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Abstract

Traffic flow is a kind of many-body system of strongly interacting vehicles. Traffic jams
are a typical signature of the complex behaviour of vehicular traffic. Various models are
presented to understand the rich variety of physical phenomena exhibited by traffic. Analytical
and numerical techniques are applied to study these models. Particularly, we present detailed
results obtained mainly from the microscopic car-following models. A typical phenomenon is
the dynamical jamming transition from the free traffic (FT) at low density to the congested traffic
at high density. The jamming transition exhibits the phase diagram similar to a conventional
gas–liquid phase transition: the FT and congested traffic correspond to the gas and liquid
phases, respectively. The dynamical transition is described by the time-dependent Ginzburg–
Landau equation for the phase transition. The jamming transition curve is given by the spinodal
line. The metastability exists in the region between the spinodal and phase separation lines.
The jams in the congested traffic reveal various density waves. Some of these density waves
show typical nonlinear waves such as soliton, triangular shock and kink. The density waves
are described by the nonlinear wave equations: the Korteweg-de-Vries (KdV) equation, the
Burgers equation and the Modified KdV equation. Subjects like the traffic flow such as
bus-route system and pedestrian flow are touched as well. The bus-route system with many
buses exhibits the bunching transition where buses bunch together with proceeding ahead.
Such dynamic models as the car-following model are proposed to investigate the bunching
transition and bus delay. A recurrent bus exhibits the dynamical transition between the delay
and schedule-time phases. The delay transition is described in terms of the nonlinear map.
The pedestrian flow also reveals the jamming transition from the free flow at low density to the
clogging at high density. Some models are presented to study the pedestrian flow. When the
clogging occurs, the pedestrian flow shows the scaling behaviour.
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1. Introduction

The concepts and techniques of physics are being applied to such complex systems as
transportation systems (Nagel et al 1999, Chowdhury et al 2000, Helbing 2001), stock markets
(Kertesz and Kondor 1998, Mantegna and Stanley 1999) and biological systems (Kauffmann
1995). Physics, other sciences and technologies meet at the frontier area of interdisciplinary
research. The scientific studies for traffic problems were started in 1935 (Greenshields 1935).
In 1955, Lighthill and Whitham have presented the oldest and most popular macroscopic traffic
model based on the fluid-dynamic theory. They have studied the traffic jam as a shock wave
by treating traffic as an effectively one-dimensional compressible fluid. Prigogine et al (1960,
1971) have presented the gas-kinetic model based on the Boltzmann equation. In 1961, Newell
has proposed the microscopic, optimal velocity model based on the assumption of a delayed
adaptation of velocity. In 1976 and 1978, Musha and Higuchi have studied the noisy behaviour
of traffic flow and have conjectured that the fluctuations of traffic current exhibit the so-called
1/f noise.

Although there were already some early pioneer’s works like Lighthill and Whitham
(1955) and Prigogine (1961), the papers of Biham et al (1992), Nagel and Schreckenberg
(1992) and Kerner and Kohnhauser (1993) triggered the main activities in traffic physics. Then,
an avalanche of publications started in various international physics journal. The development
of the modern traffic theories is due to the availability of computer and the concepts and
techniques of modern physics. Traffic is modelled as a system of interacting vehicles driven
far from equilibrium. The traffic models exhibit a rich variety of physical phenomena such as
the dynamical jamming transition, critical phenomena, metastability, self-organized criticality
and nonlinear waves (soliton), etc.

For decades, the functional relations between the vehicle current and the vehicle density
(so-called fundamental diagram) have highly attracted attention of traffic researchers. Figure 1
shows schematically the typical time-averaged local measurements of the density ρ and current
(flow) q. At low densities, the traffic shows the linear dependence of the traffic current on
the density. In contrast, at high densities, the traffic current decreases with increasing density.
There are strong fluctuations of the current at high densities. The vehicles move freely at low
densities, while the vehicles are in a congested state at high densities. Thus, with increasing

Figure 1. Schematic relationship (fundamental diagram) of the density ρ and current (flow) q. The
vehicles move freely at low densities, while the vehicles are in a congested state at high densities.
Near the maximal current, there is the metastable region.
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vehicle density, the traffic state changes from the free traffic (FT) at low densities to the
congested traffic at high densities. Near the density of the maximal current, the jamming
transition from the FT to the congested traffic occurs. The jamming transition exhibits the
hysteresis and metastability. The modern traffic theory has been developed to clarify the
fundamental aspects of the jamming transition.

The traffic science aims to discover the fundamental properties and laws in transportation
systems. On the other hand, traffic engineering aims at making the planning and
implementation of the road network and control systems. In the traffic engineering area,
the very complex traffic models have been proposed to forecast or estimate the traffic current
in real transportation systems (Hurdle et al 1983, Daganzo 1993, 1997, Hall 1999). The models
include so many factors that it is difficult to discover the essential factors affecting on the traffic
behaviour. Physicists have proposed the simplified traffic models including a few factors at
most to clarify the cause and effect. Despite the complexity of traffic and complications of
human behaviour, physical traffic theory is an example of a highly quantitative description for
a living system.

In this paper, we try to give an overview of traffic physics. Attention is paid to the
formulation of the traffic dynamics, the dynamical phase transitions and the nonlinear waves.
This paper is complimentary to those published in recent years by Chowdhury et al (2000)
and Helbing (2001). The paper by Chowdhury et al (2000) discusses the methods and results
for the cellular automaton models in great detail. Helbing’s paper is mainly based on the
gas-kinetic and macroscopic models. A large number of important papers on traffic published
in recent years are based not only on CA and gas-kinetic models but also on the car-following
models and fluid dynamic models. But the works of the car-following models have received
little attention. Especially, the nonlinear wave equations describing the traffic jams have been
sparsely discussed in the two papers. We discuss the methods and results for the car-following
models in detail after explaining the traffic models and the micro–macro link. We focus on
the dynamical phase transitions and the nonlinear density waves from the point of view of
statistical physics and nonlinear waves. Also, we describe the linear stability theory in detail
to explain the jamming transitions.

The outline of this paper is as follows. In section 2, we present the various traffic models
where there are different conceptual frameworks for modelling traffic. In the macroscopic
description, traffic is viewed as a compressible fluid. In the microscopic description, traffic
is treated as a system of interacting particles driven far from equilibrium. We discuss the
relationship between the microscopic model and the macroscopic model. In section 3, we
discuss the stability of traffic flow and the jamming transition. The jamming transition is
related to the linear instability. The jamming transition is described in terms of the time-
dependent Ginzburg–Landau (TDGL) equation. The fundamental phase diagram of traffic is
presented. It is shown that traffic exhibits similar behaviour to the phase transition and critical
phenomenon in equilibrium systems. In section 4, we present the nonlinear wave equations
describing the density waves appearing in traffic. The nonlinear wave equations are derived
from the microscopic model. The distinct density waves appearing in the different regions
of phase diagram are described by the different nonlinear wave equations. In section 5, the
theoretical results are compared with the empirical data. The empirical data are explained in
detail. It is shown that an agreement with empirical data is reached not only on a qualitative
level but also on a quantitative level. In section 6, we present the microscopic models for
bus-route systems. The bus-route models are the extended versions of traffic models. The
bunching of buses is closely connected to the kinetic clustering of vehicle traffic. In section 7,
we present the microscopic models of pedestrian flow. In the pedestrian flows, the jamming or
clogging transitions also occur similarly to the traffic jams. Section 8 presents the summary.
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2. Models of vehicular traffic

This section will give the various traffic models with different conceptual frameworks for
modelling traffic. In the microscopic models, the traffic is treated as a system of interacting
particles driven far from equilibrium. In contrast, in the so-called macroscopic models, the
traffic is viewed as a compressible fluid.

2.1. Microscopic car-following models

The car-following model is a typical one of microscopic traffic models. The non-integer car-
following models are called follow-the-leader models. The vehicle j is affected only by the
vehicle ahead j+1, called the leading vehicle. Newell (1961) has proposed the optimal velocity
model. The equation of motion for vehicle j is described as

dxj (t + τ)

dt
= V (�xj (t)), (1)

where xj (t) is the position of vehicle j at time t , τ is the delay time, �xj(t)(= xj+1(t)−xj (t))

is the headway of vehicle j at time t and V (�xj (t)) is the optimal velocity. The idea is that
a driver adjusts the vehicle velocity according to the observed headway �xj(t). The delay
time τ allows for the time lag that it takes for the vehicle velocity to reach the optimal velocity
V (�xj (t)) when the traffic flow is varying.

By using the Taylor-expanding equation (1), one obtains the differential equation model
(Bando et al 1995a)

d2xj (t)

dt2
=

(
1

τ

) (
V (�xj (t)) − dxj (t)

dt

)
. (2)

The inverse (1/τ) of delay time is called the sensitivity a. By transforming the time derivative
to the forward difference in equation (1), one obtains the difference equation model (Nagatani
et al 1998, Nagatani 2000a)

xj (t + 2τ) = xj (t + τ) + τV (�xj (t)). (3)

It is useful to convert equation (3) to the headway equation:

�xj(t + 2τ) = �xj(t + τ) + τ [V (�xj+1(t)) − V (�xj (t))]. (4)

The differential equation model (2) corresponds to the equation of motion of a mass with a
simple friction:

m
d2xj (t)

dt2
+ γ

dxj (t)

dt
= F(�xj (t)), (5)

where m is the mass of a vehicle, γ is the friction coefficient of a vehicle and F(�xj (t)) is the
driving force to accelerate or decelerate the vehicle. The delay time τ is given by m/γ . The
optimal velocity V (�xj (t)) is connected to F(�xj (t))/γ .

Generally, it is necessary that the optimal velocity function has the following properties:
it is a monotonically increasing function and it has an upper bound (maximal velocity). Bando
et al (1995) suggest the relation

V (�xj (t)) = vmax

2
{tanh(�xj (t) − xc) + tanh(xc)}, (6)

where xc is a constant representing the safety distance. When �xj → ∞ and xc > 0,
V (∞) ∼= vmax. Equation (6) has a turning point (inflection point) at �xj = xc. It is important
that the optimal velocity function has the turning point. Otherwise, one cannot obtain a robust
density wave representing a traffic jam.
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The optimal velocity model is simple and convenient for computer simulation and
theoretical analysis. As the optimal velocity model does not take into account a driver response
to the relative velocity with respect to the vehicle ahead, it produces a collision accident with
increasing delay τ . To avoid this collision, Treiber et al (1999a, 2000) have proposed the
intelligent driver model (IDM) taking into account the relative velocity. Also, the relative
velocity has been taken into account in some models (Gipps 1981, Krauss et al 1996, 1997,
Helbing 1997a, Helbing and Tilch 1998, Wolf 1999, Tomer et al 2000).

The optimal velocity model is extended to take into account the vehicle interaction before
the next vehicle ahead (the next-nearest-neighbour interaction) (Nagatani 1999a). If the
headway �xj+1 of the next vehicle j + 1 ahead is larger than �xj of vehicle j , the driver
of vehicle j may wish to proceed with larger velocity than the optimal velocity V (�xj ). The
motion equation of the next-nearest-neighbour model is given by

d2xj (t)

dt2
=

(
1

τ

) (
V (�xj (t)) + γ (V (�xj+1(t) − V (�xj (t))) − dxj (t)

dt

)
. (7)

Here, parameter γ represents the strength of the next-nearest-neighbour interaction and
0 � γ � 1. The second-term on the right-hand side is the increase of the desired velocity by
the next-nearest-neighbour interaction. The next-nearest-neighbour interaction stabilizes the
traffic flow and enhances the traffic current.

Mason and Woods (1997) have generalized the model (2) to take into account the two
different types of vehicles, say, cars and trucks:

d2xj (t)

dt2
=

(
1

τj

) (
Vj (�xj (t)) − dxj (t)

dt

)
, (8)

where τj is the delay time of vehicle j , depending on the type of vehicles.
The optimal velocity model is extended to take into account the backward vehicle j − 1

(Hayakawa and Nakanishi 1998, Nakayama et al 2002). A driver looks at the following vehicle
j − 1 as well as the preceding vehicle j + 1. The motion equation of the backward looking
model is given by

d2xj (t)

dt2
=

(
1

τ

) (
V (�xj (t)) + VB(xj − xj−1) − dxj (t)

dt

)
. (9)

Here, VB(xj − xj−1) is the optimal velocity function for backward looking. The backward
interaction stabilizes the traffic flow and enhances the traffic current similarly to the
next-nearest-neighbour interaction.

Treiber et al (1999a, 2000) have presented the IDM to take into account the relative
velocity. The model has the following advantage: the vehicle behaves as if accident-free.
Lubashevsky et al (2002) have proposed the generalization of the optimal velocity model
similar to the IDM by the use of a variational principle.

A coupled-map model based on optimal-velocity function is introduced by discretizing
the time variable of equation (2) (Yukawa and Kikuchi 1995, Tadaki et al 1998).

2.2. Cellular automata

Cellular automata (CA) models have been used for simulating various physical systems because
of the simplifications. The simplest traffic model is the CA 184 (Wolfram 1986, 1994, Biham
et al 1992). The model has been investigated as the totally asymmetric simple exclusion model
on one-dimensional lattice for the prototype of interacting systems far from equilibrium (Spohn
1991, Schmittmann and Zia 1998, Schutz 2000). The dynamics is described by

xj (t + 1) = xj (t) + min[1, xj+1(t) − xj (t) − 1]. (10)
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In this model, a particle (vehicle) moves by one lattice spacing if the site ahead is not occupied
by other particles. Otherwise, it stops on the site. All particles are updated in parallel
(simultaneously). The velocity is either one or zero. Later, Fukui and Ishibashi (1996) have
proposed the extended CA model

xj (t + 1) = xj (t) + min[vmax, xj+1(t) − xj (t) − 1]. (11)

The velocity takes the integer value ranging from 0 to vmax. The velocity depends on the
headway �xj(t). If �xj(t) is larger than maximal velocity vmax, the vehicle j moves with
the maximal velocity. If �xj(t) is less than maximal velocity vmax, the vehicle moves with
velocity �xj − 1. This model is rewritten as

xj (t + 1) − 2xj (t) + xj (t − 1) = min[vmax, �xj (t) − 1] − {xj (t) − xj (t − 1)}. (12)

By taking a continuous limit �t → 0, one obtains

d2xj

dt2
= min[vmax, �xj (t) − 1] − dxj

dt
. (13)

The first-term on the right-hand side represents the optimal velocity function. Equation (13) is
equivalent to the optimal velocity model (2) with delay time τ = 1 by replacing V (�xj (t)) with
min[vmax, �xj (t) − 1] (Nishinari and Takahashi 2000, Nishinari 2001). The model (13) has
been studied as the piecewise linear optimal velocity model (Nakanishi et al 1997).

