

b. Suppose k > 1. Express f .k/ in terms of f .k � 1/ and g.k � 1/.

c. Suppose k > 1. Express g.k/ in terms of f .k � 1/ and g.k � 1/.

d. Use your answers to the previous parts to work out f .5/.

7. Let G be a graph with n vertices. Suppose ı.G/ � n=2. Prove that G is connected.
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8. Among the various subgraphs of K5, how many are cycles?

Note: Since you are asked to count subgraphs, do not consider the orientation or the

starting vertex of the cycle.

9. Let G be a connected graph in which the average degree of a vertex is less than 2. Prove

that G is a tree.

Note: This is the converse of Exercise 50.2.

10. Suppose that T1 and T2 are trees on a common vertex set; that is, V.T1/ D V.T2/.

Suppose further that for any vertex v, the degree of v in the two trees is the same (i.e.,

dT1
.v/ D dT2

.v/).

Please answer, with proof, the following question: Is it the case that T1 and T2 must

be isomorphic graphs?

11. What is the maximum number of edges that a disconnected graph on ten vertices can

have?

12. Recall that a Hamiltonian path of a graph is a path that includes all the vertices of the

graph. Show that the edges of K8 can be partitioned into Hamiltonian paths, but the

edges of K9 cannot be so partitioned.

Note: A partition of E.K8/ into Hamiltonian paths is a collection of paths that in-

cludes each of the edges of K8 exactly once.

13. Let T be a tree containing three distinct vertices a, b, and c. By Theorem 50.4, there is

a unique path from a to b (call it P ), a unique path from b to c (call it Q), and a unique

path from a to c (call it R).

Prove that P , Q, and R have exactly one vertex in common.

14. Let G be a graph. Prove that G is Eulerian if and only if for every partition of V.G/ D
A [ B (with A \ B D ; and A and B nonempty), the number of edges with one end in

A and one end in B is even but not zero.

15. Let G be a bipartite graph with bipartition X [ Y . Prove or disprove: ˛.G/ equals the

larger of jX j or jY j.
16. A mathematician is trying to figure out if there is a relationship between the number of

vertices, n, in a graph and the product of the graph’s independence and clique numbers.

(We know from Exercise 52.8 that �.G/ � n=˛.G/, so perhaps we can show that!.G/ �
n=˛.G/.) Alas, there is no good relation. Demonstrate this by finding three graphs with

the following properties:

a. G has n vertices and n > ˛.G/!.G/.

b. G has n vertices and n D ˛.G/!.G/.

c. G has n vertices and n < ˛.G/!.G/.

Extra kudos if your three examples all have the same number of vertices.

17. Let G be the graph in the following figure.

Find, with proof, �.G/.

18. A wheel is a graph formed from by a cycle by the addition of a new vertex that is adjacent

to all the vertices on the cycle. A wheel with n vertices is denoted Wn; the graph W6 is

shown in the figure. Note that W6 is based on a 5-cycle plus an additional vertex.

For n � 3, find, with proof, �.Wn/.

19. Let n be an integer with n � 4. Find, with proof, �.Cn/.

20. Let G be a graph and let k be a positive integer. We write �.G; k/ to stand for the number

of proper k-colorings of G. For example, if G D K3, then �.G; k/ D k.k � 1/.k � 2/

because there are k choices for coloring vertex 1, and for each such choice, k� 1 choices
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for coloring vertex 2, and, finally, for each choice of colors for vertices 1 and 2, there are

k � 2 choices for vertex 3.

a. Prove that �.G/ � k if and only if �.G; k/ > 0.

b. Prove that if T is a tree with n vertices, then �.T; k/ D k.k � 1/n�1.

21. From the graph K6 delete three edges that have no endpoints in common. That is, if

V.K6/ D f1; 2; 3; 4; 5; 6g, delete the edges 12, 34, and 56. Show that the resulting graph

is planar.

22. Prove that the graphs C7 and C8 are nonplanar.

23. A planar graph has vertices only of degree 5 and 7. If there are 10 vertices of degree 7,

prove that there are at least 22 vertices of degree 5.





C H A P T E R

10 PartiallyOrderedSets

We have studied various kinds of relations in this book: equivalence relations, function rela-

tions, and adjacency relations (for graphs). In this final chapter, we study another important

class of relations: partial orders.

An equivalence relation R on a set A is a relation that satisfies three conditions: It is

reflexive, symmetric, and transitive (see Section 15). In graph theory, the adjacency relation

(�) on the vertex set of a graph is irreflexive and symmetric (see Section 47). Now we explore

a new class of relations that satisfies a different suite of relation properties. We study relations

that are reflexive, antisymmetric, and transitive.

54 Fundamentals of Partially Ordered Sets

What is a Poset?

Consider the following relations defined on sets:

� the less-than-or-equal-to relation � defined on the integers, Z,
� the divides relation j defined on the natural numbers, N, and
� the is-a-subset-of relation � defined on 2

A for some set A.

In all three cases, the relation R captures the flavor of is smaller than for the elements of

the setX on which it is defined. Notice also that all three relations are reflexive, antisymmetric,Please review Section 14, where the

concepts of reflexive, antisymmetric,

and transitive are introduced.
and transitive on the sets on which they are defined. A partially ordered set is a set together

with a relation that satisfies these three conditions.

Definition 54.1 (Partially ordered set, poset) A partially ordered set is a pair P D .X; R/ where X is a

nonempty set and R is a relation on X that satisfies the following conditions:

� R is reflexive: 8x 2 X; x R x,
� R is antisymmetric: 8x; y 2 X , if x R y and y R x, then x D y, and
� R is transitive: 8x; y; z 2 X , if x R y, and y R z, then x R z.

The set X is called the ground set of P . The elements of X are simply called elements of the

partially ordered set. The relation R is called a partial order relation.

The term poset is an abbreviation for partially ordered set.

Example 54.2 Let P D .X; R/ where X D f1; 2; 3; 4g and

R D
˚

.1; 1/; .1; 2/; .1; 3/; .1; 4/; .2; 2/; .3; 3/; .3; 4/; .4; 4/
	

:

It is not hard to see that R is reflexive [all of .1; 1/ through .4; 4/ are in R] and antisymmetric

[the only time we have both .x; y/ and .y; x/ in R is when x D y]. Checking transitivity is

379



380 Chapter 10 Partially Ordered Sets

tedious. The only interesting case is that we have both 1 R 3 and 3 R 4, and note that we also

have .1; 4/ 2 R.

Thus P is a poset.

The poset in Example 54.2 is nearly incomprehensible. It is difficult to understand re-This is a diagram depicting the poset

from Example 54.2.

1

2 3

4

Although poset diagrams (called

Hasse diagrams) look much like

drawings of graphs, they represent

rather different mathematical objects.

lations when they are written out as a list of ordered pairs. It is often easier to understand

mathematical concepts when we can draw pictures of them.

The figure shows a diagram for the poset in Example 54.2. Each element of X , the ground

set of the poset, is represented by a dot in the diagram. If x R y in the poset, then we draw x’s

dot below y’s and draw a line segment (or curve) from x to y. For example, in the figure, we

position 1’s dot below 2’s dot, and we draw a line between them because 1 R 2.

We do not need to draw a curve from a dot to itself. We know that partial order relations

are reflexive; we don’t need the diagram to remind us of this fact.

If you look carefully at the figure, it appears that we have neglected to draw one of the

connecting lines. Notice that .1; 4/ 2 R, but we did not draw a line from 1’s dot to 4’s.

The relationships .1; 3/ and .3; 4/ are explicit in the figure. The relationship .1; 4/ is

implicit. Because partial order relations are transitive, we can infer 1 R 4 from the diagram.

We can read this in the diagram by following an upward path from 1 through 3 to 4. By not

drawing a curve from 1 to 4, we keep the diagram less cluttered and easier to read.

These diagrams of posets are known as Hasse diagrams.

For better or for worse, Hasse diagrams look exactly like (pictures of) graphs. It is impor-

tant to remember, however, that posets and graphs are different mathematical objects. Their

pictures look remarkably similar, but these pictures are just notational shorthand for the actual

underlying mathematical structures. Also, in a graph drawing, the geometric positions of the

vertices are irrelevant. However, in a Hasse diagram, the vertical positioning of the dots is

important.

Example 54.3 Problem: Draw the Hasse diagram of the poset whose ground set is f1; 2; 3; 4; 5; 6g and whose
relation is j (divides).
Solution:

1

2 3 5

4 6

Example 54.4 Problem: Draw the Hasse diagram for the poset whose ground set is 2f1;2;3g and whose rela-
tion is �.
Solution:

∅

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

There is a natural way in which we can partially order the partitions of a set (see Sec-

tion 16).

Definition 54.5 (Refinement) Let P and Q be partitions of a set A. We say that P refines Q, if every part in

P is a subset of some part in Q. We also say that P is finer than Q.
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For example, let A D f1; 2; 3; 4; 5; 6; 7g, and let

P D
˚

f1; 2g; f3g; f4g; f5; 6g; f7g
	

and Q D
˚

f1; 2; 3; 4g; f5; 6; 7g
	

:

Notice that every part of P is a subset of a part ofQ. Thus we say that P is a refinement ofQ,

or that P is finer than Q.

It is not hard to see that every partition of a set is finer than itself (since every part of P

is a subset of itself). Thus refines is reflexive. Furthermore, refines is antisymmetric, because

if every part of P is contained in a part of Q and vice versa, you can prove (Exercise 54.6)

that they must contain exactly the same parts (i.e., P D Q). Furthermore, refines is transitive.

Therefore, refines is a partial order on the set of all partitions of A.

Example 54.6 (Partitions poset) Problem: Draw the Hasse diagram of the refines partial order on all parti-

tions of f1; 2; 3; 4g.
Solution: It is convenient to write 1=2=34 in lieu of

˚

f1g; f2g; f3; 4g
	

. Here is the Hasse

diagram:

1/2/3/4

1234

14/2313/2412/34234/1134/2124/3123/4

13/2/412/3/4 23/1/414/2/3 24/1/3 34/1/2

Notation and Language

A partially ordered set is a pair P D .X; R/ where X is a set and R is a relation. Mathemati-

cians rarely use the letter R to stand for a poset’s relation. For some posets, there is a natural

symbol to use. For the poset in Example 54.4, it is natural to use the symbol � to denote the

partial order relation.

However, for a general poset such as the one in Example 54.2, the symbol most often

used for the partial order relation is �. The use of this symbol is both good and bad. It is bad

because the symbol� already has a meaning: ordinary less than or equal to. We need to infer

from context what meaning� has: the ordinary or some partial order relation. However, there

are some good features to this notation. A partial order relation is a generalization of ordinary

�. We may also use the symbols <, �, and > as follows: Let P D .X;�/ be a poset (now we

are using � to stand for a generic partial order relation). We define the following:

� x < y means x � y and x 6D y,
� x � y means y � x, and
� x > y means y � x and y 6D x.

We may also put a slash through any of these symbols to mean that the given relationship does

not hold. For example, x 6� y means y � x is false.

When we read the symbols such as � aloud, it is awkward to pronounce � as “less than

or equal to.” Further, we want to distinguish poset � from ordinary �. One comfortable way

to pronounce the symbol� is to read it as “is below.” For the other symbols, we read < as “is

strictly below,” � as “is above,” and > as “is strictly above.”

Some mathematicians use a different-shaped� symbol for partial orders, such as�. This
is a reasonable approach in printed work but it can be annoying when writing mathematics by

hand.
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There is only one symbol � and we may have occasion to discuss two different posets at

once. We cannot use the same symbol for both partial orders! One solution is to attach various

decorations to the � symbol, such as a prime mark �0 or subscripts �2.

Why do we need separate symbols for < and for 6�? Don’t these two mean the same

thing?

For the customary less-than relation for numbers, x < y is true if and only if x 6� y is

true. So in that context, the symbols < and 6� carry the same meaning.

1

2 3

4 However, for a poset, < and 6� mean different things. For the poset in Example 54.2 (see

the figure), we have 2 6� 4 is true (since 2 is not above 4) but 2 < 4 is false (since 2 is not

strictly below 4).

For the poset in this example, all three of the following are false: 2 < 4, 2 D 4, and 2 > 4.

This cannot happen for ordinary �. Elements 2 and 4 cannot be compared by the relation �.
Neither 2 � 4 nor 4 � 2 is true. We call such a pair of elements incomparable.

Definition 54.7 (Comparable, incomparable) Let P D .X;�/ be a poset. Let x; y 2 X . We call elements

x and y comparable provided x � y or y � x.

We call the elements x and y incomparable if x 6� y and y 6� x.

In the example poset, elements 2 and 4 are incomparable, whereas elements 1 and 4 are

comparable.

Definition 54.8 (Chain, antichain) Let P D .X;�/ be a poset and let C � X . We call C a chain of P

provided every pair of elements in C are comparable.

Let A � X . We call A an antichain of P provided every pair of distinct elements of A

are incomparable.

Consider the posetP from Example 54.2. The following sets are some of the chains of P :

f1g; f1; 2g; f1; 4g; f1; 3; 4g; ;:

Note that in the Hasse diagram for this poset, elements 1 and 4 are not joined by a line.

Nonetheless, f1; 4g is a chain because 1 and 4 are comparable.

The following sets are some of the antichains of P :

f3g; f2; 3g; f2; 4g; ;:

Definition 54.9 (Height, width) Let P be a poset. The height of P is the maximum size of a chain.

The width of P is the maximum size of an antichain.

The largest chain in the poset of Example 54.2 is f1; 3; 4g, so this poset has height equal

to 3.

The largest antichains in this poset are f2; 3g and f2; 4g, this poset has width equal to 2.

Recap

We introduced the concept of partially ordered set (or poset for short) and gave several ex-

amples. We often use the symbol � for the partial order relation despite the fact that it also

stands for ordinary less than or equal to.

We showed how to draw a picture of a poset. We introduced several terms, including

comparable/incomparable, chain/antichain, and height/width.

54 Exercises 54.1. Let P be the poset in the figure. For each pair of elements x; y listed below, determine

a b

c d

e f g

h i j whether x < y, y < x, or x and y are incomparable.

a. a, b.

b. a, c.

c. c, g.

d. b, h.

e. c, i .

f. h, d .
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54.2. For the poset from the previous problem, please find the following:

a. The height of the poset and a chain of largest size.

b. The width of the poset and an antichain of largest size.

c. A chain containing three elements that cannot be extended to a larger chain.

d. A chain containing two elements that cannot be extended to a larger chain.

e. An antichain containing three elements that cannot be extended to a larger antichain.

54.3. Let Pn denote the set of all positive divisors of the positive integer n ordered by divisi-

bility. In other words, j is the partial order relation.
Draw the Hasse diagram of Pn for the following values of n:

a. n D 6.

b. n D 10.

c. n D 12.

d. n D 16.

e. n D 18.

54.4. For each of the posets in the previous problem, find a largest chain, a largest antichain,

the height of the poset, and the width.

54.5. Suppose P D .X; R/ is a partially ordered set. Prove that P̂ D .X; R�1/ is also aSee Definition 14.4 for the definition

of the inverse of a relation. partially ordered set. We call P̂ the dual of P .

If the partial order relation is denoted by �, what is a better way to write ��1?

54.6. Prove that refines is a partial order relation on the set of all partitions of a set A.

54.7. What is the height of the poset of partitions (ordered by refinement) of an n-element

set? How many chains of this length does this poset have?

See Example 54.6. The answer to these questions when n D 4 is that the poset has

height 4 and there are 18 length-4 chains.

54.8. Let x and y be elements of a poset. Prove that we cannot have both x < y and x > y.

54.9. True or false: Please label each of the following statements as either true or false and

then give a proof.

a. Let x and y be elements of a poset. It must be the case that exactly one of the

following is true: x < y, x D y, or x > y.
b. Let x and y be elements of a poset and suppose there is a chain that contains both

x and y. Then it must be the case that exactly one of the following is true: x < y,

x D y, or x > y.
c. Let C and D be chains in a poset. Then C [D is also a chain.
d. Let C and D be chains in a poset. Then C \D is also a chain.
e. Let A and B be antichains in a poset. Then A [ B is also an antichain.
f. Let A and B be antichains in a poset. Then A \ B is also an antichain.
g. Let A be an antichain and C be a chain in a poset. Then A \ C must be empty.
h. Two points in a Hasse diagram (representing two elements of a poset) can never be

joined by a horizontal line segment.
i. Let A be a set of elements in a poset. If no two elements of A are joined by a curve

in the Hasse diagram, then A is an antichain.
j. Let A be a set of elements in a poset. If A is an antichain, then no two elements of

A are joined by a curve in the Hasse diagram.

54.10. Which of the various properties of relations does is-comparable-to exhibit? That is,

determine (with proof) whether or not it is always reflexive, irreflexive, symmetric,

antisymmetric, and/or transitive.

54.11. Which of the various properties of relations does is-incomparable-to exhibit? That is,

determine (with proof) whether or not it is always reflexive, irreflexive, symmetric,

antisymmetric, and/or transitive.

54.12. What does it mean to delete an element from a poset? Let P D .X;�/ and let x 2 X .

Create a sensible definition for P � x.

x

Let P be the poset in the figure. Draw the Hasse diagram of P � x.

54.13. Let .X1;�1/ and .X2;�2/ be two posets. Define a new relation denoted � on the set

This new partially ordered set is

called the product of the posets

.X1;�1/ and .X2;�2/.

X1 �X2 (the set of all ordered pairs; see Definition 12.13) by

.x; y/ � .x
0
; y
0
/ if and only if x �1 x

0 and y �2 y
0
:

Prove that .X1 �X2;�/ is also a partially ordered set.
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55 Max and Min

In this section, we discuss various notions of largest and smallest in partially ordered sets.

Definition 55.1 (Maximum, minimum) Let P D .X;�/ be a partially ordered set. An element x 2 X is

called maximum if, for all a 2 X , we have a � x. We call x minimum if, for all b 2 X , we

have x � b.

In other words, x is maximum if all other elements of the poset are below x and x is

minimum if all other elements of the poset are above x.

For example, consider the poset consisting of the positive divisors of 36 ordered by divis-

ibility (see the upper figure). In this poset, element 1 is minimum because it is strictly below

all other elements of the poset. Element 36 is maximum because it is strictly above all other

elements.

However, consider the poset consisting of the integers 1 through 6 ordered by divisibility

(see the lower figure). In this poset, element 1 is minimum, but there is no maximum element.

1

2 3

6
9

1812

36

4

1

2 3 5

4 6

It is possible to construct an example of a poset that has neither a maximum nor a mini-

mum element (Exercise 55.4).

An alternative concept of largest (or smallest) is presented in the next definition.

Definition 55.2 (Maximal, minimal) Let P D .X;�/ be a partially ordered set. An element x 2 X is called

maximal if there is no b 2 X with x < b.

Element x is called minimal if there is no a 2 X with a < x.

In other words, x is maximal if there is no element strictly above x and minimal if there

is no element strictly below it. In the poset consisting of the integers 1 through 6 ordered by

divisibility (lower figure), elements 4, 5, and 6 are maximal and element 1 is minimal.

The concepts of maximum and minimum are similar to, but not the same as, those of

minimal and maximal. Use the following chart to help you remember the definitions.

Term Meaning

maximum all other elements are below

maximal no other element is above

minimum all other elements are above

minimal no other element is below

It is also helpful to have an interpretation of not maximal and not minimal. Element x is

not maximal if there is some other element y with y > x. Likewise, element x is not minimal

if there is another element strictly below x.

We have seen an example of a poset that has no maximum element; instead, it has three

maximal elements. Is it possible for a poset to have no maximal elements? Yes! Consider

the poset .Z;�/—the integers ordered by ordinary less than or equal to. This poset has no

maximal and no minimal elements. However, finite posets must have maximal (and minimal)

elements.

Proposition 55.3 Let P D .X;�/ be a finite poset. Then P has maximal and minimal elements.
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When we say that P is finite, we mean that X is a finite set. Note that by Definition 54.1,

X 6D ;.

Proof. Let x be any element of P . Let us write u.x/ to stand for the number of elements ofThe value u.x/ is called the

up-degree of x. P that are strictly above x; that is,

u.x/ D
ˇ

ˇfa 2 X W a > xg
ˇ

ˇ:

Because P is finite, u.x/ is a natural number (i.e., is finite).

Choose an element m such that u.m/ is as small as possible (since X is nonempty, there

must be such an element). We claim that m is a maximal element of P .

Suppose, for the sake of contradiction, that m is not maximal. This means that there is an

element a with m < a. By transitivity, every element that is strictly above a is also strictly

above m. Furthermore, a is strictly above m, so u.m/ � u.a/C1, so u.m/ > u.a/. However,

m was selected to have smallest up-degree.)( Therefore m is maximal.

A similar argument shows that every finite poset has a minimal element.

Recap

We introduced the concepts of maximum, maximal, minimum, and minimal elements in a

poset. We proved that every finite poset must have maximal and minimal elements.

55 Exercises 55.1. Let P be the poset in the figure. Determine which elements are maximal, maximum,

a b

c d

e f g

h i j minimal, and minimum.

55.2. For each of the following partially ordered sets, determine which elements are maxi-

mum, maximal, minimum, and minimal.

a. The integers f1; 2; 3; 4; 5g ordered by ordinary less than or equal to, �.
b. The integers f1; 2; 3; 4; 5g ordered by divisibility, j.
c.
�

2f1;2;3g;�
�

, that is, the set of all subsets of f1; 2; 3g ordered by is-a-subset-of (see

Example 54.4).

d. Let X D fn 2 Z W n � 2g. Let P D .X; j/; that is, P is the poset of all integers that

are greater than 1, ordered by divisibility.

e. LetX be the set of all people who are currently living. Form a partial order onX with

a < b provided a is a descendant of b. (In other words, a is the child, grandchild, or

great grandchild, etc. of b.)

55.3. The poset .N; j/ (natural numbers ordered by divisibility) has both a maximum and a

minimum element. What are they? Please justify your answer.

55.4. Find a poset that has neither a maximum nor a minimum element.

55.5. Consider the poset consisting of all subsets of the n-element set f1; 2; : : : ; ng ordered
by containment. (Such a poset is illustrated in Example 54.4 in the case n D 3.)

a. This poset has a maximum and a minimum element. What are they?

b. If we delete the maximum and minimum elements of this poset—the elements you

found in part (a)—the resulting smaller poset does not have a maximum nor a mini-

mum. But it does have several maximal and minimal elements. What are they?

55.6. Consider the poset consisting of all partitions of the n-element set f1; 2; : : : ; ng ordered
by refinement (as in Example 54.6).

a. This poset has a maximum and a minimum element. What are they?

b. If we delete the maximum and minimum elements of this poset—the elements you

found in part (a)—the resulting smaller poset does not have a maximum nor a mini-

mum. But it does have several maximal and minimal elements. What are they?

55.7. Prove or disprove each of the following statements.

a. If a poset has a maximum element, then it must be unique.

b. It is possible for a poset to have an element that is both maximum and minimum.

c. It is possible for a poset to have an element that is both maximal and minimal but is

neither maximum nor minimum.

d. If a poset has exactly one maximal element, then it must be a maximum.
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e. If x is a minimal element in a poset and y is a maximal element in a poset, then

x � y.

f. If x and y are incomparable, then neither is a minimum.

g. Distinct (i.e., unequal) maximal elements must be incomparable.

55.8. Let P be a finite, nonempty poset. We know (Proposition 55.3) that P must have a

minimal and a maximal element. Prove the following stronger statement.

Let P be a finite, nonempty poset. Prove that P must contain a minimal element x

and a maximal element y with x � y.

56 Linear Orders

Partially ordered sets can contain incomparable elements. This is the feature that makes the

order relation � partial: Only some of the elements can be compared using �.

There are two ways we can think about incomparable elements: On the one hand, it may not make

sense to say which is “bigger” for a given pair of objects. For example, in terms of divisibility, we

cannot compare 10 and 12: Neither is a divisor of the other. Another example comes from

psychology in the study of preference. We may be able to say that we prefer going to the movies to

going to the dentist but there may be pairs of activities (say, movie-going versus eating a candy bar)

where we might not have a clear preference.

On the other hand, two objects may be incomparable because we cannot determine which is larger.

We might want to rank-order sports teams, and at some point we might ask, “Which team is better:

the Baltimore Orioles (baseball) or the Baltimore Ravens (American football)?” A reasonable answer

is that they cannot be compared because they play different sports. Or we might not be able to

compare some objects simply because we do not have enough information.

In this section, we consider total (or linear) orders: These are partially ordered sets that

do not have incomparable elements.

Definition 56.1 (Total/linear order) Let P D .X;�/ be a partially ordered set. We call P a total or linear

order provided P does not contain incomparable elements.

For example, .Z;�/ is a total order.

If x and y are elements of a total order, then we must have either x � y or y � x.

Another way to state this is that total orders satisfy the trichotomy rule: For all x and y in the

poset, exactly one of the following is true:

x < y; x D y; or x > y:

Example 56.2 Let P be the poset
�

f1; 2; 3; 4; 5g;�
�

—that is, the integers 1 through 5 ordered by ordinary

less than or equal to. This is a total order whose Hasse diagram looks like this:

Let Q be the partially ordered set consisting of the positive divisors of 81 ordered by divisi-

bility. In other words, the elements of Q are 1, 3, 9, 27, and 81, and they are totally ordered

1j3j9j27j81. Notice that this poset has the same Hasse diagram as P .

This example is interesting because we have two different total orders that, in essence,

are “the same.” A few moments thinking and doodling might convince you that all total orders

on five elements are “the same.” This is correct. Let us pause to consider the precise meaning

of “the same.” The proper term is that these posets are isomorphic.
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Definition 56.3 (Isomorphism of posets) Let P D .X;�/ and Q D .Y;�0/ be posets. A function f W X !
Y is called a (poset) isomorphism provided f is a bijection andCompare this definition with the

definitions of group isomorphism

(Definition 41.1) and graph

isomorphism (Exercise 47.21).

8a; b 2 X; a � b () f .a/ �0 f .b/:

In the case when there is an isomorphism from P to Q, we say that P is isomorphic to Q and

we write P Š Q.

The condition

a � b () f .a/ �0 f .b/

means that the function f is order-preserving; that is, whatever order relation holds between

a and b in P , we must have the corresponding relation between f .a/ and f .b/ in Q (see

Exercise 56.4).

We now show that any two finite total orders with the same number of elements are

isomorphic. We do this by showing that they are isomorphic to a common reference poset.

Theorem 56.4 Let P D .X;�/ be a finite total order containing n elements. Let Q D .f1; 2; : : : ; ng;�/ (the

integers 1 through n in their standard order). Then P Š Q.

Proof. The proof is by induction on n. The basis case n D 1 is trivial.

We assume that the result is true for n D k and suppose P D .X;�/ is a total order on

k C 1 elements. Let Q D .f1; 2; : : : ; k C 1g;�/. We must show that P is isomorphic to Q.

By Proposition 55.3, we know that P has a maximal element x. Let P 0 be the poset

P � x, the poset formed by deleting x from P (see Exercise 54.12). Let Q0 be the poset

.f1; 2; : : : ; kg;�/.

By induction, P 0 is isomorphic to Q0 so we can find an order-preserving bijection f 0

between their ground sets.

We define f W X ! f1; 2; : : : ; k C 1g by

f .a/ D
(

f 0.a/ if a 6D x;

k C 1 if a D x:

We must show that f is a bijection and is order-preserving.

To show that f is a bijection, we first check that f is one-to-one. Suppose f .a/ D f .b/.

� If neither a nor b equals x, then f .a/ D f 0.a/ and f .b/ D f 0.b/, so f 0.a/ D f 0.b/.

Since f 0 is one-to-one, we have a D b.
� If both a and b are x, then clearly a D b.
� Finally, note that if f .a/ D f .b/, it is impossible for one of a or b to be x and the other

one not x; in this case, one of f .a/ or f .b/ evaluates to k C 1 and the other does not.

Therefore f is one-to-one.

Next we check that f is onto. Let b 2 f1; 2; : : : ; k C 1g, the ground set of Q.

� If b D k C 1, then note that f .x/ D b.
� If b 6D kC1, then (since f 0 is onto f1; : : : ; kg) we can find a 2 X �fxg with f 0.a/ D b.

But then f .a/ D f 0.a/ D b as required.

Thus f is onto.

Therefore f is a bijection.

Next we need to show that f is order-preserving; that is, for all a; b 2 X ,

a � b () f .a/ � f .b/:

.)/ Suppose a; b 2 X and a � b. We must show that f .a/ � f .b/.

� If neither a nor b is equal to x, then f .a/ D f 0.a/ and f .b/ D f 0.b/. Since f 0.a/ �
f 0.b/ (because f 0 is order-preserving), we have f .a/ � f .b/.

� If both a and b equal x, then f .a/ D f .b/ D k C 1, so clearly f .a/ � f .b/.
� If a 6D x and b D x, then f .a/ D f 0.a/ � k < k C 1 D f .b/, so f .a/ � f .b/.
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� Finally, we cannot have a D x and b 6D x because that would give x � b, and x is

maximal in P .

Thus, in all possible cases, we have a � b) f .a/ � f .b/.

.(/ Suppose f .a/ � f .b/. We must show that a � b.

� If neither a nor b is x, then f .a/ D f 0.a/ and f .b/ D f 0.b/. Thus f 0.a/ � f 0.b/ and

so a � b (because f 0 is order-preserving).
� If both a and b are x, then a � b.
� Note that we cannot have a D x and b 6D x because then k C 1 D f .a/ � f .b/ � k,

which is a contradiction.
� Thus the only remaining case is a 6D x and b D x. Since b D x is maximal, we knowNote that this is the first (and only)

place in the proof where we use the

fact that P is a total order.
that a 6� b. Since P is a total order, we must have a � b.

Thus, in all cases, we have a � b.

Thus f is an order-preserving bijection between P and Q, therefore f is an isomor-

phism, and we conclude that P and Q are isomorphic.

Recap

We defined the notions of total (linear) orders and isomorphism of posets. We showed that

any two finite total orders on n elements must be isomorphic; indeed, they are isomorphic to

the poset .f1; 2; : : : ; ng;�/.

56 Exercises 56.1. What is the width of a total order?

56.2. Let n be a positive integer.

a. Howmany different (unequal) linear orders can be formed on the elements f1; 2; : : : ; ng?
b. How many different (nonisomorphic) linear orders can be formed on the elements

f1; 2; : : : ; ng?
56.3. Prove that a minimal element of a total order is a minimum element. (Likewise, a max-

imal element of a total order is maximum.)

56.4. Suppose f is an isomorphism between posets P and Q, and let x and y be elements

of P . Prove that x and y are incomparable (in P ) if and only if f .x/ and f .y/ are

incomparable (in Q).

56.5. Let P and Q be isomorphic posets and let f be an isomorphism. Let x be an element

of the ground set of P . Please prove:

a. x is minimum in P iff f .x/ is minimum in Q.

b. x is maximum in P iff f .x/ is maximum in Q.

c. x is minimal in P iff f .x/ is minimal in Q.

d. x is maximal in P iff f .x/ is maximal in Q.

56.6. Prove that .N;�/ and .Z;�/ are not isomorphic.

Note: This exercise shows that infinite total orders need not be isomorphic; there

can be no analogue to Theorem 56.4 if the posets are not finite. Furthermore, these two

posets have the same size (transfinite cardinality): @0.

56.7. Let .X;�/ be a totally ordered set. Define a new relation � on X � X as follows. IfThis new relation defined on X �X

is called a lexicographic order as it

precisely mimics alphabetical order.

Given the usual order on the

26 letters of the alphabet, we derive

an order for the two-letter words in

which ‘AS’ precedes ‘AT’ which

precedes ‘BE’.

.x1; y1/ and .x2; y2/ are elements of X�X , then we have .x1; y1/ � .x2; y2/ provided

either (a) x1 < x2 or else (b) x1 D x2 and y1 � y2.

Prove that .X �X;�/ is a total order.

56.8. For a linear order .X;�/ we say that element x is between elements a and b provided

either a < x < b or b < x < a. We say that .X;�/ is dense provided for all distinct

elements a; b 2 X there is an x 2 X that is between a and b.

Determine which of the following linear orders is dense (and explain why):

a. .Z;�/.

b. .Q;�/.

c. .R;�/.
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57 Linear Extensions

There are two ways to think about a partially ordered set. On the one hand, there may truly be

incomparabilities among the elements of the set—we cannot compare 8 and 11 with respect

to divisibility. On the other hand, we can think of a partially ordered set as representing partial

information about an ordered set.

For example, consider the poset in the left portion of the figure. We see that a is a min-

imum element, e is a maximum element, and we have a < b < c < e and a < d < e.

However, d is—so far—incomparable to b and c. We can imagine that we simply do not yet

know the order relation between b and d (or c and d ).

a

b

c
d

e

a

b

c

d

e

a

b

d

c

e

a

d

b

c

e

Given that elements fa; b; c; d; eg are partially ordered, we can ask: What linear orders

are consistent with the partial ordering already given on these elements? For consistency, we

must have a below all the other elements and e above all the other elements. We also must

have b < c. The figure on the right shows the three possibilities: d might be above both b and

c, d might be between b and c, or d might be below both b and c. The three linear orderings

on the right are called linear extensions of the poset.

Definition 57.1 (Linear extension) Let P D .X;�/ be a partially ordered set. A linear extension of P is a

linear order L D .X;�/ with the property that

8x; y 2 X; x � y H) x � y:

It is important to notice three things about a linear extension L of a poset P :

� The posets P and L have the same ground set, X . That is, they are both partial orders on

the same set of elements.
� The poset L is a linear (total) order.
� The poset L is an extension of P . This means that if x � y in P (if x and y are related

in P ), then x � y (then they must also be related in L).

No claim is made about incomparable elements of P . If x and y are incomparable

in P , we might have either x < y or x > y in L. (We cannot have x and y incomparable

in L because L is a total order.)

The condition x � y ) x � y can be written in the following interesting way:

� � �:

Remember: The relations � and � are relations and, as such, are sets of ordered pairs.

The condition “� � �” means “if .x; y/ 2 �, then .x; y/ 2 �,” which is more sensibly

written “if x � y, then x � y.”

Example 57.2 Let P D .X;�/ be an antichain containing n elements. Then all possible linear orders of

those n elements are linear extensions of P . Thus there are nŠ possible linear extensions of P .

We now consider the following problem: Does every poset have a linear extension? We

prove that every finite poset has a linear extension. We actually prove a stronger result.

If P is a linear order, then it is already its own linear extension. Otherwise, suppose x

and y are incomparable in a finite poset P . Then we can find a linear extension L in which

x < y (and another linear extension L0 in which y <0 x).
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Theorem 57.3 Let P be a finite partially ordered set. Then P has a linear extension. Moreover, if x and y

are incomparable elements of P , then there is a linear extension L of P in which x < y.

Proof. Let P D .X;�/ where X is a finite set. If P is a total order, then P is its own linear

extension. Henceforth, we assume P is not a total order.

Suppose x and y are incomparable elements of P . We define a new relation,�0, on X as

follows. The basic idea is to “add” the relation .x; y/ to �.
For example, consider the poset on the left in the figure. Notice that elements x and y are

incomparable. We now wish to extend � so that x is below y.

x

ya

d

b

c

e

x

y

a

d

b

c

e

We cannot simply add the pair .x; y/ to� because the resulting relation might not be a partial

order. In particular, since a � x, if we add the pair .x; y/, we also need to add the pair .a; y/.

Thus we want �0 to do three things:

� �0 should extend � (i.e., if u � v then u �0 v),
� .x; y/ should be in �0 (i.e., x �0 y), and
� �0 should be a partial order on X .

To this end, we define �0 as follows. Let s; t 2 X . We have s �0 t provided either of the
following conditions holds:

(A) s � t or

(B) s � x and y � t .

The poset on the right in the figure above shows the relation �0 formed from � (on the left).

Condition (A) guarantees that �0 extends�: If two elements of P are related by �, then
they are also related by �0. Condition (B) guarantees that x �0 y because we can take s D x

and t D y in the definition; since x � x and y � y, we have x �0 y.
Now we check that �0 is a partial order. To do this, we need to show that �0 is reflexive,

antisymmetric, and transitive.

� �0 is reflexive.
Let a 2 X be any element of the poset P . Since a � a (because � is reflexive), we

have, by condition (A) a �0 a. Therefore�0 is reflexive.
� �0 is antisymmetric.

Suppose a �0 b and b �0 a. We must prove that a D b. There are two possible ways

we might have a �0 b: either by condition (A) or by condition (B). Likewise there are

two ways we might have b �0 a. This gives four cases.
– Suppose a �0 b because a � b (A), and b �0 a because b � a (A).

Since � is antisymmetric, and because we have a � b and b � a, we have a D b.

– Suppose a �0 b because a � b (A), and b �0 a because b � x and y � a (B).

We claim this case cannot happen! Notice that we have y � a � b � x, implying

that y � x. However, x and y are incomparable in P .)( Therefore this case

cannot arise.

– Suppose a �0 b because a � x and y � b (B), and b �0 a because b � a.

This case is just like the previous case and cannot occur.

– Finally, suppose a �0 b because a � x and y � b (B), and b �0 a because b � x

and y � a (B).
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In this case, we have y � b � x, contradicting the fact that x and y are incompara-

ble.)( Therefore this case cannot occur.

Therefore, in all possible cases, we have a �0 b and b �0 a imply that a D b. Thus �0 is
antisymmetric.

� �0 is transitive.
Suppose a �0 b and b �0 c. We must show that a �0 c. As in the demonstration of

antisymmetry, there are two possible cases for a �0 b and two possible cases for b �0 c.
This gives us four cases to consider.

– Suppose a �0 b because a � b (A), and b �0 c because b � c (A).

Then a � c (since � is transitive) and so a �0 c by (A).

– Suppose a �0 b because a � b (A), and b �0 c because b � x and y � c (B).

In this case, we have a � b � x, so a � x. We also have y � c, so a �0 c by (B).

– Suppose a �0 b because a � x and y � b (B), and b �0 c because b � c (A).

In this case, we have y � b � c, so y � c. Since a � x, we have a �0 c by (B).

– Finally, suppose a �0 b because a � x and y � b (B), and b �0 c because b � x

and y � c (B).

We claim this case cannot occur. Notice that we have y � b � x, and so y � x.

However, x and y are incomparable.)( Thus this case cannot occur.

In all cases, we have a �0 c, and so �0 is transitive.

Therefore P 0 D .X;�0/ is a poset. It has the following properties. First, a � b H) a �0 b

for all a; b 2 X . Second, x �0 y, but x and y are incomparable in P .

Thus the number of pairs of elements related by �0 is strictly greater than the number of

pairs of elements related by �.
It is conceivable that�0 is a linear order. In this case, P 0 is the desired linear extension of

P . However, if P 0 is not a linear order, then it contains incomparable elements x0 and y0. We

can extend �0 to form �00 in precisely the same way as before. The relation �00 will include
all relations in �0 and will also have the relation x0 �00 y0.

In this way, we create a sequence of partial order relations each containing more pairs

than the previous: �;�0;�00;�000; : : :.

Because X is finite, this process cannot go on forever. Eventually, we reach a relation in

this sequence that is a total order. Let that relation be �. Since x �0 y, and all subsequent

relations are extensions of �0, we see that x � y (see the figure).
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Thus we have constructed a linear extension of P in which x � y.

Sorting

The term sorting refers to the process of taking a collection of data and placing it in numer-

A data record is a collection of data

about one object. In a company’s

personnel database, one data record

might include the employee’s name,

Social Security number, salary,

phone number, age, etc. Each of

these categories is called a field. The

goal of a sorting algorithm is to

arrange the records in the natural

order of one of its fields (e.g.,

numerically by age).

ical or alphabetical order. For example, imagine a company with many employees. We can

create various lists of the employees. A phone roster might list all employees alphabetically

by name. The accountant might list all the employees numerically by Social Security number

or by salary. The telecommunications department might want a list sorted by the employ-

ees’ telephone numbers. And the security department might want a roster ordered by office

number.
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There are a variety of techniques for sorting data. The typical methods involve making

comparisons between the various data records and, from there, placing the records in their

proper order.

When such an algorithm begins, the computer has no information about the order of any

of the records. It starts by comparing two records. Then it compares another pair of records,

and then another, and then another, and so on. On the basis of these comparisons, the computer

places the records in their proper order.

The question we address here is: How many comparisons do we need to make in order to

sort the data?

For example, we could compare every record to every other. If there are n data records,How does
�

n
2

�

compare to n log2 n?

When n D 1000 (a modest-sized

collection of data),
�

n
2

�

is about

500,000 and n log2 n is about

10,000, or about 1
50

the size.

this method takes
�

n

2

�

comparisons. But this does not mean that
�

n

2

�

comparisons are necessary.

Indeed, there are a variety of sorting algorithms that require only n log2 n comparisons.

We might wonder whether it is possible to develop a sorting algorithm that uses fewer

than n log2 n comparisons. For example, a sorting algorithmmight begin by checking whether

the n records are already sorted. If they are, the algorithm is finished after only n � 1 com-

parisons (check record 1 against 2, then 2 against 3, etc.). However, such an algorithm is not

guaranteed to complete its work with only n � 1 comparisons. We want to know: Is there a

sorting algorithm that can sort n records with fewer than n log2 n comparisons in all cases?

The answer is no. Here is the analysis.

In the beginning (when the algorithm starts), the computer has no information on the orderThe state of a sorting algorithm can

be modeled as a partially ordered set.

The elements of the poset correspond

to the data records. The partial order

contains all the order relations

between the records that we have

tested or that we can deduce from

our tests.

of the records. We can represent this state of knowledge as a poset all of whose elements are

incomparable to each other. The first thing the computer does is to compare two records to

see which is larger. Then it compares another pair, and another, and so on. At each stage of

the algorithm, the knowledge the computer has of the order of the record is partial. We can

represent this information as a poset! At each stage of the sorting procedure, there is a poset

P representing all we know about the relative order of the records. The linear extensions of

P are all the possible ways the records might be sorted based on what we know so far.

At the start of the algorithm, all nŠ linear extensions are feasible: We have no information

(yet) about the order of the records, and so none of the nŠ linear extensions can be ruled out.

At each stage of the algorithm, we have a poset P based on our partial knowledge of the

order, and all linear extensions of P are possible outcomes of the sorting algorithm. At the

next step of the sorting algorithm, the computer compares two records x and y. These records

correspond to incomparable elements of P . When we compare x and y, we may learn eitherThere is no reason to compare

comparable elements because we

already know their relative order.
that x < y or that x > y. If x < y, some of the linear extensions of P (those in which

x < y) remain feasible and the others (those in which x > y) become infeasible. Conversely,

if x > y, then the situation is reversed—those linear extensions with x > y are feasible and

the others are not.

In short, there are linear extensions of P with x < y and linear extensions with x > y;

both are consistent with what we know so far. If P has k linear extensions, then there are at

least k=2 possibilities with one order for x and y (and at most k=2 with the other order). If

we take a worst-case outlook, the comparison of x and y yields a new poset that still has at

least k=2 linear extensions.

In other words, each comparison in the sorting algorithm might rule out only half (or

fewer) of the possible linear extensions. Since we begin with nŠ linear orders possible at the

start of the algorithm, after c comparisons, there can still be nŠ=2c (or more) linear orders

feasible. Note that if nŠ=2c > 1, then the sorting algorithm has not completed its work—there

is more than one possible order, and so we do not yet know the actual order of the records.

Thus the algorithm cannot be guaranteed to finish unless we have nŠ=2c � 1.

We can solve the inequality nŠ=2c � 1 for c as follows. First, we rewrite the inequality as

2
c � nŠ

and take base-2 logarithms of both sides to get

c � log2.nŠ/:

Next, we substitute Stirling’s formula (see Exercise 9.7) nŠ �
p

2�n nne�n for the nŠ term

and we have

c � log2

hp
2�n n

n
e
�n

i

;
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which, by the rules of logarithms, gives

c � log2

�p
2�

�

C 1

2
log2 nC n log2 n � n log2 e:

The dominant term in this expression is n log2 n. Indeed, we can write this as

c � n log2 nCO.n/:

[See Section 29 for an explanation of the O.n/ term.]

Since c is the number of comparisons we need to make in order to find the true order of

the records, we see that we need n log2 n comparisons to sort the data.

Linear Extensions of Infinite Posets

We proved that every finite partially ordered set has a linear extension. We now consider the

same issue for infinite posets: Must they have linear extensions as well? The bizarre answer

to this question is yes and no.

How is this possible? Surely the statement “Every poset has a linear extension” is either

true or false—it can’t be both!

Recall the Pythagorean Theorem (Theorem 4.1). In Exercise 4.8, we noted that right

triangles on the surface of a sphere do not observe the Pythagorean Theorem. This does not

undermine the truth of the Pythagorean Theorem because right triangles on the surface of the

sphere are not the sort of right triangles to which the Pythagorean Theorem applies.

Thus the Pythagorean Theorem is true for some sorts of right triangles (the “real” right

triangles in the plane) and not for others (the “fake” right triangles on the sphere). The

Pythagorean Theorem is definitive once we are precise about the term right triangle.

The situation for linear extensions of infinite posets is similar. The truth of the statement

“Every poset has a linear extension” depends on the precise meaning of the word set. In this

book, we have been deliberately vague about what a set is. We rely on our readers’ intuition

that a set is a “collection of things.” It is not necessary, however, to work with a vague notion

of sets. A branch of mathematics, known as set theory, directly addresses the issue of what is

a set. Set theory provides the foundation for all of mathematics.

Surprisingly, there is no single, unequivocal concept of set. In laying down the defining

properties of sets, there are various conditions, called axioms, that we demand be satisfied by

sets. For example, one axiom states that if X and Y are sets, then there is a set that contains

all the elements in X and all the elements in Y . In essence, this axiom say that if X and Y are

sets, so is X [ Y .

A more exotic axiom is known as the Axiom of Choice. There are a number of different

ways to state this axiom. One way is as follows: Given a collection of pairwise disjoint sets,

there is another set X that contains exactly one element from each set in the collection.

If one accepts this axiom as part of the definition of set, then one can prove that every

poset (finite or infinite) has a linear extension. However, if one denies the Axiom of Choice,

then there are posets that do not have linear extensions.

Does this mean that the statement “Every poset has a linear extension” is both true and

false? No. It is true or false depending on what we mean by set. The strange issue here is

that there is more than one way to define set, and, depending on which definition you choose,

different mathematical results follow.

