

INTRODUCTION TO CONTINUOUS CONTROL SYSTEMS
COLUMBIA UNIVERSITY MECHANICAL AND ELECTRICAL ENGINEERING
DEPARTMENTS: E3601

Homayoon Beigi[†]

1340 Mudd Building
Columbia University, New York City, NY 10027
hb87@columbia.edu

Homework 7

Problem 1 (Characteristic Equation and Eigenvalues).

Write the characteristic equations, Eigenvalues, and Eigenvectors of the following matrices.

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 4 & 9 \end{bmatrix} \quad (1)$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 5 \\ 0 & -7 & 3 \\ -1 & -6 & -2 \end{bmatrix} \quad (2)$$

solution

$$\begin{aligned} |\mathbf{A} - \lambda \mathbf{I}| &= \begin{vmatrix} 2 - \lambda & 1 \\ 4 & 9 - \lambda \end{vmatrix} \\ &= (2 - \lambda)(9 - \lambda) - 4 \\ &= \lambda^2 - 11\lambda + 18 - 4 \\ &= \lambda^2 - 11\lambda + 14 \\ &= 0 \end{aligned} \quad (3)$$

$$\begin{aligned} \lambda_{1,2} &= \frac{11 \pm \sqrt{121 - 56}}{2} \\ &= \frac{11 \pm 8.0623}{2} \\ &= 9.53, 1.47 \end{aligned} \quad (4)$$

COPYRIGHT HOMAYOON BEIGI, 2025 THIS DOCUMENT IS COPYRIGHTED BY HOMAYOON BEIGI AND MAY NOT BE SHARED WITH ANYONE OTHER THAN THE STUDENTS REGISTERED IN THE COLUMBIA UNIVERSITY EEME-E3601 COURSE.

[†]Homayoon Beigi is Professor of Professional Practice in the department of mechanical engineering and in the department of electrical engineering at Columbia University

$$A = \begin{bmatrix} 2 & 1 \\ 4 & 9 \end{bmatrix} \quad \lambda_{1,2} = 9.53, 1.47$$

$$[A - \lambda_1 I] \vec{r}_1 = 0$$

$$\begin{bmatrix} 2-9.53 & 1 \\ 4 & 9-9.53 \end{bmatrix} \vec{r}_1 = \begin{bmatrix} -7.53 & 1 \\ 4 & -5.53 \end{bmatrix} \begin{bmatrix} r_{1,1} \\ r_{1,2} \end{bmatrix} = 0$$

$$-7.53 r_{1,1} + r_{1,2} = 0 \quad \text{if } r_{1,1} = 1 \Rightarrow r_{1,2} = 7.53$$

$$\lambda_1 = 9.53 \quad \vec{r}_1 = \begin{bmatrix} 1 \\ 7.53 \end{bmatrix}$$

$$[A - \lambda_2 I] \vec{r}_2 = 0$$

$$\begin{bmatrix} 2-1.47 & 1 \\ 4 & 9-1.47 \end{bmatrix} \vec{r}_2 = \begin{bmatrix} 0.53 & 1 \\ 4 & 7.53 \end{bmatrix} \begin{bmatrix} r_{2,1} \\ r_{2,2} \end{bmatrix} = 0$$

$$0.53 r_{2,1} + r_{2,2} = 0 \quad \text{if } r_{2,1} = 1 \Rightarrow r_{2,2} = -0.53$$

$$\lambda_2 = 1.47 \quad \vec{r}_2 = \begin{bmatrix} 1 \\ -0.53 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 5 \\ 0 & -7 & 3 \\ 1 & -6 & -2 \end{bmatrix} \quad |A - \lambda I| = \begin{vmatrix} 1-\lambda & -1 & 5 \\ 0 & -7-\lambda & 3 \\ 1 & -6 & -2-\lambda \end{vmatrix}$$

$$(1-\lambda)[(-7-\lambda)(-2-\lambda) + 18] + 1[0+3] + 5[0-(7+\lambda)] = 0$$

$$(1-\lambda)[(\lambda+7)(\lambda+2) + 18] + 3 - 5\lambda - 35 = 0$$

$$(1-\lambda)[\lambda^2 + 9\lambda + 14 + 18] - 5\lambda - 32 = 0$$

$$(1-\lambda)[\lambda^2 + 9\lambda + 32] - 5\lambda - 32 = 0$$

$$\lambda^2 + 9\lambda + 32 - \lambda^3 - 9\lambda^2 - 32\lambda - 5\lambda - 32 = 0$$

