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Homework 7
Problem 1 (Characteristic Equation and Eigenvalues).

Write the characteristic equations, Eigenvalues, and Eigenvectors of the following matrices.
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Problem 2 (Similarity Transform).

Find the Eigenvalues and Eigenvectors of the following matrix and convert the matrices into diagonal or block
diagonal form, whichever is approprate.
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Problem 3. Prove the following Theorem:

Theorem 1 (Complex Conjugate Eigenvalues). Suppose A has the following eigenvalues,
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Ri=Ri C)]

fori={m+1,m+2,--- ,n}
and a linealy independent set of eigenvectors
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The, the real-valued matrix,

U=[Vi W| V3 W3 = Vyy| Wy | Upp Uy g - Uy (14)

is nonsingular and may be used to transform A into the block-diagram form,
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This result also holds for non-distinct eigenvalues, provided that the eigenvectors are linearly independent.

Hint:
First show that
Av; = oO)Vvi—ow; (18)
Aw; = w;v;+Oo;w; (19)
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Jori={1,3,5,--- ;m—1} and then proceed as if you have all diagonal elements.
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Problem 4. IfA : %" — %" and m > n, show that A™ may be written as,
A" = A1+ LA + A% 4 4, AT (20)
for some coefficients A;.

Hint:
Use the Cayley-Hamilton theorem recursively.
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