The Axiom of Choice is (mostly) a nonissue in discrete mathematics. Results about finite

collections of finite sets do not depend upon it. Thus all of the theorems in this book are true

irrespective of which concept of set we use. It is only when we consider infinite sets, or infinite

collections of sets, that these issues come into play.

Recap

We proved that every finite partially ordered set has a linear extension. Indeed, we showed

that if P contains incomparable elements x and y, then P has a linear extension in which x

is below y and another linear extension in which x is above y. We then used linear extensions

to discuss the number of comparisons necessary to sort n data records. Finally, we considered

the issue of whether or not infinite posets have linear extensions and discussed the fact that

the answer to this question depends on our fundamental notion of precisely what a set is.
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57 Exercises 57.1. Let P be the poset in the figure. Which, if any, of the following are linear extensions of

a b

c d

e f g

h i j
P ?

a. a < b < c < d < e < f < g < h < i < j .

b. b < a < e < g < d < c < f < j < i < h.

c. a < c < f < j .

d. a < b < c < e < f < h < i < j < h < g.

57.2. Find the number of linear extensions of each of these three posets.
(a) (b) (c)

1

2

3

4

1 2 3 4 5

6

7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

57.3. Let P D .X;�/ be a poset with incomparable elements x and y. Show that the relation

�0 defined by

�0 D �[ f.x; y/g

must be reflexive and antisymmetric.

Give an example of a poset P D .X;�/ with incomparable elements x and y

where �0 (as defined above) is not a partial order relation.
57.4. Let P D .X;�/ be a finite poset that is not a total order. Prove that P contains incom-

parable elements x and y such that

�0 D �[ f.x; y/g

is a partial order relation.

Such a pair of elements is called a critical pair.

57.5. Find all critical pairs in the poset from Exercise 57.1 that include the element g.

57.6. Let .X;�/ be the natural linear order on the set X D f1; 2; : : : ; ng where n is a positive

integer. Now consider two orders on the set X �X :
� Let � be the product partial order on X �X . See Exercise 54.13; the relation � is

defined by .x1; y1/ � .x2; y2/ if and only if x1 � x2 and y1 � y2.
� Let � be the lexicographic partial order on X �X . See Exercise 56.7; the relation

� is defined by .x1; y1/ � .x2; y2/ if and only if x1 < x2 or else x1 D x2 and

y1 � y2. Note that � is a linear order (and that was the point of that exercise).

Show that the lexicographic order � is a linear extension of the product order � on

X �X .

58 Dimension

Realizers

We return to the example at the beginning of the previous section. We examined the following

partially ordered set and its linear extensions.

a

b

c
d

e

a

b

c

d

e

a

b

d

c

e

a

d

b

c

e
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We make the following claim: The three linear extensions of the poset P contain enough

information to reconstruct the poset. Consider elements b and c. Notice that b < c in all three

linear extensions. By Theorem 57.3, this can happen only if b < c in P itself. On the other

hand, consider elements b and d . In the first linear extension, we have b < d , but in the third,

we have b > d . Were it the case that b < d in P , then we would have b < d in all linear

extensions. So we can deduce that b and d are incomparable in P .

We formalize these remarks as follows:

Corollary 58.1 Let P be a finite partially ordered set, and let x and y be distinct elements of P . If x < y in

all linear extensions of P , then x < y in P . Conversely, if x < y in one linear extension, but

x > y in another, then x and y are incomparable in P .

The proof is left to you (Exercise 58.2).

This observation gives us a way to store a partially ordered set in a computer. We can

save, as lists, the linear extensions of P . To see whether x < y in P , we simply check that x

is below y in all of the linear extensions.

However, some partially ordered sets have a large number of linear extensions. For exam-

ple, consider an antichain on ten elements (see Example 57.2). It contains 10Š (over 3 million)

linear extensions. However, we do not need all 10Š linear extensions to represent this antichain

in our computer. Instead, we can use just the two linear orders:

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 and

10 < 9 < 8 < 7 < 6 < 5 < 4 < 3 < 2 < 1:

Notice that for any two elements x and y of the antichain, we have x < y in one of the orders

and x > y in the other.

The same idea works for the five-element poset we considered earlier. We do not need

all three of its linear extensions to serve as a representation. Consider just the first and third

linear extensions:

a < b < c < d < e and a < d < b < c < e:

Notice that if x < y in the poset, then we have x < y in both of these linear extensions, but

if x and y are incomparable (e.g., x D b and y D d ), then we have x < y in one extension

and x > y in another. So it is enough just to hold these two linear extensions in the computer.

Let us be more precise. A set of linear extensions that captures all the information in a

poset is called a realizer and this is the proper definition.

Definition 58.2 (Realizer) Let P D .X;�/ be a partially ordered set. LetR be a set of linear extensions of

P . We call R a realizer of P , provided that for all x; y 2 X we have x � y in P if and onlyAnother way to express

Corollary 58.1 is as follows: Let P

be a finite partially ordered set and

let R be the set of all linear

extensions of P . Then R is a realizer

of P .

if x � y in all linear extensions inR.

We say thatR realizes P .

If R D fL1; L2; : : : ; Lt g is a realizer for a poset P , then we know that x � y ()
x �i y for all i D 1; 2; : : : ; t . Half of this statement (the) implication) always holds by

virtue of the fact that the Li are linear extensions. If x � y in P , then, because the Li are

linear extensions of P , we must have x �i y for all i .Here the notation x �i y means

x � y in Li . The other implication (the( half) is the important feature. This says that if x 6� y, then

we do not have x �i y for all i . Of course, if y < x, this is obvious, for then we have y <i x

for all i . The interesting case is when x and y are incomparable. Since x 6� y, there is an i

with x >i y. And since y 6� x, there is a j with x <j y.

We have the following:

Proposition 58.3 Let P be a poset and letR D fL1; L2; : : : ; Lt g be a set of linear extensions of P . ThenR is

a realizer of P if and only if for all pairs of incomparable elements of P , x and y, there are

indices i and j so that x <i y and x >j y.

We gave virtually the entire proof in the preceding discussion, and we leave it to you to

write this out carefully (Exercise 58.3).
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Example 58.4 Let P be the poset whose Hasse diagram is shown here:

a b c

d e fx

Let L1, L2, and L3 be the following linear extensions of P :

L1 W b < c < e < f < a < x < d;

L2 W a < c < d < f < b < x < e; and

L3 W a < b < d < e < c < x < f:

LetR D fL1; L2; L3g. We claim that R is a realizer of P .

Checking that R is a realizer for the poset in Example 58.4 is tedious.

First, we need to make sure that all three Li are linear extensions of P (i.e., if u < v in

P , then we must have u < v in all three Li ). Observe that a < x and a < d in all three Li .

Then check that b < x and b < e in all three. Finally, note that c < x and c < f in all three.

Second, we check that if u and v are incomparable in P , then u < v in one linear

extension and u > v in another. There are several cases, but we can check these systematically

as well. Consider first the incomparabilities among a, b, and c. Note that we have a < b in

L3 and a > b in L1. The incomparabilities between a and c and between b and c are checked

in the same way.

We also see that d < e in L2 and d > e in L1. The other incomparabilities among

fd; e; f g are checked in the same way.

Next, x < d in L1 and x > d in L2. The other incomparabilities involving x are checked

in the same manner.

Finally, notice that a < e in L2 and a > e in L1. The incomparabilities a-f , b-d , b-f ,

c-d , and c-e are checked in a similar manner.

ThereforeR is a realizer.

Dimension

Let P be an antichain on ten elements. We can form a realizer of P using all 10Š linear

extensions and we can also form a realizer of P using just two linear extensions. Clearly the

latter is more efficient (especially if we wish to use linear extensions to store a poset in a

computer).

It is not difficult to realize a poset when we use all its linear extensions. The tricky (and

interesting) problem is to realize a poset with as few linear extensions as possible. For exam-

ple, the poset at the beginning of this section (see the figure) can be realized using all three of

its linear extensions or with just two.

a

b

c
d

e

Can we realize this poset with just one linear extension? No. Because this poset has in-

comparable elements (call them x and y), we need at least two linear extensions: one in which

x < y and another in which x > y. This poset can be realized with two linear extensions, but

no fewer.

The technical terminology that applies here is that the poset has dimension equal to 2.

Definition 58.5 (Dimension) Let P be a finite poset. The smallest size of a realizer of P is called the dimen-

sion of P . The dimension of P is denoted dimP .

An antichain on ten elements and the poset in the figure both have dimension equal to 2.

Recall the poset P from Example 58.4. We showed that this poset has a realizer contain-

ing three linear extensions. Because P is not a linear order, it cannot be realized by a single

linear extension. The question becomes: Can P be realized using just two linear extensions?

We claim that is cannot.

Suppose, for the sake of contradiction, that P (the poset in Example 58.4) can be realized

with just two linear extensions L0 and L00. Consider the pairwise incomparable elements a, b,



Section 58 Dimension 397

and c. By symmetry, and without loss of generality, we have a < b < c in L0 and a > b > c

in L00. Since x is above all of a, b, and c, we also know that x is above them in L0 and L00. So
far we have

a < b < c < x in L
0 and

c < b < a < x in L
00
:

Now consider element e. We know that e and x are incomparable, so e < x in one of L
0 or

L00 and e > x in the other. Since the situation is still symmetrical, we assume e > x in L0

(so in L0 we have a < b < c < x < e). In L00 we know that e < x, but we also know that

e > b (because e > b in P ). So in L00 we have c < b < e < x. The point is that in both L0

and L00 we have c < e, despite the fact that c and e are incomparable. Therefore fL0; L00g is
not a realizer for P , and so there can be no realizer of size 2. In Example 58.4, we presented

a realizer of size 3. Therefore dimP D 3.

Here is another family of posets whose dimension we calculate:

Example 58.6 (Standard example) Let n be an integer with n � 2 and let Pn denote the following poset.

The ground set of Pn consists of 2n elements: fa1; a2; : : : ; an; b1; b2; : : : ; bng. The only strict
order relations in Pn are those of the form ai < bj where i 6D j . The poset P4 is shown in

the figure.

a1 a2 a3 a4

b1 b2 b3 b4

Proposition 58.7 Let n be an integer with n � 2 and let Pn be the poset defined in Example 58.6. The dimension

of Pn is n.

The proof has two parts. First, we show that Pn has a realizer of size n. Second, we show

that Pn cannot have a realizer with fewer than n linear extensions.

Proof. Let i be an integer with 1 � i � n. Let Li be a linear order on the ground set of Pn

of the following form:

.other as/ < bi < ai < .other bs/:

The “other as” means we place all aj (except ai ) before bi in this linear order. Similarly, the

“other bs” means we place all bj (except bi ) after ai . We claim that regardless of how we

arrange the “other as” and “other bs,” Li is a linear extension of Pn. We just need to check

that aj < bk whenever j 6D k. Indeed, we have aj < bk for all j and k except for j D k D i .

Thus Li is a linear extension (for each i D 1; 2; : : : ; n).

Let R D fL1; L2; : : : ; Lng. We claim that R is a realizer for Pn. There are three types

of incomparable pairs in Pn: two as, two bs, and ai -bi for some i .

� Incomparable pairs of the form ai -aj : Notice that ai < aj in Lj and ai > aj in Li .
� Incomparable pairs of the form bi -bj : Notice that bi < bj in Li and bi > bj in Lj .
� Incomparable pairs of the form ai -bi : Notice that ai > bi in Li , but ai < bi in any other

Lk (k 6D i ).

ThereforeR is a realizer of Pn.

We now show thatPn cannot have a realizer with fewer than n linear extensions. Suppose,

for the sake of contradiction, there is a realizer R of Pn with jRj < n. For each k (with

1 � k � n), there must be a linear extension L 2 R in which ak > bk (because ak and bk

are incomparable). There are n such incomparable pairs, but at most n�1 linear extensions in

R. Therefore (by the Pigeonhole Principle—see Section 25), there must be a linear extension
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L and two distinct indices i and j such that ai > bi and aj > bj in L. Since bj > ai and

bi > bj in Pn, we must also have these relations in L. Thus in L we have

bj > ai > bi > aj > bj ) bj > bj

which is impossible.)( Therefore R is not a realizer of Pn and so we cannot realize Pn

with fewer than n linear extensions.

Therefore dimPn D n.

Embedding

Hasse diagrams are helpful geometric representations for partially ordered sets. In this section,

we consider an alternative geometric representation.

Every point in the plane can be represented by a pair of real numbers: the .x; y/-coordinates

of the point. This is why the plane is often referred to as R2. Likewise, every point in three-

dimensional space can be described as an ordered triple: .x; y; z/. We write R3 to stand for

three-dimensional space. We do not need to stop at three dimensions. Four-dimensional space

is simply the set of all points of the form .x; y; z; w/ and we denote this set as R4. In general

Rn stands for the set of all ordered n-tuples of real numbers and represents n-dimensionalThe symbol Rn stands for

n-dimensional space. space.

The goal of this section is to show the connection between the two uses (geometry and

posets) of the word dimension.

Let p and q be two points in n-dimensional spaceRn. We say that p dominates q provided

each coordinate of p is greater than or equal to the corresponding coordinate of q. In other

words, if the coordinates of p and q are

p D .p1; p2; : : : ; pn/ and q D .q1; q2; : : : ; qn/

then p1 � q1, p2 � q2, . . . , pn � qn. Let us write p � q in the case where p dominates q.

We also write q � p, and we say that q is dominated by p.

a

b

c For example, suppose p and q are points in the plane. If p � q, then both of p’s coordinates

are at least as large as those of q. Thus q must lie to the “northeast” of p. In the figure, a is

dominated by both b and c (i.e., a � b and a � c), but b and c are incomparable.

Definition 58.8 (Embedding in Rn) Let P D .X;�/ be a poset and let n be a positive integer. An embedding

of P in Rn is a one-to-one function f W X ! Rn such that x � y (in P ) if and only if

f .x/ � f .y/ (in Rn).

Example 58.9 The following figure shows a poset on the left and an embedding in R2 on the right.

a

b

c
d

e

a
b

c
d

e

The embedding is a 7! a, b 7! b, c 7! c, d 7! d, and e 7! e. Notice that the chain

a < b < c < e corresponds to the sequence of points a; b; c; e where each point is to the

northeast of the previous point. Also note that since b and d are incomparable, their points b

and d are also incomparable in the dominance (�) order.

Theorem 58.10 Let P be a finite poset and let n be a positive integer. Then P has a realizer of size n if and

only if P embeds in Rn. Thus dimP is the least positive integer n such that P embeds in Rn.
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Proof. .)/ Suppose that P D .X;�/ has a realizer of size n—say,R D fL1; L2; : : : ; Lng.
For x 2 X , let hi .x/ denote the height of x in Li ; that is, hi .x/ is the number of elementsEquivalently, we know that Li is a

finite linear order and thus that it is

isomorphic to f1; 2; : : : ; jX jg
ordered by ordinary � (see

Theorem 56.4). The function hi is

simply the poset isomorphism from

Li to f1; 2; 3; : : : ; jX jg.

less than or equal to x in Li . Thus hi .x/ D 1 if x is the least element of Li , hi .x/ D 2 if it is

next to bottom, and so on.

Let f W P ! Rn be defined by

f .x/ D
�

h1.x/; h2.x/; : : : ; hn.x/
�

:

Clearly f is one-to-one: If x 6D y, then h1.x/ 6D h1.y/ (because x and y are at different

heights in L1), and so f .x/ 6D f .y/.

We must show that x � y (in P ) iff f .x/ � f .y/.

� Suppose x � y in P . Then hi .x/ � hi .y/ (because x � y in all the linear extensions,

Li ). Hence f .x/ is, coordinate by coordinate, less than or equal to f .y/, and so f .x/ �
f .y/.

� Suppose f .x/ � f .y/. This means that hi .x/ � hi .y/ for all i . Thus x � y in all linear

extensions Li , and so (by definition of realizer) x � y in P .

.(/ SupposeP D .X;�/ can be embedded in Rn. This means there is a one-to-onemapping

f W X ! Rn so that for all x; y 2 X we have x � y () f .x/ � f .y/.

Let i be an integer with 1 � i � n. We define a linear extension Li on P as follows: Let

fi .x/ be the i th coordinate of f .x/. We form Li by arranging the elements of X in increasing

order of fi . That is, we have x �i y provided fi .x/ � fi .y/. This would give a total order

on the elements X were it not for the annoying problem of elements with equal i
th coordinate.

We break such ties as follows: Suppose fi .x/ D fi .y/ for some x 6D y. Since f is a one-to-

one function, there must be some other coordinate j where fj .x/ 6D fj .y/. In this case, we

declare the order of x and y in Li to be determined by lowest index j where fj .x/ 6D fj .y/

(see Example 58.11).

We claim that Li is a linear extension of P . Clearly Li is a linear order. Suppose x < y

in P . Then f .x/ � f .y/ and so fi .x/ � fi .y/. In case fi .x/ D fi .y/ and x < y, we note

that for all j , fj .x/ � fj .y/ and for some indices j , the inequality is strict. Thus x < y in

P implies x <i y, and so Li is a linear extension of P .

Now we claim that R D fL1; : : : ; Lng is a realizer. We must show that if x and y

are incomparable, then there are indices i and j with x <i y and x >j y. Since f .x/ is

incomparable to f .y/ (by definition of embedding in Rn), we know that there are indices i

and j with fi .x/ < fi .y/ and fj .x/ > fj .y/, and this gives x <i y and x >j y.

Example 58.11 Let P be the poset in the figure (left) and let a 7! a; b 7! b; : : : ; f 7! f (on the right) be an

embedding of P in R2.

a

b

c

d

e

f

a b c

d e f

1 2 3 4 5

1

2

3

For example, d is embedded at d D .1; 3/.

The two linear extensions we extract from this embedding are

L1 W a < d < b < e < c < f and L2 W a < b < c < d < e < f:

We found L1 by sorting the six points by their first coordinate (and breaking ties using the

second coordinate). Likewise we found L2 by sorting the points by their second coordinate

(and breaking ties using the first coordinate).

Observe thatR D fL1; L2g is a realizer for P .
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Recap

We introduced the notion of a realizer of a partially ordered set. We defined the dimension of

a poset to be the size of a smallest realizer. We showed that the concept of a poset dimension

is closely linked to the geometric concept of dimension by studying embeddings of posets

in Rn.

58 Exercises 58.1. Let P be the poset in the top figure.

a. Find d D dimP .

b. Find a realizer of P containing d linear extensions.

c. Give an embedding of P in Rd (either via a picture or by specifying coordinates).

58.2. Prove Corollary 58.1.

58.3. Prove Proposition 58.3.

58.4. Let P be a subposet of Q. This means that the elements of P are a subset of the

elements of Q, and the relation between elements of P are exactly the same as their

relation in Q (i.e., x � y in P iff x � y in Q).

Prove that dimP � dimQ.

58.5. Show that the dimension of the seven-element poset in the middle figure is 3.

58.6. Prove that the product of a finite linear order with two or more elements with itself

gives a poset whose dimension is two.

See Exercise 54.13 for the definition of the product of posets. Please also see Ex-

ercises 56.7 and 57.6.

58.7. Let n be an integer with n � 3. A fence is a poset on 2n elements a0, a1,. . . , an�1,

b0, b1,. . . , bn�1 where the only strict relations are of the form ai < bi and ai < biC1

(where subscript addition is modulo n, so an�1 < b0). The bottom figure shows a fence

with n D 5.

Prove that fences have dimension equal to 3.

59 Lattices

We have seen that subset (�), ordinary less than or equal to (�), and divides (j) share three
essential features: They are reflexive, antisymmetric, and transitive, and hence they are partial

order relations.

In this section, we show that the set operations \;[ (intersection/union), the Boolean

operations ^;_ (and/or), and the number operations gcd; lcm (greatest common divisor/least

common multiple) are similarly related.

Meet and Join

The usual way to define the intersection of two sets, A and B , is to say that A\B is the set of

all elements that are in both A and B . Now consider the following challenge: Can we describe

the intersection of two sets, A\ B , without using the word element?

Notice first that A\B is a subset of both A and B . Of course, there may be many sets X

with X � A and X � B , so this does not uniquely specify A \ B . However, among subsets

of both A and B , we know that A \ B is the “biggest.” By this we mean that if X � A and

X � B , then we must have X � A \ B .

Let’s show this rigorously.

Proposition 59.1 Let A and B be sets. Let Z be a set with the following properties:

� Z � A and Z � B and
� if X � A and X � B , then X � Z.

Then Z D A\ B .

a b

c d

e f g

h i j

a

b c d

e f g

a0 a1 a2 a3 a4

b0 b1 b2 b3 b4
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Proof. First, suppose x 2 Z. Since Z � A, we have x 2 A. Likewise Z � B implies

x 2 B . Therefore x 2 A\ B .

Second, suppose x 2 A \ B . This means that x 2 A and x 2 B , and so X D fxg is a
subset of both A and B . Therefore X D fxg is a subset of Z (by the second property). Thus

x 2 Z.

We have shown that x 2 Z () x 2 A \ B . Therefore Z D A \ B .

A similar result holds for the greatest common divisor of two positive integers.

Proposition 59.2 Let a; b be positive integers. Let d be a positive integer with the following properties:

� d ja and d jb, and
� if e is a positive integer with eja and ejb, then ejd .

Then d D gcd.a; b/.

The proof is left for you (Exercise 59.4).

These propositions suggest an alternative way to define intersection and greatest common

divisor. We can define A \ B to be the largest set that is below both A and B where largest

and below are in terms of the subset (�) partial order. Similarly, we can define gcd.a; b/ to be

the largest positive integer that is below both a and b where largest and below are in terms of

the divisibility order (j).
We extend these ideas to other posets.

Definition 59.3 (Lower and upper bounds) Let P D .X;�/ be a poset and let a; b 2 X .

We say that x 2 X is a lower bound for a and b provided x � a and x � b.

Similarly, we say that x 2 X is an upper bound for a and b provided a � x and b � x.

The lower bound concept is an extension of the common divisor concept: Let a; b 2 N.

In the poset .N; j/, the lower bounds of a and b are precisely the common divisors of a and b.

Next, we define the notions of greatest lower bound and least upper bound.

Definition 59.4 (Greatest lower bound/least upper bound) Let P D .X;�/ be a poset and let a; b 2 X .

We say that x 2 X is a greatest lower bound for a and b provided (1) x is a lower boundSome authors abbreviate greatest

lower bound as glb and least upper

bound as lub.
for a and b and (2) if y is lower bound for a and b, then y � x.

Similarly, we say that x 2 X is a least upper bound for a and b provided (1) x is an upper

bound for a and b and (2) if y is an upper bound for a and b, then y � x.

Example 59.5 Let P be the following poset.

1

2 3

4 5 6 7

8 9 10

11 12

� Consider elements 8 and 9. Notice that 1, 2, and 5 are upper bounds for 8 and 9. Since

5 < 1 and 5 < 2, we have that 5 is the least upper bound of 8 and 9. On the other hand, 8

and 9 have no lower bounds and consequently no greatest lower bound.
� Elements 4 and 7 have 11 as their only lower bound; thus 11 is their greatest lower bound.

Elements 4 and 7 have no upper bound and hence no least upper bound.
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� Elements 5 and 6 have 2 as the least (and only) upper bound. They have incomparable

lower bounds 9 and 11, so they do not have a greatest lower bound.
� Elements 9 and 10 have no greatest lower bound and no least upper bound.
� Elements 4 and 5 have 2 as their least upper bound and 8 as their greatest lower bound.

If a pair of elements of a poset has a greatest lower bound, it must be unique. Suppose xGreatest lower bounds and least

upper bounds, if they exist, are

unique.
and y are both greatest lower bounds of a and b. We have x � y because y is greatest and we

have y � x because x is greatest. Therefore x D y. Likewise, if a and b have a least upper

bound, it must be unique.

There are alternative terms for least upper bound and greatest lower bound and a special

notation for them as well.

Definition 59.6 (Meet and join) Let P D .X;�/ be a poset and let a; b 2 X .

If a and b have a greatest lower bound, it is called the meet of a and b, and it is denoted

a ^ b.

If a and b have a least upper bound, it is called the join of a and b, and it is denoted a_b.

We use the symbols ^ and _ for the meet and join operations because ^ is an abstraction

of \ and _ is an abstraction of [. Unfortunately, we have used the symbols ^ and _ in

two different ways. In Section 7 these symbols stand for the Boolean operations and and or.

Here they stand for the poset operations meet and join. Fortunately, we can reach a peaceful

resolution to this crisis. Consider the poset P whose ground set is fTRUE; FALSEg. We make

T

F

the mathematical (as well as ethical) decision to place truth above falsehood; that is, we have

FALSE < TRUE in this poset—see the figure.

Notice that in this poset we have T ^ F D F because FALSE is the greatest (and only)

lower bound for TRUE and FALSE. Indeed, all of the following are true:

T ^ T D T T ^ F D F F ^ T D F F ^ F D F

T _ T D T T _ F D T F _ T D T F _ F D F:

Therefore the operations ^ and _ on fT;Fg are exactly the same whether we interpret them

as and and or or as meet and join.

Example 59.7 The results from Example 59.5 can be expressed as follows.

� 8 ^ 9 is undefined and 8 _ 9 D 5.
� 4 ^ 7 D 11 and 4 _ 7 is undefined.
� 5 ^ 6 is undefined and 5 _ 6 D 2.
� Both 9 ^ 10 and 9 _ 10 are undefined.
� 4 ^ 5 D 8 and 4 _ 5 D 2.

Lattices

Note that for some pairs of elements, meet or join might be undefined. However, in some

posets, meet and join are defined for all pairs of elements. There is a special name for such

posets.

Definition 59.8 (Lattice) Let P be a poset. We call P a lattice provided that, for all elements x and y of P ,

x ^ y and x _ y are both defined.

Let us look at some examples of lattices.
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Example 59.9 Let P be the poset in the figure. The ^ and _ operation tables are given as well.

a

b

c
d

e

^ a b c d e

a a a a a a

b a b b a b

c a b c a c

d a a a d d

e a b c d e

_ a b c d e

a a b c d e

b b b c e e

c c c c e e

d d e e d e

e e e e e e

Since ^ and _ are defined for every pair of elements, this poset is a lattice.

Example 59.10 (Subsets of a set) Let A be a set and let P D
�

2A;�
�

; that is, P is the poset of all subsets of

A ordered by containment. In this poset we have, for all x; y 2 2A,

x ^ y D x \ y and x _ y D x [ y:

Therefore P is a lattice.

Example 59.11 (Natural numbers/positive integers ordered by divisibility) Consider the poset .N; j/ (i.e.,
the set of natural numbers ordered by divisibility). Let x; y 2 N. Then x ^ y is the greatest

common divisor of x and y, and x _ y is their least common multiple. However, .N; j/ is not
a lattice because 0 ^ 0 D gcd.0; 0/ is not defined.

However, the poset .ZC; j/ is a lattice. Here ZC stands for the set of positive integers

which we order by divisibility. In this case, ^ and _ (gcd and lcm) are defined for all pairs of

positive integers and so .ZC; j/ is a lattice.

Example 59.12 (Linear orders) Let P D .X;�/ be a linear (total) order. Note that for any x; y 2 X ,

x ^ y D
(

x if x � y

y if x � y.

We can rewrite this as x ^ y D minfx; yg where minfx; yg stands for the smaller of x and y.

Likewise x_y D maxfx; yg (i.e., the larger of the pair). Thus all linear orders are lattices.

What algebraic properties do ^ and _ exhibit? For example, it is easy to see that x^x DLook at the ^ and _ tables in

Example 59.9, and look at the

diagonal entries running from the

upper left to the lower right.

x. Let us prove this. First, x is a lower bound of both x and x because x � x and x � x.

Second, if y is any other lower bound of x and x, we have y � x (because y is a lower

bound!). Therefore x is the greatest lower bound of x and x. Likewise, x _ x D x.

Also, ^ and _ are commutative operations: x ^ y D y ^ x and x _ y D y _ x. The

following result covers the significant algebraic properties exhibited by meet and join.

Theorem 59.13 Let P D .X;�/ be a lattice. For all x; y; z 2 X , the following hold:

� x ^ x D x _ x D x.
� x ^ y D y ^ x and x _ y D y _ x. (Commutative)
� .x ^ y/ ^ z D x ^ .y ^ z/ and .x _ y/ _ z D x _ .y _ z/. (Associative)
� x ^ y D x () x _ y D y () x � y.
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Proof. The first property was shown earlier, and the second and fourth are easy to prove (we

leave them for you).

Here we prove that ^ is associative. The proof that _ is associative is similar.

Let a D .x ^ y/^ z and let b D x ^ .y ^ z/. We must show that a D b. To this end, we

first prove a � b.

Since a D .x ^ y/ ^ z, we know that a is a lower bound for x ^ y and for z. Thus

a � x ^ y and a � z. Since a � x ^ y and since x ^ y � x and x ^ y � y, we have that

a � x and a � y. Thus a is below x, y, and z.

Symbolically, the argument of the preceding paragraph can be written as follows:

a D .x ^ y/ ^ z H) a � x ^ y and a � z

+
a � x and a � y.

Since a � y and a � z, we see that a is a lower bound for y and z. Therefore a � y ^ z

since y ^ z is the greatest lower bound of y and z.

Since a � x and a � y ^ z, we see that a is a lower bound for x and y ^ z. But b is the

greatest lower bound for x and y ^ z, so a � b.

By an identical argument, we have b � a, and so a D b—that is, .x ^ y/^
z D x ^ .y ^ z/.

Recap

We introduced the concepts of lower bound, greatest lower bound, upper bound, and least

upper bound. The greatest lower bound of two elements is called their meet (^), and the least
upper bound is called their join (_). Meet and join are abstract versions of intersection and

union (and of gcd and lcm). Finally, we presented the notion of a lattice and discussed some

of the algebraic properties of meet and join.

59 Exercises 59.1. Let P be the poset in the figure. Please calculate:

a b

c d

e f g

h i j
a. a ^ b.

b. a _ b.

c. c ^ i .

d. c _ i .

e. e ^ d .

f. e _ d .

g. .c ^ d/ _ g.

h. c ^ .d _ g/.

Is this poset a lattice?

59.2. Consider the poset .Z;�/ (ordinary less than or equal to). For x; y 2 Z, explain in

simple terms what x ^ y and x _ y are.

59.3. LetP D .X;�/ be a lattice. Prove that P is a linear order if and only if fx^y; x_yg D
fx; yg for all x; y 2 X .

59.4. Prove Proposition 59.2.

59.5. The following statement is false: Every lattice has a maximum element and a minimumNote: By Definition 54.1, all posets

(and therefore all lattices) are

nonempty.
element. Give a counterexample to verify that it is false.

However, by inserting one word into the statement, we can make it true. Show how

to repair the statement and prove the true version.

59.6. Let P D .X;�/ be a lattice and let m be an element of the lattice. Prove that m is

maximum in P if and only if 8x 2 X; x _m D m if and only if 8x 2 X; x ^m D x.

What is the analogous statement for a minimum element?

59.7. In Theorem 12.3, we showed that [ and \ satisfy the distributive properties:

A [ .B \ C / D .A [ B/ \ .A [ C / and

A \ .B [ C / D .A \ B/ [ .A \ C /:
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These equations can be rewritten with ^ in place of \ and _ in place of [:

a _ .b ^ c/ D .a _ b/ ^ .a _ c/ and

a ^ .b _ c/ D .a ^ b/ _ .a ^ c/:

Give an example of a lattice for which the distributive laws are false.

59.8. Consider the poset .Z� Z;�/ where � is the product order; that is, .x; y/ � .x
0
; y
0
/ if

and only if x � x0 and y � y0. See Exercise 54.13.
a. In this poset, calculate .1; 2/^ .4; 0/ and .1; 2/_ .4; 0/.

b. For arbitrary .x; y/ and .x0; y0/ in Z�Z, give a formula for .x; y/^ .x0; y0/ and for
.x; y/ _ .x0; y0/. Verify that your formula is valid and conclude that this poset is a

lattice.

c. Show that this lattice satisfies the distributive properties (presented in the previous

exercise).

59.9. Consider the following infinite poset P . The elements of P are various subsets of the

plane. These subsets are (a) the entire plane itself, (b) all lines in the plane, (c) all single

points in the plane, and (d) the empty set. The partial order is containment. This poset

is a lattice. Explain, in geometric terms, the effect of the meet and join operations in

this lattice.

59.10. Let P be a lattice with minimum element b and maximum element t .

a. What is the identity element for ^?
b. What is the identity element for _?
c. Show, by means of an example, that elements of P need not have inverses for either

^ or _.

Chapter 10 Self Test

1. Let P D .f1; 2; 3; : : : ; 20g; j/; that is, P is the poset whose elements are the integers from

1 to 20 ordered by divisibility.

a. Draw a Hasse diagram of P .

b. Find a largest chain in P .

c. Find a largest antichain in P .

d. Find the set of all maximal elements of P .

e. Find the set of all minimal elements of P .

f. Find the set of all maximum elements of P .

g. Find the set of all minimum elements of P .

2. Let C be a chain and A be an antichain of a poset P D .X;�/. Prove that jC \Aj � 1.

3. Let P D .X;�/ be a poset. Suppose there are chains C1 and C2 in P such that X D
C1 [ C2. Prove that the width of P is at most 2.

4. Let P D .X;�/ be a poset. Prove that P is an antichain if and only if every element of

X is both maximal and minimal.

5. Let P D .X;�/ be a finite poset. We say that P is a weak order if we can partition X

into disjoint antichains

X D A1 [A2 [ � � � [ Ah

so that for all x 2 Ai and y 2 Aj , if i < j then x < y. One may think of the Ai s as

“levels” in the weak order; two elements on the same level must be incomparable, but an

element on a lower-numbered level must be less than an element on a higher-numbered

level.

a. Show that (finite) chains and antichains are weak orders.

b. Prove that a poset is a weak order if and only if it does not contain the subposet shown

in the figure.

a

c

b
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c. Suppose P D .X;�/ is a weak order in which X D A1 [ � � � [ Ah where all of the

antichains Ai have k elements. Thus X has hk elements in total.

How many linear extensions does P have?

d. Prove that if P is a weak order, then the dimension of P is at most 2.

6. Let P D .X;�/ be a poset. We say that P is a semiorder if we can assign to each element

of x a real number label `.x/ so that the following condition is met:

8x; y 2 X; x < y () `.x/ < `.y/ � 1:

In other words, x is below y just when its label, `.x/, is “well below” the y’s label.

Elements of X whose labels are too close (within 1 of each other) are incomparable.

For example, the poset shown in Problem 5(b) is a semiorder as we can assign the

following labels: `.a/ D 1, `.b/ D 2:5, and `.c/ D 1:7. Note that a < b and, indeed,

`.a/ is more than 1 less than `.b/. But `.c/ is within 1 of both `.a/ and `.b/ as required

by the fact that c is incomparable to both a and b.

a. Prove that all finite linear orders are semiorders.

b. Prove that all finite weak orders are semiorders.

c. Prove that neither of the posets in the figure below are semiorders.

x

zy

w x

z

y w

7. Let P D .X;�/ be a poset. We say that P is an interval order provided we can assignFor real numbers a < b, the interval

Œa; b� is the set of all real numbers

between a and b inclusive. That is,

Œa; b� D fx 2 R W a � x � bg.

to each element x 2 X a real interval Œax ; bx� such that x < y in P if and only if the

interval Œax ; bx� is entirely to the left of Œay ; by � (i.e., bx < ay ). Note that this implies

that if x and y are incomparable, then Œax ; bx� and Œay ; by � must overlap (have nonempty

intersection).

a. Show that finite chains and antichains are interval orders.

b. Prove that weak orders are interval orders (see Problem 5 for the definition of a weak

order).

c. Prove that semiorders are interval orders (see Problem 6 for the definition of a semiorder).

d. Which of the two posets in part (c) of Problem 6 are interval orders?

8. Let P be the poset whose Hasse diagram is shown in the figure.

How many linear extensions does P have?

9. Let P be the poset whose Hasse diagram is shown in the figure.

a

b

c

d

e

f

Please do the following:

a. List all pairs of elements that are incomparable in P .

b. Find three linear extensions of P that form a realizer of P .

Verify that your solution is correct by finding, for each incomparable pair fx; yg, one
extension in which x < y and another in which y < x.
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c. Prove that there can be no linear extension of P in which f < a and d < c.

Prove that there can be no linear extension of P in which b < f and f < a.

Prove that there can be no linear extension of P in which b < d and d < c.

Prove that there can be no linear extension of P in which e < b and b < d .

Prove that there can be no linear extension of P in which e < b and b < f .

d. In a realizer of P , there must be linear extensions in which f < a, d < c, b < d ,

e < b, and b < f . Show that no more than two of these can hold in a single linear

extension.

e. Show that dimP D 3; that is, show that P does not have a realizer of size 2.

10. Let P D .X;�/ be a lattice, and suppose that for all x; y 2 X , we have x ^ y D x _ y.

Prove that P contains at most one element.

11. Recall from Definition 54.5 and Example 54.6 that the set of all partitions of a given set,

together with the refines relation, forms a poset. Please answer the following:

a. Let P D
˚

f1; 2; 3; 4g; f5; 6; 7; 8; 9g
	

and Q D
˚

f1; 3; 5; 7; 9g; f2; 4; 6; 8g
	

. Calculate

P ^Q and P _Q.

b. Let P, Q, andR be partitions of an n-element set for which

P D fX1; X2; : : : ; Xpg;
Q D fY1; Y2; : : : ; Yqg; and

R D P ^Q D fZ1; Z2; : : : ; Zrg:

Show that every Zk in R is of the form Xi \ Yj .

12. Let P D .X;�/ be a lattice. Let a; x1; x2; : : : ; xn 2 X and suppose that a � xi for all

1 � i � n. Prove that a � x1 ^ x2 ^ � � � ^ xn.

13. Let P D .X;�/ be a finite poset. Let a; b 2 X and define U.a; b/ D fx 2 X W a �
x and a � yg; that is, U.a; b/ is the set of all elements above both a and b.

Prove the following: If a _ b is defined and U.a; b/ is nonempty with U.a; b/ D
fu1; u2; : : : ; ung, then a _ b D u1 ^ u2 ^ � � � ^ un.
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Appendices

A Lots of Hints and Comments; Some Answers

1.1 Sorry, there is no hint for this problem; that would utterly de-

feat the purpose! Trust yourself and keep thinking about this.

You will succeed, and when you have the answer, you will be

absolutely sure you are right—you won’t need the back of the

book to tell you!

2.1 Here is a solution to the puzzle.

In writing your directions, give descriptive names to the

pieces such as parallelogram, square, and large isosceles right

triangle.

3.1 To determine whether ajb is true, see if you can find an integer

x so that ax D b.

3.2 In the previous problem there are integers a and b where bja
is true but a

b
is not an integer.

3.3 Read Definition 3.6 carefully. Check each number to see if it

fulfills all the requirements set forth in the definition.

3.4 Your definition for � (less than or equal to) should look like

this:

Let x and y be integers. We say that x is less than or

equal to y (written x � y) provided . . . .

where the . . . represents a condition involving x, y, and the

natural numbers.

Once you define �, you may use this concept to define <,

>, and �.

3.5 You need to do two things:

(1) Explain why integers are rational numbers. You must

explain why if x is an integer, then you can find integers a and

b such that x D a

b
. The integers a and b depend on x, and you

can find simple values for these. Beware not to choose b D 0.

(2) Explain why some rational numbers are not integers.

All that is required is that you find a rational number that is

not an integer.

3.6 The number 169 is square. How would you convince someone

this is true? You would need to tell them about the number 13.

Here is the full answer:

An integer x is called perfect square provided there is an

integer y such that x D y2.

3.7 Your answer should begin: “A number x is a square root of

the number y provided . . . ”

3.9 Use the notation d.A; B/ to denote the distance between

the points A and B . Determine a relation between d.A; B/,

d.B; C /, and d.A; C / that determines whether C is between

A and B .

3.10 The midpoint of a line segment AB is a point C on the seg-

ment such that the distance from A to C equals the distance

from C to B .

3.11 Complete answer for (b): Person A is the grandmother of per-

son B provided A is female and A is the parent of one of B’s

parents.

Alternatively: A person X is a grandmother if X is female

and X is the parent of someone who is also a parent.

3.12 For small numbers, the easiest thing to do is simply write out

all the possibilities. For larger numbers, try to develop a better

method. Try factoring the numbers into primes. Factoring and

prime numbers are discussed at length in Section 39.

3.13 The answer to (a) is best found by starting with 2 and checking

each number. You should find the answer fairly quickly.

The hardest part for (b) is to write a subroutine to check

whether, given integers a and b, ajb is true. One way to do

this is to calculate a=b and then round down to the nearest

integer giving the integer c. Then check whether ac D b.

Beware that this idea works well when a and b are positive,

and that is sufficient for the problem at hand. However, if you

plan to use this subroutine in other projects, it is worth your

while to write a subroutine that will work correctly for any

pair of integers a and b.

4.1 Answer to (a): If x is an odd integer and y is an even integer,

then xy is an even integer.

Answer to (f): If 4ABC Š 4XYZ, then the area of

4ABC equals the area of4XYZ.

Hint for (g): Rather than write, “if a, b, and c are consec-

utive integers. . . ” express the integers as, say, n, n C 1, and

nC 2.

4.2 Answer for (a): If B , then A is true (because all squares are

rectangles), but the other statements are false.

Hint for (e): 1900 was not a leap year.

4.3 There are many possible correct answers. For example, the

statement “If (A) an animal is a cat, then (B) it is a mammal”

is true, but “If (B) an animal is a mammal, then (A) it is a cat”

is false.

Now create your own examples.

409
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4.4 The statement “If A, then B” is true unless A is true and B is

false.

An “or” statement is true unless both conditions are false.

This tells you when “(not A) or B” is true and when it is false.

Compare to “If A, then B .”

4.7 To what kind of triangles does the Pythagorean Theorem

apply?

4.8 To what kind of triangles does the Pythagorean Theorem

apply?

4.9 A distance is a number and lines are infinite. In your rewrite,

use the term line segment.

4.10 Check out guinea pig anatomy.
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4.11 Lemmas is one, and there is another.

4.12 (a) Full answer: The sum of the first n odd numbers is n2.

(d) Suggestion: Doodle like crazy, but keep a careful record

of your doodles.

(e) Suggestion: Try this procedure for a small number of

lockers, say ten. Writing - for closed and + for open, here’s

what we should see after each round:

Round Pattern

1 ----------

2 -+-+-+-+-+

3 -+++---+++

4 -++-----++

5 -++-+---+-

6 -++-++--+-

7 -++-+++-+-

8 -++-+++++-

9 -++-++++--

10 -++-++++-+

5.1 Here is a full answer:

Converted to if-then form, the problem asks you to prove:

If x and y are odd integers, then x C y is even.

Proof. Let x and y be odd integers. By the definition of odd,

there is an integer a such that x D 2a C 1. Likewise, there is

an integer b such that y D 2b C 1. Therefore

x C y D .2aC 1/C .2b C 1/

D 2aC 2b C 2

D 2.a C b C 1/:

Since a and b are integers, so is a C b C 1. Therefore, by the

definition of divisible, x C y is divisible by 2. Therefore, by

the definition of even, x C y is even.

5.2 The first line of the proof is: Let x be an odd integer and let y

be an even integer.

The last line of the proof is: Therefore x C y is odd.

5.3 What you know: n D 2a C 1 for some integer a. What you

need to show: �n D 2bC1 for some integer b. Figure out the

relation between a and b.

The first line of your proof should read: “Let n be an odd

integer.” The last line of your proof should read: “Therefore,

�n is odd.”

5.4 One line, in the middle of this proof, is

xy D .2a/.2b/ D 4ab D 2.2ab/:

5.6 .2a C 1/.2b C 1/ D 2.2ab C aC b/C 1.

5.7 This is a corollary of Exercise 5.6.

5.8 You can expand .2a C 1/
3 and see what happens. Alterna-

tively, if you solved Exercise 5.6, you can apply that result

and avoid all algebra.

5.9 It may be more work, but if you do Exercise 5.11 first, you can

derive this as a corollary.

5.10 See the previous hint.

5.11 If you did the previous two problems without first doing this

problem, you can use them to do this.

5.13 .)/ Suppose x is odd. . . . Therefore x C 1 is even.

.(/ Suppose x C 1 is even. . . . Therefore x is odd.

Algebraic trick: 2b � 1 D 2.b � 1/C 1.

5.14 Here is the first part of the proof in full:

.)/ Suppose x is odd. Then there is an integer a such that

x D 2aC1. Let b D aC1; notice that b is an integer. Observe

that

2b � 1 D 2.a C 1/ � 1 D 2aC 2 � 1 D 2aC 1 D x:

Therefore x D 2b � 1 for some integer b.

Here is an outline for the second half of the proof.

.(/ Suppose x D 2b � 1 for some integer b. . . . . . There-

fore x is odd.

5.16 The smallest positive integer is 1, and a < b implies b�a > 0.

Be sure you prove both halves of this if-and-only-if statement.

5.18 Consecutive perfect squares may be expressed as n2 and

.nC 1/2 for some integer n.

5.19 You know: a is the square of some integer. What if that integer

happens to be negative?

5.20 Use the Ordering Properties given in Appendix D.

5.22 2a C 1 D .a/C .aC 1/.

5.23 Construct a statement of the form “If A or B , then C ” that is

false, but “If A, then C ” is true.

5.24 Are we sure now that whenever A is true, so is B , and when-

ever B is true, so is A?

6.1 Negative integers.

6.3 Don’t choose a to be a prime number.

6.6 A calculator or a computer will help with this one.

6.7 For this problem you will certainly want to use a computer.

A computer algebra system such as Maple, Mathematica, or

Sage will be invaluable. The number theory package Pari/GP

can do this calculations as well:
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gp > n = 2^(2^4)+1

%1 = 65537

gp > isprime(n)

%2 = 1

This shows that 224 C 1 is prime. Pari/GP is available for free

here: http://pari.math.u-bordeaux.fr/

Integers of the form 2
2n C 1 are known as Fermat num-

bers. Fermat conjectured (incorrectly) that all such numbers

are prime.

6.9 There are no very small values of n for which n2 C n C 41

is not prime. You have to take n to be modestly large. If you

choose the correct n, you won’t need to do any calculations to

see that n2 C nC 41 is composite.

7.1 (b) TRUE. (c) FALSE.

7.3 Make a truth table for .x^y/_.x^:y/ and check that the col-

umn for x exactly matches the column for .x^y/_ .x^:y/.

7.4 Make a truth table for both and make sure they are the same.

7.9 More than 1000. Try some smaller examples first.

7.10 Answer to (b): Take x D FALSE and y D TRUE. Then x ! y

evaluates to TRUE, whereas x $ y evaluates to FALSE.