$$-\lambda^3 - 8\lambda^2 - 28\lambda = 0$$

$$\lambda[\lambda^2 + 8\lambda + 28] = 0 \quad \lambda_1 = 0$$

$$\lambda_{2,3} = \frac{-8 \pm \sqrt{64 - 112}}{2}$$

$$= -4 \pm 2\sqrt{3}$$

$$\lambda_{1,2,3} = 0, -4 \pm 2\sqrt{3}i$$

$$A = \begin{bmatrix} 1 & -1 & 5 \\ 0 & -7 & 3 \\ -1 & -6 & -2 \end{bmatrix}$$

$$\lambda_{1,2,3} = 0, -4 \pm 2\sqrt{3}i$$

$$\lambda_1 = 0$$

$$(A - \lambda_1 I) \vec{v}_1 = 0$$

$$\begin{bmatrix} 1 & -1 & 5 \\ 0 & -7 & 3 \\ -1 & -6 & -2 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \\ v_{13} \end{bmatrix} = 0$$

$$\textcircled{1} \quad v_{11} - v_{12} + 5v_{13} = 0$$

$$\textcircled{2} \quad -7v_{12} + 3v_{13} = 0 \Rightarrow v_{12} = \frac{3}{7}v_{13}$$

$$\textcircled{3} \quad v_{11} + 6v_{12} + 2v_{13} = 0$$

$$\textcircled{3} - \textcircled{1} = 6v_{12} + 2v_{13} + v_{12} - 5v_{13}$$

$$= 7v_{12} - 3v_{13} = 0 \Rightarrow v_{12} = \frac{3}{7}v_{13}$$

$$\text{plug in } v_{12} \text{ in } \textcircled{1}: v_{11} - \frac{3}{7}v_{13} + \frac{35}{7}v_{13} = 0$$

$$\text{if } v_{11} = 1 \Rightarrow 1 + \frac{32}{7}v_{13} = 0$$

$$v_{13} = -\frac{7}{32}$$

$$\begin{aligned} v_{12} &= \frac{3}{7}v_{13} \\ &= \frac{3}{7} \left(-\frac{7}{32} \right) \\ &= -\frac{3}{32} \end{aligned}$$

$$\lambda = 0$$

$$\vec{v}_1 = \begin{bmatrix} 1 \\ -\frac{3}{32} \\ -\frac{7}{32} \end{bmatrix}$$

$$\begin{aligned} 1 - \frac{3}{7}v_{13} + 5v_{13} &= 0 \\ v_{11} - v_{12} + 5v_{13} &= 0 \\ -7v_{12} + 3v_{13} &= 0 \\ -v_{11} - 6v_{12} - 2v_{13} &= 0 \\ -7v_{12} + 3v_{13} &= 0 \\ v_{12} &= \frac{3}{7}v_{13} \end{aligned}$$

some outcome

$$v_{12} = \frac{3}{7} \left(-\frac{7}{32} \right) = -\frac{3}{32}$$

$$A = \begin{bmatrix} 1 & -1 & 5 \\ 0 & -7 & 3 \\ -1 & -6 & -2+4-2\sqrt{3}i \end{bmatrix} \quad \lambda_1, \lambda_2, \lambda_3 = 0, -4 \pm 2\sqrt{3}i$$

$$(A - \lambda_2 I) \vec{v}_2 = 0$$

$$= \begin{bmatrix} 1+4-2\sqrt{3}i & -1 & 5 \\ 0 & -7+4-2\sqrt{3}i & 3 \\ -1 & -6 & -2+4-2\sqrt{3}i \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \\ v_{23} \end{bmatrix} = \begin{bmatrix} 5-2\sqrt{3}i & -1 & 5 \\ 0 & -3-2\sqrt{3}i & 3 \\ -1 & -6 & 2-2\sqrt{3}i \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \\ v_{23} \end{bmatrix}$$