The extended CA model (12) is a simplified version of the Nagel–Schreckenberg (NaSch)
model (Nagel and Schreckenberg 1992, Chowdhury et al 2000, Helbing 2001). The NaSch
model has been introduced by Nagel and Schreckenberg (1992). The CA model has been
recognized as the pioneering work for simulating the real traffic flow. The dynamics is
formulated as follows:

xj (t + 1) = xj (t) + max[0, min{vmax, xj+1(t) − xj (t) − 1, xj (t) − xj (t − 1) + 1} − ξj (t)],

(14)

where the Boolean random variable ξj (t) = 1 with probability p and 0 with probability
1 − p. The vehicles are updated in parallel according to the four steps: motion, acceleration,
deceleration and randomization. The NaSch model has been extended by some researchers
(Nagel and Herrmann 1993, Nagel and Paczuski 1995). Schadschneider and Schreckenberg
(1993, 1997a) and Schrekenberg et al (1995) have presented the mean-field theory for the
model (Chowdhury et al 2000).

Takayasu and Takayasu (1993) have proposed the CA model of the slow-start rule to take
into account the inertia of vehicle. The dynamics is given by

xj (t + 1) = xj (t) + min[1, xj+1(t) − xj (t) − 1, xj+1(t − 1) − xj (t − 1) − 1]. (15)

The motion of vehicle depends not only on the headway at time t but also on the headway at
t − 1. This model exhibits the metastability. Schadscheider and Schreckenberg (1997b) have
also extended the NaSch model to include the slow-start rule. Very recently, Nishinari (2001)
has proposed the generalized CA model taking into account the inertia effect and has shown
that the model reproduces the real fundamental diagram. Krauss et al (1996, 1997, 1998) have
developed and have investigated the Gipps model (1981). The model exhibits the three distinct
behaviours: the FT, the metastability and the congested traffic.

Helbing and Schreckenberg (1999) have presented the discrete and noisy optimal velocity
model to construct a link between the NaSch model and the optimal velocity model. Various
CA models have been proposed and investigated (see the paper of Chowdhury et al (2000) and
references therein). Cheybami et al (2000) have studied the effect of the stochastic boundary
conditions on the traffic flow in the deterministic NaSch model.
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The CA model has been extended to take into account quenched random hopping
probabilities of the individual cars (Nagatani 1995, Evans 1996, 1997, Krug and Ferrari 1996,
Ktitarev et al 1997). It has been found that Bose–Einstein-like condensation occurs for platoon
formation.

2.3. Gas-kinetic models

The kinetic theory treats vehicles as a gas of interacting particles. Various versions have been
developed to extend and modify the gas-kinetic theory for traffic flow (Prigogine and Herman
1971, Paveri-Fontana 1975, Ben-Naim et al 1994, Helbing 1996a, 1997b, Nagatani 1996,
1997a, b, Wagner et al 1996, Ben-Naim and Krapivsky 1997, 1998, 1999, Wagner 1997, 1998,
Helbing and Treiber 1998a). Prigogine and Herman have proposed the Boltzmann equation
for the traffic
∂f (x, v, t)

∂t
+ v

∂f (x, v, t)

∂x
= −f (x, v, t) − ρ(x, t)Fdes(v)

τrel
+

(
∂f (x, v, t)

∂t

)
int

, (16)

where the first-term on the right-hand side represents the relaxation of the velocity distribution
function f (x, v, t) to the desired velocity distribution ρ(x, t)Fdes(v) with the relaxation time
τrel in the absence of the interactions of vehicles and the second-term on the right-hand side
takes into account the change arising from the interactions among vehicles.

Lehmann (1996) has presented the simplest model which uses the desired velocity
distribution determined from the empirical data:

∂f (x, v, t)

∂t
+ v

∂f (x, v, t)

∂x
= −f (x, v, t) − fdes(v, ρ)

τrel
. (17)

By taking into account the different personalities of drivers, Paveri-Fontana (1975) has
proposed the generalized gas-kinetic model:

∂g(x, v, vdes, t)

∂t
+ v

∂g(x, v, vdes, t)

∂x
+

∂

∂v

[(
vdes − v

τ

)
g(x, v, vdes, t)

]

=
(

∂g(x, v, vdes, t)

∂t

)
int

, (18)

(
∂g(x, v, vdes, t)

∂t

)
int

= f (x, v, t)

∫ ∞

v

dv′(1 − Ppass)(v
′ − v)g(x, v′, vdes, t)

−g(x, v, vdes, t)

∫ v

0
dv′(1 − Ppass)(v − v′)f (x, v′, t), (19)

wheref (x, v, t) = ∫ ∞
0 dvdes g(x, v, vdes, t) andPpass is the probability of passing. The velocity

distribution function g(x, v, vdes , t) dx dv dvdes represents the number of vehicles at time t

between x and x + dx, having actual velocity between v and v + dv and desired velocity
between vdes and vdes + dvdes. This model accounts for the distribution of desired velocity
inherent for the driver-vehicle system, i.e. the difference among the individual vehicles.

By starting with the master equation, Helbing (1997a) has presented the following kinetic
equation

∂f (x, v, t)

∂t
+

∂ (vf (x, v, t))

∂x
+

∂

∂v

[(
vdes − v

τ

)
f (x, v, t)

]

= 1

2

∂2 (Dvff (x, v, t))

∂v2
+

(
∂f (x, v, t)

∂t

)
int

, (20)

where Dvf is a velocity diffusion constant.
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Helbing (1995, 1996a, b, 1997a, 1998a) and coworkers (Helbing and Treiber 1998a,
Shversov and Helbing 1999) have derived the macroscopic traffic model from (20). Thus, they
have constructed a micro–macro link. Henneke et al (2000) have performed the simultaneous
micro- and macro-simulation.

Ben-Naim and Krapivsky (1997, 1998, 1999) have studied the power-law platoon
formation (bunching of cars) as aggregation phenomena by using the kinetic theory (Ben-Naim
et al 1994, Ispolatov and Krapivsky 2000).

Mahnke and Pieret (1997) have presented the simple model of master equation approach
to the jam growth. The evolution equation of jam size n is given by

dP(n, t)

dt
= W+(n − 1)P (n − 1, t) + W−(n + 1)P (n + 1, t) − {W+(n) + W−(n)}P(n, t),

(21)

where P(n, t) is the probability distribution of jam size n at time t and W+(n) (W−(n)) is the
transition rate from jam size n to n + 1 (n − 1).

The kinetic theories of a single-lane highway have been extended to the two-dimensional
flow for city traffic and the multi-lane traffic (Nagatani 1996, 1997a, Chowdhury et al 2000).

2.4. Macroscopic traffic models

The macroscopic traffic theory treats traffic as an effectively one-dimensional compressible
fluid. The traffic states at position x and time t is described in terms of the spatial vehicle
density ρ(x, t) and the average velocity v(x, t). Lighthill and Whitham (1955) have proposed
the oldest continuum model. The model is described by the continuity equation of fluids

∂ρ(x, t)

∂t
+

∂q(x, t)

∂x
= 0, (22)

where q(x, t) = ρ(x, t)v(x, t) is the traffic current (or flow). Lighthill and Whitham
assume that the traffic current is determined by the fundamental (flow-density) diagram:
q(x, t) = Q0(ρ(x, t)). The nonlinear equation describes the propagation of kinematic waves.
To avoid an instability of shock front, a small diffusion term is added

q(x, t) = Q0(ρ(x, t)) − D
∂ρ(x, t)

∂x
. (23)

Assuming the simple fundamental diagram Q0 = vmaxρ(x, t) (1 − ρ(x, t)), the Burgers
equation is obtained. Until now, various macroscopic traffic models have been proposed
(Payne 1971, 1979, Phillips 1979). Finally, the complete continuum model of the highway
traffic flow is given by

∂ρ

∂t
+

∂(ρv)

∂x
= 0, (24)

ρ
∂v

∂t
+ ρv

∂v

∂x
= ρ

τ
[V (ρ) − v] − c2

0
∂ρ

∂x
+ µ

∂2v

∂x2
, (25)

where τ , c2
0 and µ are phenomenological constants. The phenomenological function V (ρ)

represents the desired velocity achieved in the steady state. The constant τ is the relaxation
time to the steady state. The desired velocity V (ρ) corresponds to the optimal velocity in
the microscopic model. The relaxation time τ corresponds to the delay time in the optimal
velocity model.

Kerner and Konhauser (1993, 1994) have investigated the continuum model and have
shown that the jamming transition occurs at high density and the density waves appear as the
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autosolitons. Later, Lee et al (1999) have extended the model to take into account the inflow
on-ramp. Some attempts have been made for deriving the macroscopic traffic model from the
microscopic model. Berg et al (2000) have derived the continuum model from the optimal
velocity model (2). By using a series expansion of the headway in terms of the density, the
following expression is obtained

∂v

∂t
+ v

∂v

∂x
= 1

τ
[V (ρ) − v] +

V ′(ρ)

τ

[
1

2ρ

∂ρ

∂x
+

1

6ρ2

∂2ρ

∂x2
− 1

2ρ3

(
∂ρ

∂x

)2
]

. (26)

Equation (26) is analogous to the Kerner–Konhausser model (25). However, an important
difference between (25) and (26) lies in the coefficients. The coefficients of (25) are the
phenomenological parameters, while the coefficients of (26) depend on the parameters of
the microscopic model. It is easy to identify the parameters of (26) though it is difficult to
determine the phenomenological constants τ , c2

0 and µ in (25).
Nelson (2000) has derived the modified Lighthill–Whitham model by the use of the

different method. He assumes that drivers compensate for the delay τ by adjusting to the
density seen at some anticipation distance La ahead of their current position. The actual speed
at position x and time t is given by

v(x, t) = V (ρ(x + La − V τ, t − τ)), (27)

where V (ρ) is the desired velocity at density ρ. By expanding the right-hand side to first order
of τ and La, the following expression of traffic current is obtained instead of (23)

q(x, t) = ρ(x, t)v(x, t)

= Q0(ρ(x, t)) + ρ(x, t)[LaV
′(ρ(x, t)) + τρ(x, t){V ′(ρ(x, t))}2]

∂ρ

∂x
. (28)

It is easy to identify the parameters τ and La since the model is connected to the microscopic
model (1).

A lattice hydrodynamic model has been proposed to have the same mathematical properties
as the optimal velocity model (Nagatani 1999b, c). The model has been extended to the two-
dimensional lattice for the city traffic. Two types of vehicles are considered: the first type
moves only to the positive x-direction and the second type only to the positive y-direction.
The continuity equations of x and y vehicles are given by

∂ρx(x, y, t)

∂t
+

∂ρx(x, y, t)u(x, y, t)

∂x
= 0, (29)

∂ρy(x, y, t)

∂t
+

∂ρy(x, y, t)v(x, y, t)

∂y
= 0, (30)

where ρx(x, y, t) and ρy(x, y, t) are the local densities of x and y vehicles at position (x, y)

at time t and u(x, y, t) and v(x, y, t) are the local speeds of x and y vehicles at position (x, y)

at time t . The traffic currents of x and y vehicles are given by

ρx(x, y, t)u(x, y, t) = ρx,0V (ρ(x + La, y, t − τ)), (31)

ρy(x, y, t)u(x, y, t) = ρy,0V (ρ(x, y + La, t − τ)), (32)

where ρ(x, y, t) (=ρx(x, y, t) + ρy(x, y, t)) is the local total density at position (x, y) at time
t and ρx,0 and ρy,0 are the average densities of x and y vehicles. By making the transformation
from the derivatives to the differences, one obtains the two-dimensional lattice hydrodynamic
model:

ρx(m, n, t + 2τ) − ρx(m, n, t + τ) + τρ0ρx,0[V (ρ(m + 1, n, t)) − V (ρ(m, n, t))] = 0, (33)

ρy(m, n, t + 2τ) − ρy(m, n, t + τ) + τρ0ρy,0[V (ρ(m, n + 1, t)) − V (ρ(m, n, t))] = 0, (34)

where site (m, n) indicates the position on the square lattice and La = 1/ρ0. The
two-dimensional lattice model is an extended version of equation (4).
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2.5. Micro–macro link

The macroscopic traffic models have been derived from the gas kinetic models (Helbing
1996b,1998c, Wagner 1997, Treiber et al 1999, Klar and Wegener 1999a, b). Very recently,
Lee et al (2001) have addressed the relationship between microscopic car-following models
and macroscopic traffic models. The derivation from the optimal velocity model (2) to the
hydrodynamic model (25) is given here. We follow the procedure by Lee et al (2001). Two
microscopic field variables are introduced: density field ρ̂(x, t) = ∑

j δ(yj (t) − x) and current
(flow) field q̂(x, t) = ∑

j ẏj (t)δ(yj (t) − x) where yj (t) is the coordinate of the j th vehicle at
time t . The coarse-grained density ρ(x, t) and current q(x, t) are defined as

ρ(x, t) ≡
∫

dx ′dt ′ φ(x − x ′, t − t ′)ρ̂(x ′, t ′),

q(x, t) ≡
∫

dx ′dt ′ φ(x − x ′, t − t ′)q̂(x ′, t ′),
(35)

where coarse-graining envelope function φ(x, t) is non-negative valued and normalized. By
integrating parts and changing variables, one obtains the continuity equation:

∂ρ(x, t)

∂t
+

∂q(x, t)

∂x
= 0. (36)

After some algebra, one obtains the dynamic equation for q(x, t)

∂q(x, t)

∂t
= ρ(x, t)

〈
ÿj (t

′)
〉
(x,t)

− ∂

∂x

[
ρ(x, t)

〈
ẏ2

j (t
′)
〉
(x,t)

]
, (37)

where the bracketed average is defined as〈
ÿj (t

′)
〉
(x,t)

≡ 1

ρ(x, t)

∫
dx ′dt ′ φ(x − x ′, t − t ′)

∑
j

ÿj (t
′)δ(yj (t

′) − x ′).