7.11 To show that (a) is a tautology, we construct the following

truth table.

.x _ y/_
x y x _ y x _ :y .x _:y/

T T T T T

T F T T T

F T T F T

F F F T T

7.12 Solution to part (a):

.x _ y/ _ .x _ :y/ D .x _ x/ _ .y _:y/

D x _ TRUE D TRUE

where we used associativity and commutativity in the first

step, the fact that y _ :y D TRUE in the second, and iden-

tity element in the last.

7.13 Here is a truth table for part (a):

.x _ y/^
x y x _ y x _:y :x .x _ :y/ ^ :x

T T T T F F

T F T T F F

F T T F T F

F F F T T F

7.14 .)/ Suppose A is logically equivalent to B . . . . Therefore

A$ B is a tautology.

.(/ Suppose A $ B is a tautology. . . . Therefore A is

logically equivalent to B .

7.16 For (c) we show x_y D .x_y/^.:.x^y// via the following

truth table.

.x _ y/^
x y x_y x _ y :.x ^ y/ .:.x ^ y//

T T F T F F

T F T T T T

F T T T T T

F F F F T F

7.18 If necessary, you can write down all possible tables and find

ways to express each. However, there is a mechanical way

to convert an arbitrary binary Boolean operation using ^, _,
and :.

8.1 As there are 5 vowels, your list should have 5�5 D 25 entries.

Of these, 20 have no repetition.

Incidently, some of these two-letter combinations are ac-

tual words. For example, an io is a type of bird.

8.3 2k .

8.5 If a song may be on both lists, there are .500/20 ways to load

the “Exercising” list and, again, .500/20 for the “Relaxing”

list. This gives Œ.500/20�2 possible ways to load songs. It is

not necessary to multiply this out, but if you did the value you

should get is roughly 9:7 � 10112.

8.6 For the first question, let’s write out all the possibilities when

n D 4. The lists we can form (using the elements 1, 2, 3, and

4) are these:

111 121 131 141

212 222 232 242

313 323 333 343

414 424 434 444

8.7 Hint for (b): Imagine that you are tagging the photos each with

one of two labels “Friends” or “Family”.

8.9 Try a smaller version of this problem first. For instance, show

that there are 36 ways to place pairwise nonattacking rooks on

a 3 � 3 chess board.

8.12 (a) 109. (c) 59. (e) 99.

8.13 How many 2-element lists can one form whose entries are

drawn from an n element set? How many do not have a repe-

tition? How many must have a repetition?

8.14 Break this problem into 8 cases depending on the length of the

name, and total your answer.

8.17 The answer is 20 � 19 � 18 � � � � � 2 � 1.

8.18 The answer is not .10 � 9 � � � � � 2 � 1/2.

9.2 Here is an answer to a question we didn’t ask. There are

6Š � 8Š � 5Š ways to place the books on the shelf if the French

books must be to the left, the Russian books in the middle, and

the Spanish books to the right.

9.3 The point of this discussion is that the product of a list con-

taining just one number ought to be the number on the list. No

actual multiplication takes place.

9.4 Try to use the formula .n/k D nŠ

.n�k/Š
to calculate .3/6.

9.6 2100 D .24/25 D 1625.

9.7 Approximate error is computed as

approximate value � true value

true value
:
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9.8 (a) 945; (b) 0.

9.9 Answer to (e): 719. By the way: 6Š D 720.

9.10 The answer is not 20.

9.11 The last two on this list work slightly differently from the

others.

9.13 nŠ D n � .n � 1/Š.

9.14 OK, we’re going to get a lot of flak for this because most

mathematicians would say that 00 is undefined. But from the

perspective of discrete mathematics, there is a natural answer.

You can think about this as the result of a list counting prob-

lem or use the Alice/Bob reasoning.

9.15 Hint for (c): Write n D 2k C 1 for some integer k and then

find a product formula in which the dummy variable runs from

0 to k.

9.16 .x4/0000 D .4x3/000 D .12x2/00 D .24x/0 D 24.

10.1 (a) f0; 3; 6; 9g.
(f) f�10; 10;�20; 20;�50; 50;�100; 100g.

10.2 Answer to (c): fx 2 N W x is oddg or fx 2 Z W x >

0 and x is oddg.

10.3 (a) 21.

10.4 (a) 2 2 f1; 2; 3g.
(b) f2g � f1; 2; 3g.
(c) f2g 2

˚

f1g; f2g; f3g
	

.

10.5 In some cases, you will need to make sets whose elements are

themselves sets.

10.7 For (a), the main part of your proof should be of this form:

Proof. Suppose x 2 A.. . . . . . Thus x 2 C . Therefore A � C .

10.9 Use Exercises 10.7(a) and 10.8.

10.12 Let x 2 C D fx 2 Z W xj12g, so x is a divisor of 12; i.e.,

12 D xa for some integer a. Multiply both sides by 3 and we

have 36 D 3xa D .3a/x. Therefore x is a divisor of 36 and

so x 2 D. Therefore C � D.

10.15 You need to find a triple .a; b; c/ that is in one of the sets,

but not the other. Since T � P , you should try to find a

Pythagorean triple .a; b; c/ 2 P for which .a; b; c/ … T .

As an extra hint: What can you say about the middle term

of the triples .p; q; r/ 2 T ?

11.1 (a) 8x 2 Z, x is prime.

(g) 8x 2 Z; 9y 2 Z; xy D 1.

11.2 (a) 9x 2 Z, x is not prime. “There is an integer that is not

prime.”

(g) 9x 2 Z; 8y 2 Z; xy 6D 1. “There is an integer x such

that no matter what integer we multiply x by, the answer

is never 1.”

11.4 (a) False. (g) True.

11.5 (a) 9x 2 Z; x 6< 0: There is an integer that is not negative.

(g) 9x 2 Z;8y 2 Z; x C y 6D 0: There is an integer x with

the property that for any integer y, the sum of x and y is

not zero.

11.8 (a) A region R is convex provided

8a 2 R;8b 2 R;8x 2 L.a; b/; x 2 R:

Note: We asked for a sentence with three 8 quantifiers,

but here is an alternative that uses only two:

8a 2 R;8b 2 R; L.a; b/ � R:

(b) A region R is not convex provided

9a 2 R; 9b 2 R; 9x 2 L.a; b/; x … R:

(c) A region is not convex provided there are two points in

that region such that the line segment joining those points

contains a point that is not in the region.

(d) Here’s a diagram to illustrate (b) [and (c)]:

a bx

L(a, b)

R

12.1 (b) f4; 5g. (c) f1; 2; 3g. (e) f1; 2; 3; 6; 7g.

12.2 Use Proposition 12.4.

12.4 The answer for (a): j`1 \ `2j D 0 exactly when the lines are

parallel or else j`1 \ `2j D 1 when they intersect (cross).

12.9 This is false. Find a counterexample.

12.11 This is true. Here is an outline for your proof:

.)/ Suppose A[B D A\B . We want to prove A D B .

Suppose x 2 A. . . . Therefore x 2 B .

Suppose x 2 B . . . . Therefore x 2 A.

Therefore A D B .

.(/ Suppose A D B . . . . Therefore A[ B D A \ B .

12.16 (() If A � B D ;, then if x 2 A, then x must also be in B

(otherwise A � B wouldn’t be empty), so A � B .

()) On the other hand, if A � B , clearly there are no

elements in A that are not in B , so A � B D ;.

12.19 Use DeMorgan’s Law from Boolean algebra.

12.20 You should show that (a) is false and (b) is true. But wait!

You might have thought about two regions that don’t intersect.

However, the empty set is, in fact, convex because it satisfies

the definition of convexity vacuously.

12.21 Most of these are false. Venn diagrams will help you figure

out which are true and which are false. Then construct small

counterexamples (for the false ones).

12.23 One way to do this: Start with a standard Venn diagram with

three circles (for sets A, B , and C ) and then add a complicated

shape for D.

Note that there must be at least 16 regions in the final

figure.

12.24 Let X D A [ B . Apply Equation (4) to jX [ C j. You now

have

jA [B [ C j D jX [ C j D jX j C jC j � jX \ C j:

Apply what you know to find jX j and jX \ C j and substitute

into the above equation to finish the proof.

12.25 Be sure you have done Exercise 7.16.
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12.26 Union ([) is commutative.

12.27 Be sure you have done Exercise 12.25 and use properties of

the corresponding idea from Boolean algebra.

12.29 Use the Multiplication Principle (Theorem 8.2).

12.30 Here is a template for a proof of part (a).

To show that two sets are equal, we use Proof Template 5.

Suppose first that x 2 A � .B [ C /. . . . Therefore x 2
.A � B/ [ .A � C /.

Suppose second that x 2 .A � B/ [ .A � C /.

. . . Therefore x 2 A � .B [ C /.

Therefore A � .B [ C / D .A � B/[ .A � C /.

We expand this a little as follows.

Suppose first that x 2 A � .B [ C /. This means x D
.a; z/ where a 2 A and z 2 B [ C . . . . Therefore

x 2 .A � B/ [ .A � C /.

Suppose second that x 2 .A�B/[.A�C /. Thus either

x 2 A�B or x 2 A�C . . . . Therefore x 2 A� .B [C /.

Therefore A � .B [ C / D .A � B/[ .A � C /.

And we can expand still further to give the following struc-

ture for you to complete.

Suppose first that x 2 A�.B[C /. This means x D .a; z/

where a 2 A and z 2 B [ C . We have two cases:

� If z 2 B , then . . .

� If z 2 C , then . . .

. . . Therefore x 2 .A � B/[ .A � C /.

Suppose second that x 2 .A � B/ [ .A � C /. Thus

either x 2 A � B or x 2 A � C . We have two cases:

� If x 2 A � B , then . . .

� If x 2 A � C , then . . .

. . . Therefore x 2 A � .B [ C /.

Therefore A � .B [ C / D .A � B/[ .A � C /.

13.1 Use the following question: How many length-n lists can we

form using the elements 0 and 1 (repetition allowed) in which

the elements are not all zero?

13.2 For the first part, the expression should simplify to xn � 1.

For the second part, let x D 2.

13.3 For the first part, use the question “How many length-n lists

can we form using the elements in f1; 2; 3g in which the ele-

ments are not all 3?”

For the second part, note that 99 C 1 D 100, 999 C 1 D
1000, and so on.

13.4 Create two patterns of dots. In the first pattern, the dots are

laid out in a rectangular grid of a�b rows and aCb columns.

Clearly this pattern has .a � b/.aC b/ dots. Now find a rear-

rangement of the dots that clearly has a2 � b2 dots.

13.5 Do not use algebra! Give two different answers to the question

“How many length-two lists can we make from n elements?”

13.6 For (a), lists .a; b/ such that a < b or a > b is the same as

lists with a 6D b, and this is a problem we’ve already solved in

this book.

For (b), consider the different possible values for b.

13.7 The answer to the first question is 2a � 1 because there are a

lists of the form .‹; a/ and another a lists of the form .a; ‹/.

However, this counts the list .a; a/ twice, so the final answer

is 2a � 1.

14.1 Answer for (a): f(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5),
(3,4), (3,5), (4,5)g.

14.2 Answer for (a): is-one-less-than.

14.3 (a) reflexive, symmetric, antisymmetric, transitive

(b) irreflexive, antisymmetric

14.4 (a) reflexive, symmetric, transitive.

(b) irreflexive, antisymmetric.

14.5 You need to prove: 8x; y 2 Z; .x D y ^ y D x/) x D y.

You have to show that x D y, but you are given that x D y.

In other words, there’s nothing to prove!

14.6 (d) is true. Here is a proof: Suppose x R y. Then jx � yj � 2.

Note that jx � yj D jy � xj, so jy � xj � 2. Therefore y R x.

(f) is false. You should find three numbers a, b, and c with

a R b, b R c, but a 6R c.

14.7 (a) R�1 D f.2; 1/; .3; 2/; .4; 3/g.
(c) R�1 D f.x; y/ W x; y 2 Z; x � y D �1g or R�1 D
f.x; y/ W x; y 2 Z; y � x D 1g.

14.8 Remember that R, S , R�1, and S�1 are sets. To prove that

two sets are equal, use Proof Template 5.

14.9 This is false. Find a counterexample with A D f1; 2g.

14.10 All proofs and counterexamples for this problem are quite

short. For example, here is the proof that the “has-the-same-

size-as” relation R is transitive.

LetA,B , and C be finite sets of integers and suppose ARB

and B R C . This means that jAj D jBj and jBj D jC j. There-
fore jAj D jC j and so A R C . Therefore R is transitive.

14.11 For one part of this problem, Exercise 10.8 is useful.

14.13 For part (b): Does this seem impossible? It isn’t. Perhaps you

are reasoning as follows:

Let x 2 A. In order for R to be reflexive, we have to

have x R x. In order for R to be irreflexive, we have to

have x 6R x. We can’t have it both ways (x either is or

is not related to itself).

The mistake in this reasoning is in the first sentence.

14.14 Here is a proof template for this problem.

.)/ Suppose R is symmetric. To show that R D R�1, we

need to prove that the two sets, R and R�1 are the same.

We use Proof Template 5.

Suppose .x; y/ 2 R. . . . .x; y/ 2 R�1.

Suppose .x; y/ 2 R�1. . . . .x; y/ 2 R. Therefore

R D R�1.

.(/ Suppose R D R�1. We must prove that R is

symmetric. Suppose x R y. . . . Therefore y R x, so R

is symmetric.

15.1 Remember: a � b .mod N / iff N divides a � b.

Answer to (a): 2, 5, and 10.

15.3 (a) Yes. (f) No. (g) Yes.
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15.4 Here is the proof for the first statement:

Suppose x and y are both odd. By definition, we can find

integers a and b such that x D 2a C 1 and y D 2b C 1. Now

x � y D .2a C 1/ � .2b C 1/ D 2a � 2b D 2.a � b/, so

2j.x � y/. Therefore x � y .mod 2/.

15.5 What is a � .�a/?

15.6 Be sure you did Exercise 5.9.

15.7 (a) Œ1� D f1; 2g.
(e) Œyou� is the set containing all people born on your

birthday.

15.8 Answer to (b): 366. (Did you remember February 29th?)

15.9 You may use Proof Template 5 (the default manner to prove

sets are equal), but you’ll have an easier time if you apply

Proposition 15.12.

15.13 Here is a useful notation for this problem. Write Œa�R for the

equivalence class of R with respect to the relation R and Œa�S

for the equivalence class with respect to S . That is,

Œa�R D fx 2 A W x R ag
Œa�S D fx 2 A W x S ag:

15.16 It is painful to write out an equivalence relation as a full set of

ordered pairs. For example, consider the relation

R D f.1; 1/; .1; 2/; .2; 1/; .2; 2/;

.3; 3/; .3; 4/; .4; 3/; .4; 4/g:

It is simpler just to write out its equivalence classes: f1; 2g and
f3; 4g. A convenient shorthand for this is just to write 12=34.

16.1 Use the notation 1/23 to stand for the partition
˚

f1g; f2; 3g
	

,

etc.

The partitions of f1; 2; 3g are 1/2/3, 1/23, 2/13, 3/12, and

123.

There are 15 partitions of f1; 2; 3; 4g.
16.2 Answer to (d): 7Š

2Š�3Š
.

16.5 Here is an outline for this proof.

Part (1): Let Œa� be an equivalence class of
P�. Prove that

there is a part P 2 P such that Œa� D P (you will need to

prove that two sets are equal here).

Part (2): Let P be a part of P, i.e. P 2 P. Prove there is an

element a 2 A such that Œa� D P .

You have shown that every equivalence class of
P� is a part

of P and, conversely, that every part of P is an equivalence

class of
P�.

16.7 Imagine the 12 people are arranged around a clock face. In

how many ways can you locate them around the clock? [An-

swer: 12Š.] Of course, if everyone moves one position clock-

wise, the arrangement is equivalent. Develop an equivalence

relation on the set of arrangements, and figure out the size of

the equivalence classes.

16.8 Be careful. It is easy to be off by a factor of 2 in this problem.

16.9 It’s easy to be off by a factor of 2 in this problem as well.

16.10 129260083694424883200000, but this is an awful way to

report the answer.

16.11 Imagine the 20 people first line up. In how many ways can this

be done? [Answer: 20Š.] The first 10 people on the line form

a team, and the last 10 people on the line form the other team.

Consider two line-ups equivalent if they result in the same two

teams being formed. Count the size of the equivalence classes

and figure out the number of classes. Note that if we switch all

players on both teams, we have not really changed anything

at all.

Test your answer by considering the number of ways to

divide 6 people into two teams of 3. The answer should be

10: 123/456, 124/356, 125/346, 126/345, 134/256, 135/246,

136/245, 145/236, 146/235, and 156/234.

16.15 Try working out several examples with small values of n. For

example, when n D 3 there are three partitions with exactly

two parts: 1/23, 12/3, and 13/2.

When n D 4 there are seven two-part partitions: 1/234,

12/34, 13/24, 14/23, 123/4, 124/3, 134/2.

16.16 Imagine this as a list-counting problem. For each number k

from 3 to 100, we have to decide into which part k should

land: 1’s, 2’s, or 3’s.

16.17 Once you have the expressions, I recommend you simply use

a calculator to figure out which is larger.

16.20 Yes. Find the set A.

17.1 (a) 1, (b) 1, (c) 9, (d) 9, (e) 0, (f) 1, (g) 1, (h) 0.

17.3 Answer to (b): �4320.

17.4 The second answer is twice the first.

17.7 Your answer should evaluate to 34650, but that’s not a good

way to write your result.

17.8 The answer to (b) is
�

50

10

�

.

17.9 The chart looks like this:

f1; 2; 3g $ f4; 5; 6; 7g
:
:
:

f5; 6; 7g $ f1; 2; 3; 4g

17.10 For (b), consider the cases with zero, with one, and with two

doubles separately.

17.11 Warning: There’s a little trap waiting for you. Be sure you

don’t step into it.

17.13 Expand both
�

n

k

�

and
�

n

n�k

�

in terms of factorials, and then use

algebra to show they are equal.

17.14 The question is, “How many subsets does an n-element set

have?”

17.15 Expand .1 � 1/n.

The equation means that the number of subsets of an n-

element set with an even number of elements equals the num-

ber of subsets with an odd number of elements.

17.19 Consider a set of 2nC 2 people with two weirdos.

17.20 Algebraically simplify the expression n �
�

n

2

�

and then con-

sider the following cases separately: n D 1, n D 2, n D 3,

and n > 3.

17.21 Stirling’s formula is nŠ �
p

2�nnne�n.

For the second part, note that 4
n D 2

2n.

17.22 Put everything over a common denominator and don’t lose

your courage.
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17.23 The question is, “How many 3-element subsets does

f1; 2; 3; : : : ; ng have?”
And consider, how many of those 3-element subsets have

largest element 3? . . . largest element 4? . . . largest element n?

17.26 Think of a classroom containing n girls and n boys.

17.28 The answer is
�

n

k

�

. We can think of this labeling process as

selecting the k elements of A that receive the “good” label

(and the remainder are assigned “bad”). So there is a one-to-

one correspondence between assigning labels and selecting a

k-element subset of A.

17.29 (a) If in doubt, write out all the possibilities. There are not

that many.

(b) Note that 1C 2C 5 6D 10, so there are not enough labels

to go around. The answer to this problem is a number,

and the word “impossible.”

(d) Since there are no labels of Type 3 available, this reduces

to the previous problem; the answer is a binomial coeffi-

cient.

(e) Changing the names of the labels doesn’t change the

number of ways to distribute them.

17.30 For (a), think of the labeling process as proceeding in two

stages. First we assign the labels of Type 1 (in how many

ways?) and then we assign the labels of Type 2 (in how many

ways?).

For (b), you may use (a) and expand the binomial coeffi-

cients into factorials, but there is a combinatorial proof. Place

the n elements in a repetition-free list (in how many ways?).

Then give the first a elements in the list Type 1 labels, the next

b elements Type 2 labels, and the last c elements Type 3 labels.

Call two lists equivalent if they result in the same distribution

of labels, and count the number of equivalence classes.

17.31 The proof is similar to that of Theorem 17.8.

17.32 Answer:
�

52

5

�

.

17.33 (a) 13 � 48. (d) 13 �
�

4

3

�

� 12 �
�

4

2

�

.

17.35 To verify the formula for
�

n

4

�

, use Theorem 17.12.

For the second part, you’ll find the double factorial func-

tion useful: 7ŠŠ D 7 � 5 � 3 � 1.

17.36 Write down the first six or seven rows of Pascal’s triangle. In a

different color, record next to each entry how many additions

it takes to calculate that value. Notice that the 1s on the ends

of each row take 0 calculations.

Now, to compute an interior value, such as
�

n

k

�

, you calcu-

late
�

n�1

k�1

�

(that takes a certain number of additions) and
�

n�1

k

�

(that takes a certain number of additions). Finally, to calculate
�

n

k

�

you do one more calculation.

Do you see a pattern? This will enable you to find the num-

ber of additions to compute
�

100

30

�

.

18.1 For
��

3

2

��

: We list all six 2-element multisets we can form with

the elements in f1; 2; 3g. They are h1; 1i, h1; 2i, h1; 3i, h2; 2i,
h2; 3i, h3; 3i.

Theorem 18.8 gives
��

3

2

��

D
�

3C2�1

2

�

D
�

4

2

�

D 6.

Give a similar answer for
��

2

3

��

.

18.2 For
��

3

2

��

: **||, *|*|, *||*, |**|, |*|*, and ||**.

18.3 You can check your answers using the chart. The point of this

problem is to verify the first row and the first column of the

chart.

18.5 h1; 4; 4; 4i.

18.6 By “evaluate from first principles” we mean that you should

not translate
��

2

k

��

into a binomial coefficient, but rather derive

the value just by considering the meaning of the notation.

For example,
��

2

5

��

D 6 because there are six mul-

tisets of size 5 that we can form from the elements

of f1; 2g, namely: h1; 1; 1; 1; 1i, h1; 1; 1; 1; 2i, h1; 1; 1; 2; 2i,
h1; 1; 2; 2; 2i, h1; 2; 2; 2; 2i, and h2; 2; 2; 2; 2i.

18.7 If your calculations are correct one of these is twice as large

as the other. By the way,
��

8

4

��

D 330.

This foreshadows Exercise 18.11.

18.8 Convert to a binomial coefficient.

18.9 Rewrite
��

n

n

��

as
�

2n�1

n

�

and compare that to
�

2n

n

�

.

For the second part of the problem, you can readily guess

the answer by calculating
�

4

2

�

and
��

2

2

��

.

18.10 The result for x D 2 is nonsensical. We get 1C2C4C8C� � � D
�1.

However, for x D 1

10
we get

1C 1

10
C 1

100
C 1

1000
C � � �

which, when expressed as a decimal, is 1:11111 : : :. This re-

peating decimal evaluates to 10=9 and, indeed, substituting

1=10 into 1=.1 � x/ gives 10=9—the correct answer.

The point is that identities with infinite sums need to be

handled carefully.

18.11 Convert everything into factorials and don’t drown in the al-

gebra.

18.13 You can resort to factorials if you must. Here’s a better idea:

*$|.

18.15 This calls for a combinatorial proof. The question is, “How

many k-element multisets can we form using the integers 1

through n?” The first answer is
��

n

k

��

. The second answer de-

pends on the multiplicity of element n in the multiset.

This problem can also be solved by conversion to binomial

coefficients.

18.16 This problem calls for a combinatorial proof. You must find

a question that is answered by both the left- and right-hand

sides of the equation. The question should be “How many k-

element multisets can be formed using integers chosen from

f1; 2; : : : ; ng?”
The left-hand side of the equation is clearly one such an-

swer. Try to figure out how the right-hand side is also an an-

swer. And to help you with that, answer the following:

How many multisets have size 10, with elements that are

chosen from f1; 2; : : : ; 99g, whose largest element is 23? An-

swer:
��

23

9

��

.

18.17 For (b) you should find
�

n

4

�

D .n4�6n3C11n2�6n/=4Š and
��

n

4

��

D .n4 C 6n3 C 11n2 C 6n/=4Š. Notice that substituting

�n into one gives the other!

18.19 In the formula .1 � x/�n D
P

k

��

n

k

��

xk , substitute n D 1=2

and apply your answer to Exercise 18.17(d).

19.1 Call the four groups of people A1, A2, A3, and A4. The prob-

lem gives you the sizes of these sets and their various intersec-

tions. You need to find jA1 [A2 [ A3 [ A4j.
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19.2 Here is a complete answer.

Let A be those integers between 1 and 100 that are divisi-

ble by 2. Let B be those that are divisible by 5. The problem

asks us to find jA [ Bj. Note that A \ B are those integers

between 1 and 100 that are divisible by both 2 and 5, i.e., that

are divisible by 10.

We calculate that jAj D 100=2 D 50, jBj D 100=5 D 20,

and jA \ Bj D 100=10 D 10.

Therefore jA[Bj D jAjCjBj�jA\Bj D 50C20�10 D
60.

19.3 Let A, B , C be the subsets of f1; : : : ; 106g that contain the

multiples of 2, 3, and 5 respectively. Calculate jA [ B [ C j
and subtract from one million.

In your calculation, you’ll need to know jA\Bj: this is the
number of integers between 1 and one million that are divisi-

ble by both 2 and 3, i.e., are divisible by 6. There are 166666

such numbers (divide one million by 6 and round down).

19.4 This is true, so don’t try to disprove it. Start from

jA [ B [ C j D jAj C jBj C jC j
� jA \ Bj � jA \ C j � jB \ C j
C jA \ B \ C j

and cancel jA [B [ C j D jAj C jBj C jC j.

19.5 First count “bad” words and subtract from 265.

Let B1 denote the set of words whose first two letters are

the same. Let B2 denote the set of words whose second two

letters are the same. And so on.

Figure out the sizes of the various intersections and apply

inclusion-exclusion.

19.6 For (a), write 9n D Œ10C .�1/�n.

For (b), the combinatorial proof, you need the right ques-

tion. Here is a good way to start your question: Howmany lists

of length n can we make using the standard digits 0 through 9

in which . . . ?

19.8 The number of paths that go through A is
�

6

4

��

12

5

�

. How many

paths go through B? How many go through both?

19.11 The second part of this problem asks you to create n sets (say,

for n D 4) so that the inequality

jAj �
X

i

jAi j � njA1 \ � � � \ Anj

is false.

20.1 (a) If x2 is not odd, then x is not odd.

(d) If a parallelogram is not a rhombus, then its diagonals are

not perpendicular.

20.2 Remember: ::B D B .

20.4 (b) Let a and b be negative integers. Suppose, for the sake of

contradiction, that aC b is nonnegative.

(d) Let p and q be primes for which p C q is also prime.

Suppose, for the sake of contradiction, that neither p nor

q is equal to 2.

20.5 Your proof should begin as follows:

Let x and x C 1 be consecutive integers. Suppose, for the

sake of contradiction, that x and x C 1 are both even. . . .

20.8 Use the ordering properties of real numbers in Appendix D.

In particular, by the trichotomy property, you may break your

proof into three cases: x < 0, x D 0, and x > 0.

20.9 Your proof should begin: Let a and b be real numbers with

ab D 0. Suppose, for the sake of contradiction, that neither a

nor b is 0.

One more hint: If b 6D 0, then b�1 exists.

20.10 We are given that a > 1. We need to prove two inequalities:

1 <
p

a and
p

a < a. Here’s a proof of the first.

Suppose, for the sake of contradiction, that
p

a 6> 1. This

means that
p

a � 1. Since
p

a � 1, we have
�p

a
�2 � 12

which gives a � 1, but a > 1.)( Therefore
p

a > 1.

20.12 Here is a complete answer.

.)/ Suppose N is divisible by 10 but (for contradiction)

when written in base 10

N D dk10
k C dk�110

k�1 C � � � C d110C d0

its one’s digit is not zero; that is, d0 2 f1; 2; : : : ; 9g. We know

that 10jN so N D 10a for some integer a. Since

10a D dk10
k C dk�110

k�1 C � � � C d110C d0

we have

d0 D 10a �
�

dk10
k C dk�110

k�1 C � � � C d110

�

D 10

h

a � dk10
k�1 C dk�110

k�2 C � � � C d1

i

and therefore

d0

10
D a � dk10

k�1 C dk�110
k�2 C � � � C d1

is an integer. However, none of 1

10
;

2

10
; � � � ; 9

10
is an

integer.)( Therefore, the last digit in N ’s base ten repre-

sentation is a zero.

.(/ Suppose the last digit in N ’s base ten representation

is a zero. That is,

N D dk10
k C dk�110

k�1 C � � � C d110C 0:

From this it follows that N D 10a where a is the integer

a D dk10
k�1 C dk�110

k�2 C � � � C d1

and so 10jN .

20.13 Suppose .A � B/ \ .B � A/ 6D ;. This means there is an

element x in both A � B and B � A. Argue from here to a

contradiction.

20.14 This is an if-and-only-if style theorem; be sure to prove both

halves. Both halves can be proved by contrapositive.

20.15 A direct proof here is possible. The point of this problem is to

introduce the term converse.

20.16 Answer for (a): We say that x is a smallest element of A pro-

vided (1) x 2 A and (2) if y 2 A, then x � y.

First sentence for (b): Suppose, for the sake of contradic-

tion, E contains a smallest element x.

Comment for (c): This is quite obvious, but please write a

careful proof by contradiction using Proof Template 14. Here

is a good start for your proof: “Let A be a subset of the inte-

gers with a smallest element. Suppose, for the sake of contra-

diction, A contains two distinct smallest elements a and b. . . ”
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21.1 There is no such thing.

21.6 Here is a complete proof.

Suppose that Proposition 13.2 is false and let X be the set

of counterexamples, i.e.,

X D fx 2 ZC W 1 � 1ŠC 2 � 2ŠC � � � C x � xŠ 6D .x C 1/Š � 1g

and let n be the smallest member of X .

Note that n 6D 1 because both 1 � 1Š and .1C 1/Š � 1 equal

1. Thus n > 1 and so n � 1 is a positive integer that is not a

counterexample. Thus,

1 � 1ŠC � � � C .n� 1/ � .n� 1/Š D Œ.n� 1/C 1�Š � 1:

Adding n � nŠ to both sides gives

1 � 1ŠC � � � C .n � 1/ � .n � 1/ŠC n � nŠ D nŠ � 1C n � nŠ

D .nC 1/nŠ � 1

D .nC 1/Š � 1

contradicting the fact that n 2 X .

21.7 It is helpful to use a computer to generate the first several Fi-

bonacci numbers and the values of 1:6n, although a hand-held

calculator will suffice.

You should find that the inequality holds for all n � 29.

21.8 Here is a handy chart to get you started.

n Fn F0 C � � � C Fn

0 1 1

1 1 2

2 2 4

3 3 7

4 5 12

5 8 20

6 13 33

7 21 54

8 34 88

9 55 143

10 89 232

Compare the numbers in the third column to those in the

second.

21.10 Expressed as a theorem, you need to show: For every n 2 N,

the nth row of Pascal’s triangle is

�

n

0

�

;
�

n

1

�

;
�

n

2

�

; : : :
�

n

n�1

�

;
�

n

n

�

.

22.2 We claim that for every positive integer n, the n’th domino in

the line gets knocked over.

Proof. The proof is by induction on n. For n D 1 we are

given that we are able to knock over the first domino. And we

are given that if domino k falls, then domino k C 1 must also

fall. Therefore, by induction, we know that for all n, the n’th

domino must fall.

22.4 Here is a complete answer to (a).

Proof (by induction on n):

Basis case n D 1. Both sides of the equation evaluate to 1,

so the basis case is true.

Induction hypothesis: Suppose the result is true when

n D k.

That is, we have

1C 4C 7C � � � C .3k � 2/ D k.3k � 1/

2
.�/:

We want to show

1C4C� � �C.3k�2/CŒ3.kC1/�2� D .k C 1/Œ3.k C 1/ � 1�

2
:

Add 3.k C 1/ � 2 D 3k C 1 to both sides of .�/ to get

1C4C � � �C.3k�2/C.3kC1/ D k.3k � 1/

2
C .3k C 1/

D .3k2 � k/C .6k C 2/

2

D 3k2 C 5k C 2

2

D .k C 1/.3k C 2/

2

D .k C 1/Œ3.k C 1/ � 1�

2
:

For (c), notice that this is a fancy generalization of the fact

that 999 D 1000 � 1.

Here is a complete answer for (f):

Basis case: We begin the induction at n D 0 because it is

slightly easier. Observe

lim
x!1

x0

ex
D lim

x!1
1

ex
D 0:

Induction hypothesis: Assume the formula holds for n D
k. We calculate:

lim
x!1

xkC1

ex
D lim

x!1
.k C 1/xk

ex
D .k C 1/ lim

x!1
xk

ex
D 0

where the first equality is by l’Hôpital’s rule and the last is by

induction.

For (g), it’s a bit easier to start with the basis case n D 0.

For the induction step, you’ll use integration by parts.

22.5 Here’s a proof of (a):

Basis case n D 1. The left hand side evaluates to 2 and the

right hand side evaluates to 4� 1� 1 D 2, so the basis case is

true.

Induction hypothesis: Suppose the result is true when n D
k, i.e., we have

2
k � 2

kC1 � 2
k�1 � 1: .�/

We want to prove

2
kC1 � 2

kC2 � 2
k � 1:

To this end, we multiply both sides of .�/ by 2:

2 � 2k � 2

�

2
kC1 � 2

k�1 � 1

�

D 2
kC2 � 2

k � 2

D
�

2
kC2 � 2

k � 1

�

� 1

� 2
kC2 � 2

k � 1:

For part (b), part (a) is useful.

22.6 Evaluate the sum for n D 1, 2, 3, and so forth and we get

the following values: 0, 2, �1, 4, �4, 9, �12, 22, �33, and so

forth. Notice that if we subtract one from all these numbers
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we get the following sequence:

�1; 1;�2; 3;�5; 8;�13; 21; : : :

and these are just the Fibonacci numbers with alternating

signs.

In other words, prove that the sum equals .�1/nFn�1 C 1

for all n > 0.

22.7 The proofs of the inequalities .�/ and .��/ are the most im-

portant parts of this problem; their proofs are similar to the

proofs-by-induction of other inequalities in this section.

Once you have established .�/ and .��/ prove �.2/ � 1

and �.2/ � 2 each by contradiction. The supposition that

�.2/ < 1 implies that all the partial sums 1=12C� � �C1=n2 are

less than 1. The supposition that �.2/ > 2 implies that there is

some partial sum 1=12 C � � � C 1=n2 that exceeds 2.

In fact, one can show by more advanced techniques that

�.2/ D �2=6 � 1:6449 which is, indeed, between 1 and 2.

22.9 This fact is rather obvious. The point here is to get practice

writing proofs by induction. Let n be the number of people on

the line. In the basis case, n D 2.

22.10 The basis case for the induction is n D 3 and you may assume

that the sum of the angles of a triangle is 180
ı.

The following picture shows the essence of the induction

step.

22.11 The basis case is easy as both sides equal 1. For the induction

hypothesis, assume the result is true for n D m and write down

what that means. Multiply both sides by .xCy/. On the right,

collect like terms, apply Pascal’s identity (Theorem 17.10),

and be courageous through the algebra.

22.12 The proof is by induction on the number of disks.

22.13 Hint: The “proof” in (a) would not show, for example, that the

set of primes has a least element; why?

22.15 We recommend that you use strong induction on the size of the

grid (i.e., the number of points in the grid). The basis case (a

grid with only one point) has only one corner-to-corner path:

the empty path! So the formula
�

0

0

�

is correct.

To figure out the induction, try this: On a 5 � 5 grid, write

the following at each grid point: the number of paths from the

lower left corner to that point. When you do this, the bottom

row of points and the left column of points will all be marked

with a 1. The point one step up and one step right from the

lower corner will be marked with a 2. And so on until the up-

per right corner which should be marked with 70 D
�

8

4

�

. What

do you see? Notice that the numbers just to the left and just to

below 70 are both 35 and that 70 D 35C 35. Why?

22.16 This is a full answer to (a).

The next three terms of the sequence are a4 D 31, a5 D
63, and a6 D 127.

To prove: an D 2nC1 � 1.

Basis case: When n D 0, we just need to notice that

a0 D 1 D 20C1 � 1 D 2 � 1, as required.

Induction hypothesis: Suppose ak D 2
kC1 � 1.

We need to prove that akC1 D 2.kC1/C1 � 1. Notice that

akC1 D 2ak C 1 by definition

D 2

h

2
kC1 � 1

i

C 1 by induction

D 2
kC2 � 2C 1 D 2

kC2 � 1

as required.

22.17 Let an denote the number of possible solutions. Find a recur-

rence relation for an.

22.18 Use strong induction. If n is a Fibonacci number, there is noth-

ing to prove. If n is not a Fibonacci number, let Fk be the

largest Fibonacci number less than n. You will want to show

that n� Fk < Fk .

22.19 We use induction on n D last-first.

The basis case is when n D 0. In this case, first equals

last, so the program returns array[first], which is the

only value under consideration.

Induction hypothesis: Assume the result is true for all values

of last-first that are less than n.

Suppose the program is called with last-first D n.

Note that mid is between first and last, and we have

mid < last, so, by induction, the line

a = findMax(array,first,mid);

sets the variable a to the largest value in the array from index

first to index last. Also, mid+1 is greater than first, so,

by induction, the line

b = findMax(array,mid+1,last);

sets b to the largest value in the array from index mid+1 to

index last.

Finally, the last two lines of the program return the larger

of a and b, which must be the largest value in the array from

index first to index last.

22.21 The point of this problem is that you should not be able to do

this problem! The full, correct answer to this problem is: “I

give up!”

In the proof in this book, we used the following induction

hypothesis:

Induction hypothesis 1: Every triangulated polygon with at

most k sides has at least two exterior triangles.

Your job is to try to work from this induction hypothesis:

Induction hypothesis 2: Every triangulated polygon with at

most k sides has at least one exterior triangle.

Hypothesis 1 is easier to use because it gives you more

leverage. This is known as induction loading.

22.22 Recall the following angle-sum formulas for sine and cosine:

sin.˛ C ˇ/ D sin˛ cosˇ C sinˇ cos ˛

cos.˛ C ˇ/ D cos ˛ cosˇ � sin˛ sinˇ

It’s difficult to prove these identities one at a time; it’s much

better to prove them in a single proof; this is another example

of induction loading.

22.23 The proof is much like that of Theorem 22.2.

X1

X2

X3

X4

Xk

Xk+1P

TQ
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22.24 Here are the first few lines of a proof to get you started.

The basis case is 0. In this case we can write 0 as an empty

sum.

Let n be a positive integer and suppose the result has been

shown for all natural numbers less than n. Let k be the largest

natural number such that 2k � n. (There are only finitely

many natural numbers � n and 2
0 � n; so k exists.)

23.1 Here is a complete solution for (a):

a0 D 1 (given)

a1 D 2a0 C 2 D 2 � 1C 2 D 4

a2 D 2a1 C 2 D 2 � 4C 2 D 10

a3 D 2a2 C 2 D 2 � 10C 2 D 22

a4 D 2a3 C 2 D 2 � 22C 2 D 46

a5 D 2a4 C 2 D 2 � 46C 2 D 94:

For the other parts, here is a5: (b) 20, (c) 11, (d) 0, (e) 15, and

(f) 16.

23.2 (a) an D 4.
2

3
/n. a9 D 211=39 D 2048=19683.

(e) an D 19

2
.3/n C 1

2
. a9 D 186989.

(h) an D 2 � 2n � 2. a9 D 1022.

(n) an D 5.�1/
n � 6n.�1/

n. a9 D 49.

(o) an D 3

2
.1C

p
3/n C 3

2
.1 �
p

3/n. a9 D 12720.

23.3 Here is a complete solution to (b). We write down the se-

quences an,�an,�
2an, and so on until we reach the all-zeros

sequence:

6 5 6 9 14 21 30

�1 1 3 5 7 9

2 2 2 2 2

0 0 0 0

We then use the first terms from each row and apply Theo-

rem 23.17 to give

an D 6

 

n

0

!

C .�1/

 

n

1

!

C 2

 

n

2

!

D 6 � nC n.n� 1/ D n
2 � 2nC 6:

23.4 The difference operator applies to sequences, not to individual

numbers. The notation .�a/n means the nth term of the se-

quence �a; this is the intended meaning. The notation �.an/

is not defined since an is a number and we have not assigned

a meaning to � applied to a single number.

23.5 Let k be a positive integer and let an D
�

n

k

�

. We know

that �an D �
�

n

k

�

D
�

n

k�1

�

. Repeating this, we see that

�j an D
�

n

k�j

�

. So we have

a0 D
 

0

k

!

D 0

�a0 D
 

0

k � 1

!

D 0

�
2
a0 D

 

0

k � 2

!

D 0

:
:
:

�
k�1

a0 D
 

0

k � .k � 1/

!

D
 

0

1

!

D 0;

but �ka0 D
�

0

0

�

D 1.

23.6 We can express an in the form c1r
n
1
C c2r

n
2
where r1; r2 are

the roots of a quadratic equation. Find r1; r2 first. Then set up

two equations and two unknowns to find c1; c2.

23.8 Let an D 1tC2tC� � �Cnt . Note that �an D .nC1/t . Apply

� another t C 1 times. What do you get? Use Theorem 23.17

to conclude that an can be written as a polynomial expression.

23.10 For example, when s D 3, we need to solve an D 3�an.

Remember that �an D anC1 � an, so what we really want

to solve is an D 3.anC1 � an/, which can be rearranged to

anC1 D 4

3
an. This recurrence is not quite in standard form

but is equivalent to an D 4

3
an�1.

23.11 Answer to (a): a5 D 80.

23.12 �2an D anC2 � 2anC1 C an.

23.14 (a) The answer is an D 3n � 2n C 1.

(d) The form of the answer is an D c15n C c2 C c3n.

(e) The form of the answer is an D c13n C c2n3n C c3.

(f) an is given by a quadratic polynomial.

23.15 Here is a complete solution to (a). From the recurrence re-

lation an D 4an�1 � an�2 � 6an�3, we form the associ-

ated cubic equation x3 � 4x2 C x C 6 D 0. This factors

.x�2/.x�3/.xC1/ D 0; hence the roots are 2, 3, and�1. We

therefore expect an to be of the form c12nCc23nCc3.�1/n.

We now use the values for a0, a1, and a2 to solve for

c1; c2; c3:

a0 D 8 D c1 C c2 C c3

a1 D 3 D 2c1 C 3c2 � c3

a2 D 27 D 4c1 C 9c2 C c3:

This gives c1 D 1, c2 D 2, and c3 D 5. Therefore

an D 2
n C 2 � 3n C 5.�1/

n
:

23.16 Implement this program in your favorite language. At the start
of the procedure, add a debugging statement that prints out the
argument. Something like this:

print ’Calling get_term with argument ’ n

Now call get_term(10) and see what happens.

Note that to compute a0 or a1, only one call to get_term

is generated. To compute a2, three calls are generated (the

original call get_term(2) plus the two embedded calls.

To calculate a3, get_term is called five times: once for

the original call get_term(3), and then it calls get_term(2)

(three calls to do that) and get_term(1) (one call for that).

The first few values of bn are 1, 1, 3, 5, 9, 15, 25.

23.17 For (a), use the recurrence to generate the values a1, a2, a3,

a4, but don’t perform the actual multiplications.

The answer to (b) is an D 2.2n/.

For (c), write out the first several values. You will note that

an does not exactly fit the pattern you should observe. It is fine

to report your answer in the form

an D
(

1 if n D 0,

a formula if n > 0.

Part (d) also has the difficulty that a0 does not fit the pat-

tern of the subsequent terms. Try to find a second-order recur-

rence of the form an D s1an�1 C s2an�2 that works once

n � 3 and solve that.
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Part (e) is an unsolved problem. The values an are called

chaotic, and no reasonable formula can be expected to exist.

23.18 The sequence c0; c1; c2; : : : begins 1, 1, 2, 5, 14. You should

find that c8 D 1430.

Answer to (d): These are the pentagonal numbers.

For (e): You may notice this sequence if you visit a tall

building and suffer from triskaidekaphobia.

24.1 A complete answer to (a): f is a function, dom f D
f1; 3g, and im f D f2; 4g. f is one-to-one and f �1 D
f.2; 1/; .4; 3/g.

24.2 There are 23 such functions, and none of them is one-to-one.

One of the functions is f.1; 4/; .2; 4/; .3; 4/g; it is neither
one-to-one nor onto.

24.3 There are 32 such functions, and none of them is onto B .

One of the functions is f.1; 3/; .2; 3/g. It is neither one-to-
one nor onto B .

24.4 Here is a complete answer.

Function One-to-one? Onto?

f.1; 3/; .2; 3/g no no

f.1; 3/; .2; 4/g yes yes

f.1; 4/; .2; 3/g yes yes

f.1; 4/; .2; 4/g no no

24.6 Answer to (b): imf D N, the natural numbers (i.e., the non-

negative integers).

24.7 (a) To show that f is not one-to-one, find two different ele-

ments of A, say a1 and a2, for which f .a1/ D f .a2/.

(b) To show that f is not onto, find an element b 2 B and

prove there is no a 2 A such that f .a/ D b.

24.9 Answer for (a): The function f is one-to-one if and only if

every horizontal line intersects the graph of f at most once.

Here’s the proof:

.)/ Suppose f is one-to-one and suppose, for contra-

diction, that some horizontal line (with equation y D b)

intersects the graph of f at two (or more) distinct points,

say .x1; b/ and .x2; b/. This means that f .x1/ D b and

f .x2/ D b, but then f .x1/ D f .x2/ contradicting the fact

that f is one-to-one.)( Therefore every horizontal line in-

tersects the graph of f at most once.

.(/ Suppose every horizontal line intersects the graph of

f at most once. To show that f is one-to-one we use Proof

Template 20. Suppose we have f .x1/ D f .x2/ D b, for some

real number b. Then the horizontal line y D b intersects the

graph at .x1; b/ and .x2; b/. Since this horizontal line inter-

sects the graph of f in at most one point, these two points

must be the same, i.e., x1 D x2. Therefore f is one-to-one.

24.10 Here is a complete solution.

If a 6D 0 then f is both one-to-one and onto.

One-to-one. Suppose f .x/ D f .y/. Then ax C b D
ay C b. Subtracting b from both sides gives ax D ay, and

then dividing by a gives x D y. Therefore f is one-to-one.