$$-3-2\sqrt{3}i v_{22} = -3 v_{23} \Rightarrow v_{23} = \left[1 + \frac{2}{3}\sqrt{3}i \right] v_{22}$$

$$-v_{21} - 6v_{22} + (2-2\sqrt{3}i) v_{23} = 0$$

$$\text{if } \boxed{v_{21} = 1} \Rightarrow -1 - 6v_{22} + (2-2\sqrt{3}i)(1 + \frac{2}{3}\sqrt{3}i) v_{22} = 0$$

$$-1 - 6v_{22} + \left[2 + \frac{4}{3}\sqrt{3}i - \frac{6}{3}\sqrt{3}i + 4 \right] v_{22} = 0$$

$$-1 - 6v_{22} + 6v_{22} - \frac{2}{3}\sqrt{3}i v_{22} = 0$$

$$-\frac{2}{3}\sqrt{3}i v_{22} = 1$$

$$v_{22} = \frac{1}{\frac{2}{3}\sqrt{3}i}$$

$$= -\frac{3}{2\sqrt{3}i} \cdot \frac{\sqrt{3}i}{\sqrt{3}i} = \cancel{-\frac{\sqrt{3}i}{\sqrt{3}i}}$$

$$\boxed{v_{22} = \frac{\sqrt{3}i}{2}}$$

$$v_{23} = \left[1 + \frac{2}{3}\sqrt{3}i \right] v_{22}$$

$$= \left[1 + \frac{2}{3}\sqrt{3}i \right] \frac{\sqrt{3}i}{2}$$

$$\boxed{v_{23} = -1 + \frac{\sqrt{3}}{2}i}$$

$$\boxed{\lambda_2 = -4 + 2\sqrt{3}i}$$

$$\boxed{\vec{v}_2 = \begin{bmatrix} 1 \\ \frac{\sqrt{3}i}{2} \\ -1 + \frac{\sqrt{3}}{2}i \end{bmatrix}}$$

$$\lambda_3 = \lambda_2 = -4 - 2\sqrt{3}i$$

$$\vec{v}_3 = \vec{v}_2 = \left[\begin{array}{c} 1 \\ -\frac{\sqrt{3}}{2}i \\ -1 - \frac{\sqrt{3}}{2}i \end{array} \right]$$

Problem 2 (Similarity Transform).

Find the Eigenvalues and Eigenvectors of the following matrix and convert the matrices into diagonal or block diagonal form, whichever is appropriate.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix} \quad (3)$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad (4)$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 0 \\ 2 & -4 & 3 \end{bmatrix} \quad (5)$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix} \quad (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 1-\lambda & 2 \\ 5 & 4-\lambda \end{vmatrix}$$

$$= (1-\lambda)(4-\lambda) - 10$$

$$= \lambda^2 - 5\lambda + 4 - 10$$

$$= \lambda^2 - 5\lambda - 6$$

$$= 0$$

$$\lambda_{1,2} = \frac{5 \pm \sqrt{25+24}}{2}$$

$$= \frac{5 \pm \sqrt{49}}{2}$$

$$= \frac{5 \pm 7}{2}$$

$$= 6, -1$$

$$\lambda_1 = 6 \Rightarrow (\mathbf{A} - \lambda_1 \mathbf{I}) \vec{v}_1 = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix}$$

$$\text{if } v_{11} = 1 \Rightarrow v_{12} = \frac{1}{2}$$

$$\vec{v}_1 = \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$$

$$\lambda_2 = -1 \Rightarrow (\mathbf{A} - \lambda_2 \mathbf{I}) \vec{v}_2 = \begin{bmatrix} 2 & 2 \\ 5 & 5 \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix}$$

$$\text{if } v_{21} = 1 \Rightarrow v_{22} = -\frac{1}{2} \Rightarrow \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\lambda_1 = 6 \quad \vec{v}_1 = \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$$

$$\lambda_2 = -1 \quad \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 1 \\ \frac{5}{4} & -1 \end{bmatrix} \quad M^{-1} = \begin{bmatrix} -0.28571 & 0.28571 \\ 0.71429 & -0.28571 \end{bmatrix}$$