The macroscopic velocity field v(x, t) is introduced as v(x, t) ≡ 〈ẏj (x
′, t ′)〉(x,t) = q(x, t)/

ρ(x, t). Equation (37) is rewritten in terms of ρ and v as follows:

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= ρ

〈
ÿj (t

′)
〉
(x,t)

− ∂ρθ

∂x
, (38)

where θ(x, t) ≡ 〈ẏ2
j (t

′)〉(x,t) − v(x, t)2. The bracketed average is derived by coarse-graining
of the optimal velocity model (2):

〈ÿj 〉 =
(

1

τ

)
[〈V (�yj )〉 − v]. (39)

The expansion of the coarse-grained optimal velocity with 〈�yj 〉 leads to

〈V (�yj )〉 = V (〈�yj)〉 +
∞∑

m=2

1

m!
V (m)(〈�yj 〉)〈(�yj − 〈�yj 〉)m〉. (40)

The coarse-grained headway is expressed in terms of density:

〈�yj 〉 = ρ−1 +
1

2ρ

∂ρ−1

∂x
+

1

6ρ2

∂2ρ−1

∂x2
. (41)

Thus, the leading term of (40) is expanded as

V (〈�yj 〉) = V (ρ−1) +
V ′(ρ−1)

2ρ

∂ρ−1

∂x
+

1

6ρ2

∂2v

∂x2
. (42)

Finally, the momentum equation is obtained

∂v

∂t
+ v

∂v

∂x
=

(
1

τ

)
[V (ρ−1) − v] − V ′

2τρ3

∂ρ

∂x
+

1

6τρ2

∂2v

∂x2
. (43)
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The momentum equation has a structure similar to the macroscopic model (25) used by Kerner
and Kohnhauser (1993) and Lee et al (1998, 1999). The phenomenological constants of (25)
are determined from the microscopic car-following model (2).

3. Instability and phase transition

3.1. Linear stability analysis

In the optimal velocity models, all the vehicles move with the same headway h and the optimal
velocity V (h) at a low density of vehicles. When the density is higher than the critical value,
the traffic jam appears as density waves propagating backward. We consider the stability of
the uniform traffic flow. The uniform traffic flow is defined by such a state that all vehicles
move with constant headway h and the optimal velocity V (h). The uniform traffic flow is a
solution of the optimal velocity model. The solution is given by

xj,0(t) = hj + V (h)t with h = L

N
, (44)

where N is the number of vehicles, L is the road length and density ρ is 1/(h + 1).
We apply the linear stability theory to the optimal velocity model (1). By adding a

small fluctuation to the steady-state solution, one can study whether or not fluctuations
amplify. If fluctuations added to the steady-state solution decay in time, the steady state
is stable. Otherwise, fluctuations amplify in time and the uniform traffic flow changes the
different dynamical state. Let yj (t) be a small deviation from the uniform solution xj,0(t):
xj (t) = xj,0(t) + yj (t). Then, the linear equation is obtained from equation (1)

dyj (t + τ)

dt
= V ′(h)�yj (t), (45)

where V ′(h) is the derivative of optimal velocity V (�x) at �x = h. By expanding
yj (t) = Y exp(ikj + zt), one obtains

zezτ = V ′(h)(eik − 1). (46)

By solving equation (46) with z, one finds that the leading term of z is order of ik. When
ik → 0, z → 0. Let us derive the long wave expansion of z, which is determined order by
order around ik ≈ 0. By expanding z = z1(ik) + z2(ik)2 + · · ·, the first- and second-order
terms of ik are obtained

z1 = V ′(h) and z2 = − 1
2V ′(h)(2V ′(h)τ − 1). (47)

If z2 is a negative value, the uniform flow becomes unstable for long wavelength modes. When
z2 is a positive value, the uniform flow is stable. The neutral stability condition is given by
z2 = 0:

τ = 1

2V ′(h)
. (48)

For small disturbances of long wavelengths, the uniform traffic flow is unstable if delay τ

is larger than 1/2V ′(h): τ > 1/2V ′(h). Otherwise, it is stable. Figure 2 shows the region
map in parameter space (h, 1/τ) for xc = 5 and vmax = 2.0. The solid curve indicates the
neutral stability line. In the region above the neutral stability line, the traffic flow with the
uniform headway and velocity profiles is stable. In the region below the neutral stability line,
the traffic flow becomes unstable. One finds that there is a critical point at h(= �x) = xc

and τ = τc = 1/vmax. Therefore, if τ < τc, the uniform flow is always stable irrespective of
density (headway).
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Figure 2. Region map in parameter space (h, 1/τ) for xc = 5 and vmax = 2.0. The solid curve
indicates the neutral stability line. In the region above the neutral stability line, the traffic flow with
the uniform headway and velocity profiles is stable. In the region below the neutral stability line,
the traffic flow becomes unstable.

The neutral stability condition of differential equation model (2) is also obtained and is
consistent with equation (48) (Bando et al 1995). The neutral stability condition of difference
equation model (3) is given by τ = 1/3V ′(h) and is different from equation (48) (Nagatani
et al 1998, Nagatani 1999a). The neutral stability line agrees with the jamming transition
curve obtained from simulation. The neutral stability curves are obtained for the next-nearest-
neighbour interaction model (7) and the backward looking model (9). The linear stability
conditions for models (1), (2), (3), (7) and (9) are summarized as follow:

τ <
1

2V ′(h)
for equations (1) and (2),

τ <
1

3V ′(h)
for equation (3),

τ <
1 + 2γ

2V ′(h)
for equation (7),

τ <
V ′(h) − V ′

B(h)

2[V ′(h) + V ′
B(h)]2

for equation (9).

(49)

The linear stability analysis has been applied to the macroscopic traffic models. The
neutral stability conditions have been derived. Kerner and Konhauser (1993) and Kurtze and
Hong (1995) have derived the linear stability condition for the fluid dynamic model of traffic
described by equations (24) and (25). Equations (24) and (25) admit a simple steady-state
solution representing uniform flow: ρ(x, t) = ρ0, v(x, t) = V (ρ0) ≡ v0. By assuming that
traffic is initially in a state which differs infinitesimally from the uniform flow, one decomposes
this flow into

ρ(x, t) = ρ0 +
∑

k

δρk exp(ikx + σkt),

v(x, t) = v0 +
∑

k

δvk exp(ikx + σkt).
(50)

By substituting the expressions into (24) and (25) and linearizing in δρk and δvk , one obtains the
linear equations. One finds that each linear growth rate σk must satisfy the quadratic equation

(σk + iv0k)2 +

[
1

τ
+ µk2

]
(σk + iv0k) + c2

0k
2 + i

ρ0V
′(ρ0)

τ
k = 0, (51)
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where the prime represents derivative with respect to ρ0. If both roots of this quadratic have
negative real parts, the uniform traffic flow is stable against all infinitesimal perturbations. The
linear stability condition is given by

ρ0V
′(ρ0)

2 < c2
0ρ

−1
0 . (52)

This linear stability condition for the macroscopic model (24) and (25) is compared with (48)
and (49) for the optimal velocity models.

If one uses the expression c2
0 = V ′(ρ−1

0 )/2τρ2
0 in (43) derived by Lee et al (2001), the

following linear stability condition is obtained

τ <
1

2V ′(ρ−1
0 )

, (53)

where the prime represents derivative with respect to ρ−1
0 . Thus, the macroscopic linear

stability condition (53) agrees with the microscopic stability condition (49).

3.2. From instability to density waves

When small noises are added to the uniform traffic flow, its flow is stable and robust for
low density because the stability condition (49) is satisfied. When the density is higher than
the critical density, the condition (49) is not satisfied. Then, the uniform flow including
noises is unstable, the noises amplify in time and the uniform flow changes finally to the
inhomogeneous traffic flow with propagating density waves. Figure 3 shows the typical profile
of the inhomogeneous flow obtained from simulation of (3) where vmax = 2.0, τ = 0.5,
xc = 5.0 and average headway �x0 = 5.0. The pattern (a) indicates the time evolution of the
headway profile in the unstable region in figure 2. The headway profile (b) is obtained after
sufficiently large time. The initial uniform flow evolves in time to the inhomogeneous flow
with the kink density waves. The density wave propagates backward with constant speed. The
density wave is robust and keeps the kink form. The high-density region is the jammed state of
vehicles and the low-density region is the FT state. Thus, the coexisting phase of both jammed
and free states appears in the unstable region of figure 2.

The upper dotted line of headway profile (b) indicates the value of headway outside the
jammed state. The bottom dotted line indicates the value of headway within the jam. These
values keep constant values for constant τ and depend only on τ . By considering long-time
evolution, only two distinct headways survive for the coexisting phase. Figure 4 shows the plot
of the headways within and outside the jam for various values of τ . The solid curve connecting
their circles gives the coexisting curve in the phase space (h, 1/τ). The dotted line indicates
the neutral stability curve.

Figure 5 shows the plot of the traffic current q against density ρ = 1/(h + 1) where
vmax = 2.0, τ = 0.5 and xc = 5.0. The traffic current increases with density in the low-density

Figure 3. Typical profile of the inhomogeneous flow obtained from simulation of (3). (a) Time
evolution of the headway profile in the unstable region in figure 2. (b) Headway profile at t = 10 100.
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Figure 4. Plot of the headways within and outside the jam for various values of τ . The solid curve
connecting their circles gives the coexisting curve in the phase space (h, 1/τ). The dotted line
indicates the neutral stability curve. This presents the phase diagram.

Figure 5. Plot of the traffic current q against density ρ = 1/(h + 1).

region, reaches the maximal value, decreases discontinuously at the gap and then decreases
continuously with increasing density. The critical density at the gap agrees with the jamming
transition point: the neutral stability point.

The dependency of jamming transition on the strength of noises (fluctuations) has been
studied for the moving group of many vehicles (Nagatani 2000a). The traffic flow on a single-
lane highway is a unidirectionally interacting many particle system since a vehicle interacts with
one vehicle ahead. When a downstream vehicle changes the speed or headway, the variation
propagates upstream. Then, it will die out or evolve to the density waves. Without fluctuation
(noise), the traffic flow is uniform and homogeneous under open boundary condition. However,
when the velocity of a leading vehicle fluctuates at a finite amplitude, the density waves may
propagate upstream and the formation of the density waves depends on the headway between
vehicles (or velocity) and the amplitude of fluctuation. Figure 6 shows the spatio-temporal
evolution of headway against the vehicle number j in the difference equation model (3). When
the traffic state is in the linear stable region, the traffic flow remains uniform and homogeneous
for an infinitesimal fluctuation. If the traffic state is in the unstable region, the homogeneous
traffic flow breaks down and the density waves appear (see the patterns (a) and (b) in figure 6).
The pattern (a) exhibits the moving localized cluster (MLC) of jams. The MLC appears just
near the transition point. It is produced periodically. The pattern (b) exhibits the oscillating
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congested traffic (OCT). The number of density waves increases accordingly as the headway
approaches to the turning point xc of the optimal velocity function (6).

Figure 7 shows the phase diagram of different kinds of traffic triggered by fluctuations in
(vb, δ) space where vb is the velocity of leading vehicle and δ is the amplitude of fluctuations.

Figure 6. Spatio-temporal evolution of headway for 200 vehicles moving with a group. (a) Pattern
for the MLC of jams just near the transition point. (b) Pattern of the OCT in an unstable region.

Figure 7. Phase diagram of different kinds of traffic triggered by fluctuations in (vb, δ) space where
vb is the velocity of leading vehicle and δ is the amplitude of fluctuations. Displayed are the FT,
the MLCs, the OCT and the HCT.
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The circular points indicate the transition points between the stable and unstable regions. The
dotted lines of vb = 0.42 and vb = 1.58 represent the neutral stability lines. The dotted lines
of vb = 0.16 and vb = 1.84 represent the velocities of the coexisting lines for a = 1/τ = 2.0
and xc = 5.0. For an infinitesimal fluctuation δ → 0, the transition points are consistent with
the neutral stability points. With increasing the amplitude of fluctuations, the transition points
approach to the coexisting line. The MLCs occur just near the transition point. Within the
transition points, the OCT occurs. Thus, the jamming transition depends on both velocity and
strength of fluctuation.

3.3. Ginzburg–Landau equation and phase diagram

The jamming transition has properties very similar to the conventional phase transition even
if the traffic system is far from equilibrium. With increasing density, the FT flow changes to
the jammed traffic at a specific value of density. The high-density traffic flow results in the
formation of traffic jams in which the FT of low density coexists with the jammed traffic of
high density. The FT and jammed traffic correspond respectively to the gas and liquid phases
in the conventional gas–liquid phase transition: the headway or vehicle density correspond
to the volume or density and the inverse 1/τof the delay time (sensitivity a) corresponds
to temperature. Figure 4 exhibits the similarity to the phase diagram of gas–liquid phase
transition. The coexisting curve represents the phase separation line. The neutral stability
line represents the spinodal line. The region between the coexisting curve and the neutral
stability line corresponds to the metastable region. The metastability has been observed as
the hystereris phenomenon appearing near the point of maximal current in the fundamental
diagram (Barovic et al 1998, Krauss 1998, Helbing 2001). The metastability is characteristic
of the first-order phase transition. Also, the critical point corresponds to that of the gas–liquid
phase transition.