Onto. Let y be any real number. We need to find an x such

that f .x/ D y. Taking x D .y � b/=a we calculate

f .x/ D f Œ.y�b/=a� D aŒ.y�b/=a�Cb D Œy�b�Cb D y

and so f is onto.

If a D 0, then f is neither one-to-one nor onto.

To show that f is not one-to-one, we note that f .1/ D b

and f .2/ D b. To show that f is not onto, consider any real

number c 6D b. Then for any x, f .x/ D b so there is no x

such that f .x/ D c.

24.11 When a D 0, the reduces to Exercise 24.10. When a 6D 0,

the graph of f is a parabola and you may apply Exercise 24.9.

Alternatively, an algebraic solution can be developed.

24.12 In (a), there is no explicit set B to which the definition ap-

plies. In particular, every function f is onto if we think of B

as being the image of f .

In (b), the notation f W A ! B establishes a context for

the phrase “f is onto.” In this context, the issue is: Does im f

equal B?

24.14 Here is a complete answer to (a).

First, f is one-to-one. Proof: We need to show that if

f .a/ D f .b/, then a D b. So, suppose we have integers a; b

with f .a/ D f .b/. By definition of f , we have 2a D 2b.

Dividing both sides by 2 gives a D b. Therefore f is one-to-

one.

Second, f is not onto. Proof: We claim that 1 2 Z, but

there is no x 2 Z with f .x/ D 1. Suppose, for the sake of

contradiction, there is an integer x such that f .x/ D 1. Then

2x D 1, and so x D 1

2
. However, 1

2
is not an integer, so there

is no integer x with f .x/ D 1. Therefore f is not onto.

24.16 This problem requires you to write three proofs:

1. If (a) and (b), then (c).

2. If (a) and (c), then (b).

3. If (b) and (c), then (a).

To this end, Proposition 24.24 (the Pigeonhole Principle) is

quite helpful.

24.19 Note that if d is a positive divisor of n, then so is n=d . Exer-

cise 5.17 is useful.

24.20 How many subsets of A have exactly k elements?

24.22 See Exercises 17.29 and 17.30.

24.23 (a) f .X/ D f0; 1; 2g.
(c) f .X/ D Œ

1

2
; 2�.

24.24 Answer to (a): f �1.Y / D f�3;�2;�1; 1; 2; 3g.
25.1 If N � 1010 then N has 11 (or more) digits. Since there are

only 10 possible digits, there must be a repeat.

25.2 Don’t forget February 29th!

25.4 Number of hairs on a typical person’s head: About 100,000.

25.5 How many different patterns of <s and >s are possible in a

sequence of five distinct integers?

25.7 Create six categories of integers based on their ones digits.

Because there are seven integers in the set, two of these must

be in the same category.

25.9 Apply the Pigeonhole Principle by making pigeonholes in the

square.

25.10 Think about the parity of the coordinates.

25.11 The number 9 should figure in your proposition.

25.12 Here is a length-nine sequence with no monotone subsequence

of length four.

3 2 1 6 5 4 9 8 7:

Try to generalize this and use the Pigeonhole Principle in

your proof that the sequence does not contain a monotone sub-

sequence of length nC 1.
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25.14 If the sequence has length n, then it has 2n subsequences.

Even for moderate values of n, it is highly inefficient to try

to scan through all the sequences. Instead, use the labeling

scheme in the proof of Theorem 25.3.

26.1 (a) g ı f D f.1; 1/; .2; 1/; .3; 1/g and f ı g D
f.2; 2/; .3; 2/; .4; 2/g; g ı f 6D f ı g.

(c) g ı f D f.1; 1/; .2; 5/; .3; 3/g but f ı g is undefined.

(h) .gıf /.x/ D xC1 and .f ıg/.x/ D x�1; gıf 6D f ıg.

26.8 What are the domain and image of f ı f �1?

26.11 The answer to both is yes if the set, A, is finite. However, . . . .

26.12 Part (a) was already dealt with in Exercise 26.9. Part (b) is

false; find a counterexample. Part (c) is true; use Exercise 26.7.

26.14 Answer to (a): f
.n/

.1/ D 2
nC1 � 1.

Proof. By induction on n. For the basis case, n D 1, we have

f .1/ D 3 and 2
nC1�1 D 2

2�1 D 3, so the result is true for

n D 1.

Suppose that the formula is correct when n D k, i.e.,

f .k/.1/ D 2kC1 � 1. Then

f
.kC1/

.1/ D .f ı f
.k/

/.1/ D f

h

2
kC1 � 1

i

D 2

h

2
kC1 � 1

i

C 1 D 2
kC2 � 2C 1

D 2
.kC1/C1 � 1

as required.

26.15 Which function is applied first in the notation afg versus

f ı g?

27.2 The answer to (a) is .1; 2; 4/.3; 6; 5/.

27.3 For n D 3 the answer is two: .1; 2; 3/ and .1; 3; 2/. For n D 4

the answer is six.

27.4 This is a deranged problem.

27.5 The answer to (a) is .1; 4; 7; 6; 9; 3; 2; 5; 8/, and the answer to

(b) is different. The answer to (d) is .1/.2; 5; 4; 3/.6; 9; 8; 7/,

although this may also be written .1/.5; 4; 3; 2/.9; 8; 7; 6/.

27.6 This is false.

27.8 This was dealt with in a problem in Section 26.

27.11 Note that for any transposition � , we have � ı� D �. Therefore

��1 D � .

To prove that two permutations are inverses of one another,

just compose them and show that the answer must be �.

27.12 Suppose � has neither.

27.15 We are given � ı� D � . Composing on the right by ��1 gives

� ı � D �

.� ı �/ ı �
�1 D � ı �

�1

� ı .� ı �
�1

/ D �

� ı � D �

� D �:

27.17 The answer to (a) is that � D .1; 2/.2; 3/.3; 4/.4; 5/, it has

four inversions, and it is even.

27.18 A big hint: Draw a left-to-right arrow picture of the permuta-

tion and its inverse, and count crossings.

27.21 Imagine that the blank space carries the number 16. Then sev-

eral moves of the puzzle result in a permutation of the numbers

1 through 16. In particular, a single move of the Fifteen Puzzle

is a transposition.

27.22 For (a) you should find that P� D
"

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

#

.

For (d), you should prove that P� �P� D P�ı� . To do this,
note that the ij -entry of P� � P� is calculated like this:

ŒP� � P� �ij D
n
X

kD1

ŒP� �ik ŒP� �kj :

This sum is zero unless there is a k such that ŒP� �ik D
ŒP� �kj D 1. When does that happen?

For (e), to show that P� and P
��1 are inverses of each

other, multiply these two matrices and show that the identity

matrix is the result. Then to show that P T
� D P

��1 , work out

where the 0s and 1s of these two matrices must lie.

28.1 Please note that

R90 D .1; 2; 3; 4/;

FH D .1; 2/.3; 4/; and

Fn D .1/.2; 4/.3/:

Now calculate .1; 2/.3; 4/ ı .1; 2; 3; 4/.

28.2 You should find four symmetries of a rectangle.

28.4 There are six symmetries of an equilateral triangle.

28.5 There are two symmetries.

28.7 There are ten symmetries: an identity, four rotations, and five

flips.

28.10 The answer to (c): The difference is that the first 24 symme-

tries involve rotating the cube. The second collection of 24 are

the mirror images of the first 24.

28.11 A rotation through an angle � can be represented by the matrix
h

cos � � sin �
sin� cos �

i

.

29.1 For (b), expand 1:1n using the Binomial Theorem:

1:1
n D .1C 0:1/

n

D 1
nC
 

n

1

!

1
n�1

.0:1/
1C

 

n

2

!

1
n�2

.0:1/
2 C � � �

and throw away the terms you don’t need.

29.2 (c) is false. For example, b0:7 C 0:8c D b1:5c D 1, but

b0:7c C b0:8c D 0C 0 D 0.

29.3 Here is a complete proof.

Since f .n/ is O.g.n//, there is a positive number A such

that, with at most finitely many exceptions,

jf .n/j � Ajg.n/j:

Similarly, since g.n/ is O.h.n//, there is a positive number B

such that, with at most finitely many exceptions,

jg.n/j � Bjh.n/j:
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Combining these two inequalities, we have, with at most

finitely many exceptions,

jf .n/j � Ajg.n/j � ABjh.n/j

and so f .n/ is O.h.n//.

29.4 Here is a complete answer: By definition, there is a number

M0 so that jf .n/j � M0 for all but finitely many values of

n. Let M be any number that is larger than M0 and all val-

ues of f .n/ where n is an exception to jf .n/j � M0. Then

jf .n/j �M for all n.

29.5 There are only finitely many n 2 N such that f .n/ 6D 0.

29.9 Use the identity

loga n D .logb a/ .loga n/ :

29.11 The answer is either
l

x � 1

2

m

or
j

x C 1

2

k

.

29.12 The answer to this problem would be quite easy if you were

allowed to use the mod function; it would be just n mod 10.

29.13 If x is an integer, the expression evaluates to 0. Otherwise,

write x D n C t where n is an integer and 0 < t < 1. Con-

sider the cases t � 1

2
and t >

1

2
separately.

29.14 We must show that

lim
x!1

xn

ex
D 0:

Proceed by induction on n. Remember l’Hôpital’s rule.

29.15 Approximate
R n

1
dx

x
by summing the area of rectangles above

and below the curve y D 1=x.

30.1 x D 0:6.

30.3 There are actually three equations, the third being xCyCz D
1. Now solve.

30.5 If this were so, then what can you say about the sum of the

probabilities of the outcomes in the two sample spaces?

30.7 An outcome of this experiment can be recorded as .a; b/

where a is either H or T (the result of the coin flip) and b

is an integer with 1 � b � 6 (the up-face of the die). Thus

S D
˚

.H; 1/; .H; 2/; .H; 3/;

.H; 4/; .H; 5/; .H; 6/;

.T; 1/; .T; 2/; .T; 3/;

.T; 4/; .T; 5/; .T; 6/
	

:

All of these 2 � 6 D 12 outcomes are equally likely, so

P W S ! R is given by P.s/ D 1

12
for every s 2 S .

30.8 For (a): The sample space is .S; P / where S D f1; 2; 3; 4g
and P.s/ D 1

4
for all s 2 S .

30.9 A complete answer to (b): The set S consists of all 5-element

subsets of the set f1; 2; : : : ; 20g. Thus jS j D
�

20

5

�

. All of these

outcomes are equally likely, so P.s/ D 1=
�

20

5

�

for all s 2 S .

30.10 Here is the answer for region 3: P.3/ D 5

16
.

Explanation: The total area of the target (all four regions

together) is 16� . The area of region 3 is 9� � 4� D 5� . So

region 3 covers 5

16
of the total area.

30.11 Let S D f1; 2; 3g and let P.1/ D 1, P.2/ D 0, and P.3/ D 0.

30.12 Let S D f1g and let P.1/ D 1.

Note that if a sample space .S; P / has two (or more) ele-

ments, we cannot have P.s/ D 1 for all s 2 S ; if jS j > 1,

then

X

s2S

P.s/ D
X

s2S

1 D jS j > 1

which is forbidden.

30.13 See the discussion “Much ado about 0Š” in Section 9.

30.14 For (b), recall that the sum of the infinite geometric series

a C ar C ar2 C � � � is a=.1 � r/. You should derive that

aC r D 1.

31.1 Solution to (a): A D f2; 4; 6; 8; 10g and P.A/ D 1

2
.

31.2 Here is the answer for k D 4. We have A4 D
f.1; 3/; .2; 2/; .3; 1/g and P.A4/ D 3

16
.

31.3 A D fHHTT, HTHT, HTTH, THHT, THTH, TTHHg, and P.A/ D
6

16
D 3

8
.

Notice that jAj D
�

4

2

�

D 6.

31.6 (a) A D fHTHTHTHTHT; THTHTHTHTHg: (b) P.A/ D
2=210 D 2�9 D 1=512.

31.7 A D f.2; 6/; .3; 5/; .4; 4/; .5; 3/; .6; 2/g.

31.10 The set A contains 1C 2C 3C 4C 5 outcomes.

31.11 Call the boxes 1; 2; 3; : : : ; 10. The sample space S contains all

length-2 lists of boxes without repetition. So jS j D .10/2 D
90. Let us assume box 1 is the least valuable, and so on up to

box 10 being the most valuable. Now this problem is just like

the previous problem.

31.12 To compare dice 1 and 2 we make a chart. The rows of the

chart are indexed by the numbers on die 1 and the columns

by the numbers on die 2. We place a ? for each combination

where die 1 beats die 2.

2 3 4 15 16 17

5 ? ? ?

6 ? ? ?

7 ? ? ?

8 ? ? ?

9 ? ? ?

18 ? ? ? ? ? ?

Notice that there are 21 ways in which 1 beats 2, so the prob-

ability that die 1 beats die 2 is 21

36
D 7

12
� 58:33%.

31.13 Here is a complete answer to (b). There are 13 choices for

which value will be used in the triple, and for each such

value,
�

4

3

�

D 4 choices for which cards will be used in that

triple. Given the choice of the triple, there are 12 choices for
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which value will be used in the pair. Given the value, there are
�

4

2

�

D 6 choices for which cards we use in the pair. Thus, there

are 13 � 4 � 12 � 6 D 3744 different full houses. Therefore,

the probability of choosing a full house is

3744
�

52

5

�
D 3744

2598960
D 6

4165
� 0:14%:

The approximate numerical answers for the other parts are

as follows:

(a) 2.11%, (c) 42.26%, (d) 4.75%, and (e) 0.198%.

31.14 By convention, an empty sum has value 0, so P.;/ D 0.

That P.S/ D 1 follows from the definition of sample

space.

If A\B D ;, then P.A[B/ D P.A/CP.B/�P.A\
B/ D P.A/C P.B/� P.;/ D P.A/C P.B/.

31.15 (a)
�

10

5

�

=2
10 D 63

256
� 24:61%.

(b) 27=210 D 2�3 D 1

8
D 12:5%.

(c)
�

7

2

�

=210 D 21

1024
� 2:05%.

(d) By Proposition 31.7, the probability is

�

10

5

�

210
C 27

210
�
�

7

2

�

210
D 359

1024
� 35:06%:

31.16 This problem can get confusing, so it helps to have some good

notation. Let A be the event that we see at least one 1, and

let B be the event that we see at least one 2. The parts of this

problem ask for the following:

(a) P.A/.

(b) P.A/ D 1 � P.A/.

(c) P.B/ (which is the same as P.A/).

(d) P.A\ B/. Note that this is the same as P.A [B/.

(e) P.A[ B/ D 1 � P.A[ B/.

(f) P.A\ B/ D P.A/C P.B/� P.A[ B/.

31.17 Note that .A \B/ \ .A \B/ D ;. Also note that .A\ B/[
.A \ B/ D A. Therefore

P.A/ D P
�

.A \B/ [ .A\ B/
�

D P.A\ B/C P.A\ B/� P.;/
D P.A\ B/C P.A\ B/:

31.18 Here is the proof. Note that

P.A/ D
X

s2A

P.s/ and P.B/ D
X

s2B

P.s/:

Since A � B , every term in the first sum is also present in

the second. Since probabilities are nonnegative, this implies

that the second sum is at least as large as the first; that is,

P.B/ � P.A/.

31.20 Use proof by contradiction.

31.21 Use Proposition 31.8 and induction.

31.22 P.A\A/ D P.;/ D 0. Interpretation: It is impossible for an

event both to occur and not to occur.

31.24 k D 57.

32.1 Complete answer to (a): P.AjB/ D P.A \ B/=P.B/ D
P.f2; 3g/=P.f2; 3; 4g/ D 0:3=0:5 D 3=5 D 60%.

32.3 Here is a complete answer. Let A be the event that nei-

ther die shows a 2, and let B be the event that they sum to

7. Note that P.B/ D 6

36
D 1

6
. Furthermore, A \ B D

f.1; 6/; .3; 4/; .4; 3/; .6; 1/g, so P.A \ B/ D 4

36
D 1

9
. Thus

P.AjB/ D P.A\B/

P.B/
D 1=9

1=6
D 6

9
D 2

3
.

32.4 This problem is not the same as the previous problem and has

a different answer. In this problem you need to find P.BjA/,

whereas in the previous problem you found P.AjB/. The an-

swer is P.BjA/ D 4

25
.

32.6 Nominally, you need to prove .1/ () .2/, .1/ () .3/,

and .2/ () .3/. However, it is enough to prove .1/ )
.2/ ) .3/ ) .1/. Or simpler yet, just prove .1/ () .3/

because .2/ () .3/ has an identical proof. These two im-

ply .1/ () .2/.

32.7 Disjoint events are not, in general, independent. For example,

consider the roll of a die. Let A be the event we roll an even

number and let B be the event we roll an odd number. Then

P.A\ B/ D 0 6D P.A/P.B/ D 1

4
.

32.11 Two hints: First A \ B and A \ B are disjoint events, so

P.A \ B/ C P.A \ B/ D P Œ.A \ B/ [ .A \ B/�. Sec-

ond, .A \ B/ [ .A \ B/ D A \ .B [ B/ by the distributive

property.

32.12 The answer is yes in both cases. Use the formulas P.AjB/ D
P.A \ B/=P.B/ and P.BjA/ D P.A \ B/=P.A/ to show

why.

32.13 Yes. Suppose P.AjB/ > 0. This says that P.A\B/=P.B/ >

0 so P.A \ B/ > 0. Since A \ B � A, we have (see Exer-

cise 31.18) P.A/ � P.A\ B/ > 0.

32.15 For the equation to make sense, we need the fact that P.A/ 6D
0 (otherwise P.BjA/ is undefined). This follows from Exer-

cise 31.18 because A � A \ B , so P.A/ � P.A \ B/ > 0.

Now just use the definition of conditional probability.

32.16 For (b), note that AkCj \ Aj D AkCj .

For (c), let a D P.0/ D 1 � P.A1/. First prove that

P.Ak/ D .1� a/k (use induction) and then use that to calcu-

late P.k/ D P.Ak/� P.AkC1/.

32.17 (a) P.A/ D 13

52
D 1

4
.

(b) P.B/ D 4

52
D 1

13
.

(c) P.A\ B/ D 1

52
.

(d) Yes, because P.A\ B/ D P.A/P.B/.

32.18 You need to calculate P.A/, P.B/, and P.A\ B/ and check

if P.A/P.B/ D P.A\B/. You should find that P.A\B/ D
1

221
.

32.19 In principle, you need to calculate P.A/,P.B/, and P.A\B/

and check if P.A/P.B/ D P.A\B/. However, for this prob-

lem, notice that P.A \ B/ D 0, but P.A/P.B/ 6D 0. There-

fore the events are not independent.

32.21 Apply Definition 32.5 directly.

32.23 Both statements are true. For (a) use Exercise 31.17. For (b),

use (a).

32.25 All three are false! Here is a counterexample for (a). Suppose

the sample space is the pair-of-dice sample space of Exam-

ple 30.4. Let the three events be as follows:

– A, the dice sum to 2; i.e., A D f.1; 1/g,
– B , the dice sum to 17; i.e., B D ;, and
– C , the dice sum to 12; i.e., C D f.6; 6/g.
Note that A and B are independent (because P.B/ D 0—see

Exercise 32.24) and B and C are independent (again, because
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P.B/ D 0). However, A and C are not independent because

P.A\ C / D 0 6D 1

362
D P.A/P.C /:

32.26 S2 D f(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1),
(3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)g.

Their probabilities are as follows:

P Œ.1; 1/� D 1

4
P Œ.1; 2/� D 1

8

P Œ.1; 3/� D 1

16
P Œ.1; 4/� D 1

16

P Œ.2; 1/� D 1

8
P Œ.2; 2/� D 1

16

P Œ.2; 3/� D 1

32
P Œ.2; 4/� D 1

32

P Œ.3; 1/� D 1

16
P Œ.3; 2/� D 1

32

P Œ.3; 3/� D 1

64
P Œ.3; 4/� D 1

64

P Œ.4; 1/� D 1

16
P Œ.4; 2/� D 1

32

P Œ.4; 3/� D 1

64
P Œ.4; 4/� D 1

64

32.27 Let A be the event that the two spins sum to 6. As a set,

A D f.2; 4/; .3; 3/; .4; 2/g. Therefore

P.A/ D 1

4
� 1

8
C 1

8
� 1

8
C 1

8
� 1

4
D 5

64
:

32.29 (a) A D fHHTTT, HTHTT, HTTHT, HTTTH, THHTT, THTHT,

THTTH, TTHHT, TTHTH, TTTHHg.
(b) P.A/ D 10p2.1 � p/3.

32.30 The set A contains
�

n

h

�

sequences, all of which have the same

probability.

32.31 Answer to (a): p.1� p/.

For (c), remember that P.AjA [B/ D P ŒA\.A[B/�

P.A[B/
.

32.32 Olivia.

32.33 (a) a0 D 0 and a2n D 1.

(b) ak D pakC1 C qak�1 (where q D 1 � p).

(c) There is a formula for ak of the form ak D c1 C c2sk

where c1, c2, and s are specific numbers and s 6D 1.

Use part (b) to find s and use part (a) to find c1; c2.

33.1 Complete answer for (a): “X > 3” is the set

fs 2 S W X.s/ > 3g D fc; dg

and P.X > 3/ D 0:7.

Guidance for (c): The event “X > Y ” is the set fs 2 S W
X.s/ > Y.s/g. Which of a, b, c, and d are in this set?

Hint for (f): Is it true that P.X D m ^ Y D n/ D P.X D
m/P.Y D n/ for all integers m and n?

33.2 Here is a complete answer to this exercise.

(a) The values of s such that X.s/ D 2s < 10 are 1, 2, 3,

and 4. Therefore P.X < 10/ D 4

10
D 2

5
.

(b) The values of s such that Y.s/ D s2 < 10 are P.Y <

10/ D 3

10
.

(c) .X C Y /.s/ D X.s/C Y.s/ D 2s C s2.

(d) The values of s such that .X C Y /.s/ < 10 are 1 and 2.

Therefore P.X C Y < 10/ D 2

10
D 1

5
.

(e) The only values of s such that X.s/ > Y.s/ is 1. There-

fore P.X > Y / D 1

10
.

(f) The only value of s such that X.s/ D Y.s/ is 2. Therefore

P.X D Y / D 1

10
.

(g) X and Y are not independent. For example, P.X D 2/ D
1

10
, P.Y D 1/ D 1

10
, but P.X D 2 ^ Y D 1/ D 0 6D

P.X D 2/P.Y D 1/.

33.3 Here is a complete solution.

(a) Let .S; P / be the sample space for the spinner, so S D
f1; 2; 3; 4g. Then X W S ! Z is defined by X.1/ D 10,

X.2/ D 20, X.3/ D 10, and X.4/ D 20.

(b) The event “X D 10” is the set f1; 3g.
(c) P.X D 10/ D 1

2
C 1

8
D 5

8
and P.X D 20/ D 3

8
. For

all other integers a (i.e., a 6D 10 and a 6D 20), we have

P.X D a/ D 0.

33.4 The answer to (c) is 4

8
D 1

2
.

33.5 The answer to (a) is 3.

P.X D 1/ D 10

36
D 5

18
. P.X D �2/ D 0.

33.7 If a < 0 or a > 10 then P.X D a/ is zero. Otherwise, this is

just like a binomial random variable where the probability of

success is 1

6
.

33.8 No. Note that P.XH D 1/ D P.XT D 1/ > 0, but

P.XT D 1 ^XH D 1/ D 0 6D P.XH D 1/P.XH D 1/.

33.9 Calculate P.X1 D 5/, P.X2 D 5/, and P.X1 D 5 and

X2 D 5/.

33.10 P.X D 5/ D
�

10

5

�

�

1

2

�5 �
1

2

�5

D 252

1024
D 63

256
� 0:246.

33.13 Use the first part to show P.X is even/ D P.X is odd/.

33.14 Your answer should be a fraction that is approximately 0:4979.

33.16 Yes. Let a be any value in the set

f2; 3; 4; 5; 6; 7; 8; 9; 10; J; Q; K; Ag

and let b be any value in the set fp;};~;sg. Note that

P.X D a/ D 1

13
and P.Y D b/ D 1

4
. Finally,

P.X D a ^ Y D b/ D 1

52

D 1

13
� 1

4

D P.X D a/P.Y D b/:

Therefore X and Y are independent random variables.

33.17 Calculate P.X D 2/, P.Y D 2/, and P.X D Y D 2/.

34.1 E.X/ D 1 � 0:1C 3 � 0:2C 5 � 0:3C 8 � 0:4 D 5:4.

34.2 E.X/ D 13

3
, E.Y / D 0, and E.Z/ D 13

3
.

34.4 Let .S; P / be the sample space for a single die; i.e. S D
f1; 2; 3; 4; 5; 6g. Let X.s/ D s2. Find E.X/.

34.5 Let X1 be the number on the first chip and X2 be the num-

ber on the second. So X D X1 C X2. Note that E.X1/ D
E.X2/ D .1C 2C � � � C 100/=100 D 50:5, so E.X/ D 101.

34.6 Answer to (d): By symmetry, yes.

Answer to (e): Since 100 D E.Z/ D E.XH C XT / D
E.XH / C E.XT / and since E.XH / D E.XT /, we clearly

have E.XH / D E.XT / D 50.

34.7 The 30, 40, and 50 point regions can be modeled as circles of

radius 1. Then the 20 point region is a circle of radius 3 less

the 30 and 40 point circles. The 10 point region consists of a
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semicircle of radius 5 and a 10 � 5 rectangle (less the other

enclosed targets). The probability of landing in the region is

the area of that region divided by the area of the entire target

area (which is 25

2
� C 50).

34.9 Let X be a zero-one random variable. Then E.X/ D 0 �
P.X D 0/C 1 � P.X D 1/ D P.X D 1/.

34.10 Note that 12 D 1 and 02 D 0.

34.11 Express X as the sum of n zero-one indicator random vari-

ables and apply linearity of expectation.

34.12 For (a), note that there are as many binary numbers whose i th

bit is a 1 as there are those whose i
th bit is 0.

For (b), use the fact that X D X1 CX2 C � � � CXn.

For (c), let M denote the total number of 1s in all the bi-

nary numbers from 0 to 2n � 1. Explain why E.X/ D M=2n

and solve for M .

34.14 Parts (a) and (b) are a bit of red herring; you don’t need the

independence assumption!

34.16 Apply Proposition 34.4.

34.18 Earlier we showed that E.X/ D 5:4. We can calculate

Var.X/ D EŒ.X � 5:4/
2
�

D .1 � 5:4/
2 � 0:1C .3 � 5:4/

2 � 0:2

C .5 � 5:4/
2 � 0:3C .8 � 5:4/

2 � 0:4

D .�4:4/
2 � 0:1C .�2:4/

2 � 0:2

C .�0:4/
2 � 0:3C .2:6/

2 � 0:4

D 5:84:

Alternatively, we can use the formula Var.X/ D E.X2/ �
E.X/2. We have

E.X
2
/ D 1

2 � 0:1C 3
2 � 0:2C 5

2 � 0:3C 8
2 � 0:4

D 35:

and so Var.X/ D E.X2/� E.X/2 D 35 � 5:42 D 5:84:

34.19 Here are two complete solutions to part (a).

First, we can work directly from Definition 34.16

Var.X/ D EŒ.X � �/2� where � D E.X/. We begin by

calculating �:

� D E.X/ D 1.0:1/C 1.0:2/C 2.0:3/C 10.0:4/

D 4:9:

Next we calculate the variance:

Var.X/ D EŒ.X � �/
2
�

D .1� 4:9/
2 � 0:1C .1� 4:9/

2 � 0:2

C .2 � 4:9/
2 � 0:3C .10 � 4:9/

2 � 0:4

D 17:49:

Second, we apply the formula Var.X/ D E.X2/�E.X/2

from Proposition 34.19. As just above, we have E.X/ D 4:9

and so E.X/2 D 4:92 D 24:01. Next,

E.X
2
/ D 1

2 � 0:1C 1
2 � 0:2C 2

2 � 0:3C 10
2 � 0:4

D 41:5:

We conclude Var.X/ D E.X2/ � E.X/2 D 41:5 � 24:01 D
17:49.

34.22 Use the formula Var.Z/ D E.Z2/ � E.Z/2. For the second

part, see Exercise 34.18.

34.23 Use Exercise 34.22.

34.24 Use Markov’s inequality (Exercise 34.17).

35.1 The answer to (b) is q D �34 and r D 2.

35.2 The answer to (b) is�100 div 3 D �34 and �100 mod 3 D 2.

35.3 Answer to (a): N D 17; 18; 19; 20. There are two solutions

to (c).

35.4 The answer to (a) is “yes” and here is a proof.

Suppose, for the sake of contradiction, that a 6D b. Without

loss of generality, a < b. This implies that a mod b D a. But

since b > a we have that b mod a � a � 1.)( Therefore

a D b.

35.7 Read carefully the first sentence of Definition 35.6.

35.8 This is the more difficult half of the proof.

.)/ Suppose a � b .n/. This means that nj.a � b/, or,

equivalently, a � b D kn for some integer k. If we divide a

and b by n, we get

a D qnC r

b D q
0
nC r

0

with 0 � r; r 0 < n. Note that r D a mod n and r 0 D b mod n.

If we subtract these equations, we get

a � b D .q � q
0
/nC .r � r

0
/

and since a � b D kn, we can rewrite this as

kn D .q � q
0
/nC .r � r

0
/

) r � r
0 D .k � q C q

0
/n

so r�r 0 is a multiple of n. But r and r 0 are between 0 and n�1

so their difference is no more that n � 1. Thus we must have

r�r 0 D 0; i.e., r D r 0. Since r D a mod n and r 0 D b mod n,

we have

a mod n D b mod n:

35.9 Bad idea: Call the three consecutive integers a, b, and c.

Good idea: Call the three consecutive integers a, aC1, and

aC 2.

35.12 Here is a good definition for part (a): Let p and q be polyno-

mials. We say that p divides q (and we write pjq) provided
there is a polynomial r such that q D pr .

36.1 The answer to (d) is gcd.�89;�98/ D 1.

36.2 The answer to (d) is .�89/.11/C .�98/.�10/ D 1.

36.3 For (d), your program should find gcd.�89;�98/ D 1 and

take four iterations.

36.5 Try a few examples.

36.6 Use Proof Template 14.

36.7 Yes, they are still correct. Explain the equality gcd.a; b/ D
gcd.b; c/ in this case.

36.8 It is enough to prove that if a � b > 0, then b � a mod b.

36.10 (a) A complete answer: The greatest common divisor of

three integers, a, b, and c, is an integer d with the fol-
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lowing two properties: (1) d ja, d jb, and d jc, and (2) if

eja, ejb, and ejc, then e � d .

(b) The phrase a; b; c are pairwise relatively prime means

that gcd.a; b/ D gcd.a; c/ D gcd.b; c/ D 1.

36.11 Use Corollary 36.9.

36.12 Try to find integers X and Y such that X.2aC 1/C Y.4a2 C
1/ D 1; the integers X and Y will depend on a.

36.14 Use proof by contradiction.

36.15 Use the fact that we can find integers x; y so ax C by D 1.

Therefore c D cax C cby.

36.16 Use Corollary 36.9.

36.17 Use Corollary 36.9.

36.18 Reverse the roles of a; b and x; y.

36.19 Explain why we can take b > 0 and then choose b to be as

small as possible (thereby invoking the Well-Ordering Princi-

ple).

36.20 Number the children from 0 to n � 1 and imagine the teacher

starts by patting child 0’s head first.

Note that if k D 4 and n D 10, the teacher will never pat

the heads of the odd-numbered children.

However, if k D 3 and n D 10, then the children will be

patted in the order 0, 3, 6, 9, 2, 5, 8, 1, 4, and then 7, so all

children will be patted.

36.21 5 � 13 � 8 � 8 D 1.

37.1 Some answers: (a) 6. (g) 6. (n) 7.

37.2 The order of operations for modular arithmetic is the same as

that of ordinary arithmetic, so we do ˝ and ˛ before ˚ and

	.
Although the first three of these can be done by the guess-

and-check method, the fourth is not amenable to such a brute

force attack. In each case, you need to compute a reciprocal in

Zn. You do this using the extended Euclidean Algorithm.

37.3 Because the coefficient of x in each of these problems is

noninvertible, the normal method for solving these equations

won’t work. For these, we recommend you resort to guess-

and-check. It is possible that there are no solutions.

37.4 Use guess-and-check. The answer to (d) is 2, 7, 8, and 13.

37.6 Use the facts that

a˚ b D .aC b/ mod n; and

a	 b D .a � b/ mod n:

The first is fromDefinition 37.1, and the second is from Propo-

sition 37.7.

37.7 Use Theorem 35.1.

37.9 You should assume that a	b D .a�b/ mod n, and you need

to prove that b ˚ .a	 b/ D a.

37.10 The answer is that

a ˝ b D 0 () a D 0 or b D 0

is a theorem if and only if n is prime.

The structure of the proof is a bit complicated.

First, suppose that n is prime and then prove that

a˝ b D 0 () a D 0 or b D 0:

Second, suppose n is not prime and prove that

a˝ b D 0 () a D 0 or b D 0

is false.

37.11 This is, actually, an easy problem. You need to prove that the

inverse of a
�1 is a. Read Definition 37.9 slowly and carefully.

37.12 Here is a complete answer to (a). False. Counterexample: Note

that in Z5 both 2 and 3 are invertible (2�1 D 3 and 3�1 D 2),

however, 2˚ 3 D 0 is not invertible.

37.14 To calculate 332, you can first find 316 and then calculate

332 D 316 ˝ 316.

38.3 Here is a complete solution to (a).

We know first that x � 4 .5/. This means we can write

x D 4C 5k

where k is an integer. We substitute this into the second equa-

tion x � 7 .11/ and we have

4C 5k � 7 .11/ ) 5k � 3 .11/:

To solve 5k � 3 .11/, we multiply both sides by 5�1 in Z11.

Using the extended GCD method, we have 5�1 D 9. So we

multiply both sides by 9:

9˝ 5˝ k D 9˝ 3 D 5

so k � 5 .11/. This means we can write k as

k D 5C 11j

for some integer j . Substituting this back into x D 4C 5k we

get

x D 4C 5k D 4C 5.5C 11j / D 29C 55j

and so we see that x � 29 .55/.

For (c), solve the first two equivalences to obtain an in-

termediate answer of the form x �‹ .28/ and then solve the

system

x �‹ .28/ and x � 8 .25/

by the usual method.

For (d), first simplify the two equations so they are both of

the form x �‹ .‹/.

38.4 The smallest number of coins that makes the story correct is

371.

38.8 Here is a complete solution for (a).

Let b1 D 8�1 D 12 in Z19. Let b2 D 19�1 D 3�1 D 3

in Z8. Thus

x0 D m1b1a2 Cm2b2a1

D 8 � 12 � 2C 19 � 3 � 3
D 363:

Note that 363 mod 8 D 3 and 363 mod 19 D 2, as required.

Since 8 � 19 D 152, we can reduce x0 modulo 152

to give 363 mod 152 D 59. Note that 59 mod 8 D 3 and

59 mod 19 D 2.
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A complete answer to this problem is x D 59C152k where

k 2 Z. However, we can also write x D 363 C 152k where

k 2 Z. This is exactly the same answer; it is just expressed in

a different form.

39.1 Here is a good way to begin your proof: “Suppose, for the sake

of contradiction, there is a composite integer n all of whose

factors (other than 1) are greater than
p

n. . . .”

39.2 Answer to (b): 4200 D 23 � 3 � 52 � 7.

39.3 The generalization is: Let p and q be unequal primes. Then

pjx and qjx if and only if .pq/jx.

39.5 Begin by factoring a and b (uniquely) into primes.

39.8 Here is a complete proof:

.)/ Suppose that a and b are relatively prime. This means

that gcd.a; b/ D 1. Let p be any prime. If, for the sake of con-

tradiction, pja and pjb, then p is a common divisor of a and b

and, since p > 1, this contradicts the fact that 1 is the greatest

common divisor of a and b.)( Therefore there is no prime

that divides both a and b.

.(/ Suppose that there is no prime p such that pja and

pjb. Suppose, for contradiction, that a and b are not relatively

prime. Let d D gcd.a; b/ > 1 and let p be a prime divi-

sor of d . Since pjd , we have that pja and pjb (by Proposi-

tion 5.3).)( Therefore a and b are relatively prime.

39.9 Use Exercise 39.8.

39.10 Note that for any two numbers s and t , we have

s C t D minŒs; t �CmaxŒs; t �:

39.13 Call the consecutive perfect squares a2 and .aC1/2 (where a

is an integer) and suppose (for the sake of contradiction) that

there is a prime p that divides them both.

39.14 Notice that 18 D 21 � 32, so every positive divisor of 18 is

of the form 2a3b where 0 � a � 1 and 0 � b � 2. Hence

there are 2 choices for a and 3 choices for b giving 2 � 3 D 6

positive divisors.

39.15 The divisors of n are 2k and 2k.2a � 1/ for all 0 � k < a.

39.16 It is easier to figure out how many numbers between 1 and n

are not relatively prime to n.

The answer to (f) is '.5041/ D 4970. To see why, note

that the only numbers between 1 and 712 that are not rela-

tively prime to 712 are the multiples of 71: 71, 2� 71, 3� 71,

. . . , 71 � 71. So there are 5041 � 71 D 4970 integers from 1

to 712 that are relatively prime to 712.

39.18 Use inclusion-exclusion. Let Ai denote the set of multiples of

pi between 1 and n.

39.20 The following sentence is useful: If n is not a perfect square,

then there must be a prime p that appears an odd number of

times in n’s prime factorization.

39.22 Let x D log2 3. This means that 2x D 3. Suppose x D a

b
for

some integers a and b, and argue to a contradiction.

39.24 Here is a complete answer for (c).

Suppose w; z 2 ZŒ
p
�3�. This means that w D aCb

p
�3

and z D c C d
p
�3 where a; b; c; d 2 Z. Notice that

wz D
�

aC b
p
�3

� �

c C d
p
�3

�

D .ac � 3bd/C .ad C bc/
p
�3

and since ac � 3bd and ad C bc are integers, we have

wz 2 ZŒ
p
�3�.

Here is a hint for (d). If w D aC b
p
�3, then

w
�1 D a

a2 C 3b2
C �b

a2 C 3b2

p
�3:

Try to deduce: For which integers a and b are a

a2C3b2 and

�b

a2C3b2 also integers?

39.25 For (a), let w D a C b
p
�3 and z D c C d

p
�3. To prove

that N.wz/ D N.w/N.z/, just expand everything in terms of

a, b, c, and d , and be careful with the algebra.

Here is a partial answer for (b).

There are no w 2 ZŒ
p
�3� with N.w/ D 2. Proof: Sup-

pose N.a C b
p
�3/ D a2 C 3b2 D 2. If b 6D 0 we have

N.w/ � 3, so b D 0. This leaves us with a2 D 2, which is

impossible since a 2 Z.

There are exactly six possible values forw withN.w/ D 4.

39.26 First prove the following lemma: If N.w/ is prime, then w is

irreducible.

39.27 If the statement were false, we could find a counterexample w

with N.w/ as small as possible

39.28 We want to write 4 D ab with a; b 6D ˙2;˙1. Taking

norms of both sides of 4 D ab, we get 16 D N.4/ D
N.ab/ D N.a/N.b/. We cannot have N.a/N.b/ D 2 � 8

because there is no element with norm 2. So we must have

N.a/ D N.b/ D 4.

40.1 Here is a complete solution.

(a) Yes, ? is closed on the integers: If x and y are integers,

then x ? y D jx � yj is also an integer.

(b) Yes, ? is commutative: Let x and y be any two integers.

Because x � y D �.y � x/ we have jx � yj D jy � xj
from which we have x ? y D y ? x.

(c) No, ? is not associative. Consider the two ways of group-

ing 3 ? 0 ? �2:

.3 ? 0/ ? �2 D 3 ? �2 D j3 � .�2/j D 5 but

3 ? .0 ? �2/ D 3 ? 2 D 1

and so .3 ? 0/ ? �2 6D 3 ? .0 ? �2/.

(d) No, ? does not have an identity element. If it did have

an identity element e then we would have e ? �2 D �2,

but e ? �2 D je � .�2/j D je C 2j which cannot be

negative.)( Therefore ? does not have an identity el-

ement. And so the second part of this question (about

inverses) is moot.

(e) No, .Z; ?/ is not a group because its operation is not as-

sociative and there is no identity element.

40.3 Make1 the identity element by defining x?1D1?x D x.

Note that for real, nonzero x we have x?.�x/ D �x2=.x�x/

and we let that result be1.

Now check the required properties:

1. 8x; y 2 R̃; x ? y 2 R̃.

2. 8x; y; z 2 R̃; x ? .y ? z/ D .x ? y/ ? z.

3. 9e 2 R̃;8x 2 R̃; e ? x D x ? e D x. [Of course,

e D1.]

4. 8x 2 R̃; 9y 2 R̃; x ? y D y ? x D e.

5. 8x; y 2 R̃; x ? y D y ? x.

40.6 Answer for ^: The operation ^ is closed, commutative, and

associative, and TRUE is an identity element. However, FALSE
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does not have an inverse. Therefore, .fTRUE; FALSEg;^/ is

not a group.

40.8 Evaluate: a � b � c.

40.9 To show that X and Y are inverses, you just need to show that

X � Y D Y �X D e. For this problem, you need to show that

the inverse of g�1 is g. Your answer should be very short.

40.12 Dust off your linear algebra text, and reread the material on

the determinant of a matrix.

40.13 Remember that 2A stands for the set of all subsets of A and

that � is the symmetric difference operation.

To prove that .2A; �/ is a group, prove the four proper-

ties: closure, associativity, identity, and inverses. Note: One of

these has already been proved.

40.14 This means that you must prove that f W G ! G is one-to-one

and onto. Here is a skeleton of the proof.

First we prove that f is one-to-one. Suppose f .g/ D f .k/

for some g; k 2 G. . . . Therefore g D k, and so f is one-to-

one.

Second we prove that f is onto. Let b 2 G. Let x 2 G be

defined by . . . . Therefore f .x/ D b, and so f is onto.

Thus f is a permutation.

40.15 See the hint for Exercise 40.14.

40.16 Exercise 40.14 is useful here. Note that the row of the � table
corresponding to element a contains all elements of the form

a � g where g is an arbitrary member of G.

40.17 Remember: To prove that X and Y are inverses, show that

X � Y D Y �X D e.

40.19 Check that ? satisfies the four requisite properties. Notice that

identity and inverses for � and ? are the same.

40.20 Use proof by contradiction. Let G be a group with an even

number of elements, and suppose e is the only element that is

its own inverse. . . .

40.21 This exercise is similar to Exercise 40.16.

40.22 The answer to (c) is 15; here’s why. The expression we need

to evaluate is 1; 2;C; 3; 4;�;C. The 1; 2;C portion evaluates

to 3 and the 3; 4;� portion evaluates to 12. The expression has

been reduced to 3; 12;C and that evaluates to 15.

40.23 The answer to (a) is 2; 3;C; 4; 5;C;�.
40.24 Here is a theorem you should prove:

Let ` be a list of numbers and operations. We claim that `

is a valid RPN expression if and only if the following two con-

ditions hold: (1) the number of operations in ` is one less than

the number of numbers, and (2) the sublists of `, starting from

the beginning of ` and including all members of ` up to any

point in the list, must contain more numbers than operations.

Prove both directions of this if-and-only-if theorem by in-

duction.

41.1 You need to find a one-to-one and onto function

f W f0; 1; 2; : : : ; 9g ! f1; 2; 3; : : : ; 11g

with the property that

.xCy/ mod 10 D z () Œf .x/�f .y/� mod 11 D f .z/:

Begin with f .1/ D 2. From there you can work out f .1C 1/,

etc.

41.2 Let f Œ.1; 1/� D 1.

41.3 One of these groups is cyclic; the other is not.

41.4 It’s sufficient just to consider .Za;˚/ � .Zb ;˚/ for all pos-

itive integers a and b. The previous two problems show that

.Z2;˚/ � .Z3;˚/ is cyclic but .Z3;˚/ � .Z3;˚/ is not.

Begin your investigation by seeing when .1; 1/ is a

generator.

41.5 Consider f .e � e/.

41.6 To prove that f .g/ and f .g�1/ are inverses, ? them together

and hope you get the identity.

41.8 Here is an outline of the proof. Fill in the blanks.

Let f W G ! H be an isomorphism.

.)/ Suppose .G; �/ is Abelian. Let x; y 2 H be arbi-

trary. . . . Therefore x ? y D y ? x, and so .H; ?/ is Abelian.

.(/ Suppose .H; ?/ is Abelian. . . . Therefore .G; �/ is

Abelian.

41.9 Define f W R̃! R by f .x/ D 1=x (with a sensible treatment

for f .1/). Check that f is a function from R̃ to R, that f

is one-to-one and onto, and that f satisfies the isomorphism

condition 8x; y 2 R̃ f .x ? y/ D f .x/C f .y/.

41.10 No. The group S4 is non-Abelian, but .Z24;˚/ is Abelian.

41.12 The Klein 4-group is defined in Section 40. It has four ele-

ments: .0; 0/, .0; 1/, .1; 0/, and .1; 1/.

Recall that the set 2f1;2g is the set of all subsets of f1; 2g
and that � is symmetric difference.

41.13 Define a map F W G ! H by F.a/ D fa. Prove that F is a

bijection and that F.a � b/ D F.a/ ı F.b/.

41.14 The generators of .Z10;˚/ are 1, 3, 7, and 9. Notice that these

are exactly the elements of Z10 that are relatively prime to 10.

If you can prove your answer, the teacher will give you a

pat on the head.

41.15 The answer is not “never”!

The identity element e is the generator of a cyclic group if

and only if e is the only element of that group.

41.17 Here is the answer for Z�
5
. In Z�

5
, note that 21 D 2, 22 D 4,

23 D 3, and 24 D 1. Therefore 2 is a generator for Z�
5
.

42.1 The subgroups of .Z6;˚/ are f0g, f0; 3g, f0; 2; 4g, and

f0; 1; 2; 3; 4; 5g.
42.2 There are three subgroups.

42.3 There are five subgroups.

42.4 Don’t miss a key hypothesis: H 6D ;.
You are given

(1) H is closed under �.
(2) H 6D ;.
(3) For all g 2 H , g�1 2 H .

You need to show

(a) H is closed under �.
(b) e 2 H .

(c) For all g 2 H , g
�1 2 H .

Proving (a) and (c) is trivial. So you need to show how (b)

follows from (1), (2), and (3).