$$\tilde{A} = M^{-1} A M$$

$$= \begin{bmatrix} -0.28571 & 0.28571 \\ 0.71429 & -0.28571 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ \frac{5}{4} & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 0 \\ 0 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad (A - \lambda I) = \begin{bmatrix} 1-\lambda & 2 \\ 2 & 4-\lambda \end{bmatrix}$$

$$= (1-\lambda)(4-\lambda) - 4$$

$$= \lambda^2 - 5\lambda + 4 - \cancel{4}$$

$$= \lambda(\lambda - 5)$$

$$\lambda_{1,2} = 0, 5$$

$$\lambda_1 = 0 \quad (A - \lambda_1 I) \vec{v}_1 = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \vec{0}$$

$$v_{11} + 2v_{12} = 0$$

$$\text{if } v_{11} = 1 \Rightarrow v_{12} = -\frac{1}{2}$$

$$\lambda_1 = 0 \Rightarrow \vec{v}_1 = \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix}$$

$$\lambda_2 = 5 \quad (A - \lambda_2 I) \vec{v}_2 = \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix}$$

$$2v_{21} = v_{22}$$

$$\text{if } v_{21} = 1 \Rightarrow v_{22} = 2$$

$$\lambda_2 = 5 \Rightarrow \vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 1 \\ -\frac{1}{2} & 2 \end{bmatrix} \quad M^{-1} = \begin{bmatrix} .8 & -.4 \\ .2 & .4 \end{bmatrix}$$

$$M^{-1} A M = \begin{bmatrix} .8 & -.4 \\ .2 & .4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -\frac{1}{2} & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 3 & 0 \\ 2 & -4 & 3 \end{pmatrix} \quad \left| (A - \lambda I) \right| = \begin{pmatrix} 1-\lambda & 2 & 0 \\ -1 & 3-\lambda & 0 \\ 2 & -4 & 3-\lambda \end{pmatrix}$$

$$= (1-\lambda) [(3-\lambda)^2] - 2[\lambda - 3]$$

$$= \lambda^3 - 7\lambda^2 + 17\lambda - 15$$

$$\lambda_1, \lambda_2, \lambda_3 = 3, 2 \pm i$$

$$\lambda_1 = 3 \quad (A - \lambda_1 I) \vec{v}_1 = \begin{bmatrix} -2 & 2 & 0 \\ -1 & 0 & 0 \\ 2 & -4 & 0 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \\ v_{13} \end{bmatrix} = 0$$

$$\Rightarrow \vec{v}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\lambda_2 = 2+i \quad (A - \lambda_2 I) \vec{v}_2 = \begin{bmatrix} -1-i & 2 & 0 \\ -1 & 1-i & 0 \\ 2 & -4 & 1-i \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \\ v_{23} \end{bmatrix}$$

$$2v_{22} = (1+i)v_{21} \Rightarrow v_{22} = \frac{(1+i)v_{21}}{2}$$

$$(1-i)v_{22} - v_{21} \Rightarrow v_{22} = \frac{(1-i)v_{21}}{2}$$

$$2v_{21} - 2(1+i)v_{21} + (1-i)v_{23} = 0$$

$$\text{if } v_{21} = 1 \Rightarrow 2 - 2(1+i) + (1-i)v_{23} = 0$$

$$\lambda_2 = 2+i \quad \vec{v}_2 = \begin{bmatrix} 1 \\ \frac{1+i}{2} \\ -1+i \end{bmatrix}$$

$$\lambda_3 = \bar{\lambda}_2 = 2-i \quad \vec{v}_3 = \bar{\vec{v}}_2 = \begin{bmatrix} 1 \\ \frac{1-i}{2} \\ -1-i \end{bmatrix}$$

$$(1-i)v_{23} - 2i = 0$$

$$v_{23} = \frac{2i}{1-i} \cdot \frac{1+i}{1+i}$$

$$= \frac{-2+2i}{2}$$

$$= -1+i$$

$$\tilde{M} = \begin{bmatrix} 0 & \frac{1+i}{2} & \frac{1-i}{2} \\ 0 & -\frac{1+i}{2} & \frac{1-i}{2} \\ 1 & -1-i & -1-i \end{bmatrix} \quad u_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad v = \begin{bmatrix} 1 \\ \frac{1}{2} \\ -1 \end{bmatrix} \quad w = \begin{bmatrix} 0 \\ \frac{1}{2} \\ 1 \end{bmatrix}$$

$$M = [u_1 \mid v \mid w] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & -1 & 1 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} 2 & -2 & 1 \\ 1 & 0 & 0 \\ -1 & 2 & 0 \end{bmatrix}$$

$$\tilde{A} = M^{-1} A M$$

$$= \begin{bmatrix} 2 & -2 & 1 \\ 1 & 0 & 0 \\ -1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 0 \\ 2 & -4 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 0 & 0 \\ 0 & \boxed{2} & 1 \\ 0 & -1 & 2 \end{bmatrix}$$