The small parameter ε representing the neighbourhood of the critical point is defined as
τ/τc = 1 + ε2. By sustaining the perturbed terms less than sixth-order term of ε (Cross and
Hohenberg 1993), one obtains the TDGL equation (Kawasaki 1984, Nagatani 1998) from
model (1):

∂S

∂t
= −

(
∂

∂X
− 1

2

∂2

∂X2

)
δ�(S)

δS
(54)

with X = j + {2V ′(xc)
2τ }t and S(X, t) = �xj(t) − xc,

�(S) =
∫

dx

(
V ′(xc)

48

(
∂S

∂X

)2

+ φ(S)

)
,

and the thermodynamic potential

φ(S) = −V ′(xc)

(
τV ′(xc) − 1

2

)
S2 +

|V ′′′(xc)|
24

S4. (55)

The thermodynamic potential (55) has the double wells, two minimums below the critical point
(1/τ < 1/τc (= 2V ′(xc))). The TDGL equation (54) has two steady-state solutions except for
a trivial solution S = 0: the one is the uniform solution

S(X, t) = ±
[

6V ′(xc)(2V ′(xc)τ − 1)

|V ′′′(xc)|
]1/2

, (56)

and the other is the kink solution

S(X, t) = ±
[

6V ′(xc)(2V ′(xc)τ − 1)

|V ′′′(xc)|
]1/2

tanh[{12(2V ′(xc)τ − 1)}1/2(X − X0)], (57)

where X0 is a constant.
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The coexisting curve, the spinodal line and the critical point can be obtained from
thermodynamic potential (55) similarly to the conventional thermodynamic potential of phase
transition (Stanley 1971). The coexisting curve is given by the condition

∂φ

∂S
= 0 and

∂2φ

∂S2
> 0. (58)

One obtains the coexisting curve in terms of the original parameters

(�x)co = xc ±
[

6V ′(xc)(2V ′(xc)τ − 1)

|V ′′′(xc)|
]1/2

. (59)

The spinodal line is given by the condition

∂2φ

∂S2
= 0. (60)

One obtains the spinodal line

(�x)co = xc ±
[

2V ′(xc)(2V ′(xc)τ − 1)

|V ′′′(xc)|
]1/2

. (61)

By expanding the neutral stability condition (48) around the critical point V ′(xc):
V ′(�x) = V ′(xc) + V ′′′(xc)(�x − xc)

2/2, one obtains the spinodal line (61). Thus, the
spinodal line is consistent with the neutral stability line around the critical point. Indeed, the
coexisting curve (59) and the spinodal line (61) agree with those obtained from simulation
for 1/τ > V ′(xc) though equations (59) and (61) are derived by the perturbation around the
critical point. The critical point is given by the condition

∂φ

∂S
= 0 and

∂2φ

∂S2
= 0. (62)

One obtains the critical point

(�x)c = xc and
1

τc
= 2V ′(xc). (63)

This is consistent exactly with the critical point obtained from the neutral stability condition
(48). Thus, the thermodynamic theory for the jamming transition is formulated in terms of the
TDGL equation.

3.4. Traffic states in the presence of inhomogeneities

The jamming transition between the free flow and the jammed state has been studied without
any inhomogeneity on highway. When vehicles pass ramps or other spatial inhomogeneities
of a freeway, the different kinds of congested traffic are triggered by the inhomogeneities. The
inhomogeneities affect the traffic flow as the bottlenecks. Lee et al (1999) have investigated
the traffic states induced by an on-ramp inflow with the use of macroscopic traffic model.
By varying the inflow, traffic flow breaks down to the distinct dynamic states. They have
derived the phase diagram for the different traffic states: the pinned localized cluster (PLC),
the recurring hump state, the triggered stop-and-go (TSG) traffic and the OCT. Helbing et al
(1999) have presented a phase diagram of the different kinds of congested traffic in the presence
of on-ramp inflow by using the nonlocal, gas-kinetic-based traffic model. Nagatani (2000b)
has studied the phase diagram of noisy traffic states in the presence of a bottleneck by the use
of the optimal velocity model.

Very recently, Treiber et al (2000) have investigated the spatio-temporal structure of
distinct states for traffic near on-ramps by the use of the microscopic model (IDM). They have
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Figure 8. Phase diagram resulting from IDM simulations of an open system with a flow-conserving
bottleneck (Treiber et al 2000). The control parameters are the traffic current Qin and the bottleneck
strength δQ. The distinct traffic states (HCT, OCT, TSG, PLC) are indicated. The MLC indicates
the moving localized cluster.

found four distinct congested traffic states: (a) homogeneous congested traffic (HCT), (b) OCT,
(c) TSG waves and (d) PLC. The HCT state is the homogeneous congested state with high
density extended behind on-ramp. The OCT state consists of many density waves propagating
backward from on-ramp. The density profile oscillates in both space and time. In the TSG
state, the stop-and-go wave is produced with a constant period. The PLC state consists of
high-density region localized just behind on-ramp.

Figure 8 shows the phase diagram resulting from IDM simulations of an open system with
a flow-conserving bottleneck. The control parameters are the traffic current Qin and the bottle-
neck strength δQ. At low traffic current, the FT evolves to the PLC, through the OCT and finally
to the HCT with increasing bottleneck strength. For low bottleneck strength, the FT evolves
through the MLC to the TSG waves with increasing traffic current. Thus, the inhomogeneities
on freeway produce the complex traffic jams. Their density waves have been observed in real
traffic (Treiber et al 2000). The comparison with the empirical data is given in section 5.

4. Density waves and nonlinear equations

Until now, various density waves have been observed in the traffic flow. The traffic jams
have been treated frequently as the density waves. The nonlinear wave equations have been
proposed to describe the jams. The Burgers, KdV and MKdV equations have been presented
as the typical ones. The proposed wave equations have depended strongly on the traffic models
(Newell 1961, Musha and Higuchi 1976, 1978, Whitham 1990, Kerner and Konhauser 1993,
Komatsu and Sasa 1995, Kurtze and Hong 1995). Recently, the three distinct nonlinear wave
equations have been derived from the optimal velocity model (1) in the unified way (Muramatsu
and Nagatani 1999, Nagatani 2000c). The different wave equations describe the density waves
appearing in the three distinct regions: the stable traffic region out of the coexisting curve, the
metastability region between the coexisting and spinodal lines, and the unstable region within
the coexisting curve.

4.1. Burgers equation

In the stable traffic region out of the coexisting curve, the headway (or velocity) profile with
any forms at an initial stage evolves in time to the uniform distribution with the same spacing
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(velocity) for all vehicles. At an asymptotic stage of the evolving process, a triangular shock
wave is observed in the simulation of optimal velocity model (1). Figure 9 shows the relaxation
process of the nonuniform flow to the uniform steady flow. The pattern (a) shows the time
evolution of the headway profile when the initial density profile has the kink–antikink form.
At the intermediate stage, the kink density wave evolves to the triangular shock wave. The
headway profile (b) at t = 10 000 exhibits the triangular shock wave where points c and
d indicate the positions of the shock front and the intersection of the slope. The triangular
shock wave propagates backward with a constant speed. The propagation speed is obtained as
V ′(�x0) where �x0 is the average value of headways.

Let us derive the triangular shock solution from the optimal velocity model (1). By defining
the slow variables X = ε(j + V ′(�x0)t) and T = ε2t , setting �xj(t) = �x0 + εR(X, T )

(0 < ε 	 1) and expanding equation (1) to the third order of ε, one obtains the nonlinear
equation:

∂R

∂T
− V ′′(�x0)R

∂R

∂X
=

(
V ′(�x0)

2
− V ′(�x0)

2τ

)
∂2R

∂X2
, (64)

where V ′′(�x0) is negative for �x0 > xc. Since the coefficient (V ′/2 − V ′2τ) of the second
derivative has a positive value in the stable traffic flow satisfying the stability condition (49),
equation (64) is just the Burgers equation. The solution for the asymptotic stage (T 
 1) is a

Figure 9. Relaxation process of the nonuniform flow to the uniform steady flow in the stable traffic
region above the coexisting curve. (a) Time evolution of the headway profile when the initial
density profile has the kink–antikink form. (b) Headway profile at t = 10 000.
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train of N -triangular shock waves (Tatsumi and Kida 1972)

R(X, T ) = 1

|V ′′|T
(

X − 1

2
(ηm + ηm+1)

)

− 1

2|V ′′|T (ηm+1 − ηm) tanh

[
C

4|V ′′|T (ηm+1 − ηm)(X − ξm)

]
, (65)

where C = V ′/2−V ′2τ , the coordinates of the shock fronts are given by ξm (m = 1, 2, . . . , N)

and those of the intersections of the slopes with x-axis are given by ηm. The triangular shock
wave propagates backward with propagation speed V ′(�x0). The theoretical result agrees
with the simulation result. The two slopes at the shock front and intersection scale as t−1

and t−2. These results are consistent with the simulation result (Nagatani 2000c).

4.2. KdV equation

Newell (1961) and Whitham (1990) have derived the KdV equation for the optimal velocity
model by the use of the following optimal velocity function different from equation (6):

V (�xj (t)) = vmax{1 − exp[−γ (�xj (t) − L]}, (66)

where vmax is the maximal velocity, L is the car length and γ is a constant. The soliton solution
has been obtained from the theoretical analysis. However, such a density wave as the soliton
is not obtained from the simulation of optimal velocity model (1) with (66).

Later, Kurtze and Hong (1995) have derived the KdV equation from the hydrodynamic
model by the use of the nonlinear analysis method. They have conjectured that the single-
pulse density wave obtained from the simulation is the soliton. However, the single-pulse
density wave of the simulation is not the soliton but the kink–antikink density wave (Kerner and
Konhauser 1993, Kerner et al 1995, Muramatsu and Nagatani 1999). Muramatsu and Nagatani
(1999) have shown that the soliton density wave appears only just above the neutral stability
line (spinodal line) by the use of the nonlinear analysis and simulation for the optimal velocity
model (2) with (6). The soliton occurs only in the metastable region just above the spinodal line.

Let us derive the KdV equation from (2) with (6). Suppose that the headway of uniform
traffic flow is near the neutral stability point. One quantifies this by writing

1 − as

a
= ε2 (0 < ε 	 1), (67)

whereas = 2V ′(�x0) andas (=1/τs) is the sensitivity at the neutral stability point. We consider
the slowly varying behaviour at long wavelengths near the neutral stability line. One extracts
slow scales for space variable j and time variable t . One defines the slow variables X and T :
X = ε(j + V ′(�x0)t) and T = ε3t . By setting the headway as �xj(t) = �x0 + ε2R(X, T )

and expanding to the sixth order of ε, one obtains

ε5a

[
∂R

∂T
− V ′(�x0)

6

∂3R

∂X3
− V ′′(�x0)R

∂R

∂X

]
+ O(ε6) = 0. (68)

If one ignores the O(ε6) terms, equation (68) is just the KdV equation with a soliton solution as
the desired solution. The amplitude of soliton solutions of the KdV equation is a free parameter.
The perturbation term O(ε6) of perturbed KdV equation (68) selects a unique member of the
continuous family of KdV solitons. By satisfying the solvability condition, one obtains the
soliton solution

�xj(t) = �x0 +
14V ′(�x0)

3V ′′(�x0)

∣∣∣as

a
− 1

∣∣∣
× sec h2

[√
7

3

∣∣∣as

a
− 1

∣∣∣ {j +

(
1 +

14

9

∣∣∣as

a
− 1

∣∣∣) V ′(�x0)t

}]
. (69)
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Figure 10. Plot of the headway against position within the soliton density wave. The solid
curve indicates the analytical result (69). The circle, triangle, square and diamond points indicate,
respectively, the simulation result for a = 0.90, 0.95, 1.00 and 1.10.

Figure 10 shows the plot of the headway against position within the soliton density wave.
The solid curve indicates the analytical result (69). The circle, triangle, square and diamond
points indicate, respectively, the simulation result for a = 0.90, 0.95, 1.00 and 1.10. The
analytical results are in good agreement with the simulation results near the neutral stability line.

The soliton density appears just above the neutral stability line within the metastable
region. According to deviation from the neutral stability line, the soliton density wave becomes
unstable. The soliton density wave develops in time to the kink–antikink density wave.

4.3. Modified KdV equation

Kerner and Konhauser (1993) have shown that the single-pulse density wave appears as the
traffic jams at high density by simulation of the hydrodynamic model. Bando et al (1995) have
shown that the traffic jams appear as the kink–antikink density wave in the unstable traffic
region by simulation of the optimal velocity model. Later, Komatsu and Sasa (1995) have
presented the nonlinear analysis for the optimal velocity model (2). They have derived the
modified KdV equation for the traffic jams.

Let us derive the modified KdV equation for the model (1). We note that it is necessary
for the optimal velocity function to have a turning point. Otherwise, one cannot derive the
modified KdV equation. The perturbation around the critical point (xc, 1/τc) is considered.
For the neighbourhood of the critical point, a small parameter ε is defined as ε2 = 2V ′(xc)τ −1
(0 < ε 	 1). By defining the slow variables X = 2ε(j + V ′(xc)t) and T = ε3V ′(xc)t/3, one
sets the headway as �xj(t) = xc +ε(V ′(xc)/|V ′′′(xc)|)1/2R(X, T ). By expanding equation (1)
to fifth order of ε, one obtains

ε4

(
∂R

∂T
− ∂3R

∂X
+

∂R3

∂X

)
+ O(ε5) = 0, (70)

where O(ε5) is the fifth-order term. Equation (70) is just the modified KdV equation with an
O(ε) correction term. The modified KdV equation has the kink solution

R(X, T ) = c1/2 tanh

[( c

2

)1/2
(X − cT )

]
. (71)
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The correction term O(ε5) is necessary to determine the selected value of c. By using the
solvability condition, one obtains c = 6. In terms of the original parameters, the kink solution
is given by

�xj(t) = xc ±
[

6V ′(xc)(2V ′(xc)τ − 1)

|V ′′′(xc)|
]1/2

× tanh[{12(2V ′(xc)τ − 1)}1/2{j + V ′(xc)(2 − 2V ′(xc)τ )t}]. (72)

The kink solution (72) agrees with (57) obtained from the TDGL equation.
The kink solution of the differential equation model (2) is given by

�xj(t) = xc ±
[

5V ′(xc)(2V ′(xc)τ − 1)

|V ′′′(xc)|
]1/2

× tanh

[{
5(2V ′(xc)τ − 1)

2
t

}1/2 {
j − 5V ′(xc)

6
(2V ′(xc)τ − 1)t

}]
. (73)

The coefficients of model (1) are different from those of model (2). The theoretical kink
solution is in good agreement with the simulation result. Thus, the theoretical result holds for
the region of 1 < τc/τ < 2 far from the critical point, irrespective of the perturbation of a
small deviation from the critical point (Komatsu and Sasa 1995).