42.5 You are given that (a) H 6D ; and (b) for all g; h 2 H ,

g � h�1 2 H .

You should prove: (1) H is closed under �, (2) e 2 H , and

(3) if g 2 H , then g�1 2 H .

Prove these in the order (2), then (3), then (1).

42.6 Let H be a subgroup of .Z;C/. Think about the least positive

element of H (if any).
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42.7 Begin your proof like this: “Let G be a cyclic group and let H

be a subgroup of G. Since G is cyclic, it has a generator, g.”

Next, let k be the smallest positive integer such that gk 2
H . You should worry a bit whether such a k exists. [Here’s an

instance when it doesn’t: If G D .Z;C/ and H D .f0g;C/.]

Then show that every element of H can be expressed as a

power of g
k .

42.9 To show that .Z;�/ is a subgroup you should do three things:

(1) show that for x; y 2 Z we also have x � y 2 Z; (2) show

that e 2 Z; and (3) show that if z 2 Z then z�1 2 Z as well.

Your proof of (1) should begin: “Let x; y 2 Z. To show

that x�y 2 Z, consider an arbitrary element g 2 G.” And this

part of your proof should end: “Since .x�y/�g D g�.x�y/,

we have that x � y 2 Z.”

For (3), here’s the central trick: Given that z 2 Z, we want

to show that for all g 2 G that z�1 � g D g � z�1. You can’t

prove that from knowing that z commutes with g, but since z

commutes with all elements of G, we know that z commutes

with g�1.

42.10 The easiest equivalence class to find is Œ1� D Œe� D H .

To find other equivalence classes, use the idea from the

proof of Lemma 42.7. Choose an element g 2 G and define a

function f W H ! Œg� by f .h/ D h � g. To compute Œg�, just

compute f .h/ for all h 2 H .

For this problem, Œ2� D f1; 6; 11; 16; 21g. There are three

other equivalence classes.

42.11 See the previous hint.

42.12 See Proposition 41.3.

42.13 Only one of these is true.

42.15 Remember that in a general group, x � y .mod H/ means

x � y�1 2 H . In this problem, the operation � is ordinary

addition of integers, and the inverse of y 2 Z is simply �y.

42.16 Do not use an Abelian group.

42.17 The hardest part of this problem is swallowing the definition

of g � H . Remember that g � H is a set. Also, x 2 g � H

means that x D g � h for some h 2 H . (Likewise, x 2 H � g

means that there is an h 2 H such that x D h � g.)

For part (b), start by proving g �H D H () g 2 H .

The forward ()) direction is not hard [use part(a)]. For the

reverse (() direction, you need to show that two sets (g �H

and H ) are equal, so use Proof Template 5.

For part (d), consult your answer to the previous exercise.

43.1 I recommend using a calculator or a computer. You should find

that a13 D a for all a 2 Z13.

43.3 Since 101 is prime, you can evaluate 3101 mod 101 using Fer-

mat’s Little Theorem. Now just multiply that result by one

more factor of 3.

43.5 Here is a complete solution. That x0 is the remainder when x

is divided by p � 1 can be expressed as x D q.p � 1/ C x0

where 0 � x0 < p�1 and q is some integer. Working modulo

p we have

a
x D a

q.p�1/Cx0 D
�

a
p�1

�q

� ax0 � 1
q � ax0 � a

x0

because ap�1 � 1.

43.6 Mimic the solution to Exercise 43.5, but use Euler’s Theorem

instead of Fermat’s Little Theorem.

43.7 Use Exercise 43.6 to replace the enormous exponent g with a

much more reasonable exponent g0.
Computing ab mod c takes about log2 b basic steps.

The answer is 664.

43.9 Note that ap�1 D 1 in Zp . Now find a positive exponent so

that a‹ � a D 1.

43.11 If you do trial division, it will take tens of thousands of divi-

sions to find the prime factors of the composite number. Com-

pute 2
n mod n for both values of n, and see what you get.

There is a technical difficulty in working with these large

integers. Expressed in binary, they are about 30 bits long;

these numbers can fit nicely in your computer. However,

multiplying two 30 bit numbers gives a 60-bit product; it

may be difficult—using an ordinary computer programming

language—for you to deal with numbers this large.

43.12 You will need to write a computer program to solve this prob-

lem. The smallest answer to this problem is under 1000.

44.1 Many computer languages have built-in functions for convert-

ing text to and from ASCII.

44.3 (a) 2=.N � 2/.

(b) Let d D gcd.k; N /. Note that the only divisors of N are

1, p, q, and N . By design k < N so gcd.k; N / 6D N .

Therefore if gcd.k; N / 6D 1, then the only possible val-

ues it may attain are p and q.

(c) .pCq/=.pq�2/which is approximately .pCq/=.pq/ D
1

p
C 1

q
.

44.4 Note that in your answer to (c), you may assume that Alice

would never reveal her DA function as that would enable Eve

to read all the private messages she has received.

45.2 Try to use this formula for a prime p 6� 3 .mod 4/, such as

p D 17. What goes wrong?

45.3 To check yourself, the answers are 33, 157, 556, and 432.

45.4 There are eight answers. Note that 34751 D 19 � 31� 59 and

19 � 31 � 59 � 3 .mod 4/.

45.5 For (a), the quadratic residues in Z17 are 0, 1, 2, 4, 8, 9, 13,

15, and 16. The answer to (b) is “no”. Pick a quadratic residue

and see if there are any exponents that work.

45.6 Factoring n into primes gives n D 45343 � 7243. Note

that both of these primes are congruent to 3 modulo 4. Let

M D 249500293.

In Z45343 we have

249500293
.45343C1/=4 D 12690:

So in Z45343,
p

M D ˙12690 D 12690 or 32653.

In Z7243 we have

249500293
.7243C1/=4 D 2663

so in Z7243 we have
p

M D ˙2663 D 2663 or 4580.
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We solve the following four problems using the Chinese

Remainder Theorem.

x � 12690 .mod 45343/

x � 2663 .mod 7243/

x � 32653 .mod 45343/

x � 2663 .mod 7243/

x � 12690 .mod 45343/

x � 4580 .mod 7243/

x � 32653 .mod 45343/

x � 4580 .mod 7243/

The solutions to these four problems are x � 111103040,

x � 7151504, x � 321267845, and x � 217316309 (all mod

n). The second one gives 07 15 15 04, which spells GOOD.

45.7 For (a) send more than one message. The concern for (b) is

that M 2 mod n D M 2 (there is no “wrapping” modulo n,

and so Eve can find M by taking an ordinary square root).

Figure out strategies for dealing with this.

45.8 gcd.75406 � 68918; 171121/ D gcd.6488; 171121/ D 811.

45.10 The answer to the second question is e D 11. You can demon-

strate this by 17 calculations (one for each a 2 Z17) but

there’s an algebraic proof: Show that cubing a
11 gives a.

The first part of the exercise can be verified by cubing every

element of Z17 and noting that every element of Z17 appears

as a result. However, from the second part of this problem we

know that if a 2 Zp , then b D ae is a cube root of a. And this

implies that a D b3, so a is a perfect cube.

45.11 You’ll want to show that e D .2p � 1/=3 works. Be sure that

you verify that e is an integer.

45.12 a3 � b3 D .a � b/.a2 C ab C b2/.

45.13 (a) Hint: quadratic formula. (b) Answer: 281.

46.1 Answer: D.N / D N 377 mod 589.

46.2 Remember: d D e�1 in Z�
�.n/

.

46.3 The answer is M D 100.

46.5 The decryption exponent is d D e�1 .mod '.n//. The an-

swer to (a) is PIGS.

47.1 Answer to (a):
�

f1; 2; 3; 4; 5; 6g;
˚

f1,2g, f1,4g, f2,3g, f2,5g,
f3,6g, f4,5g, f5,6g

	�

.

47.2 Answer for (a):

a

bc d

e

47.3 To prove the map cannot be colored with fewer than four col-

ors, begin (for the sake of contradiction) by assuming that it

can be properly colored with only three. Then consider the

triangular region and the regions that border it.

47.5 If you are having trouble with this one, I recommend you take

a break and order a pizza. Before you eat, take a good look at

the slices.

47.12 There is a solution with only one student.

47.13 Do you think these are impossible? I assure you they are not.

What is wrong with the following “proof” that in no graph is

the is-adjacent-to relation antisymmetric?

Let G be a graph. Let uv be an edge of G. Then u � v and

v � u, but u 6D v. Therefore � is not antisymmetric. Thus, in

no graph is � antisymmetric.

Read this “proof” carefully. When you spot the error, you

will know how to answer this problem.

47.15 Use Theorem 47.5.

47.16 Use proof by contradiction. If the vertices all have different

degrees, what must they be?

47.18 Use the previous problem.

47.19 See Section 17.

47.20 Note that the following are two different graphs:

G1 D
�

f1; 2; 3; 4g; f12; 13; 14g
�

and

G2 D
�

f1; 2; 3; 4g; f12; 23; 24g
�

even though their drawings look very much the same. (They

have the same vertex sets, but different edge sets.)

I recommend you begin with the special cases n D 0,

n D 1, n D 2, n D 3 and, n D 4 before you dive into

the general case. Try writing down all the possibilities. Note,

however, that for n D 4, you should find 64 different graphs,

so you will need to be organized.

47.21 For (a), use Proposition 24.25.

Here is a complete answer to (b): Let v 2 V.G/. Note

that u is adjacent to v if and only if f .u/ is adjacent to f .v/.

Since f is a bijection, this gives a one-to-one correspondence

between the neighbors of v and the neighbors of f .v/. There-

fore, v and f .v/ have the same degree (in their respective

graphs).

48.1 The graphs for (a), (d), and (g), respectively, are shown here:

2

3

4

5 6

1

2

3

4

5 6

1

2

3

4

48.2 Here is a complete proof that is-a-subgraph-of is antisymmet-

ric.
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Suppose G is a subgraph of H and that H is a subgraph

of G. The first implies that V.G/ � V.H/ and E.G/ �
E.H/ and the second implies the reverse containments. Thus

V.G/ D V.H/ and E.G/ D E.H/, and therefore G D H .

Thus is-a-subgraph-of is antisymmetric.

48.4 For example, the graph K2 has two spanning subgraphs and 4

induced subgraphs. We list them all out here. Let a and b be

the vertices of K2.

The spanning subgraphs of K2 are the following two

graphs:

�

fa; bg; fabg
�

and
�

fa; bg;;
�

:

The induced subgraphs of K2 are the following four

graphs:

�

fa; bg; fabg
� �

fag; ;
�

�

fbg; ;
� �

;;;
�

:

If you thought that there were only three induced sub-

graphs of K2, your answer would be wrong, but not terrible.

The graphs
�

fag; ;
�

and
�

fbg; ;
�

have exactly the same draw-

ing (just one dot), but these are not the exact same graphs. (In

one case, the sole vertex is a, and in the other case the sole

vertex is b.) This fussiness actually makes this problem eas-

ier to solve. There is a sense in which the graphs
�

fag; ;
�

and
�

fbg;;
�

are “the same”; see Exercise 47.21.

For K3, there are eight spanning and eight induced sub-

graphs.

48.5 ˛.G/ D 3, !.G/ D 2.

48.7 Exactly one of these statements is true. Prove the true state-

ment and find counterexamples for the other three.

48.8 You should find the following number of sets for each part of

this problem: (a) 2, (b) 1, (c) 15, and (d) 15.

48.10 For (a), note that every edge of G appears in exactly four of

the pictures. So counting all the edges in all the six pictures

will count every edge four times.

48.11 For (b), see the following figure.

For (c), note that if G is self-complementary, then we know

that G and G must have the same number of edges.

48.14 (d) Let G be any graph on n vertices. Note that G is also

a graph on n vertices. Since n ! .a; b/, we know that

˛.G/ � a or !.H/ � b. By Proposition 48.12,

˛.G/ D !.G/ � a; or

!.G/ D ˛.G/ � b:

(e) By Proposition 48.13, if n � 6, then n! .3; 3/. By Ex-

ercise 48.12, 5 6! .3; 3/. If n < 5 and n ! .3; 3/, then

by part (c) we would have 5 ! .3; 3/.)( Therefore 6

is the least positive integer n such that n! .3; 3/.

(f) Let G be a graph on ten vertices. Let v be any vertex of

G.

If d.v/ � 6, then among v’s six (or more) neighbors

we can either find (a) a clique of size 3 or (b) an indepen-

dent set of size 3 (by Proposition 48.13). In the first case

(a), !.G/ � 4 because v, together with its three pair-

wise adjacent neighbors, forms a clique of size 4. In the

second case (b), we clearly have ˛.G/ � 3.

Otherwise (d.v/ 6� 6), we have d.v/ � 5. This means

there are (at least) four vertices w; x; y; z to which v is

not adjacent. If they form a clique, we have !.G/ � 4.

But otherwise, some pair of them are not adjacent and

(together with v) form an independent set of size 3, so

˛.G/ � 3.

In every case, ˛.G/ � 3 or !.G/ � 4. Therefore

10! .3; 4/.

(g) Hint: Consider an arbitrary vertex v. Either d.v/ � m or

v has at least n vertices to which it is not adjacent.

49.4 The answer to (a) is
�

n

2

�

. For (b), note that all the vertices have

the same degree.

For (c), to prove that a Gn is connected, pick any two arbi-

trary vertices and prove there is a path that connects them.

49.5 89 is not the same as 98.

49.6 Here’s a hint:

49.7 The answer depends on whether we consider paths as se-

quences or as subgraphs. If we consider a path to be a se-

quence, then there are nŠ Hamiltonian paths. But if we con-

sider a path to be a subgraph, then there are nŠ=2 Hamiltonian

paths.

49.10 Here is a detailed outline of a proof. Fill in the blanks.

Suppose G is disconnected. We must show that G is con-

nected.

Because G is disconnected, there exist vertices x and y in

different components of G.

Now consider any two vertices a and b in G. We consider

cases depending on which component(s) of G contain(s) a

and b.

– a and b are both in x’s component of G.

. . . therefore, there is an .a; b/-path in G.

– One of a or b is in x’s component, and the other is not.

. . . therefore, there is an .a; b/-path in G.

– Neither a nor b is in x’s component.

. . . therefore, there is an .a; b/-path in G.
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In all cases, there is an .a; b/-path in G. Since a and b were

arbitrarily chosen vertices, G is connected.

49.11 Begin your proof thus: Suppose, for the sake of contradic-

tion, G is not connected. Let H be a component of G with

the fewest vertices.

49.14 Use induction on k. The i; j -entry of A
tC1 can be expressed

as

n
X

kD1

ŒA
t
�i;kAk;j :

50.3 You should find that there are 16 distinct trees. In general,

Cayley’s Theorem tells us that the number of distinct trees

with vertex set f1; 2; 3; : : : ; ng is nn�2.

50.4 Since this problem asks you to prove an if-and-only-if state-

ment, you have two jobs. First, suppose d1; : : : ; dn are the

degrees of the vertices of some tree T . You must show that

d1 C � � � C dn D 2n � 2; this is fairly easy.

Your second, and more challenging, task is the following:

Suppose you are given positive integers d1; : : : ; dn for which

d1 C � � � C dn D 2n � 2. You must prove there is a tree on n

vertices whose degrees are precisely d1; : : : ; dn. For this, we

recommend induction. Begin by showing that at least one of

the di is equal to 1.

50.6 Here is an outline for your proof.

Let G be a graph in which every pair of vertices is joined

by a unique path. We want to show that G is a tree. By

Definition 50.3, we must show that G is connected and

acyclic.

� Claim: G is connected. Prove that G is connected

by direct proof.

�Claim: G is acyclic. Prove that G is acyclic by con-

tradiction.

Therefore G is a tree.

50.7 This problem is best done as a proof by contrapositive (Proof

Template 11):

Suppose v is not a leaf. . . . Therefore T � v is not a tree.

50.8 The answer to (d) is .n� 1/Š. Prove this by induction.

50.9 The formula is n � c.

50.10 Use Exercise 50.5.

50.11 For (a), you also should use Theorem 49.12.

50.12 Use Theorem 50.4.

50.13 Use Theorems 50.9 and 50.11 and the previous problem.

50.14 For (c), use Exercise 50.13.

50.15 This is an if-and-only-if statement, so be sure to do both di-

rections. Here is half of the proof.

.)/ Let e D xy be a cut edge of G. Suppose, for contra-

diction, e is contained in a cycle C . Since e is a cut edge of G,

there must be vertices a and b that are connected in G but not

connected in G � e. Let P be an .a; b/-path in G. Necessar-

ily, P contains the edge e. Without loss of generality, vertex x

precedes vertex y as we traverse P from a to b.

Notice that in G � e there is an .a; b/-walk: Start at a, tra-

verse P up to x, traverse C � e to b, and then traverse P to y.

By Lemma 49.7, there must be an .a; b/-path in G � e.)(
Therefore e is not contained in any cycle of G.

50.17 Prove that at step (4), the graph T is connected and acyclic.

50.18 Just as for the previous problem, prove that the output graph

(the final T ) is connected and acyclic. Exercise 50.15 will

help.

50.19 Answer to (a): .n � 1/2.

51.3 Does Kn have an Eulerian tour?

51.4 Add edges from this new vertex in a way that changes all ver-

tices to even degree. Then check that the new graph you cre-

ated is connected.

51.5 This question is not so simple.

52.5 The condition that G is 3-colorable means that G can be prop-

erly colored using at most three colors. We are not required to

use all three.

52.6 See Section 48.

52.7 If G has n vertices and is not complete, then n > 1. Further-

more, G must contain two vertices that are not adjacent to each

other.

52.10 Given a proper coloring of G with a colors and a proper col-

oring of G with b colors, show how to construct a proper col-

oring of Kn with ab colors.

52.11 First show that G is properly 4-colorable (this is easy). Next,

suppose that G is 3-colorable and argue to a contradiction.

Give a color to vertex 1 and then discuss the colors of the

other vertices in numerical order.

52.14 Color the large-degree vertex first.

52.15 Prove this by induction on the number of vertices in G.

52.16 For (a), color the vertices with four colors.

For (b), please note that you need to prove the graph is not

3-colorable. To do this, you should use proof by contradiction.

It is also helpful to give sensible names to the vertices. Call the

vertex in the center of the picture u. Call its five neighbors a1

through a5 and the corresponding five vertices on the outer

rim of the picture b1 through b5.

For (c), although this graph has many edges, you should

use symmetry to reduce this problem to just a few cases. Color

each of those graphs with just three colors.

52.18 For (a), note that we can color the vertical edges colors 1 and

2 alternately in each column and colors 3 and 4 alternately in

each row. This gives a proper 4-edge coloring. Four colors are

needed because there are vertices of degree 4, and the edges

incident thereon must have different colors.

53.1 There are1-ly many answers.

53.3 You may use Euler’s formula (Theorem 53.3) and/or mimic its

proof.

53.4 If G does not contain K3 as a subgraph, then every face must

have degree at least 4.
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53.5 Count edges (use Corollary 53.5).

53.8 Although the graph looks a bit like K5, it does not contain a

subdivision of K5 as a subgraph. (If it did, it would have a

vertex of degree at least 4.) Find a subdivision of K3;3 as a

subgraph.

53.10 For (a), mimic the proof of Corollary 53.5.

For (c), use induction.

53.11 Here’s a complete argument for (a): First suppose that G is

planar. Embed G in the plane. Now delete vertex v and notice

that all vertices of G � v are incident with the region (face)

where v used to reside.

Conversely, suppose that G�v is outerplanar. Embed G�v

in the plane so that all vertices of G � v are incident with a

common face. Place vertex v in that face and join v to all the

other vertices by curves that emanate from v. Since all the

vertices lie on the face where we just placed v, we can do this

without crossing any edges.

For (b), note that if K4 were outerplanar, then use (a) to

conclude that K5 is planar.

For (d), use part (a) and Corollary 53.5.

For (e), use part (a) and the Four Color Theorem.

53.12 Part (a) has already been proved in the text. The quantity vr is

the sum of the degrees and equals 2e. The quantity f s is the

sum of the degrees of the faces and also equals 2e.

For part (b) and (c), use Euler’s formula (Theorem 53.3).

For part (d), note that e must be a positive integer.

Part (e) is a bit trickier. The case .3; 3/ was done in part (b).

The cases .3; 4/ and .4; 3/ are not too bad. Try .3; 5/ next; re-

member, the unbounded face also has degree 5. You should be

able to calculate how many degree-5 faces you need (answer:

12). Finally, the case .5; 3/ is the most complicated. You need

to fit 20 triangles (degree-3 faces) together with 5 triangles

meeting at every vertex. Good luck!

53.13 Draw a graph on the surface of the soccer ball. Place one

vertex in each polygon and join vertices by an edge if their

polygons abut each other. Notice that this is a planar graph in

which every face is a 3-cycle and all vertices have degree 5

or 6.

Suppose there are a vertices of degree 5 and b vertices of

degree 6. Count the number of edges in two ways to derive

a D 12.

54.1 (a) a and b are incomparable. (e) c < i .

54.2 For (a), the height is 4 and there are several chains containing

four elements, including fb; d; f; ig and fa; c; f; j g.
For (c), note that fa; c; ig is a chain containing three ele-

ments, but it can be extended to fa; c; f; ig. So fa; c; ig is not
a correct answer for (c).

54.5 Prove that R
�1 is reflexive, antisymmetric, and transitive.

54.7 The answer to the first question is n.

54.8 Here is the full proof. Suppose, for the sake of contradiction,

that there are two elements x and y with x < y and x > y.

Unraveling these definitions, we have (1) x � y, (2) y � x,

and (3) x 6D y. However, x � y and y � x imply (by anti-

symmetry) that x D y, contradicting (3).)( Therefore we

cannot have both x < y and x > y.

54.12 Here is a good definition for P � x. Let P D .X;�/. Let

P � x be the poset with ground set X � fxg and relation �0
where a �0 b if and only if a � b for all a; b 2 X � fxg.

55.1 There are no maximum or minimum elements. There are three

maximals and three minimals.

55.2 Answer to (b): 1 is minimum and minimal. 3, 4, and 5 are

maximal. There is no maximum.

55.5 (a) The maximum element is f1; 2; : : : ; ng and the minimum

element is ∅.

(b) The maximals are all subsets of f1; 2; : : : ; ng that have
exactly n � 1 elements and the minimals are all subsets

that have exactly 1 element.

55.7 Statement (d) is false.

Statement (g) is true. Here is a complete proof:

Suppose x and y are distinct maximal elements. Suppose,

for the sake of contradiction, that they are not incomparable.

Then either x < y or y < x. If x < y, then x is not maximal

and if y < x, then y is not maximal.)( Therefore x and y

are incomparable.

56.2 For (a), note that 1 < 2 < 3 and 1 < 3 < 2 are different linear

orders on f1; 2; 3g, but they are isomorphic.

56.3 Here is a template for your proof.

Let a be a minimal element of a total order, P . Let x be

any other element of P . . . . Therefore a < x, and so a is a

minimum element.

56.5 Here is half the proof of (a):

.)/ Suppose x is minimum in P . To show that f .x/ is

minimum in Q, we need to show that if b is any element of

Q, then f .x/ � b in Q. Since f is onto, there is an a in

P with f .a/ D b. Since x is minimum in P , a � x. Thus

b D f .a/ � f .x/ (since f is order-preserving). Therefore

f .x/ is minimum in Q.

56.6 Use part (a) of the previous problem.

56.7 To show that � is a total order on X � X , you need to check

four things:

– Reflexive: 8.x; y/ 2 X �X , we have .x; y/ � .x; y/.

– Antisymmetric: 8.x1; y1/; .x2; y2/ 2 X � X , if

.x1; y1/ � .x2; y2/ and .x2; y2/ � .x1; y1/ then

.x1; y1/ D .x2; y2/.

– Transitive: 8.x1; y1/; .x2; y2/; .x3; y3/ 2 X � X , if

.x1; y1/ � .x2; y2/ and .x2; y2/ � .x3; y3/, then

.x1; y1/ � .x3; y3/.

– Total: 8.x1; y1/; .x2; y2/ 2 X �X , we have .x1; y1/ �
.x2; y2/ or .x2; y2/ � .x1; y1/.

57.2 The answers are (a) 4, (b) 14400, and (c) 252. You must supply

the explanations.

57.4 By the previous problem, if .x; y/ is not a critical pair, then

�0 is not transitive. This happens because there is an a � x

and a b � y (other than a D x and b D y) with a 6� b.

Let u.a/ denote the number of elements strictly above a

and let `.a/ denote the number of elements strictly below a.

Prove that an incomparable pair .x; y/ with `.x/ C u.y/

as small as possible is critical.

57.5 Note that .c; g/ is not a critical pair because a < c but a 6< g.

Also .g; c/ is not a critical pair because c < f but g 6< f .
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However, .a; g/ is a critical pair because any x < a is also

below g (vacuously) and any y > g (namely, y D j ) is also

above a.

57.6 This problem is not as scary as all the notation makes it

seem. The core of your proof is this: When we are given

that .x1; y1/ � .x2; y2/ then we must prove that .x1; y1/ �
.x2; y2/.

58.1 The dimension is 2, but finding a realizer takes some work.

58.2 Use Theorem 57.3.

58.4 Here is a complete proof.

Suppose P is a subposet of Q. Choose a realizer R D
fL1; L2; : : : ; Lt g of Q of minimum size. (Thus t D dimQ.)

Let L
0
i
be the suborder of Li restricted to the elements of

P . Note that for all elements x and y of P we have x � y (in

P ) iff x � y (in Q) iff x �i y (in Li for all i) iff x �i y (in

L
0
i
for all i). Thus R0 D fL0

1
; L
0
2
; : : : ; L

0
t g is a realizer for P ,

and so dimP � t D dimQ.

58.5 This is a difficult problem. The first part is to find a realizer

consisting of three linear extensions. There are eleven incom-

parable pairs of elements (such as d; e) and your three linear

extensions should have, say, d < e in one and e < d in an-

other.

I suggest you find a realizer for this poset using two linear

extensions that does not use element c. Then add one more

linear extension that handles c. This is the solution I found

(try not to peek):

L1 W a <1 b <1 e <1 c <1 d <1 f <1 g

L2 W a <2 d <2 g <2 c <2 b <2 f <2 e

L3 W c <3 a <3 b <3 d <3 e <3 f <3 g

The second part of this problem is to show that the poset

does not have dimension two; i.e., supposing that fL1; L2g is
a realizer is impossible. So, naturally, we suppose that such a

realizer exists and toil away. Because fb; c; dg is an antichain,
these three elements appear in the two linear extensions in op-

posite orders. That is, we might have b < c < d in one and

d < c < b in the other. Or we might have b < d < c and

c < d < b in the two extensions or we might have d < b < c

and c < b < d . But notice these latter two cases are (thanks

to symmetry of the poset) equivalent.

So we can break the proof up into two cases. In the first

case we have b <1 c <1 d and d <2 c <2 b and in the

second case we have b <1 d <1 c and c <2 d <2 b.

For the first case, consideration of element a (where must

a appear in these two linear extensions?) leads to a simple

contradiction stemming from the incomparability of a and c.

The second case is much more laborious. Starting from

b <1 d <1 c and c <2 d <2 b work out where each of the

other four elements of the poset must lie in the linear exten-

sions and then find a contradiction. In my proof, I considered

the remaining elements in this order: f , a, e, and then g.

58.7 This is a difficult problem. First show that dimP � 3 by con-

structing a realizer using 3 linear extensions. It helps to work

out the special cases n D 3 and n D 4 first and then to look

for a general pattern.

To show that dimP > 2 is tricky. Here is a technique that

uses counting: Show that there are n.n�2/ incomparable pairs

of the form ai -bj . Then show that a linear extension can have

ai > bj at most
�

n�1

2

�

times. So if dimP � 2, we would need

to have n.n� 2/ � 2
�

n�1

2

�

, and this leads to a contradiction.

59.1 (b) d . (d) i . (e) a.

59.3 Prove the ) part by observing that for any x; y in a linear

order we have one of x < y, x D y, or x > y. For the(
direction, use contradiction and consider an incomparable pair

x; y.

59.4 Note that this result requires all numbers involved to be posi-

tive integers. Therefore xjy ) x � y.

59.5 The poset .Z;�/ is a lattice with no maximum and no mini-

mum element. The poset .N; j/ is a lattice with no maximum

element (but it does have a minimum element, 1).

To make the sentence true, insert the word finite.

59.7 Show the following is not distributive.

a

b c d

e

59.8 Answer to (a): .1; 2/ ^ .4; 0/ D .1; 0/ and .1; 2/ _ .4; 0/ D
.4; 2/.

59.9 Start with the meet and join of two distinct points. Their meet

is the empty set, and their join is the unique line that contains

both of them. Now continue to consider the meet and join of

two lines, or of a point and a line.
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B Solutions to Self Tests

Chapter 1

1. False. The positive integer 1 is neither prime nor composite.

2. xj.x C 2/ for x equal to �2, �1, 1, and 2.

3. The j notation means that the number on the left divides the

number on the right. The expression .ajb/C1 is nonsense be-

cause ajb is a statement and 1 is a number; it is not possible

to add a statement and an integer!

4. “If an integer is perfect, then it is even” or “if x is a perfect

integer, then x is even.”

5. “If you will marry me, then you love me.”

6. (a) false, (b) false, (c) true, (d) false, (e) true, and (f) true

(vacuously).

7. First line: “Suppose M is a graphic matroid.”

Last line: “Therefore, M is representable.”

8. (a) There are many possible counterexamples, including

x D 3, y D 2, and z D �6. Note that x > y but

xz D �18 < �12 D yz.

(b) If we require z to be positive, the conclusion will follow.

The edited statement should read, “If x, y, and z are in-

tegers, x > y, and z > 0, then xz > yz.

9. (a) This is false. For example, 2j10 and 5j10, but 7 D 2C 5

does not divide 10.

(b) This is true, and here is a proof. Suppose ajb. Then there
is an integer x such that ax D b. Multiplying both sides

of this equation by c gives axc D bc, which can be

rewritten .ac/x D bc. Therefore acjbc.

10. Most two-digit numbers are counterexamples to the proposi-

tion. For example, 152 D 225 but 512 D 2601 6D 522. There-

fore the proposition is false.

The mistake in the proof is that we neglected the effect of

carrying in arithmetic. It is true that .10a C b/2 D .a2/ �
100C .2ab/� 10C .b2/� 1, but that does not imply that the

digits of .10a C b/2 are a2; 2ab; b2. For example, if b > 3,

then b2 > 10 and so the ones digit of .10aC b/ cannot be b2.

11. The proof is incorrect because it assumes what we wish to

prove and then works to an obvious known fact (i.e., 0 D 0).

The approach should be the opposite.

Here is, essentially, the same proof used to show a D b for

any two numbers a and b.

Proof. Start with

a D b

from which we also have

b D a:

Multiplying these equations together gives

ab D ab

and then canceling ab from both sides gives

0 D 0

which is correct.

From such a “proof” follows the result that 3 D 4. Clearly

this is incorrect.

12. The two expressions are not logically equivalent. Consider the

following following truth table:

x y x ! :y :.x ! y/

T T F F

T F T T

F T T F

F F T F

Since the columns for x ! :y and :.x ! y/ are not identi-

cal, the two expressions are not logically equivalent.

13. The expression .x ! y/_ .x ! :y/ is a tautology. Consider

the truth table:

x y x ! y x ! :y .x ! y/ _ .x ! :y/

T T T F T

T F F T T

F T T T T

F F T T T

Since the formula evaluates to T for all possible values of its

variables, it is a tautology.

14. Let a, aC1, and aC2 be three consecutive integers. Their sum

is aC.aC1/C.aC2/ D 3aC3. Note that 3aC3 D 3.aC1/.

Since aC1 is an integer, 3j.3aC1/. Thus the sum of any three

consecutive integers is divisible by 3.

15. Let a be a positive integer. The sum of a consecutive integers

is divisible by a if and only if a is odd.

16. Let a � 3 be an integer. Multiplying both sides by a gives

a2 � 3a. Note that 3a D 2a C a > 2a C 1 because a > 1.

Thus a2 � 3a > 2aC 1.

17. Suppose a is a perfect square and a � 9. Because a is a per-

fect square, there is an integer b with a D b2. We may assume

that b > 0. In order for a � 9, we must have b � 3. Observe

that a� 1 D b2 � 1 D .b � 1/.bC 1/. Since b � 3; we know

that b � 1 � 2 > 1 and bC 1 � 4 > 1, and so these factors of

a � 1 are both greater than 1 hence a � 1 is composite.

18. The definition of square mates applies only to positive inte-

gers. Although 10C .�1/ is a perfect square, �1 is not posi-

tive. Therefore 10 and �1 are not square mates.

19. Let x be a positive integer. Let y D x2CxC1; clearly y > x

because we have added a positive quantity (x2 C 1) to x.

Note that x C y D x C .x2 C x C 1/ D x2 C 2x C 1 D
.x C 1/2. Since x C 1 is an integer, x C y is a perfect square,

and therefore x and y are square mates.

20. For x D 5; 6; 7; 8; 9 it is easy to find square mates smaller than

x, to wit:

.5; 4/; .6; 3/; .7; 2/; .8; 1/; and .9; 7/:

Thus it is enough to prove the result for x > 9.

As allowed by the problem statement, choose a positive in-

teger a such that a2 � x < .a C 1/2. Since x > 9, clearly

a � 3.
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Let y D .a C 1/2 � x. Clearly x C y is a perfect square

and y > 0 because .a C 1/2 > x. Thus x and y are square

mates. It remains to show that y < x. To this end we calculate

y D .aC 1/
2 � x

< .aC 1/
2 � a

2

D 2a C 1

< a
2 by Problem 16

� x:

Chapter 2

1. There are 2� 26� 26 D 1352 ways to form a 3-letter call sign

and 2 � 26 � 26 � 26 D 35,152 ways to form a 4-letter call

sign. Adding these gives 36,504 possible call signs.

2. Notice that we can choose a and b arbitrarily and then choose

c carefully so that a C b C c is even. More specifically, there

are 10 choices for a and, for each such choice, 10 choices for

b and then, once a and b have been chosen, exactly 5 choices

for c. This gives 10 � 10 � 5 D 500 possible choices.

Alternatively, without the restriction on the sum, there are

103 D 1000 choices for a; b; c exactly half of which have

even sum, giving 1000� 2 D 500 choices.

3. There are 103 ways to choose a; b; c regardless of their prod-

uct. In order for abc to be odd, all three of a; b; c must be odd.

There are 53 D 125 ways that might happen. Thus there are

1000 � 125 D 875 ways to choose a; b; c such that abc is

even.

4.
20Š

17Š � 3Š
D 20 � 19 � 18

3 � 2 � 1 D 20 � 19 � 3 D 1140:

5. There are 13Š ways to arrange the cards within a given suit,

so there are 13Š
4 possible ways to order the cards with suits.

Then there are 4Š ways to order the suits. All together, this

gives 4Š � 13Š4 possible arrangements.

There is no need to calculate this any further, but if you

did, you should get the following result.

36085481721713375974666734560870400000000

6. The ten couples may appear in 10Š orders. For each such order,

there are 2 choices per couple, depending on whether a wife

is in front of her husband or vice versa. This gives a total of

10Š210 possible arrangements.

7. The answer is 0 since the first term in the product is 02

0C1
D 0.

8. We can write A as f�9;�8; : : : ; 8; 9g and so jAj D 19.

9. (a) is TRUE and (b)–(e) are FALSE.

10. (a) TRUE. Proof: Suppose X 2 2A\B . Then X � A \ B ,

and hence X � A and X � B . Therefore X 2 2A and

X 2 2
B , and so X 2 2

A\B .

On the other hand, suppose X 2 2A\B . Then X �
A \ B , and so X � A and X � B . Therefore X 2 2A

and X 2 2
B , so X 2 2

A \ 2
B .

Because we have shown X 2 2A\B () X 2
2A \ 2B , we have 2A\B D 2A \ 2B .

(b) FALSE. Counterexample: Let A D f1; 2g and B D f3; 4g.
Note that 2

A[B D 2
f1;2;3;4g contains 16 elements, but

2A [ 2B contains 4 C 4 D 8 elements. So 2A[B 6D
2A [ 2B .

(c) FALSE. Counterexample: Let A and B be any sets. We

know that ; 2 2A�B . However, since ; 2 2A and

; 2 2B , we have that ; … 2A � 2B .

11. (a) FALSE, (b) TRUE, (c) TRUE, and (d) TRUE.

12. (a) True. (b) True. (c) False. (d) False.

13. (a) False. (b) False. (c) True. (d) True. (e) False. (f) True.

(g) False. (h) True.

14. Statement (a) is not necessarily true; for example, if p.x; y/

is always true, this would be false.

Statement (b) must be true based on the rules for negating

quantified statements (and the fact that :Œ:p.x; y/� is logi-

cally equivalent to p.x; y/).

Statement (c) must also be true. If the statement

9y; p.x; y/ is true for all possible integers x, then certainly

it is true for some integer x.

15. Given that A�B D f.1; 2/; .1; 3/; .2; 2/; .2; 3/g, it must be the

case that A D f1; 2g and B D f2; 3g. Then A[B D f1; 2; 3g,
A \ B D f2g, and A� B D f1g.

16. The following figure gives a Venn diagram illustration of

.A�C /[ .B�C / D .A[B/�C . Notice that if we combine

the shaded regions A�C (upper left) and B�C (upper right),

we have the shaded region .A[ B/ � C (bottom).

A B

C

A B

C

A B

C

A−C B −C

(A∪ B)−C

Now for a standard proof.

Suppose x 2 .A�C /[.B�C /. This means that x 2 A�C

or x 2 B � C . If x 2 A � C , then x 2 A and x … C . Since

x 2 A, we certainly have x 2 A [ B . And as x … C , we

may conclude x 2 .A[B/�C . Likewise, if x 2 B �C , we

conclude x 2 .A[B/�C . Thus if x 2 .A�C /[ .B �C /,

then x 2 .A[ B/ � C .

On the other hand, suppose x 2 .A[B/� C . This means

x 2 A [ B and x … C . Because x 2 A [ B , we know that

x 2 A or x 2 B . In case x 2 A, since x … C , we have

x 2 A � C , and so x 2 .A � C / [ .B � C /. Likewise, if

x 2 B we derive that x 2 .A � C / [ .B � C /. Therefore, if

x 2 .A [ B/� C , then x 2 .A� C /[ .B � C /.

Since x 2 .A � C / [ .B � C / iff x 2 .A [ B/ � C , we

have that .A � C / [ .B � C / D .A [ B/� C .

17. Let C be the set of cats and M be the set of mammals. The as-

sertion that all cats are mammals can be written C �M . The

assertion that I am a mammal can be written x 2M (where x

stands for me). But x 2 M 6H) x 2 C because C �M (and

not M � C ).
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The diagram below illustrates this.

Mammals

Cats

Me

18. From jAj C jBj D jA [ Bj C jA \ Bj we have the equation
10C jBj D 15C 3, whence jBj D 8.

19.
�

.A[ B/ � .A �B/
�

� .B � A/.

20. We ask: How many length-3 lists can be formed using n ele-

ments?

On the one hand, there are n3 such lists.

On the other hand, the three elements on the list might be

(a) all different, (b) two the same and one different, or (c) all

the same. In case (a), there are .n/3 D n.n � 1/.n � 2/ such

lists. In case (b), there are n choices for the repeated element,

.n � 1/ choices for the nonrepeated element, and 3 choices

for the slot the nonrepeated element can occupy, for a total of

3n.n� 1/ lists. Finally, there are n lists in which all three ele-

ments are the same. Summing these, we find the answer to the

question is n.n� 1/.n� 2/C 3n.n� 1/C n.

Since these are both correct answers to the same question,

we must have

n
3 D n.n� 1/.n � 2/C 3n.n� 1/C n:

Chapter 3

1. That R � S means that 8a; b 2 A; .a; b/ 2 R) .a; b/ 2 S .

Expressed in if-then format:

For elements a; b 2 A, if a R B , then a S b.

2. (a) This is the set containing your children.

(b) This is the set containing your parents.

(c) R is irreflexive (no one is their own parent) and antisym-

metric (vacuously since x R y and y R x cannot hold for

any x; y). The other properties (reflexive, symmetric, and

transitive) do not hold.

(d) R
�1 is the is-the-child-of relation.

3. The relations in (a) and (b) are equivalence relations; it is easy

to see they are transitive, symmetric, and reflexive.

The relation in (c) is not an equivalence relation. Although

it is reflexive and symmetric, it is not transitive. For example,

suppose Alice and Bob have a son George (g), Bob and Cindy

have a son Harry (h), and Cindy and Dave have a daughter

Inga (i). Then g R h and h R i hold, but h R i is false.

4. A relation R on A is a subset of A � A. In other words, R �
A�A or, equivalently, R 2 2A�A. Since jA�Aj D 4 �4 D 16,

the cardinality of 2A�A is 216, and that is our answer. There

are 216 relations defined on A.

5. No. For example, take x D 2 and y D 112. Then x � y in

both mod 10 and 11.

6. (a) R is reflexive: if x is any integer, then clearly jxj D jxj. R

is symmetric: if xR y, then jxj D jyj, hence jyj D jxj and
so yR x. R is transitive: if x R y and yR z, then jxj D jyj
and jyj D jzj and so jxj D jzj. Therefore x R z. Therefore

R is an equivalence relation.

(b) Œ5� D f�5; 5g, Œ�2� D f�2; 2g, and Œ0� D f0g.

7. The equivalence classes are Œ1� D Œ2� D Œ3� D f1; 2; 3g D A

and Œ4� D Œ5� D f4; 5g D B .

8. There are 6 equivalence classes depending on the cardinality

of the sets (from 0 to 5).

9. Suppose x and y are integers. Then x
P�y if and only if x and

y have the same sign.

Note that the sign of an integer x is often denoted sgn x

and is defined by

sgn x D

8

ˆ

<

ˆ

:

1 if x > 0,

0 if x D 0, and

�1 if x < 0.

10. The answer is 10Š2
10

=20; here’s why. Imagine the couples

first stand in line. There are 10Š210 ways for them to do this in

which husbands and wives are next to their respective spouses.

See Problem 6 from Chapter Test 2 (page 70).

Once they are lined up, they sit around the table (say,

in clockwise order). Two of these seating arrangements are

equivalent if one is a rotation of the other. Each equivalence

class has 20 seating patterns thus there are 10Š210=20 equiva-

lence classes.

11. The number of ordinary anagrams of ELECTRICITY is

11Š=.24/ because the word is eleven letters long and includes

two each of E, C, I, and T. For each such anagram, there are 10

ways to insert a space to create a two-word anagram. Hence

the answer is 10 � 11Š=16.

12. Let us call the three types of squares on a tic-tac-toe board

corner, side, and center. We count the possibilities depending

on the first player’s move.

– The first player puts an X in a corner square.

In this case the second player has five distinct re-

sponses: near corner, far corner, near edge, far edge, center.

– The first player puts an X in an edge square.

In this case the second player again has five distinct re-

sponses: near corner, far corner, near edge, far edge, center.

– The first player puts an X in the center.

In this case the second player has two distinct re-

sponses: corner, edge.

Therefore there are 12 distinct (inequivalent) opening pair of

moves in tic-tac-toe.

13. The answer is 21Š=.210 � 10Š/; here’s why. Imagine the stu-

dents stand in line, and then the teacher picks the lab partners

by choosing two students at a time from the line. The last stu-

dent in line works alone. Two arrangements of the line that

yield the same pairing are considered equivalent.

There are 21Š different ways for the students to line up. The

size of all the equivalence classes is 10Š � 210 because the first

ten pairs may be rearranged and the students within a pair may

swap their positions.

Therefore there are 21Š=.210 � 10Š/ inequivalent ways for

the students to line up, and this gives the number of pairings.
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14. The answer is
�

50

10

�

because we are choosing a 10-element sub-

set of A0 D f1; 3; 5; : : : ; 99g and jA0j D 50.

15. By the binomial theorem, the x17 term is
�

50

17

�

x17250�17, so

the answer is
�

50

17

�

233. This may also be expressed as
�

50

33

�

233.

16. The problem can be rewritten

.nC 0/C .nC 1/C .nC 2/C � � � C .nC n/

which equals .nC 1/nC
�

nC1

2

�

.

Optionally, this may be further simplified to .3n2C3n/=2.

17. The team can be chosen in
�

200

15

�

ways, and for each such

choice, there are
�

15

2

�

ways to pick the co-captains, for a total

of
�

200

15

��

15

2

�

possible ways to pick the team and co-captains.

18. Combinatorial proof: Let N be a finite set with jN j D nC 2

and suppose two elements of N are considered weirdos. How

many k C 2-element subsets of N can be formed?

On the one hand, the answer is simply
�

nC2

kC2

�

.

On the other hand, we can consider how many weirdos are

in the set: zero, one, or two. There are
�

n

k

�

ways to choose a k-

element subset that contains both weirdos, 2
�

n

kC1

�

ways with

one weirdo, and
�

n

kC2

�

ways with neither weirdo, for a total of
�

n

k

�

C 2
�

n

kC1

�

C
�

n

kC2

�

.

Therefore,
�

nC2

kC2

�

D
�

n

k

�

C 2
�

n

kC1

�

C
�

n

kC2

�

.

Proof via Pascal’s Identity: Applying Pascal’s Identity to
�

nC2

kC2

�

we have
�

nC2

kC2

�

D
�

nC1

kC1

�

C
�

nC1

kC2

�

. Applying Pascal’s

Identity to each of these gives
 

nC 1

k C 1

!

D
 

n

k

!

C
 

n

k C 1

!

 

nC 1

k C 2

!

D
 

n

k C 1

!

C
 

n

k C 2

!

and then adding these two equations yields
�

nC2

kC2

�

D
�

n

k

�

C
2
�

n

kC1

�

C
�

n

kC2

�

.

19. (a)
��

n

k

��

; see Lemma 18.11.

(b) First notice that if k < n then no solutions are possible.

For k � n, the answer is
��

n

k�n

��

because a positive so-

lution to x1 C � � � C xn D k is equivalent to a positive

solution to

.x1 � 1/C .x2 � 1/C � � � C .xn � 1/ D k � n

and that, in turn, is equivalent to a nonnegative solution

to the equation y1 C y2 C � � � C yn D k � n. That there

are
��

n

k�n

��

solutions to this last equation follows from

part (a).

(c) There are
�

n

k

�

solutions as we need to select a subset of

size k of the n variables whose value is 1 (and the rest

are 0).

20. For (a) the answer is
�

10

4

�

and for (b) the answer is
��

10

4

��

.