Problem 3. Prove the following Theorem:

Theorem 1 (Complex Conjugate Eigenvalues). Suppose \mathbf{A} has the following eigenvalues,

$$\lambda_i = \sigma_i + i\omega_i \quad (6)$$

$$\lambda_{i+1} = \sigma_i - i\omega_i = \bar{\lambda}_i \quad (7)$$

(8)

for $i = \{1, 3, 5, \dots, m-1\}$ and

$$\lambda_i = \bar{\lambda}_i \quad (9)$$

for $i = \{m+1, m+2, \dots, n\}$

and a linearly independent set of eigenvectors

$$\mathbf{u}_i = \mathbf{v}_i + i\mathbf{w}_i \quad (10)$$

$$\mathbf{u}_{i+1} = \mathbf{v}_i - i\mathbf{w}_i = \bar{\mathbf{u}}_i \quad (11)$$

(12)

for $i = \{1, 3, 5, \dots, m-1\}$ and

$$\mathbf{u}_i = \bar{\mathbf{u}}_i \quad (13)$$

for $i = \{m+1, m+2, \dots, n\}$

The, the real-valued matrix,

$$\mathbf{U} = [\mathbf{v}_1 \ \mathbf{w}_1 \ \mathbf{v}_3 \ \mathbf{w}_3 \ \dots \ \mathbf{v}_{m-1} \ \mathbf{w}_{m-1} \ \mathbf{u}_{m+1} \ \mathbf{u}_{n-1} \ \dots \ \mathbf{u}_n] \quad (14)$$

is nonsingular and may be used to transform \mathbf{A} into the block-diagonal form,

$$\mathbf{U}^{-1} \mathbf{A} \mathbf{U} = \begin{bmatrix} \Lambda_1 & 0 & \cdots & 0 & 0 \\ 0 & \Lambda_3 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Lambda_{m-1} & 0 \\ 0 & 0 & 0 & \cdots & \Lambda_{m+1} \end{bmatrix} \quad (15)$$

where,

$$\Lambda_i = \begin{bmatrix} \sigma_i & \omega_i \\ -\omega_i & \sigma_i \end{bmatrix} \quad (16)$$

for $i = \{1, 3, 5, \dots, m-1\}$ and

$$\Lambda_{m+1} = \begin{bmatrix} \lambda_{m+1} & 0 & \cdots & 0 & 0 \\ 0 & \lambda_{m+2} & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n-1} & 0 \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix} \quad (17)$$

This result also holds for non-distinct eigenvalues, provided that the eigenvectors are linearly independent.

Hint:

First show that

$$\mathbf{A}\mathbf{v}_i = \sigma_i\mathbf{v}_i - \omega_i\mathbf{w}_i \quad (18)$$

$$\mathbf{A}\mathbf{w}_i = \omega_i\mathbf{v}_i + \sigma_i\mathbf{w}_i \quad (19)$$

$$\mathbf{A}\mathbf{u}_i = \lambda_i\mathbf{u}_i \quad \lambda = \sigma_i + i\omega_i$$

$$\begin{aligned} \mathbf{u}_i &= \mathbf{v}_i + i\mathbf{w}_i \\ \mathbf{A}(\mathbf{v}_i + i\mathbf{w}_i) &= (\sigma_i + i\omega_i)(\mathbf{v}_i + i\mathbf{w}_i) \quad \text{match real & imaginary parts} \\ \mathbf{A}(\mathbf{v}_i + i\mathbf{w}_i) &= \sigma_i\mathbf{v}_i + i\sigma_i\mathbf{w}_i + i\omega_i\mathbf{v}_i - \omega_i\mathbf{w}_i \end{aligned}$$