We discuss the effect of the next-nearest-neighbour interaction on the traffic jams. We
present the theoretical and simulation results of model (7) (Nagatani 1999a, Muramatsu and
Nagatani 2000a). The neutral stability condition is given as τ = (1 + 2γ )/2V ′(�x0). By
comparing this with (48), the unstable region deceases with increasing γ . The next-nearest-
neighbour interaction stabilizes the traffic flow. By applying the above nonlinear analysis
to (7), one obtains the kink solution for the traffic jams

�xj(t) = xc ±
[

5V ′(xc)(2V ′(xc)τ − 1)C2

|V ′′′(xc)|C1

]1/2

× tanh

[{
5(2V ′(xc)τ − 1)C3

2C1

}1/2 {
j − 5V ′(xc)C2

6C1
(2V ′(xc)τ − 1)t

}]
, (74)

where C1 = 1 + 7γ + 14γ 2, C2 = 1 + 8γ + 12γ 2 and C3 = 1 + 2γ .
The kink jams become weaker than (73) with increasing strength γ of the next-nearest-

neighbour interaction. Thus, the next-nearest-neighbour interaction has the effective effect on
the reduction of traffic jams.

5. Comparison with empirical data

Most real traffic data are collected by detectors located at cross sections of the freeway (Kerner
and Rehborn 1996a, Nagel et al 1998, Kerner 1999a, 2000, 2002, Neubert et al 1999, Treiber
et al 2000). Some data based on aerial photography are obtained to track the trajectories of
many interacting vehicles (Treiterer and Taylor 1966, Treiterer and Myers 1974).

Treiterer et al have exhibited the spontaneous formation of traffic jams, so-called ‘phantom
jams’, without obvious reason such as a traffic accident or a bottleneck. At an initial stage,
vehicles move freely and are well separated from each other. Then, vehicles decelerate, stop
for a certain period of time and start again. A typical stop-and-go wave (a traffic jam) is formed.
The density wave propagates upstream (oppositely to the moving direction of vehicles).

Kerner and Rehborn (1996a, b, 1997, 1999a, b, 2000) and Kerner (2002) have presented
a more detailed analysis of traffic jams on the three-lane highway (A5-North and A5-South
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Figure 11. The spatio-temporal evolution of the traffic flow. Wide moving jams and three traffic
phases. It is seen that the sequence of two wide jams propagates with a constant velocity through
free flow or synchronized flow (Kerner 2002).

in Germany). Figure 11 shows the spatio-temporal evolution of the traffic flow. It is seen
that the sequence of two wide jams propagates with a constant velocity through free flow or
synchronized flow. Two parallel jams are fully developed and move over a long time periods
and road sections. The wide moving jam has an upstream moving localized structure which is
restricted by two fronts where the vehicle speed changes sharply. The vehicle speed and the
flow rate inside a wide jam are either zero or negligible. There is no influence of the inflow into
the jam on the jam’s outflow. The wide moving jams possess unique, coherent, predictable and
reproducible parameters which do not depend on time and they are the same for different wide
moving jams if control parameters (weather and other road conditions) of traffic do not change.
These properties are similar to the kink jams or auto-solitons predicted by the nonlinear wave
equations. They have found three distinct phases of traffic: free flow (F), synchronized flow
(S) and wide moving jam (J). Figure 11 shows the three traffic phases. The diagrams on the
top in figure 12 show the plots of average vehicle speed against time for three traffic phases.
The diagrams on the bottom in figure 12 show the representations of the related traffic phases
on the flow-density plane (Kerner 2002). Possible ways of a theoretical description of the
empirical features of the traffic phases synchronized flow and wide moving jam is up to now
in a discussion between different scientific groups (Treiber et al 2000, Kerner 2002).

Nagel et al (1998) have compared the simulation result obtained from the two-lane NaSch
model with the empirical data on the two-lane highway measured by Wiedemann (1995).
The left column in figure 13 shows the empirical data of flow and lane usage as function of
density. The density, flow, velocity and lane usage are measured in units of veh/km/2lanes,
veh/h/2lanes, km h−1 and %, all averaged over 1 min intervals. The top left plot shows the
typical flow-density diagram. At low densities, the flow increases linearly with density until it
reaches a maximum q ≈ 3500 veh/h/2lanes at ρ ≈ 40 veh/km/2lanes. The addition of vehicles
does not change the average velocity and flow is a linear function of density. At high densities,
traffic consists irregularly of jam waves and laminar outflow between jams. Data points are
arbitrary averaged over these regimes, leading to a larger variability in the measurements. The
velocity against density confirms this. There exists an abrupt drop in the average velocity at
ρ ≈ 40 veh/km/2lanes. The lane usage shows a peculiarity. At very low densities, all vehicles
are in the right lane as should be expected. With increasing density, more than half of the
traffic is on the left lane. At densities above the maximum flow point this reverts to an equal
distribution of densities between lanes.
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Figure 12. Three distinct phases of traffic: free flow (F), synchronized flow (S) and wide moving
jam (J). The diagrams on the top show the plots of average vehicle speed against time for three
traffic phases. The diagrams on the bottom show the representations of the related traffic phases
on the flow-density plane (Kerner 2002).

Figure 13. The left column plots show the empirical data of flow (top) and lane usage fraction
(bottom) as function of density (Wiedemann 1995). The density, flow, velocity and lane usage
fraction are measured in units of veh/km/2lanes, veh/h/2lanes, km h−1 and %, all averaged over
1 min intervals. The right column plots show the simulation result obtained by the extended NaSch
model to the two lanes (Nagel et al 1998).
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Nagel et al (1998) have extended the NaSch model to the two-lane traffic to take into
account the lane changing rule and trucks. They have obtained the simulation result similar to
the empirical data. The right column in figure 13 shows the plots of flow (top) and lane usage
fraction (bottom) obtained from the simulation against density.

The above results are obtained from time-averaged measurements. It is also useful to
analyse statistically the single-vehicle data of highway traffic. By using the single-vehicle data
directly, empirical time headway distributions and speed–distance relations can be obtained
(Neubert et al 1999, Knospe et al 2002a). Both quantities yield relevant information about the
microscopic states. Figure 14 shows the time-headway distributions of different traffic states at

Figure 14. (Continued)
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Figure 14. Time-headway distributions of different traffic states at different local densities (Knospe
et al 2002a). (a) Distribution of free flow traffic. (b) Distribution of synchronized traffic.
(c) Distribution of wide moving jams.

different local densities. The distributions of time headway for free traffic, synchronized flow
and wide moving jams (congested traffic) are indicated in figure 14 (a)–(c), respectively. The
distribution (c) of wide moving jams represents that of the time during which the detector is
occupied by a car since the calculation of the accurate time headway is not possible for the car to
stop at the detector. The time-headway distributions show a strong dependence on the density.

For the free flow traffic (a), the short time behaviour remains nearly unchanged although
the width of the distribution decreases. Not only the maximum of the distribution is at about
0.68 s, but also the values of the shortest time headways do not change significantly. In contrast
to free flow, the time-headway distribution (b) of the synchronized flow shows a non-trivial
dependence on the density. While the maximum of the distribution is shifted to larger values
(≈1.3 s) and the variance is reduced, small time headways do still exist. The probability of
these small time headways decreases with increasing density, whereas the distribution in free
flow can simply be rescaled by the density for small times. For wide moving jams, a car at
rest needs to accelerate. The distribution (c) shows that a car needs a minimum time of about
2 s to accelerate. As a characteristic property of a wide jam, this time determines the escape
rate from a jam and thus its outflow.

The most important information for an adjustment of the speed is the accessible distance
headway. In the optimal velocity model, this is used as input parameters (Bando et al 1995a).
A detailed analysis of the speed–distance relationship is important to model traffic flow.
Neubert et al (1999) have obtained the speed–distance relations from the reduced data set of
the single-vehicle data. Figure 15 shows the speed–headway relations for the different traffic
states (top and middle) and all states (bottom). The dotted line indicates the optimal velocity
function by Bando et al (1995b). In the free-flow regime, the function is characterized by a
steep increase at small distances corresponding to the short time headways in figure 14 (top).
For synchronized states, the asymptotic speed takes a rather small value. When averaging over
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Figure 15. Speed-headway relations for the different traffic states (top and middle) and all states
(bottom) (Neubert et al 1999). The dotted line indicates the optimal velocity function by Bando
et al (1995b).

both free-flow and congested states (figure 15, bottom), the asymptotic regime is reached at
much larger distances. It is necessary to distinguish between the traffic states in order to get a
more precise description of the speed–headway relation.

Figure 16 shows the mean-flow–density relation obtained by using the single-vehicle data.
The results for two averaging procedures are displayed. The continuous form (white square
points) of the fundamental diagram is obtained by averaging over all flow values of a given
density, while the discontinuous shape (black points) is obtained by discriminating between
free-flow and synchronized traffic. The continuous stationary fundamental diagram depends
on the statistical weight of free-flow and synchronized states. Therefore, it is necessary to
distinguish between the different states in order to obtain reasonable results for the stationary
fundamental diagram. Here, the constant flow in a wide range of high densities is produced
by the bottleneck effect.

Recently, traffic breakdowns behind bottlenecks have attracted considerable attention
(Hall and Agyemang-Duah 1991, Daganzo 1996, Kerner and Rehborn 1996b, 1997, Nagatani
1997c, 2000b, Helbing and Treiber 1998a, b, Lee et al 1998, 1999, Helbing et al 1999, Kerner
2002). Measurements of traffic breakdowns on various freeways suggest that many dynamic
aspects are universal and therefore accessible to a physical description (Treiber et al 2000).
One common property is the capacity drop (typically of the order of 20%) associated with a
breakdown, which induces the hysteresis effects and is the basis of applications like dynamic
traffic control to avoid the breakdown. In most cases, traffic breaks down upstream of a
bottleneck and the congestion has a stationary downstream front at the bottleneck. The types
of bottleneck (on-ramps, lane closings, tunnel or uphill gradients) are not necessarily important.
Some types of congested traffic have been found and there are extended states with a relatively
high flow among them. These states, referred to as synchronized traffic, can be more or
less homogeneously flowing or exhibit distinct oscillations in the time series of detector data
(Kerner and Rehborn 1996b, 1997, Kerner 2002). The congested traffic flow is very often
homogeneous near the bottleneck except for fluctuations but oscillations occur further upstream
(Kerner 1998). Also, there is an observation of traffic breakdown to a PLC near on-ramp.
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Figure 16. Mean-flow–density relation obtained by the single-vehicle data (Neubert et al 1999).
The continuous form (white square points) of the fundamental diagram is obtained by averaging
over all flow values of a given density, while the discontinuous shape (black points) is obtained by
discriminating between free-flow and synchronized traffic.

Treiber et al (2000) have presented the detailed empirical data showing different kinds
of congested traffic forming near road inhomogeneities. The traffic states are localized
or extended, and homogeneous or oscillating. The combined states are observed like the
coexistence of MLCs and pinned clusters at road inhomogeneities, or regions of OCT upstream
of nearly HTC. The empirical findings are consistent in a recently proposed theoretical phase
diagram for traffic near on-ramps (Helbing et al 1999). They have simulated the same situations
with the use of the IDM where the empirical values are used for the boundary conditions (Treiber
et al 2000). They have reproduced all empirical observations including the coexistence of states
by describing inhomogeneities with local variations of one model parameter.

Figure 17 shows the spatio-temporal plots of the local velocity obtained by Treiber et al
(2000). The pattern (a) shows that the incident induces a breakdown to an extended state of
HCT. There exist the small oscillations near the upstream boundary. The downstream front
remains fixed at the bottleneck (x ≈ 478 km), while the upstream front propagates upstream.
The vehicles enter the congested region at the upstream front and can accelerate into FT at the
downstream front. The pattern (b) shows the spatio-temporal plot of the local velocity obtained
from the corresponding micro-simulation with upstream boundary conditions of empirical
data and homogeneous von Neumann downstream boundary condition. The empirical spatio-
temporal pattern (a) is in quantitative agreement with the simulated pattern (b).

Figure 18 shows the spatio-temporal plots of the smoothed velocity of the oscillating
congested state occurring during the rush hour. The pattern (a) is obtained from the empirical
data where traffic breaks down to oscillating congested state by the bottleneck inhomogeneities
of intersections (Treiber et al 2000). The pattern (b) is obtained from the corresponding
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Figure 17. (a) Spatio-temporal plot of local velocity obtained from the empirical data of traffic
breakdown (Treiber et al 2000). This exhibits the extended state of HCT. (b) Spatio-temporal
pattern obtained from the corresponding microsimulation.

micro-simulation by the use of the empirical boundary conditions. Oscillations with a period
of about 12 min are observed. The velocity of OCT state rarely exceeds 50 km h−1, i.e. there is
no FT between the clusters. This exhibits the signature of OCT while there is FT between the
TSG waves. The downstream front of OCT is fixed at the bottleneck while the upstream front
propagates upstream with a constant velocity of 15 km h−1. The simulated spatio-temporal
pattern (b) shows a quantitative agreement with the empirical pattern (a).