21. The answer is 4n. Each potential element j (with 1 � j � n/

may appear in the multiset 0, 1, 2, or 3 times. Let mj be the

multiplicity of element j . Instead of counting multisets di-

rectly, we can count lists of the form .m1; m2; : : : ; mn/ where

each mj 2 f0; 1; 2; 3g. Thus there are 4 choices for each ele-

ment of the list, for a total of 4n lists.

22. Let Aj be the set of colorings in which row j is entirely of one

color. The set of “bad” colorings is A1[� � �[A4. The number

of “good” colorings is 216 � jA1[ � � �[A4j. We evaluate this

as follows:

answer D 2
16 � jA1 [ � � � [ A4j

D 2
16 �

X

i

jAi j C
X

i<j

jAi \ Aj j

�
X

i<j <k

jAi \ Aj \ Ak j C jA1 \A2 \ A3 \A4j

D 2
16 �

 

4

1

!

� 2 � 212 C
 

4

2

!

� 4 � 28

�
 

4

3

!

� 8 � 24 C
 

4

4

!

� 16:

This equals
�

4

0

�

164.�2/0 C
�

4

1

�

163.�2/1 C
�

4

2

�

162.�2/2 C
�

4

3

�

161.�2/3 C
�

4

4

�

160.�2/4; which simplifies to .16 � 2/4

by the Binomial Theorem.

Alternatively, there are 16 � 2 ways to color each row, so

there are 144 possible colorings.

Chapter 4

1. Suppose, for the sake of contradiction, that x2 C 1 D 0 has

a real root, a. Since a is a real number, we must have one of

a < 0, a D 0, or a > 0, but in every case a2 � 0. Therefore

a2 6D �1, so a2 C 1 6D 0.)(

2. Suppose there were such an integer x. We cannot have x D 0,

x D 1, or x D �1 because in all these cases x2 6D 2. Thus

either x � 2 or x � �2, and in both those cases x2 � 4.)(
Therefore there is no integer x such that x2 D 2.

3. Suppose, for the sake of contradiction, there are four consecu-

tive integers, a; aC 1; aC 2; aC 3, whose sum is divisible by

4. That is, aC.aC1/C.aC2/C.aC3/ D 4aC6 is divisible

by 4. Therefore, there is an integer b such that 4b D 4a C 6,

giving b � a D 6

4
or b � a� 1 D 1

2
. Note that b � a� 1 is an

integer but 1

2
is not.)(

4. We are given that ajb and bja. So there exist integers x and

y with ax D b and by D a. Multiplying these together gives

abxy D ab. Since a; b > 0, we know that ab 6D 0, so di-

viding by ab gives xy D 1. The only pairs of integers that

multiply to give 1 are .x; y/ D .1; 1/ and .x; y/ D .�1;�1/.

The latter is impossible because if a D .�1/b, then a and

b cannot both be positive. Therefore .x; y/ D .1; 1/ and so

a D b.

5. Sets (b), (c), (d), and (f) are well-ordered, and the others are

not.

6. The proof is by induction on n. The case n D 1 (basis case) is

obvious because both sides evaluate to 1.

Suppose (induction hypothesis) that the result is true when

n D k; that is,

1C 4C 7C � � � C .3k � 2/ D 3k2 � k

2
:

Adding 3.k C 1/ � 2 D 3k C 1 to both sides gives

1C 4C � � � C .3k � 2/C .3k C 1/ D 3k2 � k

2
C 3k C 1:
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Note that

3k2 � k

2
C 3k C 1 D 3k2 � k C 6k C 2

2

D 3k
2 C 5k C 2

2

3.k C 1/2 � .k C 1/

2
D 3k2 C 6k C 3 � k � 1

2

D 3k2 C 5k C 2

2

and so

1C 4C � � � C Œ3.k C 1/ � 2� D 3.k C 1/2 � .k C 1/

2

as required.

7. The proof is by induction on n. The basis case, n D 0, holds

because both sides of the inequality evaluate to 1.

Assume (induction hypothesis) that the inequality has been

proved for n D k; that is, 0ŠC1ŠC� � �CkŠ � .kC1/Š. Adding

.k C 1/Š to both sides gives 0ŠC 1ŠC � � � C kŠC .k C 1/Š �
2 � .k C 1/Š.

Note that .kC2/Š D .kC2/�.kC1/Š � 2�.kC1/Š (because

kC 2 � 2 since k � 0). Therefore 0ŠC 1ŠC � � � C .kC 1/Š �
.k C 2/Š as required.

8. The proof is by induction on n. The basis case, n D 0, is true

because a0 D 1 and .2 � 40 C 1/=3 D 3=3 D 1.

Suppose the result has been proved when n D k (i.e.,

ak D .2 � 3k C 1/=3). Now consider akC1. We know that

akC1 D 4ak � 1, and so

akC1 D 4ak � 1 D 4

"

2 � 4k C 1

3

#

� 1

D 4 � 2 � 4k C 4 � 3

3
D 2 � 4kC1 C 1

3

as required.

9. The proof is by induction on n. The basis case, n D 0, is true

since 0 < 20.

Suppose (induction hypothesis) that k < 2k . We must

show that k C 1 < 2kC1. To this end, we add 1 to both sides

of k < 2k to find k C 1 < 2k C 1 � 2k C 2k D 2kC1.

10. Proof by contradiction: Suppose P is a finite set of points in

which any three points are collinear but, for the sake of con-

tradiction, the points do not all lie on a common line. Choose

a line L that includes two points, say x and y, in P . Since

L does not contain all the points in P , there is a third point

z 2 P that is not on L. But then x; y; z are three points of P

that are not collinear.)( Therefore, all points in P lie on a

common line.

Proof by induction: The proof is by induction on the num-

ber of points (i.e., jP j). In the case where the set has only 3

points, the result is obvious.

Suppose the proposition has been proved for all sets of k

points. Let P be a set of k C 1 points that satisfies the hy-

pothesis of the proposition. Let a be any point in P , and let

P 0 D P � fag. Then P 0 also satisfies the hypothesis of the

proposition, and so, by induction, the points in P
0 lie on a

common line L. Let x and y be two distinct points (other than

a) in P ; note that x; y; a lie on a common line, and since L

contains x and y, all three lie on L. Hence all points in P lie

on L.

11. The proof is by induction on n. The basis case, n D 0, is true

because both sides of the inequality evaluate to 1.

Suppose (induction hypothesis) that the result is true when

n D k; that is,

p
1C
p

2C � � � C
p

k � k
p

k:

To show that the result is true when n D kC1, we add
p

k C 1

to both sides of this inequality to get

p
1C
p

2C � � � C
p

k C
p

k C 1 � k

p
k C

p

k C 1:

Because
p

k <
p

k C 1, we have

k

p
k C

p

k C 1 < k

p

k C 1C
p

k C 1 D .k C 1/

p

k C 1

and so
p

1C
p

2C � � � C
p

k C
p

k C 1 � .k C 1/
p

k C 1

as required.

12. The proof is by induction on n. In case n D 1, the single

line divides the plane into two regions and
�

1

0

�

C
�

1

1

�

C
�

1

2

�

D
1C 1C 0 D 2, verifying the basis case.

Suppose (induction hypothesis) the result is true for col-

lections of k lines. Consider a collection of k C 1 lines that

satisfies the hypothesis of the result. Let L be any one of these

lines.

Observe that the k other lines divide the plane into
�

k

0

�

C
�

k

1

�

C
�

k

2

�

regions. Line L intersects each of the three k lines

and cuts through k C 1 regions. Thus line L creates an addi-

tional k regions; therefore the k C 1 lines cut the plane into
�

k

0

�

C
�

k

1

�

C
�

k

2

�

C .k C 1/ regions. This can be rewritten as

 

k

0

!

C
" 

k

1

!

C 1

#

C
" 

k

2

!

C k

#

:

Note that
 

k

0

!

D
 

k C 1

0

!

 

k

1

!

C 1 D
 

k C 1

1

!

 

k

2

!

C k D k.k � 1/

2
C k D .k C 1/k

2
D
 

k C 1

2

!

and so the kC1 lines cut the plane into
�

kC1

0

�

C
�

kC1

1

�

C
�

kC2

2

�

regions.

13. The proof is by strong induction on n. The basis case, n D 0,

is clear because both sides of the equation evaluate to 3. The

equation is also true for n D 1 because both sides evaluate

to 5.
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Assume (strong induction hypothesis) that the equation has

been shown for n D 0; 1; 2; : : : ; k (where k � 1). In particu-

lar, we have

Fk C 2FkC1 D FkC4 � FkC2

Fk�1 C 2Fk D FkC3 � FkC1:

Adding these equations together gives

FkC1 C 2FkC2 D FkC5 � FkC3

which is precisely the n D k C 1 case of the result.

14. We prove this by induction on n. For the basis case, n D 0, we

note that F0 D F1 D 1, so the only positive divisor of both

is 1.

Suppose (induction hypothesis) that the only positive di-

visor of Fk and FkC1 is 1. We must show that 1 is the

only positive divisor of FkC1 and FkC2. Suppose, for the

sake of contradiction, that there is an integer d > 1 with

d jFkC2 and d jFkC1. Because FkC2 D Fk C FkC1, we

have Fk D FkC2 � FkC1, and so if d divides both FkC2

and FkC1, we see that d jFk . But then d jFk and d jFkC1, but

d > 1.)( Therefore the only positive divisor of FkC1 and

FkC2 is 1.

15. The proof is by induction on n. For the basis case, the left hand

side is simply F 2
0
D 12 D 1 and the right is F0F1 D 1 �1 D 1

and so the formula holds.

Induction hypothesis: Suppose the formula holds when

n D k; that is,

F
2
0 C F

2
1 C � � � C F

2

k
D FkFkC1:

Adding F
2

kC1
to both sides gives

F
2
0 C � � � C F

2

k
C F

2

kC1
D FkFkC1 C F

2

kC1

D
�

Fk C FkC1

�

FkC1

D FkC2FkC1 D FkC1FkC2

as required.

16. (a) Consider the first tile. If the tile is a 1�1, then there are 2

choices for the color of that tile, and the remainder of the

stripe can be completed in an�1 ways. If the tile is a 1�2,

then there are 3 choices for its colors and an�2 ways to

tile the rest of the stripe. Thus there are 2an�1 C 3an�2

ways to tile the stripe.

(b) We prove this by strong induction on n. In the case

n D 1, there are only 2 ways to tile the stripe, and

.32 C .�1/1/=4 D .9 � 1/=4 D 2. In the case n � 2,

there are 2 � 2 ways to tile using two 1 � 1 tiles and 3

ways to tile using a single 1 � 2 tile, for a total of 7 pos-

sible tilings.

Let us assume (strong induction hypothesis) that the

result has been proved for n D 1; 2; : : : ; k (where k � 2).

In particular, we know that

ak�1 D
3k C .�1/k�1

4
and

ak D
3kC1 C .�1/k

4
:

Using the identity we proved in (a), we have

akC1 D 2ak C 3ak�1

D 2 � 3
kC1 C .�1/k

4
C 3 � 3

k C .�1/k�1

4

D .2 � 3kC1 C 3 � 3k/C .2 � .�1/k C 3 � .�1/k�1/

4

D 3 � 3kC1 C .2 � 3/ � .�1/
k

4

D 3
kC2 C .�1/

kC1

4

as required.

17. Proof.

Existence. The proof is by the method of smallest counterex-

ample. [Alternatively, we could write this proof using strong

induction.] Suppose the result is false and let x be a small-

est counterexample. Note that x 6D 1 since we can write

1 D 20 � 1. Also observe that x is not odd, for then we could

write x D 20 � x. Thus we may assume x is even. In this case

x=2 is a smaller positive integer (and therefore not a coun-

terexample), so we can write x

2
D 2a � b where b is odd. But

then x D 2aC1 � b, undermining our supposition that x is a

counterexample.)( Therefore every positive integer n can

be expressed in the form n D 2ab where b is odd.

Uniqueness. Suppose, for the sake of contradiction, there

are an integer n and distinct pairs of nonnegative integers

.a; b/ and .c; d/ such that b and d are odd and

n D 2
a
b D 2

c
d:

Were it the case that a D c, then 2ab D 2cd ) b D d , con-

tradicting the assertion that .a; b/ and .c; d/ were different

pairs. Thus a 6D c.

Without loss of generality, a < c. Therefore

2
a
b D 2

c
d ) b D 2

c�a
d

where c � a > 0. Therefore b is even, but it is also odd.)(
Therefore there is only pair of nonnegative integers .a; b/ such

that n D 2ab and b is odd.

18. Suppose there are natural numbers that can be expressed as

the sum of powers of 2 in two (or more) different ways and

let X be the least such number. Note that X 6D 0 because the

only way to write X as the sum of powers of 2 is as an empty

sum; if there were any terms in the sum, it would evaluate to a

positive value.

Let us write

X D 2
a1 C 2

a2 C � � � C 2
as D 2

b1 C 2
b2 C � � � C 2

bt

where a1 > a2 > � � � > as and b1 > b2 > � � � > bt are

different lists of exponents (all natural numbers).

Note that if a1 D b1 then Y D 2a2 C � � � C 2as D
2

b2 C � � � C 2
bt and so Y is a number that can be expressed

as sums of powers of 2 in two different ways, but Y < X ,

contradicting the fact that X is the smallest such counterexam-

ple. Therefore a1 6D b1. Without loss of generality, a1 > b1

(which implies a1 � b1 C 1 because the two numbers are

integers).



Appendix B � Solutions to Self Tests 441

So we now know that X � 2a1 . But consider

X D 2
b1 C 2

b2 C � � � C 2
bt

� 2
b1 C 2

b1�1 C 2
b1�2 C � � � C 2

1 C 2
0

D 2
b1C1 � 1 (by Proposition 22.4)

� 2
a1 � 1 < X:

Thus we have X < X .)( Therefore there are no natural

numbers that can be written as the sum of powers of 2 in two

(or more) different ways.

Comment: This problem, together with Exercise 22.24,

shows that every natural number has a unique representation

in binary.

19. (a) We prove this by induction on the size of A. In the case

that A has only one element, t , then clearly t jt , so the ba-

sis case is true.

Assume (induction hypothesis) that the result is true for

all sets of positive integers with k elements. Let A be a

set with k C 1 elements that satisfies the condition (i.e.,

8r 2 A; 8s 2 A; .r js or sjr/.) Let x be any element of A

and let A0 D A � fxg. Note that A0 is a set of k positive

integers that satisfies the condition. So, by induction, A0

contains an element t 0 for which ajt 0 for all a 2 A0. Now,
since x 2 A, either xjt 0 or t 0jx. In the first case, note that

all elements of A are divisors of t 0, and we are finished.

Otherwise (t 0jx), and since all elements of A0 are divisors
of t 0 and t 0jx, it follows that all elements of A are divisors

of x.

(b) Suppose A contains two different elements t and s with the

property that all elements in A are divisors of s and also of

t . This implies that sjt and t js. Since s; t > 0, if follows

(see Problem 4) that s D t .)( Therefore A contains a

unique element that is a multiple of all elements in A.

(c) Let A D f�2;�1; 1; 2g. It is easy to check that for all a; b

in A, either ajb or bja. However, A has two distinct ele-

ments, �2 and 2, that are multiples of all.

20. (a) an D 5

2
.�3/n C 3

2
.5/n.

(b) an D 6n � 2

3
n6n.

(c) an D 3nC 1.

(d) an D .3nC1 � 1/=2.

21. We apply � repeatedly to this sequence and find the follow-

ing:

5 26 67 146 281 490

21 41 79 135 209

20 38 56 74

18 18 18

0 0

Therefore

an D 5

 

n

0

!

C 21

 

n

1

!

C 20

 

n

2

!

C 18

 

n

3

!

D 5C 21nC 10n.n� 1/C 3n.n � 1/.n � 2/

D 3n
3 C n

2 C 17nC 5:

Chapter 5

1. (a) f .2/ D 3.

(b) f .4/ is undefined.

(c) dom f D f1; 2; 3g.
(d) imf D f2; 3; 4g.

(e) f �1 D f.2; 1/; .3; 2/; .4; 3/g.
(f) g�1 D f.1; 2/; .1; 3/; .2; 4/g is not a function because

it contains two distinct ordered pairs of the form .1; ‹/.

(Also, g is not one-to-one.)

(g) g ı f D f.1; 1/; .2; 1/; .3; 2/g.
(h) f ı g D f.2; 2/; .3; 2/; .4; 3/g.

2. From y D ax C b we have x D .y � b/=a. Thus f �1.x/ D
.x � b/=a.

3. Give that f .x/ D ax C b we have

.f ıf /.x/ D f .axCb/ D a.axCb/Cb D a
2
xC.abCb/:

To get .f ı f /.x/ D 4x � 2 we require a2 D 4 and

ab C b D �2. This leads to a D ˙2.

If a D 2, then ab C b D �2) 3b D �2) b D �2=3.

If a D �2, then ab C b D �2) �b D �2) b D 2.

Thus f .x/ D 2x � 2

3
and f .x/ D �2x C 2 are the solu-

tions to this problem.

4. (a) True. (b) True. (c) True. (d) False. For (d), note that

f W A! B requires only that imf � B .

5. (a) 43 D 64. (b) .4/3 D 4 � 3 � 2 D 24. (c) none.

6. The number of functions f W 2A ! 2B is

�

2
n
�.2n/

:

7. No, f is not necessarily onto. For example, let f W Z! Z be

defined by f .x/ D 2x, and let g be the same function. Note

that both f and g are one-to-one, but neither is onto.

However, if A and B are finite sets, then it would follow

that f is onto.

8. (a) First, f is not one-to-one. For example, f .�2/ D j �
2j D 2 and f .2/ D j2j D 2, so f .2/ D f .�2/ but, of

course, 2 6D �2.

(b) Second, f is onto. Let x 2 N. Since N � Z, certainly

x 2 Z, and f .x/ D jxj D x (since x is nonnegative).

Therefore f is onto.

9. (a) f is one-to-one. We offer two proofs.

Proof 1: We claim that f is an increasing function;

that is, if x < y, then f .x/ < f .y/. To see why, we

consider three cases:

� x and y are both nonnegative (i.e., 0 � x < y) . In

this case, x < y implies f .x/ D f 3 D x � x2 <

y � x2 < y � y2 D y3 D f .y/.

� x and y are both negative (i.e., x < y < 0). Since

x < y and both are negative, x
2

> y
2

> 0 and so

x3 < y3, so f .x/ < f .y/.

� x is negative and y is nonnegative. In this case,

f .x/ D x3 < 0 � y3 D f .y/.

In all cases, x < y H) f .x/ < f .y/. Thus if x 6D y,

we certainly have f .x/ 6D f .y/, and so f is one-to-one.

Proof 2: Suppose f .x/ D f .y/ and we work to show

x D y.

From f .x/ D f .y/ we have x
3 D y

3. Note that

x3 � y3 D .x � y/.x2 C xy C y2/.

We claim that the only pair of integers x and y for

which x
2 C xy C y

2 can equal zero is x D y D 0:

From the quadratic formula,

x D �y ˙
p

y2 � 4y2

2
D �y ˙ y

p
�3

2
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and because
p
�3 is imaginary, the only way to achieve

an integer (and hence real) value for x is to take y D 0.

This, in turn, gives x D 0 as claimed.

So either both x and y are zero (and so x D y), or

else x2 C xy C y2 6D 0. From f .x/ D f .y/ we have

0 D x
3 � y

3 D .x � y/.x
2 C xy C y

2
/:

Dividing both sides by x2 C xy C y2 (legit, as this is

nonzero) it again follows that x � y D 0, so x D y.

Therefore f is onto.

(b) f is not onto because there is no integer x such that

f .x/ D x3 D 2.

10. The only function that is an equivalence relation on

f1; 2; 3; 4; 5g is f.1; 1/; .2; 2/; .3; 3/; .4; 4/; .5; 5/g.

11. There are 64 positions for a 2� 2 block, but only 24 D 16 dif-

ferent ways to color the squares in the block. Therefore, by the

Pigeonhole Principle, two blocks must be identically colored.

Moreover, suppose (for contradiction) that each of the 16

possible colorings occur at most 3 times. This can happen only

if there are 3� 16 D 48 or fewer 2� 2 blocks. However, there

are 64 such blocks.)( Therefore some 2 � 2 pattern must

repeat four times.

12. Because h.1/ D 3 and h.1/ D f Œg.1/�, we must have

g.1/ D 2 or 4. Similarly, from h.2/ D f Œg.2/� D 3, we

must have g.2/ D 2 or 4. From h.3/ D 2 D f Œg.3/�, we

must have g.3/ D 1. From h.4/ D 5 D f Œg.4/�, we must

have g.4/ D 5. From h.5/ D 3 D f Œg.5/�, we must have

g.5/ D 2 or 4.

Therefore we know that g D f.1; ‹/; .2; ‹/; .3; 1/; .4; 5/; .5; ‹/g
where each ‹ may be either a 2 or a 4, giving eight possible

answers.

13. Note that

.f ı g/.x/ D f .3x C 2/

D .3x C 2/
2 C .3x C 2/ � 1

D 9x
2 C 15x C 5 and

.g ı f /.x/ D g.x
2 C x � 1/

D 3.x
2 C x � 1/C 2

D 3x
2 C 3x � 1 and so

.f ı g/.x/� .g ı f /.x/ D .9x
2 C 15x C 5/� .3x

2 C 3x � 1/

D 6x
2 C 12x C 6

D 6.x C 1/
2
:

14. Note that

.f ı g ı h/.x/ D f Œg.2x C 1/�

D f Œa.2x C 1/C b�

D f .2ax C aC b/

D 3.2ax C aC b/ � 4

D 6ax C 3aC 3b � 4

D 6x C 5:

From this it follows that a D 1 and b D 2. Therefore

.h ı g ı f /.x/ D hŒg.3x � 4/�

D hŒ.3x � 4/C 2�

D hŒ3x � 2�

D 2.3x � 2/C 1

D 6x � 3:

15. We can consider 00 to be the number of functions from the

empty set to itself. There is exactly one such function—

namely, the empty set. Indeed, the empty set is a function be-

cause it satisfies the definition of function, albeit vacuously.

The domain and image of the empty set (as a function) are

both the empty set. This is the only possible function from the

empty set to itself.

16. The assertion f D g�1 is false, as the following counterex-

ample shows. Let A D Z, let g.x/ D 2x for all x 2 Z, and let

f .x/ D
(

x

2
if x is even, and

0 if x is odd.

Notice that for any integer x, .f ı g/.x/ D f Œg.x/� D
f Œ2x� D x, so f ı g D idZ. However, f 6D g�1. For ex-

ample, .5; 0/ 2 f , but .0; 5/ … g, or, in customary notation,

f .5/ D 0 but g.0/ 6D 5.

17. (a) f.1; 3/; .2; 9/; .3; 2/; .4; 6/; .5; 5/; .6; 7/; .7; 4/; .8; 1/; .9; 8/g.
(b) � D .1; 3; 2; 9; 8/.4; 6; 7/.5/.

(c) ��1 D .1; 8; 9; 2; 3/.4; 7; 6/.5/.

(d) � ı � D .1; 2; 8; 3; 9/.4; 7; 6/.5/.

(e) � D .1; 8/ ı .1; 9/ ı .1; 2/ ı .1; 3/ ı .4; 7/ ı .4; 6/ and so

� is even.

18. There are only nŠ elements of Sn, so the sequence � D
�

.1/
; �

.2/
; �

.3/
; : : :, must repeat itself eventually. Let j be

the smallest index such that �.j / D �.k/ for some k > j .

We claim that j D 1. Suppose, for the sake of contradic-

tion, we have �.j / D �.k/ with 1 < j < k. Composing both

sides of this equation on the left by ��1 gives

�
�1 ı �

.j / D �
�1 ı �

.k/

) �
.j�1/ D �

.k�1/

contradicting the fact that j was the first index of a repeated

element.)( Therefore j D 1.

Thus � D �.k/ for some k > 1. Composing on the left by

��1 gives ��1 ı� D ��1 ı�.k/ whence � D �.k�1/ where

k � 1 > 0.

If k � 1 D 1, that means � D � and so � D ��1 D �.1/.

Otherwise (i.e., k�1 � 2), we have � D �.k�1/ D �ı�.k�2/ .

So �.k�2/ D ��1 and k � 2 is positive.

19. The sum evaluates to 0 since both the positive terms and the

negative terms (in different orders) rearrange to 1C2C� � �Cn.

20. (a) We know we can write � as a composition of transposi-

tions (see Theorem 27.11) as follows:

� D �1 ı �2 ı � � � ı �b :

If �i D .1; xi /, or, equivalently, .xi ; 1/, leave it alone.

If �i D .xi ; yi / with xi ; yi > 1, then we can re-

place it with .1; xi / ı .1; yi / ı .1; xi / since .xi ; yi / D
.1; xi / ı .1; yi / ı .1; xi /. After these substitutions, we

have expressed � as a composition of transpositions of

the form .1; x/.
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(b) In S3 observe that

� D .1; 2/ ı .1; 3/ ı .1; 2/ ı .1; 3/ ı .1; 2/ ı .1; 3/:

Note that both .1; 2/ and .1; 3/ appear three times.

21. Proof 1: Suppose � has ` inversions, so sgn� D
.�1/`. Notice that in every factor of

Q

1�i<j�n

�

xj � xi

�

the larger subscripted term precedes the smaller. But in
Q

1�i<j�n

�

x�.j / � x�.i/

�

there are exactly ` factors in

which the smaller subscripted term precedes the larger, so to

restore equality, we can multiply by .�1/`.

Proof 2: Decompose � as the the composition of transpo-

sitions, � D �1 ı � � � ı �a . Starting with the original prod-

uct
Q

1�i<j�n

�

xj � xi

�

, replace subscripts i with �a.i/ for

i D 1; : : : ; n. If �a D .p; q/, then n � 2 of the terms of the

form ˙.xp � xj / become ˙.xa � xj /, and another n � 2

terms of the form ˙.xq � xj / become ˙.xp � xj /; there is

no effect on the product as the result of these changes. How-

ever, the term˙.xp � xq/ becomes ˙.xq � xp/, resulting in

a change of sign for the entire product. As each subsequent

transposition is applied, the sign changes, so in the end we

have changed signs a times. Therefore the resulting product is

.�1/a D sgn� times the original.

22. (a) Starting from a home position, vertex 1 can be moved to

any of the four corners. Then vertex 2 can be rotated into

any of three positions, and finally, vertex 3 may be re-

flected into any of 2 positions, so there are 4 � 3 � 2 D 24

distinct symmetries. Hence the set of symmetries is all

of S4.

(b) There are only 12 possible symmetries of the tetrahe-

dron (when we omit reflections), and we can explicitly

list them.

.1/.2; 3; 4/ .1/.2; 4; 3/ .2/.1; 3; 4/ .2/.1; 4; 3/

.3/.1; 2; 4/ .3/.1; 4; 2/ .4/.1; 2; 3/ .4/.1; 3; 2/

.1; 2/.3; 4/ .1; 3/.2; 4/ .1; 4/.2; 3/ .1/.2/.3/.4/

Notice that these are precisely the even permutations

of S4.

23. We can conclude that x must be an integer.

24. To show that 2n is O.3n/, it is enough to note that j2nj � j3nj
for all positive integers n.

Suppose, for the sake of contradiction, that 3n is O.2n/.

Then there is a positive number M such that j3nj � M j2nj
for all but finitely many positive integers n. We may drop the

absolute value bars because 2n and 3n are always positive, and

so we have

3
n �M � 2n )

�

3

2

�n

�M

for all but finitely many n. However, the values
�

3

2

�n

get larger and larger as n grows, exceeding any specific

number.)( Therefore 3n is not O.2n/.

Chapter 6

1. The sum of P.a/ over all a 2 S must be 1. In S , there are five

even numbers, for which P.a/ D x, and five odd numbers, for

which P.a/ D 2x. Therefore 5.x/C 5.2x/ D 1 so 15x D 1

and therefore x D 1

15
.

2. (a) 63. (b) 64.

3. (a) P.A/ D P.1/ C P.4/ C P.7/ C P.9/ D 1

55
C 4

55
C

7

55
C 9

55
D 21

55
.

(b) P.B/ D P.1/ C P.2/ C P.3/ C P.4/ C P.5/ D
1

55
C 2

55
C 3

55
C 4

55
C 5

55
D 10

55
D 2

11
.

(c) P.AjB/ D P.A \ B/=P.B/. Note that P.A \ B/ D
P.f1; 4g/ D P.1/ C P.4/ D 5

55
D 1

11
. Therefore

P.AjB/ D 1

11

ı

2

11
D 1

2
.

(d) P.BjA/ D P.B \ A/=P.A/ D 1

11

ı

21

55
D 5

21
.

4. (a) There are 10Š ways in which the children may line up,

and all are equally likely. There is only one ordering in

which the children appear alphabetically by name, so the

probability is 1=10Š.

(b) There are 5Š � 5Š ways in which the children may line up

so that all the girls precede all the boys. Therefore the

probability is 5Š � 5Š=10Š D 1=252.

(c) The first girl may be in position 1 through 6 on the line.

Once the position for the first girl is set, there are 5Š � 5Š

ways for the children to take their places, giving a total of

6 � 5Š � 5Š successful outcomes. Therefore the probability

is 6 � 5Š � 5Š=10Š D 1=42.

(d) There are 2 � 5Š � 5Š ways in which the children may stand

so that they alternate by gender. Therefore the probability

is 2 � 5Š � 5Š=10Š D 1=126.

(e) LetB be the event that the boys are in a contiguous block,

and let G be the corresponding event for the girls. We

seek P.B \G/. Note that

P.B \G/ D P.B [G/

D 1 � P.B [G/

D 1 � ŒP.B/C P.G/� P.B \G/� :

From part (c) we have P.G/ D P.B/ D 1=42. To calcu-

late P.B \ G/, note there are 2 � 5Š � 5Š ways in which

the children might stand in which all the boys are to-

gether and all the girls are together, so P.B \ G/ D
2 � 5Š � 5Š=10Š D 1=126. Therefore

P.B \G/ D 1 � 2

42
C 1

126
D 121

126
:

5. (a) There are
�

52

13

�

ways to choose the hand, each of which is

equally likely. There is only one way to select the cards

if all 13 are spades. Thus the probability is 1=
�

52

13

�

.

(b) There are
�

26

13

�

ways to choose the cards such that all are

black, so the probability is
�

26

13

�

=
�

52

13

�

.

(c) Let B be the event that all the cards are black and R be

the event that all the cards are red; we seek P.R \ B/.

We can rewrite this as

P.R \B/ D P.R [ B/

D 1 � P.R [B/

D 1 � ŒP.R/C P.B/� P.R \ B/� :

From part (b), P.R/ D P.B/ D
�

26

13

�

=
�

52

13

�

and P.R \
B/ D 0 since there is no way to choose the cards such

they are all black and all red. Therefore

P.R \B/ D 1 �
2
�

26

13

�

�

52

13

�
D 580008

580027
� 0:999967:
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(d) Let A be the event that one (or more) of the cards is an

ace. There are
�

52�4

13

�

D
�

48

13

�

ways to choose an aceless

hand, so P.A/ D
�

48

13

�

=
�

52

13

�

. This evaluates to approxi-

mately 30%.

(e) There are 52 � 13 � 4 C 1 D 36 cards in the deck that

are neither hearts nor aces. Therefore the probability of

drawing 13 cards none of which is an ace or a heart is
�

36

13

�

=
�

52

13

�

.

6. (a) The only way to draw 21 is to pick an ace together with

a face card or 10. There are 52 � 51 ways to pick two

cards (in sequence) from the deck. Of these, there are

2 � 4 � 16 sequences in which one of the cards is an ace

and the other is a ten or face card. So the probability is

.2 � 4 � 16/=.52 � 51/ D 32=663 or roughly 4.8%.

(b) Of the 52 � 51 D 2652 ways to draw a face card, the fol-

lowing chart gives the number of ways to draw the sum 16

or higher, depending on the first card.

First card Choices for 2nd card Total

2, 3, or 4 0 0

5 4 (aces only) 16

6 20 (10 or higher) 80

7 24 (9 or higher) 96

8 28 (8 or higher) 112

9 32 (7 or higher) 128

10 or face 36 (6 or higher) 576

ace 40 (5 or higher) 160

Total number of ways: 1168

Therefore, the probability that the two cards drawn sum to

16 or higher is 1168=2652 D 292=663, or approximately

44%.

(c) Let A be the event that the first card is an ace, and let F

be the event that the second card is a face card. We seek

P.F jA/. This equals P.F \ A/=P.A/. The numerator

equals .4 � 12/=.52 � 51/ and the denominator equals 4=52.

Therefore

P.F jA/ D .4 � 12/=.52 � 51/

4=52
D 4

17
:

7. Let FB be the event that the first card is black and LR

be the event that the last card is red. We seek P.LRjFB/,

which equals P.LR \ FB/=P.FB/. The numerator equals

.26 � 26/=.52 � 51/ and the denominator equals 26=52 D 1=2.

Therefore

P.LRjFB/ D .26 � 26/=.52 � 51/

1=2
D 26=51:

The two events, FB and LR, are not independent. Above

we showed that P.FB \LR/ D .26 � 26/=.52 � 51/ D 13=51,

but P.FB/ � P.LR/ D 1

2
� 1

2
D 1

4
.

8. Let A be an event for a sample space .S; P /. Events A and A

are independent if and only if P.A/ D 0 or P.A/ D 1.

(Alternatively, the theorem may conclude “. . . if and only

if P.A/ D 0 or P.A/ D 0,” etc.)

Proof. .)/ Suppose A and A are independent. Then

P.A/P.A/ D P.A \ A/, and these must equal 0 since

A \ A D ;. Therefore P.A/ D 0 or P.A/ D 0 and the

latter is equivalent to P.A/ D 1.

.(/ Suppose P.A/ D 0 or P.A/ D 1. In either case,

P.A/P.A/ D 0 D P.;/ D P.A \ A/ and so A and A are

independent.

9. For events R and C , we have

P.R/ D 64 � 8
642

D 1

8
;

P.C / D 1

8
; and

P.R \ C / D 64 � 1
642

D 1

64
D P.R/ � P.C /:

Therefore R and C are independent.

For events R and B , we have

P.R/ D 1

8
;

P.B/ D 322

642
D 1

4
; and

P.R \B/ D 32 � 4
642

D 1

32
D P.R/ � P.B/:

Therefore R and B are independent. Likewise, C and B are

independent.

10. For events R and C , we have

P.R/ D 64 � 7
64 � 63

D 1

9

P.C / D 1

9
; and

P.R \ C / D 0 6D P.R/ � P.C /:

Therefore R and C are not independent.

For events R and B , we have

P.R/ D 1

9
;

P.B/ D 32 � 31

64 � 63
D 31

126
and

P.R \ B/ D 32 � 3
64 � 63

D 1

42
6D 31

1134
D P.R/ � P.B/:

Therefore R and B are not independent. Likewise, C and B

are not independent.

Alternative analysis: Instead of choosing the squares in se-

quence, we can choose them as a pair in
�

64

2

�

ways, all of

which are equally likely.

For the events R and C , we have

P.R/ D
8
�

8

2

�

�

64

2

�
D 1

9
;

P.C / D 1

9
; and

P.R \ C / D 0 6D P.R/ � P.C /:

For the events R and B , we have

P.R/ D 1

9
;

P.B/ D
�

32

2

�

�

64

2

�
D 31

126
; and

P.R \B/ D
8
�

4

2

�

�

64

2

�
D 1

42
6D 31

1134
D P.R/ � P.B/:

11. Suppose the coin produces HEADS with probability p and

TAILS with probability 1 � p. Let A be the event that we flip

HEADS-TAILS, and let B be the events that the two flips are
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different. We calculate as follows:

P.AjB/ D P.A\ B/

P.B/

D p.1 � p/

p.1� p/C .1 � p/p
D 1

2
:

12. Proof. We are given that A � B and P.A/ 6D 0. Therefore

P.B/ 6D 0. Note that

P.AjB/ D P.A\ B/

P.B/
D P.A/

P.B/

with the last equality because A \ B D A since A � B .

The result now follows by multiplying the displayed equation

through by P.B/.

13. Since

0 D E.X/ D X.a/P.a/CX.b/P.b/CX.c/P.c/

D .1/.0:4/C .2/.0:4/CX.c/.0:2/

D 1:2C 0:2X.c/

it follows that X.c/ D �1:2=0:2 D �6.

14. (a) There are 32 cards with even value (four each of 2, 4, 6,

8, 10, jack, queen, and king). Therefore P.X is even/ D
32=52 D 8=13.

(b) Each sort of card appears with probability 1=13 so the

expected value of X is

E.X/ D 2C 3C 4C 5C 6C 7C 8C 9C 4 � 10C 11

13

D 95

13
:

(c) The expectation of Y is the same as that of X ; that is,

E.Y / D 95=13.

(d) The random variables X and Y are not independent. For

example, consider the probability that both are equal to

2. We have

P.X D 2 ^ Y D 2/ D 4 � 3

52 � 51
D 1

221
;

P.X D 2/ D P.Y D 2/ D 4

52
D 1

13
; but

P.X D 2/ � P.Y D 2/ D 1

169
6D P.X D 2 ^ Y D 2/:

(e) By linearity of expectation, E.X C Y / D E.X/ C
E.Y / D 95

13
C 95

13
D 190

13
.

(f) The probability X D Y can be calculated by

P.X D 2 ^ Y D 2/C � � � C P.X D 11 ^ Y D 11/:

We calculate each summand as follows:

P.X D 2 ^ Y D 2/ D 4 � 3

52 � 51
D 1

221

:
:
:

P.X D 9 ^ Y D 9/ D 1

221

P.X D 10 ^ Y D 10/ D 16 � 15

52 � 51
D 20

221

P.X D 11 ^ Y D 11/ D 1

221

11
X

jD2

P.X D j ^ Y D j / D 29

221
:

(g) We use the formula Var.X/ D E.X2/ �E.X/2.

E.X
2
/ D 22 C 32 C � � � C 92 C 4 � 102 C 112

13

D 805

13

E.X/
2 D

�

95

13

�2

D 9025

169

Var.X/ D E.X
2
/ � E.X/

2 D 805

13
� 9025

169
D 1440

169
:

15. This is false. For example, let X and Y be independent zero-

one random variables with P.X D 0/ D P.X D 1/ D
P.Y D 0/ D P.Y D 1/ D 1

2
. Note that E.X/ D E.Y / D 1

2
.

Then EŒ.XCY /�2 D E.X2/C2E.X/E.Y /CE.Y 2/ D
1

2
C 2 � 1

2
� 1

2
C 1

2
D 3

2
but ŒE.X/CE.Y /�2 D 12 D 1.

16. The analysis is simplest if we write X D X1CX2C� � �CX5

where Xj is the change in stock price on the j th day.

(a) Note that E.X/ D E.X1/C� � �CE.X5/. Each summand

is given by E.Xj / D .0:6/.2/C .0:1/.5/C .0:3/.�4/ D
0:5. Therefore E.X/ D 5.0:5/ D 2:5 D 5

2
. We expect

the stock value to rise $2.50.

(b) Recall that Var.X/ D E.X2/ � E.X/2. Using the fact

that the Xi s are independent, we calculate as follows:

E.X
2
/ D E

h

.X1 C � � � C X5/
2
i

D E.X
2
1 C � � � CX

2
5 C 2X1X2 C � � � C 2X4X5/

D 5E.X
2
1 /C 20E.X1X2/

D 5E.X
2
1 /C 20E.X1/E.X2/

D 5

�

0:6.2/
2 C 0:1.5/

2 C 0:3.�4/
2
�

C 20.0:5/
2

D 53:5

E.X/
2 D .2:5/

2 D 6:25

Var.X/ D E.X
2
/ �E.X/

2 D 53:5 � 6:25 D 47:25:

Alternatively, we could use the fact that Var.X/ D
Var.X1/C � � � C Var.X5/ (because the Xi s are indepen-

dent).

Chapter 7

1. q D 4 and r D 3, so 23 div 5 D 4 and 23 mod 5 D 3.

2. Proof. Suppose bja. Then there is an integer q such that

a D qb. So we can write a D qb C 0, so by definition of

div, we have q D a div b. Since q D a

b
, the result follows.

3. Proof. We are given that a; b are positive integers with a � 2

and aj.bŠ C 1/. Suppose, for the sake of contradiction, that

a � b, and so ajbŠ. Since a divides both bŠ C 1 and bŠ, it

divides their difference .bŠC 1/ � bŠ D 1, and so a D 1; but

a � 2.)( Therefore, a > b.

4. The answer is “no”.

Note that 6 is even and 15 is odd, and gcd.6; 15/ D 3—

thus these numbers are not relatively prime.

5. .)/ Suppose gcd.p; q/ D 1 but, for the sake of contradiction,

p D q. But then gcd.p; q/ D p D q > 1.)( So p 6D q.

.(/ Suppose p 6D q but, for the sake of contradiction,

gcd.p; q/ D d > 1. Then d jp and d jq. Since d > 1, this
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is possible only if d D p and d D q, whence p D q.)(
Therefore gcd.p; q/ D 1.

6. x D 4 and y D �7. Other answers are possible, so long as

100x C 57y D 1.

7. From the previous problem, we know that 100 � 4 C 57 �
.�7/ D 1, so �7 � 57 � 1 .mod 100/. Since �7 �
93 .mod 100/, we have that the reciprocal of 57 is 93. Check-

ing: 57�93 D 5301 � 1 .mod 100/, so 57˝93 D 1 in Z100.

8. Proof. We prove that gcd.Fn; FnC1/ D 1 by induction on n.

The basis case, n D 1, is simple because gcd.F1; F2/ D
gcd.1; 2/ D 1.

Suppose (induction hypothesis) that Fk and FkC1 are rel-

atively prime; we must prove that FkC1 and FkC2 are also

relatively prime.

Suppose, for the sake of contradiction, that

gcd.FkC1; FkC2/ D d > 1. So d jFkC1 and d jFkC2. Note

that FkC2 D Fk C FkC1, which can be rewritten as

Fk D FkC2 � FkC1:

Because d divides both terms on the right, d jFk . Therefore d

is a common divisor of both Fk and FkC1.)(
Therefore FkC1 and FkC2 are relatively prime.

Alternatively, we can complete the proof as follows.

Since Fk and FkC1 are relatively prime, there exist in-

tegers a and b such that aFk C bFkC1 D 1. Substituting

Fk D FkC2 � FkC1 gives

1 D aFk C bFkC1

D a
�

FkC2 � FkC1

�

C bFkC1

D .b � a/FkC1 C aFkC2:

Therefore FkC1 and FkC2 are relatively prime by Corol-

lary 36.9.

9. Let n; p be as given in the problem and let d D gcd.n; nCp/.

Since d is a common divisor of n C p and n, we know that

d jnCp�n; i.e., d jp. Thus either d D 1 or d D p. The latter

is impossible because we are given that p does not divide n.

10. Because p is prime, the sum of the positive divisors of pn is

the (finite) geometric series

1C p C p
2 C � � � C p

n

which simplifies to

pnC1 � 1

p � 1
:

11. (a) 20, (b) 90, (c) 95, and (d) 85.

12. Proof. We rely on Theorem 37.14 that a 2 Zn is invertible if

and only if a and n are relatively prime.

.)/ Suppose n is prime. If 1 � a � n � 1, then a and

n can have no common factor and hence are relatively prime.

Thus a is invertible in Zn.

.(/ Suppose all nonzero elements ofZn are invertible but,

for the sake of contradiction, n is not prime. Then there ex-

ists an integer a such that 1 < a < n and ajn. This means

gcd.a; n/ D a, so a is not invertible and yet is a nonzero ele-

ment of Zn.)( Therefore n is prime.

13. The congruences are satisfied by all integers x such that x �
981 .mod 3264/.

14. Proof. .)/ This is trivial.

.(/ Suppose gcd.a; b/ D lcm.a; b/ D d . This implies

that d ja, ajd , bjd , and d jb. By Problem 4 in the Self Test for

Chapter 4 (page 165), we have a D d and b D d , and so

a D b.

15. (a) Because n D 1010 D 210510, we see that n has

11 � 11 D 121 positive divisors.

(b) Of the n integers between 1 and n, there are n=2 that

share a factor of 2 with n and n=5 that share a factor of

5 with n. Of these, we have double-counted the multiples

of both 2 and 5, and there are n=10 of those. Therefore

'.n/ D '.10
10

/ D 10
10 � 1010

2
� 1010

5
C 1010

10

D 4 � 10
9
:

16. Proof. Let n be a positive integer. Factoring n into primes

gives

n D p
a1

1
p

a2

2
� � �pat

t

where the pj are distinct primes and the aj are natural num-

bers. The number of divisors of n is

D D .a1 C 1/.a2 C 1/ � � � .at C 1/:

(See Exercise 39.14.)

We now see that D is odd if and only if .aj C 1/ is odd

for all j if and only if aj is even for all j if and only if n is a

perfect square.

17. Proof. Let a; b; c be positive integers and suppose that ajbc

and gcd.a; b/ D 1. Factor a; b; c into primes as follows:

a D 2
x1 3

x2 5
x37

x4 � � �

b D 2
y1 3

y2 5
y3 7

y4 � � �

c D 2
z1 3

z25
z3 7

z4 � � �

Since ajbc, we have xj � yj C zj . Since gcd.a; b/ D 1, we

have xj > 0 ) yj D 0 ) xj � zj . Of course, if xj D 0,

then xj � zj . Therefore xj � zj for all j , and so ajc.

18. Note that the sum of a consecutive integers beginning with x

is

x C .x C 1/C .x C 2/C � � � C .x C a � 1/ D ax C
 

a

2

!

:

The term ax is clearly divisible by a, so the sum is divisible

by a if and only if aj
�

a

2

�

.

Note that
�

a

2

�

D a.a�1/

2
is an integer.

.(/ If a is odd, then a� 1 is even, so 2j.a� 1/. Therefore
�

a

2

�

D a � a�1

2
, and because a�1

2
is an integer, aj

�

a

2

�

.

.)/ If a is not odd (i.e., a is even), then a�1 is odd. Since

a is even, a D 2b � powers of odd primes.

So if we factor
�

a

2

�

D a

2
� .a�1/ into primes, we note that

 

a

2

!

D 2
b�1 � powers of odd primes

a D 2
b � powers of odd primes

and so a cannot divide
�

a

2

�

.
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Chapter 8

1. (a) 3 � 4 D
p

32 C 42 D
p

25 D 5.

(b) The operation � is closed for real numbers. If x and y are

real numbers, then x2Cy2 is a nonnegative real number,

and so x � y D
p

x2 C y2 is a real number.