Real:
Imag:

$$Ar_i = \sigma_i v_i - \omega_i w_i$$
$$Aw_i = \omega_i v_i + \sigma_i w_i$$

for $i = \{1, 3, 5, \dots, m-1\}$ and then proceed as if you have all diagonal elements.

matrix form \rightarrow

$$A \begin{bmatrix} v_i & w_i \end{bmatrix} = \begin{bmatrix} v_i & w_i \end{bmatrix} \begin{bmatrix} \sigma_i & \omega_i \\ -\omega_i & \sigma_i \end{bmatrix} \quad i = 1, 3, \dots, m-1$$

for real Eigenvalue, $Ar_i = v_i \lambda_i$

\therefore for each partition we can write the above

resulting in

$$A \begin{bmatrix} \vec{v}_1 & \vec{w}_1 & \vec{v}_3 & \vec{w}_3 & \dots & \vec{v}_{m-1} & \vec{w}_{m-1} & \{\vec{u}_{m+1} \dots \vec{u}_{n-1} \vec{u}_n\} \end{bmatrix}$$
$$= \begin{bmatrix} \vec{v}_1 & \vec{w}_1 & \vec{v}_3 & \vec{w}_3 & \dots & \vec{v}_{m-1} & \vec{w}_{m-1} & \{\vec{u}_{m+1} \dots \vec{u}_{n-1} \vec{u}_n\} \end{bmatrix} \left[\begin{array}{cccccc} \lambda_1 & & & & & \\ & \lambda_2 & & & & \\ & & \ddots & & & \\ & & & \lambda_3 & & \\ & & & & \ddots & \\ & & & & & Q & \\ & & & & & & \ddots & \\ & & & & & & & \ddots & \\ & & & & & & & & \lambda_n \end{array} \right]$$

Each of the above partitions may be multiplied independently.

Problem 4. If $\mathbf{A} : \mathbb{R}^n \mapsto \mathbb{R}^n$ and $m \geq n$, show that \mathbf{A}^m may be written as,

$$\mathbf{A}^m = \lambda_0 \mathbf{I} + \lambda_1 \mathbf{A} + \lambda_2 \mathbf{A}^2 + \cdots + \lambda_{n-1} \mathbf{A}^{n-1} \quad (20)$$

for some coefficients λ_i .

Hint:

Use the Cayley-Hamilton theorem recursively.

Characteristic eqn:

$$\lambda^n + \lambda_{n-1} \lambda^{n-1} + \cdots + \lambda_0 = 0$$

By Cayley Hamilton

$$\mathbf{A}^n + \lambda_{n-1} \mathbf{A}^{n-1} + \cdots + \lambda_0 \mathbf{I} = 0$$

If $m = n$ then we may solve for $\mathbf{A}^n = \mathbf{A}^m$

in terms of powers of \mathbf{A}^{n-1} and less

If $m = n+1$ then \mathbf{A}^m is written in terms of powers of

$$\mathbf{A}^{n-1} \rightarrow \mathbf{A}^n$$

$$\mathbf{A}^m = \sum_{i=0}^{n-1} -\lambda_i \mathbf{A}^i$$

$$\mathbf{A}^{n+1} = \mathbf{A} \sum_{i=0}^{n-1} -\lambda_i \mathbf{A}^i$$

$$= \mathbf{A} \left[-\lambda_0 \mathbf{I} - \lambda_1 \mathbf{A} - \cdots - \lambda_{n-1} \mathbf{A}^{n-1} \right]$$

$$- \lambda_0 \mathbf{A} - \lambda_1 \mathbf{A}^2 - \cdots - \lambda_{n-2} \mathbf{A}^{n-2} + \lambda_{n-1} \mathbf{A}^n$$

$$\text{but } \mathbf{A}^m = \sum_{i=0}^{n-1} -\lambda_i \mathbf{A}^i \Rightarrow \mathbf{A}^{n+1} = \sum_{i=0}^{n-1} \lambda_i \mathbf{A}^i$$

By the same token

$$A^{m+2} = A A^{m+1} = \sum_{i=0}^{n-1} \alpha_i A^i$$

Continue to any $m \geq n$