Figure 19 shows the spatio-temporal plots of local density for the two MLCs (TSG waves)
and PLC observed on the freeway A5 North near Frankfurt (Treiber et al 2000). The patterns
(a) and (b) are obtained respectively from the empirical data and the corresponding micro-
simulation. The stop-and-go waves are triggered near an intersection. Two stop-and-go waves
are separated by FT. Two isolated density waves propagate through FT and do not trigger any
secondary waves. This is consistent with MLCs. There also exists a PLC at x = 479 km. The
simulated pattern (b) exhibits the coexistence of pinned and MLCs. This is in quantitative
agreement with the observed dynamics.
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Figure 18. (a) Spatio-temporal plot of the smoothed velocity for the oscillating congested state
occurring during the rush hour, obtained from the empirical data. Traffic breaks down to oscillating
congested state by the bottleneck inhomogeneities of intersections (Treiber et al 2000). The
pattern (b) is obtained from the corresponding microsimulation with the use of the empirical
boundary condition.

Kerner (2002) has studied the empirical features of the phase transition from free flow
to synchronized flow (the F → S transition) at on and off ramps. It has been found that the
F → S transition is the local first-order phase transition. From the theory and experimental
studies of the local first-order phase transition in nonequilibrium system, it is well known that
in a lot of cases the induced phase transition occurs rather than the spontaneous phase transition
is realized. The induced F → S transition can also occur in traffic flows at a bottleneck if
the flow rates are high enough for the occurrence of the F → S transition in free flow. The
F → S transition can be induced when a wide moving jam propagates through the bottleneck.
The example of the F → S transition is shown in figure 20 (Kerner 2002). During the whole
time before the moving jam reaches the on ramp, free flow is realized. After the moving jam
has passed the on ramp, a synchronized flow is formed at the on ramp. Thus, the F → S

transition is induced at the on ramp during the jam propagation.
Very recently, Knospe et al (2002b) have shown that the desire for smooth and comfortable

driving is responsible for the occurrence of synchronized traffic. Using the stochastic CA
model, it has been found that the anticipation effects reproduce the empirically observed
coexistence of wide moving jams with both free flow and synchronized traffic.

6. Bus-route systems

The bus operation is also a typical many-body system of interacting buses and passengers. The
bus-route dynamics is closely related to the traffic flow dynamics in one dimension. If a bus is
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Figure 19. (a) Spatio-temporal plot of the density for the two MLCs (TSG waves) and PLC
observed on the freeway A5 North near Frankfurt (Treiber et al 2000). The pattern (b) is obtained
from the corresponding microsimulation with the use of the empirical boundary condition.
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Figure 20. An example of the F → S transition (Kerner 2002). During the whole time before the
moving jam reaches the on ramp, free flow is realized. After the moving jam has passed the on
ramp, a synchronized flow is formed at the on ramp.

delayed by some fluctuation, the time headway (gap) between it and its predecessor becomes
larger than the initial time headway because this bus has to pick up more passengers than the
initial value. During the period of delay, more passengers will be waiting for the bus. As a
result, the bus will get further delayed. The slowly moving delayed bus will slow down the
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buses behind it. The bunching transition between an inhomogeneous jammed phase (where the
buses bunch together) and a homogeneous phase occurs with varying the initial time headway.
Thus, the bus behaviour exhibits the dynamical phase transition similar to the traffic flow.

6.1. Models

The bus-route models have been proposed to investigate the bus behaviour on a bus route. The
traffic flow models have been extended to mimic the bus behaviour. Three models have been
presented until now: the first is the cellular automaton model (O’loan et al 1998, Chowdhury
and Desai 2000, Chowdhury et al 2000), the second model is the time-headway model of
buses (Nagatani 2001a, b) and the third is the car-following model of buses (Nagatani 2000d,
Huijberts 2002).

We present the CA model for the bus route (O’loan et al 1998). The model is defined on
a one-dimensional lattice with periodic boundary conditions. Each lattice site is labelled by a
number i running from 1 to L. Each site can be thought of as a bus stop on a bus route. Site i

has two binary variables τi and φi associated with it. These variables can be described in the
following terms: (i) If site i is occupied by a bus then τi = 1; otherwise τi = 0. (ii) If site i has
passengers on it then φi = 1; otherwise φi = 0. A site cannot have both τi = 1 and φi = 1
(i.e. it cannot have a bus and passengers). There are M buses in the system and the bus density
ρ = M/L is a conserved quantity. The update rules for the system are as follows: (1) Pick a
site i at random. (2) If τi = 0 and φi = 0 then φi → 1 with probability λ. (3) If τi = 1 and
τi+1 = 0, define a hopping rate µ as follows: (i) µ = α if φi+1 = 0; (ii) µ = β if φi+1 = 1, and
update τi → 0, τi+1 → 1 and φi+1 → 0 with probability µ.

Thus, α is the hopping rate of a bus onto a site with no passengers and β is the hopping
rate onto a site with passengers. One takes β < α, reflecting the fact that buses are slowed
down by having to pick up passengers. The probability that a passenger arrives at an empty
site is λ. When a bus hops onto a site with passengers, it removes the passengers. The presence
of more than one passenger at a site is not forbidden. The extra passengers have no further
effect on the dynamics. Once a larger gap opens up between two successive buses, the gap is
likely to grow further and the steady state in a finite system consists of a single jam of buses.
This is very similar to the Bose–Einstein-condensation-like phenomenon observed earlier in
particle-hopping models with quenched random hopping rates (Nagatani 1995, Evans 1996,
1997, Krug and Ferrari 1996, Ktitarev et al 1997). The CA model with parallel dynamics has
been studied where its connection with NaSch model has been elucidated (Chowdhury and
Desai 2000).

We describe the time-headway model in detail. The model is defined on a one-dimensional
lattice. Each lattice site is labelled with a number m running from 1 to M . A site represents
a bus stop. Buses move on the one-dimensional lattice. Each bus is labelled with a number j

running from 1 to N . The distance between bus stop m − 1 and m is set by Lm−1. The model
is illustrated schematically in figure 21. The mean velocity of bus j between bus stops m − 1
and m is defined by vj (m − 1). The arrival time tj (m) of bus j at bus stop m is given by

tj (m) = tj (m − 1) +
Lm−1

vj (m − 1)
. (75)

A bus driver operates his bus in such a manner that his velocity increases or decreases according
to the time-headway which is large or small. Assuming that the mean velocity of bus j at bus
stop m depends only on the time headway of bus j at the bus stop m, the mean velocity vj (m)

is given by the operation velocity function V (�tj (m)) where the time headway is defined by
�tj (m) = tj (m) − tj+1(m). The operation velocity is similar to the optimal velocity function
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of the car-following model for traffic flow (Bando et al 1995, Nagatani 1998). The equation
of motion for bus j is described in terms of time headway

�tj (m) = �tj (m − 1) + Lm−1

[
1

V (�tj (m − 1))
− 1

V (�tj+1(m − 1))

]
, (76)

with

V (�tj (m)) = vmin + 1
4 (vmax − vmin)[tanh(�tj (m) − tc) + tanh(tc)][1 + exp(−λ�tj (m))],

(77)

where λ is the rate of arrival of passengers, vmin is the minimal velocity, vmax is the maximal
velocity in the limit of λ = 0 and tc is the desired time headway. When λ = 0, the
operation velocity is consistent with the optimal velocity function of the traffic model except for
vmin �= 0 and the replacement of the distance headway with the time headway. The operation
velocity function has the following properties: (1) in the limit of λ = 0, the velocity increases
monotonically with the time headway and (2) the velocity decreases with increasing time
headway for small λ and large time headway. The property (1) reflects the fact that when the
bus behind catches up with the delayed bus, it should slow down in order to avoid a collision.
The property (2) reflects the fact that the bus is delayed more and more with increasing the
gap size (time headway) in front of the bus because the delayed bus should pick up more
passengers.

Figure 22 shows the plot of equation (77) against time headway for λ = 0.2, vmin = 2.0,
vmax = 4.0 and tc = 2.0. Thus, the bus-route problem is reduced to its simplest form. In this
basic model, each bus stops at all the bus stops. The basic model has been extended to take

Figure 21. Schematic illustration of the bus-route model.

Figure 22. Plot of the operation velocity V (�t) against time headway �t .
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into account no stopping of the delayed bus and the speed up of a non-stopping bus (Nagatani
2001a).

The car-following model of traffic has been extended to the bus-route model directly
(Nagatani 2000d). The equation of motion for a bus is the same as the traffic model but the
optimal velocity function is different from that of traffic. The car-following model of buses is
described by

dxj (t + τ)

dt
= V (�xj (t)), (78)

with

V (�xj ) =
(vmax

2

)
{β + (1 − β) exp(−λ�xj )}{tanh(�xj − xc) + tanh(xc)}, (79)

where xj (t) is the position of bus j at time t , �xj(t) is the distance headway of bus j at time t ,
τ is the delay time and λva is the rate of arrival of passengers (va is the average velocity).
This model has the same properties as the time-headway model. The differential equation
and difference equation models have also been proposed for the bus-route problem (Nagatani
2000d, Huijberts 2002).

The time-headway model has been extended to take into account the number of on-board
passengers within buses (Nagatani 2001b). The extended model is described by the following
equation

tj (m) = tj (m − 1) +
Lm−1

vj (m − 1)
+ max[γ Ij (m − 1), δOj (m − 1)], (80)

with

vj (m) = V (�tj (m)) = vmax

2
[tanh(�tj (m) − tc) + tanh(tc)], (81)

where max[A, B] is the max function: if A > B, max[A, B] = A, otherwise max[A, B] = B.
The third-term on the right-hand side represents the stopping time at bus stop m − 1 for
passengers to board bus j or get off from bus j . The number of passengers currently boarding
bus j at bus stop m is defined by Ij (m). The number of passengers getting off from bus j at
bus stop m is defined by Oj(m). It is assumed that the boarding time is proportional to the
number of currently boarding passengers and the getting off time is proportional to the number
of currently leaving passengers: γ Ij (m) and δOj (m).

The number Mj(m) of on-board passengers on bus j at bus stop m is given by

Mj(m) = Mj(m − 1) + Ij (m − 1) − Oj(m − 1). (82)

It is assumed that the number of currently boarding passengers is proportional to the time
headway and the number of currently leaving off passengers is proportional to the total number
of on-board passengers

Ij (m) = λ�tj (m) and Oj(m) = µMj(m). (83)

The extended model treats accurately the bus dynamics since it includes the various terms
connecting to the buses and passengers.

6.2. Bunching of buses

The bus-route model (76) exhibits both bunching (kinetic clustering) and jamming transitions.
It is assumed that the distance between bus stops is the same for all bus stops: Lm = α. Figure 23
shows the plot of the average velocity v(�t0) as a function of the initial time headway �t0 where
α = 12.0, tc = 2.0, λ = 0.2, vmin = 2.0 and vmax = 4.0. The average velocity at bus stop
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Figure 23. Plot of the average velocity v(�t0) as a function of the initial time headway �t0.

m is defined as v(�t0) = (1/N)
∑N

j=1 V (�tj (m)) where �t0 = (1/N)
∑N

j=1 �tj (m). There
exist the three discontinuous points labelled by a, b and c. The average velocity increases with
the time headway to �t0 = 1.08. At point c, the average velocity increases discontinuously
by a small quantity. There is a small gap at point c. Then, the average velocity increases
to point b (�t0 = 2.19). At point b, there is a small gap of the velocity. Furthermore,
the average velocity increases with time headway to point a. At point a of �t0 = 3.71,
the velocity decreases abruptly to v = 2.98. In time headway larger than �t0 = 3.71, the
velocity remains nearly constant. There are the four distinct dynamic states for the four regions:
(a) the bunching phase, (b) the homogeneous free phase, (c) the kink jam phase and (d) the
homogeneous congested phase. The free, kink jam and congested phases are the same as those
of the traffic flow. The bunching phase is characteristic of the bus-route system. The blocking
of the delayed bus induces the kinetic clustering (bunching) of buses behind. This is due to the
exponential factor of the operation velocity function. Figure 24 shows the time evolution of
time headway for the bunching phase. The fluctuations at an initial stage grow accordingly as
buses proceed. The delayed buses catch up with the bus behind. In time, the time headways
of some buses increase with time.

We show the phase diagram (region map) of the four distinct dynamical states in figure 25.
The phase diagram is represented in the space (�t0, 1/α). The inhomogeneous bunching phase,
the homogeneous free phase, the coexisting phase (kink jam phase) and the homogeneous
congested phase are indicated by IB, HF, COE and HCT, respectively.

The phase boundaries are derived with the use of the linear stability analysis. The solid
curves indicate the phase boundaries obtained by the linear stability analysis. The circles
indicate those obtained by simulation. The linear stability theory is applied to the time-
headway model (76) with operation velocity (77). Let yj (m) be small deviations from the
homogeneous bus flow: �tj (m) = �t0 + yj (m). Then, the linear equation is obtained

yj (m) = yj (m − 1) +
αV ′(�t0)

V (�t0)2
{yj+1(m − 1) − yj (m − 1)}, (84)

where V ′(�t0) is the derivative of operation velocity at �t0. By expanding yj (m) =
Y exp(ikj + zm), one obtains

ez = 1 +
αV ′(�t0)

V (�t0)2
(eik − 1). (85)
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Figure 24. Time evolution of time headway for the bunching phase.

Figure 25. Phase diagram in the space (�t0, 1/α). (a) The inhomogeneous bunching phase,
(b) the homogeneous free phase, (c) the coexisting phase (kink jam phase) and (d) the homogeneous
congested phase are indicated by IB, HF, COE and HCT respectively.

By solving equation (85) with z, one finds the unstability condition for small disturbances of
long wavelengths:

V ′(�t0) < 0, (86)

or

V ′(�t0) > 0 and α >
V (�t0)

2

V ′(�t0)
. (87)

The unstable condition (87) is similar to that of the car-following model of traffic with the
replacement of the inverse of bus-stop distance α by the sensitivity a. The neutral stability
line α = V (�t0)

2/V ′(�t0) for V ′(�t0) > 0 presents the jamming transition curve among
HF, COE and HCT phases. The unstability condition (86) is characteristic of the bus-route
system. The unstability (86) occurs due to the delay of a bus induced by a large gap. The
neutral stability condition V ′(�t0) = 0 gives the transition line between IB and HF phases.