(c) The operation is commutative because

x � y D
q

x2 C y2 D
q

y2 C x2 D y � x:

(d) The operation � is associative because

x � .y � z/ D x �
q

y2 C z2

D

s

x2 C
�

q

y2 C z2

�2

D
q

x2 C y2 C z2

and, by a similar analysis, .x�y/�z D
p

x2 C y2 C z2.

Therefore x � .y � z/ D .x � y/ � z.

(e) The operation � does not have an identity element. Sup-

pose, for the sake of contradiction, that e is an identity

element. Then .�1/ � e D �1, but

.�1/ � e D
q

.�1/2 C e2 D
p

1C e2 > 0

and so .�1/ � e 6D �1.)(

2. First we prove that .R0; ?/ is a group.

The first step is to check that ? is closed forR0. (Note that ?

is closed for R as you should have shown in Exercise 40.2(a),

but that does not imply it is closed for R0.) Let x; y 2 R0.
Then x ?y D xCy�xy is certainly a real number, but might

it be equal to 1? Suppose, for the sake of contradiction, that

x ? y D 1. Then x C y � xy D 1. We solve this for y:

x C y � xy D 1

x C y.1 � x/ D 1

y.1 � x/ D .1 � x/

y D 1:

The last step is valid because x 6D 1, but that leads to y D
1.)( Therefore ? is closed for R0.

Second, we prove that ? is associative: Let x; y; z 2 R0.
Then

.x ? y/ ? z D .x C y � xy/ ? z

D .x C y � xy/C z � .x C y � xy/z

D x C y C z � xy � xz � yz C xyz

x ? .y ? z/ D x ? .y C z � yz/

D x C .y C z � yz/� x.y C z � yz/

D x C y C z � xy � xz � yz C xyz

and so .x ? y/ ? z D x ? .y ? z/.

Third, we prove that ? has an identity element in R0: Ob-
serve that for any x 2 R0 we have x?0 D xC0�x �0 D x and,

likewise, 0 ? x D x. Therefore 0 2 R0 is an identity element

for ?.

Finally, we show that every element of R0 has an inverse.

Let x in R0. We must find a y such that x ? y D y ? x D 0. To

this end, let y D x=.x� 1/. Note that y is a valid real number

(we didn’t divide by 0 because x 6D 1). Also y 6D 1 because

x 6D x � 1. Finally, we calculate:

x ? y D x ?

�

x

x � 1

�

D x C
�

x

x � 1

�

� x

�

x

x � 1

�

D x.x � 1/C x � x2

x � 1
D 0

and a similar calculation shows that y ? x D 0. Therefore

y D x=.x � 1/ is an inverse for x.

This completes our argument that .R0; ?/ is a group. To see

that it is Abelian, we need to check the commutative property.

Let x and y be any elements ofR0. Then x?y D xCy�xy D
y C x � yx D y ? x, and so ? is commutative, and therefore

.R0; ?/ is an Abelian group.

3. To prove that .R0; ?/ Š .R�;�/ we must find a bijection

f W R0 ! R� such that for all x; y 2 R0 we have f .x ? y/ D
f .x/ � f .y/. To this end, define f .x/ D 1 � x.

The first step is to show that f W R0 ! R�. Clearly for

any x 2 R0 it makes sense to compute f .x/; the only issue

is to be sure all the results are in R�; that is, we must not

have f .x/ D 0 since 0 … R�. But the only way f .x/ can

be 0 is when x D 1, and since 1 … R0, we see that, indeed,

f W R0 ! R�.
Now we show that f is a bijection; that is, f is one-to-one

and onto.

– To prove that f is one-to-one, we must show for any

x; y 2 R0 that if f .x/ D f .y/ then we have x D y.

Given f .x/ D f .y/, we have that 1�x D 1�y and from

there we see that x D y.

– To prove that f is onto, we must show that for any b 2 R�

there is an a 2 R0 such that f .a/ D b. Let b 2 R�. Let
a D 1�b. Since b 6D 0 we know that a 6D 1 and so a 2 R0.
It now follows that f .a/ D f .1 � b/ D 1 � .1 � b/ D b

as required.

This completes the argument that f W R0 ! R� is a bijection.
Finally, we must prove 8x; y 2 R0; f .x ? y/ D f .x/ �

f .y/. Let x; y be arbitrary elements of R0. We now simply

calculate:

f .x ? y/ D f .x C y � xy/ D 1 � .x C y � xy/

D 1 � x � y C xy D .1 � x/.1� y/

D f .x/� f .y/:

4. Z�
32
D f1; 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23; 25; 27; 29; 31g.

In other words, Z�
32

is the set of odd integers between 0 and

32. Thus '.32/ D 16.

5. (a) H D f1; 4; 11; 14g
(b) K D f1; 4g.

6. Suppose that .G; �/ is Abelian and that H and K are defined

as in the statement of the problem.

(a) We need to prove that H is closed under � and inverses.

Suppose a; b 2 H . Then a � a D b � b D e. To

show that a � b 2 H , we note that .a � b/ � .a � b/ D
a�a�b�b D e�e D e (valid because � is commutative

by hypothesis).

Suppose a 2 H . Note that a�a D e D a�a�1, from

which we have a D a
�1, and so a

�1 2 H .

Therefore .H;�/ is a subgroup of .G; �/.
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(b) We need to prove that K is closed under � and inverses.

Suppose a; b 2 K. Then there exist x; y 2 G such

that a D x � x and b D y � y. Note that a � b D
.x � x/ � .y � y/ D .x � y/ � .x � y/ (where we use

the fact that � is commutative). Therefore we know that

a � b D z � z for some z 2 G (namely, z D x � y) and

so a � b 2 K.

Suppose a 2 H . Then a D x � x for some x 2 G.

Let b D x�1 � x�1; clearly b 2 K by definition of K.

Observe that a � b D x � x � x
�1 � x

�1 D e, and so

b D a�1. Therefore b�1 2 K.

Thus .K;�/ is a subgroup of .G;�/.

Next we present the counterexamples for non-Abelian

groups.

(a) To show that H is not necessarily a subgroup when

.G;�/ is not Abelian, we let .G;�/ D .S4; ı/.
Observe that .1; 2/ and .2; 3/ are in H because

.1; 2/ ı .1; 2/ D .2; 3/ ı .2; 3/ D �. However, consider

� D .1; 2/ ı .2; 3/ D .1; 2; 3/. Note that � ı � D
.1; 2; 3/ ı .1; 2; 3/ D .1; 3; 2/ 6D �. Therefore � … K.

Therefore K is not closed under the group operation ı
and so is not a subgroup.

(b) To show that K is not necessarily a subgroup when .G; �/
is not Abelian, we let .G; �/ D .A4; ı/ where A4 is the

set of all even permutations in S4. The twelve elements

of A4 are listed here.

.1/.2/.3/.4/ .1/.2; 3; 4/ .1/.2; 4; 3/ .2/.1; 3; 4/

.2/.1; 4; 3/ .3/.1; 2; 4/ .3/.1; 4; 2/ .4/.1; 2; 3/

.4/.1; 3; 2/ .1; 2/.3; 4/ .1; 3/.2; 4/ .1; 4/.2; 3/

We form the set K by computing � ı� for every � 2 A4.

When we do this, we get the following results.

.1/.2/.3/.4/ .1/.2; 4; 3/ .1/.3; 4; 2/ .2/.1; 4; 3/

.2/.1; 3; 4/ .3/.1; 4; 2/ .3/.1; 2; 4/ .4/.1; 3; 2/

.4/.1; 2; 3/ .1/.2/.3/.4/ .1/.2/.3/.4/ .1/.2/.3/.4/

Thus, not counting duplicates, K has nine elements. We

claim that .K; ı/ cannot be a subgroup of .A4; ı/ for

otherwise, by Lagrange’s Theorem (Theorem 42.4), we

would have 9j12.)( Therefore K does not constitute a

subgroup.

7. We know that G must have an identity element, which we may

call e; let a and b be the other two elements.

Since e is the identity, we must have e � e D e, a � e D
e � a D a, and b � e D e � b D b.

Next, we work out the value of a � b. There are only three

possibilities: e, a, and b. We show that a � b must equal e by

ruling out the other two possibilities.

If a � b D b, then operating on the right by b�1 gives

a � b � b�1 D b � b�1 ) a D e, which is false. Likewise,

a � b D a leads to b D e, which is also false. Therefore,

a � b D e.

By a similar analysis, b � a D e.

Now we consider a�a; it might be e, a, or b. If a�a D a,

then operating by a�1 would give a D e, a contradiction. If

a � a D e, then operating on both sides by b gives

a � a � b D e � b

a � e D b

a D b;

another contradiction. Therefore a � a D b.

Likewise b � b D a.

Thus we have deduced the � operation table.

� e a b

e e a b

a a b e

b b e a

It is now easy to see that e 7! 0, a 7! 1, and b 7! 2 is an

isomorphism of .G;�/ to .Z3;˚/.

8. Consider the powers of 2 in .Z�
13

;˝/:

20 21 22 23 24 25

1 2 4 8 3 6

2
6

2
7

2
8

2
9

2
10

2
11

12 11 9 5 10 7

Therefore the following function f W Z�
13
! Z12 is an iso-

morphism:

1 7! 0 2 7! 1 3 7! 4 4 7! 2

5 7! 9 6 7! 5 7 7! 11 8 7! 3

9 7! 8 10 7! 10 11 7! 7 12 7! 6

9. (a) H ˚K D f0; 5; 10; 15; : : : ; 95g.
(b) Proof. Suppose that .G;�/ is an Abelian group and H

and K are subgroups. To prove that H �K is also a sub-

group, we must show that H � K is closed under � and
inverses.

To show that H �K is closed under �, let x; y 2 H �
K. This means there exist h1; h2 2 H and k1; k2 2 K

such that x D h1 � k1 and y D h2 � k2. Note that

x � y D .h1 � k1/ � .h2 � k2/ D .h1 � h2/ � .k1 � k2/

and because H and K are subgroups, h1 � h2 2 H and

k1 � k2 2 K. Therefore x � y 2 H �K.

To show that H � K is closed under inverses, let

x 2 H � K. Then x D h � k for some h 2 H and

k 2 K. Note that

x
�1 D .h � k/

�1 D k
�1 � h

�1 D h
�1 � k

�1
:

Because H and K are subgroups, we have that h�1 2 H

and k�1 2 K. Therefore x�1 2 H �K.

Thus H �K is a subgroup of .G; �/.
(c) Let .G; �/ D .S3; ı/, and let H D f�; .1; 2/g and

K D f�; .1; 3/g. Note that H and K are subgroups of

.S3; ı/.
Then the elements of H ıK are � ı � D �, � ı .1; 3/ D

.1; 3/, .1; 2/ ı � D .1; 2/, and .1; 2/ ı .1; 3/ D .1; 3; 2/.

Observe that although .1; 3; 2/ 2 H ı K, its inverse

.1; 3; 2/�1 D .1; 2; 3/ is not in H ıK. Therefore H ıK

is not a subgroup of .S3; ı/.

10. The elements of Z�
15

are f1; 2; 4; 7; 8; 11; 13; 14g. We calcu-

late g4 for each:
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g g4 g4 .mod 15/

1 1 1

2 16 1

4 256 1

7 2401 1

8 4096 1

11 14641 1

13 28561 1

14 38416 1

Suppose, for the sake of contradiction, that .Z�
15

;˝/ is

cyclic. Then there is an element g 2 Z�
15

such that the powers

of g generate all the elements in Z�
15
. But because g4 D 1,

the sequence

1 g g
2

g
3

g
4

g
5 � � �

must repeat after four (or fewer) steps and therefore cannot

include all eight elements of Z�
15
.)( Therefore .Z�

15
;˝/ is

not cyclic.

11. Because 89 is prime, Fermat’s Little Theorem (Theorem 43.1)

asserts that 2
89 mod 89 D 2. Since 2

90 D 2
89 � 2, we have

290 mod 89 D 4.

12. If n were prime, then Fermat’s Little Theorem (Theorem 43.1)

implies that 2n � 2 .mod n/, but we are given that 2n 6�
2 .mod n/.)( Therefore n is composite.

13. By Euler’s Theorem (Theorem 43.6), if a and n are relatively

prime, a'.n/ � 1 .mod n/. Since 2 and 38168467 are clearly

relatively prime, 2'.n/ D 238155320 � 1 .mod n/. However,

we are asked to evaluate 2'.n/C1 D 2'.n/ � 2 modulo n, and

so

2
38155321 mod 38168467 D 2

14. 874256 mod 9432 D 1296.

The calculation can be done by squaring 874 ten times, re-

ducing modulo 9432 after each squaring.

a D 874 square

! 763876 mod 9432

! a
2 D 9236 square

! 85303696 mod 9432

! a
4 D 1077 square

! 1159929 mod 9432

! a
8 D 9103 square

! 82864609 mod 9432

! a
16 D 5137 square

! 26388769 mod 9432

! a
32 D 4668 square

! 21790224 mod 9432

! a
64 D 9427 square

! 88868329 mod 9432

! a
128 D 36 square

! 1296 mod 9432

! a
256 D 1296

15. Since p D 883 is prime and p � 3 .mod 4/, we can find the

square roots of 71 using Proposition 45.3:

p
71 D ˙71

.883C1/=4 mod 883 D ˙707

and so the square roots of 71 are 707 and �707 D 176.

16. Let p D 499, q D 883, and n D pq D 440617. We want to

find all x 2 Zn such that x ˝ x D 1.

InZp , we have x � ˙1 .mod p/ and likewise inZq . This

gives rise to the following congruences.

x � 1 .mod p/ x � 1 .mod p/

x � 1 .mod q/ x � �1 .mod q/

x � �1 .mod p/ x � �1 .mod p/

x � 1 .mod q/ x � �1 .mod q/

These can be solved using the Chinese Remainder Theorem

method, but note that the first gives x � 1 .mod n/ and the

last gives x � �1 � n � 1 .mod n/. Also, the solutions to

the second and third are simply negatives of each other.

Solving x � 1 .mod p/ and x � �1 .mod q/ gives x �
429139 .mod 440617/. Therefore, the four square roots of 1

in Zn are 1, �1 D 440616, 429139, and �429139 D 11478.

17. We are given four square roots of 1010120 in Zn (with n D
5460947): s, �s, t , and �t . Calculating gcd.s C t; n/ (or

gcd.s � t; n/) will reveal a prime factor of n.

gcd.1235907C 1842412; 5460947/

D gcd.3078319; 5460947/

D 4547:

Note that 4547 is prime and 5460947=4547 D 1201, so

5460947 D 4547 � 1201:

18. Let m stand for the plaintext message. We have that m2 D
496410 in Z713809. We find the four square roots of m2 in

Zn, and they are

160907 356083 357726 552902:

Of these, only the first corresponds to a word, and the word is

PIG.

19. Since n D pq D 453899 D 541 � 839, we have that

'.n/ D .p � 1/.q � 1/ D 540 � 838 D 452520. Then d

is e�1 in Z452520, which is 345689.

20. Using the decryption exponent d D 345689 we found in Prob-

lem 19, we find

DA.105015/ D 105015
345689

.mod 453899/

D 190625:

The number 190625 is the word SPY.

21. Solving the pair of equations

pq D 40119451

.p � 1/.q � 1/ D 40106592

for p and q gives the factors 5323 and 7537.
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Chapter 9

1. One possible picture:

31 4 52

2. No such graph exists. If there were such a graph G, then the

sum of the degrees of the vertices would be 43, an odd num-

ber, but the sum must equal twice the number of edges, an

even number.)(
3. We offer two solutions.

First solution. BetweenWi and Wj there are 10�10 D 100

edges. Since there are
�

10

2

�

D 45 ways to select the i and j ,

there are 4500 edges in G.

Second solution. Each vertex is adjacent to 90 others (the

9 � 10 in other Wj s). Therefore, the sum of the degrees of

the vertices in G is 9000, which is twice the number of edges.

Therefore there are 4500 edges.

4. (a) 210. (b) 215.

5. A length-5 path from a to b is of the form

a � x1 � x2 � x3 � x4 � b

where we can choose the xi s without repetition from among

the vertices in K10 other than a and b. There are 8 � 7 � 6 � 5 D
1680 possible paths.

6. (a) f .0/ D 0, g.0/ D 1, f .1/ D 1, and g.1/ D 0.

(b) Consider .a; b/-paths with a 6D b. Starting from a, the

next vertex we choose might or might not be b. If the

next vertex is b, then there are g.k � 1/ ways to com-

plete the path. If the next vertex is not b (and there are 8

possible ways in which that can happen), then there are

f .k � 1/ ways to complete the path. Therefore

f .k/ D 8f .k � 1/C g.k � 1/:

(c) Starting from a, there are 9 choices for the next vertex

on an .a; a/ path, and then there are f .k � 1/ ways to

complete the path. Therefore

g.k/ D 9f .k � 1/:

(d) Using this information, we can build a chart of values for

f .k/ and g.k/.

k f .k/ g.k/

0 0 1

1 1 0

2 8 9

3 73 72

4 656 657

5 5905 5904

Therefore, there are 5905 length-5 paths from a to b

(with a 6D b) in K10.

7. Suppose, for the sake of contradiction, that G is not connected.

Then G has two (or more) components. Let A be the vertices

in a smallest component of G. Because A is a smallest com-

ponent of G, it has no more than n=2 vertices. Choose x 2 A.

Note that x is adjacent only to other vertices in A (and not to

itself) and so d.x/ < n=2, contradicting the hypothesis that

ı.G/ � n=2.)( Therefore G is connected.

8. The number of 3-cycles is
�

5

3

�

D 10.

There are 4Š=.4 � 2/ D 3 different ways to make a cycle on

four vertices, so the number of 4-cycles is
�

5

4

�

� 3 D 15.

The number of 5-cycles on 5 vertices is 5Š=.5 � 2/ D 12.

Therefore the total number of cycles is 10C15C12 D 37.

9. Let G be a connected graph with n vertices. Suppose the av-

erage degree of a vertex d̄ is less than 2. Note that

d̄ D 1

n

X

v2V.G/

d.v/ D 2jE.G/j
n

The number of edges in G is therefore 1

2
nd̄ < n. Because

G is connected, G has at least n � 1 edges, and since G has

fewer than n edges, it must be the case that G has exactly n�1

edges. Therefore, by Theorem 50.12, G is a tree.

10. The following two trees are not isomorphic, but the degrees of

their vertices are the same.

6

1 5432

6

1 5423

11. A disconnected graph on 10 vertices can have up to 36 edges,

but no more. Here is why:

If G has 10 vertices and is disconnected, then G has two

(or more) components. Let A be the vertices in one component

and let B be the remaining vertices. If we add edges to either

A or B , we will not create a connected graph (since there are

no edges between A and B). Thus we may assume that GŒA�

and GŒB� are complete graphs.

Suppose jAj D a where 1 � a � 9. Then G has
�

a

2

�

C
�

10�a

2

�

edges. If we evaluate this expression with vari-

ous values of a D 1; 2; : : : ; 9, we find the largest value when

a D 1 or a D 9; in this case, we find that G has 36 edges.

12. The following is a partition of E.K8/ into four Hamiltonian

paths.

1 � 8 � 2 � 7 � 3 � 6 � 4 � 5

2 � 1 � 3 � 8 � 4 � 7 � 5 � 6

3 � 2 � 4 � 1 � 5 � 8 � 6 � 7

4 � 3 � 5 � 2 � 6 � 1 � 7 � 8

Each of the
�

8

2

�

D 28 edges of K8 is on one of these four

paths.

However, no such partition of K9 is possible. The graph

K9 contains
�

9

2

�

D 36 edges, and a Hamiltonian path of K9

contains 8 edges. Were a partition of K9 into p Hamiltonian

paths possible, we would have 8p D 36, but 36 is not divisible

by 8. Therefore no such partition is possible.

13. Existence. We know that P and R have vertices in common

since a is on both paths. Let x be the last vertex on P (as we

traverse from a to b) that is also on R. Note that x is also the

last vertex on R as we traverse from a to c (if there were a

vertex after x on R that is also on P—call it y—then there

would be two different .x; y/-paths in T ).
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Thus the .b; x/-segment of P and the .c; x/-segment of Q

have only x in common. If we concatenate these segments,

we have a .b; c/-path S (since the two segments have no ver-

tices in common other than x). Since there is one and only one

.b; c/-path in T , namely R, it must be the case that R D S .

Since x is a vertex of S , it must be a vertex of R, and so x is

on all three paths: P , Q, and R.

Uniqueness. Suppose P , Q, and R have two (or more)

vertices in common; let us call them x and y. Without loss

of generality, as we traverse P from a to b we encounter x

before y.

In T , there are a unique .a; x/-path and a unique .x; y/-

path, and these must be the corresponding segments of P .

Also, there is a unique .a; y/-path, and that path must

contain x.

Since R also contains a, x, and y, the .a; x/ and .x; y/

segments of R must be identical to those of P , and x must be

between a and y on R. See the figure.

We now observe that the .b; y/-segment of P does not con-

tain x and the .y; c/-segment of R does not contain x. Hence

there is a .b; c/-walk that does not contain x. Therefore, there

is a shortest .b; c/-walk that does not contain x, and that, nec-

essarily is a .b; c/-path, which must be R. Therefore R does

not contain x.)( Therefore the paths P , Q, and R have

exactly one vertex common to all three.

14. .)/ Suppose G is Eulerian. Let A[B be a partition of V.G/

into disjoint, nonempty sets. Because G is Eulerian, it must

be connected, and so there must be at least one edge from A

to B .

If we consider any Eulerian tour W , the number of times

W takes an edge from A to B must equal the number of times

W takes an edge from B to A (else the tour would not be-

gin and end at the same vertex). Hence, the number of edges

between A and B must be even.

.(/ Suppose G is a graph such that for every partition

A [ B D V.G/, the number of edges between A and B is

even but not zero. Note that this implies that G is connected,

for otherwise we could take A to be the vertex set of one com-

ponent of G and B D V.G/ � A; in this case there would be

no edges between A and B .

Let v be any vertex of G. Let A D fvg and B D V.G/�A.

Note that the number of edges from A to B is exactly d.v/,

and so d.v/ is even. Since G is connected and all vertices have

even degree, G is Eulerian.

15. This is false. Consider the bipartite graph G in the figure:

In this bipartite graph the X vertices are colored black and

the Y vertices are colored white. Note that jX j is larger than
jY j, and yet ˛.G/ D 9 which is greater than jX j. (The largest
independent set in G is enclosed in the dotted line.)

16. In this solution all of our graphs have n D 5 vertices.

(a) Let G be the cycle C5. Then n D 5 and ˛ D ! D 2. So

n D 5 > 4 D ˛.G/!.G/.

(b) Let G be a complete graph K5. Then n D 5, ˛.G/ D 1,

and !.G/ D 5. So n D ˛! for this graph.

(c) Let G be the complete bipartite graph K3;2. Then

˛.G/ D 3 and !.G/ D 2 and so n D 5 < 6 D
˛.G/!.G/.

17. It is not hard to find a proper three-coloring of G (for exam-

ple, color the vertices in a checkerboard fashion, except use a

third color for the rightmost vertex in the last row). Therefore

�.G/ � 3. It is also not hard to find an odd cycle in G, hence

G is not bipartite, so �.G/ > 2. Therefore �.G/ D 3.

18. For n � 3, we have

�.Wn/ D
(

3 if n is odd, and

4 if n is even.

Proof. If n is odd, then the cycle in Wn contains an even

number of vertices. These can be colored alternately using two

colors, leaving a third color for the additional vertex; therefore

�.Wn/ � 3. At least three colors are required because Wn con-

tains a complete graph on three vertices (any two consecutive

vertices on the cycle plus the additional vertex).

If n is even, then the cycle in Wn contains an odd num-

ber of vertices. This odd cycle can be colored with three col-

ors, leaving a fourth color for the additional vertex; therefore

�.Wn/ � 4. We claim that Wn can not be colored with fewer

than four colors. Suppose, for the sake of contradiction, that

such a coloring is possible. The additional vertex (which is

adjacent to all others) receives some color. Therefore none of

the other vertices can use that color, leaving at most two colors

for the vertices of the cycle. Since that cycle has an odd num-

ber of vertices, it cannot be colored with only two colors.)(
Therefore �.Wn/ is not less than 4.

19. Suppose the vertices of Cn are named, in order, 1; 2; 3; : : : ; n.

Note that vertices 1; 3; 5; : : : ; bn=2c form a clique in Cn,

and so �.Cn/ � bn=2c.
In the case that n is even, we can color Cn properly with

n=2 colors by assigning color 1 to vertices 1 and 2, color 2 to

vertices 3 and 4, and so on. Thus, for n even, �.Cn/ D n=2.

In the case that n is odd, the color scheme described above

will use .n C 1/=2 colors (vertex n will not be paired with

another vertex of the same color). Therefore, if n is odd,

�.Cn/ � .nC 1/=2.

Can Cn (for n odd) be colored with fewer colors? If that

were possible, there would be (at most) .n�1/=2 colors avail-

able, and so three distinct vertices would receive the same

a

b

c

x

X

Y

a

b

c

x
y
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color. Since n � 4, three vertices of Cn cannot be pairwise

adjacent and so cannot be given the same color in Cn. Thus

�.G/ > .n � 1/=2.

In conclusion, for n � 4,

�.Cn/ D
(

n=2 in case n is even, and

.nC 1/=2 in case n is odd.

This can be written more concisely as �.Cn/ D dn

2
e.

20. (a) .)/ Suppose �.G/ � k. This implies that G has at least

one proper k-coloring, and hence �.G; k/ > 0.

.(/ Suppose �.G; k/ > 0. This implies that G has

at least one proper k-coloring, and so G is k-colorable.

Therefore �.G/ � k.

(b) We use Proof Template 25.

The proof is by induction on n. The basis case is when

n D 1—that is, the tree has just one vertex. In this case, if

there are k colors available, there are k different ways to

color the sole vertex. Hence �.G; k/ D k D k.k � 1/0,

as required.

Suppose (induction hypothesis) that the result has

been proved for all trees with ` vertices. Let T be a tree

with n D ` C 1 vertices. We must prove that �.T; k/ D
k.k � 1/

n�1 D k.k � 1/
`.

Let v be a leaf of T and let T 0 D T � v. Note

that T 0 is a tree on ` vertices. Therefore, by induction,

�.T
0
; k/ D k.k � 1/

`�1.

We now count proper k-colorings of T . Note that

given a proper coloring of T , if we ignore vertex v, we

have a proper coloring of T
0. There are �.T

0
; k/ ways

to k-color T 0 properly. For each such coloring, there are

k � 1 ways to color v since v may be any color except

the color assigned to its sole neighbor.

Thus �.T; k/ D �.T 0; k/�.k�1/ D k.k�1/`�1.k�
1/ D k.k � 1/`, as required.

21. The following drawing demonstrates that the graph is planar.

45

63

2

1

22. The graph C7 contains a subdivision of K3;3 as illustrated in

the following diagram.

1

4 5

7

6

32

Notice that f1; 2; 3g and f4; 5; 6g form the two parts of the

complete bipartite graph K3;3. All edges of this K3;3 are

present in C7 except that the edge from 3 to 4 appears as the

two-step path 3 � 7 � 4. (To verify that all the edges shown

belong to C7 the edges of C7 are shown as colored, broken

lines.)

Because C7 contains a subdivision of K3;3 as a subgraph,

it is nonplanar (see Theorem 53.9).

The graph C8 has n D 8 vertices and m D
�

8

2

�

� 8 D 20

edges. If C8 were planar, we would have m � 3n � 6 (see

Corollary 53.5). However, 3n � 6 D 3 � 8 � 6 D 18 and

20 6� 18. Therefore C8 is nonplanar.

Alternatively, it is not difficult to show that K3;3 is a sub-

graph of C8.

23. Suppose there are a vertices of degree 5. We know there are

aC 10 vertices in this graph and .5aC 7� 10/=2 D 5

2
aC 35

edges. By Corollary 53.5, we have

5

2
aC 35 � 3.aC 10/ � 6 D 3a C 24

which simplifies to 11 � 1

2
a and so a � 22.

Chapter 10

1. (a) The following figure gives the Hasse diagram of P .

1

16

8

4

2

12

6

3 11

9 10

5

18

14
15

7 13 17 19

20

(b) The largest chain in P is f1; 2; 4; 8; 16g.
(c) The largest antichain in P is

f11; 12; 13; 14; 15; 16; 17; 18; 19; 20g:

(d) The set of maximal elements of P is

f11; 12; 13; 14; 15; 16; 17; 18; 19; 20g:

(e) The set of minimal elements of P is f1g.
(f) The set of maximum elements of P is ;.
(g) The set of minimum elements of P is f1g.

2. Suppose, for the sake of contradiction, that C\A contains two

distinct elements x and y. Because x; y 2 C , we know that

x < y or y < x; that is, x and y are comparable. However, be-

cause x; y 2 A, we know that x and y are incomparable.)(
Therefore C \ A cannot contain two (or more) elements, and

so jC \ Aj � 1.

3. Let A be an antichain of P . We know (from Problem 2) that A

can have at most one element in C1 and at most one element

in C2. Therefore A can have at most two elements, and so the

maximum size of an antichain of P cannot be greater than 2.

4. ()) Suppose P D .X;�/ is an antichain. Let x 2 X . Since

there is no element y such that y < x, we have that x is mini-

mal. Likewise, x is maximal. Therefore all elements of X are

both maximal and minimal.

(() Suppose every element of X is both maximal and

minimal. We claim that P is an antichain. If not, there would

be elements x 6D y in X with x < y. But then x is
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not maximal and y is not minimal.)( Therefore P is an

antichain.

5. (a) Let P D .X;�/ be a finite chain. By Theorem 56.4,

we may assume that X D f1; 2; : : : ; ng and � is ordi-

nary less than or equal to. For j between 1 and n, we let

Aj D fj g. Because the Aj s contain only one element,

they are antichains. Note that X D A1 [ � � � [ An and

if x 2 Ai and y 2 Aj with i < j , then we must have

x < y (indeed, x D i and y D j ). Therefore P is a

weak order.

Let P D .X;�/ be an antichain. Then simply letting

A1 D X gives the required partition.

(b) Let P D .X;�/ be a finite poset and let Q be the three-

element poset depicted in the figure for this problem.

.)/ Suppose P is a weak order but, for the sake

of contradiction, contains Q as a subposet. Since P is

a weak order, we can partition X into antichains X D
A1 [ � � � [ Ah such that for all x 2 Ai and y 2 Aj , if

i < j then x < y. Now consider elements a; b; c of Q.

Since a < b, we must have that a 2 Ai and b 2 Aj

where i < j . Suppose c 2 Ak . Note that since i < j we

must have that either k < j or k > i . If k < j we would

have c < b, and if k > i we would have c > a; but c is

incomparable to both a and b.)( Therefore Q is not a

subposet of P .

.(/ Suppose P is a finite poset that does not contain

Q as a subposet. Let A1 be the set of all minimal ele-

ments of P . Let A2 be the set of all minimal elements

of P � A1 (that is, the poset formed by deleting the el-

ements of A1 from P ). Let A3 be the set of all mini-

mal elements in P �A1 � A2. We continue in this fash-

ion, choosing At to be the set of all minimal elements of

P � A1 � A2 � � � � � At�1 until there are no elements

left. Note that each Aj is an antichain (since it is the set

of minimal elements of some subposet of P ) and the Aj s

partition X . It remains to show that if x 2 Ai and y 2 Aj

and i < j , then x < y.

Suppose, for the sake of contradiction, that x 6< y.

Note that x is a minimal element of the poset P � A1 �
� � � � Ai�1, and so we cannot have x > y. Therefore x

and y are incomparable. Also, y is not a minimal element

of P � A1 � � � � � Ai�1 (because y 2 Aj and j > i),

and so there is some element z in P � A1 � � � � � Ai�1

with y > z. It cannot be the case that z < x because x

is minimal, and it cannot be the case that z � x for then

we would have y > z � x, implying that x and y are

comparable. Therefore z and x are incomparable. That

is, we have x incomparable to both y and z, and z < y.

Therefore we have a copy of Q (with a D z, b D y, and

c D x) as a subposet of P .)( Therefore x < y and so

P is a weak order.

(c) In a linear extension of P we must have all elements in

Ai below all elements of Aj (where i < j ), but it does

not matter in what order the elements of Ai (or Aj ) ap-

pear among themselves. There are kŠ ways to arrange the

elements of each Ai , and each of the h antichains can be

arranged in any way irrespective of the others. Therefore

there are kŠh linear extensions of P .

(d) Let P D .X;�/ be a weak order. To show that dimP �
2, we find two linear extensions L1 D .X;�0/ and

L2 D .X;�00/ such that R D fL1; L2g is a realizer

of P .

Since P is a weak order it can be partitioned into an-

tichains by X D A1 [ � � � [ Ah. Let ni be the number

of elements in Ai and let us name the elements of Ai as

follows:

Ai D
˚

ai;1; ai;2; : : : ai;ni

	

:

We define L1 and L2 as follows:

The order L1 is given by

a1;1 <
0
a1;2 <

0 � � � <0 a1;n1
<
0

<
0
a2;1 <

0
a2;2 <

0 � � � <0 a2;n2
<
0

<
0 � � � � � � <0

<
0
ah;1 <

0
ah;2 <

0 � � � <0 ah;nh

and the order L2 is given by

a1;n1
<
00
a1;n1�1 <

00 � � � <00 a1;1 <
00

<
00
a2;n2

<
00

a2;n2�1 <
00 � � � <00 a2;1

<
00 � � � � � � <00

<
00
ah;nh

<
00

ah;nh�1 <
00
< � � � <00 ah;1:

Note that both L1 and L2 are linear extensions of P

since, for i < j , all elements of Ai are <0 or <00 all ele-
ments of Aj . Thus if x � y in P , it must be the case that

x �0 y and x �00 y. Conversely, if x and y are incom-

parable in P , then x; y 2 Aj for some j . In this case we

see that x <0 y and x >00 y (or vice versa). ThereforeR

is a realizer of P and so dimP � 2.

6. (a) LetP D .X;�/ be a finite linear order. By Theorem 56.4

we may assume X D f1; 2; : : : ; ng and � is the natural

order. Define ` W X ! R by `.x/ D 2x.

Now for any two elements x and y, if x < y, then,

since x and y are integers, x � y � 1. We then have

`.x/ D 2x � 2y � 2 < 2y � 1 D `.y/� 1.

Conversely, if `.x/ < `.y/� 1 then 2x < 2y � 1 and

so x < y � 1

2
< y. So we have x < y () `.x/ <

`.y/� 1 as required.

Note: An alternative solution is to first prove part (b)

of this problem, and then note that since linear orders are

a special case of weak orders and [by part (b)] all weak

orders are semiorders, it follows that all linear orders are

semiorders.

(b) Let P D .X;�/ be a finite weak order. Partition X into

antichains X D A1 [A2 [ � � � [Ah so that x < y if and

only if x 2 Ai and y 2 Aj where i < j . [This is simply

applying the definition of weak order.]

We define ` W X ! R by `.x/ D 2i when x 2 Ai .

That is, all elements of “level” Ai are given the label 2i .

If x < y then x 2 Ai and y 2 Aj where i < j .

Since i and j are integers, i � j � 1. Thus `.x/ D 2i �
2j � 2 < 2j � 1 D `.y/� 1.

Conversely, if `.x/ < `.y/ � 1, then we know that

2i < 2j�1 where x 2 Ai and y 2 Aj . From 2i < 2j�1

we have i < j � 1

2
< j which implies that x < y.

Thus we have shown x < y () `.x/ < `.y/ � 1

as required.

(c) Suppose, for the sake of contradiction, the left poset

(often called 2 C 2) were a semiorder and let ` W
fw; x; y; zg ! R be a labeling.

Because `.x/ < `.y/ � 1 we have `.y/ � `.x/ > 1.

That is, the distance between `.x/ and `.y/ is greater

than 1. Likewise, `.z/� `.w/ > 1.
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We cannot have `.z/ > `.y/ because then `.z/� 1 >

`.y/�1 > `.x/ contradicting the fact that z and x are in-

comparable. By the same reasoning, `.y/ > `.z/ is also

impossible. So we conclude that `.z/ D `.y/. And by a

similar analysis, `.x/ D `.w/. But then `.x/ D `.w/ <

`.z/ � 1 which contradicts the fact that x and z are

incomparable.)( Therefore 2C 2 is not a semiorder.

Next, suppose for the sake of contradiction that the

poset on the right (often denoted 3C1) were a semiorder.

Let ` W fw; x; y; zg ! R be an appropriate labeling. Be-

cause x < y < z we have

`.x/ < `.y/ � 1

`.y/ < `.z/� 1

from which we conclude that `.x/ < `.z/ � 2. Equiva-

lently, `.z/ � `.x/ > 2. But since w is incomparable to

both x and z, it must be within distance 1 of both:

j`.x/� `.w/j � 1 and j`.w/� `.z/j � 1

which gives

j`.x/� `.z/j D
ˇ

ˇŒ`.x/� `.w/�C Œ`.w/� `.z/�
ˇ

ˇ

�
ˇ

ˇ`.x/� `.w/
ˇ

ˇC
ˇ

ˇ`.w/� `.z/
ˇ

ˇ

� 1C 1 D 2

contradicting our previously established conclusion that

`.z/ � `.x/ > 2.)( Therefore 3 C 1 is not a

semiorder.

7. (a) Let P D .X;�/ be a finite chain. By Theorem 56.4, we

may assume that X D f1; 2; : : : ; ng and � is ordinary

less than or equal to. Let Œaj ; bj � D Œj; j C 1

2
� and note

that if i < j , then Œai ; bi � is entirely to the left of Œaj ; bj �

as required. Therefore P is an interval order.

Let P D .X;�/ be an antichain. For all x 2 X ,

let Œax ; bx � D Œ0; 1�. Note that for all x 6D y in X ,

the elements x and y are incomparable and the intervals

Œax ; bx� and Œay ; by � intersect as required. Therefore P

is an interval order.

Note: Part (a) of this problem also follows as a corol-

lary of part (b).

(b) Let P D .X;�/ be a weak order. Then we can partition

X into antichains A1 [ � � � [ Ah so that for all x 2 Ai

and y 2 Aj with i < j , we have x < y. To show that P

is an interval order, we assign intervals as follows:

For x 2 Aj let Œax ; bx � D Œj; j C 1

2
�.

Note that if x; y 2 Aj , then x and y are incompa-

rable, and Œax ; bx� intersects Œay ; by �, as required. How-

ever, if x 2 Ai and y 2 Aj with i < j , then x < y and

note that Œax ; bx � D Œi; i C 1

2
� is entirely to the left of

Œay ; by � D Œj; j C 1

2
� as required.

(c) Let P D .X;�/ be a semiorder and let ` W X ! R be its

semiorder labeling. For each x 2 X , the Jx be the inter-

val Œ`.x/; `.x/ C 1�; we assert that these intervals show

that P is an interval order.

Let x and y be two elements of X .

If x < y then `.x/ < `.y/ � 1 which rear-

ranges to `.x/ C 1 < `.y/. This means that the inter-

val Jx D Œ`.x/; `.x/ C 1� lies entirely to the left of

Jy D Œ`.y/; `.y/C 1�.

On the other hand, if x and y are incomparable, then

j`.x/�`.y/j < 1. This means that either `.y/ is between

`.x/ and `.x/ C 1 or vice versa. In either case, Jx and

Jy overlap.

Therefore the assignment x 7! Jx shows that the

semiorder P is an interval order.

(d) Let P be the left poset in the figure. Suppose, for the sake

of contradiction, that P is an interval order and so there

are intervals Œax ; bx �, Œay ; by �, Œaw ; bw �, and Œaz ; bz�

with the properties that

1. Œax ; bx� is to the left of Œay ; by �,

2. Œaw ; bw � is to the left of Œaz ; bz�,

3. Œax ; bx� intersects both Œaw ; bw � and Œaz ; bz �, and

4. Œay ; by � intersects both Œaw ; bw � and Œaz ; bz�.

Because (by 2) Œaw ; bw � is to the left of Œaz ; bz � and

(by 3) the interval Œax ; bx � must intersect both Œaw ; bw �

and Œaz ; bz�; therefore the interval Œax ; bx � must com-

pletely span the gap between the two intervals Œaw ; bw �

and Œaz ; bz�.

[ax ,bx ]

[aw ,bw ] [az ,bz]

Similarly, interval Œay ; by � must also span the gap be-

tween Œaw ; bw � and Œaz ; bz�, and therefore Œax ; bx� must

intersect Œay ; by �, a contradiction (to 1).

It is not hard to see that the right poset in the figure is

an interval order; use the following intervals:

x $ Œ0; 1� y $ Œ2; 3�

z $ Œ4; 5� w$ Œ0:5; 4:5�:

8. The poset has 16 linear extensions. For each antichain of size

2, there are two choices for the order of the elements in the

linear extension, and this choice can be made for each of the

four size-2 antichains, for a total of 24 D 16 linear extensions.

9. (a) The pairs of elements that are incomparable are fa; cg,
fa; f g, fc; dg, fb; dg, fb; f g, fb; eg, and fd; f g.

(b) Here are three linear orders whose intersection gives P :

L1 W c < f < a < b < d < e

L2 W a < b < d < c < f < e

L3 W a < c < f < d < e < b

The following chart shows, for each incomparable pair

fx; yg, the extensions in which x < y and y < x.

fx; yg x < y y < x

fa; cg 2,3 1

fa; f g 2,3 1

fc; dg 1,3 2

fb; dg 1,2 3

fb; f g 2 1,3

fb; eg 1,2 3

fd; f g 2 1,3

(c) Suppose there were a linear extension L in which f < a

and d < c. Since a < d in P , we must have that a < d

in L, and so, in L, f < a < d < c, which implies that

f < c in L as well. But this contradicts the fact that

c < f in P .)( Thus we cannot have both f < a and

d < c.

Suppose there were a linear extension in L in which

b < f and f < a. Then b < a in L, but a < b in

P .)( Thus we cannot have both b < f and f < a.
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Likewise, we cannot have b < d < c in a linear ex-

tension L, for then b < c in L, but c < b in P .

Likewise, we cannot have e < b < d in a linear ex-

tension L, for then e < d in L, but d < e in P .

Finally, we cannot have e < b < f in a linear exten-

sion L, for then e < f in L, but f < e in P .

(d) If any two of the relations f < a, d < c, b < d ,

e < b, and b < f held in a linear extension L, then we

would contradict one of the statements in part (c) of this

problem.

(e) From part (b) we know that dimP � 3; hence it remains

to show that dimP > 2. Suppose, for the sake of con-

tradiction, that dimP � 2, so P has a realizer with (at

most) two linear extensions. Then one of those linear ex-

tensions would satisfy at least three of f < a, d < c,

b < d , e < b, and b < f , contradicting part (d).)(
Therefore dimP D 3.

10. Suppose, for the sake of contradiction, that P contains two

distinct elements x and y. Note that x ^ y � x � x _ y,

and since x ^ y D x _ y, we have that x ^ y D x. Likewise

x ^ y D y, and so x D y.)( Therefore P has at most one

element.

11. (a) P ^ Q D
˚

f1; 3g; f2; 4g; f5; 7; 9g; f6; 8g
	

and P _ Q D
˚

f1; 2; 3; 4; 5; 6; 7; 8; 9g
	

.

(b) Let Zk 2 R. Because R D P ^Q, it refines both P and

Q. This means that every part of R is a subset of a part

of P, and likewise of Q. In particular, there is an Xi 2 P

such that Zk � Xi and a Yj 2 Q such that Zk � Yj .

Thus Zk � Xi \ Yj .

Suppose, for the sake of contradiction, that Zk 6D
Xi \ Yj . Then there must be some other part of R, say

Zk0 that intersects Xi \ Yj . This implies that Zk0 must

be a subset of both Xi and Yj because every part of R

must be a subset of a part of P and of a part of Q.

We can now form a new partition from R simply by

combining Zk and Zk0 into a single part Zk [Zk0 ; call

this new partitionR0. Note thatR is strictly finer thanR0,
and R0 refines both P and Q. However, this contradicts

the fact that R D P ^Q (i.e.,R is the coarsest common

refinement of P and Q).)( Therefore Zk D Xi \ Yj .

12. The proof is by induction on n. The basis case, n D 1, is

obvious. Suppose (induction hypothesis) this result has been

proved for n D k. Let a; x1; : : : ; xkC1 be given such that

a � xj for all 1 � j � k C 1. We know (by induction) that

a � x1^� � �^xk and we know that a � xkC1 (by hypothesis).

This means that a is a lower bound for x1^� � �^xk and xkC1,

so the a is below the greatest lower bound of x1^� � �^xk and

xkC1; that is, a � .x1 ^ � � � ^ xk/ ^ xkC1, as required.

13. To prove that a _ b D u1 ^ u2 ^ � � � ^ un, we prove

a _ b � u1 ^ u2 ^ � � � ^ un and a _ b � u1 ^ u2 ^ � � � ^ un.

To show a_b � u1^u2^� � �^un: We know, using Prob-

lem 12, that a � u1^u2^� � �^un and b � u1^u2^� � �^un.

Therefore u1 ^ u2 ^ � � � ^ un is an upper bound for a and

b. Since a _ b is the least upper bound of a and b, we have

a _ b � u1 ^ u2 ^ � � � ^ un.

To show a_b � u1^u2^� � �^un: We know that a � a_b

and b � a _ b. Therefore a _ b 2 U.a; b/. Without loss of

generality, u1 D a _ b. So the expression u1 ^ u2 ^ � � � ^ un

can be rewritten .a _ b/ ^ .u2 ^ � � � ^ un/. Note that this

latter expression is the greatest lower bound of a _ b and

u2 ^ � � � ^ un, and so .a _ b/ ^ .u2 ^ � � � ^ un/ � a _ b.

Therefore u1 ^ u2 ^ � � � ^ un � a _ b.
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C Glossary

This glossary provides quick reminders of concepts pre-

sented in the main text. Please consult the index for pages

in the main text that contain a more thorough and rigorous

presentation.

A

A See the.

Abelian group A group whose operation is commutative;

i.e., g � h D h � g for all g and h in the group.

Acyclic Having no cycles. See forest.

Adjacent v and w are adjacent iff vw is an edge. Notation:

v � w.

Algorithm A precisely defined sequence of calculations.

And The statement “A and B” is true exactly when both A

and B are true. In Boolean algebra, a ^ b.

Antichain A subset of a poset all of whose elements are

incomparable to each other.