6.3. Delay of a recurrent bus

In a recurrent bus problem on a circular route with many bus stops, a bus interacts with
passengers waiting on bus stops (Nagatani 2001c). With increasing passengers waiting on bus
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stops, a bus slows down due to the long time taken for boarding by the awaiting passengers.
The interaction between buses does not exist in the single recurrent bus problem but the
dynamical phase transition between the delay and schedule-time phases occurs by interaction
with passengers on bus stops.

We present the basic model of a recurrent bus on a circular route. There are M bus stops
on the circular route. A recurrent bus starts at bus stop m = 1, moves around the route and
stops at all the bus stops. A bus stop is represented by a lattice site labelled by number m

running from 1 to M . The arrival time t (m, n + 1) on bus stop m at number n + 1 of rotation
is given by the summation of the stopping time (for new passengers to board the bus) and the
moving time between a bus stop and its next bus stop over all the bus stops. The equation of
motion is described by

t (m, n + 1) = t (m, n) +
m−1∑
l=1

F(�t(l, n + 1)) +
m−1∑
l=1

Ll

V (�t(l, n + 1))

+
M∑

l=m

F(�t(l, n)) +
M∑

l=m

Ll

V (�t(l, n))
, (88)

where the function F is the stopping time at a bus stop for new passengers to board the bus
and the function V is the average speed of the bus between a bus stop and its next bus stop.

The currently boarding passengers on a bus stop increase with the recurrence time. The
boarding time is proportional to the power of recurrence time:

F(�t(m, n)) = γ�t(m, n)α, (89)

where recurrence time is defined by �t(m, n) = t (m, n) − t (m, n − 1).
Dividing time by the characteristic time L/vmin, the M simultaneous equations of the

dimensionless recurrence time are obtained

�T (m, n + 1) =
m−1∑
l=1

��T (l, n + 1)α +
m−1∑
l=1

Ll/L

Ve(�T (l, n + 1))

+
M∑

l=m

��T (l, n)α +
M∑

l=m

Ll/L

Ve(�T (l, n))
, (90)

where L = ∑M
l=1 Ll is the length of the circular route, �T = vmin�t/L, Ve = V/vmin and

� = γ (vmin/L)1−α .
Figure 26 shows the plot of the recurrence time at bus stop m = 1 against rotation number

n for various initial values where α = 2.0, � = 0.02 and Ve(�T ) = 1. The diagram (a)

Figure 26. Plot of recurrence time �T (1, n) at bus stop m = 1 against rotation number n for
various initial value �T (1, 0). (a) M = 10. (b) M = 13.
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indicates the flow in the parameter space (n, �T (1, n)) for bus stop number M = 10. When
the initial value �T (1, 0) is less than 3.61, the recurrence time approaches to the fixed point
1.38 with increasing n. The bus can move on schedule time 1.38. If �T (1, 0) is higher than
3.61, the recurrence time diverges with n. The bus slows down more and more with rotation
number n. The dynamical phase transition between the delay and schedule-time phases occurs
at �T (1, 0) = 3.61 for M = 10. The diagram (b) indicates the flow in the parameter space for
bus-stop number M = 13. Even if the recurrence time starts from any initial value �T (1, 0),
the recurrence time diverges with increasing n. Thus, if the number M of bus stops is larger
than the critical value, the bus always delays and cannot move on the schedule time.

Figure 27 shows the phase diagram (region map) in the space (M, �T (1, 0)). The circle
indicates the transition point between the delay and schedule-time phases. The delayed phase
appears at the hatched region. The transition line decreases with increasing M . If the bus-stop
number is larger than the critical value M = 13, the bus always delays with time and never
moves on the schedule time.

We present a simple nonlinear map to approximate equation (90). The recurrence time
�T (m, n) at bus stop m is replaced with an effective (or mean) recurrence time �T (n). The
M simultaneous equations reduce to a nonlinear equation of a single variable:

�T (n + 1) = M��T (n)α +
1

Ve(�T (n))
. (91)

This is a typical one of the nonlinear map. For α = 2.0 and Ve = 1.0, the map has the two
fixed points if the following condition is satisfied: 4M� < 1.0.

Then, the fixed points are given by �T1,f = (1.0 − √
1.0 − 4M�)/2M� and �T2,f =

(1.0 +
√

1.0 − 4M�)/2M�. The fixed point �T1,f is stable and the fixed point �T2,f is
unstable. When then 4M� = 1.0, there is a single fixed point. For 4M� > 1.0, there are no
fixed points. Figure 28 shows the plot of map (91). The plots (a) and (b) indicate the maps
for M = 10 and M = 15, respectively. The map of M = 10 has the two fixed points: 1.382
and 3.618. The basin of attraction is given by �T (0) < 3.618. The phase boundary of the
schedule-time phase is given by the attraction basin. The basin of map (91) is indicated by the
solid line in figure 27. Figure 29 shows the plot of transition line (basin of attraction) against

Figure 27. Region map in the space (M, �T (1, 0)). The hatched region indicates the delay phase
and the other region the schedule-time phase. The solid line represents the transition line obtained
from the simple nonlinear map. The dotted line indicates the schedule time.
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Figure 28. Plot of map (91). The plots (a) and (b) indicate the maps for M = 10 and M = 15,
respectively.

Figure 29. Plot of transition line (basin of attraction) against M for α = 1.6, 1.8, 2.0, 2.2 where
� = 0.02.

M for α = 1.6, 1.8, 2.0, 2.2 where � = 0.02. With decreasing exponent α, the region of the
schedule-time phase is enlarged for the basin to expand. Thus, the dynamical behaviour of a
recurrent bus can be described in terms of the nonlinear map.

7. Pedestrian flow

This section presents the models and characteristic properties needed for understanding
the pedestrian flow. To know the properties of pedestrian flow is important in our life.
Especially, it will be necessary to know the flow rate of pedestrian. Pedestrian flow is a
kind of many-body system of strongly interacting persons. The pedestrian flow dynamics is
closely connected with the traffic flow. The traffic flow is one dimensional but the pedestrian
flow is two dimensional. The granular flow is also connected to the pedestrian flow.
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Henderson (1971, 1974) has conjectured that pedestrian crowd behaves similarly to gases
or fluids. In the gas kinetic or hydrodynamic approaches, it will be necessary to contain the
particular interactions between persons. The pedestrian theoretical approaches are developing
currently. For practical applications, a direct simulation of individual persons is needed. The
recent researches are based on the microscopic simulation models of crowd flow.

When the crowd concentrates to the exit or entrance, the clogging occurs at the exit or
entrance, the flow rate saturates and the jammed states of people appear. The jammed states
are similar to those observed in traffic flow. The jamming transition between the free flow and
jammed state also occurs with increasing persons (Fukui and Ishibashi 1999, Muramatsu et al
1999, Helbing et al 2000a, b, Klupfel et al 2000, Sugiyama et al 2001, Schadschneider 2001,
Schreckenberg and Sharma 2001).

7.1. Models

In the simulation model, it is important to take into account both excluded-volume effect
and preferential direction of walkers. A few models have been presented for simulating the
pedestrian flow. One is the lattice-gas model of biased-random walkers which is also a kind of
the stochastic CA (Muramatsu et al 1999, Muramatsu and Nagatani 2000b, c). The other is the
behavioural force model, which is a kind of molecular dynamic simulation models (Helbing
1991, 1996c, 1997a, 1998, 2001, Helbing and Molnar 1995, 1997, Helbing et al 2000a, b).
Here, we present the characteristic behaviour of pedestrian crowd obtained by using the biased-
random walkers. A pedestrian is mimiced by a biased-random walker. The pedestrian model is
a modified version of the lattice gas model used in the DLA simulation (Stanley and strowsky
1986, Vicsek 1992, Barabasi and Stanley 1995, Meakin 1998). The pedestrian flow model is
defined on the square lattice. Each walker moves to the preferential direction with no back step.
The preferential direction of walkers is toward the exit. Each site contains only a single walker.
The walker is inhibited from overlapping on the site. The walker does not move to the nearest
neighbour occupied by other walkers. Thus the excluded-volume effect is taken into account.
A bias (drift) is applied to the preferential direction for random walkers. A walker moves
according to and depending on the configurations. Figure 30 shows all possible configurations
of a walker where a walker prefers to move right. An arrow points possibly hopping direction.
The cross point indicates the site occupied by the other walker. The transition probabilities of
the walker depend on each configuration.

The unidirectional pedestrian flow is described by the mean-field rate equation (Nagatani
2001d). We set the preferential direction as x-axis. We apply the conservation law of
probability P(i, j ; t) of a walker existing on a site (i, j) at time t to the process. We denote
the transition probabilities from site (i, j) to the nearest neighbours as pt,x(i, j ; t), pt,y(i, j ; t)

and pt,−y(i, j ; t). The probability P(i, j ; t + 1) of a walker existing on site (i, j) at time t + 1
is described by the following:

P(i, j ; t + 1) = pt,x(i − 1, j ; t)P (i − 1, j ; t) + pt,−y(i, j + 1; t)P (i, j + 1; t)

+pt,y(i, j − 1; t)P (i, j − 1; t) − {pt,y(i, j ; t) + pt,−y(i, j ; t)

+pt,x(i, j ; t)}P(i, j ; t). (92)

The first-term on the right-hand side represents the probability flowing into site (i, j) from site
(i − 1, j). The second (third)-term indicates the probability flowing into site (i, j) from site
(i, j +1) (site (i, j −1)). The fourth-term represents the probability flowing out from site (i, j)

to the nearest neighbours (i + 1, j), (i, j + 1) and (i, j − 1). At a mean-field approximation,
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Figure 30. All possible configurations of a walker on the square lattice. The full circle indicates a
walker. The cross point indicates the site occupied by the other walker.

the transition probabilities are given by

pt,x(i − 1, j ; t) = {1 − P(i, j ; t)}
{
D +

1 − D

3

}
,

pt,−y(i, j + 1; t) = {1 − P(i, j ; t)}1 − D

3
,

pt,y(i, j − 1; t) = {1 − P(i, j ; t)}1 − D

3
,

pt,x(i, j ; t) = {1 − P(i + 1, j ; t)}
{
D +

1 − D

3

}
,

pt,y(i, j ; t) = {1 − P(i, j + 1; t)}1 − D

3
,

pt,−y(i, j ; t) = {1 − P(i, j − 1; t)}1 − D

3
.

(93)

Here, D is the strength of drift for a based-random walker (Muramatsu et al 1999). We assume
that the transition probability is proportional to the probability 1−P with which a walker does
not exist on a nearest neighbour. The excluded-volume effect is taken into account by the
probability 1 − P .

We describe the behavioural (or generalized) force model proposed by Helbing et al
(2000a) to model the collective phenomenon of escape panic in the framework of self-driven
many-particle systems. The model of the crowd dynamics of pedestrians is particularly suited
to describing the fatal build up of pressure observed during panics. They assume a mixture
of socio-psychological and physical forces influencing the behaviour in a crowd: each of N

pedestrians i of mass mi likes to move with a certain desired speed v0
i in a certain direction

e0
i and therefore, tends to correspondingly adapt his or her actual velocity vi with a certain

characteristic time τi . Simultaneously, he or she tries to keep a velocity-dependent distance
from other pedestrians j and walls W . This is modelled by interaction forces fij and fiW ,
respectively. The change of velocity in time t is then given by the acceleration equation

mi

dvi

dt
= mi

v0
i (t)e

0
i (t) − vi (t)

τi

+
∑
j ( �=i)

fij +
∑
W

fiW , (94)



The physics of traffic jams 1373

while the change of position ri (t) is given by the velocity vi (t) = dri/dt . The psychological
tendency of two pedestrians i and j to stay away from each other is described by a repulsive
interaction force Ai exp[(rij − dij )/Bi]nij , where Ai and Bi are constants. dij = ‖ri − rj‖
denotes the distance between the pedestrians’ centres of mass and nij = (ri − rj )/dij is the
normalized vector pointing from pedestrian j to i. The pedestrians touch each other if their
distance dij is smaller than the sum rij = (ri + rj ) of their radii ri and rj . In this case, two
additional forces are introduced for understanding the particular effects in panicking crowd: a
body force fb,ij and a sliding friction force fs,ij . In summary, one has

fij = Ai exp

[
rij − dij

Bi

]
nij + fb,ij + fs,ij , (95)

where fb,ij and fs,ij are zero if the pedestrians do not touch each other.
The interaction with the walls is treated analogously. The interaction force with the wall

is given by

fiW = Ai exp

[
ri − diW

Bi

]
niW + fb,iW + fs,iW . (96)

The generalized force model describes accurately the pedestrian dynamics but large
computational time is taken.

7.2. From free flow to clogging

We describe the model of pedestrian flow in a channel with a bottleneck under open boundary
condition (Tajima et al 2001). The channel is represented by the square of L × W sites where
L is the length of the channel and W is the width of the channel. A bottleneck is positioned
on the centre of the channel. The hole of the bottleneck has the width d. Walkers go into the
channel from the left boundary (entrance), go through the bottleneck and go out to the right
boundary (exit). The density of walkers on the left boundary is set by a constant value pl.
When the walker arrives at the right boundary, it is removed from the channel. If the walker
arrives at the wall, it is reflected by the wall and never let out through the wall.

Figure 31 shows the schematic illustration of the pedestrian flow in a channel with a
bottleneck. A full circle represents a walker. Initially, walkers are randomly distributed at the
entrance boundary on the left-hand side. The walkers move through the bottleneck towards
the exit, according to the above transition rule. On the unit time step, all walkers in the channel

Figure 31. Schematic illustration of the pedestrian channel flow going through a bottleneck.
A circle represents a walker. Each walker moves towards the exit on the right-hand side without
back step. The length and width of the channel are L and W . The bottleneck width is d.
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are updated only once: the update procedure is the random sequential rule. In this model, the
pedestrian flow in the channel is reduced to its simplest form.

The pedestrian flow rate exhibits a characteristic property. Figure 32(a) shows the plots of
mean flow rate (current) J against entrance density pl for various values of bottleneck width
d where the channel length is L = 200, the channel width is W = 40 and the drift is D = 0.7.
Figure 32(b) indicates the plot of the mean velocity 〈v〉 against the entrance density pl. The

(a)

(b)

Figure 32. (a) Plots of mean flow rate J against entrance density pl for d = 5, 10, 15, 20, 25, 30,
35 where the channel length is L = 200, the channel width is W = 40, and the drift is D = 0.7.
(b) Plots of mean velocity 〈v〉 against entrance density pl .



The physics of traffic jams 1375

mean velocity 〈v〉 of walkers moving in a unit time interval is defined to be the value of the
number of moving walkers divided by the total number of walkers existing in the channel. The
flow rate increases with entrance density pl and saturates at a critical density pc. The flow
rate keeps a constant value at larger density than the critical density. This saturation is due to
the clogging of walkers at the bottleneck. When the clogging occurs, walkers go through the
bottleneck with a constant value of mean flow rate. At the critical density, the mean velocity
of walkers decreases abruptly to the low value. One finds that a dynamical phase transition
occurs from the free flow to the clogging flow. The critical density increases with the bottleneck
width d. The saturated flow rate also increases with the bottleneck width d.

The saturated flow rate Js scales as follows:

Js ∝ d0.93±0.02, (97)

where d is the bottleneck width. The scaling of the saturated flow rate has been found in the
granular flow (Jaeger and Nagel 1996, Clement et al 2000). The scaling exponent 0.93 is less
than 1.5 (2.5) in the two(three)-dimensional granular flow. The critical density is given by the
point changing from the free flow to the clogging flow. The critical density pc scales as

pc ∝
(

d

W

)1.16±0.01

. (98)

This scaling has not been found in the granular flow. Based on the above scaling forms (97)
and (98), one plots the scaled flow rate J/d0.93 against the scaled density pl/(d/W)1.16 in
figure 33 using the data in figure 32(a). One finds that data collapses on a single curve for any
density. Thus, the pedestrian flow at a bottleneck exhibits the scaling behaviour.

The pedestrian flow with a bottleneck has been analysed by the mean-field rate
equation (92) (Nagatani 2001d). The two-dimensional pedestrian flow is approximated

Figure 33. Plot of the scaled flow rate J/d0.93 against the scaled density pl/(d/W)1.16 for data in
figure 32(a).
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successfully by the one-dimensional mean-field theory. The dynamical transition from the free
flow to the clogging flow exhibits the dynamical behaviours similar to those of the asymmetric
simple exclusion process with a blockage (Janowsky and Lebowitz 1992, 1994, Popkov and
Schutz 1999, Schutz 2000). The free and clogging flows of pedestrian correspond to the
low-density and high-density phases of the asymmetric simple exclusion process, respectively.

7.3. Escape flow of crowd

We describe the model of the crowd flow going outside a hall (Tajima and Nagatani 2001).
Helbing et al (2000a) have studied the escape panic by using the generalized force model (94).
The computer simulation of escape panic is a pioneer’s work from the point of view of physics.
Here, we mimic the crowd flow by the use of the pedestrian lattice gas model. The crowd flow
model is defined on the square lattice. The hall is represented by the square of L × L sites
where L is the length of the hall. The hall has a single exit with width W . We assume that
people (walkers) are randomly distributed, initially (t = 0), over the square space of hall. At
the next time (t > 0), all walkers move toward the exit. In time, walkers go outside the hall.

Figure 34 shows the schematic illustration of the crowd flow going, through the exit,
outside the hall. A circle represents a walker. Each walker moves to the preferential direction
with no back step. The preferential direction of walkers is towards the exit. An arrow indicates
the preferential direction. All arrows direct to the centre of the exit except for the walkers within
the square abcd. The arrows of walkers existing within the square abcd direct normally to the
exit. Each site contains only a single walker. A bias (drift) is applied to the preferential direction
for random walkers. The strength of drift for a walker depends on the position of walker since
the preferential direction to the exit varies with the position of walker. Accordingly as a walker
moves toward the exit, the drift direction changes from position to position. In this model, the
crowd flow going outside the hall is reduced to its simplest form.

Figure 34. Schematic illustration of the crowd flow going, through the exit, outside the hall.
A circle represents a walker. Each walker moves towards the exit without back step.
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At the first stage (0 < t < 30), all walkers go towards to the exit. At the second
stage (30 � t < 200), arching of walkers occurs since only a few walkers go, throughout
the exit, outside the hall and almost all walkers cannot go out from the exist. At the third stage
(200 � t < 400), the arching decays and flattening of walkers occurs by moving from the
centre to both sides. At the fourth stage (400 � t < 1500), pitting appears above the exit.
With increasing time, the depth of the pit becomes large. At the fifth stage (t = 1500), the
bottom of the pit reaches to the neighbourhood of the exit. A hole is formed. At the sixth stage
(t > 1500), the remaining walkers go out of the exit without clogging.

Figure 35 shows the plots of mean flow rate (current) J against time t for various values
of door size W where hall length L = 100. The flow rate increases rapidly with time and
saturates at t = 30. This saturation is due to the clogging of walkers at the exit. When the
clogging occurs, only a few walkers go outside the hall with a constant value of mean flow
rate. Then, the current decreases with time by forming the hole at the exit. In time, almost
all walkers go outside the hall and the current approaches to zero. We find that a dynamical
phase transition occurs from the clogging flow to the decaying flow.

In the clogging-flow region, the pedestrian flow exhibits the scaling behaviour. Figure 36
shows the log–log plot of the saturated flow rate J against door size W . The circular, triangular
and square points indicate the simulation data for L = 100, 200 and 300, respectively. One
finds that the saturated flow rate J scales as follows:

J ∝ W 0.88±0.02, (99)

where W is the door size at the exit.

Figure 35. Plots of mean flow rate J against time t for door size W = 1–10 where hall length
L = 100.
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Figure 36. Log–log plot of saturated flow rate Js against door size W where the circular, triangular
and square points indicate the simulation data for L = 100, 200 and 300, respectively.

The scaling of the saturated flow has been found in the granular flow (Jaeger and Nagel
1996, Clement et al 2000). The scaling exponent 0.88 is less than 1.5 (2.5) in the two(three)-
dimensional granular flow. Furthermore, the transition time from the clogging flow to the
decaying flow exhibits the scaling behaviour. The transition time is given by the point changing
from the saturated flow rate to the decreasing flow rate in figure 35. Figure 37 shows the log–log
plot of transition time tc against door size W . The circular, triangular and square points indicate
the simulation data for L = 100, 200 and 300, respectively. One finds that the transition time
tc scales as

tc ∝ W−1.16±0.01. (100)

The transition time depends on the hall length L. The scaling exponent does not depend on L

but the value of −1.16 is the same for the different L. This scaling has not been found in the
granular flow. Based on the above scaling forms (99) and (100), we find that data collapses on
a single line in the scaling region of the choking flow.

Helbing et al (2000a) have simulated the dynamical features of escape panic by using
the generalized force model (94). They have found an optimal strategy for escape involving a
mixture of individualistic behaviour and collective herding instinct.

7.4. Jamming transition

Pedestrians counteract the other in the channel of the subway or at the crossing where they
come face to face. At a high density, pedestrians result in the jammed state, pile up and cannot
move each other. The jamming transition occurs when the density of pedestrians is larger than
the critical value. Muramatsu et al (1999) have found the jamming transition from the freely
moving phase to the stopped (jammed) phase. Helbing et al (2000b) have also shown the
similar jamming transition of ‘freezing by heating’. Here, we explain the jamming transitions
in the counter channel flow and at the crossing.
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The counter flow model is described in terms of the lattice gas model with two components
of particles. One component particle represents the walker going to the right and the other
component particle represents the walker going to the left. Figure 38 shows the schematic
illustration of the pedestrian counter flow in a channel. The right (left) walker is indicated by
the full (open) circle. The channel is composed of length L and width W . The left and right
boundaries are open. The density pl (pr) of the right (left) walker on the left (right) boundary
is set by a constant value. When the right (left) walker arrives at the right (left) boundary, its
walker is removed from the channel.

Figure 39(a) shows the plot of the mean velocity 〈v〉 against the entrance density
p(= pl + pr) for width W = 10, 20, 50, 100, 200 where L = 500 and D = 0.0. The
mean velocity decreases slowly with increasing p. When the entrance density p is larger than
the critical value pc, the mean velocity becomes zero. Figure 39(b) shows the plot of the
occupancy ρ against the entrance density p where the occupancy is defined as the fraction
of sites occupied by the walkers. The occupancy increases sharply at the critical point pc.
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Figure 37. Log–log plot of transition time tc against door size W where the circular, triangular
and square points indicate the simulation data for L = 100, 200 and 300, respectively.

Left boundary  Right boundary  
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(Right Walker   )  
pr = Constant  

(LeftWalker   ) 

Figure 38. The schematic illustration of the pedestrian counter flow in a channel. The right (left)
walker is indicated by the full (open) circle.
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Figure 39. (a) The plot of the mean velocity 〈v〉 against the entrance density p(= pl + pr) for
width W = 10, 20, 50, 100, 200. (b) The plot of the occupancy ρ against the entrance density p.

Thus, the jamming transition between the freely moving state and the jammed state occurs at
the critical point. When the entrance density is superior than the critical point, the walkers
counteract by going ahead of each other, they are piled up and are not able to move. The
critical point approaches to pc = 0.45 when W → ∞.

We consider the pedestrian flow at the square crossing connecting the four roads. In the
pedestrian flow at the crossing, the jamming transition similar to the counter flow occurs when
the total density is larger than the critical value. Figure 40 shows the schematic illustration
of the pedestrian flow at the crossing under the open boundary condition. There are the four
types of walkers. Each type of walkers has the desired direction different from each other.
They do not change their desired direction. The model is described in terms of the lattice gas
model with four components of particles.

The densities px , py , p−x , p−y of the right walker on the left boundary, the up walker
on the bottom boundary, the left walker on the right boundary and the down walker on the
up boundary are set at constant values, respectively. Figure 41(a) shows the plot of the mean
velocity 〈v〉 against the total density p for the width W = 20, 30, 50, 100, 200 where,
px = py = p−x = p−y and D = 0.0. Figure 41(b) shows the plot of the occupancy ρ

against the total entrance density p. When the entrance density is higher than the critical
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Figure 40. The schematic illustration of the four-way pedestrian flow at the crossing. The open
(full) circles indicates the right (up) walker going to the right (up). The open (full) triangle indicates
the left (down) walker going to the left (down).

value pc, the mean velocity becomes zero and the occupancy increases steeply. The jamming
transition between the moving phase and the stopped phase occurs at the critical density. The
critical density pc = 0.45 is obtained when W → ∞. The critical value is consistent with
that obtained in the counter flow. In the two-way flow at the crossing, the jamming transition
occurs and the critical point agrees with that of the four-way flow (Muramatsu and Nagatani
2000c).

8. Summary

In this paper, we have shown that traffic systems display a surprisingly rich spectrum of
spatio-temporal pattern formation phenomena. Although there are still many interesting open
questions, one can state that traffic theory is a prime example of a mathematically advanced
description of socio-physical systems.

From the point of view of statistical physics, one of the main aims of basic research on
vehicular traffic is to understand the nature of the traffic jams. We have focused attention
mainly on the progress made in the recent years using the car-following models. We have
shown that the traffic jams are described mathematically in terms of the dynamical phase
transitions and nonlinear waves. The typical nonlinear wave equations (the Burgers equation,
the KdV equation and the modified KdV equation) are derived from the car-following model.
Moreover, we have presented the generic phase diagram of the microscopic traffic model.
We have explored that the jamming transition has properties very similar to the conventional
phase transition and critical phenomenon even if the traffic system is far from equilibrium.
The jamming transition is described by the TDGL equation.

We have also discussed the main models of traffic including the car-following models,
the cellular automaton models, the gas-kinetic models and the fluid-dynamical models. The
relationships between different approaches of modelling have been explored in detail. It has
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Figure 41. (a) The plot of the mean velocity 〈v〉 against the total density p for the width W = 20,
30, 50, 100, 200 where, px = py = p−x = p−y and D = 0.0. (b) The plot of the occupancy ρ

against the entrance density p.

been shown that the phenomenological parameters of the macroscopic theories can be estimated
by utilizing the mathematical formulae relating these with those of the microscopic models.

The description of the phenomena in traffic systems uses and generalizes almost the
complete spectrum of methods developed in nonequilibrium statistical physics and nonlinear
dynamics. The motions of vehicles, buses and pedestrians have been described by Newton’s
equation of motion, complemented by driving forces and frictional dissipation. One has
often found considerably different behaviour compared with analogous systems from classical
mechanics, but there have also been various analogies to granular flow.

We have shown that the bus-route systems are modelled by the extended traffic models.
The bunching transition between an inhomogeneous jammed phase (where the buses bunch
together) and a homogeneous phase occurs with varying the initial time headway. The bunching
of buses is closely connected to the Bose–Einstein-condensation-like phenomenon which has
been observed in the particle-hopping models of traffic. We have also shown that the recurrent
bus problem on a circular route is described mathematically in terms of the nonlinear map
dynamics. The dynamics of the recurrent bus is closely related with the properties of the fixed
points.

We have explored that the clogging transitions of pedestrian occur similarly to the traffic
jams. The clogging of pedestrian is also similar to that of granular flow. The dynamic behaviour
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exhibits the similarity to the asymmetric simple exclusion process. The pedestrian counter
flow exhibits the jamming transition between the free flow and the stopped state. For practical
applications to the evacuation process, a direct simulation of individual persons is important.

In order to predict the occurrence of a traffic jam at a specific place on a given highway
at a particular instant of time, one not only needs more realistic models but also needs more
detailed and accurate empirical data from real traffic.

Traffic is a good example to investigate the dynamical aspects of socio-physical
phenomena. Traffic researches can help to obtain a better understanding of more complex
human behaviour in the future.
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