Antisymmetric A relation R is antisymmetric means that

for all a and b, if a R b and b R a, then a D b.

Arbitrary Without any restrictions, completely general,

generic.

Argument A proof.

Associative property a�.b�c/ D .a�b/�c for all a; b; c.

B

Basis step Part of a proof by induction in which the truth of

the result is established in the smallest allowable case.

Bernoulli trial A sample space with exactly two outcomes,

often called success and failure.

Bijection A one-to-one and onto function.

Binomial coefficient The number of k-element subsets of

an n-element set; denoted
�

n

k

�

.

Binomial random variable The number of successes in a

finite sequence of independent Bernoulli trials;

P.X D a/ D
 

n

a

!

p
a
.1 � p/

n�a

where n; a 2 N and 0 � p � 1. We say that X is B.n; p/

random variable.

Binomial Theorem For n 2 N,

.x C y/
n D

n
X

kD0

 

n

k

!

x
k
y

n�k
:

Bipartite Two-colorable.

Birthday problem What is the probability that among n

randomly chosen people some pair of people have the same

birthday?

Boolean algebra Calculations and expressions involving

the values TRUE and FALSE and the operations ^, _, :, etc.

C

C The complex numbers.

Cardinality The size of a set; i.e., the number of elements

in that set. The cardinality of A is denoted jAj.
Carmichael number A positive integer n that is not prime,

but an � a .mod n/ for all integers a with 1 � a < n.

Cartesian product A � B is the set of all ordered pairs of

the form .a; b/ where a 2 A and b 2 B .

Ceiling The ceiling of x is the least integer greater than or

equal to x; denoted dxe. See also floor.

Chain A subset of a poset all of whose elements are com-

parable to each other.

Characterization theorem An if-and-only-if theorem that

gives an alternative description of a mathematical concept.

Chinese Remainder Theorem Technique for solving a

pair of modular congruences.

Chromatic number The least k such that G is k-colorable;

denoted �.G/.

Claim A statement proved during the course of a proof.

Clique A set of pairwise adjacent vertices.

Clique number Maximum size of a clique; denoted !.G/.

Colorable A graph is k-colorable if it has a proper k-

coloring.

Coloring A k-coloring of G is a function f W V.G/ !
f1; 2; : : : ; ng, which is proper if xy 2 E.G/ ) f .x/ 6D
f .y/.

Combinatorial proof A proof by counting.

Common divisor A common divisor of a; b 2 Z is an inte-

ger d with d ja and d jb.
Commutative property a � b D b � a for all a; b.

Comparable Elements x and y in a poset for which x � y

or y � x.

Complement (graph) G is the graphwith the same vertices

as G in which distinct vertices are adjacent iff they are not

adjacent in G.

Complement (set) A is the set of elements not in A.

Complete bipartite graph A graph V.G/ D A [ B , with

A \ B D ; and E.G/ D fab W a 2 A; b 2 Bg. Denoted
Ka;b where a D jAj and b D jBj.
Complete graph A graph in which every pair of distinct

vertices is adjacent; denoted Kn.

Complex number A number of the form a C bi where

a; b 2 R and i2 D �1.

Component A maximal connected subgraph.
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Composite A positive integer equal to the product of two

smaller positive integers.

Composition .g ı f /.x/ D gŒf .x/�.

Concatenation Merging two lists together to form a longer

list. In particular, the concatenation of walks in a graph is a

new walk formed by combining the two walks.

Conclusion The then part of an if-then statement.

Conditional probability The probability of one event

given another; P.AjB/ D P.A \ B/=P.B/.

Congruent (mod n) a � b .mod n/ means a � b is divis-

ible by n.

Conjecture A statement believed to be true, but for which

no proof or counterexample has been found.

Connected Vertex u is connected to vertex v means there

is a .u; v/-path in the graph. The graph is connected means

every pair of vertices is connected.

Contradiction A pair of statements that assert opposite

conclusions or a statement that is blatantly false. A Boolean

expression that yields FALSE for all values of its variables.

Contrapositive The contrapositive of “If A, then B” is “If

not B , then not A.”

Converse The converse of “If A, then B” is “If B , then A.”

Corollary A statement that can be proved readily from an-

other theorem.

Counterexample An example that demonstrates that a

statement is false.

Cryptography The art of concealing messages in secret

codes.

Cube A graph whose vertices are all length-n lists of 0s and

1s in which two vertices are adjacent iff their lists disagree

in exactly one location. Also called a hypercube.

Cut edge An edge e of G such that G� e has more compo-

nents than G.

Cut vertex A vertex v of G such that G � v has more com-

ponents than G.

Cycle A walk with at least three vertices in which the only

repeated vertex is the first/last. Also, a graph of this form,

Cn.

Cycle notation A notation for writing permutations as

parenthesized collections of elements.

Cyclic group A group generated by a single element.

D

Definition A precise statement creating a new mathemati-

cal concept.

Degree (face) The number of edges bounding a face in a

planar embedding of a graph; if both sides of an edge are on

the face, that edge counts twice.

Degree (polynomial) The highest power on the variable.

Degree (vertex) d.v/ is the number of edges incident

with v.

Derangement A permutation � with the property that

�.x/ 6D x for all x.

Difference (set) A � B is the set of all elements of A that

are not in B .

Dimension The dimension of a poset is the smallest size of

a realizer for that poset.

Direct proof A proof technique that proceeds from the hy-

pothesis to the conclusion.

Disjoint Having nothing in common; i.e., A \ B D ;. See
also pairwise disjoint.

Distance The length of a shortest path between a specified

pair of vertices.

Distinct Unequal. If we say “Let x, y, and z be distinct

numbers,” we mean that x 6D y, x 6D z, and y 6D z.

Div a div b is the quotient when we divide a by b.

Divides ajb means there is an integer c with b D ac.

Domain The set of first elements of the ordered pairs in a

function; denoted domf .

E

Edgeless Having no edges.

Element A member of a set. x 2 A means x is an element

of A.

Empty set The set with no elements; denoted ;. Also

known as the null set.

Equivalence class Œa� D fx W x R ag where R is an equiva-

lence relation. That is, Œa� is the set of all elements equivalent

to a by the relation R.

Equivalence relation A relation that is reflexive, symmet-

ric, and transitive.

Equivalent statements Two (or more) statements are

equivalent provided each implies the other(s).

Euclid’s Algorithm A method to find the gcd of two inte-

gers. Extended version is useful for finding modular recipro-

cals.

Euler’s Formula (graph theory) If a planar graph with n

vertices, m edges, and c components is drawn in the plane

with f faces, then n �mC f � c D 1.

Euler’s Theorem (number theory) a'.n/ � 1 .mod n/.

See also Fermat’s Little Theorem and totient.

Eulerian An Eulerian trail is a walk in a graph that tra-

verses each edge exactly once. An Eulerian tour is such a

walk that begins and ends at the same vertex. An Eulerian

graph is a graph in which there is an Eulerian tour.

Even (integer) An integer that is divisible by 2.

Even (permutation) A permutation equal to the composi-

tion of an even number of transpositions.

Event A subset of a sample space.

Exactly Compare the following sentences:
� There are three numbers with property X .
� There are exactly three numbers with property

X .
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The first sentence may (and often is) interpreted to mean that

there are three or more different numbers with property X .

However, the second sentence means that there are three (no

more, no fewer) different numbers that satisfy property X .

Exclusive or a_b, which is true exactly when a or b, but

not both, is true. Also written xor.

Existential quantifier 9, meaning there is or there exists.

Expected value The weighted average of a random vari-

able; E.X/ D
P

s
X.s/P.s/.

F

Fact A simple theorem.

Factorial nŠ D n.n � 1/.n � 2/ � � �3 � 2 � 1. Also: 0Š D 1.

Fermat’s Little Theorem If p is a prime, then ap �
a .mod p/.

Fibonacci numbers The sequence 1, 1, 2, 3, 5, 8, 13,. . . in

which each term equals the sum of the two previous terms.

Finer See refine.

Floor The floor of x is the greatest integer less than or equal

to x; denoted bxc. See also ceiling.

Forest An acyclic graph.

Four Color Theorem If G is planar, then �.G/ � 4.

Function A function is a set of ordered pairs f with the

property that if .x; y/ 2 f and .x; z/ 2 f , then y D z.

.x; y/ 2 f is usually written y D f .x/.

Fundamental Theorem of Arithmetic Every positive in-

teger can be uniquely represented as a product of primes.

G

GCD The greatest common divisor.

GLB The greatest lower bound.

Graph A pair .V; E/ where V is a finite set and E is a set

of two-element subsets of V .

Greatest common divisor The largest common divisor

(factor) of a pair of integers. Abbreviated gcd.

Group A set with an operation that is closed, is associative,

has an identity, and every element of which has an inverse.

Guinea pig A cute rodent of the genus Cavia having no tail

to speak of.

H

Hasse diagram A diagram representing a poset.

Hamiltonian path, cycle, graph A path [cycle] of a graph

that contains all the vertices in the graph. A Hamiltonian

graph is a graph with a Hamiltonian cycle.

Height The size of a largest chain.

Hypercube See cube.

Hypothesis The if part of an if-then statement.

I

Identity element (group) An element e of a group .G;�/
with the property that g � e D e � g D g for all g 2 G.

Identity function, permutation A function f W A ! A

given by f .x/ D x for all x 2 A; denoted idA in general

and � in the context of permutations.

IFF If and only if.

Image The set of all possible outputs of a function; if f W
A! B , the image of f is ff .a/ W a 2 Ag � B .

Incident Vertex v and edge e are incident provided v 2 e;

i.e., v is an endpoint of e.

Inclusion-exclusion A counting technique for finding the

cardinality of a union of sets based on the sizes of the vari-

ous intersections of these sets.

Incomparable Not comparable; i.e., elements x and y for

which x 6� y and y 6� x.

Independent Events A and B are independent means that

P.A \ B/ D P.A/P.B/. Random variables X and Y are

independent means that the events X D a and Y D b are

independent for all a; b.

Indicator random variable A random variable whose

value is 1 if a given event occurs and is 0 otherwise.

Indirect proof See proof by contradiction.

Independence number The maximum size of an indepen-

dent set; denoted ˛.G/.

Independent set A set of vertices no two of which are ad-

jacent. Also called a stable set.

Induced subgraph A subgraph formed by vertex deletion.

Induction A proof technique described in Section 22. See

Proof Templates 17 and 18.

Induction hypothesis An assumption in a proof by induc-

tion that the result is true for a certain case size; it is used to

establish the result for the next case size.

Injection A one-to-one function.

Integers Z D f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g.
Intersection A\ B is the set of all elements in both A and

B .

Inverse (function) If f W A ! B is a bijection, then the

inverse relation f �1 is also function, f �1 W B ! A. See

inverse (relation).

Inverse (group element) If .G;�/ is a group and g 2 G,

then h is the inverse of G provided g �h D h�g D e where

e is the identity element. The inverse is denoted g�1.

Inverse (number theory) See reciprocal.

Inverse (permutation) If � is a permutation, it is a bijec-

tion from some set to itself. Thus the inverse function ��1 is

also a permutation on that set. Also, ��1 is the group inverse

of � in the symmetric group. Thus � ı ��1 D ��1 ı � D �.

Inverse (relation) R�1 is the relation formed from R by

replacing each ordered pair .x; y/ with .y; x/; i.e., R
�1 D

f.y; x/ W .x; y/ 2 Rg.
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Inverse (statement) The inverse of “If A, then B” is “If not

A, then not B .”

Inversion Given a permutation � of f1; 2; : : : ; ng, an inver-
sion is a pair of values i < j for which �.i/ > �.j /.

Invertible Having an inverse.

Irrational A number that is not a rational number.

Irreflexive A relation R is irreflexive if x R x is always

false.

Isolated vertex A vertex of degree 0.

Isometry A distance-preserving function.

Isomorphism (posets) A bijection f between two posets

such that x � y iff f .x/ � f .y/.

Isomorphism (graphs) A bijection f between the vertex

sets of two graphs such that xy is an edge iff f .x/f .y/ is

an edge.

Isomorphism (group) A bijection f between two groups

such that f .g � h/ D f .g/ ? f .h/.

J

Join a _ b is the greatest lower bound of a and b.

K

Kuratowski’s Theorem A graph is planar iff it does not

contain a subdivision of K5 or K3;3 as a subgraph.

L

Lagrange’s Theorem The size of a finite group is divisible

by the size of any of its subgroups.

Lattice A poset in which the meet and join of every pair of

elements are defined.

LCM The least common multiple.

Leaf A vertex of degree 1.

Lemma A theorem chiefly used to prove another, more

“important” theorem.

LHS The left-hand side.

Linear extension A total order L D .X;�/ is a linear ex-

tension of a poset P D .X;�/ provided for all x; y 2 X ,

x � y ) x � y.

Linear order A poset in which all pairs of elements are

comparable. Also called a total order.

Linearity of expectation If X; Y are real-valued random

variables defined on a sample space and if a; b 2 R, then

E.aX C bY / D aE.X/C bE.Y /.

List An ordered sequence of items.

Logically equivalent Two statements, A and B , such that

A () B is true. Two Boolean expressions whose values

are the same for each possible substitution of its variables.

LUB The least upper bound.

M

Map A synonym for function.

Maximal (general) Unextendable; cannot be made larger.

Maximal (posets) x is maximal means there is no y with

x < y.

Maximum (general) Of largest possible size.

Maximum (posets) x is maximum means for all y, y � x.

Mean A synonym for expected value.

Meet a ^ b is the least upper bound of a and b.

Minimal (general) Unshrinkable; cannot be made smaller.

Minimal (posets) x is minimal means there is no y with

y < x.

Minimum (general) Of smallest possible size.

Minimum (posets) x is minimum means for all y, x � y.

Mod (operation) a mod b is the remainder when we divide

a by b.

Mod (relation on a group) If .H;�/ is a subgroup of

.G;�/, then a � b .mod H/ means a � b�1 2 H .

Mod (relation on integers) See congruent (mod n).

Modular arithmetic Arithmetic in the number system Zn.

Multichoose
��

n

k

��

is the number of k-element multisets we

can form whose elements are taken from an n-element set.

Multiplication Principle A counting theorem that asserts

that the number of two-element lists we can form in which

there are a choices for the first element of the list, and, for

each such choice, b choices for the second element of the

list, is ab.

Multiplicity The number of times an element is present in

a multiset.

Multiset A generalization of a set in which an object may

be present in the collection more than once.

N

N The natural numbers.

Nand A Boolean algebra operation a^b equivalent to

:.a ^ b/.

Natural numbers N D f0; 1; 2; 3; : : :g. Some authors do

not consider 0 to be a natural number.

Necessary Condition A is necessary for condition B means

B ) A.

Neighbors Adjacent vertices.

Not The statement “not A” is true exactly when A is false.

In Boolean algebra, :a.

O

Odd (integer) An integer of the form 2aC 1 where a is an

integer.

Odd (permutation) A permutation equal to the composi-

tion of an odd number of transpositions.
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One and only one Exactly one. See exactly.

One-to-one A function is one-to-one means f .a/ D
f .b/) a D b.

Onto A function f W A ! B is onto B means that for all

b 2 B , there is an a 2 A with f .a/ D b. Equivalently,

im f D B .

Or The statement “A or B” is true exactly when one or both

of A and B are true. In Boolean algebra, a _ b. See also ex-

clusive or.

Order (graph) The number of vertices in a graph.

Outcome An element of a sample space.

P

Pairwise disjoint A collection of sets no two of which have

a common element.

Parity Even or odd. For example, the parity of 3 is odd, and

the parity of 0 is even. Two integers with the same parity are

either both even or both odd.

Part A member set of a partition.

Partial order A relation that is reflexive, antisymmetric,

and transitive.

Partially ordered set .X;�/ where X is a set and � is a

relation on X that is reflexive, antisymmetric, and transitive.

Also called a poset.

Partition A partition of A is a set of nonempty, pairwise

disjoint subsets of A whose union is A.

Pascal’s triangle A triangular chart of numbers whose en-

try in the nth row and kth diagonal is
�

n

k

�

.

Path A walk without a repeated vertex. Also a graph of that

form, Pn.

Perfect number A positive integer equal to the sum of its

positive divisors (other than itself).

Perfect square An integer of the form n2 where n is an in-

teger. See also quadratic residue.

Permutation A bijection from a set to itself.

Pigeonhole Principle If f W A ! B with jAj > jBj, then
f is not one-to-one.

Planar Can be drawn in the plane without edges crossing.

Poset Partially ordered set.

Power set The set of all subsets of a given set; usually de-

noted 2A but also P.A/.

Prime An integer, greater than 1, whose only positive divi-

sors are 1 and itself.

Probability A measure of likelihood, specifically the func-

tion P in a sample space .S; P / and its extension to events.

Proper coloring A coloring in which adjacent vertices re-

ceive different colors. See coloring.

Proposition A theorem of lesser generality or importance.

Proof A precise, incontrovertible essay establishing a math-

ematical truth.

Proof by contradiction A proof that starts with the hypoth-

esis and the negation of the conclusion and proceeds to a

contradiction. Also known as indirect proof and reductio ad

absurdum.

Public-key cryptography Cryptography in which the

method for putting messages into code is completely re-

vealed, but the method for decryption is held secret.

Q

Q The rational numbers.

Quantifier The symbols 8 (universal) and 9 (existential).
Quod erat demonstrandum Literally, “that which is to be

proved.” Written at the end of proofs to assert that the proof

is complete. Often abbreviated QED.

R

R The real numbers.

Random variable A function whose domain is the set of

outcomes of a sample space.

Rational A number of the form a=b where a; b 2 Z and

b 6D 0. Q is the set of all rational numbers.

Realizer A set of linear extensions fL1; : : : ; Lt g is a real-

izer of a poset P D .X;�/ provided that for all x; y 2 X ,

x � y if and only if x �i y for all i D 1; : : : ; t .

Reciprocal A multiplicative inverse. For a 2 Zn, its recip-

rocal b satisfies a˝ b D 1; denoted a
�1.

Recurrence relation Given a sequence of numbers,

a0; a1; a2; : : :, a recurrence relation is a rule that shows how

to calculate an in terms of prior members of the sequence.

Reductio ad absurdum Proof by contradiction.

Refine If P and Q are partitions of a set, we say P refines

(or is finer than)Q if every part of P is a subset of some part

in Q.

Reflexive A relation R on a set A is reflexive means 8a 2
A; a R a.

Regular graph A graph in which all vertices have the same

degree. In a k-regular graph, all vertices have degree k.

Relation A set of ordered pairs.

Relatively prime A pair of integers whose greatest com-

mon divisor is 1.

Quadratic residue The square of an element of Zn. See

also perfect square.

Result A theorem.

Reverse Polish notation Notation in which operations ap-

pear after their operands. Abbreviated RPN.

RHS The right-hand side.

S

Sample space A pair .S; P / where S is a finite set and P

is a function that gives the probability of each element in S .

Sequence A list, typically of numbers.
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Set An unordered collection of objects.

Sign (permutation) The sign of � is 1 if � is an even per-

mutation and �1 if � is an odd permutation. Denoted sgn� .

Size (graph) The number of edges in a graph.

Size (set) The number of elements in the set; denoted jAj.
See cardinality.

Sorting Placing in order, such as in ascending numerical

order or in alphabetical order.

Spanning subgraph A subgraph formed by deleting edges.

Spanning tree A subgraph that is spanning and a tree.

Stable See independent.

Stirling’s formula An approximation for factorial: nŠ �p
2�n nne�n.

Strong induction A variant form of induction using a more

extensive induction hypothesis that assumes the result for all

possible cases up to a given size.

Subgraph A graph contained in another graph.

Subgroup A group contained in another group.

Subset A � B means that every element of A is also an

element of B .

Sufficient Condition A is sufficient for condition B means

A) B .

Superset A � B means that every element of B is also an

element of A.

Surjection An onto function.

Symmetric A relationR is symmetric means aRb) bRa.

Symmetric difference A�B is the set of all elements in A

or B , but not both.

Symmetric group Sn contains all permutations of

f1; 2; : : : ; ng together with the group operation ı, compo-

sition.

Symmetry A motion of a geometric object that does not

change the appearance of the object.

T

Tautology A Boolean expression that evaluates to TRUE for

all possible values of its variables. Informally, something

that is true just by definition.

The The definite article, suggesting uniqueness. Use a or

an when there may be more than one possibility. “Let x be

the solution to. . . ” implies there is one and only one solu-

tion. “Let x be a solution to. . . ” allows for the possibility of

multiple solutions.

Theorem A provable statement about mathematics.

Total order A poset in which all pairs of elements are com-

parable. Also called a linear order.

Totient The number of integers from 1 to n that are rela-

tively prime to n, denoted '.n/.

Transitive A relation R is transitive means that for all

x; y; z if x R y and y R z, then x R z.

Transposition A permutation � for which �.a/ D b,

�.b/ D a, a 6D b, and for all other elements c, �.c/ D c.

Tree A connected, acyclic graph.

Triangle inequality jaC bj � jaj C jbj.
Tuple A list of numbers; e.g., .1; 1; 3; 7/ is a 4-tuple.

U

Union A[B is the set of all elements that are in A or B (or

both).

Unique Exactly one.

Universal quantifier 8, meaning for all or for every.

V

Vacuous An if-then statement whose hypothesis (if clause)

is always false. Such statements are regarded as true.

Venn diagram A pictorial representation in which sets are

represented by circles or other shapes.

W

Walk A sequence of vertices, each adjacent to the next.

Well-Ordering Principle Every nonempty subset of N

contains a least element.

Width Size of a largest antichain.

Without loss of generality When there is more than one

case in a proof, but the proofs in these cases are all the same,

we can elect to prove just one of the cases. We announce

this by declaring that the choice of this case is “without loss

of generality.” For example, if a proof involves two differ-

ent numbers, x and y, and there are no further restrictions

on x and y, we might want to break the proof into the cases

x < y and x > y. Since x and y are, so far, arbitrary, we

may assume without loss of generality that x < y. Some-

times abbreviated wlog or wolog.

X

Xor See exclusive or.

Z

Z The integers.
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D Fundamentals

This appendix presents various properties of numbers, operations, and relations that you may

use freely in any proof.

Numbers

The natural numbers consist of zero and the positive whole

numbers. The set of natural numbers is

N D f0; 1; 2; 3; 4; : : :g:

The integers are the positive and negative whole num-

bers, and zero. The set of integers is

Z D f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g:

The rational numbers are all fractions of the form a

b

where a and b are integers and b 6D 0. The set of all rational

numbers is denotedQ.

Two rational numbers a

b
and c

d
are equal exactly when

ad D bc.

There are many ways to express rational numbers. For

example, the rational number 3

2
is equal to all of the follow-

ing: 6=4, �3

�2
, 1

1

2
, 150%, and 1:5.

A precise definition of real number is beyond the scope

of this book. Informally, real numbers are those that can be

expressed as follows: Begin with an integer and append a

decimal point and either a finite or an infinite sequence of

digits. For example, the following are real numbers:

�1:4444444444 : : :

3

3:1415926535 : : :

�99:013

The set of real numbers is denoted R.

Real numbers are mentioned on occasion in this book,

but in nearly all cases, little is lost by considering only ratio-

nal numbers.

Every natural number is an integer, every integer is a ra-

tional number, and every rational number is a real number.

This can be expressed in symbols as follows:

N � Z � Q � R:

In every case, the subset relation is strict (i.e., no two of the

sets listed above are equal).

Operations

The fundamental operations of arithmetic are addition (C)
and multiplication (�). Basic calculations, such as 3C4 D 7

and 7 � 3 D 21, do not require proof.

If we assume that we know how to add and multiply in-

tegers, we can define addition and multiplication for rational

numbers. If a

b
and c

d
are rational numbers (where b and d

are nonzero), we have

a

b
C c

d
D ad C bc

bd

and
a

b
� c

d
D ac

bd
:

You may assume the following properties of addition

andmultiplication. Below, the unqualifiedword numbermay

refer either to a rational number or to a real number; the

statements are correct in either context.

� Closure property: If x and y are integers, then so are

x C y and xy.

Likewise, if x and y are natural/rational/real num-

bers, then so are x C y and xy.
� Commutative property: For any numbers x and y, we

have x C y D y C x and xy D yx.
� Associative property: For any numbers x, y, and z, we

have x C .y C z/ D .x C y/C z and x.yz/ D .xy/z.
� Identity elements: For any number x, x C 0 D x and

x � 1 D x.
� Inverses: For any number x, there is a number �x with

the property that xC .�x/ D 0. Furthermore, if x is an

integer, so is �x.

For any nonzero number x, there is a number x�1

with the property that x � x�1 D 1.

Consequently, if x and y are nonzero numbers, then

xy is also nonzero.
� Distributive property: For any numbers x, y, and z, we

have x.y C z/ D xy C xz.

The operations of subtraction (�) and division (�) are
defined in terms of addition and multiplication. We define

a � b to be aC .�b/, and for b 6D 0, we define a� b to be

a � b�1.

Ordering

The less-than relation gives an ordering on numbers. The ex-

pression x < y means that x is less than y. We also have the

symbol �, which stands for less than or equal to. When we

write x � y, this means that x is less than or equal to y.

Similarly, we have the symbols > and � which stand

for greater than and greater than or equal to, respectively.

We call a number x positive provided x > 0. We call x

negative if x < 0. We call x nonnegative provided x � 0.

The following are basic properties of < (and its rela-

tives) that you may use without proof.

� Trichotomy property: Let x and y be numbers. Then ex-

actly one of the following is true: x < y, x D y, or

x > y.

Consequently, a � b if and only if b � a. Simi-

larly, a < b if and only if b > a.
� If a < b and c < d , then aC c < b C d . Likewise for

�, >, and �. Consequently, a < b if and only if b � a

is positive.
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Furthermore, if a and b are positive, then so is aCb.
� Let x be a positive number. Then a < b if and only if

ax < bx. Likewise for �, >, and �.
Furthermore, if a and b are positive, then so is ab.

� Let x be a negative number. Then a < b if and only

if ax > bx. In case x D �1 this gives a < b ()
.�a/ > .�b/.

� Let a and b be positive numbers. Then a < b if and

only if a�1 > b�1. Likewise for � = �. Likewise if a

and b are both negative.
� a < b if and only if �a > �b. Likewise for � = �.

Consequently, if a and b are negative, then ab is

positive.
� Transitive property: If x � y and y � z, then x � z.

Likewise for �, >, � andD.
� Well-Ordering Principle: If A is a nonempty subset of

N, then A contains a least element.

Complex Numbers

Complex numbers are an extension of the real numbers.

They are formed by defining a new number i with the prop-

erty that i2 D �1. The set of all complex numbers is de-

notedC and contains all numbers of the form aCbi where a

and b are real. The usual operations are defined for complex

numbers. Let aCbi and cCdi be complex numbers (where

a; b; c; d 2 R); we have the following:

.aC bi/C .c C di/ D .aC c/C .b C d/i

.aC bi/� .c C di/ D .a � c/C .b � d/i

.aC bi/ � .c C di/ D .ac � bd/C .ad C bc/i

jaC bi j D
p

a2 C b2

.aC bi/
�1 D a

a2 C b2
C �b

a2 C b2
i

.aC bi/=.c C di/ D .aC bi/ �
�

.c C di/
�1
�

:

Of course, reciprocal and division are defined only in the

case where c C di 6D 0. In this book, complex numbers are

needed only in Section 23 on recurrence relations.

Substitution

The following observation is, perhaps, beyond obvious, but

we mention it anyway. When we say two mathematical ob-

jects are equal, we mean that they are exactly the same.

Thus, if a statement involving a mathematical entity x is

true, and if x D y, then a new statement formed from the

first statement by replacing some (or all) occurrences of x

with y is also true.
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Cartesian product, 64, 456
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walk, 345
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edge, 367
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least, 284
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comparable, 382, 456
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event, 219

graph, 342, 456

set, 65, 91, 456
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component, 348, 456
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composite, 6, 457
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lists, 36
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convex, 56, 65

corollary, 13, 457

coset, 308
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covariance, 249
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crossing-free embedding, 368

cryptography, 316, 457

public-key, 317, 460
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Rabin’s, 319

RSA, 325

cube, 367, 457

curve, 368

simple, 368
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cut

edge, 348, 352, 354, 356, 457

vertex, 348, 457
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cycle, 350, 457

Hamiltonian, 356, 458

notation, 189, 457

cyclic group, 299, 307, 457

cyclic shift, 310

D
�, 60, 157

�.G/, ı.G/, 336

data record, 391

declarative statement, 8

definition, 4, 457

recursive, 147, 259

unraveling, 16

degree

face, 369, 457

polynomial, 157, 257, 457

up, 385

vertex, 335, 457

maximum and minimum, 336

deletion

edge, 339

vertex, 340

DeMorgan’s Laws, 27, 63

dense, 388

dependent events, 225

derangement, 114, 457

diagram

Hasse, 380, 458

Venn, 56, 223, 461

dice, 214

nontransitive, 221

tetrahedral, 216

difference, 60, 457

operator, 157

symmetric, 60, 293, 461

digital signature, 319

dihedral group, 293

dimension, 396, 457

direct product of groups, 301

direct proof, 17, 457

disjoint, 59, 457

pairwise, 59, 460

distance, 203, 349, 457

distinct, 123, 457

distribution

geometric, 217, 229

uniform, 216

distributive, 27, 56, 267, 404, 462

div, 255, 457

divides, 5, 286, 457

divisible, 5

division

modular, 271

theorem, 253

divisor, 5

common, 258, 456

greatest common, 258, 458

domain, 169, 457

dominance, 398

dominoes, 135, 145, 360

double factorial, 43, 415

dual (poset), 383

dummy variable, 41, 44, 51, 84

E
E.G/, 336

9, 51
edge, 333

cut, 348, 352, 354, 356, 457

parallel, 334

edge deletion, 339

edgeless, 337, 457

element, 44, 457

embedding, 368

crossing-free, 368

poset in n-dimensional space, 398

empty

list, 33, 40

product, 40–42, 279

set, 44, 457

end point, 334

end vertex, 352

enough, 11

equal, 463

functions, 185

lists, 33

rational numbers, 462

sets, 45

equivalence

class, 81, 347, 457

number of, 88

logical, 26, 459

relation, 78, 347, 457

equivalent statements, 11, 225, 457

Erasothenes, sieve of, 285

Erdős-Szekeres Theorem, 179

Euclid’s Algorithm, 259, 457

Euler’s

formula, 369, 457

theorem, 314, 457

totient, 284–285, 295, 314, 461

Euler’s totient, 325

Eulerian trail/tour/graph, 357, 457

even, 4, 457

permutation, 195, 457

event, 217, 457

complement, 219

dependent, 225

implicit, 232

independent, 225, 458

mutually exclusive, 220

exactly, 11, 458

examination scheduling, 332

exclusive or, 29, 458

existential quantifier, 51, 458

expectation, 236

linearity of, 240, 459

expected value, 236, 458

linearity of, 240

extension, linear, 389

F
face, 368

degree, 369

fact, 13, 458

factor, 5, 286

factorial, 40, 458

double, 43, 415

falling, 38

of 1

2
, 43

of negative integers, 43

of zero, 40

factorion, 43

factory

number, 40

symmetry, 201

falling factorial, 38

false, 9

fence, 400

Fermat number, 411

Fermat’s Little Theorem, 309, 458

Fibonacci number, 133, 143, 147, 149,

155, 287, 458

Fifteen Puzzle, 199

finer-than relation, 380

finite, 44

first-order recurrence relation, 150

Five Color Theorem, 373

fixed point, 241

floor, 208, 458

flush, 100, 222

forest, 350, 458

formula

binomial coefficient, 97

Euler’s, 369

midpoint, 178

Stirling’s, 42, 392, 461

four children, 218

four color map problem, 332

Four Color Theorem, 372, 458

four of a kind, 100, 218

full house, 101, 222

function, 167, 458

composition, 183

distance preserving, 203

equal, 185

graph of, 170

identity, 186, 458

inverse, 171

machine, 167, 184

notation, 168

one-to-one, 171, 460

onto, 172, 460

order preserving, 387

zeta, 146

Fundamental Theorem of Arithmetic,

279, 458

G
garbage collection, 333

gas/water/electricity problem, 332, 338,

371
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gcd, 258, 458

generator, 299

geometric distribution, 217, 229

glb, 401, 458

Goldbach’s Conjecture, 15

graph, 331, 333, 458

bipartite, 363, 456

complete, 343, 363, 456

coloring, 361, 460

edge, 367

complement, 342, 456

complete, 337, 456

component, 348

connected, 348

edgeless, 337

Eulerian, 357, 457

Hamiltonian, 458

isomorphic, 338, 459

line, 361

Möbius ladder, 366

multi-, 335

of a function, 170

order, 336

outerplanar, 374

Petersen’s, 374

planar, 368, 460

Platonic, 375

regular, 336, 460

self-complementary, 344

simple, 335

size, 336, 461

torus, 366

triangle free, 343

greater than, 462

greatest common divisor, 258, 403, 458

polynomial, 266

greatest lower bound, 401

group, 458

Abelian, 292, 302, 456

additive, 292

alternating, 293, 296

center, 308

cyclic, 299, 307, 457

dihedral, 293

direct product, 301

isomorphic, 298, 459

Klein 4-, 293, 297, 299, 307

sub-, 302

symmetric, 188, 293, 461

guinea pig, 14

H
Hamiltonian

cycle, 356, 458

graph, 458

path, 349, 458

Hanoi, Tower of, 147

Hasse diagram, 380, 458

hat-check problem, 114

height, 382, 458

hypercube, 458

hypothesis, 10, 458

induction, 137, 458

strong induction, 142

I
identity

element, 27, 203, 267, 290, 292, 458,

462

function, 186, 458

permutation, 188, 458

if and only if, 11

if-then, 9

alternative wordings, 10

iff, 11, 458

image, 169, 177, 458

implies, 10

incident, 334, 458

inclusion-exclusion, 58, 66, 109, 458

incomparable, 382, 458

independence number, 341, 458

independent

events, 225, 458

random variables, 233

set, 341, 458

indicator random variable, 240, 249, 458

indirect proof, 120, 458, 460

induced subgraph, 340, 458

induction, 135–149, 458

hypothesis, 137, 458

strong, 142

loading, 149, 358, 418

machine, 135–136

strong, 141, 461

inductive step, 137, 142

inequality

Bonferroni, 117

Chebyshev’s, 249

Markov’s, 249

triangle, 205

infinite, 44

injection, 171, 458

integer linear combination, 262

integers, 4, 458, 462

interesting, 134

intersection, 56, 458

interval order, 406

inverse, 203, 270, 291, 292, 458, 462

additive, 291

function, 171

permutation, 191, 458

relation, 74, 458

statement, 459

inversion, 193, 459

invertible, 269, 459

irrational, 281, 459

irreducible, 286

irreflexive, 75, 334, 346, 459

isolated vertex, 357, 459

isometry, 203, 459

isomorphic, 298, 387, 459

graphs, 338

group, 298

poset, 387

J
Jeopardy, 58

join, 402, 459

joined, 334

Jordan Curve Theorem, 368

K
Kn, 337

Kn;m, 343, 363

k-colorable, 361, 456

Klein 4-group, 293, 297, 299, 307

Königsburg, 333, 356

Kuratowski’s Theorem, 372, 459

L
L-shaped triomino, 141

Lagrange’s Theorem, 305, 459

LATEX, 3

lattice, 402, 459

path, 97, 116, 147

point, 178

lcm, 459

leaf, 352, 459

least common multiple, 284, 403

least upper bound, 401

lemma, 13, 21, 459

length

list, 33

walk, 345

less than, 462

lexicographic order, 388, 394

likewise, 16, 21

line graph, 361

linear

combination, integer, 262

extension, 389, 459

order, 386, 389, 459

dense, 388

linearity of expectation, 240, 459

list, 33, 459

empty, 33, 37, 40

length, 33

logical equivalence, 26, 459

loop, 334

lower bound, 401

greatest, 401

lub, 401, 459

M
machine

function, 167, 184

induction, 135–136



468 Index

main diagonal, 297

map, 168, 169, 459

map coloring, 331

Markov’s inequality, 249

mathematical induction, 135–149

strong, 141

mathspeak, 10

max, 403

maximal, 341, 384, 459

maximum, 341, 384, 459

mean, 236, 459

meet, 402, 459

memoryless property, 229

midpoint, 7, 178

min, 403

minimal, 384, 459

minimum, 384, 459

mistake, 8

Möbius ladder, 366

mod, 78, 255, 267, 459

modular

addition, 267

arithmetic, 266, 459

division, 271

multiplication, 267

reciprocal, 269

subtraction, 269

modulo, 78, 305

monotone sequence, 179

Monty Hall problem, 227

mouse and cheese, 349

multichoose, 102, 459

multigraph, 335

multinomial coefficient, 100

multiplication

modular, 267

Principle, 35, 459

multiplicity, 102, 459

multiset, 101, 459

cardinality, 102

mutually exclusive, 220

N
N, 7, 459, 462

nand, 30, 459

natural number, 7, 459, 462

necessary, 11, 459

negative, 462

neighbor, 335, 459

neighborhood, 335

nonconstructive, 263

nonnegative, 462

nonplanar, 371

nonsense, 8, 14

nontransitive dice, 221

nontrivial component, 357

normal subgroup, 309

not, 12, 26, 459

NP-complete, 366

null set, see empty set

O
O , 205

�, 207

o, 208

odd, 5, 459

permutation, 195, 460

oh

big, 205

little, 208

On-Line Encyclopedia of Integer

Sequences, 165

one and only one, 460

one-to-one, 171, 460

only if, 11

onto, 172, 460

operation, 289

or, 12, 25, 460

exclusive, 29, 458

order, 336, 460

lexicographic, 388, 394

linear, 386, 459

dense, 388

of an element in a group, 308

partial, 379, 460

preserving, 387

total, 386, 461

ordered pair, 33

outcome, 213, 460

versus event, 214, 217

outerplanar graph, 374

P
Pn, 346

pairwise disjoint, 59, 460

palindrome, 7, 24

parallel edge, 334

parity, 76, 79, 460

part, 85, 460

partial order, 379, 460

partially ordered set, 379, 460

partite set, 363

partition, 85, 460

block of, 85

finer-than relation, 380

part of, 85

Pascal’s

Identity, 95

triangle, 94, 460

path, 345, 460

Hamiltonian, 349, 458

.u; v/, 346

pendant vertex, 352

pentagonal numbers, 419

perfect

number, 8, 284, 460

square, 7, 320, 460

perimeter, 7

permutation, 37, 188, 460

array notation, 189

cycle notation, 189

even, 195, 204, 457

fixed point of, 241

identity, 188, 458

inverse, 191, 458

inversion in, 193

matrix, 199–200

odd, 195, 460

random, 241

sign, 195, 461

transposition, 192

Petersen’s graph, 374

pig, guinea, 14, 458

Pigeonhole Principle, 174, 178, 397, 460

planar graph, 368, 460

Platonic graph, 375

poker, 100, 214, 222

polygon, 7

polynomial

degree, 157, 257

gcd, 266

poset, 379, 460

dimension, 396

dual, 383

Hasse diagram of, 380, 458

interval, 406

isomorphic, 459

product, 383, 394, 400

standard example, 397

sub-, 400

weak, 405

positive, 462

postfix notation, 296

power set, 49, 460

preimage, 177

prime, 5, 460

Number Theorem, 286

relatively, 264, 460

test for, 314

principle

Addition, 59, 125

Mathematical Induction, 137

strong version, 141

Multiplication, 35, 459

Pigeonhole, 174, 178, 397, 460

Well-Ordering, 130, 461, 463

probability, 213, 460

conditional, 224, 457

product

Cartesian, 64, 456

empty, 40–42, 279

notation, 41

of posets, 383, 394, 400

proof, 15, 460

bijective, 49, 91, 105

by contradiction, 120

combinatorial, 58, 66–70, 95, 103, 336,

456

direct, 17, 457

indirect, 120, 458, 460

induction, 135

strong, 141

nonconstructive, 263

smallest counterexample, 125
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proper

coloring, 361

edge coloring, 367

subset, 46

proposition, 13, 460

public-key cryptography, 317, 460

Pythagorean

Theorem, 9, 14, 283, 393

triple, 47

Q
Qn, 367

Q, 7, 460, 462

quadratic residue, 320, 460

quantifier, 51

existential, 51, 458

universal, 52, 461

quotient, 253

R
R, 460, 462

Rabin’s cryptosystem, 319

Ramsey

arrow notation, 344

Theorem, 342

random variable, 231, 460

binomial, 232, 456

variance, 247

expectation, 236

independent, 233

indicator, 240, 249, 458

set-valued, 231

uncorrelated, 249

variance, 245

zero-one, 241

range, 169

rational number, 7, 129, 460, 462

real number, 462

realizer, 395, 460

reciprocal, 269, 460

notation for, 270

reconstruction problem, 344

record, data, 391

recurrence relation, 149–165, 460

first-order, 150

second-order, 153

recursive

algorithm, 258

definition, 147, 259

tree, 355

reductio ad absurdum, 120, 460

refinement, 380, 460

reflexive, 75, 334, 346, 379, 460

region, 368

regular graph, 336, 460

relation, 73, 167, 460

antisymmetric, 75, 335, 346, 379, 456

between sets, 74

equivalence, 78, 347, 457

in-the-same-part-as, 86

inverse, 74, 458

irreflexive, 75, 334, 346, 459

on a set, 74

partial order, 460

recurrence, 149–165, 460

reflexive, 75, 334, 346, 379, 460

restricted, 74

symmetric, 75, 335, 346

transitive, 75, 335, 346, 379, 461

relatively prime, 264, 460

polynomials, 266

remainder, 253

result, 12, 460

reverse Polish notation, 296, 460

Riemann zeta function, 146

rook, 39, 360

RPN, 297, 460

RSA cryptosystem, 325

S
Sn, 188, 293, 461

sample space, 214, 461

repeated trials, 226

second-order recurrence relation, 153

seesaw, 244

self-complementary graph, 344

semiorder, 406

sequence, 179, 461

monotone, 179

set, 43, 461

-builder notation, 44

cardinality, 44

complement, 65, 91, 456

difference, 60, 457

element of, 44

empty, 44, 457

equality, 45

finite, 44

independent, 341, 458

infinite, 44

intersection, 56

null, see empty set

partially ordered, 379, 460

partite, 363

power, 49, 460

size, 44, 461

symmetric difference, 60

theory, 393

union, 56

seven bridges problem, 333, 356

sgn, 195, 437, 461

shift, cyclic, 310

sieve of Erasothenes, 285

sign

number, 437

permutation, 195, 461

signature

digital, 319

simple graph, 335

size

graph, 336, 461

set, 44, 461

Skeeball, 248

soccer ball, 375

sorting, 391, 461

spanning

subgraph, 339, 461

tree, 354, 461

algorithm, 356

spinner, 214, 224

square

mates, 32

perfect, 7, 320, 460

roots, 7, 319–323

stability number, 341

stable set, 341, 461

standard example, 397

star, 351

statement

contrapositive, 457

converse, 14, 457

declarative, 8

equivalent, 225, 457

inverse, 459

step

basis, 128–129, 137, 142, 456

inductive, 137, 142

Stirling’s formula, 42, 392, 461

stock market, 251

straight, 101

straight flush, 101

strict subset, 46

strictly above/below, 381

string quartet, 89

strong induction, 141, 461

subdivision, 371

subgraph, 339, 461

induced, 340, 458

spanning, 339, 461

subgroup, 302, 461

coset of, 308

normal, 309

subposet, 400

subsequence, 179

subset, 46, 461

proper, 46

strict, 46

substitution, 463

subtraction

modular, 269

Sudoku, 123

sufficient, 10, 11, 461

supergraph, 339

superset, 48, 461

supposition, 120–122, 124

surjection, 172, 461

symmetric, 75, 335, 346, 461

difference, 60, 293, 461

group, 188, 293, 461

symmetry, 200, 203, 461

factory, 201

T
‚, 207

table, truth, 25
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tautology, 29, 461

tetrahedron, 216

the, 461

theorem, 8, 461

Binomial, 93, 456

negative, 105–107

Cantor’s, 181

Cayley’s, 431

characterization, 352, 354, 364, 456

Chinese Remainder, 277, 322, 456

division, 253

Erdős-Szekeres, 179

Euler’s, 314, 457

Fermat’s Little, 309, 458

Five Color, 373

Four Color, 372, 458

Fundamental of Arithmetic, 279, 458

Jordan Curve, 368

Kuratowski’s, 372, 459

Lagrange’s, 305, 459

Pascal’s Identity, 95

Prime Number, 286

Pythagorean, 9, 14, 283, 393

Ramsey’s, 342

Turán’s, 343

theory, 12

three of a kind, 100, 222

three utilities problem, 332, 338, 371

torque, 244

torus graph, 366

total order, 386, 461

totient, 284–285, 295, 314, 325, 461

tour, Eulerian, 357, 457

Tower of Hanoi, 147

trail, Eulerian, 357, 457

transfinite cardinal, 181, 388

transitive, 75, 335, 346, 379, 461, 463

transposition, 192, 461

traverse, 346

tree, 350, 461

recursive, 355

spanning, 354, 461

algorithm, 356

triangle inequality, 205, 350, 461

triangle-free graph, 343

triangulate, 142

trichotomy, 386, 462

triomino

L-shaped, 141

triskaidekaphobia, 419

trivial component, 357

truth

nature of, 8

table, 25

vacuous, 13, 461

tuple, 33, 461

Turán’s Theorem, 343

U
uncle, crazy, 206

uncorrelated, 249

Unicode, 317

uniform distribution, 216

union, 56, 461

unique, 461

uniqueness, 123

unit, 6

universal quantifier, 52, 461

unravel, 16

up degree, 385

upper bound, 401

least, 401

V
V.G/, 336

vacuous, 13, 461

valence, 335

variable

dummy, 41, 44, 51, 84

random, 231, 460

variance, 245

binomial random variable, 247

Venn diagram, 56, 223, 461

vertex, 333

cut, 348, 457

deletion, 340

end, 352

isolated, 357, 459

pendant, 352

vertical line test, 170

W
walk, 345, 461

closed, 345

concatenation, 345

length, 345

.u; v/, 345

weak order, 405

weighted average, 236

Weiner index, 356

weirdo, 95, 99, 103

Well-Ordering Principle, 130, 461, 463

wheel, 376

width, 382, 461

wolog, 461

X
xor, 29, 458, 461

Y
Z, 4, 461, 462

Zn, 266

Z�n, 294

zero factorial, 40

zero-one random variable, 241

zeta function, 146
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